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AUTOMATED MATERIALS DISCRIMINATION 
USING 3D DUAL-ENERGY X-RAY IMAGES 

Ta Wee Wang 
ABSTRACT

The ability o f a human observer to identify an explosive device concealed in complex 
arrangements o f objects routinely encountered in the 2D x-ray screening of passenger 
baggage at airports is often problematic. Standard dual-energy x-ray techniques enable 
colour encoding o f the resultant images in terms of organic, inorganic and metal 
substances. This transmission imaging technique produces colour information computed 
from a high-energy x-ray signal and a low energy x-ray signal (80keV<E<140keV). The 
broad nature o f this materials discrimination places plastic explosive in the same organic 
window as other innocuous organic items. Also, images o f a threat substance which has 
been masked by other materials will result in colour encoding which is proportional to the 
effective atomic number o f the threat material and the masking material. The work 
presented in this thesis enables the effective atomic number o f the target material within a 
specified window (6.6 < Zeff<  13) to be automatically discriminated from many layers o f 
overlapping substances. This is achieved by applying a basis materials subtraction 
technique to the data provided by a wavelet image segmentation algorithm. This imaging 
technique is reliant upon the image data for the masking substances to be discriminated 
independently o f the target material. Further work investigated the extraction o f depth data 
from stereoscopic images to estimate the mass density o f the target material.

A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision 
Systems Group at The Nottingham Trent University in collaboration with The Home 
Office Science and Technology Group provided the image data for the empirical 
investigation. This machine utilises a novel linear castellated dual-energy x-ray detector 
recently developed by the Vision Systems Group. This detector array employs half the 
number o f scintillator-photodiode sensors in comparison to a conventional linear 
dual-energy sensor. The castellated sensor required the development o f an image 
enhancement algorithm to remove the spatial interlace effect in the resultant images prior 
to the calibration of the system for materials discrimination.

To automate the basis materials subtraction technique a wavelet image segmentation and 
classification algorithm was developed. This enabled overlapping image structures in the 
x-rayed baggage to be partitioned. A series o f experiments was conducted to investigate 
the discrimination of masked target materials. It was found that the system noise produced 
significant errors in the polynomial equations used for estimating the thickness of the 
aluminium and plastic basis materials. However, a successful demonstration o f an 
automated technique for discriminating a plastic plate in some realistic scenarios has been 
demonstrated. Although, the technique will only work correctly if  the materials masking 
the target fall within the window of effective atomic number defined by the chosen basis 
materials. Thus, for instance a steel mask would produce a false negative result.

In order to discriminate it accurately a material would require the determination o f its 
mass density. This could be provided within the reported basis material subtraction theory 
if  the thickness o f the target were known. However, the depth resolution (±6.7mm) 
produced by the experimental stereoscopic system was found to be too coarse for 
inclusion in the automated material discrimination program.



SYMBOLS

ai Basis material coefficient for basis material 1
Cl2 Basis material coefficient for basis material 2
ac Compton contribution to p
dp Photoelectric contribution to jli
Ac Path integrals o f ac
AP Path integrals o f ap
A Atomic weight
Bs Linear translation speed (m/s)
<j Convergence angle
e Characteristic angle
E X-ray energy
fc Klein-Nishina formula for Compton scatter
f P Energy dependence of the photoelectric interaction
f s Detector scan frequency
g(k) Detail filter
h(k) Smooth filter
H(n) Histogram
HI High energy signal
I Measured intensities with attenuation
Io Measured intensities without attenuation
LO Low energy signal
P Linear attenuation coefficient
p /p Mass attenuation coefficient
5P Minimum parallax
P Mass density
ro Classical electron radius
Ss Coarse signal (i.e. smooth signal) approximation at scale s
S(E) X-ray energy spectrum distribution
Sl(El ) Low energy x-ray spectra
Sh(Eh) High energy x-ray spectra
t Thickness
ti Aluminium basis material thickness
t2 Plastic basis material thickness
Tl Low energy logarithmic transmission
Th High energy logarithmic transmission
w„ Weight fraction o f component n
ws Wavelet coefficients (i.e. detail signals) at scale s
5X Projected field o f view o f individual scintillator elements in the translation 

X-axis (i.e. motion axis)
sz Minimum resolvable depth increment
z Atomic number
Aeff Effective atomic number
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ABBREVIATIONS

BMD Basis Materials Decomposition
BMS Basis Materials Subtraction
CT Computed Tomography
FAA Federal Aviation Administration
FNA Fast Neutron Analysis
keV kilo electron Voltage
kVp kilo Voltage peak
MRI Magnetic Resonance Imaging
PFNA Pulsed Fast Neutron Analysis
QRA Quadrupole Resonance Analysis
TNA Thermal Neutron Analysis
TNTU The Nottingham Trent University
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CHAPTER ONE
INTRODUCTION

1.1 Background

On the 8th November 1895, Wilhelm Conrad Rontgen discovered x-rays during his 

normal routine o f experimentsM1. A screen of barium platinocyanide placed some 

distance away from a gas filled cathode ray tube displayed an unexpected fluorescent 

glow in the darkened laboratory. The first application of x-rays was in the field of 

medical radiography and was quickly followed by many other applications which 

today include security screening, non-destructive inspection o f materials, diffraction 

and structure analysis and elemental analysis111. Thus, x-rays are the most important 

means o f investigating unknown crystal structure, chemical composition and 

poly crystalline orientation o f materials.

In recent years the aviation security screening industry has almost universally 

adopted linear x-ray detector array technology for the routine 2D screening of 

cany-on luggage and hold cargo at airports. This technology utilises the line-scan 

principle o f image formation and as such requires continuous relative motion 

between the baggage under inspection and the linear detector array. This is provided 

by a conveyor belt system typically operating at speeds o f 0.2m/s to 0.5m/s. Initially 

simple systems produced 6 bit or 8 bit monochrome shadowgraph images consisting 

o f 512x512 pixels displayed on a video monitor. In an attempt to make all the grey 

level data present in the images available to the human operator, image enhancement 

algorithms were implemented. Typically these operated on very dark or very light 

areas o f the image content. However, although such technology can meet the 

stringent throughput demands o f luggage in airports it does not provide the x-ray 

machine operator with information relating the three-dimensional shape or the 

material composition o f the object under inspection.

The problem of materials discrimination was partially addressed by the security 

screening industry in the late 1980’s with the development o f the dual-energy
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sensor01, K1. This technology enables materials discrimination information to be 

imparted to the observer in the form of colour encoded images representing organic, 

inorganic and metal substances. The organic compounds are defined generally as 

consisting of elements having effective atomic number o f 10 or less, the inorganic 

materials are defined as being comprised of elements having effective atomic 

number between 10 to 20, while the metal substances have an effective atomic 

number greater than 20. This description is used only as a general indicator o f 

substances and is by no means a precise materials definition. This type o f system is 

available from companies such as the EG&G Astrophysics Research Corporation, 

Heimann, Vivid Technologies Incorporated and Rapiscan.

There is an increasing awareness throughout the security screening industry that the 

presentation of high ‘quality’ (i.e. high spatial resolution) three-dimensional images 

to a well-trained human operator will prevent high false alarm rates. This is 

underpinned by the findings o f the UK Home Office and the USA Federal Aviation 

Administration (FAA). In fact the FAA Technical Centre, Atlantic City, has 

purchased two fully operational stereoscopic dual-energy scanners from Image Scan 

Holdings pic, a University spin off company. This technique is beginning to 

influence the security industry as it produces the highest quality 3D x-ray images 

available to the security-screening sector. The Nottingham Trent University (TNTU) 

team has conducted research in this area since their development of the first 

monochrome binocular stereoscopic line-scan x-ray machine in 1987, which was 

funded by HM Customs and Excise. This early research was expanded to include the 

development o f a dual-energy folded array system in collaboration with the Home 

Office Science and Technology Group, Sandridge UK in 1992. This collaboration 

has been continuously in place since this time. More recently, TNTU team has 

developed a novel linear array castellated dual-energy x-ray detector. This new 

sensorE1 is employed in the experimental binocular stereoscopic system used in the 

research programme reported in this thesis.

It is becoming apparent that much o f the industry effort over recent years into means 

o f automatically detecting explosives in hold baggage has been misplaced. A number 

of sophisticated methods have been tried. These have included nuclear techniques01,
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T1 W1’ ’ such as thermal neutron analysis (TNA), fast neutron analysis (FNA) and

pulsed fast neutron analysis (PFNA). Also electromagnetic techniques01, 01 such as 

magnetic resonance imaging (MRI), quadrupole resonance analysis (QRA) and
T TQ T t  C l  O ' )

microwave imaging have been tried. In addition X-ray scatter techniques * 

have been incorporated into commercial systems. All these technologies are designed 

to detect the presence o f explosives and do not produce conventional image data. 

Generally the data is very noisy and has very poor spatial correlation with the object 

under inspection . Manufacturers such as Vivid Technologies who use 

two-dimensional x-ray imaging techniques with increased materials discrimination 

capability adopt a more conventional approach. Whilst the EG&G Astrophysics 

Research Corporation utilises twin orthogonal views produced using a pair o f x-ray 

sources and dual-energy arrays. However this technique is wholly unsuitable for 

human interpretation as far as three-dimensional information is concerned. InVision 

Technologies and International Security Systems Inc. have opted for helical scan 

dual-energy tomography. However, this technique confronts the security industry 

with a number o f problems including a high x-ray dose, slow image production, 

mechanical complexity and cost (i.e. £500,000). The compromise solutions that are 

commercially available suffer from relatively poor image quality in order to provide 

some 3D information. It is becoming universally accepted that the 25% to 30% false 

alarm rates currently produced by all types of explosive detection systems presents 

serious logistical problems in airport luggage handling areas. Generally these 

techniques cannot compete with the throughput capability o f manually controlled 

line-scan x-ray techniques which is still the industry workhorse. Thus it is becoming 

increasingly apparent to the security industry that automated threat detection is 

currently not logistically possible. In its current form it has the potential to create 

more problems than it solves.

The research presented in this thesis builds upon the work o f the Vision Systems 

Group03, E4, E5, E6, E7, E8, E9, E10, E11 to augment the binocular stereoscopic technique by 

automatically discriminating specific or target materials in the resultant stereoscopic 

images. A previously developed experimental binocular stereoscopic dual-energy 

x-ray machine produced the raw image data for the empirical analysis. The major 

problem in discriminating specific materials in a complex arrangement o f
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overlapping objects is that the x-ray signal produced by the dual-energy sensor 

elements represents the average x-ray signature for both the ‘masking structure’ and 

the target material. This of course is a natural consequence o f using transmitted 

radiation to form an image. To extract materials information requires combining 

sophisticated calibration techniques with advanced image processing capability. 

Therefore, the aim of this research is to develop an automated technique to segment 

(i.e. to delineate layers) and extract the effective atomic number (in terms o f a 

characteristic angle) and mass density for a target material masked by other 

materials. In this way the binocular stereoscopic images may be improved by 

additional colour encoding of possible threat materials.

The initial research concentrates on the development of an image enhancement 

algorithm to remove the spatial interlace effect produced by the castellated detectors. 

This work was conducted prior to the calibration o f experimental x-ray system for 

broad materials discrimination capability (i.e. organic, inorganic and metal 

materials). The automated x-ray image segmentation and categorisation algorithms 

were subsequently developed to segment overlapping objects in the resultant x-ray 

images into individual regions for further quantitative analysis. This process 

provided the data for basis materials subtraction (BMS) technique to extract the 

characteristic angle for the target material. Finally, an investigation into exploiting 

range information extracted from the binocular stereoscopic image pairs to obtain the 

target’s mass density was conducted. The mathematical algorithms introduced in this 

thesis for the extraction o f depth information from the stereoscopic dual-energy x-ray 

images are based on a series o f successful investigations and research work 

previously undertaken by TNTUE6, E12, E13, E14, El5. However, no attempt has been 

made to automate the extraction of the range data as the depth resolution o f the 

experimental system is o f the order of ±6.7mm. This uncertainty in depth 

measurement produced mass density errors too large for practical security 

applications. However, the overall findings o f this research have resulted in further 

collaboration with the Home Office UK to apply the techniques developed to more 

sensitive stereoscopic imaging equipment.
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1.2 Objectives

The objectives o f the research are summarised below in the context o f the three

phases in which the work was undertaken.

Phase (I):

■ The development o f an image enhancement algorithm to remove the 

spatial interlace effect produced by the dual-energy castellated 

sensors.

■ The calibration o f the experimental x-ray machine for broad materials 

discrimination capability.

■ The empirical evaluation o f the noise present in the resultant images 

and the repeatability o f the image data.

Phase (II):

■ The development o f algorithms to automatically segment objects in 

the dual-energy x-ray images.

■ The development of a program that can categorise the segmented 

regions in terms o f overlapping structures.

■ Theoretical evaluation o f the basis materials decomposition (BMD) 

technique for specific materials discrimination capability.

■ The development o f a basis materials subtraction (BMS) technique to 

compute the characteristic angle for overlapping materials.

■ Empirical evaluation o f the BMS technique to extract a material’s 

characteristic angle when masked by multiple layers o f different 

materials.

■ Combine the image segmentation based identification o f overlapping 

image structure with the BMS technique to automatically discriminate 

a target material.

Phase (III):

■ Investigate the extraction o f depth information from the stereoscopic 

dual-energy x-ray images.
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■ Investigate the validity o f establishing a target materials mass density 

by employing empirically derived depth data.

1.3 Structure of the Thesis

The arrangement o f the thesis is summarised in the following paragraphs.

Chapter two provides general background information for the research detailed in the 

chapters that follow. It introduces stereoscopic dual-energy x-ray imaging, image 

segmentation and dual-energy materials discrimination utilising the basis materials 

decomposition technique.

Chapter three presents the image enhancement algorithm developed to remove the 

spatial interlace effect produced by the castellated detectors. Also, the calibration of 

the experimental x-ray machine for organic, inorganic and metal discrimination is 

described. Subsequently, system noise is investigated together with system 

repeatability to establish the stability o f the experimental x-ray system’s imaging 

chain.

Chapter four presents the development o f the automated x-ray image segmentation 

software utilising a wavelet transform technique. This program is applied to segment 

potentially overlapping objects in an x-ray image into individual regions. The data is 

used to extract automatically the low energy and the high energy information to 

enable further categorisation in terms o f overlapping and non-overlapping regions.

Chapter five  presents a theoretical evaluation o f the BMS technique for the purpose 

of specific materials recognition. This enables a material’s characteristic angle for 

each layer in a multi-layered object to be computed. A series o f experiments was 

conducted to validate the BMS technique. The automated x-ray image segmentation 

and categorisation programs developed in Chapter 4 are combined with the BMS 

technique to produce an automated target recognition program.
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Chapter six describes the investigation o f extracting a target materials mass density 

by establishing its thickness from stereoscopic parallax measurements.

Chapter seven is a summary o f the results, conclusions and the direction of further 

work.

Following the main text is a list o f publications and reference material, the 

appendices include the following information:

■ calibration data for the plastic, aluminium and steel step wedges;

■ computational results for the materials discrimination curves;

■ grey level noise data;

■ automated image categorisation results;

■ software listing for the automated target material detection

program;

■ automated target material detection results.
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CHAPTER TWO
BACKGROUND INFORMATION

2.1 Introduction

The information presented in this chapter provides a background to the development 

o f a technique to automatically discriminate target materials utilising the image data 

provided by an experimental binocular stereoscopic dual-energy x-ray machine. 

Central to this investigation is the extraction of a material’s characteristic angle 

(i.e. effective atomic number01) and mass density from the resultant stereoscopic 

dual-energy images.

The discussion presented is divided into the following three broad areas:

■ stereoscopic dual-energy x-ray imaging;

■ image segmentation;

■ dual-energy materials discrimination.

A binocular stereoscopic design theory has been employed successfully by the 

Vision Systems Group at TNTU to the development o f camera systems for use with 

teleoperated robotic manipulator armsA1, F1, p1, R1,1121 R3, R4, R5, R6, R7, S3, S4 and x-ray 

screening systems03, E4, E5, E7, E8, E12, E13, E14, E15, E16. The algorithms to extract depth 

information from the stereoscopic x-ray image pairs utilise this previous work to 

investigate the optimisation o f the materials discrimination process.

An automated image segmentation technique that is based on wavelet analysis is 

introduced. The x-ray image segmentation is a preliminary image processing task 

that is required for automated materials recognition.

The initial discussion 011 dual-energy x-ray imaging presents the fundamental 

properties of x-ray interaction with materials within the x-ray energy region of 

30-200 keV. This provides a background to discriminating target materials which 

utilises the BMD technique developed by Alvarez and MacovskiA2,12 in the field of
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medical imaging. This approach is modified by the author to access the feasibility o f 

this technique for target materials recognition in aviation security screening.

2.2 Stereoscopic X-ray Imaging
T n

The Manual o f photogrammetry defines stereoscopy as:

“ .............. the science and art that deals with the use o f  images to produce a

three-dimensional visual model with characteristics analogous to those o f actual 

features viewed using true binocular vision. ”

Stereoscopy was introduced to radiology by J. Mackenzie Davidson in 1898C3. The 

advantages o f stereoradiography as far as interpreting three-dimensional structure is 

concerned has long been acknowledged in the field of medical imaging and more 

recently security screening. The application of stereoscopy in x-ray imaging 

originates from the operating principle o f the human visual system01, H5, K2, S5, T2, V1. 

Binocular parallax is one o f the most robust depth cues utilised by a human 

observer01, P2. This cue can only exist when the observer’s eyes are focused and 

converged onto an object producing a conjugate image point on the retina of each 

eye. If  the convergence point image is taken as a reference in each eye, points which 

lie in front or beyond o f this point in object space will give rise to images which are 

relatively displaced on the retina as a function o f range hence producing depth 

information.

A binocular stereoscopic x-ray screening system06, 016 can greatly enhance the 

observer’s understanding of the true nature of the three-dimensional scene under 

observation. The extraction o f depth information from the resultant stereoscopic 

images may also be exploited if  the conjugate points can be identified in each 

perspective image and suitable coordinate measurement algorithms are employed.
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A stereoscopic x-ray imaging system has two basic prerequisites:

* The points on the inspected object must lie in the field o f view of the Teff

x-ray beam and the ‘right’ x-ray beam to form an overlapping field of view 

or stereoscopic region in object space.

■ The conjugate image points situated within the stereoscopic region must be

located to obtain three-dimensional coordinate information from object 

space05, H6, M3. The identification of the conjugate image points is termed the 

correspondence problem  and it is not within the scope o f this thesis. 

However, there are partial solutions to this problem that have been 

developed by other researchers which include the use o f edge-detection and 

grey-level matching02, H6 and neural networksM4. However, a manual 

solution to the correspondence problem is adopted in this research.

Fig. 2.1 illustrates the schematic diagram of the experimental stereoscopic line-scan 

dual-energy x-ray screening system utilised in this research016. The X  and 7-axis in 

the diagram are in the plane o f the conveyer belt. Thus the Z-axis also termed the 

depth or range axis is normal to the plane of linear translation.

The experimental x-ray machine has an inspection tunnel height o f 0.4 m and a width 

o f 0.6 m. It utilises a polychromatic x-ray source with nominal accelerating voltage 

o f 140 kVp and a tube current o f 1 mA. The slit collimated x-ray beams are arranged 

at angles o f ±3.75° about the normal to the plane o f linear translation (conveyer belt). 

The x-ray source output is filtered by a 0.5 mm Aluminium strip that helps to remove 

the lower energy x-rays that are not useful.
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Folded Linear Dual-Energy 
X-ray Detector Arrays

under Inspection

‘Slit’ Collimated 
X-ray beams

Conveyor
Belt

X-ray
Source t t

To Linear Arrays
Monitor

□ >—
Framestore and 

Control ElectronicsCD-------------------
Operator
Controls

Fig. 2.1 Experimental binocular stereoscopic folded array dual-energy x-ray system.

The folded linear array detectors employed in the experimental system utilise the 

new castellated array dual-energy x-ray detector1"1. This detector employs a 

side-by-side low energy/high energy scintillator arrangement. Its physical principles 

o f operation are similar to the standard sandwich detector arrangement. The design 

detail o f the castellated detector array is described in Chapter 3.

The folded array configuration o f dual-energy detectors ensures that the full cross 

sectional area of the inspection tunnel is available for imaging. It can be appreciated 

from Fig. 2.2 that the midline normal to each detector module comprising the folded 

array is positioned at 90° with respect to the x-ray source. Each detector module has 

16 low energy and 16 high energy scintillation elements.
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X-ray

Sou rce

Fig. 2.2 Folded linear dual-energy x-ray detector array.

The object under inspection is translated by a conveyer belt at a constant speed 

(typically 0.2 m/s) through the inspection tunnel in which a pair o f divergent 

collimated x-ray beams are arranged to illuminate each of the dual-energy detector 

modules (i.e. scintillator-photodiode array). Thus, a binocular stereoscopic pair 

image can be produced from the pixel columns collected from the folded array
E13 E14 E15 i isensors ’ ’ during the scanning process.

2.2.1 Depth Information

The ability o f the stereoscopic system shown in Fig. 2.1 in resolving depth 

information (Z-axis) is dependent on the voxel115 dimensions. In the context of this 

work, the overlapping field o f view of two pixels in object space forms a volume 

element (i.e. voxel). Hence, the entire stereoscopic region is made up from voxels.

Fig. 2.3 illustrates the dependency o f voxel dimensions on the convergence angle1111 

(j o f the x-ray beams and the projected field of view SX o f individual scintillator 

elements (i.e. pixels) in the translation .Y-axis (i.e. motion axis) in object space. It can 

be deduced that as the convergence angle increases (i.e. cr2 > av), the minimum 

resolvable depth increment SZ in object space reduces (i.e. SZ2 < SZj). On the other 

hand, SZ will also become smaller as the SX decreases. Thus, SX can be decreased by
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increasing the detectors’ scan frequency although this is limited by the physical 

dimensions o f the scintillator elements.

Therefore, a large convergence angle cr and small SX are required to improve the 

measurement capability o f a stereoscopic x-ray system. However, the maximum 

allowable convergence angle is limited by the maximum permissible parallax in the 

resultant stereoscopic images. In other words the screen parallax must be constrained 

to that which can be fused by an observer comfortably172, J2.

Right F.O.V. Left F.O.V.

SX SX

Z (Depth Axis) 
A

(a)

SZj

Right F.O.V. Left F.O.V.

'Ty

SX SX
(b)

■>X (Motion Axis)

Fig. 2.3 Illustration of the dependency of voxel dimensions on the convergence angle a  and 
the field of view in the X-axis of a pixel element SXEl6.
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2.3 Dual-energy X-ray Imaging

The concept o f utilising two photon energies (i.e. dual-energy) to obtain information 

on tissue characteristics in medical imaging was first suggested by Jacobson'13 in 

1953. The idea was extended to the field o f computed tomography (CT)F4, K5, R9, Sl2 in 

1976 by Alvarez and Macovski to employ spectral information inherent in x-ray 

attenuation measurements for bone/tissue characterisation^’F6, M2. Theoretically, the 

dual-energy x-ray screening technique can potentially offer a major advance in the 

ability to distinguish between materials differing only slightly in atomic 

composition86, S14.

The conventional dual-energy x-ray imaging technique utilises a dual 

monochromatic or a polychromatic x-ray beam and detectors with differential energy 

discrimination (high energy and low energy) to determine the amount o f organic, 

inorganic or metal substances along the line o f sight throughout the object under 

inspection. It is very helpful since plastic explosives are organic compoundsA3,03.

Dual-energy x-ray imaging can be achieved by either acquiring two separate images 

using different x-ray tube voltages®1, D3, 04 or by using a dual-energy sandwich 

detector®2, 03 5 04. The first technique relies on direct switching o f the x-ray 

accelerating voltage which requires two separate exposures to be madesl°, hence any 

movement by the object will cause the possibility of motion misregistration artefacts 

during image acquisition. Besides that, two images must be acquired thus doubling 

the imaging time, equipment load and radiation dose to the examined targets®2. In 

addition, rapidly switching the x-ray tube voltage for the low and the high x-ray 

energy can be technically difficult05.

The second approach requires a k-edge pre-filtering technique, which involves 

passing the x-ray output through a filter material that has a k-shell absorption edge 

within the energy range o f the tube’s output x-ray spectrumH9. The k-edge filter 

facilitates a double peak x-ray spectrum. The resulting spectrum is effectively split 

into low energy and high energy components. The security screening industry has 

adopted a line-scan based dual-energy technique developed during the late 1980’s.
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The standard dual-energy linear detector array utilised by industry consists o f a 

sandwich structure o f two scintillation elements through which the x-ray beam 

passes. In such a scheme, the signal from the first ‘thin’ scintillation sensor arises 

primarily from low energy photons while the signal from the second ‘thick’ 

scintillation sensor arises from the remaining higher energy photons. This sensor is 

described in more detail in the following section.

2.3.1 Sandwich Detector Array

Screen or film radiography has significantly contributed to the field o f medical 

imaging and non-destructive inspection o f materials. Image intensifiers and imaging 

plates consisting o f phosphor screens03 have been employed for conventional 

radiographic applications. More recently, linear x-ray detector arrays08, H7, H8, K3, S8, r3 

consisting of a linear array of discrete semiconductor photodiodes optically coupled 

to a strip o f scintillation material have been widely adopted for security screening 

applications. This imaging technique employs a slit collimated x-ray beam which 

significantly reduces radiation scatteringW3, W4 thereby producing increased image 

contrast in the resultant digital images.

The digital radiography approach is capable of converting the detected x-ray photons 

into electronic signals that have the following advantagesA4, °5, °4, ° 8, H7,13:

■ High sensitivity and a high signal to noise ratio can be obtained;

■ Energy information from the incident x-ray photons can be measured.

The digital dual-energy radiography technique is now widely applied in the field o f 

medical im aging^’B1, D4, F3, ° 6, T3 and security screening34, ° 6, K1, R1°.

The linear array detector system is not suitable for capturing dynamic events. It 

requires the inspected object to be (internally) static during the image acquisition 

process. The only movement involved is the relative linear translation generally 

provided by a conveyer belt. The images are displayed on a video monitor as each 

strip o f the irradiated object is captured by the linear array detector system.
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A typical sandwich dual energy detector is shown in Fig. 2.4. The front or low 

energy scintillators are exposed to the full spectral content o f the x-ray beam and 

preferentially absorb the low energy x-ray photons while allowing the majority o f the 

high energy photons to be detected by the rear scintillator (high energy). The 

scintillators are utilised for converting x-ray radiation to visible light and the silicon 

photodiode detectors are used to convert the visible light produced by the 

scintillation process to electrical signals. Thus, two spatially equivalent samples of 

irradiated object space can be obtained simultaneously. As a result, dual radiographs 

(i.e. low energy and high energy images) can be produced from a single exposure 

where the low energy and the high energy signals can be utilised for materials 

discrimination.

Photodiode detector

Rear sc in tilla to r. 
(High Energy)

Photodiode detector

Front sc in tilla to r. 
(Low Energy)

Z (Depth Axis) 
A

^  Main axis o f the array

A A  A  A  A A

In c id en t x -ray s  (a t 9 0°)

A

Copper Filter (0.3 - 1.0mm)

^  Main axis o f  the array

-> Y (Main Axis of Array)

Fig. 2.4 A linear dual-energy x-ray sandwich detector array.

A copper filter with thickness approximately 0.3 to 1.0 mm is placed in between the 

front and rear scintillators to increase the effective energy o f the x-ray beam incident 

on and absorbed by the rear scintillators. This results in a greater and more desirable 

energy separation between the x-rays absorbed in both the front and rear 

scintillators*19, s n . Flowever, the filter has the effect o f hardening the x-ray beam and 

reducing the radiation intensity in the detected high energy signals. Consequently, a 

reduced signal-to-noise ratio in the rear detector may result08.
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2.3.2 Line-scan Image Formation

The digital image is produced by storing the individual signal outputs from each 

scintillator-photodiode element in digital memory (i.e. framestore), during the 

relative translation o f the inspected object with respect to the detector array and x-ray 

source. The image is accumulated strip by strip (or line by line) over a time interval 

o f typically 6 s that is determined by the conveyer belt speed and the scan frequency 

o f the detector array. Therefore, the image data may be displayed as panning onto the 

video screen during the image acquisition process.

The total number o f the detector elements (i.e. scintillator-photodiode pairs) along 

the length o f the linear array will determine the pixel resolution in the 7-axis 

(i.e. main axis o f array). The scan frequency o f the detector system and the conveyer 

belt speed will determine the pixel resolution in the X-axis (i.e. motion axis).

It can be appreciated from Fig. 2.5 that the low energy and the high energy image 

data are produced for each pixel location in the resultant image.

Y-axis 
(main axis of 

array)

v

X-axis (motion axis)

Li Li L, L,

U U u U

Nk Nk V V

L(S40 Lfi40 Lfi40 Lgjo

Low Energy Image

Y-axis

X-axis ->

X-axis
->

H, H, H, H,

h2 Hi Hi Hi

V vk

Hg40 Hg40 H640 Hg40

High Energy Image

Hi+L| .... rs.
2 z

Hi+Li
2 .....z

v
.... \z

2 ....X.z

Resultant Image

Fig. 2.5 Spatially discrete image digitisation produced by a ‘sandwich’ detector array.
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The monochrome images acquired from scanning baggage sample-1 utilising a 

dual-energy sandwich detector array are shown in Fig. 2.6.

.Wires

.Walkman

Hand Bag

^ (Main Axis of Array)

>X (Motion Axis)

Bottle o f 
Perfume

Electric Shaver

Coat Hanger
Clothes

Fig. 2.6 Monochrome images o f  baggage sam ple-1 utilising a linear sandwich detector 
array: (a)- High energy image, (b)- Low energy image and 

(c)- Resultant image.
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2.3.3 Limitations

Threat items such as plastic explosives tend to have higher densities compared to 

common plastics and hydrocarbon fibres. Therefore, they have greater x-ray 

attenuation than normally found for innocuous materials in luggage. There are 

marked differences in attenuation at optimum energies around 10 keV for a thin 

sheet o f explosives1'4. An unfortunate exception is woolL4. Hence, even at low 

energies, the system measurement errors will lead to Zef  ranges which will obscure 

distinctions between materials. In addition, baggage inspection normally requires 

considerably higher energies (i.e. 80-140 keV) to penetrate through typical baggage 

contents. At these high energies, a thin sheet o f explosive (»2 to 5 mm) is almost 

transparent to the x-ray system.

2.4 Image Segmentation

The main goal o f image segmentation is to split the original image into a set of 

connected regions, each defined by a uniform grey level intensityK4’ R11, T4. This 

process enables the spatially discrete blocks o f data to be extracted for further 

processing and analysis. Segmentation strategies for a real time system must be both 

robust and consistent with the overall vision system to be of practical use in the field.

The critical problem in searching for target materials like plastic explosives is the 

requirement to resolve each layer o f the materials present in the baggage. The 

problem becomes worse for the complicated arrangements of overlapping objects 

routinely encountered in security screening applications. Therefore, pre-processing 

procedures such as segmentation require to be applied to reduce the overlapping 

objects into smaller more manageable regions (homogeneous grey level areas).

There are many image segmentation techniques that have been developed by 

researchers over recent years. A comparison and evaluation o f a number of 

segmentation techniques is detailed in the survey by S.U. LEEls and the paper by 

Jean-Christophe Olivo03. The automated image segmentation technique based on 

wavelet analysis as presented by Jean-Christophe Olivo02,03 and Stephane MallatM5
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is employed in this research. The approach was proved computationally effective and 

stable. Additionally, the approach describes the segmented image in terms of 

homogeneous regions instead of edge-based segmentation o f images. This 

information is very useful in this research work, since overlapping materials with 

homogeneous thickness in an x-ray image require segmenting before its 

characteristic angle and mass density can be computed.

2.4.1 Wavelet Transform

“The wavelet transform is a linear operation that decomposes a signal into 

components that appear at different scales and is based on the convolution o f the 

signal with a dilated filter” 03. The wavelet transform o f a function /  (x) at the scale 5 

and position x is given by the convolution productM5:

Wsf(x )  = /*  y/s (x)

1 ( x \
where y/s (x) -  — if/ — is the dilation o f the mother wavelet y/ (x) by a factor 5 

s ^ s J

(scale s=2f, where j= 0,l,2...). The scale s characterises the size and regularity o f the 

signal features extracted by the wavelet transform. When the scale s decreases, the 

support o f y/s (x) decreases so the wavelet transform is sensitive to finer details where 

the locations o f sharper variations in an image can be detected.

The discrete wavelet transform algorithm consists o f a recursive sequence of 

convolutions with two discrete filters h(k) and g(£)B5,G7,M5 (where &=0,1...5). These 

filters represent respectively the transfer functions of a low-pass filter (i.e. smooth 

filter, h(k)) and a high-pass filter (i.e. detail filter, g(k)). At scale j= l ,  the algorithm 

computes with h(k) a coarser resolution representation o f the smooth signal Si, and 

also with g(k) where the wavelet coefficients W\ (i.e. detail signal) will be generated. 

The low-pass filter h(k) is used for the calculation of the wavelet coefficients and is 

o f a coarser resolution representation at the next scale (i.e. W2 and S2 , W22 and S22 

and etc.). The wavelet coefficients Ws can be interpreted as the details removed by 

the successive applications o f the wavelet transform to the coarse signal 

approximation Ss. The zero-crossings o f the derived wavelet transform Ws curve 

indicate the location o f the input signal’s sharper variation points. The sharp
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variation points o f a signal are always implied to the important features in an 

image03. Therefore, the image segmentation task can be carried out automatically if 

all these sharp variation points are known in advance.

The detail and smooth wavelet filter coefficients are defined by Stephane MallatM5 as 

the following:

g(k) = {0.7118, -0.2309, -0.1120, -0.0226, 0.0062, 0.0039}, 

h(k) = {0.4347, 0.2864, 0.0450, -0.0393, -0.0132, 0.0032}.

It is not within the scope o f this thesis to provide a detailed study o f the wavelet 

transform. A more detailed presentation o f the wavelet transform can be found in 

references35, G7, M5, °2’03 ’S9.

2.5 Dual-energy Materials Discrimination

The aim of dual-energy radiography is to provide information about the chemical 

composition o f the x-rayed materials in terms o f their effective atomic number and 

mass density07, H3. This information is extremely useful in the fields o f medical 

imaging, security screening and non-destructive inspection.

