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Abstract

Language acquisition is one of the core problems in artificial intelligence. Current 

performance bottlenecks in natural language processing (NLP) systems result from a 

prerequisite for an incalculable amount of language and domain-specific knowledge. 

Consequently, the creation of an automated language acquisition system would revolutionize 

the field of NLP. Connectionist models that learn by example (i.e. artificial neural networks) 

have been successfully applied to many areas of language acquisition. However, the most 

widely used class of these models, known as supervised connectionist models, have a number 

of major limitations, including an inability to represent variables and a limited ability to 

generalize from sparse data. Such limitations have prevented connectionist models from being 

applied to large-scale language acquisition.

This research considers the alternative and less widely used class of unsupervised 

connectionist models and investigates whether such models can capture the finite-state 

properties of language. A novel unsupervised connectionist model, STORM (Spatio Temporal 

Self-Organizing Recurrent Map), is proposed that uses a memory-rule based approach to learn 

a regular grammar from a set of positive example sequences. STORM’s learning algorithm 

uses a derivation of functional-equivalence theory that allows the model to learn via similarity 

of behaviour, rather than just similar of form. This novel functional generalization ability 

allows STORM to learn a perfect and stable representation of the Reber grammar from a 

sparse training set of just 30 sequences, as opposed to the 60,000 sequences required to train a 

supervised connectionist model. Unlike supervised models, once STORM has learnt the 

grammar it can generalize to test sequences of any length or depth of embedding.

Extensions to the model are proposed to show how STORM can learn context-free grammars. 

These extensions also solve the logical problem of language acquisition by recovering from 

overgeneralizations without the need for negative evidence.



“Connectionism, as a radical restructuring o f cognitive theory, wall stand or fall 

depending on its ability to account for human language ”

-  (Pinker and Prince, 1988).
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1 Introduction

The ability to communicate through spoken or written language is considered by 

many philosophers to be the hallmark of human intelligence (MacWhinney, 2002a). 

Consequently, since the inception of artificial intelligence, one of its central goals has 

been to develop systems capable of automatically acquiring and modelling human 

language. This is particularly appropriate when one considers that most information 

processing systems either communicate directly with humans or process stored 

representations of language. However, current natural language processing (NLP) 

systems possess only elementary abilities to interpret, respond to and ultimately 

understand human language. For example, Internet search engines typically rely on 

finding information by simple matching keywords. Such a brute force approach often 

identifies many irrelevant web pages that happen to contain multiple instances of the 

keywords, but actually pertain to unrelated topics. For example, searching the web for 

the keywords STORM  and A1 identifies web pages discussing topics ranging from 

drainage and music to DVDs. Even successful information extraction systems, such 

as JASPER (Journalist’s Assistant for Preparing Earning Reports) (Andersen et al,

1992) rely on frame and slot approaches driven by simple pattern matching. Thus 

despite the growth in information processing, few systems possess the deep 

intelligence necessary to understand natural language.

The main limitation of all current NLP systems is a prerequisite for an incalculable 

amount of language and domain specific knowledge. The complex and fickle rules of 

language, which allow people to effortlessly parse recursive sentences and to resolve 

anaphora, are very hard to manually specify using computational algorithms. 

Consequently researchers have sought to build models capable of automatically
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learning and representing language (Broeder and Murre, 2002). However, designing an 

automated language acquisition system is a formidable task and despite decades of 

research a viable solution remains elusive (Andersen et al, 1992).

The problem of language acquisition is considered so complex, that many researchers 

consider the very concept to be a paradox (Jackendoff, 2 0 0 2 ) Most notably,

Chomsky argues that the input to which children are exposed is insufficient for them 

to determine the grammatical rules of the language (Chomsky, 1965). This argument 

for the poverty of stimulus theory is based on Gold’s theorem (Gold, 1967), which 

proves that most classes of languages cannot be learnt using only positive evidence. 

This proof is based on the apparent inability of a learner to recover from the effect of 

overgeneralization. The argument being that without explicit negative evidence (i.e. a 

teacher identifying ungrammatical words such as runned) learners cannot restrict their 

model of the grammar to only allow legal sentences.

Gold’s analysis and proof regarding the unfeasibility of language acquisition forms a 

central conceptual pillar of modem linguistics. It is also the basis for Chomsky’s 

theory of Universal Grammar (Chomsky, 1965), which proposes that humans have an 

innate propensity for language. However, recent advances in a discipline known as 

connectionism, also known as artificial neural networks (ANNs), have called the 

mainstream natavist theories of linguistics into question by demonstrating that 

biologically inspired learning models can conform to aspects of the human language 

acquisition process (Rumelart and McClelland, 1986). However, despite the optimism 

of researchers in this emerging field, connectionist models do have a number of

1 See (MacWhinney, 2004) for a discussion of the paradox of language acquisition from a connectionist 
perspective.
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serious limitations. These include the inability of connectionist models to represent 

symbols (Marcus, 1998), a limitation that prevents them from representing abstract 

relationships such as grammatical states and also a questionable ability to learn from 

sparse data (Hadley, 1994; Hadley and Cardei, 1999).

1.1 Research objectives

This thesis aims to investigate the capabilities of unsupervised connectionist models 

in the task of grammar induction. Unsupervised approaches to connectionism have 

remained in the shadow of the widely studied class of supervised connectionist 

learning algorithms. One of the reasons for the popularity of supervised algorithms is 

that such approaches can easily be extended to dynamic models in order to solve 

temporal problems. While a small number of notable unsupervised dynamic 

connectionist models have been proposed (Barreto and Araujo, 2001) none of them 

have been powerful or efficient enough to compete with supervised connectionist 

models. To date it is believed that no unsupervised connectionist models have been 

successfully applied to grammar induction. Therefore, the primary objective of this 

research is to determine the viability of using unsupervised connectionist models for 

language acquisition. This will be achieved by developing a model capable of 

inducing a representation of a grammar using only a set of positive examples. The 

investigation will focus on aspects of connectionist modelling that currently have not 

been adequately solved using supervised learning algorithms.
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1.2 Organization of Thesis

This thesis is structured as follows. Chapter 2 explains the problem of language 

acquisition and discusses the symbolic and connectionist modelling paradigms. This 

is followed by a discussion of unsupervised connectionist modelling and leads into a 

review of the significant unsupervised models in the literature to date. Chapter two 

concludes with the identification of promising avenues of investigation that may lead 

towards the research objectives.

Chapter 3 introduces the Simple Recurrent Self-Organizing Map (SRSOM), an 

unsupervised recurrent connectionist model that extends Kohonen’s SOM (Kohonen, 

2001) into the temporal domain. The chapter details the design, analysis and 

refinement of this model. This is followed by experimental analysis of the SRSOM on 

a simple regular grammar. Chapter 3 concludes with a critical analysis of the SRSOM 

and the identification of a significant limitation in the model which prevents it from 

adequately learning the grammar.

Chapter 4 reviews the limitations of the SRSOM and provides an explanation as to 

why any model seeking to learn the underlying rules of a grammar must form a state- 

based input representation. The chapter then focuses on memory-rule based models 

(Pinker, 2000; Marcus, 2000), as a possible method of achieved this required state- 

based input representation. Chapter 4 presents STORM, a memory-rule based 

unsupervised connectionist model, based on the SRSOM. The model is 

experimentally evaluated on the same similar grammar induction problem as the 

SRSOM. These experiments involve testing various sized STORM models on a 

number of randomly generated training and test sets, in order to measure the model’s
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grammar induction abilities. An activation analysis shows that STORM is indeed 

capable of forming a state-based input representation and learning the underlying 

rules of a regular grammar. Chapter 4 concludes with a discussion of the model and 

the experimental results, with respect to the research objectives.

Chapter 5 presents design extensions to the STORM model that explain how the 

model can be both stabilized and extended to learn more complex grammars. The 

chapter shows that by optimizing its representation of sub-sequences, STORM can 

easily be enhanced to learn context-free grammars and recover from 

overgeneralizations. This is an important aspect of the research and it is shown how 

the use of an exception handling mechanism will allow STORM to provide an elegant 

solution to the logical problem of language acquisition. Chapter 5 will also discuss 

limitations in STORM’s learning algorithm that may explain certain instabilities in 

the model’s behaviour.

Finally, chapter 6 reviews the research and evaluates the contribution of STORM, 

with respect to the original research objectives. The chapter highlights the model’s 

novelty and discusses how it has filled a gap in cognitive modelling by combining the 

abstract representational power of traditional symbolic approaches with the induction 

abilities of connectionist models. Future research is proposed that will involve 

initially stabilizing the model, before implementing the exception handling 

mechanism discussed in chapter 5. A regime of experiments is proposed to 

demonstrate how STORM will exhibit the U-shaped learning curve (Brown, 1973) 

characteristic of human early language learners. The proposal highlights how the 

model’s representations can be modified by linking its winning neurons representing
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input symbols to an output alphabet, effectively turning STORM into a Mealy 

machine (Hopcroft and Ullman, 1979). In doing so this allows meaningful predictions 

to be made by ensuring that the model’s input representations are grounded on more 

than just abstract symbols.

1.3 Contribution provided by this research

The work presented in this thesis fulfils the research objectives by showing that an 

unsupervised connectionist model can be successfully applied to the problem of 

language acquisition. With respect to this problem, the research challenges traditional 

natavist theories of linguistics by showing that the rules of a grammar can be learnt 

using only positive examples and a sparse training set. More importantly, a design 

based on the STORM model is used to explain why negative evidence is unnecessary 

in order to account for recovery from overgeneralization in a memory-rule based 

model. This poses a possible answer to the age-old question, formalized by Gold’s 

theorem, of how a language learner can recover from overgeneralization without the 

need for explicit negative evidence.

Outside the context of linguistics, STORM is a major contribution to connectionism 

in itself. By proving that an unsupervised connectionist model can successfully be 

used in temporal sequence processing, this research may help diversify the field by 

drawing unsupervised learning algorithms out of the shadow of their supervised 

counterparts. STORM’s unsupervised learning mechanisms make it more biologically 

plausible than equivalent supervised models and may therefore help to counter some 

of the key arguments (Jackendoff, 2002) against connectionist approaches to 

cognitive modelling. STORM’s induction and functional-generalization abilities may
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potentially reveal interesting structures and relationships in many complex dynamic 

problems, such as financial forecasting (Yao and Tan, 2001) and robot planning and 

control (Platt et al 2003).

In the context of memory-rule based models and dual-based learning mechanisms, 

STORM’s rule based approach to learning provides a domain independent, general 

puipose approach to rule construction. While memory-rule based models have been 

previously proposed (Marcus, 2000), such models have either been theoretical or used 

hard-wired rules. STORM’s criterion of using regularities in the future-context to 

construct rules therefore provides an answer to the advocates of memory-rule based 

models, who have long searched for a mechanism by which to learn rules.
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2 -  Literature study

This chapter begins with a discussion of the complexity of the language acquisition 

process. This details the paradox of language acquisition and explains the mainstream 

linguistic perspective regarding the unfeasibility of this acquisition process.

The complexity of the computational mechanisms involved in the language 

acquisition process is described in relation to the Chomsky hierarchy (Chomsky, 

1959). This is discussed along with pertinent terminology from automata theory 

(Hopcroft and Ullman, 1979). The main body of this chapter discusses connectionism, 

focusing on its biological basis along with its applicability to modelling language 

acquisition. The two main connectionist learning paradigms of supervised and 

unsupervised learning are discussed, along with notable models of language 

acquisition for each respective paradigm. The limitations of connectionism are 

discussed, focusing on the shortcomings of the popular supervised connectionist 

learning paradigm. The chapter concludes by highlighting the potential of 

unsupervised connectionist models with respect to language acquisition.

2.1 Complexity of language with respect to acquisition

The apparent ease with which children acquire language is testimony to the 

tremendous power of the human mind. This ability to communicate through either 

spoken or written language is considered by many philosophers to be the hallmark of 

human intelligence. The general term ‘linguistics’, used to define the study of 

language, encapsulates many areas of study including syntax, semantics and 

pragmatics (Jackendoff, 2002). It also draws on many disciplines including 

psychology, neuro-biology, sociology and computer science. One of the original and



arguably most important fields of linguistic research involves the study of syntax. 

Despite the varying theories regarding the syntactic structure of language (Chomsky, 

1981; Pollard and Sag 1994), the objective of research in this field has always been to 

model the rules which constrain the regularities in language. These regularities, such 

as the ‘-ed’ ending for regular verbs and the gender of pronouns in particular contexts, 

can be found throughout all levels of language. Entire textbooks are dedicated to rules 

and exceptions describing the regularities in just small sub-domains of the English 

language, such as inflectional morphology (Stump, 2001).

While formal linguistic theories differ in their views regarding the acquisition of the 

rules governing the structure of language, a major objective of linguistic research 

involves understanding and describing such rules. The development of an automated 

language acquisition system capable of learning the rules and structure of language on 

a large scale would be viewed by many researchers as the holy-grail. Such a model 

would allow the large scale induction and manipulation of knowledge directly from 

the countless existing electronic databases and other human-readable media. 

Consequently, improvements in the ability to model and therefore understand natural 

language, would impact on all applications of AI, from translation (Arnold et al,

1993) and natural language understanding (Allen, 1995) to speech recognition 

(Beaufays et al, 2001).

Language was described by the philosopher Wilhelm von Humboldt as the infinite use 

o f finite media (Humboldt, 1836/1972). The power to combine known words, within 

the constraints of syntax and semantics, allows for the expression of ideas in a 

potentially infinite number of different forms. Due to this combinatorial power of
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natural language sentences with similar meanings can be expressed in a potentially 

infinite number of different ways. If a model could learn a representation of even the 

derivational rules of the English language (assuming such acquisition is possible in 

isolation), then it would make it significantly easier for a natural language processing 

system to parse sentences. For example, in an NLP security application it would be 

highly desirable to automatically identify the similar meaning in the following two 

sentences; “The diplomat will be targeted by a suicide bomber hidden in the crowd 

and assassinated at precisely six o’clock”, “At exactly six o’clock the suicide bomber, 

who will be hidden somewhere in the crowd, will assassinate the diplomat”. Thus if a 

language acquisition model could learn the rules governing the transformation of 

sentences, it would enable an NLP system to easily identify the underlying form of all 

sentences.

Many researchers consider the problem of language acquisition to be a paradox. 

Advocates of the poverty of stimulus theory argue that the fragmentary evidence 

available to language learners is too inconsistent and incomplete to allow induction of 

language without some innate predisposition towards the acquisition of language.

This creates a paradox, because children who are raised in social environments are 

almost always able to learn their native language, while those who are isolated from 

linguistic input as children do not ever acquire a proper language as adults 

(Jackendoff, 2002). Therefore, if the linguistic input that children are exposed to 

really is insufficient then why do children who are exposed to this input learn 

language? The poverty of stimulus theory is supported by Gold’s theorem, which 

proves (under strict assumptions) that an infinite grammar cannot be learnt using only 

positive examples due to the problem of overgeneralization. This theorem and its
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implications for language acquisition, form the central conceptual pillar of modern 

linguistics. As such, Gold’s theorem is also the focus of much debate among those 

who view the process of language acquisition as a learning process (MacWhinney, 

2004).

Gold’s theorem and the resulting paradox of language acquisition formed the basis of 

Chomsky’s theory of universal grammar. This controversial and widely 

misinterpreted theory is concerned with the hmnan innate pre-specification to 

language acquisition. However, rather than stipulating that all aspects of language 

from the lexicon to the grammatical rules are imiate (as its name may suggest), the 

theory of universal grammar stipulates that the brain’s language acquisition capacity 

is innate. Universal grammar attempts to sidestep the poverty of stimulus theory by 

proposing that language learners are born with a functional pre-specification to 

grammar acquisition. This innate knowledge limits the form of an acquired grammar 

to that of possible human languages and also contains a strategy by which to select a 

grammar compatible with the linguistic input.

2.1.1 The formal complexity of language within the Chomsky hierarchy

The study of language within the discipline of computer science (computational 

linguistics) led to the creation of a formal modeling technique known as generative 

grammars (Chomsky, 1959). By formalizing a set of production rules, such grammars 

provide a model that describes all the legal sentences in a language.

Equation 2.1 shows that a grammar is composed of four distinct elements; sets of 

terminals, non-terminals, production rules and a start symbol. Terminal symbols in a
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grammar consist of elements that cannot be broken down into sub-elements (i.e. 

words such as “man” or “walk”). Non-terminals however can be broken down and are 

used to represent phrases and parts of speech (i.e. nouns or verbs). The production 

rules in a grammar specify which non-terminal symbols can be re-written into which 

terminal symbols.

G = {1,N,P,S}

Equation 2.1 -  Formal definition o f a grammar. The X symbol is a set o f  terminal 
symbols, N  is a set o f non-terminal symbols, P is a set ofproduction rules and S is the 
start symbol.

In table 2.1 the production rules for the Reber grammar (Reber, 1967) show how a set 

of non-terminal symbols can be replaced with terminal symbols to generate a 

potentially infinite number of unique sentences. The grammar is represented 

graphically by the finite state diagram in pullout appendix A. The Reber grammar, 

which is also used in the experiments in chapter 4, was chosen because it was 

originally used to investigate implicit rule-learning in human subjects (Reber, 1967).

Non-terminals Productions rules
S SI S2 S4 S6
S SI S3 S5 S6
SI T S2
SI P S3
S2 SS2
S2 X S 4
S3 T S3
S3 VS5
S4 A  S3
S4 S S6
S5 P S4
S5 VS6
S6 E

Table 2.1 - Production rules for the Reber grammar. Each non-terminal symbol (left 
column) can be replaced by the set o f terminal and non-terminal symbols in the 
corresponding production rule (right column).
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The Chomsky hierarchy (table 2.2) shows that generative grammars can be 

categorized into four types according to their complexity. As shown in table 2.2, the 

simplest type of grammar is the class of regular grammars (which include the Reber 

grammar). This simple type of grammar is characterized by the single non-terminal 

symbol on the left hand side of the production rule and the limit of one terminal 

symbol on the right. The Reber grammar is known as a memory-less grammar 

because the next valid states can always be predicted given the current grammatical 

state (i.e. knowledge of previous symbols in the sequence is not needed).

Grammar type Name Alias
0 Recursively enumerable 

grammars
Unrestricted phrase 
structure grammars

1 Context sensitive 
grammars (CSG)

2 Context free grammars 
(CFG)

Push down automata

3 Regular grammars Finite-state grammars 
(FSG), deterministic finite 
automata (DFA)

Table 2.2 — Chomsky hierarchy o f grammars.

Context-free grammars (CFGs) occupy the next level up the hierarchy from regular 

grammars. They are characterized by their production rule that allows a non-terminal 

to be replaced by a set of any number of terminals and non-terminals, including the 

same non-terminal that is being replaced. Because context-free grammars allow for 

the replacement of non-terminal symbols with more than one terminal and non

terminal, any computational mechanism capable of processing context-free languages 

must incorporate a memory. This requirement arises because allowing non-terminal 

symbols to occur within the right hand side of other production rules, introduces an 

embedding.
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Non-terminals Production rules
S A
A z B z
A y & y
B x C v
C u A  i
C k

Table 2.3 -  Production rules for simple context-free grammar.

As shown in table 2.3, the non-terminal4 A’ can be replaced by the terminal *z\ 

followed by the non-terminal 4B’ and a terminal 4z \  However, because the non

terminal 4B’ can itself be replaced by other terminals and non-terminals (including the 

original non-terminal4 A ’), the first terminal 4z’ may be separated from the last 

terminal 4z’ by potentially any number of symbols (table 2.4). Therefore, when 

processing sentences generated using non-terminal4 A’, the prediction of the next 

symbol depends not just on the current state, but also upon previous symbols. For 

example in sequences 1 and 2 in table 2.4 the prediction of whether the last symbol is 

a 4z’ or a 4y’ depends upon which symbol occurred first in each sequence. This 

dependency becomes more complex as the level of embedding increases, as shown in 

sequence 3.

# Sequence of terminal symbols

1 z x k v  z

2 y x k v y

3 z x u y x k v y i v z

Table 2 .4 -  Different sequences o f terminal symbols generated via application o f the 
production rule for non-terminal’A ’ (table 2.3). The choice o f the second terminal 
symbol in the production rule for non-terminal ‘A ’ can be determined by the first 
terminal symbol.
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The name context-free derives from the freedom this grammar provides to replace the 

left hand side of a production rule with the right hand side, regardless of the context 

the left hand side appears in. CFGs are widely used in NLP programs and most 

parsers treat English as a context free language (Allen, 1995).

Level one of the Chomsky hierarchy is occupied by context-sensitive grammars. As 

their name suggests these grammars allow restrictions on the replacement of the left 

hand side of the production rule. This allows a production rule to be applied only in 

context-specific circumstances (equation 2.2).

xAy => Xabcdy

Equation 2.2 -  Example o f a production rule from a CSG. The non-terminal ‘A ’ is 
replaced by the set o f  terminals ‘abed’ only where a terminal ‘x ’ is followed by a 
terminal ‘y ’.

The top level of the Chomsky hierarchy is occupied by recursively-enumerable 

grammars. They are also called unrestricted phrase structure grammars because either 

side of their production rules can contain any sequences of terminals and non

terminals. These powerful grammars are believed to be a close approximation of 

natural language (Chomsky, 1959) and their use is unique to human beings (Fitch and 

Hauser, 2004). Research has shown that monkeys, whom are able to learn simple 

regular grammars, appear incapable of mastering the rules found in unrestricted 

phrase structure grammars (Fitch and Hauser, 2004).
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2.2 Connectionist models of language acquisition

Traditional symbolic linguistic models sidestep the process of language acquisition by 

focusing on describing linguistic performance using sets of rules and exceptions. Such 

a top-down approach to cognition, attempts to work backwards from formal linguistic 

structure towards human processing mechanisms. While symbolic approaches are 

very powerful, the resultant models are usually inflexible and cannot easily be applied 

to general purpose linguistic problems (Corrigan and Iverson, 1994). This inflexibility 

arises from their hardwired rules and exceptions which are stipulated by the system’s 

designer, rather than learnt by the model itself. Consequently such systems require 

new sets of rules and exceptions when applied to different problems.

In the past fifteen years an alternative approach to cognitive modeling has once again 

gained popularity among researchers. Known as connectionism, this empirical field of 

study uses models whose design is biologically inspired by the operation of the 

human brain and nervous system. In contrast with symbolic models of cognition, 

connectionism uses a bottom up approach to cognition that models the learning 

process itself. Connectionist models are well suited to the problem of language 

acquisition because they learn the solution to a problem via a set of examples.

Connectionist models also provide a means to overcome the theoretical limitations on 

language acquisition imposed by Gold’s theorem. While Gold proved that an infinite 

grammar could not be learnt from only positive examples, this proof was based on the 

assumption that successful acquisition would result in a deterministic grammar. 

Therefore acquisition could only be said to be successful if the language learner 

possessed a perfect representation of the grammar and therefore never made any
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mistakes regarding its use. (Homing, 1969) exploited this unrealistic assumption to 

show that language can be learnt from only positive examples if the language 

identification criterion uses a stochastic probability of success. This stochastic, as 

opposed to deterministic, view of grammar induction is supported by much language 

acquisition research, including U-shaped learning curves. Such research suggests that 

learning proceeds through stages, in which linguistic proficiency increases. However, 

it also shows that how ever proficient native speakers become, they still occasionally 

make grammatical errors. Thus no one possesses, or is able to employ, a perfect 

knowledge of grammar.

2.2.1 The case for connectionism

A large body of evidence exists to support connectionist models of cognition. This 

evidence comes from neuro-biological and psycho-linguistic research conducted over 

the last half of this century. Such evidence disputes the views of traditional 

researchers such as Fodor (1983), who argue that language, along with many other 

higher cognitive functions, must be innate. A primary natavist argument is that 

cognitive functions such as language exist in modules (Fodor, 1983). It is suggested 

that the cognitive micro-circuitry of these modules is genetically pre-specified to 

perform particular functions.

Over the past two decades the science of genetics has evolved dramatically, 

cumulating with the complete mapping of the human genome in 2001 (Venter et al, 

2001). Modern geneticists view the genome of regulatory organisms, such as human 

beings, as a recipe of ingredients, as opposed to a specific blueprint. Individual genes 

rarely control specific traits such as eye colour, but rather work along with other
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genes and can be involved in multiple functions. Indeed, such a coding strategy is 

necessary given it is believed that the human genome has only around 25,000 protein- 

coding genes (Venter et al, 2001), while the human body itself is made up of at least 

100 trillion cells. Furthermore, humans share over 98% of their DNA with 

chimpanzees (Elman et al, 2001). Given that it is widely established that only humans 

posses the expressive power of language (Chomsky, 1972), any imiate specification 

for a pre-programmed language module would have to share less than 2% of the 

human genome, along with every other characteristic distinguishing humans from 

chimpanzees. This representational limitation of the human genome calls into 

question imiate theories involving pre-specified language, due to the huge burden it 

would impose on the genome. Furthermore, the complexity of gene interactions and 

the lack of a genetic blueprint cast serious doubt on nativist theories which rely 

heavily on pre-specified knowledge and rules, due to issues of representation.

A further counter-argument against innately pre-specified cognitive modules regards 

recent neuro-biological evidence concerning cortical plasticity (Elman et al, 2001). 

Lessoning experiments on animals (Webster et al, 1995) have shown that when the 

usual area responsible for a specific cortical function is removed in infancy, 

alternative areas take over. However, when the same area is removed in adulthood, 

the lessoned animals never recover the associated cognitive functions. Related 

experiments support the view of cortical plasticity by showing that when inputs from 

the visual cortex are rewired to the auditory cortex, similar organization is observed as 

to that which occurs in the visual cortex (Roe et al, 1992). Research into cortical 

activity during language processing tasks shows that the organization of cells
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involved in language use varies widely between individuals (Damasio and Damasio, 

1992), thus further weakening the argument for imiate modules.

