
STORM: an Unsupervised
Connectionist Model for Language

Acquisition

Thomas McQueen

A thesis submitted in partial fulfilment of the
requirements of Nottingham Trent University for

the degree of Doctor of Philosophy

October 2005

ProQuest Number: 10183172

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183172

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

TH Cxi

_______ v* . j y '> *. » «,.iv
£ X ^ - < L . P H £ > / C ^ O

• C

Abstract

Language acquisition is one of the core problems in artificial intelligence. Current

performance bottlenecks in natural language processing (NLP) systems result from a

prerequisite for an incalculable amount of language and domain-specific knowledge.

Consequently, the creation of an automated language acquisition system would revolutionize

the field of NLP. Connectionist models that learn by example (i.e. artificial neural networks)

have been successfully applied to many areas of language acquisition. However, the most

widely used class of these models, known as supervised connectionist models, have a number

of major limitations, including an inability to represent variables and a limited ability to

generalize from sparse data. Such limitations have prevented connectionist models from being

applied to large-scale language acquisition.

This research considers the alternative and less widely used class of unsupervised

connectionist models and investigates whether such models can capture the finite-state

properties of language. A novel unsupervised connectionist model, STORM (Spatio Temporal

Self-Organizing Recurrent Map), is proposed that uses a memory-rule based approach to learn

a regular grammar from a set of positive example sequences. STORM’s learning algorithm

uses a derivation of functional-equivalence theory that allows the model to learn via similarity

of behaviour, rather than just similar of form. This novel functional generalization ability

allows STORM to learn a perfect and stable representation of the Reber grammar from a

sparse training set of just 30 sequences, as opposed to the 60,000 sequences required to train a

supervised connectionist model. Unlike supervised models, once STORM has learnt the

grammar it can generalize to test sequences of any length or depth of embedding.

Extensions to the model are proposed to show how STORM can learn context-free grammars.

These extensions also solve the logical problem of language acquisition by recovering from

overgeneralizations without the need for negative evidence.

“Connectionism, as a radical restructuring o f cognitive theory, wall stand or fall

depending on its ability to account for human language ”

- (Pinker and Prince, 1988).

Acknowledgments

I would like to thank my supervisors, Professor Adrian Hopgood, Dr Tony Allen and

Dr Jonathan Tepper for their support and advice throughout this research. The

guidance and academic experience provided by Adrian has allowed me to develop as

a researcher in AI, while Jonathan’s wealth of knowledge in connectional linguistics

has helped to shape my perspective of this exciting field. Special thanks must go to

Tony Allen whose guidance, rigorous analysis and detailed understanding helped

mould a radical theory into a working model. I am also very grateful to Nottingham

Trent University for funding my PhD and providing a culture of academic excellence

in which to study.

I must also acknowledge the support of my parents, without whom the last three years

would have been a struggle, rather than an enjoyable learning experience.

Finally I would like to acknowledge the countless researchers whose work forms the

foundations upon which this PhD thesis is built.

Table of contents

Abstract... i
Acknowledgments.. iii
Table of contents.................................... iv
List of Figures.. vi
List of Tables... viii
List of Equations.. xi
1 Introduction..1

1.1 Research obj ectives... 3
1.2 Organization of Thesis.. 4
1.3 Contribution provided by this research..6

2 - Literature study... 8
2.1 Complexity of language with respect to acquisition.. 8

2.1.1 The formal complexity of language within the Chomsky hierarchy ... 11
2.2 Connectionist models of language acquisition...16

2.2.1 The case for connectionism... 17
2.2.2 Unsupervised connectionist learning algorithms................................... 20
2.2.2.1 Unsupervised connectionist models of language acquisition............... 24
2.2.2.2 Dynamic unsupervised connectionist models.. 26
2.2.3 Supervised connectionist learning algorithms..33
2.2.3.1 Supervised connectionist models of language acquisition.....................34

2.3 Limitations of connectionism..38
2.3.1 Arguments against biological plausibility..38
2.3.2 Arguments against connectionism for developmental cognitive
modelling.. 40
2.3.3 Learning deterministic representations using a continuous state-space

... 42
2.4 Discussion and conclusions...44

3 - Simple Recurrent SOM (SRSOM).. 48
3 .1 - Introduction.. 48
3.2 - Proposed new model... 49

3.2.1 - Architecture and algorithm for the SRSOM... 50
3.2.2 - Initial experiments to test recurrency mechanism.....................................52
3.2.3 Enhanced Graycode context representation...55

3.3 - Experimental analysis of SRSOM on simple grammars...................................58
3.3.1 - Connectionist grammar induction...58
3.3.2 - An SRSOM grammar inductor... 60

3.3.3 Experiments on the Reber grammar...63
3.3.3.1 Generation of training and test sets..64
3.3.3.2 Experimental parameters ...66
3.3.3.3 Experimental results..67
3.3.3.4 Analysis of experimental results..68

4 -ST O R M ..74
4.1 Limitations of the SRSOM - The need for state.. 74
4.2 Memory-rule based models.. 77
4.3 STORM (Spatio-Temporal self-Organizing Recurrent Map)............................. 79

4.3.1 STORM’s memorization mechanism..79

4.3.1 STORM’s rule-based construction mechanism..80
4.3.2 Operation of the temporal Hebbian learning mechanism............................ 83

4.4 Learning via functional generalization...88
4.5 Experiments.. 90
4.6 Analysis of STORM.. 97
4.7 Conclusions... 102

5 Beyond the Reber grammar.................................... ..105
5.1 Instability and Causality Loops.. 105

5.1.1 Causality loops...107
5.2 Recovery from over-generalization.. 109

5.2.1 Exception construction mechanism...I l l
5.3 Context-free grammars.. 116

5.3.1 Sub-sequence rule-construction algorithm.. 120
5.4 Conclusions... 121

6 Conclusions and future w ork... 123
6.1 Future Research...125

6.1.1 Stabilization of model... 126
6.1.2 Inflectional morphology, performance evaluation and Mealy machines

... 127
6.1.4 Experiments on more complex grammars.. 129
6.1.5 Multi-layered STORM model.. 130
6.16 Beyond linguistics - The power of functional generalization............. 132

References.. 135
Appendix A - Finite-state machine for Reber grammar.. 142
Appendix B - Glossary... 143
Appendix C - Published works.. 145
Appendix D - Examples of training and test sequences...162

List of Figures

2.1 Kohonen’s Self-Organizing Map (SOM) showing the winning neuron
for the input pattern (black) and the neighbouring neurons (grey)................. 21

2.2 Dynamic SOM buffer approach, as used in Kangus’s TSOM......................... 27

2.3 Two identical sequences of ones which have been displaced in time..............28

2.4 Recursive SOM showing how the winning neuron (black) is the best match for
the current input and the copy of the map at the previous time step................ 30

2.5 U-shaped learning curve of child performance... 35

3.1 Diagram of SRSOM showing feedback of the previous wimiing neuron’s
column and row.. 50

3.2 Finite state machine (FSM) for the Reber grammar..59

3.3 Example showing operation of the prediction algorithm................................... 62

3.4 Training and test sets artificially segregated to proportionally represent all
levels up to a specific recursive depth...65

3.5 Results from 4 test sets for a 5 x5 SRSOM trained on the Reber grammar... .67

3.6 Results from 4 test sets for a 10 x 10 SRSOM trained on the Reber
grammar.. 68

3.7 Results from 4 test sets for a 20 x20 SRSOM trained on the Reber
grammar.. 68

3.8 State diagram showing the winning neurons for each state in the Reber
grammar for a 10 x 10 SRSOM.. 70

4.1 The winning neurons for two memorized sequences that end with the same
sub-sequence ‘XSE’... 80

4.2 Illustration of the alternative winning neuron selection algorithm tracing back
through the stored sequence BTSXSE..81

4.3 Functional override in winning-neuron selection algorithm.............................. 82

4.4 Master lateral connection from the ‘S’ neuron to the ‘T’ neuron (light arrow)
and a slave lateral connection from the ‘T’ neuron to the ‘S’ neuron (dotted
dark arrow)..84

4.5 Application of negative learning rate to all of neuron 14’s lateral
connections.. 85

4.6 Application of positive lateral learning rate... 86

4.7 Mutual-activation reinforcement... 87

4.8 Results from experiment 1 showing the prediction performance on test set 1
for a 10 xio STORM model trained on trained set 1....................................... 91

4.9 Results from experiment 1 showing the prediction performance on test set 2
for a 10 xlO STORM model trained on training set 2 92

4.10 Results from experiment 1 showing the prediction performance on test set 3
for a 10 xlO STORM model trained on training set number 3 92

4.11 Results from experiment 2 showing the prediction performance on test set 1
f o r a 5 x 5 STORM model trained on training set 1... 93

4.12 Results from experiment 2 showing the prediction performance on test set 2
f o r a 5 x 5 STORM model trained on training set 2 ... 93

4.13 Results from experiment 2 showing the prediction performance on test set 3
f o r a 5 x 5 STORM model trained on training set 3... 94

4.14 Results from experiment 3 showing the prediction performance on test set 1
for a 15 x 15 STORM model trained on training set 1..................................... 94

4.15 Results from experiment 3 showing the prediction performance on test set 2
for a 15 x 15 STORM model trained on training set 2 95

4.16 Results from experiment 3 showing the prediction performance on test set 3
for a 15 x 15 STORM model trained on training set 3..................................... 95

4.17 Results from experiment on 15x 15 model using training set 1 with random
weights, but fixed training sequences presentation order.................................96

4.18 State diagram for 100% model.. 99

4.19 State diagram for 74% model...102

5.1 Diagram showing the abrupt context change resulting from the activation of a
rule..106

5.2 Illustration of Causality loop...108

5.3 Simple regular grammar that contains both rules and exceptions....................110

5.4 Illustration of the over-generalization of an exception to a rule.....................I l l

5.5 Identification of erroneously applied rule..113

5.6 Flow chart showing revised rule application algorithm to incorporate
exception handling mechanism...114

5.7 Diagram illustration lateral exception connection...115

vii

5.8 Example of two rules from a context-free grammar...116

5.9 FSM for Extended Reber grammar.. 117

5.10 Diagram showing requirement for context preservation when re-using the sub­
sequence TXS from the Extended Reber grammar 119

5.11 Diagram illustrating use of partial back-trace algorithm to identify alternative
winning neurons in sub-sequences.. 120

6.1 Multi-layered STORM model...131

List of Tables

2.1 Production rules for the Reber grammar...12

2.2 Chomsky hierarchy of grammars.. 13

2.3 Production rules for simple context-free grammar... 14

2.4 Different sequences of terminal symbols generated via application of the
production rule for non-terminal’A’... 14

3.1 The elements and corresponding winning neurons for five sequences which
were clustered using the SRSOM operating using a binary context
representation..54

3.2 Representation of the winning neurons for the 1st elements of each
sequence.. 55

3.3 Hamming distance for two sets of neurons..56

3.4 Elements and corresponding winning neurons for five sequences clustered
using the SRSOM operating with a 2D Graycode context representation.......57

3.5 Binary and Graycode representations for two winning neurons........................ 57

3.6 Example sequences generated by the Reber grammar..60

3.7 Orthogonal input vector representation for SRSOM.. 61

3.8 Symbols and corresponding winning neurons from five selected sequences
processed by the SRSOM.. 72

4.1 Example illustrating the need for state in order to generalize............................ 75

4.2 Example of how the future-context of sequences can be used to identify states
in the grammar... 78

4.3 Functional Generalization example... 89

4.4 Experimental parameters for experiment 1...91

4.5 Activations from a 1 Ox 10 model that achieved 100% prediction performance
on the Reber grammar...98

4.6 Activations from a 10x10 model that achieved only 74% prediction performance
on the grammar...100

Sequences from the extended Reber grammar illustrating STORMs inability to
learn centre-embeddings..118

x

List of Equations

2.1 Formal definition of a grammar... 12

2.2 Example of a production rule from a CSG.. 15

2.3 Winning neuron selection algorithm for SOM..21

2.4 Weight update algorithm for SOM...22

2.5 Neighbourhood function for SOM.. 22

2.6 Typical equation for LIN neuron..29

2.7 Recursive SOM’s vector of activities algorithm...30

3.1 Winning neuron selection algorithm for SOM..51

3.2 Weight update algorithm for SOM...51

3.3 Neighbourhood function for SOM...51

3.4 Algorithm to calculate the distance between two neurons.................................51

1 Introduction

The ability to communicate through spoken or written language is considered by

many philosophers to be the hallmark of human intelligence (MacWhinney, 2002a).

Consequently, since the inception of artificial intelligence, one of its central goals has

been to develop systems capable of automatically acquiring and modelling human

language. This is particularly appropriate when one considers that most information

processing systems either communicate directly with humans or process stored

representations of language. However, current natural language processing (NLP)

systems possess only elementary abilities to interpret, respond to and ultimately

understand human language. For example, Internet search engines typically rely on

finding information by simple matching keywords. Such a brute force approach often

identifies many irrelevant web pages that happen to contain multiple instances of the

keywords, but actually pertain to unrelated topics. For example, searching the web for

the keywords STORM and A1 identifies web pages discussing topics ranging from

drainage and music to DVDs. Even successful information extraction systems, such

as JASPER (Journalist’s Assistant for Preparing Earning Reports) (Andersen et al,

1992) rely on frame and slot approaches driven by simple pattern matching. Thus

despite the growth in information processing, few systems possess the deep

intelligence necessary to understand natural language.

The main limitation of all current NLP systems is a prerequisite for an incalculable

amount of language and domain specific knowledge. The complex and fickle rules of

language, which allow people to effortlessly parse recursive sentences and to resolve

anaphora, are very hard to manually specify using computational algorithms.

Consequently researchers have sought to build models capable of automatically

1

learning and representing language (Broeder and Murre, 2002). However, designing an

automated language acquisition system is a formidable task and despite decades of

research a viable solution remains elusive (Andersen et al, 1992).

The problem of language acquisition is considered so complex, that many researchers

consider the very concept to be a paradox (Jackendoff, 2 0 0 2) Most notably,

Chomsky argues that the input to which children are exposed is insufficient for them

to determine the grammatical rules of the language (Chomsky, 1965). This argument

for the poverty of stimulus theory is based on Gold’s theorem (Gold, 1967), which

proves that most classes of languages cannot be learnt using only positive evidence.

This proof is based on the apparent inability of a learner to recover from the effect of

overgeneralization. The argument being that without explicit negative evidence (i.e. a

teacher identifying ungrammatical words such as runned) learners cannot restrict their

model of the grammar to only allow legal sentences.

Gold’s analysis and proof regarding the unfeasibility of language acquisition forms a

central conceptual pillar of modem linguistics. It is also the basis for Chomsky’s

theory of Universal Grammar (Chomsky, 1965), which proposes that humans have an

innate propensity for language. However, recent advances in a discipline known as

connectionism, also known as artificial neural networks (ANNs), have called the

mainstream natavist theories of linguistics into question by demonstrating that

biologically inspired learning models can conform to aspects of the human language

acquisition process (Rumelart and McClelland, 1986). However, despite the optimism

of researchers in this emerging field, connectionist models do have a number of

1 See (MacWhinney, 2004) for a discussion of the paradox of language acquisition from a connectionist
perspective.

2

serious limitations. These include the inability of connectionist models to represent

symbols (Marcus, 1998), a limitation that prevents them from representing abstract

relationships such as grammatical states and also a questionable ability to learn from

sparse data (Hadley, 1994; Hadley and Cardei, 1999).

1.1 Research objectives

This thesis aims to investigate the capabilities of unsupervised connectionist models

in the task of grammar induction. Unsupervised approaches to connectionism have

remained in the shadow of the widely studied class of supervised connectionist

learning algorithms. One of the reasons for the popularity of supervised algorithms is

that such approaches can easily be extended to dynamic models in order to solve

temporal problems. While a small number of notable unsupervised dynamic

connectionist models have been proposed (Barreto and Araujo, 2001) none of them

have been powerful or efficient enough to compete with supervised connectionist

models. To date it is believed that no unsupervised connectionist models have been

successfully applied to grammar induction. Therefore, the primary objective of this

research is to determine the viability of using unsupervised connectionist models for

language acquisition. This will be achieved by developing a model capable of

inducing a representation of a grammar using only a set of positive examples. The

investigation will focus on aspects of connectionist modelling that currently have not

been adequately solved using supervised learning algorithms.

3

1.2 Organization of Thesis

This thesis is structured as follows. Chapter 2 explains the problem of language

acquisition and discusses the symbolic and connectionist modelling paradigms. This

is followed by a discussion of unsupervised connectionist modelling and leads into a

review of the significant unsupervised models in the literature to date. Chapter two

concludes with the identification of promising avenues of investigation that may lead

towards the research objectives.

Chapter 3 introduces the Simple Recurrent Self-Organizing Map (SRSOM), an

unsupervised recurrent connectionist model that extends Kohonen’s SOM (Kohonen,

2001) into the temporal domain. The chapter details the design, analysis and

refinement of this model. This is followed by experimental analysis of the SRSOM on

a simple regular grammar. Chapter 3 concludes with a critical analysis of the SRSOM

and the identification of a significant limitation in the model which prevents it from

adequately learning the grammar.

Chapter 4 reviews the limitations of the SRSOM and provides an explanation as to

why any model seeking to learn the underlying rules of a grammar must form a state-

based input representation. The chapter then focuses on memory-rule based models

(Pinker, 2000; Marcus, 2000), as a possible method of achieved this required state-

based input representation. Chapter 4 presents STORM, a memory-rule based

unsupervised connectionist model, based on the SRSOM. The model is

experimentally evaluated on the same similar grammar induction problem as the

SRSOM. These experiments involve testing various sized STORM models on a

number of randomly generated training and test sets, in order to measure the model’s

4

grammar induction abilities. An activation analysis shows that STORM is indeed

capable of forming a state-based input representation and learning the underlying

rules of a regular grammar. Chapter 4 concludes with a discussion of the model and

the experimental results, with respect to the research objectives.

Chapter 5 presents design extensions to the STORM model that explain how the

model can be both stabilized and extended to learn more complex grammars. The

chapter shows that by optimizing its representation of sub-sequences, STORM can

easily be enhanced to learn context-free grammars and recover from

overgeneralizations. This is an important aspect of the research and it is shown how

the use of an exception handling mechanism will allow STORM to provide an elegant

solution to the logical problem of language acquisition. Chapter 5 will also discuss

limitations in STORM’s learning algorithm that may explain certain instabilities in

the model’s behaviour.

Finally, chapter 6 reviews the research and evaluates the contribution of STORM,

with respect to the original research objectives. The chapter highlights the model’s

novelty and discusses how it has filled a gap in cognitive modelling by combining the

abstract representational power of traditional symbolic approaches with the induction

abilities of connectionist models. Future research is proposed that will involve

initially stabilizing the model, before implementing the exception handling

mechanism discussed in chapter 5. A regime of experiments is proposed to

demonstrate how STORM will exhibit the U-shaped learning curve (Brown, 1973)

characteristic of human early language learners. The proposal highlights how the

model’s representations can be modified by linking its winning neurons representing

5

input symbols to an output alphabet, effectively turning STORM into a Mealy

machine (Hopcroft and Ullman, 1979). In doing so this allows meaningful predictions

to be made by ensuring that the model’s input representations are grounded on more

than just abstract symbols.

1.3 Contribution provided by this research

The work presented in this thesis fulfils the research objectives by showing that an

unsupervised connectionist model can be successfully applied to the problem of

language acquisition. With respect to this problem, the research challenges traditional

natavist theories of linguistics by showing that the rules of a grammar can be learnt

using only positive examples and a sparse training set. More importantly, a design

based on the STORM model is used to explain why negative evidence is unnecessary

in order to account for recovery from overgeneralization in a memory-rule based

model. This poses a possible answer to the age-old question, formalized by Gold’s

theorem, of how a language learner can recover from overgeneralization without the

need for explicit negative evidence.

Outside the context of linguistics, STORM is a major contribution to connectionism

in itself. By proving that an unsupervised connectionist model can successfully be

used in temporal sequence processing, this research may help diversify the field by

drawing unsupervised learning algorithms out of the shadow of their supervised

counterparts. STORM’s unsupervised learning mechanisms make it more biologically

plausible than equivalent supervised models and may therefore help to counter some

of the key arguments (Jackendoff, 2002) against connectionist approaches to

cognitive modelling. STORM’s induction and functional-generalization abilities may

6

potentially reveal interesting structures and relationships in many complex dynamic

problems, such as financial forecasting (Yao and Tan, 2001) and robot planning and

control (Platt et al 2003).

In the context of memory-rule based models and dual-based learning mechanisms,

STORM’s rule based approach to learning provides a domain independent, general

puipose approach to rule construction. While memory-rule based models have been

previously proposed (Marcus, 2000), such models have either been theoretical or used

hard-wired rules. STORM’s criterion of using regularities in the future-context to

construct rules therefore provides an answer to the advocates of memory-rule based

models, who have long searched for a mechanism by which to learn rules.

7

2 - Literature study

This chapter begins with a discussion of the complexity of the language acquisition

process. This details the paradox of language acquisition and explains the mainstream

linguistic perspective regarding the unfeasibility of this acquisition process.

The complexity of the computational mechanisms involved in the language

acquisition process is described in relation to the Chomsky hierarchy (Chomsky,

1959). This is discussed along with pertinent terminology from automata theory

(Hopcroft and Ullman, 1979). The main body of this chapter discusses connectionism,

focusing on its biological basis along with its applicability to modelling language

acquisition. The two main connectionist learning paradigms of supervised and

unsupervised learning are discussed, along with notable models of language

acquisition for each respective paradigm. The limitations of connectionism are

discussed, focusing on the shortcomings of the popular supervised connectionist

learning paradigm. The chapter concludes by highlighting the potential of

unsupervised connectionist models with respect to language acquisition.

2.1 Complexity of language with respect to acquisition

The apparent ease with which children acquire language is testimony to the

tremendous power of the human mind. This ability to communicate through either

spoken or written language is considered by many philosophers to be the hallmark of

human intelligence. The general term ‘linguistics’, used to define the study of

language, encapsulates many areas of study including syntax, semantics and

pragmatics (Jackendoff, 2002). It also draws on many disciplines including

psychology, neuro-biology, sociology and computer science. One of the original and

arguably most important fields of linguistic research involves the study of syntax.

Despite the varying theories regarding the syntactic structure of language (Chomsky,

1981; Pollard and Sag 1994), the objective of research in this field has always been to

model the rules which constrain the regularities in language. These regularities, such

as the ‘-ed’ ending for regular verbs and the gender of pronouns in particular contexts,

can be found throughout all levels of language. Entire textbooks are dedicated to rules

and exceptions describing the regularities in just small sub-domains of the English

language, such as inflectional morphology (Stump, 2001).

While formal linguistic theories differ in their views regarding the acquisition of the

rules governing the structure of language, a major objective of linguistic research

involves understanding and describing such rules. The development of an automated

language acquisition system capable of learning the rules and structure of language on

a large scale would be viewed by many researchers as the holy-grail. Such a model

would allow the large scale induction and manipulation of knowledge directly from

the countless existing electronic databases and other human-readable media.

Consequently, improvements in the ability to model and therefore understand natural

language, would impact on all applications of AI, from translation (Arnold et al,

1993) and natural language understanding (Allen, 1995) to speech recognition

(Beaufays et al, 2001).

Language was described by the philosopher Wilhelm von Humboldt as the infinite use

o f finite media (Humboldt, 1836/1972). The power to combine known words, within

the constraints of syntax and semantics, allows for the expression of ideas in a

potentially infinite number of different forms. Due to this combinatorial power of

9

natural language sentences with similar meanings can be expressed in a potentially

infinite number of different ways. If a model could learn a representation of even the

derivational rules of the English language (assuming such acquisition is possible in

isolation), then it would make it significantly easier for a natural language processing

system to parse sentences. For example, in an NLP security application it would be

highly desirable to automatically identify the similar meaning in the following two

sentences; “The diplomat will be targeted by a suicide bomber hidden in the crowd

and assassinated at precisely six o’clock”, “At exactly six o’clock the suicide bomber,

who will be hidden somewhere in the crowd, will assassinate the diplomat”. Thus if a

language acquisition model could learn the rules governing the transformation of

sentences, it would enable an NLP system to easily identify the underlying form of all

sentences.

Many researchers consider the problem of language acquisition to be a paradox.

Advocates of the poverty of stimulus theory argue that the fragmentary evidence

available to language learners is too inconsistent and incomplete to allow induction of

language without some innate predisposition towards the acquisition of language.

This creates a paradox, because children who are raised in social environments are

almost always able to learn their native language, while those who are isolated from

linguistic input as children do not ever acquire a proper language as adults

(Jackendoff, 2002). Therefore, if the linguistic input that children are exposed to

really is insufficient then why do children who are exposed to this input learn

language? The poverty of stimulus theory is supported by Gold’s theorem, which

proves (under strict assumptions) that an infinite grammar cannot be learnt using only

positive examples due to the problem of overgeneralization. This theorem and its

10

implications for language acquisition, form the central conceptual pillar of modern

linguistics. As such, Gold’s theorem is also the focus of much debate among those

who view the process of language acquisition as a learning process (MacWhinney,

2004).

Gold’s theorem and the resulting paradox of language acquisition formed the basis of

Chomsky’s theory of universal grammar. This controversial and widely

misinterpreted theory is concerned with the hmnan innate pre-specification to

language acquisition. However, rather than stipulating that all aspects of language

from the lexicon to the grammatical rules are imiate (as its name may suggest), the

theory of universal grammar stipulates that the brain’s language acquisition capacity

is innate. Universal grammar attempts to sidestep the poverty of stimulus theory by

proposing that language learners are born with a functional pre-specification to

grammar acquisition. This innate knowledge limits the form of an acquired grammar

to that of possible human languages and also contains a strategy by which to select a

grammar compatible with the linguistic input.

2.1.1 The formal complexity of language within the Chomsky hierarchy

The study of language within the discipline of computer science (computational

linguistics) led to the creation of a formal modeling technique known as generative

grammars (Chomsky, 1959). By formalizing a set of production rules, such grammars

provide a model that describes all the legal sentences in a language.

Equation 2.1 shows that a grammar is composed of four distinct elements; sets of

terminals, non-terminals, production rules and a start symbol. Terminal symbols in a

11

grammar consist of elements that cannot be broken down into sub-elements (i.e.

words such as “man” or “walk”). Non-terminals however can be broken down and are

used to represent phrases and parts of speech (i.e. nouns or verbs). The production

rules in a grammar specify which non-terminal symbols can be re-written into which

terminal symbols.

G = {1,N,P,S}

Equation 2.1 - Formal definition o f a grammar. The X symbol is a set o f terminal
symbols, N is a set o f non-terminal symbols, P is a set ofproduction rules and S is the
start symbol.

In table 2.1 the production rules for the Reber grammar (Reber, 1967) show how a set

of non-terminal symbols can be replaced with terminal symbols to generate a

potentially infinite number of unique sentences. The grammar is represented

graphically by the finite state diagram in pullout appendix A. The Reber grammar,

which is also used in the experiments in chapter 4, was chosen because it was

originally used to investigate implicit rule-learning in human subjects (Reber, 1967).

Non-terminals Productions rules
S SI S2 S4 S6
S SI S3 S5 S6
SI T S2
SI P S3
S2 SS2
S2 X S 4
S3 T S3
S3 VS5
S4 A S3
S4 S S6
S5 P S4
S5 VS6
S6 E

Table 2.1 - Production rules for the Reber grammar. Each non-terminal symbol (left
column) can be replaced by the set o f terminal and non-terminal symbols in the
corresponding production rule (right column).

12

The Chomsky hierarchy (table 2.2) shows that generative grammars can be

categorized into four types according to their complexity. As shown in table 2.2, the

simplest type of grammar is the class of regular grammars (which include the Reber

grammar). This simple type of grammar is characterized by the single non-terminal

symbol on the left hand side of the production rule and the limit of one terminal

symbol on the right. The Reber grammar is known as a memory-less grammar

because the next valid states can always be predicted given the current grammatical

state (i.e. knowledge of previous symbols in the sequence is not needed).

Grammar type Name Alias
0 Recursively enumerable

grammars
Unrestricted phrase
structure grammars

1 Context sensitive
grammars (CSG)

2 Context free grammars
(CFG)

Push down automata

3 Regular grammars Finite-state grammars
(FSG), deterministic finite
automata (DFA)

Table 2.2 — Chomsky hierarchy o f grammars.

Context-free grammars (CFGs) occupy the next level up the hierarchy from regular

grammars. They are characterized by their production rule that allows a non-terminal

to be replaced by a set of any number of terminals and non-terminals, including the

same non-terminal that is being replaced. Because context-free grammars allow for

the replacement of non-terminal symbols with more than one terminal and non­

terminal, any computational mechanism capable of processing context-free languages

must incorporate a memory. This requirement arises because allowing non-terminal

symbols to occur within the right hand side of other production rules, introduces an

embedding.

13

Non-terminals Production rules
S A
A z B z
A y & y
B x C v
C u A i
C k

Table 2.3 - Production rules for simple context-free grammar.

As shown in table 2.3, the non-terminal4 A’ can be replaced by the terminal *z\

followed by the non-terminal 4B’ and a terminal 4z \ However, because the non­

terminal 4B’ can itself be replaced by other terminals and non-terminals (including the

original non-terminal4 A ’), the first terminal 4z’ may be separated from the last

terminal 4z’ by potentially any number of symbols (table 2.4). Therefore, when

processing sentences generated using non-terminal4 A’, the prediction of the next

symbol depends not just on the current state, but also upon previous symbols. For

example in sequences 1 and 2 in table 2.4 the prediction of whether the last symbol is

a 4z’ or a 4y’ depends upon which symbol occurred first in each sequence. This

dependency becomes more complex as the level of embedding increases, as shown in

sequence 3.