The dual-energy approach provides the parameter of effective atomic number, which 

enables a means o f distinguishing materials. The term effective atomic number Ze/f 

refers to the average atomic number o f that hypothetical single element which 

produces the same x-ray attenuation as a compound being measured118, °2. In other 

words, Zeff represents the average atomic number weighted according to each 

element’s contribution towards attenuating the x-ray beam. This is conveyed by the 

following relationship31:

(ju/p)(Zeff,E ) = I  (// /p)n (Z„, E) w„ Equation 2-1

where the mass attenuation coefficient p  /p  is a function o f atomic number Z and 

x-ray energy E, p  is the material mass density, wn is the weight fraction of 

component n, and Z represents a summation over all components. Every element can
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be characterised by material Zeff and mass density. Since x-ray attenuation at a 

particular energy is a function o f both material composition (i.e. Zeff and p) and 

x-ray energy, the two parameters Zeff and p  can be separated by making 

measurements at dual energies.

In radiology (i.e. 30-200 keV), every material has unique interactions with the x-rays 

by Compton scattering and photoelectric absorption. The photoelectric effect 

dominates at lower energies and is mainly dependent on the atomic number o f the 

material whereas the Compton effect dominates at higher energies and is mainly 

dependent on the mass density o f the material04, E17,12, J4. Hence, if  the attenuating 

material is imaged in two different energy windows (i.e. low energy and high energy 

x-ray spectrum), the amount o f attenuation due to each o f the effects can be 

calculated and thus the effective atomic number and mass density of the material can 

be subsequently computed07, H3, H4, S6, F3.

Ideally, materials can be discriminated by two energy independent constants, which 

can be obtained from the measurements of the changes in the transmitted low energy 

and high energy x-ray spectrum detected by the dual-energy x-ray sensors. The two 

energy independent constants characterise the integrated Compton scattering and 

photoelectric attenuation coefficients. Alvarez and Macovski stated that, above the 

k-edge, the total linear attenuation coefficient p  (E) o f a given material for photon 

energies in the x-ray range o f 30-200 keV could be expressed approximately as a 

linear combination o f Compton and photoelectric interaction coefficients A2, °6, G9, L2, 

W2, W5. Note that Rayleigh scattering is not considered, because it is only important in 

low energy photons and its total quantity is too small to be important for the x-ray 

energy (140 kVp)H4 considered in this programme of work.

p{E) »  ac f c{E) + ap f p (E) Equation 2-2

where E is the incident x-ray energy, ac & kjp Z  /  A is the Compton contribution to 

p  (jE), p  is the mass density, Z  and A are the atomic number and atomic weight 

respectively, kj is Avogadro’s number, f c (E) is the Klein-Nishina formula for
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Compton scatter; and ap^  k2p z f  '8/ A is the photoelectric contribution to p  (E), k.2 is a 

proportional constant which includes Avogadro’s number, and f p(E)&(l/E)3'2.

The Klein-Nishina function f c (E) is defined asL2:

fc (cL) = 27irl 1 + a
a

2 (1 + a ) 1
 In (1 + 2a) 1 , „ N 1+3a

+ —  ln(l + 2a) -
2a (1 + 2a)1 + 2a a

where ro is the classical electron radius and a - E !  510.975 keV.

Equation 2-3

The functions f c (E) and f p{E) have physical meaning where f c{E) represents the 

energy dependence o f the total cross section for Compton scattering and f p(E) 

approximates the energy dependence o f the photoelectric interaction. The amount o f 

ac and ap provide a basis for distinguishing materials having different effective 

atomic numbers and mass density.

The logarithmic transmission T  (unconventional use o f the term ‘transmission’ for 

the quantity T A2, L2) o f a collimated pencil x-ray beam through a volume in an object 

of interest with thickness t is given by:

I  = I 0JSCE) exp ( ~ n t ) d E

^  = In O y) = In ( I  S(E ) exp {[ a J c(E) + apf p(£ )  ] t )  dE)

= In ( J S(E)  exp [ Acf c(E) + Apf p(E) ] dE ) Equation 2-4

where /  and IQ are the measured intensities with and without attenuation respectively, 

S(E) is the x-ray energy spectrum distribution, Ac = J ac ds, and Ap = j ap ds are the 

path integrals o f ac and ap respectively, where ds is a short section o f path length.

Materials are characterised by values o f ac and apA2, L2. Dual-energy screening is 

employed to allow the separation of the total attenuation coefficient into these two 

energy independent components by utilising the measurements o f the low energy and 

high energy x-ray attenuations. If  SL(EL) and Sh(Eh) are the low energy and high 

energy x-ray spectra, the logarithmic transmission for TL and TH can be respectively 

expressed as:
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Tl = ln ( y  )i  = ln ( |  SL (El ) exp {[ a j c (EL) + apf p (EL)] t }  dE)

= In ( J SL (El  ) exp [ Acf c (EL ) + Apf p (Ef ) ] dE)  Equation 2-5

Th  = In f ) „  =ln  ( J S h {E„) exp{ [ acf c(EH) + apf p(EH)]

= In ( j  S h (Eh )exp [ A J c{Eh )+  + / „ ( £ „ ) ]  Equation2-6

The challenge in dual-energy imaging is to resolve the values Ac and Ap from the 

measured values o f Tl and Th by solving Equations 2-5 and 2-6. For monochromatic 

radiation, the logarithmic transmission is a linear exponential function o f the 

traversed thickness t, thus Equations 2-5 and 2-6 can be simplified to two first-order 

equations:

Tl = [ acf c (El) + apfp (EL) ] t

= Acf c (El) + Apfp (El ) Equation 2-7

Th = [ ®cfc (Eh) + apfp (Eh) ] t

= Acf c (Eh) + Apf p (Eh) Equation 2-8

Thus, the two unknowns Ac and Ap in the Equations 2-7 and 2-8 can be solved to 

discriminate a material.

However, for polychromatic radiation, the Equations 2-5 and 2-6 require to be 

expanded to include higher order terms (i.e. which can be modelled by polynomial 

functions) to compensate for x-ray beam hardening effectY1 which increases as the 

thickness o f the irradiated substances increases. A general form of polynomials o f 2nd 

or 3rd order has been widely used to compensate for these effects (see Equations 2-14 

and 2-15 on page 2 9 )^ ’C6.

The advantage o f polychromatic radiation is that it provides a high intensity source 

compared to monochromatic radiation. This is vital for the throughputs required for 

baggage screening at airports where the x-ray scamiing, image processing and
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decision analysis require to be accomplished in approximately 6 seconds per luggage 

item. The experimental x-ray machine utilised in this research utilises a 

polychromatic x-ray source.

2.5.1 Organic, Inorganic and Metal Discrimination

In general, the signals produced by the low energy and the high energy detectors, can 

be employed to determine the basic discrimination between organic, inorganic and 

metal substances81, S6,11. The organic compounds are defined generally as consisting 

o f elements having effective atomic number o f 10 or less, the inorganic materials are 

defined as being comprised o f elements having effective atomic number between 10 

to 20, while the metal substances are defined as having an effective atomic number 

greater than 20. The organic material present in an x-ray image is displayed in an 

orange colour with the appropriate intensity, the metal substance is displayed in blue 

whilst the inorganic material is displayed in green. This broad definition o f materials 

has been widely adopted by the manufacturers o f security x-ray equipment. 

However, it is used only as a general indicator o f substances and is by no means a 

precise definition.

To produce colour encoded images requires that the materials discrimination curves 

(known as banana curves in the security industry) for three different types o f 

materials be obtained, namely plastic (i.e. organic), aluminium (i.e. inorganic) and 

steel (i.e. metal). The graph o f Fig. 2.7 plots the difference between the high energy 

and low energy signals versus the high energy signals. This data is derived by 

sequentially imaging the plastic, aluminium and steel stepwedges. The curves A and 

B illustrated in Fig. 2.7 are fitted at the mid-points between the steel-aluminium and 

the aluminium-plastic curves respectively. Thus, the region below curve B is defined 

as the organic signature, the region between curve A and B is defined as the 

inorganic signature while the region above curve A is defined as the metal signature. 

The detail o f the calibration process for materials discrimination is presented in 

Chapter 3.
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Fig. 2.7 Materials discrimination curves for plastic, aluminium and steel stepwedges.
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2.5.2 Discriminating Target Materials

In the following text, the dual-energy basis materials decomposition (BMD) 

technique is discussed. This is based on work by Alvarez and Macovski 1976, 

Nalcioglu and Lou 1977, Brody et al, and Lehmann et al 1981 A2' A4, L2, NI’S13, for the 

purpose of extracting characteristic angle (i.e. effective atomic number) and mass 

density of an attenuating material in the field of medical imaging.

Dual-energy x-ray screening enables the determination of the energy independent 

material properties (i.e. ac:Compton scattering and ap:photoelectric attenuation 

coefficients). Accurate energy independent constants for every material can, in 

principle, be obtained at any given x-ray energy using the BMD technique. Previous 

researchers have observed that the linear attenuation coefficient ju^E) of any material 

£ at any given energy E can be expressed as a linear combination of the linear 

attenuation coefficients jUi(E) and ju2(E) of two basis materials 1 and 2A2, L2. If 

Equation 2-2 is an equality for material £ and two other basis materials 1 and 2, then: 

Ht, (E) «  ac<* f c (E) + aPz f p (E) Equation 2-9(a)

ju,(E) «  acl f c (E) + aplf p (E) Equation 2-9(b)

Hi{E) «  ac2 f c (E) + ap2 f p {E) Equation 2-9(c)

Equations 2-9(b) and 2-9(c) can be solved simultaneously fo r /c (E) andf p (E), which 

can be substituted into Equation 2-9(a) to produce:

JU{(E) -  a^jUi(E) + a2zJu2 (E) Equation 2-9(d)
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a„*ar7 - a c. a n7
with au -  ——  —-—  Equation 2-9(e)

~ ac£a n\and au  -  ——  ---------  — Equation 2-9(f)
«cl V

Hence, the basis material decomposition of the linear attenuation coefficient is 

equated to the photoelectric and Compton decomposition. Physically, the basis 

material coefficients ai{ and are assumed independent of energy E  and represent 

the mass fractions o f the basis materials 1 and 2 which are required to produce the 

same attenuation as a unit thickness o f the material cf*2, L2.

A dual-energy x-ray technique computes the line integrals o f the linear attenuation 

coefficient: J ju(E) ds. This is equivalent to making measurements o f the line integrals 

o f coefficients ap  and a.2%. From Equation 2~9(d):

/ / /£ {E) ds ~ [ / apds  ] jui(E) + [ / ci2tds  ] M2 (E)

or in terms o f mass attenuation coefficients:

J--""   ̂ds «  J — ^  ds + J - zv '  a,P ds■Ai (E) - M E )
Pi Pi

\P i (.E ) ds = t1 fil(E) + hMi i E)

For single projection imagingA2, L2:

. [Ps, j  Pif

Pi Pi

2£

C P £t -  —- a 7, ds =
] Plf

Pi
a2£

Equation 2-10 

Equation 2-11

where p  is the mass density, is the thickness o f the attenuating material £, ti and f? 

are the thickness of basis materials 1 and 2 which together produce the same 

attenuation at any x-ray energy E  as the thickness of the material £  Therefore, the 

quantity of basis materials (i.e. tj and ti) are utilised as the independent constants 

instead of the Compton and the photoelectric components (i.e. ac and ap). The BMD 

technique with aluminium and plastic (i.e. tj and ti) as the basis materials are 

employed in this research. They are used as basis materials because they bracket the
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range o f effective atomic numbers (6.6 < Zeg  < 13), which contain plastic 

explosives01, R1°. Additionally, they are easily fabricated for the calibration 

procedure.

The equivalent basis materials thickness (tj and ti) for any attenuating material £ can 

be derived from the measured Tl and TH by applying one o f the following three 

techn iques"  C6-L2-M2-S13:

■ non-linear equations;

* direct approximation method;

■ subregion direct approximation method.

This research programme utilises the direct approximation method with 3rd order 

polynomial equations. This is because the direct approximation method enables 

relatively faster computation time compared to the non-linear equations approach06. 

Additionally, the subregion direct approximation method is not employed by the 

author because it is more sensitive to system noise06.

Non-linear Equations:

Alvarez and MacovskiA2 applied a second-order polynomial equation to approximate 

the low (Tl) and high (TH) energy logarithmic transmission as a series of two basis 

materials tj and tf.

Tl  — a 0 + a\ t] + ai *2 + a 3 t \ + aA t \ 2 + a 5 *2 Equation 2-12

TH =b0 + bx tx + b2 t2 + b2 tx t2 + bA tx + b5 t2 Equation 2-13

The coefficients at and 6/, z = 0, 1 ,2  ..., 5, are determined by polynomial least square 

estimation during the calibration procedure in which the basis materials with various 

known thickness combinations are examined radiographically. Using the calibration 

polynomials, any dual-energy transmission measurements may be transformed into 

its basis material equivalent components, provided that the examination 

configuration has not changed in terms o f x-ray tube accelerating voltage (kYp), tube 

current (mA) and source-detector distance010. After the coefficients at and bt are 

determined, the decomposition o f the two basis materials tj and U from the measured
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values of Tl and Th can be accomplished by utilising the Newton-Raphson iteration 

method to solve the Equations 2-12 and 2-13 numerically.

The major drawback in using the Newton-Raphson iteration method is that it can be 

computationally slow and convergence may be difficult to achieve in practiceA2.

Direct Approximation Method:

The thickness o f each basis material can also be expressed as a polynomial function 

o f the logarithmic attenuation measurements Th and Tl (Nalcioglu and Lou 1977, 

Brody et al, and Lehmann et al 1981), where tj and 0  can be directly approximated 

as a third power series o f Th and Tl:

= co + ci^L + ctJ-h + c^ lTh + c4Tl + c5Th + ce^L + ct^l + c^ h

Equation 2-14

t 2 = d 0 + d}TL + d 2TH + d3TLTH + d 4TL 2 + d 5TH 2 + d 6TL2TH 2 + dnT’L3 + d^TH 3

Equation 2-15

The coefficients ct and du i — 0, 1, 2 ..., 8, are determined tlii*ough a calibration 

procedure in which the true basis materials thicknesses are known by using a 

polynomial least square fitting algorithm. This direct approximation method enables 

a relatively faster computation time compared to the non-linear equations approach. 

However, its accuracy requires further improvement.

Subregion Direct Approximation Method:

The subregion direct approximation method was suggested by K.S. Chuang06 in 

1986. This approach divides the range o f the low energy and the high energy 

logarithmic transmission values into ten subregions where each has its own beam 

hardening correction factors. Thus, the measured data for the low energy and the 

high energy logarithmic transmission will fall into one o f the ten low energy 

subregions and one o f the ten high energy subregions. The corresponding thickness 

o f each basis material is approximated by a second-order power series in Tl and Th :

t l ~ e 0 + eyTL + e2TH + e3TLTH + e4T 2 + e5TH 2 Equation 2-16
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( 2 =  /o  + f i TL + / i t h + A Tl T h + f J i 2 + I s Th 2 Equation 2-17

A set o f coefficients £,■ and f  is computed by a standard least square fitting algorithm 

for each o f the low energy and the high energy subregions by using data pertaining to 

these two regions. This technique is proved computationally efficient and accurate 

but is sensitive to system noise06.

2.5.2.1 Characteristic Angle

From the BMD technique^’L2 (from Equations 2-10 and 2-11): 

t't P\ ^ 2£
— = --------- Equation 2-18(a)
h Pi a\$

ti and t~2 are the thickness of basis materials 1 and 2 that can be computed by using 

the polynomial fit equations obtained from one of the techniques described in 

Section 2.5.2.

From Equations 2-9(e) and 2-9(f), and with ac~k ip  Z/A = Ng and

ap» k2p  2?'S/A = kr Ns Z3S(where fe.=  k2lk,):

N  (Z  38- Z  3'8f 
<ht = * r A . 8 _ 72 3, '  Equation 2-18(b)

^  g l  V ^ l 2 )

jy (7  38 _  z  3'8)
and a2{ = -f' Ts -  -j38 Equation 2 -18(c)

N g 2 ^ 2  )

By substituting and a^ fro m  Equations 2-18(b) and 2-18(c) into Equation 2-18(a):

h _  A  NsI( Z P ~ Z 43S)
■— X

^ Pi ^ 2 ( Z / - 8 - Z 23-8)

Thus, the ratio t2 / ti is a function o f the atomic number o f the particular material £  

The quantities tj and I2 may be plotted as illustrated in Fig. 2.8 in which the 

characteristic angle 0 = tan"1 [jyA] depends only on the m ateriafs effective atomic 

number and the aluminium and plastic basis planes A2, L2.

characteristic angle, 0 = tan-1 (—) Equation 2-19
h
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Fig. 2.8 illustrates the basis projection o f a material £ characteristic angle 6 . 

Measurements on materials with the same composition will have the same gradient 

and hence lie along the same line. Thus, any material £ within the basis window can 

be projected by the combination o f vector tj and t2 through the equation:

£ = ti cosO + t2 sinO Equation 2-20

Therefore, the characteristic angle 6? is a convenient indicator o f the effective atomic 

number o f a target material.

Plastic basis material t2 (mm)

z =  7

Z=13
180°

Aluminium basis material tj (mm) 

Fig. 2.8 Material discrimination using plastic (t2) and aluminium (/)) as the basis materials0 .

2.5.2.2 Mass Density

From Equations 2-10 and 2-11:

p  — Equation 2-21
t% a\t;

p  — -PJlLl . Equation 2-22
t%

Every target material £ has unique values of basis material coefficients and a2<r- 

For example, the theoretical values o f { a p ^ z }  for the aluminium and plastic basis 

materials are {1.00,0.00} and {0.00,1.00} respectively. The respective values for 

aluminium and plastic mass density, pi  and p 2 are 2.702 g cm '3 and 1.4 g cm'3. The 

thickness of each basis material tj and t2 can be computed by using the polynomial fit

Page 31



Background Information

equations obtained from one o f the techniques described in Section 2.5.2. Therefore, 

the mass density o f the inspected material £ (/%) can be obtained from Equations 

2-21 or 2-22, provided that the thickness o f the attenuated material t%is known. The 

experimental stereoscopic x-ray system can provide depth information which could 

be used to provide mass density information.

Hence, the characteristic angle 6  which is directly proportional to the material’s 

effective atomic number together with the mass density can be utilised to search for a 

target material. This information can be appreciated from the Zeff versus mass density 

map for various materials as illustrated in Fig. 2.9.

Salt

1 5 - Inorganic range Pvc
Aluminum

G la ss

C ocaineQ>
N B ook

Clothing (W ool / Cotton)
I •

Alcohol

W ater

P la s t ic 1

Nylon
5 - Organic range

TSugar
'Leather

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Density (g/cm3)

Fig. 2.9 The Zeff and mass density for common items found in airport luggage and for 
cocaine and some explosive materials1110.
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CHAPTER THREE
CALIBRATION OF THF, STEREOSCOPIC 

DUAL-ENERGY X-RAY MACHINE

3.1 Introduction

This chapter presents the calibration o f the experimental dual-energy binocular 

stereoscopic machine in terms o f its monochrome and colour encoded materials 

discrimination imaging capability. The Vision Systems Group at TNTU has 

developed a novel castellated linear array dual-energy x-ray detectorE1. This sensor 

utilises half the number of scintillator elements in comparison to a conventional 

sandwich detector arrangement. Therefore, it substantially reduces the detector 

bandwidth, sensor complexity and cost. The castellated sensor is employed in the 

experimental machine illustrated in Fig. 3.1 which was utilised for the research work 

presented in this thesis.

An image enhancement algorithm is developed to remove the spatial interlace effect 

inherent in the images produced by the castellated detector array. This enables the 

experimental machine to be calibrated for broad materials discrimination capability. 

The de-interlaced images are colour encoded for the discrimination o f organic, 

inorganic and metal substances. A series o f experiments conducted to examine the 

noise characteristics o f the experimental system is also discussed.
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Fig. 3.1 The experimental binocular stereoscopic line-scan dual-energy x-ray screening 
system (the basis for a commercial product manufactured by Image Scan Holdings pic, a

University spin o ff company).

3.2 Castellated Detector Array

Fig. 3.2 depicts the spatial configuration of the castellated dual-energy detector 

arrayE1. The array has alternating portions of thick (~5 mm) and thin (~0.6 mm) 

scintillators along its length. The thick scintillator material enables signals 

corresponding to the high energy attenuations (i.e. equivalent to the rear scintillator 

in Fig. 2.4 on page 16) to be produced while the thin scintillator material provides 

signals corresponding to the low energy attenuations (i.e. equivalent to the front 

scintillator in Fig. 2.4). The scintillation elements employed in the castellated 

detector array are made from Thallium-doped Caesium Iodide CsI(Tl). Each array 

element is coupled to a silicon photodiode which detects the visible light signals 

produced when x-rays strike the scintillators. The filter layer reduces the extent of 

the lower energy component producing a response in the thick scintillators. While, 

the thin scintillators are exposed to the whole x-ray spectrum and will preferentially 

absorb the lower energy x-ray photons and transmit the majority o f the high energy 

photons.
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P h o to d io d e

M ain  ax is  o f  th e  a rray

z A A A
A A11

I
l
I
I

a  : a  : 1 1 1 1 1 1 1 1

---- >Y Incident x-rays (at 90°)

Fig. 3.2 The castellated linear dual-energy x-ray detector array.

It can be appreciated from Fig. 2.5 on page 17 that a linear array sandwich detector 

would require two signals (i.e. low energy and high energy signals) for each pixel to 

be generated simultaneously. For a stereoscopic system shown in Fig. 2.1 on page 

11, the number of signals required is doubled. This begins to pose a problem in terms 

of data collection, transmission, and data handling and processing. Therefore, a 

detector arrangement which will provide both materials discrimination capability and 

stereoscopic images but which is economical in terms o f the number of signals it 

produces is highly desirable. This can be achieved by the castellated arrangement 

which only utilises half the sensor elements of a sandwich detector array and 

produces very similar imaging performance.

d e te c to r

S c in tilla to r
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3.2.1 Interlaced Image

The castellated detector array utilises 320 high energy and 320 low energy detector 

elements arranged in a modular folded linear array to produce a pixel resolution o f 

640 in the 7-axis o f the resultant digital image. The scan frequency (200 Hz) o f the 

detector array and the conveyer belt speed are set to produce a 1024 pixel resolution 

in the X-axis or motion axis.

The high energy and low energy sampling o f space produced by the castellated array 

is depicted in the matrix o f Fig. 3.3.

640 (J) -  main axis 
of array

V

H, H, H, H,

L, L, L,

h 2 h 2 H h 2

l 2 l 2 L l 2

\ / \ / \ / \ /

H320 H32o H320 H320
L320 L320 L320 L320

Resultant Monochrome Image 

Fig. 3.3 Spatially discrete sampling produced by the castellated detector.
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Fig. 3.4 shows the original composite monochrome images for baggage sample-2 

illustrating the spatial interlace effect produced by the thick and thin castellated 

detector elements.

Region o f  Interest

Mobile Phone

Book

Diskette

Newspaper

.Umbrella

Fig. 3.4 Monochrome images o f  baggage sample-2 illustrating interlace noise:
(a)- Full image, (b)- Zoomed image for the region o f  interest depicted by the rectangle in (a).
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3.3 Theoretical Analysis of De-interlacing

The spatially interleaved high energy and low energy detector elements produce a 

corresponding interlace effect in the resultant images. This is due to the thick and 

thin portions o f the array producing grey level images of different brightness and 

contrast. Therefore, a de-interlacing algorithm is required to produce visually 

acceptable images.

The spatial interlace effect can be removed by averaging the alternate high energy 

and low energy signals. An effective grey scale image is subsequently formed having 

the same full resolution as a sandwich detector arrangement. Fig. 3.5 illustrates the 

algorithms employed to remove the interleaving effect apparent in the original 

image. It can be appreciated from Fig. 3.5 that adjacent pixels in the 7-axis are 

averaged to produce an effective grey level. Therefore, referring to Fig. 3.5, the 

effective grey level for pixel {1,1} (i.e. the top left o f the de-interlaced image) is 

given by:

H\ + L ,

—   - x k
2

where Hi and Li are the respective high energy and low energy signals obtained from 

the detector elements at positions Hi and Li as illustrated in Fig. 3.2 on page 35.

Therefore, each pixel in the de-interlaced image is produced by applying the 

following image enhancement algorithm:

r ( r „•> -  i ( * , y ) + y  +1) v *1 (x,y)  - x k Equation 3-1

where I \x ,  y ) is the grey level value for the respective pixel coordinates in X  and 

7-axis o f the de-interlaced digital image (i.e. the array size for {x,y} is {1024x639}), 

I  (x, y) is the grey level value in the original image and k  is an image contrast 

constant. Every pair o f adjacent pixels in each column is processed in this way 

(1024 columns in the X-axis). Since all pixels in the last row o f the de-interlaced 

image (i.e. I ’(x, 640)) have no subsequent high intensity data for the purpose o f the
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averaging process, they are assigned the intensity value obtained from row 639 o f the 

de-interlaced image.

1024 QO

6 40(f)

v

-> 1024 (X)

H j H , H i H i

Li L i L , L i

h 2 h 2 h 2 h 2

l 2 l 2 l 2 l 2

\ / \ / \ / \ /

H320 Fh2o H32o H3M

L320 L320 L320 L320

640 (Y)

V

Hi+k  . H1+L1
~ 2~x2 Ak

l,+h2 ......... V l,+h2 ,----x k2 ..2" xk

H2+L3 . —  xk ......... s. H2+L2 , 
2 XkZ

Ix+H,
2 "k

L2+I-I3 
2 Xk

.........z

.........Vz

\ \
.........z

H32O+L32O . ..........'TN. H320+L320 .
2 ‘k z ■ 2 Xk

H32O+L32O . \ H320+L320 , — 5— Xk2 A

Original Image De-interlaced Image

Fig. 3.5 The algorithms applied to remove spatial interlace effect.

3.4 De-interlacing Experiments

A series of experiments was devised to test the de-interlacing algorithms developed 

in Section 3.3. The image contrast constant k  was also carefully examined throughout 

the experiments. The optimum value for k=\.2 was determined empirically. The 

resultant de-interlaced images are illustrated in Fig. 3.6 and Fig. 3.7. It can be 

appreciated from the images that the spatial interlace removal algorithms were 

developed successfully.
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Y 
A

-----------> X

Fig. 3.6 De-interlaced monochrome image for the image shown in Fig. 3.4 on page 37.

Clothing.

Coat Hanger

Handbag

Ear-Phone.

Pen
Y

M obile Phone

Bottle

Fig. 3.7 De-interlaced monochrome image for baggage sample-3.
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3.5 Theoretical Materials Discrimination Curves

The material discrimination curves illustrated in graph of Fig. 3.8 are calculated from 

the low energy and high energy signals generated by the thick and thin 

scintillator-photodiode sensors in the castellated detector array. The curves are 

derived by analysing the raw 12-bit grey scale high energy and low energy data 

acquired from the experimental dual-energy x-ray machine.

HI-LO (Grey Level)
800

Steel ▲
700

Metal
600

Aluminium500

Inoi
400

300
Plastic

200
Organic

100

4000 4500

HI (Grey Level)

30002000 35001000 1500 2500500
-100

Fig. 3.8 Materials discrimination curves for the plastic, aluminium and steel stepwedges.

Referring to the spatially discrete sampling matrix depicted in Fig. 3.5 on page 39, 

each pair of adjacent column pixels pertaining to the high energy and the low energy 

signals produces a material discrimination data. For example, the materials 

categorisation for pixel {1,1} (i.e. the first pixel in the X  and F-axis) in the original 

image illustrated in Fig. 3.5 is derived by mapping the Hi and Li values to the 

materials discrimination curves, while the materials discrimination for pixel {1,2} is 

processed by a similar procedure. In this way, all the pixels in the image may be 

colour encoded.

The raw x-ray images are originally produced in a 12-bit grey scale digital format 

(i.e. de-interlaced image in Fig. 3.5). This 12-bit grey scale image is converted into 

an 8-bit digital format and assigned to a standard industry colour palette of 24-bit 

RGB (red, green and blue), which indicates regions of principally organic, inorganic
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and metal substances in the resultant images. The established material discrimination 

criteria is based on the derived materials discrimination curves. The original 12-bit 

grey scale image has to be converted into an 8-bit digital format, because the 

standard colour palette utilised by the aviation security industry is based on 8-bit 

grey scale data. This can be appreciated from graphs in Fig. 3.9, 3.10 and 3.11. Thus, 

every pixel in the de-interlaced image may be assigned to the appropriate colour by 

employing the industry standard colour palettes illustrated in the following graphs of 

Fig. 3.9 for organic materials, Fig. 3.10 for inorganic and Fig. 3.11 for metal 

substances.

(D 
DC

300

250

(1 3 0 ,2 0 3 )
200

Organic red 
Organic green 
Organic blue

150

100

50
(130, 54)

0
2502001501000 50

Grey Level

Fig. 3.9 Graph o f the industry colour palette (orange) for organic substances.

300

250 (130, 223)

200

0) 150

100

50

(130, 34)
0

250200150100500

Inorganic red 
Inorganic green 
Inorganic blue

Grey Level

Fig. 3.10 Graph o f the industry colour palette (green) for inorganic substances.
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300

250
(1 3 0 ,2 1 8 )

>
CD

200

§  150 tr
100

50
(130, 39)

50

Metal red 
Metal green 
Metal blue

200 250100 150

Grey Level

Fig. 3.11 Graph o f the industry colour palette (blue) for metal substances.

3.6 Calibration for Materials Discrimination

Plastic, aluminium and steel stepwedges were utilised to calibrate the x-ray machine 

for organic, inorganic and metal discrimination capability. Each stepwedge was 

scanned and the average high (HI) and low (LO) energy signals for a 20 x 20 pixel 

region obtained for every step was used to plot the discrimination curves.

3.6.1 Plastic Stepwedge

Fig. 3.12 illustrates the plastic stepwedge (H8C13O7, p  = 1.4 g/cm3, Z=6.6, each step 

is approximately 10 mm thick) employed in the calibration process.

Fig. 3.12 Plastic stepwedge.
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The calibration data for the plastic stepwedge is tabulated in Appendix A. The graph 

of transmitted HI and LO energy signal data (pixel grey levels) are plotted for each 

step as shown in Fig. 3.13(a). The empirical discrimination curve for the plastic 

stepwedge together with a smooth polynomial trend is illustrated in Fig. 3.13(b).

Transmitted Signals (Grey Level)
4000  - HI Beam
3500

LO Beam
3000

2500

2000

1500

1000

500

2012 16 186 8 10 142 40
Number of Steps

Fig. 3.13(a) Graph o f the transmitted HI and LO signals against the number o f plastic steps.

HI-LO (Grey Level)
900

800

700
Y = A + B 1 *X + B 2*X A2

600 - = 6.00 + 0 .2 IX  - 4 .89E-5*X A2

500
Empirical Results 
Polynomial Fit400

3 0 0 -

200

100

1000 1500 2000  2500 3000  3500  4000 45005000
HI (Grey Level)

Fig. 3.13(b) The materials discrimination curve for the plastic stepwedge.
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3.6.2 Aluminium Stepwedge

Fig. 3.14 shows the aluminium stepwedges (p = 2.702 g/cm3, Z=13, each step is 

approximately 2 mm thick) utilised in the calibration process. The calibration data 

for the aluminium stepwedge is tabulated in Appendix A. The graph of transmitted 

HI and LO energy signal data (pixel grey levels) are plotted for each step as shown in 

Fig. 3.15(a). While Fig. 3.15(b) shows the empirical discrimination curve for the 

aluminium stepwedge together with a smooth polynomial trend.

Fig. 3.14 Aluminium stepwedge.

Transmitted Signals (Grey Level)

4000
HI Beam

3500
LO Beam

3000  -

2500

2000  -

1500 -

1000

500

0 2 4 6 8 10 12 14 16 18 20 22  24  26  28 30 32 34
Number of Steps

Fig. 3.15(a) Graph o f the transmitted HI and LO signals against the number o f aluminium
steps.
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HI-LO (Grey Level)
900

Y = A + B1*X + B2*X A2 

= -6.37 + 0.48X -1.16E-4*X A2
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500

400
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100

4000  45002000  2500 3000 350500 1000 1500
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Fig. 3.15(b) The materials discrimination curve for the aluminium stepwedge.

3.6.3 Steel Stepwedge

Fig. 3.16 shows the steel stepwedge (p = 7.85 g/cm3, Z= 26, each step is 

approximately 1 mm thick) used in the calibration process. The calibration data for 

the steel stepwedge is tabulated in Appendix A. The graph of transmitted HI and LO 

energy signal data (pixel grey levels) are plotted for each step as shown in Fig. 

3.17(a). The empirical discrimination curve for the steel stepwedge together with a 

smooth polynomial trend is illustrated in Fig. 3.17(b).

Fig. 3.16 Steel stepwedge.
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Transmitted Signals (Grey Level)
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Fig. 3.17(a) Graph o f the transmitted HI and LO signals against the number o f steel steps.
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Fig. 3.17(b) The materials discrimination curve for the steel stepwedge.
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3.6.4 Empirical Materials Discrimination Curves

The smoothed materials discrimination curves in Fig. 3.13(b), Fig. 3.15(b) and 

Fig. 3.17(b) are all plotted in the graph of Fig. 3.18(a). The mid-points in between 

the steel-aluminium and the aluminium-plastic curves (i.e. curves A and B shown in 

Fig. 3.18(b)) were derived from the polynomial fit equations for the three stepwedges 

shown in Fig. 3.18(a). Table B -l of Appendix B tabulates part of the data calculated 

for curves A and B where remainder of the computational results are listed in the 

compact disc of Appendix B.
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Fig. 3.18 The materials discrimination curves for the three stepwedges.
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The Y-axis value for the plastic, aluminium and steel curves shown in the Table B-l 

o f Appendix B were computed using the polynomial fit equations below:

Ypiastic = -4.89x10'5X2 + 0.21X + 6.00,

YaUimimuir, =  -1.16xl(r4X2 + 0.48X - 6.37,

YS,«| = -1.58xlO'4X2 + 0.69X - 9.82.

where X^O, 1,2,....4095 for the 12-bit grey scale image.

Fig. 3.18(b) illustrates the complete polynomial fit discrimination curves 

showing the organic, inorganic and metal regions. The Y-axis value for curves A and 

B were computed using the equations below:

Y c  urve A  ( Y ste e l " Y a lu m in iu m )/^  +  Y alum inium  

Y C u rve  B ~  ( Y alum inium  “ Y p l a s t i c ) / 2  +  Y p lastic

3.7 Materials Discrimination Experiments

A series o f baggage items was screened to examine the broad materials 

discrimination capability o f the x-ray system. This was accomplished by applying the 

empirical materials discrimination curves derived in previous section and the 

industry standard colour palette as explained earlier. The results produced by the 

experiments have validated the calibration procedure.