The cognitive plausibility of comiectionist models has received evidential support 

based on studies of brain damaged subjects. In cognitive science, the study of brain 

damaged individual’s performance on specific tasks has been very helpful in 

understanding the cognitive mechanisms involved (McLeod et al, 1998). Linguists 

have experimented on brain damaged subjects in order to gain an understanding of the 

mechanisms involved in language (Bates et al, 1997). However, traditional symbolic 

models of cognitive processes have found it very hard to account for the types of 

performance errors caused by brain damage (McLeod et al, 1998). In contrast many 

connectionist models have been proposed to account for brain damage (Hinton and 

Shallice, 1991; Farah and McClelland, 1991; Cohen and Servan-Schreiber, 1992). 

Hinton and Shallice (1991) used a comiectionist model that mapped visual 

representations of words onto their associated semantic representations. By lessoning 

trained models they produced similar visual-semantic errors to that of dyslexics (i.e. 

the word night produces the semantic representation for sleep). Their analysis of this 

model proposes that the performance errors observed in human brain-damaged 

subjects can best be explained by a distributed attractor based model.

Connectionist models can be broadly categorized into two distinct types based on the 

principles that govern their learning algorithms. The following two sections review 

supervised and unsupervised approaches to language acquisition, highlighting 

significant models in each respective paradigm.
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2.2.2 Unsupervised connectionist learning algorithms

Unsupervised connectionist learning is an approach to cognitive modelling whose 

operating principles remain close to those of biological neural networks. Unlike their 

supervised counterparts, unsupervised models don’t require an external teacher signal 

that stipulates a desired output or behaviour. The majority of unsupervised models are 

derived directly from Hebb’s law (1949) and self-organize in response to external 

input stimuli. Hebb showed that learning occurs via the correlation of activity 

between neurons (i.e. nodes that fire together, wire together). In an unsupervised auto- 

associator (McLeod et al, 1998) this may take the form of strengthening the synapses 

between neurons2 representing an input pattern and the corresponding output neurons 

representing that same pattern. Whereas in an unsupervised competitive model, 

learning occurs by strengthening the synapses between neurons representing the input 

pattern and the neuron that is the best match for that input pattern. Unsupervised 

learning is more biologically plausible than its supervised counterpart because it uses 

locally available information, between a neuron’s axon and dendrite, to update the 

weights.

Unsupervised learning doesn’t require any external target signal as it is driven purely 

by the principles of self-organization. The organization of an unsupervised neural 

network is governed by the relationships that exist within the data being processed, 

rather than by forcing a relationship between the data and some predefined target 

domain. The dominant comiectionist paradigm of supervised learning concentrates 

solely on how the data can be used to solve a specific problem. In doing so it makes 

the assumption that any relevant relationships that hold amongst the data will reveal

2 The term neuron is used to refer artificial and biological neurons interchangeably.
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themselves in the course of solving the problem. In contrast, unsupervised learning 

takes the opposite approach, concentrating instead on relationships in the structure of 

the data itself and potentially revealing internal relationships that may be key to 

solving the problem at hand.

The most common unsupervised connectionist model is Kohonen’s self-organizing 

map (SOM). As shown in fig 2.1, this model usually consists of a rectangular grid of 

neurons, each of which has weights connecting it to a layer of input neurons. This 

model mimics the competitive approach to learning that is believed to operate 

throughout the central nervous system and brain.

Input
pattern

Fig 2.1 -Kohonen ’s Self-Organizing Map (SOM) showing the winning neuron for the 
input pattern (black) and the neighbouring neurons (grey).

In competitive learning, a group of neurons compete for the same input signal. The 

particular neuron which produces the highest activation, with respect to the input 

signal, is deemed the winner (equation 2.3).

iV=arg(miny ( £ | ^ , -W (j I)) (2-3)
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The winning neuron and perhaps also its close neighbours participate in learning. This 

process involves modifying a neuron’s synaptic connections in order to make it a 

better match for to the input in question (equation 2.4). This has the effect of 

clustering similar inputs together on the map. a  is the learning rate coefficient and is 

typically 0.1 or less. The learning rate coefficient is decreased, usually linearly, 

throughout training.

wtj 0t)+ahj (X ( t ) -W tJ (0 ) (2.4)

A neighbourhood function h is used which has the effect of moving the weight

vectors of neurons adjacent to the winner closer to the input vector than those of 

neurons further away from the winner. A typical function used to define the 

neighbourhood is the Gaussian function shown in equation 2.5. This function uses the 

distance d  between the wimiing neuron and the neuron in question to calculate the 

influence of the neighbourhood function so that it is proportional to the distance 

between the two neurons. The parameter a  represents the width of the Gaussian 

function (in neurons) and controls how many neurons participate in training.

_ (2.5)
" , j  ~ ^ v2cr2 '

h,j =exp(— —)

During training, the neighbourhood is reduced from a value covering approximately 

half the number of neurons in the map down to a value effecting one neuron. The 

SOM is trained with input vectors, presented in random order, either for a preset 

number of epochs or until the network has converged (i.e. when little or no further 

weight changes occur). The average quantization error may be used as a measure of 

convergence and involves measuring the distance between an input vector and the 

weight vector of the winning neuron. However, most SOM models are trained for a
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preset number of epochs. Kohonen (2001) recommends that this training should be 

carried out in two phases; a convergence phase and a fine-tuning phase. In the 

convergence phase, the SOM is trained with a relatively high learning rate of 0.1 for 

1000 epochs. Both the learning rate and the neighbourhood are decreased throughout 

training. The fine-tuning phase employs a fixed learning rate of 0.01 and a fixed 

neighbourhood of 1 is used. The number of epochs in the second phase should ideally 

be 500 times the number of neurons in the model (Kohonen, 2001).

The competitive approach to learning used by the SOM is grounded in a large body of 

neuro-biological research which shows that a topological organization is preserved 

between the central nervous system and the receptors on sensory organs (Kohonen, 

2001). For example, a tonopopic map can be found in the auditory cortex in which the 

organization of cells reflects the pitch and frequency of tones received by the 

listener’s ear (Kohonen, 2001). However, these order-preserving maps are not limited 

to representing spatial relationships. Neural-imaging research has shown that more 

abstract, geographical maps can be observed in the hippocampus of rats (Olton, 1977, 

cited in Kohonen, 2001). Unlike their supervised counterparts, unsupervised models 

make no prior assumptions about classes of data being clustered. This makes them 

very powerful for exploring data where the featural characteristics are unknown or 

where manual construction of input and target vectors is not possible. SOMs are also 

used as a visualization tool, due to their characteristic ability to map relationships in 

the data onto a 2D grid. SOMs have been applied in various real world problems, 

including process monitoring (Kasslin et al, 1992), pattern recognition (Kohonen, 

2001) and robot arm control (Ritter et al, 1992).
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Despite the compelling neuro-biological evidence in support of competitive learning 

and the success of models such as the SOM, far less research has been carried out into 

the field of unsupervised connectionism than its supervised counterpart.

2.2.2.1 Unsupervised connectionist models of language acquisition

The numbers of unsupervised comiectionist models that have been applied to 

language acquisition are eclipsed by the number of equivalent supervised models that 

dominate the literature. However, there are a few significant unsupervised models that 

are relevant to this research. As with other applications in unsupervised 

connectionism, the majority of language acquisition models are based on the SOM. In 

(Ritter and Kohonen, 1989) the SOM was applied to producing context-maps. By 

clustering representations of input words along with both the immediately preceding 

and following words, such models are able to capture the statistical occurrences of 

words in specific contexts. This allows the formation of so called context maps, in 

which nouns and verbs are mapped into different regions of the map.

Notable research into context maps includes experiments involving the clustering of 

natural text taken from Usenet newsgroups on the Internet (Kohonen, 2001). Results 

from these experiments showed that context maps were very successful at producing 

closely clustered categories of related words (an effect that is highly desirable in areas 

of NLP such as data mining (Craven and Shavlik, 1997)). Context maps have also 

been used as a tool for visualizing the semantics of words formed using a collection of 

text from Grimm fairy tales (Honkela et al, 1995). Larger scale experiments have also 

been performed by Langus and Kohonen (Lagus et al, 1999) that involved visualizing 

entire document collections using the WEBSOM model.
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Context maps operate by producing clusters of words based on the statistical 

frequency of their usage. They effectively rely on surface similarities and make no 

attempt to model the underlying structure of language. In order to perform larger scale 

language acquisition tasks such as grammar induction or parsing, a context map 

would need to represent all relevant input words in a sentence simultaneously (i.e. a 

buffer). This would result in the problem o f 2 (Jackendoff, 2002) (i.e. how to 

internally represent multiple instances of the same word) and also the general problem 

of how to determine the length of the buffer. Therefore, due to their static nature, 

context maps may be inappropriate for many language acquisition tasks.

MacWhimiey (2002b) employed a hybrid SOM based model in the task of lexical 

acquisition. The model was proposed as a means of overcoming computational 

problems encountered in distributed supervised lexical acquisition models. The task 

of acquiring words is treated as a process of associating phonological features with 

the respective semantic representations. MacWhinney’s model achieved this by used 

two SOMs and a Hebbian learning mechanism (Hebb, 1949). The first SOM clustered 

the phonological inputs, forming an auditory map, while the second SOM organized 

itself using the semantic inputs. The Hebbian learning mechanism was then used to 

associate the auditory forms of a word in one map, with that word’s semantic 

representation in the other map. The model was able to successfully learn 6,000 

sound-meaning patterns, therefore significantly superceding the capabilities of 

equivalent distributed models. The model was also successfully applied to the 

problem of learning inflectional morphology (MacWhinney, 2002b).

25



The power of MacWhinney’s model is derived from its localist architecture, which 

provides stability by representing lexical items in a discrete manner. This allows the 

model to overcome many of the problems associated with purely distributed 

representations and scale up closer to natural language. However, the model is not 

designed to process dynamic sequences and therefore, in its current form, it would not 

be suitable for language acquisition tasks such as grammar induction.

Another notable unsupervised model is Hadley’s semantic parser (Hadley and Cardei, 

1999). This model uses both self-organizing and Hebbian based learning to produce 

semantic parses for both simple and complex sentences containing active and passive 

verbs. Representations of lexical items presented at the input layer are fed into a 

SOM, along with inputs from a feature layer. The activations from the SOM form 

input to the output layer, along with direct connections from the input layer. This 

output layer contains nodes which represent concepts and roles (ex. “love”, “cats”, 

“see” and “mice”). During training the model learns associations between sentences 

presented at the input layer and its corresponding meaning, which is presented to the 

output layer. While technically speaking this is a supervised model, its use of self

organization and Hebbian learning demonstrate that the mechanisms used in 

unsupervised learning algorithms can be successfully employed in the language 

acquisition process.

2.2.22 Dynamic unsupervised connectionist models

While relatively few unsupervised connectionist models have been applied to the 

problem of language acquisition, numerous such models have been applied to other 

similar problems involving temporal sequence processing (TSP) (Barreto and Araujo,
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2001). These models typically extend the SOM into the temporal domain using 

various short term memory mechanisms. Given the relation between TSP and 

language acquisition, these dynamic unsupervised connectionist models are highly 

relevant to the subject of this thesis. Therefore, this section will briefly review the 

significant dynamic connectionist models in the literature.

X(t-n)
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| X(t-2)

tr
X(t-1)
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0 0 0 0 0  ooooo 
0000 oooo

Fig 2.2 -  Dynamic SOM buffer approach, as used in Kangus’s TSOM.

Kangas’s TSOM (1990) was an early dynamic extension to the SOM which used a 

fixed size buffer that allowed it to cluster sets of inputs, as opposed to individual input 

clustering. This buffer or sliding window approach (fig 2.2) is the simplest type of 

short-term memory mechanism. It involves the use of a buffer containing the n most 

recent inputs. The buffer in fig 2.2 is treated like a shift-register, with new inputs 

being added at the right, while inputs already within the buffer are shifted to the left. 

This approach essentially maps time onto space, converting a temporal sequence into 

a spatial pattern. The neural network can then process this pattern in the same manner 

as any other spatial pattern.
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The major limitation of the temporal window approach is that the choice of window 

size is problem dependent and therefore needs to be selected via a process of trial and 

error. If the window is too big, then as well as being computationally intensive the 

model may be swamped with irrelevant data. Conversely, if the window is too small 

then critical past inputs may be missing, preventing the model from making a correct 

prediction / classification. Another fundamental problem with a fixed buffer approach 

is the inability to distinguish a relative temporal pattern from an absolute temporal 

pattern (Elman, 1990). For example, if the model uses a buffer of eight inputs then the 

two sequences shown in fig 2.3 will be treated separately.

[ 0 0 0  1 1 1 0 0 ]

[0 1 1 1 0 0 0 0 ]

Fig 2.3 — Two identical sequences o f  ones (111) which have been displaced in time.

Another notable dynamic SOM which employed buffers is Kohonen’s Hypermap 

(Kohonen, 1991). This model uses multiple buffers, each of which centres on a 

specific input and holds contextual information at an increasingly higher level of 

abstraction. The model uses the highest level buffer to identify the general region on 

the map and then uses lower level buffers to narrow down the winner to a specific 

neuron. While the Hypermap is a very powerful model, it is computationally intensive 

due to its use of multiple buffers and corresponding weights. This computational 

intensity would be compounded as the number o f neurons in the map is increased. 

Additionally, despite using multiple buffers the Hypermap is still subject to the 

problem of distinguishing between absolute and relative temporal patterns.

28



Ill order to overcome the limitations posed by buffers, further dynamic extensions to 

the SOM employ leaky integrator neurons (LINs) (Barreto and Araujo, 2001). Also 

known as dynamic neurons, LINs maintain a potential, akin to the membrane activity 

in a biological neuron. Their current potential is integrated with the input to produce 

the neuron’s output value, which also becomes the new potential. The integration 

function has the effect of decaying information about past inputs and integrating this 

with information about the current input. A typical equation for a LIN neuron is 

shown in equation. 2.6.

P,(0 = ^ ( f - l )  + * #(0 (2.6)

Where Pj  (t) is the potential of node i at time t, X j  (t) is the input value for node i at 

time t, X is the decay coefficient and Pj (t-1) is the potential of node i at the previous 

time step. Chappell and Taylor’s Temporal Kohonen Map (TKM) (1993) and Varsta’s 

Recurrent SOM (RSOM) (Varsta et a l, 1997) both use LINs to capture the SOM’s 

outputs and inputs, respectively.

The major advantage of LINs over buffers is that inputs can be presented to the 

network one at a time as they appear in the sequence. This both eliminates the 

problems associated with the window size and also reduces the number of trainable 

weights needed. LIN’s have a potentially infinite temporal depth i.e. without noise 

they can represent information about potentially all elements in a sequence. However, 

the disadvantage of LIN’s are that they have a limited temporal resolution in that they 

hold increasingly less information about past inputs. This limited resolution can make 

it virtually impossible for the predictor / classifier to extract sufficient information 

about past inputs even without the presence of noise (Mozer, 1993).
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Current input

Figure 2.4 -  Recursive SOM showing how the winning neuron (black) is the best 
match for the current input and the copy o f the map at the previous time step.

The Recursive SOM (Voegtlin and Dominey, 2002) (fig 2.4) is a dynamic extension 

to the SOM that uses recurrent connections to propagate the output activity of all its 

neurons back as a factor of the next input. The winning neuron is the unit whose 

weight vector best matches the current input vector and a vector of activities from the 

previous time step. The Recursive SOM’s vector of activities is a representation of the 

contextual information from the previous time step and consists of a representation of 

the activity of every neuron. Each neuron’s activity is calculated using equation 2.7.

Y , ( n ) = ^ { - a \ X { n ) - w f - p \ Y ( n - \ ) - w f )  (2.7)

The recursive SOM remains close to the original SOM by iteratively applying the 

algorithm to its own representations. This is an advantage because the SOM is an 

experimentally proven algorithm that is both successful and biologically plausible.
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Therefore, by iteratively applying the original algorithm to its own representations, 

the recursive SOM is able to process dynamic patterns without having to rely on ad- 

hoc mechanisms, such as buffers. However, a disadvantage of the recursive SOM is 

that, like many other TSOMs, it is computationally intensive due to additional 

connections and neurons. Furthermore, the amount of information fed back via the 

recurrent connections is directly linked to the number of neurons in the model. 

Therefore as the size increases, computational efficiency will not increase linearly and 

will result in large models becoming unfeasible to train.

SARDNET (Sequential Activation Retention and Decay NETwork) (James and 

Miikkulainen, 1995) is a dynamic extension to the SOM that forms distributed 

representations of input sequences. The model operates by mapping each input to a 

best matching neuron, exactly as in the original SOM algorithm. However, once a 

neuron is designated the winner for a specific input in a sequence, it is precluded from 

being selected for any other inputs in that sequence (i.e. in the sequence ‘BBBB ’, each 

will be mapped to a different winning neuron). Additionally, once a neuron is 

selected as a winner it is assigned an activation value of 1. Upon the presentation of 

each subsequent input in the current sequence, all activation values are decayed by a 

predetermined value. This activation and decay mechanism forms a distributed 

representation of the input sequence on the surface of the map. Experiments on 

sequences of English phonemes (James and Miikkulainen, 1995) show that 

SARDNET produces highly descriptive and compact representations.

SARDNET operates in a very elegant and computationally simplistic manner to form 

distributed representations of input sequences. Furthermore, it has also been shown
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that these representations can subsequently be used by supervised neural networks to 

enhance their performance (Mayberry and Miikkulainen, 1999). However, as 

discussed in (Hadley and Cardei, 1999), SARDNET does not appear to exhibit strong 

systematicity (i.e. meaningfully interpreting words in novel positions). Therefore, 

SARDNET may fail to correctly classify sequences that, while syntactically correct, 

have a significantly different surface form than those in the training set. This would 

especially be apparent with sequences involving deep embeddings or recursion of any 

kind that resulted in sequences longer than those encountered during training.

A notable, but seldom used unsupervised model is ART (Adaptive Resonance 

Theory) (Grossberg, 1976). This model is a self-organizing pattern classifier that 

produces classification codes for input patterns. ART typically consists of two layers 

and a feedback mechanism. The first competitive layer of neurons operates like the 

SOM and maps an input pattern to a best matching neuron. The output from this layer 

is used to create an orthogonal vector, with one bit set to denote the winning neuron 

and all other bits cleared. This orthogonal vector forms the input to the second layer, 

which produces an activation value that represents ART’s classification of the input 

pattern. During learning, the activation value is fed back and combined (logical AND) 

with the original input pattern. Weight updates then occur in both layers until the 

output classification is considered similar enough to the input pattern.

While enhancements have been proposed that enable ART to process more complex 

types of patterns, in its standard form the model could be applied to similar 

classification tasks as the SOM. However, an important difference between ART and 

the SOM relates to the relative organization of internal representations. While the
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SOM forms a topological map by clustering similar inputs together, ART does not 

organize input patterns into any kind of relative structure. Consequently, ART would 

be unable to capture the type of emergence effects that occur in SOM based models 

such as context maps (Kohonen, 2001) (i.e. zones of the map representing verbs, 

nouns etc). Therefore, while ART could be employed as the base for modelling 

language acquisition, it should be considered only as a second choice to the SOM.

A small number of unsupervised connectionist models are able to solve dynamic 

problems by extending the principle of Hebbian learning into the temporal domain. 

Networks such as SOTPAR (Euliano and Principe, 1996) use a temporal Hebbian 

learning mechanism to correlate the activity between neurons that fire in sequence. 

While temporal Hebbian learning can be used to extend the SOM into a dynamic 

model, the mechanism may require full connectivity between neurons, therefore 

introducing further processing overheads.

2.2.3 Supervised connectionist learning algorithms

The dominant approach to training connectionist models of language acquisition 

involves supervised training algorithms. While the roots of this approach can be 

traced back to the work of McCulloch and Pitts (1943), the majority of models have 

only emerged following the key publication (Rumelhart et al. 1986). Rumelhart and 

Hinton’s error back-propagation learning algorithm showed how comiectionist models 

could be trained to solve non-linear problems. The fundamental idea behind 

supervised learning is that the error signal (i.e. the difference between the model’s 

response to an input and the desired response) is used to modify the weights in order
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to reduce the future error. Thus the model’s individual weights are effectively 

punished and rewarded until they reach the correct values to represent the problem.

The advantage of supervised learning is that a model can be trained using only a 

subset of inputs and desired output pairs for a particular problem. From this subset of 

training data, the learning algorithm may be able to construct an approximate solution 

to the problem and subsequently generalize to unseen inputs. Furthermore, unlike 

their unsupervised counterparts, most supervised connectionist models use distributed 

representations. By using multiple weights to represent each input pattern, a 

distributed model does not rely on any single weight to hold a specific piece of 

information. Consequently models using distributed representations are efficient and 

fault tolerant. They also exhibit graceful degradation when connections are damaged 

or removed. Supervised connectionist models that use distributed representations are 

commonly referred to as Parallel Distributed Processing (PDP) models.

2.2.3.1 Supervised connectionist models of language acquisition

Since the connectionist renaissance starting in the late 1980s, the majority of the NLP 

models published in the literature have been applied to language acquisition. The first 

notable such model was published by Rumelhart and McClelland (1986) and involved 

the acquisition of the markings of the English past tense. Accounting for the process 

by which children learn the English past tense is a common battleground for 

competing linguistic theories. The Rumelhart and McClelland (1986) model maps a 

representation of the present tense of an English verb onto the equivalent 

representation of that verb’s past tense using a multi-layer perceptron (MLP). Its 

authors claim this model is capable of mimicking the U-shaped learning curve
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characteristic of child language learners (fig 2.5), but without the need for explicit 

rules. However, the model has been heavily criticized in a number of areas (Fodor and 

Pylyshyn, 1988; Pinker and Prince, 1988), including its input representation, its 

erroneous predictions of novel morphological derivations and its artificial training 

regime. A number of subsequent researchers (Plunkett and Marchman, 1996; Jackson 

et al 1996) have attempted to overcome the limitations of the original Rumelhart and 

McClelland (1986) model by, for example, employing more realistic training regimes.

a>oc
CD

Ek.

a>
CL

Time

Figure 2.5 -  U-shaped learning curve o f child per formance

One of the most influential publications in the field of connectionist language 

acquisition since the initial Rumelhart back-propagation algorithm was that of 

Elman’s SRN (Elman, 1990). The Simple Recurrent Network (SRN) is a dynamic 

extension of the MLP which uses recurrent connections to feedback the hidden layer 

activations at the next time step. In a similar manner to their unsupervised 

counterparts (section 2.2.2.2), this recurrency mechanism allows the SRN to process 

sequences of inputs. In (Elman, 1990) the SRN was applied to the acquisition of 

syntactic structure. These experiments involved training the model to predict the next 

word in a sentence that was randomly generated from a simple grammar. While the 

model was never able to reliably predict the exact next input, due to the non-

35



deterministic nature of the task, its attempts to do so allowed it to induce a 

representation of the underlying structure of the grammar. Thus after training the 

model would be able to predict the category of the next word in a sentence (i.e. plural - 

noun or singular-verb). The SRN has subsequently been used in further grammar 

induction problems (Cleeremans et al, 1989; Sharkey et al, (2000) which have further 

investigated its ability to learn the structure of simple grammars. However, the degree 

of grammatical knowledge learnt by the SRN is highly controversial. Mainstream 

linguists such as Jackendoff (2002) and Marcus (2000) argue that the model has only 

learnt surface regularities and is incapable of learning a meaningful representation of 

a grammar.

An important area of language acquisition involves the initial process of learning 

individual words. The complexity of this process of segmenting continuous speech 

into individual words can be perceived by listening to a native speaker of a foreign 

language. Unlike a person’s native language, sentences of speech in a foreign 

language are initially perceived as a continuous stream, rather than a collection of 

discrete words. However, children learn to solve this segmentation problem and have 

been shown to acquire specific phonetic characteristics of their native language by the 

time they are six months old (Davis, 2003).

The problem of speech segmentation has been modelled using a number of 

connectionist simulations. Aslin et al (1996) presented a supervised connectionist 

model that used phoneme trigrams to identify the boundaries between utterances in a 

corpus of child-directed speech. Elman (1990) applied the SRN to a segment 

prediction task in which a continuous stream of phonemes, corresponding to words in
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an artificial grammar, was presented to the model. Variations in the SRN’s prediction 

error suggested that the model had learnt the combinations of phonemes that 

constituted words and could thus identify word boundaries via its inability to 

accurately predict the phoneme following a word. However, larger scale experiments 

(Cairns et al, 1997) have called into question Elman’s predictive phonetic word 

segmentation approach by showing that only 21% of actual word boundaries can be 

predicted.

A problem closely associated with speech segmentation is that of vocabulary 

acquisition. Once children are able to recognise the boundaries separating words, how 

do they learn to pair these words with their associated meaning? Vocabulary 

acquisition involves the process of mapping sequences of speech phonemes onto an 

associated lexical or semantic representation (Davis, 2003). Initial comiectionist 

models of vocabulary acquisition performed one-to-one mappings between specific 

words in the input stream and an associated target representation (Plunkett et al,

1992). However, such an approach assumes that there is sufficient information in the 

child’s learning environment to perform a one-to-one mapping between specific 

words and their meaning. In order to make the task more realistic, subsequent 

connectionist experiments performed mappings between entire sequences and 

associated meanings (Davis, 2003).

An important model with regal'd to both connectionist representational schemes and 

natural language is Pollack’s RAAM (Recursive Auto-Associative Memory) (Pollack, 

1990). This model uses a recursive auto-associative memory that allows the encoding 

and recall of variable sized sequences or tree structures. This model answers many of
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the critics of connectionism (Minsky and Pappert, 1969; Fodor and Pylyshyn, 1988) 

who argued that the input representations used in connectionist models were 

insufficient to model cognitive structure. RAAM has been applied to language 

acquisition in a number of experiments. In the original paper (Pollack, 1990), the 

RAAM model was applied to learning propositional sentences. It was shown that 

RAAM produced internal representations that allowed the model to recognise and 

process novel sentences. Many other researchers have subsequently used RAAM to 

model aspects of the syntactic structure of natural language (Chalmers, 1990; Blank et 

al, (1991).

