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Transputer Instrumentation
for

Particle Flow Measurements.

E. Mills.

Abstract.

This project concerns a pulsed charge injection technique for particle flow 
measurements in 14 mm diameter pipes. A parallel processing system 
containing 6 transputers was designed and built in order to study this 
technique.

Transputers offer significant advantages as single chip microprocessors, 
including the hardware logic for internal parallel processing as well as 4 
high speed communication links for multiprocessor parallel processing 
environments.

This thesis covers work from 68000 multiprocessor designs'to the final 
instrument incorporating 6 transputers. Pictorially the transputer system 
can be visualised as an octahedral structure composed of a data acquisition 
unit connected to a processing array of 4 transputers which in turn is 
connect to a controlling transputer.

The data acquisition unit consists of 8 analogue input channels which are 
multiplexed into an adaptive quantization unit producing an 8-b it answer 
and gain in 3 ps/channel. This application uses only four of these channels 
and the data from them is distributed by the acquisition unit to four 
separate transputers for signal processing. The results from these 
processors are returned to a final transputer which controls the entire 
system.

This system offers a powerful, (60 MIPS), compact, cost-effective solution 
giving simultaneous data capture and processing. The use of this system 
has led to the generation of an empirical model for the measurement of 
mass flow rates in the range of 0.2 gs-1 to 6 gs-1, with a wide range of 
velocities, from 3.5 ms-1 to 14.0 ms-1, giving an accuracy of ±15% of full 
scale in each of three sub-regions.

Analysis of the results obtained show the distinct possibility of being able 
to expand the system into the realm of particle size distribution 
determination. With further work it is felt that this and a closed loop 
paint spraying/control system could be achieved.
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Introduction.

1. Introduction.

Many applications in industry could benefit from an accurate particle mass 

flow measuring instrument. There are currently numerous techniques which 

claim to offer a solution to this problem, but as with most things, there 

are some drawbacks in these techniques and also certain situations which 

can make them inappropriate.

Optically based systems for the application of particle mass flow analysis 
all have the problem of keeping a clean window through which 

examination of the flow may take place. Other techniques for mass flow 

measurement can only give an indication of the actual flow rate due to 

their primary assumptions. Techniques such as Doppler fall into this 

category. With Doppler techniques the assumption made is that the powder 

is transferred in uniform packets, and thus by knowing the speed of these 

packets, the flow rate may be determined.

Techniques such as capacitance noise monitor the fluctuation of noise in 

the powder flow and in many cases this noise is not soley related to the 

flow rate. Some techniques actually impede the flow of the particulate or 

require the diversion of the flow for a short period, or maybe a continuous 

diversion of part of the flow. The simplest form of this being to divert the 

flow into a balance for a given period so that the change in the balance 

reading over a given time gives the actual flow rate.

What follows is a look at how two industries can obtain benefits from a 

mass flow measurement instrument. This is followed by a brief explanation 

of how this research sets out to tackle this flow rate measurement
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Introduction.

problem.

1.1 Applications of a Particle Mass Flow Rate Meter.

1.1.1 Electrostatic Powder Coating Industry.

Electrostatic paint spraying techniques produce articles which have a 

uniform coating of paint. To coat a metallic object it is first connected to 

ground potential. Epoxy paint, in the form of a powder, is pneumatically 

transported to an electrostatic paint spray gun which charges the paint 

particles. The particles are attracted to the workpiece and form a dry 

coating on the surface. Under some circumstances the thickness of the 

coating is controlled by a self—limiting process of electrostatic repulsion 

but for most industrial applications the thickness is controlled by the 

density of the spray and the length of time of its application.

Another unusual property of the electrostatic paint process is that particles 

which would normally pass by the object being sprayed, are actually 

attracted to the reverse of the object by the electrostatic field. This means 

that given ideal conditions an object such as a bicycle frame can be 

entirely coated without the need of turning the frame to point towards the 

spray head during the process, as in normal wet paint spraying technique.

After the objects have been coated with the powder they are heated in a 

furnace for approximately 20 minutes so that the epoxy resin melts and 

forms a good bond to the metal object. Once this bond has been 

established, the final coating is very resilient. Partially coated objects 

become hard and expensive to recover, due to the resilience of the 

coating.
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Currently in the powder coating industry there is no method of directly 

controlling the powder flow rate of the epoxy paint used in electrostatic 

powder coating process. Instead the flow rate is controlled indirectly by 

normal adjustment of the air flow in the pipe. Typically, in a real 

situation, the flow rate is set-up at the initial testing stage of a spray run 

and is changed only when problems occur. Controlling the flow rate in 

this manner can give rise to articles not being coated with powder, or just 

being partially coated.

Problems of lack of coating are normally detected when the objects are 

removed from the conveyor after they have passed through the furnace 

some 20 minutes after spraying has occurred.

Another drawback of this lack of control is that partial blockages, formed 

by the build up of powder within the spray unit can occur. To reduce the 

effect of these the operator sets the initial spraying level high and 

consequently under normal conditions the amount of powder sprayed is 

greater than that required to coat the object. This lack of direct control 

reduces the efficiency of the coating process in the automatic plant.

1.1.2 Power Generation Industry.

The power generation industry has several applications for this type of 

instrument. One application is for the determination of the efficiency of 

their electrostatic precipitators. At present the efficiency of such 

installations is measured by skilled workers taking air samples at various 

stages within the precipitator itself. The accuracy of the final result is 

dependant upon the accuracy of each measurement and the basic 

experience of the operator. An automatic measuring system which moves
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through the precipitator measuring the cross-sectional efficiency of the 

unit would be of great interest to the generating board and precipitator 

users alike.

Another application is for analysis of exhaust gases in power station 

chimney stacks. The instrument would be used to measure how clean the 

exhaust gases were before they entered an exhaust gas driven turbine. The 

proposed turbine would be working in the exhaust of coal burning units. 

The gases would be scrubbed and passed to the turbine. With close 

turbine tolerances any particles passing through the cleaning stage could 

cause considerable damage to the turbine itself. The instrument could 

detect the presence of the particles and could be used to shutdown the 

turbine before damage is caused.

1.2 Aims of the Project.

The basis for the research is the preliminary work carried out by 

Dr B .C .O 'N eill and C.A.Willis [1,2] on the pulse charge injection 

technique for the determination of mass flow rate measurement. The pulse 

charge injection technique operates by injecting charge into the flowing 

particle stream and then detecting the amount of charge transported by the 

particles to downstream sensors. It was shown that there is a relationship 

between the charge injected into the flowing particle stream, that 

transported by particles and the mass flow rate of the particulate.
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The purpose of this work is to:

A. Create an instrument to continuously monitor the mass flow rate of 

particles flowing in a gas without interruption of, or impedance to, 

the actual flow of the particulate.

B. To extend the applications of such an instrument by the

examination of flow rates not previously explored by O'Neill and

Willis.

This instrument would be used in multi-point sampling of power 

station ducts containing smoke or solids in suspension.

C. To enhance the signal processing of the instrumentation created in 

order to create an accurate reading of the flow rate.

D. Expand the instrument, allowing it to be used at high temperatures

and pressures.

E. Extend the technique into the realm of particle size determination.

A successful outcome of this research program will help to improve the 

efficiency of the automatic electrostatic spraying plants by reducing the 

costs of recycling both coated products and the powder itself. The final 

instrument can also be used in the protection of exhaust gas turbines, and 

measuring the efficiency of electrostatic precipitators.

With the turbine protection application the density of particles would be 

lower than that previously explored by O'Neill and Willis, and the
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pressure and temperature of operation would be much higher. The testing 

of such an instrument would be carried out in collaboration with CERL.

1-3 Layout of Thesis.

The thesis contains a general review of mass flow rate measurement 
techniques, chapter 2, followed by the history of the project before the 

onset of the current research program, chapter 3.

Chapter 4 contains a look at the development design path of the research, 

which covers the whole of the project's design phase. Greater details of 

various items within the design follow in chapters 5 and 6.

Next, chapter 7, is a description of the chosen system with operating 

details of the various processing elements followed by review of the 

software developed in order to sustain the research, chapter 8.

Chapter 9 contains details of the results obtained with conclusions and 
suggestions for future developments following in chapter 10.

Each section is written in such a manner that the ideas behind it are 

self-contained and additional relevant information may be found in the 

appendices after the main body of the thesis.
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Review of Mass Flow Rate Techniques.

2. Review of Mass Flow Rate Techniques.

There are many different ways of measuring the mass flow of powders in 

pipes, but none are as well established commercially as those in use for 

single phase flow measurements of liquids. There are many different 

publications on techniques of measuring the mass flow rate of powders. 

The major techniques are reviewed in this chapter and cover a wide range 

from optical to impact, capacitance noise to nuclear magnetic resonance. 

This project is concerned with another technique called 'pulse charge 
injection'. With this technique charge is imparted on to the particles 

flowing in the pipe and by comparing the amount of charge injected to 

that carried downstream by the particles the flow rate of the powder can 

be determined. What follows is a short review of some of the other 

techniques to give an insight into the other ways of measuring mass flow. 

Each technique will give references for further reading on that particular 

method which should give the reader a deeper understanding of the 

technique and methods employed to exploit it.

2.1 Capacitance Noise.

2.1.1 Overview.

The sensors used in this technique are embedded in the walls of the 

transport pipe and use part or all of the cross section of the pipe to form 

the dielectric of a capacitor. If the permittivity of the pipe changes due to 

the change in density of the powder, then there is a change in the 

capacitance. This change is then used to determine the mass flow rate.
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2.1.2 The Technique and its Development.

In 1967 Beck et al. [3] proposed to use capacitance noise technique to 

measure mass flow rates.

Mass flow rate can be measured if two parameters are known:

1. Velocity of the powder v (cm/s).

2. Solids loading per unit length of conveyor w(t) (g/cm).

The proposed system had two types of transducers, one for loading and the 

other for the velocity information. The loading was found using standard 
gamma radiation absorption techniques.

Velocity information was derived by the cross-correlation of two 

capacitive transducers placed close to each other along the axis of the 

pipe.

In cases where the permittivity of the powder is either known or can be 

measured, then both the velocity and loading can be determined from the 

capacitive transducers.

Because the velocity of the powders is constantly fluctuating, an optimum 

time for the cross-correlation process needs to be determined. The 

preferred method of calculating correlation results would be to use an 

on-line digital computer. The use of this is justified as more and more 

plants are using control computers. The frequency spectrum of the 

transducers suggests a fast computer input selection unit would be required
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using transistor switches.

In 1969 Beck et al. produced details on the actual progress made in this 

approach [4]. By this time they had actually made use of a computer in 

the system. Plant tests were made by post processing of U.V. galvanometer 

recordings. Sample data from the charts was punched onto paper tape and 

the correlation function computed off-line. The computer loading for the 

cross correlation computation was 300 ms with a block of 295 data values 

from each transducer at sampling intervals of 500 ps.

In 1971 Beck et al. produced a new variation on the flowmeter, [5], which 

had only one transducer and therefore did not use the cross-correlation 

techniques. This was based on the observation that the noise is 

proportional to the flow rate.

With this new approach the output of the transducer is rectified and 

smoothed. This smoothed value is now passed to a meter drive for direct 

indication of the mass flow rate. The smoothing was variable between 

5-300 s to cover a wide range of conditions.

This new version of the system used a new capacitive transducer which is 

only sensitive to variations in capacitance due to the transit of particles 

and is not affected by changes in standing capacitance due to powder 

sticking to the electrodes and other slow changing effects, hence no zero 

adjustments. This was achieved by standard filtering techniques.

In 1976 Green described a capacitance noise process using FM signal 

processing techniques instead of the AM used previously [6].
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Here an oscillator is constructed using the capacitor formed by the 

transducer in parallel with an inductance. The frequency of oscillation 

varies with the random fluctuations in the flow. An FM demodulator gives 

voltage changes for the effective changes in frequency caused by the 

changes in capacitance. The demodulators are followed by a.c. current 

amplifiers configured to remove unwanted slower changes before another 

current amplifier and display.

Green stated that the flow can be regarded as a mixture of an average flow 

and a superimposed smaller irregular flow. The irregular flow gives rise to 

the flow noise. Experiments found that flow noise is proportional to the 

mass flow rate. These variations were tracked using FM demodulation.

Green concludes by saying that more investigation is justified by the 

findings of the improvement over AM transducers.

Li 1981 Cardon, Green and John presented further work on this 

technique giving 7 applications where this flow meter is being used [7]. 

They conclude by outlining future developments; using paired transducers 

coupled to a cross-correlator with a microprocessor handling machine 

control.

By 1982 Green et al. published work which detailed a microprocessor 

based mass flow rate measurement of solids in pneumatic conveying 

systems [8].

The microprocessor was provided by the 6502 based PET computer which 

sampled both the concentration and velocity signals. From these it 

computes and displays the mass flow rate and total mass. The PET
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provides outputs suitable for controlling the feed rates.

2.2 Ultrasonic Methods.

The ultrasonic method measures the difference of transmission time of two 

ultrasonic transmitters. One transmitter transmits up the flow while the 

other transmits down the flow. The difference in time will yield the 

velocity of the flow. Again as for the Doppler techniques this can be used 

as an indication of the flow rate.

Kwan and Beck [9] tested both a capacitance noise technique and an 

ultrasonic technique in a gravity conveying system. The ultrasonic method 

they used was to pulse a piezoelectric transducer with a 40 KHz square 

wave. The ultrasonics passed across the flow to another piezoelectric 
transducer used as a receiver. The system monitors the disturbances in the 

ultrasound due to the presence of the flow.

In their experiments, wheat flour particles and p.v.c. granules 3 mm in 

diameter, were used with the two flowmeters at varying distances from the 

source of the flow and at varying inclines to it. When testing with the 

p.v.c. granules both systems produced satisfactory results close to the 

source (0.5 m), but at 3 m, both experienced saturation of flow noise. 

When wheat flour was used the flow stuck to the surfaces of the ultrasonic 

transducers and the performance of the system was greatly affected. The 

capacitance noise meter however, showed good results at 6 m from the 

source of the flow.
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2.3 Electrostatic Noise Technique.

The electrostatic method detects the electrostatic charge built up on the 
particles by tribo, (frictional), charging. Work by King et al. [10, 11], 

used sensors embedded in the walls of the transport piping to pick-up the 

electronic noise generated by the flow. The system produces a 

measurement of flow rate and d.c. streaming currents.

Beck and Hobson used an electrostatic noise technique for the production 

of an Explosion Risk Meter for Pneumatic Conveyors [12], except in this 

case a similar transducer was connected to an a.c. voltmeter which was 

used to trigger an alarm to indicate the possibility of an explosion. Their 

work produced results which show how the electrostatic charge varies with 

moisture content and mass flow rate.

The meter had varying results for moisture content and mass flow rate and 

they concluded that:

a) Charge proportional to 1/humidity.

b) Charge proportional to mass flow rate.

c) Mass flow rate relation flattens at higher mass flows.

The flattening of the signals at high flows was attributed to particle 

collisions.
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2.4 Impact Techniques.

This technique is based on the principle of counting the number of 

particle impacts on a sensor. The number of impacts being proportional to 

the flow. The sensor used for the impact detection should be small enough 

to allow only one particle to impact on it at any one time, yet sensitive 
enough to detect all the impacts.

Work done by Mann and Crosby [13], used a piezoelectric transducer and 

produced measurements of local particle flow rate, local particle velocity 

and the local velocity distribution among individual particles. The sensors 

they used needed to be calibrated for the particular particles in use. The 

particles they used were polyester spheres some 6.35 mm in diameter, 

weighing 0.15 g. The life time of the sensors used ranged from one to 

several hundred hours.

2.5 Doppler Techniques.

The Doppler techniques are based around the detection of a frequency 

shift in the reflected signal compared with the transmitted signal. A source 

transmits a signal into the flow and this signal is reflected back by the 

particles in the flow. Since the particles are moving the frequency of the 

transmitted signal changes as the particles approach and pass.

2.5.1 The Technique.

Basically a source of radiation is needed for this technique. Sources used 

are commonly laser pulses or microwaves. Doppler techniques yield 

velocity information. If you know that packets of a fixed amount of
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particles are transferred down the pipe then the average velocity of these 

packets will give the actual flow rate of the particles.

With the laser pulse technique there needs to be a clean window in the 

pipe so that the laser pulses can be transmitted into the flow. In a system 

such as the powder flow system, powder will build up on the window 

blocking the transmission path of the laser, hence the method is unsuitable 

for this application.

In addition microwaves transmitted across the flow can also be used to 

detect the density of the flow. With this method there is less need for a 

clean window as the microwaves can more readily pass through the walls 

of the pipe.

2.6 Nuclear Magnetic Resonance. NMR. Technique.

With NMR the particles are detected by sensing the interactions between 

an applied electromagnetic field and the magnetic moment of the 

subatomic particles of interest.

2.6.1 The Technique.

In the NMR process [14], the particles of interest are subjected to a strong 

fixed magnetic field where they undergo nuclear magnetization. The 

particles now enter a second magnetic field where resonance occurs when 

the correct radio frequency signal is applied to the resonator circuitry 

within the second field. A modulator, also within the second field's 

circuitry, creates a modulating magnetic field which in turn creates 

demagnetized pockets within the flow. A detection circuit now picks up
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the magnitude of the NMR response, which is proportional to the number 

of appropriate nuclei, (hence the particle density), within the detection 

field. Also the modulation effects from the demagnetized pockets is used 

to determine the velocity of the flow.

Knowing the number of particles and the velocity of them the actual flow 

rate can be calculated.

2.7 Electron Spin Resonance. ESR. Technique.

Electron spin resonance or electron magnetic resonance, EMR, is the same 

as NMR except here the response is not proportional to the number of 

appropriate nuclei but proportional to the number of unpaired electrons.

The work done by King and Rollwitz [14], in measuring the flow rate of 

pneumatically conveyed coal, combines the techniques of NMR and ESR 

for flows up to 15% by volume with velocities ranging from 8 to 30 ms"1.

2.8 Gyroscopic Methods.

The principle of the gyroscopic mass flowmeter is that the total angular 

momentum of a circular loop of transport pipe is proportional to the mass 

flow rate of the particles flowing inside the pipe.

2.8.1 The Technique.

A section of tubing carrying the flow is bent into a circular loop and 

suspended vertically. This is then vibrated about its vertical diameter. A 

torque appears about the horizontal diameter of the loop having the same
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frequency as the input vibration and an amplitude proportional to the mass 

flow rate.

In the work done by Decker [15], an early version of this flowmeter used 

a constant speed motor drive to excite the system via a slo t-and- 

eccentric-pin linkage. This meant that the moment of inertia of the loop 

included the total mass of the fluid and gave a resonant frequency 

dependent upon the density of the fluid. Another version of the flowmeter 

was created to eliminate this resonance. This version had a constant torque 

drive and a torque feedback loop to eliminate the resonance and hence the 

system's sensitivity to the density of the fluid.

2.9 Coriolis Force.

With the Coriolis force mass flow meter the transport pipe is arranged as 

part of a tuning fork which is excited. The particles within the excited 

section of pipe undergo Coriolis acceleration and cause angular deflections 

in the pipe. These deflections are detected and used to form the mass flow 

rate reading.

2.9.1 The Technique.

The Coriolis force mass flow meter is a non-intrusive meter insensitive to 

changes in temperature and pressure and can be constructed from varying 

types of material to reduce wear by the particular flow it is to be used on.

The flowmeter described by Tullis and Smith [16] employs a 'U ' shaped 

pipe and a 'T ' shaped leaf spring as opposite legs of a tuning fork. The 

fork is excited by an electromagnetic forcer and this subjects the particles
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within the pipe to a Coriolis type acceleration. The resultant forces create 

an angular deflection in the 'U ' shaped pipe proportional to the stiffness 

of the pipe and the actual flow rate within it. The angular deflections are 

picked up optically twice during each cycle of the tuning forks oscillation. 

The pulses produced by the optical pick-ups are width modulated 

according to an amount governed by the flow rate. The width modulated 

signal is used to gate an oscillator feeding a counter and the resulting 

count is used as an indication of the actual mass flow rate.

2.10 Pulsed Neutron Activated Techniques.

The pulsed neutron activated technique can produce velocity and average 

density information about a two-phase flow based on the detection of 

short term radioactive tracers created by bombarding the flow with fast 

neutrons.

2.10.1 The Technique.

With the pulsed neutron activated method, Kehler [17], PNA, short lived 

radioactive tracers are formed in situ by irradiating the fluid with fast 

neutrons. By detecting these radioactive tracers and feeding the transducer 

outputs to a multichannel analyzer, mass flow velocity information may be 

calculated from the transit time of the tracers. Since the half life of the 

tracers created by the PNA method is short, (typically in the order of 

minutes), by measuring the total activity of the tracers the average density 

of the flow may also be obtained.
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2.11 Heat Transfer.

Work has been carried out by Moriyama et al. [18] on a mass flow meter 

using heat transfer. Their work was on the development of a non-intrusive 

differential temperature sensing method for the measurement of mass flow 

rate in the region of 0-1,000 kg/h with mass flow ratio of 0 -47 .2  kg/kg. 

They were trying to analyze the relationship between mass flow, the heat 

transfer coefficient and the time constant of the meter, using dense phase 

100 pm aluminium oxide powder.

2.12 Optical Methods.

The technique used by Mitchell et al. [19] in the transportation of coal in 

nitrogen, works with particles in the range of 0.5 to 2.0 mm. A beam of 

light is projected across the transport tube. Particles cutting the beam 

cause the detected light intensity to drop at the other side of the pipe. The 

output of the light detector is converted to an on/off digital pulse. The 

modulation created by a stream of particles is related to the actual flow 

rate.

In 1986 Morikawa et al. [20] worked on an optical fibre probe for the 

measurement of velocity and particle concentrations. Their work used fibre 

bundles with alternate fibres sourcing light, while the others received the 

reflected light. As particles pass over the fibre area, light is reflected from 

the particles and back down the receptor fibres. If the particles are moving 

with constant velocity then the pulse train received along the fibres has a 

constant frequency. Thus the frequency of the pulse train created by the 

combination of the pulses received by the fibre bundles is proportional to 
the velocity of the particles.
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Generating the particle concentration requires further processing of the 

received fibre signals. The intensity of the reflected signal from a particle 

is proportional to its height above the fibre. Setting a threshold level on 

the received signal effectively sets the maximum height viewable by the 

fibres. Having a fixed height and fixed area, as defined by the fibre array, 

there is now a fixed viewing volume. By counting the number of particles 

entering this volume, the particle concentration is found. Determination of 

density is found by knowing the average mass of the particles and the 

concentration, hence the density can be calculated.

2.13 Related Areas.

A good visualization of the actual flow in the pipes may prove vital for the 

development of a good measuring instrument. Work in the visualization 

field has included the use of holograms. An example of such work for the 

study of two-phase flows is provided by Shorin [21]. In this work the 

authors used dual-beam holographic apparatus. They set-up their 

equipment using natural particle source like the spores of the puffball 

giving particles in the size range of 3 -4  pm, and corn blight for 7 -8  pm. 

Using this apparatus they examined water droplets in an aerosol form, and 

found that for droplets with a radius of <10 pm and velocities to 10 m/s, 

the droplets actually behaved like solid spheres, bouncing off a plate 

without splitting apart. Further background on the holographic 

visualization of particle flow can be found in a survey done by 

Trolinger [22].

The examination of low density powder flowing in a pipe could lead to the 

visualization of problems encountered in the measurement of this situation. 

A real-time situation which could help would be the combination of the
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real-time three dimensional colour visualization techniques built up 

Robinson et al. [23], and the powder flow rig used in this research. 

Creating windows looking into a well lit flow tube could produce three 

dimensional images of the transportation mechanism of the powder, 

answering questions about the cross-sectional profile of the flow. Looking 

near the sensors, the build-up of powder on the pipes walls may be seen 

and its re-entry into the flow observed. Examination by three dimensional 

x-ray techniques, also developed by Robinson [24], may further help in 

this study, by the elimination of the clear viewing and illumination 

windows. Multi-phase flows with differing particulates may be easily 

observed providing the particles have a different x-ray signature.
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3. Project History.

The project has been devised by Dr B.C .O 'Neill. During the early 1980s 

O'Neill was joined by C.A.Willis. Their object was to devise a means of 

detecting the mass flow rate of particles flowing in a pipe without 

interrupting the flow of the particles. During the first stage of their study 

they looked at the capacitance noise technique. Their work [1,2] showed 

problems in these techniques so they created a novel technique of pulsed 

charge injection. Their original work on this technique led to a 

development of an a.c. charge injection unit for the instrument. Using a.c. 

problems were found in the lack of pulse control, so a d.c. injection unit 

was developed. From this development all their work, and the current 

work on the project, has stemmed. In July 1983 this work was patented by 

the British Technology Group, B.T.G, [25],

3.1 Overview of the Previous Experimental Work.

In the initial study carried out by O'Neill and Willis [2], an experimental 

rig was constructed to convey powder pneumatically from a hopper 

through a purpose built charging and detection unit and then through a 

14 mm (i.d.) pipe. Figure 1 shows the experimental apparatus used and 

figure 2 shows the arrangement of the charging and detection unit.
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Figure 1 Previous Experimental Apparatus.
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Figure 2 Previous Experimental Sensor Unit.

The powder was then separated from the air and returned to the hopper. It 

was therefore possible to run this system for several hours. It was also 

possible to switch the flow for a short period of time to an electronic 

balance to measure the absolute flow rate.

The charging unit consisted of an injection electrode which was a needle 

located along the axis of the pipe and a collecting electrode which formed 

part of the wall of the pipe. The charged powder was detected downstream 

by two adjacent electrodes similar to the collecting electrode. Further 

downstream a fourth electrode was used to neutralize any excessively 

charged powder.
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Charge was injected into the system by applying a high voltage pulse 

between the injecting electrode and the collecting electrode. This pulse 

was obtained from an electronic voltage source which could control the 

magnitude and duration of the pulse.

The two downstream electrodes acted as 'Faraday cages' to detect the net 

charge arriving and leaving the pipe, any charge neutralized on it, any 

charge settling on it. These charges were detected by current amplifiers. 

For mass flow rate measurements the current amplifiers were connected to 

peak detectors with a long time constant which were used to track the 

peak amplitude of the current pulses.

3.1.1 Current Waveforms.

Figure 3a shows a 'typical' current waveform caused by the application of 

a voltage pulse to the injecting needle. This current may be divided into 

two components. The first component is the current flowing in the circuit 

due to the capacitance of the system (see figure 3b). The second is the 

sharp step in the waveform which is due to the onset of charge injection 

into the powder/air stream. The capacitive current was simulated by 

electronic circuitry and then subtracted from the original current signal to 

obtain the injection current which was controlled to be a duration of 

1 ms, figure 3c.
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Figure 3 Injection Current Waveforms.

Figure 4 shows three traces for the first downstream sensor for low, 

medium and high flow rates, in the range of 0.5 to 6.0 grams per second, 

respectively. The second sensor gives a similar waveform except smaller in 

magnitude and delayed in time because it is further away from the 

injection electrode.
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Figure 4 Current Waveforms at SI for Various Flow Rates.
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3.1.2 Mass Flow Measurements.

To obtain mass flow rates the mean peak height of the injection current 

and the sensor currents I 2  & I 3  were measured at various flow rates. The 

data obtained from a large number of such measurements was analysed 011 

a mainframe computer using an interactive statistical modelling package 

called GLIM. The results of the analysis yielded two models for producing 

a mass flow rate from the peak values obtained from the sensors:

Ri = 10xl2 /I i n j for low flow rates, and

D2 2 = ((I2 —13 )/Ij n j )1 4 for medium flow.

where I j  n j  = I o  and I 2 ,  I 3  = current from sensors Si and S 2  respectively.

Two models were needed as the data had to be separated into two regions 

to produce accurate models for low and medium flow rates. Both models 

produce flow rates to within 10% of the measurable flow rate.

The separation of the data into regions was carried out by a computer 

program using the sensor data. This opened the way for a totally automatic 

processing system for continuous mass flow measurement.

3.1.3 The Basic Instrument.

After the initial work carried out by C.A.Willis, two teams of French 

students carried out some preliminary work on a hybrid analogue/digital 

system based around a 6809 microprocessor, [26,27,28], This work

showed that the 6809 processor could only carry out the basic processing

and was not adequate for the additional processing necessary to obtain
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accurate measurements.

3.2 Conclusion.

The work done by C.A.Willis has shown the possibility for developing a 

mass flow instrument. The French students have shown that using a single 

8-b it microprocessor gave insufficient computing power to perform the 

calculations needed for a commercial instrument. New types of system 

must be developed in order to achieve the aims of attaining a commercial 

mass flow instrument.
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4. Development Design Path.

After the developments made by C.A.Willis [1,2], the project moved to a 

stage where realization of an instrument was needed. From this realization 

further investigation of the technique could continue leading to new 

theories.

4.1 Possible Design Options Investigated.

Looking back on the previous work done, there were three choices of 

progress:

1. Hybrid system comprising a balance of analogue and digital 

hardware.

2. Large analogue hybrid with small processor control.

3. Full digital multiprocessing system with a minimum of analogue 

interface components.

4.1.1 Equal Hybrid System.

The preliminary work was an equal hybrid system where the main 

characteristics of the input signals as detailed by Willis, were extracted 

and then processed by a microprocessor. This work had shown that a 6809 

microprocessor was not powerful enough for this job and so this 

processor, and most of the other 8-b it microprocessors, should be ruled 

out for any future work on equal hybrid systems. This left 16/32-bit 

microprocessors. To utilize the initial work done, a 6800 compatible 

microprocessor interface would be required. This was one of the reasons
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why the 68000 family of devices were chosen.

The main characteristics of the sensor currents used by C.A.Willis were 

the peak values of the currents. The analogue systems used by Willis and 

the French students had the disadvantage that when charged powder which 

had built up on the pipe walls, broke loose and entered the flow, a large 

current spike was generated. This spike caused an error in the peak 

detectors because although the spike was in fact a peak, it was however, 

an undesirable peak which must be disregarded to obtain a true reading. 

The spike also had another side effect. This was that the peak detectors 

also averaged the input signals to avoid spurious readings due to the 

fluctuations in the actual powder flow. The averaging in the detectors was 

disrupted by the spike so giving large false readings for many cycles to 

follow.

A new hybrid system of this type would have to reset the peak detectors 

each cycle and would then need a signal conditioning phase such as digital 

filtering. The microprocessor would still be responsible for the actual flow 

rate calculation after this.

4.1.2 Large Analogue Hybrid System.

The large analogue hybrid system would take the previous hybrid idea one 

stage further. In this system the microprocessor load would be vastly 

reduced by analogue devices actually calculating the mass flow rate from 

the peaks found by the detectors.

A large hybrid system would have all the problems associated with an 

equal hybrid system. Detailed analysis of the sensor signals would be
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required in order to determine the necessary processing. Since the flow 

rate equations could not be easily updated and the true nature of the 

signals to be processed had not been determined, the large analogue hybrid 

system will not considered until the full system requirements have been 

determined.

4.1.3 The Multiprocessor System.

The multiprocessor system would comprise one microprocessor which 

captures the waveforms and extracts the basic characteristics. This 

processor would then pass the extracted data to one or more processors 

which would perform the flow rate calculations. Whilst the second 

processor calculates the flow rate the first could start processing the next 
cycle.

4.2 Choice of Design.

Using the basic system developed by Willis, the sensor output currents 

were examined using a high speed digital storage scope and a chart 

recorder. It was found that all the signals obtained from the transducers 

contain a large element of noise and also have spikes due to extra charged 

powder re-entering the flow from the pipe walls. In a hybrid system, fast 

reacting non-linear filters would be needed to cut the high frequency 

spikes before they enter the peak detection unit. The large hybrid system 

would be the fastest of all the systems except that the equations would all 

be fixed and the system would not be easily adaptable to new situations.

When lower flow rates are introduced there becomes a poor signal to noise 

ratio. With a powerful multiprocessor processing unit which has adaptable

Page 31



Development Design Path.

analogue input stages, there would be more chance of yielding useful 

information about the flow. A total digital system would also be 

reprogrammable for different situations.

It was decided that on grounds of flexibility a total digital system would 

be implemented. This system would be used throughout the research phase 

with the possibility of returning to a hybrid system modeled on the digital 

system and its final processing technique.

4.3 STAGE 1. Design of the Multiprocessor System.

4.3.1 Choice of Microprocessors.

Based on previous arguments regarding the choice of microprocessor, it 

was decided that a dual Motorola 68000 based system would meet the 

requirements. Motorola 68000 microprocessors were chosen over 68008 

processors available within the department, because of their speed. The 

68008 is a 68000 16/32-bit microprocessor with only an 8-b it external 

data bus. The instructions for the processor are all 16-bit instructions so 

the 68008 would need twice the time to fetch the instructions needed. In 

practice the 68008 is not half the speed of a 68000 but there is a 

significant speed reduction when dealing with 16-bit information.

Data exchange between the two 68000 microprocessors would be via a 

dual port RAM for speed. With a dual port RAM, data to be exchanged 

can be easily ordered by writing randomly to different addresses in the 

RAM. When it is time to transfer data a write to a special RAM location 

would cause an interrupt on the other processor. Using FIFOs the data to 

be exchanged would need to be carefully ordered by the sending processor
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so that it matches the order expected by the receiving processor. This 

could mean withholding results calculated now until others are computed 

so that when written they form the correct sequence.

Another mode of transference would be to use 68000s and RS232 

interfaces. If the communications overhead become too large and starts to 

slow down the system, then direct memory access units (DMAs) could be 

used. Adding an extra RS232 interface to each 68000 would increase the 

circuit complexity and also the data transfer time and so is not desirable.

