
INTERACTIVE MODELS OF ELECTRICAL MACHINES

D A VID DOWNES

A thesis submitted in partial fulfilment of the requirements of
the Nottingham Trent University for the degree of Doctor of

Philosophy

May 2003

40 0738161 0

ProQuest Number: 10183215

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183215

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Acknowledgments

My thanks to all those who have helped during the period of research and the

duration the thesis has been laboured upon. A particular thank you to Dr.

Patterson for his patience and understanding. Thank you also to Prof. Haydock

for starting the research and for helpful reviewing of the later work. Thank you

also to the other kind souls with in the EEE section who have assisted. Lastly but

not least thank you to my parents for their support over the years.

Abstract

Custom algorithms and stand-alone software have been originated that allow the
automatic generation of complex Magnetic Equivalent Circuit (MEC) models from
the description of a rotary machines physical geometry and materials. The
models are automatically generated in a format that can be utilised in a standard
circuit simulator package, such as SPICE, allowing the simulation of the full
electrical, magnetic and mechanical interaction.

Fully interactive machine models have been developed by extending Magnetic
Equivalent Circuits (MECs) to include mechanical torque by the application of the
virtual work principle. Using a common finite element B-H formula, the models are
further enhanced by the incorporation of non-linear permeance. These equivalent
models use standard circuit components that are available in most circuit solver
packages making them transportable and vendor independent.

A novel stand-alone software package has been created that simplifies the
generation of the complex MEC models. By describing the machine geometry,
flux paths and material characteristics in a simple file an electrical equivalent
circuit can be automatically generated at different levels of abstraction, depending
on the input information. The software allows the machine's geometry to be
viewed and, after simulation, the flux information can be back annotated into the
geometry viewer for further design refinement.

The modelling technique has been verified by automatically generating and
simulating a MEC model of a 3-phase induction motor; this was checked against
practical results obtained from a test-bed consisting of an induction motor and
associated load. A further validation of the MEC modelling technique checks for
consistency by ascertaining that the energy flow between the electrical, magnetic
and mechanical sections balance for a synchronous generator and synchronous
motor.

The automatic production of complex Magnetic Equivalent Circuits of rotary
machines produces a realistic model giving a high degree of confidence in the
simulation results when combined with the power and control electronics in a
SPICE type simulator.

II

Table of contents

Chapter Description Page

1 Introduction... 1

1.1 Machine Models.. 1

1.2 FE Models... 1

1.3 Machine Model Requirements... 2

1.4 Contribution of the Thesis.. 4

1.5 Overview of the Thesis...5

2 General Electromagnetic Models...7

2.1 Introduction...7

2.2 Elementary electrostatics..7

2.3 Elementary magnetostatics...9

2.4 Electromagnetism...11

2.5 A brief introduction to Maxwell’s equations.. 13

2.6 Magnetic circuits... 14

2.7 Reluctance calculations..15

2.7.1 Inductor example..16

2.7.2 Transformer example..17

2.8 An introduction to electromagnetic potentials.. 19

2.9 Finite difference..22

2.10 Finite element...24

2.10.1 Integral ..24

2.10.2 Differential..24

2.11 Magnetic equivalent circuits.. 26

2.11.1 Electrical and magnetic circuit similarities....................................26

2.12 Conclusion..28

3 Methods of Modelling Electrical Machines.. 29

3.1 Introduction...29

3.2 Machine magnetic circuits..30

3.3 Electrical equivalent circuit...31

3.4 Two axis.. 33

3.5 Space vector...35

3.6 Calculation of permeance values for MEC... 36

3.6.1 Incorporation of saturation... 36

3.6.2 Incorporation of motion...37

3.7 Transformer Optimisation Example using MECs...................................... 38

3.7.1 Optimisation...39

3.7.2 Simulated annealing...40

3.7.3 Round transformer coupling equations...41

3.7.4 Solving the design equations.. 44

3.7.5 Implementation of algorithms and design equations.......................44

3.7.6 Results of design optimisation... 45

3.8 Conclusion..46

4 Development of Multi-Physics SPICE models... 48

4.1 Introduction...48

4.2 Non-linear capacitor...49

4.3 Permeability modulation from rotor motion.. 49

4.4 Comparison of curve fitted permeance functions.....................................50

4.5 Representation of mechanical quantities... 52

4.6 Torque calculation..53

4.7 BH curve fit for the non-linear magnetic permeance................................55

4.8 Calculation of the permeance.. 60

4.9 Procedure to numerically find position equation coefficients.................. 63

4.10 Conclusion..67

5 Software development..69

5.1 Introduction...69

5.2 Representation of the machines physical geometry................................70

IV

5.3 Assignment of node numbers.. 73

5.4 Program requirements and structure... 74

5.5.1 Overall program structure.. 74

5.5.2 Text conversion (parsing).. 75

5.5.3 Processing linked data.. 76

5.5.4 Output of sub-circuit...78

5.5.5 Saving of linked data..78

5.5.6 Visual check of geometrical data... 78

5.5.7 Interpretation of circuit simulation data... 78

5.6 Software implementation..78

5.7 Conclusion.. 79

6 Simulation Results.. 80

6.1 Generator simulation..80

6.1.1 Construction and wiring..80

Figure 48 shows the details of the simplified flux paths chosen for the

simple generator. Note that the coils ‘SwT is not shown in its actual

position but with a shortened length, for the purpose of illustration. ‘SibT to

‘Sib12’ are the back iron flux paths. ‘SicT to ‘Sic12’ are the iron parts,

which intersect the coils contained in the slots (‘SwT being an example coil

which intersects parts ‘SicT and ‘Sic2\ ‘SIT to ‘SI2’ are the stator leakage

paths and ‘SagT to ‘Sag24’ are the airgap flux paths.............................. 82

6.1.2 Generation of SPICE model.. 83

6.1.3 Results of simulation..87

6.2 Generator simulation with power electronics... 93

6.3 Synchronous Motor Simulation.. 95

6.4 Induction motor simulation..98

6.4.1 Simulation...99

6.4.2 Results... 101

6.5 Conclusion.. 102

7 Discussion... 103

V

7.0 Model.. 103

7.1 Motion... 103

7.2 Mechanical Torque...104

7.3 B-H Curve... 106

7.4 Model Generation... 107

7.5 Machine Description...108

7.6 A distributed Magnetic Equivalent Circuit... 108

8 Conclusions & Further Work..114

8.1 Conclusions.. 114

8.1.1 Model development..114

8.1.2 Model generation..115

8.1.3 Software development..115

8.1.4 Simulation... 116

8.2 Further Work... 117

8.2.1 Expert system or ‘heuristic’ generation of flux paths.....................117

8.2.2 A Magnetic Equivalent Circuit for use with finite element triangulation

.. 117

8.2.3 Computationally efficient air gap elements.................................... 117

8.2.4 Approximation of the permeance function..................................... 118

8.2.5 Geometry description import from common computer aided design

(CAD) packages.. 118

8.2.6 Generalised model generation.. 118

References.. 119

Appendices... 125

VI

Appendices

Magnetic equivalent circuits including charge and flux duality....................... A

‘A novel technique to derive an analogue hardware description language

model of a 2.2kw induction motor.’ Third International Conference on

COMPUTATION IN ELECTROMAGNETICS, University of Bath, 10-12 April

1996.. B

GDL description file of machine... C

Spice circuit description from conversion program..D

Instructions to retrieve magnetic circuit simulation data..................................E

Circuit simualtion data..F

Example Brook DL100 GDL Description file ..G

‘gdl2spice’ program listing... H

‘coincident area’ program listing..I

VII

Table of figures

Figure Description Page

Figure 1: Simple synchronous generator equivalent circuit.................................. 1

Figure 2: Example finite element mesh and magnetic field solution.....................2

Figure 3: Example of modelling process..3

Figure 4: Calculation of field density at point Bf due to a current loop................10

Figure 5: Section through a simple inductor example... 16

Figure 6: Transformer example..17

Figure 7: Illustration of the effect of Direchlet and Neuman boundary conditions.20

Figure 8: Relationship between A and B... 20

Figure 9: equipotential surfaces...21

Figure 10: Calculating inductance of a coil from the vector potential.................22

Figure 11: Finite difference potential grid... 23

Figure 12: Finite elements...25

Figure 13: Example Magnetic Equivalent Circuit (MEC)..................................... 27

Figure 14: Transformer equivalent circuit... 31

Figure 15: Simplified synchronous generator/motor (a) and equivalent circuit (b)32

Figure 16: Equivalent circuit of a polyphase induction motor..............................32

Figure 17: Induction motor equivalent circuit as suggested by Slemon 33

Figure 18: Two axis machine representation.. 34

Figure 19: Cross-sectional view of round transformer..41

Figure 20: Plot of secondary weight and magnetising current verses weighting 45

Figure 21: Non-linear capacitance...49

Figure 22: Plot of relative permeance function... 50

Figure 23: Comparison of permeance functions .. 52

Figure 24: Typical mechanical quantities of a shaft...52

Figure 25: Central difference scheme used on relative permeance curve 55

Figure 26: Implementation of non-linear permeance.. 56

Figure 27: Test circuit for non-linear permeance.. 56

VIII

Figure 28: Graph of flux verses mmf, with no hysteresis..................................57

Figure 29: Graph of flux versus mmf with hysteresis (R2=0.25).......... 58

Figure 30: Graph of flux versus mmf with hysteresis (R2=0.5)............ 58

Figure 31: Graph of flux versus mmf with hysteresis (R2=1)............... 59

Figure 32: Incremental magnetic hysteresis loss test circuit..............................59

Figure 33: Graph of flux versus mmf with Incremental hysteresis......................60

Figure 34: Detail of incremental hysteresis (flux versus mmf)............................60

Figure 35: Example of integration path.. 61

Figure 36: Line integral of subsection.................................... 62

Figure 37: Example of arbitrary shape integration... 62

Figure 38: Program to test permeance coefficients algorithm............................66

Figure 39: Output of test program.. 66

Figure 40: Plot of the resulting position equation... 67

Figure 41: Relationship between GDL file and spice circuit..............................69

Figure 42: Relationship between nodes, curves, parts and frames.................. 70

Figure 43: Syntax of machine description.. 73

Figure 44: Relationships between the various objects used in program........... 75

Figure 45: Part of conversion method within description object.........................77

Figure 46: Frame conversion method.. 77

Figure 47: Stator construction and coil details... 81

Figure 48: Flux paths (note coil sw1 not shown in actual position)....................81

Figure 49: Rotor construction... 82

Figure 50: Coil connection wiring sub circuit... 83

Figure 51: Messages informing numbers of objects created..............................84

Figure 52: Setting number of integral sections for integral................................84

Figure 53: Stator and rotor curve displays... 85

Figure 54: Stator detail... 86

Figure 55: Rotor detail..86

Figure 56: Test circuit for spice model... 87

Figure 57: Plot of position terminal voltage.. 88

IX

Figure 58: Power, Voltage and Torque waveforms for simple synchronous

generator... 90

Figure 59: Detail of power waveforms for simple synchronous generator........ 90

Figure 60: Stator flux plots for the simple generator..91

Figure 61: Generator with three-phase power electronic rectifier..................... 93

Figure 62: Voltage waveforms of the three phases before the rectifier............. 94

Figure 63: Torque curve on the mechanical power source........................... 95

Figure 64: Test circuit used for synchonous motor simulation.......................96

Figure 65: Plot of the 3-phase currents and the field voltage for simple motor.. 96

Figure 66: Change in stator flux with movement of rotor for simple motor........ 97

Figure 67: Plot of change in position for a simple synchronous motor.............. 98

Figure 68: Change of area with rotor angle... 99

Figure 69: Change of area with rotor angle (enlarged).....................................100

Figure 70: Simulation results (actual current multiply by 10)...........................101

Figure 71: Test results (Light load)...101

Figure 72: Equivalent permeance elements..109

Figure 73: Discretization of example flux path into permeance elements 109

Figure 74: Equivalent circuit for the previous discretisation............................. 110

Figure 75: Calculation of reluctance...111

Figure 76: Calculation of geometric mean..111

Figure 77: Alternative scheme for the calculation of permeance (Note that the

depth of the element is denoted by the symbol z).................................112

Figure 78: Variation of error of a two-element approximation compared to the

closed solution... 113

Figure 79: Transformation between electrical and magnetic equivalent circuits126

X

Glossary
vector force

discrete charge n

unit distance vector

permittivity of free space

electric field strength

charge density

volume element

electric displacement

relative permittivity

general permittivity

electric potential

electric potential difference

area

distance

capacitance

energy

current density

velocity

flux density

permeability of free space

current

line element

surface element

volume element

surface integral

surface contour integral

| closed line integral

H r relative permeability

jLi general permeability

O magnetic flux

H magnetic field strength

em f electromotive force

n number of turns

X flux linkage

L inductance

M mutual inductance

8 skin depth

co angular velocity

mmf magnetomotive force

A permeance

S reluctance

A magnetic vector potential

P magnetic scalar potential

0 displacement angle.

Cm magnetic permeance

XII

1 Introduction

1.1 Machine Models

Traditionally models of electric machines have used the simple electric equivalent

circuit, which consists of inductors and resistors, as illustrated in Figure 1 below.

This model has been adopted from simple circuit theory and used for power

system studies. When used in simulation of complex power electronic systems

poor results are obtained, because of the severe limits of the model used for the

electrical machine or generator. These models take no account of the interaction

between electrical, magnetic circuits and mechanical coupling found in a real

machine.

n m

Figure 1: Simple synchronous generator equivalent circuit

The advances in circuit simulators that allow complex systems to be simulated

with a high degree of confidence are now common, but these simulators require a

more realistic model of the electrical machine. A true representation of the model

should take into account the interaction between magnetic coupling, mechanical

linkage, saturation and temperature effects. The weak point in all system

simulations, that have a machine or generator included, is the limitations of the

simple model that is normally used.

1.2 FE Models

At the present moment the only method that is accepted by designers for

modelling mechanical, magnetic, saturation and electrical properties is the Finite

Element (FE) technique. This has the disadvantage of long simulation times, but

its greatest restriction is that it will not integrate with standard commercial circuit

1

simulators. Therefore machine designers can use finite element solvers to find

the magnetic characteristics of the machine. The finite element solution can be

used to find the parameters for the two-axis model but does not always give

realistic solutions when integrated with the electrical control system. An example

of a FE mesh and magnetostatic field solution is shown in Figure 2 (Chaudhry et

al (2)).

w m m

Figure 2: Example finite element mesh and magnetic field solution

1.3 Machine Model Requirements

W hat is required is a simulation model that can give the detail and characteristics

of a finite element solution but will be compatible with standard circuit solvers,

such as Simulation Program with Integrated Circuit Emphasis (SPICE) derived

analogue circuit solvers. This research project builds on an idea proposed by

Carpenter (3) and later developed by Flaydock (4), where magnetic circuits can be

represented by an electrical equivalent. This allows the coupling of magnetic and

electrical circuits to be combined into the one simulation model, which is

compatible with standard circuit simulators.

Generating more accurate models, using existing methods, generally incurs

significant extra analysis. Simulation of machine control systems requires

different levels of model complexity depending on the type of evaluation being

carried out. If a new control methodology is to be evaluated then a small simple

model, that allows fast simulation, will suffice. If the interaction of magnetic

coupling in the machine, power electronic devices and supply is to be

investigated, then a complex model of the machine is required.

2

This project has been concerned with the investigation of machine models,

incorporating all pertinent physical properties, which can be used in standard

circuit solvers. A modelling methodology has been developed allowing automatic

generation of machine models from a textual description of the machine’s

geometry and materials.

A major objective has been the conception and design of software that allows the

automatic production of complex machine models. This software has been

designed to:

• produce a visual representation of the machine from a textual description;

• automatically produce a SPICE sub-circuit model of the machine with different

levels of complexity dependent on the textual description;

• produce models in a form that can be directly used in a SPICE type simulator.

This flow is shown pictorially in Figure 3, with an example voltage plot typifying

the simulation result. The arrows show the sequence of events.

• M ..uU
LfllklkJUUKS. XJ.'JC.

Machine
.Description

vmO »w<\ }

ai| IU2 JOIU-if. 04 0 ^4*1.56 J<J|
♦42111 ?0|I|4A.2‘>4 «| d |H.VCIO
*4 y J i jo i eo > a\ a jni. i «co
•44112 3«|lf4: 074 .») a H-3.471VV
• 4«iW h .qu w v i|
»i(M U 20HM6.W 0 »C4» Sft w41U1-«IIH0.2*4 1)U m M30\
•4*112 ■*0|l|4f. 0| U |0 l
*4 'JUi .201047.074 ill d U2.4? 30|
•4 lOUJOOiaiJi.W i>U iD 301• 4 I] J2 .M| }C2 0 illU?0*11
•4 I 21IU301lp.fi 4> 111 J pi SI.10|
•4« m iu on p i* K2 «i a p u*u*o
• 4l4il2l301lfW« *3 Alapl.MMII

♦ I IIUIH | b | . . • * 0 | 4,p.) 7/11 |44. 04Ml|
MuTll Uliic i-u iw a il Llt«.Q I
<42112 .261 ImwUbd I -201 40 21201
« f im v -1 cinrM>|i >*1 *.f7 7,1)1jn «ia«i
*#4113 2*1 dnKiKf.l m l 4*f4 Mll|f. M 01
•#<112 X'| Iln*l4n|4 » | (fn <l3ft|
• iw n 7«| v.| I.tnnpin ih»i
•#7112 X I Ilnel4»i|*> M l <n 7l30|

/ X
I "

J. *N
Computer , V " \

J 'Conversion Jll J

Simul^tition

«u4«H*4lkMW«U *u-'4»

g§r;SPiCE.,
ESiSjub circuit
*■ 4khiC«u:2'J« /M.'V4lu4«ytitl 15.624 I .

ICLiicJU .SOU#
• ftOfflKKf -«»irc<.ci. ap«f

CtktJtid MA197799
KMCimIBJik- rcuo
Pik2 4JC(Vuc2kl
VikllOBlicl NO

OllUllKitO t UNO./* 7744-

PWHlU<ll\MM -I
t nr>

* Uc > ipu do.

‘-wfi > I T*V|lk.h?

.flnrOc. K o<4kxikodc:

Figure 3: Example of modelling process

As stated the final model produced from the software can have different levels of

complexity dependent on the requirements of simulation. A complex model will

include the physical, electrical, magnetic and mechanical characteristics of the

machine. Increased complexity of the machine model is achieved by increasing

the information in the textual description of the machine. One of the main

3

advantages of the software, which produces the models, is that a detailed

knowledge of the machines magnetic characteristics is not required. This has an

analogy with the development in electronic circuit design, where engineers can

design complex integrated circuits with little or no knowledge of the silicon

process parameters.

The textual description facilitates easy alteration of the machine design, which

combined with the automatic machine model generation allows design changes to

be quickly evaluated. The software has been designed to integrate into any

standard Electronic Design Automation (EDA) system, facilitating the concurrent

engineering philosophy.

1.4 Contribution of the Thesis

The following parts are believed to be original contributions to the advancement of

knowledge in this field of study.

• Application of the virtual work principle to the calculation of torque, within

standard circuit solver packages.

• Lessening the effect of rounding error within the torque calculation.

• Incorporation of a standard non-linear B-H permeance model, including

hysteresis, in a MEC model using standard circuit components.

• Automatic generation of the machines equivalent circuit, from the geometry,

flux paths and material characteristics.

• The reinterpretation of the electrical circuit voltages and currents to provide

the equivalent magnetic equivalent circuit values. From these values the

change in magnetic values (flux, permeance etc.) can be found over time.

4

1.5 Overview of the Thesis

Chapter 2 gives an overview of some of the basic electromagnetic concepts that

are used as the basis for the rest of the thesis. Included is an introduction to

electromagnetic quantities and the governing relationships between them.

Magnetic equivalent circuits are also introduced along with Finite elements.

Chapter 3 discusses the various methods that in particular are used to model

electrical machines. The majority of these are based on lumped element

equivalent circuits, the exact details of which are dependent on the type of

analysis and machine. Included in this chapter is an example of using a Magnetic

Equivalent Circuit (MEC) in the optimisation of a transformer.

Chapter 4 is concerned with the development of the model elements that are used

in the simulation of the electrical machine. The models of the electrical machines

contained in the thesis are based upon the MECs of Haydock and Carpenter. The

model elements are restricted by the requirement that they be compatible with

SPICE version 3 based circuit simulation packages.

Chapter 5 gives details of how the models are automatically constructed from a

description of the flux paths and machine geometry. A language and syntax for

describing the machine is described which provides a means for concisely

describing repeating shapes found within the machine geometry. The generation

of the equivalent circuit requires the determination of how the equivalent circuit

elements are interconnected. The algorithm for determining the interconnection

details is described. The software design is also described along with its

implementation in C++.

Chapter 6 provides the details of simulation models that were constructed of a

synchronous generator, synchronous motor and induction machine. The

synchronous machine models demonstrate the transfer of energy from the

mechanical to the electrical parts of equivalent circuit models and in the other

direction from the electrical to the mechanical parts of the model. An induction

motor model is also included which is based on a manufactured motors design

and data sheets.

5

Chapter 7 discusses the models developed and the software implemented to build

the machine models with reference to relevant literature. The usefulness of the

techniques developed in the thesis, along with limitations, are described. An

extension of the technique of building Magnetic Equivalent Circuits based on a

generic pattern of elements is also described. It is shown that this has limitations

in terms of its general applicability.

Chapter 8 summarises the work presented in the thesis. Suggestions for further

future work are also presented in this chapter.