Sequence of terminal symbols

1 z x k v z

2 y x k v y

3 z x u y x k v y i v z

Table 2 .4 - Different sequences o f terminal symbols generated via application o f the
production rule for non-terminal’A ’ (table 2.3). The choice o f the second terminal
symbol in the production rule for non-terminal ‘A ’ can be determined by the first
terminal symbol.

14

The name context-free derives from the freedom this grammar provides to replace the

left hand side of a production rule with the right hand side, regardless of the context

the left hand side appears in. CFGs are widely used in NLP programs and most

parsers treat English as a context free language (Allen, 1995).

Level one of the Chomsky hierarchy is occupied by context-sensitive grammars. As

their name suggests these grammars allow restrictions on the replacement of the left

hand side of the production rule. This allows a production rule to be applied only in

context-specific circumstances (equation 2.2).

xAy => Xabcdy

Equation 2.2 - Example o f a production rule from a CSG. The non-terminal ‘A ’ is
replaced by the set o f terminals ‘abed’ only where a terminal ‘x ’ is followed by a
terminal ‘y ’.

The top level of the Chomsky hierarchy is occupied by recursively-enumerable

grammars. They are also called unrestricted phrase structure grammars because either

side of their production rules can contain any sequences of terminals and non­

terminals. These powerful grammars are believed to be a close approximation of

natural language (Chomsky, 1959) and their use is unique to human beings (Fitch and

Hauser, 2004). Research has shown that monkeys, whom are able to learn simple

regular grammars, appear incapable of mastering the rules found in unrestricted

phrase structure grammars (Fitch and Hauser, 2004).

15

2.2 Connectionist models of language acquisition

Traditional symbolic linguistic models sidestep the process of language acquisition by

focusing on describing linguistic performance using sets of rules and exceptions. Such

a top-down approach to cognition, attempts to work backwards from formal linguistic

structure towards human processing mechanisms. While symbolic approaches are

very powerful, the resultant models are usually inflexible and cannot easily be applied

to general purpose linguistic problems (Corrigan and Iverson, 1994). This inflexibility

arises from their hardwired rules and exceptions which are stipulated by the system’s

designer, rather than learnt by the model itself. Consequently such systems require

new sets of rules and exceptions when applied to different problems.

In the past fifteen years an alternative approach to cognitive modeling has once again

gained popularity among researchers. Known as connectionism, this empirical field of

study uses models whose design is biologically inspired by the operation of the

human brain and nervous system. In contrast with symbolic models of cognition,

connectionism uses a bottom up approach to cognition that models the learning

process itself. Connectionist models are well suited to the problem of language

acquisition because they learn the solution to a problem via a set of examples.

Connectionist models also provide a means to overcome the theoretical limitations on

language acquisition imposed by Gold’s theorem. While Gold proved that an infinite

grammar could not be learnt from only positive examples, this proof was based on the

assumption that successful acquisition would result in a deterministic grammar.

Therefore acquisition could only be said to be successful if the language learner

possessed a perfect representation of the grammar and therefore never made any

16

mistakes regarding its use. (Homing, 1969) exploited this unrealistic assumption to

show that language can be learnt from only positive examples if the language

identification criterion uses a stochastic probability of success. This stochastic, as

opposed to deterministic, view of grammar induction is supported by much language

acquisition research, including U-shaped learning curves. Such research suggests that

learning proceeds through stages, in which linguistic proficiency increases. However,

it also shows that how ever proficient native speakers become, they still occasionally

make grammatical errors. Thus no one possesses, or is able to employ, a perfect

knowledge of grammar.

2.2.1 The case for connectionism

A large body of evidence exists to support connectionist models of cognition. This

evidence comes from neuro-biological and psycho-linguistic research conducted over

the last half of this century. Such evidence disputes the views of traditional

researchers such as Fodor (1983), who argue that language, along with many other

higher cognitive functions, must be innate. A primary natavist argument is that

cognitive functions such as language exist in modules (Fodor, 1983). It is suggested

that the cognitive micro-circuitry of these modules is genetically pre-specified to

perform particular functions.

Over the past two decades the science of genetics has evolved dramatically,

cumulating with the complete mapping of the human genome in 2001 (Venter et al,

2001). Modern geneticists view the genome of regulatory organisms, such as human

beings, as a recipe of ingredients, as opposed to a specific blueprint. Individual genes

rarely control specific traits such as eye colour, but rather work along with other

17

genes and can be involved in multiple functions. Indeed, such a coding strategy is

necessary given it is believed that the human genome has only around 25,000 protein-

coding genes (Venter et al, 2001), while the human body itself is made up of at least

100 trillion cells. Furthermore, humans share over 98% of their DNA with

chimpanzees (Elman et al, 2001). Given that it is widely established that only humans

posses the expressive power of language (Chomsky, 1972), any imiate specification

for a pre-programmed language module would have to share less than 2% of the

human genome, along with every other characteristic distinguishing humans from

chimpanzees. This representational limitation of the human genome calls into

question imiate theories involving pre-specified language, due to the huge burden it

would impose on the genome. Furthermore, the complexity of gene interactions and

the lack of a genetic blueprint cast serious doubt on nativist theories which rely

heavily on pre-specified knowledge and rules, due to issues of representation.

A further counter-argument against innately pre-specified cognitive modules regards

recent neuro-biological evidence concerning cortical plasticity (Elman et al, 2001).

Lessoning experiments on animals (Webster et al, 1995) have shown that when the

usual area responsible for a specific cortical function is removed in infancy,

alternative areas take over. However, when the same area is removed in adulthood,

the lessoned animals never recover the associated cognitive functions. Related

experiments support the view of cortical plasticity by showing that when inputs from

the visual cortex are rewired to the auditory cortex, similar organization is observed as

to that which occurs in the visual cortex (Roe et al, 1992). Research into cortical

activity during language processing tasks shows that the organization of cells

18

involved in language use varies widely between individuals (Damasio and Damasio,

1992), thus further weakening the argument for imiate modules.

The cognitive plausibility of comiectionist models has received evidential support

based on studies of brain damaged subjects. In cognitive science, the study of brain

damaged individual’s performance on specific tasks has been very helpful in

understanding the cognitive mechanisms involved (McLeod et al, 1998). Linguists

have experimented on brain damaged subjects in order to gain an understanding of the

mechanisms involved in language (Bates et al, 1997). However, traditional symbolic

models of cognitive processes have found it very hard to account for the types of

performance errors caused by brain damage (McLeod et al, 1998). In contrast many

connectionist models have been proposed to account for brain damage (Hinton and

Shallice, 1991; Farah and McClelland, 1991; Cohen and Servan-Schreiber, 1992).

Hinton and Shallice (1991) used a comiectionist model that mapped visual

representations of words onto their associated semantic representations. By lessoning

trained models they produced similar visual-semantic errors to that of dyslexics (i.e.

the word night produces the semantic representation for sleep). Their analysis of this

model proposes that the performance errors observed in human brain-damaged

subjects can best be explained by a distributed attractor based model.

Connectionist models can be broadly categorized into two distinct types based on the

principles that govern their learning algorithms. The following two sections review

supervised and unsupervised approaches to language acquisition, highlighting

significant models in each respective paradigm.

19

2.2.2 Unsupervised connectionist learning algorithms

Unsupervised connectionist learning is an approach to cognitive modelling whose

operating principles remain close to those of biological neural networks. Unlike their

supervised counterparts, unsupervised models don’t require an external teacher signal

that stipulates a desired output or behaviour. The majority of unsupervised models are

derived directly from Hebb’s law (1949) and self-organize in response to external

input stimuli. Hebb showed that learning occurs via the correlation of activity

between neurons (i.e. nodes that fire together, wire together). In an unsupervised auto-

associator (McLeod et al, 1998) this may take the form of strengthening the synapses

between neurons2 representing an input pattern and the corresponding output neurons

representing that same pattern. Whereas in an unsupervised competitive model,

learning occurs by strengthening the synapses between neurons representing the input

pattern and the neuron that is the best match for that input pattern. Unsupervised

learning is more biologically plausible than its supervised counterpart because it uses

locally available information, between a neuron’s axon and dendrite, to update the

weights.

Unsupervised learning doesn’t require any external target signal as it is driven purely

by the principles of self-organization. The organization of an unsupervised neural

network is governed by the relationships that exist within the data being processed,

rather than by forcing a relationship between the data and some predefined target

domain. The dominant comiectionist paradigm of supervised learning concentrates

solely on how the data can be used to solve a specific problem. In doing so it makes

the assumption that any relevant relationships that hold amongst the data will reveal

2 The term neuron is used to refer artificial and biological neurons interchangeably.

20

themselves in the course of solving the problem. In contrast, unsupervised learning

takes the opposite approach, concentrating instead on relationships in the structure of

the data itself and potentially revealing internal relationships that may be key to

solving the problem at hand.

The most common unsupervised connectionist model is Kohonen’s self-organizing

map (SOM). As shown in fig 2.1, this model usually consists of a rectangular grid of

neurons, each of which has weights connecting it to a layer of input neurons. This

model mimics the competitive approach to learning that is believed to operate

throughout the central nervous system and brain.

Input
pattern

Fig 2.1 -Kohonen ’s Self-Organizing Map (SOM) showing the winning neuron for the
input pattern (black) and the neighbouring neurons (grey).

In competitive learning, a group of neurons compete for the same input signal. The

particular neuron which produces the highest activation, with respect to the input

signal, is deemed the winner (equation 2.3).

iV=arg(miny (£ | ^ , -W (j I)) (2-3)

21

The winning neuron and perhaps also its close neighbours participate in learning. This

process involves modifying a neuron’s synaptic connections in order to make it a

better match for to the input in question (equation 2.4). This has the effect of

clustering similar inputs together on the map. a is the learning rate coefficient and is

typically 0.1 or less. The learning rate coefficient is decreased, usually linearly,

throughout training.

wtj 0t)+ahj (X (t) -W tJ (0) (2.4)

A neighbourhood function h is used which has the effect of moving the weight

vectors of neurons adjacent to the winner closer to the input vector than those of

neurons further away from the winner. A typical function used to define the

neighbourhood is the Gaussian function shown in equation 2.5. This function uses the

distance d between the wimiing neuron and the neuron in question to calculate the

influence of the neighbourhood function so that it is proportional to the distance

between the two neurons. The parameter a represents the width of the Gaussian

function (in neurons) and controls how many neurons participate in training.

_ (2.5)
" , j ~ ^ v2cr2 '

h,j =exp(— —)

During training, the neighbourhood is reduced from a value covering approximately

half the number of neurons in the map down to a value effecting one neuron. The

SOM is trained with input vectors, presented in random order, either for a preset

number of epochs or until the network has converged (i.e. when little or no further

weight changes occur). The average quantization error may be used as a measure of

convergence and involves measuring the distance between an input vector and the

weight vector of the winning neuron. However, most SOM models are trained for a

22

preset number of epochs. Kohonen (2001) recommends that this training should be

carried out in two phases; a convergence phase and a fine-tuning phase. In the

convergence phase, the SOM is trained with a relatively high learning rate of 0.1 for

1000 epochs. Both the learning rate and the neighbourhood are decreased throughout

training. The fine-tuning phase employs a fixed learning rate of 0.01 and a fixed

neighbourhood of 1 is used. The number of epochs in the second phase should ideally

be 500 times the number of neurons in the model (Kohonen, 2001).

The competitive approach to learning used by the SOM is grounded in a large body of

neuro-biological research which shows that a topological organization is preserved

between the central nervous system and the receptors on sensory organs (Kohonen,

2001). For example, a tonopopic map can be found in the auditory cortex in which the

organization of cells reflects the pitch and frequency of tones received by the

listener’s ear (Kohonen, 2001). However, these order-preserving maps are not limited

to representing spatial relationships. Neural-imaging research has shown that more

abstract, geographical maps can be observed in the hippocampus of rats (Olton, 1977,

cited in Kohonen, 2001). Unlike their supervised counterparts, unsupervised models

make no prior assumptions about classes of data being clustered. This makes them

very powerful for exploring data where the featural characteristics are unknown or

where manual construction of input and target vectors is not possible. SOMs are also

used as a visualization tool, due to their characteristic ability to map relationships in

the data onto a 2D grid. SOMs have been applied in various real world problems,

including process monitoring (Kasslin et al, 1992), pattern recognition (Kohonen,

2001) and robot arm control (Ritter et al, 1992).

23

Despite the compelling neuro-biological evidence in support of competitive learning

and the success of models such as the SOM, far less research has been carried out into

the field of unsupervised connectionism than its supervised counterpart.

2.2.2.1 Unsupervised connectionist models of language acquisition

The numbers of unsupervised comiectionist models that have been applied to

language acquisition are eclipsed by the number of equivalent supervised models that

dominate the literature. However, there are a few significant unsupervised models that

are relevant to this research. As with other applications in unsupervised

connectionism, the majority of language acquisition models are based on the SOM. In

(Ritter and Kohonen, 1989) the SOM was applied to producing context-maps. By

clustering representations of input words along with both the immediately preceding

and following words, such models are able to capture the statistical occurrences of

words in specific contexts. This allows the formation of so called context maps, in

which nouns and verbs are mapped into different regions of the map.

Notable research into context maps includes experiments involving the clustering of

natural text taken from Usenet newsgroups on the Internet (Kohonen, 2001). Results

from these experiments showed that context maps were very successful at producing

closely clustered categories of related words (an effect that is highly desirable in areas

of NLP such as data mining (Craven and Shavlik, 1997)). Context maps have also

been used as a tool for visualizing the semantics of words formed using a collection of

text from Grimm fairy tales (Honkela et al, 1995). Larger scale experiments have also

been performed by Langus and Kohonen (Lagus et al, 1999) that involved visualizing

entire document collections using the WEBSOM model.

24

Context maps operate by producing clusters of words based on the statistical

frequency of their usage. They effectively rely on surface similarities and make no

attempt to model the underlying structure of language. In order to perform larger scale

language acquisition tasks such as grammar induction or parsing, a context map

would need to represent all relevant input words in a sentence simultaneously (i.e. a

buffer). This would result in the problem o f 2 (Jackendoff, 2002) (i.e. how to

internally represent multiple instances of the same word) and also the general problem

of how to determine the length of the buffer. Therefore, due to their static nature,

context maps may be inappropriate for many language acquisition tasks.

MacWhimiey (2002b) employed a hybrid SOM based model in the task of lexical

acquisition. The model was proposed as a means of overcoming computational

problems encountered in distributed supervised lexical acquisition models. The task

of acquiring words is treated as a process of associating phonological features with

the respective semantic representations. MacWhinney’s model achieved this by used

two SOMs and a Hebbian learning mechanism (Hebb, 1949). The first SOM clustered

the phonological inputs, forming an auditory map, while the second SOM organized

itself using the semantic inputs. The Hebbian learning mechanism was then used to

associate the auditory forms of a word in one map, with that word’s semantic

representation in the other map. The model was able to successfully learn 6,000

sound-meaning patterns, therefore significantly superceding the capabilities of

equivalent distributed models. The model was also successfully applied to the

problem of learning inflectional morphology (MacWhinney, 2002b).

25

The power of MacWhinney’s model is derived from its localist architecture, which

provides stability by representing lexical items in a discrete manner. This allows the

model to overcome many of the problems associated with purely distributed

representations and scale up closer to natural language. However, the model is not

designed to process dynamic sequences and therefore, in its current form, it would not

be suitable for language acquisition tasks such as grammar induction.

Another notable unsupervised model is Hadley’s semantic parser (Hadley and Cardei,

1999). This model uses both self-organizing and Hebbian based learning to produce

semantic parses for both simple and complex sentences containing active and passive

verbs. Representations of lexical items presented at the input layer are fed into a

SOM, along with inputs from a feature layer. The activations from the SOM form

input to the output layer, along with direct connections from the input layer. This

output layer contains nodes which represent concepts and roles (ex. “love”, “cats”,

“see” and “mice”). During training the model learns associations between sentences

presented at the input layer and its corresponding meaning, which is presented to the

output layer. While technically speaking this is a supervised model, its use of self­

organization and Hebbian learning demonstrate that the mechanisms used in

unsupervised learning algorithms can be successfully employed in the language

acquisition process.

2.2.22 Dynamic unsupervised connectionist models

While relatively few unsupervised connectionist models have been applied to the

problem of language acquisition, numerous such models have been applied to other

similar problems involving temporal sequence processing (TSP) (Barreto and Araujo,

26

2001). These models typically extend the SOM into the temporal domain using

various short term memory mechanisms. Given the relation between TSP and

language acquisition, these dynamic unsupervised connectionist models are highly

relevant to the subject of this thesis. Therefore, this section will briefly review the

significant dynamic connectionist models in the literature.

X(t-n)

tr
| X(t-2)

tr
X(t-1)

tr1 X(t) J

ooooo
0 0 0 0 0 ooooo
0000 oooo

Fig 2.2 - Dynamic SOM buffer approach, as used in Kangus’s TSOM.

Kangas’s TSOM (1990) was an early dynamic extension to the SOM which used a

fixed size buffer that allowed it to cluster sets of inputs, as opposed to individual input

clustering. This buffer or sliding window approach (fig 2.2) is the simplest type of

short-term memory mechanism. It involves the use of a buffer containing the n most

recent inputs. The buffer in fig 2.2 is treated like a shift-register, with new inputs

being added at the right, while inputs already within the buffer are shifted to the left.

This approach essentially maps time onto space, converting a temporal sequence into

a spatial pattern. The neural network can then process this pattern in the same manner

as any other spatial pattern.

27

The major limitation of the temporal window approach is that the choice of window

size is problem dependent and therefore needs to be selected via a process of trial and

error. If the window is too big, then as well as being computationally intensive the

model may be swamped with irrelevant data. Conversely, if the window is too small

then critical past inputs may be missing, preventing the model from making a correct

prediction / classification. Another fundamental problem with a fixed buffer approach

is the inability to distinguish a relative temporal pattern from an absolute temporal

pattern (Elman, 1990). For example, if the model uses a buffer of eight inputs then the

two sequences shown in fig 2.3 will be treated separately.

[0 0 0 1 1 1 0 0]

[0 1 1 1 0 0 0 0]

Fig 2.3 — Two identical sequences o f ones (111) which have been displaced in time.

Another notable dynamic SOM which employed buffers is Kohonen’s Hypermap

(Kohonen, 1991). This model uses multiple buffers, each of which centres on a

specific input and holds contextual information at an increasingly higher level of

abstraction. The model uses the highest level buffer to identify the general region on

the map and then uses lower level buffers to narrow down the winner to a specific

neuron. While the Hypermap is a very powerful model, it is computationally intensive

due to its use of multiple buffers and corresponding weights. This computational

intensity would be compounded as the number o f neurons in the map is increased.

Additionally, despite using multiple buffers the Hypermap is still subject to the

problem of distinguishing between absolute and relative temporal patterns.

28

Ill order to overcome the limitations posed by buffers, further dynamic extensions to

the SOM employ leaky integrator neurons (LINs) (Barreto and Araujo, 2001). Also

known as dynamic neurons, LINs maintain a potential, akin to the membrane activity

in a biological neuron. Their current potential is integrated with the input to produce

the neuron’s output value, which also becomes the new potential. The integration

function has the effect of decaying information about past inputs and integrating this

with information about the current input. A typical equation for a LIN neuron is

shown in equation. 2.6.

P,(0 = ^ (f - l) + * #(0 (2.6)

Where Pj (t) is the potential of node i at time t, X j (t) is the input value for node i at

time t, X is the decay coefficient and Pj (t-1) is the potential of node i at the previous

time step. Chappell and Taylor’s Temporal Kohonen Map (TKM) (1993) and Varsta’s

Recurrent SOM (RSOM) (Varsta et a l, 1997) both use LINs to capture the SOM’s

outputs and inputs, respectively.

The major advantage of LINs over buffers is that inputs can be presented to the

network one at a time as they appear in the sequence. This both eliminates the

problems associated with the window size and also reduces the number of trainable

weights needed. LIN’s have a potentially infinite temporal depth i.e. without noise

they can represent information about potentially all elements in a sequence. However,

the disadvantage of LIN’s are that they have a limited temporal resolution in that they

hold increasingly less information about past inputs. This limited resolution can make

it virtually impossible for the predictor / classifier to extract sufficient information

about past inputs even without the presence of noise (Mozer, 1993).

29

Current input

Figure 2.4 - Recursive SOM showing how the winning neuron (black) is the best
match for the current input and the copy o f the map at the previous time step.

The Recursive SOM (Voegtlin and Dominey, 2002) (fig 2.4) is a dynamic extension

to the SOM that uses recurrent connections to propagate the output activity of all its

neurons back as a factor of the next input. The winning neuron is the unit whose

weight vector best matches the current input vector and a vector of activities from the

previous time step. The Recursive SOM’s vector of activities is a representation of the

contextual information from the previous time step and consists of a representation of

the activity of every neuron. Each neuron’s activity is calculated using equation 2.7.

Y , (n) = ^ { - a \ X { n) - w f - p \ Y (n - \) - w f) (2.7)

The recursive SOM remains close to the original SOM by iteratively applying the

algorithm to its own representations. This is an advantage because the SOM is an

experimentally proven algorithm that is both successful and biologically plausible.

30

Therefore, by iteratively applying the original algorithm to its own representations,

the recursive SOM is able to process dynamic patterns without having to rely on ad-

hoc mechanisms, such as buffers. However, a disadvantage of the recursive SOM is

that, like many other TSOMs, it is computationally intensive due to additional

connections and neurons. Furthermore, the amount of information fed back via the

recurrent connections is directly linked to the number of neurons in the model.

Therefore as the size increases, computational efficiency will not increase linearly and

will result in large models becoming unfeasible to train.

SARDNET (Sequential Activation Retention and Decay NETwork) (James and

Miikkulainen, 1995) is a dynamic extension to the SOM that forms distributed

representations of input sequences. The model operates by mapping each input to a

best matching neuron, exactly as in the original SOM algorithm. However, once a

neuron is designated the winner for a specific input in a sequence, it is precluded from

being selected for any other inputs in that sequence (i.e. in the sequence ‘BBBB ’, each

will be mapped to a different winning neuron). Additionally, once a neuron is

selected as a winner it is assigned an activation value of 1. Upon the presentation of

each subsequent input in the current sequence, all activation values are decayed by a

predetermined value. This activation and decay mechanism forms a distributed

representation of the input sequence on the surface of the map. Experiments on

sequences of English phonemes (James and Miikkulainen, 1995) show that

SARDNET produces highly descriptive and compact representations.

SARDNET operates in a very elegant and computationally simplistic manner to form

distributed representations of input sequences. Furthermore, it has also been shown

31

that these representations can subsequently be used by supervised neural networks to

enhance their performance (Mayberry and Miikkulainen, 1999). However, as

discussed in (Hadley and Cardei, 1999), SARDNET does not appear to exhibit strong

systematicity (i.e. meaningfully interpreting words in novel positions). Therefore,

SARDNET may fail to correctly classify sequences that, while syntactically correct,

have a significantly different surface form than those in the training set. This would

especially be apparent with sequences involving deep embeddings or recursion of any

kind that resulted in sequences longer than those encountered during training.

A notable, but seldom used unsupervised model is ART (Adaptive Resonance

Theory) (Grossberg, 1976). This model is a self-organizing pattern classifier that

produces classification codes for input patterns. ART typically consists of two layers

and a feedback mechanism. The first competitive layer of neurons operates like the

SOM and maps an input pattern to a best matching neuron. The output from this layer

is used to create an orthogonal vector, with one bit set to denote the winning neuron

and all other bits cleared. This orthogonal vector forms the input to the second layer,

which produces an activation value that represents ART’s classification of the input

pattern. During learning, the activation value is fed back and combined (logical AND)

with the original input pattern. Weight updates then occur in both layers until the

output classification is considered similar enough to the input pattern.

While enhancements have been proposed that enable ART to process more complex

types of patterns, in its standard form the model could be applied to similar

classification tasks as the SOM. However, an important difference between ART and

the SOM relates to the relative organization of internal representations. While the

32

SOM forms a topological map by clustering similar inputs together, ART does not

organize input patterns into any kind of relative structure. Consequently, ART would

be unable to capture the type of emergence effects that occur in SOM based models

such as context maps (Kohonen, 2001) (i.e. zones of the map representing verbs,

nouns etc). Therefore, while ART could be employed as the base for modelling

language acquisition, it should be considered only as a second choice to the SOM.

A small number of unsupervised connectionist models are able to solve dynamic

problems by extending the principle of Hebbian learning into the temporal domain.

Networks such as SOTPAR (Euliano and Principe, 1996) use a temporal Hebbian

learning mechanism to correlate the activity between neurons that fire in sequence.

While temporal Hebbian learning can be used to extend the SOM into a dynamic

model, the mechanism may require full connectivity between neurons, therefore

introducing further processing overheads.

2.2.3 Supervised connectionist learning algorithms

The dominant approach to training connectionist models of language acquisition

involves supervised training algorithms. While the roots of this approach can be

traced back to the work of McCulloch and Pitts (1943), the majority of models have

only emerged following the key publication (Rumelhart et al. 1986). Rumelhart and

Hinton’s error back-propagation learning algorithm showed how comiectionist models

could be trained to solve non-linear problems. The fundamental idea behind

supervised learning is that the error signal (i.e. the difference between the model’s

response to an input and the desired response) is used to modify the weights in order

33

to reduce the future error. Thus the model’s individual weights are effectively

punished and rewarded until they reach the correct values to represent the problem.

The advantage of supervised learning is that a model can be trained using only a

subset of inputs and desired output pairs for a particular problem. From this subset of

training data, the learning algorithm may be able to construct an approximate solution

to the problem and subsequently generalize to unseen inputs. Furthermore, unlike

their unsupervised counterparts, most supervised connectionist models use distributed

representations. By using multiple weights to represent each input pattern, a

distributed model does not rely on any single weight to hold a specific piece of

information. Consequently models using distributed representations are efficient and

fault tolerant. They also exhibit graceful degradation when connections are damaged

or removed. Supervised connectionist models that use distributed representations are

commonly referred to as Parallel Distributed Processing (PDP) models.

2.2.3.1 Supervised connectionist models of language acquisition

Since the connectionist renaissance starting in the late 1980s, the majority of the NLP

models published in the literature have been applied to language acquisition. The first

notable such model was published by Rumelhart and McClelland (1986) and involved

the acquisition of the markings of the English past tense. Accounting for the process

by which children learn the English past tense is a common battleground for

competing linguistic theories. The Rumelhart and McClelland (1986) model maps a

representation of the present tense of an English verb onto the equivalent

representation of that verb’s past tense using a multi-layer perceptron (MLP). Its

authors claim this model is capable of mimicking the U-shaped learning curve

34

characteristic of child language learners (fig 2.5), but without the need for explicit

rules. However, the model has been heavily criticized in a number of areas (Fodor and

Pylyshyn, 1988; Pinker and Prince, 1988), including its input representation, its

erroneous predictions of novel morphological derivations and its artificial training

regime. A number of subsequent researchers (Plunkett and Marchman, 1996; Jackson

et al 1996) have attempted to overcome the limitations of the original Rumelhart and

McClelland (1986) model by, for example, employing more realistic training regimes.

a>oc
CD

Ek.

a>
CL

Time

Figure 2.5 - U-shaped learning curve o f child per formance

One of the most influential publications in the field of connectionist language

acquisition since the initial Rumelhart back-propagation algorithm was that of

Elman’s SRN (Elman, 1990). The Simple Recurrent Network (SRN) is a dynamic

extension of the MLP which uses recurrent connections to feedback the hidden layer

activations at the next time step. In a similar manner to their unsupervised

counterparts (section 2.2.2.2), this recurrency mechanism allows the SRN to process

sequences of inputs. In (Elman, 1990) the SRN was applied to the acquisition of

syntactic structure. These experiments involved training the model to predict the next

word in a sentence that was randomly generated from a simple grammar. While the

model was never able to reliably predict the exact next input, due to the non-

35

deterministic nature of the task, its attempts to do so allowed it to induce a

representation of the underlying structure of the grammar. Thus after training the

model would be able to predict the category of the next word in a sentence (i.e. plural -

noun or singular-verb). The SRN has subsequently been used in further grammar

induction problems (Cleeremans et al, 1989; Sharkey et al, (2000) which have further

investigated its ability to learn the structure of simple grammars. However, the degree

of grammatical knowledge learnt by the SRN is highly controversial. Mainstream

linguists such as Jackendoff (2002) and Marcus (2000) argue that the model has only

learnt surface regularities and is incapable of learning a meaningful representation of

a grammar.

An important area of language acquisition involves the initial process of learning

individual words. The complexity of this process of segmenting continuous speech

into individual words can be perceived by listening to a native speaker of a foreign

language. Unlike a person’s native language, sentences of speech in a foreign

language are initially perceived as a continuous stream, rather than a collection of

discrete words. However, children learn to solve this segmentation problem and have

been shown to acquire specific phonetic characteristics of their native language by the

time they are six months old (Davis, 2003).

The problem of speech segmentation has been modelled using a number of

connectionist simulations. Aslin et al (1996) presented a supervised connectionist

model that used phoneme trigrams to identify the boundaries between utterances in a

corpus of child-directed speech. Elman (1990) applied the SRN to a segment

prediction task in which a continuous stream of phonemes, corresponding to words in

36

an artificial grammar, was presented to the model. Variations in the SRN’s prediction

error suggested that the model had learnt the combinations of phonemes that

constituted words and could thus identify word boundaries via its inability to

accurately predict the phoneme following a word. However, larger scale experiments

(Cairns et al, 1997) have called into question Elman’s predictive phonetic word

segmentation approach by showing that only 21% of actual word boundaries can be

predicted.