If 6800 device compatibility was not required then 68070 microprocessors 

with their built in RS232 interfaces could be used. The 68070 is basically 

an enhanced version of the 68000. The 6800 compatibility has been 

sacrificed to allow the addition of a built in clock generator, on-chip 

memory management unit, 2 DMA channels, an RS232 interface, I2C 

serial bus interface, (inter-chip communications), a 16-bit timer/counter 

and two 16-match/count/capture registers. Another advantage of the 

68070 processor is that the I2C bus could be used for the data exchange, 

thus saving the RS232 ports for instrument/terminal communication.

4.3.2 Choice of Analogue to Digital Conversion System.

During the development of the 68000 based system several designs of 

analogue to digital converter system were evaluated. Basically, for the 

range of input signals that the system needs to handle, a converter system 

with either a large range or the ability to adapt to the signals, had to be 

chosen. The systems evaluated included linear quantizers and adaptive 

quantizers. For resolution, a 16-bit converter system would be desirable 

to cover the range, but at any given instance an 8 -b it converter would give
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the resolution required if the range was altered to match the input signal. 

Work was done to simulate an 8-b it adaptive quantizer and evaluate it 

against a 16-bit linear quantizer. Another primary concern was that the 

converter system should be fast.

4 .3 .2 .1  Analogue to Digital Converter Theory.

For accurate conversion the maximum rate of change of the input signal 

must not be larger than half a least significant bit, LSB, in the converter, 

otherwise the output of the converter will not represent the true value of 

the input signal. In successive approximation type converters this could 

lead to a totally wrong output due to the conversion technique.

With a 16-bit converter with a conversion time of say 8  j l l s ,  and an input 

range of 10 volts, the maximum frequency of an input signal of say, 

5sin(cot), without the use of a sample and hold, is given by:

y = 5sin(cot). 

dy/dt = 5cocos(cot).

The maximum rate of change of the input signal is:

dy/dt = 5 co

= lOirf Vs-1 .

Now one LSB = 20/216 V.

-  305 pV.
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So the maximum acceptable rate of change is 152 pV in 8 ps, which gives 

19 V s-i.

lOxrf = 19

Hence the maximum frequency, f, « 0.6 Hz.

Where y represents the input signal, and dy/dt gives the rate of change of 

the input signal.

As the frequency components in the flow system are far greater than 

0.6 Hz, for a large converter an accurate sample and hold circuit would 

be needed.

Typically a "fast" 16-bit converter was classified as 32 samples per second 

using dual slope techniques or 60 ps for a converter with track and hold 

amplifier using successive approximation with mi effective accuracy of 

14-bits.

4 .3 .2 .2  The Actual Conversion System Choice.

With any conversion system chosen it would be undesirable to have four 

such conversion systems, one for each signal, so a multiplexed system 

would be needed; the undesirable factors being circuit space, added system 

complexity and cost. Now with fast signal multiplexing the effective signal 

bandwidth is increased, thus the effective conversion time of any analogue 

to digital converter must also be increased.
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Due to the difficulties in finding a fast 16-bit analogue to digital converter 

and even an accurate sample and hold circuit, the adaptive quantization 

circuit was chosen. This all led to an 8-b it adaptive quantizer based 

around an 8-b it 'Flash Converter' being developed for the system as the 

larger analogue to digital converters typically took 3-12 ps for 12 bits, to 

convert a signal whereas the flash converter has a 50 ns sample/hold and 

convert time.

4.3.3 Work on the Chosen System.

For the 68000 work a 68000 development system was needed. This system 

was based around the Atari 1040 ST because the Atari could offer a single 

unit solution with easy access to a keyboard and screen. The features of 

the Atari could also be utilized in any final instrument design.

The Atari computer was not originally in a form which would allow 

development to take place so the computer needed modification. A circuit 

was designed which enabled the user to cause interrupts, take control of 

the computer busses, and to interface memory and/or peripherals to the 

system. This circuit was designed to fit inside the Atari computer for 

practical reasons. Before the insertion of this unit, the Atari would not 

allow any of these features due to its memory management system which 

knows exactly what the Atari should have in its memory areas and does 

not allow units which it has no knowledge of.

The first version of the adaptive quantizer was a complete stand alone Data 

Acquisition Unit which gave an effective 16-bit resolution, (8-bits and 

gain), answer in 480 ns. With further refinement and close consideration 

to circuit timings, this time was reduced to 380 ns. With this high speed
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converter system and a 8 MHz 68000 processor based unit it was found 

that the software could, reading and storing at its fastest, reduce the 

sampling speed for 4 signals to 12 ps. This gave, over a 20 ms period, 

some 1666 samples per signal. The next stage of the system software took 
another 80 ms of processing time to extract the characteristics of the 

waveforms. The data should now be transferred to the other 68000 for 

final data processing before the flow rate for a system could be displayed 

or control of a spraying system started.

For a practical controlling system the unit should be able to service up to 

eight units giving an update in information within 1 second. It can be 

clearly seen that a single 68000 based system may just meet this criteria 

but leaves no extra processing time for future development.

4.4 Transputer Designs.

During the development of the 68000 based system a new type of 

microprocessor was studied. This was a high speed processor which can be 

easily linked by a two wire system to upto four other processors. Each of 

these communication links has an in-built DMA controller for high speed 

communications upto 20 Mbps. This new processor is called a transputer 

and is designed for use in parallel processing applications. The 

Polytechnic's Computing Services installed a software Transputer 

Development System. Hie equivalent 68000 processes were written for the 

transputer in Occam, the native language of the transputer, and timings 

evaluated. With more investigations a new, previously unexplored, design 

route opened.
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The basis of the system is a sensor head which contains four sensors. To 

develop a control system a digital instrument is needed which has the 

capability to make decisions on the results calculated.

The optimum transputer system, optimized for speed, would comprise 5 

transputers. There would be a Processing Array of four transputers for 

real-time data processing where each transputer would handle one signal 

and be fed pre-formatted 16-bit data from a high speed adaptive analogue 

to digital conversion unit. The Processing Array would then feed the 

characteristics to a final transputer for flow rate calculation and feedback 

control.

As the optimum system involves four adaptive quantization units, and four 

acquisition units have already been ruled out during the 68000 work, the 

next choice is a system where all the transputers are connected to one 

signal conditioning unit. The problem with a system of this nature is the 

interconnection between the transputers and the analogue to digital 

converter. There are two main ways in getting the data from the converter 

system to the transputers. The first is to have a multiplexed bus where the 

transputer busses are multiplexed into the converter system or four 

separate access ports on the converter system, one for each transputer. The 

second is to have the output from the converter clocked into data latches 

which feed Inmos Link Adaptors which in turn are connected to the 

transputers via their links.

The first solution would involve a complex board construction and would 

defeat the object of having minimum transputer processor systems linked 

together to form the Processing Array. The second solution would keep 

the minimum processor arrangement and give a fast converter and
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distribution unit.

With any system there is a need for the detection of charge injection. In 

the 5 transputer based system one of the transputers in the 

Processing Array would be used for the injection detection. Another 

solution would be to have six transputers where the sixth transputer would 

be incorporated in the quantization unit to replace the complexity involved 

in the link adaptor solution. This additional transputer could also be used 

for data processing and the actual converter system would be further 

reduced by the addition of a programmable logic device which with the 

transputer, would replace a large amount of the original conversion 

circuit.

4.4.1 Final Decisions. Transputer Vs 68000.

The flow system is to handle 16-bit data, (8-bit with a dynamic range of 

16-bits), and process it. For speed the arithmetic should therefore be 

done with more than 16-bits at a time. For this reason the T212 16-bit 

transputer had to be ruled out leaving the T414 32-bit transputer or the 

proposed T800 floating point transputer.

As the data from the analogue to digital converter was in a fixed point 

representation of the real input signals, the data could be handled easily 

with integer arithmetic so there was no need for the T800 floating point 

transputer on the Data Acquisition Unit nor on the data Processing Array. 

Since the data represents real signals, and powers of this data are to be 

taken, then to preserve accuracy floating point arithmetic is needed for the 

final computation element. The T414 processors handle floating point 

arithmetic with software routines taking up extra memory space. The T800
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floating point transputer has its own floating point unit inside it and the 

floating point routines of the T414 are micro-coded in the T800 and take 

up no external memory. The floating point arithmetic is also a lot faster 

on the T800 than on a T414. For this reason the T800 is to be used in 

the final processing stage. If the T800 was not ready by the time the 

system was built, then a T414 could be used and replaced at a later date, 

as the T414 and T800 are pin compatible. The T414 software would only 

need recompiling for the T800.

Preliminary work on the Vax based Transputer Development System using 

Proto Occam, showed that with a multiprocessor unit comprising four 

processing nodes, one for each signal, the transputers could not only 

handle the data throughput but also do the first stage data processing with 

the 68000 initial sampling time of 20 ms. A total saving of 80 ms by 

doing real-time data processing. A further advantage of this system was 

that as the data was processed in real-time there was no need for large 

memories for data storage, in fact the transputer program and variables 

could easily fit within the transputer's internal 2K of RAM leading to a 

minimum system which basically consists of four bare transputer chips.

This all led to a transputer system with an octahedral structure, figure 5, 

comprising a transputer controlled Data Acquisition Unit, which 

distributes data to a Processing Array, and a real-time data Processing 

Array of four transputers. The transputers in the array then pass the 

results of their calculations over to a final processing and control unit for 

final computation.
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P r o c e s s i n g  Ar r a y

L

Con t r o 1 1 e r

Figure 5 Diagrammatic Representation of the Transputer System.

The system is now a fast pipeline structure with real time data processing 

continuing in parallel with the data collection. The final results can then 

be calculated in parallel with the start of the next cycle. This arrangement 

provides a powerful basis for the research.

Although the loss of the 68000 work would be a great set back for the 

project it is felt that this solution will withstand the greater computing 

demand to follow in the data analysis sections of this research. This new 

design will enable the testing of many different ways of processing the data 

and could later lead to the reconsideration of a hybrid system after the 

signal processing methods have been identified.
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4.5 STAGE 2. Realization of the Design.

The first design for the Controller section of the system incorporated many 

extra features such as a reconfigurable digital signal processing section, a 

68000 development system area with dual port RAM data exchange to a 

transputer development section. This design had to be dropped due to 

production difficulties. Attention was focused on the Data Acquisition 

Unit and real-time Processing Array before a final design of the 

controlling section was completed. What follows is a discussion of the 

design and construction of the various elements making up the transputer 

design.

4.5.1 System Software.

The software for the transputer system was created on the Vax using Proto 

Occam. The system was simulated by adding a simulation of the Data 

Acquisition Unit and analogue inputs. The simulation confirmed the 

design theory.

When one of the off-shoots from the original Controller was ready, 

software developed on the Vax was downloaded by using a Transputer 

Development Workstation written in 68000 assembler on the Atari 1040 

ST and an Atari to Inmos Link Conversion Unit developed for the task. It 

was at this point in the project that problems were found with the Vax 

system. The code extraction and downloading had difficulties which the 

Computing Services could not help with. The problem was in the code 

extraction. This arose as full access to the Vax system was not available. 

It was about this time that we were able to obtain backing via the 

SERC/DTI Transputer Initiative in the form of a IBM Transputer
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Development System, TDS, running Occam 2 on a T414 host processor. 

Then all the Vax software was ported to the IBM and converted to 

Occam 2. The original programs which had difficulties in extraction and 

downloading from the Vax, now worked.

From the original Vax system simulation, system software was developed. 

An IBM Transputer Development System was purchased for research as 

the SERC/DTI system was being returned as the loan period was nearing 

expiry date. This development system had a T800 host and was used as a 

server for the transputer based system in the flow project.

4.5.2 The Data Acquisition Unit.

The design of the data acquisition was based around an erasable 

programmable logic device, EPLD, containing 1210 programmable logic 

elements, an analogue signal multiplexing unit, an adjustable gain section 

feeding an 8—bit flash converter and a T414 32-bit transputer.

During the design phase the EPLD logic was simulated using QUICKSIM 

which is Mentor Graphics Logic Simulator running on an Apollo. The 

simulation confirmed the logic function of the EPLD. The logic array was 

then programmed using the Altera Logic Programming package on an 

IBM PC.

The circuit board was laid out using Mentor Graphics BOARD 

STATION. The output of the package was a two times artwork for the 

printed circuit board. This artwork was completed and sent away for 

production of the printed circuit.
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The board was then built up and tested. Operating difficulties caused a 

redesign of the signal conditioning unit and reprogramming of the logic 

array. Several new designs of signal conditioning elements were created 

but none put into practice as subsequent changes in the software removed 

these errors and enhanced the entire system. These changes are as follows:

a. The calibration software provided the system with the knowledge 

of the true gains of the circuit and any offsets associated with 

them.

b. By modifying the adaptation technique used by the system so that 

it keeps a fixed gain for one entire injection cycle, only 8 -b it data 

was needed to be transferred from the Acquisition Unit to the 

Processing Array. Once the results were calculated they could be 

adjusted to take into consideration the true gains and offsets. By 

not using intra-sample adaptation the data transmission 

requirements have been reduced.

4.5.3 The Real-time Data Processing Array.

The real-time Processing Array comprises four T414 transputers without 

any other logic chips, (except those providing a clock and reset). The 

transputers have all their unused signal pins terminated with resistor 

networks to reduce the chance of static damage.

The printed circuit board was laid out using SMARTWORK which is a 

basic pcb layout package for the IBM PC. The artwork was again two 

times artworks and were completed by hand. The pcb board, because of its 

simplicity of design was produced within the department.
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All four processors on the board now run the same program greatly 

simplifying programming of the system.

4.5.4 The Main Control Unit.

The Controller design was entered into the Apollo for printed circuit 

board layout by BOARD STATION. The board design evolved from the 

original high specification through various levels of complexity to its final 

implemented form. During this design path the board became a compact 6 

layer printed circuit with integral power planes. Due to the financial 

constraints of the project it was felt that this board should be built using 

non-multilayer technology thus leaving money available for future circuit 
boards, if they are needed.

The board was change to a double-sided pcb measuring some 18 inches by 

10 inches and was planned to contained a T800 32-bit floating point 

transputer, 1 Mb of high speed static RAM and a full expansion bus.

At this stage an offer was made of a free demonstration of a photoplotter. 

This offer was taken up due to the time which would be saved, although it 

was known that the track widths on the power rails were not of the 

required size for the current capacity of the circuit. When the board was 

finally complete, extra power line supports were added to reduce the volt 

drops across the circuit board.

During operation of the circuit, the T800 based Transputer Development 

System found difficulties in communicating with the T800 onboard the 

Controller. The problems with communication did not exist if the
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development system could talk to the Controller's T800 via a T414 

transputer. This problem of communication was exactly like the problems 

highlighted in the release notes of earlier versions of the T800. Since both 

the T800 in the Controller and that of the Development System were the 

new T800C full specification versions of the T800, this communication 

problem should not be occurring. When the T800 was replaced with a 

T414 the whole system ran without the communication problem.

Nearing the end of this research, the problems of communication returned. 

Problems with the memory onboard the Controller also appeared. As time 

went on the board started becoming more and more unreliable, until it was 

deemed to have failed completely. The problem with the circuit lay in its 

physical size. During the life of this project the system was moved about 

from the development area to the actual laboratory area. It was also moved 

within these areas. The penalty of this movement and board size is that the 

fine tracking and vias started to fracture causing intermittent loss of 

signals.

The design was reviewed and again returned to the Apollo. This time the 

board was vastly reduced in size by returning to a 6 layer printed circuit 

board and increasing the packing density beyond that previously explored. 

This board had two internal power planes, increasing reliability. Extra 

features were added to the system so that the busses of the transputer 

could be taken over and the RAM onboard the card could be 

interrogated. Further reliability and circuit security were added along with 

these extra features by the inclusion of a 1200 gate EPLD. This device 

replaced some 9 integrated circuits on the board reducing the number of 

device interconnections by on-chip routing.
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The photoplots were now produced in-house and the final board became 

11x7 inches, with 4 signal layers and two power layers, containing 

approximately 2000 holes, (vias and I.C . pads).
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5. General Developments within the Project.

5.1 Atari Modifications.

During the work on the 68000 based systems, a 68000 development system 

was required. Most of the 68000 development systems available were 

either too expensive or were based around the 8 -b it bus version of the 

68000, the 68008. This application calls for high speed processing of 

16-bit data so the 68008 based units were no good for development. The 

Atari 1040 ST was an 8 MHz 68000 based microcomputer but did not 

have the ability to be easily expanded.

The basic concept behind the Atari work which followed, was to generate 

a 68000 system which would allow the transference of software written on 

it, to a 68000 based target system. The Atari offered a small package with 

the ability to generate code for a target system. The other features of the 

Atari could be used in any final instrument design. The keyboard and 

screen would provide a means of operator interaction and the disc drive, a 

way in which the system software could be updated.

A target for the system was chosen. This was a GESMPU14 offering a 

68010 processor running at 8 MHz, dual RS232 interfaces, a real-time 

battery backed clock and calendar, provision for a floating point 

co-processor, 256x4 bits of non-volatile RAM, plus sockets for 

EPROMs.

The GESMPU14 also offered an industrial standard bus interface, the 

G96. The G96 bus is upward compatible with the G64 and so together
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could offer a way to a wide variety of standard computer boards for 

input/output.

The Atari has built-in protection circuitry which stops the user accessing 

areas of memory unknown by the operating system. This circuitry needed 

to be defeated to free up the Atari's memory space. To overcome the 

non-expandability of the Atari 1040 ST due to the protection circuitry 

and the lack of a buffered expansion port, a complete circuit board was 

designed which accommodated the 68000 processor, dual buffer sets, and a 

special arbitration unit which would arbitrate between the A tari's internal 

hardware and the user's hardware and hide the operations which it knows 

about from the Atari's protection circuits.

What follows is a description of the hardware used to defeat the Atari 

protection logic and a look at how it was fabricated.

5.1.1 Description of the Hardware.

The modification board consists of a new site for the A tari's 68000 central 

processing unit, (CPU), buffers for all the CPU 's signals and an 

arbitration unit. The arbitration unit has the job of enabling the required 

buffer set and masking the error of accessing user modules from the 

protection circuits. The buffers are quite straight forward and are therefore 

not described.
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The arbitration unit consists of 3 arbitrators.

1. Memory arbitrator.

2. Interrupt arbitrator.

3. Bus arbitrator.

These 3 arbitrators all arbitrate between the existing Atari hardware and 

any user added units. Without this unit the Atari could not be expanded 

as the internal memory management system halts the processors operation 

when any access is made to a location which violates its idea of the system 

memory map.

5.1.1.1 Memory Arbitration Unit.

The memory arbitration unit allows units unknown to the memory 

management of the Atari to be interfaced to it. This unit relies on the 

external memory address decoding and the Atari's own decoding to decide 

whether the Atari's memory management has come to the right decision 

about any given memory access. The unit controls the 'Bus Error' signal 

given to the CPU when an access is made to an unknown memory 

location, and also controls the buffers for data flow and the data 

acknowledgments passed to the CPU.

Table 1 shows the results of the arbitrator for a given access.
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A t a r i E X t e r n a 1 R e s u 1 t
No E r r o r N o E r r o r N o E r r o
No E r r o r E r r o r N o E r r o
E r r o r N o E r r o r N o E r r o
E r r o r E r r o r E r r o r

TABLE 1 Bus Arbitration.

The result is in fact the effective bus error signal passed to the CPU.

ERRMASKO-------- 3i XDR2 y ONBERRNBERR l O -------- L Z S

Figure 6 Memory Arbitrator.

Figure 6 shows the simple logic inside the EPLD which handles the 

memory arbitration. The EPLD is covered in the fabrication section, 

section 5.1.2. The signal ERRMASK is generated from the NDTACK 

signal created by the user logic, and the signals NBERR1 and NBERR are 

the original Atari signals, NBERR1 being connected to NBERR in the 

Atari.

5.1.1.2 Interrupt Arbitration.

The interrupt arbitrator arbitrates between the Atari internal interrupt 

devices and any external interrupt generating devices. To do this, the 

arbitrator compares the internal level of interrupt with that of the external 

device. The Atari was given the highest interrupt priority, so if the Atari's
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level is greater than or equal to the external level then the Atari's level is 

passed as the interrupt level to the processor. Otherwise the external 

interrupt level is passed to the processor. The CPU has a processing level 

in its status register. It compares the interrupt level it is given with that in 

its status register. If the value in the status register is greater than the 

value present on the interrupt lines then no interrupt takes place, 

otherwise it acknowledges the interrupt. Figure 7 shows the interrupt level 

arbitrator. Signals NAn are the original Atari interrupt lines. The interrupt 

lines to the processor are now NIPLn.

O S T R T U S

•NIPL2

>N I PL 1

>N1PL0

N B 2 0

N B I O

NBQO-

Figure 7 Interrupt Level Arbitrator.

As a diagnostic feature the arbitrator has the output of the interrupt 

request comparitor available on the pin labelled STATUS on the pin 

diagram of the EPLD, appendix F. STATUS indicates which interrupt, 

either external or internal, has the highest priority.
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When this acknowledgment is given the arbitrator masks off the 

acknowledgment cycle from either the Atari or the external device 

depending upon the state of the arbitrator's interrupt level comparison at 

the time. This logic is shown in figure 8. Signal NENA goes to the enable 

on the tri-state buffer buffering the 68000 signals, NAS and FCn to the 

Atari's logic and NENB does the same for the external logic.

tnZJ
I—
ac cmI— 21

O NE N B

N A S O ONENA

Figure 8 Interrupt Mask.

5.1.1.3 Bus Arbitration Unit.

For bus arbitration the Atari was again given the highest priority. The 

Atari's circuitry is connected to the signals labelled XXXi. The actual 

priority arbitration only lasts until the rising edge of the next clock cycle 

whereby the EPLD commits the system to the service of one or the other 

bus requests. Looking at the state diagram in figure 9, the branches off the 

centre represent the application of the bus requests. The state of each bus
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request is only important when the clock has a 0 to 1 transition where the 

state changes from the inactive centre to one which follows a logical path 

in granting the bus. Figure 10 shows the main logic of the bus arbitrator. 

Due to the internal design of the EPLD extra external logic was needed to 

create the bus master enable signals, BM1EN and BM2EN. The EPLD 

does not have the ability to have separate clocks on the register elements 

and since two elements are already fed by the 8 MHz system clock, and as 

the other elements require two different clocks, they were implemented 

externally.

The state diagram, figure 9, follows on the next page and 
figure 10 showing the main logic of the bus arbitrator follows

after that.
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Figure 10 Bus Arbitration Unit. Main Logic.
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When the external system takes control of the bus, some of the buffers in 

the system need to reverse their normal direction, for example the address 

bus no longer comes out of the Atari but flows in allowing the external 

system to interrogate the internal memory of the Atari. The logic for this 

is shown in figure 11.

N B M I O
R N O

O D I R 1XOfl

XOFi
B M 2 0 O D I R 2

O F  1X2
N MO N O

Figure 11 Bus Arbitration Unit. Buffer Control.

In figure 11 DIR1 controls the buffers for the Atari side of the 68000 

CPU and DIR2 controls the buffer direction for the externals system. To 

aid monitoring of the busses within the Atari, an extra signal NMON has 

been provided which when active causes the normally fixed inward facing 

buffers, (facing into the Atari), to change direction and allow the signals 
to flow out of the Atari.

5.1.2 Fabrication.

For compactness and simplification of the PCB, the bulk of the arbitrator 

was constructed using an erasable programmable logic device, (EPLD). 

There were two slightly different versions of the arbitrator. The first was
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incorporated into a PCB. There appeared to be problems with this board 

so some slight modifications were made on it before it was abandoned. 

The second board was a wire wrapped version. This too seemed to have 

problems. During the testing of both boards the Atari was reassembled to 

check that the faults were on the boards under test and that no damage 

had occurred to the Atari. It was during one of these routine checks that 

the Atari demonstrated the same behaviour. The problem lay in the chip 

sockets that housed the Atari's custom chips. The board had been flexed 

during the tests of the circuits and the custom chips had worked loose. 

When the modification boards had been removed the Atari board had 

relaxed and the sockets made contact with the chips. Flexing the Atari 

board gave the same problem, the sockets did not make contact with the 

chips but flexed the other way, contact was made. The Atari was repaired 

by the supplier and the modification board ran without any problems, 
however after the Atari board had suffered some more flexing the 

problems re-occurred.

The wire wrapped board had an additional problem of noise produced by 

the TTL buffer chips and the wrap itself. Each chip on the board was 

decoupled by a 0.1 uF ceramic disc capacitor across the supply rails close 

to the device. The problem was most evident during disk formatting 

although the disc power supply had a filter to remove transient spikes. It 

was found that the operation of the modification board was aided by the 

removal of one set of data buffers. It was proposed that the board be 

rebuilt using minimal buffering on the Atari side of the circuit and full 

buffering on the external side to aid cable drive and reduce damage due to 

misuse. This would reduce the noise created by the buffer chips and also 

the power supply loading. The technology of the buffers could also be 

changed from TTL 74LS' series to TTL 74F', this would further reduce
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the supply loading and also reduce delays caused by the addition of the 

buffers. The reduction of the supply requirements would mean that the 

A tari's supply would be able to supply the power to the whole system 

whereas a heavier loading would increase the load over the 1 amp rating 

of the bridge rectifier in the Atari power supply.

At this stage assessment of alternate systems were considered and the 

development of the interface ceased in favour of the alternative systems.

5.2 G96 68010 Transputer Interface.

After abandoning the Atari development, work was directed to the creation 

of a transputer based system. The first idea tried incorporated a 68000, 

T414 32-bit transputer and an A100 digital signal processor. The printed 

circuit board for this was too complex for the pcb packages available 

within the Polytechnic and so this too was abandoned.

The next alternative based on the same lines, involved the interfacing of a 

separate transputer board and 68000 card, the GESM PU-14. The 

interface would provide the 68000 card with 64K of static RAM, four 

Inmos link adaptors to allow easier connection with other transputer 

systems, an IEEE-488 industrial standard instrument interface and a 

dual-port RAM for communication to the transputer system.

The main logic of the interface was contained within an EPLD. This 

device was programmed to decode the address bus of the 68010 and 

produce the necessary chip enables for all the interface devices. Logic on 

the card was provided to allow the link adaptors to generate and interrupt 

and the actual interrupting device requests were priority encoded and made
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available to a port readable by the 68010. This readable port would allow 

the link adaptors to generate autovectored interrupts. Acknowledgments 

were generated within the EPLD, and it controlled the buffers onboard the 
interface card.

N BUSTO-
Nvpno-

n tncKC>

H L O SO

OTACK

NBUFEN

— L - l — P  NSRRH 

— ! •  — D  NDPI1RM

N1EEE

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - — i t  O  N t lN K D

NL1NKI

 -  i .................. ..  — 4 .  l— O  NL1NK?

— — -,-rrrfVT ■........................................ n O  N L INK3

Figure 12 68010 GESMPU14 Interface EPLD.

Figure 12 shows the internal logic of the EPLD. The signals NLINKn are 

the chip selects for the C012 link adaptors [33]. NIEEE, NDPRAM, and

Page 60

iGMtlzD”

NASD*



General Developments within the Project.

NSRAM are the chip selects for the IEEE-488 interface logic, the 

dual-port RAM, and static RAMs respectively. DTACK is the data 

acknowledge strobe for the 68010 and is connected to the processor via an 

open-collector inverter. NBUFEN is used to enable the tri-state data 

buffers on card, while NVEN is an autovector interrupt enable for the 

GESMPU14 card. NIACK also forms part of the GESPAC interrupt 

system and is supplied by the GESMPU14. NBUSY is a busy signal 

generated by the dual-port RAM when there is contention involved with 

an access made to a particular location within it. The dual-port RAM was 

also connected to the interrupt system of the GESMPU14 as it can 

generate interrupts when the system connected to the other port of the 

RAM accesses special locations within it. The actual equations of the 
EPLD and its pin layout may be found in appendix F.

This work too stopped in favour of a full transputer based solution 

allowing the entire system software to be developed under one 

programming environment. By using just transputers one program could be 

written and debugged, covering all the processors in the network. The 

problems of processor synchronization and inter-processor communications 

being greatly reduced.

5.3 Atari to Inmos Link Converter.

When the work started on transputers, the only support for them at the 

Polytechnic came in the form of a development package comprising an 

'Occam Programming System', OPS, and 'Transputer Development 

System', TDS, running Proto Occam on the Computing Services Vax. 

Later an IBM PC/AT was purchased by the Department of Electrical and 

Electronic Engineering running Occam 2 on a T800 based Inmos B 0 0 4
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within the PC, after previously borrowing an IBM PC/AT running 

Occam 2 on a T414 based B 0 0 4 , from the 'Transputer Initiative' loan 

pool run jointly by SERC/DTI.

Using the Vax OPS system, programs could be written in Occam and run 

on the Vax with the Vax simulating the multi-transputer arrays. To use 

the actual transputer based systems a means of data transfer between the 

Vax and the transputer boards is needed. There is also a need for a means 

of operator input and visual output. To accomplish these goals the original 

Atari 1040 ST computer which underwent major changes in the 68000 

development phase of the project was used as a terminal connected to the 

Vax system and to the target transputer system. The idea behind this being 

that the programs were written under OPS and then passed to TDS, 

recompiled and extracted. The extracted code could then be transferred 

from the Vax to the Atari's disc unit and later from the disc to the actual 

transputers.

Software was written for the Atari so it could communicate with the target 

system in several different ways. For initial tests of transputers systems the 

Atari could be used to 'Peek' and 'Poke' the transputer after reset [33]. 

The actual peek and poke was incorporated in 'memory fill' and 'memoiy 

examine' routines. A third routine for memory search was also included so 

that after the transputer had run a routine, if it failed to produce a visible 

result, then the memory could be searched and the final value found. 

Looking at the memory using memory examine it is quite easy to 

disassemble the raw transputer code and find where the workspaces are 

placed and confirm if the addresses obtained by the search for data 

actually puts the data where it should be, if not, then the final value 

required was not generated. An example of a peek cycle and the
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interpretation of it, may be found in appendix E.

5.3.1 Circuit Description.

The interface card for the Atari is based around the C O ll  Inmos link 

adaptor operating in mode 1, [33]. In this mode it has a separate input 

and output port. The link adaptor is connected to the Atari via the ROM 

cartridge socket. Because a ROM is a read-only device the Atari detects 

if an attempt is made to write to the ROM and causes a bus error which 

suspends the operation of the computer. With the special access routine 

written, the bus error interrupt vector could be reprogrammed to point to 

a routine which would override the bus error if it occurred during the 

special access routine. The problem with this was that the bus error 

suspended the access before the write is completed.

To overcome this the address bus is used to contain the data when a write 

operation is required. This is accomplished by using the two 68000 data 

strobes, the upper data strobe, UDS, and the lower data strobe, LDS to 

indicate whether the operation is either a read or a write. When UDS is 

active, the operation is deemed to be a write and the address bus contains 

the data as well as the port address. With LDS active the operation is a 

read and the address bus only contains the port address and the port 

outputs data onto the lower 8-bits of the data bus. Figure 13 shows the 

arrangement of the address and data bus with the link adaptor. The signals 

NREAD and NWRITE are created by the decoding of the address bus and 

UDS and LDS, not shown.
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The signals BUSY and RECEIVED form part of the status register which 

releases data onto the lower 8-bits of the address bus when read in the 

way previously described.

A write operation to the port causes NWRITE to trigger the J -K  flip-flop 

and set the BUSY line high. The rising of the BUSY line causes latching of 

the data by an 8-b it transparent latch, (the 74F573 in figure 13), which 

until then has been letting the address bus flow into the inputs of the link 

adaptor. BUSY is also connected to the adaptors IVALID line indicating 

that data is valid. The data is now transmitted down the link and when 

this is acknowledged by the receiving unit the J -K  is cleared and BUSY 

returns to an inactive state.

When the link adaptor receives a byte of data, QVALID, and hence 

RECEIVED, go high indicating that data has been received. A read from 

the port causes NREAD to pulse QACK on the adaptor and also causes the 

release of data onto the data bus. The adaptor now acknowledges receipt 

of the byte.

The addressing format used is:

[llll|1010|pppx|xxxd|dddd|dddr] in binary

where r = 1 for read 0 for write 

d = data (if any) 

p = port number

x = don't care in this application, could be used for extending 

the port number.
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When a read from address $FAnnnn is performed, where nnnn forms an 

even number, an actual write operation is carried out and the lower 8-bits 

of the address bus are latched by the device and used as data, (the least 

significant bit of the address generates the strobes and is not included in 

the address bus).

When a read from address SFAnnnn is performed, where nnnn forms an 

odd number, a read is carried out and the addressed device places data on 

the lower 8-bits of the data bus.

General Example.

If data $EA hex is required to be written to device 5 then a read from 

address $FAA1D4 is done.

If data is to be read from device 5 then it is read from address 
$FAAxxn.

Where xx = don't care and n = 1,3,5,7,9,B,D or F

The interface board has two Inmos links and one status register. The 

devices are mapped in memory as follows:

Link 0 read based at $FA0001, write based at $FA0000 

Link 1 read based at $FA2001, write based at $FA2000 

Status register at $FA4000

The status register is read only and hence only one base address. Link 0 is 

a 10 Mbps data link while link 1 is 20 Mbps. The different speeds are
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created by connecting the signal SPEED in figure 13 to VCC for 10 Mbps 

and 5 MHz for 20 Mbps.

Programming Example.