The empirical results for the material discrimination capability o f  the experimental 

x-ray machine for baggage sample-1, sample-2 and sample-3 are illustrated in 

Fig. 3.19, Fig. 3.20 and Fig. 3.21 respectively.
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M etal

Y  
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---------- > X

Fig. 3.19 Colour encoded image of baggage sample-1.

Y  

A

---------- > X

Fig. 3.20 Colour encoded image of baggage sample-2.

Inorganic

O rganic

Fig. 3.21 Colour encoded image of baggage sample-3.
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3.8 Experiments on System Noise

The analysis o f the bright field images (i.e. blank peak white signal images) was 

conducted to evaluate the noise generated by the whole image acquisition chain o f 

the experimental x-ray system.

Fig. 3.22 illustrates the segregation o f the low energy and the high energy images 

from the original interlaced image. Experiments were carried out to examine each o f 

the pixel columns (i.e. 320 pixel counts in the 7-axis) in the low energy and the high 

energy images.
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Fig. 3.22 The segregation of the low energy and the high energy images from the original
interlaced image.

The theoretical bright field signals for the low energy and the high energy images 

should ideally exhibit a constant maximum value (i.e. 4095 for a 12-bit grey scale 

digital image). The experimental results for the noise analysis o f the low energy and 

the high energy images for both the left and right imaging channels (i.e. stereoscopic 

image pairs) are shown in Fig. 3.23, through to Fig. 3.26. The analysis utilised five
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adjacent pixel columns (i.e. from X=\ to 5 or pixel column 1 to 5) from each o f the 

low energy and the high energy images. The grey level intensity for every pixel 

count (i.e. from 7=1 to 320) is plotted in the graphs.

High Energy Data for the Left Perspective Im aging Channel 

The noise analysis o f the high energy data for the left perspective image is illustrated 

in graphs plotted in Fig. 3.23 and Fig. C-l in Appendix C. They are plotted with data 

obtained from five pixel columns. The standard deviation is o f the order of ±49.4 

with respect to the mean value o f 4063.1.

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301
Pixel C ount

Fig. 3.23 Graph of the noise analysis for the high energy data for the left perspective
imaging channel: pixel column 1.

Low Energy Data for the L eft Perspective Imaging Channel 

The noise analysis o f the low energy data for the left perspective image is illustrated 

in graphs plotted in Fig. 3.24 and Fig. C-2 in Appendix C. They are plotted with data 

obtained from five pixel columns. The standard deviation is o f the order o f ±45.1 

with respect to the mean value o f 4064.4.

mm
I  350 rrr—-—— : :1 ——  :..q
g 325 
o 300 
u- 275

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Pixel Count

Fig. 3.24 Graph of the noise analysis for the low energy data for the left perspective imaging
channel: pixel column 1.
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High Energy Data for the Right Perspective Imaging Channel

The noise analysis o f the high energy data for the right perspective image is 

illustrated in graphs plotted in Fig. 3.25 and Fig. C-3 in Appendix C. They are 

plotted with data obtained from five pixel columns. The standard deviation is o f the 

order o f ±46.9 with respect to the mean value o f 4064.4.

e  350 
§ 325 
2 300 

275 
o> 250 
% 225 
-J  2 0 0  
S' 175 
£ 150 
w 125 
o 100 
® 75
S 50 
a; 25 0a)fcs 1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Pixel Count

Fig. 3.25 Graph of the noise analysis for the high energy data for the right perspective
imaging channel: pixel column 1.

Low Energy D ata for the Right Perspective Imaging Channel 

The noise analysis o f the low energy data for the right perspective image is 

illustrated in graphs plotted in Fig. 3.26 and Fig. C-4 in Appendix C. They are 

plotted with data obtained from five pixel columns. The standard deviation is o f the 

order of ±41.4 with respect to the mean value o f 4070.5.

It  jb a ir r  yj
S  1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301Q

Pixel Count

Fig. 3.26 Graph of the noise analysis for the low energy data for the right perspective
imaging channel: pixel column 1.

The maximum standard deviation from this series o f experiments is ±49.4 from a 

mean value of 4063.1. Generally, these results are reasonable and indicates that the 

x-ray source is capable o f producing a comparatively constant output.
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3.9 Experiments on System Repeatability

A series of experiments to establish system repeatability was conducted. A set o f six 

nominally identical T-shape metal objects but with different thickness were scanned 

6 times. The purpose o f this experiment is to ascertain whether the average grey level 

intensity for a set of metal objects remains constant for successive scans.

The physical arrangement of the metal objects was scanned 6 times (M_a, M b, 

M_c, M_d, M e and M_f) as shown in Fig. 3.27.

X-ray Source

Fig. 3.27 The physical arrangement o f  the metal objects on the conveyor belt o f  the
experimental system.

Collimatel

Folded Linear Dual-Energy 
X-ray Detector Arrays

Metal Objects Under 
Inspection

‘Slit’
X-ray Beams

\
Conveyor Belt
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Fig. 3.28 illustrates the resultant monochrome high energy and low energy x-ray 

images (12-bit grey level) for the metal objects.

Y 
A

----------> X

High Energy Image Low Energy Image

Fig. 3.28 The monochrome x-ray images for the metal objects arranged as shown in
Fig. 3.27.

Table 3-1 (a), (b), ...(f) tabulate the average grey level (i.e. average o f a 20 x 20 pixel 

region) for each metal object (M_a, M b, . ...M_f) for the left perspective high 

energy and low energy images (left HI & left LO), and also for the right perspective 

high energy and low energy images (right HI & right LO). The average value and the 

standard deviation (SD) for each data set are calculated. Since the metal objects have 

uniform thickness, the average grey level was computed for any 20 x 20 pixel 

portion within each imaged object.

4444
A

M a L LO L HI R LO R HI
1 1888 2661 1919 2553
2 1888 2672 1921 2556
3 1887 2656 1918 2540
4 1885 2664 1926 2553
5 1884 2663 1921 2551
6 1888 2668 1927 2562

Average 1886.7 2664 1922 2552.5
SD ± 1.8 ± 5.6 ± 3.7 ± 7.2

M b LLO L HI R LO R HI
1 1194 1970 1198 1948
2 1195 1973 1204 1960
3 1192 1966 1195 1947
4 1198 1974 1200 1958
5 1194 1972 1196 1949
6 1197 1976 1198 1955

Average 1195 1971.8 1198.5 1952.8
SD ± 2.2 ± 3.5 ± 3.2 ± 5.6

Table 3-1 (a) Table 3 -l(b )
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M_c LLO L Hi R LO RHI
1 858 1 5 3 7 89 5 1525

2 85 5 153 6 89 7 1526

3 8 5 3 1527 89 4 1519

4 8 60 153 6 89 7 1527

5 858 153 4 90 0 1525

6 85 9 1538 90 2 1530

Average 8 5 7 .2 1 5 3 4 .7 8 9 7 .5 1 5 2 5 .3

SD ±2.6 ± 4 .0 ± 3 .0 ± 3 .6

M_d LLO LH! R LO RHI
1 6 6 3 122 6 688 12 2 4

2 6 6 5 122 5 6 9 0 1231

3 6 6 2 1221 688 122 5

4 6 6 3 1222 688 1230

5 6 6 3 122 6 6 8 5 1227

6 6 6 4 122 6 6 8 7 1233

Average 6 6 3 .3 122 4 .3 6 8 7 .6 1 2 2 8 .3

SD ± 1 .0 ± 2 .3 ± 1 .6 ± 3 .6
Table 3-l(c) Table 3-l(d)

M e LLO L HI R LO RHI
1 3 2 8 7 2 4 33 7 72 0

2 3 2 5 721 3 4 0 7 2 7

3 3 2 5 7 2 3 3 3 7 7 1 9

4 32 6 7 2 3 33 9 722

5 328 72 8 3 3 9 722

6 32 4 7 2 5 3 3 9 7 25

Average 32 6 72 4 3 3 8 .5 7 2 2 .5

SD ±1 .7 ± 2 .4 ± 1 .2 ± 3 .0

M_f LLO L HI R LO RH I
1 2 1 5 4 7 6 210 4 9 4

2 211 4 7 3 2 0 8 4 9 4

3 2 1 3 4 7 4 2 0 7 4 9 2

4 210 4 7 4 2 0 7 4 9 3

5 2 1 3 4 7 7 2 0 9 4 9 3

6 210 4 7 2 2 0 9 4 9 4

Average 212 4 7 4 .3 2 0 8 .3 4 9 3 .3

SD ±2 .0 ± 1 .9 ± 1 .2 ± 0 .8
Table 3-l(e) Table 3-1(f)

It can be deduced from Table 3-1 that the maximum standard deviation o f ±7.2 or 

better can be achieved.
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3.10 Summary

The empirical results indicate that the calibration for the castellated detector array in 

terms of spatial interlace removal and broad materials discrimination capability are 

acceptable for visual inspection purposes. Additionally, the experimental results for 

the system noise and the system repeatability are also generally acceptable.

The experimental results have proved the capability of the castellated detector array 

in producing monochrome and colour images with comparable visual quality to the 

conventional approach utilising sandwich detector arrays. However, material 

discrimination for a single sample (i.e. one pixel) is not achievable with the 

castellated arrangement. It can be appreciated from Fig. 3.2 on page 35 that the 

associated x-ray beam paths for the adjacent pixels are slightly different. Therefore, 

the LO and HI energy signal weightings could be untrue for a pixel size material 

element. Consequently, this may also effect the material discrimination at the edges 

of the objects under inspection as illustrated in Fig. 3.29 (i.e. the encoded green and 

brown colours at the edges of the metal keys).

Nevertheless, the size of threat objects such as explosives in a security screening 

application will be very large in comparison to single pixel sample. Therefore, the 

detector array will produce sufficiently high spatial resolution together with materials 

discrimination capability.

Fig. 3.29 Baggage sample-2: (a)-Colour image, (b)-Zoomed image o f a region o f interest in 
(a) depicting edge artefacts produced by the castellated detector.

region of interest

edge artefacts

(a) (b)
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The noise analysis indicates that a maximum standard deviation o f the order o f ±49.4 

is produced by the detector element with respect to the mean value o f 4063.1. While, 

the system repeatability test indicated a maximum standard deviation of the order of 

±7.2. Generally, these results are reasonable where the resultant grey levels for each 

successive object scan is within acceptable visual limits. However, the accuracy of 

the technique developed to detect target materials (described in Chapter 5) is affected 

by small deviations m system noise and system repeatibility . Therefore, small 

systematic errors which are not visually significant may result in incorrect target 

material discrimination when data is quantitatively processed by the techniques 

presented in the following chapters.

It is strongly believed that the system x-ray source is not sufficiently stable to 

provide a constant x-ray flux at all times and thus it contributes to the majority o f the 

system noise. Therefore, a more stable type o f x-ray source is required to provide a 

more accurate target material detection performance as investigated in the following 

chapters.

Additionally, the problem of non-uniform sensor response will also affect the 

accuracy o f the low energy and high energy x-ray transmission signalsF5’ K3’ L6, T5. 

The potential performance of the Thallium doped Caesium Iodide detector (CsI(Tl)) 

is limited by its long decay time and also its wide variation in afterglow where its 

afterglow figures is o f the order o f 0.5 to 5.0% after 6msLI. Afterglow is quoted as a 

percentage o f the emitted light signal intensity at a given time interval after x-rays 

excitation has ceased. The relatively large variation in afterglow can create large 

variations in x-ray intensity measurements between individual detector elements in 

an array. As a result, the detected dual energy signals may vary.

Thus, an ideal scintillator for the purpose o f security screening requires the following 

important features:

■ high efficiency for converting x-rays into light signals;

■ linear conversion o f x-rays into light signals (i.e. emitted light signals is 

proportional to the deposited x-ray energy);

■ short decay time to permit fast sampling o f the generated light signals.
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Generally, the results obtained from the empirical analysis have proved the validity 

o f the castellated sensor in terms o f broad materials discrimination performance. 

Therefore, this would seem a reasonable result for the purposes o f the further 

investigations reported in Chapter 5 and 6.

The scattered photons are neglected in this research. It is assumed that the distance 

between the object under inspection and the detectors is long, and the proper slit 

collimation of the x-ray source and the detector will reduce the scattering effect to 

negligible levels. Additionally, the application o f the mathematical algorithms in the 

following chapters assumes that the system x-ray spectrum does not change with 

time. However, the x-ray spectra will randomly fluctuate in practice and will lead to 

significant error in the calculations.
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CHAPTER FOUR
AUTOMATED X-RAY IMAGE SEGMENTATION

4.1 Introduction

This chapter describes the development o f an automated image segmentation 

program to isolate grey level information relating to different layers o f baggage 

contents. This process is a precursor to the investigation o f the extraction of the 

characteristic angle (i.e. effective atomic number) and mass density o f overlapping 

object structures in the resultant images. The mathematical algorithms implemented 

to extract the characteristic angle and mass density from each successfully 

segmented layer o f overlapping materials are discussed in Chapter 5 and Chapter 6 

respectively.

This chapter discusses the following two areas:

* The development o f an automated image segmentation program using

the wavelet transform.

■ The development o f automated image categorisation algorithm.

Initially, an automated image segmentation program utilising the wavelet transform 

technique is applied to segment the overlapping objects in an x-ray image into 

individual regions or objects.

The work is expanded to extract the low energy and the high energy data for each 

successfully segmented region in the digital x-ray image. This enables an automated 

‘overlapping image’ categorisation algorithm to be developed. Thus, the segmented 

regions in an x-ray image can be further categorised into overlapping and 

non-overlapping objects.
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4.2 Automated Image Segmentation using the Wavelet Transform

The wavelet transform technique originally developed by Jean-Christophe Olivo and 

Stephane Mallat is employed in an automated segmentation program. This technique 

is based on the detection o f the zero-crossings of a wavelet transform when applied 

to the grey level histogram of the resultant images. In this way, cluster’s o f pixels 

with similar grey levels values may be identified and treated as discrete object 

features. O f particular interest in this work is the delineation o f multiple layers o f 

different material types. Therefore, the concept that different configurations o f 

overlapping materials will produce distinct changes in grey level distribution is used, 

under certain conditions, to extract the grey levels attributable to the individual 

layers or composite layers.

The flow chart for the automated image segmentation algorithm is illustrated in 

Fig. 4.1. Initially, the low energy and the high energy x-ray image data is filtered to 

reduce noise. A median filter employing a 3x3 neighbourhood was identified as 

having appropriate properties in terms of fast computation time and suppression of 

impulsive noise while preserving edgesH1°.

In this research, only the low energy x-ray image is utilised in the image 

segmentation process. However, the high-energy image would have been equally 

applicable for this purpose.
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Start

Y es

End

Is /  < 6 ? 

I N o

Raw Image

Noise Filtration

Image Labeling

j =  0 (scale s = 2 f )

Get Image Histogram H ( n )

Automated Image Thresholding

Convolution o f H ( n )  and 
smooth filter h ( k )

Convolution o f H ( n )  and 
detail filter g ( k )

Save results (detail signal, 
W /n J )  in array for this scale s

Save results (smooth signal, S s(n]) 
in array for this scale s

Fig. 4.1 Flow  chart for the automated image segmentation program.

A histogram H(n) o f the filtered low energy x-ray image is initially obtained. The 

first wavelet scale s= 1 (2°) is initialised by setting the integer value o f /  to 0. This is 

followed by the convolution o f the detail wavelet filter g(k) and the image histogram
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H(n). The result o f this convolution is the detail signal (Ws(n)) which is stored in an 

array.

Convolving H(n) with g(k) computes the total average of the neighbour’s intensity of 

each grey level with the function g(k). As j=0, the convolution is carried out on the 

neighbours in the interval o f s= 1 (2°). When the scale 5 increases, the convolution is 

then conducted on the neighbours o f each grey level at larger intervals. This 

therefore explains that the smaller the scale s, the finer the details o f the x-ray image 

that are processed.

The original histogram H(n) is then convolved with the smooth filter h(k) and the 

result o f this convolution which is the smooth signal (,Ss(n)) is saved in another array. 

The histogram H(n) is replaced with the new values obtained from the smooth signal 

Ss(n). This implies that the original x-ray image is smoothed by the smooth filter h(k) 

and the new histogram data H(n) is convolved again with filters g(k) and h(k) in the 

next loop at larger scale s=21, 22...2 5. All the results o f the detail and smooth signal 

at each scale s are saved in arrays independently.

The automated image thresholding algorithm can be subsequently derived from the 

results obtained by the wavelet analysis. This is performed by choosing the 

zero-crossing points from the detail signal Ws(n) at any desired scale s ('s=2). The 

detected zero-crossing points are applied for the automatic selection o f a set of 

thresholds describing every segmented region in the x-ray image. Finally, all o f  the 

successfully segmented regions (i.e. which can be interpreted as homogeneous grey 

level areas representing the whole original image) are labelled for next phase o f 

analysis (i.e. automated image categorisation program).

The empirical results shown in Fig. 4.3 best illustrate the detail graphical 

representation o f wavelet transform (i.e. image histogram H(n), detail signal Ws(n) 

and smooth signal Ss(n)) for a segmented x-ray image.
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4.2.1 Limitations

The limitation o f the wavelet analysis is that unsuccessful segmentation can occur 

when the region o f interest in an x-ray image is small compared to the background or 

when both the region o f interest and the background have a broad range o f grey 

levelsM5-02.

Therefore, overlapping substances can only be delineated provided that each layer 

has a discernable shape that can be segmented. As a result, a thin sheet o f plastic 

explosive («2 to 5 mm) which is almost transparent in an x-ray image would still 

present an extremely difficult/impossible scenario.

4.2.2 Experimental Results

A series o f experiments has been conducted to evaluate the automated image 

segmentation algorithm to delineate overlapping objects in the resultant x-ray 

images. The best wavelet scale s suitable for the segmentation o f ‘typical’ baggage 

contents is concluded as: s=22.

Baggage Sample-5

Fig. 4.2 illustrates every region (object) in baggage sample-5 (i.e. Fig. 4.2(a)) with 

uniform intensity is successfully segmented and represented in different colours as 

illustrated in Fig. 4.2(b) to Fig. 4.2(f) for wavelet scale s - 21 to 25. It can be 

appreciated that as the scale 5 reduces the segmented areas increase in number. It can 

also be deduced from the images in Fig. 4.2 that the best wavelet scale s for the 

segmentation of baggage sample-5 is 22.
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(a) Original (b) scale 21

(d) scale 2(c) scale

Fig. 4.2 (a)- Original monochrome low energy x-ray image of baggage sample-5,
(b)- segmented image at scale 21, (c)- segmented image at scale 22, (d)- segmented image at 

scale 23, (e)- segmented image at scale 24, and (f)- segmented image at scale 25.
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Fig. 4.3 shows the graphs plotted with the number of pixels versus the respective 

grey levels (i.e. grey levels from 1 to 91) for baggage sample-5. It can be appreciated 

from the graphs that the zero-crossing points for the detail signal Ws at a larger scale 

5 is not accurate when compared to the original histogram H. This is due to the fact 

that at a larger scale 5, the smooth signal Ss becomes coarser and crudely 

approximates the original histogram.
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Fig. 4.3 Finite scale wavelet transform representation of baggage sample-5 (Fig. 4.2(a)) for 
scales s=21, ..., 25. In the corresponding figures (a)-(e), the original image histogram H, the 

smooth signal Ss, and the detail signal Ws are plotted at every scale s.
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B as  sage sample-6

Fig. 4.4 illustrates that the objects in baggage sample-6 exhibiting uniform intensity

are successfully segmented and represented in different colours for wavelet scale
/->2 s—2 .

 >x
(a)

Fig. 4.4 (a)- Original

B a ssa se  sample-7

Fig. 4.5 illustrates that the objects in baggage sample-7 exhibiting uniform intensity
2

are successfully segmented for wavelet scale s=2 .

Fig. 4.5 (a)- Original monochrome low energy x-ray image of baggage sample-7 and
(b)- segmented image at scale 22.

(b) scale 22(a) Original

Original (b) scale 22

monochrome low energy x-ray image of baggage sample-6 and 
(b)- segmented image at scale 22.
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Baggage sample-3

Fig. 4.6 illustrates objects in baggage sample-3 with non-uniform intensity are 

segmented into many individual regions represented in different colours for wavelet 

scale s=22 and s=23. It can be appreciated from the results that there are many 

successfully segmented regions for both wavelet scales 5=22 and s=23. This approach 

requires intensive image processing and may not be appropriate for real time 

applications.

(a) Original

(b) scale 2 (c) scale 23

Fig. 4.6 (a)- Original monochrome low energy x-ray image of baggage sample-3, 
(b)- segmented image at scale 22 and (c)- segmented image at scale 23.

Baggage sample-4

Fig. 4.7 illustrates objects in baggage sample-4 with non-uniform intensity are
2 3

successfully segmented into individual regions for wavelet scales 5 = 2  and 5 = 2  . 

Hence, it requires intensive image processing and the result is unsuitable for real 

time application.
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(a) Original

Y
A

 > X

(b) scale 22 (c) scale 23

Fig. 4.7 (a)- Original monochrome low energy x-ray image of baggage sample-4, 
(b)- segmented image at scale 22 and (c)- segmented image at scale 23.

4.3 Categorisation of Overlapping Image Structure

The results from the wavelet image segmentation algorithm are used to categorise the 

overlapping image structure. This is accomplished by consideration of the average 

grey level of a particular segment in relationship to its neighbouring segments. This 

enables the delineation of layered structures to be accomplished by applying the 

basis materials subtraction technique described in Chapter 5. However, the 

following text describes the initial method employed to categorise overlapping image 

structure.

Generally, the segmented objects in an x-ray image can be categorised into 

overlapping and non-overlapping objects. Fig. 4.8(a) illustrates a set of hypothetical 

objects (A, B, C and D) that are x-rayed. The hypothetical grey scale x-ray image of 

this arrangement is shown in Fig. 4.8(b). The segmented regions in the resultant
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image are labelled (from 1 to 6) for further analysis. Fig. 4.8(b) also indicates the 

grey levels for all the segmented regions.

A  Y ii i i  i i  A

XA

\|

Incident X-rays 

Fig. 4.8(a) Hypothetical inspected objects.

2 ( 2 0 0 )

( 1 6 0 )
( 2 2 0 )

M

 >x __________________________________________________

Fig. 4.8(b) Hypothetical grey level x-ray image for the set o f  objects arranged in Fig. 4.8(a).

The automated image categorisation algorithm initially locates the neighbour regions 

o f each segmented object in the image. Additionally, the algorithm determines the 

average grey levels for the neighbour regions. For example, region 3 is overlapped 

by region 2, thus the average grey level for region 3 must be lower than the average 

grey level for region 2. Therefore, these assumptions are applied to determine the 

overlapping regions in the segmented image.

Table 4-1 shows an example o f the results for the hypothetical grey level image 

shown in Fig. 4.8(b). It can be appreciated that the segmented regions 1 and 6 are 

categorised as non-overlapping objects even though they are connected to region 2 

and 5 respectively. This is due to the fact that their average grey levels are greater 

than the average grey levels of their neighbouring regions. While, the results shown
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for segmented region 3 and 5 are true, since these regions are formed by the object C 

overlapping object B and, also the overlapping of object B and object A.

However, it is inevitable that the results for the segmented regions 2 and 4 could be 

overlapping more than one region as shown in Fig 4.8(a). For instance, if the objects 

are arranged as shown in Fig. 4.9 (i.e. where the whole area of object B is overlapped 

by object A ’, and the object D is overlapped by object B), the false results obtained 

for regions 2 and 4 are now valid. This is because both arrangements shown in Fig 

4.8(a) and Fig. 4.9 will exhibit identical spatial x-ray image formation as illustrated 

in Fig. 4.8(b). Therefore, it would be better if the cases illustrated in Fig. 4.8(a) and 

Fig. 4.9 are considered by the image categorisation algorithm. As a result, the 

automated image categorisation algorithm may produce invalid information under 

certain circumstances.

Incident X-rays

Fig. 4.9 Hypothetical inspected objects.

Segm ented  R egion C onnected Regions O verlapping R egions

1 2 None (true)
2 1,3, 4, 5 1 (false)
3 2 ,4 2 (true)
4 2, 3 2(false), 3(true)
5 2 ,6 2(true), 6(true)
6 5 None (true)

Table 4-1 Automated image categorisation results.

The Fig. 4.10 details the flow chart for the automated image categorisation 

algorithm. This algorithm is the continuation of the flow chart shown in Fig. 4.1 on
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page 62. All the successfully segmented regions are labelled (n=zm=l,2,3....N, where 

AMast labelled region) by the program.

Initially, the high energy and the low energy data (i.e. average grey levels in a 

monochrome digital image format) for each successfully segmented region are 

obtained from the resultant image. Each o f the segmented regions (ri) is examined 

together with all other neighbour regions (m, where m^n). If  region n has an average 

grey level which is less than a neighbour region m, it is therefore deduced that region 

n is overlapping region m.

Finally, these results are stored in a database for the quantitative analysis of 

characteristic angle for each discriminated object in the baggage.
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Image Labeling 
(N=Last Segmented Region)

Get the low energy and high 
energy data (grey levels) for 

every segmented region

n — 1
(1st Segmented Region)

m— 1
(1st Segmented Region)

Is region m  a neighbour 
region to n  where m £ n  ?

Is average grey level for 
region n  < average grey level 

for region m  ?

Region n is overlapping 
region m

m = m + \

Fig. 4.10 Flow chart for the automated image categorisation algorithm 

(i.e. categorisation o f  overlapping image structure).
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4.3.1 Limitations

In general, the limitations of the automated image categorisation algorithm can be 

described by the two scenarios presented below.

Scenario 1:

Incident X-rays 

Fig. 4.11 Hypothetical inspected objects.

It is impossible to detect an overlapping object that has the same dimension (except 

thickness) as the object that it is attached to. This is because both overlapping objects 

will be displayed as a single object in the resultant x-ray image as illustrated in 

Fig. 4.11 where object A perfectly overlaps object B. It is therefore suggested for 

future work that a multiple-view x-ray systemm2 could be used to resolve this 

problem (this is further described in Chapter 7).

Scenario 2:

Object C is placed in a void located in object B. Thus the technique would assume 

(incorrectly) that object C is overlapped by object A and B.

z
B

Incident X-rays 

Fig. 4.12 Hypothetical inspected objects.
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4.3.2 Experimental Results

A series of experiments has been conducted to evaluate the automated image 

categorisation algorithm. The image categorisation results were obtained using a 

wavelet scale set to s=22. It can be concluded that the algorithm successfully operates 

within the limits which have been previously described. The results presented in the 

following subsections indicate the major segmented and labelled features in the 

resultant images. The detail analysis results are recorded in Appendix D.

Baggage sample-6

Fig. 4.13(a) and (b) illustrate the grey scale high energy and low energy x-ray images 

for baggage sample-6 . Fig. 4.13(c) illustrates each segmented and labelled region in 

baggage sample-6 .

(c)

Fig. 4.13 (a)- High energy x-ray image of baggage sample-6, (b)- low energy x-ray image of 
baggage sample-6 and (c)- segmented and labelled image at scale 22.

Table 4-2 presents the automated image categorisation results for baggage sample-6 . 

The average low energy and high energy data for each of the successfully segmented 

regions are also tabulated. The detail results for the labelled regions are presented in
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Appendix D Fig. D -l. The maximum standard deviation o f grey levels for a 

segmented region after the noise filtering process is ±8 .

Segmented Region Average Low and 
High Energy Grey Level

Standard Deviation Overlapping Regions

1 39, 74 ±3, ±3 66
2 23,50 ± 1, ±6 4
3 28, 57 ±1, ±5 40
4 51, 87 ±3, ±4 6,58
5 49, 73 ± 1, ±2 44
6 58, 89 ± 1, ±1 58
7 64, 104 +3, ±8 55, 57, 64, 65, 75
8 85, 113 +2, ±4 68
9 85,114 ±2, ±2 57
10 77,103 ±2, ±5 57
12 80, 125 ±2, +3 66, 69
14 77, 115 ±2, ±3 44
21 104, 140 ±2, ±6 48
24 117, 155 +2, ±3 58
25 114, 137 ±2, ±3 48
39 145, 156 ±1, ±3 48
40 147, 179 ±2, ±3 57
44 167, 195 ±3, ±4 66, 69, 70, 72
45 161, 184 ±3, ±3 57, 66, 69, 72, 75
48 184, 193 ±3, ±3 66

Table 4-2 Automated image categorisation results for baggage sample-6.
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Baggage samvle-7

Fig. 4.14(a) and (b) illustrate the grey scale high energy and low energy x-ray images 

for baggage sample-7. Fig. 4.14(c) further illustrates each segmented and labelled 

region in baggage sample-7.

(a) (b)

(c)

Fig. 4.14 (a)- High energy x-ray image o f baggage sample-7, (b)- low energy x-ray image o f  
baggage sample-7 and (c)- segmented and labelled image at scale 22.

Table 4-3 shows the image categorisation results for baggage sample-7. The average 

low energy and high energy data for each of the successfully segmented regions are 

also tabulated. The detail results for all the labelled regions are presented in 

Appendix D Fig. D-2. The maximum standard deviation of grey levels for a 

segmented region is ± 8 .
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Segmented Region Average Low and 
High Energy Grey Level

Standard Deviation Overlapping Regions

2 8,21 ±2, ±3 6, 8, 9, 10
7 13,30 ±4, +7 73
15 30, 60 ±2, ±5 68, 73
16 33,63 ±2, ±2 69
18 32, 62 ±2, ±1 70
22 49, 89 0,0 73
38 101, 122 ±2, ±2 44, 47, 50
40 107, 133 ±1, ±3 49, 50
44 132, 156 +2, ±2 47, 51, 64
46 131, 143 ± 1, ±1 50, 55
47 135,157 ± 1, ±2 65
49 139,169 ±2, ±2 64
50 149, 161 +2, ±2 64, 65
55 176, 185 ±3, ±3 64, 65
64 199,208 ±2, ±2 72, 73
70 207,211 ±8, ±7 73

Table 4-3 Automated image categorisation results for baggage sample-7.
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Baggage sample-8

Fig. 4.15(a) and (b) illustrate the grey scale high energy and low energy x-ray images 

for baggage sample-8. Fig. 4.15(c) further illustrates each segmented and labelled 

region in baggage sample-8.

(c)

Fig. 4.15 (a)- High energy x-ray image of baggage sample-8 , (b)- low energy x-ray image of 
baggage sample-8 and (c)- segmented and labelled image at scale 2 2.

Segmented Region Average Low and 
High Energy Grey Level

Standard Deviation Overlapping Regions

8 31,61 ±2, ±3 62, 104
18 42, 75 ±2, ±3 129,143, 148
37 95,116 ±3, ±3 51,64
51 127, 151 ±3, ±3 108, 129
55 135, 148 ± 1,±1 64
64 146, 157 ±4, ±3 110, 129
105 183,191 ±6, ±5 129
106 188,195 ±2, ±2 129
107 182, 190 ±5, ±5 129
108 190, 197 ±2, ±2 129
110 186,193 ±5, ±4 129
114 186,194 ±2, ±3 129, 133
118 184, 192 ±6, ±6 129, 133
129 201,207 ±4, ±4 143, 147, 148

Table 4-4 Automated image categorisation results for baggage sample-8 .
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Table 4-4 presents the automated image categorisation results for baggage sample-8 . 

The average low energy and high energy data for each of the successfully segmented 

regions are also tabulated. The detail results for the labelled regions are presented in 

Appendix D Fig. D-3. The maximum standard deviation of grey levels for a 

segmented region is ±6 .

Baggage sample-9

Fig. 4.16(a) and (b) illustrate the grey scale high energy and low energy x-ray images 

for baggage sample-9. Fig. 4.16(c) further illustrates each segmented and labelled 

region in baggage sample-9.

(c)

Fig. 4.16 (a)- High energy x-ray image o f baggage sample-9, (b)- low energy x-ray image of 

baggage sample-9 and (c)- segmented and labelled image at scale 22.

Table 4-5 presents the automated image categorisation results for baggage sample-9. 

The average low energy and high energy data for each of the successfully segmented 

regions are also tabulated. The detail results for the labelled regions are presented in
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Appendix D Fig. D-4. The maximum standard deviation of grey levels for a 

segmented region in the order of ± 1 0  is obtained.

Segmented Region Average Low and 
High Energy Grey Level

Standard Deviation Overlapping Regions

1 31,64 ±2, ±4 55
2 42, 75 +2, ±2 53
3 42, 76 ±2, ±2 53
4 44,81 ± 1, +2 55
5 60, 103 + 10, ±10 55
6 58, 95 ±5, ±8 55
7 91, 112 ±2, +2 26,31

26 121, 145 ±2, ±2 38
29 134,146 ±2, ±2 32, 35
31 143,153 ±2, ±2 32,38
32 163,172 ±4, ±3 53,55
35 180,188 +2, ±2 53,54
36 184,192 ± 1, ±1 38
38 192,199 ±3, +3 45, 48, 50, 55, 57
39 190,196 +3, ±4 48
45 208,212 +3, ±3 53
48 210,214 +4, +4 56, 57
50 209,212 ±5, ±4 55

Table 4-5 Automated image categorisation results for baggage sample-9.

4.4 Sum m ary

The automated x-ray image segmentation and categorisation program has been 

evaluated with a series o f different baggage contents. The results obtained are 

encouraging for overlapping materials with uniform thickness. The optimum wavelet 

scale for segmenting a large amount o f ‘average5 baggage contents has been 

empirically determined as 22. The maximum standard deviation o f the grey levels for 

a segmented region computed from the experiments is ± 1 0  indicating a satisfactory 

image segmentation process.

It can be appreciated from the results that the segmentation for a complex object of 

non-uniform thickness requires intensive processing and is unsuitable for real time 

applications. On the other hand, the limitation o f the wavelet analysis occurs when 

the region of interest in an x-ray image is small compared to the background or when
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both the region o f interest and the background have a broad range o f grey levels. As 

a result, the region o f interest camiot be segmented successfully.

In realistic conditions, the aforementioned problems can be resolved by isolating the 

potential threat regions o f the x-ray image as a function o f grey level. Typically, 

threat items such as plastic explosives are very dense and will be displayed in low 

grey levels in the resultant x-ray image.