6

2 General Electromagnetic Models

2.1 Introduction

The aim of this chapter is to present the basic electromagnetic concepts and

quantities used in the following sections that are pertinent to the analysis of

electrical machines.

Electromagnetics can be described as the study of the interaction of electrical

charges (Carpenter (5)). Three different situations can occur depending whether

the charges are static, at constant relative velocity or varying relative velocity.

The three situations lead to respectively electrostatic, magnetostatic and finally

electromagnetic analysis.

It is possible to derive the magnetostatic equations by applying Einstein’s special

theory of relativity to the electrostatic equations. Thus it could be said that the

whole of electromagnetism depends on only one equation, that being coulombs

law (Dobbs E.R. (6) ch. 8, this book is also used as reference for the rest of the

chapter, Carpenter (1) also gives a very good introduction).

At the end of this chapter, the Magnetic Equivalent Circuit (MEC) and Bond

Graphs are introduced. The MEC is the basis for the representation of the

magnetic circuit and its interaction with both the electrical and mechanical

systems.

2.2 Elementary electrostatics

The electrostatics situation can be described by considering two charges at rest,

and the force developed between them in vacuum.

Coulombs law states that the force between two charges is given by:

F = gl?2»’l2 (N) (-,)
4xe0rl2

Where g* and q2 are the charges, r12 is the distance between them and e0 is the

permittivity of free space. When the flux of the electric field is plotted for positive

7

and negative charge, the flux starts on one charge and ends on the other i.e. a bi­

polar field. Converting Eq. 1 to the force on a hypothetical test charge of one

coulomb and infinitesimal size:

Electric field E = , (V/m) (2)
47rs0ru

Generalising and applying Gauss’s law.

If the charges have no relative velocity (magnitude is constant due to the law of

conservation of charge) then another definition of an electrostatic situation is that

Often in calculations a simplification can be made by introducing a new variable.

The relative permeability er relates the value of permittivity in a vacuum to that

found in non-vacuum. The materials described by the constant are assumed

isotropic, homogeneous and linear.

Returning to the idea of a test charge, move the charge from a great distance

towards the principle charge. The integral of force with distance is the energy

expended in moving the test charge to the resting position. This is the potential

and can be described by a scalar quantity.

Consider a simple parallel plate capacitor with a charge on one plate of +Q,

potential <\>+ and the other -Q, potential (j).. Because the plates are equipotential

surfaces, the potential difference V = <(>+ - From Eq. 3 and Eq. 7

(3)

the change in electrostatic field strength with time is zero i.e. ^E ^ = o.

Electric displacement D = ^r£:0E (FVm'2) (4)

As the electric field is conservative .\ |E -dl = 0 (5)

(6)

Generalising Eq. 6 E = - grad$ (7)

8

v =r A ^
VS0AJ

Q --.VccQ (8)

Capacitance is defined as: C = y (9)

The energy stored in the capacitor can be derived as:

U = ^ C V 2 (J) (10)

As the energy stored in the capacitor is due to the electric field, an attractive force

exists between the two plates. Using the virtual work principle

Change in energy AU = -F-Ax F = ̂ e0E2A (N) (11)

It is possible to extend the idea of stored energy to the electric field and

equipotentials.

1 fEnergy stored in field U = - s 0 [D -Edr (J) (12)
2 Jr

2.3 Elementary magnetostatics

This situation is when d J^ = oand dB ^ = o. A charge moving in a postulated

magnetic field of flux density B is found to experience a force F and is defined as:

Lorentzforce Foc^vxB (N) (13)

By use of an equivalent to electrostatics Eq. 1, the field density at a particular

point in space can be related to the surrounding current densities. The physical

constant that emerges is the permeability of free space.

T *

Biot-Savart law B , = — f ■ ‘ _--2-dx (Tesla) (14)
J ru
space

For ‘thin’ wires Jdr = M l = z'dl (15)

/W fd lx r ^

4>»' r 2

9

Bf Field
Density

Current Loop

Figure 4: Calculation of field density at point Bf due to a current loop

By using Eq. 16 the magnetic field density at a point can be calculated (Figure 4).

By applying this to the field surrounding a wire, then integrating the resulting

equation over a closed path for the field density B results in Ampere’s law:

Ampere’s law | b • dl = W (17)
C

Generalising | f i d l = /“ o jj'd s (18)
C S

Unlike the electrostatic field, there are no monopole sources and therefore the

field is solenoidal.

i.e. closed surface flux <I> = J f id s = 0 (Weber) (19)
s

The magnetic field is assumed to be in vacuum. To allow for the effect of

situations other than vacuum the relative permeability is defined.

In the general case (isotropic materials) p = p rp 0 (Hm'1) (20)

Similar to electrostatics a further auxiliary variable can be defined:

B 1Field intensity (for isotropic materials) H = — (Am) (21)
A

There are three broad classes of materials in terms of magnetic relative

permeability. Paramagnetic and diamagnetic substances have very small relative

effect on the magnetic field. In most circumstances, the permeability can be

assumed to be that of vacuum.

Ferromagnetic materials have a large relative permeability, which is the reason for

their extensive use in electrical machines. The value of relative permeability is

dependent on the value of flux density. When the flux density is sufficiently high,

non-linear permeability results. The physical cause is an alignment of all the

magnetic domains, with the external field, and hence saturation. The act of

domain alignment is often referred to as magnetisation. Another consequence of

the physical cause is the hysteresis effect, where a loss of energy is incurred due

to energy needed for physical alignment of magnetic domains. When a flux

density verses field intensity plot is made, different ferromagnetics show different

initial slopes, saturation regions and hysteresis areas. The multi-valued nature of

the characteristic is due to ‘memory’ of its previous state. This residual

magnetism is the basis of permanent magnets.

2.4 Electromagnetism

The following relationship, Faraday’s induction law, links the change in magnetic

flux to the induced emf in a coupled electrical circuit.

Since n is constant emf = -n — (V) (22)
dt

A useful definition often encountered is ‘flux linkage’: A = wO (Weber) (23)

Eq. 23 is defined as the flux that links with a coil multiplied by the coil turns.

emf = “ T (24)dt

Inductance L is a measure of the effect upon the electrical terminals of a magnetic

field that is set up by the current / flowing through the coil.

Self inductance L - n — ~ — (H) (25)
i i

If the field produced by one coil ‘links’ with another coil then the mutual

inductance can be defined as:

M n = 4 - (H) (26)
h

The inductance is dependent upon the permeability of the surrounding magnetic

material. If the material does not have a linear permeability (which is usually the

11

case for machines operated at or near saturation) then the inductance is also non­

linear.

Energy stored in a simple inductor can be related to the current through it and the

emf developed across it (similar to electrostatic Eq. 10 for charge and voltage):

Energy stored in a coil is given by:

An important effect is that any conductor placed within a time varying magnetic

field experiences an emf.

For example, in a solid copper wire a sinusoidal time varying current produces a

time varying magnetic field. This induces an emf and therefore current within the

conductor. The effect is to confine most of the current to the surface of the

conductor. The skin depth is a measure of how far the current penetrates into the

conductor. It is defined as the depth when the sinewave current drops to approx.

0.3679 of its peak value, and is frequency dependent.

A linked effect due to the time varying induced current is the reduction of the

magnetic flux density at the centre of the wire. For a given average flux density

the peak density is higher at the periphery, and so possibly leading to localised

saturation (Mohan et al (7) pp.748) in laminations.

Further to the previous discussion of ferromagnetic materials, the non-linear DC

magnetisation B/H curve plots the peak flux density verses cyclic flux intensity

(neglecting hysteresis). Linearisation of the curve about an operating point, for

small perturbations, leads to the differential permeability:

U - —L i2 (J)
2

(27)

Generalising to the energy stored in the whole field:

(28)

Skin depth (sinewave frequency ra) S (29)

< f f i (30)
(p adH)

12

For cyclic perturbations about an operating point, there is an incremental

hysteresis; this particular feature of the magnetic response is often ignored.

Another characteristic of real ferromagnetic materials is a preferential direction of

magnetisation, this again is often ignored and the material assumed to be

isotropic.

Manufactures of electrical steels often provide the following information about the

materials magnetic properties (Fitzgerald et al (8)):

The DC magnetisation curve for the material is given as a plot of flux density

verses magnetisation current, and is single valued monotonic.

Loss within the material is often given in terms of a curve of peak flux density

verses watts per kilogram for a specific frequency and thickness of lamination.

A materials magnetisation characteristic is often given as a curve of peak flux

density verses rms volt-amperes per kilogram at specified frequency and

lamination thickness.

Simulation difficulties can arise if use is made of the real multi-valued hysteresis

curve. It is therefore usual to neglect the hysteresis losses and approximate the

magnetic response by a single valued monotonic function.

A related problem is also cross saturation, see Vagati et. al. (39). This is where

a field component that links certain coils interacts with the field that links other

coils, by changing the value of permeance of material that is common in the flux

path of both.

2.5 A brief introduction to Maxwell's equations

The previous electromagnetic field equations can be reformulated in vector

calculus differential and integral form (Eq. 31-Eq. 38). Maxwell added a

displacement current,, to Faraday’s law to correct for anomalies in the analysis

(Eq. 37 & Eq. 38)(Dobbs (6) pp. 104) of a capacitors time varying magnetic field.

13

Differential Integral

divE = p /*0 (31) J E-ds = — j^p d r (32)
£0

divB = 0 (33) Jb • ds = 0 (34)

curlE = - — (35) f E d / = - f — ds (36)
d t * Js 0 t v '

curlB = ^ 0(j + (37) £ B d / = A0|j^J-ds + £s0^y --d s j (38)

The electromagnetic force law that becomes Coulomb and Lorentz forces is:

F = + qv x B (39)

One of the assumptions made by nearly all models of electrical machines, is that a

psuedo-magnetostatic analysis can be applied. This is usually valid because of

the low frequencies that are predominant. For psuedo-magnetostatic situations

the displacement term in Eq. 37 is negligible compared to that of current density.

.'. curl B = ju0J (40)
g

By introducing field intensity H = — (41)
Mo

From Eq. 40 and Eq. 41 curl H = J (42)

Given the two-dimensional case, and using the integral form of Eq. 40, also

assuming that the surface integral of the current density j equals the number of

turns n multiplied by the current i (in the direction of current density), the

following results.

§Hdl = ni (43)

2.6 Magnetic circuits

From <E> = Jb • dl (44)
s

In the two dimensional case and using Eq. 20, Eq. 41, Eq. 43 and Eq. 44

14

(45)

The permeability in most models is usually taken to be homogenous within the

region of integration, therefore simplifying the integral. If it is not homogenous

then the region of interest is split into several sub-regions.

Given the flux is assumed constant along the path of integration and defining

Magneto-Motive Force (mmf):

See Wilson et al (45) for another approach to the problem.

2.7 Reluctance calculations

Because of the relative permeability of the iron parts used in the construction of a

machine, it is possible to make certain assumptions about the general flux paths.

Assumptions made are that: the distributed field flux is contained with in the flux

path and the flux is constant through out the path. By using Eq. 48 it is possible to

find the flux where the mmf is known. If all the parameters are changed to peak or

rms values then, provided the permeability and flux paths are constant, the

calculation is valid for steady state alternating current. In the steady state it is

possible to replace the differential operator in Eq. 22 by its complex phasor

equivalent. This ‘coarse lumping’ of the magnetic circuit can be illustrated by the

inductor and transformer examples given in Figure 5 and Figure 6 respectively.

mmf = SQ> = — (A)
A

.'. mmf = ni

(46)

(47)

From Eq. 45 (48)

15

2.7.1 Inductor example

ik

•
u •

•
■f1

f

coil of turns n
and current i

/fT

+
+
+

< r

K

V

h

h

h

Figure 5: Section through a simple inductor example

If the flux is assumed to be totally contained with in the iron apart from when it

flows in the air gap, the reluctance (S) can be calculated from:

.... A , „ t , + L + 2/3 + I. IgWhere Ac = area of core S = J— ------------ — - + — -—
AeMrM 0 Agfi0

(49)

It can be seen that if juojUf»juo then the total reluctance will be largely dominated

by the reluctance of the air-gap.

nd
Substituting Eq. 46 into Eq. 22 emf = —

dt

Assuming reluctance is constant:

n2 di
S dt

Using Eq. 23 gives the flux linkage as:

n2i

And the inductance is given from Eq. 25 :

(50)

(51)

(52)

L =
n (53)

Also from Eq. 49 it can be seen that most of the reluctance will appear across the

air-gap. The energy stored in the field has been shown to be proportional to the

inductance (Eq. 27). As the inductance is largely determined by the air-gap (Eq.

16

53), it follows that most of the energy stored in the field will be in the air-gap. The

accuracy of determining the inductance is therefore dependent on the accuracy of

calculating the magnetic field in the air-gap.

An important aspect of the above calculations, is that they approximate a

continuous distributed field by one that is confined to the iron. For the air-gap

various empirical factors are available to correct for the field ‘fringing’ e.g. Carter

“airgap extension factors” (9). The error very much depends on the length of the

air-gap, from one iron surface to the other, verses the geometry of the air-gap

area. A correction factor often used is to add the numerical value of the air-gap

length to the dimensions that make up the air-gap area.

2.7.2 Transformer example

4k

coil 2 secondary
turns m
current i i

coil 1 primary
turns m
current ii

Figure 6: Transformer example

The transformer is shown in Figure 6. Unlike the previous inductor it does not

incorporate an air gap. The flux paths include a component of leakage shown as

On and 0|2. The leakage for coil one is that flux that does not link with coil two,

the same is true for coil two. In some analysis an approximate value is obtained

by calculating the mean path and hence reluctance through and around the coils.

In the following equations O is the mutual flux which links coil 1 to coil 2 after

subtracting the opposing mmf of each coil. The reluctance (S) is for the flux path

17

that links both coil one and coil two. The leakage reluctance’s Sn and S\2 are for

the leakage flux paths taken by On and On respectively.

The primary coil emf (Ei) can be calculated from Eq. 22 & Eq. 46:

E, (O,. + ®) = -/».—
1 ' d t y " ’ 1 dt

nxix n,i, n̂ i

KSn
+ 1*1 * 2*2 (54)

Therefore assuming nlT n2, Sn & S constant:

2 i_ nx n2 di2 dix
S ̂ dt dt

+
n\ dix
Sn dt

(55)

Applying Eq. 53 to each of the flux paths for both primary and secondary:

Ln = ..(a), Ln = i , = 4 - (c) , L2 = 4 - (< 0 <56)
0 ^ 1 o/2 ^

Substituting Eq. 56a and Eq. 56c into Eq. 55 gives:

E \ = A
n2 di2 di,. \

+ L , Adt

Rearranging Eq. 57 — =
dt
d l (L di.

(57)

(58)
Zf| ^ /i ̂ ^ i ^ “̂ /i

In Eq. 58 if Ln is insignificant and the last term (magnetising current) is neglected,

then the resulting equation is that of the ideal transformer (Eq. 59).

n2 .
Z = ——I 1 l7 (59)

The magnetising current is supplied by the primary winding, it is the current

needed to establish the magnetic field thus enabling power transfer. Extra current

in the primary taken from the supply balances the current that flows in the

secondary when a load is applied. For maximum power transfer this extra current

must be in phase with the voltage.

Substituting Eq. 56c into Eq. 56d gives:

n2Lx
a = 2 (60)

By substituting in the secondary variables into Eq. 54 gives:

18

E2 = -n 2 — (0 /2 - O) = -n 2 —
2 2 d t K 12 ’ 2 dt

” ih , *¥i
\ $12

n2i2
5 5

Substituting Eq. 56b, Eq. 56d and Eq. 60 into Eq. 61 gives:

(61)

i f \, i dix di,
dt

T d i 2+ Ln —
'2 dt

(62)

2.8 Introduction to electromagnetic potentials

In both electrostatic and magnetostatic analysis the potential is continuous at

material boundaries, unlike the field quantities E, D and B, H respectively.

The electric potential has already been defined in Eq. 7 as a conservative scalar

field.

From Eq. 7 & Eq. 31 v V = — (63)

A formulation of magnetic potential, known as scalar magnetic potential is

possible (Hoole (9) pp. 124).

The magnetic scalar potential P is defined such that the field strength is the

gradient of the scalar potential:

H = -VP (64)

The above is only valid for current source free magnetic fields. This is readily

verified as the curl of a gradient is zero, which applied to Eq. 42 means the

current density must be zero. The main advantage of scalar magnetic potential

compared to that of vector potential is for 3 dimensional problems where the

number field equations are reduced by a factor of 3.

One application of the scalar potential is in the boundary element method. The

field is split into two components, one with source components and one with no

sources i.e. in free space. The field is solved in free space, and the solution

related to that with sources present.

The scalar magnetic potential can be related to the mmf of a magnetic circuit. For

the line integral of mmf that starts at A and ends at B:

19

D D * B

A m m f = J H dl = J* - VP • dl = - jd P = PA — PB (65)

Both the electrostatic and magnetostatic potentials above are scalar fields and

therefore the boundary conditions are similar in both cases. Two principle types

of boundary condition can be applied (see Figure 7):

Dirichlet (flux leaves normal to the surface) <f> = constant (66)

Neumann (flux lies parallel to the surface) — = 0 (67)
dn

In order to solve the above Poisson equation (Eq. 63) derived from Eq. 7 & Eq. 31

, it is necessary that at least one Dirichlet boundary condition be applied.

Di rechi et ̂= constant Neuman —
dn

A A A A

Magnetic Flux

Figure 7: Illustration of the effect o f Direchlet and Neuman boundary conditions.

The magnetic vector potential is defined as:

B = curl A (68)

See Figure 8 for a diagram of the current through a coil and the resulting vector

potential.

a = area . n

i = J . a

Figure 8: Relationship between A and B

20

From Eq. 40 & Eq. 68 the following Poisson equation results

curl — • curlA = J or in the non-general case V2A = pp r J (69)
m

A vector quantity such as A is only fully defined if both curl and div are stated.

The particular expression used for div A being known as the ‘gauge’. Common

choices for the ‘gauge’ being:

Coulomb gauge divA = 0 (70)

Lorentz gauge div A = -p p rs— (71)
dt

In two dimensions, the vector magnetic potential reduces to a scalar that can be

solved in much the same way as for a scalar electrostatic potential.

V2A = jujur J (72)

From Eq. 72 it can be shown for equipotential surfaces (Figure 9):

(73)

Ai (constant potential)

Flux

A2 (constant potential)

Figure 9: equipotential surfaces

See Figure 10 for the relationship between inductance and the vector potential of

a coil.

21

B

Figure 10: Calculating inductance of a coil from the vector potential

Carpenter (53) has proposed that electromagnetics be taught using the magnetic

and electric potentials, instead of using the concept of flux. According to this

view of magneto-static phenomena the inductance of a circuit can be interpreted

as ‘inertia’ of the charges.

In contrast, Hammond et al (29) propose a ‘duel energy’ approach to solving

electromagnetic field problems.

2.9 Finite difference

Finite difference, strictly a subtopic of finite elements, directly substitutes the

derivatives of the field equations with difference equivalents. The resulting

equation is a direct numerical solution of the field equations, where each field

point is related to the four nearest itself as shown in Figure 11. An example of the

finite difference method as applied to the two-dimensional Poisson equation of

vector potential follows. Figure 11 shows an example set of five potentials within

a finite difference mesh.

22

A(x-h,y)

A(x,y+k)

-x -

X
A(x,y-k)

A(x,y) A(x+h,y)

Figure 11: Finite difference potential grid

By expanding the potential term A(x+h,y) and using Taylor’s series gives the

following:

a I i \ a h $ a h2 & a h * & a h * &A\x + h,y) = A + A + - A + - A + ------- -
v ' 1! ax: 2! dx2 3! dx3 4! dx4

And similarly for A(x-h,y):

A + 0(h$)(74)

u , \ , h d . h2 d2 . h3 53 , h“ d4 A [x - h , y) = A ----------A + --- — A --------- - A + A + 0(h5){ 75)
1! dx 2! dx2 3! dxr3 4! & 4

Where in the above A =

Summing Eq. 74 & Eq. 75, neglecting terms beyond second order gives:

^ A { x , y) = A^ - h’y "> + A^ h’ A - 2A(x’ y) + o(h2) (76)

Similarly for A(x,y-k) and A(x,y-k):

4 - A(x,y) - 4 ^ - *)+ ̂ + * }~ 2^ (X-y) + 0 fa) (77)
ay k

The order of error in the above is denoted by the last term. Error is therefore

proportional to the square of the distance between nodes. Substituting Eq. 76

and Eq. 77 in Eq. 72 gives the following approximation of the Poisson equation:

A (x - h ,y) + A(x + h , y) ~ 2A(x,y) + A(x,y + k) + A(x ,y - k) - 2 A (x , y) _ y) (78)
h k

Problems with the method arise from the difficulty in substituting for the machines

material boundaries with rectangular elements. When solving for the field,

23

boundary conditions must be given, as an open boundary is not permitted.

Methods to alleviate these problems do exist but lead to complex programs (Hoole

my

2.10 Finite element

In both of the following, it is usual to formulate electromagnetic problems in terms

of the field potentials. For magnetic problems, scalar and vector potential are

used. Two broad forms of finite element method can be described:

2.10.1 Integral

Integral methods are based on the integral formulations of electromagnetism, a

typical example is the application to electrostatics. The potential at one point is

the sum of the potential contributions from all the distributed charges, which are

modelled by elemental volumes or equivalent surface charges. In non-

homogenous media, the boundary element technique can be applied by replacing

material of differing permittivity with an equivalent surface charge.