LEA $FA0000,A0 Point to link 0.

ADD.W DO,DO Double the value of the data to be written.

MOVE.W 0(A0,D0.W),D0 Write the data by reading a false value.

MOVE.W 1(A0),D0 Read data from link 0.

The programming example shows a general read and write operation for 

the link adaptor interface.

Note:— In the example above, no checks were made with the status 

register to check for the arrival of data or the completion of the previous 

transmit. This should be done in a real situation.

5.4 Printed Circuit Board Production.

Due to the nature of the circuits designed for this project, (large numbers 

of high speed signals and a high device count with high density packaging 

to reduce board area), printed circuit boards have been used in 

development rather than conventional prototype boards consisting of either
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wire-wrap or other point to point wiring systems.

Three pcb packages were used during this project, SMARTWORK, 

RGARPIT and Mentor Graphics BOARD STATION. The latter two were 

purchased in the course of this project and considerable time was spent on 

familiarization of the packages. Since the packages themselves were new 

each of them had its own problems.

The production of the printed circuit boards has been a time consuming 

task added to by the fact that the pcb packages were new and had hidden 

problems which were only found by using them. More details on the pcb 

packages and the problems encountered in producing pcb can be found in 

appendix A.
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6. The Data Acquisition Unit.

The Data Acquisition Unit is probably the most important part of the 

whole flow system after the sensor unit, for without accurate signal 

conversion the results of the system will be unreliable irrespective of the 

amount of data processing undertaken.

There have been several full designs of this processing level, including 

fully self-contained discrete versions offering high speed, 380 ns, and 

microprocessor based units. In each case the acquisition unit is designed 

so that there is one A/D converter and gain unit and the sensor signals are 

switched to it using analogue multiplexers. The output signal from this 

final multiplexer is effectively modulated by a 0.3 MHz square wave, this 

being the inter-signal sampling rate. To reduce any slew rate effects of the 

multiplexer itself, the actual signal is attenuated before rather than after 

the multiplexer, thus reducing the size of the signal to be transferred.

All the acquisition units try to produce the largest value out of the 

analogue to digital converter, which is actually an 8 -b it high speed 'Flash 

Converter', by increasing the gain of the circuit feeding it. This effectively 

increases the range of the flash converter but not the resolution which 

remains at 8-bits. This converter is now an adaptive quantizer which uses 

the assumption that for any given sample of a signal, the following sample 

will be of a similar value to the previous sample.

The actual flash converter has its own sample and hold circuit and when 

operated, it samples the signal and passes the voltage to 256 voltage 

comparitors which compare it against voltage taps in a 256 resistor,
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resistor chain. Next there is a 256 to 8 line converter which encodes the 

result of all the comparisons.

The design of the unit is such that it could be used for a wider range of 

applications other than particle flow measurements.

6.1 Discrete Versions.

The Data Acquisition Unit was originally designed using discrete circuit 

elements. The two versions developed were based on the assumption that 

between any two samples of the same signal there will be a high 

correlation between the two points. The principle of the circuit is that it 

takes a sample at a predetermined gain. The circuit now uses the sample 

value obtained and the gain used to determine the gain to be used for the 

next sample of that signal. This is a one-word memory adaptive quantizer, 

increasing or decreasing the input gain of the circuit depending on the 

signal.

There were two basic designs using this approach. The first was based on 

the total completion of one conditioning cycle before another started and 

had a cycle time of 480 ns. The second used 'cycle overlap' to increase 

speed which gave a cycle time of 300 ns. Both circuits effectively track the 

signal and every sample taken causes a change in gain by a factor of 2, if 

needed.
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6.1.1 Operation of Discrete Circuit Version 1.

The start of the cycle causes the output of a 4-b it counter to be latched 

by a 4 -b it latch. The latched output selects the signal of interest by 

feeding analogue multiplexers. The count also forms an address for the 

required gain which is fetched from a high speed RAM. The output of the 

RAM feeds another analogue multiplexer which selects the feedback 

resistor in the actual gain circuit. The RAM output also feeds a 4 -b it 

up/down counter which is used to calculate the next gain for that signal, 

and two 8Kx8 EPROMs which give the final formatted answer. After a 

delay of 80 ns the analogue signal is allowed into the gain circuit, 

originally the input to this section is held at ground potential while the 

gain is selected to avoid any stray signals causing the amplifier to 

overload. The 8 -b it flash converter is now activated. The output of this 

goes to the EPROMs which form the actual result required and two 8-b it 

comparitors via an absolute value approximator. Using a true absolute 

value generator was considered, this giving a true two's complement if the 

signal value is negative, but for speed the approximation of just a one's 

complement on negative values was considered to be sufficient for this 

purpose. The comparitors decide if the 4 -b it counter generating the gain 

should count up, down, or not at all. A pulse is now generated to cause 

the counter to calculate the next gain to be used on that signal. The result 

of this is stored in the high speed RAM and the cycle is finished.
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Figure 14 shows the form of this first circuit. The EPROMs are hidden 

inside the block called the 'Result Formatter'. The detail of the 'Gain and 

Quantization Unit' has not been shown for simplification. This detail 

includes the resistor selector and the actual A/D. The start of the cycle is 

indicated by a positive going pulse on PHASE2 in the diagram.

6.1.2 Operation of Discrete Circuit Version 2.

The principle of the second circuit is similar to that of the first, the only 

difference being that the calculation of the next gain to be used on that 

signal, is done in parallel with the conditioning for the next signal.

In this circuit, figure 15 showing the basic form, the end of the previous 

cycle starts the next cycle. The output of the 4 -b it counter is latched. 

This selects the signal of interest and also forms the address for the 

required gain. The gain is fetched from a high speed RAM. The output of 

the RAM feeds the resistor selector and also the 4 -b it up/down counter 

which is used to calculate the next gain for that signal. Here the RAM 

output also feeds another 4 -b it latch which in turn feeds the two 8Kx8 

EPROMs. Again the signal now passes through the gain and A/D 

conversion stage. During this time the RAM was idle in the first circuit, 

here though it is used for the storage of the gain calculated by the 4 -b it 

up/down counter. The up/down counter has the old gain value latched 

into its internal flip-flops 20 ns after the start of the cycle. This gain 

value is held by the 4 -b it latch which feeds the EPROMs contained in the 

Results Formatter, (see figure 15 page 75). The old output from the A/D 

converter has been latched in an 8-b it latch which feeds the two 8-b it 

comparitors, via the absolute value approximator. A pulse is now 

generated to cause the counter to calculate the next gain to be used on
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that signal. The result of this is stored in the high speed RAM. Whilst all 

this has been happening the actual signal has not yet reached the A/D 

converter. The address of the gain to be used is now changed back to its 

original value ready for the end of this cycle. The conversion takes place. 

The result of the A/D conversion is latched in the 8 -b it latch and the gain 

used is latched into a 4 -b it latch.

Note in figure 15:—

1. Again for simplification certain elements of the circuit have been 
shown as a block.

2. In appendix D there is a third version of this type of circuit which 

uses a different new form of gain unit. This circuit gives a cycle 

time of 260 ns, and the appendix presents a simulation of the 

circuit using QUICKSIM.
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Figure 15 Discrete Quantization Circuit Version 2.
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6.2 Transputer Based Acquisition Units.

The transputer based acquisition units form the heart of the flow system. 

There are two designs of transputer controlled Data Acquisition Units. 

The first unit was based on the discrete versions except here the first 

sample was always at unity gain and then the system adapted to the result 

from that for that sample only. The next design broke from the 'adaptation 

for each sample' mode and used adaptation after a complete block of 

samples based on the values contained within the block. The first unit was 

constructed and tested. The second unit evolved from the first and actually 

utilized the circuit board of the first.

The actual gain sections of the transputer units differ from the discrete 

versions, the main difference being that they comprise three stages to give 

the required gain rather than just one. Each stage has a fixed feedback 

resistor and the gains can be unified by switching in a parallel resistor in 

the feedback circuit.

6.2.1 Transputer Based Acquisition Unit Version 1.

This version of the acquisition unit can be regarded as a one word memory 

quantizer which stores the previous value quantized and uses it to adapt to 

the signal by choosing a multiplier to multiply the current gain by, and the 

process continues. This is not actually used as a true one word memory 

quantizer as only two samples of the signal are taken, the first is at unity 

gain hence the multiplier chosen is in fact the next gain to be used.
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6.2.1.1 Circuit Operation.

The signals from the analogue system interface, which comprise the actual 

interface to the sensor head, arrive at the transputer board via a system 

multiplexer, allowing one transputer system to control many flow systems, 

and are attenuated to ±1.28 volts before going into the final multiplexer, 

as per all the other designs. Next comes the transputer controlled gain 

circuit.

The A/D converter is connected to the transputer via an erasable 

programmable logic device, EPLD, which controls the whole hardware 

signal conditioning process, including the signal multiplexer, by access 

from the transputer. In normal sampling conditions the EPLD is clocked 

by the transputer so that the process cycle is:

1. Unity gain and the signal to be converted are selected.

2. The signal is quantized and the result is stored in the EPLD and 

the gain to be used is calculated.

3. The transputer now reads the value of the gain that is to be used, 

in the form of N where 2N is the actual gain.

4. Now the transputer reads from the A/D via the EPLD. At the end 

of this read the EPLD returns to process state 1.

At any time the transputer may reset the EPLD so that unity gain and 

signal zero is selected.
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6 .2 .1 .1 .1  Gain Calculation.

The calculation of the gain is quite simple. The incoming signal, which is 

reduced from the transmission level of ±10 volts maximum to ±1.28 volts 

maximum, has half the full scale range of the A/D, 1.28 volts, added to it 

as the A/D can only handle positive voltages. The signal now has a range 

of 0 to +2.56 volts. This is now quantized by the A/D.

The effect of this process is that for an input of 0 volts the output of the 
A/D is 128 decimal and any signal less than 0 volts is less than 128 

decimal and any signal above 0 volts is also above 128. So now in binary 

any positive voltage will have bit 7, (the most significant bit), set and any 

negative number will have a zero. For the gain calculation the absolute 

value of the signal is used.

Rather than taking the two's complement of a negative number to give its 

true absolute value, the one's complement is taken instead reducing the 

amount of circuitry needed, and the time taken, for the calculation of the 

absolute value. Due to this the absolute value is obtained by using the 

inverse of the most significant bit of the converted signal to control the 

inversion of the remaining bits by an exclusive OR process. So if the 

number is negative, the inverse of bit 7 will be one, thus causing the other 

bits in the word to be inverted.

The absolute value is passed to a 7 to 3 line priority encoder which 

produces the required gain as a value N which when fed to the gain circuit 

produces a gain of 2N. The encoder has inverted outputs and so N is in 

fact '8 -  the highest bit number set'. The following table shows the 

encoder output, N, and the gain it represents for different input values:
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I n p u t N G a i n
I x x x x x x 0 1
Q 1 x x  x x x 1 2
0 0 1 x x x x 2 4
0 0 0 1 x x x 3 8
Q 0 0 0 1 x x 4 16
0 0 0 0 0  1 x 5 3 2
0 0 0 0 0 0 1 G 6 4
0 0 0 0 0 0 0 7 1 2 8

w h e r e  x i n d i c a t e s  a d o n ' t  c a r e  s t a t e

TABLE 2 Gain Encoder Output.

The operation of the circuit was simulated using Mentor Graphics 

QUICKSIM before being programmed into the erasable programmable 

logic array. Figure 16 shows a block diagram of the EPLD containing the 

gain computation elements and signal multiplexer control.
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Figure 16 Block Diagram of the EPLD.

The EPLD is closely linked to the flash converter. Signal NAtoD is used 

as the flash converter's clock to cause it to convert the analogue input to a 

digital representation. The gain calculation unit within the EPLD also uses 

this signal to control the operation of the gain section. When the system is 

running in its normal mode, where adaptation is required, the gain 

calculation stage monitors the NAtoD line and switches between unity gain 

settings and calculated gain. After a unity gain sample the EPLD 

calculates the gain needed to create the largest output of the A/D and 
latches this in a gain latch. This latch feeds the internal circuitry which in
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turn feeds the gain selection pins of the analogue gain section and the 

output stage of the EPLD which is interfaced to the transputer. The gain 

calculated can be read by the transputer and so can the actual A/D 

output. This switching is controlled by the NRdGain and NRd signals. The 

calculated gain can be forced to unity at any time by the application of 

ClrGain signal. MuxQ is the internal count of the NAtoD signal and 

controls internal switching of the gain outputs between unity and the 

calculated gain. Figure 17 shows the gain unit with its calculation stage 

followed by a controlled gain latch.
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Q 0 O
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D3 
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 T~3> G a i-n 2
I G a i n 2
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 1 > G a  i nG
- o  I G a i n G

Figure 17 Block Diagram of the Gain Unit within the EPLD.
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Inside the gain calculation stage the A /D 's output is transformed to a gain 

request by the process previously discussed. The absolute value 

approximator can clearly be seen on the left-hand side of figure 18. The 

rest of the logic forms the 7 to 3 line priority encoder.

0 7 0

0 6 0

0 5 0

0 3 0

£ >o io
D0O

Figure 18 Gain Calculation Stage. Logic Level.

The actual gain elements are wide band op-amps which have fixed gains 

of 16, 4 and 2. Each op-amp has another feedback resistor which is 

connected in parallel with the first via a switch. When the switch is 

closed, by a logic one on its control input, it inserts the additional 

feedback resistor which changes the amplifier gain to unity. The switches 

are arranged so that the MSB of N controls the gain of the 16 times
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amplifier, while the LSB controls the gain of the times 2 amplifier. 

Figure 19 shows the gain section of the circuit with its three amplifiers 
with switched parallel feedback resistors. The signal from the multiplexer 

goes in to the gain section, seen at the left hand side of the figure, the 

gain is used and the signal goes off to the conversion section, figure 20.

Go i  n 1

Go 1 nG

IT+ 12V

5 5 3 9
-  12V + 12V

■CD-
5 5 3 9

- 1 2 V

5 5 3 9
- 1 2 V- 1 2 V

- 1 2 V

- 1 2 V

Figure 19 Gain Section.

The offset voltage for the A/D input is added after the gain circuit so that 

it is not multiplied by the selected gain. Figure 20 shows the flash 

converter linked to the EPLD. The signal from the gain section comes

Page 83



The Data Acquisition Unit.

into the circuit at the top left. It goes through the op-amp which adds in 

the half full-scale offset to the signal before it reaches the converter. The 

'Auto Gain PLA' is the actual EPLD and is closely linked to the 

converter to reduce noise from being induced in the lines between the 

converter and the EPLD.

+ 12V
I T .T.i T J -.T -T -l-

MP7B8U
- 1 2 V

0 P 3 7

vcc

7UF1HT
07 R07
06 ROB
05 CL RQ5
DU — J noii
03 CL R03
02 RD2
01 c F1D1
DO R00

<0
NfltoD L ^ G o in 2

G o in l
F1ER0 O G oinO
NRdGo n
C lrG o n ^  Hux2

CL Huxl
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Lu.ru □  
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■Go lr>2 
- Go  I n  1 
- Go  1 nQ

- Mu x 2  
• Mu x  I 
- Mu x 0

Figure 20 Flash Converter Linked to the EPLD.

What follows is a look at how the software in the system, operates the data 

acquisition system.

6.2 .1 .1 .2  Software Control.

The transputer has the job of detecting the actual injection. It is signalled 

when the H.T. supply is turned on, and given the number of samples to 

be taken. It now starts hunting for the injection.
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During the hunt for the injection, the transputer integrates the signal Io 

and tracks it using coarse quantization to find the peak due to the 

capacitive air effect. When the peak is found it now tracks the voltage as 

it drops due to discharge. When the sample just read is greater than the 

previous one then this point is taken as the injection point. During the 

search phase, the number of samples allowed in the system cycle is 

reduced for each sample taken. If injection is not found by the time half 

the number of samples are used then the transputer stops searching and 

informs the Processing Array and the Controller that there will be no data 

coming from this cycle. If, however, injection is found then the transputer 

transmits to the processing element which deals with the injection current, 

the partial integral obtained so far. The transputer then broadcasts to the 

whole Processing Array how many samples are to follow, this number is 

the number left after the search for injection. During first phase of a cycle 

the transputer resets the EPLD in order to keep it at unity gain and signal 

Io. This speeds up the process as the remaining signals should hold no 

useful information until after injection has been reached.

Once injection has been established the second phase starts and the 

operation of the transputer changes to one of data formatter and 

distributor. Now it takes each sample in turn and converts the gain used 

along with the reading obtained, into a 32-bit data word. This word is 

now transmitted along one of the Inmos links to further transputers in the 

Processing Array which would do all the processing needed between 

samples.

This method of data transference increases system speed and hence the 

number of samples available in a given amount of time. If all four signals 

were processed on one transputer then it could take up to four times the
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amount of time to process samples from all 4 signals as compared to four 

transputers each processing one sample of a particular signal. Using 

different links to transmit each sample to a different transputer means that 

there is no bottle neck on any one link as each link can transmit 

independently. The system could be reconfigured so that 2 or even all 4 of 

the links are connected to one transputer. If all 4 were connected to one 

transputer then there would be no links to connect other devices to the 

system, but more importantly it would be effectively like just the first 

transputer doing the sampling and the processing.

6.2.2 Transputer Based Acquisition Unit Version 2.

The second version of the transputer based acquisition unit arose from the 

first due to operating difficulties. Although the idea of the circuit was 

valid, the actual implementation led to offsets being introduced when the 

gain was switched. These offsets made the actual switching unreliable, and 

so for speed the operation of the circuit was modified. The EPLD was 

reprogrammed so that the gain adaptation was calculated by the controlling 

transputer in the system network after one complete cycle of the system, 

based on the readings obtained. The Controller had the ability to calibrate 

the whole analogue subsystem and justify the results obtained to take into 

consideration the actual circuit gain used, (as calculated during 

calibration), and the actual offset (as measured during the calibration 

phase). The operation of the second version has actually reduced the data 

bandwidth requirements and so increased the data throughput of the 

system.

Several modifications to the gain circuit were proposed which would allow 

the system to return to the original full adaptation mode. The final circuit
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modification is given below:

+ 12V

5539-12V

-  12V

5539- 1 2 V

"+12V

-12V

Figure 21 Gain Selection Stage.

This circuit element will easily interface to the first version's gain control 

provided by the original EPLD. The circuit operation is simple, either the 

unity gain amplifier is selected or the true gain required is selected. Both 

paths offer signal buffering and the ability to adjust out any offsets present 

in the circuit at that point.

Note:— The amplifiers can not simply be a.c. coupled as this application 

requires d.c. measurement of the sensor readings.
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For the actual second version the amplifier modifications, though 

desirable, were not included because the offsets of the system were 

eliminated by full circuit calibration by the transputer system. During the 

calibration phase the system used every channel in the last multiplexer 

with an input signal connected to zero volts. All the gain and channel 

combinations were used to create an array containing the channel offsets 

for different gains. By using this array method the assumption that 'each 

channel is identical therefore any one channel could be used for 

calibration', was not used. This idea was extended to calibrate the system 

gains by using known accurate calibration signals. This created another 

array containing the true gain information, and using this array and the 

offset array, any value read could be converted into a true signal value.

The task of adaptation was given to the controlling node in the system. 

After each cycle of samples the Controller would decide, using the gain 

used and the maximum and minimum sample values, whether an increase 

or decrease in gain was required. It was no longer assumed that a change 

in gain would actually give a factor of two change in the signal, the actual 

prediction for the new maximum and minimum values used the true value 

of any new gain being considered, thus giving a better adaptation.
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7. The Final System Hardware Design.

7.1 The Data Acquisition Unit.

The Data Acquisition Unit and analogue interface are very closely linked. 

Due to the design of the acquisition unit, where it is not dedicated to the 

sole task of flow control data acquisition, a further system interface is 

needed. Figure 22 shows a block diagram of the Data Acquisition Unit 

and its connection to several flow systems.
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Uni t

Sensor 
Uni t
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S y s t e n  S e l e c t o r
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SIonoI 
Condi I loner

3 Con tro1 
Logic

Key: -
Rna 1 ogue Signal 

 ̂H 1 g 1 t.nl Signal

F 1 ash 
Conner tor

8

Syste m Bus

Inmos Links

Figure 22 Block Diagram of the Data Acquisition Unit.
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In Figure 22, the Sensor Unit refers to both the sensor head, (figure 23), 

and the sensor head interface units, (figure 24). The System Selector and 

the Sensor Units are not part of the actual circuit board of the Data 

Acquisition Unit, but form part of the analogue interface to the system.

What follows is a description of the analogue interface of the system and 

the operation of the transputer controlled Data Acquisition Unit. The 

section on the analogue interface will include the full signal path from the 

sensors to the actual transputer board.

7.1.1 Analogue Interface to the Sensors.

The analogue interface of the system starts at the sensors with current to 

voltage converters.

| e Z Z

H. T.

F a r a d a y  C a g e

± P o r t l c l e / G a s  F l o w

$ t>

10 I I I  I 12 m

Figure 23 Sensor Flead.
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Figure 23 shows the sensor head. A high voltage supply controlled by the 

transputer system is connected to the injection needle. When the supply is 

pulsed a corona discharge is obtained and charge is injected onto the 

passing particles. Sensor current Io is proportional to the amount of 

charge injected into the flow. The sensors downstream measure the amount 

of charge carried by the flow. Currents Io to I3 all pass through identical 

current to voltage converters as outlined in figure 24.

The output voltage is connected to differential receivers on the multiplexer 

board via twisted pair cables. The first stage multiplexers select one 

complete system, with a maximum of 8  signals, from 8  possible systems 

and is referred to as the System Selector in figure 22.

7.1.2 Transputer Interface.

The transputer interface itself is composed of both hardware and software. 

The software is needed to drive the hardware in the correct sequence. The 

analogue and digital sections of the hardware are described below,

Cfbk

Rfbk

N E 5 9 2

O/T-2

Figure 24 Current to Voltage Converter.
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followed by a brief look at the software control.

7 .1 .2 .1  Analogue and Digital Sections.

Hie signals from the System Selector, figure 22, are attenuated by 50% 

before going into the final multiplexer, the Signal Selector. The output 

signal from signal selector is effectively modulated by a 0.3 MHz, this 

being the interchannel switching rate. To reduce any slew rate effects of 

the multiplexer itself, the actual signal is attenuated before, rather than 

after, the multiplexer thus reducing the size of the signal to be transferred 

and hence any delay time needed to be added in order to ensure that this 

level is attained.

Next comes the transputer controlled gain circuit and the analogue to 

digital converter, the Signal Conditioner and Flash Converter in figure 22.

The flash converter is connected to the transputer via an erasable 

programmable logic device, EPLD, which controls the whole hardware 

signal conditioning process by accesses from the transputer. The EPLD is 

now only a simple latch for the gain information written by the transputer, 

and a tri-state buffer for the A/D converter, and the transputer writes a 

request for the next cycle and then reads the results of the previous 

request.

7 .1 .2 .2  Software Control.

During the development of this unit the transputer software has had many 

more processes available than those needed to run the actual flow rate 

process. The processes include, user control over the multiplexers, H.T.
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power supply switching, (this switching process was derived from one of 

the unused high order multiplexer signals and allowed pulsing of the H.T. 

supply with software controllable pulse widths), and many other process 

requests involving the acquisition unit and the distribution of commands to 

the Processing Array.

What follows is an overview of the process needed for the flow control. 

The actual way in which the software does the tasks is not included in the 

description.

The transputer on this board has two main jobs. The first is to detect the 

onset of injection, if it arrives at all, and then to change its operation to 

be a data distributor. The whole process is started by the controlling 

transputer signalling when the H.T. supply is turned on, and giving the 

number of samples to be taken, all via the Processing Array. Once this 
message is through, the transputer starts hunting for the injection.

During the hunt for the injection, the transputer integrates the signal Io. 

During the search phase, the number of samples allowed in the system 

cycle is reduced for each sample taken. After the search the transputer 

computes the number of samples to follow, if any, based on the search 

time taken. It then passes the value of the number of samples to follow 

and the partial integration of Io to the Controller. If injection is not found 

or the injection signal is out of the range of the A/D then the process 

terminates at this point and the transputer goes back to waiting for 

commands. If, however, injection is found then the transputer starts the 

Processing Array processing by informing each node the number of 

samples that will follow.
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During the search phase signal Ii to I3 are not examined as they should 

hold no useful information until after injection has been reached. This 

speeds up the effective time between sample points so that the injection 

current is checked with a higher time resolution than normal. By not 

transmitting the injection current information of the Processing Array for 

examination, all the processors in the array can run the same program.

If injection has been established, then the operation of the transputer 

changes to one of data formatter and distributor. Now it takes each signal 

in turn and requests its chosen gain, as determined by the Controller, and 

transmits the sample value obtained in the form of an 8 -b it word along 

one of the Inmos links to further transputers in the Processing Array 

which will do all the processing needed between samples.

After a full cycle the Controller will perform any adaptation needed and 

send the acquisition unit a new request table with updated gains.

7.2 The Processing Array.

7.2.1 The Hardware.

The basis of the Processing Array is four T414 32-bit transputers 

connected together in a ring network. Each transputer can talk to its 

neighbour by communicating through link 1 , the neighbour receives the 

transmission on link 2. Reverse network communication can also take 

place as the Inmos links are bi-directional.

The circuitry of the Processing Array has been optimized to suit this 

particular application. As all the processing is done in real-time, with
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efficient programming the T414 processors can be used without the need 

for any external memory. This gives the system two distinct benefits:

1. A reduction of both the circuitry and the board area.

2. Using only internal memory for programs and data, the whole 

program will run faster as access to external memory involves at 

least two extra wait states at its fastest level.

The circuit board has two off-board connection areas. The first area 

connects the array to the Data Acquisition Unit, previously described in 

section 7.1, and the second to the Controller described later in 

section 7.3.
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L i n k s  t o  D a t a  f l c q u i i s t i o n  U n i t

P r o c e s s o r

P r o c e s s o rP r o c e s s o r

L i n k s  t o  C o n t r o l l e r

Figure 25 Link Arrangement of the Processing Array

Figure 25 shows the arrangement of the processors and their links within 

the Processing Array. The links were arranged in that particular order to 

ease board layout. The board layout was achieved using SMARTWORK.

7.2.2 The Software.

Each transputer within the Processing Array runs the same program, only 

the data differs. Parameters passed during the power-up phase of the 

system determine the operation of the array.
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Facilities have been incorporated so that the links between the array and 

the Controller can be broken to allow extra transputer hardware to be 

inserted; during development of the system one link was broken to enable 

the IBM PC/AT Transputer Development System to be connected to the 

entire transputer processing structure via the free link on the Controller, 

to allow system development and software debugging.

7.3 The Controller.

7.3.1 The Hardware of the Controller.

The final version of the Controller used a multilayer printed circuit board. 

Four layers were for signal and two for power. The component definitions 

for BOARD STATION were modified to allow the stacking of 

components. The board had physically large static RAMs. To reduce 

board area the space beneath the RAM chip sockets was utilised by 
typically placing another logic device in it. Components were also laid 

under the second device, but these were for placement on the underside of 

the board. The largest example of this "stacking" had a RAM chip with its 

decoupling capacitor underneath it. There was also a buffer chip with its 

decoupling capacitor under that, plus a single in-line resistor pack in the 

remaining space beneath the buffer chip; (the decoupling capacitors and 

resistor pack were targeted for the track-side of the board).

The Controller carried over features from the first design, like the full 

expansion bus presented on an indirect edge connector. The megabyte of 

fast static RAM was split into two units which under normal conditions 

formed a continuous area of RAM. The memory decode and buffer control 

logic were put into one EPLD. The logic within it allowed for the
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movement of half of the RAM from the normal RAM map to the ROM 

area at the upper end of the memory map. Figure 26 shows a block 

diagram of the Controller. The EPLD is combined in the Address Decoder 

and Board Controller block in the diagram.
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Figure 26 Block Diagram of the Controller.
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The configuration of the memory into either all RAM or split RAM/ROM 

is setup by switches on the pcb. These switches are in a dual in-line 

package, and also control the speed of the transputer links.

The EPLD also contains logic which controls buffers on the board so that 

if an external device such as a DMA, took control of the transputer bus, 

then the buffers would now be under the control of the DMA.

In order to give better understanding of the Controller and its operation, a 

brief overview of its software follows.

7.3.2 Software Overview for the Controller.

This software is the largest of the external system's programs, some 3,000 

lines of Occam code. The Controller forms the front line of the system 

deciding exactly how to execute the user requests.

Commands come into the Controller from two main directions. The first, 

in its current arrangement, comes from the B 0 0 4  transputer card inside 

the IBM PC/AT. Commands from this source are decoded and either 

cause immediate action by the Controller or will be passed on to the Data 

Acquisition Unit after any translation necessary. Further details of the 

operation of the system can be found in section 8.3 dealing with the main 

system software.

The second command path comes from the upper system. These are 

normally in the form of structured print commands although other 

information can be transferred to the Controller in this way.
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The Controller has a large memory capacity and only some 17K of this is 

used by the program code. Some 224K words of RAM of the 256K 

words, (1 mega byte), is set aside for the execution of the database 

information gathering command from the IBM. With this command the 

Controller takes full control of the system instructing the various elements 

as necessary to compile the required database information while adapting 

to the conditions it finds.

The Controller also instructs the system how to perform calibration 

(section 7.5), and here it computes the actual system parameter from its 

findings. Block data requests from the IBM PC causes data collection by 

the Controller and after all the data is in, the Controller will release it to 

the PC. In this manner the Controller has effectively increased the speed 

of operation of the block gathering commands by removing the bottle neck 

of the single 10 Mbps link between the PC and the external system and 
buffering the data from the upper system by the execution of internal 

parallel processes for link communications.

Another task of the Controller is to perform system adaptation based on 

the values obtained during processing of the previous data, further details 

on adaptation can be found in section 8.2. During the execution of either 

the single shot flow command or the execution of the database gathering, 

the Controller performs signal gain adaptation depending upon the results 

obtained from each cycle of the data processing.
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7.4 Pulsed High Voltage Power Supply.

For this project a controllable high voltage power supply is needed. The 

supply must have variable voltage and pulse width. The power supply unit 

is based around the original power unit used by C.A.Willis. In the 

original supply unit, the required injection voltage was set-up using a 

potentiometer and the front panel meter which indicated the output voltage 

that would be generated. The injection voltage was switched on and off by 

an external pulse source connected to the trigger input of the supply unit. 

For a controlled system a new set-up and trigger path had to be 

generated.

7.4.1 Circuit Description.

For ease of use with transputer based systems, the control link between the 
computational circuits and H.T. power unit was based on the Inmos link 

adaptor the CO 11 in mode 1. In this mode the link adaptor has a separate 

8-b it input and output port and associated control lines. As the link was 

needed to provide a command path to the supply unit, and no resultant 

messages were to be passed back from the supply, the input side of the 

chip was disabled by tying the inputs to their inactive state. On the output 

side of the chip the received command was decoded. If the command byte 

was 1 1 1 l l l lx  where x is either 0 or 1, then bit zero was taken to be the 

state of the supply, either a 1 for output on or a 0 for output off. Any 

other command was passed to an eight bit latch which fed the D/A 

converter used to set the output voltage.

During power-on reset the D/A input is cleared to zero and the on/off 

Controller is set to the off state.
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Figure 27 High Voltage Control Unit.
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Figure 27 shows the link adaptor, C011_M1, with its inputs pulled high 

by a single in-line resistor network. The output of the adaptor goes to the 

latch and then the digital to analogue converter with added output buffer. 

In the centre of the diagram the power-on reset circuit can be seen 

feeding both the link adaptor and the latches for the D/A and the high 

voltage output switch.

7.5 Automatic System Calibration Unit.

To allow the system to automatically calibrate itself an Automatic 

Calibration Unit was created which is closely linked to the Data

Acquisition Unit. This unit gives the system the ability to fully calibrate

the analogue input sections on-board the Data Acquisition Unit, working 

out the true gains and offsets for each channel. To do this function the 

system was fitted with a turn key switch with three different positions.

The System Wide Multiplexer unit, was part of the original design 

specification of the flow meter system but was not implemented at this 

stage. Instead the whole unit was operated in a single system mode and so 

the outputs for the first stage multiplexer, available on the Data

Acquisition Unit, were utilised to form part of the automatic calibration

system.
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Figure 28 Calibration Unit Voltage Generator.
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Figure 28 shows the calibration voltage generation section. The inputs SO, 

SI and S2 are driven by the unused multiplexer signals. The output of the 

precision voltage regulator is 10.24 V ±0.03% and the resistor chain has 

resistors with values of ±0.1% all leading to an accurate voltage within 

±0.1% of the selected value. This voltage is fed to an analogue 

multiplexer, the 74HCT4351 in figure 28.

To avoid loading on the resistor chain causing a drop in requested voltage 

due to an effective parallel resistance shorting out part of the resistor 

network, the generator is followed by a voltage follower using an LF351 

J-F E T  op-amp. This has been designed so that if the first stage 

multiplexers were introduced into the system, then the voltage generated 

would be compatible with the multiplexers attenuation stage. For this 

reason the output voltage of the calibration unit is attenuated by 50% to 

keep compatibility. This voltage is now fed to the common voltage tap on 

the three position key switch.

Normally the key switch is set to position 1 where the output of the 

differential line receivers is connected straight through to the attenuators 

and the Signal Selector. When offset calibration is required the switch is 

turned to position 3 where all the inputs are connected to ground 

potential. The system now tests each channel in turn computing the offset 

associated with each gain.

For gain calibration the process starts with the offset calibration, as above. 