2.3 Limitations of connectionism

Connectionist models have been applied to a variety of aspects of language 

acquisition, from inflectional morphology (Rumelhart and McClelland, 1986), to 

grammar induction (Elman, 1990). However, many traditional linguists have 

criticized the results of these experiments and questioned the applicability of 

connectionism to language acquisition (Fodor and Pylyshyn, 1988; Jackendoff,

2002).These arguments have centered on issues of biological plausibility, adaptive 

generalization, scalability and psychological similarity to human learners.

2.3.1 Arguments against biological plausibility

The most common arguments against connectionism involve the perceived decreasing 

relation between artificial neural networks and their biological counterparts. These 

arguments stipulate the field’s loss of focus from its founding tenet of biological 

plausibility. Connectionist models such as the MLP (Rumelhart et al, 1986) aren’t
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realistic models of the structure, the individual neurons or even the learning process 

that occurs in biological neural networks (Sejnowski, 1986).

While aimed at connectionism in general, these arguments are, in most cases, specific 

to the commonly used back-propagation learning algorithm and PDP models. While 

the biologically plausibility of back-propagation has polarized the connectionist 

community itself, the algorithm is without a doubt the single most important 

advancement in connectionist modeling. When Rumelhart et al (1986) introduced 

back-propagation it provided a solution to non-linearity, a problem that had relegated 

early connectionist models to obscurity (Minsky and Papert, 1969). This allowed 

multi-layer models to be created to learn linearly-inseparable problems, from the 

XOR logic function to the acquisition of the English past tense.

The argument against back-propagation involves the error return signal which must 

flow backwards through the network to every non-output layer neuron. This means 

that the algorithm uses non-local information to update the weights for each neuron, 

an operation that is at odds with neuro-biological research (Hebb, 1949; Kohonen, 

2001). Further arguments involve the sensitivity of multi-layer back-propagation 

networks to the number of hidden layer neurons, which must be known a-prior in 

order to generalize properly (McLeod et al, 1998). While most connectionists accept 

these arguments, they defend the use of back-propagation by claiming that it encodes 

representations in the weights in a similar distributed manner to that of biological 

neural networks. Thus, the algorithm may not operate like its biological counterpart, 

but it does produce models that have a claim to biologically plausibility.

3 See p. 116-117 in (McLeod et al, 1998) for a more detailed explanation o f the plausibility issue.
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2.3.2 Arguments against connectionism for developmental cognitive modelling

One of the most fundamental and understated problems for connectionist models of 

cognition is that of variables. Conventional feed-forward connectionist models 

represent activity as a spread of activations values through the network. Such models 

are incapable of encoding the type of variables that could represent relationships such 

as X equals Y (Marcus, 1998). Typed variables that allow the abstract treatment of 

classes of a particular word or linguistic rule are fundamental to the combinatorial 

nature of language (Jackendoff, 2002). Without the power to manipulate an abstract 

representation of everything o f type X, relation problems such as learning ‘which X 

rhymes with which Y’ are unsolvable.

Due to the relative lack of research into unsupervised connectionism, it is unclear 

whether such models are capable of either learning or representing variables. 

However, most unsupervised models use localist architectures and therefore possess 

discrete internal states that could be used for the representation of variables. 

Consequently, assuming that a suitable learning algorithm was employed, such 

models may be capable of solving problems that require the use of variables.

Another understated problem regarding models trained using gradient-descent 

learning algorithms is their sensitivity to initial starting states. Experiments by Kolen 

and Poliak (1990) found that the effect of random initial starting weights had a 

dramatic effect on the model’s ability to converge on a solution. Further experiments 

on SRNs by Sharkey el al (2000) also found that the models were extremely sensitive 

to their initial starting weights and that only one in every forty-five models was
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actually able to solve the given problem at all. This poses a problem for a 

comiectionist account of language acquisition because, with few exceptions, all 

children are able to learn their native language.

A central argument against connectionist models relates to their adaptive 

generalization abilities. As explained by Sharkey et al (2000), if connectionist models 

are to be used to model human cognition they must exhibit similar developmental 

properties to those observed in humans. Grammatical-transfer experiments (Sharkey 

et al, 2000) show that the SRN is unable to exploit previous grammatical knowledge. 

These experiments show that when a model trained on a specific grammar is exposed 

to new lexical items, training times are adversely affected. Such findings are at odds 

with human performance, for which intuition suggests that language acquisition 

should get easier as development progresses.

The ability to perform grammatical-transfer is inter-related to another undesirable 

behavior that occurs in gradient-descent based connectionist models. The inability to 

retain knowledge across training sets, known as catastrophic forgetting (French,

1999), entails that learnt-knowledge must be continually refreshed by cycling through 

the entire data set. Such behavior is psychologically implausible because children are 

able to learn new knowledge without necessarily overwriting existing knowledge 

(Sharkey et al, 2000).

Another important argument leveled against connectionist models of cognition 

concerns their ability to learn and generalize from sparse data. Fodor and Pylyshyn’s 

original criticism (1988) concerning comiectionist generalization are formalized by
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Hadley’s definition of strong systematicity (Hadley, 1994). The premise of this 

argument is that children are capable of learning language without encountering 

words in all of their syntactically legal positions. Hadley argues that connectionist 

models, such as the SRN and RAAM, use positionally intensive training regimes in 

which words are encountered in all syntactically legal positions (Hadley and Cardei, 

1999). Therefore it is argued that such models are not cognitively realistic because 

they don’t learn from the type of sparse data that children use to acquire language.

While there are a number of serious limitations concerning supervised comiectionist 

models of language acquisition, there are also a number of fundamental limitations 

constraining unsupervised approaches. The primary limitation of unsupervised 

connectionism is the lack of effective models and training algorithms, especially those 

capable of tackling the type of dynamic sequences found in language. The majority of 

unsupervised connectionist models that are applicable to language acquisition are 

highly computationally intensive, in certain cases requiring supercomputer resources 

(Voegtlin and Dominey, 2002). In most cases this complexity is a result of localist 

architectures which impose prohibitive memory and processing constraints on large 

scale models.

2.3.3 Learning deterministic representations using a continuous state-space

Since the early nineties connectionist models, specifically the SRN, have been applied 

to the problem of grammar induction. These experiments, which have involved simple 

regular and context-free grammars, have met with some success (Elman, 1990; 

Cleermans et al, 1989), suggesting that supervised connectionist models can learn to 

emulate finite-state automata. However, detailed analysis of models trained on these
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tasks show a number of fundamental problems that derive from using a model with a 

continuous state-space to approximate a discrete problem.

While supervised connectionist models are capable of learning simple formal 

languages, they are renowned for their instability when processing long sequences 

that were not part of their training set (Kolen, 1994; Omlin, 2001). A model such as 

the SRN is capable of partitioning its state space into regions that are believed to 

approximate the states in a grammar. However, sensitivity to initial conditions means 

that each transition between regions of state space will result in a slightly different 

trajectory (Kolen, 1994). This causes instability when transversing state trajectories 

that were not seen during training. Such instabilities arise due to slight discrepancies 

in the trajectories that are compounded with each transition until they exceed the 

locus of the original attractor, resulting in a transition to an erroneous region of state 

space.

Such behavior is characteristic of supervised dynamic connectionist models and can 

be seen as both a power and a weakness of this class of models. While this 

representational power enables the model to surpass deterministic finite automata and 

emulate non-deterministic systems, it proves to be a significant disadvantage when 

attempting to emulate the deterministic behavior fundamental to deterministic finite 

automata (DFA). Attempts have been made to produce discrete state-space models by 

using a step-function for the hidden layer neurons (Zeng et al, 1993). However, while 

this technique eliminates the instability problem, the use of a lion-differentiable 

function means that the weight-update algorithm’s sigmoid function can only 

approximate the error signal. This weakens the power of the learning algorithm,
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increasing training times and in some cases causing the model to learn an incorrect 

representation of the DFA (Omlin, 2001).

Other notable techniques for overcoming instability in continuous state-space models 

include the Simple Synchrony Network (SSN) (Lane and Henderson, 1998), which 

utilizes Temporal Synchrony Variable Binding (TSVB) to encode entities using 

pulsing binary-threshold neurons. This technique is able to enhance the power of 

continuous state-space models by providing static building blocks within the ever 

changing sea of internal representations. Given the level of research that has gone into 

connectionist variable binding (Browne and Sun, 2000) and stability issues (Omlin, 

2001), a potentially desirable characteristic of unsupervised connectionist models is 

that their localist architectures provide the potential for a discrete state-space.

2.4 Discussion and conclusions

Language is a complex and powerful system that describes and perhaps even shapes 

every aspect of human perception (Sapir, 1929; Gordon, 2004). However, the process 

of language acquisition itself is a paradox. While children appear to engage in a 

process of learning their native tongue, the linguistic input they are exposed to 

appears too sparse to permit acquisition of a grammar (Chomsky, 1965). Traditional 

theories of linguistics have therefore assumed a certain level of innate knowledge that 

constrains language acquisition and equips children with a prior knowledge of 

grammatical structure. However, despite the apparent intractability of the problem, 

the allure of an automated language acquisition system has fuelled research for half a 

century.
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Recent advances in connectionism have challenged the views of traditional linguists 

by proving that linguistic input has a far richer structure than was previously believed. 

The popular connectionist supervised learning paradigm has produced small scale 

models addressing all areas of language acquisition, from lexical segmentation (Aslin 

et al, 1996) to grammar acquisition (Cleeremans, 1989; Elman, 1990). However, a 

number of potentially fundamental problems have been identified with these models. 

The inability to represent variables prevents these models from representing abstract 

relationships, such as those found throughout language (Marcus, 1998). Furthermore, 

their stability, scalability and biological plausibility have been used to question the 

applicability of connectionism as a tool for modelling language acquisition (Sharkey 

et al, 2000).

While research has focused on the popular paradigm of supervised connectionist 

learning, much less attention has been given to unsupervised models of language 

acquisition. Unsupervised learning involves simple, local operations that are directly 

inspired by neuro-biological evidence from the human brain and nervous system 

(Hebb, 1949; Kohonen, 2001). Unsupervised models, such as the SOM emulate the 

operation of topological maps shown to exist in multiple areas of the cortex 

(Kohonen, 2001). However, despite their biological plausibility and data-orientated 

modelling approach, relatively few unsupervised connectionist models of language 

acquisition have been proposed. The few notable models which have been developed 

(MacWhinney, 2002b) suggest that unsupervised learning may provide the stability 

by which connectionist language acquisition can scale up to larger problems. Such 

large scale models may potentially involve hybrid approaches that combine the
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stability and simplicity of unsupervised learning with the more general purpose 

capabilities of supervised learning algorithms.

One of the reasons for the limited application of unsupervised connectionist models in 

language acquisition may be related to the static nature of popular models such as the 

SOM. While the successful supervised connectionist models have dynamic 

capabilities, relatively few viable unsupervised dynamic models have been proposed. 

A chronological comparison shows that unsupervised dynamic models have so far 

followed similar developmental phases as their supervised counterparts. While early 

unsupervised dynamic models used buffers to map time onto space, later models 

represented time by the effect it had on processing. Given this relationship, an 

obvious area of future research into unsupervised modelling would involve recurrency 

mechanisms. So far only one significant unsupervised model uses recurrent 

connections (Voegtlin and Dominey, 2002) and that model is limited by the size- 

computational complexity issue.

In conclusion, analysis of unsupervised connectionist modelling has shown that their 

discrete state-spaces and simple mode of operation provide the potential for modelling 

the finite-state properties of language in a more robust and biologically-plausible 

manner than existing supervised models. The discrete state-space properties of localist 

architectures, such as the SOM, provide similar representational power to that of 

symbolic algorithms. This has already provided such unsupervised models with the 

stability to scale up to problems beyond the capability of their distributed counterparts 

(MacWhimiey, 2002b). Such properties may also potentially allow unsupervised

46



models to overcome the generalization instabilities that plague current supervised 

models (Kolen, 1994; Omlin, 2001).
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3 -  Simple Recurrent SOM (SRSOM)

3.1 -  Introduction

The literature study has revealed that language acquisition is a highly complex 

process which is interpreted by many traditional linguists as a paradox. Such nativist 

views have been rejected by empiricists, who have sought to explain language 

acquisition using the recent cognitive modelling technique known as connectionism. 

However, the use of these biologically inspired learning models has not proved to be 

the panacea that many researchers had hoped for. A number of serious limitations 

involving issues such as the representation of variables, adaptive generalization 

abilities and plausibility have constrained connectionist models from scaling up to 

large scale language acquisition (Marcus, 1998; Jackendoff, 2002). While these 

limitations are based upon the capabilities of supervised models, the alternative class 

of unsupervised connectionist learning algorithms may offer the means to create 

larger-scale, more biologically plausible models of language acquisition.

The review of notable unsupervised models in the literature study showed that a few 

models existed which incorporated the dynamic memory mechanisms required to 

process the type of temporal sequences found in language. However, analysis showed 

that all of these models possessed various deficiencies that rendered them 

inappropriate for modelling language acquisition. The main limitation of the more 

powerful models such as the Hypermap and the Recursive SOM is the relationship 

between their computational intensity and their size. As these models increase in size, 

the resources required for memory and processing increase non-linearly. 

Consequently, the direct use of these existing models was deemed inappropriate for
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an investigation into language acquisition. In order to determine whether 

unsupervised connectionist models could capture the finite-state properties of 

language, it was determined that a new model must be developed. This model must be 

capable of processing temporal sequences in an unsupervised manner, but with a 

computational efficiently that wasn’t prohibitive to large scale modelling of language 

acquisition.

3.2 -  Proposed new model

The SOM was chosen as the base model for this research because the majority of 

unsupervised dynamic connectionist models use it to extend their processing 

capabilities into the temporal domain. As described in section 2.2.2, the SOM uses a 

winner take all learning paradigm to map a distributed input vector onto a best 

matching neuron in a, usually rectangular, grid of neurons. However, the SOM is 

designed to process spatial data, such that the choice of winning neuron is not directly 

affected by any preceding data processed by the network. Therefore in order to allow 

the proposed model to process temporal data a recurrency mechanism must be 

employed. As with the Recursive SOM, this recurrency mechanism will allow the 

choice of winning neuron to be based not just on the current input, but also on some 

representation of past context.

In order to provide the model with a computationally minimized representation of 

context, the proposed recurrency mechanism feeds back a representation of the 

relative map location of the previous winning neuron (fig 3.1). Given that the winning 

neuron is a best matching representation of the input vector, the inclusion of the 

previous winner’s location in the selection algorithm allows the concept of best
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matching neuron to be applied recursively to an entire sequence. The winning neuron 

is therefore potentially a unique representation of the current input and the entire 

preceding sequence of inputs. The temporal depth and resolution of such a recurrent 

feedback mechanism is potentially infinite, being limited only by the size of the map. 

Furthermore, compared to other dynamic SOMs it is a very efficient method of 

representation because each winning neuron can be represented using two numbers. 

The new model presented here will be referred to as the SRSOM (Simple Recurrent 

SOM).

3.2.1 - Architecture and algorithm for the SRSOM

O f  0 0 0Input vector

Row
Context
vector

Column

Figure 3.1 -  Diagram o f SRSOM showing feedback o f the previous winning neuron's
column and row.

The recurrency mechanism for the SRSOM operates by feeding back two binary 

numbers which represent the column and row of the previous winning neuron. The 

size of the context vector is determined dynamically based on the number of neurons 

in the model (i.e. the context vector is large enough to represent the locations of all 

neurons in the map). This provided an optimal representation of context as it employs
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the minimum possible number of bits in order to uniquely represent every possible 

neuron. For example, for an SRSOM with 25 neurons, such as that shown in fig 3.1, 

the context vector would need to consist of six bits. This representation then provides 

a unique context representation for all 25 neurons in the model. The context vector is 

treated as an implicit part of the input vector, allowing the model’s learning 

algorithms (equ. 3.1-3.4) to remain identical to those of the standard spatial SOM. 

These algorithms consist of selection of the winning neuron (equ. 3.1), weight update 

(equ. 3.2), neighbourhood function (equ. 3.3) and a Pythagorus-derived distance 

calculation (equ. 3.4). This latter function is used as part of the neighbourhood 

function (equ. 3.3).

I , Equation 3 .1 -
* N - arg(miny ( / J ^  —Wtj |)) Winner selection

algorithm 

Equation 3.2 —
• W0 (t+1) = WtJ (t)+ahij (X (t)-W iy (()) Weight update

algorithm

- d 2 Equation 3 .3 -# / — (  \

J " exPt 2(J2 Neighbourhood function

d0 =sqrt{{Column, -C olum nj)2 +(Rowi - Rowy)2)

Equation 3.4 -  Algorithm to 
calculate the distance between 
two neurons

As explained in section 2.2.2, the winning neuron N is defined as the neuron whose 

weight vector W jj is the best match for the current input X j (equ. 3.1). Once the 

winning neuron has been selected its weights, along with those of neighbouring 

neurons, are updated Wij(t+1) (equ. 3.2) to make them a better match for the current
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input X(t). This weight update operation involves calculating the new weight vector 

Wy(t+1) using the original weight vector Wy(t), the learning rate a and the value of 

the neighbourhood function for the neuron in question. The learning rate a determines 

the level of weight change. It should initially be set to around 0.1 and decreased 

linearly each epoch throughout training (Kohonen, 2001).

The neighbourhood function (equ. 3.3) uses the Pythagorean distance between the 

neuron in question and the winning neuron in order to make the level of the weight 

update operation proportional to the distance from the winning neuron. The symbol o 

in equation 3.3 controls the width of the neighbourhood function and determines how 

many neurons are affected by the neighbourhood function, a should initially be set to 

half the size of the map and it should be decreased linearly every epoch throughout 

training (Kohonen, 2001) (i.e. in a 10 x 10 model o should initially be set to 5). In 

equation 3.4 the variables Column; and Row; denote the column and row of the 

winning neuron (ex. 2 and 1 respectively in fig 3.1), while Columnj and Rowj denote 

the column and row of the neuron that the neighbourhood function is being applied to,

3.2.2 -  Initial experiments to test recurrency mechanism

Once the new feedback mechanism had been implemented, a clustering analysis was 

performed using simple sequences consisting of four 4-bit elements (table 3.1). The 

first element of each of these five simple sequences is unique, while the following 

three elements are identical. The sequences were selected in order to explore the 

effect of varying context upon the choice of winning neuron (i.e. how will different 

initial winning neurons affect the choice of subsequent winning neurons?). This
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analysis involved training a 10 x 10 SRSOM over 1000 epochs using an initial 

learning rate of 0.1 and initial neighbourhood of 5.

The intended purpose of the SRSOM is to cluster similar input patterns together on 

the map. While the original SOM clustered spatially similar patterns together, it is 

intended that the SRSOM should organize itself based both on the input’s spatial and 

contextual representations. Therefore the expected outcome of this clustering analysis 

was that the second elements in sequences that had similar contexts, due to the 

proximity of the first winning neurons in the sequence, would be clustered near each 

other on the map.

Table 3.1 shows the results from the clustering analysis for the five simple sequences. 

These results show that the SRSOM has clustered the second elements from 

sequences one and two to the same neuron. The same occurs for the second elements 

from sequences three and five, which both share another neuron. In both these cases 

where the second elements clustered to the same neuron, the first elements from the 

respective sequences were located close to each other on the map.

These results were analysed by looking at the contextual representations for the first 

wimiing neurons in the sequences. The far right column of table 3.2 shows the binary 

contextual representations for the first winning neurons in the sequence. The most 

significant five bits (left) of these values consist of a binary number representing the 

neuron’s column, while the least significant five bits (right) represent the neuron’s 

row.
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Element 1 Element 2 Element 3 Element 4

(Winning (Winning (Winning (Winning
neuron) neuron) neuron) neuron)

Sequence 11X1 0010 0100 1000
1 (11) (90) (81) (40)
Sequence 0111 0010 0100 1000
2 (1) (90) (81) (40)
Sequence 0001 0010 0100 1000
3 (5) (98) (93) (20)
Sequence 0010 0010 0100 1000
4 (58) (78) (93) (20)
Sequence 0100 0010 0100 1000
5 (25) (98) (93) (20)

Table 3.1 -  The elements and corresponding winning neurons for five sequences 
which were clustered using the SRSOM operating using a binary context 
representation.

The representations for neurons 11 and 1 (sequences 1 and 2 in table 3.1) both have 

the same bit set in the latter five bits of their representation. This is because both 

neurons 11 and 1 share the same row and therefore have the rightmost bit set to 

indicate row one. This is also the case for neurons 5 and 25 (sequences 3 and 5 

respectively) which share the same latter five bit representation. This sharing of 

neurons suggests that the SRSOM is able to exploit the context representation and 

cluster inputs based on similarity in context, as well similarity in form. This is exactly 

what the SRSOM was intended to do because such contextual clustering may allow it 

to discover the structural information underlying language.
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Element

1

Winning
neuron

2D binary 
representation of 
winning neuron

Sequence 1 1111 11 00010 00001

Sequence 2 0111 1 00001 00001

Sequence 3 0001 5 00001 00101

Sequence 4 0010 58 00110 01000

Sequence 5 0100 25 00011 00101

Table 3.2 -  Representation o f the winning neurons for the 1st elements o f  each 
sequence. Shown using a binary context vector representation.

3.2.3 Enhanced Graycode context representation

Following further analysis of the results from the initial clustering experiment, a 

potential theoretical design flaw was discovered. As previously discussed in section 

3.2.2, the recurrency mechanism used two binary numbers to represent the column 

and row of the previous winning neuron. This representation was intended to ensure 

that changes in the Hamming distance (the number of bits that are different) between 

any two neurons’ coordinate representations was proportional to the linear distance 

between those two neurons on the map. However, it was found that due to the binary 

representation used in the context vector, the Hamming distance between two 

neurons’ context representations didn’t increase smoothly as the distance between 

those two neurons increased. Instead the Hamming distance for certain relatively 

distant neurons (e.g. 1 and 7) is lower than for neighbouring neurons (table 3.3).
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Neuron number Binary context vector representation Hamming distance

7 00001 00111

21 00001 00001

7 00001 00111

48 00001 01000

Table 3.3 -  Hamming distance for two sets o f neurons. Due to the binary 
representation scheme the hamming distance is greater for adjacent neurons 7 and 8 
than for neurons 1 and 7, which are located physically further apart on the map.

Such a representational weakness could seriously affect the models’ ability to cluster 

temporal patterns. The binary representation used in the coordinate feedback system 

was therefore changed to a Gray code (Gray, 1953) representation. Unlike the binary 

number system, the Hamming distance between any two consecutive Graycode 

numbers is equal to one. Thus by using a Graycode representation for both coordinate 

vectors, the Hamming distance between any two neuron’s 2D coordinate 

representations will be more representative of the physical distance between those two 

neurons on the map.

The revised Graycode context representation was tested using an identical clustering 

experiment as that employed in the previous section. As shown in table 3.4, these 

results show that as with the previous experiment, inputs with similar contexts are 

being clustered together to similar locations on the map, exactly as expected. 

However, the results in table 3.4 also show that the third elements in sequences one 

and two are also being clustered to similar neurons. This shows that the revised 

Graycode context representation has allowed the model to identify similarities 

between neurons of close physical proximity.
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Element 1 Element 2 Element 3 Element 4

(Winning (Winning (Winning (Winning
Neuron) Neuron) neuron) neuron)

Sequence 1111 0010 0100 1000
1 (92) (21) (17) (93)
Sequence 0111 0010 0100 1000
2 (91) (12) (18) (94)
Sequence 0001 0010 0100 1000
3 (40) (44) (10) (72)
Sequence 0010 0010 0100 1000
4 (97) (57) (15) (78)
Sequence 0100 0010 0100 1000
5 (50) (41) (28) (85)

Table 3 .4 -  Elements and corresponding winning neurons for five sequences clustered 
using the SRSOM operating with a 2D Graycode context representation.

As can be seen from table 3.5 the binary representations for the second winning 

neuron (i.e. the context for those third elements) are very different, despite the fact 

that the neurons are adjacent. The difference between the representations for these 

neurons further highlights the weakness in the binary representation scheme.

However, as can also be seen from table 3.5 the corresponding Graycode 

representation solves this problem because Graycode values differ in only two bits.

Neuron Binary representation Graycode representation

21 00111 00001 0010 0001

12 00000 00010 0000 0011

Table 3.5 -  Binary and Graycode representations for two winning neurons.

These results show that the Graycode context representation provides an improvement 

over the equivalent binary representation scheme. The use of Graycode improves the
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network’s ability to cluster inputs whose contexts would be misrepresented using a 

binary scheme.

3.3 -  Experimental analysis of SRSOM on simple grammars

3.3.1 -  Connectionist grammar induction

In light of the success of the initial clustering analysis it was decided that the SRSOM 

should be applied to a real linguistic problem. Grammar induction is the machine 

learning problem of modelling an unknown grammar using a finite set of positive 

(and possibly also negative) examples generated by the grammar. In computational 

linguistics, the usual measure of a model’s ability to learn a grammar is via its 

competence at predicting the next possible symbols following each input in a sentence 

(Cleeremans et al, 1989; Elman, 1990). In order to compare the SRSOM model 

against the SRN (a popular supervised model), it was decided that the SRSOM should 

be given the task of predicting the next possible symbols in the grammar. Such a 

prediction task has been used in multiple grammar induction investigations involving 

supervised comiectionist models (Cleeremans et al, 1989; Elman, 1990).

The grammar chosen for this experiment was the Reber grammar. This simple regular 

grammar was originally devised to investigate implicit rule learning in human 

subjects. It has since been used by various researchers (Cleeremans et al, 1989; 

Sharkey et al 2000) for investigating connectionist grammar induction using the SRN. 