In magnetics a similar approach can be applied i.e. replacing the iron by an

equivalent surface distribution of paired monopoles. This replacement allows a

scalar magnetic representation to be used (Carpenter(15)).

The integral method provides the field at the points where the calculation has

been performed, not a distribution through out the region (i.e. in contrast to

differential solutions).

Al-Khayat (33) uses the boundary integral method to model the transformer

windings, which is then used to derive the magnetic circuit.

The boundary element technique is also the method most often used within

Printed Circuit Board parameter extraction packages. Also it is often used when

there are complex 3D geometries and the inclusion of motion, Ramaswanny (62).

2.10.2 Differential

Differential methods are based on the differential forms of electromagnetics. A

basis function is chosen which approximates the variation of the desired quantity

24

in the solution region i.e. a linear variation of potential. A function is derived that

is based on the field equations and boundary conditions e.g. energy, capacitance

or inductance. The region is split into elements (for example triangular elements

Figure 12) and the function is expressed in terms of the element (basis)

approximation functions. The function is chosen such that its optimisation in each

sub element leads to an optimisation as a whole, and hence the field equation

solution. Methods used to derive this function include weighted residuals and

calculus of variations.

b

Figure 12: Finite elements

Finite elements by using approximation functions allow the field variables to be

calculated throughout the solution region. Furthermore, because the function

used in the solution is often energy based, quantities such as inductance and

capacitance are known to a higher accuracy than derived quantities, such as

electrostatic field strength and magnetic flux density.

Various adaptations have appeared that allows the incorporation of electric

circuits and motion within both 2 dimensional and 3 dimensional FE formulations.

An example of this includes work by Bedrosian (16). The incorporation of the

constituent equation for current flow within conductive materials allows the eddy

currents to be predicted in the solid iron sections.

Other work has included the coupling of the electrical, magnetic and thermal

models of the machine, Drieden (60).

An interesting application of the differential FE technique is given by Demenko (17

), where the similarity between FE equations and those of resistor & capacitor

electrical networks is identified. A disadvantage of this approach is that a form of

mutual capacitance is required for the model of each finite element. The

25

combined field and electrical circuit equations are then solved numerically and the

torque is derived via the use of the virtual work principle.

Various authors have compared the finite element method and magnetic

equivalent circuits e.g. Wang et al (34). Others have combined the two modelling

techniques e.g. Delforge et al (40) & McDermott et al (57).

It should also be noted that methods exist which allow the rotor skew of a typical

machine to be taken into account within 2 dimensional finite element analysis (De

Gersem et al (63)). These methods can also be adapted to other techniques to

also account for the effect of rotor skew.

2.11 Magnetic equivalent circuits

2.11.1 Electrical and magnetic circuit similarities

Reluctance magnetic circuits use the analogy that the electric equivalent of flux is

current and the equivalent of magnetic reluctance is resistance. This is the

approach used by Laithwaite (18) and others. While this may allow analysis of

the magnetic circuit, it does not give the correct power transfer between electrical

and magnetic circuits, as pointed out by Carpenter (3) and Haydock (4). It was

shown by Carpenter and Haydock that in magnetic circuits the equivalent of

inductance is permeance or as described by the authors ‘magnetic capacitance’.

Electrical: Q -C V (79)

Magnetic: <E> = Atnmf (80)

From Eq. 79 and Eq. 80 the similarities are obvious including the reason that

Carpenter equates the permeance as a magnetic capacitance. It follows that the

flow quantity is rate of change of flux. Magnetic circuits can be shown to obey the

equivalents of Kirchoffs circuit laws. This extends to the replacement of a number

of magnetic impedances by a single equivalent element (for linear impedances

only), as noted by Carpenter (3). Also shown by Haydock is that the interface

between the two types of circuit can be represented by a gyrator whereby the

current in the electrical domain is transformed into mmf in the magnetic circuit.

Haydock also demonstrated the ability to perform combined simulations of both

electrical and magnetic circuits using the gyrator coupling. A complete

26

explanation is given by Haydock (4) of the rules to transfer magnetic or electrical

circuits across boundaries thus leading to a completely electrical or completely

magnetic equivalent circuit.

An example magnetic circuit is shown in Figure 13 with Cm representing the

magnetic permeance. The source mmf is controlled by current in the electrical

circuit i.e. windings.

dO/dt Cm2

Cml Cm3mmf;

Figure 13: Example Magnetic Equivalent Circuit (MEC)

Magnetic equivalent circuits and permeance networks have found particular use in

the analysis of permanent magnet machines e.g. Rasmuuen et al (36).

A variation on the use of magnetic circuit techniques, is the application of

permeance networks to Bond-Graph models (Hecquet et al (56)). In the case of

Delforge et al (19) Electrical, magnetic and mechanical elements are created that

have the correct constituent equations and causal relationships. The rate of

change of flux is the through variable and mmf the across variable. The resulting

Bond-Graph network is then simulated using a package called ‘Neptunix’.

A further explanation of the transformation between electrical and magnetic

quantities, within combined electrical and magnetic equivalent circuits, is

contained in appendix A.

27

2.12 Conclusion

The basic field quantities have been introduced, and the relationships between

the various quantities have been presented. Some explanation as to the

significance of the relationships has also been given. This has been only a very

brief summary, but it will help provide a reference for the other chapters.

Finite element and finite difference methods can give accurate results for the field

quantities. The accuracy of the results is increased by an increase in the number

of nodes and elements. Finite elements are more flexible and widely used than

finite difference in machine modelling. A problem with these methods is the

computational effort needed for combining rotating electrical machines with power

electronics.

28

3 Methods of Modelling Electrical Machines

3.1 Introduction

The purpose of this review is not to exhaustively catalogue all the relevant

publications. It is to list those books and papers, which are thought to be

significant and have formed the basis of the present work.

The work by Haydock (4) has a detailed comparison of the various two axis

theories, and magnetic equivalent circuits, as applied to synchronous generators.

Therefore a detailed review of the models themselves will not be undertaken, but

a review of the modelling methods will be made.

Modelling of electromagnetic devices, specifically motors, generators and

alternators, can be approached from several different viewpoints. These depend

on the assumptions made in simplifying Maxwell’s field equations for the complex

geometry, coil configurations and the relative motions that are possible.

Ultimately each modelling technique has its own particular advantages and

disadvantages. The selection of the method used depends on the required use

and purpose of the simulation.

Two broad classes of model can be described: idealised machine descriptions or

field based approximations. In the former, various simplifying assumptions are

made about the machine operation and an equivalent circuit is subsequently

generated. In the latter, a geometrical model of the machine with the boundary

conditions is used to set up field equations that are subsequently solved.

Another important simplification, often used in modelling machines, is to reduce

what is a 3 dimensional problem to that of 2 dimensions. This simplification is

usually valid due to machine construction and operating conditions, although

important exceptions do occur e.g. where the field around the end turns of a

complex winding is to be investigated.

An alternative method is that used by Gibson (31), where a variational solution is

sought to lumped and distributed electrical circuits.

29

3.2 Machine magnetic circuits

In the examples of the inductor and transformer, relatively simple geometrical

shapes were considered. Similar calculations for the magnetic circuit can also be

performed for a machine. Difficulties arise because of the usually complicated

shape and winding configurations.

From Eq. 27 it is evident that the torque is generated by the change in inductance

of the circuit.

Energy stored in a pure inductor U = ^ L i2 (27)

It should be noted that Eq. 27 only applies to a pure inductor and that in a

machine the separate mutual and self-inductances need accounted for. The

major element that changes the inductance with motion is the air-gap, therefore

the air-gap needs careful modelling to correctly predict the torque.

A method of allowing for the effect of stator and rotor slots on the field in the air-

gap was developed by Carter (10). This modifies the results obtained by the

simple cylindrical model by applying a correction factor that takes into account the

effect of the slot. This method was later modified by Neville (11) to take into

account the effect of narrow teeth.

Another effect of varying the inductance is the generation of an emf in the motor

or generator that is referred to as speed voltage. This emf can be defined by

substituting Eq. 25 into Eq. 24 and splitting the derivative that gives:

The first term in Eq. 81 is the transformer voltage and the second speed voltage.

An area of particular difficulty is the torque derived from the air gap, yet it can be

shown by an analysis of the energy within the machine (Fitzgerald A.E. et al (8)

pp. 83), and application of the virtual work principle, that the torque is given by:

(81)

(82)

30

In the above UM is the total stored energy in the field and 0 is the angular

displacement.

3.3 Electrical equivalent circuit

The T model is based on the analysis of flux paths and the measurable properties

of the machine. Lumped values of inductances, which are based on the flux path

analysis, can be converted to an equivalent electrical circuit. This allows

electrical circuit solution methods to be applied, and aspects of the machine

performance to be predicted.

A relatively simple example is provided by the transformer, where the device can

be viewed as a system of coils linked by inductors. The values of the equivalent

circuit components can be calculated from tests such as open and short circuit. In

the open circuit test the secondary is left unconnected, and the voltage of the

primary measured while varying the current. Conversely, for the short circuit test

the secondary is short circuited, and a below rating voltage applied to the primary

and resulting current is measured.

From the equations for the transformer, Eq. 57 and Eq. 62, it is possible to

construct the equivalent circuit illustrated in Figure 14. Note that all the values

have been transferred to the primary side of the transformer.

_ m n
A X, Ri

_ m n [—
X2N,2/N22 R2Ni2/N22

!hA

V, Gc Br v 2n ,/n 2

Figure 14: Transformer equivalent circuit

For three phase circuits, balanced conditions are assumed and the circuit

parameters transformed to those of an equivalent single-phase circuit. Often for

power system load analysis the values of circuit parameters are also converted to

31

the per unit system (Fitzgerald A.E. et al (8) pp. 52). In the per unit system the

turns ratio can be removed, this therefore allows simpler calculations.

In the case of the synchronous generator (Figure 15a), the simplest equivalent

circuit consists of a synchronous impedance in series with the generator emf

(Figure 15b).

Armature
Coil a

Stator

Field D Rotor
Coil

Armature "
Coil c

• ̂ Armature
Coil b

rm.

Figure 15: Simplified synchronous generator/motor (a) and equivalent circuit (b)

Another example of an equivalent circuit is that of the induction motor (Figure 16).

The power lost to the mechanical load is represented by a resistive element (R2O-

s)/s) that varies with the slip (s) (Fitzgerald A.E. et al (8) pp. 420). Slip is the ratio

of difference in speed of the rotor and the stator field to that of the stator field.

Note the similarity with the transformer model already derived (Figure 14.).

rm.rm

Figure 16: Equivalent circuit of a polyphase induction motor

The type and number of machine tests that are performed allow a certain fixed

number of equation coefficients to be found. Therefore to determine the

32

parameters of more complex models there needs to be more complex testing,

unless simplifying assumptions are introduced into the model.

According to Slemon (12), in the specific case of induction machine models used

in electric drives, the models are often too complex. By operating the machine at

two speeds, four parameters can be measured, with five unknowns to be

determined. The traditional resolution is to arbitrarily make stator leakage equal

to rotor leakage (L|S = U). Slemons approach is to transform the T model (Figure

16) to a T model (Figure 17) that only requires four parameters.

rm

Figure 17: Induction motor equivalent circuit as suggested by Slemon

A method is presented by Freeman (30), which takes a basic field description of

the machine and converts it to an equivalent circuit. This is based upon on a

cylindrical model and T circuit elements.

3.4 Two axis

The machine is idealised as a variation of a general-purpose machine with

quadrature windings on the stator and rotor. Similar to the dc machine, one of

the axes is attached to either the stator or rotor mmf. The mmf field in the air-gap

is resolved as a result of two quadrature windings (Figure 18). An important

assumption, that enables the separation of the flux into two orthogonal

components, is that the field equations are linear. By the principle of

superposition, the 3 phase windings can be replaced by their dq axis

equivalents. This is shown in Eq. 83 where ad, aq and a0 are the two axis

components, while aa, ab and ac are the 3 phase components (Adkins et al (13)).

33

an

r
cos# cos

-sin# -sin|^#-

2

9 - * \
v 3 J
r 2n^

2

cos 2;r
+ —

v 3 J
2 7T̂f

-sin # +
V 3 j

1

a „

Ch. (83)

Note that for balanced conditions the a0 term is zero (the same as for symmetrical

component theory).

Use of two-axis theory is particularly appropriate in a salient machine, due to the

difference in rotor permeance along the direct and quadrature axis. The dc motor

and generator, synchronous motor, synchronous alternator and induction motor

can be described by similar equations, when the rotating machine has been

converted to the ideal form. By referring either stator or rotor quantities to the

other side of the air gap, it is possible to simplify the equations. This is especially

usefull for the salient synchronous machine as in balanced conditions the mutual

inductance seen by the rotor is constant.

1 Direct axis

Xds :

Stator

Quadrature axis

.Rotor

Figure 18: Two axis machine representation

In the case of the synchronous machine (Figure 18), the winding interactions are

analysed with the direct axis aligned with the rotor field coil. This analysis gives

the impedance matrix shown in Eq. 84. The d and q subscripts refer to ds and qs

in the diagram, subscript f refers to subscript dr in the diagram. Note that the

34

inductances are constant while the effect of rotor motion is included via the use of

speed terms (coL).

V -coLi
q _

n.
<

0 1

s - - l 4

d_
dt

coL„

- R . - L ,
d_
dt

L . A
dtJaf

coLf

R f +L
r s dt

- R . - L .

(84)

0 dt

Alternatively for the induction motor Parks transform results in Eq. 85.

V,ds

V,dr

V.qr

qs

u t L
dt

-M (o

d
M —

dt
Rdr +L —

dr r dt
-L,co

Lrco

Rqr+LrJ t
M —

dt

Mat

d
M —

dt
Ra +L —

q’ ’ dt

ds

dr

qs

(85)

In Eq. 84 and Eq. 85 the derivative terms are either included or assumed to be

zero, depending on whether a transient or steady state solution is required.

A problem identified by Sudhoff (41) et al is that the qd induction motor model

typically used in drive simulations can be very inaccurate in predicting machine

performance. Another problem can be accurately identifying the model

parameters (Jacobina (44)).

3.5 Space vector

The following is largely based on Vas (14). This method uses an analysis of mmf

and flux around the periphery of the air gap of an ideal machine, as for the two

axis model. A complex exponential is then used to represent both spatial

distribution and time variation. The reference point for the spatial distribution,

again similar to two axis theories, is any location that simplifies the calculations.

A good example of this being used in analysis is given by Suciu et al (42).

35

3.6 Calculation of permeance values for MEC

Two equivalent approaches exist for the calculation of permeance values. One is

direct application of the definition of reluctance Eq. 48, or its permeance

alternative.

Reluctance S = — = f . f x (48)
A J p(l)A(/)

The other method that leads to the same result is the application of Eq. 46

(Ostovic ((20) pp.9).

mmf = AO = — (46)
A

Use of the equation requires rearranging the flux and mmf to give the permeance.

Alternatively, Delforge et al (19) use a finite element package to determine the flux

and value of scalar magnetic potential difference. Thus it is possible to determine

the ‘flux tube’ and hence the permeance network and element values.

3.6.1 Incorporation of saturation

Because the emf is the derivative of flux, therefore the first derivative of any model

of saturation should be continuous. Accurate physical models of the magnetic

response of ferromagnetic materials do exist. Whether these models can be used

depends on the functions available within the modelling environment, and if the

time taken to numerically evaluate the functions is prohibitive. Ostovic ((20)

pp.54) lists several methods for modelling the B/H curve. The linear piecewise

approximation being rejected due to its derivative discontinuity. The quadratic

piecewise approximation allows a curve that has no discontinuities in the first

derivative. If higher continuous derivatives are needed then a cubic

approximation can be used. Other alternatives are exponential approximations

such as Eq. (86) which depends on the curve fit of coefficients a, b and c. A

problem with such a function is that the inverse cannot always be analytically

found i.e. B is an implicit function of H.

H =aB + bBc (86)

36

Where a curve fit is used for the inverse, simulation difficulties can arise due to

curve fit error. If both normal and inverse equations are incorporated within a

simulation then a multi-valued BH relationship exists.

Haydock uses a polynomial curve fit (SPICE 2G6 only allowed this option), this

gives reasonable results for a certain operating range, but can be a poor fit at low

or high mmf values.

3.6.2 Incorporation of motion.

A relatively simple method for incorporating of the effect of motion is that used by

Ostovic (20) and others. This simulates relative movement of the stator and rotor

by in effect altering the permeance values between rotor and stator. This relies

on there being a permeance function between each possible stator peripheral flux

path and the possible rotor peripheral flux paths. Thus for n stator flux paths and

m rotor flux paths there are nxm permeance elements needed. Thus for a

detailed sample of air-gap flux a very large number of flux path elements would be

required. A problem then arises as how to derive the values of the air-gap

permeance. This has two parts i.e. the permeance as a function of the motion and

the peak value.

A method is that used by Chaudhry et al (2) where a finite element analysis is

used to derive a uniformly-distributed samples of the change in permeance. These

are then used as part of a conventional state-space technique to determine the

open circuit characteristic.

Ostovic’s approach is to use a piecewise sinusoidal approximation for the

function. Skew of the air-gap is allowed for by suitable corrections of the function.

Peak values of permeance are calculated for typical trapezoidal elements, with

correction factors for large slot sizes and rotor non-concentricity.

Preston and Lyons (21) have used the MEC to model a switched reluctance

motor. A finite element solution at rotor angles of 0, 90 and 180° is used to

determine the values (on, a2& p) of the following function:

Air-gap reluctance Re = ---------------------------- (87)
ax +a2|cos(#/2)|jP

37

Good results were obtained for the multiply excited motor model when compared

to a finite element model. As pointed out by Moallem et al (22) good results can

be obtained from MEC models, provided the air-gap flux is accurately modelled.

The model used by Moallem et al has multiple MEC elements in the air-gap, the

elements being derived from a FE solution.

Another approach, where there was no restriction on the type of functions

available, is that by used by Delforge et al (23)(24). While not describing the

function used for the curve fit, it is stated that a transcendental function is curve

fitted to a finite element analysis of the permeance variation.

Another method, as used by Haydock, is similar to that used in two axis methods.

This depends on the observation that the rotor and stator are only concerned with

the mmf, and not physical position. Therefore the phase currents are rotated

around the stator, and the motional emfs are explicitly incorporated in the air-gap.

The resulting circuit is smaller than the previous method, but the need to find

phase symmetries means that automatic generation from geometrical data is

difficult.

3.7 Transformer Optimisation Example using MECs

An increasingly important area of use for both Finite Element (FE) techniques and

Magnetic Equivalent Circuits (MEC) is as part of optimisation studies. Of

particular note is the work by Ratnajeevan et al (58) where the use of neural

networks and gradient methods is explored. Often the there are device

dimensions that need adjusting such that some design goal is satisfied. The

designs performance according to certain criteria needs to be repeatedly

evaluated, with usually minor changes to device dimensions. A risk with all such

optimisation methods is that of false minima due to peculiarities of the device

modelling method. Ranajeevan (54) in particular mentions the problems of mesh

error when using FE solutions in the optimisation loop. The predominant effect is

to give very slow optimisation, due to the interaction between the meshing/FE

solution and the optimisation routine.

The design of the transformer depends on the optimisation of certain performance

criteria. Another example of MEC models being used to optimise magnetic

38

circuits is given by Hameyer (37). Optimisation can be defined as the maximising

or minimising of certain performance criteria. These criteria are application

dependent and include such things as magnetising current and secondary mass.

The relative importance of each criterion can only be decided by engineering

judgement.

Other restrictions upon the design include constraints on the range of values that

certain variables are allowed. These constraints include for instance the

maximum core width and height.

Two approaches to the design optimisation are available:

1. Plotting the variation of performance criteria with a change in independent

variable, while holding the other variables constant. This assumes the

independent variables have conjugate minimisation directions, which for the

situation given has not been proved. If less than three independent variables

are to be optimised then another strategy is to plot the variables as a

multidimensional plot. Unfortunately in this situation, more than two

independent variables need to be plotted.

2. Use can be made of numerical procedures to find the optimum. Several

numerical methods exist for the minimisation of functions, two broad categories

are methods that find an optimum and those that find the optimal solution. A

definition of optimal is those values of independent variables that give the

global maximum or minimum function value. This function is the objective and

can incorporate various criteria via weightings. The weightings partially

determine the criteria relative importance (partially as the criteria functions

themselves will vary in scale). Determination of the global minimum can be

guaranteed for linear objective functions. This is not the case for non-linear

functions where local minima can give false optimal values. In such a

situation, the best that can be achieved is that an optimal solution is

determined i.e. it is nearly as good as the global optimal solution.

3.7.1 Optimisation

There are several numerical optimisation methods available. Principle differences

include whether the algorithms assume a linear or non-linear function of the

independent variables. Another differences is whether it is assumed that the

39

independent variables have conjugate minimisation directions. In other words, the

minimisation movement along one dimension does not spoil the minimisation

achieved in one of the other directions.

Methods exist that can determine a suitable set of conjugate directions (basis

vectors), these allow the application of single dimension minimisation routines to

each dimension without the need to redo a previous minimisation. A problem with

such methods is local minima that can give a false optimum. The degree to which

the local minimum is different from the global minimum depends on the initial

values of the minimisation routine. To guarantee for non-linear problems that the

global minimum has been found would require finding every local minimum.

For the problem as presented here, it is sufficient that a solution that is near the

global minimum is found. Methods that can provide such results are statistical in

nature and have a certain probability of finding the global minimum. The

particular method chosen is simulated annealing, due to its previously successful

application on other problems.