The key switch is then turned to position 2 where all the inputs are now 

connected to a common input voltage, in this case the calibration voltage. 

The system now cycles through every channel and gain combination 

selecting a different calibration voltage for each gain. Using the known
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input value and the offset value the true gain can be computed from the 

information gathered:

True Gain = Integral -  (Number of Processed Samples x Offsetl 
Number of Processed Samples x Calibration Voltage

The computation of the true gain is performed using real arithmetic with 

integer to real conversion for all integer parameters.

The True Gain and Offsets are all kept in two dimensional arrays and are 

used in the formulation of the true input signal values.

Tests using this unit have shown that the gains within the system are all a 

factor of two up from each other, when going from unity gain to a gain of 

128.
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8. System Software.

The following section describes various aspects of the software developed 

for the system. It covers the development of mathematical functions for use 

with Proto Occam, 8.1, the theory and application of adaptation 
techniques used, 8.2, through to optimization of the main system software, 

8.3.3, and the software elimination of problems encountered with the 

actual sensor signals, 8.4.

The software listings are too large to be included in this thesis, but are 

available in an internal publication within the Department [36]. The 

contents of this publication is listed in appendix C.

8.1 Proto Occam Maths Functions.

Proto Occam contains a set of 64-bit floating point functions for 

performing most of the basic floating point operations. However, the 

function 'x to the power of y', required for some of the processing, was 

not supported by Proto Occam. To do 'x to the power of y', the functions 

'Ln x' and 'e to the power of x' were created.

In the first stage of creation, series were generated for the functions based 

on a set Chebyshev's series of polynomials. The actual functions and 

coefficients were derived from FORTRAN functions by Cody and Waite 

[29]. The appropriate coefficients were selected from a range of 

coefficients based on the number of bits in the floating point 

representation.
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After writing the functions in Proto Occam and compiling them, it was 

found that they did not yield accurate results. After trying to track down 

the faults in the algorithms it was decided that a change in direction was 

needed. New algorithms based on Z80 assembly listings, from the Sinclair 

ZX Spectrum computer, by Logan and O'Hara, [30, 31], were written.

Transformations were created to convert the 40-bit floating point 

representation of real numbers used in the Spectrum to the 64-bit floating 
point numbers in Proto Occam. The operation of this transform was 

carefully checked as without true conversions the functions generated stood 

no chance of operating.

After completion of the functions it was found that they too did not work. 

Debugging these functions showed that the fault was in one of the 

predefined Proto Occam functions. Once this fault was corrected both 

versions of the mathematical functions worked.

To complete the standard floating point operations the trigonometric 

function of sine, cosine, and tangent with their inverse functions, were also 

implemented again based on assembler listings by Logan and O 'H ara [31, 

32].

The routines developed were introduced into the software simulation of the 

system in Proto Occam. This simulation was used until an IBM 

development system from the SERC/DTI transputer initiative arrived 

running Occam 2.

This new version of Occam actually turned out to be a full implementation 

of the language, and it contained all the mathematical routines previously
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developed. The functions were therefore dropped in favour of the 

predefined mathematical functions of Occam 2.

The SERC/DTI development system was based around a T414 transputer. 

This was later replaced by a departmental development system based 

around the T800 transputer.

With this T800 system all the libraries had to be recompiled for T8 

processor type as they were all originally compiled by Inmos for T4 type 

processors. The code of a T4 type processor is mainly compatible with the 

T8 type except for the floating point operations. With a T4 processor 

these a supported by software, while with the T8 some are actually 

hardware. On recompilation if was found that the function which caused 

the problems in Proto Occam was not supported by the T8 based system 

although they were available on a T4 type processor. To overcome this 

and similar difficulties some of the original Proto Occam functions were 

reintroduced.

8.2 Adaptation Theory.

For this system a range of 16-bits is needed for analogue to digital 

conversion due to the varying levels of signal, but at any given instance the 

actual resolution of 8-bits conversion was considered to be adequate. This 

requirement means that an adaptive quantization unit could be built which 

could yield fast 16-bit answers with only 8 significant bits. Simulation of 

the design showed that with adaptation this converter system would rival 

the 16-bit converters.
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The specification of the system is that it should be able to measure both 

positive and negative voltages of the same magnitude. Since the flash 

converter used is only capable of converting positive voltages to a digital 

representation, half the full scale input voltage of the converter is added to 

the input signal. This produces a conversion result with offset binary.

Offset binary is where all the binary values are offset by some fixed value. 

In this the values are offset by 128 decimal, so for an input of zero volts 

the converter will produce an answer of 10000000 binary (128 decimal).

There have been two types of encoding for the adaptation algorithms, 

hardware and software. Both of these techniques shall be dealt with 

separately with the hardware being discussed first as this was the method 

first used and the software was developed from it.

8.2.1 Hardware Encoded Models.

There have been two hardware encoded models both of which were for 

adaptation on a sample to sample basis, but could equally be used for 

cycle to cycle adaptation with slight modifications.

The gain computation algorithms are based on the result of the absolute 

value of the converter's output. Since the converter system uses offset 

binary, 128, the actual offset, is subtracted from the output to produce the 

true value that the converter represents. This, however, is not done by 

some complex subtraction unit, since the subtraction of 128 turns out to 

be the inversion of the most significant bit.
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To reduce the amount of hardware needed to obtain an absolute value, 

when negative values are encountered they are converted to an absolute 

value by using one's complement rather than by the true method of two's 

complement. The difference between the one's complement and two's 

complement is that the two's complement is a one's complement with one 

added to the result. The addition of one was considered unnecessary for 

this application as only an indication of the value is required.

By approximating the absolute value for negative values, the absolute value 

could be generated by the logical XOR (exclusive-OR) function, with the 

most significant bit. With this process bit eight in the output will always 

be a zero as any positive value from the converter bit eight is a zero and, 

with a negative, it will start as a one but the XOR function will change 

this to a zero. Since bit eight is always a zero, only the lower 7-bits are 

used for gain computation.

8.2.1.1 Inter-Sample Adaptation.

The inter-sample adaptation technique involves the comparison of the 

absolute value of the converter output with two fixed values. If the 

absolute value is less than the first number then an increase in the sample 

gain by a factor of two is required for the next sample of that signal. If it 

is greater than the other value then a reduction by a factor of two is 

required. The new gain calculated is entered into a special storage which 

is automatically read when the channel is next used.
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8.2.1.2 Intra-Sample Adaptation.

The fast adaptation model used for intra-sample adaptation uses two actual 

sample passes to create one adapted sample. The first phase of this 
technique involves the taking of a unity gain sample and examining it to 

find the range of the converter covered by that particular sample. From 

this the adaptation circuit decides what gain should be used to boost the 

signal to cover the full range of the converter.

The bit number of the most significant bit of absolute value of the unity 

gain sample is found. The power of the gain required is now given by 

subtracting the bit number from 7. Two to the power of this result is the 

gain required.
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Examples:

10010110 from the converter is converted to
00010110 The bit positions are defined, to suit computation, as
-7654321 so 5 is the most significant bit giving a gain of 2(7~5) (4).

OlOllxxx should now be yielded as a true sample value.

01110101 from the converter is converted by one's complement to 
00001010 as the signal was negative, (msb = 0). The bit positions are 
-7654321 so 4 is the most significant bit giving a gain of 2(7~4) (8).

IOIOxxxx should now be yielded as a true sample value.

10000000 given from the converter goes to
00000000 as the converter uses offset binary. The bit positions are 
-7654321 as there is no msb, 0 is used giving a gain of 2(7~°) (128).

Oxxxxxxx should now be yielded as a true sample value.

01111111 given from the converter goes to
00000000 as the converter uses offset binary. The bit positions are 
-7654321 as there is no msb, 0 is used giving a gain of 2(7~°) (128).

lxxxxxxx should now be yielded as a true sample value.

Where — for the bit position indicates the bit is unobtainable using the 

hardware, and x for the result indicates the bit can not be determined as it 

depends on the signal value.

8.2.2 Software Models.

Three software models are discussed here with the final model outlined in 

the results section, (section 9.2). The first model written is basically a 

software version of the inter-sample adaptation technique in section 

8.2 .1 .1 . The second model uses full calibration techniques to improve the 

process while the final model uses knowledge built up about the system to
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aid the adaptation.

All of these models are for adaptation after a complete set of readings 

have been taken but could be adapted for other modes of operation. The 

software versions have evolved from each other due to operating 

difficulties found whilst in use.

In all cases the underlying process is to check the maximum positive value 

obtained during a cycle and the maximum negative value against certain 

criteria and find which region describes the result. The classification of 

regions and their general action caused is detailed below:

a. Readings outside the converters range producing a 0 or 255 value 

from the converter. This causes a gain reduction. If the reading 

was obtained using unity gain then a warning is given to indicate 

that the converter system has met a value which is outside the 

operating limits of the system.

b. The readings are approaching the out-of-range values of 0 or 255. 

This causes gain reduction, but if already at unity gain then no 

warning is given as the value is not actually out-of-range of the 

system.

c. If by converting the reading to an equivalent input voltage and by 

operating upon it the next higher gain the reading that this would 

produce is still within the limits of acceptability, as defined in b, 

then the next higher gain is used unless the gain is already at the 

highest in which case the gain remains the same.
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d. If none of the above criteria hold then the gain is assumed to be 

correct as it is within the correct operating limits and the use of a 

higher gain would produce a reading which is not.

As the selection of points b and c are the only main differences between 

the models, each model presented will deal with these points, and present 

them in equation form. If both equations hold then the point is deemed 

selected.

8.2.2.1 First Software Model.

In this first model the gains of the system are assumed perfect and so too 

is the offset associated with that gain.

Point b checks:

b l: MostJPositive >= Upper limit

b2: Most_Negative <= Lower limit

Point c checks:

c l: MostJPositive -  128 = y 

2y + 128 < Upper limit

c2: Most_Negative -  128 = z 

2z + 128 >  Lower limit
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8.2.2.2 Second Software Model.

This model is a slightly more complex model which takes into 

consideration the information gained during a system calibration. Here 

there are no assumptions about the gains or offsets.

Point b checks:

b l: Most-Positive >= Upper limit

b2: Most_Negative <= Lower limit

Point c checks:

c l: (Most_Positive -  Offsetnow) / Gainn0w = y 

Gainnext x y  + Offsetnext <  Upper limit

c2: (Most-Negative -  Offsetn0w) / Gain now = z 

Gainnext x z >  Lower limit

8.2.2.3 Knowledge Based Model.

The knowledge based model tries to predict the outcome of the next cycle 

based on knowledge gained about previous cycles. The model tries to 

compensate for the fluctuations in the signals in order to reduce the gain 

increase which is likely to produce a conversion error.
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The definition of this model assumes factors are created from the 

knowledge called Posfactor and Negfactor which are compensation factors 

generated for the changes due to positive and negative values respectively.

Point b checks:

b l: (Most_Positive + Posfactor) >= Upper limit

b2: (Most_Negative -  NegFactor) <= Lower limit

Point c checks:

c l: (MostJPositive + Posfactor -  Offsetnow) /  Gainnow = y 

Gainnext x y  + Offsetnext < Upper limit

c2: (Most-Negative -  Negfactor -  Offsetnow) / Gain now = z 

Gainnext x z > Lower limit

The change in gain using this adaptation mode will favour a reduction in 

gain as values which are out of range of the converter yield no useful 

information as the true value of the input signal can not be determined.

Checks in a knowledge based system could be added to test the effects of 

the results generated and create any modification of the model necessary to 

produce a better result.
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8.3 Main System Software.

This section on the main system software is split into three sections. The 

first outlines the overall system architecture and that of the transputer 

itself. This is followed by two sections detailing the operation of the 

software and how it was optimized for performance in terms of data 

throughput.

8.3.1 System Architecture.

Figure 29 shows the internal architecture of the T414 32-bit transputer. 

There are four links on most of the transputer processor devices, (M212 

disk processor has only two). Each link provides a bi-directional serial 

data path transmitting at either 10 Mbps or 20 Mbps, selectable by 

external processor pins.
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Figure 29 Internal Transputer Architecture.

The basic system configuration, figure 5 page 41, was modified during 

development of the system to allow the insertion of the IBM PC/AT based 

Transputer Development System containing a B 0 0 4  transputer card. All 

the links within the system run at 20 Mbps, except that used for 

connection to the B 0 0 4  which runs at 10 Mbps. Figure 30 shows the new 

system configuration used throughout the development phase. The link 

between processor node 3 and the Controller, node 6, has been broken to 

facilitate the insertion of the B 0 0 4 , (the dashed line in figure 30 shows 

the broken link).
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P r o c e s s i n g  A r r a y

L

C o n t r o l l e r

Figure 30 System Configuration.

The heavy lines creating a loop at the Processing Array level, show the 
ring network within this unit. Parameters passed into the program during 

the program configuration stage, inform each processor in the array, (now 

referred to as the n e tw o rk  or n e tw o rk  p ro c esso rs), whether or not it is 

connected to the Controller. When communication is required between a 

network processor and the Controller, it will either pass the message 

directly to the Controller, depending upon the configuration data, or via 

the next network processor on the ring network.
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8.3.2 Operational Details.

The software for the system is downloaded from the PC via the driver 

running on the PC 's B 0 0 4  transputer card. Normally external networks 

of transputers are loaded via the Inmos configurer, but since there is a 

suite of programs which need to run in parallel with the external system, 

providing operator interaction, this configurer has been combined with the 

software needed to drive the external system.

When this driver is loaded and run in the normal manner, it asks which 

link to download the external system's software. The link to be used is 

normally link 3 and this is accepted as a default value. If there is any 

problem with the download then the software will ask if download is to be 

retired. The operator may choose to try again or return to the top level of 

the development system.

After a successful download, the external system will automatically 

configure itself from the information supplied to the program during 

program configuration at compile time. The Data Acquisition Unit passes 

back to the Controller the resolution of the flash converter and the 

network processors will inform the Controller whether or not they have a 

direct data path to it. This configuration data is stored by the Controller 

and used for communications with the other processor in the target system.

The system is now menu driven and the operator may drive an interactive 

session with the external system by pressing key sequences on the PC. At 

the highest level of the system, the main menu is not normally displayed 

but the operator may request it by pressing the SPACE BAR.
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When the user presses a key on the IBM keyboard, the software will 

decide whether it is an executable command for the PC or whether it 

should be passed to the external system. The instruction decode path 

within the external system is that user commands enter the Controller 

where they are decoded and a decision is made as to whether or not an 

'upper array' command is required. Upper array commands are passed to 

a network processor which in turn passes them to the Data Acquisition 

Unit. The Data Acquisition Unit further decodes the instruction and 

determines whether or not to start the network processors.

The program on each network processor is identical. Parameters passed to 

the program in the configuration stage determine the actual operation of 

the network node.

The PC also provides the system with a means of visual output as well as 

access to disk storage. When a transputer in the external system prints any 

message, the data is routed through the system down to the IBM PC where 

it is displayed. Each message displayed in this manner has the processor's 

node number attached to the front of the message so that the operator may 

easily identify where any particular message has come from.

The operator can abort the programs at any stage, thus providing a good 

level of fault tolerance to the system. This feature was added so that any 

interference introduced into the transputer communication links by high 

voltage switching, would not lock-up the whole network and the user 

would then have a chance of soft-restart. To abort any command and 

return to the download stage of the PC program, the operator only needs 

to press any key whilst there is no response from the external system. If 

the Controller is ready to decode commands then pressing Q will have the
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same effect. The normal way for the operator to exit the program is by 

pressing A, this has the effect of shutting down each processor cleanly. If 

any processor does not shutdown then the operator may abort the clean 

shutdown.

Once the external processing system has been stopped, either by abort or 

shutdown, the PC software will either ask whether the software should be 

downloaded again, in the case of abort, or ask the user to press any key 

and then the system will return to the top level of the development system. 

In some cases it is possible using the debugging facilities, to find the cause 

of the fault which needed the abort.

8.3.3 Program Optimization.

Speed is of prime importance in this application, as the faster the data 

throughput, the better the result of the signal characteristic extraction.

As explained earlier, transputers usually only have 2K of memory and as a 

result this restricts the length of any program. To add anything to the 

software the current programs needed to be reduced without any loss in 

functionality. To do this the programs were optimized for compactness.

What follows is a brief look at the optimization techniques used on the 

program and their results.

8.3.3.1 Space Optimization.

Space optimization is concerned with the reduction of the current memory 

requirements without loss of program functionality.
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The localization of variables and the use of parameter passing as 'value 

only', (VAL in Occam), can reduce the memory requirements and open 

the way for buffering. This process was used in the original stages of 

optimization. Variables were transformed into local variables, wherever 

possible, and values were passed into procedures rather than using globals.

To reduce space further some communications which use the same format 

were changed to one procedure, and calls made to it passing the data to be 

transmitted. After just localization and a reduction in communication 

definition, a general reduction in program size of 11% was made.

8.3.3.2 Speed Optimization.

Speed optimization usually increases the amount of memory required by 

the process. On any type of microprocessor, a speed increase can usually 

be performed by just expanding out loops more and more, until a whole 

loop has become a large block of repeated instruction. With the 

transputer, simple loop expansion can cause an overall reduction in speed 

rather than an increase if array indexing is used. The problem of array 

indexing is discussed later in this section.

Loop expansion is not the only form of speed increasing technique 

available on the transputer. Inter-transputer communications can cause 

overheads if not properly formulated. If a programmer can detach the 

communications from the main processing then the execution speed will 

generally increase. Other speed increases associated with link 

communication can be in the form of data buffering. The larger the 

amount of data to be transferred on a link, the quicker the overall 

communication. Small packets of information are transferred slower
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because the links are all DMA controlled. Direct memory accessing 

favours the large communication packets as the overhead in DMA set-up 

becomes a smaller percentage of the overall transmission time per byte. 

Data buffering puts a large overhead on the memory requirements of the 

node.

In the general programming example that follows, the speed of the 

inherently sequential programming section has been increased by detaching 

the collection of data from the sending. The collect routine COLLECT is 

still a sequential operation, but the actual send routine sends the data to 

each processor in parallel. The actual communication statements set up 

internal DMA Controllers, (direct memory access Controllers), with the 

message and so the loss in processor performance is significantly reduced.
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General Structure of Optimized Program.

... Define Arrays. —  Define variables. (Details hidden)

... PROC Collect —  Define procedure. (Details hidden)

... PROC Send —  Define procedure. (Details hidden)
SEQ —  Start a sequence.

Collect(A) —  Call procedure Collect passing A.
PAR —  Start parallel processes.

Collect(B) —  Call Collect.
Send(A) —  Call Send.

SEQ i = 0 FOR (RequiredBlocks - 2) / 2 —  Repeat.
SEQ

PAR
Collect(A)
Send(B)

PAR
Collect(B)
Send(A)

Send(B)

With only small arrays being used to buffer the data, the speed increase 

for four signals is quite significant over the simple sequential approach, 

52 ms compared with 79 ms for the same amount of data, 4000 points in 

each signal.

Part of this speed increase can be attributed to the efficient coding of the 

COLLECT and SEND routines. These routines use 'sliced' arrays and 

this reduces the range checking inserted into the program. What follows is 

a look at the general COLLECT and SEND routines used to create the 

speed increase mentioned.

Note:—
A 'sliced' array means a partition of that array.
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General COLLECT and SEND routines.

{{{PROC Collect
PROC Collect([]BYTE Data) —  Define a procedure, 

DataForO IS [Data FROM 0 FOR 16]
DataForl IS [Data FROM 16 FOR 16]
DataFor2 IS [Data FROM 32 FOR 16]
DataFor3 IS [Data FROM 64 FOR 16]
SEQ i = 0 FOR 16 —  Repeat 16 times.

SEQ
Process:=Reql 
DataForO[i]:=AtoD 
Process:=Req2 
DataForl[i]:=AtoD 
... Collect data for 2 & 3.

}}}

{{{PROC Send
PROC Send(VAL []BYTE Data)
VAL DataForO IS [Data FROM 0 FOR 16]
VAL DataForl IS [Data FROM 16 FOR 16]
VAL DataFor2 IS [Data FROM 32 FOR 16]
VAL DataFor3 IS [Data FROM 64 FOR 16]
PAR
AtoDoutO ! DataForO 
AtoDoutl ! DataForl 
AtoDout2 ! DataFor2 
AtoDout3 ! DataFor3

—  Execute in parallel

}}}

The COLLECT routine can be further improved by expanding the main 

loop SEQ i = 0 FOR 16' and replacing it with separate assignment 

statements. Keeping to 16 for the main block, large arrays can be 

efficiently handled. Sixteen is an important figure in array indexing 

because after that a 'prefix' instruction is needed to expand the subscript 

range for each multiple of 16. This 'prefix' is one extra byte in the 

instruction which will cause slowing of the routine.
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8.3.4 Conclusion.

General optimization techniques can easily be implemented in real 

situations by good programming practices. Some program optimization 
above and beyond the general form is mainly application specific. What 

follows is a list of general rules which will apply to any program.

i. Keep all variables local.

ii. Pass variables to procedures rather than using globals.

iii. Detach communications from other processing where possible.

iv. Communicate in the largest blocks possible.

v. Reduce repetition of similar communication protocol blocks in 

favour of placing them into a procedure.

vi. Use array slicing to reduce range checking.

vii. Expand loops in blocks of sixteen to reduce 'prefix' instructions.

viii. Retype, (e.g. transform a 2D array into a ID  to quick access), 

well-used array elements or use equivalents, (abbreviations).

ix. Use array slicing over looped array indexing, clearing large arrays 

by the replication of a cleared array slice.

Page 129



System Software.

8.4 Software Elimination of Signal Errors.

The main problem with pulse charge flow measurement is one of noise. 

This has reduced by several stages of signal processing.

8.4.1 Stage 1 Noise Reduction.

The method of reducing noise at the data acquisition level is that the Data 

Acquisition Unit actually pre-processes the information and intelligently 

selects only the cycles which will provide useful information. The 

pre-processing determines two things:

1. Whether injection has taken place.

2. If there are large current spikes due to the charged powder 

breaking loose from the walls of the pipe and re-entering the 

flow.

If there is no injection, or large current spikes due to re-entrant particles, 

then the system has the ability to terminate the cycle and restart it. 

Repeated failure to obtain injection will cause the Controller to increase 

the H.T. voltage. If the voltage reaches a predetermined level, then the 

Controller will shut down the entire system reporting a failure of the 

H.T./charge injection unit.

Initially this intelligence created a new problem which was seen when 

capturing waveforms for post processing. This problem was that the system 

was very quick at recognizing either the failure of injection or current 

spikes and could quickly stop the present cycle of injection and start
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another. The problem encountered here was that the 'turn-round' time 

was too quick, the system was able to turn the H.T. supply to the needle 

off, because of the failure, and start a new injection cycle by turning the

H.T. on. Since the turn—round time was in the order of microseconds, 

the system could see the air naturally losing the charge due to the supply 

being turned off. This sharp fall in current was interpreted as powder 

re-entering the flow and so the cycle was again terminated. This problem 

was overcome by the addition of a pause to allow the H.T. to return to its 

normal switch on value.

8.4.2 Stage 2 Noise Reduction.

Stage 2 entails the disregarding of data sets that contain any value which 

caused the adaptive quantizer to overflow or underflow. This initial 

elimination stops readings entering the final processing stage which are 

currently out of range of the system. When this occurs a new gain is 

applied to the next cycle of data, or if it decided that this cannot rectify 

the fault, then the operator will be warned. Continual over-range readings 

will cause the system to report an error and shutdown the H.T. unit until 

it is reported clear by the operator.

The next phase of the post-processing is to filter the mass flow rate 

calculated and reduce the effect of random fluctuations in the flow, upon 

the mass flow reading, (see section 9.2).
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8.5 Software for Results Processing. I
i

The software for results processing is split into two main sections. 5

1. Software based on the transputer inside the IBM PC/AT 

Transputer Development System.

2. Software based on a standard IBM PC/AT.
4

i
*■

The transputer based software was concerned with the development of i

equations relating the mass flow rate of the system to the actual processed J>

information obtained from the sensor currents. This work, as with the 

IBM based work, stemmed from the addition into the system's software of £
•i

the database compiler. The main task of the IBM based software was for

the displaying of the database with the ability to create hardcopy results of I

captured waveforms of interest. \

t
8.5.1 Transputer based Software.

The transputer based results processing software is mainly based around ~

the development of the equations relating mass flow rate to the processed

sensor readings. The main system software on the Controller contains a X

function which creates a database entry comprising a mixture of processed I

results and raw signal waveforms along with full calibration information |

and run-time system parameters. This information was stored on floppy

discs for post processing, such as an Nth order data fitter with equation a

parser [36]. ?
\
I

j
1I

Page 132 \

M



System Software.

8.5.2 IBM PC/AT based Software.

There are two main pieces of software used on the IBM PC/AT. The first 

is mainly concerned with the displaying of results from the transputer 

system, while the second deals with the processing of the results.

Since the second program is mainly a database processor with little 

interaction between the user and the system, the main features of this shall 

be dealt with first.

The second program was created for the processing of the final database 

generated by the operation of the transputer system. The program allows 

the selection of data from the database which meets certain criteria defined 

by the operator. The program has the ability to generate two new 

databases by the selection criteria. The first new database contains all the 

selected results from the main database while the second contains the 

residual data.

The program contains a linear regression algorithm and export facilities to 

other computers. The main use of this program is concerned with the 

exporting of graphical data to the Apollo where another program 

transforms the data into graphs. For more details on this piece of software 

and the results from it, see section 9.2.
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The first program uses the data from database discs or output files, which 

were created by the transputer system. When activated the program enters 

into a sub menu:

E) Enable Main Results Section.
X) External Waveform Display.
I) Injection Search Rule Setup.
S) Statistical Display.
D) Data Display.
Q) Quit.

Option X displays a waveform generated by the transputer system under an 

interactive capture and save session. During a run of the system the user 

may decide to keep a block of data captured by the system. The results 

can be saved in one of two forms. The first is a textual file containing a 

simple graphical trace of the waveform patterns that the data represents. 

The file contains the same data as can be written to the screen during the 

transputer session. The next form of block save is as raw data. Both of 

these data saves record the request made to create the waveform, along 

with other useful system parameters.

A trace saved as raw data has its information encoded into lines of 

compact hexadecimal numbers representing the values read from the flash 

converter. This is the information used by the first graphical display 

program which produces a high resolution representation of the waveform. 

This screen picture may be dumped to a printer by a special print routine 

written, since the standard screen dump provided with the PC did not 

produce a true representation of the screen. The standard PC screen dump
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produced only two thirds of the screen, because to produce the high 

resolution displays the versatile graphics adapter, VGA, was used in its 

high colour/resolution mode. This mode used more of the screen memory 

than a normal graphical display which can be dumped successfully with the 

standard screen dump.

The Statistical Display, option S, displays a bar chart generated from the 

distribution of results found whilst gathering one database disc, (see 

section 9.2 for more details). The chart can be dumped on a printer or 

can be exported to the Apollo where another program can transform it 

into a high quality plot.

The Data Display option, D, provides a simple graphical display of any x,y 

data.

Option E enables the main section of this program and the system then 

waits for the user to place the database disc in drive A. All the header 

information, appendix B, is read from the disc and the system moves into 

a mode of displaying processed results. By quickly pressing any key twice, 

the system changes mode and moves into a menu driven section.

Page 135



System Software.

The main menu looks something like this:

P) Processed Data Display.
C) Processed Data Continued Scroll.
S) Processed Data Search and Display.
W) Waveform Display.
X) External Waveform Display.
H) Header Display.
B) Brief Header Display.
I) Injection Search Rules Setup.
D) Dump Calibration Data on Printer.
L) Load Another Results Disc.
Q) Quit.

Which one?

The program passes all the main printing via a screen formatter so that, for 

example, the main menu above will actually appear in the centre on the 

screen, centred in both axes.

When the user presses one of the listed response keys the system will take 

the appropriate action. Options B and H will display either the main data 

from the header, (the main counters and air settings), or the full header 

data which includes all the calibration data for each signal and gain. 

Option C is to continue the mode of operation that the system first starts 

in. In this mode the system scrolls through each processed result in turn 

displaying all the relevant information available from it and warning of any 

run-tim e overflows (signal being out of limits of the converter system), 

which could make the results unreliable. Option I allows the operator to
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change the way the program decides that the injection current has reached 

the point of injection. Normally the system defaults to the same rules as 

used by the flow system. This option is provided to allow experiments to 

be made on real data to see how the changing of certain search parameters 

will cause either the rejection or acceptance of a particular result. Load 

Another Results Disc, option L, causes the reading of a new database disc.

The Processed Data Display, option P, allows the operator to choose a 

particular processed data results set and display it. Using the C option 

after this will cause the scrolled results to effectively jump to the result set 

after that just chosen by P.

The Waveform Display, option W, allows the user to select a waveform by 

number from within the database. The display is similar to that of the first 

program except here there are three waveforms packed into one waveform 

section, so the user is given the opportunity to overlay the waveforms on 

one graph. The user is also given the opportunity to automatically scroll 

through the waveforms on the disc from the current position selected.

Once these selections have been made, the user is prompted whether data 

compression or windowing is required; (only if the data for one waveform 

exceeds that plottable with one sample per x pixel. This is usually the 

case). If compression is chosen then the entire waveform is scaled to fit 

onto the screen. Windowing allows the user the ability to select the 

amount of compression required. Any data which cannot fit onto a 

windowed screen, is ignored. Each waveform displayed has the equation 

needed to convert the data to a real value printed near the top of the 

screen.
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Once the waveforms have been displayed the user is prompted whether or 

not a screen dump is required. Choosing this option will produce a 

hardcopy of the waves on the printer. If the waveform scroll option has 
been activated, then at the prompt about printing, typing Q will cause the 

program to abort the scrolling and return to the main menu. Pressing X 

will cause the export of the raw data to three disc files. These files 

contain raw data values in ASCII decimal representation, (one value per 

line), which represent the actual A/D values. This data can now be used 

in other ways. One use of the extracted data is that a routine was created 

on the Apollo that could reproduce high quality waveforms on the Apollo 

which can then be annotated for displays.

After each command other them quit, the system returns to the main menu.
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9. Results.

9.1 Experimental Procedure.

Figure 31 shows the experimental rig built around the pneumatic transport 

system. The injector and sensors which are shown in more detail in figure 

23 page 90, are coupled to the transputer system via current to voltage 

converters providing a differential output voltage proportional to the 

induced sensor current.

Powder/flir mixture flow poth For absolute M.F.fl measurement.

2-Way 
Powder 
SwlLch

Cyclone

“I

Curren tElectronic 
Ba1ance

Powder/fli r
SensorsSepora tor

H.T. PowerFluid Air Charge 
Inj ec tor SupplyBed

u - 1
Key

Figure 31 Experimental Apparatus.

The transport system comprises a fluidized powder hopper with primary 

and secondary air controls to create the desired mass flow rate. The
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primary air in the system provides the suction on a venturi system and the 

secondary air provides the powder with a velocity control source. After 

the powder passes through the sensor unit it is either directed to an 

electronic balance for absolute mass flow measurement, or it is separated 

from the air and returned to the hopper.

The initial system calibration was provided by the Automatic Calibration 

Unit described previously (section 7.5). As the individual gain

components of the system have fixed gains, only offset calibration was

necessary for further runs. The procedure here, however, shall include the 
gain calibration stage.

The basic experimental procedure is that the system is switched on and 

any offset produced by the differential signalling is adjusted out so that 

when using the maximum gain of 128 the raw A/D reading is equal to the 

offset value of 128 decimal.

The Calibration Unit was now connected into the system and the
auto-calibration checked to prove that the system could accurately

determine the level of different input signals when using different gains. 

This process was found to be successful with the conversion accuracy now 

at ±1.5 LSB in 8 -bits.

After this set-up is complete the transputer system calibrates all the system 

offsets with the sensor outputs connected into the signal multiplexer. By 

calibrating the offsets in this manner, any residual offset left after initial 

set-up is accounted for in the system computations.
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Now the system is calibrated, the task of obtaining flow rate measurements 

can begin. To create a range of different flow rates the primary and 

secondary air supplies to the fluid bed hopper are varied. Once a setting 

has been chosen the transputer system is allowed to make the 

measurements of the sensor outputs by firing the H.T. pulse, searching for 

injection, and processing the data derived from the analogue signals. For 

each flow setting, 2000 H.T. pulse cycles were used and the data 
gathered. The recorded data was then uploaded into the IBM PC/AT and 

saved onto one disc. The actual mass flow rate for the primary and 

secondary settings was then found by diverting the flow onto an electronic 

balance. By taking the difference in balance readings, (before and after), 

the actual flow rate can be determined based on the time the powder was 

diverted.

The data gathered during one run with any primary and secondary air 

setting is 2 0 0 0  processed results, 62 raw waveform captures and the full 

system parameters including the calibration information. Each set of 

processed results yields the following information:

The requested gains of each channel, Ro to R3 .

Positive Peaks of each sensor, Io to I3 .

Negative Peaks of each sensor, Mo to M3 .

Integral of each sensor current, Qo to Q3 .

The time of each positive peak, To to T3 .

The elapsed time of each processor, Eq to E3 .

From the calibration information and requested gains Ro to R3 ( the true 

values of the sensor readings can be computed. Velocity information can 

be generated by using the peak times, To to T3 , and the gap between the
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sensors. The following velocities can be generated, (where SensorGap = 

gap between one sensor = 2 1  mm):

Vi 3 , the velocity by ( T 3  - T i ) /  (2xSensorGap)

Vi 2 , the velocity by (T2 - T i ) /  SensorGap

V2 3 , the velocity by (T3 -T 2 ) /  SensorGap

From now the sensor readings shall be referred to by the letter and 

number system given above, and are assumed to be converted to their true 

value.