The Reber grammar is a member of a class known as regular grammars. As discussed 

in detail in section 2.1.1, regular grammars occupy the lowest level of the Chomsky 

hierarchy. They are characterized by their simple production rules in which the left 

hand side consists of a single non-terminal while the right hand side of the production
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rule can have no more than one terminal symbol. While regular grammars are a gross 

simplification of natural language, they do contain important linguistic characteristics, 

such as the use of generative production rules and recursion. Therefore, due to their 

simplicity regular grammars are a good test bed for the development of linguistic 

models.

The advantage of applying the SRSOM to the same Reber grammar problem, as used 

to evaluate the SRN (Cleeremans et al, 1989), is that a direct comparison can be made 

between the performance of the two models. If it can be shown that the SRSOM is 

able to learn the Reber grammar to a comparable extent as the SRN, then this will 

show that unsupervised connectionist models of language acquisition perform on a 

comparable level to their supervised counterparts.

B

I
E

Fig 3.2 -  Finite-state machine for the Reber grammar
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Fig 3.2 shows the finite-state machine (FSM) for the Reber grammar. The numbered 

circles show states in the grammar, while the arrows and respective letters represent 

the state transitions. Sentences are generated by starting from state 1 and moving from 

one state to another until state 6 is reached. Table 3.6 shows example sentences 

generated by this grammar. States two and three have recursive loops which allow the 

FSM to move back into the same state. This theoretically allows the generation of an 

infinite number of unique sentences. In the experiments performed here, the 

maximum number of times the FSM could go around a recursive loop was limited by 

the recursive depth parameter. The purpose of this parameter was to limit the 

sequences generated by the FSM so that the training sequences would not be of a far 

greater recursive depth than the test sequences.

B->T->S->S->X~>S->E

B->P->V->P->X->T->T-> V -> V->E

B->T->S->S->S->X->X->T->T->V ->P->X->T->V ->P->S->E

Table 3.6 ~ Example sequences generated by the Reber grammar.

3.3.2 -  An SRSOM grammar inductor

In order to induce the Reber grammar, the SRSOM must be able to both process input 

symbols in a sequence and also test its induced knowledge. The first requirement was 

met by adopting an orthogonal input vector representation. This common 

representation scheme is used throughout comiectionist linguistics (Elman, 1990) and 

involves representing each symbol in the grammar by setting the appropriate bit in the 

vector to one and setting all the other bits to zero (table 3.7). The advantage of using
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orthogonal input vectors is that they prevent the model from discovering any 

potentially misleading form-based similarities between input symbols (e.g. widow and 

window are similar looking words, but have unrelated meanings). Orthogonal input 

representations are also quite biologically plausible. It has been shown that 

competitive learning, which is believed to operate throughout the brain and nervous 

system, can produce output patterns that are less correlated than the corresponding 

input patterns. This is achieved by mapping similar input patterns to multiple output 

neurons (McLeod et al, 1998).

Grammatical symbol Orthogonal input vector representation

B 0 0 0 0 0 0  1

T 0 0 0 0 0  10

P 0 0 0 0  1 0 0

S 0 0 0  1 0 0 0

X 00  1 0 0 0 0

V 0 1 0 0 0 0 0

E 1 0 0 0 0 0 0

Table 3.7 - Orthogonal input vector representation for SRSOM.

A common approach to testing the performance of models in connectionist grammar 

induction involves predicting the next valid symbols in the grammar (Cleeremans et 

al, 1989; Elman, 1990). During the operation of processing symbols in a sequence, 

the SRSOM uses the location of the previous winning neuron as context. Therefore, it 

is possible to predict the next winning neuron in a sequence by finding the best 

matching neuron whose context vector (NOT symbol vector) matches the location of

61



the current winning neuron. Fig 3.3 shows a simple example of this prediction 

operation.

By using the proposed prediction algorithm, the second winning neuron can be 

predicted by taking the first winning neuron’s location (column 1, row 10) and finding 

the neuron whose context vector best matches this value (i.e. has the lowest Euclidean 

distance). In fig 3.3, the neuron in column 10, row 2 (the 2nd winning neuron) has the 

context vector that best matches the location of the first winning neuron. Therefore, 

the symbol vector for the neuron at column 10, row 2 would become the predicted 

next symbol (i.e. { 0, 0, 0, 0, 0, 1, 0} ).

{ 0, 0, 0, 0, 0, 0, 1 } { 0, 0, 0, 0, 0, 0, 0, 0 } 
1st winning neuron at cnhmmT, row jo

 f'FIFiL •£_

jff-wsaiBHSPrfc. i—-^ y 4* j y  “— 3^  -  - TV 1 * -  - —̂ .7

( 0, 0, 0, 0, 0, 1, 0 } ( 0, 0, 0, 1, 1, 1, 1, 1 } 
2nd winning neuron at column 10, row 2

Fig 3.3 - Example showing operation o f the prediction algorithm. The neuron at 
column 10, row 2 can be predicted as the next winner because its context vector 
contains the location (shown via the dotted line) o f the 1st winning neuron 1,10. 
Therefore, the symbol vector for neuron at column 10, row 2 becomes the predicted 
next symbol (i.e. { 0, 0, 0, 0, 0, 1, 0} ).

This method of prediction is repeated to find the neuron with the second best 

matching context vector in the map. However, in order for this second best matching 

neuron to be selected as the second predicted next symbol, it must represent a 

different symbol than the first predicted next winner. For example, following an initial 

‘B’ input, if the model’s first prediction is a ‘T’ symbol (as in fig 3.3) then its second
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prediction must be a 4P’ symbol in order for the prediction to be considered correct. 

Therefore, by repeating the prediction process and applying the simple criterion of 

requiring non-duplicate symbols, the SRSOM is able to generate two predicted next 

symbols. These predicted symbols can then be tested against the next valid symbols in 

the grammar to assess the model’s performance.

In order to quantify the SRSOM’s ability, the accuracy of the model is expressed as a 

percentage of the number of predictions it got right out of the total number of 

predictions made. As with the SRN experiments (Cleeremans et a/, 1989), the 

SRSOM is tested on a number of sequences that are generated on the fly. For each 

sentence a symbol is presented and the SRSOM must then predict the next possible 

symbol in the sequence. At each step the model makes two predictions about what the 

next symbol will be. The reason for choosing two predictions is that at every state in 

the grammar there are at least two possible next valid symbols. If both of these 

predictions are valid next symbols in the grammar, then the prediction is considered 

correct. However, if either of the predictions is not a valid next symbol in the 

grammar, then the prediction is considered incorrect.

3.3.3 Experiments on the Reber grammar

This section of the report will present results from a series of experiments conducted 

on the SRSOM operating with the new Graycode context vector. The performance of 

the model was assessed based on its accuracy at learning the Reber grammar, as 

discussed in the previous section. The purpose of these experiments was two-fold. 

First, the experiments would show to what degree the SRSOM was able to learn the 

grammar and what level of embedding (number of sequential recursive symbols) it
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was capable of processing. Additionally, the experiments would investigate what 

resources (i.e. model size, number of epochs etc) were required and whether 

increasing these resources would significantly affect performance.

3.3.3.1 Generation of training and test sets

In the grammar induction experiments performed by Cleeremans et al (1989), the 

SRN was trained on sequences randomly generated on the fly. However, there is a 

widely held consensus among connectionist researchers that training and test data 

should be selected in a more scientifically rigorous manner than just on the fly  

generation (Hopgood, 2001). Such researchers advocate the use of strictly separate 

training and test sets to ensure a model is tested on data it hasn’t encountered during 

training. By using previously unseen data for testing, the model’s performance is a 

more accurate measure of its ability to generalize. Furthermore, by creating separate 

fixed training and test sets in advance, detailed analysis of the training process 

becomes possible (i.e. does the use of short sequences improve performance?). 

Consequently, it was decided that the SRSOM should be assessed using randomly 

generated separate training and test sets.

While separate training and test sets are more rigorous than an on-the-fly approach, 

they do compound what is known as the sparse data problem (Chomsky, 1965). This 

may occur in an infinite grammar when certain base sequences (i.e. the simplest 

possible sequences for a specific grammatical pathway) are put in the test set, thereby 

excluding them from the training set. For example, in the Reber grammar (appendix 

A), an example of a base sequence would be BTXSE. If this sequence was excluded
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from the training set, it would not only prevent the model from being able predict that 

sequence itself, but may also prevent it from predicting more complex sequences that 

contain the base sequence in question.

The consequences of the sparse data problem may be that the model’s performance is 

unfairly degraded simply because it isn’t seeing a true representation of the grammar. 

Therefore, in order to counter the effects of this problem the training set should 

contain all the base sequences from the grammar, as well as the randomly generated 

sequences. This approach ensured that the model’s performance could be accurately 

gauged during development, without experimental bias introduced by sparse data.

Training set Test set

Recursive depth o f 1

Recursive depth o f 2

Recursive depth o f 3

Recursive depth o f  i

Recursive depth o f  2

Recursive depth o f  3

Fig 3.4 -  Training and test sets artificially segregated to proportionally represent all 
levels up to a specific recursive depth.

In order to further enhance the scientific rigor of the experiment it was decided that 

the training and test sets should be segregated in accordance with the recursive depth 

of the sequences (fig 3.4). Recursive depth is a term used to denote the number of 

sequentially repeating symbols generated by a recursive state in the grammar 

(discussed in section 3.3.1). Segregation based on recursive depth would involve 

ensuring that the training and test sets contained equal numbers of sequences for each 

level of recursive depth up to the maximum depth denoted for that experiment. This
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would allow tighter experimental control over the training data and would allow the 

effect of recursive depth could be independently investigated.

3.3.3.2 Experimental parameters

The experiments were conducted using SRSOMs of sizes 20 x 20, 10 x 10 and 5x 5 .  

It was intended that models within this range of sizes would be large enough to learn 

the problem, but not so large that they could memorize the grammar. In order to 

prevent the initial start weights from influencing the results, the same randomly 

generated weight sets were used for models of each respective size. The models were 

trained over 1000 epochs using a linearly decreasing learning rate starting from 0.1. 

However, training was immediately terminated for any model that reached 100% 

accuracy on the test set. During the training process the model’s performance was 

measured every 10 epochs. In order to gain a measure of average performance each 

experiment was repeated ten times and the average model accuracy was calculated. 

The kernel width parameter or, used in the neighbourhood function, was initially set to 

half the width of the map (i.e. for a 10 x 10 model a  would be 5). These training 

parameters were selected using both the recommendation of Kohonen (2001) and the 

results from previous experiments.

As detailed in section 3.3.3.1, these experiments employed separate randomly 

generated training and test sets that were segregated according to recursive depth. The 

models were trained on sequences with a maximum recursive depth of six, but were 

also tested on set of sequences with a maximum recursive depth of eight and twelve 

respectively. Testing the SRSOM on sequences with up to twice the recursive depth
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encountered during training provided an insight into the models level of 

generalization.

A side effect of using recursive depth segregation was that it was statistically very 

hard to generate large training sets. The reason for this is that for lower recursive 

depths there are less possible sequences for each specific grammatical pathway than 

for higher recursive depths. Therefore, while the grammar is technically infinite even 

at a recursive depth of zero (i.e. even without recursive states it still contains the XVP 

loop), it becomes increasingly difficult to randomly generate unique sequences. 

Consequently the following experiments used training sets varying from 38 to 47 

sequences and corresponding test sets from 10 to 14 sequences (sizes were dependant 

upon recursive depth). These smaller sets provided the model with an optionally 

proportional representation of the grammar, while ensuring that no base sequences 

were excluded from the training set.

3.3.3.3 Experimental results

si - *Prediction 
accuracy %

3 6 *!9 * ,12

Level of embedding

Fig 3.5 -  Results from 4 test sets for a 5 x5 SRSOM trained on the Reber grammar. 
The levels o f embedding shown with a * denote recursive depths beyond those

encountered during training.
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Prediction 
accuracy % ^

3 6 *9 *12

Level of embedding

Fig 3.6 -  Results from 4 test sets for a 10 x10 SRSOM trained on the Reber 
grammar. The levels o f embedding shown with a * denote recursive depths beyond

those encountered during training.

Prediction 
accuracy %

6 *9 *12

Level of embedding

Fig 3.7 -  Results from 4 test sets for a 20 x20 SRSOM trained on the Reber 
grammar. The levels o f embedding shown with a * denote recursive depths beyond

those encountered during training.

3.3.3.4 Analysis of experimental results

The results in figs. 3.5 - 3.7 show that the SRSOM is able to achieve up to 70% 

accuracy at predicting the Reber grammar. The 20 x 20 model appears to have learnt 

the best representation of the grammar, with prediction accuracy marginally above 

that of the 10 x 10 model. However, performance for the 5 x 5 model barely exceeded 

40%, suggesting that 25 neurons are insufficient for this task.
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Surprisingly, these results don’t appear to show the expected inverse correlation 

between performance and the recursive depth of the grammar. It was expected that 

performance would decrease when the SRSOM was tested on sequences with a 

recursive depth greater than those encountered during training. Sequences containing 

a higher recursive depth should only be predictable if the model had successfully 

learnt the rules governing the recursive states in the grammar. Therefore the model’s 

apparent increase in prediction accuracy for higher recursive depths suggests that it 

may have successfully learnt the rules for recursive states (despite apparently not 

being able to properly learn the other grammatical rules).

The SRSOMs best prediction accuracy of 70% is comparatively less than the SRN 

which achieved 100% performance on a similar task (Cleeremans, 1989). However, 

rigorous analysis proved that only two out of 90 SRNs became perfect grammar 

recognizers (Sharkey et al, 2000) in a similar experiment. Furthermore, experiments 

also show that the SRN, as with other dynamic recurrent models, is unable to 

generalize to sequences with a recursive depth significantly higher than encomitered 

in the training set. Thus while the results in figs 3.5 - 3.7 suggest that the SRSOM is 

unable to properly learn the Reber grammar, the lack of an inverse correlation 

between performance and recursive depth suggest that the model may capable of 

learning recursive states.

In order to further analyse the SRSOMs performance, a state analysis was conducted 

to determine how the activations of winning neurons corresponded to the states in the 

grammar. Fig 3.8 shows the state diagram for a 10 x 10 model trained on the Reber 

grammar using a randomly generated training set with a maximum recursive depth of
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six. The model was trained on 39 randomly generated sequences that were segregated 

according to recursive depth and included all base sequences. All training parameters 

were identical to previous experiments.

io®o#too#
|OOtOO O #0 o
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0 @0 « 0 0 3 0 ^ 0

3  o r  o oco oor#oo%o§o
I O  I t
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00

0 0 0 1 0  o o to
00

State 1 

( ^ )  State 2

State 3 

State 4

State 5 

State 6

Fig 3.8 -  State diagram showing the winning neurons for each state in the Reber 
grammar for a 10 x 10 SRSOM.

The state diagram is derived from the location of all the possible input symbols for 

each state in the grammar. For example state 2 is shown if a T symbol follows state 1 

or an S symbol follows state 2. Therefore the locations of the winning neurons for all 

occurrences of those T and S symbols constitute state 2. Fig 3.7 shows that, with the 

exception of state one (which only consists of the iB' symbol), the winning neurons 

for all of the states are spread out over the map. For example while state three
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comprises of three input symbols (P, X  and T), there are 22 separate winning neurons 

for symbols corresponding to this state. This diffuse pattern of neuron activations 

suggests that the SRSOM has memorized separate fragments, rather than learnt rules.

This fragmentation effect poses a problem for the SRSOM’s prediction algorithm. It 

was originally hypothesised that the self-organizing process would result in input 

symbols being clustered according to their respective states. Consequently, the 

prediction algorithm operates by finding the two neurons whose context vector is a 

best match to the location of the current wimiing neuron (i.e. given the current 

winning neuron, which two neurons are the most likely next winners?). This approach 

to prediction operates 011 the basis that the neurons corresponding to the next 

grammatical symbols can be predicted given the current winner. However, if either of 

the neurons corresponding to these next symbols has a context vector that doesn’t 

match the location of the current winning neuron, then that next symbol in question 

cannot be predicted (i.e. if induced knowledge is isolated to each sequence fragment 

then it cannot be generalized to other fragments). The consequence of this inability to 

generalize is that the SRSOM would only be able to correctly predict the symbols in a 

sequence if that particular sequence was part of the training set.

This memorization effect can be further illustrated by conducting a simple experiment 

that involves testing the model used to produce fig 3.8 using sequence 1 from table 

3.8. This particular sequence was not part of the training set, although it is similar to 

other sequences that were included in the training set. Therefore, while the SRSOM 

has been trained on all the symbols and grammatical constructs comprising sequence 

1, it has not encountered them in that specific order.
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# Winning neurons for symbols in sequence

1 B P V P X V P X T V V E

100 1 60 21 20 72 58 84 4 85 14 85

2 B P V P X T V V E

100 1 60 21 20 61 48 64 46

3 B T S S X S E

100 2 91 7 94 4 85

4 B T S S S S S X X T V P X V P X V P S E

100 2 91 7 97 6 97 10 83 67 44 65 25 37 54 85 14 65 25 36

5 B P V P X V P S E

100 1 60 21 20 72 58 87 5

Table 3.8 -  Symbols and corresponding winning neurons from five selected sequences 
processed by the SRSOM. Sequences 2,3,4 and 5 were included in the training set, but 
sequence 1 was excluded from training.

Table 3.8 shows that when the SRSOM encounters a symbol in a context that was not 

seen during training it selects a best guess winning neuron, which may have been part 

of a completely unrelated sequence. For example, when the 9th symbol, T, in sequence 

1 was encountered the SRSOM selected winning neuron number 4, which 

corresponds to a state 6 *5” symbol from sequence 3. This re-use of inappropriate 

winning neurons is also shown by the 11th symbol ‘ P  in sequence 1, which selects 

neuron number 14. However, that neuron is actually the winning neuron for a state 5 

‘ P  symbol from sequence 4. Not only has the SRSOM selected inappropriate 

winning neurons from other sequences, but it even selects neuron number 85 twice in 

order to represent the completely different symbols ‘ P  and ‘P  in sequence 1.

While the experiment used to produce the sequences in table 3.8 does show that the 

SRSOM is unable to generalize appropriately, it also reveals a potentially beneficial
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aspect of the model’s behaviour. The SRSOM appeal’s to represent recursive states by 

alternating between two regions of the map. This is illustrated in sequence 4, which 

shows the model alternatively selecting neurons near 7 and neuron 97 as it processes 

the state 2 recursive symbol ‘S’ . This effect has also been observed in other 

sequences in the training set and is reflected by the results shown in figs 3.5 - 3.7, 

which show comparatively higher performance on sequences of a greater recursive 

depth that those encountered during training.

In conclusion, because the SRSOM doesn’t represent states as one zone of the map, it 

is unable to generalize knowledge learnt in one sequence to other sequences. The 

model is effectively acting as an associative memory and is simply memorizing the 

training set. It is unable to generalize appropriately to novel sequences, except in the 

case of recursive states. Consequently the SRSOM is unsuitable, in its current form, to 

language acquisition because any potential model must be able to generalize in order 

to solve the projection problem (Baker, 1979).
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4 -  STORM

This chapter will identify a fundamental limitation of the SRSOM model that explains 

why it is unable to learn the underlying rules of the Reber grammar. Following these 

limitations, a discussion of memory-rule based linguistical models will be given. It 

will be argued that a memory-rule approach to grammar induction may allow the 

SRSOM to overcome its memorization limitation and therefore allow it to learn the 

rules of the grammar.

An enhanced model will then be proposed that is able to learn grammatical rules that 

allow the model to generalize its learnt behaviour to novel sequences. Following a 

detailed discussion of this model, a set of experiments will be presented that quantify 

the model’s ability to learn the Reber grammar.

4.1 Limitations of the SRSOM -  The need for state

Chapter three concluded with a critical analysis of the SRSOM model. A state 

diagram was used to show that, in the SRSOM, grammatical states were not clustered 

into specific regions, but were spread out over the map. Because the model does not 

perform state-based clustering, it is unable to correlate information learnt from one 

sequence to that of a functionally-similar sequence. The limitation of this becomes 

apparent when considering functional-equivalence theory (Hopcroft and Ullman, 

1979). This asserts that two states are functionally equivalent if, for all future inputs, 

their outputs are identical.
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Thus, according to functional-equivalence theory, a state is distinguished by the 

continuity of its outputs rather than by any function of its inputs. This definition 

implies that the input sequences needed to arrive at any given state need not be related 

to each other (i.e. their contexts have 110 common factor). Instead, the state is defined 

by the fact that each input sequence has an identical output sequence (i.e. the part of 

the sequence following the state in question). Therefore, if a model is to construct 

states, it must bind the input symbols that define entry to a state such that for 

whichever of these state-input symbols occur, the model reaches an identical output 

state. In the case of a SOM based model, such behaviour may be characterized by 

activating the same winning neuron for all of the input symbols for a specific state 

(table 4.1).

# Input sequence: Model’s representation of input sequence after training:

1 B T X S E B (T :STA TE  2) X S E

2 BT S X S E B (T:STATE 2) (S.STATE 2 )X  S E

3 B T X X V P S E B (T:STA TE 2) X X V  P S E

4 B T S X X V P  S E B (T:STA TE 2) (S:STA T E 2 ) X X V P S E

Table 4.1 -  Example illustrating the need fo r state in order to generalize. I f  a model is 
able to learn a representation o f state 2 from sequences 1 and 2, then it can learn 
sequence 3 in a manner that allows it to correctly generalize to sequence 4.

The results shown in chapter 3 demonstrate that the SRSOM model could not achieve 

such a state-based representation. In the SRSOM each sequence is effectively 

memorized separately, thus preventing the SRSOM from generalizing to novel 

sequences. For example, with respect to the sequences shown in table 4.1, the 

SRSOM would need to be trained on all four sequences in order to correctly learn 

them all. Because the SRSOM is unable to learn state 2, the third symbol, ‘X’ in
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sequence 3 would activate a different winning neuron to that activated by the ‘X’ 

symbol in sequence 2. Therefore, the model would be unable to generalize its 

knowledge from sequence 3 to sequence 4, requiring that the latter be explicitly 

included in its training set. This is a profound limitation which implies that in order to 

be able to learn the grammar all of the symbols must be seen in all possible contexts. 

As discussed in (Hadley and Cardei, 1999), such a positionally intensive training 

requirement is cognitively unrealistic.

This discussion of the limitation of the SRSOM implies that any model designed to 

learn the rules of a grammar must be capable of representing input symbols via state. 

However, conventional recurrent neural networks, such as the SRSOM, operate using 

only a representation of the past-context and the current input symbol. This poses a 

problem, because by themselves the past context and current input simply don’t 

provide sufficient information to unambiguously determine the appropriate state 

purely from the input data. As previously explained, a state is defined by the 

continuity of its outputs. The input symbol sequences that lead to a particular state, 

along with their associated contexts, have potentially no information that could be 

used to allow the model to attract the sequences towards a common region of its state 

space.

This premise is illustrated by the FSM for the Reber grammar (see diagram in 

appendix A), which shows both the grammatical states and their corresponding input 

symbols. For example, state 4 has the two input symbols X and P and the two output 

symbols X and S. However, without further information by which to identify state 4, 

the SRSOM’s learning algorithm will separately store representations for the state 4
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input symbols X and P in completely unrelated areas of the map. Consequently this 

disparity will result in duplicate representations for each of the output symbols X and 

S. Thus the choice of winning neuron for the state 4 output symbol X will depend on 

whether it was preceded by an X or by a P. This fragmentation effect will be further 

compounded by separation of input symbols at every state encountered in the 

grammar.

4.2 Memory-rule based models

Many leading linguists, such as Pinker (2000) and Marcus (2000), have theorized that 

language acquisition, as well as other aspects of cognition, can be explained using a 

memory-rule based model. This theory proposes that cognition uses two separate 

mechanisms that work together to form memory. Such a dual-mechanism approach is 

supported by neuro-biological research, which suggests that human memory operates 

using a declarative fact-based system and a procedural skill-based system (Cohen and 

Squire, 1980). In this memory-rule based theory, rote memorization is used to learn 

individual exemplars, while a rule-based mechanism operates to override the original 

memorizations in order to produce behaviour specific to a category. This memory-rule 

theory of cognition is commonly explained in the context of the acquisition of the 

English past tense (Pinker, 2000). Accounting for children’s over-regularizations 

during the process of learning regular and irregular verbs constitutes a well-known 

battlefield for competing linguistic theories. Both Pinker (2000) and Marcus (2000) 

propose that irregular verbs are learnt via rote-memorization, while regular verbs are 

produced by a rule. The evidence for this rule-based behaviour is cited as the over

regularization errors produced when children incorrectly apply the past tense rule to 

irregular verbs (e.g. runned instead of ran).
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As established in the previous section, in order to learn the grammatical rules a model 

must be capable of identifying and representing grammatical states, in accordance 

with functional-equivalence theory. However, it was also shown that the SRSOM 

camiot derive such states using only a representation of the past-context and current 

input. This problem can be overcome by treating the neural network as a memory 

rule-based model, in which the future-context of memorized sequences is compared 

against the future-context of the current input sequence. Therefore, instead of trying to 

form states using only a representation of the past-context and the current input, as in 

conventional dynamic comiectionist models, a memory-rule based grammar induction 

model would use regularities in the future-context of sequences to identify states.

Thus such a model would learn via similarity o f behaviour, rather than similarity o f  

form. This is illustrated in table 4.2, which shows three sets of example sequences 

from the Reber grammar.

# Sequence: State:

1 B 7 X S E 2

2 B T S ' X S E 2

3 B T J S E 4

4 B P V P S E 4

Table 4 .2 -  Example o f how the future-context o f sequences can be used to identify 
states in the grammar. Sequences 1 and 2 can be used to identify the state 2 input 
symbols, whilst sequences 3 and 4 can be used to identify the state 4 input symbols.