3.7.2 Simulated annealing

This method is based on an analogy with the thermodynamic process where

metals are slowly cooled from a high temperature. If the cooling is sufficiently

slow then the atoms are ordered to form a pure crystal that can extend for several

billions of atom sizes. The ordered crystal being the minimum energy state that

the atoms can occupy. Conversely if the cooling is too fast then an amorphous

state exists which has a far higher trapped energy state. From thermodynamics

the probability of a atom having a certain energy can be approximated by the

Boltzmann probability distribution:

- E

Prob(£) = e kT (88)

Where E is the energy, T is the temperature and k is Boltzmann’s constant.

The application of the thermodynamic theory of annealing is by equating the

objective function value with that of energy. The function independent variables

40

are viewed as equivalent to the dimensions of the thermodynamic state space.

During each iteration the values of the independent variables are altered in a

random manner according to Boltzmann’s equation. A slight modification known

as the Metropolis algorithm always takes a down hill step but will sometimes take

an uphill step. The best result is saved and is used as the starting point for a new

set of iterations. From each set of iterations to the next, the value of notional

temperature is decreased. The ultimate minimum is when the temperature gives

random variations less than the machine floating point resolution.

The algorithm actually used also incorporates the downhill simplex method to

improve on the convergence properties near the minimum. When the temperature

is high the algorithm always accepts a downhill step, but will sometimes accept an

uphill step. When the temperature is low the algorithm behaves exactly as the

simplex method where the set of points (simplex vertices) are transformed such

that the simplex always moves in the direction of the minimum.

3.7.3 Round transformer coupling equations

Shown in Figure 19 is a cross-section through the core of a round transformer,

which is split through the centre at an angle to the horizontal. As stated earlier

the objective is to optimise the design of the transformer given that certain of the

dimensions have fixed limits, out of which they cannot be taken. k1 & k2 are

variables which are to be varied, thus changing the physical dimensions. The

calculation of the permeances is dependent on the values of k 1 & k2.

" tt-
+ + /

+ +

Figure 19: Cross-sectional view o f round transformer

41

cos $ = p.f. (power factor) (89)

Length of equivalent rectangular core (ks lamination stacking factor):

I f e ~

Minimum area of core through which flux passes:

(90)

Ac = lfew-Tstev(ku k2i\) (91)

Number of turns to give voltage Vp (f frequency, B peak flux density):

(92)
4.44 JBAC

Reluctance of combined air-gap Rg with distance between cores of lg:

L cos2 9 f i
R . = - --------

Load current lL as seen by primary: /, =

V*. k2S

S
V.

(93)

(94)

Magnetising current with contributions from the air-gap and core (Sfe core specific

VA, Pfe core specific power loss):

BAR J s l - P i
I = — f- W „

N J 2 V, f‘
(95)

Total primary current including core losses:

i , =
r P
S cos (f> + Wfe

p j

+ (5sin«S + / m):

Copper area for specified current density 8:

(96)

I ,N , + I.N ,

Height H (kw winding window occupation factor):

(97)

H = A„./kc u w

(.D! -) / 2 - (Arj + k2)w
+ 2 w (98)

42

Value of 9 given the copper area has the same ratio as secondary/primary

current:

tan 9 -
21 j (H - 2w)

((Dx- d x) /2 + (k2 - k x)w)(I + / ,)

Maximum value of #tan# v =
Dx- d x

(99)

(100)

Copper volume: = tiAcu((Dx + dx)/2 + (kx- k 2)w) (101)

Area of iron: Afe = w({kx + k2)H + (Dx- d x) ~ 2(kx + k2)w) (102)

Volume of iron:

Weight of copper (pcu copper density):

W-. = Vcup cuCU CU I cu

Weight of iron (/*e lamination density):

Losses within copper (p resistivity): L^ = 8 2 pVt

Losses within core (Pfe Iron specific power):

Vji - l f eAfe (103)

(104)

(105)

(106)

L fe = PfeWfe (107)

Area of secondary laminations:

w(Dx- d x) k2w 2 tan9 kxw2 tan# . r \ «
s e c . je = ~ ± F — - + — — “ + —— ---------- + * i w ((A - d x) /2 + kxw)tan9 (108)

h

2 2

A.
Weight of secondary: Wsec = Wfe - c fe + W

Afe Ip + 11
Weight of primary: Wprim. = Wfe + W„ - Wsec

Maximum inter-winding voltage on the primary:

V = ^ ~ max ■ tv

(109)

(110)

r r \ \

0 H - w(2 + k2 tan#)
+1

F
V I V 7uS) J

Efficiency: 9 =
^cos^

S cos 0 + L^ +Lfe

Permeance integral calculations:

(111)

43

Define: ho=k2w (112)

hj = {(DX -d^H -kp^XanO (113)

u J jH - 2 w - { h - h 0)l2)
Primary leakage: P = , f ------------- 5— -— f (114)

^{(Dl-d l) /2 -(k , +k2)w)

Secondary leakage: P2= —,— + ^ ° ^ 2----- (115)
3((Dl - d 1) /2 - (k 1+k1)w)

Integral 3 & 4 (lower and upper limb):

- l fM 2 ((D l - d l) /2 - {k l +k2)w)KDl - d l)]
/s" = (116)

Integral 5 (inside lower limb):

- l fe In((H -w - fy - k xw tan 6) /(H - //, - kxw tan 0))kx
5 1 - kx tan 6

Integral 6 (inside upper limb): I 6 = (117)
1 + kx tan 6

- 1. ln((^ ~ 2 w -h) KH - wj)k2w
Integral 7 (outer lower limb): / 7 = —-— -------------- (118)

K +w

- l f0 ln(/z„ lw)k0w
Integral 8 (outer upper limb): / 8 = — ----------------- (119)

w -h

junkJ f k,w
Inside air-gap permeance: P9 = ---------—— (120)

/ cos 6

_ uJ ilfk^w
Outside air-gap permeance: P]0= ------- —— (121)

/ cos 0

3.7.4 Solving the design equations

To solve the transformer equations the root needs to be found, as 6 is dependent

on lp and Wfe is dependent on Vfe. The algorithm chosen is Broyden’s method that

is a multi-dimensional variation of the single dimension Secant method. The

advantages of the method include no requirement for the first derivatives

(Jacobian matrix) and it potentially converges faster than the Newton method.

3.7.5 Implementation of algorithms and design equations

The algorithms were implemented in ‘C’ using supplied routines for the simulated

annealing and Broyden’s method. Minor alterations were made to the Broyden

44

routine. These alterations stopped the routine from exiting the program upon root

finding failure. Instead, the point on the simplex where the failure occurred is

given a value equal to the highest existing function value within the simplex. This

failure could arise if there is no solution for the particular input values. The

simplex will therefore tend to try a direction that is towards the lowest simplex

point, and away from the problem point.

The constraints are incorporated by adjusting the objective function value by a

cost factor. A suitable value for this cost factor is such that it forces acceptable

compliance with the constraint while still minimising the objective function. The

cost factor must therefore be less than the simulated annealing tolerance value.

3.7.6 Results of design optimisation

The values that are thought to be most important, in the design of the transformer,

are the magnetising current and secondary mass. The program is therefore run

with a range of weightings that alter the importance of one criterion with respect to

the other. Figure 20 shows the results of running the optimisation program with a

selection of weightings i.e. adjusting the relative importance of secondary

magnetisation current versus secondary mass in the optimisation objective

function.

(/>
Q .
E
&
c
CD
i _3O
ri>co
ofl

D)
'(D

6
CD(/)

5.5

5

4.5

4

3.5

3

2.5

2

Sec. weight ♦
Mag. current +■

1.5
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Weighting ratio (Sec. Weight/Mag. Current)

Figure 20: Plot of secondary weight and magnetising current verses weighting

45

It is important to note that the design equations used in the optimisation neglect

any effect of leakage. The actual performance results from simulation and testing

are therefore likely to be different from those presented here. However the above

is a usefull example of how permeance elements can be used within an

optimisation problem. The solution could be used as the basis for further design

studies.

3.8 Conclusion

The broad background of various types of models has been presented.

Reluctance based models allow electrical equivalent circuits to be derived, but

these lead to models that are difficult to relate to the actual machine design.

Certain field effects, such as fringing, are incorporated by the use of empirical

correction factors. Models based on an ideal machine (such as two axis) often

have quantities that are difficult to relate to the physical machine. When the

machine is available for test then the model parameters can be determined, the

resulting model being valid for operating conditions similar to those in which the

tests were performed. A further problem is due to the inherent assumption that

the machine can be described as a linear system.

Magnetic equivalent circuits have advantages and disadvantages compared with

the previous methods. The topology of the magnetic circuit is dependent on the

flux paths, which are either empirically deduced or found via field solutions. Non­

linear properties are included directly in the magnetic circuit. Increased accuracy

can be achieved by the inclusion of more elements in critical sections. The values

of the lumped permeances can be related to the physical machine. It is also

relatively easy, via use of the gyrator or linkage (see Appendix A), to connect

electrical and magnetic circuits within one model.

Therefore, it is proposed to use the MEC to construct the machine models. Within

this scheme the determination of permeance values will be via an application of

the reluctance integral.

Another justification for the use of the MEC is that if very accurate field quantities

are required then another scheme such as Finite Elements can be used. Wang

et al (34) compare the results of using a finite element solution and a magnetic

46

equivalent circuit for modelling a brushless DC motor and show that 65-90%

accuracy can be achieved, with a relatively simple model. The MEC providing an

intermediate complexity model.

47

4 Development of Multi-Physics SPICE models

4.1 Introduction

Machine types that will be modelled are restricted to rotational machines with one

stator and a rotor. The magnetic field will be assumed to be uniform along the

machine axis and end coil effects are neglected. The machine can therefore be

approximated as a section through the middle of the rotor length with all currents

being perpendicular to the plane of the section.

The main criteria are to provide models that are amenable to automatic generation

from a single textual description. The various elements of the magnetic circuit will

be implemented as either SPICE circuit components or sub circuits.

Non-linear capacitors will be defined and use will be made of these to represent

the magnetic permeance.

The permeance of the air gap elements varies with the angle of the rotor relative

to the stator. A suitable function therefore needs to be provided, which can model

the variation of the air-gap permeance. A function is described that has a

continuous first derivative and is compatible with SPICE.

The similarities between the electrical circuit equations and mechanical motion

equations are shown.

Summation of the torque elements generated in the air-gap allows the total

machine torque to be calculated. There is no analytical solution to the derivative

of the permeance function, therefore a method of obtaining the derivative during

the simulation run is derived and described. An alteration to reduce the

inaccuracy of the simulation, for large values of accumulated rotation is

developed.

A method of incorporating the BH curve characteristic is introduced allowing an

approximation of the core loss to be simulated. This effect is illustrated with two

examples.

48

Having defined Eq. 122 for the variation of the air-gap permeance with rotor

angle, the coefficients need to be calculated from the machine information; an

algorithm for this is described. Test results are also given with an example

permeance verses angular position curve.

4.2 Non-linear capacitor

Using 2 = CV, if the capacitor value is fixed then the charge (Q) on the capacitor

can be varied by changing the voltage (\/), this would have the same effect as

varying the value of the capacitance. This effect is illustrated in Figure 21 where

the voltage across the capacitor is modulated by a function denoted by fn. The

charge on the capacitor (C) is therefore partially controlled by the function, a

change in stored charge gives a current, which is transferred to the external circuit

via the current controlled current source (/).

V1

y=V(1,2)*fn.

v=o

V2

Figure 21: Non-linear capacitance

4.3 Permeability modulation from rotor motion

The technique used for the incorporation of relative motion, of stator and rotor, is

the same as that used by Ostovic (20). This is a simple scheme, where there are

n possible rotor air-gap flux paths and m possible stator air-gap flux paths, the

resulting number of air-gap elements needed is n x m. This is far more than

would be needed for a stationary rotor and stator while moving the field with

explicit addition of motional emfs (Haydock (4)). The method allows relatively

simple automatic generation of the air-gap elements, and has a major advantage

that minor changes are needed to model non-concentric rotors. A disadvantage is

the number of elements needed to model the air-gap is n x m compared to n + m

when the field is moved.

49

A suitable function that allows a curve fit of the required permeance that can be

implemented in SPICE version 3 is given by Eq. 122. This is one of many

possible equations which can be implemented in spice, which could be used as

the basis of a curve fit.

Permeance function Cm(<9) = Pmax -e alsin((^+^V2)| (122)

Note that Eq. 122 is first derivative continuous (Figure 22) as demanded by

SPICE based analogue circuit simulators for proper convergence.

0 . 9

0.8
Q.
<0O) 0 . 7

' o 0.6
8c(0<D
EL.

0 . 5

a>
a . 0 . 4

J2u
T3O2

0 . 3

0.2

■6 •2 0 2- 4 4 6
A n g l e o f r o t a t i o n (r a d i a n s)

Figure 22: Plot of relative permeance function

4.4 Comparison of curve fitted permeance functions

As a check of the validity of the equation used as the basis for the curve fit, a

comparison is made between the equation used by Preston and Lyons (21) and

that used here. Due to the voltage developed in the coils being due to the

derivative of the change in flux, the first derivative of the permeance function is

very important for the successful modelling of the machine. For the comparison

typical sets of coefficients values are used for the respective curves, the first

derivatives are then compared.

(123)

50

Using Mupad (52) the first derivative is:

, sign(sin —) • acp cos—• |sin x[1 • e

f, = ------------ 2— (124)

Given the equation/, = e |smx| and the implied coefficients,

differentiating wrt x (using Mupad [52]):

/ j = -2 2 cosx • |sin jc| • e-11lsmxl . sign(sin x) (125)

The following is equivalent to the equation presented by Preston and Lyons (21)

(Equation 120):

f2= a + b-

Using Mupad [52] the first derivative is:

/ 2 = -

xcos—
2

(126)

X Xsign(cos —) • be sin — • Xcos —
c~\

2 2 2 (127)

120if f2 = 0 +1 • |cosx| is the closest matching curve to that of fx ,

differentiating wrt x (using Mupad (52):

119/ 2 = -20sinx-|cosx| -sign(cosx) (128)

Shown in Figure 23 is a plot of the respective curves, as can be seen there is a

very good match between the first derivatives for both equations.

51

Comparison of Permeance Curves and their First Derivatives
3

exp(-11*abs(sin(x))**2) —
p^)*sgn(sin(x))*exp(-11*abs(sin(x))**2) —

\\ (0+ r(abs(cos(x))**20)) —
-2il*sin(x)*abs(cos(x))**19*sgn(cos(x))-----

2

1

0

1

2

3
2 2.2 2.4 2.6 2.8 3 3 2 3.4 3.6 3 8 4

Angle (radians)

Figure 23: Comparison o f permeance functions

In this particular case the equations / , & f 2 can used interchangeably. However

in certain situations one or the other curve fit may not be possible.

The advantage in certain situations is that the equation, as presented in this

thesis, is a better fit when there is a significant difference in rotor and stator pole

area.

4.5 Representation of mechanical quantities

I, d isplacem ent

Vmecht
rotational

ve locity x m, mass

Figure 24: Typical mechanical quantities o f a shaft.

The mechanical torque of a machine is given in Eq. 129 where position is

obtained by integration of the velocity see Figure 24 for illustration. The inertia is

proportional to the mass ‘m’, while the constant ‘k’ is proportional to torque divided

52

by displacement. The voltage in an electrical LRC circuit is given by Eq. 130.

The similarities between the two equations indicate how the mechanical quantities

relate to their electrical equivalents.

Mechanical: T = R „chv „ch + R^„dvmJ + J + kd (129)
at

Electrical: V = Ri + Ri2 + L — + — \idt (130)
dt C J

The torque generated by the magnetic circuit is calculated during the simulation

and is used as a source voltage for the mechanical equivalent circuit. Current in

the electrical equivalent is velocity in mechanical quantities; the integral of the

velocity is fed back to the magnetic sub-circuit to allow the calculation of the

dependent air-gap permeances.

4-6 Torque calculation

By application of the virtual work principle the torque can be calculated (Ostovic

(20), Ratnajeevan et al (9), Demenko (17) uses:

torque t = ^ ~ (131)
a e

From Eq. 28 energy in magnetic field is given by:

U = ^ m m f2 Cm(0) (132)

.-.Substituting Eq. 132 into Eq. 131 gives reluctance + Lorentz torque:

„ 1 . 2 a C m (0) - a m m f m q o \T = — m m f — + ^ -Cm (133)

Assuming constant mmf gives:

T = — m m f 2 d Cm^ (134)
2 a e

To numerically calculate the partial differential of the magnetic permeance

function, use is made of the central difference scheme:

d c m (O) { c m (0 - A e) - c m (e + A e))

a e 2 A 0

53

In the derivation of Eq. 134 it was assumed that the mmf is constant. In numerical

calculations, the position perturbation must therefore be such that the change in

mmf is as small as possible, while still producing numerically significant

differences in permeance.

A numerical problem is that a small difference is added to, or subtracted from, the

rotational position before the sine is taken. To improve accuracy for large

numbers of revolutions or cycles the following minor change can be made to the

sine function.

Using identity: sin(yl ± B) = sin(y4) cos(2?) ± cos(yl) sin(i?)

c (0 ae)=p 1̂36^

Provided the variation of permeance with respect to displacement is known, then

applying a curve fit of Eq. 122 gives the plot illustrated in Figure 22. The

numerical approximation to the derivative of the permeance can be found by

applying the function in Eq. 136. This derivative curve is illustrated in Figure 25

and can be seen to be continuous, thus satisfying the non-discontinuity criterion.

An extension of the above technique can be made to find other forces within the

system, provided the variation of permeance with displacement is known.

54

<DOc
<T3
<DES
CL
CL
03
CD

03

O
<13
>f5
>

0.5

03
O
a>
E3c
CDOc
CD

llT3

-0.5

-1.5

c
CDO

■6 ■4 ■2 0 2 64
Angle of rotation (radians)

Figure 25: Central difference scheme used on relative permeance curve

4.7 BH curve fit for the non-linear magnetic permeance.

Some circuit simulators have a non-linear inductance model with hysteresis

incorporated. A problem with using capacitors to model magnetic elements is that

SPICE does not allow the transfer of non-linear curves belonging to inductors. A

way to implement the required BH curve is therefore required.

Important criteria for the selection of an appropriate model of the BH curve were

the continuity of first derivative, and compatibility with SPICE version 3. The

curve used is an exponential function (Eq. 137) as described by Brauer (25).

Reluctivity v = kxeklBl + k 3 (137)

The Brauer curve gives a closer fit, over a wider range, to the actual BH curve

than does the polynomial curve fit. The implementation of the SPICE model of the

Brauer exponential function is illustrated in Figure 26. This will impose higher

processing time than a polynomial curve fit, but it would only be used where

necessary in the model. Implementation of the Brauer function relies upon the

iterative solution of the reluctivity. This could cause the simulator to give

numerical errors and a lack of convergence but in practice, the particular

simulator used for the test circuits, converged satisfactorily.

55

V=V(P,N)*({kO} / ({k1} * exp({k2> * V(B1_P) * V(B1_P)) + {k3 })

C1

Figure 26: Implementation o f non-linear permeance

The test circuit given in Figure 27 was used to obtain the results in Figure 28 with

no hysteresis i.e. R2=0. This test circuit has no resistive losses and a BH curve of

cold rolled steel was used. Note that in the following plots the ordinate is the

voltage across the capacitor. This is the integral of current hence proportional to

the magnetic circuit flux. The abscissa is the voltage across the non-linear

capacitor, or in magnetic circuit terms the mmf.

R2

1Gsin 0 2K 100 20ms magcap : k0=1 k1=3.8 k2=2.17 k3=396.2
MC1

Figure 27: Test circuit for non-linear permeance

56

1: :v1_p-:c1_p

0.5-

>

-0.5-

-1.5-
-1.5 -0.5 0.5 1.5

:c1_p/KV 500V/div

Figure 28: Graph o f flux verses mmf, with no hysteresis

The effect of hysteresis and eddy current loss can be modelled by the

incorporation an additional series resistive element (R2). The method used to

calculate the value of the loss resistance is to use the data available from the

manufacturers who describe the loss per Kg at a fixed frequency. A typical value

needs to be calculated at the expected operating point. This is not an ideal

solution as the relationship is in fact non-linear, but gives an adequate

approximation for simulation. Example curves with additional resistance are

shown in Figure 29 (R=0.25), Figure 30 (R=0.5) and Figure 31 (R=1). It can be

clearly seen that the additional resistance models the hysteresis effect of the

magnetic circuit, thus validating the model. The greater the resistance the larger

the hysteresis effect.

Figure 32 shows a circuit used to test the effect of an ac signal upon a dc value

and the resulting incremental hysteresis curve. The curve in Figure 33 shows the

mmf drop across the permeance rising to the fixed operating point. Figure 34

shows more clearly details of the incremental hysteresis loop.