Processing in this manner gave one primary and secondary setting data set 

on one disc, as the processed data and capture raw waveforms took up 
over 900K on the floppy disc. After a series of settings had been used the

data was then compiled into another database and the waveforms extracted

and plotted to record the actual shapes of the induced sensor currents for 

further analysis.

This process was very time consuming so a more direct solution was 

adopted to produce the large volume of data covering all the half step 

primary and secondary combinations. With this new process the system 

was still set-up and run as previously, but instead of transferring all the 

data to the PC to be stored on disc, the data was processed by the 

transputer inside the PC and the compacted results saved on the disc.

The results being extracted from the sensor readings were the mean and 

standard deviation of each type of reading, plus the number of readings 

actually used to make up the mean and the percentage of this number to 

the overall injections seen.
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Considering just one single data set. This originally comprised 2000 

attempted injections. Out of these 2000 attempts, typically the transputers 

had detected the occurrence of the injection in some 90-95%  of these and 

so they contained valid information. The information stored in any 

particular set is the maximum and minimum values found in the signal 

data, the time of occurrence of the maximum value, the integral of the 

entire waveform and the elapsed time, along with the actual gains used to 

obtain the readings.

The maximum and minimum values were stored as direct A/D values and 

so ranged from 0 to 255. With any 0 or 255 value the actual value of the 

signal can not be determined as any value slightly more negative or 

positive would still produce a reading of 0 or 255 respectively. For this 

reason any sensor reading of either 0 or 255 was deemed invalid and the 

reading useless.

There is another possibility for obtaining an invalid reading. This is in the 

peak time. If any sensor further away from the injection unit recorded a 

peak before any closer sensor to the injector, then this reading was 

deemed invalid also. Invalid readings within any particular data set caused 

the disregarding of that individual set, so typically only 70-80%  of those 

injections detected were used in the overall statistics saved by the 

computer system which made up the first of three database entry types.

The second entry type for any one primary and secondary air combination 

is composed of the reprocessed results of the first filtering off of any data 

items which lie outside one standard deviation of the mean. The final 

entry saved is the data distribution of second entry.
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Using this new technique of gathering database entries, the flow system 

was run with primary and secondary air settings varying between 2 . 0  to

7.0 and 0.0 to 9.5 in 0.5 units per step, respectively. All the information 

gathered was compiled into one large database for further processing.

9.2 Main Results.

During the initial phase of this testing program, it has been necessary to 

modify the way in which the results are to be gathered and the operating 

conditions of the system prior to final data gathering.

The system's raw waveform data gathering facility was first used to gather 

several sets of waveforms with a variety of injection waveform shapes. 

From this data the algorithm used for the determination of injection was 

created. The simple model used in the original system simulations was 

found unsuitable for the real system as the injection shape had changed 

from that seen by Willis.

The first modification in operating conditions came when, although good 

injections could be seen on a digital storage scope, the transputer system 

rejected them. By examining the raw waveforms capture in the database 

discs it was found that there was a problem with the turn-round time of 

the system. Previously in the original data gathering used for the 

generation of the algorithm for injection determination, the ability to 

terminate a cycle and restart it was disabled as there was no way of 

detecting the injections. What was happening with the algorithm was that 

if a large negative spike was found, or the search for injection exceeded 

the time limit, then the Data Acquisition Unit would call a halt to this 

cycle as no useful data could be derived from it. On receiving the signal
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to abort a cycle the Controller would note the failure and start a new 

cycle.

The restart of any new cycle causes the H.T. unit to turn on, thus with 

this fast turn-round time the system had turned the H.T. off only a few 

microseconds before turning it on again for the start of this new cycle. 

Figure 32 illustrates what the system saw.

P o i n t  o f  i n j e c t i o n .

Figure 32 Example of the Fast Cycle Turn-round Timing Problem.

A new 'turn round' algorithm was generated and found successful. It was 

at this stage that the controlling transputer unit started to seriously 

malfunction due to poor circuit board construction and so the new 

multilayer Controller was brought into service.

Next the full operation of the system started to take place. With the 

powder flowing in the pipes the signals were processed and stored on 

database discs for later analysis.
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After a set of discs had been taken the performance of the capturing 

process was determined. Here it was found that by using unfiltered sensor 

currents, there was a high level of noise. This noise, as shown in 

figure 33, reduces the accuracy of the sensor readings.

S e n s o r  C u r r e n t

C u r  r  e n tS e n s o r

Figure 33 Unfiltered Downstream Sensor Currents.

All the waveform diagrams are shown as an indicator of their shape and 

are not intended to show detail of exact measurements, however, the entire 

length of the waveforms represents 57.6 ms of sampled data.

Low pass filters were now added to the sensor interface. Figure 34 shows 

a recording of an 'ideal' waveform where the injection area of the 

injection current is a rectangular pulse.
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I n j e c t i o n  C u r r e n t

> m w r t U » > i im iW T W n T r tT i i y ^ in i  n n  i m

Figure 34 'Ideal' Wave Shapes.

The Flight Time in figure 34 is used to generate the velocity parameter 

V12 and represents T2 -T 1 .

Many data sets were taken and a more 'typical' waveform is shown in 

figure 35.
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I n j e c t i o n  C u n r e n t

C u n r e n t  I I

o r  C u m e n  t  12

Figure 35 'Typical' Waveforms.

Analysis of the performance of the amount of data extractable from a 

single database disc which had no 'invalid' readings included showed that 

typically the system could now see 90-95% of injections, (some of these 

could be actually injection failures and others just missed due to the 

algorithm used for determination). Out of this 95% only some 25-30%  

were accepted, the others being rejected due to invalid readings caused by 

the adaptation process.

These sets were using an immediate adaptation using the assumption of a 

high correlation between one injection cycle and the next. Due to the 

natural fluctuations within the flow this adaptation process was not 

efficient and so was changed to a voting system.
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In the voting system the adaptation required by each cycle causes a vote to 

be added into a poll. When the poll reaches predetermined levels for 

unanimous votes, (5 consecutive votes for gain increase or 2 consecutive 

votes for a decrease in gain), the adaptation for that channel takes place. 

This new mode of operation increased the acceptance level to 60-70% of 

those injections found being included in the final database.

The results of the new database discs created from this process were 

examined to get a feel for the data and what is needed to be recorded for 

further analysis.

The computation of statistics based on the mean and standard deviation 

found on the reading for one entire database disc showed a standard 

deviation approaching the mean. The data distribution of the results 

included in the computations showed that there were typically one or two 

results which have a very large deviation from the mean, figure 36 shows 

one such distribution with the scaling of the graph being generated by the 

maximum and minimum readings found. The results were now filtered by 

re-calculating the mean and standard deviation of the results based on the 

previous mean and standard deviation. Any results outside the mean ± one 

standard deviation were excluded from the new mean and standard 

deviation computations. Here tests were made to determine the effect of 

using only 'clear' data set or any 'good' results from all of the data sets.

A 'clear' data set is defined as any set in which all the readings In, (Io to 

Js),  and Mn directly from the sensors are not either 0 or 255, and the 

peak times increase with sensors further from the injection unit, 

(Ti <  T2 <  T3).
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A 'good' result is defined as any result in which the readings from which 

it is composed are valid. So the result I2 /I1 is good if neither I2 nor Ij 

are either 0 or 255, and Q3 is good if neither I 3  nor M3 are either 0 or 

255.

Figures 36, 37 and 38 show the distributions obtained by the different 

forms of processing mentioned.

Pr i nary5U13
Mass Flow Roto

C3
tOto
toC3
to<n

c
3o

<_)

o
- 3 6 9 6 . 5 6

1 3 8 . 0 2 3 7  u n i t s / d i v .

Figure 36 Raw Data Distribution of 'clear' Results.
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Prinory Hlr Setting 1.0 
Secondary Rlr Setting S.0 
Mass Flow Rote 1.3

96

-1U0.00S
Q1 / Q i nj 1 0 . 2 2 4 1  u n i i s / d i u .

166.207

Figure 37 Data Distribution after Second Pass with 'clear' Results.
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t — i— i— i— i— i— i— r

-110.005

Prinory fltr Setting 1.0 
Secondory Rlr Setting 5.0 
Maes Flow Rate 1.3 g/e

Q 1 / Q i n j
t— r i i i i i— i— i— i— i— r

1 0 . 2 2 4 1  u n i t s / d i u .
166.207

Figure 38 Data Distribution after Second Pass with 'good' Results.
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These two methods produce similar results except more results were 

included in the 'good' results computation. The 'clear' results were 

chosen for further analysis as they still yield a high percentage of readings 

included in any one final resultant data item. 198 experimental results 

were obtained for further analysis. Using the first method of one result 

giving 900K of information, the data gathered would run into the hundreds 

of megabytes. A decision was made to only return the statistics of the 

unprocessed data and the statistics and data distribution of the filtered 

data. The statistics were later compiled into one large database from which 

all further analysis and results were obtained, using the filtered data from 

the database. The data distribution information still remains as 198 

different distribution files.

More programs were written to cater for this new form of database and to 

allow extraction of the information by criteria defined by the operator. A 

graphical package was written for the Apollo which allowed the drawing of 

the following graphs extracted form the data.

The first stage in analysis of this data was to extract the main readings and 

plot them against various other readings, mainly against mass flow rate and 

computed velocity.

Figures 39, 40, 41, 42 and 43, starting on page 154, show sensor currents 

I i, I2 vs mass flow rate, I2 /I1 vs mass flow rate, Ii vs velocity and 

Qi vs mass flow rate respectively.
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The characters used on all these graphs represent primary air settings. For 

each primary air setting the secondary varied from 0.0 to 9.0 in steps of 

0.5. Both primary and secondary air settings are in arbitrary units. The 

characters on the graphs are as follows:

Primary Air Setting Letter

tArbitrary Units")

2.0 E

2.5 F

3.0 G

3.5 H

4.0 I

4.5 J

5.0 K

5.5 L

6.0 M

6.5 N

7.0 O
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u u I I

Figure 39 II  vs M .F.R
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CD3 CO
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Figure 40 12 vs M .F.R
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Figure 41 12/11 vs M .F.R.
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Figure 42 II vs Velocity.
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Figure 43 Q1 vs M .F.R.
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9.3 Analysis.

Having collected the data and displayed it, analysis took place. It was felt 

that due to the complex patterns in the waveforms, parameters found 

within the readings would be used to generate regions of flow for which a 

single parameter can be computed relating the sensor readings to the flow 

rate. By the selection of various criteria from the readings it was possible 

to divide the results into regions. What follows is three such methods in 

which the data could be divided. It is possible that further analysis at a 

later date could yield a different set of results, but the first two methods 

here are sufficient to yield a mass flow rate to within ±15% of full scale 

within the regions defined in the analysis method.

9.3.1 Analysis I.

Analysis of the plots produced led to the generation of a function for the 

determination of mass flow rate for high velocities. Figure 44 shows the 

plot of the parameter calculated against mass flow rate. This was defined 

as region 1 and to obtain it readings have to meet the following criteria:

Velocity > 7 . 5  ms-1 

Ii < 650 nA 

Q2 < 26000 units

and the parameter generated was MFR = (I2 -  111.6) /  61.7 g/s.
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It was found that the velocity was the key factor in the results and 

consequently all the subsequent graphs are displayed with labelling in 

lowercase characters created from the velocity information as defined 

below:

Velocity (ms-1) Letter

3.50 a
3.83 b
4.17 c
4.50 d
4.83 e
5.17 f
5.50 g
5.83 h
6.17 i
6.50 j
6.83 k
7.17 1
7.50 m
7.83 n
8.17 o
8.50 P
8.83 q
9.17 r
9.50 s
9.83 t
10.17 u
10.50 V

The figure formats shall be either as above or in uppercase lettering as the 

first set of figures, e.g. as in figure 39 page 154, unless otherwise stated.
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Figure 44 Region 1.
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When looking for the next main region of flow only the residual readings 

from the first region were used. This is so that for computer selection of 

the regions the computer system can test the criteria for each region in 

turn and select the required computational equation to give the flow rate.

Looking at the sensor readings I2 /I 1 now left from region 1 after filtering 

off readings with either a velocity < 3.5 ms-1 or Qi < 15800 there is 

linear relationship between I2 /I 1 and the mass flow rate. This parameter 

alone could be used as an indication of mass flow rate. Figure 45 shows 

the parameter I2 /I1 after data selection.

Taking the parameter I2 /I 1 and trying to slice it by velocity measurements 

gave some linear relationships between flow rate and I2 /I1 . Figures 46, 47 

and 48 show some of these split regions and equations which can produce 

an indication of mass flow rate.
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Figure 45 12/11 vs Mass Flow Rate after Selection.
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Figure 46 Region 2a.
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Figure 47 Region 2b.
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Figure 48 Region 2c.
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9.3.2 Analysis II.

Since velocity was being used as a selection parameter in the previous 

analysis, functions based on velocity were then examined. Figure 49 shows 

the basic function of Ii/Velocity after all readings with a velocity of less 

than 3.5 ms-1 were rejected.

The rejection of readings with a velocity of less than 3.5 ms-1 was 

successful in removing spurious results where because of low velocity the 

powder was not properly entrained in the flow. With these low velocities 

pulsation of the powder occurred.

The next indicator was the ratio I2 / I i . Under conditions of low flow rate, 

good entrainment of the powder into the air stream occurs. This yields a 

high I2 /I1 indicating good correlation between the signals in the two 

adjacent sensors.

Figure 50 shows the separated region 1 with its equation and criteria.

Once region 1 is selected the remaining data was subdivided by various 

criteria as shown in figures 51, 52 and 53. This region is more difficult to 

explain why the various criteria yield the mass flow rate information due 

to the more complex flow situations, (i.e. turbulent flow).
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Figure 50 New Region 1.
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Figure 51 New Region 2a.
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9.3.3 Analysis III.

A study of the data, using primary air values as a key to the display, 

shows a pattern of results for Ii vs mass flow rate and Ii vs velocity, 

figures 54 and 55.

Looking at the plot, for any given reading of Ii there is a range of mass 

flow rates. Similarly for the same value of Ii there is a range of velocities, 

but since the velocity information was derived by system measurements, the 

velocity is known and hence the mass flow rate can be determined. This 

has now given one complex model for the entire range of the system. 

Further study of these patterns could produce a look-up table of mass 

flow rates from the values of Ii and velocity, which yield a greater 

accuracy than the previous methods.
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Figure 55 II  vs Velocity Patterns.
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9.4 A Change of Powder.

Another database has been compiled using a fresh white epoxy-polyester 

powder and one which had not been recirculated many times, as the black 

powder previously used. Looking at the readings obtained for Ii against 

mass flow rate, figure 56, a similarity can be seen between that and those 

obtained using the black powder. The main difference seen is the lack of 

values under the main arch of the waveform. Operating with the same 

conditions as before, we obtain a line in region 1 with the white powder 

as with the black, figure 57, but of a different slope.
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Looking at the velocity distribution of the new powder it can be seen that 

all the readings obtained had a higher velocity than their black powder 

counterparts. This is due to the high concentration of fine particles within 

the powder which would have escaped from the black powder in the flow 

system, due to the many recirculations it underwent.

Figure 58 shows a 'typical' set of raw waveforms produced with the white 
powder.

M

Figure 58 'Typical' White Waveforms.

All the waveform diagrams are shown as an indicator of their shape and 

therefore the calibrated units are not shown. All diagrams in this section 

however, have the same scaling factors. The injection current was taken 

using unity gain, Ii and I2 using overall gains of 2 and 4 respectively. The 

entire length of the waveforms represents 57.6 ms of sampled data.
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Taking a closer look at the waveshapes obtained it is found that there are 

two distinct forms for the downstream sensor currents as in figures 59 and 

60. The black powder, however, only has one main shape, and this 

matches neither of the white shapes, figure 61.

Figure 59 Downstream Sensors Waveforms. (White 1).

Figure 60 Downstream Sensors Waveforms. (White 2).
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Figure 61 Downstream Sensors Waveforms. (Black).

What appears to be happening with the sensor currents is that with the 

white powder the finer particles which have been lost from the black due 

to recycling, are charged by the injector and transported faster than the 

heavier large particles. This causes a sharper wave edge on the currents 

and can also create narrower current shape.

Looking at the white waveshapes in figures 59 and 60, it can be seen that 

the second sensor current has a wider base than that of the first. This can 

be attributed to the particle distribution; the heavier particles moving 

slower than the light particles thus causing a stretching of the waveform. 

The waveform of the white powder can be considered as the current 

induced by the fine particles superimposed on that produced by the heavy 

particles as shown in figure 62.
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S e n s o r  C u r r e n t  12

Figure 62 Underlying Trend of White Sensor Currents..

The fine particles have added a slight difficulty into the operation of the 

system. The rate of change of the injection current is not always great 

enough to detect injection using the current algorithm and hence some 

good injection passes can be missed. For further work the algorithm needs 

modification to allow the detection of injection under these new 

conditions.

Another feature seen with the white powder is that under conditions of no 

injection there is a negative trough, figure 63. This phenomenon reduces 

the overall level of the downstream sensor currents, as when injection does 

occur it has to cause the sensor currents to rise out of the trough, as in 

figure 60 page 179. This feature could be a factor in the generation of the 

different slope in the equations relating the induced sensor current to the 

mass flow rate, for the two powders studied.
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Figure 63 White Waveforms with no Injection.

With further analysis, a more complex solution for the generation of mass 

flow rates, as suggested in section 9.3.3, could be generated along with a 

model for the determination of particle size distributions.
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10. Conclusions and Future Developments.

Starting from the basic technique of pulse charge injection as outlined by 

Willis [1], several types of computer system have been designed to tackle 

the problem of building a real-time instrument to measure the mass flow 

rate of pneumatically transported powder particles. The work has covered 

a wide range of topics from computer system design to using modern CAD 

techniques.

The design chosen for the implementation used the latest INMOS parallel 

processing devices, transputers. This type of processor has proven to be 

ideally suited to this application. It is possible that the final 

multi-transputer design will be used commercially in a closed loop control 

system for electrostatic paint spraying. The design also has applications in 

the more general area of particle flow analysis.

The transputer system allowed the gathering of a vast database which was 

processed by the large amounts of support software generated for that task.

The results have shown that a successful high speed parallel processing 

system has been developed which can capture large volumes of data at high 

speed. Hie processing of these results has led to the generation of an 

empirical model for the measurement of mass flow rates in the range of 

0.2 gs-1 to 6 gs"1, with a wide range of velocities, from 3.5 ms-1 to 

14.0 ms-1 . The method involves the separation of the readings so that they 

lie in a particular 'region' of flow, figures 50 to 53. These regions 

produce accuracies of ±15% of full scale of that particular region. This 

separation was performed in a fixed sequence by computer and could
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easily be performed by the on-line transputer system to produce a 

real-time mass flow rate measurement.

When changing to a new white epoxy there was a significant change in the 

sensor readings which has been attributed to the different particle size 

distributions of the two powders. Processing the patterns produced by the 

white powder by the techniques developed for the black powder, a similar 

relationship can be seen in the identified region 1. Although the two 

actual equations produced are not the same it is considered that with 

further data analysis a relationship between the two powder types could be 

obtained.

The problems occurring with a non-recycled powder is that the current 

method for injection determination finds it harder to detect the onset of 

injection as the fine particles in the powder have picked up charge and 

brought it into the sensor area earlier. The passing of this charge produces 

a smaller rate of change in the injection waveform which is significantly 

different from that of the black powder. Having a restricted particle size 

reduces the speed of the front edge of the injection waveform and so when 

the wavefront occurs there is a greater rate of change in the charge being 

transported over the sensor and so a greater rate of change in induced 

sensor current.

10.1 Future Developments.

The future developments is spilt into two sections. The first section deals 

with hardware spin-offs from the project which could be used generally. 

The next section is details 011 specific developments which concern the 
project instrumentation.
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10.1.1 General.

The effects of the change in particle size should be investigated. By using 

calibrated particle sizes and analyzing the resultant waveforms, a 

relationship between the induced currents and particle distributions could 

be determined. The current work has indicated that a relationship could 

be extracted. As discussed previously.

Further analysis of the white powder without recirculation should enable 

the production of a new system which is less affected by the waveshapes. 

Analysis of the waveshapes themselves could also lead to the development 

of an additional feature of particle size determination.

10.1.2 Modification of the Data Acquisition Unit.

There are two main ways in which the Data Acquisition Unit can be 

modified. The first is by creating three separate modules for the various 

sections. The first module would contain the multiplexers for multiplexing 

one system's signals down to one. This board would be identical to the 

main system multiplexer unit which should contain eight such boards.

After the multiplexer unit comes the new gain section which should be in 

a separate screened box to reduce the influence of externally induced 

signals. This gain section should be of the type detailed in section 6.2.2 

with reference to figure 21.

The final module should contain the 'Flash Converter' and transputer 

control logic. This module, like all the rest, should have its analogue data 

paths routed using screened coaxial cable, again to reduce pick-up.
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The next phase of modification involves the transputer which interfaces to 

the A/D. The processor could be replaced with an INMOS 16-bit 

transputer, the T212 or T222. This will have the effect of not only 

reducing the cost of the unit, but in fact it will also increase the speed of 

operation. The speed increase stems from the non-multiplexed address and 

data bus of the T2 type products. This reduces the cycle time for external 

memory accesses by one clock cycle, (a reduction of 50 ns for a 20 MHz 

transputer).

A decision now has to be made on the actual gain computation element. 

In the original transputer system the gain computation was done by EPLD 

for intra-sample adaptation. This has the effect of increasing the 

bandwidth requirement of the serial data paths as it doubles the amount of 

data being transmitted down the links. The intra-sample adaptation could 

be provided as one option available on a more general acquisition type 

board. This board may also include extra memory to add flexibility to 

other applications.

With the present system the EPLD could be replaced by a simple latch 

and the inter-cycle adaptation previously used could be kept. Replacing 

the EPLD will also reduce the cost of the board further.

10.1.3 Modification of the Processing Array.

One major way of modifying the Processing Array is to change the 

transputers for T2 type transputers, thus reducing the cost of the whole 

system. The difference in processing performance this will cause however, 

has not been fully evaluated. Currently large 32-bit summations occur in 

the array. Changing to a 16-bit processor and using 32-bit arithmetic will
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create a penalty cost in speed. This speed reduction however, may be 

slight and could probably by traded in some way by the use of larger data 

buffers or other optimization techniques.

Another change in the Processing Array involving no new hardware, would 

be to change the current T414 transputers for T425 transputers which have 

4K of RAM not the current 2K. This change would allow the 

development of more software on the array without increasing the 

complexity of the circuit board.

A study of the signals required to make up the equations for the mass flow 

rate could yield a reduction in the number of computations required to 

produce the same results. The increase in speed made could then be 

traded for a reduction in the number of processors.

10.1.4 Modification of the Controller.

Once the system has been fully defined with the actual feedback control 

system, the memory requirements can be evaluated further. The large 

memory could be tailored to the application and some, if not all, of the 

control logic could be incorporated into the actual circuit board of the 

Controller making it more dedicated to the flow control task.
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10.1.5 Hardware Spin-offs.

10.1.5.1 High Speed Adaptive Converter System.

A new design of converter system which is a culmination of all of the 

processes in one could be created and tested. Tire new design could take 

on the role of any of the converters previously mentioned.

The basic idea of the converter stems from the original adaptive 

quantization unit which was designed in discrete digital devices, section

6.1.2. This converter adapted the gain of the converter system by 

calculating the gain for the next sample on that particular signal based on 

the current sample. Hiis in fact tracks the signal with a gain. The first 
version used logic to decide on the new gain. This gain was then stored in 

a high speed RAM.

In this new design all the logic of the original converter is replaced by 

high speed static RAMs. The RAMs would be preprogrammed with a 

look-up table containing all the information needed to generate the gains 

and their adaptation. The final output stage would also be replaced by 

high speed RAMs and after the calibration the look-up tables could be 

modified take into consideration the actual system parameters found.

By using high speed RAMs different types of adaptation technique could 

be encoded into them.
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A. Printed Circuit Board Production.

Due to the nature of the circuits designed for this project, (large numbers 
of high speed signals and a high devices count with high density packaging 
to reduce board area), printed circuit boards have been used in 
development rather than conventional prototype boards consisting of either 
wire-wrap or other point to point wiring systems.

Three pcb packages were used during this project, SMARTWORK, 
RGARPH and Mentor Graphics BOARD STATION. The latter two were 
purchased in the course of this project and considerable time was spent on 
familiarization of the packages. Since the packages themselves were new 
each of them had its own problems.

A.l PCB Production. The discussion.

The initial development work in creating a 68000 development system 
from an Atari 1040 ST, used printed circuit for the expansion board. This 
board was laid out using a basic routing package called SM ARTWORK. 
To increase track density on the board, the layout produced by 
SMARTWORK had half of its final busses routed by hand 011 the 2x 
artwork. Large ground plane areas were also added to the board along 
with ground screens between the signals to reduce inter-signal cross-talk. 
The final board produced fitted inside the Atari casing with slight 
modification to some of the Atari's internal RF shielding.

Next a prototype Controller/Development system containing a 10 MHz 
68000 processor, a T800 32-bit floating point transputer and an A100 
cascadable digital signal processor capable of an equivalent 380 MOPS, 
(million operations per second). Each processor site had support logic and 
a full expansion bus brought out to 96-way indirect edge connectors. The 
T800 could talk directly to the A100 and to the 68000 via a high speed 
dual port RAM. This was entered into an IBM PC/AT pcb package called 
RGRAPH by Aptos.

RGRAPH enabled schematic entry of the circuit. Since the pan and 
redraw facilities of the RGRAPH system were very slow it made the 
system unsuitable for the general use it was intended.

The special components such as the transputers, connectors and the 68000 
series of chips were entered into RGRAPH schematic level and pcb level 
libraries. The schematic was then passed through the next stage of the 
process. This was RCAP which broke down the schematic into a form 
which could be handled by the AUTOTOOLS. RCAP also gave 
information such as a bill of materials, netlists or wire lists. Next came
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another session with RGRAPH, this time the results from RCAP were 
used to manually place components on the pcb. After all the components 
were placed the 'rats nest' was called up. The rats nest is direct pin to pin 
connections representing the desired tracks. You now have the ability to 
route the tracks by hand or pass the job over to AUTOTOOLS which 
should route the tracks automatically.

During the pcb level of RGRAPH the actual first signs of problems really 
occurred. The first slight problem was seen at the schematic entry level. 
This was when the database limit was attained. However, the RCAP 
package had the capability of accepting more than one schematic 
representing one pcb, so this was not considered as a real problem. Now 
the first real problem was that during movement around the pcb, in 
RGRAPH, parts actually disappeared. Even when all the components 
were visible, during screen scales of less than one i.e. zoomed out, the 
disappearing act was still there. When a plot was done with all 
components visible the plot usually had bits missing.

Another problem found was at the RCAP stage of the process. When the 
bill of materials was requested the program crashed leaving an incomplete 
list of materials. Hie list should contain the total quantities of components 
used and their references, but instead after the crash there was a complete 
list of components, without the total quantities filled in, with the complete 
list of references.

Overlooking these problems, the pcb level drawing from RGRAPPI was 
passed to the AUTOTOOLS. The program processed the information for 
about 3 hours, typically, before crashing leaving a unknown error code on 
the screen. A list of these faults along with the error code generated were 
telexed to the suppliers. The message that came back from America, where 
the software originated, was that they had never heard of these problems 
nor that particular error code. The suppliers assured us that these 
problems would all vanish with the new versions of RGRAPH and 
AUTOTOOLS.

With the new version of the software the autorouter stopped with the same 
error code. Hie bill of materials also gave the same result. The drawing 
was reprocessed completely by RCAP and this time the bill of materials 
came out correctly but the router gave the same message.

A piece of software was written which could cut the rats nests, group 
together components laid on different layers and then compiled a new rats 
nest file to cover this group. It could handle four such groups with the 
components placed on layers one to four. Five new rat nest files were 
produced, one for each group and a final one which linked up all the 
groups.
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The idea behind this was that the board information would be reduced by 
reducing the rat information. Once one section of the board was routed 
another section of rat information would be added and the process 
repeated. This would finally leave one rat file with the final linkages for 
each pcb section. This would be added, the board routed and then the job 
would be done.

This, however, did not work. The autorouter still did not like the 
information. The next step was to reduce the whole database. The rat 
cutter was called and a logical section of the pcb was isolated. The other 
components not associated with this group were then deleted and the 
board outline reduced. The first group chosen was the area containing the 
A100 digital signal processor. This was the smallest logical unit and if 
anything should be able to pass through the autorouter then the smallest 
group should. Routing the board as a four signal layer board and two 
power planes, this small section was completed with a little manual 
routing.

The schematic was entered into the autorouter for the production of a two 
layer pcb. The router actually worked on this board processing it to some 
80%. A full board once routed on the autorouter could not be 
resubmitted to the autorouter. This was because we were requesting small 
tracks and small spacing, so the tracks did not fit on the placement grid of 
the components so next time round the autorouter threw them out for not 
being on the grid. All pins of the components also had to be on this grid, 
so the connectors being used in the design had to be changed so that the 
pins were on the grid. If the routing was just in one area of the pcb and 
another area was to be routed, then these tracks could be placed on 
non-active layers thus the autorouter would not see them as components 
or tracks and so they need not be on the grid. With a full pcb, or 
continued routing in the same pcb area, then a change of layer could not 
be used as the tracks already routed will not be recognized by the router 
and hence new tracks could go over those already there.

It is at this stage where manual routing was called for. With some 100 or 
so connections still to be made large areas around the transputer were 
manually ripped up and the tracks hand routed. A similar process took 
place around the A100 site. Using this method the board was finally 
routed to 100% which the autorouter was unable to accomplish. Heavy 
manual routing enabled slight board layout modifications to enable more 
tracks to be routed through, (manually).

After the completion of the digital signal processing board work started on 
the Processing Array. This was drawn up using RGRAPH, but rather than 
using the autorouter for this board, having seen the problems encountered 
with the system, 'SMARTWORK' was used instead.
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With SMARTWORK the board is laid out by placing component pads on 
a worksheet, then requesting links between pairs of pads. After each 
request the router then places a track, covering the minimum board area, 
between the two pads. The router is unable to change sides of the board. 
If a side change is needed then the operator needs to place a pad down 
where the change is to take place. Next a request is made for these two 
pads to be joined. A side change is now done and a request for this pad 
and the final pad to be connected is made.

There is however a hidden problem with SMARTWORK. This is that the 
minimum board area covering for a track is not always the best solution. 
This sometimes places the track next to pads which need to be joined at a 
later date. Once tracks are placed right up against a pad it becomes 
difficult to use that pad as it can soon get surrounded by tracks running 
very close to it. To overcome this problem the operator must drop 'Fat 
Cells' on the board and route to these cells taking the track closer to its 
destination a bit at a time. SMARTWORK is more difficult to use in that 
respect, but the operator soon gets used to laying out printed circuit 
boards and picks up the tricks needed to operate the package efficiently. 
One feature with SMARTWORK is that the user can control the 
connections on the board in an individual manner. Other packages for pcb 
production do not allow you to change the design at board level, thus if 
you have a single in-line resistor package counting eight resistors and your 
original schematic contained a signal X ending at resistor 1 and a signal Y 
ending at resistor 4, then if during layout you find that X is in fact closer 
to resistor 4 on the board and Y closer to resistor 1, then on some higher 
levels of router you cannot swap them over to ease the routing as it is 
smart and knows that this now does not match the schematic even though 
the result is the same. Yet again, this knowledge of the schematic can be 
quite useful because in SMARTWORK you could connect signal X to Y 
causing an error in the circuit and SMARTWORK will not complain, 
whereas the higher level routers know that this is an error and will either 
tell the operator this or just disallow the connection altogether with a 
warning.

Work now restarted on the large routing problem. The large transputer 
section of the board was cut out using the rat cutter and then passed to 
the autorouter. Over 7 days of 24 hour autorouting passed when the 
autorouter finally finished. The result was 74% complete but the database 
was too big for the package to compile into one database drawing so it 
crashed without giving the results it had just computed. Looking at the 
files it left, there was over 174K of pad and via information alone. This 
far exceeded the 64K database limit. The tracks were well into the 
megabyte range.

A new Mentor Graphics autorouting package, BOARD STATION, was 
installed on the Apollo system. The Apollo system contained a network of
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7 workstations, 4 black and white and 3 colour workstations. The colour 
nodes are 68020 based units with up to 4 Mbyte of RAM and their own 
hard discs. The autorouter is only able to run on these high capacity 
nodes, so there were only three workstations available for autorouting. The 
work on the boards now switched to the Apollo with the resultant loss of 
time.

The development system was redesigned to be in separate units. The 
transputer stage of this was redesigned so that the link between it and the 
68000 system was via a single in-line connector where on the 68000 card 
a dual ported RAM would sit with a matching connector. The A100 signal 
processing stage was dropped completely from the plans. The transputer 
section was then entered into the Mentor package. A compact solution 
using a six layer board was routed to 100%. The Mentor package was 
considerably faster at routing boards though there were more processes 
needed to create a schematic, produce a component layout and start 
autorouting the tracks. Some of these processes were the total redefinition 
of all the unusual parts to be used as with RGRAPH.

The Mentor package had autoplacement of components as well as 
autorouting. The autoplacement however, was found unsuitable for this 
design and yielded a poor component layout. The placement was modified 
by hand to yield a more suitable arrangement prior to routing.