As shown in table 4.2, the state 2 input symbols ‘T’ and ‘S’ are related to each other 

by their common future-context ‘X S E ’. State 4 is an even better example of this 

approach to state-identification, because the symbols ‘X’ and ‘P’ that constitute state 

4 have completely unrelated past-contexts. Therefore, the only common feature that

78



can be used to identify state 4 is the identical future-context ‘SE’ for both of the state 

4 input symbols ‘X’ and 4P \

4.3 STORM (Spatio-Temporal self-Organizing Recurrent Map)

STORM is a memory-rule based connectionist model. It extends the SRSOM by using 

lateral interconnections between neurons on the map (fig 4.1). As with the original 

SRSOM, a recurrent feedback mechanism enables the model to act as a temporal 

associative memory. This allows the model to initially produce localist-based 

memorizations of input sequences. The model’s rule-based mechanism then exploits 

the similarities between the future-context of memorized sequences and the future- 

context of the current input sequence. These similarities drive a temporal-Hebbian 

learning mechanism that uses the lateral connections to bind functionally-related 

neurons together, effectively overriding the original memorizations and producing 

state based rules. The next two sections will discuss the model’s memorization and 

rule-construction mechanisms, respectively.

4.3.1 STORM’s memorization mechanism

STORM’s memorization mechanism allows it to initially learn input sequences in 

exactly the same manner as for the SRSOM. Its recurrency mechanism feeds back the 

location of the previous winning neuron on the map, which has the effect of mapping 

similar elements of different sequences to different winning neurons (fig 4.1).
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1 . B T X S E  [
2. B T S X S E

Fig. 4.1 — The winning neurons for two memorized sequences that end with the same 
sub-sequence ‘XSE\

4.3.1 STORM’s rule-based construction mechanism

The model’s location-based recurrency representation and localist architecture 

provide it with a very important ability. Unlike conventional comiectionist models, 

the sequences learnt by STORM can be extracted in reverse order. This makes it 

possible to start with the last element in an input sequence and work backwards to 

find the winning neuron corresponding to the previous symbol in the sequence. This is 

achieved in a similar manner to the operation of the SRSOM’s prediction algorithm, 

discussed in section 2.3.2. Because each neuron’s weight vector consists of a symbol 

and context vector containing the coordinates of the previous winning neuron, it is 

possible to examine a neuron’s context-vector to find the previous winning neuron in 

a sequence.

STORM’s rule-based construction mechanism exploits this ability to transverse 

memorized sequences in both directions, allowing it to identify sequences whose 

future-contexts match those of the current input sequence. As explained on page 74, 

symbols that share the same future-context represent the input-symbols to the same
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states. This is illustrated in figure 4.2, which shows that the ‘S’ and ‘T’ input symbols 

to state 2 can be identified by their common future context ‘X S E \

Winner for 2nd input in sequence B T  X S E

Alternative winner for 2nd input 

in sequence B f x S E

Fig. 4.2 -  Illustration o f the alternative winning neuron selection algorithm tracing 
back through the stored sequence BTSXSE. The neuron representing the third symbol, 
‘S ’, is the alternative winner with respect to the second symbol, ‘T ’ in the sequence 
BTXSE. This is because both the ‘T ’ and the ‘S ’ have the same future context (XSE).

When an input is presented to the model, the winning neuron selection algorithm finds 

the best matching neuron, exactly as in the SRSOM model (section 2.2.1). However, 

STORM also traces backwards through the future-context of the input sequence (i.e. 

starting at the end of the input sequence and working back towards the current input) 

in order to find an alternative winning neuron (fig 4.2). Thus, while the winning 

neuron represents the best match for the current input symbol and context vector, the 

alternative winning neuron represents a possible functionally-equivalent input symbol 

in a sequence already memorized by the model.

STORM’s rule-based construction mechanism uses these similarities in future-context 

to drive a temporal-Hebbian learning mechanism that operates on the lateral 

connections between neurons (discussed in more detail in section 4.3.2). This
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mechanism uses the lateral connections to bind functionally-related neurons together 

into representations of state. This is achieved by strengthening the connections 

between neurons representing symbols with consistently identical future-contexts, 

thus allowing the model to build up relationships between functionally equivalent 

neurons.

1 . B T X S E
2. B T S X S E

Fig. 4.3 —Functional override in winning-neuron selection algorithm. The functional 
relationship (shown in grey) between the third symbol, ‘S ’, in sequence 2 and the 
second symbol, ‘T ’, in sequence 1 forces the model to process the remaining elements 
in the second sequence (namely ‘XSE ’) using the same winning neurons as for the 
first sequence.

Once the strength of these lateral connections exceeds a predetermined threshold, they 

override the recurrency mechanism. This forces the model to use a single 

representation for the future inputs in the sequence, rather than the original two 

representations (fig 4.3). This is achieved by using the lateral connections to mark one 

of the functionally-related neurons as the master and the other as a slave. Therefore, 

regardless of which of these neurons is the actual winner, the recurrency mechanism 

feeds-back a representation of the master winner. The criteria for determining which 

functionally-related neuron is the master and which is the slave is discussed in section 

4.3.2.
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The result of this override mechanism is that the remaining elements in the input 

sequence are processed as if the master neuron had been selected, rather than the 

actual winning neuron. The purpose of forcing the model to use this single 

representation for the future sequence elements is that knowledge from other 

sequences, which involves the functionally-related symbols in question, can then be 

generalized to apply to both symbols (discussed further in section 4.4).

The model’s alternative winner selection algorithm conforms to the SOM’s winner- 

take-all philosophy by choosing the alternative winning neuron whose future-context 

is the best match to that of the current input sequence. Given that tracing back through 

the future-context may identify multiple alternative winners, the criteria of best 

matching winner classifies the best matching sequence stored in the model as the 

winner (i.e. the sequence whose winning neurons are the best match to the symbols in 

the future-context in question). Furthermore, the lateral connections between the 

winner and the alternative winner are only strengthened if the future-context for the 

alternative winner is a better match than the future-context for the winner itself. Thus, 

the model has a preference for always using the dominant sequence and it will use the 

temporal-Hebbian learning mechanism to re-wire its internal pathways in order to re

use the best matching representation of a sequence where ever possible.

4.3.2 Operation of the temporal Hebhian learning mechanism

As previously mentioned, STORM exploits similarities between the future-context of 

memorized sequences and that of input sequences in order to drive a temporal- 

Hebbian learning mechanism. By using the lateral inter-connections between neurons, 

this mechanism is able to bind functionally-related neurons together into states. These
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inter-connections are constructed so that the neuron whose future-context trace is the 

best match to the future-context in the current input sequence is denoted the master. 

The other neuron with the weaker future-context trace becomes the slave (figure 4.4). 

Thus after state construction, a neuron with a lateral connection to a master will 

override the recurrency mechanism by using the location of the master neuron as 

context, rather than the slave neuron itself.

1 . B T X S E
2. B T S X S

Fig. 4.4 -Master lateral connection from the ‘S ’ neuron to the ‘T ’ neuron 
(light arrow) and a slave lateral connection from the ‘T ’ neuron to the ‘S ’ 
neuron (dotted dark arrow).

STORM is not a monotonic learning system. In order to be able to respond to 

statistical relationships in the input data, the model must be able to both construct and 

also break-down states. This ability is necessary because occasionally phantom 

future-context traces may be detected by the rule-constmction algorithm. Such traces 

may arise from either statistical anomalies or may be the result of obsolete sub

sequences whose winning neurons have shifted position during the training process. 

Without the ability to break-down functional-relationships these phantom future- 

context traces would interfere with the learning process by masking the real 

functional-relationships.
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The temporal-Hebbian learning mechanism both constructs and breaks-down states by 

applying a positive and a negative learning rate to the lateral connections. While the 

positive learning rate is applied with respect to regularities in the future-context, the 

negative learning rate is continually applied to all lateral connections and acts as a 

global decay (Figure 4.5). Upon presentation of each input symbol to the model, all 

lateral comiections decay by a pre-determined value (typically in the order of 0.005). 

The effect of this decay is that obsolete functional-relationships between neurons (i.e. 

relationships that are 110 longer reinforced via a positive learning rate) are slowly 

broken down over time.

Fig. 4.5 -Illustration o f the negative learning rate being applied to all o f the lateral 
connections for the neuron representing the symbol X ’.

The model’s negative learning rate is complemented by a positive learning rate, which 

is used in the construction of functional-relationships between neurons (Figure 4.6). 

However, due to the operation of the model’s state construction algorithm, the 

application of this positive learning rate is slightly more complex than its description 

suggests. As previously discussed, similarities between the future-context of 

memorized sequences and that of input sequences, are used to construct states, forcing 

the model to use only one future-context representation rather than two (figure 4.4). 

However, by forcing the model to share a single representation for the future-context
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of both state-inputs, the very criteria used to construct the functional-relationship (i.e. 

two identical future-eontexts) is removed. Therefore, once a state is formed the 

criterion used to identify it disappears. This subsequently prevents the temporal- 

Hebbian learning mechanism from identifying and reinforcing the lateral connections 

that constitute the functional-relationship. Without such reinforcement, the effects of 

the negative learning rate slowly break down the functional-relationship between the 

state-neurons, until eventually the state collapses and the process of state formation 

must begin all over again.

b t A se

Fig. 4.6 -  Application o f positive lateral learning rate. When the ‘X ’from the 1st 
sequence BTXSE is input, the lateral connection belonging to the alternative winning 
neuron (the 2nd P in the memorized 2nd sequence BPVPSE) is enhanced with respect 
to the winning neuron for the current X ’ input from the 1st sequence.

This conundrum is resolved by constructing functional-relationships using an 

approach called mutual-activation-reinforcement. In this approach winning neurons 

don’t enhance their own lateral connections. Instead they enhance the lateral 

connections belonging to the alternative winning neuron, identified via an identical 

future-context. For example, in figure 4.7 the winning neuron for the 4th symbol, ‘P’, 

in sequence 2 will enhance the lateral connections belonging to the winning neuron 

for the 3rd symbol, ‘X’, from sequence 1. Conversely, the neuron representing the ‘X’ 

symbol in sequence 1 would be responsible for enhancing the lateral connection to the
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winning neuron for the 4th symbol, ‘P’, in sequence 2. This mutual-activation- 

reinforcement will only occur if the winning neurons for the symbols in question are 

activated in sequences with identical future-contexts. In this way, a two-way 

functional-relationship between the two neurons is built up. The strength of the lateral 

inter-connections is continually enhanced as training proceeds until a point is reached 

where the recurrency mechanism is overridden to form state. This point is determined 

by an empirically defined threshold value.

Fig. 4.7 -  Mutual-activation-reinforcement. The winning neuron for the X ' input in 
sequence 1 enhances the lateral weights belonging to its alternative winner (shown by 
a light grey arrow). Conversely, the winning neuron for the ‘P ’ in sequence 2 
enhances the lateral weights belonging to its alternative winner (shown with a dotted 
dark arrow).

Once a neuron’s lateral weights have exceeded the empirically determined threshold 

(i.e. the given point at which the recurrency mechanism is overridden) a two-way 

functional-relationship can be assumed to exist between the neuron in question and 

the neuron referenced by the active lateral weight. The existence of this relationship is 

validated by the fact that winning neurons cannot enhance their own lateral weights. 

Therefore, any active lateral connections could only have been created by a 

functionally-related neuron. Consequently, at this stage in the state-construction 

process, it’s no longer necessary for both winning neurons to have to identify each
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other via future-context matches. Once active lateral connections have been 

constructed, each winning neuron can directly enhance the other neuron’s lateral 

weights. The only criterion for this enhancement is that the future-context of the 

current input sequence matches that of the winning neuron itself (i.e. the input symbol 

in the current sentence isn’t an exception to the rule represented by the lateral weight 

we want to enhance).

Therefore, using the mutual-activation-reinforcement approach discussed above, the 

assumed functionally-related neuron’s lateral weights can be enhanced without the 

need to identify the alternative winning neuron via identical future-contexts. This 

overcomes the problem caused by the eventual decay of connections between the 

slave neuron and the master winning neuron (shown by the dashed ‘SE’ neurons in 

fig. 4.7). Thus, while regularities in the future-context are used to initially construct 

states, once formed the state neurons continually reinforce their relationship with each 

other, as long as all the neurons that constitute a particular state continue to be 

regularly activated in the appropriate context.

4.4 Learning via functionai generalization

The previous two sections have discussed the mechanics of STORM’s state- 

construction algorithm, but neither has shown the advantages of forming a state-based 

representation. This section will discuss how STORM’s ability to form state allows it 

to generalize learnt knowledge to unseen sequences and consequently learn from a 

sparse training set.



While a state is constructed based on similarities in future context, there may be cases 

where the future context, for the respective input symbols that constitute the state, is 

dissimilar. For example, the first two sequences in table 4.3 are sufficient for the 

model to form state 2 (see fold out sheet in Appendix A for the Reber grammar FSM). 

However, the third sequence in table 4.3 contains the same state 2, but ends with a 

different sub-sequence (i.e. X X V V E, as opposed to X S E).

# Symbols in training sequence 
(winning neurons for symbols)

1 B T X S E 
(4) (10) (14) (20) (25)

2 B T S X S E 
(4) (10) (8) (14) (20) (25)

3 B T X X V V E 
(4) (10) (14) (2) (12) (18) (23)

# Test sequence (not seen during training)

4 B T S X X V V E  
(4) (10) (8) (14) (2) (12) (18) (23)

Table 4.3 -  Functional generalization example. When trained on the first three 
sequences, STORM is able to construct a state between the 7 ” in sequence 1 and the 
first ‘S ’ in sequence 2. By generalizing this learnt state to its memorization o f 
sequence 3, STORM is then able to correctly process sequence 4 by activating the 
same winning neurons for the sub-sequence ‘X X  V V E ’ as would be activated in 
sequence 3.

Once a state has been constructed, the future context in subsequent sequences 

containing that state will be processed in an identical manner, regardless of whether 

that future-context is different from that used to initially construct the state 2. To be 

more specific, the ‘T’ symbol from sequence 1 will form a state with the first ‘S’ 

symbol from sequence 2. This will result in both sequences 1 and 2 sharing the same 

winning neurons for their final three inputs (X S E). STORM will then be able to 

generalize this learnt state to its memorization of sequence 3, resulting in the same
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winning neurons being activated for the ‘X X V V E’ in test sequence 4 as are 

activated in training sequence 3.

As STORM learns specific states, that state-knowledge is reflected in changes to its 

internal representations of all memorized sequences containing the state in question. 

This powerful generalization ability reduces the effects of the poverty of stimulus 

theory, which stipulates that language input is too sparse for a learner to acquire the 

rules. As discussed in the literature study (section 2.1), the poverty of stimulus theory 

has been one the central nativist arguments against the feasibility of connectionist 

language acquisition. STORM’s functional generalization abilities preclude the need 

to learn separate examples of each symbol in different contexts, thus allowing the 

model to induce a grammar from a sparse data set.

4.5 Experiments

In order to gauge STORM’s grammar induction abilities compared with the SRSOM, 

the model was applied to the same task of predicting the next valid symbols in the 

Reber grammar. As with the previous SRSOM experiments, separate randomly 

generated training and test sequences were used to ensure the model performance was 

assessed by testing it on sequences not encountered during training.

The maximum recursive depth parameter in table 4.4 denotes the highest possible 

sequential number of recursive symbols in any sequence (i.e. the maximum number of 

times around a recursive loop, such as the recursive ‘S’ in the Reber grammar’s state 

2). By only selecting sequences for the training and test sets with a maximum 

recursive depth of less than six, it is possible to ensure the model is not tested on
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sequences too far beyond the complexity of its training set. The basis of this criterion 

is the established fact that supervised models such as the SRN become unstable when 

tested on sequences whose recursive depth is more than three symbols greater than the 

sequences in its training set (Omlin, 2001). A model size of 10 x 10 neurons was 

chosen for this experiment because it was believed that this would be sufficiently 

large enough to allow the learning mechanism to operate, but small enough to prevent 

the model from just memorizing the grammar.

Parameter: Value:
Number of epochs 1000
Learning rate (linearly decreasing and 
decremented each epoch)

0.1

Neighbourhood (linearly decreasing 
and decremented each epoch)

5

Positive / negative temporal Hebbian 
learning rate

0.5 / 0.005

Lateral activation threshold value 1
Number of training sequences 30
Number of test sequences 10
Maximum recursive depth (RD) of 
sequences

6

Model size 100 neurons (10 x 10)

Table 4.4 -  Experimental parameters for experiment I.

Fig 4.8 -  Results from 
experiment 1 showing 
the prediction 
performance on test 
set 1 for a 10 x10 
STORM model trained 
on trained set 1.

0 50 100

Performance %

Final
Performance
Highest
Performance
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Fig 4.9 -  Results from  
experiment 1 showing 
the prediction 
performance on test 
set 2 for a 10 x10 
STORM model trained 
on training set 2.

Fig 4.10 -  Results from  
experiment 1 showing 
the prediction 
performance on test set 3 
f o r a  10 xJO STORM 
model trained on 
training set number 3.

Performance %

The results from experiment 1 (figs 4.8 - 4.10) show that between four and seven 

models became perfect grammar recognizers (100% performance) during training. 

However, the number of perfect recognizers fell to three, for each set of training/test 

sets, by the end of training. While these results show that the model is capable of 

perfectly learning the grammar for multiple training sets, the discrepancy between 

highest and final performance suggests that the model is unstable. It appears that in 

some cases optimal representations reached during training are lost by the end of the 

training process. The exact reason for this is unclear, however in comparison with 

similar experiments on the SRN (Sharkey et al, 2000), the results for STORM are 

very good because in the SRN experiments only two out of ninety SRNs became 

perfect grammar recognizers at the end of training.
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In order to determine the effect of the model’s size on its performance, a second 

experiment was run that used a model of 25 neurons arranged in a 5 x 5 lattice. This 

experiment used exactly the same parameters as the first experiment, with the only 

difference being the model's size.
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Fig 4.11 -  Results from experiment 2 showing the prediction 
performance on test set 1 for a 5 x 5 STORM model trained on 
training set 1.
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Fig 4.12 -  Results 
from experiment 2 
showing the prediction 
performance on test 
set 2 for a 5 x 5 
STORM model trained 
on training set 2.
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Fig 4.13 -  Results 
from experiment 2 
showing the prediction 
performance on test 
set 3 for a 5 x 5 
STORM model trained 
on training set 3.

Performance %

As the results in figs 4.11 -  4.13 show, the smaller 5 x 5  model only managed to 

achieve 100% performance once in 30 experiments. This suggests that having too few 

neurons impedes the model's ability to learn the grammar. In order to further 

investigate the effect of model size on performance, a third set of experiments were 

run using a model of 15 x 15 neurons. All the parameters were identical to the 

previous two experiments, except for the model size.
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Fig 4.14 -  Results 
from experiment 3 
showing the prediction 
performance on test 
set 1 for a 15 x 15 
STORM model trained 
on training set I.
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Fig 4.15 -  Results 
from experiment 3 
showing the prediction 
performance on test 
set 2 for a 15 x 15 
STORM model trained 
on training set 2.
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Fig 4.16 -  Results from 
experiment 3 showing 
the prediction 
performance on test set 3 
for a 15 x 15 STORM 
model trained on 
training set 3.

i
0 50 100

Performance %

The results in fig 4.14 -  4.16 show that the 15x15 model achieved much better 

performance than the smaller 5 x 5  model. However, rather surprisingly, the 15x15 

model didn’t perform as well as the 10x10  model (figs 4.8 -  4.10). In the first 

experiment, between four and seven of the 10x10  models reached 100% 

performance during training. In contrast, no more than three of the 15 x 15 models 

reached 100% performance in the third experiment. Given the inferior performance of 

the smaller 5 x 5  model with respect to the 10x10 model, it was expected that the 

larger 15x15 model would have provided the highest performance out of all the 

models. A possible explanation for this anomalous result may be that the initial 

random weights used in experiment three were biased towards a local, rather than a 

global minima.
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In order to investigate the effect of the initial start weights on the model’s ability to 

learn the grammar, an experiment was conducted that varied the start weights, while 

keeping all other experimental parameters fixed. For this experiment ten models were 

trained using training set one. Each model had different random initial weights, but 

the order of the presentation for the training patterns was kept the same by using a 

fixed seed for the random number generator.
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Fig 4.17 -  Results from 
experiment on 15x15 
model using training set 
1 with random weights, 
hut fixed training 
sequences presentation 
order.
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The results in fig 4.17 show that the experiment to vary the initial random weights 

resulted in none of the ten models learning a perfect representation of the grammar. 

The variation in the results does show that the model is sensitive to the initial start 

weights and that despite the training sequences being presented in a fixed order, the 

difference in start weights had an effect on the model’s performance. However, it is 

not clear whether the initial start weights were directly responsible for trapping the 

model in a local minima or whether they just triggered an instability in the learning 

algorithm.
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4.6 Analysis of STORM

The anomalous results from the experiments on the 15x15 model suggest that there 

may be unresolved issues involving STORM’s learning algorithm. In order to further 

investigate the learning process, this section of the thesis will provide a full analysis 

of two models trained on the Reber grammar. The first model to be analysed will be a 

10x10 model that achieved 100% prediction performance on training set 1, while the 

second analysis will involve an identical model that failed to achieve 100% 

performance. Comparing and contrasting these analyses should provide an insight into 

the model’s anomalous performance and also its internal representation of the 

grammar.

Table 4.5 shows the corresponding winning neurons for a set of sequences used to test 

a 10x10 model that achieved 100% prediction performance on the Reber grammar. 

These test sequences were specifically chosen to include all the simple sequences, as 

well as a few complex sequences from the Reber grammar. As discussed in section 

4.3.1 the proposed advantage of STORM’s rule-based learning algorithm is that it 

allows the model to form a representation of state. Such a state-based representation 

should allow the model to activate winning neurons in accordance with the current 

state, as opposed to activating strictly input plus context-dependant wimiing neurons. 

The activations in table 4.5 show that STORM’s rule-based learning algorithm is 

indeed forming the intended state-based representation. For example, sequences 1, 6 

and 10, which all share the same ‘X S E’ ending, have identical winning neurons for 

their last three symbols. Thus despite the variations in context that result from 

different initial symbols in these sequences, the model correctly reaches an equivalent 

state when it encounters the final three symbols in each sequence. This state-based
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representation is also highlighted by sequences 1, 3, 5, 6, 7, 9 and 10, which all share 

the same winning neurons for their ‘S E’ ending, despite massive variations in 

context. Other states can also be observed inside sequences, such as state 5 (neuron 

96) in sequences 3,4,7,8,9 and 11.

# Input sequence / wimiing neurons

1 B T X S E
10 4 80 21 91

2 B P V V E
10 1 96 57 91

3 B T X X V P S E
10 4 80 51 96 50 21 91

4 B T X X V V E
10 4 80 51 96 57 91

5 B P V P S E
10 1 96 50 21 91

6 B T S X S E
10 4 100 80 21 91

7 B P T V P S E
10 1 7 96 50 21 91

8 B T X X T V V E
10 4 80 51 7 96 57 91

9 B T X X V P X V P S E
10 4 80 51 96 50 51 96 50 21 91

10 B T S S S S S S S X S E
10 4 100 100 100 100 100 100 100 80 21 91

11 B P V p X T T T T T T T V Y E
10 1 96 50 51 7 7 7 7 7 7 7 96 57 91

Table 4.5 -  Activations from a 10*10 model that achieved 100% prediction 
performance on the Reber grammar. The rightmost column shows sequences o f input 
symbols above the winning neurons for the respective symbols.

Sequences 10 and 11 show how this state-based representation allows the model to

correctly process sequences of a higher recursive depth than those encountered during

training (i.e. the recursive ‘S’ symbol in sequence 10 will always activate the same

winning neuron regardless of how many ‘S’ symbols there are).The state-based

representation learnt by the 100% model is shown graphically in figure 4.18. In order

to represent the state-relationships encoded in the lateral connections, figure 4.18
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shows the winning neurons after any functional-overrides have been applied. The 

activations were produced by testing the model on the same set of sequences shown in 

table 4.5.

/ ©ooooooooo /oooooooooo/ /oooooooooo/ /ooooooooo® oooooooooo oooooooooo oooooooooo oooooooooo 'oooooooooo ooooooooo®
Fig. 4.18 -S ta te  diagram for 100% model. The numbered circles represent the 
winning neurons for the respective grammatical states (shown after functional- 
overrides have been applied).

The state-diagram in figure 4.18 illustrates the model’s perfect representation of the 

grammar. Despite being tested on eleven sequences with a total of 90 input symbols, 

the model only uses six neurons (after the functional-override has been applied) in its 

internal state representations. These six neurons represent the six states in the 

grammar, proving that the model has learnt a perfect representation of the Reber 

grammar.

The analysis of the model that successfully learnt the Reber grammar shows that 

STORM’s learning algorithm performs as expected, forming a state-based 

representation of the grammar. However, as the experiments in section 4.5 show, not
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all models are capable of learning a perfect representation of the grammar. In order to 

investigate the failures, a second analysis was performed 011 a 1 Ox 10 model that 

achieved less than 100% prediction performance on the Reber grammar. As with the 

previous analysis, the model was trained on training set 1 and then tested on a set of 

sequences specifically chosen to show the model’s full range of performance 011 the 

grammar.

# Input sequence / winning neurons

1 B T X S E
1 31 90 50 84

2 B P V V E
1 61 4 91 100

3 B T X X V p S E
1 31 90 97 29 54 68 93

4 B T X X V V E
1 31 90 97 29 10 93

5 B P V P S E
1 61 4 91 60 84

6 B T S X S E
1 31 70 86 59 95

7 B P T V P S E
1 61 23 15 63 69 85

8 B T X X T v V E
1 31 90 97 47 28 10 93

9 B T X X V P X V P S E
1 31 90 97 29 54 77 30 64 68 93

10 B T S S S S S S S X S E
1 31 70 75 59 85 59 85 59 96 50 84

11 B P V P X T T T T T T T V V E
1 61 4 91 100 48 37 36 45 36 45 36 17 9 94

Table 4.6 -  Activations from a 10 x 10 model that achieved only 74% prediction 
performance on the grammar. The rightmost column shows sequences o f input 
symbols above the winning neurons for the respective symbols.