57

:c1_p/KV 500V/div

Figure 29: Graph o f flux versus m m f with hysteresis (R2=0.25)

1: :v1_p-:c1_p

— —5
/ /

y
/ /

G

/
"' "

/

0

/

/

//5
/

vyr

/

- - -■

r / —'
-1.5 -1 -0.5 0 0.5 1 1.5

:c1_p/KV 500V/div

Figure 30: Graph o f flux versus m m f with hysteresis (R2=0.5)

1: :v1_p-:c1_p

—--------

V \ \ \
__

_
1 // / /

/

G /

yG

\ s '

fr/----- r =
____" " -

-1.5 -1 -0.5 0 0.5 1 1.5

:c1_p/KV 500V/div

Figure 31: Graph o f flux versus m m f with hysteresis (R 2-1)

R2
C1V1

sin 0 100 100 20ms

1G
magcap : k0=1 k1=3.8 k2=2.17 k3=396.2
MC1V2

pulse 0 1000 1ms 20ms

Figure 32: Incremental magnetic hysteresis loss test circuit

59

1: :v1_p-:c1_p

1.4

1.2 -

o.a

0.8

0.4

0 .2 -

°0 0.2 0.4 0.6 0.8

:c1_p/KV 200V/div

Figure 33: Graph o f flux versus m m f with Incremental hysteresis

1: :v1_p-:c1_p

1.45-

1.44-

1.43-

1.42-

1.41-

1.4-

1.39-

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

:c1_p/KV 20V/div

Figure 34: Detail o f incremental hysteresis (flux versus mmf)

4.8 Calculation of the permeance

In Eq. 138 if the reluctance of a certain flux path can be calculated, the

permeance by definition is known. The permeability of the area of integration is

60

assumed uniform, permeance is therefore taken out of the integration and can be

modelled separately.

— = — = 5 = 1— —— , (138)
Cm A I m(x)A{x) Cm A(x)

In Eq. 138 w is the length along the flux path and A is the area perpendicular to

the flux path. By inspection of the above equation, a simple numerical algorithm

is possible. Each flux path with in the machine is given boundary curves with

designated flux entry and exit curves. In Figure 35, the flux entry and exit curves

are designated as AB and EF respectively.

Figure 35: Example of integration path

The following procedure is performed on each part that represents a flux path:

1. Calculate the scalar length of each side of the path i.e. BE and AF.

2. Divide the scalar length by the number of sections required, to arrive at values

a and b.

3. Step along each side of the path, starting with AB, and perform the sub

integral.

4. Add all sub integrals to give final reluctance value (invert to give the

permeance value used at simulation time).

61

WAV= I ((Cu-Cd)/2+Cd)-((Pu-Pd)/2+Pd) |

Figure 36: Line integral of subsection

The sub-integral for each subsection of the part is illustrated in Figure 36

(relationship to the flux path for the part is shown in Figure 37). The nodes

denoted by Cu, Cd, Pu and Pd are arrived at within the previous algorithm by

stepping along the section sides. Cu and Cd are the current upper and lower

nodes respectively. Pu and Pd are the previous upper and lower nodes

respectively. The length L is the length of the rotor or stator. See Figure 37 for

an example of finding the permeance of an arbitrary flux path.

Figure 37: Example of arbitrary shape integration

A problem arises with start and end (flux entry and exit) curves that are not simple

lines. The integration will miss out a section of the part that is on the start side, of

From Eq. 138
CuCd

PuPd

(139)

Sweep of

Device Part

Path of Integration

the first integration line. The same problem arises also with the end curve. This

needs to be taken into account when defining the flux path in terms of the shapes

of the parts in the frame.

A possible solution to this problem is instead of sectioning the part along its length

(based on the reluctance being summed for the part); the permeance is calculated

directly. This would involve applying Eq. 140 and using sections that span the

length of the part.
h h

cm = A=]ft0c'>wr\dx’ = (14°)t W(x) J0 W(x)

In Eq. 140 h is the height of the part, L is the length perpendicular to the flux path

and W is the length along the flux path.

4.9 Procedure to numerically find position equation coefficients

The permeance values for the air gap are dependent on the rotor angle relative to

the stator. A problem therefore arises as to how to derive the equation

coefficients from the machines geometrical data. Ostovic ((20) pp.36) uses a

custom solver and is therefore able to use a piecewise function that implements a

sine approximation. For the purposes of the present exercise, the calculation of

correction factors for rotor eccentricity will be neglected. It will also be assumed

that the air-gap is small and therefore the effect of fringing can be neglected. To

accurately include the effect of fringing, on the flux path, a more sophisticated

field solution would be needed e.g. Van den Bossche (38).

The optimum values of coefficients for use in Eq. 122 i.e. reduce execution time

include that the exponent c must be an integer and as small as possible. The

value of a should therefore be the larger value that gives a solution. Because of

the complexity of the function, a relatively simple search scheme is used to find

suitable coefficient values. This scheme is as follows:

1. Find the relative angles of rotor and stator curves that are designated as field

entry or exit and are adjacent to the air-gap.

2. Find the mid point of the curves on both the rotor and the stator so that the

relative offset values can be calculated.

63

3. Use the machines value of skew to give the lower and upper permeance curve

positions, in the example given positions for 10% and 90% of maximum

permeance.

4. Step through values for equation coefficients until suitable values found, or

abort if coefficient limits reached. The search is performed by incrementing the

integer c from 1 to the maximum allowable. After each increment of c the value of

a is incremented by a suitable step size until the function lies within the 10% and

90% permeance limits, or the next value of c is needed

64

A test program of the coefficient search algorithm is shown below in Figure 38.

/* s im ple program to test solving of the rotional equation coefficients

Author: D. Downes T N TU */

#include <m ath .h>

#include <stdio.h>

^include <conio.h>

tfdefine M A X _ P O W E R 13

#define M A X _E X P _M A G 13

tfdefine S T E P _ F A C T O R 100

#define S K E W 1 0

^define S K E W 2 6

^define C U R V E 1 3

^define C U R V E 2 6

int m ain (void)

{
long c, b;

double a, result, res_top, res_bot, change, bot, top;

double skew l = SK EW 1;

double skew2 = SK EW 2;

double curvel = C U R V E1;

double curve2 = C U R VE2;

F ILE *out;

printf("open output file: % s\n",Mout.txt");

if ((out = fopenfout.txt", Mwt"))=="out.txt") {

printf("Cannot open output file: %s\n","out.txt");

return 1;

}
/ / find position equation coeff.

change = ((cu rve l <curve2)?curve1:curve2)*2.0;

change += (skew 2-skew 1);

change = (change<(curve2+curve1))?change:(curve2+curve1);

bot = (curve2+curve1+fabs(skew 2-skew 1));

top = fabs(bot-change)/2.0; /* point at which 9 0 % of m ax .*/

bot /= 2.0; / * point at which 10% of m ax .*/

fprintf(out,"Results of calc:\n");

for (b=1; b<M A X _P O W E R ; b++) {

for (c=1; c< (M A X _ E X P _ M A G *S T E P _ F A C T O R); C + +) {

a = pow l(10 ,(do ub le)c /S T E P _F A C T O R);

res_top = exp (-1 *a*p ow (fab s(s in (M _P I*top /360 .0)),b));

if (res_top>0.9) {

res_bot = exp (-1*a*p ow (fab s(s in (M _P I*b o t/360 .0)),b));

if (res_bo t<0 .1) {

65

fprintf(out,"skew1: % 2.4 f, cu rve l: % 2 .4 f, skew2: % 2 .4 f, curve2:

% 2.4 f\n"Iskew 1lcurve1,skew 2,curve2);

fprintf(out,"therefore top: % 2.4f, bottom: % 2 .4 f\n "Itop1bot);

fprintf(out,"resulttop: % 1.3 f, bottom: % 1.3f\n",res_top lres_bot);

fprintf(out,"b: % \, ",b);

fprintf(out,"a: % 3.3e \n \n",a);

fclose(out);

return 0;

}

}

}

}

printf("Finished\n");

fclose(out);

return 0;

}

Figure 38: Program to test permeance coefficients algorithm

An example test run of the program is shown in Figure 39. The program has

displayed values only when a valid result was found. Note that coefficient c in the

equation above is referred to as coefficient b by the program. The resulting

function is plotted in Figure 40.

Results of calc:

skewl: 0.0000, curvel: 3.0000, skew2: 6.0000, curve2: 6.0000

therefore top: 3.0000, bottom: 7.5000

result top: 0.943, bottom: 0.100

b: 4, a: 1.259e+05

Figure 39: Output of test program

A significant problem with the function, as described, is there is not always a

satisfactory solution that for the 10-90% curve fit. Other curves would probably be

66

better in certain situations, particularly if a finite element solution of the air gap

flux is available.

e x p (- 1 , 2 5 9 f e 5 * a b s (s i n (p i * x / 3 6 0)) * * 4) - - - - - -
0 . 9

0.8

0 . 7
<DO
Cro<1)
Ek_
<D
Q.

5

0.6

0 . 5

0 . 4
_ra

a)cn 0 . 3

0.2

0.1

■ 5 5-10 0 10
R e l a t i v e p o s i t i o n (d e g r e e s)

Figure 40: Plot of the resulting position equation

An improved version of the algorithm has also been developed. This relies on the

principle that the value for the co-efficient ‘a’ can be directly calculated from an

analytical solution of the equation. Therefore the exponential co-efficient 'c’ is

incremented and the value that most closely matches the desired curve is the one

selected.

4.10 Conclusion

Equivalent circuits have been investigated that allow the implementation of MEC

models within a standard circuit solver.

Non-linear capacitors can be implemented using voltage controlled voltage

sources, a current controlled current source and a standard capacitor.

A new air-gap permeance modulating function (Eq. 122), which has not been used

before, has been described and is shown to be compatible with SPICE version 3.

Permeance function Cm(0) = Pmax e (122)

67

An additional improvement to the use of such functions (Eq. 136) is given which

allows a greater simulation span, before numerical problems occur.

c'(d ae)=p .e_alsin(^/2)cos((*+A£l) /2)+coŝ /2)sin((A+Â)/2)f (136j

The similarity between the voltage equations for an electrical circuit and the

torque equation for mechanics is noted. It is inferred that this allows the

incorporation of the mechanical elements using electrical equivalents.

By use of the virtual work principle and central difference scheme, it is shown how

the force or torque can be obtained numerically. This also allows additional

forces within the machine to be obtained.

Due to the need to incorporate the magnetic BH characteristic within the

simulation, use of the Brauer curve fit is investigated. This is implemented as a

non-linear capacitor.

The determination of the permeance values via a numerical scheme is presented.

This scheme although applied analytically to standard elements, it has not been

found elsewhere applied numerically for the determination of the permeance. An

improvement to the algorithm is suggested to remove the error at the start and

end of the integral.

The air-gap permeance function already described, needs to be related to the

geometry of the machine. Neglecting field effects such as fringing and slot width,

a suitable algorithm for this is described. The inclusion of factors to allow for such

effects could be incorporated into the algorithm, but comparison with field solution

methods would be needed. A method of determining the numerical values for the

air-gap permeance function is also given.

68

5 Software development

5.1 Introduction

The previous chapter described model elements that are used in the SPICE

simulations. Figure 41 shows model generation, within the context of the overall

simulation procedure. The input to the conversion program is a textual

description, and output is the SPICE sub-circuit of the machine.

The description of the machine used by the computer needs a strict syntax and

structure. In the following the particular syntax and structure is presented. The

syntax includes a method for specifying repeating elements.

The conversion of the flux paths into the SPICE sub-circuit node numbers will be

described. This is essential to the successful semiautomatic generation of the

machine sub-circuit.

Development of the software is based on the decisions already taken in the

previous chapter. The program, full listing is given in appendix H, takes as its

input the geometry description of the flux paths. How the program fits into the

overall simulation cycle is shown in Figure 41.

The way that the description of the flux paths is split into frames, parts, curves,

etc. lends itself to a relatively simple structure with in the program. The

requirements and structure of the program will be described in the following

/
t

/ M a c h i n e

D e s c r i p t i o n

E v a l u a t e

m a g . c c t .

e l e m e n t s

S p i c e n e t l i s t P o w e r c c t .

n e t l i s t

T r a n s i e n t

v o l t a g e s S p i c e c i r c u i t

s i m u l a t i o n

M e r g e d

n e t l i s t

Figure 41: Relationship between GDL file and spice circuit

69

section. Descriptions of various important aspects will be expanded upon, but an

exhaustive description of structure and operation is not given.

5.2 Representation of the machines physical geometry

For the machine equivalent circuits to be generated there needs to be some form

of physical geometry and flux path representation. The representation chosen is

that of a hierarchical set of geometry definitions. The base unit is the node that

defines a co-ordinate point in space. All other definitions are built up from

references to these, or higher definitions. The use of the method is restricted to

that of two dimensions with two basic structures, the stator and rotor. The stator

is fixed with respect to the global reference frame with the rotor rotating about the

concentric centre.

Frame 1
Rotor /

Frame 2
Stator

lode

cun part 1 part 2

Both frames are related to a
global reference frame in terms
of the their respecive positions * "interface between parts

Figure 42: Relationship between nodes, curves, parts and frames

Figure 42 shows how the various elements of the description relate to each other.

Frame 1 and Frame 2 are the rotor and stator frames and these define how the

parts contained within one frame move with respect to parts in the other frame.

The interface between the frames defines the air gap; this is where the elements

that allow for the relative motion are situated.

70

In deciding upon the types of curves to be used, it was decided that lines and

arcs would be used. These are the most predominant shapes used in rotating

machine designs. The following summarises the description hierarchy:

• The frame is defined as containing nodes and parts.

• The parts are defined as consisting of curves. Each part has various attributes

such as if it is a flux path, its BH characteristic and whether it is a mmf chord of

a coil. Given a 2 dimensional cut is taken though a coil, the mmf chord is the

line that connects one side of the coil and the other.

• The curves have a starting node, end node and information as to whether they

are an arc or line.

• The nodes supply which of the associated reference frames (i.e. stator or rotor)

they belong.

71

See Figure 43 below for the full syntax of the description used (this is an improved

version of the syntax given in the paper included as Appendix B).

Syntax of Geom etry Description Language (GDL) for Rotational Geom etry.

bh { < name > < linear | exp > < value [value value] > }

coils { <coil_name> <value> <terminal_name> <terminal_name> }

< stator | rotor > { nodes { < node_name [[startJnteger no_of_repetitions incjnteger]] >

< value | [start_float incJloat] > [6] < value \ [start_float lnc_float] > }

curves { < curve_name [[start Jnteger no_of_repetitions in c jn teg er]] >

< line | circ > < node_name [[start Jnteger incjnteger]] >

<node_ name [[start Jnteger incjnteger]] >

[< value | [startJloat inc_float] >] }

parts {< name > {

bh < name >

curves { < curve_name [[start Jnteger no. _ofRepetitions incjnteger]] > }

flux {coils { <coil_name> }

entry { < curvejiam e [[startJnteger no._ofRepetitions incjnteger]] > }

exit { < curveRame [[start Jnteger no._ofRepetitions incjnteger]] > } }

}

}

}

Key: < > Obligatory item[s] enclosed

[] Optional item[s] enclosed

| Alternatives separator

name First character must be a letter with any combination of alphanumeric

characters can follow.

value Floating point numeric value.

no._ofRepetitions\n\eger giving number of times that the item is to be repeated.

startjnteger Integer starting value for naming sequence.

incjnteger Integer increment in naming sequence.

start J lo a t Floating point start value for value sequence.

inc_float Floating point increment for value sequence.

Note:

• Non-italic characters are literal that is they are used exactly as shown.

72

• '{' and '}’ signify that a list of items between the brackets is possible.

• A '#’ character placed in the text file denotes a comment, and any characters after it up to

the next newline character are ignored.

Figure 43: Syntax of machine description

The syntax allows for the repetition of nodes, curves etc. by an incremental

numbering scheme. This means the specification of an arc of nodes a certain

distance apart needs only one statement.

The descriptions of nodes, parts or curves can be in any order but if a curve

references a node the node must already be defined. This restriction, although

minor, does allow the implementation of a relatively simple parser.

5.3 Assignment of node numbers

To generate the spice circuits a procedure for circuit node number allocation

needs to be defined. The node numbers are based on the flux path topology. A

unique number needs to be assigned to each node, to uniquely define branch

connections. Each number represents a set of parts that join at their flux entry or

exit curves. The assigned numbers are therefore a property of the parts entry and

exit curves. The procedure chosen is an iterative assignment and search:

1) Assign a number to the first part with a flux entry or exit curve.

2) Find all connected flux entry or exit curves that join, and assign the same

number to the associated part. If a connected part already has a number

assigned to it, then an error is reported and the procedure aborted.

3) Find flux part with flux entry or exit curve that has no number assigned. If no

such part can be found then finish, else repeat step (2).

If a valid geometrical description has been entered, there should only be air gap

nodes with unique numbers assigned. This therefore suggests a method of

finding the air gap interface nodes. All nodes that are assigned to only one part

are automatically attached to an air gap element. If more than one air gap

interface are possible then an indication needs to be given as to how the air gap

73

region relates to the air gap magnetic elements and the relative mechanical

freedom of motion.

5.4 Program requirements and structure

The objective of the program is to read in the text file description and transform it

into a SPICE sub-circuit. A list of the description language syntax rules have

already been given, apart from these, another restriction is that standard ASCII

text be used.

The program generates a spice model listing by using the following procedure:

1. Check that all the parts (flux paths) are valid connections of curves.

2. Assign circuit node numbers to the interfaces between flux paths.

3. Calculate line integrals of the flux paths.

4. Find suitable values for the air-gap permeance coefficients.

5. Output the circuit model to a text file with spice sub-circuit start and end text.

It was decided to use Object Orientated Program (OOP) design and programming.

It was believed that such a technique would simplify the implementation of the

program. This is mainly due to the complex relationship between the elements of

the machine description. The traditional approach would be to separate the data

sections from the related algorithms.

A penalty of using the object-orientated approach is that the execution time is

probably longer, than would be the case for a more traditional approach. In this

particular instance, this does not cause difficulty as the program is only run once

to generate a model file for use by the simulator.

5.5.1 Overall program structure

With the use of OOP, the obvious choice is to make each element (frame, part,

curve etc) of the description an object, with its own data and methods. The links

between the various objects, i.e. what curves belong to a particular part, are

stored as linked lists. The lists themselves are implemented as container objects

with methods for searching through the linked list pointers.

74

The various linked lists and how they associate the various objects are illustrated

in Figure 44, this shows the class structure and class/object relationships.

/ Coordinates)Frame

Frames

/ Desciption)Bhs

r~~
Part

/ Coordinate)

Parts

TDictionary)

/"■ rL
Curves Curve / CoordinateP

Figure 44: Relationships between the various objects used in program

5.5.2 Text conversion (parsing)

In order to convert the machine description into a sub-circuit, the entered text

needs to be converted into a suitable internal computer representation. This is

the purpose of the parser. The text parser is distributed through out the program

with each element (frame, part, curve etc) having its own generic parser method,

with each parser method implemented as a state machine particular to that class

of description element. Use could have been made of parser generation tools

(such as YACC or BISON), but it was thought it would complicate the program

structure. A lexical analyser (recognition of keywords, characters and numbers) is

shared between all the parser methods and is a defined as a separate object.

In operation, the top-level method for the application opens the text file. It then

starts stepping through the text until it finds certain keywords. Once found it

75

invokes the general parser for that object (frame, part, curve etc). The parser

method adds the new object, with appropriate properties, to the relevant list.

Parsing stops when the end of the file is reached.

5.5.3 Processing linked data

The lists of links to other objects, used by each object, are objects themselves and

provide methods for list processing (Baase (27)). Thus there is an internal

representation in memory of the machine description contained in the description

file. Methods provided by the list objects include searching for a specific object

and chaining or sequencing along the list.

As an example of the processing, the procedure of building the electrical sub­

circuit will be examined. When the conversion method is called by the

application, the various other object methods are called for specific calculations.

These calculations are to do with aspects of the data that the object concerned

has access. Generation of the sub-circuit starts with the description object. This

calls the conversion procedure for the stator and rotor frames (Figure 45). These

call the conversion procedures for the associated parts in the frames linked list

(Figure 46). The parts conversion procedure converts its associated data into a

circuit permeance element. In the process of performing this conversion, a call is

made to its own line integral method. The line integral method calls the scalar

length methods of the relevant part’s listed curves.

76

cct <<
cct « "* Stator m a g n e t i c circuit elements *\n";
cct «

II0 s t a t o r . C onvert(cct, sections);
cct «
cct << "* Rotor m a g n e t i c circuit e lements *\n";
cct <<

II<-80 r o t o r .C o n v e r t (cct, sections);
cct «
cct « "* C o n n e c t i o n of stator coils to c ircuit t e r m i n a t i o n s *\n";
cct « ^ "k •it ie 'k -k "k 'k -k i f ■ir •ir •if i f ^ ie i ('k -k "k i t "k •if -ie ie "k -ie ^ ‘k "k -k •k •ir "k "k i f i f "k i f -k ie i f ie "k •k i f -k "k -k •

C o i l s C o n v e r t E l e c t r i c a l (cct, s t a t o r .G e t C o i l s ()); // convert to coil c ircuit d e s c r i p t i o n
cct «
cct « "* C o n n e c t i o n of rotor coils to circuit te r m i n a t i o n s *\n";
cct « H + r 'k ' k 'k 'k ' k 'k ' j t l e ' k ' i c ' i f 'k - k 'k 'k ' ie 'k ' i e 'k 'k ' k i t 'k ' i c 'k 'k ' i c k ' k ' i e ' k - k - k 'k 'k i f ' i t ' k 'k 'k ' i e 'k l e ' i t - k ' k 'k 'k ' le 'k 'k ' k S ^ n ,f*

C o i l s C o n v e r t E l e c t r i c a l (cct, r o t o r .G e t C o i l s ()); // convert to coil circ u i t d e s c r i p t i o n
cct «
cct « "* M a g n e t i c to mecha n i c a l c o n v e r s i o n *\n";
cct << ie 'k "k 'k 'k "k "k •k "k "k "if i f ^ "k "k “k i f i t i f ie "k 4e i t ^ "k "it "k 'k •i: "k "k i t "k *

II0 F r a m e G e n e r a t e M e c h (cct, stator, rotor, sections);
cct « " . e n d s \ n \ n \ n \ n " ;

Figure 45: Part of conversion method within description object

bool F r a m e ::C o n v e r t (ofstreams cct, long sections)
{

bool ok=true;
P a r t s l t e r a t o r p a r t s l t e r (p a r t s);
w h i l e (partslter != 0) {

ok &= p a r t s l t e r . C u r r e n t ()->Convert(cct, sections);
partslter++;

}

if (c c t N o d e s .G e t l t e m s I n C o n t a i n e r ()>0) {
cct « "* G r o u n d i n g r e s i s t o r s :\ n " ;
C c t N o d e s I t e r a t o r n o d e s l t e r (c c t N o d e s);
w h i l e (nodeslter != 0) {

cct « "RGND" « (n o d e s l t e r . C u r r e n t ());
cct « " " « (n o d e s I t e r + +) « " 0 lG\n";

}

}
return ok;

}

Figure 46: Frame conversion method

Generation of the air-gap elements is performed by a generic method called

‘FrameGenerateMech’, this again is listed in the appendix.