Additionally, the ability to segment objects with non-uniform structure is 

problematic in terms o f overlapping structure categorisation. Therefore, a more 

sophisticated approach than that adopted in this research is required. This problem 

can only be resolved if  the three-dimensional information at every image point o f the 

objects are known automatically.

The automated image segmentation program, the extraction o f the high energy and 

the low energy data, and also the information from the automatic image 

categorisation algorithm will be utilised in the following chapters to extract the 

characteristic angle for successfully segmented objects.
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CHAPTER FIVE
TARGET MATERIAL CALIBRATION 

AND RECOGNITION

5.1 Introduction

This chapter describes a series of experiments to establish the feasibility o f a basis 

materials subtraction (BMS) technique developed to extract the characteristic angle 

o f overlapping objects. This approach is subsequently combined with the image 

segmentation and categorisation program described in Chapter 4 to enable automated 

target material discrimination. Some successful experiments on discriminating a 

plastic target in several different ‘realistic’ luggage scenarios are also discussed.

5.2 Development of a Basis Materials Subtraction Technique

Basis materials subtraction (BMS) enables the characteristic angle from overlapping 

objects to be extracted. The BMS technique is a derivative of the basis materials 

decomposition (BMD) technique. It is capable o f extracting the two energy 

independent constants (i.e. tj and ti) that characterise the integrated photoelectric and 

Compton scattering attenuation coefficients (i.e. ac and ap) from layers of 

overlapping substances. Consequently, the characteristic angle 0 { i.e. tan"1 [t2/ti]) for 

the attenuated material can be obtained. Where ti and C are the equivalent basis 

materials thickness for any attenuated material as determined by using one o f the 

techniques described in Section 2.5.2 (page 26). The research work presented in this 

chapter utilises the direct approximation method, as it enables a relatively faster 

computation time in comparison to the non-linear approach. Additionally, the 

subregion direct approximation method is not employed by the author because it is
• • • C ' f imore sensitive to system noise .

Consider the overlapping materials A, B and C as illustrated in Fig. 5.1, the 

equivalent basis materials thicknesses (i.e. tj and ti) where the x-rays propagate 

through distance Li o f layer A (i.e. tu  and f^ ), distance Lj + L2 o f layer A-B (i.e. tjAB
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and t2AB) and distance Li + L2 + L3 o f layer A-B-C (i.e. tjABc and t2ABc) can be 

computed from the direct approximation method described in Section 2.5.2 (page 

26). From Equations 2-10 and 2-11 on page 27:

tXA = — aXALx ; t2A= ——a2ALx Equation 5-1 (a)
Pi Pi

tlB = — aXBL2 ; t2B ~ — Equat i on 5-1(b)
P\ Pi

tlc = — axc L3 ; t2C = — a2C L3 Equation 5-1( c )
P i  P 2

where (tu  , t2A), (tiB , t2B) and {tic , t2c) are the basis materials thicknesses for target

materials A, B and C respectively.

And,

t  _  P a „  t . P b t f __ P a t . P b t
l \AB ~  U \A M  ^  IB 1 ’ 11AB ~  1A 1 "r  U 1B ^ 1

P\ P\ Pi Pi
Equation 5-1 (d)

t -  Pa n i jl. _ r ,Pc j . t _  Pa t Pb r Pc T
hABC -   a \A L \ +  a \B L 1 +  a \C L 3 ’ 11ABC -  a lA  L l + a lB  L 1 +  ^  a lC  L 3Pi Pi P\ Pi Pi Pi

Equation 5-1 (e)

Equations 5-l(d) and 5-1 (e) can be solved by substituting values o f tjA, t2A, tjB, t2B, 

tic  and t2c from Equations 5-l(a), 5-1 (b) and 5-l(c):

t i B  = tiAB - tiA ; t2B = t2AB - t2A Equation 5 -1(f)

tic = tjABc - tjAB ; t2c — t2ABc - t2AB Equation 5-1 (g)

As a result, the materials B and C can be discriminated since the (tjB , t2B) and {tic , 

t2c) can be theoretically calculated by using the BMS equations shown above 

(i.e. Equations 5-1 (f) and 5-l(g)). It can be deduced from Equations 5-l(f) and 

5-1 (g), that the thickness o f each of the materials A, B and C is not required for the 

computation o f (tjB , t2B) and {tic , t2c). This is because the values of {t]A, t2A), {tiAB, 

t2AB) and {tiABc, t2ABc) can be obtained from the direct approximation method 

described in Section 2.5.2 (page 26).

Page 84



Target Material Calibration and Recognition

Incident X-rays 

Fig. 5.1 Overlapping materials A, B and C.

The characteristic angle 9 (i.e. tan '1̂ / ^ ]  for target material A, tan''[Cb/Ca] for 

target material B, and tan’‘[fcc/fyc] f°r target material C) is applied for the detection 

o f target materials in this research programme. The basis materials thicknesses for 

the overlapping layers can be computed by subtracting the equivalent basis materials 

thickness of the ‘nearest’ overlapping layer (i.e. tjAB, t2ab) from the equivalent basis 

materials thicknesses o f the target layer (i.e. tuBC, hABc\ Consequently, it is not 

required to determine the number of layers involved for the purpose o f target 

materials detection.

5.3 Calibration of the Direct Approximation Equations

An aluminium stepwedge (AL, pi = 2.702 g/cm3, Z= 13) and a plastic stepwedge (PL, 

/ / 5C/3O7, p2=\A  g/cm3, Z=6 .6 ) were used for the calibration of the direct 

approximation equations (i.e. Equations 2-14 and Equation 2-15 on page 29).

The experimental x-ray machine was calibrated using the following procedure. The 

aluminium and plastic stepwedges with various known thickness combinations are 

imaged as illustrated in Fig. 5.2.
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Plastic Stepwedge

Aluminium Stepwedge

t t t t t
Incident X-rays

Fig. 5.2 The arrangement o f  aluminium and plastic stepwedges for the calibration
procedure.

The stepwedges were positioned such that the low energy and the high energy 

transmission signals for each step were produced by the detector modules shown in 

Fig. 5.3(b) (highlighted in grey). This is to produce a symmetrical image about the 

X-axis (motion axis). Thus, the changes in ray path through the stepwedge in the 

F-axis is minimised. As a result, the effective thickness C#of each step t as a function 

of the x-ray beam convergence angle is:

where t is the true thickness for each aluminium or plastic step and the convergence 

angle cr= 3.75° (i.e. inclination o f the slit collimated x-ray beam from the normal to 

the conveyer belt). The collection of calibration data is repeated to enable each step 

o f the plastic stepwedge to be imaged with each step of the aluminium stepwedge. 

This process requires rescanning each new arrangement of the two stepwedges.

The logarithmic transmission T h  and 7 7  (i.e. TH =  In (— )H , T, =  In ( y ) / )  together

with all known basis materials thickness combinations (aluminium and plastic steps) 

were applied to derive the coefficients for the direct approximation equations as 

shown below (i.e. c, and dh i = 0, 1 ,2 ..., 8):

t \  =  c o + c \ T l  + c i ^ h  + c 37/,7’// + c aT l  + c 5 T h  + c 6 T[  T h  +  c -j T / '  +  c s T h '
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t2 -  do + d{rL + d2TH + d2Tl TH + d4TL2 + d5TH~ + d6Tr2TH~ + d7T,3 + d{TH

The coefficients c, and dh i = 0, 1, 2 8, were determined by using

Levenberg-Marquardt^ 6 polynomial least square fitting algorithm.

Consequently, from the equivalent amounts of tj and t2, the characteristic angle for 

each overlapping object can be determined by applying the BMS technique.

of the

Collimated \
Conveyor Belt

Position 
stepwedge

Folded Linear Dual-Energy 
X-ray Detector Arrays

‘Slit’
X-ray Beams

X-ray Source

Fig. 5.3(a) The position of the stepwedges for the calibration procedure.

Folded Array Modules

T

Inspection Tunnel \ \
\  \  \  \  \  \  \  \  \ \ \ \ 1 1

'•••. \ \ \ \ \ \ \ \  \  \  r - r - r

w \\\\ w
Stepwedge Position

Z (Depth Axis) 
A

Slit
Collimator

(Main Axis of array) X-ray
Source

Fig. 5.3(b) Folded linear dual-energy x-ray detector array.
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5.3.1 Calibration Results

The calibration procedure utilised an aluminium stepwedge comprised o f ten 1mm 

steps and a plastic stepwedge comprised o f fifteen 10 mm steps. The results for the 

high energy and the low energy calibration data were obtained by scanning the 

aluminium and plastic step wedges with all possible thickness combinations. The 

results are tabulated in Table 5-1 and Table 5-2 in the form o f the logarithmic 

transmission Th and Ti as a function of AL and PL thickness (mm).

AL
Steps 0 1 2 3 4 5 6 7 8 9 10

0 0 0.059 0.118 0.180 0.235 0.291 0.345 0.399 0.455 0.509 0.565
1 0.253 0.311 0.375 0.436 0.488 0.545 0.599 0.658 0.748 0.764 0.850
2 0.512 0.570 0.648 0.684 0.749 0.801 0.844 0.912 0.998 1.044 1.059
3 0.777 0.819 0.878 0.941 0.992 1.044 1.126 1.169 1.259 1.300 1.363
4 1.030 1.084 1.135 1.180 1.229 1.293 1.383 1.455 1.501 1.533 1.602
5 1.277 1.304 1.390 1.431 1.478 1.555 1.593 1.697 1.735 1.776 1.846
6 1.539 1.567 1.629 1.666 1.728 1.780 1.858 1.943 1.988 2.017 2.086
7 1.798 1.831 1.906 1.957 1.989 2.029 2.065 2.187 2.238 2.274 2.336
8 2.042 2.060 2.146 2.193 2.213 2.309 2.341 2.451 2.465 2.541 2.583
9 2.302 2.328 2.351 2.404 2.469 2.556 2.617 2.682 2.720 2.775 2.850

10 2.554 2.564 2.632 2.646 2.690 2.793 2.803 2.864 2.943 3.020 3.104
11 2.804 2.830 2.853 2.900 2.952 3.042 3.069 3.130 3.193 3.250 3.328
12 3.003 3.026 3.072 3.089 3.193 3.237 3.313 3.374 3.420 3.480 3.667
13 3.303 3.335 3.342 3.368 3.385 3.516 3.567 3.647 3.711 3.746 3.896
14 3.535 3.547 3.569 3.582 3.661 3.743 3.812 4.025 4.065 4.089 4.105
15 3.768 3.776 3.811 3.857 3.874 4.005 4.103 4.125 4.133 4.152 4.225

Table 5-1 Calibration table TH for the high energy x-ray spectrum. Step sizes of the 
aluminium and the plastic wedges are 1 mm and 10 mm, respectively.

AL
Steps 0 1 2 3 4 5 6 7 8 9 10

0 0 0.103 0.199 0.290 0.373 0.454 0.538 0.613 0.689 0.757 0.832
1 0.290 0.392 0.490 0.577 0.666 0.732 0.822 0.897 0.964 1.034 1.100
2 0.574 0.687 0.769 0.857 0.931 1.001 1.091 1.163 1.241 1.307 1.367
3 0.853 0.976 1.062 1.141 1.209 1.303 1.357 1.417 1.507 1.581 1.634
4 1.134 1.263 1.344 1.414 1.481 1.566 1.633 1.707 1.770 1.834 1.908
5 1.403 1.531 1.602 1.682 1.740 1.833 1.914 1.969 2.033 2.124 2.151
6 1.699 1.828 1.897 1.975 2.039 2.115 2.158 2.240 2.312 2.367 2.435
7 1.965 2.089 2.156 2.244 2.316 2.381 2.419 2.516 2.563 2.641 2.726
8 2.197 2.342 2.403 2.504 2.565 2.617 2.673 2.785 2.817 2.907 2.989
9 2.469 2.572 2.710 2.781 2.833 2.931 2.965 3.017 3.132 3.193 3.229
10 2.720 2.858 2.984 3.051 3.121 3.191 3.232 3.317 3.364 3.458 3.520
11 2.960 3.085 3.207 3.291 3.375 3.445 3.483 3.578 3.630 3.737 3.758
12 3.217 3.418 3.516 3.559 3.654 3.696 3.762 3.804 3.892 3.947 4.238
13 3.486 3.700 3.745 3.792 3.891 3.991 4.009 4.149 4.165 4.196 4.426
14 3.727 3.938 4.007 4.042 4.198 4.226 4.390 4.404 4.424 4.434 4.451
15 3.973 4.195 4.337 4.386 4.433 4.585 4.663 4.716 4.769 4.828 4.848

Table 5-2 Calibration table TL for the low energy x-ray spectrum. Step sizes of the 
aluminium and the plastic wedges are 1 mm and 10 mm, respectively.
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The coefficients c, and di9i = 0, 1, 2 8, are determined from the polynomial least

square fitting Levenberg-Marquardt algorithm. The results are listed in Table 5-3 

and Table 5-4.

Variable Value
Co 0.212
C\ 37.524
Cl -47.659
C3 -64.823
C4 37.530
c5 33.072
C6 0.259
Cl -2.448
C8 0.704

Table 5-3 Empirical results for the coefficients c„ i = 0, 1,2

Variable Value
do -0.613
d\ -87.185
d2 150.051
d2 94.930
dt -61.847
d5 -47.197
d6 -0.695
di 6.136
d$ -1.520

Table 5-4 Empirical results for the coefficients d h i -  0, 1,2 .. .,8.

The following equations enable the computation of the amount o f [tj, t2] for a 

material in the inspected object. These equations are utilised to evaluate the basis 

materials subtraction technique described in Section 5.2.

q -  0.212 + 37.5247), -  47.6597), -  64.8237),7), + 37.537)2 +  33.0727),2 + 0.259TL 2 TH 2 -  2.4487)/* + 0.7047), 3

Equation 5-2(a)
t 2 =  -0.613 -  87.1857), + 150.0517), + 94.937)7), -  61.8477)2 -  47.1977),2 -  0 .6 9 5 T L 2TH 2 +  6.1367)3 - \ .5 2 T H 3

Equation 5-2(b)
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Fig. 5.4 and Fig. 5.5 illustrate the deviation o f calculated plastic and aluminium 

thicknesses (i.e. obtained from the derived polynomial fit curves for plastic ti and 

aluminium t\ as basis materials: Equations 5-2(a) and 5-2(b)) from the true thickness 

o f the basis materials. The minimum and maximum residuals for the estimation o f 

basis materials thickness t\ and can be summarised as being of the order o f 

{-4.20, +5.26} mm and {-13.93, +10.92} mm respectively.

It can be deduced that the polynomial curves for the estimation o f the aluminium and 

plastic basis materials do not approximate the input experimental data closely.
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Fig. 5.4 The deviation of the calculated plastic thickness from the true value.
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Fig. 5.5 The deviation of the calculated Aluminium thickness from the true value.

5.4 Experiments on the Extraction of the Characteristic Angle 
from Overlapping Materials

The target was arranged under several layers o f masking materials as illustrated in 

Fig. 5.6. The overlapping effect is accounted for by applying the basis materials 

subtraction technique. This phase o f experimental work was conducted manually to 

validate the basis materials subtraction technique.

Initially, the equivalent amount o f aluminium and plastic basis materials (tj and t2) 

for the target material shown in Fig. 5.6 is calculated from:

t] target ~ t] ~~ t] ‘ 

t2 target ~~ £? ~ t2 ‘

where tj and t2 are the basis materials thicknesses for the overlapping layers 

including the target layer, while tj- and t2< are the equivalent basis materials thickness 

for the ‘nearest’ overlapping layer to the target layer. The characteristic angle for the 

target material is 6=--ta n 1 \t2iavgeihitarget] •
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Target Object (i.e. Plastic Plate)
( 0  target> h  target)

Different Overlapping 
Objects

------------- > Y

Incident X-rays

Fig. 5.6 Illustration of the target object (Plastic Plate) arranged on different overlapping
materials.

The overlapping materials with their respective thicknesses utilised in the following 

experiments are listed in Table 5-5.

Object Material
A Leather (5.3 mm)
B Book (5.8 mm)
C PVC Plate (6.0 mm)
D Sugar (50.0 mm)
E Glass (4.6 mm)
F Carpet with 80% Wool and 20% Nylon (9.0 mm)
G Wood (39.2 mm)
H Unpopulated Printed Circuit Board (1.6 mm)
PL Plastic Plate (10 mm)

Table 5-5 Overlapping materials.

5.4.1 Target: Plastic Plate

A plastic plate (PL) was arranged under one, two, ...., five layers of various 

combinations of overlapping materials as illustrated in Fig. 5.6. The equivalent 

amounts of aluminium and plastic basis materials (tj and t2) for the target material 

are calculated by utilising the 3rd-order polynomial fit equations and the basis 

materials subtraction technique. The characteristic angle for the target material is 

computed from ta n 1[t2pjtipi]. In this case the target material is the plastic basis
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material. Therefore, by definition it can be stated that the true value for (L p l, tjp i) is 

(0 mm , 10.02 mm) producing a characteristic angle of 90°.

5.4.1.1 One Laver of Overlapping Material

The calculated (tjpp , t2PL,) and characteristic angle 6 for the plastic target, (PL) for 

each configuration of layers is listed in Table 5-6.

Calculated ttPL, t2PL (m m) C alculated angle ^ (degrees) Error in calculated angle (% )

PL overlapping A tlAPL, tlAPL 0.1 14.9 91.0 1.11

tlA, tlA 0.3 3.4

Upl, Upl -0.2 11.5
PL overlapping B tlBPL, UbPL 3.5 23.3 88.7 -1.44

Ub Ub 3.3 14.4

Upl-, Upl 0.2 8.9
PL overlapping C Ucpl, Ucpl -0.3 15.2 91.7 1.89

Uc, he 0 4.9

Upl, Upl -0.3 10.3
PL overlapping I) Udpl, Udpl 2.3 49.6 85.5 -5.00

Ud, Ud 1.4 38.1

Upl, Upl 0.9 11.5
PL overlapping E Uepl, Uepl 9.0 16.8 83.9 -6.78

Ue, Ue 8.0 7.5

Upl, Upl 1.0 9.3

Table 5-6 The calculated (t!PL , t2p i ) and resultant characteristic angle for the plastic target
(PL) for different overlapping materials.

Fig. 5.7 shows an example o f the low energy and the high energy x-ray image for the 

plastic plate overlapping a book (object B).

Plastic Plate

Book 
(Object B)

Fig. 5.7 Low (a) and high (b) energy x-ray images for plastic plate overlapping a book
(object B).

Page 93



Target Material Calibration and Recognition

5.4.1.2 Two Layers of Overlapping Materials

The calculated (tipL , Cpz,) and characteristic angle 0 for the plastic target, (PL) for 

different arrangements of two overlapping materials is listed in Table 5-7.

C alculated Upl, Upl (nun) C alculated angle 9 (degrees) E rror in calculated angle (% )

PL  overlapping C,F t/CFPL, t2CFPL 0.6 18.2 88.9 -1.22

tlCF, t2CF 0.4 7.7

tiPL, Upl 0.2 10.5
P L  overlapping B ,F tlBFPL, UbFPL 1.0 15.0 88.9 -1.22

tlBF, UbF 0.8 4.5

t/PL, t2PL 0.2 10.5
PL  overlapping B,C tlBCPL, UBCPL 6.1 29.1 87.8 -2.40

tlDC, UBC 5.7 18.5

tlPL, t2PL 0.4 10.6
PL  overlapping E,F tlEFPL, tlEFPL 6.0 13.1 86.5 -3.89

tlEF, UEF 5.4 3.4

(ipl, Upl 0.6 9.7
PL  overlapping A ,B tlABPL, UaBPL 5.2 30.0 86.1 -4.33

tlAB, UIB 4.5 19.6
tipL, Upl 0.7 10.4

Table 5-7 The calculated (tjPL, t2pi_) and characteristic angle for the plastic target, (PL) for 
different combinations of two overlapping materials.

5.4.1.3 Three Lavers of Overlapping Materials

The calculated ( tin  > hPL) and characteristic angle 0 for the plastic target, (PL) for 

different arrangements o f three overlapping materials is listed in Table 5-8.

C alculated Upl, ^ ( i n m ) C alculated angle 6  (degrees) E rror in calculated angle (% )

P L  overlapping C ,E ,F tlCEFPL, UCEFPL 4.20 19.5 90.0 0

tlCEF, UcEF 4.20 10.3

tiPL, Upl 0 9.2
P L  overlapping A ,B ,F tlABFPL, t2ABFPL 1.6 18.1 91.1 1.22

tlABF, U/iBF 1.8 7.6

tiPL, Upl -0.2 10.5

PL  overlapping B ,C ,F llBCFPL, UBCFPL 0.9 19.2 88.8 -1.33

UbCF, (2BCF 0.7 9.8

tiPL, Upl 0.2 9.4
PL  overlapping A ,E ,F tlAEFPL, tlAEFPL 4.3 18.2 93.0 3.33

tlAEF, 12AEF 4.9 6.8

Upl, Upl -0.6 11.4

PL overlapping B ,E ,F tlBEFPL, UBEFPL 5.8 18.3 81.2 -9.78

11BEF, tiBEF 4.5 9.9

tipL, Upl 1.3 8.4

Table 5-8 The calculated (tiPL , t2pL) and characteristic angle for the plastic target, (PL) for 
different combinations of three overlapping materials.
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5.4.1.4 Four Layers of Overlapping Materials

The calculated {tin  , hpL) and characteristic angle 6 for the plastic target, (PL) for 

different arrangements of four overlapping materials is listed in Table 5-9.

Calculated t i n , ,  6f>i(nnn) Calculated angle (degrees) Error in calculated angle (%)
PL overlapping B,E,F,G t1BEFGPL, hBEFGl‘1, 4.8 29.9 88.7 -1.44

tlBEFG, 12BEFG 4.6 20.8
tlP L, t2PL 0.2 9.1

PL overlapping B,D,E,F tlBDEFPL, t2BDEFPL 6.0 49.6 88.3 -1.89
tlBDEF, tlBDEF 5.7 39.4
tlPL, tlPL 0.3 10.2

PL overlapping B,C,E,F tlBCEFPL, tlBCEFPL 6.4 22.5 87.4 -2.89
tlBCEF, tjBCEF 5.9 11.4
tlP L, t2Pl 0.5 11.1

PL overlapping A,B>C,F tlABCFPL, t2ABCFPL 0.8 25.8 86.1 -4.33
tlABCF, tlABCF 0.2 16.9
tlPL, tlPL 0.6 8.9

PL overlapping A,B,E,F tlABEI'PL, tiABEFPL 9.4 39.2 86.0 -4.44
tlABEF, tzW E F 8.6 27.8
tlP L, tlPL 0.8 11.4

Table 5-9 The calculated (t1PL , t2PL ) and characteristic angle for the plastic target, (PL) for 
different combinations of four overlapping materials.

5.4.1.5 Five Lavers of Overlapping Materials

The calculated (L/v , U p l )  and characteristic angle 0  for the plastic target, (PL) for 

different arrangements of five overlapping materials is listed in Table 5-10.

C alculated t1PL, C alculated angle 0 (degrees) E rror in calculated angle (% )

PL  overlapping  

B,C ,E,F,G

tlBCEFGPL, tjBCEFGPL 4.9 27.7 88.1 -2.11

tlBCEFG, tjBCEFG 4.6 18.8

tlPL, tlPL 0.3 8.9
PL overlapping  

B,C ,E,F,H

tlBCEFHPL, t2BCEF!IPL 9.5 17.7 87.8 -2.44

tlBCEFll, t2BCEFH 9.1 7.1

tlPL, t2PL 0.4 10.6
P L  overlapping  

A ,B ,C ,E ,F

tlABCEFPL, tlABCEFPL 7.7 24.2 81.3 -9.67

tlABCEF, tuB C E F 6.3 15.0

tlPL, tlPL 1.4 9.2

Table 5-10 The calculated {tiPL , t2Pi ) and characteristic angle for the plastic target, (PL) for 
different combinations of five overlapping materials.
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5,4.2 Target: Leather

A leather layer (Object A) was arranged under one, two and three layers o f 

overlapping materials. The true value for {tjA , t2A) is (0.1 mm , 3.8 mm) producing a 

characteristic angle o f 88.5°. The true characteristic angle was computed from the 

image data produced by screening Object A independently without any masking 

materials. The calculated (tjA , t2A) and characteristic angle 6 for Object A for each 

arrangement o f overlapping materials is listed in Table 5-11.

C alculated Ua, t u  (mm) C alculated angle 0  (degrees) E rror in calculated angle (% )

A  overlapping PL tlAPL, h.APL 0.1 14.9 90.0 1.69

Upl, Upl 0.1 10.5

Ua > Ua 0 4.4
A  overlapping B ,PL tlABPL, UlBPL 5.2 30.0 91.1 2.94

Ubpl, Udpl 5.3 24.8

Ua , Ua -0.1 5.2

A  overlapping E ,F ,PL tlAEFPL, tlAEFPL 4.7 17.5 86.6 -2.15

tlEFPL, U eFPL 4.5 14.1

Ua , Ua 0.2 3.4

Table 5-11 The calculated (tjA , t2A ) and characteristic angle for a leather target, (Object A) 
for various combinations of overlapping materials.

5.4.3 Target: Book

A book (Object B) was arranged under one, two and three layers o f overlapping 

materials. The true value for (t]B , t2B) is (0.5 mm , 2.5 mm), thus producing a 

characteristic angle of 78.7°. The true characteristic angle was computed from the 

image data produced by screening the book independently without any masking 

materials. The calculated (tjs , t2B) and characteristic angle 6 for Object B for various 

arrangements o f overlapping materials is listed in Table 5-12.

C alculated Ub, Ud (m m) Calculated angle 9  (degrees) E rror in calculated angle (% )

B overlapping PL t/BPL, U dpl 0.7 12.6 74.1 -5.84

T ip l ,  Upl 0.1 10.5

tin , Ub 0.6 2.1
B overlapping F,PL tlDFPL, t2DFPL 1.1 14.9 76.0 -3.43

T 1FPL, tlFPL 0.6 12.9

Ub , Ub 0.5 2.0
B overlapping C ,F,PL tlBCFPL, Ub CFPL 0.9 19.2 73.3 -6.86

tlCFPL, tlCFPL 0.6 18.2

Ub , Ub 0.3 1.0

Table 5-12 The calculated (ttB , t2B ) and characteristic angle for a book target, (Object B) 
for different combinations of overlapping materials.
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5.4.4 Target: PVC Plate

A PVC plate (Object C) was arranged under one, two and three layers of 

overlapping materials. The true value for (tic » he) is (-0.4 mm , 6.4 mm) producing 

a characteristic angle o f 93.6°. The true characteristic angle was computed from the 

image data produced by screening the PVC plate independently without any 

masking materials. The calculated (tic , he) and characteristic angle 6 for the target 

Object C for each arrangement of overlapping materials is listed in Table 5-13.

C alculated t i c ,  k eb n m ) C alculated angle 6  (degrees) E rror in calculated angle (% )

C overlapping PL tlCPL, hcP L -0.7 16.4 93.1 -0.53

Upl, Upl -0.4 10.9

t i c ,  t2C -0.3 5.5
C overlapping F,PL tlCFPL, t2CFPL 0.6 18.2 90.0 -3.85

tlFPL, t2FPL 0.6 12.9

tlC , t2C 0 5.3
C overlapping E ,F,PL tlCEFPLj t2CEFPL 4.2 19.5 99.2 5.98

tlEFPL, tlEFPL 5.4 12.1

t lC , t2C -1.2 7.4

Table 5-13 The calculated {tic, he) and characteristic angle for the PVC target, (Object C) 

for different combinations of overlapping materials.

5.4.5 Summary

The empirical results have validated the basis materials subtraction technique 

developed to calculate the characteristic angle for various layers o f overlapping 

materials. The maximum errors recorded for the experiments in the calculated 

characteristic angle is {+5.98%, -9.78%}.

It can also be deduced from the experimental results that leather, PVC plate and the 

plastic plate have very similar characteristic angles. Indeed, all these materials have 

similar chemical compositions. Therefore, to discriminate materials with identical or 

similar characteristic angle or Zejf requires determination o f their mass density which 

is presented in Chapter 6.
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5.5 Experiments on Other Materials

The following experiments were conducted to evaluate the characteristic angle for 

target materials which lie outside the window defined by aluminium and plastic 

basis materials (i.e. characteristic angle > 90° or characteristic angle < 0°).

5.5.1 Target: Wax Candle

A set of nominally identical wax candles (each 14.5 mm thick) were arranged on an 

aluminium stepwedge (10 steps, each step 1 mm thick) as illustrated in the high 

energy and the low energy x-ray images in Fig. 5.8. The calculated characteristic 

angle 6 for the wax candles on each step is listed in Table 5-14. The standard 

deviation for the characteristic angle is ±2.73 with respect to the mean value of 94.7.

Step  N u m b ers

Fig. 5.8 (a) High energy (b) low energy x-ray images.

Step Calculated Characteristic Angle

1 97.2°

2 95.2°

3 92.6°

4 97.0°

5 92.4°

6 90.7°

7 99.5°

8 93.0°

9 96.1°

10 93.5°

Table 5-14 The calculated characteristic angle for the wax candles placed on an aluminium
stepwedge.
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5.5.2 Target: Steel Plate

A set o f nominally identical T-shape steel plates (each 0.5 mm thick) were arranged 

on an aluminium stepwedge (10 steps, each step 1 mm thick) as illustrated in the 

high energy and the low energy x-ray images in Fig. 5.9. The calculated 

characteristic angle 6 for the steel plate on each step is listed in Table 5-15. The 

standard deviation for characteristic angle is ±7.16 with respect to the mean value of 

-33.6.

Step Numbers

(a) (b)

Fig. 5.9 (a) High energy (b) low energy x-ray images.

Step Calculated Characteristic Angle

1 -43.5°

2 -41.1°

3 -39.9°

4 -38.6°

5 -35.8°

6 -31.2°

7 -25.4°

8 -30.0°

9 -26.6°

10 -23.5°

Table 5-15 The calculated characteristic angle for the steel targets placed on an aluminium

stepwedge.
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5.5.3 Summary

The empirical results obtained for the organic wax candle has a characteristic angle 

marginally greater than 90° are acceptable. The standard deviation for the 

characteristic angle calculations is ±2.73 which is low. This is because the wax 

candle has a characteristic angle that is close to the plastic basis material.

On the other hand, the experimental results for the steel plate has a standard 

deviation of ±7.16 for the characteristic angle. This large error occurs because the 

steel target has a much higher effective atomic number (i.e. a characteristic angle «  

0°) than the aluminium basis material.

The empirical determination o f the characteristic angle is limited to experimental 

objects that have effective atomic number lying within or close to the window 

defined by the aluminium and plastic basis materials (i.e. 6.6 < Zeff  < 13 or 

0°<characteristic angle<90°). The error in characteristic angle calculation will 

increase as the target’s effective atomic number increasingly falls out o f this range. 

Nevertheless, it is envisaged that this problem can be alleviated by careful selection 

of new basis materials that best mimic the normal materials present in baggage and 

by applying the Basis Material Coefficients Transformation MethocPn ’ G12. This 

technique is further discussed in the summary o f this chapter.

5.6 Experiments on Automated Target Material Detection for ‘Real 
Baggage’

The automated x-ray image segmentation and categorisation programs described in 

Chapter 4 are combined with the basis materials subtraction equations to produce an 

automated system. The flow chart for the resultant software program is illustrated in 

Fig. 5.12. This was used to discriminate targets in ‘real5 baggage scenarios. The 

complete software for the automated target material detection program is included in 

Appendix E.
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The program displays the discriminated target material in red, provided that the 

calculated characteristic angle lies within the predefined window (i.e. 87.0<T<92.0, 

for a plastic target).

Start

N o
y  Yes

N o Yes

N o

Yes

End

Is n > N  ?
(N —last segmented region)

n = 1 (1st segmented region)

Characteristic angle for n — tan_1 [&(»)///(„;]

Automated Image Segmentation Algorithm

C om pute ti(„) and l2{«) using die polynomial fit equations

Com pute ti(n) and hf,,1) using the polynomial fit equations

Characteristic angle for n =  tan

Determ ine if  n is overlapped by any segmented region 
(where n ’can be any num ber and n i1 n ’)

Display die discriminated target material in red 
(i.e. 87.0<8<92.0, for a plastic target object)

Is n overlapping any other segmented region n ’ 
(where n ’can be any num ber and n)

Autom ated Image Categorisation Algorithm to  store the overlapping data and the 
low energy/high energy data (grey levels) for each segmented region

Fig. 5.10 Flow chart for the automated target material detection program.
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5.6.1 Baggage Sample-7

Fig. 5.11 illustrates the detection o f a plastic plate (PL) in baggage sample-7, which 

comprises o f various overlapping materials including a book, glass sheet, PVC plate, 

keys, and coins. The area of target material is highlighted in Fig. 5.11(b). The 

segmented and labelled image resulting from the automated image segmentation and 

categorisation programs is shown in Fig. 5.11(c). Thus, the segmented regions 38, 

40,46 and 50 in the labelled image constitute the area o f the plastic target.

Table 5-16 tabulates the results produced by the automated target material detection 

program. The characteristic angle calculation for each of the segmented regions in 

baggage sample-7 is recorded in Appendix F.

Segmented
Region

Calculated t 1PL, t 2Pi  (mm) Calculated angle 0  (degrees) Error in calculated angle (%)

38 0.23, 8.93 88.5 -1.63
40 -0.27, 9.99 91.6 1.72
46 0.33, 9.23 88.0 -2.26
50 -0.1, 10.17 90.6 0.62

Table 5-16 The calculated {tIPL , t2pL ) and characteristic angle for the plastic target,
(PL) in baggage sample-7.

The calculated characteristic angle for the plastic plate is very close to its true value 

o f 90°. It can be appreciated from Fig. 5.11 (d) that several other regions o f the 

baggage have characteristic angles close to that of plastic. Thus, these are false 

positive detections produced by the inaccuracy o f the polynomial curve fitting and 

also the limitations o f the automated image categorisation program as discussed in 

Chapter 4.
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Target 
Plastic Plate

PVC M obile Phone

Unpopulated 
PC B___

Target 
Plastic Plate

YA

"*X (c) (d)

Fig. 5.11 Discriminating a plastic target in baggage sample-7.