The activations in table 4.6 show that the model has not properly learnt the rules of 

the grammar. For example, although sequences 1, 7 and 9 all end in with the same 4S 

E’ symbols, each sequences activates different winning neurons. This lack of state- 

based representation can also be observed right at the beginning of the sequences (i.e.
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sequences 1, 6 and 10 all have different winning neurons for the ‘X’ symbol). There 

are two possible explanations for these results. Either the model has failed to learn 

any rules at all, or it has learned partial rules that apply only to specific sequences. In 

the former case, the model would be acting just like the SRSOM from chapter 3 and 

simply finding the best match for the input and context vectors. As such, the identical 

winning neurons for the last two symbols in sequences 3 and 9 would occur not 

because of a rule, but because both the previous winning neurons for both sequences 

were adjacent to each other.

The second explanation for the results in table 4.6 is that the model in question has 

learnt partial rules that apply only to specific sequences. In this case the identical 

winning neurons for the last two symbols in sequences 3 and 9 could be explained by 

the existence of a rule that applies only to those specific sequences (or more correctly, 

to two sequences similar to 3 and 9 because neither sequences were part of the 

training set themselves). If this were the case then this suggests that a failure has 

occurred early in the learning process, resulting in the formation of erroneous states. 

Such a situation may have arisen if the model was prevented from finding the basic 

states (i.e. states two and three) and was therefore forced to construct states five and 

six based on specific memorized sequences. However, subsequent analysis strongly 

suggests that the former explanation is the case in point.

The state-diagram in figure 4.19 validates the premise that the 74% model’s 

inadequate performance was due to its lack of a state-based representation. Despite a 

few clusters, the majority of activations for the six states are scattered throughout the 

map. As explained in section 4.1, without a state based representation a model is
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limited to learning fragmented memorizations of input sequences. Because its 

knowledge of the grammar is relative to particular contexts rather than states, it is 

unable to generalize knowledge from one sequence to a sequence in a different 

context.

/ ©0 ©0@® ©0@©/
/  ® o® oo® ® ooo//oososooooo//o®o@©oo©o©//ooo®oooo©®//o®oo©oo@®o/

/©OOOO00OOO 
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Fig. 4.19 -  State diagram for 74% model. The numbered circles represent the 
winning neurons for the respective grammatical states.

4.7 Conclusions

The SRSOM model’s lack of a state-based representation meant that it stored input 

symbols relative to particular contexts rather than states. This consequently prevented 

the SRSOM from generalizing information learnt from a symbol in a particular 

context to equivalent situations in different contexts. The requirement for a state- 

based representation was clarified by defining state in accordance with functional- 

equivalence theory. The implication of this theory is that states can only be created by 

identifying potential input symbol sequences that have matching future-contexts. As 

such, conventional recurrent neural networks such as the SRSOM, which operate
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using only a representation of the past-context, are unable to form an adequate 

representation of state.

In order to overcome the limitations of the SRSOM, a novel connectionist memory- 

rule based model was proposed. STORM is able to create a state-based representation 

of the grammar by exploiting the future-context of sequences, in accordance with 

functional-equivalence theory. By operating as a memory-rule based system, the 

model is able to compare the future-context of symbols in an input sequence with the 

future-context of symbols in memorized sequences. This allows the model to identify 

functionally-related symbols and bind their associated neurons together using a 

temporal-Hebbian learning mechanism. This has the effect of constructing states in a 

bottom-up manner and learning using similarity o f  behaviour, rather than similarity o f 

form. Once constructed, these states affect the processing of subsequent input 

symbols, forcing the model to use a state-based representation rather than distinct 

representations for each symbol.

Multiple experiments prove that STORM’s state-based representation allows several 

instances of the model to learn a perfect representation of the Reber grammar which, 

in turn, allows it to generalize beyond its training set. However, these experiments 

also suggest that there are unidentified issues relating to the learning algorithm which 

sometimes prevent the model from learning a correct representation of the grammar.

In summary, STORM is a radical connectionist model whose state-based functional 

learning algorithm allows it to supersede the capabilities of conventional 

comiectionist grammar induction models, such as the SRSOM. By inducing explicit
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representations of the rules of a grammar from sparse data, STORM poses a challenge 

to traditional natavist linguistic theories and further undermines the logical problem of 

language acquisition (Jackendoff, 2002). Furthermore, STORMs reliance on 

functional-equivalence theory and its memory-rule based approach to grammar 

induction, provide a new pathway for connectionist modelling that brings the 

discipline closer into line with traditional linguistics.
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5 Beyond the Reber grammar

Chapter four’s presentation of the STORM model used the Reber grammar as a test

bed. However, while this simple regular grammar provides an excellent example of a 

basic generative grammar, it also lacks some of the important complexities found in 

natural language. This chapter will discuss the problems posed by more complex 

grammars, including recovery from over-generalization and the redundancy caused by 

centre embeddings. Extensions will be proposed to allow STORM to overcome these 

problems and potentially scale up closer to natural language itself. However, 

preceding the discussion of complex grammars, this chapter will highlight a limitation 

that may explain the model’s sporadic failure at inducing a perfect representation of 

the grammar.

5.1 Instability and Causality Loops

During the development of the STORM model, a number of refinements and 

concessions had to be made in order to turn the original conceptual model into an 

operational prototype. The temporal-Hebbian learning mechanism in STORM’s rule- 

construction algorithm is one such example of a compromise between the conceptual 

model and the resulting implementation. In the conceptual model it was envisaged 

that states could be constructed by encouraging functionally-related neurons to move 

towards each other on the map. In this way, the original topological SOM would be 

transformed into a functional SOM, with the neurons representing states located 

together in clusters. However, initial unpublished experiments established that the 

neighbourhood function interfered with the rule-construction algorithm, resulting in 

catastrophic instability. This interference occurred because the neighbourhood
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function was attempting to mould the SOM into a topological map, while the rule- 

construction algorithm was attempting to defy this topology by moving functionally- 

related neurons together to create a functional map. Consequently, STORM was 

designed to leave the neurons in their original positions and to represent functional- 

relationships using lateral connections and the associated temporal-Hebbian learning 

mechanism.

Indirectly effected by 
activation of rule1. BTXSE

2. BTSXSE

Fig 5.1 -  Diagram showing the abrupt context change resulting from the activation o f  
a rule. When the functional-relationship between the 2nd symbol, T, in sequence 1 and 
the 3rd symbol, S, in sequence 2 is formed, the remaining three symbols in sequence 2 
will no longer be activated. This consequently changes the effect o f the 
neighbourhood function, especially on adjacent neurons and causes instability.

A consequence of constructing functional-relationships in this manner, rather than 

slowly drawing related neurons together, is that the construction of a functional rule is 

an abrupt event, rather than a slow process. In the conceptual model it was envisaged 

that by drawing functionally-related neurons together, their contextual representations 

would slowly change along with the movement of their location. Therefore, 

subsequent winning neurons in each functionally-related sequence would also change 

slowly, until eventually they merged into one sequence. However, the effect of 

abruptly activating a rule is to switch the context of one of the functionally-related 

neurons to that of its functional-counterpart. The consequence of this is to also
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abruptly change the context of the rest of the sequence containing the neuron in 

question (fig 5.1).

As shown in fig 5.1, when a rule is activated the elements in the sequences following 

the slave winner (i.e. the last three symbols, XSE, in sequence 2) are forced to change 

position to share the representation used by the master winner. This abrupt change 

effectively causes a shockwave throughout the map as the influence of the 

neighbourhood function is changed with respect to potentially every neuron. This 

effect will be most dramatic for neurons in close proximity to the original winning 

neurons following the slave winner (i.e. the neuron shown in black in fig 5.1). This 

effect on the neighbourhood function is compounded by the increased activation of 

the winning neurons following the master winner. Because the activation of a rule 

results in the remaining elements in a sequence sharing a single representation, the 

increased activation of those neurons will also change the effect of the neighbourhood 

function upon potentially every neuron in the map.

5.1.1 Causality loops

Due to the aforementioned abrupt method of rule-construction, a potential problem 

arises when the master functional winning neuron (i.e. the winner whose context is 

used to represent both functionally-related neurons) is itself also a winning neuron 

preceding the slave winner. As shown in fig 5.2, a causality loop could be created if 

the winning neuron for the ‘X’ in sequence 1 attempts to form a slave-like functional 

relationship with the master neuron representing ‘P* in sequence 2. Because the 

winning neuron for the ‘X’ in sequence 1 is itself part of sequence 2, changing its 

context to that of the ‘P* neuron will affect every subsequent winning neuron in
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sequence 2, including ‘P’ itself. Therefore, constructing a functional-relationship 

between the ‘P’ and the ‘X’ may prevent the ‘P’ from being activated. This in turn 

prevents the functional-relationship between the ‘X' and ‘P’ from being maintained, 

thus destroying the functional-relationship. In more abstract terms, a causality loop 

can be defined as “using an event to change the past, which inadvertently prevents the 

initial event itself from ever occurring”.

1 .
2 .

Fig. 5.2 -  Diagram showing causality loop resulting from the neuron which 
represents the X  in sequence 1 attempting to form a functional relationship with the 
neuron representing the P in sequence 2 and thereby changing the latter’s context.

While causality loops represent a potential problem for the learning algorithm, the 

experiments performed on the model have not shown explicit cases where they cause 

the model to get stuck in a local minima (i.e. a continual cycle of constructing and 

destroying a specific functional-relationship). The probable reason for this is that if a 

causality loop does occur, then the instability brought about by destroying the 

functional-relationship involved acts as interference that disrupts the sequences 

involved, effectively changing their respective strengths. Because STORM’s learning 

algorithm uses a winner-take-all approach to select the dominant winning neuron 

(section 4.3.2), the effect of this interference may cause a different dominant winning 

neuron to be selected next time. Thus, the formation of a causality-loop creates

BTXSE
BTXXVPSE oar o o
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interference that may prevent it from re-occurring and therefore averting the 

possibility of infinite causality loops. However, even with the ability to avoid such 

infinite loops, the interference resulting from a single causality loop may well de

stabilize the model to such a degree that it fails to learn the grammar.

5.2 Recovery from over-generalization

Much of the research into language acquisition has centred on the problem of learning 

the English past-tense. From the first comiectionist PDP models (Rumelhart et ol,

1986) to the latest symbolic accounts (Pinker, 2000), cognitive researchers have 

exploited this well documented area of early child language acquisition to attempt to 

justify their models. The process of learning the English past tense is characterised by 

a U-shaped learning curve in children’s performance (fig 2.5). Following initially 

good performance on both regular and irregular verbs, children later produce errors 

involving the inflectional morphology of irregular verbs. These errors involve 

incorrectly producing the past tense form of an irregular verb by using the suffix from 

a regular verb (ex. runned, instead of ran). Following these over-regularisation errors 

children’s performance later improves and they produce the correct forms for past- 

tense irregular verbs.

Mainstream cognitive researchers (Pinker, 2000; Marcus, 2000) seek to model child 

language acquisition using rules and symbols. Such an approach interprets the 

phenomenon of the U-shaped learning curve as evidence that children initially employ 

rote-memorization to learn both regular and irregular verbs, resulting in an initial 

steady increase in performance. This is then followed by the acquisition (or 

activation) of a rule for the production of past tense verbs. While this rule is identified
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with respect to regular verbs, it is initially incorrectly applied to all verbs, resulting in 

the over-regularisation errors seen in irregular verbs. The final phase of the U-shaped 

learning curve is explained as the formation of exceptions with respect to the past- 

tense rule. In this phase, the irregular verbs are explicitly re-memorized as exceptions 

to the rule, resulting in the observed subsequent increase in performance.

The mainstream symbolic account of language acquisition conforms closely to 

STORM’s modus operandi, in that initial memorizations are overridden by rules. 

However, the final phase of the U-shaped learning curve (i.e. the ability to recover 

from over-generalization) is not a characteristic of the basic STORM model. While 

STORM is able to construct rules, once these rules are formed they are applied 

universally. There is no mechanism to recover from over-generalization. Producing 

exceptions to rules was unnecessary for a simple language like the Reber grammar. 

However, more complex languages, even regular grammars, may contain constructs 

that require exception handling (Figure 5.3).

Fig. 5.3 -  Simple regular grammar that contains both rules and exceptions.

The simple grammar shown in fig 5.3 illustrates why a memory rule-based 

mechanism alone is insufficient to learn the grammar. Because the two output 

symbols labelled T  and \P ’ from state one are functionally-equivalent (i.e. both have 

the same ‘XHE’ ending), STORM could represent them using a rule, with ‘ T  as the
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master winner and ‘P ’ as the slave. Thus whenever the ‘P ’ symbol is encountered in a 

sequence, the remainder of the sequence would be processed relative to both state 

two. However, in the grammar state three also has the output symbol T ,  which is not 

a valid output symbol for state two. Therefore, if STORM constructs the rule that the 

‘T  and ‘P ’ symbols are functionally-equivalent, it will over-generalize this rule by 

representing the ‘ V  symbol as a valid state two output symbol (figure 5.4). 

Consequently the model would accept the sequence iBTVE \  which is not 

grammatically correct.

Overgeneralization 
of sequence 4

Fig. 5.4 - Illustration o f the over-generalization o f an exception to a rule. Because o f  
the functional-relationship between the 2nd symbol, T, in sequence 1 and the 2nd 
symbol, P, in sequence 2, the latter P uses the former T ’s context for the XHE ending. 
However, this functional-relationship would also results in the VE ending o f in 
sequence 3 being represented in the context o f  the 2nd symbol Tfrom sequence 1. 
Consequently this would allow the model to over-generalize by accepting, as valid, 
the illegal sequence number 4.

5.2.1 Exception construction mechanism

As stated earlier, mainstream cognitive theory (Pinker, 2000; Marcus, 2000) describes 

the phenomenon of over-regularization as a U-shaped learning curve. Initial good 

performance leads to over-regularization errors, which are subsequently corrected as 

exceptions to the rules are learnt. STORM’s learning algorithm currently conforms to

1. BTXHE
2. BPXHE
3. BPVE
4. BTVE

*o o o 
4H.ro o o
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the first two stages of this learning process, namely initial memorization and 

subsequent generalization. In order to conform to the third stage of this learning 

process the model must recover from over-generalization using an exception 

construction-mechanism.

In a memory-rule based model the process of learning exceptions can be perceived as 

re-memorization, with respect to erroneously applied rules. Because STORM learns 

rules with respect to a specific common future-context, if a rule is applied to an input 

whose future-context conflicts with that used to construct the rule, then the rule can be 

said to have been applied erroneously. For example, in fig 5.4 over-generalization 

would occur when the 2nd symbol‘T’ from sequence 1 forms a functional-relationship 

with the 2nd symbol ‘P’ from sequence 2 based on the common future-context ‘XHE\ 

As previously discussed, this would allow the functional-relationship to be applied to 

sequence three, resulting in over-generalization and acceptance of the erroneous 

sequence ‘BTVE\

The rule that functionally-relates the aforementioned symbols would be constructed 

with respect to the common future-context ‘XHE’. Consequently, at the time the 

functional relationship is created, STORM’s back-trace algorithm would be unable to 

find any existing stored sequence for the ‘VE’, with respect to the overriding master 

neuron, when it over-generalizes and applies the rule in the sequence ‘BPVE’ (figure 

5.5). Therefore, without positive evidence to support the application of the rule to the 

‘VE’ ending, STORM would be able to identify this ending as an exception to the rule 

and then re-memorize it with respect to the winning neuron for the 2nd symbol‘T’ 

from sequence 1 (i.e. re-memorize ‘VE’ as an exception to the ‘XHE’ rule).
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Current winning neuron

1. BTXHE
2. BPXHE
3. BPVE
4. BTVE

oo 
0000 oooo

Fig 5.5 -  Diagram showing identification o f erroneously applied rule. When the 2nd 
symbol ‘P ’ in sequence 3 is input, the functional-relationship between the ‘T ’ and ‘P ’ 
neurons (light arrow) is used to override the recurrency mechanism. When the 3rd 
symbol ‘V ’ from sequence 3 is input, the model uses the ‘T ’ neuron’s context. 
However, the back-trace algorithm is unable to identify a 'VE' ending which 
corresponds to that T ’ neuron. Therefore, with respect to sequence 4, the ‘VE’ 
ending is identified as an exception to the rule involving the T and P neurons.

This process of re-memorizing exceptions to rules can be achieved using the existing 

temporal-Hebbian learning mechanism combined with a slight change to the rule 

application algorithm. STORM’s current approach to the application of rules is to 

search for and apply any active rules once the winning neuron is selected and its 

weights have been updated. However, if the process of rule application is deferred 

until after the next winning neuron has been selected, then the model can determine 

whether that next winner is an exception. The algorithm in fig 5.6 describes how this 

can be achieved by describing the behaviour of the model after the training process is 

complete. During the training process itself the model would not need to examine 

lateral exception connections because the learning algorithm has access to the future- 

context and can therefore perform exception identification.
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Start

Did previous 
winner have an 
active rule ?

No
Stop

Yes

No
Stop

Yes

Stop

Does currentX 
winner have an 
active exception 

to rule ? /

Use current 
winning neuron

Find winning neuron for 
current input/context

Ignore rule and use 
current winning neuron

Apply rule by re-selecting 
winning neuron using the 
previous winner’s location 
as context

Fig. 5 .6 -  Revised rule application algorithm to incorporate exception handling 
mechanism. This algorithm describes the model’s behaviour in response to an 
input pattern after the training process is complete.

By deferring the application of rules until after the next winning neuron has been 

selected, it becomes possible to identify winning neurons that are specific exceptions
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to rules. The construction and identification of exceptions can be achieved using a 

separate set of exception handling lateral connections. When the learning algorithm 

detects that a rule is being erroneously applied, it identifies the original winning 

neuron that would have been selected if the rule didn’t exist. By enhancing the lateral 

exception connections between this original winner and the neuron to which the rule 

applies, the learning algorithm builds up a relationship between the two neurons. As 

with the lateral connections representing functional-relationships, once these lateral 

exception connections exceed a predetermined threshold, the neuron in question can 

be considered to be an exception to the rule. As detailed in fig 5.6, once a neuron has 

an active exception to a rule, then the rule application algorithm will ignore the rule 

and allow the rest of the sequence to be re-memorized as an exception. Fig 5.7 shows 

a graphical representation of this exception handling mechanism.

✓ "

Fig. 5.7 -  Diagram showing lateral exception connection (light dotted curved line) 
between the winning neuron for the V symbol in sequence 3. which represents the 
exception and the master winning neuron for the T symbol in sequence 1, which 
represents the rule (dark dotted curved line).

By incorporating an exception handling mechanism, the model now provides an 

elegant account of how a language learner could recover from over-generalization 

without needing explicit negative evidence. This approach provides a possible
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solution to the age-old logical problem of language acquisition by showing that in a 

memory-rule based model, recovery from over-generalization can be achieved using a 

process of re-memorization in response to positive evidence that contradicts an 

existing rule.

5.3 Context-free grammars

Regular grammars are characterized by allowing only a single terminal symbol on the 

right hand side of the production rule (i.e. A => x B). This limitation makes regular 

grammars memory-less and therefore prevents them from describing the type of rules 

in fig 5.8.

Fig 5.8 -  Example o f two rules from a context-free grammar, 
x  andy are terminal symbols and A  and B are non-terminal 
symbols.

Unlike regular grammars, context-free grammars can have any number of terminal 

and non-terminal symbols on the right hand side of the production rule (see section 

2.11 for a discussion of formal linguistic terminology). This enables such grammars to 

generate rules containing identical non-terminal symbols, preceded and followed by 

different terminal symbols (fig 5.8). Such grammatical constructs are known as 

centre-embeddings and constitute a difficult problem for grammar induction models 

(Weckerly and Elman, 1992).

A => x B x 

B => y B y
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Fig. 5.9 -  FSMfor Extended Reber grammar.

Models such as the SRN are unable to master languages with deep embeddings 

because they loose track of information distinguishing the initial terminal symbol 

(know generally as the problem of long-term dependencies (Bengio and Simard, 

1994)). This problem is illustrated in figure 5.9, which shows the extended Reber 

grammar (Cleeremans, 1989; Fahlman, 1991). In this grammar the second symbol is 

always the same as the second from last symbol. Therefore in order to correctly 

predict the second from last symbol, a model must retain information regarding the 

second symbol in the sequence.

Centre-embeddings also pose a problem for STORM, albeit for different reasons than 

for conventional DRNs. Because STORM is a memory-rule based model, it must
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initially memorize input sequences before it can begin to construct funetional- 

relationships between related neurons. Rules are constructed relative to the context of 

these original memorizations. However, because rules within the centre-embedding 

apply independently of the surrounding context, the rule-construction algorithm 

would need to see examples of the centre-embedding separately in each context (table 

5.1). Effectively sequences begimiing with the 2nd symbol P would be represented 

completely separately to sequences with a 2nd symbol of T.

As shown in table 5.1 STORM will under-generalize centre-embeddings by assuming 

that the rules of such constructs are specific to the exact context in which they were 

constructed. Therefore STORM would have to separately learn the grammatical rule 

for every centre-embedding it appears in. For complex languages this would involve 

not only redundantly memorizing a lot of sequences, but it would also require training 

the model on a very large amount of data. Obviously for grammars approaching the 

complexity of natural language, such a requirement would seriously limit the model’s 

induction capabilities.

# Extended Reber grammar sequence

1 B T  T S X S  T E

2 B T  T X S  T E
3 B P  T X S  P E

B P  T S X S  P E

Table. 5.1 - Sequences from the extended Reber grammar (figure 5.9) illustrating 
STORMs inability to learn centre-embeddings. I f  STORM was trained on sequences 1- 
3, the model would be able to learn the functional-relationship involving the 4th 
symbol in sequence I (S) and the 3rd symbol in sequence 2 (T). However, it would be 
unable to generalize this knowledge to the equivalent functional-relationship in 
sequence 4, despite having been trained on sequence 3.
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Essentially the problem of learning centre-embeddings can be perceived as an 

optimization problem. STORM currently seeks to optimize its internal representations 

by constructing rules that allow it to use the strongest internal memorization of a 

sequence. However, this strategy applies only to whole sequences and not to sub

sequences. Because sentences with centre-embeddings effectively contain rules within 

other rules, STORM must optimize its representation of sub-sequences if it is to 

efficiently learn such grammars.

An ideal approach would be to use the rule construction mechanism to explicitly re

wire its representation of sub-sequences such that the strongest single sub-sequence 

would be used, rather than creating redundant representations for every occurrence of 

a sub-sequence. While such a strategy is very similar to the current approach of using 

the strongest existing sequence, the construction of sub-sequence rules would require 

the preservation of context. This requirement is illustrated in figure 5.10, which shows 

that information concerning the symbol preceding the sub-sequence must be known in 

order to determine the correct symbol following the sub-sequence.

1. BTTXSTE
2. BPTXSPE

Fig 5 .1 0 - Diagram showing requirement for context preservation M>hen re-using the 
sub-sequence TXS from the Extended Reber grammar (figure 5.3). The choice o f  
whether a T  or a P symbol follows the TXS sub-sequence is determined by the symbol 
that precedes the sub-sequence.
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5.3.1 Sub-sequence rule-construction algorithm

In order for STORM to use an optimized sub-sequence representation to learn 

context-free grammars, its rule-construction algorithm must be modified. As 

previously discussed, the current rule-construction algorithm exploits regularities in 

entire sequences (although it could conceivably just use a finite number of future 

symbols). Any regularity between stored sub-sequences and input sequences is 

ignored. Therefore the first stage in such an approach would be to construct a second 

back-trace algorithm that detects regularities between stored sequences and a 

specified number of the next symbols in the input sequence (figure 5.11). STORM 

would then use both the partial and standard back-trace algorithms in conjunction 

with each other to allow it to detect stored sub-sequences that belong to different 

sequences than the current input sequence.

Current winning neuron 
\
\

\
\

fo^Qp
1. BTTXSTE |— /  Q J 3  O  :'x )
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Fig. 5.11 -  Diagram illustrating use o f partial back-trace algorithm to identify 
alternative winning neurons in sub-sequences. The alternative winning neuron 
representing the 4‘1 symbol S, in sequence 2 has been selected because it is 
immediate future-context (i.e. the sub-sequence XS) matches that o f the winning 
neuron in sequence 1.
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Once a sub-sequence has been identified using the partial back-trace algorithm, 

STORM would be able to use its existing temporal-Hebbian learning mechanism in 

almost exactly the same manner as the current model. By building up functional- 

relationships between the neurons representing symbols preceding the sub-sequence 

in question, the model would be able re-wire itself to use only a single representation 

of the sub-sequence. However, as illustrated in figure 5.10, the model’s context must 

then be preserved when processing the sub-sequence. Therefore, the rule-construction 

mechanism must create a special kind of rule for sub-sequences, which when invoked 

would push the location of the current winning neuron onto a conventional symbolic 

stack (Hopcroft and Ullman, 1979). This special rule will also involve popping the 

representation of the current winning neuron back off the stack after the sub-sequence 

and incorporating it into the next winning neuron selection algorithm. The position at 

which to perform these push and pop operations could be identified via the 

discrepancy between the partial and full back-trace algorithms (i.e. when performing 

the back traces the push would be performed at the current position, while the pop 

would occur at the position of the discrepancy between the two back trace 

algorithms). Thus, this hybrid approach will isolate the sub-sequence (figure 5.10), 

allowing multiple sequences to utilize the same representation, while still maintaining 

the distinct context of each sequence.

5.4 Conclusions

The model’s sporadic failure to master the Reber grammar may be attributed to a 

design compromise in the rule-construction algorithm. Due to the use of lateral 

connections to construct functional-relationships, the activation of a rule is an abrupt 

event rather than a gradual process. Consequently, the instability this causes may
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interfere with the learning process and in some cases may prevent the model from 

converging. The presence of this instability combined with STORM’s stochastic 

nature may explain why certain models fail to learn a perfect representation of the 

grammar.

While STORM is currently capable of learning simple regular languages, its learning 

algorithm needs to be enhanced to allow the induction of more complex grammars. 