77

5.5.4 Output of sub-circuit

Once the sub-circuit nodes and flux path line integrals have been calculated, the

SPICE compatible text file can be generated.

The permeance elements can either be linear or exponential functions.

Depending on the type of assigned function the BH curve object either generates

a constant permeance or substitutes the non-linear permeance sub-circuit.

5.5.5 Saving of linked data

A facility is incorporated that allows the internal data to be output as a text file.

The parser can also read the resulting file. The file consists of the full description

of the machine, but with no repetition syntax. This allows a check to be made on

an input file that contains repetition syntax. Each object: frame, part, curve etc.

has a method defined that will output a text description of its values. The

application calls each object in turn and directs the output to a text file.

5.5.6 Visual check of geometrical data

Plotting of the stator and rotor curves results in a visual check of the description,

as read in by the program. Screen captures of the program output are shown in

the next chapter.

5.5.7 Interpretation of circuit simulation data

The program automatically generates the required instructions (Appendix E) to

retrieve the simulation data needed to construct the flux density plots for the

magnetic sub circuit. This data is then read in by the program and used in the

generation of time stepped flux intensity plots (Sample circuit simulation data

Appendix F).

5.6 Software implementation

The software was programmed using Borland C++ under Microsoft Windows and

GCC 2.95 under Linux. The number of sections used in the line integral is

alterable using an options dialogue box, the higher the number of sections then

the higher the accuracy of the integration.

78

5-7 Conclusion

A method of entering the machine geometry and other details in text form was

required. The solution used is a relatively simple description syntax that allows

repeated items to be easily entered. The syntax of the description language is

presented.

Before the conversion to the sub-circuit model, the circuit node numbers need to

be assigned. A procedure is presented that allows this and determines which of

the flux paths connect to an air gap element.

The program requirements have been given, where the main objective is the

conversion of the text description to a SPICE sub-circuit. This has been achieved

using the methods given in the previous chapter.

The program uses object orientated programming as this was thought to make

design and analysis easier. The benefits of using this method of design and

programming to some extent have been realised, but the benefits are not as great

as the author had hoped.

Some of the design structure is given, with details of the way linked lists are used

to store the relationships between the various elements of the machine

description. An example of the program is given to illustrate the use of the linked

lists. Comprehensive details are not given as the program implements the

procedures and algorithms already described in the previous chapters.

79

6 Simulation Results

6.1 Generator simulation

In this section, an example generator was converted from a text description of its

geometry and material to a spice sub-circuit. The sub-circuit will then be

combined with a wiring description, to provide a combined sub-circuit for use

within a test circuit. The simulation will provide a means to illustrate the use of the

software and at the same time provide evidence of model consistency. By

matching the power flows between the mechanical, magnetic equivalents and

electrical circuits the model consistency was checked.

Using the conversion program generated sub-circuit the compatibility with a

standard (SPICE) circuit simulation package will be tested. The package used is

SIMETRIX (26) which implements the SPICE (version 3) circuit description syntax.

The resulting merged circuit description is suitable for use in any 'Spice 3f

compatible circuit analysis program. A flowchart showing the steps involved in the

generation of the model, circuit simulation and capture of the transient data is

shown in Figure 41.

6.1.1 Construction and wiring

The following generator design is a simple three phase synchronous machine.

Leakage paths between stator teeth are included, as is leakage around the

periphery of the rotor. The permeance of the magnetic circuit is assumed linear

(i.e. no iron losses).

Mechanical sources are provided that provide torque and hence rotor rotation.

Excitation voltage of the field coil will be constant dc. The load on the generator

will be a set of three resistors in star configuration.

6.1.1.1 Stator construction

The length of both rotor and stator is 96mm, while the outside diameter of the

stator is 76.45mm. Permeances on the periphery are connected together, thus

allowing back iron flux. The permeances of the back iron also connect with the

80

stator pole pieces. Pole pieces are placed between the coil slots. See Figure 47

for an illustration of the above. In the figure the light grey areas are the back iron

sections. Dark grey the pole pieces and the light blue denotes the coil slots. The

mmf sources for the coil chords are placed within the stator poles.

Figure 47: Stator construction and coil details

Figure 48: Flux paths (note coil sw1 not shown in actual position)

81

Figure 48 shows the details of the simplified flux paths chosen for the simple

generator. Note that the coils ‘Sw1’ is not shown in its actual position but with a

shortened length, for the purpose of illustration. ‘Sib1’ to ‘Sib12’ are the back iron

flux paths. ‘Sic1’ to ‘Sic12’ are the iron parts, which intersect the coils contained

in the slots (‘SwT being an example coil which intersects parts ‘Sic1’ and ‘Sic2’.

‘S11 ’ to ‘SI2’ are the stator leakage paths and ‘Sag1’ to ‘Sag24’ are the airgap flux

paths.

Leakage flux path

Coil rw l

.Main flux path-

Axel

•lyiain flux patl>

Coil rw l

LeakageTTux path

Figure 49: Rotor construction

6.1.1.2 Rotor construction

The rotor has a skew of 30° with pole pieces subtending 50° each of the

circumference. The outside diameter of the rotor is 45.82mm. Leakage paths are

allowed around the periphery of the rotor between the poles. See Figure 49 for an

illustration of the rotor. The light blue denotes the coil winding areas, while the

yellow areas are where the mmf sources are placed. Pole pieces are shown as

grey while the leakage paths are shown as the light band between the pole

pieces.

The air-gap elements connect each pole of the rotor with every pole piece of the

stator, these are not shown but are generated by the program.

82

6.1.1.3 Wiring

The placement of the source terms with in the magnetic circuit is determined be

the mmf chords of the coils. The gyrators for a particular coil are connected

together by the program. The connections of the coils are bought out as nodes of

the magnetic sub-circuit. Connection of the coils to form the three phase circuits

is provided by the wiring sub-circuit (Figure 50). This also contains coil resistance

elements. Thus the wiring configuration of the coils may be altered by changing

only one small text file. The stator is arranged as a three phase star connection

and connected to resistive loads in the test circuit.

* definition of three phase windings

.subckt gen3ph torqp torqn posp posn ul u2 vl v2 wl w2 rl r2
xl torqp torqn posp posn
+ sla sib s2a s2b s3a s3b s4a s4b s5a s5b s6a s6b
+ rl r2 magnetic
R1 s3a ul 1
R2 s5a v2 1
R3 s2a wl 1
R4 s4a u2 1
R5 s6a vl 1
R6 sla w2 1
R7 sib s2b 1
R8 s4b s3b 1
R9 s6b s5b 1
. ends

Figure 50: Coil connection wiring sub circuit

See Appendix C for the text description file as given to the conversion program.

6.1.2 Generation of SPICE model

In the following, screen shots of the program running are shown. Figure 51 shows

the result of loading a machine description file. The numbers of the various

objects created are listed and whether there are any syntax errors. If there are

any syntax errors then these are detailed in the scrolling text window.

83

n l x l

File Display Model Help

bh: 2 c re a te d ▲

S ta to r n o d e s : 1 6 9 c re a te d
S ta to r c u rv e s : 2 2 8 c re a te d
s ta to r p a rts : 4 8 c re a te d
s ta to r c o ils : 6 c re a te d
ro tor n o d e s : 21 c re a te d
ro tor c u rv e s : 3 0 c re a te d
ro to r p a rts : 8 c re a te d
ro tor c o ils : 1 c re a te d i ▼

Fin ished pa rs ing file with no errors

Figure 51: Messages informing numbers o f objects created

In Figure 52 the options dialog for the number of line integral sections is shown.

The more sections the greater the accuracy of the approximation. This does not

however improve on any inaccuracy due to start and end curves.

- J J x J
File Display Model Help

S ta to r c u rv e s : 2 2 8 c re a te d
s ta to r p a rts : 4 8 c re a te d

n
n

r‘ Integral Sections: 100
c -------

▲

c ▼

_ 1 1
Cancel

Figure 52: Setting number o f integral sections for integral

Figure 53 is the result of plotting the curves of both the rotor and stator.

84

Stator curves: 228 created
stator parts: 48 created
stator coils: 6 created
rotor nodes: 21 created
rotor curves: 30 created
rotor parts: 8 created
r n t n r n o i l s : 1 c r e a t e d

-inlxl* 2 Stator |Bp Rotor

File display Model Help

Figure 53: Stator and rotor curve displays

Figure 54 gives a magnified detail of a coil slot, between the poles is the leakage

element.

Figure 55 is a magnified section of the rotor showing an air gap element on the

periphery.

See Appendix D for the SPICE sub-circuit output created by the program.

85

& Rotor

Figure 54: Stator detail

Figure 55: Rotor detail

86

6.1.3 Results of simulation

Shown in Figure 56 is the test circuit that was used for the spice simulations.

Note that the voltage sources, in series with the resistors, are there for current

sensing and do not affect the operation of the circuit.

0
10K

{ [Torque
RL1

VL1 jlse 0 3200 10m 1m

V2
10K

RL2
VL2

10K

R3
|1G

V1gen3ph
,dc 0 pulse 0

_LciRL3
12 1m 1 r r»
R2

VL3

Figure 56: Test circuit for spice model

The value of mechanical load is very large compared to that of electrical and

therefore no change in rotational velocity due to electrical load is expected.

Therefore, the generator is working at constant speed with a purely resistive load.

X1 in the diagram is a sub-circuit containing the lumped resistance of the coils

and the magnetic equivalent circuit.

87

Figure 57 shows the variation of position with time. This is as expected a straight

line, as the load on the mechanical source is mainly mechanical loss. The voltage

is scaled by the mechanical conversion process such that it represents the

angular position in radians.

1 : : p o s

i i i i i i i y

y
s 'y

s

s'
s

s

S
°0 20 40 6 0 80 1 00 1 2 0 140 160

T im e / tn S e c s 2 0 m S e c s /d iu

Figure 57: Plot o f position terminal voltage

88

Figure 58 is a plot of the mechanical and electrical power input, electrical voltages

and mechanical torque input into the mechanical terminals. Note that the

mechanical and electrical powers closely agree. The upper green line is the

mechanical power entering the magnetic sub-circuit. A blue line represents

losses in the load resistors, while the orange line shows the total electrical losses,

including the winding resistance. While middle green line represents the torque

load presented to the mechanical side by the electrical load. The lower three

traces are the voltages across the three load resistors. Peak torque and therefore

peak mechanical load is seen to occur when the voltage across the load resistors

is a peak, this is as expected for a real device.

Figure 59 shows the electrical and mechanical power in more detail. The upper

green line is the mechanical power entering the magnetic sub-circuit. A blue line

represents losses in the load resistors, while the orange line shows the total

electrical losses, including the winding resistance. It is evident that the

mechanical and electrical power flows closely agree. The power flow through the

magnetic circuit must therefore be itself consistent for this to be so.

Figure 60 shows the generation of time-stepped plots (time separation = 1.375ms)

of the magnetic circuit flux. The particular item of data being stepped through is

the flux density in the air gap. The rotation of the rotor can be inferred from the

change in flux in the stator.

89

2: r t o r q u e * :u 2 * t i

1 : :u l1 _ p /8 6 : :v l2 _ p /8

3: :v l1 J j* :w l1 # p + :u l2 _ p * :u l2 * t)+ :g l3 _ p ’ :u l3 # p

7: : i*I3 p / 8 ------------ 1 0 : : to r q u e * 1 5 0 0

5: (:x 1 _ x 2 - :v 1 _ p)* :u 1 # p

4: (:x 1 _ x 2 - :v 1 _p) * :u 1jS^>+:v I1

O.H __v.

0 .4

0 . 2-

161

T im e /m S e c s

16 1 .2 1 6 1 .4 1 6 1 .6 1 6 1 .8

2 0 0 | iS e c s /d iv

Figure 58: Power, Voltage and Torque waveforms for simple synchronous

generator

2: : t o r q u e * ; g 2 t t i 3 : :« I1 jp * :v l1 * fc + :v l2 _ p , :v l2 ty)+ :v l3 _ p ‘ :u l3 ^ >
1: :u l1 j p / 8 -------------6 : :« l2 _ p /8 7 : :u l3 _ p J8 -------------10 : : t o r q u e * 1 5 0 0

5: (:x 1 _ x 2 - :v 1 _ p) ': v 1 # p

4: (:x 1 _ x 2 - :g 1 _ p) ':u 1 # p + :u I1 _ p , :u l1 /p + : '

1.1

1.05

O .fr

0 .85
1 6 1 .5 1 6 1 .5 21 6 1 .4 81 6 1 .4 41 6 1 .4 2

T im e /m S e c s 2 0 |iS e c s /d iu

Figure 59: Detail o f power waveforms for simple synchronous generator

90

Figure 60: Stator flux plots for the simple generator

o o(9) (10)

o o(11) (12)

OO(13) (14)

o o(15) (16)

Figure 60: Stator flux plots for the simple generator (continued)

92

Figure 60: Stator flux plots for the simple generator (continued)

6.2 Generator simulation with power electronics

An additional simulation was performed with the addition of a power electronic

rectifier with resistive and capacitive load, as shown in Figure 61. The

configuration of the generator in terms of construction and wiring is exactly the

same as before.

DIODE MODEL

03
 C3
 1p

j j Torque

|se 0 640m 10m 1m

DIODE_MODEL

D2

DIODE_MODEL R5
DIODE_MODEL

1k C5
Oms

Figure 61: Generator with three-phase power electronic rectifier

93

1 : d 5 _ p -----------------2 :d4_p
3 :d6_p 4 :r2_p

100

755 760 765 770 775 780 785

T im e /m S e c s 5m S e c s /d iv

Figure 62: Voltage waveforms o f the three phases before the rectifier

Figure 62 is set of curves which show the voltages on the input to the rectifier

(red, blue and green curves). Voltage across the capacitive (100pF) and resistive

(1000Q) load is indicated by the brown line.

94

1 :torque

>
E

120-

100-

80-

60-

40-

20-

755 760

T im e /m S e c s

765 770 775 780 785

5 m S e c s /d iv

Figure 63: Torque curve on the mechanical power source

Figure 63 is a plot of the torque as seen by the constant velocity mechanical

power source. Note the correspondence between the electrical rectifier load and

that of the mechanical power source.

6.3 Synchronous Motor Simulation

The purpose of the following test is to use exactly the same model as has

previously been demonstrated but instead alter the excitation and mechanical

load, so that the device acts as a motor. The circuit used to test the device is

shown in Figure 64.

95

dc 0 sin 0 100 50 10m

4 j Torque

V3
1m

sin 0 100 50 16.6m

V4

Pos

sin 0 100 50 23.3m

R2 R3
1G

C1
V2

j V1 C5
+ ' \ dc 0 pulse 0 100 5 n 5m

Figure 64: Test circuit used for synchonous motor simulation

The following figures (Figure 65 and Figure 66) show respectively the excitation

voltages and the resultant flux in the stator. The first frame in Figure 66 starts at

80ms. The flux intensity is shown with the highest indicated by the red, blue the

lowest. Notice that in Frame 5 the back iron is shown with higher flux intensity

than some of the pole pieces.

1 :v1_p 2 :v3_p 3 :v4_p
4 :v2_p

100 ~7X

40-

- 20 -

-4 0

-6 0

- 80-

- 100; 10040

T im e/m S ecs 20m Secs/div

Figure 65: Plot o f the 3-phase currents and the field voltage for simple motor

96

(1) (2)

Figure 66: Change in stator flux with movement o f rotor for simple motor

The resulting change in position is available via the mechanical equivalent circuit

from the terminal marked ‘pos’, this is plotted in Figure 67. The plot clearly shows

the rotor changing position and increasing in rotational velocity.

97

1 :pos

220-

200-

180-

160-

140-

120-
100 -

80-

60-

40-

20 -

j r

J0 20

T im e/m S ecs

40 60 80 100

20m Secs/div

Figure 67: Plot o f change in position for a simple synchronous motor

6.4 Induction motor simulation

This is a comparison between actual data obtained from a practical laboratory test

and a simplified simulation model produced from the geometry information

obtained from the manufacturer of the induction motor. The induction motor has

the following specification:

• 4 pole, 3 phase 415V a.c.

• 2.2 KW power rating

The rotor contains 32 bars that are skewed with respect to the rotor axis, and the

stator was concentric wound with 32 slots.

Test results were captured using a 'Keithly' high-speed data acquisition board

(DAC 1600) with inputs from hall effect current probes having a bandwidth of

50KHz.

98

6.4.1 Simulation

The information supplied by the induction motor manufacturer was used to fill-in

the machine description template (GDL file) developed as part of the project. The

resulting spice network listing was automatically generated by the conversion

program (gdl2spice). The power circuit model contained the simulated 3-phase

voltage supply, which was merged with the machine equivalent circuit. Figure 69

shows the change of the coincident area between that of the rotor and stator

teeth, modelled using the equation as given previously. The comparison is made

with a numerical estimation of the actual change in coincident area with rotor

rotation. The program used to derive the numerical values of coincident area is

given in Appendix I. Note the high value in the exponential function; the effect is to

cap the highest value to unity.

vT2
0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5e-05

0

Figure 68: Change o f area with rotor angle

T------------ 1 I------------ 1-------------1-------------1-------------1-
I "out.cvs"

0 .000337#exp(-5e2#s i n(x /2)*#2)

Radians

99

vT2
0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5e-05

0

The resulting model file was used in a SPICE 3 simulator. The plot shown in

Figure 70 is of the steady state current for one of the phases with the rotor speed

at 1497 rpm. Similar scaling has been used in both the simulation and

experimental test result to allow qualitative comparison of the two waveforms.

1 ■ I

"out.cvs" ♦
: 0.000337*exP(-5e2*s in (x /2)**2)

<■> / \#V# i
♦ /

♦/ VV
V

■$7
♦/

--
1--

--

1--

--
1

ter

V
V

X

X

.

XT''"
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Radians

Figure 69: Change of area with rotor angle (enlarged)

100

f + Graph:! tranl (Selected) □ x

1 tran1:t>1#p

//
/

/

\ r

21CO 21 5 2! « 2! 5 3C 0 31 h

Figure 70: Simulation results (actual current multiply by 10)

6

4

2

Phase
current

(A) 0

-2

■4

-60 27
Time (ms)

Figure 71: Test results (Light load)

6.4.2 Results

The experimental results produced in the laboratory for the steady state phase

current are shown in Figure 71: Test results (Light load)

By comparing the results from the test and simulation correlation between the two

curves can be seen.

101

6.5 Conclusion

An example design for a simple three phase synchronous machine has been

given. The machine is assumed to have simple leakage paths and a linear

magnetic circuit (i.e. no losses in the iron). It has been shown the steps needed

to convert this into a SPICE subcircuit via the use of the conversion program. A

user friendly interface is evidenced by the screen shots of the program, along with

a demonstration of the information provided during the conversion process.

The example machine is shown operating in both in generator and motor modes.

This was by changing whether the sources and loads were either on the electrical

side or the mechanical, respectively.

The simulation results obtained using SIMETRIX are presented for the

appropriate test circuits used. These show that there is consistency between the

power flows for the electrical, magnetic and mechanical models for this simple

model. Thus it is shown that the model method is reasonable in terms of

conservation of energy between the electrical, magnetic and mechanical sections.

A further simulation provided is that of a 2.2 KW induction motor in the no-load

situation. A correlation is evidenced between the graphs of the simulated and

actual test data. While further tests are acknowledged to be necessary, to prove

the model as accurate, it is concluded that it is reasonable in terms of the no load

line current.

102

7 Discussion

7.0 Model

7.1 Motion

The model developed uses magnetic equivalent circuits (as exemplified in

section 2.11). This method of modelling various types of machines has been

explored by both by Ostovic (20) and Haydock (4). An alternative but similar

approach is that by Azzerboni (59), specifically for cylindrical systems with

conductors in motion. Perhaps one the most onerous problems when using these

types of models is the relative motion of one MEC to the other e.g. stator and

rotor. The technique used by Haydock (4) in the modelling of a synchronous

machine was to separate the ‘speed voltage’ i.e. that due to relative motion of the

coil, from the transformer component i.e. if:

emf = n ^ - (M) (22)
at

In the above the flux O is dependent on both the current (transformer effect) and

change in permeance (speed voltage). This technique lends itself to developing

models for symmetrical periodic structures, but has problems when automatically

generating models for non-periodic structures. Ostovic (20) developed several

models of different machines and incorporated motion within the simulation.