5.6.2 Baggage Sample-8

Fig. 5.12 depicts the detection of a plastic plate (PL) in baggage sample-8, which 

comprises of various overlapping objects including a glass sheet, coins, clothing and 

an umbrella. The target object is highlighted in Fig. 5.12(b). The segmented and 

labelled image resulting from the automated image segmentation and categorisation 

programs is shown in Fig. 5.12(c). Therefore, the segmented regions 37 and 64 in 

the labelled image compose the area of the plastic target.
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Target 
Plastic PlateUmbrellaGlassCloth

mlmmmmm irrmr

Target 
Plastic Plate

(c) (d)

Fig. 5.12 Discriminating a plastic target in baggage sample-8.

Table 5-17 tabulates the results produced by the automated target material detection 

program. The characteristic angle calculations for all the segmented regions in 

baggage sample-8 are recorded in Appendix F.

Segmented
Region

Calculated tIPL, t2PL (mm) Calculated angle 9 (degrees) Error in calculated angle (%)

37 0.20, 9.95 00 00 00 -1.29
64 -0.01, 10.77 90.0 0.04

Table 5-17 The calculated (t]PL , t2pL) and characteristic angle for the plastic target, (PL) in

baggage sample-8.

It can be again concluded that the calculated characteristic angle for the plastic plate 

is very close to its true value of 90°. Fig. 5.12 (d) shows the results obtained from 

the automated target material detection program. It can be deduced that several other
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regions of the baggage have characteristic angles that are similar to the plastic plate. 

Thus, these are also false positive detections produced by the inaccuracy of the 

polynomial curve fitting and also the limitations o f the automated image 

categorisation program as discussed in Chapter 4.

5.6.3 Baggage Sample-9

Fig. 5.13 illustrates the detection o f a plastic plate (PL) in baggage sample-9, which 

comprises o f various overlapping materials including a newspaper, coins, glass and 

wood plate. The area of target material is highlighted in Fig. 5.13(b). The segmented 

and labelled image resulting from the automated image segmentation and 

categorisation programs is shown in Fig. 5.13(c). Hence, the segmented regions o f 7, 

29, 31 and 32 in the labelled image constitute the area o f the plastic target.

Table 5-18 tabulates the results produced by the automated target material detection 

program. The characteristic angle calculation for each o f the segmented regions in 

baggage sample-9 is recorded in Appendix F.

S e g m en ted
R e g io n

Calculated t1PL, t2pi (mm) Calculated angle 0 (degrees) Error in calculated angle (%)

7 0.05, 10.02 89.7 -0.29
29 0.12, 9.73 89.3 -0.79
31 0.04, 10.06 89.8 -0.26
32 -0.27, 11.11 91.4 1.55

Table 5-18 The calculated (t1FL , t2pL ) and characteristic angle for the plastic target,
(PL) in baggage sample-9.

The calculated characteristic angle for the plastic plate is very close to its true value 

o f 90°. It can be appreciated from Fig. 5.13 (d) that several other regions o f the 

baggage have characteristic angles close to plastic plate. These are generally false 

positive detections produced by the inaccuracy o f the polynomial curve fitting and 

also the limitations o f the automated image categorisation program as discussed in 

Chapter 4.
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Target 
Plastic PlateNewspaper Target

Plastic Plate
W oodCoins

Glass

Fig. 5.13 Discriminating a plastic target in baggage sample-9.

5.6.4 Summary

The experimental results produced by the automated target material detection 

program within the context of experimental noise have validated the automated 

x-ray image segmentation and categorisation programs, and also the basis materials 

subtraction technique. It can be deduced from the results that all the calculated (tjpL, 

t2PL.) and the characteristic angle for the plastic target object are very close to its true 

value. Indeed, the maximum errors are merely {+1.72%, -2.26%}.
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5.7 Overview

The results presented in this chapter indicate that the basis materials subtraction 

technique is feasible. Hence, an ‘organic’ target substance that is embedded in 

baggage can be discriminated by applying the BMS technique to subtract the 

overlapping effect o f other objects. However, the accuracy in the calculation of 

characteristic angle to discriminate the target material is significantly affected by 

system noise. This can be deduced from the empirical results obtained in Section 5.4. 

Thus, the maximum errors in the calculated characteristic angle of {+5.98%, 

-9.78%} are significant for the objective o f target material discrimination.

A general problem associated with dual-energy x-ray imaging technique is the 

amplification o f photon noise throughout the image acquisition chain. Thus, the total 

system noise as discussed in Chapter 3 will further amplify the error in searching for 

target materials. The low and the high attenuation measurements are independently 

affected by the photon noise arising from the x-ray source. Hence, a small variation 

in estimating the energy independent line integrals of the basis material coefficients 

(i.e. ti, tj) will subsequently lead to a great error in the calculated characteristic angle.

In addition, the direct approximation method is sensitive to system noisec6. Thus, a 

small variation in the calibration data creates great errors in calculating the 

equivalent amounts o f basis materials (i.e. tj, tj) for a target material. While, the 

goodness o f the polynomial fit equations exhibited minimum and maximum residuals 

for the estimation o f t\ in the order o f {-4.20, +5.26} mm and t2 for the order of 

{-13.93, +10.92} mm respectively. The inaccuracy from the polynomial fit will also 

amplify the error in the computation o f characteristic angle. As a result, only test 

objects with a uniform thickness are utilised in this phase of research work.

It can be generally concluded from the experimental results that the accuracy in 

calculating the characteristic angle for a target material that is masked by many 

layers o f materials is lower, in comparison to the situation when the target material is 

masked with a smaller number o f overlapping objects. This is due to the fact that the 

inherent statistical nature of x-rays produces noise arising when there is limited
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number o f transmitted photons06 (i.e. low Signal-to-Noise Ratio). Therefore, the 

accuracy in detecting a target material under dense overlapping conditions will be 

significantly affected. As a result, more transmitted photons are required to achieve 

better levels o f precision.

The characteristic angle for the overlapping materials is constrained to test items 

with effective atomic numbers lying within the window of 6.6 < Zeg  < 13 

(i.e. 0°< characteristic angle < 90°). Therefore, the technique described will only 

work correctly if  the materials masking the target material fall within the organic 

window defined by the chosen basis materials. Thus, for instance a metal mask could 

produce an erroneous false negative.

Nevertheless, this problem can be resolved by careful selection o f new basis 

materials that best mimic the normal materials present in baggage by applying Basis 

Material Coefficients Transformation Method3H’ G12. The advantage o f this 

technique is the calibration o f the conventional aluminium and plastic basis materials 

can be numerically transformed to cover a wider range o f materials in terms of 

effective atomic number Zeff- The success of this method would rely on the 

determination of the effective energies from the polychromatic x-ray spectra utilised 

in the experimental x-ray machine. The Basis Material Coefficients Transformation 

Method is recommended as future work.

Since there are many materials that have similar characteristic angles, it would be 

highly desirable to determine target material’s mass density to discriminate it more 

accurately. An investigation o f mass density determination is described in the 

following Chapter 6.
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CHAPTER SIX
INVESTIGATION OF DEPTH MEASUREMENT FOR 

MASS DENSITY EXTRACTION

6.1 Introduction

This chapter describes an investigation into the extraction o f depth information or 

thickness data from the binocular stereoscopic x-ray images in order to obtain mass 

density information. Consequently, this extra information coupled with the 

characteristic angle will enable a more accurate material discrimination process to be 

realised.

The schematic diagram of the experimental x-ray machine is shown in Fig. 2.1 on 

page 11. The x-ray beams utilise a convergence angle o f 3.75°. The X  and 7-axis 

shown in Fig. 2.1 are at the conveyer belt surface, while the Z-axis is orthogonal to 

the plane o f linear translation.

This chapter is divided into the following two areas:

■ The extraction of depth information from the stereoscopic dual-energy 

x-ray images.

■ The application o f the extracted depth information in calculating mass 

density.

To calculate the depth o f an imaged structure requires that conjugate image points 

relating to the structure be identified. The depth resolution or the minimum 

detectable increment in object space (SZ) is examined theoretically and empirically 

for the experimental x-ray system.

The extracted depth data can provide the thickness o f layered materials and thus 

mass density information. Since every material has a unique characteristic angle and 

mass density, this information can be exploited in searching for plastic explosives.
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6.2 The Mathematical Algorithms for Depth Extraction

The basic x-ray beam geometry for the experimental single x-ray source divergent 

beam stereoscopic configuration is shown in Fig. 6.1 below.

L eft L in e a r D e tec to r A rra y  R ig h t L in ear D e tec to r A rray

L eft X -ray ' 
B eam

R ig h t X -ray  
B eam

In sp ec tio n  T u n n el 
H e ig h t, H,

P o in t A
Object AS o u rce  H e ig h t, Hs

M o tio n  A x is, X -ax is

y. -CQOYeyer.Belt: A x is

B elt H e ig h t, H,

X -ray  S ource

Fig. 6.1 Stereoscopic divergent x-ray beam geometry.

It can be deduced with the aid o f Fig. 6.1 that the thickness (Z-axis) of an imaged 
item is proportional to the difference in parallax recorded at the top and bottom of 
the object:

t = — — Equat i on 6-1 
2 tan  a

where,

Da = {XAR - XAL) x 8P 

Da = ( X /R - X / L) x 8P 

The quantities (XAR - XAl) and (XAR - XA L) are the parallax values for point A and 

A ? respectively obtained from the stereoscopic image pair. The parallax value is 

expressed as a pixel separation in the left and right images and as such is a
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dimensionless quantity. However, it can be converted to a distance by multiplying by 

the conversion parameter SP, which is the corresponding sample size in the X-axis. 

Also, SP may be interpreted as the minimum parallax in the image sensor plane and 

is defined asE6:

f s

where Bs and f s are the linear translation speed (m/s) and the detector scan frequency 

(Hz) respectively.

The minimum resolvable depth increment in object space SZ isE6:

SPSZ = -----------------------------  Equation 6-2
2 tan <7

It can be deduced from Equation 6-2 that the depth resolution is constant throughout 

the stereoscopic volume and independent o f range Z.

The experimental x-ray system has the following parameters:

■ Translation belt speed, Bs = 0.2m/s;

■ Linear detector scan frequency,^ = 200 Hz;

■ Convergence angle, cr= 3.75°.

Therefore, from Equation 6-2 the minimum resolvable depth increment is:

SZ~  7.6mm

To locate the conjugate points in each perspective automatically is not within the 

scope o f this thesis. Therefore, a manual solution to the correspondence problem is 

adopted in this research. Points from which measurements are taken are identified by 

attaching 2mm diameter lead spheres to the object of interest. Each target point can 

be identified and thus recorded at its corresponding X,Y  pixel location in the resultant 

image.
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6.3 Experimental Set Up for Depth Extraction

A series o f experiments was devised to determine the depth resolution o f the 

experimental machine. A stepwedge supporting a distribution of targets in the form 

of 2 mm diameter lead spheres is shown in Fig. 6.2. The targets were attached to 

each step (10 mm) of the plastic stepwedge. In total thirty lead spheres were arranged 

to mark the top and the bottom of the successive steps. The x-ray image o f the 

stepwedge in Fig. 6.2 is shown in Fig. 6.3.

The accuracy in positioning each target is estimated to be approximately ±lm m . 

However, the theoretical accuracy in depth resolution is ±7.6 mm. Therefore, any 

positional errors are considered negligible as far as these experiments are concerned. 

It should be noted that the Z-axis measurement capability of the experimental system 

is nominally independent o f the x,y,z position of the structure16.

Lead targets

Fig. 6.2 The plastic stepwedge with lead targets on each step.
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Y 
A

 > X

Fig. 6.3 A monochrome x-ray image o f  the set up in Fig. 6.2.

6.3.1 Parallax Measurements

The X-axis parallax (DAn-DAn, where n= 1, 2, 3 ...., 15 as illustrated in Fig. 6.2) for 

each pair o f target points is determined from the left and right perspective images. 

The height of each step is calculated from Equation 6-1.

The left and right perspective images are digitised and stored in the framestore 

memory in a 1024x320 pixel resolution format. The coordinate system implemented 

to identify the location of each pixel is illustrated in the diagrams shown in Fig. 6.4. 

The parallax value Da for a conjugate point A in the left and right perspective images 

(Ai and AR) is:

Da ~ I Xar -  XAl I x SP
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(1024,P *X-Axis ( 1,1)

(1024,320)

Left Perspective Image

A S

(1,320)

Y-Axis

X-Axis(1024,1) A~AX

(1024,320)

Right Perspective Image

Fig. 6.4 The ‘framestore’ coordinate system.

6.3.2 Experimental Results

The results in calculating the heights o f each plastic step shown in Fig. 6.2 are listed 

in Table 6-1. Initially, step number 8 was used as a reference to determine the

practical value o f -- - - -  
tan a

From Equation 6-1:

80 = 066^ 54) ^

SP 
tan <7

2 tan o'

13.3 mm

Therefore, the practical minimum resolvable depth resolution SZ that can be detected 

in object space by examining the conjugate points in the left and right perspective 

images can be calculated using Equation 6-2:

sz=  sp
2 tancr 

»  6.7 mm

This is in reasonable agreement with the theoretical value o f 7.6 mm calculated in 

Section 6.2 on page 111.
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The determination o f an object’s thickness t is:

l * 2 - n L - - l * 2 - * i L 't =  ----------- -42— -----------'_An_ x n  3 mm
2

where the quantity |^ 2  -  X \\An is the magnitude of the parallax value for conjugate 

points Am while the |jf2 -  X \\An is the magnitude o f the parallax value for conjugate 

points An’ respectively, where n= 1, 2, 3, ...., 15.

Conjugate 
Points, An& An'

Left
image

Xy

Right 1 
Image

x2

Parallax

IX r Xy|

Difference in 
Parallax '.

IX rX fU - IX rX f l  V

Calculated 
Height, t  (mm)

A
.......... ................. ....

jAy'
137 193 56
138 192 54 2 13.3

.
. . 2 178 236 58
Ai* 179 234 55 3 20.0

222 280 58
224 278 54 4 26.7

a 4 258 318 60
A • 261 315 54 6 40.0
A s

A s

302 363 61
305 359 54 7 46.7

A, 341 404 63
A.'

<■.........  ....... - ■ > 346 400 54 9 60.0

............ Aj............. 380 444 64
A y 384 438 54 10 66.7

A. 421 487 66
As' 426 480 54 12 80.0
A 465 533 68

,
Alfl 472 526 54 14 93.3
A 506 575 69
VI .A 10 513 568 55 14 93.3

.............A n . . .  . 546 617 71
A •A n 552 606 54 17 113.3
a 12
A,2'

588 659 71
595 649 54 17 113.3

A,3 . 628 701 73
A *... A 13 638 692 54 19 126.7

* '* A u % 665 739 74
A u ’ 677 730 53 21 140.0
a 15 703 779 76
A1S' 717 771 54 22 146.7

Table 6-1 Empirically determined plastic step heights.
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The accuracy o f the extracted depth information for each plastic step can be deduced 

from the graph in Fig. 6.5. The minimum and maximum residuals for the calculated 

depth in Z-axis for this experiment are of the order o f {-6.7, +3.3} mm.

160

140

g  120
E,
co 100
CO
0

I  80

0 20 40 60 80 100 120 140 160

Calculated thickness ( mm)

Fig. 6.5 Graph of the measured thickness versus the calculated thickness for the plastic
stepwedge.

6.4 E xperim ents on M ass D ensity  E xtraction for a P lastic Stepw edge

The results obtained in Section 6.3.2 are used to evaluate the accuracy in calculating 

the mass density for each step o f the plastic stepwedge. The mass density is 

calculated from Equation 2-22 on page 31:

_ Pi C 
P pl ~

PL a 2PL

— — ——  x 1.4 g cm~3 
tPLx 1

where mass density for plastic p 2= \A  g/cm3, t2 is the thickness o f basis material 2 

(i.e. plastic) calculated from the polynomial fit equations derived in Chapter 5, tpi is
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the calculated plastic step thickness from Table 6-1, and Q2pl = 1 for a plastic target 

(PL).

The results of the characteristic angle and mass density calculated for the fifteen 

steps o f the plastic stepwedge are tabulated in Table 6-2. It can be deduced from the 

table that the maximum percentage o f error for the calculated mass density is 

-30.0%. This error is due to the inaccuracy o f the polynomial fit in determining the 

quantity o f and also the inaccuracy in determining plastic’s thickness utilising the 

parallax data.

Steps
Calculated Characteristic 

Angle (Degree)
Calculated 

Mass Density (g cm'3)
Error in Calculated 
Mass Density (%)

1 90.6 0.98 -30.0
2 90.0 1.32 -5.7
3 88.8 1.44 2.9
4 88.8 1.30 -7.1
5 88.5 1.37 -2.1
6 88.5 1.29 -7.9
7 88.6 1.36 -2.9
8 88.5 1.29 -7.9
9 87.8 1.21 -13.6

10 88.2 1.36 -2.9
11 88.5 1.25 -10.7
12 88.4 1.36 -2.9
13 88.5 1.32 -5.7
14 88.4 1.27 -9.3
15 88.3 1.27 -9.3

Table 6-2 The calculated characteristic angle and mass density for each o f  the fifteen steps

o f  the plastic stepwedge.

6.5 Experiments on Mass Density Extraction for Baggage Sample-7 and 
Sample-8

Fig. 6.6 and Fig. 6.7 illustrate the detection o f a plastic target, (PL) in baggage 

sample-7 and sample-8. These each contain overlapping materials including 

clothing, newspaper, keys and coins. The result in searching for the target material 

(i.e. highlighted in Fig. 6.6(b) and Fig. 6.7(b)) illustrated in Fig. 6.6(a) and 

Fig. 6.7(a), are listed in Table 6-3. The experiments utilise the calculated thickness 

o f the plastic target plate from Table 6-1 (i.e. 13.3 mm).
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It can be deduced from the table that the percentage of error for the calculated mass 

density is -25.0% for baggage sample-7 and -22.9% for baggage sample-8. The error 

is a result of the inaccuracy of the polynomial curve fitting and the inaccuracy in 

determining the plastic’s thickness.

C alcu lated  C haracteristic  
A n gle  (D egree)

C alculated  
M ass D ensity (g cm '3)

Error in C alculated  
M ass D ensity (%)

PL in Baggage-7 9 0 .6 1.05 -25.0
PL in Baggage-8 9 0 .0 1.08 -22.9

Table 6-3 The calculated characteristic angle and mass density for the plastic target in
baggage sample-7 and sample-8.

Target 
Plastic Plate

Target 
Plastic Plate

Book Glass PVC Mobile Phone

Printed Circuit 
Board ___

Fig. 6.6 Discriminating a plastic target in baggage sample-7.
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Target 
Plastic Plate

Y
A

-► X
(a) (b)

Fig. 6.7 Discriminating a plastic target in baggage sample-8.

6.6 Summary

The examination o f the parallax data indicates that the experimental system’s 

resolution (Z-axis) is o f the order of «±6.7 mm. The extraction o f the depth data for 

more complicated radiographic images will require the location o f conjugate image 

points automatically. This is very different from the contrived nature of target points 

implemented in this research. The automatic extraction of depth data (i.e. automatic 

correlation o f conjugate image points) from the binocular stereoscopic image pairs is 

thus recommended as future work.

However, the course depth resolution SZ in object space for the experimental x-ray 

machine produces very significant error in the determination o f the mass density of 

the target material. The empirical results indicate that the maximum percentage of 

error for the estimation o f plastic plate’s mass density is «-30.0% error even under 

well controlled and contrived experimental conditions. Although, it should be 

pointed out that the detection of bulk explosives may be more successful.

UmbrellaCloth
Target 

Plastic Plate
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CHAPTER SEVEN
SUMMARY. CONCLUSIONS AND FUTURE WORK

7.1 Summary

A discussion o f the results is presented throughout the main text of this thesis where 

appropriate.

Standard dual-energy x-ray techniques enable colour encoding of the resultant 

images in terms o f organic, inorganic and metal substances. However, this crude 

materials discrimination technique can only be used as a general indicator o f 

substances and is by no means a precise definition. As a result, the standard 

dual-energy x-ray technique will place plastic explosive in the same organic window 

as other harmless organic items. The potential solution to this problem presented in 

this research is the development of an automated materials discrimination technique. 

This has been achieved by developing and combining an automated image 

segmentation and categorisation algorithm with a basis materials subtraction (BMS) 

technique. The BMS technique is derived from the basis materials decomposition 

(BMD) technique and is exploited to extract the characteristic angle or effective 

atomic number for successfully segmented overlapping objects in baggage. The 

concept of the BMD technique has been utilised in medical imaging for tissue 

characterisation. Therefore, what is new in this research is the combining o f the 

BMD and BMS analysis with the binocular stereoscopic dual-energy x-ray technique 

previously developed by TNTU team. This enables the decomposition o f the 

stereoscopic dual-energy x-ray data into characteristic angle to search for the target 

materials. Additionally, the experimental stereoscopic system utilises a novel 

castellated dual-energy x-ray detector recently developed by the TNTU team. The 

castellated detector utilises half the number o f scintillator-photodiodes in comparison 

to a conventional sandwich detector arrangement. Thus, it substantially reduces the 

sensor complexity and cost, and yet is proved capable o f providing good materials 

discrimination capability and together with producing high quality monochrome and 

colour x-ray images.
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A de-interlacing algorithm has been developed to remove the spatial interlace effect 

produced as a natural consequence of the castellated detector array. This enables the 

calibration o f the experimental x-ray machine for organic, inorganic and metal 

discrimination capability. The experimental x-ray system’s noise and repeatability 

were examined. Generally, the results are reasonable for broad materials 

discrimination. However, the accuracy o f the BMS technique to detect target 

materials was much affected, since it is highly sensitive to the system noise and 

system repeatibility06.

An automated x-ray image segmentation program utilising the wavelet transform 

technique was developed to segment overlapping objects in an x-ray image into 

individual regions for further quantitative analysis. The wavelet transform technique 

is derived from earlier research by Jean-Christophe Olivo02, 03 and Stephane 

MallatM5. This work is expanded by the author to further categorise the segmented 

regions into overlapping and non-overlapping objects. In addition, the information 

that pertains to each segmented object that is surrounded or overlapped by other 

objects is determined automatically. This information is utilised for the investigation 

o f characteristic angle and mass density extraction.

The BMD technique developed by R.E. Alvarez, A. Macovski and L.A. LehmannA2,
T9 is extended (i.e. BMS technique) by the author to discriminate materials in 

baggage inspection for aviation security screening. A programme of experiments has 

established the feasibility o f the BMS technique for the extraction o f the 

characteristic angle from overlapping materials under certain conditions. An 

automated material recognition program combines the developed automated image 

segmentation and categorisation programs together with the BMS analysis.

The research was expanded to include a brief theoretical analysis o f the stereoscopic 

depth extraction capability utilising the binocular stereoscopic dual-energy x-ray 

images produced by the experimental x-ray system. The depth measurements utilise 

parallax information obtained from conjugate image points located manually in the 

left and right perspective images. The conjugate points were easily identified in this 

research by placing lead spheres to mark the points o f interest on the object under
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inspection. The successful extraction o f the relative depth information from the 

stereoscopic dual-energy x-ray images is applied to determine an object’s mass 

density. This extra information coupled with the calculated characteristic angle 

enables, in theory, a more accurate analysis o f the target.

However, the accuracy in determining the characteristic angle and mass density 

values o f a target material is significantly affected by the following factors:

■ the minimum resolvable depth increment in object space is o f the 

order o f ±6.7 mm;

■ unstable x-ray source output;

■ non-uniform detector response;

■ inaccuracy in the polynomial curve fitting for basis material 

calibration.

The calculation o f the characteristic angle and mass density for layers o f overlapping 

substances can only be determined provided that each layer has a discernable shape 

that can be segmented. Also, all the test objects utilised in this phase o f work have 

uniform thickness. The ability to segment objects with non-uniform structure is 

problematic in terms o f overlapping structure categorisation. This problem can only 

be resolved if  the three-dimensional information at specific points on the imaged 

objects are known automatically. The automatic extraction o f depth data from the 

binocular stereoscopic image pairs is therefore recommended as future work as a 

partial solution. It would be envisaged that the author’s methodology could be 

incorporated in such a scheme.

The aluminium and plastic basis materials employed in this research, constrains the 

material discrimination to a window in effective atomic number o f 6.6 < Z ef f <  13 

(i.e. 0°< characteristic angle < 90°). Therefore, the technique will only work 

correctly if  the materials masking the target material fall within the organic window 

defined by the chosen basis materials. Thus, for instance a metal mask would 

produce a false negative result.
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Nevertheless, it is vital to acknowledge that there is no single technique that can be 

utilised to automatically search for target items concealed in passenger baggage. In 

fact, the variety o f techniques that are presented in Chapter 1 will be required to 

detect a wide range o f concealment techniques for target items such as plastic 

explosives.

The conclusions drawn from the work, and the direction and nature of the suggested 

future work are discussed in the remainder o f this chapter.

7.2 Conclusions

The conclusions drawn from this research are categorised as following:

■ The calibration o f the experimental dual-energy x-ray machine.

■ The development o f an automated x-ray image segmentation and

categorisation algorithm.

■ The extraction o f the characteristic angle of a target material.

■ The extraction o f depth data from the stereoscopic images in

determining a material’s mass density.

The castellated detector array is calibrated to enable further investigations to be 

conducted. The remainder o f the research work has investigated the quantitative 

analysis capability o f the experimental x-ray system in extracting characteristic angle 

and mass density for objects in baggage.

The calibration o f the experimental dual-energy x-ray machine:

■ The castellated detector array has reduced by half the number of 

scintillator-photodiode sensors in comparison to the conventional sandwich 

arrangement.

■ The development of a de-interlacing enhancement algorithm to remove the 

spatial interlace effect in the x-ray images produced by the castellated sensors 

has been demonstrated. The spatial resolution o f the sensor is similar to a 

sandwich sensor o f the same pitch.
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* The experimental system is calibrated to discriminate between organic,

inorganic and metal substances automatically. The resultant images are colour 

encoded to enable visual inspection.

■ The resultant colour encoded images are o f high quality and o f comparable 

imaging quality to images produced by sandwich detector arrays.

■ The castellated detector array does not enable single sample (i.e. one pixel) 

materials discrimination. Nevertheless, the size o f threat objects such as 

explosives in a security screening application will be very large in comparison 

to single pixel sample.

■ The noise in the bright field (4095) grey level images produced by the 

experimental machine has a standard deviation o f ±49.4.

■ The system repeatability test on the grey level images indicated a maximum 

standard deviation of the order o f ±7.2.

■ Generally, the system noise and system repeatability results enable broad 

materials discrimination in terms o f organic, inorganic and metal substances. 

However, the accuracy o f the BMS technique to detect target materials is 

significantly affected by system noise and system repeatability.

The development o f an automated x-ray image segmentation and 

categorisation algorithm:

9 A wavelet based segmentation algorithm operates on the grey scale histogram

of the low energy image. However, the choice is arbitrary and the high energy 

image would also be suitable choice for segmentation purposes.

■ The limitation o f the wavelet analysis occurs when the region of interest in an 

x-ray image is small compared to the background or when the region of 

interest and the background have a broad range o f grey levels.
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■ The automatic segmentation program has been examined utilising a series o f

baggage samples containing uniform thicknesses of overlapping substances 

with a ‘best’ wavelet scale concluded from the experiments o f 22.

■ The maximum recorded standard deviation for the grey levels in a segmented

region in the experiments is ±10. This supports the concept that the image 

segmentation algorithms operate on clusters of homogeneous grey levels in an 

image.

■ The segmentation results for spatially complex arrangements o f overlapping

materials requires intensive processing which could make it unsuitable for 

real time applications. In ‘realistic’ conditions, the problem could be resolved 

by only analysing a potential ‘threat’ with relatively low grey levels. 

Typically, threat items such as plastic explosives are dense and will be 

displayed in low grey level clusters in the resultant x-ray image.

■ The x-ray image categorisation algorithms automatically extract the high 

energy and low energy data as the basis to further categorise the segmented 

regions into overlapping and non-overlapping regions.

The extraction o f the characteristic angle o f a target material:

■ The basis materials decomposition (BMD) technique utilising aluminium and 

plastic as basis materials is employed in this research programme.

■ The goodness o f the polynomial curve fitting for the direct approximation 

BMD technique has minimum and maximum residuals for the estimation o f t\ 

of the order o f (-4.20, +5.26} mm and f2 o f the order o f (-13.93, +10.92} mm 

respectively. The inaccuracy o f the polynomial fit tends to amplify the system 

error in searching for specific materials.

■ The basis materials subtraction (BMS) technique enables the extraction o f the 

characteristic angle from successfully segmented layers o f overlapping
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substances in baggage. In general, this technique has been validated 

empirically. However, its accuracy is greatly affected by the system noise and 

the consequential inaccuracy in deriving the polynomial equations for the 

estimation of the basis materials thicknesses.

■ The automated target recognition program combines the automated image 

segmentation and categorisation programs together with the BMS equations 

to extract the characteristic angle for overlapping objects.

The extraction o f depth data from the stereoscopic images in determining a 

material's mass density:

■ The examination o f the empirical data suggested that the experimental 

system’s Z-axis resolution is o f the order o f ±6.7 mm.

■ The measurement accuracy achievable in the Z-axis is limited by the 

constraints imposed by the binocular stereoscopic design theory. This is due 

to the limit placed on the display screen parallax by the human visual system 

which in turn limits the x-ray beam convergence angle.

■ A preliminary investigation into utilising material thickness extracted from 

the stereoscopic parallax in the resultant images indicates that the depth 

resolution («±6.7 mm) o f the experimental system is too coarse. Nevertheless, 

the mass density equations developed by L.A. LehmannL2 would enable a 

material that is concealed in luggage to be discriminated according to its 

relative characteristic angle and mass density, if the accuracy in material 

thickness is sufficiently good.

■ The errors arising from determining the material’s mass density are governed 

by the following factors:

• The inaccuracy in determining the depth data 

(i.e. <5Z »  ±6.7 mm);
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• Inaccurate polynomial fits for the BMD technique as a result of 

system noise.

In conclusion, the author suggests that the techniques developed may be appropriate 

for applications in other fields, such as industrial non-destructive inspection, 

especially in a combined stereoscopic visual inspection and quantitative analysis 

package.

7.3 Future Work

Energy-dependent systematic errors:

The fundamental assumption of the basis materials decomposition (BMD) technique 

is that the linear attenuation coefficient o f any material at any given energy can be 

expressed as a linear combination o f the linear attenuation coefficient o f two basis 

materials, where the basis material coefficients are assumed to be independent of 

energy. The basis material coefficients are employed to discriminate unknown 

materials in this research programme. However, in general these coefficients are 

found to be energy dependent01 l’ ° 12. Therefore, the synthesized linear attenuation 

coefficients values utilising the BMD technique are expected to suffer from energy 

dependent systematic errors. Another assumption o f the BMD technique is that the 

set o f basis materials utilised best describe the attenuation coefficients o f various 

materials to be discriminated. In aviation security screening, these are materials that 

are ‘normally’ found in passenger baggage together with threat items such as plastic 

explosives. As a result, the quantifying error will become significant if  a high atomic 

number masking substance like metal is present in the x-ray image.

Nevertheless, the systematic errors can be reduced significantly by careful selection 

o f new basis materials that best mimic the normal materials present in baggage by 

applying the Basis Material Coefficients Transformation Method3n’ ° 12. The 

advantage o f this technique is that it enables the energy-dependent systematic errors 

inherent in the calibration o f the aluminium and plastic basis materials to be 

numerically transformed to cover a wider range o f materials in terms o f effective
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atomic number Zeff . The success o f this method would rely on measuring the 

effective energies o f the polychromatic x-ray spectra produced by the experimental 

x-ray machine. The effective energies are defined as the mean x-ray energies 

detected by the dual-energy sensors.

Multiple-view x-ray system:

There are currently two views taken o f the examined object, it therefore seems that 

any attempt to find a mass model of the bag that is sufficiently accurate for the 

purposes o f target recognition will be difficult or impossible under realistic screening 

conditions. The problem will tend to become worse with increasing image 

complexity. In a multiple-view x-ray system, there would be significantly increased 

coordinate informationHI2 available. Also better measurement accuracy in the depth 

axis in the object space could be achieved, while retaining improved visual 

inspection capability. The multiple-view x-ray system can be realised by utilising a 

single x-ray source to produce a number (6 to 16) of collimated x-ray beams incident 

on their respective folded linear detector arrays. Since the castellated detector array 

has reduced by half the number o f dual-energy sensor elements, the implementation 

o f multiple-view x-ray screening system could be accomplished in a practical 

manner.

Automatic correlation o f conjugate image points:

The stereoscopic images by their very nature contain three-dimensional information. 

This research programme has in part been concerned with the extraction o f the depth 

information in an attempt to determine a material’s mass density. A critical aspect of 

this research in terms o f a practical solution would be the ability to locate the 

conjugate image points in the left and right perspective images automatically. Thus, 

enabling an object’s spatial distribution and consequently its mass density to be 

resolved automatically.

The research programme presented in this thesis is theoretical in nature and is limited 

to simple arrangements of object structures. It is anticipated that the complexity of 

the object under inspection will have a critical bearing on the ability o f the system to
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locate target items. In particular, it is also anticipated that structures that cause 

overlapping o f suspect devices in the resultant images would still be problematic. 

Therefore, a scheme for better quantifying this effect will require devising in 

conjunction with the multiple-view x-ray imaging technique.