One enhancement that would bring the model closer to natural language would be an 

exception-construction mechanism. By re-memorizing exceptions to existing rules, 

STORM would be able to retreat from over-generalizations. This elegant solution to 

the logical problem of language acquisition would bring STORM’s performance 

closer to that of the U-shaped learning curve characteristic of early human language 

learners. Context-free languages could also be learnt by optimizing the model’s 

representation of sub-sequences. This would allow it to efficiently learn centre- 

embeddings without having to see examples of the same grammatical construct in 

multiple contexts.
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6 Conclusions and future work

This research has focused on one of the core problems in artificial intelligence: a 

problem that has remained elusive, despite almost half a century of investigation by 

countless researchers. The problem of language acquisition is so daunting that many 

linguists consider it to be a paradox, a perspective that consequently denies even the 

possibility of an automated solution. However, given that the primary bottleneck in 

today’s NLP systems is the prerequisite for an incalculable amount of manually 

derived knowledge, the creation of an automated language acquisition system would 

constitute a revolutionary breakthrough. STORM represents a significant step towards 

this breakthrough.

This research has combined the abstract representational power of symbolic rule- 

based models with the knowledge induction properties of biologically-inspired 

connectionist models. The result is a model that can learn by example and therefore 

avoids the prerequisite for manually derived knowledge. This approach uses a 

representation that encapsulates rules and symbols which allows the model to learn 

from sparse data. The original aim of the research was to determine whether 

unsupervised connectionist models could capture the finite-state properties of 

language. In this respect not only has the project been successful, but it has redefined 

the original research question by showing that an unsupervised model is capable of 

exceeding the capabilities of equivalent supervised models, with regard to certain 

aspects of language acquisition.
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Io response to the failure of the initial SRSOM to learn the Reber grammar, a revised 

model, STORM, was designed whose operating principles were derived directly from 

functional-equivalence theory. Since STORM was designed from its inception to 

learn a state-based representation, it circumvents the problems that plague other 

connectionist models when applied to state-based problems. By using regularities 

between the future-context of stored sequences and that of input sequences, STORM 

is able to identify functionally-equivalent input symbols. This connectionist memory- 

rule based approach to grammar induction is both novel and potentially extremely 

powerful. Identifying functionally-equivalent symbols and binding them together into 

states in a bottom-up manner, allows the model to learn using a minimum of training 

data. Such efficiency is a highly desirable characteristic for any model of language 

acquisition, due to the constraints imposed by the sparse data problem.

Experiments have shown that some STORM models are able to learn a perfect 

representation of the Reber grammar using a training set of only 30 sequences. A 

generalization test, using randomly generated sequences that were not encountered 

during training, shows that the same models can correctly predict the next symbols in 

the grammar with an accuracy of 100%. An activation analysis of a trained model 

confirms that STORM forms a state-based representation of the grammar and clusters 

input symbols based on their respective states. Despite this apparent perfect 

performance, the experiments also highlight the model’s instability by showing that a 

large number of models fail to learn a perfect representation of the grammar. 

However, despite this instability STORM’s performance is significantly better than 

for SRNs (Sharkey el al, 2000), where only two out of ninety SRNs became finite- 

state grammar recognizers in a similar experiment on the Reber grammar.
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Theoretical extensions to the model show how STORM can be scaled up to learn 

grammars with a complexity closer to natural language. By treating recovery from 

over-generalization as re-memorization with a respect to erroneous rules, the model 

should conform to the third stage in the U-shaped learning curve of child language 

development and learn exceptions to over-generalized rules. This research also 

discusses how the model can be extended to learn context-free grammars, by 

optimizing its representation of sub-sequences.

In conclusion, the research has been successful in creating a novel unsupervised 

connectionist model, capable of inducting the finite-state properties of a regular 

grammar. It is therefore a significant step towards automated language acquisition. 

Furthermore, STORM’s foundations in functional-equivalence theory provide a 

means of generalization that is not available in conventional connectionist models. 

This powerful learning algorithm may have applications beyond the domain of 

language acquisition. STORM’s approach to grammar induction further challenges 

traditional nativist perspectives on the feasibility of language acquisition (Chomsky, 

1965) by implying that all the information necessary to learn grammar may actually 

be available in the input sequences themselves.

6.1 Future Research

The proposals for future research will focus on initially stabilizing the model before 

discussing further experiments on more complex grammatical problems. A number of 

enhancements to the model will be proposed, along with a general discussion of how 

STORM could be applied to problems outside of linguistics.
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6.1.1 Stabilization of model

Future research will initially focus on stabilizing the model to ensure that STORM is 

able to learn the grammar more reliably. Since the task of grammar induction involves 

learning grammars whose structure is potentially unknown, the model must be 

capable of accurately inducing the grammar to a reliable degree. Otherwise, if an un

reliable model is applied to an unknown problem then any resulting solution will be of 

questionable value. The reason for this is that without knowledge of the correct 

grammar, it will be very hard to identify erroneous representations resulting from the 

model’s failure. Therefore, before STORM can be applied to the exploration of 

unknown grammars, its performance should be improved such that it learns a perfect 

representation of the grammar over 50% of the time. Once more than 50% of the 

models can learn the grammar, than averaging techniques can be applied to a set of 

trained models in order to extract a correct representation of the grammar.

As discussed in section 5.1, a design limitation in STORM’s rule-construction 

algorithm, resulted in a theoretical instability known as a causality loop. This 

instability arises because the initial activation of a rule is an abrupt event, rather than a 

gradual process. Consequently the resulting instability may destroy the rule in 

question. Section 5.1 also discusses how a side-effect of successful rule-construction 

results in significant instability as well. These instabilities may be responsible for the 

model’s erratic performance. Therefore, re-designing the model to use a smother rule- 

construction algorithm may significantly improve its performance.
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6.1.2 Inflectional morphology, performance evaluation and Mealy 
machines

As previously discussed, modelling the acquisition of the English past-tense has 

become the de-facto battleground for competing cognitive learning theories. 

Connectionist models such as (Rumelhart and McClelland, 1986; Plunkett and 

Marchman, 1996) attempt to capture the U-shaped learning curve that is believed to 

characterize the performance of child language learners. However, as discussed by 

Marcus (2000), no current connectionist model is able to successfully capture the 

process of recovery from over-regularization, without resorting to implausible 

manipulation of the training environment or supervisor signal. Therefore, if STORM 

could be successfully shown to exhibit this U-shaped learning curve during 

acquisition of the English past-tense, it would establish that the model is a viable 

connectionist language acquisition system in its own right.

In order to evaluate the model’s performance throughout the learning process, its 

knowledge of the English past-tense must be evaluated to determine whether it 

conforms to the U-shaped learning curve. Currently the model’s performance is 

evaluated by predicting the two next winning neurons. However, using the simple 

criterion of selecting the two statistically most probable next winning neuron may not 

be sufficient to evaluate the model’s performance on other grammar. The reason for 

this is that complex grammars are non-deterministic and may have many possible next 

winners. The probability of each possible winner is determined by its statistical 

frequency in the training set. One possible method of addressing this issue is to bind 

additional meaning into the model, such that each input symbol is also associated with 

an output symbol. This would allow the prediction of the next input symbol which the 

model would associate with the next specified output symbol.
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Using both input symbols and their associated output symbols, STORM would 

effectively be turned into a Mealy machine. In the context of modelling the 

acquisition of the English past-tense, the presence of output symbols would 

dramatically simplify the problem of evaluating the model’s performance. This could 

be achieved by using a representation scheme in which the output symbol denotes the 

tense of a verb (ex. past, present, future) and the input symbol represents the participle 

of the verb (ex. -ed, -ing). By applying a simple Hebbian style binding mechanism, 

the winning neuron representing the current input symbol could be bound to the 

neuron representing the respective output symbol. Effectively the output symbols 

would act as semantic tokens that would be bound to the syntactic input symbols.

Such an approach would involve training the model by presenting the output symbols 

denoting the tense of each verb at the same time as the input symbols.

The presence of these semantic output tokens would allow the model to predict the 

next winning neuron corresponding to a particular meaning (e.g. what would be the 

past tense participle of a verb, given its infinite form?), rather than just predicting the 

statistically most likely next winning neuron. In the case of irregular verbs, such 

participles could consist of a representation of the entire irregular verb (ex. ran). 

Therefore, using this approach the predicted participle for each verb could be 

evaluated throughout the training process. Thus it would be possible to verify whether 

STORM conforms to the U-shaped learning curve when learning irregular verbs. Such 

performance would be confirmed if, as expected, the model exhibits initial rote- 

learning of irregulars, followed by over-generalization of induced rules (ex. run-ed) 

and eventual re-memorization of irregulars with respect to erroneously applied rules 

(section 5.3).
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6.1.4 Experiments on more complex grammars

As proposed in section 5.3, STORM could be enhanced to learn context-free 

grammars. Future research should therefore involve performing the necessary design 

enhancements that will allow the model to efficiently learn centre-embeddings, 

possibly involving an external symbolic stack. Once implemented, the model should 

be initially tested on learning the extended-Reber grammar. If successful, the model 

could later be applied to grammars with more similarity to natural language, such as 

those used by Elman (1990). However, as discussed in the previous section, when 

learning more complex grammars the performance criterion of the next predicted 

winner may not be sufficient to measure the model’s grammar induction abilities. A 

Mealy machine approach, that links STORM’s input symbols to semantic output 

tokens, may be appropriate for evaluating specific grammatical problems (such as the 

English past-tense). However, such an approach may not be appropriate for evaluating 

the model’s performance on general grammatical problems. This would be especially 

true for artificial grammars that have no appropriate meaning which could be attached 

to the input symbols.

An alternative method of evaluating the performance of these artificial grammars 

could involve using the criterion of sentence acceptance. By measuring the error level 

in response to a particular input symbol, the performance algorithm could determine 

whether the input symbol in question would be deemed acceptable in the grammar. 

While sentence acceptance is computationally similar to sentence prediction, the latter 

is more complex because it involves predicting all the possible grammatical symbols 

at a given state in a sequence. In order fully assess performance, the model must be 

tested on both positive and negative data (i.e. does the model accept un-grammatical
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sequences as well as grammatically correct sequences?). A similar approach to 

measuring performance has previously been successfully used in experiments (Reali 

and Christiansen, in press). Sentence acceptance is also common terminology in 

formal linguistics and would therefore be a self-explanatory choice of performance 

criterion. However, while sentence acceptance may provide a measure of the model’s 

knowledge of the grammar, it cannot in itself be used to perform many useful tasks 

(unlike alternative performance criterion such as prediction, which could be used for 

disambiguation).

6.1.5 Multi-layered STORM model

Section 5.3 detailed an extension to STORM that would allow the model to process 

context-free grammars. However, while this approach to optimizing sub-sequence 

representations by using an external stack is technically feasible, it lacks the elegance 

characteristic of the original STORM model. An alternative approach which could be 

investigated in future research involves the use of multiple STORM layers operating 

together (fig 6.1). Section 5.3 explained that STORM was unable to efficiently learn 

context-free languages due to their centre-embeddings. In a memory-rule based 

perspective of language, the processing of such constructs can be viewed as a sub

sequence optimization problem.
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Fig. 6.1 -  Multi-layered STORM model

A multi-layered STORM model may be capable of processing context-free languages 

if the centre constructs (i.e. the sub-sequences within the main sequences) could be 

handled by the upper layer. This would allow the first layer to learn the regular rules 

of the grammar, while the second layer learns the rules within the embedded 

constructs. However, the problem with a multi-layered STORM model concerns the 

criteria for inter-layer communication. Unlike distributed connectionist models 

trained via back-propagation, STORM layers cannot just be plugged into each other.

A selection criterion in requested to select a particular layer for processing each input 

symbol presented to the model.

A possible solution to this inter-layer communication problem can be found in the 

operation of a connectionist system known as neural sequence chunkers 

(Schmidhuber, 1991). The operational principle of this approach to learning is that the 

model concentrates only on unexpected inputs, rather than all inputs in the sequence. 

When an input is not predictable it is passed up to the next layer, an approach which 

allows the model to find sub-sequences in the inputs. Such a principle of passing



unexpected inputs up to the next layer for processing could be incorporated into a 

multi-layer STORM model in order to solve the inter-layer communication problem. 

Thus when an input symbol is presented to STORM, both layers could be searched for 

the best matching neuron. This should allow sub-sequences (which are more efficient 

to both represent and predict as separate sequences) to be processed by the upper 

layer.

6.16 Beyond linguistics -  The power of functional generalization

Conventional connectionist models use the past to predict the future. Such models act 

as similarity engines and learn by generalizing induced knowledge to similar 

objects/situations as those encountered during training. In contrast, STORM uses the 

future to understand the structure of the past. STORM learns by generalizing 

knowledge based on similarity o f behaviour, rather than just similarity ofform. Both 

methods of generalization allow a model to learn by deducing unobserved traits using 

knowledge of previously induced traits (Pinker, 2000). For example, both 

conventional connectionist models and STORM would be able to predict that a 

blackbird is able to fly, based on evidence showing the behaviour of other birds. 

Conventional connectionist models would solve this problem by generalizing the 

behaviour of flight to the blackbird because it physically looks like other birds that 

can fly (i.e. has feathers, wings and a beak). However, STORM would solve this 

problem by forming a functional-relationship between all of the birds it encounters, 

based on similarities in their behaviour (i.e. lays eggs, sings at dawn and nests in 

trees). By learning that all birds are related, STORM would be able to generalize a 

specific behaviour, such as flight, that it has learnt from other species to the blackbird.
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While both conventional connectionist models and STORM can solve problems 

involving generalization between similar objects, the power of STORM’s function 

based generalizations becomes apparent when learning problems involving dissimilar 

objects. For example, consider attempting to train a connectionist model to learn that 

all living organisms will eventually die. Assume such a model was trained on physical 

descriptions of organisms and abstract descriptions of their physiological behaviour 

(i.e. reproduces, consumes nutrients, grows). If this model were also provided with 

training data showing that some of these organisms die, would it be able to generalize 

that other organisms, encountered during training, also die?

A conventional connectionist model would not be able to adequately solve such a 

problem because it has no concept of the category living things. Therefore, such a 

model could only deduce that a specific organism would die, if it were physically 

similar to other organisms that the training data showed would die. However, because 

STORM learns via function based generalization, it would functionally-relate the 

organisms encountered during training based on their overlapping physiological 

activity (effectively forming the category living things). Therefore when STORM 

learns that some of these organisms will die, it is able to generalize that physiological 

activity to all functionally-related organisms and therefore deduce that all living 

organisms will die.

This human-like ability to learn via function based generalization is potentially very 

powerful and could be used to model many problems beyond linguistics. Possible 

connectionist applications include general purpose inductive learning and reasoning

133



(Heit, 1997), robot planning and control, invariant object recognition (Giles and 

Maxwell 1987) and financial forecasting.
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Appendix B -  Glossary

Acronym Meaning

Al Artificial Intelligence

ANN Artificial Neural Network

ART Adaptive Resonance Theory

CFG Context-Free Grammar

CSG Context-Sensitive Grammar

DFA Deterministic Finite-Automata

DNA Deoxyribose Nucleic Acid

DRN Dynamic Recurrent Network

DVD Digital Versatile Disc

FSG Finite-State Grammar

FSM Finite-State Machine

JASPER Journalist’s Assistant for Preparing Earning Reports

LIN Leaky Integrator Neuron

MLP Multi-Layer Perceptron

NLP Natural Language Processing

PDP Parallel Distributed Processing

RAAM Recursive Auto-Associative Memory

RSOM Recurrent Self-Organizing Map

SARDNET Sequential Activation Retention and Decay NETwork

SRN Simple Recurrent Network

SOM Self-Organizing Map

SOTPAR Self-Organizing Temporal Pattern Recognizer



SRSOM

SSN

STORM

TKM

TSOM

TSP

TSVB

XOR

Simple Recurrent Self-Organizing Map 

Simple Synchrony Network 

Spatio-Temporal Self-Organizing Recurrent Map 

Temporal Kohonen Map 

Temporal Self-Organizing Map 

Temporal Sequence Processing 

Temporal Synchrony Variable Binding 

Exclusive OR
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Abstract: We present a novel approach to unsupervised temporal sequence processing in the 
form of an unsupervised, recurrent neural network based on a self-organizing map (SOM). A 
standard SOM clusters each input vector irrespective o f context, whereas the recurrent SOM 
presented here clusters each input based on an input vector and a context vector. The latter 
acts as a recurrent conduit feeding back a 2-D representation of the previous winning neuron. 
This recurrency allows the network to operate on temporal sequence processing tasks. The 
network has been applied to the difficult natural language processing problem of position 
variant recognition, e.g. recognising a noun phrase regardless of its position within a 
sentence.

Keywords: neural network, natural language processing, temporal sequence processing, 
self-organizing map, unsupervised, recurrent.

1. Introduction
Temporal sequence processing (TSP) is an increasingly important field for neural networks, 
with applications ranging from weather forecasting to speech recognition [1]. TSP involves 
the processing of signals that vary over time. Problems such as predicting the weather 
generally cannot be solved by just examining a set of current inputs from the dynamic system 
in question, e.g. a satellite image showing today’s cloud cover. Rather, any prediction must be 
based on the current input in the context of a number of previous inputs, e.g. a satellite image 
for today along with satellite images from the previous five days, showing how the weather 
has changed so far over the week.
Neural network models for TSP outperform alternative methods, such as NARMAX [9], 
mainly due to their ability to learn and generalise when operating on large amounts of data 
[9]. Supervised learning is usually used to solve TSP problems, i.e. the recurrent neural 
network must be explicitly trained by providing a desired target signal for each training 
exemplar. Current supervised learning methods are computationally inefficient [8 ] and are 
unable to solve certain types of problems [6 ].
A number of unsupervised neural networks for TSP have been proposed [6 ], mostly based on 
the self-organizing map (SOM) [5]. These models use a variety of external and internal 
memory mechanisms to capture information concerning past inputs, e.g. tapped delay lines 
and leaky integrators. Unsupervised learning has advantages over equivalent supervised 
techniques in that it makes fewer assumptions about the data it processes, being driven solely 
by the principles of self-organization, as opposed to an external target signal.
We present a novel, unsupervised, recurrent neural network based on a SOM to identify 
temporal sequences that occur in natural language, such as syntactic groupings. The network 
uses both an input vector and a context vector, the latter of which provides a 2-D 
representation of the previous winning neuron. The proposed network is applied to the 
difficult natural language processing (NLP) problem of position variant recognition, e.g. 
recognising a noun phrase regardless of its position within a sentence.
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2. Architecture and algorithm
T he netw ork  has a 28-bit input vec to r that p rov ides a b inary  represen tation  o f  the input tag  
being processed. In addition to  th is input vector, the netw ork  also  uses a second con tex t 
vector. T he size o f  th is con tex t vec to r can be varied  depend ing  on the  size o f  the netw ork , but 
in experim en ts detailed  below  the con tex t v ec to r w as set to  10 bits (Fig. 1). Both the  input and 
the  con tex t vector are used in the E uclidean  d istance calcu lation  to  determ ine the w inning  
neuron in a sim ilar m anner to  a standard  SO M .
T he con tex t vector represen ts the prev ious w inn ing  neuron using a 10-bit coord ina te  vector. 
T he first five bits o f  th is vector rep resen t the b inary  num ber o f  the w inn ing  n eu ro n 's  row, 
w h ile  the latter five bits rep resen t the  b inary  num ber o f  the  w inning  n eu ro n ’s co lum n. T his is 
an effic ien t m ethod o f  coord ina te  rep resen ta tion  th a t p rov ides the netw ork  w ith  a 2-D  view  o f  
spatial con tex t. It is an im provem ent o ver an initial approach , w hich rep resen ted  the previous 
w inn ing  neuron using only  a binary  rep resen ta tion  o f  its num ber w ith in  the  SO M . Such a 
rep resen ta tion  prevented  the netw ork  from  seeing  s im ilarities betw een ne ighbouring  neurons 
in ad jacen t co lum ns. F or exam ple , neuron 8 and neuron  28 are neighbours on the SO M  show n 
above and  w ill therefo re be rep resen ta tive  o f  s im ilar patterns. H ow ever, the binary  
rep resen ta tion  o f  the num bers 8 (i.e. 01000) and 28 (i.e. 11100) are d issim ilar. T hus sim ilar 
input patterns m ay resu lt in d iss im ila r con tex t causing  s im ilar sequences to  be clustered  to 
sign ifican tly  d iffe ren t regions o f  the  SO M . It is env isaged  tha t this w ould  reduce the 
ne tw o rk ’s ab ility  to  generalize.
T he coo rd ina te  system  o f  con tex t rep resen ta tion  so lves th is problem  by effec tive ly  provid ing  
the netw ork  w ith a 2-D  view  o f  w inn ing  neurons. In the exam ple  given above, neuron 8 
w ould  be represen ted  as 1000000010, w hile  neuron  28 w ould  be rep resen ted  as 0100000010. 
(N o te  th a t only  one bit is d iffe ren t in th is exam ple  as opposed  to  tw o bits in the exam ple 
above).
A s w ith  the standard  SO M , the  recurren t SO M  presented  here uses a neighbourhood  function 
to  update the w eights o f  neurons in a reg ion  around  the w inn ing  neuron. Both the w eight 
vec to r and the contex t vector o f  ne ighbouring  neurons are m oved tow ards those  o f  the 
respective  input and con tex t vectors. T he netw ork  uses a G aussian  neighbourhood  function  to 
ca lcu la te  the learning rate that w ill be app lied  to  these  neurons. T his function  allow s 
im m ediate ly  neighbouring  neurons to  experience  sim ila r w eight changes to  those  o f  the 
w inn ing  neuron, w hile d istan t neurons experience  m in im al w eigh t changes. H ow ever, in 
o rd er to  im prove com putational efficiency , the  neighbourhood  function  uses a cu t-o ff  value, 
beyond  w hich neurons do not take part in w eigh t updates at all.

t
0000000000000000101111100000

28-bit Input vector 
for winning neuron

t
0100100101

10-bit Context vector 
for winning neuron

Fig. 1 -  N etw ork  show ing  recurren t feedback
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3. Experiments
Initially , the new  netw ork  is being  applied  to  a co rpus-based  natural language task  (Fig. 2) 
using  the L ancaster Parsed C orpus (L P C ) [7]. A t p resen t, the m ain ob jective  o f  the research is 
to  identify  coarse phrase boundaries (e.g . noun phrases or verb phrases w ith little o r no 
em bedd ing ) tha t m ay em erge on the topo log ica l m ap from  exposure  to  linear sequences o f  
w ords (sen tences) that have been pre-tagged  w ith sym bols deno ting  the  w o rd 's  part-of-speech  
(e.g . noun, ad jective , verb  etc) [2],
A netw ork  w ith an ou tpu t layer o f  20 x 20 neurons w as trained  in tw o phases, fo llow ing  
K o h o n en ’s research on tra in ing  S O M s [3], T he first convergence  phase consisted  o f  1000 
epochs, in w hich the learning rate w as linearly  reduced  from  an initial value  o f  0.1, but w as 
not allow ed to  fall below  0.01. T his w as fo llow ed by a second  fin e - tu n in g  phase in w hich a 
learn ing  rate o f  0.01 w as applied  for 2500 epochs. W hile  the num ber o f  epochs in the first 
phase confo rm s w ith K oh o n en ’s research  [3], the num ber o f  epochs in phase tw o is 
considerab ly  sm aller than the num ber suggested . A t th is  initial stage in the research , this 
reduction  is necessary  due to tim e and com putational constra in ts . H ow ever, experim en tal 
ana ly sis  has no t show n a sign ifican t reduction  in the quality  o f  results w hen tra in ing  tim es in 
phase tw o are reduced.
A sam ple o f  664 sen tences from  the  LPC [7] w ere p resen ted  to  the netw ork. P resen ta tion  
occurred  in random  order to  im prove tra in ing  effic iency  and to  prevent the w eigh ts from  
b ecom ing  stuck during  the low neighbourhood  value in phase tw o. T he con tex t vec to r is set to 
zero  betw een  each sen tence to  prevent con tex tua l in form ation from  prev ious sen tences 
in te rfering  w ith  subsequen t sen tences.

Q3SESSSZ3

Speed
f* Toftose

Network Controls
W Stop after sentence Epoches Neighbourhood

|o  |5 ------ Stop 1 I I

  1 1 ^  ’

Fig. 2 -  S creensho t from  the cu rren t netw ork . T he raised, co loured  po lygons represen t 
w inn ing  neurons for the sen tence o f  tags p resen ted  to  the netw ork.