Due to cost concerns this development card had to be reduced. A new 
design emerged which dropped large amounts of logic and the dual port 
RAM interface. This card became quite large but was a two layer board.

The analogue unit was designed on this system. This board was plotted 
out. It was at this stage that problems with the Mentor software were 
encountered. The plots were produced on a large Hewlet Packard plotter. 
The plots were two times artworks but the tracks and pads were only 
drawn as outlines and not filled in as required. Mentor was contacted and 
they said they were working on the problem. This problem was not 
quickly solved so the analogue board, the most important board of the 
entire system, was plotted out and the two times artwork finished off by 
hand. All tracks and pads were filled in and ground planes created. This 
board was then produced by Tate Circuit Industries in Birmingham.

The main pcb was modified slightly and the layout changed. The board 
was routed and finally ended with a 100% routed solution. Looking 
closely at the tracks around the indirect edge connectors it was noticed 
that the autorouter had ignored the keepout areas around the mounting 
holes for the connectors, even though one of the connector definitions was 
supplied by Mentor themselves. Hand routing on the Mentor package now 
took place to rectify this problem. The hand routing with the Mentor 
package was not as straightforward as expected although it has been
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claimed that the hand routing feature of the BOARD STATION package is 
one of its best features.

With the initial hand routing difficulty over, the board was now complete 
with thin tracks. Time was now needed to enlarge the power lines or 
re-routed the entire board starting with power tracks of 62 mils thick. 
The power lines need to be of this order using 1 oz. copper clad board, 
due to the possible maximum current capacity of about 7 amps. This level 
could be attained with all the fast TTL buffers, the active RAMs and the 
transputer all requiring their maximum current ratings. In practice 
however, the 62 mils would only be required for the initial main stream of 
the power tree. Reduced track widths could be used for further branches 
of the power tree which carry less current as long as the normal 
"track width vs. current rating" rules are obeyed, [37].

Photoplotting pcb artwork yields a high quality mask for pcb production 
and at that time commercial photoplotting was quoted at 60p per square 
inch. For a double-sided pcb three plots are needed to produce the 
board. Two plots are needed for the tracks, one for each side, and one for 
a padmaster for the production of the solder-resist. The padmaster could 
also be used to obtain the drilling information. With the Controller board 
being 18x12 sq. inches and 3 plots needed, the total plot area came to 
648 sq. inches and about 380 pounds. An offer of producing these plots 
as a free demonstration was accepted.

The resultant photoplots were sent to Tate Circuit Industries for the 
circuit board production. The board that came back had no visible breaks 
in the tracking and this route had saved not only money but also time, for 
if the board was plotted on the Hewlet Packard plotter then the two times 
artworks would need filling by hand. A penalty in cost would also be 
incurred when the artwork reached Tate as they would need to 
photo-reduce large drawings to produce the masks for the pcb.

The department has since purchased its own small photoplotter based on a 
flat-bed pen plotter. This machine would still be too small to plot either 
the main pcb or the analogue board as the largest film the plotter can take 
yields a board size of 14x10 inches, and both these boards have 18 inches 
in one dimension by 12 and 10 inches in the other, respectively.

Since the production of the first two layer prototype Controller, the board 
has been rebuilt as a 6 layer pcb. All the routing was done using the 
Mentor Package and the photoplots produced in house. The actual cost of 
a six layer printed circuit board measuring 11 inches by 7 inches and 
containing 2000 holes, was 420 pounds from Crowthorn Circuits.
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B. Format of Results Disc.

Results Header:

Locations Contents

0 Number of result blocks taken.
1 Number of waveforms captured.
2 Number of injections found.
3 Number of result blocks between waveform captures.

4 -5  Primary air setting as REAL64.
5 -7  Secondary air setting as REAL64.

8-71 System offsets as an 8x8 INT array.
72-199 System gains as an 8x8 REAL64 array.

Result Block Format:

Locations Contents

0 Time into full system run.
1 Balance reading and N° of accepted values as INT16s.
2 Packed requests, each request as one BYTE.
3 Number of samples processed by the Processing Array.
4 Partial injection current integral.
5 Packed maximum values found, each as one BYTE.
6 Packed minimum values found, each as one BYTE.

7-10  Signal integrals.
11-14 Time of peaks from start of block.
15-18 Elapsed processor times.

Note:—
5-18 are only valid if 3 is > 0.

Captured Waveform Format:

Locations Contents

0-999 Injection current, 4000 BYTE values in total.
1000-1999 Current from sensor 1, 4000 BYTE values in total.
2000-2999 Current from sensor 2, 4000 BYTE values in total.

Note:—
To obtain the information about the requested waveforms, extract 
from the previous result block.
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C. Contents of Software Volumes

Volume 1. System Simulations.

Proto Occam Simulation. 
Simulation Data Generator.
Occam 2 Simulation.
Data Generator.

Volume 2. External System Driver. 

IBM Transputer EXE.

Volume 3. External System.

Configuration.
Loading Report.
Data Acquisition Unit Driver. 
Network Program.
Controller Program.

Volume 4. Support Software.

IBM Transputer.

Nth Order Data Fitter.
Database Entry Processor.

IBM

Database Entry Display. 
Database Processor.

Apollo

Time Dependent Data Importer. 
Bar Chart Data Importer.
X/Y Data Importer.
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D. Simulation of a Discrete Quantization Unit.

What is presented here is a simulation of the discrete adaptive quantizer 
combining both the original circuitry and using the gain stages used within 
the actual Data Acquisition Unit. The simulation shows that the circuit 
should be able to operate with a cycle time of 260 ns. As with the 
diagrams of the previous discrete quantization elements, sections 6.1.1 and
6.1.2, the diagram has been reduced to only show the logic elements and 
not the A/D and analogue elements.

Figure 64 shows the circuit used for the simulation.

The signal selector has been expanded to cater for up to 16 signals. The 
RAM has been wired to enable 16 levels of gain, but the gain calculation 
stage is still wired to compute using 8 levels. A iother section called the 
'Gain Preset Unit' has been added to preset the gains to unity after a 
reset.
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Figure 64 Circuit of the Simulated Discrete Adaptive Quantizer.
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Simulation of a Discrete Quantization Unit.

The following list contains the information needed to run the simulator:

#  Set-up QUICKSIM for simulation of adaptive quantizer.

RADix Hex
ASSIgn hL_$list_radix Hex 
ASSIgn hi_$monitor_radix Hex

#  Define buses.

DEFine Bus C C4 C3 C2 C l CO -Combine 
DEFine Bus HIGPI HIGH7 HIGH6 HIGH5 HIGFI4 HIGH3 

FIIGH2 HIGFI1 HIGHO -Combine 
DEFine Bus LOW LOW7 LOW6 LOWS LOW4 LOW3 LOW2 

LOW1 LOWO -Combine 
DEFine Bus AD AD7 AD6 AD5 AD4 AD3 AD2 ADI ADO 

-Combine
DEFine Bus MUX MUXx MUX2 MUX1 MUXO -Combine 
DEFine Bus GAIN GAINx GAIN2 GAIN1 GAINO -Combine

#  Set-up desired output format.

#  PHASEs.

TRAce PHASE2 
MONitor Binary PHASE2 
TRAce PHASE3 
MONitor Binary PHASE3 
TRAce PHASE4 
MONitor Binary PHASE4 
TRAce NPIIASE5 
MONitor Binary NPHASE5 
TRAce PHASE6 
MONitor Binary PHASE6 
TRAce NPIIASE8 
MONitor Binary NPFIASE8 
TRAce NRESET

#  RESET.

LISt -Change Binary NRESET 
MONitor Binary NRESET 
TRAce NPRESET 
LISt -Change Binary NPRESET 
MONitor Binary NPRESET
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#  Number of signals requested.

LISt Hex C 
MONitor Hex C

#  Multiplexer output.

TRAce MUXx 
TRAce MUX2 
TRAce MUX1 
TRAce MUXO 
LISt -Change Hex MUX 
MONitor Hex MUX

#  Gain used.

TRAce GAINx 
TRAce GAIN2 
TRAce GAIN1 
TRAce GAINO 
LISt -Change Hex GAIN 
MONitor Hex GAIN

#  A/D converter.

LISt Hex AD 
MONitor Hex AD

#  High value adaptation level.

LISt Hex HIGH 
MONitor Hex HIGH

#  Low value adaptation level.

LISt Hex LOW 
MONitor Hex LOW

SCAle USer Time 1 
SCAle TRace Time 10 
INItialize XR 
VIEw Sheet SHEET1 / 
PERiod List 0 
PERiod Trace 0
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#  Set-up initial FORCEs.

#  Set HIGHn for 230.

FORCe HIGH E6

#  Set LOWn for 26.

FORCe LOW 1A

#  Set Cn for 11 (10 signals.)

FORCe C B

#  Pulse RESET

FORCe NRESET OS 0 „
FORCe NRESET IS 300 „

#  Set PHASEs to inactive.

FORCe PHASE2 OS 0 „
FORCe PIIASE3 OS 0 „
FORCe PHASE4 OS 0 „
FORCe NPHASE5 IS 0 „
FORCe PHASE6 OS 0 „
FORCe NPHASE8 IS 0 „

#  Set ADn for 128 (0 volt input signal).

FORCe AD 80

#  Set-up for main clocks.

#  A/D process.

CLOck Period 260
FORCe PFIASE2 IS 1000 -Repeat
FORCe PIIASE2 OS 1150 -Repeat
CLOck Period 260
FORCe PHASE6 IS 1060 -Repeat
FORCe PHASE6 OS 1210 -Repeat
CLOck Period 260
FORCe PHASE3 IS 1220 -Repeat
FORCe PHASE3 OS 1260 -Repeat
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#  RAM write sequence.

CLOck Period 260
FORCe NPHASE8 OS 1020 -Repeat
FORCe NPHASE8 IS 1060 -Repeat
CLOck Period 260
FORCe PHASE4 IS 1080 -Repeat
FORCe PHASE4 OS 1160 -Repeat
CLOck Period 260
FORCe NPHASE5 OS 1100 -Repeat
FORCe NPI4ASE5 IS 1140 -Repeat

What follows is the simulation traces for the first 10,000 ns of operation 
of the circuit whilst being fed with inputs approximately at zero volts.

• . r m m i J T i r u T J i n n j T J T J T R j i ^
...... ..............- a  n u i j n i i i n i i  D + n s  i i ^ n i  n n  i t D  p c n ^ - i  n n n + n  n n n

PHRSE2
PHRSE3

:. . . . . . . . . . . . Ft i u u u k J i . i i  n  n « f u u i „ R . f l . . n . n  n  r > n . J i  n M i n  n r u m  n... n  r  n n  n .  r PHRSE1
--------------------- 1  i  i n n n r r T ~ r T r T T T n n r T T n n n r T s ^

_ u n j H j ^ L n j i r L r i r i r i a i i i j n u j ^ r L j - T j x n  n p L a r h a f i J T r L n  r u ' i n r i i i i x n r

NPHRSE5
PHRSE6

H  I s u +s r n m r T T T F T i n m n r n n n n r I  t  u T T 1 F F T H 0 NPHRSE8
■ -J  ♦ * 4 4 4 4 4 4 NRESET

4 4 4 1 4 4 4 4 NPRESET
♦ 4 _ l  ♦ 1 ........  + ............t . . .  , r ..............\ 4 ............. [ ♦  ■ I....... MUXx
♦  r  + “ 1  ♦ + r * L 4 _ > ................1 + MUX2
♦ i— i *  r | + [ i  n— i ____ L n  r “ 1* f \*  1 MUX 1

„  .. ♦ r u ~ L i n  r i  n . „ r  l l t  i " 1  4 |  | i l 4  i i 1 [4 1 1 ] 1 4 1 i r MUX0
L + + 4 4 4 4 4 4 GRINx
 ̂ 4 4 4 4 4 4 4 4 GRINS

♦  4 4 4 4 +1 4 4 GRIN1
4 4 4 n 4 ........ 4 4 L _ GRINQ

1120.G 2240.0 3360.G UU8O.0 56G0.G 6720.0 7840.0 8960.0

Figure 65 The First 10,000 ns of Operation.

The following list is the changing outputs of the circuit for the duration of 
the first 30,000 ns of circuit simulation. The outputs show how the gain is 
increased from unity, (F), to 128, (8). The most significant bit of the gain 
is ignored as the circuit is intended to be used as the other discrete 
versions, (only providing gains from 1 to 128 in binary weighted steps).

0.0 0 Xr 0B Xr X 80 E6 1A
7.0 0 0 0B Xr X 80 E6 1A
9.0 0 0 0B 0 X 80 E6 1A

13.5 0 0 0B 0 F 80 E6 1A
300.0 1 0 0B 0 F 80 E6 1A

1266.5 1 0 0B 1 F 80 E6 1A
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1525.0 1 0 OB 0 F 80 E6 1A
1526.5 1 0 OB 2 F 80 E6 1A
1786.5 1 0 0B 3 F 80 E6 1A
2045.0 1 0 OB 0 F 80 E6 1A
2046.5 1 0 OB 4 F 80 E6 1A
2306.5 1 0 OB 5 F 80 E6 1A
2565.0 1 0 OB 4 F 80 E6 1A
2566.5 1 0 OB 6 F 80 E6 1A
2826.5 1 0 OB 7 F 80 E6 1A
3085.0 1 0 OB 0 F 80 E6 1A
3086.5 1 0 OB 8 F 80 E6 1A
3346.5 1 0 OB 9 F 80 E6 1A
3605.0 1 0 OB 8 F 80 E6 1A
3606.5 1 0 OB A F 80 E6 1A
3825.3 1 1 OB A F 80 E6 1A
3865.0 1 1 OB 0 F 80 E6 1A
3925.0 1 1 OB 0 E 80 E6 1A
4126.5 1 1 OB 1 E 80 E6 1A
4385.0 1 1 OB 0 E 80 E6 1A
4386.5 1 1 OB 2 E 80 E6 1A
4646.5 1 1 OB 3 E 80 E6 1A
4905.0 1 1 OB 0 E 80 E6 1A
4906.5 1 1 OB 4 E 80 E6 1A
5166.5 1 1 OB 5 E 80 E6 1A
5425.0 1 1 OB 4 E 80 E6 1A
5426.5 1 1 OB 6 E 80 E6 1A
5686.5 1 1 OB 7 E 80 E6 1A
5945.0 1 1 OB 0 E 80 E6 1A
5946.5 1 1 OB 8 E 80 E6 1A
6206.5 1 1 OB 9 E 80 E6 1A
6465.0 1 1 OB 8 E 80 E6 1A
6466.5 1 1 OB A E 80 E6 1A
6725.0 1 1 OB 0 E 80 E6 1A
6785.0 1 1 OB 0 C 80 E6 1A
6786.5 1 1 OB 0 D 80 E6 1A
6986.5 1 1 OB 1 D 80 E6 1A
7245.0 1 1 OB 0 D 80 E6 1A
7246.5 1 1 OB 2 D 80 E6 1A
7506.5 1 1 OB 3 D 80 E6 1A
7765.0 1 1 OB 0 D 80 E6 1A
7766.5 1 1 OB 4 D 80 E6 1A
8026.5 1 1 OB 5 D 80 E6 1A
8285.0 1 1 OB 4 D 80 E6 1A
8286.5 1 1 OB 6 D 80 E6 1A
8546.5 1 1 OB 7 D. 80 E6 1A
8805.0 1 1 OB 0 D 80 E6 1A
8806.5 1 1 OB 8 D 80 E6 1A
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9066.5 1 1 OB 9 D 80 E6 1A
9325.0 1 1 OB 8 D 80 E6 1A
9326.5 1 1 0B A D 80 E6 1A
9585.0 1 1 OB 0 D 80 E6 1A
9645.0 1 1 OB 0 C 80 E6 1A
9846.5 1 1 OB 1 C 80 E6 1A

10105.0 1 1 OB 0 C 80 E6 1A
10106.5 1 1 OB 2 C 80 E6 1A
10366.5 1 1 OB 3 C 80 E6 1A
10625.0 1 1 OB 0 C 80 E6 1A
10626.5 1 1 OB 4 C 80 E6 1A
10886.5 1 1 OB 5 C 80 E6 1A
11145.0 1 1 OB 4 C 80 E6 1A
11146.5 1 1 OB 6 C 80 E6 1A
11406.5 1 1 OB 7 C 80 E6 1A
11665.0 1 1 OB 0 C 80 E6 1A
11666.5 1 1 OB 8 C 80 E6 1A
11926.5 1 1 OB 9 C 80 E6 1A
12185.0 1 1 OB 8 C 80 E6 1A
12186.5 1 1 OB A C 80 E6 1A
12445.0 1 1 OB 0 C 80 E6 1A
12505.0 1 1 OB 0 8 80 E6 1A
12506.5 1 1 OB 0 B 80 E6 1A
12706.5 1 1 OB 1 B 80 E6 1A
12965.0 1 1 OB 0 B 80 E6 1A
12966.5 1 1 OB 2 B 80 E6 1A
13226.5 1 1 OB 3 B 80 E6 1A
13485.0 1 1 OB 0 B 80 E6 1A
13486.5 1 1 OB 4 B 80 E6 1A
13746.5 1 1 OB 5 B 80 E6 1A
14005.0 1 1 OB 4 B 80 E6 1A
14006.5 1 1 OB 6 B 80 E6 1A
14266.5 1 1 OB 7 B 80 E6 1A
14525.0 1 1 OB 0 B 80 E6 1A
14526.5 1 1 OB 8 B 80 E6 1A
14786.5 1 1 OB 9 B 80 E6 1A
15045.0 1 1 OB 8 B 80 E6 1A
15046.5 1 1 OB A B 80 E6 1A
15305.0 1 1 OB 0 B 80 E6 1A
15365.0 1 1 OB 0 A 80 E6 1A
15566.5 1 1 OB 1 A 80 E6 1A
15825.0 1 1 OB 0 A 80 E6 1A
15826.5 1 1 OB 2 A 80 E6 1A
16086.5 1 1 OB 3 A 80 E6 1A
16345.0 1 1 OB 0 A 80 E6 1A
16346.5 1 1 OB 4 A 80 E6 1A
16606.5 1 1 OB 5 A 80 E6 1A
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16865.0 1 1 OB 4 A 80 E6 1A
16866.5 1 1 OB 6 A 80 E6 1A
17126.5 1 1 0B 7 A 80 E6 1A
17385.0 1 1 0B 0 A 80 E6 1A
17386.5 1 1 OB 8 A 80 E6 1A
17646.5 1 1 OB 9 A 80 E6 1A
17905.0 1 1 OB 8 A 80 E6 1A
17906.5 1 1 OB A A 80 E6 1A
18165.0 1 1 OB 0 A 80 E6 1A
18225.0 1 1 OB 0 8 80 E6 1A
18226.5 1 1 OB 0 9 80 E6 1A
18426.5 1 1 OB 1 9 80 E6 1A
18685.0 1 1 OB 0 9 80 E6 1A
18686.5 1 1 OB 2 9 80 E6 1A
18946.5 1 1 OB 3 9 80 E6 1A
19205.0 1 1 OB 0 9 80 E6 1A
19206.5 1 1 OB 4 9 80 E6 1A
19466.5 1 1 OB 5 9 80 E6 1A
19725.0 1 1 OB 4 9 80 E6 1A
19726.5 1 1 OB 6 9 80 E6 1A
19986.5 1 1 OB 7 9 80 E6 1A
20245.0 1 1 OB 0 9 80 E6 1A
20246.5 1 1 OB 8 9 80 E6 1A
20506.5 1 1 OB 9 9 80 E6 1A
20765.0 1 1 OB 8 9 80 E6 1A
20766.5 1 1 OB A 9 80 E6 1A
21025.0 1 1 OB 0 9 80 E6 1A
21085.0 1 1 OB 0 8 80 E6 1A
21286.5 1 1 OB 1 8 80 E6 1A
21545.0 1 1 OB 0 8 80 E6 1A
21546.5 1 1 OB 2 8 80 E6 1A
21806.5 1 1 OB 3 8 80 E6 1A
22065.0 1 1 OB 0 8 80 E6 1A
22066.5 1 1 OB 4 8 80 E6 1A
22326.5 1 1 OB 5 8 80 E6 1A
22585.0 1 1 OB 4 8 80 E6 1A
22586.5 1 1 OB 6 8 80 E6 1A
22846.5 1 1 OB 7 8 80 E6 1A
23105.0 1 1 OB 0 8 80 E6 1A
23106.5 1 1 OB 8 8 80 E6 1A
23366.5 1 1 OB 9 8 80 E6 1A
23625.0 1 1 OB 8 8 80 E6 1A
23626.5 1 1 OB A 8 80 E6 1A
23885.0 1 1 OB 0 8 80 E6 1A
24146.5 1 1 OB 1 8 80 E6 1A
24405.0 1 1 OB 0 8 80 E6 1A
24406.5 1 1 OB 2 8 80 E6 1A
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24666.5 1 1 0B 3 8 80 E6 1A
24925.0 1 1 0B 0 8 80 E6 1A
24926.5 1 1 0B 4 8 80 E6 1A
25186.5 1 1 0B 5 8 80 E6 1A
25445.0 1 1 0B 4 8 80 E6 1A
25446.5 1 1 0B 6 8 80 E6 1A
25706.5 1 1 0B 7 8 80 E6 1A
25965.0 1 1 0B 0 8 80 E6 1A
25966.5 1 1 0B 8 8 80 E6 1A
26226.5 1 1 0B 9 8 80 E6 1A
26485.0 1 1 0B 8 8 80 E6 1A
26486.5 1 1 0B A 8 80 E6 1A
26745.0 1 1 0B 0 8 80 E6 1A
27006.5 1 1 0B 1 8 80 E6 1A
27265.0 1 1 0B 0 8 80 E6 1A
27266.5 1 1 0B 2 8 80 E6 1A
27526.5 1 1 0B 3 8 80 E6 1A
27785.0 1 1 0B 0 8 80 E6 1A
27786.5 1 1 0B 4 8 80 E6 1A
28046.5 1 1 0B 5 8 80 E6 1A
28305.0 1 1 0B 4 8 80 E6 1A
28306.5 1 1 0B 6 8 80 E6 1A
2 8 5 6 6 . 5 1 1 0B 7 8 80 E6 1A
2 8 8 2 5 . 0 1 1 0B 0 8 80 E6 1A
2 8 8 2 6 . 5 1 1 0B 8 8 80 E6 1A
29086.5 1 1 0B 9 8 80 E6 1A
29345.0 1 1 0B 8 8 80 E6 1A
29346.5 1 1 0B A 8 80 E6 1A
29605.0 1 1 0B 0 8 80 E6 1A
29866.5 1 1 0B 1 8 80 E6 1A

TIME '"NRESET '"MUX '"HIGH
~C '"GAIN '"LOW

""NPRESET ""AD

Looking at the above output, what could be described as errors in the 
output can be seen. These are the non-continuous counts for the GAIN 
and the MUX outputs. It should be noted, however, that the invalid count 
lasts only 1.5 ns. This 'error' is in fact due to the now symmetrical 
propagation delay times of the latch for transitions from 0 to 1. What 
happens in this case is that the outputs, when changing from 7 to 8, pass 
through a zero condition. The propagation from 1 to 0 is less than the 
propagation of the 0 to 1, hence 7 goes momentarily to 0 whilst changing 
to 8. An example of this can clearly be seen highlighted at TIME =
28566.5 near the very end of the list.
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E. Debugging Examples.

In the following section there will be several examples of software 
debugging. This starts with the simple debugging using the Atari as a 
Transputer Development Workstation, mentioned in section 5.3. Next 
follows a debug example using the IBM based Transputer Development 
System. This method allows detailed analysis of all the processors in the 
system, providing the operator has experience debugging transputers and 
detailed knowledge of what the tasks should have been doing.

Below is a typical example of a peek session on a reset transputer using 
the Atari based TDW written specially for the task.

The actual program, written in Occam 1, was:

CHAN Output AT 3:
DEF Text = "This is some text from the transputer.":
SEQ

SEQ i -  1 FOR Text[0]
Output ! Text[i]

SEQ i = 0 FOR 20 
Output ! i

When DEF Text = "This is some text from the transputer.": is compiled, a 
constant of 26 , (38d e c i m a l )> representing the size of the string, is placed in 
Text[0]. This is then followed by the ASCII representation for each 
character from Textfl] to Text[Text[0]], (Text[38]).

The next page shows the type of data returned from the 
transputer with the transputer instructions by the side of it. The 

following that is an example of disassembled code.
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Example of TDW Peek:

ADDRESS FOUND CODE ASSEMBLY

80000048 53 00 80 C1 53 00 ?
8000004C 10 26 54 68 80 ?
80000050 69 73 20 69 Cl EQC
80000054 73 20 73 6F 10 ?
80000058 6D 65 20 74 26 LEN
8000005C 65 78 74 20 54.21 [TEXT]
80000060 66 72 6F 6D 60 BD AJW -3
80000064 20 74 68 65 41 LDC 1
80000068 20 74 72 61 D1 STL 1
8000006C 6E 73 70 75 22 46 LDC 26
80000070 74 65 72 21 D2 STL 2
80000074 60 BD 41 D1 24 F2 MINT
80000078 22 46 D2 24 53 LDNLP 3
8000007C F2 53 71 63 71 LDL 1
80000080 4A 21 FB F2 63 4A LDC -54DECIMAL
80000084 F1 FF 11 21 21 FB LDPI
80000088 40 22 F1 40 F2 BSUB
8000008C D1 21 44 D2 FI LB
80000090 24 F2 53 71 FF OUTWORD
80000094 FF 11 49 22 11 LDLP 1
80000098 F1 B3 22 F0 21 40 LDC 16DECIMAL

22 FI LEND
40 LDC 0
D1 STL 1
21 44 LDC 20DECIMAL
D2 STL 2
24 F2 MINT
53 LDNLP 3
71 LDL 1
FF OUTWORD
11 LDLP 1
49 LDC 9
22 FI LEND
B3 AJW 3
22 F0 RET

Note:-

1. The data has been tabulated to clarify the example.

2. Bold characters in the FOUND column represent single commands.
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SEQ i =  1 FOR Text[0]

LDC 1 Load a constant of 1.
STL 1 Store it in the first local, (i).
LDC 26 Load a constant of 38DECIMAL •
STL 2 Store loop count in the second local.

Output ! Text[i]
Stack the minimum integer.
Form the address of the required channel. 
Get the value of i.
Load offset to start of text.
Create a pointer for the next instruction. 
Create a byte subscript.
Load byte.
Output it.

Perform loop.

Point to i.
Stack 16 for loop back pointer.
Loop back depending upon i and increase i.

SEQ i =  0 FOR 20

Load a constant of 0.
Store it in the first local, (i).
Load a constant of 20decimAL •
Store loop count in the second local.

Output ! i

Stack the minimum integer.
Form the address of the required channel. 
Get the value of i.
Output it.

Perform loop.

LDLP 1 Point to i.
LDC 9 Stack 9 for loop back offset.
LEND Loop back depending upon i and increase i.

MINT 
LDNLP 3 
LDL 1 
OUTWORD

LDC 0 
STL 1
LDC 20DECIMAL 
STL 2

LDLP 1 
LDC 16 
LEND

MINT 
LDNLP 3 
LDL 1
LDC -54DECIMAL
LDPI
BSUB
LB
OUTWORD
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F. EPLD Data*

The EPLDs were created using an IBM PC running Altera's erasable 
programmable logic device software, Aplus. This section contains the input 
data files and the pin diagrams of the EPLDs used. The diagrams were 
extracted from the Altera report files produced by the software.

Each section containing an EPLD for a new task is started on a new page 
for easy access to the data. The presentation format is the input data file, 
.ADF, followed by a cut-down version of the report file, .RPT. The report 
file normally contains data relating to the utilization of macrocells for the 
input and output pads and buried registers within the device, (this had 
been removed to produce a more condensed form).
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F.A Atari Control EPLDs.

The Atari control EPLD has been modified when changing fabrication 
implementation. The first version presented here, was used in the original 
printed circuit board which sat underneath the Atari's keyboard inside the 
actual casing of the computer. When changing from the pcb version to the 
wire-wrapped version the EPLD was modified again to contain some extra 
features. This EPLD is identical to that used in the EA2 board except 
that one of the buffer control output pins needed inversion within the 
EPLD to provide easier buffer layout on the pcb. This modified version is 
contained within the descriptions within the main body to the thesis, 
(section 5.1, page 48).

F.A.A Original Atari Control EPLD. 

Input file (.ADF):

E.Mills.
Research
November 12, 1986 

2
EP1210
Modification due to new board.
NETMAP Version 3.0, Baseline 15, 8/3/1985 
PART: EP1210
INPUTS: NBR1/38, RW/35, NBGACK/36, CLK, NBR2/37, ERRMASK,

NBERR1, NRESET/19, NB2/5, NA2/2, NA1/3, NAO/4,
NBl/6, NBO/7, FC2/23, FC1/22, FCO/21, NAS/24,
BM1EN, BM2EN

OUTPUTS: NBR, DIR2, BM1, BM2, NBMl, NBM2, NBERR, NILP0/10,
NIPL1/9, NILP2/8, NENA, NENB, STATUS, BG1D, BG2D,
BREN

NETWORK:
NBR = CONF (NBR,VCC)
DIR2 = CONF (DIR2,VCC)
BMl = CONF (BM1,VCC)
BM2 = CONF (BM2,VCC)
NBMl = CONF (NBMl,VCC)
NBM2 = CONF (NBM2,VCC)
NBERR = CONF (NBERR,VCC)
NILPO = CONF (NIPLO,VCC)
NIPLl = CONF (NIPL1,VCC)
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NILP2 = CONF (NIPL2,VCC)
NENA = CONF (NENA,VCC)
NENB = CONF (NENB,VCC)
STATUS = CONF (AGTB,VCC)
BG1D = CONF (BG1D,VCC)
BG2D = CONF (BG2D,VCC)
BREN = CONF (BREN,VCC)
NBR = OR (NBREN,BGACK)
DIR2 = XOR (RW,BM2)
BM1 = AND (BM1EN,BGACK)
BM2 = AND (BM2EN,BGACK)
NBMl = NOT (BM1)
NBM2 = NOT (BM2)
NBERR = OR (NBERRl,ERRMASK)
NIPLO = OR (SAO,SBO)
NIPLl = OR (SAl,SBl)
NIPL2 = OR (SA2,SB2)
NENA = AND (INTACK,ANGTB,NBM2) 
NENB = AND (INTACK,AGTB,NBM2) 
AGTB = OR (A2GB2,L2,L3)
BG1D = AND (BRlEN,NOTCPU)
BG2D = AND (BR2EN,NOTCPU)
BREN = NOT (NBREN)
NBREN = AND (NBRl,NBR2)
BGACK = NOT (NBGACK)
RW = INP (RW)
BMlEN « INP (BM1EN)
BM2EN = INP (BM2EN)
NBERRl = INP (NBERRl)
ERRMASK = INP (ERRMASK)
SAO = AND (NAO,AGTB)
SBO = AND (NBO,ANGTB)
SAl = AND (NA1,AGTB)
SBl = AND (NB1,ANGTB)
SA2 = AND (NA2,AGTB)
SB2 = AND (NB2,ANGTB)
INTACK = AND (FC2,FC1,FC0,AS) 
ANGTB = NOT (AGTB)
A2GB2 - AND (A2,NB2)
L2 = AND (A2EB2,A1GB1)
L3 = AND (A2EB2,A1EB1,AOGBO) 
BRlEN = OR (BRLl,BROK)
NOTCPU = NOR (BM1,BM2)
BR2EN = OR (BROK,BRL2)
NBRl = INP (NBR1)
NBR2 = INP (NBR2)
NBGACK = INP (NBGACK)
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EPLD Data.

NAO - INP (NAO)
NBO = INP (NBO)
NAl = INP (NA1)
NB1 - INP (NB1)
NA2 = INP (NA2)
NB2 = INP (NB2)
FC2 = INP (FC2)
FC1 - INP (FC1)
FCO = INP (FCO)
AS = NOT (NAS)
A2 - NOT (NA2)
A2EB2 = NOT (NA2EB2)
A1GB1 = AND (Al,NBl)
AlEBl = NOT (NA1EB1)
AOGBO = AND (AO,NBO)
BRL1 = NORF (Ml,CLK,RESET,GND) 
BROK = NOR (BRL1,BRL2)
BRL2 « NORF (M2,CLK,RESET,GND) 
NAS - INP (NAS)
NA2EB2 = XOR (NA2,NB2)
Al = NOT (NAl)
NA1EB1 - XOR (NAl,NA2)
AO = NOT (NAO)
Ml = OR (SBRl,SFBl)
CLK = INP (CLK)
RESET = NOT (NRESET)
M2 = OR (SBR2,SFB2)
SBRl = AND (NBRl,NBOTH)
SFBl = AND (BR2EN,BOTH)
NRESET = INP (NRESET)
SBR2 = AND (NBR2,NBOTH)
SFB2 = AND (NBR2EN,BOTH)
NBOTH - NOT (BOTH)
BOTH = NOR (NBRl,NBR2)
NBR2EN = NOT (BR2EN)
END$
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EPLD Data.