A problem closely associated with speech segmentation is that of vocabulary

acquisition. Once children are able to recognise the boundaries separating words, how

do they learn to pair these words with their associated meaning? Vocabulary

acquisition involves the process of mapping sequences of speech phonemes onto an

associated lexical or semantic representation (Davis, 2003). Initial comiectionist

models of vocabulary acquisition performed one-to-one mappings between specific

words in the input stream and an associated target representation (Plunkett et al,

1992). However, such an approach assumes that there is sufficient information in the

child’s learning environment to perform a one-to-one mapping between specific

words and their meaning. In order to make the task more realistic, subsequent

connectionist experiments performed mappings between entire sequences and

associated meanings (Davis, 2003).

An important model with regal'd to both connectionist representational schemes and

natural language is Pollack’s RAAM (Recursive Auto-Associative Memory) (Pollack,

1990). This model uses a recursive auto-associative memory that allows the encoding

and recall of variable sized sequences or tree structures. This model answers many of

37

the critics of connectionism (Minsky and Pappert, 1969; Fodor and Pylyshyn, 1988)

who argued that the input representations used in connectionist models were

insufficient to model cognitive structure. RAAM has been applied to language

acquisition in a number of experiments. In the original paper (Pollack, 1990), the

RAAM model was applied to learning propositional sentences. It was shown that

RAAM produced internal representations that allowed the model to recognise and

process novel sentences. Many other researchers have subsequently used RAAM to

model aspects of the syntactic structure of natural language (Chalmers, 1990; Blank et

al, (1991).

2.3 Limitations of connectionism

Connectionist models have been applied to a variety of aspects of language

acquisition, from inflectional morphology (Rumelhart and McClelland, 1986), to

grammar induction (Elman, 1990). However, many traditional linguists have

criticized the results of these experiments and questioned the applicability of

connectionism to language acquisition (Fodor and Pylyshyn, 1988; Jackendoff,

2002).These arguments have centered on issues of biological plausibility, adaptive

generalization, scalability and psychological similarity to human learners.

2.3.1 Arguments against biological plausibility

The most common arguments against connectionism involve the perceived decreasing

relation between artificial neural networks and their biological counterparts. These

arguments stipulate the field’s loss of focus from its founding tenet of biological

plausibility. Connectionist models such as the MLP (Rumelhart et al, 1986) aren’t

38

realistic models of the structure, the individual neurons or even the learning process

that occurs in biological neural networks (Sejnowski, 1986).

While aimed at connectionism in general, these arguments are, in most cases, specific

to the commonly used back-propagation learning algorithm and PDP models. While

the biologically plausibility of back-propagation has polarized the connectionist

community itself, the algorithm is without a doubt the single most important

advancement in connectionist modeling. When Rumelhart et al (1986) introduced

back-propagation it provided a solution to non-linearity, a problem that had relegated

early connectionist models to obscurity (Minsky and Papert, 1969). This allowed

multi-layer models to be created to learn linearly-inseparable problems, from the

XOR logic function to the acquisition of the English past tense.

The argument against back-propagation involves the error return signal which must

flow backwards through the network to every non-output layer neuron. This means

that the algorithm uses non-local information to update the weights for each neuron,

an operation that is at odds with neuro-biological research (Hebb, 1949; Kohonen,

2001). Further arguments involve the sensitivity of multi-layer back-propagation

networks to the number of hidden layer neurons, which must be known a-prior in

order to generalize properly (McLeod et al, 1998). While most connectionists accept

these arguments, they defend the use of back-propagation by claiming that it encodes

representations in the weights in a similar distributed manner to that of biological

neural networks. Thus, the algorithm may not operate like its biological counterpart,

but it does produce models that have a claim to biologically plausibility.

3 See p. 116-117 in (McLeod et al, 1998) for a more detailed explanation o f the plausibility issue.

39

2.3.2 Arguments against connectionism for developmental cognitive modelling

One of the most fundamental and understated problems for connectionist models of

cognition is that of variables. Conventional feed-forward connectionist models

represent activity as a spread of activations values through the network. Such models

are incapable of encoding the type of variables that could represent relationships such

as X equals Y (Marcus, 1998). Typed variables that allow the abstract treatment of

classes of a particular word or linguistic rule are fundamental to the combinatorial

nature of language (Jackendoff, 2002). Without the power to manipulate an abstract

representation of everything o f type X, relation problems such as learning ‘which X

rhymes with which Y’ are unsolvable.

Due to the relative lack of research into unsupervised connectionism, it is unclear

whether such models are capable of either learning or representing variables.

However, most unsupervised models use localist architectures and therefore possess

discrete internal states that could be used for the representation of variables.

Consequently, assuming that a suitable learning algorithm was employed, such

models may be capable of solving problems that require the use of variables.

Another understated problem regarding models trained using gradient-descent

learning algorithms is their sensitivity to initial starting states. Experiments by Kolen

and Poliak (1990) found that the effect of random initial starting weights had a

dramatic effect on the model’s ability to converge on a solution. Further experiments

on SRNs by Sharkey el al (2000) also found that the models were extremely sensitive

to their initial starting weights and that only one in every forty-five models was

40

actually able to solve the given problem at all. This poses a problem for a

comiectionist account of language acquisition because, with few exceptions, all

children are able to learn their native language.

A central argument against connectionist models relates to their adaptive

generalization abilities. As explained by Sharkey et al (2000), if connectionist models

are to be used to model human cognition they must exhibit similar developmental

properties to those observed in humans. Grammatical-transfer experiments (Sharkey

et al, 2000) show that the SRN is unable to exploit previous grammatical knowledge.

These experiments show that when a model trained on a specific grammar is exposed

to new lexical items, training times are adversely affected. Such findings are at odds

with human performance, for which intuition suggests that language acquisition

should get easier as development progresses.

The ability to perform grammatical-transfer is inter-related to another undesirable

behavior that occurs in gradient-descent based connectionist models. The inability to

retain knowledge across training sets, known as catastrophic forgetting (French,

1999), entails that learnt-knowledge must be continually refreshed by cycling through

the entire data set. Such behavior is psychologically implausible because children are

able to learn new knowledge without necessarily overwriting existing knowledge

(Sharkey et al, 2000).

Another important argument leveled against connectionist models of cognition

concerns their ability to learn and generalize from sparse data. Fodor and Pylyshyn’s

original criticism (1988) concerning comiectionist generalization are formalized by

41

Hadley’s definition of strong systematicity (Hadley, 1994). The premise of this

argument is that children are capable of learning language without encountering

words in all of their syntactically legal positions. Hadley argues that connectionist

models, such as the SRN and RAAM, use positionally intensive training regimes in

which words are encountered in all syntactically legal positions (Hadley and Cardei,

1999). Therefore it is argued that such models are not cognitively realistic because

they don’t learn from the type of sparse data that children use to acquire language.

While there are a number of serious limitations concerning supervised comiectionist

models of language acquisition, there are also a number of fundamental limitations

constraining unsupervised approaches. The primary limitation of unsupervised

connectionism is the lack of effective models and training algorithms, especially those

capable of tackling the type of dynamic sequences found in language. The majority of

unsupervised connectionist models that are applicable to language acquisition are

highly computationally intensive, in certain cases requiring supercomputer resources

(Voegtlin and Dominey, 2002). In most cases this complexity is a result of localist

architectures which impose prohibitive memory and processing constraints on large

scale models.

2.3.3 Learning deterministic representations using a continuous state-space

Since the early nineties connectionist models, specifically the SRN, have been applied

to the problem of grammar induction. These experiments, which have involved simple

regular and context-free grammars, have met with some success (Elman, 1990;

Cleermans et al, 1989), suggesting that supervised connectionist models can learn to

emulate finite-state automata. However, detailed analysis of models trained on these

42

tasks show a number of fundamental problems that derive from using a model with a

continuous state-space to approximate a discrete problem.

While supervised connectionist models are capable of learning simple formal

languages, they are renowned for their instability when processing long sequences

that were not part of their training set (Kolen, 1994; Omlin, 2001). A model such as

the SRN is capable of partitioning its state space into regions that are believed to

approximate the states in a grammar. However, sensitivity to initial conditions means

that each transition between regions of state space will result in a slightly different

trajectory (Kolen, 1994). This causes instability when transversing state trajectories

that were not seen during training. Such instabilities arise due to slight discrepancies

in the trajectories that are compounded with each transition until they exceed the

locus of the original attractor, resulting in a transition to an erroneous region of state

space.

Such behavior is characteristic of supervised dynamic connectionist models and can

be seen as both a power and a weakness of this class of models. While this

representational power enables the model to surpass deterministic finite automata and

emulate non-deterministic systems, it proves to be a significant disadvantage when

attempting to emulate the deterministic behavior fundamental to deterministic finite

automata (DFA). Attempts have been made to produce discrete state-space models by

using a step-function for the hidden layer neurons (Zeng et al, 1993). However, while

this technique eliminates the instability problem, the use of a lion-differentiable

function means that the weight-update algorithm’s sigmoid function can only

approximate the error signal. This weakens the power of the learning algorithm,

43

increasing training times and in some cases causing the model to learn an incorrect

representation of the DFA (Omlin, 2001).

Other notable techniques for overcoming instability in continuous state-space models

include the Simple Synchrony Network (SSN) (Lane and Henderson, 1998), which

utilizes Temporal Synchrony Variable Binding (TSVB) to encode entities using

pulsing binary-threshold neurons. This technique is able to enhance the power of

continuous state-space models by providing static building blocks within the ever

changing sea of internal representations. Given the level of research that has gone into

connectionist variable binding (Browne and Sun, 2000) and stability issues (Omlin,

2001), a potentially desirable characteristic of unsupervised connectionist models is

that their localist architectures provide the potential for a discrete state-space.

2.4 Discussion and conclusions

Language is a complex and powerful system that describes and perhaps even shapes

every aspect of human perception (Sapir, 1929; Gordon, 2004). However, the process

of language acquisition itself is a paradox. While children appear to engage in a

process of learning their native tongue, the linguistic input they are exposed to

appears too sparse to permit acquisition of a grammar (Chomsky, 1965). Traditional

theories of linguistics have therefore assumed a certain level of innate knowledge that

constrains language acquisition and equips children with a prior knowledge of

grammatical structure. However, despite the apparent intractability of the problem,

the allure of an automated language acquisition system has fuelled research for half a

century.

44

Recent advances in connectionism have challenged the views of traditional linguists

by proving that linguistic input has a far richer structure than was previously believed.

The popular connectionist supervised learning paradigm has produced small scale

models addressing all areas of language acquisition, from lexical segmentation (Aslin

et al, 1996) to grammar acquisition (Cleeremans, 1989; Elman, 1990). However, a

number of potentially fundamental problems have been identified with these models.

The inability to represent variables prevents these models from representing abstract

relationships, such as those found throughout language (Marcus, 1998). Furthermore,

their stability, scalability and biological plausibility have been used to question the

applicability of connectionism as a tool for modelling language acquisition (Sharkey

et al, 2000).

While research has focused on the popular paradigm of supervised connectionist

learning, much less attention has been given to unsupervised models of language

acquisition. Unsupervised learning involves simple, local operations that are directly

inspired by neuro-biological evidence from the human brain and nervous system

(Hebb, 1949; Kohonen, 2001). Unsupervised models, such as the SOM emulate the

operation of topological maps shown to exist in multiple areas of the cortex

(Kohonen, 2001). However, despite their biological plausibility and data-orientated

modelling approach, relatively few unsupervised connectionist models of language

acquisition have been proposed. The few notable models which have been developed

(MacWhinney, 2002b) suggest that unsupervised learning may provide the stability

by which connectionist language acquisition can scale up to larger problems. Such

large scale models may potentially involve hybrid approaches that combine the

45

stability and simplicity of unsupervised learning with the more general purpose

capabilities of supervised learning algorithms.

One of the reasons for the limited application of unsupervised connectionist models in

language acquisition may be related to the static nature of popular models such as the

SOM. While the successful supervised connectionist models have dynamic

capabilities, relatively few viable unsupervised dynamic models have been proposed.

A chronological comparison shows that unsupervised dynamic models have so far

followed similar developmental phases as their supervised counterparts. While early

unsupervised dynamic models used buffers to map time onto space, later models

represented time by the effect it had on processing. Given this relationship, an

obvious area of future research into unsupervised modelling would involve recurrency

mechanisms. So far only one significant unsupervised model uses recurrent

connections (Voegtlin and Dominey, 2002) and that model is limited by the size-

computational complexity issue.

In conclusion, analysis of unsupervised connectionist modelling has shown that their

discrete state-spaces and simple mode of operation provide the potential for modelling

the finite-state properties of language in a more robust and biologically-plausible

manner than existing supervised models. The discrete state-space properties of localist

architectures, such as the SOM, provide similar representational power to that of

symbolic algorithms. This has already provided such unsupervised models with the

stability to scale up to problems beyond the capability of their distributed counterparts

(MacWhimiey, 2002b). Such properties may also potentially allow unsupervised

46

models to overcome the generalization instabilities that plague current supervised

models (Kolen, 1994; Omlin, 2001).

47

3 - Simple Recurrent SOM (SRSOM)

3.1 - Introduction

The literature study has revealed that language acquisition is a highly complex

process which is interpreted by many traditional linguists as a paradox. Such nativist

views have been rejected by empiricists, who have sought to explain language

acquisition using the recent cognitive modelling technique known as connectionism.

However, the use of these biologically inspired learning models has not proved to be

the panacea that many researchers had hoped for. A number of serious limitations

involving issues such as the representation of variables, adaptive generalization

abilities and plausibility have constrained connectionist models from scaling up to

large scale language acquisition (Marcus, 1998; Jackendoff, 2002). While these

limitations are based upon the capabilities of supervised models, the alternative class

of unsupervised connectionist learning algorithms may offer the means to create

larger-scale, more biologically plausible models of language acquisition.

The review of notable unsupervised models in the literature study showed that a few

models existed which incorporated the dynamic memory mechanisms required to

process the type of temporal sequences found in language. However, analysis showed

that all of these models possessed various deficiencies that rendered them

inappropriate for modelling language acquisition. The main limitation of the more

powerful models such as the Hypermap and the Recursive SOM is the relationship

between their computational intensity and their size. As these models increase in size,

the resources required for memory and processing increase non-linearly.

Consequently, the direct use of these existing models was deemed inappropriate for

48

an investigation into language acquisition. In order to determine whether

unsupervised connectionist models could capture the finite-state properties of

language, it was determined that a new model must be developed. This model must be

capable of processing temporal sequences in an unsupervised manner, but with a

computational efficiently that wasn’t prohibitive to large scale modelling of language

acquisition.

3.2 - Proposed new model

The SOM was chosen as the base model for this research because the majority of

unsupervised dynamic connectionist models use it to extend their processing

capabilities into the temporal domain. As described in section 2.2.2, the SOM uses a

winner take all learning paradigm to map a distributed input vector onto a best

matching neuron in a, usually rectangular, grid of neurons. However, the SOM is

designed to process spatial data, such that the choice of winning neuron is not directly

affected by any preceding data processed by the network. Therefore in order to allow

the proposed model to process temporal data a recurrency mechanism must be

employed. As with the Recursive SOM, this recurrency mechanism will allow the

choice of winning neuron to be based not just on the current input, but also on some

representation of past context.

In order to provide the model with a computationally minimized representation of

context, the proposed recurrency mechanism feeds back a representation of the

relative map location of the previous winning neuron (fig 3.1). Given that the winning

neuron is a best matching representation of the input vector, the inclusion of the

previous winner’s location in the selection algorithm allows the concept of best

49

matching neuron to be applied recursively to an entire sequence. The winning neuron

is therefore potentially a unique representation of the current input and the entire

preceding sequence of inputs. The temporal depth and resolution of such a recurrent

feedback mechanism is potentially infinite, being limited only by the size of the map.

Furthermore, compared to other dynamic SOMs it is a very efficient method of

representation because each winning neuron can be represented using two numbers.

The new model presented here will be referred to as the SRSOM (Simple Recurrent

SOM).

3.2.1 - Architecture and algorithm for the SRSOM

O f 0 0 0Input vector

Row
Context
vector

Column

Figure 3.1 - Diagram o f SRSOM showing feedback o f the previous winning neuron's
column and row.

The recurrency mechanism for the SRSOM operates by feeding back two binary

numbers which represent the column and row of the previous winning neuron. The

size of the context vector is determined dynamically based on the number of neurons

in the model (i.e. the context vector is large enough to represent the locations of all

neurons in the map). This provided an optimal representation of context as it employs

50

the minimum possible number of bits in order to uniquely represent every possible

neuron. For example, for an SRSOM with 25 neurons, such as that shown in fig 3.1,

the context vector would need to consist of six bits. This representation then provides

a unique context representation for all 25 neurons in the model. The context vector is

treated as an implicit part of the input vector, allowing the model’s learning

algorithms (equ. 3.1-3.4) to remain identical to those of the standard spatial SOM.

These algorithms consist of selection of the winning neuron (equ. 3.1), weight update

(equ. 3.2), neighbourhood function (equ. 3.3) and a Pythagorus-derived distance

calculation (equ. 3.4). This latter function is used as part of the neighbourhood

function (equ. 3.3).

I , Equation 3 .1 -
* N - arg(miny (/ J ^ —Wtj |)) Winner selection

algorithm

Equation 3.2 —
• W0 (t+1) = WtJ (t)+ahij (X (t)-W iy (()) Weight update

algorithm

- d 2 Equation 3 .3 -# / — (\

J " exPt 2(J2 Neighbourhood function

d0 =sqrt{{Column, -C olum nj)2 +(Rowi - Rowy)2)

Equation 3.4 - Algorithm to
calculate the distance between
two neurons

As explained in section 2.2.2, the winning neuron N is defined as the neuron whose

weight vector W jj is the best match for the current input X j (equ. 3.1). Once the

winning neuron has been selected its weights, along with those of neighbouring

neurons, are updated Wij(t+1) (equ. 3.2) to make them a better match for the current

51

input X(t). This weight update operation involves calculating the new weight vector

Wy(t+1) using the original weight vector Wy(t), the learning rate a and the value of

the neighbourhood function for the neuron in question. The learning rate a determines

the level of weight change. It should initially be set to around 0.1 and decreased

linearly each epoch throughout training (Kohonen, 2001).

The neighbourhood function (equ. 3.3) uses the Pythagorean distance between the

neuron in question and the winning neuron in order to make the level of the weight

update operation proportional to the distance from the winning neuron. The symbol o

in equation 3.3 controls the width of the neighbourhood function and determines how

many neurons are affected by the neighbourhood function, a should initially be set to

half the size of the map and it should be decreased linearly every epoch throughout

training (Kohonen, 2001) (i.e. in a 10 x 10 model o should initially be set to 5). In

equation 3.4 the variables Column; and Row; denote the column and row of the

winning neuron (ex. 2 and 1 respectively in fig 3.1), while Columnj and Rowj denote

the column and row of the neuron that the neighbourhood function is being applied to,

3.2.2 - Initial experiments to test recurrency mechanism

Once the new feedback mechanism had been implemented, a clustering analysis was

performed using simple sequences consisting of four 4-bit elements (table 3.1). The

first element of each of these five simple sequences is unique, while the following

three elements are identical. The sequences were selected in order to explore the

effect of varying context upon the choice of winning neuron (i.e. how will different

initial winning neurons affect the choice of subsequent winning neurons?). This

52

analysis involved training a 10 x 10 SRSOM over 1000 epochs using an initial

learning rate of 0.1 and initial neighbourhood of 5.

The intended purpose of the SRSOM is to cluster similar input patterns together on

the map. While the original SOM clustered spatially similar patterns together, it is

intended that the SRSOM should organize itself based both on the input’s spatial and

contextual representations. Therefore the expected outcome of this clustering analysis

was that the second elements in sequences that had similar contexts, due to the

proximity of the first winning neurons in the sequence, would be clustered near each

other on the map.

Table 3.1 shows the results from the clustering analysis for the five simple sequences.

These results show that the SRSOM has clustered the second elements from

sequences one and two to the same neuron. The same occurs for the second elements

from sequences three and five, which both share another neuron. In both these cases

where the second elements clustered to the same neuron, the first elements from the

respective sequences were located close to each other on the map.

These results were analysed by looking at the contextual representations for the first

wimiing neurons in the sequences. The far right column of table 3.2 shows the binary

contextual representations for the first winning neurons in the sequence. The most

significant five bits (left) of these values consist of a binary number representing the

neuron’s column, while the least significant five bits (right) represent the neuron’s

row.

53

Element 1 Element 2 Element 3 Element 4

(Winning (Winning (Winning (Winning
neuron) neuron) neuron) neuron)

Sequence 11X1 0010 0100 1000
1 (11) (90) (81) (40)
Sequence 0111 0010 0100 1000
2 (1) (90) (81) (40)
Sequence 0001 0010 0100 1000
3 (5) (98) (93) (20)
Sequence 0010 0010 0100 1000
4 (58) (78) (93) (20)
Sequence 0100 0010 0100 1000
5 (25) (98) (93) (20)

Table 3.1 - The elements and corresponding winning neurons for five sequences
which were clustered using the SRSOM operating using a binary context
representation.

The representations for neurons 11 and 1 (sequences 1 and 2 in table 3.1) both have

the same bit set in the latter five bits of their representation. This is because both

neurons 11 and 1 share the same row and therefore have the rightmost bit set to

indicate row one. This is also the case for neurons 5 and 25 (sequences 3 and 5

respectively) which share the same latter five bit representation. This sharing of

neurons suggests that the SRSOM is able to exploit the context representation and

cluster inputs based on similarity in context, as well similarity in form. This is exactly

what the SRSOM was intended to do because such contextual clustering may allow it

to discover the structural information underlying language.

54

Element

1

Winning
neuron

2D binary
representation of
winning neuron

Sequence 1 1111 11 00010 00001

Sequence 2 0111 1 00001 00001

Sequence 3 0001 5 00001 00101

Sequence 4 0010 58 00110 01000

Sequence 5 0100 25 00011 00101

Table 3.2 - Representation o f the winning neurons for the 1st elements o f each
sequence. Shown using a binary context vector representation.

3.2.3 Enhanced Graycode context representation

Following further analysis of the results from the initial clustering experiment, a

potential theoretical design flaw was discovered. As previously discussed in section

3.2.2, the recurrency mechanism used two binary numbers to represent the column

and row of the previous winning neuron. This representation was intended to ensure

that changes in the Hamming distance (the number of bits that are different) between

any two neurons’ coordinate representations was proportional to the linear distance

between those two neurons on the map. However, it was found that due to the binary

representation used in the context vector, the Hamming distance between two

neurons’ context representations didn’t increase smoothly as the distance between

those two neurons increased. Instead the Hamming distance for certain relatively

distant neurons (e.g. 1 and 7) is lower than for neighbouring neurons (table 3.3).

55

Neuron number Binary context vector representation Hamming distance

7 00001 00111

21 00001 00001

7 00001 00111

48 00001 01000

Table 3.3 - Hamming distance for two sets o f neurons. Due to the binary
representation scheme the hamming distance is greater for adjacent neurons 7 and 8
than for neurons 1 and 7, which are located physically further apart on the map.

Such a representational weakness could seriously affect the models’ ability to cluster

temporal patterns. The binary representation used in the coordinate feedback system

was therefore changed to a Gray code (Gray, 1953) representation. Unlike the binary

number system, the Hamming distance between any two consecutive Graycode

numbers is equal to one. Thus by using a Graycode representation for both coordinate

vectors, the Hamming distance between any two neuron’s 2D coordinate

representations will be more representative of the physical distance between those two

neurons on the map.

The revised Graycode context representation was tested using an identical clustering

experiment as that employed in the previous section. As shown in table 3.4, these

results show that as with the previous experiment, inputs with similar contexts are

being clustered together to similar locations on the map, exactly as expected.

However, the results in table 3.4 also show that the third elements in sequences one

and two are also being clustered to similar neurons. This shows that the revised

Graycode context representation has allowed the model to identify similarities

between neurons of close physical proximity.

56

Element 1 Element 2 Element 3 Element 4

(Winning (Winning (Winning (Winning
Neuron) Neuron) neuron) neuron)

Sequence 1111 0010 0100 1000
1 (92) (21) (17) (93)
Sequence 0111 0010 0100 1000
2 (91) (12) (18) (94)
Sequence 0001 0010 0100 1000
3 (40) (44) (10) (72)
Sequence 0010 0010 0100 1000
4 (97) (57) (15) (78)
Sequence 0100 0010 0100 1000
5 (50) (41) (28) (85)

Table 3 .4 - Elements and corresponding winning neurons for five sequences clustered
using the SRSOM operating with a 2D Graycode context representation.

As can be seen from table 3.5 the binary representations for the second winning

neuron (i.e. the context for those third elements) are very different, despite the fact

that the neurons are adjacent. The difference between the representations for these

neurons further highlights the weakness in the binary representation scheme.

However, as can also be seen from table 3.5 the corresponding Graycode

representation solves this problem because Graycode values differ in only two bits.

Neuron Binary representation Graycode representation

21 00111 00001 0010 0001

12 00000 00010 0000 0011

Table 3.5 - Binary and Graycode representations for two winning neurons.

These results show that the Graycode context representation provides an improvement

over the equivalent binary representation scheme. The use of Graycode improves the

57

network’s ability to cluster inputs whose contexts would be misrepresented using a

binary scheme.

3.3 - Experimental analysis of SRSOM on simple grammars

3.3.1 - Connectionist grammar induction

In light of the success of the initial clustering analysis it was decided that the SRSOM

should be applied to a real linguistic problem. Grammar induction is the machine

learning problem of modelling an unknown grammar using a finite set of positive

(and possibly also negative) examples generated by the grammar. In computational

linguistics, the usual measure of a model’s ability to learn a grammar is via its

competence at predicting the next possible symbols following each input in a sentence

(Cleeremans et al, 1989; Elman, 1990). In order to compare the SRSOM model

against the SRN (a popular supervised model), it was decided that the SRSOM should

be given the task of predicting the next possible symbols in the grammar. Such a

prediction task has been used in multiple grammar induction investigations involving

supervised comiectionist models (Cleeremans et al, 1989; Elman, 1990).

The grammar chosen for this experiment was the Reber grammar. This simple regular

grammar was originally devised to investigate implicit rule learning in human

subjects. It has since been used by various researchers (Cleeremans et al, 1989;

Sharkey et al 2000) for investigating connectionist grammar induction using the SRN.

The Reber grammar is a member of a class known as regular grammars. As discussed

in detail in section 2.1.1, regular grammars occupy the lowest level of the Chomsky

hierarchy. They are characterized by their simple production rules in which the left

hand side consists of a single non-terminal while the right hand side of the production

58

rule can have no more than one terminal symbol. While regular grammars are a gross

simplification of natural language, they do contain important linguistic characteristics,

such as the use of generative production rules and recursion. Therefore, due to their

simplicity regular grammars are a good test bed for the development of linguistic

models.

The advantage of applying the SRSOM to the same Reber grammar problem, as used

to evaluate the SRN (Cleeremans et al, 1989), is that a direct comparison can be made

between the performance of the two models. If it can be shown that the SRSOM is

able to learn the Reber grammar to a comparable extent as the SRN, then this will

show that unsupervised connectionist models of language acquisition perform on a

comparable level to their supervised counterparts.

B

I
E

Fig 3.2 - Finite-state machine for the Reber grammar

59

Fig 3.2 shows the finite-state machine (FSM) for the Reber grammar. The numbered

circles show states in the grammar, while the arrows and respective letters represent

the state transitions. Sentences are generated by starting from state 1 and moving from

one state to another until state 6 is reached. Table 3.6 shows example sentences

generated by this grammar. States two and three have recursive loops which allow the

FSM to move back into the same state. This theoretically allows the generation of an

infinite number of unique sentences. In the experiments performed here, the

maximum number of times the FSM could go around a recursive loop was limited by

the recursive depth parameter. The purpose of this parameter was to limit the

sequences generated by the FSM so that the training sequences would not be of a far

greater recursive depth than the test sequences.

B->T->S->S->X~>S->E

B->P->V->P->X->T->T-> V -> V->E

B->T->S->S->S->X->X->T->T->V ->P->X->T->V ->P->S->E

Table 3.6 ~ Example sequences generated by the Reber grammar.

3.3.2 - An SRSOM grammar inductor

In order to induce the Reber grammar, the SRSOM must be able to both process input

symbols in a sequence and also test its induced knowledge. The first requirement was

met by adopting an orthogonal input vector representation. This common

representation scheme is used throughout comiectionist linguistics (Elman, 1990) and

involves representing each symbol in the grammar by setting the appropriate bit in the

vector to one and setting all the other bits to zero (table 3.7). The advantage of using

60

orthogonal input vectors is that they prevent the model from discovering any

potentially misleading form-based similarities between input symbols (e.g. widow and

window are similar looking words, but have unrelated meanings). Orthogonal input

representations are also quite biologically plausible. It has been shown that

competitive learning, which is believed to operate throughout the brain and nervous

system, can produce output patterns that are less correlated than the corresponding

input patterns. This is achieved by mapping similar input patterns to multiple output

neurons (McLeod et al, 1998).

Grammatical symbol Orthogonal input vector representation

B 0 0 0 0 0 0 1

T 0 0 0 0 0 10

P 0 0 0 0 1 0 0

S 0 0 0 1 0 0 0

X 00 1 0 0 0 0

V 0 1 0 0 0 0 0

E 1 0 0 0 0 0 0

Table 3.7 - Orthogonal input vector representation for SRSOM.