4. Results
T he prelim inary  results are encourag ing , as they  show  tha t w ord tags are being  c luste red  in 
locations consisten t w ith the ir contex t. T he resu lts in Figs. 3 -5  show  th ree  sim ple artific ia lly  
construc ted  sen tences o f  vary ing  tense. D espite  these  varia tions in tense, each exh ib its  a 
s im ilar trace  pattern  over the m ap. W e refer to  these  traces as signatures.
Fig. 6 show s tw o sim ple noun phrases w ith and w ithou t a p reposition . W hile both sen tences 
show  sim ilar s ignatures for the  noun phrase, the effec t o f  the preposition  can clearly  be seen 
to  a lter the  signature o f  the second phrase.
It is hoped  that fu rther analysis w ill reveal the ex ten t to w hich the netw ork  can exp lo it the 
co n tex t and show  w hat kind o f  tem poral syn tactic  patterns the netw ork  can find in input
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sequences. A major benefit of finding such patterns in an unsupervised manner is that, unlike 
supervised techniques, there is no dependency on manually annotated corpora, which are not 
widely available due to the high costs associated with manually annotating raw language data. 
In fact it is envisaged that, should the unsupervised system prove successful in extracting 
syntactic structure, it would serve as an automatic syntactic annotation system thus reducing 
the need and cost of manual annotation.
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Fig. 3 -  Signature for sentence: 
“she goes down the stairs”

Fig. 4 -  Signature for sentence: 
“she went down the stairs’’’
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Fig. 5 -  Signature for sentence: 
“she is going down the stairs”

Fig. 6 -  Noun 
phrase with and 

without 
preposition

 ► The home

In the home
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5. Conclusions and future work
We have presented a novel recurrent SOM and applied it to the problem of position-variant 
recognition. We have shown that the network forms signatures in response to temporal 
sequences present in the inputs.
In addition to the natural language task, research is also being conducted into enhancing the 
recurrent SOM using lateral connections and a temporal Hebbian learning [4] mechanism.
The purpose of such a mechanism is to attempt to control the recurrency, allowing feedback 
to occur only when the winning neurons, whose representations are to be fed-back, are stable. 
This temporal Hebbian learning mechanism has been used in a previous experimental neural 
network and it is hoped that it will reduce the SOM’s training time.
In the next phase of this investigation, hierarchical clustering methods based on temporal 
SOMs will be developed to obtain finer-grained syntactic groupings. Future work will focus 
on the context representation that is fed back. The representation may be enlarged to give 
more emphasis to the context vector than the input vector, and it may also be optimised using 
genetic algorithms. Further experiments will be performed in the domain of natural language 
processing; specifically the network will be used to attempt to detect phrase boundaries. 
Additionally, if the network proves successful, it may also be used in a number of other areas 
including computer virus detection, speech recognition and image analysis.
On a wider scale, the recurrent SOM could be used as the core of a temporal neural 
processing system. For example, the recurrent SOM clusters patterns based on input featural 
similarities whilst a supervised neural network uses these reduced representations to perform 
a mapping to a corresponding set of desired outputs.
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Abstract

This paper presents a novel connectionist memory-rule based model capable o f  
learning the finite-state properties o f  an input language from  a set o f  positive 
examples. The model is based upon an unsupervised recurrent self-organizing map 
[1] with laterally interconnected neurons. A derivation o f  functional-equivalence 
theory [2] is used that allows the model to exploit similarities between the future  
context o f  previously memorized sequences and the fu ture context o f  the current 
input sequence. This bottom-up learning algorithm binds functionally-related  
neurons together to form  states. Results show that the model is able to learn the 
Reber grammar [3] perfectly from  a randomly generated training set and to 
generalize to sequences beyond the length o f  those fo u n d  in the training set.

1. Introduction

Since its inception, language acquisition has been one o f the core problems in 
artificial intelligence. The ability to communicate through spoken or written 
language is considered by many philosophers to be the hallmark o f human 
intelligence. Researchers have endeavoured to explain this human propensity for 
language in order both to develop a deeper understanding o f cognition and also to 
produce a model o f language itself. The quest for an automated language 
acquisition model is thus the ultimate aim for many researchers [4]. Currently, the 
abilities o f  many natural language processing systems, such as parsers and 
information extraction systems, are limited by a prerequisite need for an 
incalculable amount o f  manually derived language and domain-specific 
knowledge. The development o f a model that could automatically acquire and 
represent language would revolutionize the field o f artificial intelligence, 
impacting on almost every area o f computing from Internet search engines to 
speech-recognition systems.

Language acquisition is considered by many to be a paradox. Researchers such as 
Chomsky argue that the input to which children are exposed is insufficient for 
them to determine the grammatical rules o f the language. This argument for the 
poverty o f stimulus [5] is based on Gold’s theorem [6], which proves that most 
classes o f  languages cannot be learnt using only positive evidence, because o f the 
effect o f overgeneralization. G old’s analysis and proof regarding the unfeasibility 
o f language acquisition thus forms a central conceptual pillar o f modern linguistics. 
However, less formal approaches have questioned the treatment o f language 
identification as a deterministic problem in which any solution must involve a 
guarantee o f no future errors. Such approaches to the problem of language 
acquisition [7] show that certain classes o f language can be learnt using only 
positive examples if  language identification involves a stochastic probability o f 
success.

Language acquisition, as with all aspects o f natural language processing, 
traditionally involves hard-coded symbolic approaches. Such top-down approaches 
to cognition attempt to work backwards from formal linguistic structure towards 
human processing mechanisms. However, recent advances in cognitive modelling
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have led to the birth o f connectionism, a discipline that uses biologically inspired 
models that are capable o f learning by example. In contrast to traditional symbolic 
approaches, connectionism uses a bottom-up approach to cognition that attempts to 
solve human-like problems using biologically inspired networks o f interconnected 
neurons. Connectionist models learn by exploiting statistical relationships in their 
input data, potentially allowing them to discover the underlying rules for a 
problem. This ability to learn the rules, as opposed to learning via rote 
memorization, allows connectionist models to generalize their learnt behaviour to 
unseen exemplars. Connectionist models o f  language acquisition pose a direct 
challenge to traditional nativist perspectives based on Gold’s theorem [6] because 
they attempt to learn language using only positive examples.

Connectionism and Determinacy

Since the early nineties, connectionist models such as the simple recurrent network 
(SRN) [8] have been applied to the language acquisition problem in the form of 
grammar induction. This involves learning simple approximations o f natural 
language, such as regular and context-free grammars. These experiments have met 
with some success [6, 7], suggesting that dynamic recurrent networks (DRNs) can 
learn to emulate finite-state automata. However, detailed analysis o f models trained 
on these tasks show that a number o f fundamental problems exist that may derive 
from using a model with a continuous state-space to approximate a discrete 
problem.

While DRNs are capable o f learning simple formal languages, they are renowned 
for their instability when processing long sequences that were not part o f then- 
training set [8, 9], As detailed by Kolen [10], a DRN is capable o f partitioning its 
state space into regions approximating the states in a grammar. However, 
sensitivity to initial conditions means that each transition between regions o f state 
space will result in a slightly different trajectory. This causes instability when 
traversing state trajectories that were not seen during training. This is because 
slight discrepancies in the trajectories will be compounded with each transition 
until they exceed the locus o f the original attractor, resulting in a transition to an 
erroneous region o f state space. Such behavior is characteristic o f continuous state- 
space DRNs and can be seen as both a power and a weakness o f this class o f 
model. While this representational power enables the model to surpass 
deterministic finite automata and emulate non-deterministic systems, it proves to 
be a significant disadvantage when attempting to emulate the deterministic 
behavior fundamental to deterministic finite state automata (DFA).

Attempts have been made to produce discrete state-space DRNs by using a step- 
function for the hidden layer neurons [9]. However, while this technique eliminates 
the instability problem, the use o f a non-differentiable function means that the 
weight-update algorithm’s sigmoid function can only approximate the error signal. 
This weakens the power o f the learning algorithm, which increases training times 
and may cause the model to learn an incorrect representation o f the DFA.

The instability o f DRNs when generalizing to long sequences that are beyond their 
training sets is a limitation that is probably endemic to most continuous state-space 
connectionist models. However, when finite-state extraction techniques [9] are 
applied to the weight space o f  a trained DRN, it has been shown that once 
extracted into symbolic form, the representations learnt by the DRN can perfectly 
emulate the original DFA, even beyond the training set. Thus, while discrete 
symbolic models may be unable to adequately model the learning process itself, 
they are better suited to representing the learnt DFA than the original continuous 
state-space connectionist model.



While supervised DRNs such as the SRN dominate the literature on connectionist 
temporal sequence processing, they are not the only class o f recurrent network. 
Unsupervised models, typically based on the self-organizing map (SOM) [11], 
have also been used in certain areas o f temporal sequence processing [12]. Due to 
their localist nature, many unsupervised models operate using a discrete state-space 
and are therefore not subject to the same kind o f instabilities characteristic o f 
supervised continuous state-space DRNs. The aim o f this research is therefore to 
develop an unsupervised discrete state-space recurrent connectionist model that 
can induce the finite-state properties o f language from a set o f positive examples.

A Memory-Rule Based Theory of 
Linguistics

Many leading linguists, such as Pinker [13] and Marcus [14], have theorized that 
language acquisition, as well as other aspects o f  cognition, can be explained using 
a memory-rule based model. This theory proposes that cognition uses two separate 
mechanisms that work together to form memory. Such a dual-mechanism approach 
is supported by neuro-biological research, which suggests that human memory 
operates using a declarative fact-based system and a procedural skill-based system 
[15]. In this theory, rote memorization is used to learn individual exemplars, while 
a rule-based mechanism operates to override the original memorizations in order to 
produce behaviour specific to a category. This memory-rule theory o f cognition is 
commonly explained in the context o f the acquisition o f the English past tense 
[13]. Accounting for children’s over-regularizations during the process o f learning 
regular and irregular verbs constitutes a well-known battlefield for competing 
linguistic theories. Both Pinker [13] and Marcus [14] propose that irregular verbs 
are learnt via rote-memorization, while regular verbs are produced by a rule. The 
evidence for this rule-based behaviour is cited as the over-regularization errors 
produced when children incorrectly apply the past tense rule to irregular verbs (e.g. 
runned  instead o f ran).

The model presented in this paper is a connectionist implementation o f  a memory- 
rule based system that extracts the finite-state properties o f an input language from 
a set o f positive example sequences. The model’s bottom-up learning algorithm 
uses functional-equivalence theory [2] to construct discrete-symbolic 
representations o f  grammatical states (Figure 1).

STORM (Spatio Temporal Self-Organizing 
Recurrent Map)

STORM is a recurrent SOM [ 1 ] that acts as a temporal associative memory, 
initially producing a localist-based memorization o f input sequences. The m odel’s 
rule-based mechanism then exploits similarities between the future context o f 
memorized sequences and the future context o f input sequences. These similarities 
are used to construct functional-relationships, which are equivalent to states in the 
grammar. The next two sections will detail the model’s memorization and rule- 
based mechanisms separately.

STORM’s Memorization Mechanism

STORM maintains much o f the functionality o f the original SOM [11], including 
the winning-neuron selection algorithm (Equation 1), weight-update algorithm 
(Equation 2) and neighbourhood function (Equation 3). The model’s localist 
architecture is used to represent each element o f the input sequence using a



separate neuron. In this respect, STORM exploits the SOM ’s abilities as a vector 
quantization system rather than as a topological map. Equation 1 shows that for 
every input to the model (X), the neuron whose weight vector has the lowest 
distance measure from the input vector is selected as the winning neuron (Y). The 
symbol d  denotes the distance between the winning neuron and the neuron in 
question. As shown in fig 1, each input vector consists o f  the current input symbol 
and a context vector, representing the location o f  the previous winning neuron.

yt = arg min,- (d (x, wt)) (1 )

The weight update algorithm (equation 2) is then applied to bring the winning 
neuron’s weight vector (W), along with the weight vectors o f neighbouring 
neurons, closer to the input vector (X) (equation 2). The rate o f weight change is 
controlled by the learning rate a, which is linearly decreased through training.

M’ij (t + \)  = Wjj ( t)  + ah jj (.x ( t ) -  Wy ( 0 )  (2)

The symbol h in equation 2 denotes the neighbourhood function (equation 3). This 
standard Gaussian function is used to update the weights o f neighbouring neurons 
in proportion to their distance from the winning neuron. This weight update 
function, in conjunction with the neighbourhood function, has the effect o f 
mapping similar inputs to similar locations on the map and also minimizing weight 
sharing between similar inputs. The width o f  the kernel o is linearly decreased 
through training.

*,,=exp UIJ
2 a 2

(3)

The model uses an orthogonal input vector to represent the gramm ar’s terminal 
symbols. Each of the seven terminal symbols are represented by setting the 
respective binary value to 1 and setting all the other values to 0 (table 1).

Grammatical
symbol

Orthogonal
vector

B 1 0 0 0 0 0 0

T 0  1 0 0 0 0 0

P 0 0  1 0 0 0 0

S 0 0 0  1 0 0 0

X 0 0 0 0  1 0 0

V 0 0 0 0 0  1 0

E 0 0 0 0 0 0  1

Table 1 -  Orthogonal vector representations for input symbols
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Fig. 1 -  Diagram showing conceptual overview of model. The left 
side shows STORM ’s representation of a FSM, while the right 
side of the diagram shows the FSM for the Reber grammar.

As shown in Figures I and 2, STORM extends Kohonen’s SOM [11] into the 
temporal domain by using recurrent connections. The recurrency mechanism feeds 
back a representation o f  the previous winning neuron’s location on the map using a 
10-bit Gray-code vector. By separately representing the column and row o f  the 
previous winning neuron in the context vector, the recurrency mechanism creates a 
2D representation o f  the neuron’s location. Further details o f  the recurrency 
mechanism, along with its advantages, are provided in [1], This method o f  
explicitly representing the previous winner’s location as part o f  the input vector has 
the effect o f  selecting the winning neuron based not just on the current input, but 
also indirectly on all previous inputs in the sequence. The advantage o f  this method 
o f  recurrency is that it is more efficient than alternative methods (e.g. [16]), 
because only information pertaining to the previous winning neuron’s location is 
fed back. Secondly, the amount o f  information fed back isn’t directly related to the 
size o f  the map (i.e. recursive SOM [16] feeds back a representation o f  each 
neuron’s activation). This allows the model to scale up to larger problems without 
exponentially increasing computational complexity.

B T X S E
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Fig. 2 -  Diagram showing STORM ’s input representation. The model’s weight 
vector consists of a 7-bit orthogonal symbol vector representing the terminal 
symbol in the grammar, along with a 10-bit Gray code context vector, 
representing the column and row of the previous winning neuron.



STORM’s Rule-Based Construction Mechanism

The model’s location-based recurrency representation and localist architecture 
provide it with a very important ability. Unlike using conventional artificial neural 
networks, the sequences learnt by STORM can be extracted in reverse order. This 
makes it possible to start with the last element in an input sequence and work 
backwards to find the winning neurons corresponding to the previous inputs in the 
sequence. STORM uses this ability, while processing input sequences, to find any 
existing pre-learnt sequences that end with the same elements as the current input 
sequence. For example, Figure 3 shows that the winning neuron for the symbol lT' 
in sequence 1 has the same future context ( ‘X SE’) as the winning neuron for the 
first symbol ‘S’ in sequence 2.

Functional-equivalent theory [2] asserts that two states are said to be equivalent if, 
for all future inputs, their outputs are identical. STORM uses the inverse o f this 
theory to construct states in a bottom-up approach to grammar acquisition. By 
identifying neurons with consistently identical future inputs, the model’s temporal 
Hebbian learning mechanism (THL) mechanism binds together potential states via 
lateral connections. By strengthening the lateral connections between neurons that 
have the same future context, this THL mechanism constructs functional- 
relationships between the winning neuron for the current input and the winning 
neuron for a memorized input (referred to as the alternative winner) whose future- 
context matches that o f the current input sequence (Figure 4). In order to prevent 
lateral weight values from becoming too high, a negative THL value is applied 
every time a winning neuron is selected. This has the effect o f controlling lateral 
weight growth and also breaking down old functional relationships that are no 
longer used.

Fig. 3 -  Diagram showing the memorized winning neurons for two 
sequences that end with the same sub-sequence ‘XSE’

Once states have formed, they override the recurrency mechanism, forcing the 
model to use a single representation for the future inputs in the sequence rather 
than the original two representations (Figure 4). The advantage o f forming states in 
this manner is that it provides the model with a powerful ability to generalize 
beyond its original memorizations. The model’s THL mechanism conforms to the 
SOM ’s winner-take-all philosophy by selecting the alternative winner as the 
neuron whose future-context is the best match to that o f the current input sequence. 
Given that tracing back through the future-context may identity multiple 
alternative winners, the criteria o f best matching winner classifies the strongest 
sequence stored in the model as the winner. Furthermore, THL is only used to 
enhance the functional relationship between the winner and the alternative winner,



if the future-context for the alternative winner is stronger than that o f the winner 
itself. Thus, the model has a preference for always using the dominant sequence 
and it will use the THL mechanism to re-wire its internal pathways in order to use 
any dominant sequence.

Constructing the lateral connections between functionally-related neurons is 
equivalent to identifying states in a grammar. Once the strength o f these lateral 
connections exceeds a certain threshold they override the standard recurrency 
mechanism, affecting the representation o f the previous winning neuron that is fed 
back (Figure 4). Instead o f feeding back a representation o f the previous winning 
neuron, the lateral connections may force the model to feed back a representation 
of the functionally-related neuron. The consequence o f this is that the rest o f the 
sequence is processed as if the functionally-related neuron had been selected rather 
than the actual winner. For example, Figure 4 shows that when the first ‘S ’ symbol 
in sequence 2 is presented to STORM, its winning neuron is functionally linked to 
the winner for the ‘T ’ symbol from sequence 1. As the latter winning neuron is the 
dominant winner for this state, its location is fed back as context for the next 
symbol in sequence 2.

1. BT
2. BT
E

Fig. 4 -  Functional override in winning-neuron selection algorithm. The 
functional relationship (shown in grey) between the third symbol ‘S’ in the 
second sequence and the second sym b ol‘T ’ in the first sequence, forces the 
model to process the remaining elements in the second sequence (namely 
‘XSE’) using the same winning neurons as for the first sequence.

While a state is formed based on similarities in future context, there may be cases 
where the future context, for the respective input symbols that make up the state, is 
dissimilar (Table 2). However, once a state been constructed, the future context in 
subsequent sequences containing that state will be processed in an identical 
manner, regardless o f the future context itself. For example, when trained on the 
sequences in Table 2, the ‘T ’ symbol from sequence 1 will form a state with the 
first ‘S ’ symbol from sequence 2. This will result in both sequences 1 and 2 sharing 
the same winning neurons for their final three inputs (X S E). STORM will then be 
able to generalize this learnt state to its memorization o f sequence 3, resulting in 
the same winning neurons being activated for the ‘X X V V E ’ in test sequence 4 
as in training sequence 3.

O  0  O .*'§ o  
O  T O  O  0



# Training sequence
1 B T X S E
2 B T S X S E
3 B T X X V V E

# Test sequence
4 B T S X X V V E

Table 2 -  Generalization example. W hen trained on the first three 
sequences, STORM is able to construct a state between the ‘T ’ in 
sequence 1 and the first ‘S’ in sequence 2. By generalizing this learnt 
state to its memorization of sequence 3, STORM is able to correctly 
process sequence 4 by activating the same winning neurons for the 
sub-sequence ‘X X V V E ’ as would be activated in sequence 3.

Experiments
In order to quantify STORM ’s grammar induction abilities, the model was applied 
to the task o f predicting the next symbols in a sequence from the Reber grammar 
(Figure 1). Similar prediction tasks have been used in [8] and [3] to test the SRN’s 
grammar-induction abilities. The task involved presenting the model with symbols 
from a randomly generated sequence that was not encountered during training. The 
model then had to predict the next possible symbols in the sequence that could 
follow each symbol according to the rules o f  the grammar. STORM’s predictions 
are made by utilizing the locational representational values used in its context 
vector. As further explained in [1], the winning neuron for an input is the neuron 
whose weight vector best matches both the input symbol and the context 
representation o f the last winning neuron’s location. STORM predicts the next 
symbol by finding the neuron whose context representation best matches that o f the 
current winning neuron (i.e. the symbol part o f the weight vector is ignored in the 
Euclidean distance calculation). This forces the model to find the neuron that is 
most likely to be the next winner. The symbol part o f this neuron’s weight vector 
provides the next predicted symbol itself. This process is then repeated to find the 
second-best matching winner and the corresponding second predicted next symbol. 
In accordance with established training criteria for artificial neural network models 
[17], the experiments were conducted on randomly generated separate training and 
test sets (i.e. sequences were unique with respect to all other sequences in both 
sets). Such an approach ensures that the m odel’s performance, assessed from the 
test set, is a true measure o f its generalization abilities because the test sequences 
were not encountered during training. The experiment was run ten times using 
models with randomly generated initial weights, in order to ensure that the starting 
state did not adversely influence the results.

The recursive depth parameter, as listed in Table 3, denotes the maximum number 
o f sequential recursive transversals a sentence may contain (i.e. how many times it 
can go around the same loop). In order to ensure that the training and test 
sequences are representative o f the specified recursive depth, the sets are divided 
equally between sequences o f each recursive depth (i.e. a set o f six sequences with 
a recursive depth (RD) o f  2 will contain two sequences with an RD o f 0, two 
sequences with an RD o f 1 and two sequences with an RD o f 2).
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Parameter Value
Number of epochs 1000
Learning rate a (linearly 0.1
decreasing)
Initial neighbourhood a 5
(linearly decreasing)
Positive / negative 0.5/
temporal Hebbian 0.005
learning rate
Number of training 2 1

sequences
Number of test sequences 7
Maximum recursive 6

depth (RD) of sequences
Model size 10 x

10

Table 3 - Experimental parameters for the first experiment

As shown in figure 5, six models learnt the grammar with over 89% accuracy 
during training and three o f them became perfect grammar recognizers. However, 
this number fell by the end o f training, with only two perfect models and an 
additional two models with over 90% performance accuracy. This equates to an 
average post-training performance o f 71%. While less than half the models 
successfully learnt the grammar, it is worth noting that this is significantly better 
than for SRNs where Sharkey [18] showed that only two out o f 90 SRNs became 
finite-state grammar recognisers in a similar experiment using the Reber grammar.

One o f the proposed advantages o f a discrete state-space model (page 3), is its 
ability to generalize to sequences longer than those encountered during training 
without the instabilities characteristic o f standard DRN models. In order to test this 
proposition, a perfect finite-state recognizer (i.e. a model that scored 100% 
prediction accuracy) from the first experiment (figure 5) was tested on a further 
three test sets. These sets contained sequences with recursive depths o f 8, 10 and 
12 and should constitute a much harder problem for any model trained only on 
sequences with a recursive depth o f 6. These models that achieved 100% 
performance accuracy in the original experiments also achieved 100% accuracy on 
training sets with higher recursive depths. This proves that these models act as 
perfect grammar recognizers that are capable o f generalizing to sequences o f  
potentially any length.



Test number
□ Highest prediciton accuracy during training 
H Prediction accuracy after training

Fig 5 -  Results from ten models trained on randomly generated separate 
training and test sets.

Conclusions and Future Work

We have presented a novel connectionist memory-rule based model capable of 
inducing the finite-state properties o f an input language from a set o f positive 
example sequences. In contrast with the majority o f supervised connectionist 
models in the literature, STORM is based on an unsupervised recurrent SOM [1] 
and operates using a discrete state-space.

The model has been successfully applied to the task o f learning the Reber grammar 
by predicting the next symbols in a set o f randomly generated sequences. The 
experiments have shown that over half the models trained are capable o f learning a 
good approximation o f the grammar (over 89%) during the training process. 
However, by the end o f training, only a fifth o f the models were capable of 
operating as perfect grammar recognizers. This suggests that the model is unstable 
and that partial or optimal solutions reached during training may be lost by the end 
o f the training process. Despite this instability, a comparison between STORM and 
the SRN, when applied to a similar problem [3], shows that STORM is capable o f 
learning the grammar perfectly much more often than its counterpart. Furthermore, 
experiments show that STORM ’s discrete state-space allow it to generalize its 
grammar recognition abilities to sequences far beyond the length o f those 
encountered in the training set, without the instabilities experienced in continuous 
state-space DRNs.

Future work will initially involve analyzing the model to find where it fails. Once 
the model’s abilities have been fully explored, its stability will be improved to 
increase the number o f models that successfully become perfect grammar 
recognizers. STORM will then be enhanced to allow it to process more advanced 
grammars. Given that regular grammars are insufficient for representing natural 
language [19], the model must be extended to learn at least context-free languages 
if it is to be applied to real-world problems. However, despite such future 
requirements STORM ’s current ability to explicitly learn the rules o f a regular 
grammar distinguish its potential as a language acquisition model.
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Appendix D -  Examples of training and test

sequences

The following sequences have been used to train a model to 100% performance on the 
Reber grammar using the training regime described in section 4.5.

The following sequences are in their numerical form as used during training. The 
numbers can be translated in grammatical symbols using the following key.

Key: B = 1, T = 2, S = 4 ,X  = 5,V  = 6 ,P  = 3 ,E  = 7

Training Sequences:

1 2 4 4 4 4 5 5 6 6 7
1 2 4 5 5 2 6 3 5 2 2 2 2 6 6 7
1 2 5 5 6 3 5 6 6 7
1 3 2 6 3 5 6 6 7
1 2 4 4 5 5 6 3 4 7
1 2 4 5 5 6 6 7
1 2 5 4 7
1 2 5 5 2 2 2 2 2 2 6 6 7  
1 2 4 5 4 7
1 3 6 3 5 2 2 2 2 2 6 3 5 2 2 2 2 6 3 5 6 3 5 6 6 7
1 3 6 3 4 7
1 3 6 6 7
1 2 5 5 2 6 6 7
1 2 5 5 6 3 5 6 3 4 7
1 2 4 5 5 2 6 6 7
1 3 2 6 3 4 7
1 2 4 5 5 6 3 5 6 6 7
1 3 6 3 5 2 2 6 6 7
1 3 2 2 2 2 2 2 6 6 7
1 2 5 5 6 6 7
1 2 5 5 6 3 4 7
1 2 4 5 5 2 2 6 6 7
1 3 6 3 5 6 3 5 2 6 3 5 2 2 6 6 7
1 3 2 6 6 7
1 2 4 4 4 5 4 7
1 2 5 5 6 3 5 2 6 3 4 7
1 2 4 4 5 4 7
1 2 4 4 5 5 6 6 7
1 2 4 5 5 6 3 5 2 6 3 4 7
1 2 4 5 5 6 3 4 7

Test sequences:

1 2 5 5 2 6 3 4 7
1 2 5 5 2 2 6 6 7

I—{ 2 4 4 5 5 6 3 5 6 3 4 7
1 2 4 4 4 4 4 4 5 5 2 6 6 7
1 3 2 6 3 5 2 2 2 6 3 4 7
1 2 5 5 2 2 2 2 6 6 7
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1 2 4 4 5 5 2 2 2 6 3 4 7
1 3 2 2 2 6 6 7
1 3 2 2 6 3 5 6 6 7
1 2 4 5 5 6 3 5 2 6 6 7

163



The
Nottingham

Trent
University

Libraries & 
Learning 

Resources

The Boots Library: 0115 848 6343 
Clifton Campus Library: 0115 848 6612 

Brackenhurst Library: 01636 817049