Part of report file, (.RPT)

ALTERA Design Processor Utilization Report

***** Design implemented successfully

E. Mills.
Research
November 12, 1986 

2
EP1210
Modification due to new board.
NETMAP Version 3.0, Baseline 15, 8/3/1985

EP1210

CLK - 1 40 - Vcc
NA2 - 2 39 - Vcc
NAl - 3 38 - NBRl
NAO - 4 37 - NBR2
NB2 - 5 36 - NBGACK
NB1 - 6 35 - RW
NBO - 7 34 - ERRMASK

NILP2 - 8 33 - NBERRl
NIPL1 - 9 32 - BG2D
NILPO - 10 31 - NENB
NBMl - 11 30 - BM2
NBM2 - 12 29 - STATUS
DIR2 - 13 28 - NBERR
NBR - 14 27 - BM1

BREN - 15 26 - NENA
GND - 16 25 - BG1D

BM2EN - 17 24 - NAS
BM1EN - 18 23 - FC2

NRESET - 19 22 - FC1
GND - 20 21 - FCO

**UNUSED RESOURCES**

Name Pin Resource MCell PTerms

16 - 20 12
- NA ~ 15 8
- NA - 16 8
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EPLD Data.

**PART UTILIZATION**

97% Pins
89% MacroCells
28% Pterms

F.A.B Atari Control EPLD. EA2 version. 

Input file (.ADF):

E.Mills.
Research 
July 8, 1987

3
EP1210
Modification due to new EA2 board.
NETMAP Version 3.0, Baseline 15, 8/3/1985 
PART: EP1210
INPUTS: NBRl/38, RW/35, NBGACK/36, 8MHz/l, NBR2/37,

ERRMASK/34, NBERRl/33, NRESET/19, NB2/5, NA2/2, 
NAl/3, NAO/4, NBl/6, NBO/7, FC2/23, FC1/22, FCO/21, 
NAS/24, BMlEN/18, BM2EN/17,NMON 

OUTPUTS: NBR/14, DIR2/26, NBM2/27, BM1/30, NBERR/29,
NILP0/10, NIPLl/9, NILP2/8, NENA/11, NENB/12, 
STATUS/13, BG1D/15, BG2D/25, DIR1, FIX2

NETWORK:
NBR = CONF (NBR,VCC)
DIR2 = CONF (DIR2,VCC)
NBM2 = CONF (NBM2,VCC)
BM1 = CONF (BM1,VCC)
NBERR = CONF (NBERR,VCC)
NILPO = CONF (NIPLO,VCC)
NIPL1 = CONF (NIPL1,VCC)
NILP2 = CONF (NIPL2,VCC)
NENA = CONF (NENA,VCC)
NENB = CONF (NENB,VCC)
STATUS,AGTB = COIF (STATUS,VCC)
BG1D = CONF (BG1D,VCC)
BG2D = CONF (BG2D,VCC)
DIR1 = CONF (DIR1,VCC)
FIX2 = CONF (FIX2,VCC)
NBR = OR (NBREN,BGACK)
DIR2 = AND (DIR2E,NMON)
BM2 = AND (BM2EN,BGACK)
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EPLD Data.

NBERR - OR (NBERRl,ERRMASK) 
NIPLO = OR (SAO,SBO)
NIPL1 = OR (SAl,SBl)
NIPL2 = OR (SA2,SB2)
NENA = AND (INTACK,ANGTB,NBM2) 
NENB = AND (INTACK,AGTB,NBM2) 
STATUS = OR (A2GB2,L2,L3)
BG1D = AND (BRlEN,NOTCPU)
BG2D = AND (BR2EN,NOTCPU)
DIRl = NOT (NDIRl)
PIX2 = AND (BM2,NMON)
NBREN = AND (NBRl,NBR2)
BGACK = NOT (NBGACK)
DIR2E = XOR (RW,BM2)
NMON = INP (NMON)
BM2EN = INP (BM2EN)
BMl = AND (BM1EN,BGACK)
NBERRl = INP (NBERRl)
ERRMASK = INP (ERRMASK)
SAO = AND (NAO,AGTB)
SBO = AND (NBO,ANGTB)
SAl = AND (NAl,AGTB)
SBl = AND (NB1,ANGTB)
SA2 - AND (NA2,AGTB)
SB2 = AND (NB2,ANGTB)
INTACK - AND (FC2,FC1,FC0,AS) 
ANGTB = NOT (AGTB)
NBM2 = NOT (BM2)
A2GB2 = AND (A2,NB2)
L2 = AND (A2EB2,A1GB1)
L3 = AND (A2EB2,AlEBl,AOGBO) 
BRlEN = NOR (BRL1,BROK)
NOTCPU = NOR (BMl,BM2)
BR2EN = NOR (BROK,BRL2)
NDIRl = XOR (RW,BMl)
NBRl = INP (NBRl)
NBR2 = INP (NBR2)
NBGACK = INP (NBGACK)
RW = INP (RW)
BM1EN = INP (BM1EN)
NAO = INP (NAO)
NBO = INP (NBO)
NAl = INP (NAl)
NBl = INP (NB1)
NA2 » INP (NA2)
NB2 = INP (NB2)
FC2 = INP (FC2)
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EPLD Data.

FCl = INP (FC1)
FCO = INP (FCO)
AS = NOT (NAS)
A2 = NOT (NA2)
A2EB2 = NOT (NA2EB2)
A1GB1 = AND (Al,NBl)
A1EB1 = NOT (NA1EB1)
AOGBO = AND (AO,NBO)
BRLl = NORF (Ml,CLK,RESET,GND) 
BROK - NOR (BRLl,BRL2)
BRL2 = NORF (M2,CLK,RESET,GND) 
NAS - INP (NAS)
NA2EB2 = XOR (NA2,NB2)
A1 = NOT (NAl)
NA1EB1 = XOR (NA1,NB1)
AO = NOT (NAO)
Ml « OR (SBRl,SFBl)
CLK = INP (8MHz)
RESET = NOT (NRESET)
M2 = OR (SBR2,SFB2)
SBRl = AND (NBRl,NBOTH)
SFBl = AND (BR2EN,BOTH)
NRESET = INP (NRESET)
SBR2 = AND (NBR2,NBOTH)
SFB2 = AND (NBR2EN,BOTH)
NBOTH = NOT (BOTH)
BOTH = NOR (NBRl,NBR2)
NBR2EN = NOT (BR2EN)
END$
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EPLD Data.

Part of report file, (.RPT)

ALTERA Design Processor Utilization Report

***** Design implemented successfully

E. Mills.
Research 
July 8, 1987

3
EP1210
Modification due to new EA2 board.
NETMAP Version 3.0, Baseline 15, 8/3/1985

EP1210

8MHz - 1 40 - Vcc
NA2 - 2 39 - Vcc
NAl - 3 38 - NBRl
NAO - 4 37 - NBR2
NB2 - 5 36 - NBGACK
NBl - 6 35 - RW
NBO - 7 34 - ERRMASK

NILP2 - 8 33 - NBERRl
NIPLl - 9 32 - FIX2
NILPO - 10 31 - RESERVED
NENA - 11 30 - BMl
NENB - 12 29 - NBERR

STATUS - 13 28 - DIR1
NBR - 14 27 - NBM2
BG1D - 15 26 - DIR2
NMON - 16 25 - BG2D
BM2EN _ 17 24 - NAS
BM1EN - 18 23 - FC2

NRESET - 19 22 - FC1
GND - 20 21 - FCO

**UNUSED RESOURCES**

Name Pin Resource MCell PTerms

31 - 2 10
- NA - 15 8
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EPLD Data.

NA - 16 8

**PART UTILIZATION**

97% Pins
89% MacroCells
20% Pterms
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EPLD Data.

F.B G96 68010 to Transputer Interface EPLD.

The G96 68010 to Transputer Interface EPLD' was used to create the 
decoding for the Gespac GESMPU14 68010 based G96 development card. 
The interface card that this was on, was designed to interface the 68010 
card to a dual-port RAM area, which in turn interfaced to a transputer 
card, (mainly the Controller). Although the design of this unit was 
completed and the circuit entered into a pcb board routing package, the 
board was never produced. The pcb package was RGRAPH and was 
decommissioned after failing to produce useful results.

The design included this dual-port RAM interface along with 4 Inmos 
link Adaptors, an IEEE-488 instrument interface and 64K of static RAM. 
The EPLD provided the necessary decode logic for the address bus of the 
68010 along with interrupt request logic for the Link Adaptors and the 
dual-port RAM.

Input file (.ADF):

E.Mills.
Research.
October 9, 1987

2
EP1210
68000 address decoder.
NETMAP Version 3.0, Baseline 15, 8/3/1985 
PART: EP1210
INPUTS: A17, A18, A19, A20, A21, A22, NAS, NBUSY, NIACK,

NLDS, A0, Al, A2, A8, A7, A9, NVPA, 10MHZ 
OUTPUTS: NSRAM, NDPRAM, NIEEE, NVEN, NBUFEN, NLINK0,

NLINKl, NLINK2, NLINK3, 5MHZ, DTACK
NETWORK:
NSRAM = CONF (NSRAM,VCC)
NDPRAM = CONF (NDPRAM,VCC)
NIEEE = CONF (NIEEE,VCC)
NVEN » CONF (NVEN,VCC)
NBUFEN = CONF (NBUFEN,VCC)
NLINK0 = CONF (NLINK0,VCC)
NLINKl = CONF (NLINKl,VCC)
NLINK2 = CONF (NLINK2,VCC)
NLINK3 = CONF (NLINK3,VCC)
5MHZ,5MHZ = RORF (N5MHZ,10MHZ,GND,GND,VCC)
DTACK = CONF (DTACK,VCC)
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EPLD Data.

NSRAM = NAND (RAM,A18,NA17)
NDPRAM = NAND (RAM,A18,A17)
NIEEE = NAND (PERIF,A7,NA8)
NVEN = NAND (IACK,NA2,A1,A0)
NVDTACK = NAND (LDS,IACK,NA2,Al,AO)
NLINKD = NAND (PERIF,A7,A8)
NBUFEN « AND (NRESTBE,NRAMBE)
NDPRMD = NAND (RAM,A18,A17,NBUSY)
NLINKO = NAND (PERIF,A7,A8,NAl,NAO)
NLINKl = NAND (PERIF,A7,A8,NAl,AO)
NLINK2 = NAND (PERIF,A7,A8,A1,NAO)
NLINK3 - NAND (PERIF,A7,A8,A1,AO)
N5MHZ = NOT (5MHZ)
10MHZ = INP (10MHZ)
RAM = NOR (NAS,A22,A21,A2 0,A19)
A18 = INP (A18)
NA17 = NOT (A17)
A17 = INP (A17)
PERIF = NOR (NVPA,A9)
A7 = INP (A7)
NA8 = NOT (A8)
IACK = NOT (NIACK)
NA2 = NOT (A2)
Al = INP (Al)
AO = INP (AO)
LDS = NOT (NLDS)
A8 = INP (A8)
NRESTBE = NAND (PERIF,A7)
NRAMBE = NAND (RAM,A18)
NBUSY = INP (NBUSY)
NAl = NOT (Al)
NAO = NOT (AO)
NAS = INP (NAS)
A22 = INP (A22)
A21 = INP (A21)
A20 = INP (A20)
A19 - INP (A19)
NVPA = INP (NVPA)
A9 = INP (A9)
NIACK = INP (NIACK)
A2 = INP (A2)
NLDS = INP (NLDS)
DTACK = NAND (NDPRMD,NLINKD,NSRAM,NVDTACK) 
END$
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EPLD Data.

Part of report file, (.RPT):

ALTERA Design Processor Utilization Report

* * * * * Design implemented successfully

E.Mills.
Research.
October 9, 1987

2
EP1210
68000 address decoder.
NETMAP Version 3.0, Baseline 15, 8/3/1985

EP1210

10MHZ - 1 40 - Vcc
Al - 2 39 - Vcc
A0 - 3 38 - A17

NLDS - 4 37 - A18
NIACK - 5 36 - A19
NBUSY - 6 35 - A20

NAS - 7 34 - A21
NLINK2 - 8 33 - A22

RESERVED - 9 32 - DTACK
NDPRAM - 10 31 - NSRAM
NBUFEN - 11 30 - NVEN
NLINK0 - 12 29 - NLINKl
NIEEE - 13 28 - RESERVED

RESERVED - 14 27 - RESERVED
NLINK3 - 15 26 - RESERVED

GND - 16 25 - 5MHZ
GND - 17 24 - A2
GND - 18 23 - A8

NVPA - 19 22 - A7
GND - 20 21 - A9

**UNUSED RESOURCES**

Name Pin Resource MCell PTerms

- 9 - 27 10
- 14 - 22 10
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EPLD Data.

- 1 6  - 20 12
- 1 7  - 19 4
- 1 8  - 18 8
- 2 6  - 7 10
- 2 7  - 6 8
- 2 8  - 5 6
- NA - 13 8

NA - 14 8
- NA - 15 8
- NA - 16 8

**PART UTILIZATION**

78% Pins 
57% MacroCells 
7% Pterins
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EPLD Data.

F.C Auto Gain EPLD.

The EPLD presented here is detailed in section 6.2.1. This EPLD 
calculates the gain required for optimum conversion by an 8-b it flash 
converter for intra-sample adaptation. Another task of this device is to 
control the operation of the signal multiplexer which is just before the 
gain stage.

Input file (.ADF):

E.Mills.
Research 
July 19, 1988 
AUTO_GAIN_PLA 
4
EP1210
Auto Gain Logic. Gain latch section change.
NETMAP Version 3.0, Baseline 15, 8/3/1985 
PART: EP1210
INPUTS: D7/38, D6/37, D5/36, D4/35, D3/34, D2/33, Dl/7,

NAtoD/1, ClrGain/6, NRdGain/5, READ/4, DO/3 
OUTPUTS: Gainl/29, GainO/31, Mux2/23, Muxl/30, MuxO/32,

AD7/13, AD6/27, AD5/11, AD4/12, AD3/8, AD2/15,
ADl/28, ADO/25, Gain2/17

NETWORK:
Gainl = CONF (Gainl,VCC)
GainO = CONF (GainO,VCC)
Mux2,MuxQ2 = ROIF (MuxD2,NAtoD,ClrGain,GND,VCC)
Muxl,MuxQl = ROIF (MuxDl,NAtoD,ClrGain,GND,VCC)
MuxO,MuxQ0 = ROIF (MuxDO,NAtoD,ClrGain,GND,VCC)
AD7 = CONF (MAD7,Rd)
AD6 = CONF (MAD6,Rd)
AD5 = CONF (MAD5,Rd)
AD4 = CONF (MAD4,Rd)
AD3 = CONF (MAD3,Rd)
AD2 = CONF (MAD2,Rd)
ADI = CONF (MADl,Rd)
ADO - CONF (MADO,Rd)
Gain2 » CONF (Gain2,VCC)
Gainl = NAND (MuxQ,IGainl)
GainO = NAND (MuxQ,IGainO)
MUXD2 - XOR (MuxC2,MuxQ2)
NAtoD = INP (NAtoD)
ClrGain = INP (ClrGain)
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EPLD Data.

MuxDl = XOR (MuxCl,MuxQl)
MuxDO = XOR (MuxQ,MuxQ0)
MAD7 = AND (NRdGain,d7)
Rd » INP (READ)
MAD6 « AND (NRdGain,d6)
MAD5 = AND (NRdGain,d5)
MAD4 = AND (NRdGain,d4)
MAD3 = AND (NRdGain,d3)
MAD2 = OR (MAD21,MAD22)
MAD1 = OR (MADll,MAD12)
MADO = OR (MAD01,MAD02)
Gain2 = NAND (MuxQ,IGain2)
MuxQ = NORF (MuxD,NAtoD,ClrGain,GND) 
IGainl = NORF (B,NAtoD,ClrGain,GND) 
MuxC2 = AND (MuxQ,MuxQ0,MuxQl)
MuxCl = AND (MuxQ,MuxQ0)
NRdGain = INP (NRdGain)
d7 » INP (D7)
d6 = INP (D6)
d5 = INP (D5)
d4 = INP (D4)
d3 = INP (D3)
MAD21 = AND (NRdGain,d2)
MAD22 = AND (RdGain,IGain2)
MADll = AND (NRdGain,dl)
MAD12 = AND (RdGain,IGainl)
MAD01 = AND (NRdGain,dO)
MAD02 « AND (RdGain,IGainO)
IGain2 « NORF (C,NAtoD,ClrGain,GND)
C = NOR (B6,B5,B4,B3)
B = NOR (B6,B5,BC)
B6 = XOR (Nd7,d6)
B5 = XOR (Nd7,d5)
BC = AND (BA,BB)
MuxD = NOT (MuxQ)
A = NOR (B6,AB,AD,AF)
AB = AND (B4,AA)
AD = AND (B2,AC)
AF = AND (BO,AE) 
d2 = INP (D2)
RdGain = NOT (NRdGain) 
dl = INP (Dl) 
dO - INP (DO)
IGainO = NORF (A,NAtoD,ClrGain,GND) 
B4 = XOR (Nd7,d4)
B3 = XOR (Nd7,d3)
Nd7 = NOT (d7)

Page F-16



EPLD Data.

BA = OR (B2,B1)
BB » NOR 
AA = NOT 
B2 = XOR 
AC = NOR 
BO = XOR 
AE = NOR 
Bl - XOR 
END$

(B4,B3)
(B5)
(Nd7,d2) 
(B5,B3) 
(Nd7,d0) 
(B5,B3,B1) 
(Nd7,dl)
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EPLD Data.

Part of report file, (.RPT):

ALTERA Design Processor Utilization Report

***** Design implemented successfully

E. Mills.
Research 
July 19, 1988 
AUTO_GAIN_PLA 
4
EP1210
Auto Gain Logic. Gain latch section change. 
NETMAP Version 3.0, Baseline 15, 8/3/1985

EP1210

NAtoD - 1 40 - Vcc
GND - 2 39 - Vcc
DO - 3 38 - D7

READ - 4 37 - D6
NRdGain - 5 36 - D5
ClrGain - 6 35 - D4

Dl - 7 34 - D3
AD 2 - 8 33 - D2

RESERVED - 9 32 - Gain2
RESERVED - 10 31 - RESERVED

AD 5 - 11 30 - Gainl
AD 4 - 12 29 - GainO
AD7 - 13 28 - AD 3

RESERVED - 14 27 - AD 6
ADI - 15 26 - RESERVED

RESERVED - 16 25 - ADO
Muxl - 17 24 - RESERVED

RESERVED - 18 23 - MuxO
RESERVED - 19 22 - Mux2

GND - 20 21 - RESERVED

**UNUSED RESOURCES**

Name Pin Resource MCell PTerms

2
9 - 27 10
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EPLD Data.

- 1 0  - 26 8
- 1 4  - 22 10
- 1 6  - 20 12
- 1 8  - 18 8
- 1 9  - 17 8
- 2 1  ~ 12 8
- 2 4  - 9 12
- 2 6  - 7 10
- 3 1  - 2 10

**PART UTILIZATION**

70% Pins
64% MacroCells
19% Pterms
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EPLD Data.

F.D Controller Board Decoder Unit EPLD.

This EPLD performs the task of decoding the transputer's address bus 
onboard the Controller Unit and generates the chip selects for the static 
RAMs. The other task of this device is to control the buffers on the 
board. When the transputer bus is requested, and the request granted, the 
EPLD forces certain buffers into their tri-state mode and reverses the 
operation of some of the other buffers. This has the effect of releasing the 
busses of the transputer and allows external bus masters to use the bus 
logic and RAM devices onboard the Controller itself.

Input file (.ADF):

E.Mills
Flowmeter Research.
March 13, 1989

2
EP1210
Main PCB address decoder.
NETMAP Version 3.0, Baseline 15, 8/3/1985 
PART: EP1210
INPUTS: A31, NA30, NA29, NA28, NA27, NA26, NA25, NA24, NA23, NA22,

NA21, NA20, ROM, NA19, NA18, NA17, NSO, 10MHz, NRD, MEMGNT 
OUTPUTS: EXT, NSRAM7/27, NSRAM6/30, NSRAM5/8, NSRAM4/15, NSRAM3/11, 

NSRAM2/12, NSRAMl/28, NSRAMO/29, 5MHz, DBDIR
NETWORK:
EXT = CONF (EXT,VCC)
NSRAM7 = CONF (NSRAM7,VCC)
NSRAM6 = CONF (NSRAM6,VCC)
NSRAM5 = CONF (NSRAM5,VCC)
NSRAM4 = CONF (NSRAM4,VCC)
NSRAM3 = CONF (NSRAM3,VCC)
NSRAM2 = CONF (NSRAM2,VCC)
NSRAMl - CONF (NSRAM1,VCC)
NSRAMO = CONF (NSRAM0,VCC)
5MHz,5MHz = CORF <N5MHz,10MHz,GND,GND,VCC)
DBDIR = CONF (DBDIR,VCC)
EXT = NOR (MNEG,NHEN)
NSRAM7 = OR (E7,NHEN)
NSRAM6 = OR (E6,NHEN)
NSRAM5 = OR (E5,NHEN)
NSRAM4 = OR (E4,NHEN)
NSRAM3 = OR (E3,NLEN)
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EPLD Data.

NSRAM2 = OR (E2,NLEN) 
NSRAM1 - OR (E1,NLEN) 
NSRAMO = OR (EO/NLEN) 
N5MHZ - NOT (5MHz)
10MHz = INP (10MHz) 
DBDIR = XOR (BGACK,NRD)
MNEG = NAND(A31,NA3 0
NHEN = OR (HMEM,NSO)
E7 - NAND (C,B,A)
E6 = NAND (C,B,NA)
E5 = NAND (C,NB,A)
E4 = NAND (C ,NB,NA)
E3 - NAND (NC,B,A)
NLEN = OR (MNEG,NSO)
E2 = NAND (NC,B,NA)
El « NAND (NC,NB,A)
EO = NAND (NC,NB,NA)
BGACK = INP (MEMGNT) 
NRD = INP (NRD)
A31 = INP (A31)
NA30 = INP (NA30)
NA29 = INP (NA29)
NA28 = INP (NA28)
NA27 = INP (NA27)
NA26 = INP (NA26)
NA25 = INP (NA25)
NA24 = INP (NA24)
NA23 = INP (NA23)
NA22 = INP (NA22)
NA21 = INP (NA21)
NA20 = INP (NA20)
HMEM _ AND (HMNEG,HMPOS)
NSO - INP (NSO)
NC = INP (NA19)
NB = INP (NA18)
NA = INP (NA17)
A = NOT (NA)
B = NOT (NB)
C - NOT (NC)
HMNEG ~ OR (MNEG,ROM) 
HMPOS = NAND (ROM,MPOS) 
ROM = INP (ROM)
MPOS = NOR (A31,NA30,NA 
END$

NA2 8,NA27,NA26,NA25

,NA28,NA27,NA26,NA25,

,NA2 3,NA2 2,NA21,NA2 0)

,NA23,NA22,NA21,NA20)
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Part of report file, (.RPT)

ALTERA Design Processor Utilization Report 

***** Design implemented successfully 

E. Mills
Flowmeter Research.
March 13, 1989

2
EP1210
Main PCB address decoder.
NETMAP Version 3.0, Baseline 15, 8/3/1985

EP1210

10MHz - 1 40 - Vcc
NA20 - 2 39 - Vcc
NA21 - 3 38 - A31
NA22 - 4 37 - NA30
NA23 _ 5 36 - NA29
NA24 - 6 35 - NA28
NA25 - 7 34 - NA27

NSRAM5 - 8 33 - NA26
RESERVED - 9 32 - DBDIR
RESERVED - 10 31 - RESERVED

NSRAM3 - 11 30 - NSRAM6
NSRAM2 - 12 29 - NSRAM0

EXT - 13 28 - NSRAM1
RESERVED - 14 27 - NSRAM7

NSRAM4 - 15 26 - RESERVED
GND - 16 25 - 5MHz

MEMGNT - 17 24 - ROM
NRD - 18 23 - NA19
NSO - 19 22 - NA18
GND - 20 21 - NA17

**UNUSED RESOURCES**

Name Pin Resource MCell PTerms

9 - 27 10
- 10 - 26 8

14 - 22 10
16 - 20 12
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EPLD Data.

- 26 - 7 10
- 31 - 2 10
- NA - 13 8
- NA - 14 8
- NA - 15 8
- NA - 16 8

**PART UTILIZATION**

83% Pins 
64% MacroCells 
7% Pterms
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Partial Software Listings.

G. Partial Software Listings.

This section contains some of the 68000 based software developed for the 
Atari and the final host 68000 system. It starts with the peak detection 
and integration software for the flow system.

Each software section starts on a new page.
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G.A Main 68000 Flow Processing.

* This is an N signal peak detector using registers only to store
* the peaks, and memory to store the address of the peaks.

* D4.W must hold N where 0<=N<=7 and is one less than the number of
* signals.
* D5.W must hold x where x is one less than the number of data points.
* AO.L must contain the start address of the data block.

* The signal data must be interleaved such that the memory for 3
* signals is in the following format:

*  10
* II
*  12
*  10
* II etc

* The routine will return the peaks in the following format:

* 31 16|15 0
*

* DO: 17 : 10
* Dl: 16 : II
* D2: 15 : 12
* D3: 14 : 13
*

* D4-D7 unaffected.
* A0/A2-A7 unaffected.

* Al.L will point to the address of the stored peak addresses.

PEAKDET MOVEM.L D4-D6/A0,-(SP)
LEA PEAKADR(PC),A1 
BSR PKPRESET 
SWAP D5 
MOVE.W D4,D5 
SWAP D5

Save registers.
Point to peak address table. 
Preset peaks.

Set D5 top to N.

PEAKL1 MOVE.W D4,D6
SWAP D4
MOVE.W (A0)+, D4 
BSR PKCHK 
BNE NOTPEAK

Copy N to a working register. 
Save counter in top of D4 
Read data.
Check for peak.
If NE then not a peak.
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MOVE.W D4,DO
LSL.L #2,D6
MOVE.L AO,0(Al,D6. W)

NOTPEAK BSR SHUFFLE 
SWAP D4
DBRA D4,PEAKL1 
SWAP D5 
MOVE.W D5,D4 
MOVEQ #7,D6 
SUB.W D5,D6 
SWAP D5

PEAKROL DBRA D6,PEAKRO 
DBRA D5,PEAKLl 
MOVEM.L (SP)+,D4—D6/A0 
RTS

PEAKRO BSR SHUFFLE 
BRA PEAKROL

Update with new peak value.
D6=N*4
Save address in peak address table. 
Shuffle register round.
Get at counter.
Loop until count finished.
D5.W = master copy of N.
Reset D4 back to N.
Set for calculation.
Determine who to reorder peaks.
D5.W now back to number of items.
If count 0 - 1  then reorder.
Repeat process until items = -1. 
Restore registers.

Shuffle peaks once.
Go back and check again.

PEAKADR DCB.L 8,0

* This routine will preset the peaks for the three different types of
* peak detection.

* If D7.B = 0 Then it sets for largest absolute value peak detection.
* If D7.B = + Then it sets for largest positive value peak detection.
* If D7.B = - Then it sets for largest negative value peak detection.

PKPRESET MOVEQ #0,D0 
TST.B D7 
BEQ PKSET 
BPL PKSET 

PKSET MOVE.L D0,D1 
MOVE.L DO,D2 
MOVE.L DO,D3 
RTS

Clear as for absolute. 
Check control.
Set for absolute.
Set for positive.

Preset them all.

* This routine will detect one of three types of peaks.

* If D7.B = 0 Then it marks the largest absolute value.
* If D7.B = + Then it marks the largest positive value.
* If D7.B = - Then it marks the largest negative value.

* DO.W contains the old peak value and D4.W contains the new data item.

* If D4.W should become then new peak then the routine returns the EQ
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* flag, otherwise it returns NE.

* The old peak in DO is not affected neither is D4.

PKCHK MOVEM.L D0/D4,-(SP) 
TST.B D7 
BEQ PKCHKABS 
BPL PKCHKMAX 

PKCHKMIN BSR PKMIN
BRA PKCHKEND 

PKCHKABS BSR PKABS
BRA PKCHKEND 

PKCHKMAX BSR PKMAX 
PKCHKEND MOVEM.L (SP)+,D0/D4 

RTS

Save values.
Test control.
Absolute detection required. 
Positive detection required.
Go for negative peak detection. 
Ok end routine.
Go for absolute peak detection. 
Ok end routine.
Go for positive peak detection. 
Restore values. Flags unaffected

* Negative peak detection.

PKMIN TST.W D4
BPL PKMINNO 
CMP.W D0,D4 
BGE PKMINNO 
CMP.B DO,DO 
RTS

PKMINNO ANDI #$FB,CCR 
RTS

Check data read.
Not negative so now minimum. 
Check against current peak. 
Data GE to peak so no new min, 
Set EQ to show new peak.

Set NE to show no new peak.

* Positive peak detection,

PKMAX

PKMAXNO

TST.W D4 
BMI PKMAXNO 
CMP.W DO,D4 
BLE PKMAXNO 
CMP.B DO,DO 
RTS
ANDI #$FB,CCR 
RTS

Test data.
If negative then no new peak, 
Check against current peak.
If LE then no new peak.
Set EQ to show new peak.

Set NE to show no new peak.

* Absolute peak detection.

* NOTE:
*

*

No data correction needed as header for peak detection saves 
the data values and restores them.

PKABS TST.W D4 Check data.
BMI PKABSDM Negative data so look for - peak.
TST.W DO Check peak.
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BMI PKABSPM Data and peak not positive.
BSR PKMAX Find max peak as both positive.
RTS

PKABSPM NEG.W DO Make peak positive.
BSR PKMAX Look for max peak as both now pos
RTS

PKABSDM TST.W DO Check current peak.
BPL PKABSMP Data and peak not negative.
BSR PKMIN Find min peak as both negative.
RTS

PKABSMP NEG.W DO Make peak negative.
BSR PKMIN Look for min peak as both now neg
RTS

* This subroutine shuffles the register around so that

*

* DO: 17 : 10 : : 10 : 11
* Dl: 16 : 11 : becomes : 17 : 12
* D2: 15 : 12 : : 16 : 13
* D3 : 14 : 13 : : 15 : 14
*

SHUFFLE MOVE.W D6,-(SP) Save register.
MOVE.W D0,D6 
MOVE.W Dl,DO 
MOVE.W D2,Dl 
MOVE.W D3,D2 
SWAP DO 
SWAP Dl 
SWAP D2 
MOVE.W D2,D3 
MOVE.W D1,D2 
MOVE.W D0,D1 
MOVE.W D6,D0 
SWAP DO 
SWAP Dl 
SWAP D2 
SWAP D3
MOVE.W (SP)+,D6 Restore register.
RTS
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G.B Atari Transputer Development Workstation.

Hie following listing shows the main bulk of the Atari Transputer 
Development Workstation software which was used in conjunction with the 
Inmos link adaptor unit described in section 5.3.

The software makes reference to service routines which were formed into 
libraries and included at compile time. One of these libraries is an 
equation handler which allows the user to enter equations which may 
contain predefined labels, in response to numerical questions.

* Transputer Development Workstation.
*  -----------------------------------------------------------

* In this program an abort mechanism operates in all sections
* were if the program is waiting for a link operation the
* operator may terminate this process and return to main menu
* by pressing X. A lowercase X is also recognised.

* To save time and space subroutines are directly terminatable.
* This is accomplished by restoring the stack pointer to its
* original value as on entry to the program.

* The code is all position independent and the program
* terminates to desktop.

LEA ABORTSP(PC), AO 
MOVE.L SP,(A0)

MENU LEA $FAOOOO,A4
LEA $FA2000,A5 
LEA $FA4000,A6 
LEA LINK0(PC),A3 
LEA T414T1(PC),A0 
BSR WRITESTR 

WHICHOPT BSR INKEY0
CMPI.B #"0",D0 
BLT WHICHOPT 
CMPI.B #"9",DO 
BGT WHICHOPT 
MOVE.B DO,D7 
BSR WRITECHR 
BSR NEWLINE 
CMPI.B #"8",D7 
BEQ SETTYPE

Point to abort stack pointer copy, 
Save stack pointer.
Link 0.
Link 1.
Status register.
Point to link parameter block.

Wait for response from operator.

Save option chosen.
Echo chosen option to screen.
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CMPI.B #"9",D7 
BEQ EXIT 
CMPI.B #"5",D7 
BEQ MONITOR 
LEA T414T2(PC),A0 
BSR WRITESTR 

WHICHLNK BSR INKEY0
CMPI.B #"0",D0 
BEQ START 
CMPI.B #"1", DO 
BNE WHICHLNK
LEA LINK1(PC),A3 Set for link 1 communication.

START LEA LINKNAME(PC),AO
MOVE.B DO,(AO) Save name of link.
BSR WRITECHR Write chosen link number.
BSR NEWLINE
LEA LINKLIST(PC),A0
BSR WRITESTR
BSR LINKINFO Display information about link.
CMPI.B #"1",D7
BEQ DSKTRAN
BSR SETUP
CMPI.B #"6",D7
BEQ ASCIIMON
BSR BLOCK
CMPI.B # " 2 " ,D7
BEQ EXAMINE
CMPI.B #"3",D7
BEQ FILLT4
CMPI.B #"4",D7
BEQ TESTT4
BRA SEARCH

DC. B 13,10, 10, 10,10
DC. B 13,10, "Transputer Workstation.
DC. B 13,10, 10
DC. B 13,10, "Options:"
DC. B 13,10
DC. B 13,10, "1: File Transfer."
DC. B 13,10
DC. B 13,10, "2: Memory Examine."
DC. B 13,10
DC. B 13,10, "3: Memory Fill."
DC. B 13,10
DC. B 13,10, "4: Memory Test."
DC. B 13,10
DC. B 13,10, "5: Monitor Links."

Page G -7



Partial Software Listings.