A common approach to testing the performance of models in connectionist grammar

induction involves predicting the next valid symbols in the grammar (Cleeremans et

al, 1989; Elman, 1990). During the operation of processing symbols in a sequence,

the SRSOM uses the location of the previous winning neuron as context. Therefore, it

is possible to predict the next winning neuron in a sequence by finding the best

matching neuron whose context vector (NOT symbol vector) matches the location of

61

the current winning neuron. Fig 3.3 shows a simple example of this prediction

operation.

By using the proposed prediction algorithm, the second winning neuron can be

predicted by taking the first winning neuron’s location (column 1, row 10) and finding

the neuron whose context vector best matches this value (i.e. has the lowest Euclidean

distance). In fig 3.3, the neuron in column 10, row 2 (the 2nd winning neuron) has the

context vector that best matches the location of the first winning neuron. Therefore,

the symbol vector for the neuron at column 10, row 2 would become the predicted

next symbol (i.e. { 0, 0, 0, 0, 0, 1, 0}).

{ 0, 0, 0, 0, 0, 0, 1 } { 0, 0, 0, 0, 0, 0, 0, 0 }
1st winning neuron at cnhmmT, row jo

 f'FIFiL •£_

jff-wsaiBHSPrfc. i—-^ y 4* j y “— 3^ - - TV 1 * - - —̂ .7

(0, 0, 0, 0, 0, 1, 0 } (0, 0, 0, 1, 1, 1, 1, 1 }
2nd winning neuron at column 10, row 2

Fig 3.3 - Example showing operation o f the prediction algorithm. The neuron at
column 10, row 2 can be predicted as the next winner because its context vector
contains the location (shown via the dotted line) o f the 1st winning neuron 1,10.
Therefore, the symbol vector for neuron at column 10, row 2 becomes the predicted
next symbol (i.e. { 0, 0, 0, 0, 0, 1, 0}).

This method of prediction is repeated to find the neuron with the second best

matching context vector in the map. However, in order for this second best matching

neuron to be selected as the second predicted next symbol, it must represent a

different symbol than the first predicted next winner. For example, following an initial

‘B’ input, if the model’s first prediction is a ‘T’ symbol (as in fig 3.3) then its second

62

prediction must be a 4P’ symbol in order for the prediction to be considered correct.

Therefore, by repeating the prediction process and applying the simple criterion of

requiring non-duplicate symbols, the SRSOM is able to generate two predicted next

symbols. These predicted symbols can then be tested against the next valid symbols in

the grammar to assess the model’s performance.

In order to quantify the SRSOM’s ability, the accuracy of the model is expressed as a

percentage of the number of predictions it got right out of the total number of

predictions made. As with the SRN experiments (Cleeremans et a/, 1989), the

SRSOM is tested on a number of sequences that are generated on the fly. For each

sentence a symbol is presented and the SRSOM must then predict the next possible

symbol in the sequence. At each step the model makes two predictions about what the

next symbol will be. The reason for choosing two predictions is that at every state in

the grammar there are at least two possible next valid symbols. If both of these

predictions are valid next symbols in the grammar, then the prediction is considered

correct. However, if either of the predictions is not a valid next symbol in the

grammar, then the prediction is considered incorrect.

3.3.3 Experiments on the Reber grammar

This section of the report will present results from a series of experiments conducted

on the SRSOM operating with the new Graycode context vector. The performance of

the model was assessed based on its accuracy at learning the Reber grammar, as

discussed in the previous section. The purpose of these experiments was two-fold.

First, the experiments would show to what degree the SRSOM was able to learn the

grammar and what level of embedding (number of sequential recursive symbols) it

63

was capable of processing. Additionally, the experiments would investigate what

resources (i.e. model size, number of epochs etc) were required and whether

increasing these resources would significantly affect performance.

3.3.3.1 Generation of training and test sets

In the grammar induction experiments performed by Cleeremans et al (1989), the

SRN was trained on sequences randomly generated on the fly. However, there is a

widely held consensus among connectionist researchers that training and test data

should be selected in a more scientifically rigorous manner than just on the fly

generation (Hopgood, 2001). Such researchers advocate the use of strictly separate

training and test sets to ensure a model is tested on data it hasn’t encountered during

training. By using previously unseen data for testing, the model’s performance is a

more accurate measure of its ability to generalize. Furthermore, by creating separate

fixed training and test sets in advance, detailed analysis of the training process

becomes possible (i.e. does the use of short sequences improve performance?).

Consequently, it was decided that the SRSOM should be assessed using randomly

generated separate training and test sets.

While separate training and test sets are more rigorous than an on-the-fly approach,

they do compound what is known as the sparse data problem (Chomsky, 1965). This

may occur in an infinite grammar when certain base sequences (i.e. the simplest

possible sequences for a specific grammatical pathway) are put in the test set, thereby

excluding them from the training set. For example, in the Reber grammar (appendix

A), an example of a base sequence would be BTXSE. If this sequence was excluded

64

from the training set, it would not only prevent the model from being able predict that

sequence itself, but may also prevent it from predicting more complex sequences that

contain the base sequence in question.

The consequences of the sparse data problem may be that the model’s performance is

unfairly degraded simply because it isn’t seeing a true representation of the grammar.

Therefore, in order to counter the effects of this problem the training set should

contain all the base sequences from the grammar, as well as the randomly generated

sequences. This approach ensured that the model’s performance could be accurately

gauged during development, without experimental bias introduced by sparse data.

Training set Test set

Recursive depth o f 1

Recursive depth o f 2

Recursive depth o f 3

Recursive depth o f i

Recursive depth o f 2

Recursive depth o f 3

Fig 3.4 - Training and test sets artificially segregated to proportionally represent all
levels up to a specific recursive depth.

In order to further enhance the scientific rigor of the experiment it was decided that

the training and test sets should be segregated in accordance with the recursive depth

of the sequences (fig 3.4). Recursive depth is a term used to denote the number of

sequentially repeating symbols generated by a recursive state in the grammar

(discussed in section 3.3.1). Segregation based on recursive depth would involve

ensuring that the training and test sets contained equal numbers of sequences for each

level of recursive depth up to the maximum depth denoted for that experiment. This

65

would allow tighter experimental control over the training data and would allow the

effect of recursive depth could be independently investigated.

3.3.3.2 Experimental parameters

The experiments were conducted using SRSOMs of sizes 20 x 20, 10 x 10 and 5x 5 .

It was intended that models within this range of sizes would be large enough to learn

the problem, but not so large that they could memorize the grammar. In order to

prevent the initial start weights from influencing the results, the same randomly

generated weight sets were used for models of each respective size. The models were

trained over 1000 epochs using a linearly decreasing learning rate starting from 0.1.

However, training was immediately terminated for any model that reached 100%

accuracy on the test set. During the training process the model’s performance was

measured every 10 epochs. In order to gain a measure of average performance each

experiment was repeated ten times and the average model accuracy was calculated.

The kernel width parameter or, used in the neighbourhood function, was initially set to

half the width of the map (i.e. for a 10 x 10 model a would be 5). These training

parameters were selected using both the recommendation of Kohonen (2001) and the

results from previous experiments.

As detailed in section 3.3.3.1, these experiments employed separate randomly

generated training and test sets that were segregated according to recursive depth. The

models were trained on sequences with a maximum recursive depth of six, but were

also tested on set of sequences with a maximum recursive depth of eight and twelve

respectively. Testing the SRSOM on sequences with up to twice the recursive depth

66

encountered during training provided an insight into the models level of

generalization.

A side effect of using recursive depth segregation was that it was statistically very

hard to generate large training sets. The reason for this is that for lower recursive

depths there are less possible sequences for each specific grammatical pathway than

for higher recursive depths. Therefore, while the grammar is technically infinite even

at a recursive depth of zero (i.e. even without recursive states it still contains the XVP

loop), it becomes increasingly difficult to randomly generate unique sequences.

Consequently the following experiments used training sets varying from 38 to 47

sequences and corresponding test sets from 10 to 14 sequences (sizes were dependant

upon recursive depth). These smaller sets provided the model with an optionally

proportional representation of the grammar, while ensuring that no base sequences

were excluded from the training set.

3.3.3.3 Experimental results

si - *Prediction
accuracy %

3 6 *!9 * ,12

Level of embedding

Fig 3.5 - Results from 4 test sets for a 5 x5 SRSOM trained on the Reber grammar.
The levels o f embedding shown with a * denote recursive depths beyond those

encountered during training.

67

Prediction
accuracy % ^

3 6 *9 *12

Level of embedding

Fig 3.6 - Results from 4 test sets for a 10 x10 SRSOM trained on the Reber
grammar. The levels o f embedding shown with a * denote recursive depths beyond

those encountered during training.

Prediction
accuracy %

6 *9 *12

Level of embedding

Fig 3.7 - Results from 4 test sets for a 20 x20 SRSOM trained on the Reber
grammar. The levels o f embedding shown with a * denote recursive depths beyond

those encountered during training.

3.3.3.4 Analysis of experimental results

The results in figs. 3.5 - 3.7 show that the SRSOM is able to achieve up to 70%

accuracy at predicting the Reber grammar. The 20 x 20 model appears to have learnt

the best representation of the grammar, with prediction accuracy marginally above

that of the 10 x 10 model. However, performance for the 5 x 5 model barely exceeded

40%, suggesting that 25 neurons are insufficient for this task.

68

Surprisingly, these results don’t appear to show the expected inverse correlation

between performance and the recursive depth of the grammar. It was expected that

performance would decrease when the SRSOM was tested on sequences with a

recursive depth greater than those encountered during training. Sequences containing

a higher recursive depth should only be predictable if the model had successfully

learnt the rules governing the recursive states in the grammar. Therefore the model’s

apparent increase in prediction accuracy for higher recursive depths suggests that it

may have successfully learnt the rules for recursive states (despite apparently not

being able to properly learn the other grammatical rules).

The SRSOMs best prediction accuracy of 70% is comparatively less than the SRN

which achieved 100% performance on a similar task (Cleeremans, 1989). However,

rigorous analysis proved that only two out of 90 SRNs became perfect grammar

recognizers (Sharkey et al, 2000) in a similar experiment. Furthermore, experiments

also show that the SRN, as with other dynamic recurrent models, is unable to

generalize to sequences with a recursive depth significantly higher than encomitered

in the training set. Thus while the results in figs 3.5 - 3.7 suggest that the SRSOM is

unable to properly learn the Reber grammar, the lack of an inverse correlation

between performance and recursive depth suggest that the model may capable of

learning recursive states.

In order to further analyse the SRSOMs performance, a state analysis was conducted

to determine how the activations of winning neurons corresponded to the states in the

grammar. Fig 3.8 shows the state diagram for a 10 x 10 model trained on the Reber

grammar using a randomly generated training set with a maximum recursive depth of

69

six. The model was trained on 39 randomly generated sequences that were segregated

according to recursive depth and included all base sequences. All training parameters

were identical to previous experiments.

io®o#too#
|OOtOO O #0 o

O O 0 O O O O
0 @0 « 0 0 3 0 ^ 0

3 o r o oco oor#oo%o§o
I O I t

0 010
0 0 0 0

00

0 0 0 1 0 o o to
00

State 1

(^) State 2

State 3

State 4

State 5

State 6

Fig 3.8 - State diagram showing the winning neurons for each state in the Reber
grammar for a 10 x 10 SRSOM.

The state diagram is derived from the location of all the possible input symbols for

each state in the grammar. For example state 2 is shown if a T symbol follows state 1

or an S symbol follows state 2. Therefore the locations of the winning neurons for all

occurrences of those T and S symbols constitute state 2. Fig 3.7 shows that, with the

exception of state one (which only consists of the iB' symbol), the winning neurons

for all of the states are spread out over the map. For example while state three

70

comprises of three input symbols (P, X and T), there are 22 separate winning neurons

for symbols corresponding to this state. This diffuse pattern of neuron activations

suggests that the SRSOM has memorized separate fragments, rather than learnt rules.

This fragmentation effect poses a problem for the SRSOM’s prediction algorithm. It

was originally hypothesised that the self-organizing process would result in input

symbols being clustered according to their respective states. Consequently, the

prediction algorithm operates by finding the two neurons whose context vector is a

best match to the location of the current wimiing neuron (i.e. given the current

winning neuron, which two neurons are the most likely next winners?). This approach

to prediction operates 011 the basis that the neurons corresponding to the next

grammatical symbols can be predicted given the current winner. However, if either of

the neurons corresponding to these next symbols has a context vector that doesn’t

match the location of the current winning neuron, then that next symbol in question

cannot be predicted (i.e. if induced knowledge is isolated to each sequence fragment

then it cannot be generalized to other fragments). The consequence of this inability to

generalize is that the SRSOM would only be able to correctly predict the symbols in a

sequence if that particular sequence was part of the training set.

This memorization effect can be further illustrated by conducting a simple experiment

that involves testing the model used to produce fig 3.8 using sequence 1 from table

3.8. This particular sequence was not part of the training set, although it is similar to

other sequences that were included in the training set. Therefore, while the SRSOM

has been trained on all the symbols and grammatical constructs comprising sequence

1, it has not encountered them in that specific order.

71

Winning neurons for symbols in sequence

1 B P V P X V P X T V V E

100 1 60 21 20 72 58 84 4 85 14 85

2 B P V P X T V V E

100 1 60 21 20 61 48 64 46

3 B T S S X S E

100 2 91 7 94 4 85

4 B T S S S S S X X T V P X V P X V P S E

100 2 91 7 97 6 97 10 83 67 44 65 25 37 54 85 14 65 25 36

5 B P V P X V P S E

100 1 60 21 20 72 58 87 5

Table 3.8 - Symbols and corresponding winning neurons from five selected sequences
processed by the SRSOM. Sequences 2,3,4 and 5 were included in the training set, but
sequence 1 was excluded from training.

Table 3.8 shows that when the SRSOM encounters a symbol in a context that was not

seen during training it selects a best guess winning neuron, which may have been part

of a completely unrelated sequence. For example, when the 9th symbol, T, in sequence

1 was encountered the SRSOM selected winning neuron number 4, which

corresponds to a state 6 *5” symbol from sequence 3. This re-use of inappropriate

winning neurons is also shown by the 11th symbol ‘ P in sequence 1, which selects

neuron number 14. However, that neuron is actually the winning neuron for a state 5

‘ P symbol from sequence 4. Not only has the SRSOM selected inappropriate

winning neurons from other sequences, but it even selects neuron number 85 twice in

order to represent the completely different symbols ‘ P and ‘P in sequence 1.

While the experiment used to produce the sequences in table 3.8 does show that the

SRSOM is unable to generalize appropriately, it also reveals a potentially beneficial

72

aspect of the model’s behaviour. The SRSOM appeal’s to represent recursive states by

alternating between two regions of the map. This is illustrated in sequence 4, which

shows the model alternatively selecting neurons near 7 and neuron 97 as it processes

the state 2 recursive symbol ‘S’ . This effect has also been observed in other

sequences in the training set and is reflected by the results shown in figs 3.5 - 3.7,

which show comparatively higher performance on sequences of a greater recursive

depth that those encountered during training.

In conclusion, because the SRSOM doesn’t represent states as one zone of the map, it

is unable to generalize knowledge learnt in one sequence to other sequences. The

model is effectively acting as an associative memory and is simply memorizing the

training set. It is unable to generalize appropriately to novel sequences, except in the

case of recursive states. Consequently the SRSOM is unsuitable, in its current form, to

language acquisition because any potential model must be able to generalize in order

to solve the projection problem (Baker, 1979).

73

4 - STORM

This chapter will identify a fundamental limitation of the SRSOM model that explains

why it is unable to learn the underlying rules of the Reber grammar. Following these

limitations, a discussion of memory-rule based linguistical models will be given. It

will be argued that a memory-rule approach to grammar induction may allow the

SRSOM to overcome its memorization limitation and therefore allow it to learn the

rules of the grammar.

An enhanced model will then be proposed that is able to learn grammatical rules that

allow the model to generalize its learnt behaviour to novel sequences. Following a

detailed discussion of this model, a set of experiments will be presented that quantify

the model’s ability to learn the Reber grammar.

4.1 Limitations of the SRSOM - The need for state

Chapter three concluded with a critical analysis of the SRSOM model. A state

diagram was used to show that, in the SRSOM, grammatical states were not clustered

into specific regions, but were spread out over the map. Because the model does not

perform state-based clustering, it is unable to correlate information learnt from one

sequence to that of a functionally-similar sequence. The limitation of this becomes

apparent when considering functional-equivalence theory (Hopcroft and Ullman,

1979). This asserts that two states are functionally equivalent if, for all future inputs,

their outputs are identical.

74

Thus, according to functional-equivalence theory, a state is distinguished by the

continuity of its outputs rather than by any function of its inputs. This definition

implies that the input sequences needed to arrive at any given state need not be related

to each other (i.e. their contexts have 110 common factor). Instead, the state is defined

by the fact that each input sequence has an identical output sequence (i.e. the part of

the sequence following the state in question). Therefore, if a model is to construct

states, it must bind the input symbols that define entry to a state such that for

whichever of these state-input symbols occur, the model reaches an identical output

state. In the case of a SOM based model, such behaviour may be characterized by

activating the same winning neuron for all of the input symbols for a specific state

(table 4.1).

Input sequence: Model’s representation of input sequence after training:

1 B T X S E B (T :STA TE 2) X S E

2 BT S X S E B (T:STATE 2) (S.STATE 2)X S E

3 B T X X V P S E B (T:STA TE 2) X X V P S E

4 B T S X X V P S E B (T:STA TE 2) (S:STA T E 2) X X V P S E

Table 4.1 - Example illustrating the need fo r state in order to generalize. I f a model is
able to learn a representation o f state 2 from sequences 1 and 2, then it can learn
sequence 3 in a manner that allows it to correctly generalize to sequence 4.

The results shown in chapter 3 demonstrate that the SRSOM model could not achieve

such a state-based representation. In the SRSOM each sequence is effectively

memorized separately, thus preventing the SRSOM from generalizing to novel

sequences. For example, with respect to the sequences shown in table 4.1, the

SRSOM would need to be trained on all four sequences in order to correctly learn

them all. Because the SRSOM is unable to learn state 2, the third symbol, ‘X’ in

75

sequence 3 would activate a different winning neuron to that activated by the ‘X’

symbol in sequence 2. Therefore, the model would be unable to generalize its

knowledge from sequence 3 to sequence 4, requiring that the latter be explicitly

included in its training set. This is a profound limitation which implies that in order to

be able to learn the grammar all of the symbols must be seen in all possible contexts.

As discussed in (Hadley and Cardei, 1999), such a positionally intensive training

requirement is cognitively unrealistic.

This discussion of the limitation of the SRSOM implies that any model designed to

learn the rules of a grammar must be capable of representing input symbols via state.

However, conventional recurrent neural networks, such as the SRSOM, operate using

only a representation of the past-context and the current input symbol. This poses a

problem, because by themselves the past context and current input simply don’t

provide sufficient information to unambiguously determine the appropriate state

purely from the input data. As previously explained, a state is defined by the

continuity of its outputs. The input symbol sequences that lead to a particular state,

along with their associated contexts, have potentially no information that could be

used to allow the model to attract the sequences towards a common region of its state

space.

This premise is illustrated by the FSM for the Reber grammar (see diagram in

appendix A), which shows both the grammatical states and their corresponding input

symbols. For example, state 4 has the two input symbols X and P and the two output

symbols X and S. However, without further information by which to identify state 4,

the SRSOM’s learning algorithm will separately store representations for the state 4

76

input symbols X and P in completely unrelated areas of the map. Consequently this

disparity will result in duplicate representations for each of the output symbols X and

S. Thus the choice of winning neuron for the state 4 output symbol X will depend on

whether it was preceded by an X or by a P. This fragmentation effect will be further

compounded by separation of input symbols at every state encountered in the

grammar.

4.2 Memory-rule based models

Many leading linguists, such as Pinker (2000) and Marcus (2000), have theorized that

language acquisition, as well as other aspects of cognition, can be explained using a

memory-rule based model. This theory proposes that cognition uses two separate

mechanisms that work together to form memory. Such a dual-mechanism approach is

supported by neuro-biological research, which suggests that human memory operates

using a declarative fact-based system and a procedural skill-based system (Cohen and

Squire, 1980). In this memory-rule based theory, rote memorization is used to learn

individual exemplars, while a rule-based mechanism operates to override the original

memorizations in order to produce behaviour specific to a category. This memory-rule

theory of cognition is commonly explained in the context of the acquisition of the

English past tense (Pinker, 2000). Accounting for children’s over-regularizations

during the process of learning regular and irregular verbs constitutes a well-known

battlefield for competing linguistic theories. Both Pinker (2000) and Marcus (2000)

propose that irregular verbs are learnt via rote-memorization, while regular verbs are

produced by a rule. The evidence for this rule-based behaviour is cited as the over­

regularization errors produced when children incorrectly apply the past tense rule to

irregular verbs (e.g. runned instead of ran).

77

As established in the previous section, in order to learn the grammatical rules a model

must be capable of identifying and representing grammatical states, in accordance

with functional-equivalence theory. However, it was also shown that the SRSOM

camiot derive such states using only a representation of the past-context and current

input. This problem can be overcome by treating the neural network as a memory

rule-based model, in which the future-context of memorized sequences is compared

against the future-context of the current input sequence. Therefore, instead of trying to

form states using only a representation of the past-context and the current input, as in

conventional dynamic comiectionist models, a memory-rule based grammar induction

model would use regularities in the future-context of sequences to identify states.

Thus such a model would learn via similarity o f behaviour, rather than similarity o f

form. This is illustrated in table 4.2, which shows three sets of example sequences

from the Reber grammar.

Sequence: State:

1 B 7 X S E 2

2 B T S ' X S E 2

3 B T J S E 4

4 B P V P S E 4

Table 4 .2 - Example o f how the future-context o f sequences can be used to identify
states in the grammar. Sequences 1 and 2 can be used to identify the state 2 input
symbols, whilst sequences 3 and 4 can be used to identify the state 4 input symbols.

As shown in table 4.2, the state 2 input symbols ‘T’ and ‘S’ are related to each other

by their common future-context ‘X S E ’. State 4 is an even better example of this

approach to state-identification, because the symbols ‘X’ and ‘P’ that constitute state

4 have completely unrelated past-contexts. Therefore, the only common feature that

78

can be used to identify state 4 is the identical future-context ‘SE’ for both of the state

4 input symbols ‘X’ and 4P \

4.3 STORM (Spatio-Temporal self-Organizing Recurrent Map)

STORM is a memory-rule based connectionist model. It extends the SRSOM by using

lateral interconnections between neurons on the map (fig 4.1). As with the original

SRSOM, a recurrent feedback mechanism enables the model to act as a temporal

associative memory. This allows the model to initially produce localist-based

memorizations of input sequences. The model’s rule-based mechanism then exploits

the similarities between the future-context of memorized sequences and the future-

context of the current input sequence. These similarities drive a temporal-Hebbian

learning mechanism that uses the lateral connections to bind functionally-related

neurons together, effectively overriding the original memorizations and producing

state based rules. The next two sections will discuss the model’s memorization and

rule-construction mechanisms, respectively.

4.3.1 STORM’s memorization mechanism

STORM’s memorization mechanism allows it to initially learn input sequences in

exactly the same manner as for the SRSOM. Its recurrency mechanism feeds back the

location of the previous winning neuron on the map, which has the effect of mapping

similar elements of different sequences to different winning neurons (fig 4.1).

79

C s T © (S T O O
O 0 O O O

1 . B T X S E [
2. B T S X S E

Fig. 4.1 — The winning neurons for two memorized sequences that end with the same
sub-sequence ‘XSE\

4.3.1 STORM’s rule-based construction mechanism

The model’s location-based recurrency representation and localist architecture

provide it with a very important ability. Unlike conventional comiectionist models,

the sequences learnt by STORM can be extracted in reverse order. This makes it

possible to start with the last element in an input sequence and work backwards to

find the winning neuron corresponding to the previous symbol in the sequence. This is

achieved in a similar manner to the operation of the SRSOM’s prediction algorithm,

discussed in section 2.3.2. Because each neuron’s weight vector consists of a symbol

and context vector containing the coordinates of the previous winning neuron, it is

possible to examine a neuron’s context-vector to find the previous winning neuron in

a sequence.

STORM’s rule-based construction mechanism exploits this ability to transverse

memorized sequences in both directions, allowing it to identify sequences whose

future-contexts match those of the current input sequence. As explained on page 74,

symbols that share the same future-context represent the input-symbols to the same

80

states. This is illustrated in figure 4.2, which shows that the ‘S’ and ‘T’ input symbols

to state 2 can be identified by their common future context ‘X S E \

Winner for 2nd input in sequence B T X S E

Alternative winner for 2nd input

in sequence B f x S E

Fig. 4.2 - Illustration o f the alternative winning neuron selection algorithm tracing
back through the stored sequence BTSXSE. The neuron representing the third symbol,
‘S ’, is the alternative winner with respect to the second symbol, ‘T ’ in the sequence
BTXSE. This is because both the ‘T ’ and the ‘S ’ have the same future context (XSE).

When an input is presented to the model, the winning neuron selection algorithm finds

the best matching neuron, exactly as in the SRSOM model (section 2.2.1). However,

STORM also traces backwards through the future-context of the input sequence (i.e.

starting at the end of the input sequence and working back towards the current input)

in order to find an alternative winning neuron (fig 4.2). Thus, while the winning

neuron represents the best match for the current input symbol and context vector, the

alternative winning neuron represents a possible functionally-equivalent input symbol

in a sequence already memorized by the model.

STORM’s rule-based construction mechanism uses these similarities in future-context

to drive a temporal-Hebbian learning mechanism that operates on the lateral

connections between neurons (discussed in more detail in section 4.3.2). This

81

mechanism uses the lateral connections to bind functionally-related neurons together

into representations of state. This is achieved by strengthening the connections

between neurons representing symbols with consistently identical future-contexts,

thus allowing the model to build up relationships between functionally equivalent

neurons.

1 . B T X S E
2. B T S X S E

Fig. 4.3 —Functional override in winning-neuron selection algorithm. The functional
relationship (shown in grey) between the third symbol, ‘S ’, in sequence 2 and the
second symbol, ‘T ’, in sequence 1 forces the model to process the remaining elements
in the second sequence (namely ‘XSE ’) using the same winning neurons as for the
first sequence.

Once the strength of these lateral connections exceeds a predetermined threshold, they

override the recurrency mechanism. This forces the model to use a single

representation for the future inputs in the sequence, rather than the original two

representations (fig 4.3). This is achieved by using the lateral connections to mark one

of the functionally-related neurons as the master and the other as a slave. Therefore,

regardless of which of these neurons is the actual winner, the recurrency mechanism

feeds-back a representation of the master winner. The criteria for determining which

functionally-related neuron is the master and which is the slave is discussed in section

4.3.2.

82

The result of this override mechanism is that the remaining elements in the input

sequence are processed as if the master neuron had been selected, rather than the

actual winning neuron. The purpose of forcing the model to use this single

representation for the future sequence elements is that knowledge from other

sequences, which involves the functionally-related symbols in question, can then be

generalized to apply to both symbols (discussed further in section 4.4).

The model’s alternative winner selection algorithm conforms to the SOM’s winner-

take-all philosophy by choosing the alternative winning neuron whose future-context

is the best match to that of the current input sequence. Given that tracing back through

the future-context may identify multiple alternative winners, the criteria of best

matching winner classifies the best matching sequence stored in the model as the

winner (i.e. the sequence whose winning neurons are the best match to the symbols in

the future-context in question). Furthermore, the lateral connections between the

winner and the alternative winner are only strengthened if the future-context for the

alternative winner is a better match than the future-context for the winner itself. Thus,

the model has a preference for always using the dominant sequence and it will use the

temporal-Hebbian learning mechanism to re-wire its internal pathways in order to re­

use the best matching representation of a sequence where ever possible.

4.3.2 Operation of the temporal Hebhian learning mechanism

As previously mentioned, STORM exploits similarities between the future-context of

memorized sequences and that of input sequences in order to drive a temporal-

Hebbian learning mechanism. By using the lateral inter-connections between neurons,

this mechanism is able to bind functionally-related neurons together into states. These

83

inter-connections are constructed so that the neuron whose future-context trace is the

best match to the future-context in the current input sequence is denoted the master.

The other neuron with the weaker future-context trace becomes the slave (figure 4.4).

Thus after state construction, a neuron with a lateral connection to a master will

override the recurrency mechanism by using the location of the master neuron as

context, rather than the slave neuron itself.

1 . B T X S E
2. B T S X S

Fig. 4.4 -Master lateral connection from the ‘S ’ neuron to the ‘T ’ neuron
(light arrow) and a slave lateral connection from the ‘T ’ neuron to the ‘S ’
neuron (dotted dark arrow).

STORM is not a monotonic learning system. In order to be able to respond to

statistical relationships in the input data, the model must be able to both construct and

also break-down states. This ability is necessary because occasionally phantom

future-context traces may be detected by the rule-constmction algorithm. Such traces

may arise from either statistical anomalies or may be the result of obsolete sub­

sequences whose winning neurons have shifted position during the training process.

Without the ability to break-down functional-relationships these phantom future-

context traces would interfere with the learning process by masking the real

functional-relationships.

84

The temporal-Hebbian learning mechanism both constructs and breaks-down states by

applying a positive and a negative learning rate to the lateral connections. While the

positive learning rate is applied with respect to regularities in the future-context, the

negative learning rate is continually applied to all lateral connections and acts as a

global decay (Figure 4.5). Upon presentation of each input symbol to the model, all

lateral comiections decay by a pre-determined value (typically in the order of 0.005).

The effect of this decay is that obsolete functional-relationships between neurons (i.e.

relationships that are 110 longer reinforced via a positive learning rate) are slowly

broken down over time.