However the models were limited as they could not be used in standard circuit

simulators and required custom matrix solution software. Of particular note is the

way in which the motion is incorporated within the model, this is achieved by using

a sparse ‘connection’ matrix, which depends on the rotor position and can directly

modulate a periodic function. This solution requires the ability to implement

arbitrary functions directly within the simulation software, for using standard circuit

simulation packages this is not always possible, and an alternative solution is

necessary. An alternative of using an arbitrary permeance function is to use

functions available in standard circuit simulation packages. This was achieved by

using a permeance function and curve fitting to a simple model of stator/rotor

permeance variation:

103

a|sin((#+6)/2)|'
m ax (122)

A limitation with equation (122) occurs when the pole piece area of both the stator

and/or rotor is small compared to the rotor or stator circumference, preventing

suitable values for the coefficients a, b and c to be found. This model also

assumes that the air gap depth is very small compared to the dimensions of the

pole piece. This assumption simplifies the model eliminating the need to

implement a full field solution to estimate the variation of air gap permeance with

rotor rotation. On machines with a large air gap this assumption is not valid and a

full field solution is required (Moallem et al (22)). The approach taken by Preston

and Lyons (21) and Delforge et al (23)(24) is to curve fit a function to a full finite

element solution. A finite element solution at rotor angles of 0, 90 and 180° is

used to determine the values (ai, a2& p) of the following function:

Equation 122 has been compared with equation 120, as used by Preston et al

(21), for specific coefficient values and it has been shown that they can be used

interchangeably. The results from the generator and motor simulations, in terms of

energy conservation, match between the electrical, magnetic and mechanical

sections. However, as far as checking the correctness of the air gap permeance

function, this can only be verified via comparison to closed solutions, actual tests

or finite element solutions. A simulation performed of an induction machine gave

results comparable with that of an actual test. To investigate this further more

practical tests would be required, but it is stated by Moallem et al (22) good

results can be obtained from MEC models, provided the air gap flux is accurately

modelled. The actual accuracy of the model also being dependent on the

operating conditions being simulated.

7.2 Mechanical Torque

If an equivalent circuit is to be used to describe the full behaviour of a machine,

whether generator or motor, then the mechanical effects need to be taken into

account. The magnetic field in the machine will lead to forces being developed

Air gap reluctance Rg =
ax + a2\o,os(Q 12)\P

(120)

104

between the various components of the machine, due to the field stress. This will

therefore lead to torque on the output shaft being developed on the rotor. Several

methods exist for the calculation of the force between the components in the

device: virtual work principle (Ostovic (20), Ratnajeevan et al (9), Demenko (17);

magnetic shells (Carpenter (15)). The force is derived by the use of the virtual

work principle (equation 125), as the others two methods partially require an

analytical solution.

torque r = — (125)
ae

In conventional lumped parameter machine models the torque is derived by

assuming it can be derived with reasonable accuracy by just observing the state

of the field in the air gap (Fitzgerald (9)). This assumption is also applied here i.e.

the force between machine components is assumed to be calculable from state of

the field in the magnetic elements, which model the air gap. In the magnetic

equivalent circuit, as presented here (section 4.3), the value of the air gap

permeance is purely dependent on rotational angle. The angle of the rotor is

known and given the value of mmf (in the equivalent circuit the value of voltage

across the magnetic capacitor) the energy of the air gap element can be

calculated. Others have written custom software, or adapted existing software

packages, to use a derivative function (Sulivan (46)). A derivative function is not

available within standard circuit solvers, only standard spice functions. In order to

calculate the derivative a simple first order approximation is used. The problem

with a simple implementation of the function is that the delta change in position

becomes insignificant compared to the absolute position value. The solution

suggested and used in the work presented here is to change the calculation of the

change in permeance to the following:

C' (t9 Ai9) = P .e-a lsin(6' /2) cos((*+A^) /2)+cos(^ /2) sin((s+A^) /2) f (129)

The advantage of this formulation is that the problem of numerical round off

becomes significant much later in the simulation than would otherwise be the

case. The disadvantage is that the position is stored as an absolute value and

therefore the accuracy of the transcendental sin, cos etc. functions will become

105

less as the absolute value increases, the increase of inaccuracy will depend on

the floating point representation used in the simulation.

An interesting point is made by Wang et al in a comparison between a Finite

Element method and MEC in that they found a substantial difference in the

‘detent’ torque values (30%) obtained. The conclusion reached was that the

‘fringing’ fields were not sufficiently well modelled by the MEC method and the

solution was the inclusion of greater detail in the flux paths.

7.3 B-H Curve

The representation of the magnetic characteristics of the materials used in the

machine i.e. B-H curve is dependent on the accuracy required and operating

conditions of the model (Shamming et al (47), Lancarotte et al (43)). Many

models such as traditional lumped parameter equivalent circuits (Adkins (13))

assume a linear relationship for the B-H curve. Alternative models of the

magnetic hysteresis (Carpenter (61)) have been proposed which seem to

realistically model the behaviour of actual material, these often require changes to

the simulation engine for them to be incorporated. Attempts have been made at

adapting the lumped parameter models to incorporate the non-linear

characteristics of saturated electrical machines, particularly induction machines

(Vagati et. al.(39)) The problem with this approach, as identified by Haydock (4)

is that the models are adapted ad hoc, with little correspondence between the

physical location or cause of non-linearity and the exact location for the

incorporation of the non-linear element within the lumped parameter model. By

adaptation of the model parameters to fit test data, a close fit between test data

and simulation can be made for that particular machine operating under the exact

same test and simulated conditions. The model also gives no indication of the

internal magnetic state of the machine, e.g. where is the saturation occurring.

Finite elements methods can give very accurate results, even for machines with

significant non-linear saturation of machine components (Jack (32)), for which no

previous tests have been performed. The detailed field solutions available from

FE methods give insight into the areas of the machine that are saturated. The

problem of such solutions is the computational cost, particularly if non-linear

elements are present. In order to ameliorate the effect of such components it is

106

possible to only simulate as non-linear, those components that are likely to

saturate. However, finite element solutions cannot be incorporated in to standard

circuit simulation software, without fundamentally altering the software. Several

formulas have been developed for use in FE solutions to model the B-H

characteristic.

The approach taken by Ostovic (20) for incorporating non-linear elements within

MEC models was to use a cubic formula to modulate the element permeance.

Moallem et al (35) also modulate a permeance function, in this particular case to

account for the saturation of parts in a switched reluctance motor. Haydock (4)

used a polynomial curve fit, as this was the only available method of incorporating

the curve within Spice 2g6. The method used here is to adapt a formula due to

Brauer (25), originally used for finite element solutions, so that it can be used as

an expression that modulates a capacitance value within Spice3f4. The

capacitance value represents the magnetic permeance. This seems to work well,

although it is computationally expensive compared to a linear equivalent or

piecewise linear fit. The non-linear model used in the equivalent circuits here can

be incorporated with in standard solvers, but could be simulated more efficiently if

the simulation software was altered to incorporate it as a built in function.

Related to the modelling of the materials B-H characteristic is the inclusion of

thermal effects, for which studies have already been performed e.g. Wilson et al

(45) & Maxim et al (55).

7.4 Model Generation

A generic description of the machine geometry is used as an input to the

program that creates the simulation file. The format of this file is specific to a

certain type of machine, rotating rotor within a fixed stator. This format is unique

to the application but is comparable in many respects to other geometry

description languages and file formats. These other languages and file formats

range from simple point lists, stored as binary numbers, to complex formats such

as DXF (Drawing Exchange Format) (49) and languages such as SVG (Scalable

Vector Graphics) (50). While these could have been extended (particularly SVG)

the software would have been more complicated. To simplify the creation of the

107

software a simple substitute and original construction format was created (GDL -

Geometry Description Language).

Other modelling languages such as ‘Modelica’ (51), are designed to be generic

in that they describe in a general manner the details of the system that is to be

simulated. In Modelica the form of this description is that of mathematical

equations which can be differential, algebraic or discrete. A possibility is that

instead of targeting SPICE as the simulation engine that a Modelica simulation

description could be generated from the machine geometry data. An advantage of

this would be the already multi-physics nature of the Modelica environment.

7.5 Machine Description

The aforementioned description language (GDL) is relatively high level in that it

directly describes the machine part geometry, the relationship between the parts

and implicitly the flux path. The geometry consists of named nodes and the

named curves that connect the nodes.

Compared to Drawing Exchange Format (DXF) (49) the purpose of the language

is to provide a comparatively easy method of describing the typically repeating

structure found in electrical machines. Hence the ability to describe the repeating

pattern in terms of element names and sequences.

An alternative approach to the traditional method of finding the values of the

lumped parameters in equivalent circuit models is that of creating an ‘expert

system’ which contains knowledge in the field of electro-magnetic analysis. This

is the approach taken by Kurumbalapitiya et al. (45).

7.6 A distributed Magnetic Equivaient Circuit

A very simple method of using the finite elements is to simply provide an

equivalent permeance value for each of the elements, as shown in Figure 72 (a).

108

Figure 72: Equivalent permeance elements

Figure 72 (b) shows the error if the flux path is assumed to be from left to right.

The more elements the better the fit and therefore the more accurate the

representation.

An example of the discretization is shown on the following page. Figure 73 shows

the physical layout of the core and coil. Figure 74 shows the equivalent circuit.

Elements

Figure 73: Discretization o f example flux path into permeance elements

109

Figure 74: Equivalent circuit for the previous discretisation

Notice that there are simplifications, which could take place in terms of the

permeance elements. This would be relatively easy to implement as any series

permeances are simply combined. Also automatic discretisation of an arbitrary

shape can be performed using Delauney triangulation.

However, a problem with this scheme is that the correctness, in terms of the

approximation to the field solution, depends on the shape and orientation of the

triangular elements.

A simple analysis of the problems, which arise with such simple elements, is

shown in the following. Take the example of a simple triangular element, as

shown in Figure 75. The calculation of the reluctance involves the following

integral:

— dy (141)
o x(y)-z

V
J

110

a

y

X

Figure 75: Calculation o f reluctance

(142)

R —> oo

As can be seen from equation above the reluctance cannot be calculated using

simple approximations where the integrating dimension disappears.

Several alternative approaches exist which would allow the value of the

component to be calculated, one approach is to find the geometric mean value for

the permeance, i.e. find the centroid of the shape and therefore the equivalent

bounding box for the integral.

Given the triangle in Figure 76, then the geometric mean can be calculated by the

following equation:

>
0 x w

Figure 76: Calculation o f geometric mean

111

wtana

Permeance oc
G M .

(143)

Permeance oc
zV?
tan a

Another approach is to split the overall triangle element into several sub elements,

each of which has a simple approximation made of the equivalent permeance.

This is shown in Figure 77. The area indicated as (1) denotes the area within the

triangle of the combined area (1) & (2). The calculation of the overall permeance

is that of areas ((1)+(2))/2. In the eventual magnetic equivalent circuit the

combined value of permeance is therefore the average of that contributed from

the first triangle, and that of the immediate neighbour. The value of permeance

for the element indicated as (1) in the diagram is given by:

Where X is centre of the triangle and ZXBA is the angle of the element (1).

2 z
perm oc ------

tan ZXBA (144)

BA
(2)

Figure 77; Alternative scheme for the calculation of permeance (Note that the

depth of the element is denoted by the symbol z)

112

Percentage e rro r w ith respect to th e o re tic a l so lu tio n

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9

R elative change in one dimension uiith respect to other dimension

Figure 78: Variation o f error o f a two-element approximation compared to the

closed solution

Shown in Figure 78 is a comparison between a simple two-element approximation

and a simple rectangular element. As can be seen from the results the

percentage error varies very significantly with the shape of the triangular

elements. In conclusion therefore it can be assumed that any generic solution,

which uses this method, would also be very strongly dependent upon the

discretization algorithm in determining the overall correctness of the solution.

An interesting alternative to the MEC method described previously is that by

Hammond et al (29). This involves a much more fundamental modelling of the

electromagnetic field using differential forms. This gives upper and lower bounds

to the solution but is mathematically complex.

"perm test.cvs" ❖

113

8 Conclusions & Further Work

8.1 Conclusions

The simulation of power electronics systems has always suffered from unrealistic

models of electric machines. Magnetic and mechanical effects cannot be taken

into account when using a commercial simulation solver such as SPICE. The

software package originated in the project allows these effects to be simulated

using a standard circuit solver. The software enables the machines Magnetic

Equivalent Circuit (MEC) simulation model to be produced from a textual

description of the machine. This package allows designers with little knowledge

of the electromagnetics to produce realistic models of machines for use in

commercial simulators. The main advantage of the software is that a detailed

knowledge of the machine operation is not required, similar to the method used by

Integrated Circuit (I.C.) designers that do not require a detailed knowledge of I.C.

fabrication. This new software package has been developed to take into account

electric, magnetic and mechanical interaction with the potential of being exploited

commercially.

8.1.1 Model development

To overcome the problem caused in machine models of modelling non-linear

saturation and relative motion, the technique of using non-linear capacitors was

implemented.

An original new function that models the changes in permeance with motion has

been derived (Eq. 122) and successfully tested. A further enhancement of the

function within a central difference scheme to numerically find the derivative, and

hence the mechanical torque has been tested (Eq. 134). A solution to the

problem of long simulation time where the position variable is continually

increasing has been established and is described (Eq. 136). This has allowed

longer simulation runs to be achieved before accumulative numerical errors,

introduced by the numerical calculation of the derivative, become noticeable.

The method of integrating the mechanical system components with the electrical

and magnetic elements has also been achieved. This combination of the new

114

function, its derivative and the mechanical system components gives a simulation

model with full interaction between electrical, magnetic and mechanical quantities.

A search for a suitable function to represent the B-H curve, maintaining

compatibility with SPICE type simulators, was undertaken and this resulted in the

Brauer function that has been incorporated into the models. This was

incorporated within the non-linear capacitor model and successfully tested using a

SPICE based circuit solver. This improved non-linear capacitor model was

successfully tested using a SPICE based circuit solver.

8.1.2 Model generation

A simple descriptive syntax has been derived for the entering of a machine

physical geometry and material properties. The syntax created allows the

machine to be described in plain language from design data which machine

manufacturers would have readily available.

An algorithm that performs a numerical approximation of the permeance has been

developed and is described (pp. 60). The language syntax was produced in

conjunction with the algorithm and therefore makes it relatively easy to implement.

An algorithm to determine the values of the permeance function coefficients was

created (pp. 63) such that the least computationally expensive coefficients are

selected. This algorithm is unique to the function described and takes into

account the effects of skew on the coefficients. The algorithm was successfully

implemented in software and its operation verified by the test carried out in

section 5.5. The software will fit the curve between 10% and 90% of the

maximum, where these points correspond to expected positions of the maximum

and minimum permeance positions.

8.1.3 Software development

The software has been developed using Object Orientated Programming (OOP)

and implemented in C++. This method has allowed the software to be more

flexible and made model generation relatively easy. Additional effects (e.g.

thermal) can easily be added to the general model. This allows models of

different complexity to be used depending on the type of application required.

115

8.1.4 Simulation

The modelling technique has been verified by automatically generating and

simulating a MEC model of a 3-phase induction motor; this was checked against

practical results (pp 101) obtained from a test-bed consisting of an induction

motor and associated load.

A further validation of the MEC modelling technique checks for consistency by

ascertaining that the energy flow between the electrical, magnetic and mechanical

sections balance (Figure 59) for a synchronous generator and synchronous

motor.

The textual description of a simple synchronous electrical generator is given in

Appendix C, with the automatically generated MEC model given in Appendix D.

The automatic production of complex Magnetic Equivalent Circuits of rotary

machines produces a realistic model giving a high degree of confidence in the

simulation results when combined with the power and control electronics in a

SPICE type simulator.

116

8.2 Further Work

8.2.1 Expert system or 'heuristic’ generation of flux paths

The flux paths must be manually entered for the calculation of the magnetic

equivalent circuit elements to take place. Automatic calculation of these circuit

elements would be a significant advantage. However as indicated earlier in the

thesis this is dependent on knowledge of the operating characteristics of the

machine. General heuristic rules can be found which in most cases give

reasonable solutions. Similar in approach to that used by Kurumbalapitiya et al.

[45] but instead of the emphasis being field solutions the magnetic equivalent

circuit is generated.

8.2.2 A Magnetic Equivalent Circuit for use with finite element triangulation

A previously discussed very simple method of using the finite elements is to

simply provide an equivalent permeance value for each of the elements, as shown

in Figure 72 (a). Figure 72 (b) shows the error if the flux path is assumed to be

from left to right. The more elements the better the fit and therefore the more

accurate the representation.

Automatic triangulation of an arbitrary shape can be performed using Delauney

triangulation. However, a problem with this scheme is that the correctness, in

terms of the approximation to the field solution, depends on the shape and

orientation of the triangular elements.

Further work would be the investigation of finite difference schemes rather than

the adaptation of triangulation.

8.2.3 Computationally efficient air gap elements

Rotation is via the implementation of ‘n to m’ permeances i.e. if there are n stator

pole pieces and m rotor pole pieces then there are n x m permeance elements

required. This is computationally very expensive as the amount of detail in the

design increases. Adding an extension to the SPICE simulation engine to make

this more efficient would be a solution. This could be in the form of a special ‘air

gap’ component with inputs of position, flux change and ‘named air gap’. Thus the

117

number of required components would be n + m and not n x m. This approach

could be used for other situations where the modelling method is used.

8.2.4 Approximation of the permeance function

The function used for the variation of the permeance with rotation has a limited

range of angles over which it can usefully be used. Alternatives could be found

but it is probably the case that a piecewise linear fit would be more appropriate

i.e. resorting to a finite element calculation of the air gap permeance variation.

The further work would therefore consist of arriving at a measure that can be used

to determine whether the approximation as used in this thesis is adequate or

whether a finite element analysis needs to be performed.

8.2.5 Geometry description import from common computer aided design

(CAD) packages

The language used to describe the physical geometry is custom and therefore

non-standard. Use could be made of standard languages such as XML

(specifically SVG Scalable Vector Graphics) or tagged DXF (Drawing exchange

Format) files to describe the machine geometry. This would allow the import of

machine designs from packages such as AutoCAD. The requirement would then

be the definition of the flux paths, this could be manual as in the present case or

combined with the previous suggestion for automatic determination.

8.2.6 Generalised model generation

The requirements of the research are that the resultant magnetic equivalent

circuit be usable in SPICE simulation packages. The trend for whole system

simulation is towards general simulation description languages such as ‘Modelica’

(51). It would be of benefit if magnetic equivalent circuits could be used within

simulation software that uses such general description languages. The benefit of

this would also be the ability to more easily incorporate the general ‘n+rrT air-gap

model.

118

References

[1] Carpenter J., “Understanding Electromagnetism”, IEE Engineering Science

and Education Journal, December 1993

[2] Chaudhry S.R., Ahmed-Zaid S., Demerdash N.A. “Coupled finite-

element/state-space modelling of turbo generators in the ABC frame of

reference - the no-load case”, IEEE Transactions on Energy Conversion,

vol. 10, no. 1, March 1995, pp. 56-62

[3] Carpenter C.J., 10/1968, “Magnetic Equivalent Circuits”, IEE Proceedings,

vol. 115, no. 10, pp. 1503-1511

[4] Haydock, L., “Systematic Development of Equivalent Circuits for

Synchronous Machines”, PhD Thesis, Imperial College, London, 1986

[5] Carpenter C.J., 10/1968, “A Circuit Approach to Field Computation”, IEE

Proceedings, vol. 29, no. 2, pp. 1294-1300

[6] Dobbs E.R., “Basic Electromagnetism”, Chapman & Hall, 1993

[7] Mohan et al, “Power Electronics”, John Wiley & Sons, 2nd edition, 1995

[8] Fitzgerald A.E. et al, “Electric Machinery” Metric Edition, McGraw-Hill,

Fourth Edition 1988

[9] Ratnajeevan S. Hoole H., “Computer-Aided Analysis and Design of

Electromagnetic Devices”, Elsevier, New York, 1989

[10] Carter H.W., “Air-gap induction”, Electronics World, N.Y., 1901, 38, pp.

884-888

[11] Neville S., “Use of Carter’s coefficient with narrow teeth”, Proc. IEE, vol.

114, no. 9, September 1967, pp. 1245-1250

[12] Slemon G.R., “Modelling of induction machines for electric drives”, IEEE

Transactions on Industry Applications, vol. 25, no. 6, November/December

1989, pp. 1126-1131

[13] Adkins B. Harley R.G., “The General Theory of Alternating Current

Machines: Application to Practical Problems”, Chapman and Hall, London,

1975

119

[14] Vas P., “Electrical Machines and Drives: A space-vector theory approach”,

Clarendon Press, Oxford, 1992

[15] Carpenter C.J., “Theory and application of magnetic shells”, Proc. IEE,

vol. 114, no. 7, July 1967, pp. 995-1000

[16] Bedrosian G., “A New Method for Coupling Finite Element Field Solutions

with External Circuits and Kinematics”, IEEE Transactions on Magnetics,

vol. 29, no.2, March 1993, pp. 1664-1668

[17] Demenko A., “Equivalent RC networks with mutual capacitances for

electromagnetic field simulation of electrical machine transients”, IEEE

Transactions on Industry Applications, vol. 28, no.2, March 1992, pp. 1406-

1409

[18] Laithwaite, E.R., 11/1967, “Magnetic equivalent circuits for electrical

machines”, IEE Proceedings, vol. 114, No. 11, November 1967, pp. 1805-

1809

[19] Delforge C., Hecquet M., Brochet., “Bond-graph method applied to

coupled electric and magnetic model of electrical devices”, pp. 573-578

[20] Ostovic V., “Dynamics of Saturated Electric Machines”, Springer-Verlag,

New York, USA, 1989

[21] Preston M.A., Lyons J.P., “A Switched Reluctance Motor Model with

Mutual Coupling and Multi-Phase Excitation”, IEEE Transactions on

Magnetics, vol. 27, no.6, March 1991, pp. 5423-5425

[22] Moallem M., Nikkhajoei H., Falahi M., “Predicting the performance of a

switched reluctance machine using improved magnetic equivalent circuit

method”, IEEE catalogue no 95TH8025, 1995, pp. 198-201

[23] Delforge C., Hecquet M., Brochet., “Bond-graph method applied to

coupled electric and magnetic model of electrical devices”, pp. 573-578

[24] Delforge C., Lemaire-Semail B., “Induction machine modelling using finite

element and permeance network methods”, IEEE Transactions on

Magnetics, vol. 31, no. 3, May 1995, pp. 2092-2095

120

[25] Brauer J.R., “Simple equations for the magnetisation and reluctivity curves

of steel”, IEEE Transactions on Magnetics, 1975, pp. 81

[26] “SIMETRIX circuit simulator user’s manual”, Newbury Technology Ltd.