Thus in conclusion the author suggests that each of the recommended areas o f future 

work be further investigated, since they all represent substantial potential 

improvements to the techniques already developed.
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Calibration Data for the Plastic, Aluminium and Steel Stepwedges

Steps HI* LO* HI*-LO*
1 3090 2900 190
2 2270 2060 210
3 1710 1500 210
4 1270 1080 190
5 962 806 156
6 729 587 142
7 558 442 116
8 433 327 106
9 329 244 85
10 250 192 58
11 187 148 39
12 142 119 23
13 110 89 21
14 89 73 16
15 65 55 10

* Grey levels (12-bit)

Table A -l Transmitted HI and LO energy data for the plastic stepwedge.
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Calibration Data for the Plastic, Aluminium and Steel Stepwedges

Steps HI* LO* HP-LO*
1 3630 3470 160
2 3400 3110 290
3 3210 2840 370
4 2980 2590 390
5 2830 2390 440
6 2660 2200 460
7 2500 2020 480
8 2350 1860 490
9 2220 1720 500
10 2090 1580 510
11 1800 1340 460
12 1570 1150 420
13 1390 986 404
14 1240 840 400
15 1110 735 375
16 983 631 352
17 913 560 353
18 812 486 326
19 715 442 273
20 633 378 255
21 570 347 223
22 421 248 173
23 316 187 129
24 239 139 100
25 176 105 71
26 138 75 63
27 109 57 52
28 84 48 36
29 60 35 25
30 45 27 18

* Grey levels (12-bit)

Table A-2 Transmitted HI and LO energy data for the aluminium step wedge.
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Calibration Data for the Plastic, Aluminium and Steel Stepwedges

Steps Hr LO* Hl*-LO*

1 3810 3560 250
2 3670 3300 370
3 3650 3240 410
4 3460 3010 450
5 3360 2810 550
6 3290 2800 490
7 3190 2640 550
8 3100 2450 650
9 3060 2480 580
10 2960 2320 640
11 2900 2140 760
12 2840 2210 630
13 2740 2100 640
14 2670 1910 760
15 2630 1980 650
16 2570 1900 670
17 2480 1700 780
18 2330 1560 770
19 2210 1400 810
20 2040 1290 750
21 1880 1160 720
22 1820 1210 610
23 1350 786 564
24 1120 536 584
25 1100 578 522
26 872 409 463
27 697 314 383
28 600 263 337
29 491 206 285
30 476 184 292
31 403 164 239
32 335 129 206
33 229 93 136
34 129 55 74
35 78 33 45
36 51 24 27
37 30 18 12
38 27 15 12
39 21 11 10
40 20 11 9
41 18 13 5
42 18 9 9
43 17 8 9
44 14 10 4
45 6 5 1

* Grey levels (12-bit)
Table A-3 Transmitted HI and LO energy data for the steel stepwedge.
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APPENDIX B

Computational results for the materials discrimination curves 
(together with a CD containing the full range of data collected -  4095 numerical

results)

Page B-l



Computational Results for Materials Discrimination Curves

X Y: P lastic  Curve Y: A lum inium  Curve Y: S te e l Curve Y: C urve A Y: C urve B

0 6.00197 -6 .36739 -9 .81615 -8 .09177 -0.18271

1 6.20947 -5 .88826 -9 .12934 -7 .50880 0.16061

2 6 .41686 -5 .40936 -8 .44285 -6 .92610 0.50375

3 6.62416 -4 .93069 -7 .75667 -6 .34368 0.84674

4 6.83136 -4 .45225 -7.07081 -5 .76153 1.18955

5 7.03846 -3 .97405 -6 .38527 -5 .17966 1.53221

6 7.24547 -3 .49608 -5 .70005 -4 .59806 1.87470

7 7.45237 -3 .01834 -5 .01514 -4 .01674 2.21702

8 7.65918 -2 .54083 -4 .33055 -3 .43569 2 .55918

9 7.86590 -2 .06355 -3 .64628 -2.85491 2.90117

10 8.07251 -1.58650 -2 .96232 -2.27441 3.24300

11 8.27902 -1 .10969 -2.27868 -1 .69419 3.58467

12 8.48544 -0 .63310 -1 .59536 -1 .11423 3.92617

13 8.69176 -0 .15675 -0.91236 -0 .53455 4.26750

14 8.89798 0.31937 -0.22967 0.04485 4.60867

15 9.10411 0.79525 0.45270 0.62398 4.94968

16 9 .31013 1.27091 1.13476 1.20283 5.29052

17 9.51606 1.74634 1.81650 1.78142 5.63120

18 9 .72189 2.22153 2.49792 2.35972 5.97171

19 9.92763 2 .69649 3.17902 2.93776 6.31206

20 10.13326 3.17122 3.85981 3.51551 6.65224

21 10.33880 3.64572 4,54028 4 .09300 6.99226

22 10.54424 4 .11999 5.22043 4.67021 7.33211

23 10.74958 4.59402 5.90026 5 .24714 7.67180

24 10.95482 5.06783 6.57978 5.82380 8.01133

25 11.15997 5 .54140 7.25898 6.40019 8.35068

26 11.36502 6.01474 7.93787 6.97630 8.68988

27 11.56997 6 .48785 8.61644 7.55214 9.02891

28 11.77482 6 .96073 9.29469 8.12771 9 .36777

29 11.97958 7.43337 9.97262 8 .70300 9.70647

30 12.18423 7 .90579 10.65024 9.27801 10.04501

Table B-l A sample o f the computational results for the materials discrimination 

curves (i.e. first 31 from a total o f 4095).
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Computational Results for Materials Discrimination Curves

The computational results for the materials discrimination curves is stored on the

compact disc.
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Grey level noise data
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■1 Graph o f the noise analysis for the high energy data for the left perspective

imaging channel: pixel column (a) 2, (b) 3, (c) 4 and (d) 5.
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Grey level noise data
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Fig. C-2 Graph o f the noise analysis for the low energy data for the left perspective

imaging channel: pixel column (a) 2, (b) 3, (c) 4 and (d) 5.
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Grey level noise data
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Fig. C-3 Graph o f the noise analysis for the high energy data for the right

perspective imaging channel: pixel column (a) 2, (b) 3, (c) 4 and (d) 5.
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Grey level noise data
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Fig. C-4 Graph of the noise analysis for the low energy data for the right perspective

imaging channel: pixel column (a) 2, (b) 3, (c) 4 and (d) 5.
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Automated image categorisation results



Automated Image Categorisation Results

File Edit Search Help
h k b h i

Overlapping Regions:

1 o v e r la p  with 6 6 ,
4 o v e r la p  with 5 8 ,
7 o v er la p  with 5 5 ,
7 o v er la p  with 7 5 ,  
12 o v er la p  w ith  66 
24 o v er la p  with 58 
i*2 ov er la p  with 67 
44 o v er la p  with 70  
kS  o v er la p  w ith  69 
48 o v er la p  with 61 
50 o v er la p  w ith  63 
53 o v er la p  w ith  65
57 o v er la p  w ith  67
58 o v er la p  w ith  68 
60 o v er la p  w ith  66 
64 o v er la p  w ith  74

2 o v er la p  with 4 ,  3 o v er la p  with 40 ,
5 o v er la p  w ith  4 4 ,  6 o v e r la p  w ith  58.
7 o v er la p  w ith  5 7 ,  7 ov er la p  with 64,
8 o v er la p  w ith  6 8 ,  9 ov er la p  w ith  57,

, 12 o v e r la p  w ith  6 9 ,  14 o ver lap  with
, 25 o v e r la p  w ith  4 8 ,  39 o ver lap  with  
, 44 o v e r la p  w ith  62,
, 44 o v e r la p  w ith  72,
, 45 o v e r la p  w ith  7 2 ,  45 o ver lap  with
, 48 o v e r la p  w ith  6 6 ,  49 o ver lap  with
, 50 o v e r la p  with 6 4 ,  51 o ver lap  with
, 54 o v e r la p  w ith  6 5 ,  55 o ver lap  with
, 57 o v e r la p  w ith  7 1 ,  57 o ver lap  with
, 58 o v e r la p  w ith  7 1 ,  58 o ver lap  with
, 61 o v e r la p  w ith  66,
, 65 o v e r la p  w ith  70

44 o v er la p  with
45 o v er la p  with

63 o v er la p  with

4 o v e r la p  w ith  6 ,
7 o v e r la p  w ith  5 4 ,
7 o v e r la p  w ith  65 ,
10 o v e r la p  w ith  5 7 ,

4 4 ,  21 o v e r la p  w ith  48 ,
4 8 ,  40 o v e r la p  w ith  57 ,
6 6 ,  44 o v e r la p  w ith  69 ,
5 7 ,  45 o v e r la p  w ith  66 ,
7 5 ,  48 o v e r la p  w ith  60 ,
5 8 ,  50 o v e r la p  with  58 ,
5 7 ,  52 o v e r la p  with  57 ,
7 6 ,  57 o v e r la p  w ith  66 ,
7 5 ,  58 o v e r la p  with 67 ,
7 4 ,  59 o v e r la p  w ith  6 6 ,
7 4 ,  64 o v e r la p  w ith  7 1 ,

Raw Data fo r  Region x=[LO,HI]:

Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region

1 = [3 9 , 7 4 ] ,  Region 2 = [ 2 3 , 5 8 ] ,  Region 3 = [ 2 8 , 5 7 ] ,  Region 4 = [ 5 1 , 8 7 ] ,
5 = [4 9 , 7 3 ] ,  Region 6 = [ 5 8 , 8 9 ] ,  Region 7 = [ 6 4 ,1 0 4 ] ,  Region 8 = [ 8 5 , 1 1 3 ] ,
9 = [8 5 , 1 1 4 ] ,  Region 1 0 = [ 7 7 ,1 0 3 ] ,  Region 1 1 = [ 7 5 ,8 6 ] ,  Region 1 2 = [ 8 0 ,1 2 5 ] ,
1 3 = [ 8 0 ,9 1 ] ,  Region 1 4 = [ 7 7 ,1 1 5 ] ,  Region 1 5 = [ 7 4 ,8 5 ] ,  Region 1 6 = [ 8 3 ,9 4 ] ,
1 7 = [7 2 , 8 1 ] ,  Region 1 8 = [ 9 2 , 1 0 2 ] ,  Region 1 9 = [9 2 ,1 0 1 ] ,  Region 2 0 = [ 9 8 ,1 0 6 ] ,
2 1 = [ 1 0 4 ,1 4 0 ] , Region 2 2 = [ 9 3 ,1 0 3 ] ,  Region 2 3 = [9 2 ,1 0 2 ] ,
2 4 = [1 1 7 , 1 5 5 ] ,  Region 2 5 = [1 1 4 ,1 3 7  
2 7 = [1 2 6 , 1 6 0 ] ,  Region 2 8 = [1 2 6 ,1 5 2  
3 0 = [1 2 5 ,1 5 2 ] ,  Region 3 1 = [1 2 9 ,1 5 6  
3 3 = [1 4 1 , 1 6 4 ] ,  Region 3 4 = [1 4 3 ,1 6 0  
3 6 = [1 4 6 , 1 6 4 ] ,  Region 3 7 = [1 4 7 ,1 6 2  
3 9 = [1 4 5 , 1 5 6 ] ,  Region 4 0 = [1 4 7 ,1 7 9  
4 2 = [1 5 6 , 1 6 7 ] ,  Region 4 3= [1S 5 ,1 69  
4 5 = [1 6 1 , 1 8 4 ] ,  Region 4 6 = [1 6 5 ,1 7 6  
4 8 = [ 1 8 4 ,1 9 3 ] , Region 4 9 = [1 9 7 ,2 0 9  
5 1 = [ 1 9 4 ,2 0 3 ] , Region 5 2 = [1 9 2 ,2 0 0  
5 4 = [1 9 7 , 2 0 2 ] ,  Region 5 5 = [1 9 0 ,1 9 7  
5 7 = [2 1 1 , 2 1 7 ] ,  Region 5 8 = [2 0 6 ,2 1 4  
6 0 = [2 0 9 , 2 2 4 ] ,  Region 6 1 = [2 0 9 ,2 2 2  
6 3 = [2 1 0 , 2 2 4 ] ,  Region 6 4 = [2 1 2 ,2 2 3  
6 6 = [ 2 3 0 ,2 3 2 ] , Region 6 7 = [2 3 1 ,2 3 3  
6 9 = [2 2 9 , 2 2 9 ] ,  Region 7 0= [2 2 7 ,2 2 9  
7 2 = [2 2 8 , 2 3 2 ] ,  Region 7 3 = [2 4 7 ,2 4 7  
7 5 = [2 2 7 , 2 2 8 ] ,  Region 76=[22 4 ,2 31

Region 2 6 = [1 2 4 ,1 5 2 ]  
Region 2 9 = [1 2 6 ,1 4 7 ]  
Region 3 2 = [1 3 0 ,1 5 8 ]  
Region 3 5 = [1 4 4 ,1 6 1 ]  
Region 3 8= [1 4 6 ,1 6 3 ]  
Region 4 1= [1 5 4 ,1 6 4 ]  
Region 4 4= [1 6 7 ,1 9 5 ]  
Region 47 = [1 5 9 ,1 6 8 ]  
Region 5 0 = [1 9 3 ,2 0 4 ]  
Region 53 = [1 9 8 ,2 0 1 ]  
Region 56=[19O ,190]  
Region 5 9 = [2 2 1 ,2 28 ]  
Region 62 = [2 1 9 ,2 0 5 ]  
Region 6 5= [2 1 4 ,2 1 7 ]  
Region 68 = [2 2 9 ,2 3 2 ]  
Region 7 1 = [2 2 7 ,2 2 9 ]  
Region 7 4 = [2 2 5 ,2 2 7 ]

Fig. D-l Automated image categorisation results for baggage sample-6.
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Automated Image Categorisation Results

rawdata.dat - Notepad 
File' Edit Search Help

O verlapping R eg ion s:

2 o v e r la p  with 6 ,  2 o v er la p  w ith  8 ,  2 o v e r la p  with 9 ,  2 o v e r la p  w ith  1 0 ,
2 o v e r la p  w ith  1 1 ,  2 o v er la p  w ith  1 2 ,  2 o v er la p  with 2 1 ,  3 o v e r la p  w ith  1 3 ,
4 o v e r la p  w ith  6 9 ,  5 o v er la p  w ith  1 9 ,  7 o v er la p  with 7 3 ,  13 o v e r la p  with 73 ,  
15 o v e r la p  w ith  6 8 ,  15 o v e r la p  w ith  7 1 ,  15 o v e r la p  w ith  7 3 ,  16 o v e r la p  with  
6 9 ,  17 o v e r la p  w ith  6 8 ,  18 o v e r la p  w ith  7 0 ,  20  over la p  w ith  6 9 ,  21 o v e r la p  
w ith  2 3 ,  21 o v er la p  with 2 4 ,  22 o v e r la p  w ith  73 ,  27 o v e r la p  w ith  6 7 ,
27 o v e r la p  w ith  6 8 ,  28 o v e r la p  w ith  6 7 ,  28 o v e r la p  w ith  6 8 ,  30 o v e r la p  with  
4 1 ,  33 o v e r la p  w ith  6 8 ,  34  o v e r la p  w ith  4 3 ,  35 o v er lap  w ith  6 3 ,  38 o v e r la p  
w ith  4 4 ,  38 o v er la p  with 4 7 ,  38 o v e r la p  w ith  5 0 ,  40 o v e r la p  w ith  4 9 ,
40 o v er la p  with 5 0 ,  42 o v e r la p  w ith  6 8 ,  42 ov er la p  w ith  7 3 ,  44 o v er la p  with  
4 7 ,  44 o v er la p  w ith  4 8 ,  44 o v e r la p  w ith  5 1 ,  44 o v er la p  w ith  6 4 ,  46 o v e r la p  
w ith  5 0 ,  46 o v e r la p  with 5 5 ,  47 o v e r la p  w ith  65 ,  49 o v e r la p  w ith  6 4 ,
50  o v er la p  with 6 4 ,  50 o v e r la p  w ith  6 5 ,  51 o v er la p  w ith  5 5 ,  51 o v e r la p  with  
63 ,  51 o v e r la p  w ith  6 4 ,  51 o v e r la p  w ith  6 5 ,  52 ov er la p  w ith  7 2 ,  53 o v e r la p  
w ith  62 ,  54 o v er la p  w ith  6 1 ,  55 o v e r la p  w ith  6 4 ,  55 o v er la p  w ith  6 5 ,
59 o v er la p  with 6 9 ,  60 o v e r la p  w ith  6 8 ,  60 ov er la p  with 8 1 ,  61 o v e r la p  with  
69 ,  64 o v e r la p  w ith  7 2 ,  64 o v e r la p  w ith  7 3 ,  66 ov er la p  w ith  7 3 ,  66 o v e r la p  
with  7 4 ,  67 o v er la p  w ith  7 3 ,  68 o v e r la p  w ith  7 3 ,  68 o v e r la p  w ith  7 8 ,
68 o v er la p  with 7 9 ,  69 o v e r la p  w ith  7 3 ,  69 ov er la p  with 7 6 ,  69 o v e r la p  with  
7 7 ,  69 o v e r la p  w ith  8 0 ,  7 0 o v e r la p  w ith  7 3 ,  71 o v er la p  with 7 3 ,  71 o v e r la p  
with  80 ,

Raw Data fo r  Region x = [L 0 ,H I]:

Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region

1 = [ 4 , 9 ] , Region 2 = [ 8 , 2 1 ] ,  Region 3 = [ 1 2 , 2 8 ] ,  Region 4 = [ 7 , 1 7 ] ,
5“ [ 8 , 1 9 ] ,  Region 6 = [ 2 0 , 3 9 ] ,  Region 7 = [ 1 3 ,3 0 ] ,  Region 8 = [ 2 8 , 5 2 ] ,  
9 = [ 2 8 , 5 1 ] , Region 1 0 = [ 3 5 ,6 1 ] ,  Region 1 1 = [ 3 5 ,6 2 ] ,  Region 1 2 = [ 2 8 , 5 1 ] ,  
1 3 = [3 1 , 5 7 ] ,  Region 1 4 = [ 2 7 , 5 1 ] ,  Region 1 5 = [ 3 0 ,6 0 ] ,  Region 1 6 = [ 3 3 ,6 3 ] ,
1 7 = [2 1 , 4 3 ] ,  Region 1 8 = [ 3 2 , 6 2 ] ,  Region 1 9 = [ 2 0 ,4 3 ] ,  Region 2 0 = [ 2 0 , 4 1 ] ,
2 1 = [4 9 , 7 2 ] ,  Region 2 2 = [ 4 9 , 8 9 ] ,  Region 2 3 = [ 6 7 ,9 8 ] ,  Region 2 4 = [ 6 4 ,9 0 ] ,
2 5 = [6 7 , 1 0 1 ] ,  Region 2 6 = [ 7 6 , 1 2 0 ] ,  Region 2 7 = [6 4 ,1 0 2 ] ,
2 8 = [6 5 , 1 0 2 ] , Region 2 9 = [ 8 9 ,9 9 ] ,  Region 3 0 = [ 9 0 ,1 2 0 ] ,
3 1 = [8 8 , 1 2 1 ] ,  Region 3 2 = [ 8 3 , 9 2 ] ,  Region 3 3 = [ 9 0 ,1 2 7 ] ,  Region 3 4 = [ 9 0 ,1 2 1 ] ,  
3 5 = [1 0 0 ,1 2 2 ] ,  Region 3 6 = [ 1 1 0 ,8 7 ] ,  Region 3 7 = [ 1 0 0 ,1 1 0 ] ,
3 8 = [1 0 1 ,1 2 2 ] ,  Region 3 9= [1 1 1 ,1 2 1  
4 1 = [1 0 9 ,1 4 3 ] ,  Region 4 2 = [1 0 1 ,1 3 5  
4 4 = [1 3 2 , 1 5 6 ] ,  Region 4 5 = [1 3 0 ,1 6 0  
4 7 = [1 3 5 , 1 5 7 ] ,  Region 4 8 = [1 3 7 ,1 5 9  
5 0 = [1 4 9 , 1 6 1 ] ,  Region 5 1 = [1 6 3 ,1 6 7  
5 3 = [ 1 5 0 ,1 5 6 ] , Region 5 4 = [1 5 8 ,1 6 5  
5 6 = [1 8 1 , 1 9 2 ] ,  Region 5 7 = [1 9 0 ,1 9 9  
5 9 = [1 9 1 , 1 9 5 ] ,  Region 6 0= [1 8 4 ,1 9 1  
6 2 = [ 1 8 4 ,1 8 7 ] , Region 6 3 = [2 0 0 ,1 9 5  
6 5 = [2 0 1 , 2 0 9 ] ,  Region 6 6 = [2 0 7 ,2 1 2  
6 8 = [2 1 1 , 2 1 4 ] ,  Region 6 9 = [2 1 0 ,2 1 4  
7 1 = [ 2 1 4 ,2 1 7 ] , Region 7 2 = [2 2 3 ,2 2 6  
7 4 = [2 2 2 , 2 2 5 ] ,  Region 7 5 = [2 2 1 ,2 2 4  
7 7 = [2 2 2 , 2 2 5 ] ,  Region 7 8 = [2 19 ,2 21  
8 0 = [2 2 1 , 2 2 3 ] ,  Region 8 1 = [2 2 0 ,2 2 3

Region 4 0 = [1 0 7 ,1 3 3 ] ,  
Region 4 3 = [1 0 2 ,1 4 3 ] ,  
Region 4 6 = [1 3 1 , 1 4 3 ] ,  
Region 4 9 = [1 3 9 , 1 6 9 ] ,  
Region 5 2 = [1 6 1 , 1 7 2 ] ,  
Region 5 5 = [1 7 6 ,1 8 5 ]  , 
Region 5 8 = [1 8 2 ,1 8 7 ]  , 
Region 6 1 = [ 1 7 9 ,1 8 4 ] , 
Region 6 4 = [ 1 9 9 , 2 0 8 ] , 
Region 6 7 = [ 2 0 7 ,2 1 0 ] , 
Region 7 0 = [2 O 7 ,2 1 1 ] , 
Region 7 3 = [ 2 2 3 ,2 2 0 ] , 
Region 7 6 = [2 2 1 , 2 2 3 ] ,  
Region 7 9 = [2 1 8 , 2 1 9 ] ,

Fig. D-2 Automated image categorisation results for baggage sample-7.
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Automated Image Categorisation Results

^™uu:«ut;.NotSp>a
£iU Edit Search Help
O verlapp ing  R eg ions:

1 o v e rla p  w ith  7 , 1 o v e rla p  w ith  10 , 1 o v e r la p  w ith  11 , 1 o v e rla p  w ith  1 2 , 1 o v e r la p  w ith  14 , 1 
o v e rla p  w ith  1 6 , 1 o v e r la p  w ith  2 4 , 1 o v e r la p  w ith  25 , 1 o v e r la p  w ith  26 , 1 o v e r la p  w ith  2 9 , 1 o v e rla p  
w ith  30 , 2 o v e r la p  w ith  7 ,  3 o v e r la p  w ith  22 , 8 o v e r la p  w ith  62 , 8 o v e r la p  w ith  104 , 9 o v e r la p  w ith  
2 1 , 10 o v e r la p  w ith  22 , 11 o v e r la p  w ith  24 , 13 o v e r la p  w ith  25 , 15 o v e r la p  w ith  5 6 , 17 o v e r la p  w ith  
2 7 , 18 o v e r la p  w ith  129, 18 o v e r la p  w ith  143 , 18 o v e r la p  w ith  14B, 20 o v e rla p  w ith  3 6 , 23 o v e rla p  w ith  
3 3 , 23 o v e r la p  w ith  36 , 27 o v e r la p  w ith  110, 28 o v e r la p  w ith  56 , 30 o v e r la p  w ith  111 , 34 o v e rla p  w ith
5 4 , 35 o v e rla p  w ith  40 , 37 o v e r la p  w ith  51 , 37 o v e r la p  w ith  64 , 38 o v e r la p  w ith  5 6 , 45 o v e r la p  w ith
148 , 47 o v e r la p  w ith  102 , 48 o v e r la p  w ith  62 , 48 o v e r la p  w ith  63 , 48 o v e r la p  w ith  65 , 48 o v e rla p  w ith  
66 , 49 o v e r la p  w ith  62 , 50 o v e r la p  w ith  62 , 51 o v e r la p  w ith  108, 51 o v e r la p  w ith  129 , 52 o v e rla p  w ith  
62 , 53 o v e r la p  w ith  62 , 54 o v e r la p  w ith  39 , 54 o v e r la p  w ith  62 , 54 o v e r la p  w ith  6 7 , 54 o v e r la p  w ith
69 , 54 o v e rla p  w ith  70 , 54 o v e r la p  w ith  71 , 54 o v e r la p  w ith  74 , 54 o v e r la p  w ith  75 , 54 o v e r la p  w ith
7 6 , 55 o v e r la p  w ith  64 , 58 o v e r la p  w ith  122, 61 o v e r la p  w ith  101, 62 o v e r la p  w ith  81 , 62 o v e r la p  w ith
82 , 62 o v e rla p  w ith  83 , 62 o v e r la p  w ith  84 , 62 o v e r la p  w ith  85 , 62 o v e r la p  w ith  8 6 , 62 o v e r la p  w ith
87 , 62 o v e rla p  w ith  103 , 64 o v e r la p  w ith  109 , 64 o v e r la p  w ith  110 , 64 o v e r la p  w ith  129 , 66 o v e rla p  
w ith  87 , 66 o v e rla p  w ith  8 8 , 68 o v e r la p  w ith  87 , 70 o v e r la p  w ith  86 , 73 o v e r la p  w ith  90 , 74 o v e rla p
w ith  89 , 74 o v e rla p  w ith  91 , 75 o v e r la p  w ith  92 , 76 o v e r la p  w ith  91 , 77 o v e r la p  w ith  91 , 77 o v e rla p
w ith  107 , 78 o v e r la p  w ith  92 , 78 o v e r la p  w ith  97 , 79 o v e r la p  w ith  94 , 79 O verlap  w ith  95 , 80 o v e rla p  
w ith  98 , 80 o v e rla p  w ith  118 , 81 o v e r la p  w ith  104 , 82 o v e r la p  w ith  104 , 83 o v e r la p  w ith  104 , 83 
o v e r la p  w ith  105, 84 o v e r la p  w ith  1 0 5 , 84 o v e r la p  w ith  107 , 84 o v e r la p  w ith  129 , 86 o v e r la p  w ith  107,
89 o v e rla p  w ith  107 , 90 o v e r la p  w ith  112 , 91 o v e r la p  w ith  107 , 91 o v e r la p  w ith  1 1 5 , 92 o v e rla p  w ith
111 , 92 o v e r la p  w ith  116 , 93 o v e r la p  w ith  111 , 94 o v e r la p  w ith  1 13 , 95 o v e r la p  w ith  107 , 95 o v e rla p
w ith  113, 95 o v e r la p  w ith  117 , 95 o v e r la p  w ith  119 , 96 o v e r la p  w ith  111 , 97 o v e r la p  w ith  111 , 98
o v e r la p  w ith  113, 100 o v e r la p  w ith  118 , 101 o v e r la p  w ith  125, 101 o v e r la p  w ith  1 2 8 , 101 o v e r la p  w ith
143, 102 o v e r la p  w ith  126 , 102 o v e r la p  w ith  145 , 103 o v e r la p  w ith  126 , 103 o v e r la p  w ith  128 , 104
o v e r la p  w ith  128 , 105 o v e r la p  w ith  128 , 105 o v e r la p  w ith  129 , 106 o v e r la p  w ith  1 2 9 , 107 o v e r la p  w ith
129, 107 o v e r la p  w ith  135 , 108 o v e r la p  w ith  129 , 109 o v e r la p  w ith  129, 110 o u e r la p  w ith  1 29 , 110
o v e rla p  w ith  132, 111 o v e r la p  w ith  134, 111 o v e r la p  w ith  135 , 111 o v e r la p  w ith  1 3 6 , 113 o v e r la p  w ith
129, 113 o v e r la p  w ith  137 , 113 o v e r la p  w ith  154 , 113 o v e r la p  w ith  158, 114 o v e r la p  w ith  1 2 9 , 114
o v e rla p  w ith  133 , 117 o v e r la p  w ith  129 , 118 o v e r la p  w ith  129 , 118 o v e r la p  w ith  1 33 , 118 o v e r la p  w ith
157, 120 o v e r la p  w ith  135 , 120 o v e r la p  w ith  155 , 121 o v e r la p  w ith  138, 122 o v e r la p  w ith  1 4 3 , 123
o v e rla p  w ith  143 , 124 o v e r la p  w ith  143 , 124 o v e r la p  w ith  144 , 125 o v e r la p  w ith  1 4 3 , 126 o v e r la p  w ith
146 , 127 o v e r la p  w ith  143 , 128 o v e r la p  w ith  143 , 129 o v e r la p  w ith  143, 129 o v e r la p  w ith  1 47 , 129
o v e r la p  w ith  148 , 129 o v e r la p  w ith  149 , 130 o v e r la p  w ith  143 , 131 o v e r la p  w ith  1 4 3 , 133 o v e rla p  w ith
150 , 133 o v e r la p  w ith  151 , 133 o v e r la p  w ith  153 , 133 o v e rla p  w ith  157 , 134 o v e r la p  w ith  152 , 136
o v e r la p  w ith  152 , 137 o v e r la p  w ith  154 , 139 o v e r la p  w ith  156 , 140 o v e r la p  w ith  1 5 6 , 142 o v e r la p  w ith
152,

£/)i*vdata<lat - Notepad '
FiU Edit Starch Help

Raw D ata f o r  R egion x = [L 0 ,H IJ : j

R egion 1 = [ 1 5 ,3 3 ] ,  R egion  2 = [ 1 6 ,3 4 ] ,  R egion  3 = [ 2 1 ,4 6 ] ,  R egion  4 = [ 1 7 ,3 5 ] ,  R eg ion  5 = [ 1 2 ,2 6 ] ,
R egion 6 = [ 2 0 ,3 9 ] ,  R egion  7 = [ 3 8 ,6 6 ] ,  R egion  8 = [ 3 1 ,6 1 ] ,  R egion  9 = [ 3 5 ,6 5 ] ,  R eg ion  1 0 = [ 3 2 ,6 1 ] ,
R egion 1 1 = [ 3 0 ,5 6 ] ,  R egion  1 2 = [ 3 4 ,6 4 ] ,  R egion 1 3 = [ 3 5 ,6 6 ] ,  R egion 1 4 = [ 3 3 ,6 0 ] ,  R eg ion  1 S = [3 0 ,5 6 ] ,  *
R egion 1 6 = [ 3 7 ,6 6 ] ,  R egion  1 7 = [ 3 3 ,6 2 ] ,  R egion 1 8 = [ 4 2 ,7 5 ] ,  R egion 1 9 = [4 F ,7 5 ] ,  R eg ion  2 0 = [ 3 6 ,6 5 ] ,  I
R egion 2 1 = [ 4 9 ,8 5 ] ,  R egion  2 2 = [ 4 5 ,7 9 ] ,  R egion 2 3 = [ 4 4 ,7 3 ] ,  R egion 2 4 = [ 4 S ,7 6 ] ,  R eg ion  2 5 = [ 4 7 ,8 0 ] ,
R egion 2 6 = [ 4 8 ,8 1 ] ,  R egion  2 7 = [ 4 8 ,8 5 ] ,  R egion 2 8 = [ 3 5 ,6 2 ] ,  R egion 2 9 = [ 4 9 ,8 3 ] ,  R eg ion  3 0 = [ 5 0 ,8 6 ] ,  [
R egion 3 1 = [ 4 2 ,7 6 ] ,  R egion  3 2 = [ 7 9 ,1 1 3 ] , R egion  3 3 = [ 8 2 ,1 2 2 ] ,  R eg ion  3 4 = [8 0 ,1 Q 5 ] , R eg ion  3 5 = [ 7 7 ,8 7 ] ,  I 
R egion 3 6 = [ 9 9 ,1 0 8 ] ,  R egion  3 7 = [ 9 5 ,1 1 6 ] ,  R eg ion  3 8 = [ 9 3 ,1 0 2 ] ,  R egion 3 9 = [ 8 7 ,9 6 ] ,  R eg ion  4 0 = [ 9 0 ,1 0 3 ] J  
R egion 4 1 = [1 1 9 ,2 8 ] ,  R egion  4 2 = [ 1 2 1 ,7 3 ] ,  R eg ion  4 3 = [ 1 2 6 ,1 4 9 ] , R egion  4 4 = [1 3 3 ,1 S 7 ] ,
R egion 4 5 = [1 1 7 ,1 2 6 ] ,  R eg ion  4 6 = [ 1 1 2 ,1 2 0 ] , R eg ion  4 7 = [1 1 2 ,1 1 8 ] , R eg ion  4 8 = [ 1 2 7 ,1 4 1 ] ,
R egion 4 9 = [1 3 1 ,1 4 4 ] ,  R egion  5 0 = [ 1 3 3 ,1 4 3 ] , R eg ion  5 1 = [1 2 7 ,1 5 1 ] , R eg ion  S 2 = [1 3 3 ,1 4 5 ] ,
R egion 5 3 = [1 3 3 ,1 4 5 ] , R egion  5 4 = [8 1 ,1 1 3 ] ,  R eg ion  5 5 = [1 3 5 ,1 4 8 ] ,  R egion  5 6 = [ 1 3 2 ,1 4 5 ] ,
R egion 5 7 = [ 1 2 7 ,1 3 5 ] , R egion  5 8 = [ 1 3 8 ,1 0 9 ] , R eg ion  5 9 = [1 3 8 ,1 3 9 ] , R eg ion  6 0 = [ 1 4 3 ,1 5 1 j ,
R egion 6 1 = [1 4 3 ,1 4 6 ] ,  R egion  6 2 = [ 1 4 4 ,1 5 6 ] , R eg ion  6 3 = [1 5 0 ,1 6 3 ] , R eg ion  6 4 = [1 4 6 , 1 5 7 ] ,
R egion 6 5 = [1 4 5 ,1 5 5 ] , R egion  6 6 = [ 1 4 8 ,1 5 9 ] , R eg ion  6 7 = [ 1 4 0 ,1 5 2 ] , R eg ion  6 8 = [ 1 4 7 ,1 5 9 ] ,
R egion 6 9 = [1 4 2 ,1 5 4 ] , R egion  7 0 = [ 1 4 3 ,1 5 4 ] , R eg ion  7 1 = [ 1 4 7 ,1 5 8 ] , R egion  7 2 = [ 1 4 9 ,1 6 1 ] ,
R egion 7 3 = [1 4 9 ,1 6 0 ] ,  R egion  7 4 = [ 1 4 8 ,1 6 0 ] , R eg ion  7 5 = [ 1 4 5 ,1 5 6 ] , R eg ion  7 6 = [ 1 5 2 ,1 6 4 ] ,
R egion 7 7 = [ 1 4 5 ,1 5 6 ] , R egion  7 8 = [1 3 1 ,1 4 6 ] ,  R eg ion  7 9 = [1 4 4 ,1 5 4 ] , R eg ion  B 0= [135 ,1 4 2 ] ,  \
R egion 81 = [ 1 5 8 ,1 6 8 ] ,  R egion  8 2 = [1 6 3 ,1 7 5 ] , R eg ion  8 3 = [ 1 6 6 ,1 7 7 ] , R eg ion  8 4 = [ 1 6 3 ,1 7 3 ] ,
R egion 8 5 = [1 6 4 ,1 7 3 ] , R egion  8 6 = [ 1 6 4 ,1 7 4 ] , R eg ion  8 7 = [ 1 6 2 ,1 7 2 ] , R eg ion  8 8 = [ 1 6 6 ,1 7 6 ] ,
R egion 8 9 = [1 6 7 ,1 7 5 ] , R egion  9 0 = [ 1 6 2 ,1 7 2 ] , R eg ion  9 1 = [ 1 6 4 ,1 7 4 ] , R eg ion  9 2 = [1 6 5 ,1 7 5 ] ,
R egion 9 3 = [1 6 2 ,1 7 2 ] ,  R egion  9 4 = [16J*,17*»] . R eg ion  9 5 = [ 1 6 4 ,1 7 3 ] , R egion  9 6 = [1 6 5 ,1 7 4 ] ,
R egion 9 7 = [1 6 1 ,1 7 2 ] ,  R egion  9 8 = [1 6 1 ,1 6 7 ] ,  R eg ion  9 9 = [1 6 6 ,1 7 6 ] , R egion  1 0 0 = [1 5 7 ,1 6 3 ] ,
R egion 1 0 1 = [1 8 6 ,1 9 3 ] ,  R egion  1 0 2 = [1 8 5 ,1 9 2 ] , R egion  1 0 3 = [1 8 2 ,1 9 0 ] , R eg ion  1 0 4 = [1 8 1 ,1 8 9 ] ,
R egion 1 05= [1 8 3 ,1 9 1 ] ,  R egion  1 0 6 = [1 8 8 ,1 9 5 ] ,  R egion  1 0 7 = [1 8 2 ,1 9 0 ] , R eg ion  1 0 8 = [ 1 9 0 ,1 9 7 ] ,
R eg ion  1 0 9 = [1 8 4 ,1 9 2 ] , R eg ion  1 1 0 = [1 8 6 ,1 9 3 ] ,  R eg ion  1 1 1 = [1 8 3 ,1 9 1 ] , R eg ion  1 1 2 = [1 8 2 ,1 9 0 ] ,
R eg ion  1 1 3 = [1 8 4 ,1 8 9 ] , R egion  1 1 4 = [1 8 6 ,1 9 4 ] , R eg ion  1 1 5 = [1 8 2 ,1 8 8 ] , R eg ion  1 1 6 = [1 7 6 ,1 8 5 ] ,
R eg ion  1 1 7 = [1 8 3 ,1 8 8 ] , R egion  1 1 8 = [1 8 4 ,1 9 2 ] , R eg ion  1 1 9 = [1 7 8 ,1 8 8 ] , R eg ion  1 2 0 = [ 1 8 2 ,1 9 0 ] ,
R eg ion  1 2 1 = [1 B 0 ,1 8 2 ], R egion  1 2 2 = [2 0 5 ,1 8 2 ] , R egion  1 2 3 = [2 0 3 ,2 1 0 ] , R eg ion  1 2 4 = [2 0 3 ,2 0 8 ] ,
R eg ion  1 2 5 = [1 9 9 ,2 0 4 ] , R egion  1 2 6 = [2 0 3 ,2 0 7 ] , R eg ion  1 2 7 = [2 0 6 ,2 1 1 ] , R egion  128=[2  0 8 ,2 1 1 ] ,
R eg ion  1 2 9 = [2 0 1 ,2 0 7 ] , R egion 1 3 0 = [2 0 5 ,2 1 0 ] , R eg ion  1 3 1 = f2 0 6 ,2 1 4 ] , R egion  1 3 2 = [1 9 7 ,2 0 3 ] , I
R egion  1 3 3 = [2 0 2 ,2 0 7 ] , R egion 1 3 4 = [2 0 0 ,2 0 6 ] , R eg ion  1 3 5 = [2 0 0 ,2 0 5 ] , R egion  1 3 6 = [2 0 3 ,2 0 9 ] ,
R eg ion  1 3 7 = [2 0 3 ,2 0 8 ] , R egion 1 3 8 = [2 0 3 ,2 0 9 ] , R eg ion  1 3 9 = [1 9 9 ,2 0 2 ] ,  R egion  1 4 0 = [2 0 2 ,2 0 5 ] , I
R eg ion  1 4 1 = [2 0 5 ,2 0 5 ] ,  R egion 1 4 2 = [2 0 2 ,1 9 8 ] , R eg ion  1 4 3 = [2 1 5 ,2 1 0 ] , R egion  1 4 4 = [2 1 9 ,2 2 1 ] , \
R egion  1 4 5 = [2 2 0 ,2 2 2 ] , R egion 1 4 6 = [2 1 6 ,2 1 8 ] , R eg ion  1 4 7 = [2 1 2 ,2 1 5 ] , R egion  1 4 8 = [2 2 2 ,2 2 5 ] ,
R eg ion  1 4 9 = [2 1 1 ,2 1 5 ] ,  R egion 1 5 0 = [2 1 3 ,2 1 6 ] , R egion 1 5 1 = [2 1 5 ,2 1 7 ] , R egion  1 5 2 = [2 1 5 ,2 1 7 ] ,
R eg ion  1 5 3 = [2 1 4 ,2 1 5 ] , R egion 1 5 4 = [2 1 4 ,2 1 7 ] , R eg ion  1 5 5 = [2 1 9 ,2 1 8 ] , R egion  1 5 6 = [2 1 5 ,2 1 5 ] ,
R eg ion  1 5 7 = [2 1 3 ,2 1 4 ] , R egion 1 5 8 = [2 2 2 ,2 2 4 ] |