Fig. 4.5 -Illustration o f the negative learning rate being applied to all o f the lateral
connections for the neuron representing the symbol X ’.

The model’s negative learning rate is complemented by a positive learning rate, which

is used in the construction of functional-relationships between neurons (Figure 4.6).

However, due to the operation of the model’s state construction algorithm, the

application of this positive learning rate is slightly more complex than its description

suggests. As previously discussed, similarities between the future-context of

memorized sequences and that of input sequences, are used to construct states, forcing

the model to use only one future-context representation rather than two (figure 4.4).

However, by forcing the model to share a single representation for the future-context

85

of both state-inputs, the very criteria used to construct the functional-relationship (i.e.

two identical future-eontexts) is removed. Therefore, once a state is formed the

criterion used to identify it disappears. This subsequently prevents the temporal-

Hebbian learning mechanism from identifying and reinforcing the lateral connections

that constitute the functional-relationship. Without such reinforcement, the effects of

the negative learning rate slowly break down the functional-relationship between the

state-neurons, until eventually the state collapses and the process of state formation

must begin all over again.

b t A se

Fig. 4.6 - Application o f positive lateral learning rate. When the ‘X ’from the 1st
sequence BTXSE is input, the lateral connection belonging to the alternative winning
neuron (the 2nd P in the memorized 2nd sequence BPVPSE) is enhanced with respect
to the winning neuron for the current X ’ input from the 1st sequence.

This conundrum is resolved by constructing functional-relationships using an

approach called mutual-activation-reinforcement. In this approach winning neurons

don’t enhance their own lateral connections. Instead they enhance the lateral

connections belonging to the alternative winning neuron, identified via an identical

future-context. For example, in figure 4.7 the winning neuron for the 4th symbol, ‘P’,

in sequence 2 will enhance the lateral connections belonging to the winning neuron

for the 3rd symbol, ‘X’, from sequence 1. Conversely, the neuron representing the ‘X’

symbol in sequence 1 would be responsible for enhancing the lateral connection to the

86

winning neuron for the 4th symbol, ‘P’, in sequence 2. This mutual-activation-

reinforcement will only occur if the winning neurons for the symbols in question are

activated in sequences with identical future-contexts. In this way, a two-way

functional-relationship between the two neurons is built up. The strength of the lateral

inter-connections is continually enhanced as training proceeds until a point is reached

where the recurrency mechanism is overridden to form state. This point is determined

by an empirically defined threshold value.

Fig. 4.7 - Mutual-activation-reinforcement. The winning neuron for the X ' input in
sequence 1 enhances the lateral weights belonging to its alternative winner (shown by
a light grey arrow). Conversely, the winning neuron for the ‘P ’ in sequence 2
enhances the lateral weights belonging to its alternative winner (shown with a dotted
dark arrow).

Once a neuron’s lateral weights have exceeded the empirically determined threshold

(i.e. the given point at which the recurrency mechanism is overridden) a two-way

functional-relationship can be assumed to exist between the neuron in question and

the neuron referenced by the active lateral weight. The existence of this relationship is

validated by the fact that winning neurons cannot enhance their own lateral weights.

Therefore, any active lateral connections could only have been created by a

functionally-related neuron. Consequently, at this stage in the state-construction

process, it’s no longer necessary for both winning neurons to have to identify each

87

other via future-context matches. Once active lateral connections have been

constructed, each winning neuron can directly enhance the other neuron’s lateral

weights. The only criterion for this enhancement is that the future-context of the

current input sequence matches that of the winning neuron itself (i.e. the input symbol

in the current sentence isn’t an exception to the rule represented by the lateral weight

we want to enhance).

Therefore, using the mutual-activation-reinforcement approach discussed above, the

assumed functionally-related neuron’s lateral weights can be enhanced without the

need to identify the alternative winning neuron via identical future-contexts. This

overcomes the problem caused by the eventual decay of connections between the

slave neuron and the master winning neuron (shown by the dashed ‘SE’ neurons in

fig. 4.7). Thus, while regularities in the future-context are used to initially construct

states, once formed the state neurons continually reinforce their relationship with each

other, as long as all the neurons that constitute a particular state continue to be

regularly activated in the appropriate context.

4.4 Learning via functionai generalization

The previous two sections have discussed the mechanics of STORM’s state-

construction algorithm, but neither has shown the advantages of forming a state-based

representation. This section will discuss how STORM’s ability to form state allows it

to generalize learnt knowledge to unseen sequences and consequently learn from a

sparse training set.

While a state is constructed based on similarities in future context, there may be cases

where the future context, for the respective input symbols that constitute the state, is

dissimilar. For example, the first two sequences in table 4.3 are sufficient for the

model to form state 2 (see fold out sheet in Appendix A for the Reber grammar FSM).

However, the third sequence in table 4.3 contains the same state 2, but ends with a

different sub-sequence (i.e. X X V V E, as opposed to X S E).

Symbols in training sequence
(winning neurons for symbols)

1 B T X S E
(4) (10) (14) (20) (25)

2 B T S X S E
(4) (10) (8) (14) (20) (25)

3 B T X X V V E
(4) (10) (14) (2) (12) (18) (23)

Test sequence (not seen during training)

4 B T S X X V V E
(4) (10) (8) (14) (2) (12) (18) (23)

Table 4.3 - Functional generalization example. When trained on the first three
sequences, STORM is able to construct a state between the 7 ” in sequence 1 and the
first ‘S ’ in sequence 2. By generalizing this learnt state to its memorization o f
sequence 3, STORM is then able to correctly process sequence 4 by activating the
same winning neurons for the sub-sequence ‘X X V V E ’ as would be activated in
sequence 3.

Once a state has been constructed, the future context in subsequent sequences

containing that state will be processed in an identical manner, regardless of whether

that future-context is different from that used to initially construct the state 2. To be

more specific, the ‘T’ symbol from sequence 1 will form a state with the first ‘S’

symbol from sequence 2. This will result in both sequences 1 and 2 sharing the same

winning neurons for their final three inputs (X S E). STORM will then be able to

generalize this learnt state to its memorization of sequence 3, resulting in the same

89

winning neurons being activated for the ‘X X V V E’ in test sequence 4 as are

activated in training sequence 3.

As STORM learns specific states, that state-knowledge is reflected in changes to its

internal representations of all memorized sequences containing the state in question.

This powerful generalization ability reduces the effects of the poverty of stimulus

theory, which stipulates that language input is too sparse for a learner to acquire the

rules. As discussed in the literature study (section 2.1), the poverty of stimulus theory

has been one the central nativist arguments against the feasibility of connectionist

language acquisition. STORM’s functional generalization abilities preclude the need

to learn separate examples of each symbol in different contexts, thus allowing the

model to induce a grammar from a sparse data set.

4.5 Experiments

In order to gauge STORM’s grammar induction abilities compared with the SRSOM,

the model was applied to the same task of predicting the next valid symbols in the

Reber grammar. As with the previous SRSOM experiments, separate randomly

generated training and test sequences were used to ensure the model performance was

assessed by testing it on sequences not encountered during training.

The maximum recursive depth parameter in table 4.4 denotes the highest possible

sequential number of recursive symbols in any sequence (i.e. the maximum number of

times around a recursive loop, such as the recursive ‘S’ in the Reber grammar’s state

2). By only selecting sequences for the training and test sets with a maximum

recursive depth of less than six, it is possible to ensure the model is not tested on

90

sequences too far beyond the complexity of its training set. The basis of this criterion

is the established fact that supervised models such as the SRN become unstable when

tested on sequences whose recursive depth is more than three symbols greater than the

sequences in its training set (Omlin, 2001). A model size of 10 x 10 neurons was

chosen for this experiment because it was believed that this would be sufficiently

large enough to allow the learning mechanism to operate, but small enough to prevent

the model from just memorizing the grammar.

Parameter: Value:
Number of epochs 1000
Learning rate (linearly decreasing and
decremented each epoch)

0.1

Neighbourhood (linearly decreasing
and decremented each epoch)

5

Positive / negative temporal Hebbian
learning rate

0.5 / 0.005

Lateral activation threshold value 1
Number of training sequences 30
Number of test sequences 10
Maximum recursive depth (RD) of
sequences

6

Model size 100 neurons (10 x 10)

Table 4.4 - Experimental parameters for experiment I.

Fig 4.8 - Results from
experiment 1 showing
the prediction
performance on test
set 1 for a 10 x10
STORM model trained
on trained set 1.

0 50 100

Performance %

Final
Performance
Highest
Performance

91

19

Fig 4.9 - Results from
experiment 1 showing
the prediction
performance on test
set 2 for a 10 x10
STORM model trained
on training set 2.

Fig 4.10 - Results from
experiment 1 showing
the prediction
performance on test set 3
f o r a 10 xJO STORM
model trained on
training set number 3.

Performance %

The results from experiment 1 (figs 4.8 - 4.10) show that between four and seven

models became perfect grammar recognizers (100% performance) during training.

However, the number of perfect recognizers fell to three, for each set of training/test

sets, by the end of training. While these results show that the model is capable of

perfectly learning the grammar for multiple training sets, the discrepancy between

highest and final performance suggests that the model is unstable. It appears that in

some cases optimal representations reached during training are lost by the end of the

training process. The exact reason for this is unclear, however in comparison with

similar experiments on the SRN (Sharkey et al, 2000), the results for STORM are

very good because in the SRN experiments only two out of ninety SRNs became

perfect grammar recognizers at the end of training.

+■»c0)
E

‘SZd)
Q-
X

UJ

9

7

5

3

1

50 1000

I Final
Performance

□ Highest
Performance

Performance %

Final
Performance
Highest
Performance

100

92

In order to determine the effect of the model’s size on its performance, a second

experiment was run that used a model of 25 neurons arranged in a 5 x 5 lattice. This

experiment used exactly the same parameters as the first experiment, with the only

difference being the model's size.

%
■*->co
E
o
CL
X

LU

■ Final
Performance

0 Highest
Performance

Performance %

Fig 4.11 - Results from experiment 2 showing the prediction
performance on test set 1 for a 5 x 5 STORM model trained on
training set 1.

9 1

7

5

3

1

1000 50

Performance %

■ Final
Performance

□ Highest
Performance

Fig 4.12 - Results
from experiment 2
showing the prediction
performance on test
set 2 for a 5 x 5
STORM model trained
on training set 2.

93

Fig 4.13 - Results
from experiment 2
showing the prediction
performance on test
set 3 for a 5 x 5
STORM model trained
on training set 3.

Performance %

As the results in figs 4.11 - 4.13 show, the smaller 5 x 5 model only managed to

achieve 100% performance once in 30 experiments. This suggests that having too few

neurons impedes the model's ability to learn the grammar. In order to further

investigate the effect of model size on performance, a third set of experiments were

run using a model of 15 x 15 neurons. All the parameters were identical to the

previous two experiments, except for the model size.

ca>
Ekoa.x

LU

9

7

5

3

1

0 50 100

Final
Performance
Highest
Performance

%

0 50 100

Performance %

■ Final
Performance

0 Highest
Performance

Fig 4.14 - Results
from experiment 3
showing the prediction
performance on test
set 1 for a 15 x 15
STORM model trained
on training set I.

94

=tfc
cV
E

"u.d)Q.
X

LU

0 50 100

Performance %

■ Final
Performance

□ Highest
Performance

Fig 4.15 - Results
from experiment 3
showing the prediction
performance on test
set 2 for a 15 x 15
STORM model trained
on training set 2.

Sfc
+->ca)
Eud)
CL
X

LU

■ Final
Performance

□ Highest
Performance

Fig 4.16 - Results from
experiment 3 showing
the prediction
performance on test set 3
for a 15 x 15 STORM
model trained on
training set 3.

i
0 50 100

Performance %

The results in fig 4.14 - 4.16 show that the 15x15 model achieved much better

performance than the smaller 5 x 5 model. However, rather surprisingly, the 15x15

model didn’t perform as well as the 10x10 model (figs 4.8 - 4.10). In the first

experiment, between four and seven of the 10x10 models reached 100%

performance during training. In contrast, no more than three of the 15 x 15 models

reached 100% performance in the third experiment. Given the inferior performance of

the smaller 5 x 5 model with respect to the 10x10 model, it was expected that the

larger 15x15 model would have provided the highest performance out of all the

models. A possible explanation for this anomalous result may be that the initial

random weights used in experiment three were biased towards a local, rather than a

global minima.

95

61696

In order to investigate the effect of the initial start weights on the model’s ability to

learn the grammar, an experiment was conducted that varied the start weights, while

keeping all other experimental parameters fixed. For this experiment ten models were

trained using training set one. Each model had different random initial weights, but

the order of the presentation for the training patterns was kept the same by using a

fixed seed for the random number generator.

c<u
Eza)a
x

UJ

Final
Performance
Highest
Performance

Fig 4.17 - Results from
experiment on 15x15
model using training set
1 with random weights,
hut fixed training
sequences presentation
order.

0 50 100

Performance %

The results in fig 4.17 show that the experiment to vary the initial random weights

resulted in none of the ten models learning a perfect representation of the grammar.

The variation in the results does show that the model is sensitive to the initial start

weights and that despite the training sequences being presented in a fixed order, the

difference in start weights had an effect on the model’s performance. However, it is

not clear whether the initial start weights were directly responsible for trapping the

model in a local minima or whether they just triggered an instability in the learning

algorithm.

96

4.6 Analysis of STORM

The anomalous results from the experiments on the 15x15 model suggest that there

may be unresolved issues involving STORM’s learning algorithm. In order to further

investigate the learning process, this section of the thesis will provide a full analysis

of two models trained on the Reber grammar. The first model to be analysed will be a

10x10 model that achieved 100% prediction performance on training set 1, while the

second analysis will involve an identical model that failed to achieve 100%

performance. Comparing and contrasting these analyses should provide an insight into

the model’s anomalous performance and also its internal representation of the

grammar.

Table 4.5 shows the corresponding winning neurons for a set of sequences used to test

a 10x10 model that achieved 100% prediction performance on the Reber grammar.

These test sequences were specifically chosen to include all the simple sequences, as

well as a few complex sequences from the Reber grammar. As discussed in section

4.3.1 the proposed advantage of STORM’s rule-based learning algorithm is that it

allows the model to form a representation of state. Such a state-based representation

should allow the model to activate winning neurons in accordance with the current

state, as opposed to activating strictly input plus context-dependant wimiing neurons.

The activations in table 4.5 show that STORM’s rule-based learning algorithm is

indeed forming the intended state-based representation. For example, sequences 1, 6

and 10, which all share the same ‘X S E’ ending, have identical winning neurons for

their last three symbols. Thus despite the variations in context that result from

different initial symbols in these sequences, the model correctly reaches an equivalent

state when it encounters the final three symbols in each sequence. This state-based

97

representation is also highlighted by sequences 1, 3, 5, 6, 7, 9 and 10, which all share

the same winning neurons for their ‘S E’ ending, despite massive variations in

context. Other states can also be observed inside sequences, such as state 5 (neuron

96) in sequences 3,4,7,8,9 and 11.

Input sequence / wimiing neurons

1 B T X S E
10 4 80 21 91

2 B P V V E
10 1 96 57 91

3 B T X X V P S E
10 4 80 51 96 50 21 91

4 B T X X V V E
10 4 80 51 96 57 91

5 B P V P S E
10 1 96 50 21 91

6 B T S X S E
10 4 100 80 21 91

7 B P T V P S E
10 1 7 96 50 21 91

8 B T X X T V V E
10 4 80 51 7 96 57 91

9 B T X X V P X V P S E
10 4 80 51 96 50 51 96 50 21 91

10 B T S S S S S S S X S E
10 4 100 100 100 100 100 100 100 80 21 91

11 B P V p X T T T T T T T V Y E
10 1 96 50 51 7 7 7 7 7 7 7 96 57 91

Table 4.5 - Activations from a 10*10 model that achieved 100% prediction
performance on the Reber grammar. The rightmost column shows sequences o f input
symbols above the winning neurons for the respective symbols.

Sequences 10 and 11 show how this state-based representation allows the model to

correctly process sequences of a higher recursive depth than those encountered during

training (i.e. the recursive ‘S’ symbol in sequence 10 will always activate the same

winning neuron regardless of how many ‘S’ symbols there are).The state-based

representation learnt by the 100% model is shown graphically in figure 4.18. In order

to represent the state-relationships encoded in the lateral connections, figure 4.18

98

shows the winning neurons after any functional-overrides have been applied. The

activations were produced by testing the model on the same set of sequences shown in

table 4.5.

/ ©ooooooooo /oooooooooo/ /oooooooooo/ /ooooooooo® oooooooooo oooooooooo oooooooooo oooooooooo 'oooooooooo ooooooooo®
Fig. 4.18 -S ta te diagram for 100% model. The numbered circles represent the
winning neurons for the respective grammatical states (shown after functional-
overrides have been applied).

The state-diagram in figure 4.18 illustrates the model’s perfect representation of the

grammar. Despite being tested on eleven sequences with a total of 90 input symbols,

the model only uses six neurons (after the functional-override has been applied) in its

internal state representations. These six neurons represent the six states in the

grammar, proving that the model has learnt a perfect representation of the Reber

grammar.

The analysis of the model that successfully learnt the Reber grammar shows that

STORM’s learning algorithm performs as expected, forming a state-based

representation of the grammar. However, as the experiments in section 4.5 show, not

99

all models are capable of learning a perfect representation of the grammar. In order to

investigate the failures, a second analysis was performed 011 a 1 Ox 10 model that

achieved less than 100% prediction performance on the Reber grammar. As with the

previous analysis, the model was trained on training set 1 and then tested on a set of

sequences specifically chosen to show the model’s full range of performance 011 the

grammar.

Input sequence / winning neurons

1 B T X S E
1 31 90 50 84

2 B P V V E
1 61 4 91 100

3 B T X X V p S E
1 31 90 97 29 54 68 93

4 B T X X V V E
1 31 90 97 29 10 93

5 B P V P S E
1 61 4 91 60 84

6 B T S X S E
1 31 70 86 59 95

7 B P T V P S E
1 61 23 15 63 69 85

8 B T X X T v V E
1 31 90 97 47 28 10 93

9 B T X X V P X V P S E
1 31 90 97 29 54 77 30 64 68 93

10 B T S S S S S S S X S E
1 31 70 75 59 85 59 85 59 96 50 84

11 B P V P X T T T T T T T V V E
1 61 4 91 100 48 37 36 45 36 45 36 17 9 94

Table 4.6 - Activations from a 10 x 10 model that achieved only 74% prediction
performance on the grammar. The rightmost column shows sequences o f input
symbols above the winning neurons for the respective symbols.

The activations in table 4.6 show that the model has not properly learnt the rules of

the grammar. For example, although sequences 1, 7 and 9 all end in with the same 4S

E’ symbols, each sequences activates different winning neurons. This lack of state-

based representation can also be observed right at the beginning of the sequences (i.e.

100

sequences 1, 6 and 10 all have different winning neurons for the ‘X’ symbol). There

are two possible explanations for these results. Either the model has failed to learn

any rules at all, or it has learned partial rules that apply only to specific sequences. In

the former case, the model would be acting just like the SRSOM from chapter 3 and

simply finding the best match for the input and context vectors. As such, the identical

winning neurons for the last two symbols in sequences 3 and 9 would occur not

because of a rule, but because both the previous winning neurons for both sequences

were adjacent to each other.

The second explanation for the results in table 4.6 is that the model in question has

learnt partial rules that apply only to specific sequences. In this case the identical

winning neurons for the last two symbols in sequences 3 and 9 could be explained by

the existence of a rule that applies only to those specific sequences (or more correctly,

to two sequences similar to 3 and 9 because neither sequences were part of the

training set themselves). If this were the case then this suggests that a failure has

occurred early in the learning process, resulting in the formation of erroneous states.

Such a situation may have arisen if the model was prevented from finding the basic

states (i.e. states two and three) and was therefore forced to construct states five and

six based on specific memorized sequences. However, subsequent analysis strongly

suggests that the former explanation is the case in point.

The state-diagram in figure 4.19 validates the premise that the 74% model’s

inadequate performance was due to its lack of a state-based representation. Despite a

few clusters, the majority of activations for the six states are scattered throughout the

map. As explained in section 4.1, without a state based representation a model is

101

limited to learning fragmented memorizations of input sequences. Because its

knowledge of the grammar is relative to particular contexts rather than states, it is

unable to generalize knowledge from one sequence to a sequence in a different

context.

/ ©0 ©0@® ©0@©/
/ ® o® oo® ® ooo//oososooooo//o®o@©oo©o©//ooo®oooo©®//o®oo©oo@®o/

/©OOOO00OOO
000) 0000)000 oooooooooo//© oo©oo©oo®/

Fig. 4.19 - State diagram for 74% model. The numbered circles represent the
winning neurons for the respective grammatical states.

4.7 Conclusions

The SRSOM model’s lack of a state-based representation meant that it stored input

symbols relative to particular contexts rather than states. This consequently prevented

the SRSOM from generalizing information learnt from a symbol in a particular

context to equivalent situations in different contexts. The requirement for a state-

based representation was clarified by defining state in accordance with functional-

equivalence theory. The implication of this theory is that states can only be created by

identifying potential input symbol sequences that have matching future-contexts. As

such, conventional recurrent neural networks such as the SRSOM, which operate

102

using only a representation of the past-context, are unable to form an adequate

representation of state.

In order to overcome the limitations of the SRSOM, a novel connectionist memory-

rule based model was proposed. STORM is able to create a state-based representation

of the grammar by exploiting the future-context of sequences, in accordance with

functional-equivalence theory. By operating as a memory-rule based system, the

model is able to compare the future-context of symbols in an input sequence with the

future-context of symbols in memorized sequences. This allows the model to identify

functionally-related symbols and bind their associated neurons together using a

temporal-Hebbian learning mechanism. This has the effect of constructing states in a

bottom-up manner and learning using similarity o f behaviour, rather than similarity o f

form. Once constructed, these states affect the processing of subsequent input

symbols, forcing the model to use a state-based representation rather than distinct

representations for each symbol.

Multiple experiments prove that STORM’s state-based representation allows several

instances of the model to learn a perfect representation of the Reber grammar which,

in turn, allows it to generalize beyond its training set. However, these experiments

also suggest that there are unidentified issues relating to the learning algorithm which

sometimes prevent the model from learning a correct representation of the grammar.

In summary, STORM is a radical connectionist model whose state-based functional

learning algorithm allows it to supersede the capabilities of conventional

comiectionist grammar induction models, such as the SRSOM. By inducing explicit

103

representations of the rules of a grammar from sparse data, STORM poses a challenge

to traditional natavist linguistic theories and further undermines the logical problem of

language acquisition (Jackendoff, 2002). Furthermore, STORMs reliance on

functional-equivalence theory and its memory-rule based approach to grammar

induction, provide a new pathway for connectionist modelling that brings the

discipline closer into line with traditional linguistics.

104

5 Beyond the Reber grammar

Chapter four’s presentation of the STORM model used the Reber grammar as a test­

bed. However, while this simple regular grammar provides an excellent example of a

basic generative grammar, it also lacks some of the important complexities found in

natural language. This chapter will discuss the problems posed by more complex

grammars, including recovery from over-generalization and the redundancy caused by

centre embeddings. Extensions will be proposed to allow STORM to overcome these

problems and potentially scale up closer to natural language itself. However,

preceding the discussion of complex grammars, this chapter will highlight a limitation

that may explain the model’s sporadic failure at inducing a perfect representation of

the grammar.

5.1 Instability and Causality Loops

During the development of the STORM model, a number of refinements and

concessions had to be made in order to turn the original conceptual model into an

operational prototype. The temporal-Hebbian learning mechanism in STORM’s rule-

construction algorithm is one such example of a compromise between the conceptual

model and the resulting implementation. In the conceptual model it was envisaged

that states could be constructed by encouraging functionally-related neurons to move

towards each other on the map. In this way, the original topological SOM would be

transformed into a functional SOM, with the neurons representing states located

together in clusters. However, initial unpublished experiments established that the

neighbourhood function interfered with the rule-construction algorithm, resulting in

catastrophic instability. This interference occurred because the neighbourhood

105

function was attempting to mould the SOM into a topological map, while the rule-

construction algorithm was attempting to defy this topology by moving functionally-

related neurons together to create a functional map. Consequently, STORM was

designed to leave the neurons in their original positions and to represent functional-

relationships using lateral connections and the associated temporal-Hebbian learning

mechanism.

Indirectly effected by
activation of rule1. BTXSE

2. BTSXSE

Fig 5.1 - Diagram showing the abrupt context change resulting from the activation o f
a rule. When the functional-relationship between the 2nd symbol, T, in sequence 1 and
the 3rd symbol, S, in sequence 2 is formed, the remaining three symbols in sequence 2
will no longer be activated. This consequently changes the effect o f the
neighbourhood function, especially on adjacent neurons and causes instability.

A consequence of constructing functional-relationships in this manner, rather than

slowly drawing related neurons together, is that the construction of a functional rule is

an abrupt event, rather than a slow process. In the conceptual model it was envisaged

that by drawing functionally-related neurons together, their contextual representations

would slowly change along with the movement of their location. Therefore,

subsequent winning neurons in each functionally-related sequence would also change

slowly, until eventually they merged into one sequence. However, the effect of

abruptly activating a rule is to switch the context of one of the functionally-related

neurons to that of its functional-counterpart. The consequence of this is to also

106

abruptly change the context of the rest of the sequence containing the neuron in

question (fig 5.1).

As shown in fig 5.1, when a rule is activated the elements in the sequences following

the slave winner (i.e. the last three symbols, XSE, in sequence 2) are forced to change

position to share the representation used by the master winner. This abrupt change

effectively causes a shockwave throughout the map as the influence of the

neighbourhood function is changed with respect to potentially every neuron. This

effect will be most dramatic for neurons in close proximity to the original winning

neurons following the slave winner (i.e. the neuron shown in black in fig 5.1). This

effect on the neighbourhood function is compounded by the increased activation of

the winning neurons following the master winner. Because the activation of a rule

results in the remaining elements in a sequence sharing a single representation, the

increased activation of those neurons will also change the effect of the neighbourhood

function upon potentially every neuron in the map.

5.1.1 Causality loops

Due to the aforementioned abrupt method of rule-construction, a potential problem

arises when the master functional winning neuron (i.e. the winner whose context is

used to represent both functionally-related neurons) is itself also a winning neuron

preceding the slave winner. As shown in fig 5.2, a causality loop could be created if

the winning neuron for the ‘X’ in sequence 1 attempts to form a slave-like functional

relationship with the master neuron representing ‘P* in sequence 2. Because the

winning neuron for the ‘X’ in sequence 1 is itself part of sequence 2, changing its

context to that of the ‘P* neuron will affect every subsequent winning neuron in

107

sequence 2, including ‘P’ itself. Therefore, constructing a functional-relationship

between the ‘P’ and the ‘X’ may prevent the ‘P’ from being activated. This in turn

prevents the functional-relationship between the ‘X' and ‘P’ from being maintained,

thus destroying the functional-relationship. In more abstract terms, a causality loop

can be defined as “using an event to change the past, which inadvertently prevents the

initial event itself from ever occurring”.

1 .
2 .

Fig. 5.2 - Diagram showing causality loop resulting from the neuron which
represents the X in sequence 1 attempting to form a functional relationship with the
neuron representing the P in sequence 2 and thereby changing the latter’s context.

While causality loops represent a potential problem for the learning algorithm, the

experiments performed on the model have not shown explicit cases where they cause

the model to get stuck in a local minima (i.e. a continual cycle of constructing and

destroying a specific functional-relationship). The probable reason for this is that if a

causality loop does occur, then the instability brought about by destroying the

functional-relationship involved acts as interference that disrupts the sequences

involved, effectively changing their respective strengths. Because STORM’s learning

algorithm uses a winner-take-all approach to select the dominant winning neuron

(section 4.3.2), the effect of this interference may cause a different dominant winning

neuron to be selected next time. Thus, the formation of a causality-loop creates

BTXSE
BTXXVPSE oar o o

108

interference that may prevent it from re-occurring and therefore averting the

possibility of infinite causality loops. However, even with the ability to avoid such

infinite loops, the interference resulting from a single causality loop may well de­

stabilize the model to such a degree that it fails to learn the grammar.

5.2 Recovery from over-generalization

Much of the research into language acquisition has centred on the problem of learning

the English past-tense. From the first comiectionist PDP models (Rumelhart et ol,

1986) to the latest symbolic accounts (Pinker, 2000), cognitive researchers have

exploited this well documented area of early child language acquisition to attempt to

justify their models. The process of learning the English past tense is characterised by

a U-shaped learning curve in children’s performance (fig 2.5). Following initially

good performance on both regular and irregular verbs, children later produce errors

involving the inflectional morphology of irregular verbs. These errors involve

incorrectly producing the past tense form of an irregular verb by using the suffix from

a regular verb (ex. runned, instead of ran). Following these over-regularisation errors

children’s performance later improves and they produce the correct forms for past-

tense irregular verbs.

Mainstream cognitive researchers (Pinker, 2000; Marcus, 2000) seek to model child

language acquisition using rules and symbols. Such an approach interprets the

phenomenon of the U-shaped learning curve as evidence that children initially employ

rote-memorization to learn both regular and irregular verbs, resulting in an initial

steady increase in performance. This is then followed by the acquisition (or

activation) of a rule for the production of past tense verbs. While this rule is identified

109

with respect to regular verbs, it is initially incorrectly applied to all verbs, resulting in

the over-regularisation errors seen in irregular verbs. The final phase of the U-shaped

learning curve is explained as the formation of exceptions with respect to the past-

tense rule. In this phase, the irregular verbs are explicitly re-memorized as exceptions

to the rule, resulting in the observed subsequent increase in performance.