T414T2

LINKADDR
LINKMASK
LINKLIST
LINKNAME

*

*

*

*

it
*

SETUP

TRANSFER

TRANS

DC.B 13,10
DC.B 13,10,“6: Terminal monitor."
DC.B 13,10
DC. B 13,10, " 7 :■ Search For Data. "
DC.B 13,10
DC.B 13,10,"8; Define transputer type."
DC.B 13,10
DC.B 13,10,"9: Exit."
DC.B 13,10
DC.B 13,10,"Which One? (1-9): ",0
DC.B 13,10,"Which link is to be used for operation? (0 or 1): 
DC.B 0 
CNOP 0,4
DC.L $00FA0000 Link port address
DC.L $00000001 Status register masks
DC.B 13,10,10,"Operating on link 
DC.B "n"
DC.B ",13,10,10,0 
CNOP 0,4

Setup address pointers and status register masks

A4.L points to link 0.
A5.L points to link 1.
A6.L points to status register.
A3.L points to start of active link table.
A2.L points to active link.
D3.L holds status register mask.

LEA $FA0000,A4 
LEA $FA2000,A5 
LEA $FA4000,A6 
MOVEA.L 18(A3),A2 
MOVE.L 22(A3),D3 
RTS

Link 0.
Link 1.
Status register.
Point to port.
Load status register mask,

BSR SETUP 
LEA BUFFER(PC),A1 
MOVE.L Dl,D2 
SUBQ.L #1,D2 
BSR CHKLINKS 
MOVE.B (A1)+,D6 
BSR TRANSMIT 
BSR INKEY0 
ORI.B #32,DO 
CMPI.B #"x",D0

Setup pointers and masks.
Point to disk buffer.
Copy amount read.
Drop count by one for transfer.
Check for data received.
Copy data from buffer into transfer reg. 
Output data on link.
Check for abort. Don't wait for response 
Force to lowercase.
Check for valid abort character.
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CHKLINKS

NRO

NR1

*

MONITOR

MON1

MONTI

*

RECO

RCO

*

REC1

BEQ ABORTOP 
DBRA D2,TRANS 
RTS

BTST #0,1(A6)
BEQ NRO 
BSR RECO 
BTST #2,1(A6)
BEQ NRl 
BSR REC1 
RTS

Monitor both links for

BSR SETUP 
LEA MONTI(PC),AO 
BSR WRITESTR 
BSR CHKLINKS 
BSR INKEYO 
ORI.B #32,DO 
CMPI.B #"x",DO 
BEQ ABORTOP 
BRA MON1

DC.B 13,10,"Monitoring the links:",13,10,10,0 

CNOP 0,4

Blind read of link 0 with echo to screen.

LEA RCO(PC),AO 
BSR WRITESTR 
MOVE.B 1(A4),D4 
BSR HEXBYTE 
BSR NEWLINE 
RTS

DC.B "Received on link 0 : ",0 

CNOP 0,4

Blind read of link 1 with echo to screen.

LEA RCl(PC),A0 
BSR WRITESTR 
MOVE.B 1(A5),D4 
BSR HEXBYTE

Check for abort. Don't wait for response. 
Force lowercase.
Check for valid abort character.
Leave if requested.

Leave if requested.
Repeat until buffer cleared.

Check link 0.

Check link 1.
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RCl

TRANSMIT
TRNOK

TRNDATA

CLRNAME

CLRNLOOP

DSKTRAN

MLOOP

BSR NEWLINE 
RTS

DC.B "Received on link 1 : ",0

CNOP 0,4

Transmit a byte down the active link with echo to screen,

D6.B holds the byte.

BSR WAITLNK
LEA TRNDATA(PC),AO
BSR WRITESTR
MOVE.B D6,D4
BSR HEXBYTE
BSR NEWLINE
MOVEQ #0,DO
MOVE.B D6,DO
LSL.L #1,DO
MOVE.B 0(A2,DO.W),DO
RTS

Wait until active link clear, 
Point to echo text.
Display it.
Copy byte to output.
Display copy.
Terminate display line.
Clear modified data register, 
Copy byte to transmit.
Modify it.
Output it on link.

DC.B "Transferring to link: ",0 

CNOP 0,4

Macro for clearing a disk filename buffer. 

MACRO
LEA FNAMEI(PC),AO 
MOVEQ #21,D7 
CLR.W (AO)+
DBRA D7,CLRNLOOP 
ENDM

Routine for disk file transfer to active link,

BSR SUPERMODE 
LEA BUFFER(PC),A2 
MOVE.L #1024,D3 
CLRNAME
LEA MTEXT2(PC),AO 
BSR WRITESTR 
LEA FHEADI(PC),A0 
BSR READSTR 
TST.B 1(AO)

Point to disk buffer, 
Set for IK buffer. 
Clear filename.
Point to next prompt, 
Display it.
Point to header.
Read filename 1.
Test length of name.
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MMORE

TEXIT
MERGEXIT

MTEXT2

FHEADI
FNAMEI

BUFFER

LAST

*

*

*

*

BLOCK

BEQ MENU
LEA FNAMEI(PC),Al 
BSR OPENIN 
TST.L DO 
BMI MERGEXIT 
BSR WAIT 
MOVE.L D3, Dl 
BSR DISKRD 
TST.L DO 
BMI TEXIT 
BEQ TEXIT 
MOVE.L DO ,Dl 
BSR TRANSFER 
CMP.L D3,D1 
BEQ MMORE 
BSR CLOSE 
BSR USERMODE 
BRA MONITOR

No files open.

Leave if null. No files open.
Point to actual name.
Open file.
Check for an error.
Trap errors.
Wait for operator.
Set max buffer size.
Read file.
Check for a error.
Error found.
None read.
Copy number of bytes read into buffer size 
Write block
Check to see if buffer was full.
Merge more if it was.
Close file.
Back to user mode.
Monitor links.

File open.

DC.B "File Transfer.",13,10
DC.B 13,10,"Input file (RETURN to exit) ",0

CNOP 0,4

DC.B 40,0 
DCB.B 46,0

CNOP 0,4 

DS.B 1030

DC. L 0 

CNOP 0,4

Obtain block parameters allowing equation inputs.

On exit D2.L contains start address.
Dl.L contains longword count.

All other registers are unaffected.

MOVE.L D3,~(SP) 
MOVEQ #0,D3 
SUB.L 12(A3),D3 
LEA BL0CKT1(PC),A0 
BSR WRITESTR

Save working register.
Clear all of D3 for mask formation.
Form mask for round down of first address 
Point to first question.
Display it.
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BL0CKT1
BLOCKT2

BLOCKPG

BLOCKP

BLOCKPX

BEQTNER

TXTEQTN
EQTNDAT

*

WAITLNK

BSR BLOCKPG 
AND.L D3,D1 
MOVE.L D1,D2 
LEA BLOCKT2(PC),AO 
BSR WRITESTR 
BSR BLOCKPG 
BSR NEWLINE 
SUB.L D2,D1 
MOVE.L 12<A3),D3 
ADD.L D3,Dl 
LSR.B #1,D3 
LSR.L D3,Dl 
MOVE.L (SP)+,D3 
RTS

Get parameter in Dl.L.
Round down start address.
Save result in D2.
Point to next point.
Ask question.
Get parameter.
Start a new line.
Calculate length of block required.
Get number of bytes in word.
Increase byte count to pass next word. 
Divide no. of bytes by two.
Form word count by number of bytes / 2 
Restore register.

DC.B 13,10,"Start address = ",0 
DC.B 13,10,"End address = ",0

MOVEM.L D7/A1,—(SP)
MOVEA.L AO,Al
LEA TXTEQTN(PC),AO
BSR READSTR
MOVEQ #0,D7
MOVE.B 1(A0),D7
MOVE.B #13,2(A0,D7.W)
LEA EQTNDAT(PC),AO
BSR EQTN
BEQ BLOCKPX
LEA BEQTNER{PC),AO
BSR WRITESTR
MOVEA.L Al,AO
BSR WRITESTR
BRA BLOCKP
MOVEM.L (SP)+,D7/A1
RTS

Save working registers.
Copy prompt address.
Point to parameter area.
Read in a string.
Clear offset pointer.
Obtain length of string.
Add CR to equation.
Point to the parameter equation, 
Process as an equation.
Exit if no error.
Point to error text.
Display it.
Restore prompt address. 
Re-display prompt.
Go back and re-try.
Restore registers.

DC.B 13,10,"Error in input!"
DC.B 13,10,10,"Re-do.",13,10,0 
DC.B 100,0 
DCB.B 110,13

CNOP 0,4

Wait for active link to clear.

LEA WAITLT(PC),A0 Point to text in case it is needed.
BTST D3,1(A6) Check link status.
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BEQ WLNKOVER 
BSR WRITESTR 

WLNKLOOP BSR CHKLINKS 
BSR INKEYO 
ORI.B #32,DO 
CMPI.B #"x",DO 
BEQ ABORTOP 
BTST D3,1(A6) 
BNE WLNKLOOP 

WLNKOVER RTS

Leave as link ready.
Write message once.
Check links for received data.
Check for abort. Don't wait for response, 
Force lowercase.
Check for valid abort character.
Leave if requested.
Check link status again.
Repeat checks until link clear.

WAITLT DC.B 13,10,"Waiting for link to clear.",13,10,0 

CNOP 0,4

* Transmit longword down link.

* Dl.L contains the data to be transmitted.

Registers are not affected by this routine.

TRNLONG MOVEM.L D0-D2/A0,-(SP) 
MOVE.W 16(A3),D2 

TMLONG BSR WAITLNK 
MOVEQ #0,D0 
MOVE.B D1,D0 
LSL.W #1,D0 
MOVE.B 0(A2,D0.W),D0 
ROR.L #8,Dl 
DBRA D2,TMLONG 
MOVEM.L (SP)+,DO—D2/A0 
RTS

Save registers.
Set counter for n byte output,
Wait for link to clear.
Clear data carrier.
Copy active data byte into carrier. 
Adjust data for from offset address. 
Output data.
Shift long data to point to next byte, 
Repeat until all bytes out.
Restore registers.

Peek at a memory location.

Dl.L holds address of memory location. 
D4.L returns with the data.

*

*

PEEK

All other registers are unaffected.

If abort is requested during PEEK then this routine and 
the calling routine is terminated.

MOVEM.L D2/A0,—(SP) 
BSR WAITLNK 
MOVE.B 2(A2),DO 
BSR TRNLONG

Save registers.
Wait for active link.
Send a control byte of 1 to link, 
Transmit Dl.L as the address.
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PEEKW

PEEKSR

*

*

*

*

POKE

EXAMINE

EXAMLOP

Partial Software Listings.

MOVE.W 16(A3),D2 
SWAP D3 
MOVEQ #0, D4 
BSR INKEY0 
ORI.B #32,DO 
CMPI.B #"x",DO 
BEQ ABORTOP 
BTST D3,1(A6)
BEQ PEEKW 
MOVE.B 1(A2),D4 
ROR.L #8,D4 
DBRA D2,PEEKW 
MOVE.W 16(A3),D2 
ROR.L #8,D4 
DBRA D2,PEEKSR 
SWAP D3
MOVEM.L (SP)+,D2/A0 
RTS

Set for n bytes to receive. 
Change mask to receive mask. 
Clear received data register. 
Get chr from keyboard, no wait. 
Change to lowercase.
Check for abort key.
Leave if aborted.
Check link for answer.
Wait until it is received.
Read in new part of answer. 
Shift answer.
Repeat until word read back.
Set for n bytes shift.
Shift answer.
Repeat until word reordered. 
Restore status register mask. 
Restore.

Poke a memory location.

Dl.L holds the address. 
D6.L holds the data.

Registers are unaffected.

BSR WAITLNK 
MOVE.B 0(A2),DO 
BSR TRNLONG 
EXG Dl,D6 
BSR TRNLONG 
EXG Dl,D6 
RTS

Wait for link to clear.
Send a control byte of 0 to link, 
Transmit Dl.L as the address.
Swap address and data over. 
Transmit the data.
Restore address and data.

MOVE.L D1,D5 
MOVE.L D2,D1 
LEA EXMTl(PC),A0 
BSR WRITESTR 
MOVE.L Dl,D4 
BSR HEXLONG 
BSR PEEK 
LEA EXMT2(PC),AO 
BSR WRITESTR 
BSR HEXLONG 
ADD.L 12(A3),D1 
SUBQ.L #1,D5 
BNE EXAMLOP

D5 = byte count.
Dl = start address,

Copy address for displaying. 
Display it.
Read location.
Point to result text.
Display text.
Display result found.
Advance address by byte count. 
Reduce byte count.
Repeat until cycle complete.
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EXMTl
EXMT2
EXMT3

FILLT4

FILLLOP

FILLTX1
FILLTX2

TESTT4

LEA EXMT3(PC),AO 
BSR WRITESTR 
BSR WAIT 
BRA MENU

Point to 'completed' text. 
Display text.
Wait for operator.
Return to main menu.

DC.B 13,10,"Peeking address ",0 
DC.B " found ",0 
DC.B 13,10,10,"Cycle complete." 
DC.B 13,10,10,0

CNOP 0,4

MOVE.L Dl,D5 
LEA FILLTXl(PC),A0 
BSR WRITESTR 
BSR BLOCKPG 
BSR NEWLINE 
BSR NEWLINE 
MOVE.L Dl,D6 
MOVE.L D2,D1 
LEA FILLTX2(PC),A0 
BSR WRITESTR 
MOVE.L Dl,D4 
BSR HEXLONG 
BSR POKE 
BSR INKEY0 
ORI.B #32,DO 
CMPI.B #"x",DO 
BEQ ABORTOP 
ADD.L 12(A3),D1 
SUBQ.L #1,D5 
BNE FILLLOP 
LEA EXMT3(PC),A0 
BSR WRITESTR 
BSR WAIT 
BRA MENU

Copy word count.

Get fill parameter in Dl.L

Save data in D6.L 
Dl = start address.

Copy address for displaying.
Display it.
Poke address.
Check for abort. Don't wait for response. 
Force character to lowercase.
Check for abort.
Leave if requested.
Advance address by count bytes.
Reduce word count.
Repeat until cycle complete.
Set text to finish.
Display it.
Wait for operator.
Return to main menu.

DC.B 13,10,"Data to fill memory with = ",0 
DC.B 13,"Filling address ",0

CNOP 0,4

MOVEQ #0,D6 
MOVE.L Dl,D5 
MOVE.L D2,Dl 
MOVE.L D5,D7 
BSR NEWLINE

D5 = word count.
Dl = start address, 
Copy of byte count,
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TESTLOP

TT4ERR

TT4ERRX

TERROPT

LEA TXTERRC(PC), A1 Point to error counter.
MOVE.L D6,(Al) Clear counter.
MOVE,L D6,4(Al) Clear control.
LEA TXTT1(PC),A0
BSR WRITESTR
MOVE.L D1,D4 Copy address for displaying.
BSR HEXLONG Display it.
LEA TXTT12(PC),A0
BSR WRITESTR
MOVE.L D6,D4
BSR HEXLONG Display data being used for test.
BSR POKE Poke address.
BSR PEEK Peek same address.
CMP.L D4,D6 Check poke = peek.
BNE TT4ERR Error.
ADD.L 12(A3),D1 Advance address by byte count.
SUBQ.L #1,D5 Reduce longword count.
BNE TESTLOP Repeat until cycle complete.
MOVE.L D2,D1 Restore base address.
MOVE.L D7,D5 Restore longword count.
ADDQ.L #1,D6 Increase data value.
BNE TESTLOP Repeat until counter folds over to zero
LEA TXTT2(PC),A0 Point to 'completed'.
BRA TESTFIN Leave as test cycle complete.
LEA TXTT3(PC)rAO Point to error text.
BSR WRITESTR Display it.
BSR HEXLONG Display value just read from memory.
BSR NEWLINE Terminate line.
ADD.L 12(A3), D1 Advance address by byte count.
SUBQ.L #1,D5 Reduce word count.
BNE TT4ERRX Leave if counters still valid.
LEA TXTT2(PC),A0 Point to 'completed' in case needed.
MOVE.L D2,D1 Restore base address.
MOVE.L D7,D5 Restore word count.
ADDQ.L #1,D6 Increase data value.
BEQ TESTFIN Leave as no counter foldover.
MOVE,L (A1),D4 Get number of errors.
BNE TERRCNT Counting errors.
TST.B 4(Al) Check if options on errors chosen.
SEQ 4(Al) Set if not chosen.
BNE TERRNC No counting required.
LEA TXTT6(PC),A0 Point to error options.
BSR WRITESTR Display them.
BSR INKEY Get result.
CMPI.B #"3",DO Check for exit.
BEQ MENU Go back to main menu if required.
CMPI.B #"2",DO Check for normal action.
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TERRCNT

TERRNC
TESTFIN

TXTTl
TXTT12
TXTT2

TXTT3
TXTT5

TXTT6

TXTT7

TXTERRC

BEQ TERRNC Treat as normal.
CMPI.B #"1",DO Check for counting,
BNE TERROPT Invalid option, repeat.
ADDQ.L #1,D4 Increase count.
MOVE.L D4,(Al) Store result.
BSR INKEY0 Check keyboard.
ORI.B #32,DO Force lowercase.
CMPI.B #"r",D0 Test for exit condition.
BNE TESTLOP Continue testing.
MOVE.L (Al),D4 Get number of errors.
BEQ MENU No errors so move to main menu
LEA TXTT7(PC),A0 Point to report.
BSR WRITESTR Display it.
BSR HEXLONG Display total number of errors
BSR WAIT Wait for operator.
BRA MENU Return to main menu.
LEA TXTT5(PC),A0 Point to normal error message.
BSR WRITESTR Display appropriate text.
BSR INKEY Wait for response to question.
ORI.B #32,DO Force lowercase.
CMPI.B #"x",DO Test for exit condition.
BEQ MENU Exit.
BRA TESTLOP Else continue testing.

DC.B 13,"Testing address ",0 
DC.B " with ",0
DC.B 13,10,10,"Cycle complete."
DC.B 13,10,10,"No errors."
DC.B 13,10,10,"Press X to exit or any other key to restart. 
DC.B 13,10,0
DC.B ERROR: Found ",0
DC.B 13,10,10,"Press X to exit or any other key to continue 
DC.B 13,10,0 
DC.B 13,10,10
DC.B "1: Ignore errors and continue until end.",13,10 
DC.B 10
DC.B "2: Continue but stop at each error.",13,10 
DC.B 10
DC.B "3: Exit memory test.",13,10 
DC.B 10,10
DC.B "Which one? (l-3):",0
DC.B 13,10,10,"Total number of errors found = ",0

CNOP 0,4

DC. L 0 
DC. L 0
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SEARCH
SEARGET

SEARCHST
SEARCHL1

SEARCHK

SEARFAIL

SEART1
SEART2

SEART3
SEART4

ABORTOP

MOVE.L Dl, D5 
LEA SEARTl(PC),A0 
BSR WRITESTR 
BSR BLOCKPG 
BSR NEWLINE 
BSR NEWLINE 
MOVE.L D1,D6 
ANDI.L #$FF,Dl 
CMP.L D6,Dl 
BEQ SEARCHST 
LEA SEART2(PC),AO 
BSR WRITESTR 
BRA SEARGET 
MOVE.L D2,D1 
LEA SEART3(PC),AO 
BSR WRITESTR 
MOVE.L D1,D4 
BSR HEXLONG 
BSR PEEK 
MOVE.L 16(A3),D7 
ROL.L #8,D4 
CMP.B D6,D4 
DBEQ D7,SEARCHK 
BNE SEARFAIL 
LEA SEART4(PC),AO 
BSR WRITESTR 
ADD.L 12(A3),Dl 
SUBQ.L #1,D5 
BNE SEARCHL1 
LEA EXMT3(PC), AO 
BSR WRITESTR 
BSR WAIT 
BRA MENU

Copy word count.

Search parameter in Dl.L

Save data in D6.L 
Clear data to byte size.
Check that search data is one byte only. 
If one byte start search.
Point to error message.
Display it.
Re-try.
Dl = start address.

Copy address for displaying.
Display it.
Get data from that address.
Set D7 for DBcc byte count.
Rotate data.
Check byte in data for match.
Continue search until all check or match. 
No match found in this word.

Over-print 'Searching' with 'Found at 
Advance address.
Reduce byte count.
Repeat until cycle complete.
Point to 'completed' text.
Display text.
Wait for operator.
Return to main menu.

DC.B 13,10,"Search for data byte of : ",0 
DC.B "Data NOT byte sized."
DC.B 13,10,10,"Re-do!",13,10,0 
DC.B 13,"Searching address ",0 
DC.B 13,"Found at ",10,0

CNOP 0,4

LEA ABORTT(PC),A0 
BSR WRITESTR 
BSR WAIT
MOVEA.L ABORTSP(PC),A7 Restore stack pointer. 
BRA MENU
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ABORTSP 
ABORTT

*

ASCIIMON 
ASCIIGET

ASCIIERR
ASCIIOK

*

SETTYPE
SETTLOP

SETTLOP2

DC. L 0
DC.B 13,10,10,"Operation aborted.",13,10,0 

CNOP 0,4

ASCII monitor of active link.

SWAP D3 
BSR INKEY0 
ORI.B #32,DO 
CMPI.B #"x",DO 
BEQ ABORTOP 
BTST D3,1(A6) 
BEQ ASCIIGET 
MOVE.B 1(A2),DO 
CMPI.B #10,DO 
BRA ASCIIOK 
CMPI.B #13,DO 
BRA ASCIIOK 
CMPI.B #32,DO 
BLT ASCIIERR 
CMPI.B #127,DO 
BLE ASCIIOK 
MOVE.B #"„",D0 
BSR WRITECHR 
BRA ASCIIGET

Change mask to receive mask.
Check for abort. Don't wait for response. 
Force to lowercase.
Check for valid abort character.
Leave if requested.
Check link for answer.
Wait until it is received.
Read answer.

Display character,

Define transputer type for each link.

MOVEM.L D0/D4-D6/A0/A1/A3,-(SP) Save registers.
LEA STYPEM1(PC),A0 
BSR WRITESTR 
LEA LINKO(PC),A3 
BSR LINKINFO 
LEA STYPEM2(PC),A0 
BSR WRITESTR 
LEA LINKl(PC),A3 
BSR LINKINFO 
LEA STYPEM3(PC),A0 
BSR WRITESTR 
BSR INKEY 
MOVE.B D0,D4 
CMPI.B #"0",D4 
BEQ SETTYPEN 
CMPI.B #'' 1" ,D4 
BEQ SETTYPEN 
CMPI.B #"2",D4

Point to menu 1.
Display it.
Point to link 0 data table. 
Display it.
Point to menu 2.
Display it.
Point to link 1 data table. 
Display it.
Point to prompt.

Get response.
Copy result.
Test for set link 0.
Find type and update link 0, 
Test for set link 1.
Find type and update link 1, 
Check for exit to main menu,

Page G -19



Partial Software Listings.

TYPEA

SETTYPEN

TYPECKT
TYPECKS

TYPEUP

STYPEM1

STYPEM2
STYPEM3

STYPEA

BNE SETTL0P2 
MOVEM.L (SP)+,D0/D4- 
BRA MENU
LEA STYPEA(PC),AO 
BSR WRITESTR 
LEA STYPEN(PC),A0 
BSR WRITESTR 
BSR WRITECHR 
LEA STYPEEG(PC), AO 
BSR WRITESTR 
LEA STYPER(PC), AO 
BSR READSTR 
BSR NEWLINE 
MOVE.W (A0)+,D5 
CMPI.B #4,D5 
BNE TYPEA 
MOVE.L (A0),D5 
LEA TYPET(PC), AO 
MOVE.W (AO) + ,D6 
BRA TYPECKS 
LEA 18(AO),AO 
CMP.L (AO),D5 
DBEQ D6,TYPECKT 
BNE TYPEA 
LEA LINKO(PC),Al 
CMPI.B #"1",D4 
BNE TYPEUP 
LEA LINKl(PC),A1 
MOVE.L (A0)+,(A1)+ 
MOVE.L (AO)+,(Al)+ 
MOVE.L (A0)+,(Al)+ 
MOVE.L (A0)+,(A1)+ 
MOVE.W (A0)+,(A1)+ 
BRA SETTLOP

Incorrect response so get another. 
-D6/A0/A1/A3 Restore registers.
Return to main menu.
Point to error text.
Display it.
Point to prompt.
Display it.
Display link number.
Point to examples 
Display them.
Point to response area.
Get response.

Get size of response.
Check length.
Invalid response.
Read in full string.
Point to type table.
Load number of types to check.
Skip over next command.
Skip data in table.
Check type header.
Repeat checks.
Invalid type so go to error response. 
Point to Link type data table for link 0 
Check for link 1 update.
Go to update.
Point to link 1 data table.
Copy actual transputer name.
Copy over MEMSTART.
Copy over LASTINT.
Copy over number of bytes in data word. 
Copy byte count as for DBcc format.
Got back to sub-menu.

DC.B 13,10
DC.B "Transputer Link Definition:",13,10 
DC.B 10
DC.B " O p t i o n s 13,10 
DC.B 10
DC.B "0: Set transputer type on link 0.",13,10,0
DC.B "1: Set transputer type on link 1.",13,10,0
DC.B "2: Return to main menu.",13,10,10
DC.B "Which one? (0-2): ",0
DC.B 13,10,"Invalid transputer type or
DC.B "type not supported!",13,10
DC.B 10
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DC.B "Please try again.",13,10 
DC.B 10,0

STYPEN DC.B 13,10,"Transputer attached to link 
STYPEEG DC.B " is ? (eg T414 or T212 etc ): ",0

CNOP 0,4

STYPER DC.B 10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

CNOP 0,4

DC.W 3
DC. B "T212"
DC.L $8024
DC.L $87FF
DC.L 2
DC.W 1
DC.B "T414"
DC. L $80000048
DC.L $800007FF
DC.L 4
DC.W 3
DC.B "T800"
DC.L $80000070
DC.L $80000FFF
DC.L 4
DC.W 3
DC.B "M212"
DC.L $8024
DC.L $87FF
DC.L 2
DC.W 1

* Link 0 data table preset for T414

LINK0 DC.B "T414"
DC.L $80000048 
DC.L $800007FF 
DC. L 4 
DC.W 3
DC.L $FA0000 
DC.L $00000001

* Link 1 data table preset for T414

LINK1 DC.B "T414"
DC.L $80000048
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DC.L $800007FF 
DC.L 4 
DC.W 3
DC.L $FA2000 
DC.L $00020003

CNOP 0,4

LINKINFO MOVEM.L D4/A3,-(SP) 
LEA LNKTYPE(PC),AO 
MOVE.L (A3)+,(A0) 
LEA LNKINFl(PC),AO 
BSR WRITESTR 
MOVE,L (A3)+,D4 
BSR HEXLONG 
LEA LNKINF2(PC),A0 
BSR WRITESTR 
MOVE.L (A3)+,D4 
BSR HEXLONG 
LEA LNKINF3(PC),AO 
BSR WRITESTR 
MOVE.L (A3)+,D4 
BSR HEXBYTE 
LEA LNKINF4(PC),AO 
BSR WRITESTR 
MOVEM.L (SP)+,D4/A3 
RTS

Save registers.

Copy transputer type into text, 
Point to full text.
Display it.
Get MEMSTART.
Display it.
Point to next line of text. 
Display it.
Get LASTINT 
Display it.

LNKINFl
LNKTYPE

LNKINF2
LNKINF3
LNKINF4

DC. B 13,10,“
DC. B "T414"
DC. B 13,10,10,"
DC. B 13,10,"
DC. B 13,10,10,"
DC. B " bytes in

Transputer connected to the link is a

MEMSTART = ",0 
LASTINT = ", 0 
There are ",0

CNOP 0,4
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G.C Main Atari Program Support Routines

The following routines as needed to change the 68000 processor in the 
Atari into its supervisory state and back to user mode. In supervisor mode 
the programs may access protected areas of the A tari's memory which 
would normally cause a BUS ERROR and the suspension of the program.

* These routines are based around a GEMDOS call.

* GEMDOS 32 will change the system mode based on the parameters found
* on the stack. If the stack contains zero, then the system is put
* into supervisor mode and the supervisor stack pointer is returned in
* DO. If, however, a value other than zero is found on the stack then
* the system is placed into user mode and the system stack pointer
* assumes the value that was on the stack.

* Set the system into supervisor mode.

CNOP 0,4 Align program.

SUPERMODE MOVEM.L AO—A6/D0—D7, — (SP) Save registers.
LEA SUPERSP(PC),A0 
TST.L (AO)
BNE SUPERET 
CLR.L ~(SP)
MOVE.W #32,-(SP) 
TRAP #1
LEA SUPERSP(PC),A0 
MOVE.L DO,(AO) 
ADDQ.L #6,SP

Point to SP copy.
Test our copy of super SP.
If NE the we are in SUPER mode. 
Stack a zero SP for the routine. 
Set for change of mode.
GEMDOS call.
Point to SP copy.
Save system stack.
Remove rubbish from stack.

SUPERET MOVEM.L (SP)+,A0-A6/D0—D7 Restore registers.
RTS

* Set the system into user mode.

USERMODE MOVEM.L A0-A6/D0-D7,-(SP) Save registers.
LEA SUPERSP(PC),A0 
TST.L (AO)
BEQ USERRET 
MOVE.L (AO),— (SP) 
MOVE.W #32,-(SP) 
TRAP #1
LEA SUPERSP(PC),A0 
CLR.L (AO)

Point to SP copy.
Test our copy of super SP.
If EQ the we are in USER mode. 
Put our copy of SP on stack.
Set for change of mode.
GEMDOS call.
Point to SP copy.
Clear copy to show as USER mode.



Partial Software Listings.

ADDQ.L #6,SP Remove rubbish from stack,
USERRET MOVEM.L (SP)+,AO-A6/DO—D7 Restore registers.

RTS

SUPERSP DC.L 0 Copy of super SP.

CNOP 0,4 Align program.

The next set of routines provide the software with general input/output 
support. These were formed into a library for including at compile time.

* Write out a null terminated string.

* AO points to the string.

WRITESTR MOVEM.L A0-A6/D0-D7,-(SP)
MOVE.L AO,— (SP)
MOVE.W # 9, — (SP)
TRAP #1 
ADDQ #6,SP
MOVEM.L (SP)+,A0—A6/D0-D7 
RTS

* Throw a newline.

NEWLINE MOVEM.L A0-A6/D0-D7,-(SP)
MOVE.W #13,-(SP)
MOVE.W # 2,-(SP)
TRAP #1 
ADDQ #4,SP 
MOVE.W #10,-(SP)
MOVE.W # 2, — (SP)
TRAP #1 
ADDQ #4,SP
MOVEM.L (SP)+,AO—A6/D0—D7 
RTS

* Read a string.

* AO points to the workspace start which must be set up before calling
* this routine.

* Workspace format:

Save registers.
Stack message address. 
Set for write string. 
Write the string. 
Remove rubbish.
Restore registers.

Save registers.
Stack CR.
Set for write character. 
Write character.
Remove rubbish.
Stack LF.
Set for write character. 
Write character.
Remove rubbish.
Restore registers.
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* MAX LENGTH, true length,.....TEXT...... ,0

READSTR MOVEM.L A0-A6/D0-D7,-(SP) 
MOVE.L AO,—(SP)
MOVE.W #10,-(SP)
TRAP #1 
ADDQ #6,SP
MOVEM.L (SP)+,AO—A6/DO—D7 
RTS

Save registers.
Store workspace area. 
Set for read string. 
Cause read.
Remove rubbish. 
Restore registers.

* This writes the character in DO to the screen.

WRITECHR MOVEM.L A0-A6/D0—D7,-(SP) 
ANDI.W #$00FF,DO 
MOVE.W DO,—(SP)
MOVE.W #2,-(SP)
TRAP #1 
ADDQ #4,SP
MOVEM.L (SP)+,A0~A6/D0—D7 
RTS

Save registers.
Clear top byte.
Stack character.
Set for write character. 
Write character.
Remove rubbish.
Restore registers.

* This routine prints a prompt and waits for return to be pressed.

WAIT MOVEM.L A0-A6/D0-D7, •
LEA PRNTRET(PC),A0 
BSR WRITESTR 
MOVE.W #8,— (SP) 

WAITRET TRAP #1
CMPI.B #13,DO 
BNE WAITRET 
ADDQ #2,SP 
BSR NEWLINE

(SP) Save registers.
Point to message.
Write the message.
Set for character grab.
Grab a character from the keyboard. 
Check to see if it's a CR.
Cycle until ret found.
Remove rubbish.
Throw a new line.

MOVEM.L (SP)+,A0-A6/D0-D7 Restore registers. 
RTS

* The next two routines get a character from the keyboard.

* INKEY0 will see if there is a character ready at the keyboard, if
* there is then it will read this character otherwise it assumes that
* the character is null.

* The value of the character is returned in DO.

* INKEY this routine waits for a key to be pressed and returns its
* value in DO.
* In both cases DO holds the character read and the character is not
* echoed on the screen.
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INKEY0 MOVE.W #$0B,-(SP)
TRAP #1 
ADDQ #2, SP 
TST.B DO 
BNE INKEY 
RTS

INKEY MOVE.W #8,-(SP)
TRAP #1 
ADDQ #2, SP 
RTS

Set for keyboard status read.
Get status.
Remove rubbish.
Test status,
Get character if ready.
Return if not.
Set for character grab.
Grab a character from the keyboard. 
Remove rubbish.

* This routine causes an exit to DESKTOP.

EXIT CLR.W “ (SP) 
TRAP #1 
RTS

Stack exit command.
Cause the exit to DESKTOP 
Not needed.

PRNTRET DC.B 13,10, 

CNOP 0,4

-PRESS RETURN ",0

Align to next long word boundary.
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