Fig. D-3 Automated image categorisation results for baggage sample-8.
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Automated Image Categorisation Results

(ZA rawdata dat - Notepad

File Edit ?' Search Help

O verlapping  R e g ion s:

1 o v e r la p  w ith  5 5 ,  2 
5 o v e r la p  w ith  5 5 ,  6 
7 o v e r la p  w ith  3 1 ,  8 
19 o v e r la p  w ith  5 3 ,  
3 8 ,  29 o v e r la p  w ith  
w ith  3 2 ,  31 o v e r la p  
35 o v e r la p  w ith  4 4 ,  
3 8 ,  37 o v e r la p  w ith  
w ith  4 9 ,  38 o v e r la p  
39 o v e r la p  w ith  4 8 ,  
4 8 ,  43 o v e r la p  w ith  
w ith  5 3 ,  47 o v e r la p  
49 o v e r la p  w ith  5 5 ,  
5 8 ,  52 o v e r la p  w ith

o v e r la p  w ith  5 3 ,  3 
o v e r la p  w ith  5 1 ,  6 
o v e r la p  w ith  5 3 ,  1 

20 o v e r la p  w ith  5 3 ,  
3 2 ,  29 o v e r la p  w ith  
w ith  3 8 ,  32 o v e r la p  
35 o v e r la p  w ith  5 3 ,  
5 0 ,  38 o v e r la p  w ith  
w ith  SO, 38 o v e r la p  
40 o v e r la p  w ith  5 2 ,  
5 0 ,  43 o v e r la p  w ith  
w ith  5 3 ,  48 o v e r la p  
50 o v e r la p  w ith  5 5 ,  
5 5 ,  52 o v e r la p  w ith

o v e r la p  w ith  5 3 ,  4 o v e r la p  w ith  5 5 ,  
o v e r la p  w ith  5 5 ,  7 o v e r la p  w ith  2 6 ,

0 o v e r la p  w ith  5 3 ,  11 o v e r la p  w ith  53,  
21 o v e r la p  w ith  5 3 ,  26 o v e r la p  w ith  
3 5 ,  30 o v e r la p  w ith  3 1 ,  31 o v e r la p  
w ith  5 3 ,  32 o v e r la p  w ith  5 5 ,
35 o v e r la p  w ith  5 4 ,  36 o v e r la p  w ith  
4 5 ,  38 o v e r la p  w ith  4 8 ,  38 o v e r la p  
w ith  5 5 ,  38 o v e r la p  w ith  5 7 ,
41 o v e r la p  w ith  4 8 ,  42 o v e r la p  w ith  
5 9 ,  45 o v e r la p  w ith  5 3 ,  46 o v e r la p  
w ith  5 6 ,  48 o v e r la p  w ith  5 7 ,
51 o v e r la p  w ith  5 5 ,  51 o v e r la p  w ith  
5 8 ,

Raw Data f o r  Region x = [L 0 ,H I] :

Region 1 = [ 3 1 , 6 4 ] ,  Region 2 = [ 4 2 , 7 5 ] ,  Region 3 = [ 4 2 , 7 6 ] ,  Region 4 = [ 4 4 , 8 1 ] ,  
Region 5 = [6 O ,1 0 3 ] ,  Region 6 = [ 5 8 , 9 5 ] ,  Region 7 = [ 9 1 , 1 1 2 ] ,  Region 8 = [ 1 0 1 , 9 6 ] ,  
Region 9 = [ 1 0 5 ,7 0 ] ,  Region 1O =[101 , 1 1 9 ] ,  Region 1 1 = [1 0 1 , 1 1 9 ] ,  Region  
1 2 = [1 0 3 , 1 2 2 ] ,  Region 1 3 = [ 1 0 7 , 1 2 2 ] , Region 1 4 = [1 O 0 ,1 1 0 ] , Region 1 5 = [1 0 4 ,1 1 4 ]  
Region 1 6 = [ 1 0 2 ,1 1 2 ] , Region 1 7 = [ 9 9 , 1 0 8 ] ,  Region 1 8 = [ 9 8 ,1 0 5 ] ,  Region  
1 9 = [ 1 1 5 ,1 0 8 ] ,  Region 2 0 = [ 1 1 4 ,1 1 0 ] ,  Region 2 1 = [1 1 7 , 1 1 5 ] ,  Region 2 2 = [1 1 7 ,1 1 7 ]  
Region 2 3 = [1 2 1 , 1 2 9 ] ,  Region 2 4 = [ 1 2 1 , 1 2 9 ] ,  Region 2 5 = [ 1 1 0 , 1 1 7 ] , Region  
2 6 = [1 2 1 , 1 4 5 ] ,  Region 2 7 = [1 1 2 , 1 2 0 ] ,  Region 2 8 = [ 1 1 2 , 1 2 0 ] , Region 2 9 = [1 3 4 ,1 4 6 ]  
Region 3 0 = [ 1 3 7 ,1 4 9 ] , Region 31 = [ 1 4 3 , 1 5 3 ] ,  Region 3 2 = [ 1 6 3 , 1 7 2 ] , Region  
3 3 = [ 1 5 0 , 1 5 6 ] , Region 3 4 = [1 6 1 , 1 6 8 ] ,  Region 3 5 = [ 1 8 0 , 1 8 8 ] , Region 3 6 = [1 8 4 ,1 9 2 ]  
Region 3 7 = [1 8 1 , 1 8 7 ] ,  Region 3 8 = [ 1 9 2 ,1 9 9 ] , Region 3 9 = [ 1 9 0 , 1 9 6 ] , Region  
4 0 = [1 9 2 , 1 9 9 ] ,  Region 4 1 = [ 1 9 4 , 1 9 6 ] , Region 4 2 = [ 1 9 0 , 1 9 4 ] , Region 4 3 = [1 8 6 ,1 9 1 ]  
Region 4 4 = [ 2 1 6 ,2 2 1 ] , Region 4 5 = [2 0 8 , 2 1 2 ] ,  Region 4 6 = [ 2 1 2 , 2 1 6 ] , Region  
4 7 = [ 2 1 4 , 2 2 0 ] , Region 4 8 = [ 2 1 0 , 2 1 4 ] , Region 4 9 = [ 2 1 2 , 2 1 7 ] , Region 50=[2O 9,212]  
Region 5 1 = [ 2 1 5 ,2 1 9 ] , Region 5 2 = [ 2 1 1 , 2 1 4 ] ,  Region 5 3 = [2 2 2 , 2 1 O ], Region  
5 4 = [2 2 3 , 2 2 5 ] ,  Region 5 5 = [ 2 2 3 ,2 2 5 ]  , Region 5 6 = [2 2 1 , 2 2 4 ] ,  Region 5 7 = [2 2 2 ,2 2 4 ]  
Region 5 8 = [ 2 1 9 ,2 2 3 ] , Region 5 9 = [2 2 1 ,2 2 3 ]

Fig. D-4 Automated image categorisation results for baggage sample-9.
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APPENDIX

Software listing for the automated target material detection program
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Automated Target Material Detection Program

Date: 17th August 2002
Author: Ta Wee Wang
Title: Automated Target Material Detection Program

Utilised standard imaging tools:

Matrox Imaging Library (MIL 4.0)
COPYRIGHT (c) Matrox Electronic Systems Ltd.

Initially, the program will acquire the input low energy and the high energy x-ray images, and store 

them into image buffers for further processing. These images will be first filtered by utilising a 

median filter.

The low energy image will be then delineated into individual segmented regions by employing the 

wavelet transform technique. The high and the low energy data (i.e. average grey levels) for every 

successfully segmented region are computed from the filtered high and the low energy image. The 

dual-energy data is then stored in a database for further analysis.

Then, the program will determine the neighbouring regions that are connected to each segmented 

region in an x-ray image. Each segmented region (n) will be examined in comparison to all other 

segmented regions (m). If region n has a neighbouring region m, where region ri s average grey level 

is less than the average grey level for the region m, it is defined that region n is overlapping region m. 

All the results are stored in a database for further quantitative analysis (i.e. to extract the characteristic 

angle for overlapping objects).

The characteristic angle for each overlapping object is calculated by using the formulae derived in the 
thesis. The program will display the discriminated target material in red, provided that the calculated 
characteristic angle lies within the predefined window (i.e. 87.0<S<92.0, for a plastic target).

#include <stdio.h>
#include <stdlib.h>
#include <mil.h>
#include <math.h>
#include "AMR.h"

(char tmp[50];}; 
struct temp raw_data[500];

#define J 5 //Maximum wavelet scale.
#define DATA_POINTS 256 //Predefined histogram having 256 data points

struct dummy //Dummy database 
{char tmp[50];};

Description:

H—I—I—I—I—I—I—I—I—I—I—1—I—I—I—I—I—I—h//
FILE
struct temp

* save data; //Database stored in local C drive.
//Database stored in local C drive.
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Automated Target Material Detection Program

struct dummy values[500];
struct dummy 1 //Dummy database for wavelet results 
{float H[D ATAPOINTS]; 
float G [DAT A PO INTS];}; 

struct dummy 1 wc[6];

//Setup the path in "milsetup.h".
#defme IMAGEFILE MIMAGEJPATH" 1 ll.tif' //Input low energy image.
#defme IMAGE_FILE2 M_IMAGE_PATH" llh.tif' //Input high energy image.
#define IMAGE_WIDTH 1024L //Image X-Axis size.
#define IMAGEHEIGHT 320L //Image Y-Axis size.
#define RAWDATA "C:\\Automated Material RecognitionWAnalysis DatabaseWrawdata.dat"

//File location for database.

//Predefined target material’s characteristic angle window. For plastic plate detection, the window is 
//defined as:
#defme Target_Windowl 87.9 //Minimum characteristic angle.
#defme Target_Window2 91.6 //Maximum characteristic angle.

double Mean_GL[2][500L],T[2][500L], //Grey level database for all materials.
Overlap[2][500L][500L]; //Overlapping materials' database

//Initialisation definitions for MATROX IMAGING LIBRARY, where 
//L=Low energy image 
//H=High energy image

// Application identifier 
// System identifier 
// Display identifier for Parent image 
// Display identifier for Parent image 
// Display identifier for Parent image 
// Display identifier for Parent image 
// Overlay display identifier for Source image 

MilOvrDisplay2, // Overlay display identifier for Source image 
MilParentLoImage, // Low energy image buffer identifier 

// High energy image buffer identifier 
// Segmented low energy image buffer identifier 
// Binary image buffer identifier 
// 2nd Binary image buffer identifier 
// Source image buffer identifier 
// Destination image buffer identifier 
// Temporary image buffer identifier 
// Temporary2 image buffer identifier 
// Color image buffer identifier 
// Color2 image buffer identifier 

MilGL AnaLOImage, //Low energy image buffer identifier for grey level calculation 
MilGL AnaHIImage, //High energy image buffer identifier for grey level calculation 
HistResult, // Histogram buffer identifier
ExtrResult, // Extreme result buffer identifier
BlobResultLO, // Blob result buffer identifier
BlobResultHI, // Blob result buffer identifier
FeatureList; // Feature list identifier

//H—I—I—I—1—I—!—I—I—I—I—I—I—I—I—1—I—I—I—!—f—I—!—I—I—I—I—I—I—J—I—I—I—!—I—I—I—I—i—I—I—1—I—I—I—t—I—I—1—I—1—I—i—I—I—I—(—I—I—I—I—I—I—1—I—I—I—!—I—h//

void main(void)
{
long ErrorCode;
int thres[ 100], thres_c;

MIL_ID MilApplication, 
MilSystem, 
MilDisplayL, 
MilDisplayH, 
MilDisplayL2, 
MilDisplayH2, 
MilOvrDisplay,

MilParentHilmage,
MilSeglmage,
MilBinSublmage,
MilBinSub2Image,
MilSrcSublmage,
MilDstSublmage,
MilTmpSublmage,
MilTmp2SubImage,
MilColorlmage,
MilColor2Image,

//Allocate the default system and image buffer
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MappAllocDefault(M_SETUP, &MilApplication, &MilSystem,
M_NULL, M_NULL, M_NULL);

Alloc_Buffer(); //Allocate all image buffers.
MappGetError(M_CURRENT, &ErrorCode);//Check the error status code set by the allocation

//command.

if (ErrorCode == M_NULL) //If no error found, start executing the Automated Target
//Material Detection Program.

{
Auto_Image_Seg(thres, &thres_c); //Call Automated Image Segmentation Program.
Auto_Image_Cat(thres, thresc); //Extract area of interest.
getchar();
Release_Buffer(); //Release all allocated buffer.
}

else //End of code if initialisation fails.
{
printf("Error: Image buffer allocation failedAn"); 
printf("Press <Enter> to endAn");
}

// Free all allocations
MappFreeDefault(MilApplication, MilSystem, M_NULL, M NULL, M_NULL); 
printf("\nDone!! !\n");
}
//-l—I—I—I—I—I—I—I—I—I—i—I—I—I—!—i—I—I—I—I—I—I—1—I—I—I—1—I—I—I—I—t—1—I—1—I—I—I—f—I—I—I—I—I—I—i—I—t—I—I—I—1—I—I—I—I—1—I—I—I—!—I—I—I—I—1—I—I—I—h//

void Alloc_Buffer()
{
// Allocate image buffers with the defined dimensions for Display and Processing purposes. 
MbufAlloc2d(M_DEFAULT, IMAGEWIDTH, IMAGE HEIGHT,
8L+M_UNSIGNED, M IMAGE+MJDISP+MJPROC, &MilParentLoImage);//Low energy image 

MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE HEIGHT,
8L+M_UNSIGNED, M_IMAGE+M_DISP+M_PROC, &MilParentHiImage);//High energy image

MbufAllocColor(M_DEFAULT, 3L, IMAGE WIDTH, IMAGE_HEIGHT,
8L+M_UNSIGNED, M_IMAGE+M_DISP, &MilSegImage);//Segmented image

MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE HEIGHT,
1 +M_UNSIGNED, MJMAGE+MJPROC, &MilBinSubImage);//Binary image 1

MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE HEIGHT,
1+M UNSIGNED, MIM AGE+M PROC, &MilBinSub2Image);//Binary image2

MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE HEIGHT,
8L+M UNSIGNED, M_IMAGE+M_PROC, &MilSrcSubImage);//Temp image bufferl

MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE HEIGHT,
8L+M UNSIGNED, M_IMAGE+M_PROC+M_DISP, &MilDstSubImage);//Temp image buffer2 

MbufAlloc2d(M_DEFAULT, IMAGE_WIDTH, IMAGE HEIGHT,
8L+MJUNSIGNED, M_IMAGE+M_DISP+M_PROC, &MilTmpSubImage);//Temp image buffer3 

MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE_HEIGHT,
8L+M_UNSIGNED, M_IMAGE+M_DISP+M_PROC, &MilTmp2SubImage);//Temp image buffer4
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MbufAlloc2d(M_DEFAULT, IMAGE WIDTH, IMAGE HEIGHT,
8L+M_UNSIGNED, M IM AGE+M PROC, &MilGL_AnaLOImage);//Temp image buffer for low

//energy image

MbufAlloc2d(M_DEFAULT, IMAGE_WIDTH, IMAGE HEIGHT,
8L+M_UNSIGNED, M_IMAGE+M_PROC, &MilGL_AnaHIImage);//Temp image buffer for High

//energy Image

MbufAllocColor(M_DEFAULT, 3L, IMAGE_WIDTH, IMAGE HEIGHT,
8L+M_UNSIGNED, M_IMAGE+MJPROC+M_DISP, &MilColorImage);//Image buffer for colour

//image 1

MbufAllocColor(M_DEFAULT, 3L, IMAGE_WIDTH, IMAGE HEIGHT,
8L+MJJNSIGNED, M_IMAGE+M_PROC+M_DISP, &MilColor2Image);//Image buffer for colour

//image2

MdispAlloc(M_DEFAULT, M_DEV0, "M_DEFAULT", M_DEFAULT, &MilDisplayL);
//Image for display mode 1

MdispAlloc(M_DEFAULT, M_DEV1, "M_DEFAULT", MDEFAULT, &MilDisplayL2);
//Image for display mode 2

MdispAlloc(M_DEFAULT, M_DEV2, "MDEFAULT", M DEFAULT, &MilDisplayH);
//Image for display mode 3

MdispAlloc(M_DEFAULT, M_DEV3, "M DEFAULT", M_OVR, &MilDisplayH2);
//Image for display mode 4

MdispAlloc(M_DEFAULT, M_DEV4, "M DEFAULT", M_OVR, &MilOvrDisplay);
//Image for display mode 5

MdispAlloc(M_DEFAULT, M_DEV5, "M DEFAULT", M_OVR, &MilOvrDisplay2);
//Image for display mode 6

}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//

void Auto_Image_Seg(int thres[], int *thres_c)// Automated Image Segmentation Program.
{
long HistVals[500L]; 
float Hf[500L]; 
int thres_c2; 
short i;

MbufLoad(IMAGE_FILE, MilParentLoImage); //Load source image into an image buffer.
MimRank(MilParentLoImage, MilParentLoImage, M3X3JRECT, M_MEDIAN, 
M_GRAYSCALE); //Perform median filtering to remove noise.

MbufCopy(MilParentLoImage, MilSrcSubhnage); // Copy data buffer to another. 
MdispSelect(MilDisplayL, MilParentLoImage); // Display the image buffer.
MgraText(M_DEFAULT, MilParentLoImage, 5, 5,"- LO IMAGE -");//Add text into image buffer. 
MbufCopy(MilSrcSubImage, MilGL_AnaLOImage); // Copy data buffer to another, 
get char ();

MbufLoad(IMAGE_FILE2, MilParentHilmage); // Load source image into an image buffer.
MimRank(MilParentHiImage, MilParentHilmage, M_3X3_RECT, M MEDIAN, M_GRAYSCALE);

//Perform median filtering to remove noise. 
MdispSelect(MiIDisplayH, MilParentHilmage); // Display the image buffer.
MgraText(M_DEFAULT, MilParentHilmage, 5, 5,"- HI IMAGE -");//Add text into image buffer. 
MbufCopy(MilParentHiImage, MilGL_AnaHIImage); // Copy data buffer to another buffer.
getchar();
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MimAllocResult(M_DEFAULT, 256, MJHISTJLIST, &HistResult); //Allocate a histogram buffer 
MimHistogram(MilSrcSubImage, HistResult); // Perform the histogram
MimGetResult(HistResult, M_VALUE, HistVals); // Get the results

for(i=0; i<256; i++) //Float cast the histogram value for wavelet analysis.
HfIi]=(float)HisfV als [i];

GetThresholdData(Hf, 2, thres, &thres_c2);//Get wavelet results.
*thres_c=thres_c2; //Point to the wavelet result.
MimFree(HistResult);
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//

void Auto_Image_Cat(int thres[], int thres_c)//Automated Image Categorisation Program.
{
hit colour=lL, multip=lL, upflag=TL, count, w, x, y, z;
long MaxLabelNumber, HistVals[500L];
double Mean_Tmp[l], al, pi, al_tmp, pl tmp, result;
z=0; // Initialised with 0 for the analysis of low energy segmented regions.

MbufClear(MilDstSubImage, OL); // Clear buffer
MbufClear(MilColor2Image, OL); // Clear buffer

//Allocate a histogram buffer
MimAllocResult(M_DEFAULT, 1L, M_EXTREME_LIST, &ExtrResult); 
MimAllocResult(M_DEFAULT, 256L, M_HIST_LIST, &HistResult);
//Allocate buffer for high energy and low energy data (i.e. grey level) 
MblobAllocFeatureList(M_DEFAULT, &FeatureList);
MblobSelectFeature(FeatureList, M_MEAN_PIXEL);
MblobAIlocResult(M_DEFAULT, &BlobResuitLO);
MblobAllocFeatureList(M_DEFAULT, &FeatureList); 
MblobSelectFeatiu-e(FeatureList,M_MEAN_PIXEL);
MblobAllocResult(M_DEFAULT, &BlobResultHI);

for (w^O; w<thres_c-1; w++) //Extract all segmented regions.
{
//Binarise the image buffer for further processing.
MimBinarize(MilSrcSubImage, MilBinSublmage, M_IN_RANGE, tln-es[w], thres[w+l]);

if (multip > 1)
{
//Extract area of interest.
MimBinarize(MilDstSubImage, MilBinSub2Image, M_IN_RANGE, 1, multip-1); 
MbufCopy(MilBinSub2Image, MilTmp2SubImage);//Store into temp buffer. 
MbufCopy(MilBinSubImage, MilTmpSubImage);//Store into temp buffer.

//Logical subtract the 2 images.
MimArith(MilTmp2SubImage, MilTmpSublmage, MilTmpSublmage, M SUB);

//The resultant segmented region.
MimBinarize(MilTmpSubImage, MilBinSublmage, M_EQUAL, 255, M NULL);
}

MimOpen(MilBinSubImage, MilBinSublmage, 1L, M_BINARY);//Remove noise 

//Label all materials for further processing.
MimLabel(MilBinSubImage, MilTmpSublmage, M_4_CONNECTED+M_BINARY);

//Get the maximum segmented regions.
MimFindExtreme(MilTmpSubImage, ExtrResult, M MAX_VALUE);
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MimGetResult(ExtrResult, MJVALUE, &MaxLabelNumber); //Get the calculation result

//Find the histogram of the image to know the size of each region.
MimHistogram(MilTmpSublmage, HistResult);

MimGetResult(HistResult, M_VALUE, HistVals); //Get histogram result.

if (MaxLabelNumber >= 0)//Maximum segmented regions found.
{

for (x=l; x<=MaxLabelNumber; x++)
{
if  (HistVals[x]>30L) //30 is defined max noise level.
{
MimBinarize(MilTmpSubImage, MilBinSublmage, M_EQUAL, x, 
M_NULL);//First, binarise the material

Label_Colour(colour);//Assign a colour into the area of interest, 
if  (upflag==0)//Counter to colour the segmented region.
{
colour^colour-l ;//assign the colour randomly 

if (colour==0)
{
upflag-1;
colour=colour+ l;//assign the color randomly 
}

}
else if (upflag==l)
{
colour=colour+l ;//assign the color randomly 

if (colour>10)
{
upflag=0;
colour=colour-l;//assign the color randomly 
}

}

//Further remove noise
MimErode(MilBinSubImage, MilBinSub2Image, 1, M BINARY);

//Get the grey levels values for the low and the high energy segmented regions. 
MblobCalculate(MilBinSub2Image, MilGL_AnaLOImage, FeatureList, 
BlobResultLO);
MblobGetResult(BlobResultLO, M_MEANJPIXEL, Mean_Tmp); 
Mean_GL[0][multip]=Mean_Tmp[0]; //Results for low energy Image 
MblobCalculate(MilBinSub2Image, MilGL AnaHIImage, FeatureList, 
BlobResultHI);
MblobGetResult(BlobResultHI, M_MEAN_PIXEL, Mean_Tmp); 
Mean_GL[l][multip]=Mean_Tmp[0]; //Results for high energy Image 
MimArith(MilBinSubImage, multip, MilTmp2SubImage, M_MULT_CONST); 
//Store result in destination image buffer (i.e. labelled image). 
MimArith(MilTmp2SubImage,MilDstSubImage, MilDstSubhnage, M_OR); 
multip++;//Counter for all extracted regions.
}
}

}
}

multip=multip-l;//Counter for all extracted materials.
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MbufCopy(MilColor2Image, MilSegImage);//Store into temp buffer.
MdispSelect(MilDisplayL2, MilSegImage);//Display the segmentation results. 
MgraText(M_DEFAULT, MilSeglmage, 5, 5,"- Segmented Image -");//Add text into image buffer. 
//Save image into local drive.
MbufSave("C:\\Automated Material RecognitionWAnalysis DatabaseWSegmented Img Color.tif1,
MilColor2Image);
getchar();

MimOpen(MilDstSubImage, MilDstSublmage, 1L, M_GRAYSCALE); //Further remove noise, 
for (x=T; x<=multip; x++)
{
//Binarise all materials to analyse overlapping structures.
MimBinarize(MilDstSubImage, MilBinSublmage, M EQUAL, x, M_NULL); 
MimDilate(MilBinSubImage, MilBinSublmage, 2, M_BINARY);//Expand the area by '2'.
//Multiply with the buffered image.
MimArith(MilBinSubImage, MilDstSublmage, MilTmp2SubImage, M_MULT);

MimHistogram(MilTmp2SubImage, HistResult); //Get the histogram.
MimGetResult(HistResult, M VALUE, HistVals); //Get the result.
w=l;
for (y=l; y<=multip; y++)
{

//If the condition is fulfilled, then the 2 regions are overlapped on each other, 
if ( HistVals[y]>15 && y!=x && Mean_GL[z][x]<Mean_GL[z][y])
{
//Store the overlapping information into database for characteristic angle calculations. 
Overlap[z] [x][w]=y;
w++;
}

}
}

//Start storing all raw data into local drive for further analysis (i.e.characteristic angle calculations), 
if  ((savedata = fopen(RAWDATA, "wt" )) == NULL)
{

printf("\nUnable to open raw data file!"); 
exit(l);

}

sprintf(raw_data[x] .tmp, "=======:~ = = = = = = :==— =\nO verlapping
Regions:\n=====— — “ ====” ====\n");

fputs(raw_data[x].tmp, savedata);//Start storing all the overlapping materials’ database, 
for (x=l; x<=multip; x++)
{ w=l;

while (Overlap [z] [x] [w]! =0)
{
//Store all the overlapping materials' database.
sprintf(raw_data[x].tmp, "%d overlap with %.0f , ", x, Overlap[z][x][w++]); 
fputs(raw_data[x].tmp, savedata);
}

}

sprintf(raw_data[x].tmp, '^n\n===— ======— “ === == == =̂ ======::=\nRaw Data for Region
x=[LO,HI] :\n= = -= = = = = = = = = = ™ = = = = = = = = = = \n " );

fputs(raw_data[x].tmp, savedata);//Start storing all the materials' grey level database, 
for (x=T; x<=multip; x++)
{
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sprintf(raw_data[x].tmp, "Region %d=[%.0f,%.0f], ", x, Mean_GL[0][x], Mean_GL[l][x]); 
fputs(raw_data[x].tmp, savedata);//Store all the materials' grey level database.

}

sprintf(raw_data[x] .tmp, "\n\n========:=:;;:=“ =:==::=:==“ ========:=\nCharacteristic Angle
C alculation: \n = = = = ~ = = = = = = = = = = = = = = = = = = = = \n " );

fputs(raw_data[x].tmp, savedata);//Start storing all the Characteris Angle Calculation database.