The mainstream symbolic account of language acquisition conforms closely to

STORM’s modus operandi, in that initial memorizations are overridden by rules.

However, the final phase of the U-shaped learning curve (i.e. the ability to recover

from over-generalization) is not a characteristic of the basic STORM model. While

STORM is able to construct rules, once these rules are formed they are applied

universally. There is no mechanism to recover from over-generalization. Producing

exceptions to rules was unnecessary for a simple language like the Reber grammar.

However, more complex languages, even regular grammars, may contain constructs

that require exception handling (Figure 5.3).

Fig. 5.3 - Simple regular grammar that contains both rules and exceptions.

The simple grammar shown in fig 5.3 illustrates why a memory rule-based

mechanism alone is insufficient to learn the grammar. Because the two output

symbols labelled T and \P ’ from state one are functionally-equivalent (i.e. both have

the same ‘XHE’ ending), STORM could represent them using a rule, with ‘ T as the

110

master winner and ‘P ’ as the slave. Thus whenever the ‘P ’ symbol is encountered in a

sequence, the remainder of the sequence would be processed relative to both state

two. However, in the grammar state three also has the output symbol T , which is not

a valid output symbol for state two. Therefore, if STORM constructs the rule that the

‘T and ‘P ’ symbols are functionally-equivalent, it will over-generalize this rule by

representing the ‘ V symbol as a valid state two output symbol (figure 5.4).

Consequently the model would accept the sequence iBTVE \ which is not

grammatically correct.

Overgeneralization
of sequence 4

Fig. 5.4 - Illustration o f the over-generalization o f an exception to a rule. Because o f
the functional-relationship between the 2nd symbol, T, in sequence 1 and the 2nd
symbol, P, in sequence 2, the latter P uses the former T ’s context for the XHE ending.
However, this functional-relationship would also results in the VE ending o f in
sequence 3 being represented in the context o f the 2nd symbol Tfrom sequence 1.
Consequently this would allow the model to over-generalize by accepting, as valid,
the illegal sequence number 4.

5.2.1 Exception construction mechanism

As stated earlier, mainstream cognitive theory (Pinker, 2000; Marcus, 2000) describes

the phenomenon of over-regularization as a U-shaped learning curve. Initial good

performance leads to over-regularization errors, which are subsequently corrected as

exceptions to the rules are learnt. STORM’s learning algorithm currently conforms to

1. BTXHE
2. BPXHE
3. BPVE
4. BTVE

*o o o
4H.ro o o

i n

the first two stages of this learning process, namely initial memorization and

subsequent generalization. In order to conform to the third stage of this learning

process the model must recover from over-generalization using an exception

construction-mechanism.

In a memory-rule based model the process of learning exceptions can be perceived as

re-memorization, with respect to erroneously applied rules. Because STORM learns

rules with respect to a specific common future-context, if a rule is applied to an input

whose future-context conflicts with that used to construct the rule, then the rule can be

said to have been applied erroneously. For example, in fig 5.4 over-generalization

would occur when the 2nd symbol‘T’ from sequence 1 forms a functional-relationship

with the 2nd symbol ‘P’ from sequence 2 based on the common future-context ‘XHE\

As previously discussed, this would allow the functional-relationship to be applied to

sequence three, resulting in over-generalization and acceptance of the erroneous

sequence ‘BTVE\

The rule that functionally-relates the aforementioned symbols would be constructed

with respect to the common future-context ‘XHE’. Consequently, at the time the

functional relationship is created, STORM’s back-trace algorithm would be unable to

find any existing stored sequence for the ‘VE’, with respect to the overriding master

neuron, when it over-generalizes and applies the rule in the sequence ‘BPVE’ (figure

5.5). Therefore, without positive evidence to support the application of the rule to the

‘VE’ ending, STORM would be able to identify this ending as an exception to the rule

and then re-memorize it with respect to the winning neuron for the 2nd symbol‘T’

from sequence 1 (i.e. re-memorize ‘VE’ as an exception to the ‘XHE’ rule).

112

Current winning neuron

1. BTXHE
2. BPXHE
3. BPVE
4. BTVE

oo
0000 oooo

Fig 5.5 - Diagram showing identification o f erroneously applied rule. When the 2nd
symbol ‘P ’ in sequence 3 is input, the functional-relationship between the ‘T ’ and ‘P ’
neurons (light arrow) is used to override the recurrency mechanism. When the 3rd
symbol ‘V ’ from sequence 3 is input, the model uses the ‘T ’ neuron’s context.
However, the back-trace algorithm is unable to identify a 'VE' ending which
corresponds to that T ’ neuron. Therefore, with respect to sequence 4, the ‘VE’
ending is identified as an exception to the rule involving the T and P neurons.

This process of re-memorizing exceptions to rules can be achieved using the existing

temporal-Hebbian learning mechanism combined with a slight change to the rule

application algorithm. STORM’s current approach to the application of rules is to

search for and apply any active rules once the winning neuron is selected and its

weights have been updated. However, if the process of rule application is deferred

until after the next winning neuron has been selected, then the model can determine

whether that next winner is an exception. The algorithm in fig 5.6 describes how this

can be achieved by describing the behaviour of the model after the training process is

complete. During the training process itself the model would not need to examine

lateral exception connections because the learning algorithm has access to the future-

context and can therefore perform exception identification.

113

Start

Did previous
winner have an
active rule ?

No
Stop

Yes

No
Stop

Yes

Stop

Does currentX
winner have an
active exception

to rule ? /

Use current
winning neuron

Find winning neuron for
current input/context

Ignore rule and use
current winning neuron

Apply rule by re-selecting
winning neuron using the
previous winner’s location
as context

Fig. 5 .6 - Revised rule application algorithm to incorporate exception handling
mechanism. This algorithm describes the model’s behaviour in response to an
input pattern after the training process is complete.

By deferring the application of rules until after the next winning neuron has been

selected, it becomes possible to identify winning neurons that are specific exceptions

114

to rules. The construction and identification of exceptions can be achieved using a

separate set of exception handling lateral connections. When the learning algorithm

detects that a rule is being erroneously applied, it identifies the original winning

neuron that would have been selected if the rule didn’t exist. By enhancing the lateral

exception connections between this original winner and the neuron to which the rule

applies, the learning algorithm builds up a relationship between the two neurons. As

with the lateral connections representing functional-relationships, once these lateral

exception connections exceed a predetermined threshold, the neuron in question can

be considered to be an exception to the rule. As detailed in fig 5.6, once a neuron has

an active exception to a rule, then the rule application algorithm will ignore the rule

and allow the rest of the sequence to be re-memorized as an exception. Fig 5.7 shows

a graphical representation of this exception handling mechanism.

✓ "

Fig. 5.7 - Diagram showing lateral exception connection (light dotted curved line)
between the winning neuron for the V symbol in sequence 3. which represents the
exception and the master winning neuron for the T symbol in sequence 1, which
represents the rule (dark dotted curved line).

By incorporating an exception handling mechanism, the model now provides an

elegant account of how a language learner could recover from over-generalization

without needing explicit negative evidence. This approach provides a possible

115

solution to the age-old logical problem of language acquisition by showing that in a

memory-rule based model, recovery from over-generalization can be achieved using a

process of re-memorization in response to positive evidence that contradicts an

existing rule.

5.3 Context-free grammars

Regular grammars are characterized by allowing only a single terminal symbol on the

right hand side of the production rule (i.e. A => x B). This limitation makes regular

grammars memory-less and therefore prevents them from describing the type of rules

in fig 5.8.

Fig 5.8 - Example o f two rules from a context-free grammar,
x andy are terminal symbols and A and B are non-terminal
symbols.

Unlike regular grammars, context-free grammars can have any number of terminal

and non-terminal symbols on the right hand side of the production rule (see section

2.11 for a discussion of formal linguistic terminology). This enables such grammars to

generate rules containing identical non-terminal symbols, preceded and followed by

different terminal symbols (fig 5.8). Such grammatical constructs are known as

centre-embeddings and constitute a difficult problem for grammar induction models

(Weckerly and Elman, 1992).

A => x B x

B => y B y

116

B

E

Fig. 5.9 - FSMfor Extended Reber grammar.

Models such as the SRN are unable to master languages with deep embeddings

because they loose track of information distinguishing the initial terminal symbol

(know generally as the problem of long-term dependencies (Bengio and Simard,

1994)). This problem is illustrated in figure 5.9, which shows the extended Reber

grammar (Cleeremans, 1989; Fahlman, 1991). In this grammar the second symbol is

always the same as the second from last symbol. Therefore in order to correctly

predict the second from last symbol, a model must retain information regarding the

second symbol in the sequence.

Centre-embeddings also pose a problem for STORM, albeit for different reasons than

for conventional DRNs. Because STORM is a memory-rule based model, it must

117

initially memorize input sequences before it can begin to construct funetional-

relationships between related neurons. Rules are constructed relative to the context of

these original memorizations. However, because rules within the centre-embedding

apply independently of the surrounding context, the rule-construction algorithm

would need to see examples of the centre-embedding separately in each context (table

5.1). Effectively sequences begimiing with the 2nd symbol P would be represented

completely separately to sequences with a 2nd symbol of T.

As shown in table 5.1 STORM will under-generalize centre-embeddings by assuming

that the rules of such constructs are specific to the exact context in which they were

constructed. Therefore STORM would have to separately learn the grammatical rule

for every centre-embedding it appears in. For complex languages this would involve

not only redundantly memorizing a lot of sequences, but it would also require training

the model on a very large amount of data. Obviously for grammars approaching the

complexity of natural language, such a requirement would seriously limit the model’s

induction capabilities.

Extended Reber grammar sequence

1 B T T S X S T E

2 B T T X S T E
3 B P T X S P E

B P T S X S P E

Table. 5.1 - Sequences from the extended Reber grammar (figure 5.9) illustrating
STORMs inability to learn centre-embeddings. I f STORM was trained on sequences 1-
3, the model would be able to learn the functional-relationship involving the 4th
symbol in sequence I (S) and the 3rd symbol in sequence 2 (T). However, it would be
unable to generalize this knowledge to the equivalent functional-relationship in
sequence 4, despite having been trained on sequence 3.

118

Essentially the problem of learning centre-embeddings can be perceived as an

optimization problem. STORM currently seeks to optimize its internal representations

by constructing rules that allow it to use the strongest internal memorization of a

sequence. However, this strategy applies only to whole sequences and not to sub­

sequences. Because sentences with centre-embeddings effectively contain rules within

other rules, STORM must optimize its representation of sub-sequences if it is to

efficiently learn such grammars.

An ideal approach would be to use the rule construction mechanism to explicitly re­

wire its representation of sub-sequences such that the strongest single sub-sequence

would be used, rather than creating redundant representations for every occurrence of

a sub-sequence. While such a strategy is very similar to the current approach of using

the strongest existing sequence, the construction of sub-sequence rules would require

the preservation of context. This requirement is illustrated in figure 5.10, which shows

that information concerning the symbol preceding the sub-sequence must be known in

order to determine the correct symbol following the sub-sequence.

1. BTTXSTE
2. BPTXSPE

Fig 5 .1 0 - Diagram showing requirement for context preservation M>hen re-using the
sub-sequence TXS from the Extended Reber grammar (figure 5.3). The choice o f
whether a T or a P symbol follows the TXS sub-sequence is determined by the symbol
that precedes the sub-sequence.

119

5.3.1 Sub-sequence rule-construction algorithm

In order for STORM to use an optimized sub-sequence representation to learn

context-free grammars, its rule-construction algorithm must be modified. As

previously discussed, the current rule-construction algorithm exploits regularities in

entire sequences (although it could conceivably just use a finite number of future

symbols). Any regularity between stored sub-sequences and input sequences is

ignored. Therefore the first stage in such an approach would be to construct a second

back-trace algorithm that detects regularities between stored sequences and a

specified number of the next symbols in the input sequence (figure 5.11). STORM

would then use both the partial and standard back-trace algorithms in conjunction

with each other to allow it to detect stored sub-sequences that belong to different

sequences than the current input sequence.

Current winning neuron
\
\

\
\

fo^Qp
1. BTTXSTE |— / Q J 3 O :'x)
, b p t s x s p h ^ J @ o \ : L

\ / 0eXD©vN0 0
/ O OjsXOCX

/ (e 0 - 0 o a) O
Alternative winning neuron

Fig. 5.11 - Diagram illustrating use o f partial back-trace algorithm to identify
alternative winning neurons in sub-sequences. The alternative winning neuron
representing the 4‘1 symbol S, in sequence 2 has been selected because it is
immediate future-context (i.e. the sub-sequence XS) matches that o f the winning
neuron in sequence 1.

120

Once a sub-sequence has been identified using the partial back-trace algorithm,

STORM would be able to use its existing temporal-Hebbian learning mechanism in

almost exactly the same manner as the current model. By building up functional-

relationships between the neurons representing symbols preceding the sub-sequence

in question, the model would be able re-wire itself to use only a single representation

of the sub-sequence. However, as illustrated in figure 5.10, the model’s context must

then be preserved when processing the sub-sequence. Therefore, the rule-construction

mechanism must create a special kind of rule for sub-sequences, which when invoked

would push the location of the current winning neuron onto a conventional symbolic

stack (Hopcroft and Ullman, 1979). This special rule will also involve popping the

representation of the current winning neuron back off the stack after the sub-sequence

and incorporating it into the next winning neuron selection algorithm. The position at

which to perform these push and pop operations could be identified via the

discrepancy between the partial and full back-trace algorithms (i.e. when performing

the back traces the push would be performed at the current position, while the pop

would occur at the position of the discrepancy between the two back trace

algorithms). Thus, this hybrid approach will isolate the sub-sequence (figure 5.10),

allowing multiple sequences to utilize the same representation, while still maintaining

the distinct context of each sequence.

5.4 Conclusions

The model’s sporadic failure to master the Reber grammar may be attributed to a

design compromise in the rule-construction algorithm. Due to the use of lateral

connections to construct functional-relationships, the activation of a rule is an abrupt

event rather than a gradual process. Consequently, the instability this causes may

121

interfere with the learning process and in some cases may prevent the model from

converging. The presence of this instability combined with STORM’s stochastic

nature may explain why certain models fail to learn a perfect representation of the

grammar.

While STORM is currently capable of learning simple regular languages, its learning

algorithm needs to be enhanced to allow the induction of more complex grammars.

One enhancement that would bring the model closer to natural language would be an

exception-construction mechanism. By re-memorizing exceptions to existing rules,

STORM would be able to retreat from over-generalizations. This elegant solution to

the logical problem of language acquisition would bring STORM’s performance

closer to that of the U-shaped learning curve characteristic of early human language

learners. Context-free languages could also be learnt by optimizing the model’s

representation of sub-sequences. This would allow it to efficiently learn centre-

embeddings without having to see examples of the same grammatical construct in

multiple contexts.

122

6 Conclusions and future work

This research has focused on one of the core problems in artificial intelligence: a

problem that has remained elusive, despite almost half a century of investigation by

countless researchers. The problem of language acquisition is so daunting that many

linguists consider it to be a paradox, a perspective that consequently denies even the

possibility of an automated solution. However, given that the primary bottleneck in

today’s NLP systems is the prerequisite for an incalculable amount of manually

derived knowledge, the creation of an automated language acquisition system would

constitute a revolutionary breakthrough. STORM represents a significant step towards

this breakthrough.

This research has combined the abstract representational power of symbolic rule-

based models with the knowledge induction properties of biologically-inspired

connectionist models. The result is a model that can learn by example and therefore

avoids the prerequisite for manually derived knowledge. This approach uses a

representation that encapsulates rules and symbols which allows the model to learn

from sparse data. The original aim of the research was to determine whether

unsupervised connectionist models could capture the finite-state properties of

language. In this respect not only has the project been successful, but it has redefined

the original research question by showing that an unsupervised model is capable of

exceeding the capabilities of equivalent supervised models, with regard to certain

aspects of language acquisition.

123

Io response to the failure of the initial SRSOM to learn the Reber grammar, a revised

model, STORM, was designed whose operating principles were derived directly from

functional-equivalence theory. Since STORM was designed from its inception to

learn a state-based representation, it circumvents the problems that plague other

connectionist models when applied to state-based problems. By using regularities

between the future-context of stored sequences and that of input sequences, STORM

is able to identify functionally-equivalent input symbols. This connectionist memory-

rule based approach to grammar induction is both novel and potentially extremely

powerful. Identifying functionally-equivalent symbols and binding them together into

states in a bottom-up manner, allows the model to learn using a minimum of training

data. Such efficiency is a highly desirable characteristic for any model of language

acquisition, due to the constraints imposed by the sparse data problem.

Experiments have shown that some STORM models are able to learn a perfect

representation of the Reber grammar using a training set of only 30 sequences. A

generalization test, using randomly generated sequences that were not encountered

during training, shows that the same models can correctly predict the next symbols in

the grammar with an accuracy of 100%. An activation analysis of a trained model

confirms that STORM forms a state-based representation of the grammar and clusters

input symbols based on their respective states. Despite this apparent perfect

performance, the experiments also highlight the model’s instability by showing that a

large number of models fail to learn a perfect representation of the grammar.

However, despite this instability STORM’s performance is significantly better than

for SRNs (Sharkey el al, 2000), where only two out of ninety SRNs became finite-

state grammar recognizers in a similar experiment on the Reber grammar.

124

Theoretical extensions to the model show how STORM can be scaled up to learn

grammars with a complexity closer to natural language. By treating recovery from

over-generalization as re-memorization with a respect to erroneous rules, the model

should conform to the third stage in the U-shaped learning curve of child language

development and learn exceptions to over-generalized rules. This research also

discusses how the model can be extended to learn context-free grammars, by

optimizing its representation of sub-sequences.

In conclusion, the research has been successful in creating a novel unsupervised

connectionist model, capable of inducting the finite-state properties of a regular

grammar. It is therefore a significant step towards automated language acquisition.

Furthermore, STORM’s foundations in functional-equivalence theory provide a

means of generalization that is not available in conventional connectionist models.

This powerful learning algorithm may have applications beyond the domain of

language acquisition. STORM’s approach to grammar induction further challenges

traditional nativist perspectives on the feasibility of language acquisition (Chomsky,

1965) by implying that all the information necessary to learn grammar may actually

be available in the input sequences themselves.

6.1 Future Research

The proposals for future research will focus on initially stabilizing the model before

discussing further experiments on more complex grammatical problems. A number of

enhancements to the model will be proposed, along with a general discussion of how

STORM could be applied to problems outside of linguistics.

125

6.1.1 Stabilization of model

Future research will initially focus on stabilizing the model to ensure that STORM is

able to learn the grammar more reliably. Since the task of grammar induction involves

learning grammars whose structure is potentially unknown, the model must be

capable of accurately inducing the grammar to a reliable degree. Otherwise, if an un­

reliable model is applied to an unknown problem then any resulting solution will be of

questionable value. The reason for this is that without knowledge of the correct

grammar, it will be very hard to identify erroneous representations resulting from the

model’s failure. Therefore, before STORM can be applied to the exploration of

unknown grammars, its performance should be improved such that it learns a perfect

representation of the grammar over 50% of the time. Once more than 50% of the

models can learn the grammar, than averaging techniques can be applied to a set of

trained models in order to extract a correct representation of the grammar.

As discussed in section 5.1, a design limitation in STORM’s rule-construction

algorithm, resulted in a theoretical instability known as a causality loop. This

instability arises because the initial activation of a rule is an abrupt event, rather than a

gradual process. Consequently the resulting instability may destroy the rule in

question. Section 5.1 also discusses how a side-effect of successful rule-construction

results in significant instability as well. These instabilities may be responsible for the

model’s erratic performance. Therefore, re-designing the model to use a smother rule-

construction algorithm may significantly improve its performance.

126

6.1.2 Inflectional morphology, performance evaluation and Mealy
machines

As previously discussed, modelling the acquisition of the English past-tense has

become the de-facto battleground for competing cognitive learning theories.

Connectionist models such as (Rumelhart and McClelland, 1986; Plunkett and

Marchman, 1996) attempt to capture the U-shaped learning curve that is believed to

characterize the performance of child language learners. However, as discussed by

Marcus (2000), no current connectionist model is able to successfully capture the

process of recovery from over-regularization, without resorting to implausible

manipulation of the training environment or supervisor signal. Therefore, if STORM

could be successfully shown to exhibit this U-shaped learning curve during

acquisition of the English past-tense, it would establish that the model is a viable

connectionist language acquisition system in its own right.

In order to evaluate the model’s performance throughout the learning process, its

knowledge of the English past-tense must be evaluated to determine whether it

conforms to the U-shaped learning curve. Currently the model’s performance is

evaluated by predicting the two next winning neurons. However, using the simple

criterion of selecting the two statistically most probable next winning neuron may not

be sufficient to evaluate the model’s performance on other grammar. The reason for

this is that complex grammars are non-deterministic and may have many possible next

winners. The probability of each possible winner is determined by its statistical

frequency in the training set. One possible method of addressing this issue is to bind

additional meaning into the model, such that each input symbol is also associated with

an output symbol. This would allow the prediction of the next input symbol which the

model would associate with the next specified output symbol.

127

Using both input symbols and their associated output symbols, STORM would

effectively be turned into a Mealy machine. In the context of modelling the

acquisition of the English past-tense, the presence of output symbols would

dramatically simplify the problem of evaluating the model’s performance. This could

be achieved by using a representation scheme in which the output symbol denotes the

tense of a verb (ex. past, present, future) and the input symbol represents the participle

of the verb (ex. -ed, -ing). By applying a simple Hebbian style binding mechanism,

the winning neuron representing the current input symbol could be bound to the

neuron representing the respective output symbol. Effectively the output symbols

would act as semantic tokens that would be bound to the syntactic input symbols.

Such an approach would involve training the model by presenting the output symbols

denoting the tense of each verb at the same time as the input symbols.

The presence of these semantic output tokens would allow the model to predict the

next winning neuron corresponding to a particular meaning (e.g. what would be the

past tense participle of a verb, given its infinite form?), rather than just predicting the

statistically most likely next winning neuron. In the case of irregular verbs, such

participles could consist of a representation of the entire irregular verb (ex. ran).

Therefore, using this approach the predicted participle for each verb could be

evaluated throughout the training process. Thus it would be possible to verify whether

STORM conforms to the U-shaped learning curve when learning irregular verbs. Such

performance would be confirmed if, as expected, the model exhibits initial rote-

learning of irregulars, followed by over-generalization of induced rules (ex. run-ed)

and eventual re-memorization of irregulars with respect to erroneously applied rules

(section 5.3).

128

6.1.4 Experiments on more complex grammars

As proposed in section 5.3, STORM could be enhanced to learn context-free

grammars. Future research should therefore involve performing the necessary design

enhancements that will allow the model to efficiently learn centre-embeddings,

possibly involving an external symbolic stack. Once implemented, the model should

be initially tested on learning the extended-Reber grammar. If successful, the model

could later be applied to grammars with more similarity to natural language, such as

those used by Elman (1990). However, as discussed in the previous section, when

learning more complex grammars the performance criterion of the next predicted

winner may not be sufficient to measure the model’s grammar induction abilities. A

Mealy machine approach, that links STORM’s input symbols to semantic output

tokens, may be appropriate for evaluating specific grammatical problems (such as the

English past-tense). However, such an approach may not be appropriate for evaluating

the model’s performance on general grammatical problems. This would be especially

true for artificial grammars that have no appropriate meaning which could be attached

to the input symbols.

An alternative method of evaluating the performance of these artificial grammars

could involve using the criterion of sentence acceptance. By measuring the error level

in response to a particular input symbol, the performance algorithm could determine

whether the input symbol in question would be deemed acceptable in the grammar.

While sentence acceptance is computationally similar to sentence prediction, the latter

is more complex because it involves predicting all the possible grammatical symbols

at a given state in a sequence. In order fully assess performance, the model must be

tested on both positive and negative data (i.e. does the model accept un-grammatical

129

sequences as well as grammatically correct sequences?). A similar approach to

measuring performance has previously been successfully used in experiments (Reali

and Christiansen, in press). Sentence acceptance is also common terminology in

formal linguistics and would therefore be a self-explanatory choice of performance

criterion. However, while sentence acceptance may provide a measure of the model’s

knowledge of the grammar, it cannot in itself be used to perform many useful tasks

(unlike alternative performance criterion such as prediction, which could be used for

disambiguation).

6.1.5 Multi-layered STORM model

Section 5.3 detailed an extension to STORM that would allow the model to process

context-free grammars. However, while this approach to optimizing sub-sequence

representations by using an external stack is technically feasible, it lacks the elegance

characteristic of the original STORM model. An alternative approach which could be

investigated in future research involves the use of multiple STORM layers operating

together (fig 6.1). Section 5.3 explained that STORM was unable to efficiently learn

context-free languages due to their centre-embeddings. In a memory-rule based

perspective of language, the processing of such constructs can be viewed as a sub­

sequence optimization problem.

130

Fig. 6.1 - Multi-layered STORM model

A multi-layered STORM model may be capable of processing context-free languages

if the centre constructs (i.e. the sub-sequences within the main sequences) could be

handled by the upper layer. This would allow the first layer to learn the regular rules

of the grammar, while the second layer learns the rules within the embedded

constructs. However, the problem with a multi-layered STORM model concerns the

criteria for inter-layer communication. Unlike distributed connectionist models

trained via back-propagation, STORM layers cannot just be plugged into each other.

A selection criterion in requested to select a particular layer for processing each input

symbol presented to the model.

A possible solution to this inter-layer communication problem can be found in the

operation of a connectionist system known as neural sequence chunkers

(Schmidhuber, 1991). The operational principle of this approach to learning is that the

model concentrates only on unexpected inputs, rather than all inputs in the sequence.

When an input is not predictable it is passed up to the next layer, an approach which

allows the model to find sub-sequences in the inputs. Such a principle of passing

unexpected inputs up to the next layer for processing could be incorporated into a

multi-layer STORM model in order to solve the inter-layer communication problem.

Thus when an input symbol is presented to STORM, both layers could be searched for

the best matching neuron. This should allow sub-sequences (which are more efficient

to both represent and predict as separate sequences) to be processed by the upper

layer.

6.16 Beyond linguistics - The power of functional generalization

Conventional connectionist models use the past to predict the future. Such models act

as similarity engines and learn by generalizing induced knowledge to similar

objects/situations as those encountered during training. In contrast, STORM uses the

future to understand the structure of the past. STORM learns by generalizing

knowledge based on similarity o f behaviour, rather than just similarity ofform. Both

methods of generalization allow a model to learn by deducing unobserved traits using

knowledge of previously induced traits (Pinker, 2000). For example, both

conventional connectionist models and STORM would be able to predict that a

blackbird is able to fly, based on evidence showing the behaviour of other birds.

Conventional connectionist models would solve this problem by generalizing the

behaviour of flight to the blackbird because it physically looks like other birds that

can fly (i.e. has feathers, wings and a beak). However, STORM would solve this

problem by forming a functional-relationship between all of the birds it encounters,

based on similarities in their behaviour (i.e. lays eggs, sings at dawn and nests in

trees). By learning that all birds are related, STORM would be able to generalize a

specific behaviour, such as flight, that it has learnt from other species to the blackbird.

132

While both conventional connectionist models and STORM can solve problems

involving generalization between similar objects, the power of STORM’s function

based generalizations becomes apparent when learning problems involving dissimilar

objects. For example, consider attempting to train a connectionist model to learn that

all living organisms will eventually die. Assume such a model was trained on physical

descriptions of organisms and abstract descriptions of their physiological behaviour

(i.e. reproduces, consumes nutrients, grows). If this model were also provided with

training data showing that some of these organisms die, would it be able to generalize

that other organisms, encountered during training, also die?

A conventional connectionist model would not be able to adequately solve such a

problem because it has no concept of the category living things. Therefore, such a

model could only deduce that a specific organism would die, if it were physically

similar to other organisms that the training data showed would die. However, because

STORM learns via function based generalization, it would functionally-relate the

organisms encountered during training based on their overlapping physiological

activity (effectively forming the category living things). Therefore when STORM

learns that some of these organisms will die, it is able to generalize that physiological

activity to all functionally-related organisms and therefore deduce that all living

organisms will die.

This human-like ability to learn via function based generalization is potentially very

powerful and could be used to model many problems beyond linguistics. Possible

connectionist applications include general purpose inductive learning and reasoning

133

(Heit, 1997), robot planning and control, invariant object recognition (Giles and

Maxwell 1987) and financial forecasting.

134

References

Allen, J. (1995) NATURAL LANGUAGE UNDERSTANDING, 2nd edition, CA, The
Benjamin/Cummings Publishing Company Inc.

Andersen, P., Hayes, P., Huettner, A., Nirenburg, I., Schmandt, L. and Weinstein, S.
(1992) Automatic Extraction o f Facts from Press releases to Generate News Stories:
Proceedings o f the Third Conference on Applied Natural Language Processing.
Somerset, N J.p 170-177.

Arnold, D., Balkan, L., Meijer, S., Humphreys, R. and Sadler, L. (1993) Machine
Translation: An Introductory Guide. Manchester, Blackwell publishers.

Aslin, R., Woodward, J., La Mendola, N. and Bever, T. (1996) Models of word
segmentation in fluent speech to infants. In: J. Morgan and K. Dernuth (eds) Signal to
syntax: bootstrapping from speech to grammar in early acquisition. Mahwah, NJ,
Erlbaum. p. 117-134.

Baker, C. (1979) Syntactic theory and the projection problem. Linguistic Inquiry, 10,
533-81.

Barreto, G. and Araujo, A. (2001) Time in self-organizing maps: An overview of
models. International Journal o f Computer Research, 10(2), 139-179.

Bates, E., Thai, D., Trauner, D., Fenson, J., Aram, D., Eisele, J. and Nass, R. (1997)
From first words to grammar in children with focal brain injury. In: D. Thai and J.
Reilly (eds) Special issue on Origins of Communication Disorders, Developmental
Neuropsychology\>, 13(3), 275-343.

Beaufays, F., Bourlard, H., Franco, H. and Morgan, N. (2001) NEURAL
NETWORKS IN AUTOMATIC SPEECH RECOGNITION. In: M. Arbib (ed) The
Handbook o f Brain Theory and Neural Networks, 2nd Edition. Bradford Books, The
MIT Press.

Bengio, Y. and Simard, P. (1994) Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.

Blank, D., Meeden, L. and Marshall, J. (1991) Exploring the symbolic/subsymbolic
continuum: A case study of raam. Technical Report TR332, Computer Science
Department, University of Indiana.

Broeder, Peter and Murre Jaap (eds)(2002) Models of Language Acquisition
Inductive and Deductive Approaches, Oxford University Press.

Brown, R. (1973) A first language: The early stages. Cambridge, MA, Harvard
University Press.

135

Browne, A. and Sun, R. (2000) Connectionist variable binding. In: S. Wermter and R.
Sun (eds) Hybrid Neural Systems. Heidelberg, Springer Verlag.

Cairns, P., Shillcock, R., Chater, N. and Lew, J. (1997) Bootstrapping word
boundaries: a bottom-up coipus based approach to speech segmentation. Cognitive
Psychology, 33, 111-153.

Chalmers, D. (1990) Syntactic transformations on distributed representations.
Connection Science, 2(1-2), 53-62.

Chappel, G. and Taylor, J (1993) The temporal Kohonen map. Neural Networks, 6 ,
441-445.

Chomsky, N. (1959) On certain formal properties of grammars. Information and
control 2, 2, 137-167.

Chomsky, N. (1965) Aspects o f the Theory o f Syntax. Cambridge, Mass.: MIT Press.

Chomsky, N. (1972) Language and Mind, 2nd edition. New York, Harcourt, Brace and
World.

Chomsky, N (1981) Lectures on Government and Binding. Foris Publications,
Dordrecht.

Cleeremans, A., Servan-Schreiber, D. and McClelland, J. (1989) Finite-state automata
and simple recurrent networks. Neural Computation, 1, 372-381.

Cohen, J and Servan-Schreiber, D. (1992) Context, cortex and dopamine: A
comiectionist approach to behaviour and biology in Schizophrenia. Psychological
Review, 99, 45-77.

Cohen, N. and Squire, L. (1980) Preserved learning and retention of pattern-analyzing
skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 207-
210 .

Corrigan, R. and Iverson, G. (eds) (1994) The reality o f linguistic rules. Amsterdam,
Benjamins.

Craven, M. and Shavlik, J. (1997) Using Neural Networks for Data Mining. Future
Generatation Computer Systems: special issue on data mining, 13(2-3), 211-229.

Damasio, A. and Damasio, H. (1992) Brain and Language. Scientific American,
267(3), 89-95.

Davis, M. (2003) Connectionist modelling of lexical segmentation and vocabulary
acquisition. In: P. Quinlan (ed) Connectionist models o f development: Developmental
processes in real artificial neural networks. Psychology Press, Hove, UK.

Elman, J. (1990) Finding Structure in Time, Cognitive Science, 14, 179-211.

136

Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D. and Plunkett, K.
(2001) Rethinking Innateness: A connectionist Perspective on Development.
Cambridge, MA. MIT Press.

Euliano, N. and Principe, J. (1996) A Self-Organizing Temporal Pattern Recognizer
with Application to Robot Landmark Recognition. In: Sintra Spatiotemporal Models
in Biological and Artificial Systems Workshop.

Fahlman, S. (1991) The recurrent cascade-correlation architecture. In: R. Lippmann el
al. (eds) Advances in Neural Information Processing Systems 3, San Mateo, CA,
Morgan Kaufmann. p. 190-196.

Farah, M. and McClelland, J. (1991) A computational model of semantic memory
impairment: modality specificity and emergent category specificity. Journal o f
Experimental Psychology: General, 120, 339-357.

Fitch, T. and Hauser, M. (2004) Computational Constraints on Syntactic Processing in
a Nonhuman Primate. Science, 303, 377-380.

Fodor, J. (1983) The Modularity o f Mind. Cambridge, MA. MIT Press.

Fodor, J. and Pylyshyn, W. (1988) Connectionism and cognitive architecture: a
critical analysis. Cognition, 28, 3-71.

French, R. (1999) Catastrophic forgetting in connectionist networks. Trends in
Cognitive Science, 3(4), 128-135.

Giles, C. and Maxwell, T. (1987) Learning, invariance and generalization in high-
order neural networks. Applied Optics, 26(23), p 4972-4978.

Gold, E. (1967) Language Identification in the Limit. Information and Control, 16,
4 4 7 .4 7 4 .

Gordon, P. (2004) Numerical Cognition Without Words: Evidence from Amazonia.
Science. 306. p. 496-499.

Gray, F. (1953) Pulse Code Communication. U.S. Patent 2 632 058.

Grossberg, S. (1976) Adaptive pattern classification and universal recoding I: Parallel
development and coding of neural feature detectors, Biological Cybernetics, 23, 121-
134.

Hadley, R. (1994) Systematicity in connectionist language learning. Mind and
Langauge, 9(3), 247-272.

Hadley, R and Cardei, V (1999) Language acquisition from sparse input without error
feedback. Neural Networks, 12(2), 217-235.

Hebb, D. (1949) The organization o f behaviour. New York, Whiley.

137

Heit, E. (1997) Features of similarity and category-based induction. In: Proceedings
o f the Interdisciplinary Workshop on Similarity and Categorisation. Edinburgh, p.
115-121.

Hinton, G. and Shallice, T. (1991) Lesioning an attractor network: Investigation of
acquired dyslexia. Psychological Review, 98, 74-95.

Honkela, T., Pulkki, V. and Kohonen, T. (1995) Contextual relations of words in
Grimm tales analyzed by self-organizing map. In: Proceedings o f International
Conference on Artificial Neural Networks, ICANN-95, volume 2, Paris, France, p. 3-7.

Hopgood, A. (2001) Intelligence Systems for Engineers and Scientists, 2nd edition,
Florida, LLC Press.

Hopcroft, J. and Ullman J. (1979) INTRODUCTION TO AUTOMATA THEORY,
LANGUAGES AND COMPUTATION. Addison-Wesley.

Horning, J. (1969) A study o f grammatical inference. PhD thesis, Stanford University,
California.

Plumboldt, W. (1836/1972) Linguistic variability and intellectual development. G.
Buck and F. Raven (eds). Trans. Philadelphia: University of Pennsylvania Press.

Jackendoff, R. (2002) FOUNDATIONS OF LANGUAGE: Brain, Meaning, Grammar,
Evolution. Oxford University Press.

Jackson, D., Constandse, R. and Cottrell, G. (1996) Selective attention in the
acquisition of the past tense. In: Proceedings o f the 18th Annual Conference o f the
Cognitive Science Society. Hillsdale, NJ. p. 183-188.

James, D and Miikkulainen, R. (1995) SARDNET: A self-organizing feature map for
sequences. In: G. Tesauro el al. (eds) Advances in Neural Information Processing
Systems, volume 7, Cambridge, MIT Press, p. 577-584.

Kangas, J. (1990) Time-Delayed Self-Organizing Maps. In: Proceedings o f the
International Joint Conference on Neural Networks, Volume 2. p 331-336.

Kasslin, M., Kangas, J. and Simula, O. (1992) Process State Monitoring Using Self-
Organizing Maps. In: I. Aleksander and J. Taylor (eds) Artificial Neural Networks,
volume 2, Amsterdam, Netherlands, p. 1531-1534.

Kohonen, T. (1991) The Hypermap Architecture. In: T. Kohonen el al. (eds) Artificial
Neural Networks, North-Holland. p. 1357-1360.

Kohonen, T. (2001) Self-Organizing Maps, 3rd edition, Germany, Springer-Verlag.

Kolen, J. and Pollack, J (1990) Back-propagation is sensitive to initial conditions.
Complex Systems, 4, 269-280.

138

Kolen, J. (1994) Fool’s gold: Extracting finite state machines from recurrent network
dynamics. In: J. Cowan et al. (eds) Advances in Neural Information Processing
Systems, volume 6 , Morgan Kaufmann, p. 501-508.

Lagus, K., Honkela, T., Kaski, S. and Kohonen, T. (1999) WEBSOM for textual data
mining. Artificial Intelligence Review, 13, p 345-364.

Lane, P. and Henderson, J. (1998) Simple synchrony networks: Learning to parse
natural language with temporal synchrony variable binding. In: Proceedings o f the
International Conference on Artificial Neural Networks, Skovde, Sweden, p. 615-620.

MacWhinney, B (2002a) The gradual emergence of language. In: GivOn, T. and
Malle, B. (Eds). The evolution o f language out o f pre-language. Amsterdam, John
Benjamins, p 231-263.

MacWhinney, B. (2002b) Lexical Comiectionism. In: P. Broeder and J. Murre (eds)
Models o f Language Acquisition: Inductive and Deductive Approaches. Oxford
University Press, p 9-28.

MacWhinney, B (2004) A multiple process solution to the logical problem of
language acquisition. Journal o f Child Language, 31, 883-914.

Marcus, G. (1998) Rethinking Eliminative Connectionism. Cognitive Psychology, 37,
243-282.

Marcus, G. (2000) Children’s Overregularization and Its Implications for Cognition.
In: P. Broeder and J. Murre (eds) Models o f Language Acquisition: Inductive and
deductive approaches. Oxford, Oxford University Press, p. 154-176

Mayberry III, M. and Miikkulainen, R. (1999) SARDSRN: A neural network shift-
reduce parser. In: Proceedings o f the Sixteenth International Joint Conference on
Artificial Intelligence (IJCA1-99), Stockholm, Sweden.

McCulloch, W. and Pitts, W. (1943) A logical calculus of the ideas immanent in
nervous activity. Bulletin o f Mathematical Biophysics, 5, 115-133.

McLeod, P., Plunkett, K. and Rolls, E. (1998) Introduction to Connectionist
Modelling o f Cognitive Processes. Oxford University Press.

Minsky, M. and Papeit, S. (1969) Perceptrons. Cambridge, Massachusetts, The MIT
Press.

Mozer, M. (1993) Neural net architectures for temporal sequence processing. In: A.
Weigend and N. Gershenfeld (eds) Time Series Prediction: Forecasting the future and
understanding the past, Addison Wesley, p 243-264.

Omlin, C. (2001) Understanding and Explaining DRN Behaviour. In: J. Kolen and S.
Kremer (eds) A Field Guide to Dynamic Recurrent Networks. New York, IEEE Press,
p. 207-227.

139

Pinker, S. and Prince, A. (1988) On language and connectionism: Analysis of a
parallel distributed processing model of language acquisition. Cognition, 28, 73-193.

Pinker, S. (2000) Words and Rules: The Ingredients o f Language. London, Phoenix.

Platt, R., Brock, O., Fagg, A. and Karupiah, D., Rosenstein, M., Coelho, J., Huber,
M., Piater, J., Wheeler, D and Grupen, R. (2003) A Framework For Humanoid
Control and Intelligence: Proceedings o f the 2003 IEEE International Conference on
Humanoid Robots. Karlsruhe Munich, Germany.

Plunkett, K., Sinha, C., Moller, M. and Strandsby, O. (1992) Symbol grounding or the
emergence of symbols? Vocabulary growth in children and a connectionist net.
Connection Science, 4, 293-312.

Plunkett, K. and Marchman, V. (1996) Learning from a connectionist model of the
English past tense. Cognition, 61, 299-308.

Pollack, J. (1990) Recursive distributed representations. Artificial Intelligence, 46, 77-
105.

Pollard, C. and Sag, I. (1994) Head-driven Phrase Structure Grammar. The
University of Chicago Press.

Reali, F. and Christiansen, M. (in press) Uncovering the richness of the stimulus:
Structure dependence and indirect statistical evidence. Cognitive Science.

Reber, A. (1967) Implicit learning of artificial grammars. Journal o f Verbal Learning
and Verbal Behavior, 5, 855-863.

Ritter, H. and Kohonen, T. (1989) Self-Organizing semantic maps. Biological
Cybernetics, 61, 241-254.

Ritter, H., Martinetz, T., Schulten, K. (1992) Neural Computational and Self-
Organizing Maps. MA, Addison-Wesley, Reading.

Roe, A., Pallas, S., Kwon, Y. and Sur, M. (1992) Visual Projections Routed to the
Auditory Pathway in Ferrets: Receptive Fields of Visual Neurons in Primary Auditory
Cortex. The Journal o f Neuroscience, 12(9), 3651-3664.

Rumelhart, D., Hinton, G. and Williams R. (1986) Learning internal representations
by back-propagating errors. Nature, 323, 533-536.

Rumelhart, D and McClelland, J. (1986) On learning the past tense of English verbs.
In: J. McClelland and D. Rumelhart (eds) Parallel distributed processing, Vol. 2.
MIT Press, Cambridge, MA. p. 216-271.

Sapir, E. (1929) The Status of Linguistics as a Science. In: E. Sapir (1958) Culture,
Language and Personality. Berkeley, CA. University of California Press.

140

Schmidhuber, J. (1991) Neural Sequence Chunkers. Technical Report FKI-148-91.
Technische Universitat Mtinchen, Germany.

Sejnowski, T. (1986) Open questions about computation in the cerebral cortex. In: J.
McClelland and D. Rumelhart (eds) Parallel distributed processing, Volume 2,
Cambridge, MA. p. 372-389.

Sharkey, N., Sharkey, A. and Jackson, S. (2000) Are SRN’s sufficient for modelling
language acquisition? In: P. Broeder and J. Murre, Models o f Language Acquisition:
Inductive and Deductive Approaches. Oxford University Press, p. 33-54.

Stump, G (2001) Inflectional Morphology: A Theory o f Paradigm Structure.
Cambridge University Press.

Varsta, M., Milan, J. and Heikkonen, J. (1997) A recurrent self-organizing map for
temporal sequence processing. In: Proceedings o f the ICANN’97: International
Conference on Artificial Neural Networks. Springer-Verlag. p. 421-426.

Venter, J. et al. (2001) The Sequence of the Human Genome. Science. 291(5507),
1304-1351.

Voegtlin, T. and Dominey, P. (2002) Recursive self-organizing maps. Neural
Networks, 15(8-9), 979-991.

Webster, M., Bachevalier, J. and Ungerleider, L. (1995) Development and plasticity
of visual memory circuits. In: B. Julesz and I. Kovacs (eds) Maturational Windows
and Adult Cortical Plasticity. Sante Fe Institute Studies in the Science of Complexity,
Proceedings Vol. XXIII. Reading, MA. Addison-Wesley. p. 73-92.

Weckerly, J and Elman, J. (1992) A PDP approach to processing center-embedded
sentences. In: Proceedings o f the Fourteenth Annual Conference o f the Cognitive
Science Society. Hillsdale, NJ. Lawrence Erlbaum Associates, p. 414-419.

Yao, J and Tan, C. (2001) Guidelines for Financial Forecasting with Neural
Networks: Proceedings o f International Conference on Neural Information
Processing. Shanghai, China, p 772-777.

Zeng, Z., Goodman, R. and Smyth, P. (1993) Learning finite state machines with self­
clustering recurrent networks. Neural Computation, 5(6), 976-990.

141

Appendix A - Finite-state machine for Reber grammar

B

♦
E

1

142

Appendix B - Glossary

Acronym Meaning

Al Artificial Intelligence

ANN Artificial Neural Network

ART Adaptive Resonance Theory

CFG Context-Free Grammar

CSG Context-Sensitive Grammar

DFA Deterministic Finite-Automata

DNA Deoxyribose Nucleic Acid

DRN Dynamic Recurrent Network

DVD Digital Versatile Disc

FSG Finite-State Grammar

FSM Finite-State Machine

JASPER Journalist’s Assistant for Preparing Earning Reports

LIN Leaky Integrator Neuron

MLP Multi-Layer Perceptron

NLP Natural Language Processing

PDP Parallel Distributed Processing

RAAM Recursive Auto-Associative Memory

RSOM Recurrent Self-Organizing Map

SARDNET Sequential Activation Retention and Decay NETwork

SRN Simple Recurrent Network

SOM Self-Organizing Map

SOTPAR Self-Organizing Temporal Pattern Recognizer

SRSOM

SSN

STORM

TKM

TSOM

TSP

TSVB

XOR

Simple Recurrent Self-Organizing Map

Simple Synchrony Network

Spatio-Temporal Self-Organizing Recurrent Map

Temporal Kohonen Map

Temporal Self-Organizing Map

Temporal Sequence Processing

Temporal Synchrony Variable Binding

Exclusive OR

Appendix C - Published works

McQueen, T., Hopgood, A., Tepper, J. and Allen, T. (2002) A Recurrent Self-

Organizing Map for Temporal Sequence Processing. In: Proceedings o f the 4th

International Conference in Recent Advances in Soft Computing (RASC2002). UK,

The Nottingham Trent University.

McQueen, T., Hopgood, A., Allen, T. and Tepper, J. (2004) Extracting Finite

Structure from Infinite Language. In: Bramer, M. et al (eds) Research and

Development in Intelligent Systems XXI: Proceedings ofAI-2004, the Twenty-fourth

SGAI International Conference on Innovative Techniques and Applications o f

Artificial Intelligence. Springer.

McQueen, T., Hopgood, A., Allen, T. and Tepper, J. (in press) Extracting Finite

Structure from Infinite Language. Knowledge Based Systems.

145

A Recurrent Self-Organizing Map
for Temporal Sequence Processing

T. A. McQueen, A. A. Hopgood, J. A. Tepper and T. J. Allen
Department of Computing & Mathematics,

The Nottingham Trent University
Burton Street, Nottingham, NG1 4BU, United Kingdom

e-mail: {thomas.mcqueen, adrian.hopgood, jonathan.tepper, tony.alien} @ntu.ac.uk

Abstract: We present a novel approach to unsupervised temporal sequence processing in the
form of an unsupervised, recurrent neural network based on a self-organizing map (SOM). A
standard SOM clusters each input vector irrespective o f context, whereas the recurrent SOM
presented here clusters each input based on an input vector and a context vector. The latter
acts as a recurrent conduit feeding back a 2-D representation of the previous winning neuron.
This recurrency allows the network to operate on temporal sequence processing tasks. The
network has been applied to the difficult natural language processing problem of position
variant recognition, e.g. recognising a noun phrase regardless of its position within a
sentence.

Keywords: neural network, natural language processing, temporal sequence processing,
self-organizing map, unsupervised, recurrent.

1. Introduction
Temporal sequence processing (TSP) is an increasingly important field for neural networks,
with applications ranging from weather forecasting to speech recognition [1]. TSP involves
the processing of signals that vary over time. Problems such as predicting the weather
generally cannot be solved by just examining a set of current inputs from the dynamic system
in question, e.g. a satellite image showing today’s cloud cover. Rather, any prediction must be
based on the current input in the context of a number of previous inputs, e.g. a satellite image
for today along with satellite images from the previous five days, showing how the weather
has changed so far over the week.
Neural network models for TSP outperform alternative methods, such as NARMAX [9],
mainly due to their ability to learn and generalise when operating on large amounts of data
[9]. Supervised learning is usually used to solve TSP problems, i.e. the recurrent neural
network must be explicitly trained by providing a desired target signal for each training
exemplar. Current supervised learning methods are computationally inefficient [8] and are
unable to solve certain types of problems [6].
A number of unsupervised neural networks for TSP have been proposed [6], mostly based on
the self-organizing map (SOM) [5]. These models use a variety of external and internal
memory mechanisms to capture information concerning past inputs, e.g. tapped delay lines
and leaky integrators. Unsupervised learning has advantages over equivalent supervised
techniques in that it makes fewer assumptions about the data it processes, being driven solely
by the principles of self-organization, as opposed to an external target signal.
We present a novel, unsupervised, recurrent neural network based on a SOM to identify
temporal sequences that occur in natural language, such as syntactic groupings. The network
uses both an input vector and a context vector, the latter of which provides a 2-D
representation of the previous winning neuron. The proposed network is applied to the
difficult natural language processing (NLP) problem of position variant recognition, e.g.
recognising a noun phrase regardless of its position within a sentence.

146

2. Architecture and algorithm
T he netw ork has a 28-bit input vec to r that p rov ides a b inary represen tation o f the input tag
being processed. In addition to th is input vector, the netw ork also uses a second con tex t
vector. T he size o f th is con tex t vec to r can be varied depend ing on the size o f the netw ork , but
in experim en ts detailed below the con tex t v ec to r w as set to 10 bits (Fig. 1). Both the input and
the con tex t vector are used in the E uclidean d istance calcu lation to determ ine the w inning
neuron in a sim ilar m anner to a standard SO M .
T he con tex t vector represen ts the prev ious w inn ing neuron using a 10-bit coord ina te vector.
T he first five bits o f th is vector rep resen t the b inary num ber o f the w inn ing n eu ro n 's row,
w h ile the latter five bits rep resen t the b inary num ber o f the w inning n eu ro n ’s co lum n. T his is
an effic ien t m ethod o f coord ina te rep resen ta tion th a t p rov ides the netw ork w ith a 2-D view o f
spatial con tex t. It is an im provem ent o ver an initial approach , w hich rep resen ted the previous
w inn ing neuron using only a binary rep resen ta tion o f its num ber w ith in the SO M . Such a
rep resen ta tion prevented the netw ork from seeing s im ilarities betw een ne ighbouring neurons
in ad jacen t co lum ns. F or exam ple , neuron 8 and neuron 28 are neighbours on the SO M show n
above and w ill therefo re be rep resen ta tive o f s im ilar patterns. H ow ever, the binary
rep resen ta tion o f the num bers 8 (i.e. 01000) and 28 (i.e. 11100) are d issim ilar. T hus sim ilar
input patterns m ay resu lt in d iss im ila r con tex t causing s im ilar sequences to be clustered to
sign ifican tly d iffe ren t regions o f the SO M . It is env isaged tha t this w ould reduce the
ne tw o rk ’s ab ility to generalize.
T he coo rd ina te system o f con tex t rep resen ta tion so lves th is problem by effec tive ly provid ing
the netw ork w ith a 2-D view o f w inn ing neurons. In the exam ple given above, neuron 8
w ould be represen ted as 1000000010, w hile neuron 28 w ould be rep resen ted as 0100000010.
(N o te th a t only one bit is d iffe ren t in th is exam ple as opposed to tw o bits in the exam ple
above).
A s w ith the standard SO M , the recurren t SO M presented here uses a neighbourhood function
to update the w eights o f neurons in a reg ion around the w inn ing neuron. Both the w eight
vec to r and the contex t vector o f ne ighbouring neurons are m oved tow ards those o f the
respective input and con tex t vectors. T he netw ork uses a G aussian neighbourhood function to
ca lcu la te the learning rate that w ill be app lied to these neurons. T his function allow s
im m ediate ly neighbouring neurons to experience sim ila r w eight changes to those o f the
w inn ing neuron, w hile d istan t neurons experience m in im al w eigh t changes. H ow ever, in
o rd er to im prove com putational efficiency , the neighbourhood function uses a cu t-o ff value,
beyond w hich neurons do not take part in w eigh t updates at all.

t
0000000000000000101111100000

28-bit Input vector
for winning neuron

t
0100100101

10-bit Context vector
for winning neuron

Fig. 1 - N etw ork show ing recurren t feedback

147

3. Experiments
Initially , the new netw ork is being applied to a co rpus-based natural language task (Fig. 2)
using the L ancaster Parsed C orpus (L P C) [7]. A t p resen t, the m ain ob jective o f the research is
to identify coarse phrase boundaries (e.g . noun phrases or verb phrases w ith little o r no
em bedd ing) tha t m ay em erge on the topo log ica l m ap from exposure to linear sequences o f
w ords (sen tences) that have been pre-tagged w ith sym bols deno ting the w o rd 's part-of-speech
(e.g . noun, ad jective , verb etc) [2],
A netw ork w ith an ou tpu t layer o f 20 x 20 neurons w as trained in tw o phases, fo llow ing
K o h o n en ’s research on tra in ing S O M s [3], T he first convergence phase consisted o f 1000
epochs, in w hich the learning rate w as linearly reduced from an initial value o f 0.1, but w as
not allow ed to fall below 0.01. T his w as fo llow ed by a second fin e - tu n in g phase in w hich a
learn ing rate o f 0.01 w as applied for 2500 epochs. W hile the num ber o f epochs in the first
phase confo rm s w ith K oh o n en ’s research [3], the num ber o f epochs in phase tw o is
considerab ly sm aller than the num ber suggested . A t th is initial stage in the research , this
reduction is necessary due to tim e and com putational constra in ts . H ow ever, experim en tal
ana ly sis has no t show n a sign ifican t reduction in the quality o f results w hen tra in ing tim es in
phase tw o are reduced.
A sam ple o f 664 sen tences from the LPC [7] w ere p resen ted to the netw ork. P resen ta tion
occurred in random order to im prove tra in ing effic iency and to prevent the w eigh ts from
b ecom ing stuck during the low neighbourhood value in phase tw o. T he con tex t vec to r is set to
zero betw een each sen tence to prevent con tex tua l in form ation from prev ious sen tences
in te rfering w ith subsequen t sen tences.

Q3SESSSZ3

Speed
f* Toftose

Network Controls
W Stop after sentence Epoches Neighbourhood

|o |5 ------ Stop 1 I I

 1 1 ^ ’

Fig. 2 - S creensho t from the cu rren t netw ork . T he raised, co loured po lygons represen t
w inn ing neurons for the sen tence o f tags p resen ted to the netw ork.

4. Results
T he prelim inary results are encourag ing , as they show tha t w ord tags are being c luste red in
locations consisten t w ith the ir contex t. T he resu lts in Figs. 3 -5 show th ree sim ple artific ia lly
construc ted sen tences o f vary ing tense. D espite these varia tions in tense, each exh ib its a
s im ilar trace pattern over the m ap. W e refer to these traces as signatures.
Fig. 6 show s tw o sim ple noun phrases w ith and w ithou t a p reposition . W hile both sen tences
show sim ilar s ignatures for the noun phrase, the effec t o f the preposition can clearly be seen
to a lter the signature o f the second phrase.
It is hoped that fu rther analysis w ill reveal the ex ten t to w hich the netw ork can exp lo it the
co n tex t and show w hat kind o f tem poral syn tactic patterns the netw ork can find in input

148

sequences. A major benefit of finding such patterns in an unsupervised manner is that, unlike
supervised techniques, there is no dependency on manually annotated corpora, which are not
widely available due to the high costs associated with manually annotating raw language data.
In fact it is envisaged that, should the unsupervised system prove successful in extracting
syntactic structure, it would serve as an automatic syntactic annotation system thus reducing
the need and cost of manual annotation.

o
o o o o o o o o o o o o o o o o o/o o o
o
o
o ^ p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 5 0 0 0
o o o o o o o o o o a o o o o
o o o o o ^ ^ w u g p o o o o o p o o o o
o o o o o o o o o jo o o o o
o o o o o o o o o o o o o ^ ^ 4 i O o o o
O O O O O O O O O O O O O O O OCpO o o

. O O O O O O O O O O O O O O o o o_
O O O O O O O O O O O O 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ô p-'CT 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g^-o'o o o o p o o o o o o
0 0 0 0 0 . c x T 0 0 0 0 0 c u o 0 0 0 0 0 0
o o O.-O-S’ o o 0 0 0 0 Q_Q OOOOOOO
o 0 0 0 0 0 0 0 0
O
O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O C j O O O O O O O O O O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0,-0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 O,to 0 0 0
0 0 0 "o’ 0̂ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 o' 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

_o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 o.d* 0 0 0 0 0 0
0 0 0 0 0,0 0 0 0_-0-<rcro 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 *% o o o o o o 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3 - Signature for sentence:
“she goes down the stairs”

Fig. 4 - Signature for sentence:
“she went down the stairs’’’

o o 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0

o o
0 0 0

o o o o

0 0 0 o o
0 0 0 0 0 0
0 0 0 o o
0 0 0 o o

0 , 0 o o0 0 0
0 0 0 o o 0 0 0 o o
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 , 0 o 0 0 0 0 0 o o
0 0- 0
0"0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 a
0 0 0 0 0 0 0 0 0 0 0 0 0 CjjQ„
0 0 0 0 0 0 0 0 0 0 0 0 $ 0
0 o_ _o 0 0 0 0 0 0 0 0 0 0 OjT0
0 0 0 0 0 0 0 0 0 0 0 a 0 -'00
0 0 0 0 0 0 0 0 0 Q. ' 0 0 0 0
0 0 0 0 0 0 0 0 , " 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0' 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0

OOOOOOO
OOOOOOO
OOOOOOO
OOOOOOO
0 0 0 0 0 0,0
0 0 0 q*oro o
o 9 ,<?*o 0 0 0
ero 0 0 0 0 0

;o o o o
O O O O O
O O O O O O O ­
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O

Fig. 5 - Signature for sentence:
“she is going down the stairs”

Fig. 6 - Noun
phrase with and

without
preposition

 ► The home

In the home

149

5. Conclusions and future work
We have presented a novel recurrent SOM and applied it to the problem of position-variant
recognition. We have shown that the network forms signatures in response to temporal
sequences present in the inputs.
In addition to the natural language task, research is also being conducted into enhancing the
recurrent SOM using lateral connections and a temporal Hebbian learning [4] mechanism.
The purpose of such a mechanism is to attempt to control the recurrency, allowing feedback
to occur only when the winning neurons, whose representations are to be fed-back, are stable.
This temporal Hebbian learning mechanism has been used in a previous experimental neural
network and it is hoped that it will reduce the SOM’s training time.
In the next phase of this investigation, hierarchical clustering methods based on temporal
SOMs will be developed to obtain finer-grained syntactic groupings. Future work will focus
on the context representation that is fed back. The representation may be enlarged to give
more emphasis to the context vector than the input vector, and it may also be optimised using
genetic algorithms. Further experiments will be performed in the domain of natural language
processing; specifically the network will be used to attempt to detect phrase boundaries.
Additionally, if the network proves successful, it may also be used in a number of other areas
including computer virus detection, speech recognition and image analysis.
On a wider scale, the recurrent SOM could be used as the core of a temporal neural
processing system. For example, the recurrent SOM clusters patterns based on input featural
similarities whilst a supervised neural network uses these reduced representations to perform
a mapping to a corresponding set of desired outputs.