MbufClear(MilColorImage, 0L);//Clear the buffer.
MbufClear(MiIColor2Image, 0L);//Clear the buffer.
//Add text onto the image buffer.
MgraText(M_DEFAULT, MilColor2Image, 1, 1,"Material with 87.9<Angle<91.6"); 
for (x=l; x<=multip; x++)
{

w=l; count=0;

//Formulae for logarithmic transmission for background grey level, TL
T[0][x]=(logl 0(253.l)/lo g l0(2.718281828))- (logl0(Mean_GL[0][x])/logl0(2.718281828));
//Formulae for logarithmic transmission for background grey level, TH
T[ 1 ][x]=(log 10(253.1 )/log 10(2.718281828))- (logl0(Mean_GL[l][x])/logl0(2.718281828));

//Non overlapping region//
//Formulae obtained from calibration results for plastic basis materials. 
pl=-0.6130059495-87.18457982*T[0][x]+l 50.0505503 *T[l][x]+
94.93020284*T[0][x]*T[l][x]-61.84689434*T[0][x]*T[0j[x]- 47.19713241*T(l][x]*T[l][x]
- 0.6950932582*T[0][x]*T[0][x]*T[l][x]*T[l][x] + 6.136233669*T[0][x]*T[0][x]*T[0][x]
- L519782068*T[l][x]*T[l][x]*T[l][x];

//Formulae obtained from calibration results for aluminium basis materials. 
af=0.2115282084+37.52390472*T[0][x]-47.65888221*T[l][x]-4.82311783*T[0][x]*T[l][x]

+37.53039056*T[0][x]*T[0][x]+33.07199059*T[l][x]*T[l][x]+0.2592219569*T[0][x]*T[0]
[x]*T[l][x]*T[l][x]-2.448328168*T[0][x]*T[0][x]*T[0][x]
+0.7037951622*T[ 1 ] [x] *T[ 1 ] [x] *T[ 1 ] [x];

//Non overlapping region 
if (Overlap[z][x] [w] —  0)
{

i f ( a l != 0)
{
result = atan2( pi, al )*57.29577951;//Calculate the characteristic angle. 
sprintf(raw_data[x].tmp, "Region %d=%.5f,", x, result);//Save into the database. 
fjputs(raw_data[x].tmp, savedata);//Save into the database.
}
else if (al —  0)//To avoid calculation overflow error.
{
result = 90.0;//If the characteristic angle is exactly 90 degree. 
sprintf(raw_data[x].tmp, "Region %d=%.5f, ", x, result);//Save into the database. 
fputs(raw_data[x].tmp, savedata);//Save into the database.
}

//Target materials windows for characteristic angle, 
if (result>Target_Windowl && result<Target_Window2)
{
//For display purposes
MimBinarize(MilDstSubImage, MilBinSublmage, M_EQUAL, x, M_NULL); 
Label_Colour(5);//Label the target object in red colour.
}

}
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//For overlapping materials, the calculation of characteristic angle will require the Basis 
//Materials Subtraction techniques, 
else if (Overlap[z][x][w] != 0)
{
//Calculate all possible characteristic angles, if that region is overlapped by many possible 
//neighbouring regions by utilising the Basis Materials Subtraction techniques, 
while (Overlap [z] [x] [w]! =0)
{
y = Overlap[z][x][w];

//Formulae for logarithmic transmission for background grey level, TL
T[0][y]=(logl 0(253. l)/logl 0(2.718281828))-(logl0(Mean_GL[0][y])/logl 0(2.718281828));

//formulae for logarithmic transmission for background grey level, TH
T[l][y]=(logl 0(253. l)/logl 0(2.718281828))- (logl0(Mean_GL[l][y])/logl0(2.718281828));

//Formulae obtained from calibration results for plastic basis materials. 
pltm p—O.b 130059495-87.18457982*T[0][y]+l 50.0505503 *T[l][y]+ 
94.93020284*T[0][y]*T[l][y]-61.84689434*T[0][y]*T[0][y]- 47.19713241!(!T[l][y]*T[l][y]
- 0.6950932582*T[0] [y] *T[0] [y] *T[ 1 ] [y] *T[ 1 ] [y ] + 6.136233669*T[0][y]*T[0][y]*T[0][y]
- 1.519782068*T[l][y]*T[l][y]*T[l][y];

//Formulae obtained from calibration results for aluminium basis materials, 
altm p = 0.2115282084 + 37.52390472*T[0][y] - 47.65888221 *T[l][y] -
64.82311783*T[0][y]*T[l][y]+37.53039056*T[0][y]*T[0][y]+ 3.07199059*T[l][y]*T[l][y] 
+ 0.2592219569*T[0][y]*T[0][y]*T[l][y]*T[l][y] - 2.448328168*T[0][y]*T[0][y]*T[0][y] 
+ 0.7037951622*T[l][y]*T[l][y]*T[l][y];

//Apply the Basis Materials Subtraction techniques, 
pl tmp = pi - pl_tmp; 
al tmp = al - al tmp;

if (al_tmp != 0)
{
result = atan2( pl tmp, al_tmp )*57.29577951;//Calculate the characteristic angle 
sprintf(raw_data[x].tmp, "Region %d=%.5f,", x, result);//Save into the database. 
fputs(raw_data[x].tmp, savedata);//Save into the database 
}

else if (al tmp =  0) //To avoid calculation overflow error.
{
result = 90.0;//If the characteristic angle is exactly 90 degree 
sprintf(raw_data[x].tmp, "Region %d=%.5f,", x, result);//Save into the database 
fputs(raw_data[x].tmp, savedata);//Save into the database 
}

if (count!=l l)//counter is to avoid displaying the same detected area for more than once.
{

//Target materials windows for characteristic angle, 
if (result>Target_Windowl && result<Target_Window2)
{
//For display purposes.
MimBinarize(MilDstSubImage, MilBinSublmage, M_EQUAL, x, M NULL);

Label_Colour(5);//Label the target material in red colour. 
count=l 1;
}

}

w++;
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}
}

sprintf(raw_data[x].tmp, "\n");//Save the characteristic angle calculation results. 
fputs(raw_data[x].tmp, savedata);//Save into the database.
}

MdispSelect(MilOvrDisplay, MilColor2Image);//Display the detected target materials. 
MbufSave("C:\\Automated Material RecognitionWAnalysis DatabaseWDetected Target Materials.tif', 
MilCoIor2Image);//Save the detected target materials.

fclose(savedata);//Finished storing whole database.

//Free all previously allocated buffer before exiting.
MimFree(ExtrResult);
MimFree(HistResult);
MblobFree(BlobResultLO);
MblobFree(B lobResultHI);
MblobFree(FeatureList);
}//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//

void Label_Colour(int colour)//label each segmented region with colour.
{
switch (colour)
{
case 1 : MimArith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);

MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_BLUE); //Blue
break;

case 2 : MimArith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M BLUE); //Cyan
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M GREEN); 
break;

case 3 : MimArith(MilBinSubImage, 255L, MilTmp2Subimage, MJMULTCONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_GREEN); //Green 
break;

case 4 : MimAiith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_GREEN); //Yellow
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED);
break;

case 5 : MimArith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED); //Red
break;

case 6 : MimArith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED); //Magenta
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_BLUE);
break;

case 7 : MimArith(MilBinSubImage, 153L, MilTmp2SubImage,
M_MULT_CONST);//Purple
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED); 
MimArith(MilBinSubImage, 204L, MilTmp2SubImage, M_MULT_CONST); 
MbufCopyColor(MilTmp2Subimage, MilColorlmage, M_BLUE); 
break;

case 8 : MimArith(MilBinSubImage, 123L, MilTmp2Subimage,
M M U L T C O N  ST) ;//Brown
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED); 
MimArith(MilBinSubImage, 63L, MilTmp2SubImage, M_MULT_CONST); 
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_GREEN); 
MbufCopyCoIor(MilTmp2SubImage, MilColorlmage, M_BLUE); 
break;
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case 9 : MimArith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED); //Pink
MimArith(MilBinSubImage, 153L, MilTmp2SubImage, M MULT_CONST); 
MbufCopyColor(MilTmp2SubImage, MilColorlmage, MGREEN); 
MimArith(MilBinSubImage, 204L, MilTmp2SubImage, M_MULT_CONST); 
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_BLUE); 
break;

case 10 : MimArith(MilBinSubImage, 255L, MilTmp2SubImage, M_MULT_CONST);
MbufCopyColor(MilTmp2SubImage, MilColorlmage, M_RED); //Orange
MimArith(MilBinSubImage, 102L, MilTmp2SubImage, M_MULT_CONST); 
MbufCopyColor(MilTmp2Subimage, MilColorlmage, M_GREEN); 
break;

default : break;
}
//Store the result into this colour image buffer.
MimArith(MilColorImage,MilColor2Image, MilColor2Image, M_OR);
MdispSelect(MilOvrDisplay, MilColor2Image);//Display on to screen.
}
//++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++// 
void Release_Buffer()//Release all buffers before exiting.
{
MbufFree(MilGL_AnaLOImage);
MbufFree(MilGLAnaHIImage);
MbufFree(MilColor2Image);
MbufFree(MilColorlmage);
MbufFree(MilT mp2SubImage);
MbufFree(MilTmpSublmage);
MbufFree(MilBinSublmage);
MbufFree(MilBinSub2Image);
MbufFree(MilDstSublmage);
MbufFree(MilSrcSublmage);
MbufFree(MilParentLoImage);
MbufFree(MilParentHilmage);
MbufFree(MilSeglmage);
MdispFree(MilOvrDisplay);
MdispFree(MilOvrDisplay2);
MdispFree(MilDisplayL);
MdispFree(MilDisplayL2);
MdispFree(MilDisplayH);
MdispFree(MilDisplayFI2);
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//

//+++++++++++++++++++++++++++Wavelet Ttransform Program +++++++++++++++++++++++// 
//Get threshold results from wavelet analysis.
GetThresholdData(float data[], int scale, int lt[], int *ltn)
{
int jj, length, rtn;

float g [ll]  = {0.0039, 0.0062, -0.0226, -0.112, -0.2309,0.7118, -0.2309, -0.1120, -0.0226, 0.0062, 
0.0039} ;//Detail wavelet filter.
float h[l 1] -  {0.0032, -0.0132, -0.0393, 0.045, 0.2864, 0.4347, 0.2864, 0.045, -0.0393, -0.0132, 
0.0032};//Smooth wavelet filter.

length = 10;

for(jj =0;jj < J; jj++)
{
length =10;
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apply_filter(data, g, jj, length, wc[jj].G);//Start finding the wavelet results using detail wavelet filter, 
length = 10;
apply_filter(data, h, jj, length, wc[jj].H);//Start finding the wavelet results using smooth wavelet filter. 
trans_data(data, wc[jj].H);//Copying the smooth histogram for the next loop of wavelet transform.
}
peak_finder(wc[scale].G, It, &rtn);//Find the peaks to get the threshold values.
*ltn = rtn;
}

//Calculate the wavelet results.
void apply_filter(float d[], float f[], int scale, int len, float out[])
{
int i, j, k, n; 
double power;
power = pow(2,scale);//Wavelet scale is equated to the power of 2.
//If lower and upper boundary is reached. 
for( j = 0; j < DATA POINTS; j++ )
{
k = 0; 
out[j] = 0; 
i = 0;

while( i <= len * power)
{
n = j - ((len * power)/2); 
if( (n+i) >= DATAPOINTS ) 
n = 510 - (n+i);
if( ((n+i) >= 0) && ((n+i) < DATA_POINTS) ) 
n = n + i; 
if( (n+i) < 0 ) 
n = -(n + i);
outO] += d[n] * f[k++]; 
i += power;
}

}
}

//Copying the smooth histogram for the next loop of wavelet transform, 
void trans_data(float arr[], float arrl [])
{

int i;
for( i = 1; i <= DATA_POINTS; i++ ) 
arr[i] = arrl [i];

}

//Algorithms to find the threshold values automatically, 
void peakjEInder(float a[], int t_point[], int *t_no)
{
int i, j, k, mark; 
float min, max; 
k — 1;
t_point[0] = 1;

for( i = 1; i < DATA_POINTS; i++ ) //Find the zero crossing points. 
if( (a[i-l] < 0 ) && (a[i] > 0) )
{

max = 0;
j = i;
while( (j < DATA POINTS) && (a[j] > 0) )
{
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if( a[j] > m ax)
{
max = a[jj; 
mark = j;
}

j++;
}
j = i - 1; 

min = 0;
while( (j >= 0) && (a[j] < 0) )
{

if( a[j] < m in)
{
min = a[j]; 
mark = j;

}
j--;
}

if( mark != 0 ) 
t_point[k++] = mark;

}
tjpoint[k] = 255;
*t_no = k;
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
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Automated Target Material Detection Results

tiV'diU 'lit - Notepad 

File Edit Search Help

Characteristic Angle Calculation:

R egion  1 = 8 1 .7 1 6 4 4 ,
R egion  2 = 6 8 .3 7 7 4 6 ,  R eg ion  2 = 8 8 .2 6 1 1 7 ,  R eg ion  2 = 7 6 .3 9 5 3 6 ,  R egion  2 = 7 2 .2 9 6 8 2 ,  

R egion  2 = 7 7 .3 7 6 8 1 ,  R eg ion  2 = 7 5 .1 3 6 7 8 ,  R egion  2 = 4 6 .5 9 4 7 3 .  
R egion  3 = 6 4 .6 5 8 6 3 ,
R eg ion  4 = 5 8 .8 3 1 2 5 ,
R eg ion  5 = 9 6 .6 5 3 3 6 ,
R eg ion  6 = 3 9 .4 6 1 7 4 ,
R egion  7 = 1 1 .6 6 8 6 7 ,
R egion  8 = 1 1 .8 4 6 2 3 ,
R egion  9 = 1 9 .7 8 2 7 2 ,
R eg ion  1 8 = 1 8 .3 5 9 2 4 ,
R eg ion  1 1 = 6 .9 5 3 6 9 ,
R eg ion  1 2 = 2 2 .2 6 2 9 4 ,
R eg ion  1 3 = - 1 1 . 5 5 8 8 7 ,
R eg ion  1 4 = 1 6 .3 5 3 2 2 ,
R eg ion  1 5 = - 2 5 . 8 7 8 1 2 ,  R egion  1 5 = - 2 4 . 6 9 9 6 8 ,  R egion  1 5 = - 2 6 .9 7 3 9 1 ,
R eg ion  1 6 = - 2 5 . 2 7 2 8 8 ,
R eg ion  1 7 = 8 .7 3 9 5 5 ,
R eg ion  1 8 = - 2 9 . 6 6 1 8 5 ,
R eg ion  1 9 = 3 .7 7 8 8 1 ,
R eg ion  2 8 = 3 .2 8 1 9 1 ,
R egion  2 1 = 9 3 .4 8 3 4 5 ,  R eg ion  2 1 = 6 7 .9 3 5 3 6 ,
R egion  2 2 = - 4 3 . 2 5 9 2 6 ,
Region  2 3 = 1 9 .7 5 8 8 8 ,
R egion  2 4 = 5 8 .8 4 5 4 8 ,
R egion  2 5 = 3 .1 8 2 9 2 ,
R egion  2 6 = - 3 5 . 7 8 8 6 3 ,
R egion  2 7 = - 3 7 . 9 6 3 5 3 ,  R egion  2 7 = - 3 6 . 2 2 4 7 5 ,
R egion  2 8 = - 3 6 . 2 9 4 7 7 ,  R egion  2 8 = - 3 4 . 3 8 7 8 7 ,
R egion  2 9 = 9 1 .4 6 8 7 4 ,
R egion  3 8 = 9 3 .7 5 8 4 9 ,
R egion  3 1 = 1 5 .2 7 6 7 8 ,
R egion  3 2 = 9 1 .2 8 8 3 8 ,
R egion  3 3 = - 3 6 . 1 9 8 1 7 ,
R egion  3 4 = 1 8 2 .9 8 9 8 6 ,
R egion  3 5 = - 8 . 1 3 8 5 6 ,
R eg ion  3 6 = 1 8 8 .1 8 7 1 7 ,
R egion  3 7 = 9 2 .8 6 5 2 5 ,
R egion  3 8 = 8 8 .5 3 1 8 5 ,  R egion  3 8 = 8 3 .3 2 6 2 4 ,  R eg ion  3 8 = 1 2 .4 5 3 4 7 ,
R egion  3 9 = 9 2 .2 7 8 4 6 ,
R egion  4 8 = 9 1 .5 5 2 4 3 ,  R egion  4 8 = - 4 5 .7 7 1 3 7 ,
R egion  4 1 = 1 .1 2 8 7 8 ,
R egion  4 2 = - 2 8 . 9 4 4 3 8 ,  R egion  4 2 = - 3 1 . 5 7 5 7 6 ,
R egion  4 3 = - 2 6 . 8 9 8 5 8 ,
R egion  4 4 = - 5 7 . 7 4 4 7 5 ,  R egion  4 4 = - 4 6 . 7 3 9 2 5 ,  R egion  4 4 = - 6 1 .1 2 8 8 7 ,

R egion  4 4 = 2 8 .5 9 8 8 3 ,
R egion  4 5 = 2 7 .8 7 1 1 8 ,
R egion  4 6 = 9 8 .3 9 4 8 7 ,  R eg ion  4 6 = 8 7 .9 6 3 4 3 ,
R egion  4 7 = 4 3 .6 8 8 5 1 ,
R egion  4 8 = 7 1 .3 7 9 7 4 ,

Fig. F-l Automated target material detection results for baggage sample-7.
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^ ra w d a ta .d a t  - Note 

Fife Edit Search Help*

Region
Region
Region

R eg ion
Region
R eg ion
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region

Region
Region
Region
R eg ion
R eg ion
Region
R eg ion
Region
Region
Region
Region
Region

1*9=
50=
51 =

52= 
53= 
54= 
55= 
56= 
57= 
58= 
59= 
60= 
61 = 
62= 
63= 
64= 
65= 
6 6 = 

67= 
6 8 = 

69=

70= 
71 =
72= 
73= 
74= 
75= 
76= 
77= 
78= 
79= 
80= 
81 =

- 4 4 . 1 8 2 0 6 ,
9 0 . 5 5 6 6 3 ,
1 0 2 . 6 0 8 2 4 ,

R eg ion  5 0 = 8 9 .9 9 8 6 7 ,
R egion  5 1 = 7 7 .3 3 7 0 1 ,  R eg ion  5 1 = 9 9 .3 6 7 7 0 ,  
R egion  5 1 = 9 8 .9 6 1 5 7 ,

8 8 . 1 3 8 4 5 ,
8 8 . 7 0 3 9 0 ,
8 8 . 8 0 1 7 5 ,
9 4 . 6 5 7 1 4 ,  R egion  5 5 = 9 3 .6 5 4 5 2 ,  
8 7 . 7 6 2 3 9 ,
9 0 . 2 7 2 9 6 ,
9 5 . 0 8 3 9 9 ,
9 6 . 6 8 5 2 1 ,
9 0 . 4 6 1 2 8 ,  R egion  6 0 = 9 2 .4 2 6 3 9 ,  
9 6 . 7 8 8 3 5 ,
9 6 . 2 6 2 9 7 ,
9 9 . 9 5 8 8 4 ,
7 5 . 1 1 0 1 2 ,
8 9 . 9 5 0 7 5 ,
- 5 1 . 5 9 4 4 4 ,
- 8 . 9 8 9 9 4 ,
- 5 3 . 2 3 8 8 2 ,
- 5 5 . 3 5 2 9 6 ,

R egion  6 4 = - 4 6 . 9 1 1 5 9 ,  

R egion  6 6 = 8 8 .4 4 4 6 5 ,

- 3 3 . 6 6 9 4 2 ,
- 6 2 . 9 4 2 9 0 ,
9 4 . 6 6 2 5 5 ,
9 9 . 9 8 8 1 1 ,
9 4 . 8 2 4 5 2 ,
9 3 .7 O 8 0 7 ,
9 5 . 2 2 7 1 6 ,
9 5 . 3 3 2 5 8 ,
9 5 . 6 4 9 8 6 ,
9 6 . 7 0 9 4 9 ,
9 5 . 4 9 5 0 0 ,
9 4 .3 0 3 0 2  .|

R egion  6 8 = 9 1 .2 8 6 6 9 ,  R egion  6 8 = 6 2 .3 0 0 3 6 ,  
R egion  6 9 = 8 8 .8 0 1 0 3 ,  R egion  6 9 = 8 9 .2 3 0 3 1 ,  
R egion  6 9 = 8 6 .4 9 3 8 6 ,

R egion  7 1 = 8 5 .4 1 9 4 2 ,

Fig. F -l Automated target material detection results for baggage sample-7 
(continuation from previous page).
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File Edit Search.. . HSip
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- ........—... J

Characteristic Angle Calculation:

R egion 1 = 5 6 .5 2 4 1 3 ,  Region 1 = 7 8 .5 8 3 4 5 ,  R egion  1 = 6 9 .4 9 2 1 2 ,  R egion  1 = 7 9 .6 8 2 7 8 ,
Region 1 = 6 9 .9 8 7 8 7 ,  Region 1 = 7 2 .1 7 8 2 2 ,  R egion  1 = 6 4 .5 7 5 6 4 ,
Region 1 = 6 6 .6 9 6 9 4 ,  Region 1 = 6 7 .5 6 8 4 1 ,  R egion  1 = 6 8 .6 4 7 5 9 ,
Region 1 = 7 2 .6 7 5 8 9 ,

R egion  2 = 6 6 .6 8 7 9 4 ,
R egion  3 = 2 4 .4 8 2 2 1 ,
R egion  4 = 3 3 .7 2 8 8 5 ,
R egion  5 = 4 4 .4 2 1 5 1 ,
R egion  6 = 4 8 .4 5 6 3 4 ,
R egion  7 = 8 .4 9 3 2 5 ,
R egion  8 = - 4 8 . 6 7 2 2 1 ,  Region 8 = - 3 3 . 1 2 7 7 8 ,
R egion  9 = 5 8 .2 2 8 1 6 ,
R egion  1 8 = 6 6 .1 6 4 8 5 ,
R egion  1 1 = 5 3 .3 5 7 6 8 ,
R egion  1 2 = - 1 8 .2 3 3 5 2 ,
R egion  1 3 = - 3 4 . 4 3 6 6 8 ,
R egion  1 4 = 2 .2 8 9 3 8 ,
R egion  1 5 = - 3 3 .3 8 4 8 9 ,
R egion  1 6 = - 5 .8 1 8 1 9 ,
R egion  1 7 = 6 9 .3 7 8 8 5 ,
R egion  1 8 = - 2 8 .8 2 8 7 1 ,  Region 1 8 = - 3 3 .5 5 7 2 8 ,  Region 1 8 = - 2 3 . 8 7 8 8 9 ,
R egion  1 9 = 1 2 .3 9 2 3 2 ,
R eg ion  2 8 = - 5 3 .4 4 9 6 7 ,
R eg ion  2 1 = - 2 1 .8 8 2 9 6 ,
R eg ion  2 2 = - 1 8 . 7 8 3 1 4 ,
R eg ion  2 3 = 7 3 .9 7 7 9 5 ,  Region 2 3 = - 5 4 . 1 8 7 5 2 ,
R egion  2 4 = - 5 . 4 8 6 9 8 ,
R egion  2 5 = - 1 8 . 3 7 8 4 8 ,
R egion  2 6 = - 1 1 .9 4 1 7 2 ,
R egion  2 7 = - 4 1 .9 2 2 6 6 ,
R egion  2 8 = - 3 1 .6 4 1 7 8 ,
R egion  2 9 = - 1 4 . 5 4 9 3 6 ,
R egion  3 8 = - 4 B .88 86 6 ,
R egion 3 1 = - 1 9 .8 8 5 6 7 ,
R egion  3 2 = 6 .8 3 7 8 2 ,
R egion  3 3 = - 2 4 . 5 4 8 4 7 ,
R egion  3 4 = 1 8 9 .3 1 3 6 2 ,
R egion  3 5 = 9 7 .6 5 4 8 5 ,
R egion  3 6 = 9 1 .6 1 8 2 3 ,
R egion  3 7 = 8 8 .8 4 8 2 3 ,  Region 3 7 = 2 .3 8 4 7 3 ,
R egion  3 8 = 9 4 .8 1 6 3 8 ,
R egion  3 9 = 9 1 .5 4 6 8 3 ,
R egion  4 8 = 8 8 .5 8 2 1 9 ,
R egion  4 1 = 8 8 .3 3 2 6 9 ,
R eg ion  4 2 = 1 8 8 .4 6 6 3 5 ,
R egion  4 3 = 7 1 .8 9 2 9 6 ,
R egion  4 4 = 6 6 .5 4 6 1 6 ,
R egion  4 5 = 9 2 .8 7 2 9 5 ,
R egion  4 6 = 9 2 .8 2 7 8 5 ,
R egion  4 7 = 9 5 .1 8 8 8 3 ,

Fig. F-2 Automated target material detection results for baggage sample-8.
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OjrawUtA.dat - Notepad ■■ 
File Edit Search Help

Region
Region
Region
Region
Region
Region
Region

Region
Region
Region
Region
Region
Region
Region
Region

Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region

48= 
49= 
50= 
51 = 
52= 
53= 
54=

7 8 .2 5 2 8 5 ,
8 6 .7 2 2 8 1 ,
9 8 .9 1 2 9 0 ,
-1 1 .1 7 7 3 0
8 8 .1 0 5 2 8 ,
8 5 .0 0 3 1 7 ,
-6 9 .5 2 3 4 6

Region 4 8 = 87 .4 4632 , Region 48=64 .50966 , Region 4 8 = 77 .1 7824 , 

, Region 51 = 11 .6 1622 ,

4 0 .2 5 7 5 3 ,
8 9 .4 2 4 0 3 ,
9 3 .7 3 3 1 1 ,
9 9 .7 8 4 4 7 ,
9 6 .5 0 4 6 8 ,
9 3 .0 8 8 5 8 ,
9 8 .1 4 8 9 4 ,
7 8 .4 1 2 5 8 ,

8 9 .0 4 5 8 5 ,
9 0 .3 6 2 5 0 ,
9 1 .1 3 5 2 3 ,
8 5 .6 9 4 3 9 ,
9 0 .3 2 9 5 6 ,
8 3 .1 8 3 2 5 ,
8 9 .9 9 0 1 3 ,
9 1 .1 3 3 1 3 ,
9 0 .7 6 6 1 6 ,
8 9 .5 7 0 1 1 ,
9 0 .2 2 1 3 7 ,
6 0 .9 9 7 4 5 ,
9 0 .6 7 7 4 5 ,
8 2 .2 7 7 3 1 ,
8 9 .9 6 2 0 5 ,
7 1 .6 9 6 6 6 ,
9 2 .2 7 0 9 6 ,
9 0 .8 0 0 0 6 ,
8 8 .2 0 2 5 6 ,
6 0 .0 9 0 2 7 ,
5 4 .1 0 2 5 1 ,
8 7 .6 9 4 4 3 ,
9 1 .7 6 8 3 4 ,
8 6 .6 7 0 9 8 ,
9 1 .4 6 5 8 8 ,
9 1 .7 8 6 4 6 ,
9 4 .8 9 1 8 0 ,
8 7 .8 7 4 4 4 ,
8 7 .5 2 0 9 7 ,
8 5 .7 1 2 4 3 ,
8 6 .6 9 8 6 3 ,
6 2 .4 1 7 3 2 ,
8 8 .5 5 9 2 6 ,
9 1 .7 9 4 3 5 ,

Region 5 4 = -4 7 .0 7 1 4 6 , Region 54= 
Region 5 4 = -4 9 .2 8 9 7 4 , Region 54= 
Region 5 4 = -4 7 .63926 , Region 54=

-4 9 .5 3 8 5 8 , Region 5 4 = -4 8 .0 9 9 3 5 , 
-4 6 .4 2 9 2 4 , Region 5 4 = -4 4 .82936, 
-4 2 .9 0 5 3 8 ,

Region 62 = 92 .7 6857 , Region 62=91. 
Region 62 = 82 .4 9123 , Region 62=85. 
Region 62 =85 .71021 ,

66837, Region 6 2 = 85 .1 3185 , 
74236, Region 6 2 = 83 .5 6195 ,

Region 64=90 .2 1413 , Region 64=90 .03380 , 

Region 66 =85 .50218 ,

Region 74 =80 .64498 ,

Region 77 =88 .95937 , 
Region 78=77 .9 4430 , 
Region 79=91 .1 2382 , 
Region 80=94 .2 7597 ,

Region 83 = 69 .6 2805 ,
Region 84 =87 .1 8924 , Region 84=88 .74304 ,

Region 91 = 67 .15308 , 
Region 9 2 = 87 .514B8,

Region 95 =69 .47194 , Region 95=53 .63540 , Region 95=94 .40633 ,

Fig. F-2 Automated target material detection results for baggage sample-8 
(continuation from previous page).
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^rawdata.dat-Notepad ■ 
File Edit \ Seareh Help

i - i a i x i

Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region
Region

9 7 = 7 6 .2 8 7 1 0 ,
9 8 = 9 4 .4 4 3 3 8 ,
9 9 = 9 1 .6 4 6 3 5 ,
1 8 0 = 9 6 .5 1 0 1 8 ,
1 0 1 = 8 6 .1 0 5 3 9 ,
1 0 2 = 9 1 .5 4 4 8 5 ,
1 0 3 = 8 7 .2 0 5 9 0 ,
1 0 4 = 8 5 .8 3 2 5 5 ,
1 0 5 = 8 2 .8 8 0 6 0 ,
1 0 6 = 9 0 .2 7 2 9 4 ,
107=90.28671*,
108=91 .775H l*,
1 0 9 = 8 9 .1 3 6 3 5 ,
110=89.1*6176,
1 1 1 = 9 1 .5 5 3 8 6 ,
1 1 2 = 9 2 .5 6 1 7 5 ,
113=97.0571*0 ,
11 l*=87.0 8 0 9 4 ,
115=91*.15379,
1 1 6 = 9 1 .5 1 1 8 2 ,
1 1 7 = 9 8 .1 7 8 8 9 ,
1 1 8 = 9 1 .9 9 4 3 5 ,
1 1 9 = 9 0 .6 9 6 1 7 ,
1 2 0 = 8 0 .1 7 9 1 0 ,
12 1=100 .033 89
12 2=105 .051 25
1 2 3 = -6 7 .11879
12 i*= -65 .722H 7
1 2 5 = -6 0 .36696
1 2 6 = 7 7 .0 6 3 9 8 ,
1 2 7 = -6 7 .75916
1 2 8 = -6 8 .35810
1 2 9 = -6 4 . 50383
1 3 0 = -6 7 .1*0817
1 3 1 = -6 9 .28773
1 3 2 = 9 2 .7 0 0 7 2 ,
1 3 3 = 8 5 .9 6 5 6 5 ,
13 l«=58.110i*6 ,
135=91*. 0291*4,
1 3 6 = 5 7 .6 7 7 1 1 ,
137=83.6371*1 ,
1 3 8 = 9 3 .3 7 2 2 6 ,
139=90.311*22,
11*0=71*. 01167,
11*1=97.67355,
11*2=103.32936
11*3=100.88396
1l*l*=95.6 1 3 9 0 ,
11*5=96.1171*2,
11*6=96.9761*2,
11*7=91*. 58991*,
11*8=95.10535,
152=96.3051*7 ,
1 5 6 = 9 7 .7 3 6 7 2 ,

Region 101=85.87851*. 
Region 1 0 2 = 9 0 .7 3 7 0 2 ,  
Region 103=8i*.61 i*3 i*,

Region 105=89.891*26 ,

Region 1 0 7 = 8 6 .1 0 7 0 6 ,

Region 1 1 0 = 9 0 .8 6 7 0 5 , 
Region 111=84.0321*3 ,

Region 1 1 3 = 9 7 .1 9 2 0 5 , 
Region 1 1 4 = 8 1 .8 9 6 9 1 ,

Region 1 01=~31.9 9 1 3 6 ,

Region 1 1 1 = 8 9 .4 4 1 4 7 ,

Region 1 1 3 = 9 4 .5 6 9 5 3 , Region 1 1 3 = 9 3 .9 1 3 9 0 ,

Region 1 1 8 = 8 8 .7 2 2 6 2 , Region 1 1 8 = 7 7 .6 0 3 5 7 ,

Region 1 2 0 = 7 0 .3 5 8 1 4 ,
*

9

, Region 1 2 4 = 8 7 .5 1 2 8 4 ,
9

! Region 1 2 9 = 8 5 .4 5 4 2 9 , Region 1 2 9 = 8 9 .8 1 7 8 9 , R egion 1 2 9 = 80 .6200 9 ,

f

R egion 1 3 3 = 8 9 .8 7 5 7 3 , Region 1 3 3 = 5 4 .4 0 2 7 6 , Region 1 3 3 = -4 .9 4 293 ,

Region 1 4 9 = 9 4 .8 8 1 1 0 , 
Region 1 5 3 = 9 7 .1 0 1 2 5 , 
Region 1 5 7 = 9 7 .4 5 5 3 9 ,

Region 1 5 0 = 9 5 .5 5 2 0 3 , Region 1 5 1 = 9 5 .2 6 4 6 7 , 
Region 1 5 4 = 9 4 .5 8 8 7 1 , Region 1 5 5 = 9 8 .8 1 5 2 1 , 
Region 158=95.43822) 0

Fig. F-2 Automated target material detection results for baggage sample-8 
(continuation from previous page).
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. . .

File" ,-Edily. .Seirch ■ H6lp. •; * * ; •,

Characteristic  A ngle Calculation: ■HiSr

Region 1— 3 1 .7 1 1 5 1 ,
Region 2 = -3 8 .4 0 7 7 3 ,
Region 3 = - 3 8 .21153,
Region **=-35.60839,
Region 5 = -4 1 .81 065,
Region 6 = - 3 2 .72905 , Region 6 = - 3 1 . 06429,
Region 7=89.7397**, Region 7=7.7847**,
Region 8 = 95 .75783 ,
Region 9=100 .22521 ,
Region 10=53 .14261 ,
Region 11=47 .**08**5,
Region 12=82.7620**,
Region 13=87 .13686 ,
Region 14=91.21*172,
Region 15=92 .06663 ,
Region 16=91 .89171 ,
Region 1 7=91 .53809 ,
Region 1 8=93 .25097 ,
Region 19=96 .40700 ,
Region 20=95 .00885 ,
Region 21=94 .01268 ,
Region 22=96 .86032 ,
Region 23=93 .20047 ,
Region 24=93 .02666 ,
Region 25=93 .38044 ,
Region 26=8 .2 57 28 , PIRegion 27=93 .19237 , f H
Region 2 8=92 .95786 , I p
Region 29=85 .00068 ,  Region 29=89 .2 90 12 ,
Region 30=46 .78839 , !;-V;
Region 31=85 .51952 ,  Region 3 1= 89 .76665 ,
Region 32=21 .47967 ,  Region 3 2=91 .39058 ,
Region 33=94 .52086 , § ||
Region 34=94.28940 , §§
Region 35=91 .93095 ,  Region 3 5 = -4 5 .4 9 3 4 9 ,  Region 35=89.84107 , ’ -v
Region 36=89.18994 , ,

Region 37=93 .25659 ,
Region 38 = 8 6 .14906 ,  Region 38=88 .1 36 91 ,  Region 38=92.37620 , lit

Region 38=85 .2 07 34 ,  Region 38=90.18815 , Region 38=88 .48440 ,  111
[*r j i

£0rm vdata dat - Notepad - - 

File Edit Search Help v  : "  ■t'C:.:  t - s : . ' -  . W' ' ■ '• ■ a.™?'.;/ '?»*

■ ■ ■ ■ b l q b l

Region 3 9 = 9 1 .2 1 6 5 2 ,
Region 4 0 = 8 1 .0 7 3 8 6 ,
Region 4 1 = 9 9 .4 1 0 4 7 , w
Region 4 2 = 9 7 .5 1 6 8 1 , 111
Region 4 3 = 9 4 .9 5 9 2 1 ,  Region 4 3 = 9 4 .5 6 8 4 8 ,
Region 4 4 = 9 1 .9 1 5 9 1 , iRegion 4 5 = - 6 8 . 2 6 96 9 ,
Region 4 6 = - 6 9 . 7 2 17 7 , 8
Region 4 7 = - 7 0 . 7 7 8 5 2 , s
Region 4 8 = 9 5 .2 4 3 5 6 ,  Region 4 8 = 8 9 .0 3 0 8 7 , illRegion 4 9 = 8 2 .8 6 8 0 1 , w
Region 5 0 = 9 4 .1 1 6 3 6 , | g
Region 5 1 = 8 3 .3 4 2 9 2 ,  Region 5 1 = 9 6 .7 5 2 8 6 , i s
Region 5 2 = 9 5 .7 8 1 1 5 ,  Region 5 2 = 9 9 .8 5 7 7 3 , M i
Region 5 3 = 1 0 2 .9 3 5 8 8 , itl
Region 5 4 = 9 4 .5 8 2 1 2 , ISRegion 5 5 = 9 5 .0 1 4 6 6 , i
Region 5 6 = 9 3 .9 6 3 3 3 , iff
Region 5 7 = 9 5 .7 6 4 4 5 , iff
Region 5 8 = 9 2 .9 5 7 6 6 , :
Region 5 9 = 9 5 .1 2 8 1 6 , lilf

i_ . .. .«* . . .  -  ................................... ........... ... „ , _____ ______________ i l

Fig. F-3 Automated target material detection results for baggage sample-9.
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