6. References
[1] G. A. Barreto and A. F .R. Arajo (2001). Time in self-organizing maps: An overview of

models. International Journal of Computer Research: Special Issue on Neural
Networks: Past, Present and Future, 10(2): 139-179.

[2] R. Garside, G. Leech and T. Varadi (1987). Manual of information to accompany the
Lancaster Parsed Corpus. Department of English, University of Oslo.

[3] S. Haykin (1999). Neural Networks: A Comprehensive Foundation, Prentice Hall
[4] D. Hebb (1949). The Organization of behaviour, John Wiley.
[5] T. Kohonen (1984). Self-Organization and Associative Memory, Springer-Verlag.
[6] M. C. Mozer (1994). Neural net architectures for temporal sequence processing, in A.

S. Weigend and N. A. Gershenfeld (eds), Time Series Prediction: Predicting the Future
and Understanding the Past, pp 243-264, Addison-Wesley.

[7] J. A. Tepper, H. M. Powell and D. Pahner-Brown (2002). A corpus-based connectionist
architecture for large-scale natural language parsing. Connection Science, 14 (2).

[8] J. Schmidhuber (1991). Adaptive history compression for learning to divide and
conquer, Int. Joint Conf. on Neural Networks, Vol 2, pp 1 130-1135.

[9] M. Varsta and J. Heikkonen (1997). Context learning with the self-organizing map,
Proc. Workshop on Self-Organizing Maps, pp 197-202.

150

Extracting Finite Structure
from Infinite Language

T. McQueen, A. A. Hopgood, T. J. Allen, and J. A. Tepper
School of Computing & Informatics, Nottingham Trent University,

Burton Street, Nottingham, NG1 4BU, UK
thomas.mcqueen{adrian.hopgood , tony.alien, jonathan.tepper}@ntu.ac.uk

www.ntu.ac.uk

Abstract

This paper presents a novel connectionist memory-rule based model capable o f
learning the finite-state properties o f an input language from a set o f positive
examples. The model is based upon an unsupervised recurrent self-organizing map
[1] with laterally interconnected neurons. A derivation o f functional-equivalence
theory [2] is used that allows the model to exploit similarities between the future
context o f previously memorized sequences and the fu ture context o f the current
input sequence. This bottom-up learning algorithm binds functionally-related
neurons together to form states. Results show that the model is able to learn the
Reber grammar [3] perfectly from a randomly generated training set and to
generalize to sequences beyond the length o f those fo u n d in the training set.

1. Introduction

Since its inception, language acquisition has been one o f the core problems in
artificial intelligence. The ability to communicate through spoken or written
language is considered by many philosophers to be the hallmark o f human
intelligence. Researchers have endeavoured to explain this human propensity for
language in order both to develop a deeper understanding o f cognition and also to
produce a model o f language itself. The quest for an automated language
acquisition model is thus the ultimate aim for many researchers [4]. Currently, the
abilities o f many natural language processing systems, such as parsers and
information extraction systems, are limited by a prerequisite need for an
incalculable amount o f manually derived language and domain-specific
knowledge. The development o f a model that could automatically acquire and
represent language would revolutionize the field o f artificial intelligence,
impacting on almost every area o f computing from Internet search engines to
speech-recognition systems.

Language acquisition is considered by many to be a paradox. Researchers such as
Chomsky argue that the input to which children are exposed is insufficient for
them to determine the grammatical rules o f the language. This argument for the
poverty o f stimulus [5] is based on Gold’s theorem [6], which proves that most
classes o f languages cannot be learnt using only positive evidence, because o f the
effect o f overgeneralization. G old’s analysis and proof regarding the unfeasibility
o f language acquisition thus forms a central conceptual pillar o f modern linguistics.
However, less formal approaches have questioned the treatment o f language
identification as a deterministic problem in which any solution must involve a
guarantee o f no future errors. Such approaches to the problem of language
acquisition [7] show that certain classes o f language can be learnt using only
positive examples if language identification involves a stochastic probability o f
success.

Language acquisition, as with all aspects o f natural language processing,
traditionally involves hard-coded symbolic approaches. Such top-down approaches
to cognition attempt to work backwards from formal linguistic structure towards
human processing mechanisms. However, recent advances in cognitive modelling

http://www.ntu.ac.uk

have led to the birth o f connectionism, a discipline that uses biologically inspired
models that are capable o f learning by example. In contrast to traditional symbolic
approaches, connectionism uses a bottom-up approach to cognition that attempts to
solve human-like problems using biologically inspired networks o f interconnected
neurons. Connectionist models learn by exploiting statistical relationships in their
input data, potentially allowing them to discover the underlying rules for a
problem. This ability to learn the rules, as opposed to learning via rote
memorization, allows connectionist models to generalize their learnt behaviour to
unseen exemplars. Connectionist models o f language acquisition pose a direct
challenge to traditional nativist perspectives based on Gold’s theorem [6] because
they attempt to learn language using only positive examples.

Connectionism and Determinacy

Since the early nineties, connectionist models such as the simple recurrent network
(SRN) [8] have been applied to the language acquisition problem in the form of
grammar induction. This involves learning simple approximations o f natural
language, such as regular and context-free grammars. These experiments have met
with some success [6, 7], suggesting that dynamic recurrent networks (DRNs) can
learn to emulate finite-state automata. However, detailed analysis o f models trained
on these tasks show that a number o f fundamental problems exist that may derive
from using a model with a continuous state-space to approximate a discrete
problem.

While DRNs are capable o f learning simple formal languages, they are renowned
for their instability when processing long sequences that were not part o f then-
training set [8, 9], As detailed by Kolen [10], a DRN is capable o f partitioning its
state space into regions approximating the states in a grammar. However,
sensitivity to initial conditions means that each transition between regions o f state
space will result in a slightly different trajectory. This causes instability when
traversing state trajectories that were not seen during training. This is because
slight discrepancies in the trajectories will be compounded with each transition
until they exceed the locus o f the original attractor, resulting in a transition to an
erroneous region o f state space. Such behavior is characteristic o f continuous state-
space DRNs and can be seen as both a power and a weakness o f this class o f
model. While this representational power enables the model to surpass
deterministic finite automata and emulate non-deterministic systems, it proves to
be a significant disadvantage when attempting to emulate the deterministic
behavior fundamental to deterministic finite state automata (DFA).

Attempts have been made to produce discrete state-space DRNs by using a step-
function for the hidden layer neurons [9]. However, while this technique eliminates
the instability problem, the use o f a non-differentiable function means that the
weight-update algorithm’s sigmoid function can only approximate the error signal.
This weakens the power o f the learning algorithm, which increases training times
and may cause the model to learn an incorrect representation o f the DFA.

The instability o f DRNs when generalizing to long sequences that are beyond their
training sets is a limitation that is probably endemic to most continuous state-space
connectionist models. However, when finite-state extraction techniques [9] are
applied to the weight space o f a trained DRN, it has been shown that once
extracted into symbolic form, the representations learnt by the DRN can perfectly
emulate the original DFA, even beyond the training set. Thus, while discrete
symbolic models may be unable to adequately model the learning process itself,
they are better suited to representing the learnt DFA than the original continuous
state-space connectionist model.

While supervised DRNs such as the SRN dominate the literature on connectionist
temporal sequence processing, they are not the only class o f recurrent network.
Unsupervised models, typically based on the self-organizing map (SOM) [11],
have also been used in certain areas o f temporal sequence processing [12]. Due to
their localist nature, many unsupervised models operate using a discrete state-space
and are therefore not subject to the same kind o f instabilities characteristic o f
supervised continuous state-space DRNs. The aim o f this research is therefore to
develop an unsupervised discrete state-space recurrent connectionist model that
can induce the finite-state properties o f language from a set o f positive examples.

A Memory-Rule Based Theory of
Linguistics

Many leading linguists, such as Pinker [13] and Marcus [14], have theorized that
language acquisition, as well as other aspects o f cognition, can be explained using
a memory-rule based model. This theory proposes that cognition uses two separate
mechanisms that work together to form memory. Such a dual-mechanism approach
is supported by neuro-biological research, which suggests that human memory
operates using a declarative fact-based system and a procedural skill-based system
[15]. In this theory, rote memorization is used to learn individual exemplars, while
a rule-based mechanism operates to override the original memorizations in order to
produce behaviour specific to a category. This memory-rule theory o f cognition is
commonly explained in the context o f the acquisition o f the English past tense
[13]. Accounting for children’s over-regularizations during the process o f learning
regular and irregular verbs constitutes a well-known battlefield for competing
linguistic theories. Both Pinker [13] and Marcus [14] propose that irregular verbs
are learnt via rote-memorization, while regular verbs are produced by a rule. The
evidence for this rule-based behaviour is cited as the over-regularization errors
produced when children incorrectly apply the past tense rule to irregular verbs (e.g.
runned instead o f ran).

The model presented in this paper is a connectionist implementation o f a memory-
rule based system that extracts the finite-state properties o f an input language from
a set o f positive example sequences. The model’s bottom-up learning algorithm
uses functional-equivalence theory [2] to construct discrete-symbolic
representations o f grammatical states (Figure 1).

STORM (Spatio Temporal Self-Organizing
Recurrent Map)

STORM is a recurrent SOM [1] that acts as a temporal associative memory,
initially producing a localist-based memorization o f input sequences. The m odel’s
rule-based mechanism then exploits similarities between the future context o f
memorized sequences and the future context o f input sequences. These similarities
are used to construct functional-relationships, which are equivalent to states in the
grammar. The next two sections will detail the model’s memorization and rule-
based mechanisms separately.

STORM’s Memorization Mechanism

STORM maintains much o f the functionality o f the original SOM [11], including
the winning-neuron selection algorithm (Equation 1), weight-update algorithm
(Equation 2) and neighbourhood function (Equation 3). The model’s localist
architecture is used to represent each element o f the input sequence using a

separate neuron. In this respect, STORM exploits the SOM ’s abilities as a vector
quantization system rather than as a topological map. Equation 1 shows that for
every input to the model (X), the neuron whose weight vector has the lowest
distance measure from the input vector is selected as the winning neuron (Y). The
symbol d denotes the distance between the winning neuron and the neuron in
question. As shown in fig 1, each input vector consists o f the current input symbol
and a context vector, representing the location o f the previous winning neuron.

yt = arg min,- (d (x, wt)) (1)

The weight update algorithm (equation 2) is then applied to bring the winning
neuron’s weight vector (W), along with the weight vectors o f neighbouring
neurons, closer to the input vector (X) (equation 2). The rate o f weight change is
controlled by the learning rate a, which is linearly decreased through training.

M’ij (t + \) = Wjj (t) + ah jj (.x (t) - Wy (0) (2)

The symbol h in equation 2 denotes the neighbourhood function (equation 3). This
standard Gaussian function is used to update the weights o f neighbouring neurons
in proportion to their distance from the winning neuron. This weight update
function, in conjunction with the neighbourhood function, has the effect o f
mapping similar inputs to similar locations on the map and also minimizing weight
sharing between similar inputs. The width o f the kernel o is linearly decreased
through training.

*,,=exp UIJ
2 a 2

(3)

The model uses an orthogonal input vector to represent the gramm ar’s terminal
symbols. Each of the seven terminal symbols are represented by setting the
respective binary value to 1 and setting all the other values to 0 (table 1).

Grammatical
symbol

Orthogonal
vector

B 1 0 0 0 0 0 0

T 0 1 0 0 0 0 0

P 0 0 1 0 0 0 0

S 0 0 0 1 0 0 0

X 0 0 0 0 1 0 0

V 0 0 0 0 0 1 0

E 0 0 0 0 0 0 1

Table 1 - Orthogonal vector representations for input symbols

Input
symbol

C ontext
vector

O ’ O
O O 0 * 0

Connectionist FSM Reber grammar FSM

Fig. 1 - Diagram showing conceptual overview of model. The left
side shows STORM ’s representation of a FSM, while the right
side of the diagram shows the FSM for the Reber grammar.

As shown in Figures I and 2, STORM extends Kohonen’s SOM [11] into the
temporal domain by using recurrent connections. The recurrency mechanism feeds
back a representation o f the previous winning neuron’s location on the map using a
10-bit Gray-code vector. By separately representing the column and row o f the
previous winning neuron in the context vector, the recurrency mechanism creates a
2D representation o f the neuron’s location. Further details o f the recurrency
mechanism, along with its advantages, are provided in [1], This method o f
explicitly representing the previous winner’s location as part o f the input vector has
the effect o f selecting the winning neuron based not just on the current input, but
also indirectly on all previous inputs in the sequence. The advantage o f this method
o f recurrency is that it is more efficient than alternative methods (e.g. [16]),
because only information pertaining to the previous winning neuron’s location is
fed back. Secondly, the amount o f information fed back isn’t directly related to the
size o f the map (i.e. recursive SOM [16] feeds back a representation o f each
neuron’s activation). This allows the model to scale up to larger problems without
exponentially increasing computational complexity.

B T X S E

O 0 O O ©
® 00 00 ooooo
00®0
0000

Fig. 2 - Diagram showing STORM ’s input representation. The model’s weight
vector consists of a 7-bit orthogonal symbol vector representing the terminal
symbol in the grammar, along with a 10-bit Gray code context vector,
representing the column and row of the previous winning neuron.

STORM’s Rule-Based Construction Mechanism

The model’s location-based recurrency representation and localist architecture
provide it with a very important ability. Unlike using conventional artificial neural
networks, the sequences learnt by STORM can be extracted in reverse order. This
makes it possible to start with the last element in an input sequence and work
backwards to find the winning neurons corresponding to the previous inputs in the
sequence. STORM uses this ability, while processing input sequences, to find any
existing pre-learnt sequences that end with the same elements as the current input
sequence. For example, Figure 3 shows that the winning neuron for the symbol lT'
in sequence 1 has the same future context (‘X SE’) as the winning neuron for the
first symbol ‘S’ in sequence 2.

Functional-equivalent theory [2] asserts that two states are said to be equivalent if,
for all future inputs, their outputs are identical. STORM uses the inverse o f this
theory to construct states in a bottom-up approach to grammar acquisition. By
identifying neurons with consistently identical future inputs, the model’s temporal
Hebbian learning mechanism (THL) mechanism binds together potential states via
lateral connections. By strengthening the lateral connections between neurons that
have the same future context, this THL mechanism constructs functional-
relationships between the winning neuron for the current input and the winning
neuron for a memorized input (referred to as the alternative winner) whose future-
context matches that o f the current input sequence (Figure 4). In order to prevent
lateral weight values from becoming too high, a negative THL value is applied
every time a winning neuron is selected. This has the effect o f controlling lateral
weight growth and also breaking down old functional relationships that are no
longer used.

Fig. 3 - Diagram showing the memorized winning neurons for two
sequences that end with the same sub-sequence ‘XSE’

Once states have formed, they override the recurrency mechanism, forcing the
model to use a single representation for the future inputs in the sequence rather
than the original two representations (Figure 4). The advantage o f forming states in
this manner is that it provides the model with a powerful ability to generalize
beyond its original memorizations. The model’s THL mechanism conforms to the
SOM ’s winner-take-all philosophy by selecting the alternative winner as the
neuron whose future-context is the best match to that o f the current input sequence.
Given that tracing back through the future-context may identity multiple
alternative winners, the criteria o f best matching winner classifies the strongest
sequence stored in the model as the winner. Furthermore, THL is only used to
enhance the functional relationship between the winner and the alternative winner,

if the future-context for the alternative winner is stronger than that o f the winner
itself. Thus, the model has a preference for always using the dominant sequence
and it will use the THL mechanism to re-wire its internal pathways in order to use
any dominant sequence.

Constructing the lateral connections between functionally-related neurons is
equivalent to identifying states in a grammar. Once the strength o f these lateral
connections exceeds a certain threshold they override the standard recurrency
mechanism, affecting the representation o f the previous winning neuron that is fed
back (Figure 4). Instead o f feeding back a representation o f the previous winning
neuron, the lateral connections may force the model to feed back a representation
of the functionally-related neuron. The consequence o f this is that the rest o f the
sequence is processed as if the functionally-related neuron had been selected rather
than the actual winner. For example, Figure 4 shows that when the first ‘S ’ symbol
in sequence 2 is presented to STORM, its winning neuron is functionally linked to
the winner for the ‘T ’ symbol from sequence 1. As the latter winning neuron is the
dominant winner for this state, its location is fed back as context for the next
symbol in sequence 2.

1. BT
2. BT
E

Fig. 4 - Functional override in winning-neuron selection algorithm. The
functional relationship (shown in grey) between the third symbol ‘S’ in the
second sequence and the second sym b ol‘T ’ in the first sequence, forces the
model to process the remaining elements in the second sequence (namely
‘XSE’) using the same winning neurons as for the first sequence.

While a state is formed based on similarities in future context, there may be cases
where the future context, for the respective input symbols that make up the state, is
dissimilar (Table 2). However, once a state been constructed, the future context in
subsequent sequences containing that state will be processed in an identical
manner, regardless o f the future context itself. For example, when trained on the
sequences in Table 2, the ‘T ’ symbol from sequence 1 will form a state with the
first ‘S ’ symbol from sequence 2. This will result in both sequences 1 and 2 sharing
the same winning neurons for their final three inputs (X S E). STORM will then be
able to generalize this learnt state to its memorization o f sequence 3, resulting in
the same winning neurons being activated for the ‘X X V V E ’ in test sequence 4
as in training sequence 3.

O 0 O .*'§ o
O T O O 0

Training sequence
1 B T X S E
2 B T S X S E
3 B T X X V V E

Test sequence
4 B T S X X V V E

Table 2 - Generalization example. W hen trained on the first three
sequences, STORM is able to construct a state between the ‘T ’ in
sequence 1 and the first ‘S’ in sequence 2. By generalizing this learnt
state to its memorization of sequence 3, STORM is able to correctly
process sequence 4 by activating the same winning neurons for the
sub-sequence ‘X X V V E ’ as would be activated in sequence 3.

Experiments
In order to quantify STORM ’s grammar induction abilities, the model was applied
to the task o f predicting the next symbols in a sequence from the Reber grammar
(Figure 1). Similar prediction tasks have been used in [8] and [3] to test the SRN’s
grammar-induction abilities. The task involved presenting the model with symbols
from a randomly generated sequence that was not encountered during training. The
model then had to predict the next possible symbols in the sequence that could
follow each symbol according to the rules o f the grammar. STORM’s predictions
are made by utilizing the locational representational values used in its context
vector. As further explained in [1], the winning neuron for an input is the neuron
whose weight vector best matches both the input symbol and the context
representation o f the last winning neuron’s location. STORM predicts the next
symbol by finding the neuron whose context representation best matches that o f the
current winning neuron (i.e. the symbol part o f the weight vector is ignored in the
Euclidean distance calculation). This forces the model to find the neuron that is
most likely to be the next winner. The symbol part o f this neuron’s weight vector
provides the next predicted symbol itself. This process is then repeated to find the
second-best matching winner and the corresponding second predicted next symbol.
In accordance with established training criteria for artificial neural network models
[17], the experiments were conducted on randomly generated separate training and
test sets (i.e. sequences were unique with respect to all other sequences in both
sets). Such an approach ensures that the m odel’s performance, assessed from the
test set, is a true measure o f its generalization abilities because the test sequences
were not encountered during training. The experiment was run ten times using
models with randomly generated initial weights, in order to ensure that the starting
state did not adversely influence the results.

The recursive depth parameter, as listed in Table 3, denotes the maximum number
o f sequential recursive transversals a sentence may contain (i.e. how many times it
can go around the same loop). In order to ensure that the training and test
sequences are representative o f the specified recursive depth, the sets are divided
equally between sequences o f each recursive depth (i.e. a set o f six sequences with
a recursive depth (RD) o f 2 will contain two sequences with an RD o f 0, two
sequences with an RD o f 1 and two sequences with an RD o f 2).

158

Parameter Value
Number of epochs 1000
Learning rate a (linearly 0.1
decreasing)
Initial neighbourhood a 5
(linearly decreasing)
Positive / negative 0.5/
temporal Hebbian 0.005
learning rate
Number of training 2 1

sequences
Number of test sequences 7
Maximum recursive 6

depth (RD) of sequences
Model size 10 x

10

Table 3 - Experimental parameters for the first experiment

As shown in figure 5, six models learnt the grammar with over 89% accuracy
during training and three o f them became perfect grammar recognizers. However,
this number fell by the end o f training, with only two perfect models and an
additional two models with over 90% performance accuracy. This equates to an
average post-training performance o f 71%. While less than half the models
successfully learnt the grammar, it is worth noting that this is significantly better
than for SRNs where Sharkey [18] showed that only two out o f 90 SRNs became
finite-state grammar recognisers in a similar experiment using the Reber grammar.

One o f the proposed advantages o f a discrete state-space model (page 3), is its
ability to generalize to sequences longer than those encountered during training
without the instabilities characteristic o f standard DRN models. In order to test this
proposition, a perfect finite-state recognizer (i.e. a model that scored 100%
prediction accuracy) from the first experiment (figure 5) was tested on a further
three test sets. These sets contained sequences with recursive depths o f 8, 10 and
12 and should constitute a much harder problem for any model trained only on
sequences with a recursive depth o f 6. These models that achieved 100%
performance accuracy in the original experiments also achieved 100% accuracy on
training sets with higher recursive depths. This proves that these models act as
perfect grammar recognizers that are capable o f generalizing to sequences o f
potentially any length.

Test number
□ Highest prediciton accuracy during training
H Prediction accuracy after training

Fig 5 - Results from ten models trained on randomly generated separate
training and test sets.

Conclusions and Future Work

We have presented a novel connectionist memory-rule based model capable of
inducing the finite-state properties o f an input language from a set o f positive
example sequences. In contrast with the majority o f supervised connectionist
models in the literature, STORM is based on an unsupervised recurrent SOM [1]
and operates using a discrete state-space.

The model has been successfully applied to the task o f learning the Reber grammar
by predicting the next symbols in a set o f randomly generated sequences. The
experiments have shown that over half the models trained are capable o f learning a
good approximation o f the grammar (over 89%) during the training process.
However, by the end o f training, only a fifth o f the models were capable of
operating as perfect grammar recognizers. This suggests that the model is unstable
and that partial or optimal solutions reached during training may be lost by the end
o f the training process. Despite this instability, a comparison between STORM and
the SRN, when applied to a similar problem [3], shows that STORM is capable o f
learning the grammar perfectly much more often than its counterpart. Furthermore,
experiments show that STORM ’s discrete state-space allow it to generalize its
grammar recognition abilities to sequences far beyond the length o f those
encountered in the training set, without the instabilities experienced in continuous
state-space DRNs.

Future work will initially involve analyzing the model to find where it fails. Once
the model’s abilities have been fully explored, its stability will be improved to
increase the number o f models that successfully become perfect grammar
recognizers. STORM will then be enhanced to allow it to process more advanced
grammars. Given that regular grammars are insufficient for representing natural
language [19], the model must be extended to learn at least context-free languages
if it is to be applied to real-world problems. However, despite such future
requirements STORM ’s current ability to explicitly learn the rules o f a regular
grammar distinguish its potential as a language acquisition model.

References

1. McQueen, T. & Hopgood, A. & Tepper, J. & Allen, T. A Recurrent self­
organizing map for Temporal Sequence Processing. In: Proceedings o f 4th
International Conference in Recent Advances in Soft Computing (RASC2002),
Nottingham, 2002
2. Hopcroft J. & Uliman J. Introduction to Automata Theory, Languages and
Computation, vol 1, Addison-Wesley, 1979
3. Cleeremans A, Schreiber D, McClelland J. Finite State Automata and
Simple Recurrent Networks. In: Neural Computation. 1989, Vol 1, pp 372-381
4. Collier R. An historical overview o f natural language processing systems
that learn. Artificial Intelligence Review 1994; 8(1)
5. Chomsky, N, Aspects o f the Theory o f Syntax. MIT Press, 1965
6. Gold, E.M. Language Identification in the Limit. Information and Control
1967; 10:447-474
7. Horning, J.J. A study o f grammatical inference. PhD thesis, Stanford
University, California, 1969
8. Elman, J.L. Finding Structure in Time. Cognitive Science 1990; 14:179-
211
9. Omlin, C. Understanding and Explaining DRN Behaviour. In: Kolen, J.
and Kremer S (eds) A Field Guide to Dynamical Recurrent Networks. IEEE Press,
New York, 2001, pp 207-227
10. Kolen, J. Fool’s Gold: Extracting Finite State Machines From Recurrent
Network Dynamics. In: Cowan J, Tesauro G and Alspector J (eds) Advances in
Neural Information Processing Systems 6. Morgan Kaufmann, San Francisco CA,
1994, pp 501-508
11. Kohonen T. Self-Organizing Maps, vol 1. Springer-Verlag, Germany, 1995
12. Baretto, G and Arajo, A. Time in Self-Organizing Map: An Overview o f
Models. International Journal o f Computer Research: Special Edition on Neural
Networks: Past, Present and Future 2001; 10(2): 139-179
13. Pinker, S. Words and Rules. Phoenix, London, 2000
14. Marcus, G. F. Children’s Overregularization and Its Implications for
Cognition. In: P. Broeder and J. Murre (eds) Models o f Language Acquisition:
Inductive and Deductive approaches. Oxford University Press, Oxford, 2000, pp
154-176
15. Cohen, N.J. and Squire, L.R. Preserved learning and retention o f pattern-
analyzing skill in amnesia: Dissociation o f knowing how and knowing that.
Science 1980;21:207-210
16. Voegtlin, T. Recursive Self-Organizing Maps. Neural Networks 2002;
15(8-9):979-991
17. Hopgood, A. A. Intelligent Systems for Engineers and Scientists, 2nd
edition, CRC Press LLC, Florida, 2001, pp 195-222
18. Sharkey N, Sharkey A, Jackson S. Are SRNs sufficient for modelling
language acquisition?. In: Broeder P, Murre J. (eds) Models o f Language
Acquisition: Inductive and Deductive Approaches. Oxford University Press,
Oxford, 2000, pp 33-54
19. Lawrence S, Giles C, Fong S. Natural Language Grammatical Inference
with Recurrent Neural Networks. IEEE Transactions on Knowledge and Data
Engineering 2000; 12(1): 126-140

Appendix D - Examples of training and test

sequences

The following sequences have been used to train a model to 100% performance on the
Reber grammar using the training regime described in section 4.5.

The following sequences are in their numerical form as used during training. The
numbers can be translated in grammatical symbols using the following key.

Key: B = 1, T = 2, S = 4 ,X = 5,V = 6 ,P = 3 ,E = 7

Training Sequences:

1 2 4 4 4 4 5 5 6 6 7
1 2 4 5 5 2 6 3 5 2 2 2 2 6 6 7
1 2 5 5 6 3 5 6 6 7
1 3 2 6 3 5 6 6 7
1 2 4 4 5 5 6 3 4 7
1 2 4 5 5 6 6 7
1 2 5 4 7
1 2 5 5 2 2 2 2 2 2 6 6 7
1 2 4 5 4 7
1 3 6 3 5 2 2 2 2 2 6 3 5 2 2 2 2 6 3 5 6 3 5 6 6 7
1 3 6 3 4 7
1 3 6 6 7
1 2 5 5 2 6 6 7
1 2 5 5 6 3 5 6 3 4 7
1 2 4 5 5 2 6 6 7
1 3 2 6 3 4 7
1 2 4 5 5 6 3 5 6 6 7
1 3 6 3 5 2 2 6 6 7
1 3 2 2 2 2 2 2 6 6 7
1 2 5 5 6 6 7
1 2 5 5 6 3 4 7
1 2 4 5 5 2 2 6 6 7
1 3 6 3 5 6 3 5 2 6 3 5 2 2 6 6 7
1 3 2 6 6 7
1 2 4 4 4 5 4 7
1 2 5 5 6 3 5 2 6 3 4 7
1 2 4 4 5 4 7
1 2 4 4 5 5 6 6 7
1 2 4 5 5 6 3 5 2 6 3 4 7
1 2 4 5 5 6 3 4 7

Test sequences:

1 2 5 5 2 6 3 4 7
1 2 5 5 2 2 6 6 7

I—{ 2 4 4 5 5 6 3 5 6 3 4 7
1 2 4 4 4 4 4 4 5 5 2 6 6 7
1 3 2 6 3 5 2 2 2 6 3 4 7
1 2 5 5 2 2 2 2 6 6 7

162

1 2 4 4 5 5 2 2 2 6 3 4 7
1 3 2 2 2 6 6 7
1 3 2 2 6 3 5 6 6 7
1 2 4 5 5 6 3 5 2 6 6 7

163

The
Nottingham

Trent
University

Libraries &
Learning

Resources

The Boots Library: 0115 848 6343
Clifton Campus Library: 0115 848 6612

Brackenhurst Library: 01636 817049