[27] Baase S., Van Gelder A., “Computer Algorithms”, Addison Wesley, 3rd

Edition, 2000

[28] Blundell A.J. "Bond graphs for modelling engineering systems", Ellis

Harwood, Chichester, 1982.

[29] Hammond P., Baldomir D., “Dual energy methods in electromagnetism

using tubes and slices”, IEE Proceedings, vol. 135, Pt A, No. 3, March

1988

[30] Freeman E.M., “Equivalent circuits from electromagnetic theory: low-

frequency induction devices”, IEE Proceedings, Vol. 121, No. 10, October

1974

[31] Gibson A.A.P., Dillon B.M., “Variational solution of lumped element and

distributed electrical circuits”, IEE Proceedings Sci. Meas. Technol., Vol.

141, No. 5, September 1994

[32] Jack A.G., Mecrow B.C., “Methods for Magnetically Non-linear Problems

Involving Significant Hysteresis and Eddy Currents”, IEEE Transactions on

Magnetics, Vol. 26, No. 2, March 1990

[33] Al-Khayat N., “Power Transformer Simulation Models”, PhD Thesis, The

Nottingham Trent University, 1994

[34] Wang J.P., Lie D.K., Lorimer W.L., Hartman A., “Comparison of Lumped

Parameter and Finite Element Magnetic Modelling in a Brush less DC

Motor”, IEEE Transactions on Magnetics, Vol. 33, No. 5 September 1997

[35] Moallem M., Dawson G.E, “An improved magnetic equivalent circuit

method for predicting the characteristics of highly saturated

electromagnetic devices”, IEEE Transactions on Magnetics, Vol. 34 5 1,

September1998

[36] Rasmuuen C.B., Ritchie E., “A magnetic equivalent circuit approach for

predicting PM motor performance”, Industry Applications Conference,

121

1997, Thirty-Second IAS Annual Meeting IAS ’97., Conference Record of

the 1997 IEEE, Vol. 1, 1997

[37] Hameyer K., Hanitish R., “Numerical optimisation of the electromagnetic

field by stochastic search and MEC-model”, IEE Transactions on

Magnetics, Vol. 30 5 2, Sept. 1994

[38] Van den Bossche, A.; Valchev, V.; Filchev, T., “Improved approximation

for fringing permeances in gapped inductors”, Industry Applications

Conference, 2002. 37th IAS Annual Meeting, vol.2, 932 -938

[39] Vagati A., Pastorelli M., Scapino F., Franceschini G., “Cross-saturation in

synchronous reluctance motors of the transverse-laminated type”, Industry

Applications Conference, 1998, Thirty-Third IAS Annual Meeting, Vol. 1,

1998

[40] Delforge C., Lemare-Semail B., “Induction machine modelling using finite

element and permeance network methods”, IEEE Transactions on

Magnetics, Vol. 31 3, May 1995

[41] Sudhoff S.D., Aliprantis D.C., Kuhn B.T., Chapman P.L. “A introduction

Machine Model for Predicting Inverter-Machine Interaction”, IEEE

Transactions on Energy Conversion, Vol. 17, No. 2, June 2002, pp. 203-

210

[42] Suciu C.,Kansara M., Holmes P., Szabo., “Performance Enhancment of an

Induction Motor by Secondary Impedance Control”, IEEE Transactions on

Energy Conversion, Vol. 17, No. 2, June 2002, pp. 211-216

[43] Lancarotte M.S., Penteado, Jr. A.A., “Estimation of Core Losses under

Sinusoidal or Non-Sinusoidal Induction by Analysis of Magnetization Rate”,

IEEE Transactions on Energy Conversion, Vol. 16, No. 2, June 2001, pp.

174-179

[44] Jacobina C.B., Chaves Filho J.E., Noguerira Lima A.M., “Estimating the

Parameter of Induction Machines at Standstill”, IEEE Transactions on

Energy Conversion, Vol. 17, No. 1, March 2001, pp. 85-89

122

[45] Wilson P.R., Ross J.N., Brown A.D., “Simulation of Magnetic Component

Models in Electric Circuits Including Dynamic Thermal Effects”, IEEE

Transactions on Power Electronics, Vol. 17, No. 1, January 2002, pp. 55-64

[46] Sulivan C.R., “Computationally Efficient Winding Loss Calculation with

Multiple Windings, Arbitrary Waveforms, and Two-Dimensional or Three-

Dimensional Field Geometry”, IEEE Transactions on Energy Conversion,

Vol. 16, No. 1, January 2001, pp. 143-150

[47] Shamming W., Xiangheng W., Yixiang L., Pengsheng S., Weiming W.,

Gaifan Z., “Steady-State Performance of Synchronous Generators with ac

and dc Stator Connections Considering Saturation”, IEEE Transactions on

Energy Conversion, Vol. 17, No. 2, June 2002, pp. 85-89

[48] Kurumbalapitiya D., Ratnajeevan S. and Hoole H., 1993, “An Object-

orientated Representation of Electromagnetic Knowledge”, IEEE Trans, on

Mao.. 29 (2). 1939-1942

[49] http://astronomv.swin.edu.au/-pbourke/aeomformats/dxf/ (Guide to the

Drawing exchange Format (DXF) graphics format)

[50] http://www.w3.org/Graphics/SVG/Overview.htm8 (World Wide Web

Consortium website for extendable Meta Language (XML) derived Scalable

Vector Graphics (SVG) language)

[511 http://www.modelica.org/index.shtml (Simulation language resource

website)

[52] http://mupad.com (MuPAD computer algebra software website, SciFace

Software GmbH & Co.)

[53] Carpenter C.J., “Electromagnetic theory without electric flux”, IEE

Proceedings-A, Vol. 139, No. 4, July 1992, 189-209

[54] Ratnajeevan S. et al., “Fictitious Minima of Object Functions, Finite

Element Meshes, and Edge Elements in Electromagnetic Device

Synthesis”, IEEE Transactions on Magnetics, Vol. 27, No. 6, November

1991

123

http://astronomv.swin.edu.au/-pbourke/aeomformats/dxf/
http://www.w3.org/Graphics/SVG/Overview.htm8
http://www.modelica.org/index.shtml
http://mupad.com

[55] Maxim A. et al., “A Novel Behavioural Method of SPICE Macro-modelling

of Magnetic Components Including the Temperature and Frequency

Dependencies”, IEEE 1998, 393-399.

[56] Hecquet M., “Modelling of a Claw-Pole Alternator using Permeance

Network Coupled with Electric Circuits”, IEEE Transactions on Magnetics,

Vol. 31, No. 3, May 1995, 2131-2134

[57] McDermott T.E. et al., “Electromechanical System Simulation with Models

Generated from Finite Element Solutions”, IEEE Transactions on

Magnetics, Vol. 33, No. 2, March 1997, 1682-1685

[58] Ratnajeevan S. et al., “Optimization of Electromagnetic Devices: Circuit

Models, Neural Networks and Gradient Methods in Concert”, IEEE

Transactions on Magnetics, Vol31, No. 3, May 1995, 2016-2019

[59] Azzerboni B. et al., “Equivalent Network Modelling of Cylindrical Systems

with Conductors in Motion”, IEEE Transactions on Magnetics, Vol. 29, No.

2, March 1993,1689-1692

[60] Driesen J. et al. “Coupled Magneto-Thermal Simulation of Thermal

Anisotropic Electrical Machines”, IEEE 1999, 469-471

[61] Carpenter H., “Simple Models for Dynamic Hysteresis which add

Frequency-Dependent Losses to Static Models”, IEEE Transactions on

Magnetics, Vol. 34, No. 3, May 1998, 619-622

[62] Ramswanny D. et al., “Fast Algorithms for 3-D Simulation”, Journal of

Modelling and Simulation of Microsystems, Vol. 1, No. 1, 1999, 77-82

[63] De Gersem, H.; Hameyer, K.; Weiland, T., “Skew interface conditions in 2-

D finite-element machine models”, IEEE Transactions on Magnetics,

Volume: 39 Issue: 3 , May 2003, Page(s): 1452 -1455

124

Appendices

A
Magnetic equivalent circuits including charge and flux duality

125

The duality of electrical and magnetic circuits has been discussed already in

section 2.11.1 where the simalarity between the electrical equation (79) (which

relates charge (Q), capacitance (C) and voltage (V)) and the magnetic equation

(80) (which relates flux (O), permeance (A) and magneomotive force (mmf)) has

already been noted. The following differential equations (eq. 145 and eq. 146)

describe the relationship between the electrical quantities and the magnetic

quantities when transforming from the electrical to the magnetic and visa versa.

dCE>
V = -n — (145)

dt

mmf - ni = n~^L (146)

Given the above equations it is possible to use a 4 port electrical device known as

a gyrator to connect the electrical and magnetic equivalent circuits. This device

transforms a current on one side to a voltage multiplied by a constant (n) on the

other.

magnetic
permeance
element

electrical
capacitance
element

mmf = niV = n

Figure 79: Transformation between electrical and magnetic equivalent circuits

Figure 79 illustrates the use of a gyrator to connect an electrical and magnetic

equivalent circuit. The point within the simulation circuit where such devices are

placed is where, if the magnetic circuit is pulled from the electrical circuit, the flux

paths ‘cut’ through the electrical wiring or visa versa.

126

Appendices

B
“A novel technique to derive an analogue hardware description language model of a

2.2kw induction motor.’

Third International Conference on COMPUTATION IN ELECTROMAGNETICS,

University of Bath, 10-12 April 1996

A NOVEL T E C H N IQ U E T O D E R IV E A N A N A L O G U E H A R D W A R E D E S C R IP T IO N L A N G U A G E M O D E L
OF A 2.2KW IN D U C T IO N M O T O R .

D. Downes, P.G. Holmes, B. Patterson, J.M.K. Pratt, M . Kansara

Ihe Nottingham Trent University

IN TR O D U C TIO N .

Id machine design, especially where concurrent
engineering is applied, the simulation o f an
Electromagnetic device and its control electronics is
Incoming necessary. The problem therefore arises as to
which domain does the simulation properly belong, a
finite element package with circuit elements or a circuit
simulation package with behavioural modelling o f the
Electromagnetic device.
Ihe view taken is that both approaches are necessary,
lepending on the particular aims o f a simulation such as
optimisation o f the electromagnetic device or control
circuit. An approach to allow the relative ease o f
movement between the two domains, without
icformatting the data relating to machine geometry and
configuration is part o f the current research programme.
laydock(l) and Ostovic(2) have shown that an
approach based on magnetic circuits can lead to shorter
solution times with a small detrimental effect on the
accuracy o f the solution. I t has been shown (1) that the
classic two axis equivalent circuits can be derived
directly from the machines magnetic circuits by using a
suitable transform from one side o f the gyrator to the
other. Haydock showed that a magnetic capacitor
changes to an electrical inductance by the reciprocity
idationship.
lo be able to derive the values o f the components in the
magnetic circuit, the flux paths need to be known. The
basis of the paper is not the calculation o f the flux paths,
hut the automation o f the calculation o f the magnetic
circuit. In the present paper the flux paths w ill be
explicitly defined. The numerical calculation o f the flux
path is the subject o f future work.
Ihe intended application is to use the resulting network
within an Analogue Hardware Description Language
(AHDL) simulation package, so as to allow models o f
different complexity to be used w ithin the same
simulation. The simulation results are based on a
standard ‘ SPICE’ network description, and o f course
this does not fu lly describe the mechanical properties o f
the machine and its interaction with the electromagnetic
feld. This could be described by a behavioural model
with the magnetic circuit still entered as a spice network
with in the model.

Previous work by Kurumbalaptitiya et al (3) has
successfully applied Object Orientated Programming
(OOP) concepts to the representation o f
electromagnetic knowledge. In order to allow
implementation o f the complex software in a reasonable
time a similar approach is adopted for the representation
o f machine geometry and physical relationships.
In itia lly only two dimensional design information is
considered but the approach adopted is inherently
scaleable to three dimensions.
The key concepts in terms o f the machines
representation, which translate directly into software
objects are as follows:
• A global co-ordinate reference frame in which all

other defined co-ordinate reference frames must
exist.

• A reference FRAME that has a particular co-ordinate
system and contains co-ordinate nodes. The location
o f the frame within a global frame and whether it has
any degrees o f movement with respect to the global
reference frame.

• Co-ordinate NODES that can only belong to one
particular frame and are defined by position
according to the particular co-ordinate system used
by the frame.

• CURVES must begin at one node and end at a
second node.

• PARTS that are defined in terms o f the CURVES to
form closed areas. Physical information such as the
materials electromagnetic properties are also
associated w ith a particular part.

• Various other objects are also derived so as to
embody other items o f knowledge such as a
particular materials B-H curve.

The relationships between the various objects mentioned
above is shown in Fig. 1 and C++ has been used to
implement the software models o f the machine.
Part o f the syntax for the description language used
specifically for a rotational machine is shown in Fig. 2.
The optional items provide a means to describe
redundancy due to symmetry or repeated sections w ithin
the machines structure. Names used to denote particular
parts, curves etc. are automatically cross-referenced
when the input is parsed by the program.

A LANGUAGE F O R M A C H IN E D E S C R IP T IO N .

>

Frame >

e.g. Stator
Rotor

Nodes

Curves

lech, properties
BH curves

Figure 1 Software objects an d reference links

Checks are made on the machine description, to
determine that it is consistent and complete. These
checks include the following:
• every node must have at least two curves associated;
• each part has a closed set o f curves;
• only one boundary set o f curves exist for the device,

no ‘holes’ exist in the space defined by the various
parts;

• references are not made to non existent items;
• no parts overlap.

Application of the description to magnetic circuits.
I t has been shown (2) that the reluctance o f a flux path
can be derived using the follow ing equation:

bh < name >

{ < linear | exp > < value [, value,value] > }

stator

{ node < name [[start integer , no. o f repetitions ,

incjnteger]] > < value \ [start J lo a t , incJloat]

> , < value | [start J lo a t , inc Jloat] > }

rotor

{ node < name [[start integer , no. o f repetitions ,

incjnteger]] > < value \ [startJloat, incJloat] >

, < value | [start J lo a t , inc Jloat] > }

curve < name [[start integer , no. o f repetitions ,

incjnteger]] >

{ < line | circ > < name [[start integer , incjnteger

]] > , < name [[start integer , incjnteger]] > [,

< value | [start J lo a t , inc Jloat] >] }

part < name >

{ frame <stator | rotor > bh < name >

curve < name [[start integer, no. o f repetitions ,

incjnteger]] >

electrical <front_terminal_name>,

<back terminal_name> }

i
Rm = \

d x
(1)

Where Rm = magnetic reluctance o f path.
p(x) = permeability along integration path.
A (x) = area normal to integration path.
1 = length o f path o f integration.

It is assumed that for each part that has been defined, the
flux enters and leaves through two curves associated
with the part.
The direction o f integration is therefore defined for each
part, where each part is a flux path definition. The
resulting magnetic circuit is therefore defined by the
common curves shared by adjacent parts.
The value o f p is assumed to be homogeneous
throughout any part, and has already been associated
with a particular B-H curve via the machine description.
The non-linear magnetic capacitance can therefore be
derived, from the path integral o f area and a non-linear
function which approximates the materials magnetic
saturation properties.
For present purpose, rotational velocity is assumed to be
constant and the effect o f motion is considered by
varying the permanence between a point on the stator
and on the rotor as in (2). The follow ing function o f the
displacement angle is used to give the various values o f
stator to rotor permanence:

Fr(0) = < ralSin« * +6)/2)l (2)

where Pr(0) = relative permeance o f airgap.
0 = displacement angle,
b = displacement angle offset
a = 1st co-efficient o f curve fit.
c = 2nd co-efficient o f curve fit.

Figure 2 Syntax o f ro ta tio n a lly constrained description

I

1
exp(-1e5*abs(sin(pi*x/360))**3)

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0.1

0
-5 •3 -2 1 3 5-4 -1 0

Displacement angle (degrees)
2 4

Figure 3 Variation o f re lative perm eance with angle

The relative permeance as a function o f displacement
angle varies between 0 and 1 (see fig. 3 for example
with maximum permeance centred on 10 degrees
displacement). The function can be implemented using
a standard non-linear voltage source in a spice
simulator.

Experimental Testing
The methodology was verified by performing a physical
test on a 4 pole 3 phase 415V a.c. 2.2KW induction
motor with a skewed 32 bar rotor and 36 slot concentric
wound stator.
Test results from the induction machine were captured
using hall effect current probes and a high speed data
acquisition board.

Simulation
A machine description was produced from the design
data made available by the machine manufacturer o f the
tested machine. Then simple flux paths were defined
and the resulting network listing obtained from the
conversion program. A flowchart showing the steps
involved is shown in fig. 4. The resulting model file
was used in a SPICE 3 simulator and the simulation
results obtained are illustrated in fig. 6.

Machine
Description j

Evaluate Spice netlist / Power cct. /
/ — 1> mag. cct. — [> , — / netlist /

elements /

Transient
Spice circuit

/
v o lta g e s ^ _

simulation
Merged
netlist

Figure 4 F lo w ch art

The plot is o f the steady state current for one o f the
phases with the rotor speed at 1425 rpm. Similar scaling
has been used in both the simulation and experimental
test result to allow qualitative comparison o f the two
waveforms.

Phase

w
0 27

Time (ms)

F ig u re 5 Test results (L igh t load)

Results
The experimental results produced in the laboratory for
the steady state phase current are shown in fig. 6.

6

4

2

(A) 0

-2

-4

-6

0 27

Time (ms)

F ig u re 6 Sim ulation results (L igh t load)

By comparing the results from the test and simulation
(Fig. 6) a correlation between the two curves can be
seen.

C O N C L U S IO N
A machine description language and interpreter has been
developed that can be used as the basis for further work.
Automation o f the generation o f equivalent circuits has
been achieved by incorporating the suggested flux paths
w ithin the machine description. The comparison o f the
simulation results with the experimental results has
produced similar waveforms. The difference between
the experimental and simulation results is mainly due to
the coarse model o f the machine. This model w ill not
take into account the effect o f space harmonics, but the
flat top on the waveform shows the presence o f a 3rd
harmonic component. Nevertheless this is a first attempt
at synthesis o f a model and the experimental software is
now being refined to include more complex geometrical
and electromagnetic detail.

F U R T H E R W O R K

Appendices

C

GDL description file of machine

simple machine
unitdistance 0.001
bh {

newcor linear 2000 # exp 3.8 2.17 396.2 # linear 2000
air linear 1

}

stator
{
coils { swl 81 swla swlb sw2 81 sw2a sw2b sw3 81 sw3a sw3b sw4 81 sw4a sw4b

sw5 81 sw5a sw5b sw6 81 sw6a sw6b }
nodes {

snO 0 d 0
sn [1 12 20] [46. 04 0] d [-1.56 30]
sn [2 12 20] [46. 294 0] d [-1.55 30]
sn [3 12 20] [46. 802 0] d [-2.15 30]
sn [4 12 20] [47. 074 0] d [-2.47 30]
sn [5 12 20] [58. 92 0] d [-3.09 30]
sn [6 12 20] [46. 04 0] d [1.56 30]
sn [7 12 20] [46. 294 0] d [1.55 30]
sn [8 12 20] [46. 802 0] d [2.15 30]
sn [9 12 20] [47. 074 0] d [2 .47 30]
sn [10 12 20] [58 .92 0] d [3 .09 30]
sn [11 12 20] [62 0] d [15 30]
sn [12 12 20] [76 .45 0] d [15 30]
sn [13 12 20] [45 .82 0] d [-1.56 30]
sn [14 12 20] [45 .82 0] d [1.56 30]

}
curves {

sc [1 11 20] circ sn[6 20] sn[21 20] [46.04 0]
sc221 circ sn226 snl 46.04
sc [2 12 20] line sn[l 20] sn[2 20]
sc [3 12 20] circ sn[3 20] sn[2 20] [0.508 0]
sc [4 12 20] circ sn[3 20] sn[4 20] [0.84 0]
sc [5 12 20] line sn[4 20] sn[5 20]
sc [6 12 20] circ sn[5 20] sn[10 20] [3.18 0]
sc [7 12 20] line sn[6 20] sn[7 20]
sc [8 12 20] circ sn[7 20] sn[8 20] [0.84 0]
sc [9 12 20] circ sn[9 20] sn[8 20] [0.508 0]
sc [10 12 20] line sn[9 20] sn[10 20]
sc [11 12 20] line sn[10 20] sn[ll 20]
sc [12 11 20] line sn[ll 20] sn[25 20]
sc232 line sn231 sn5
sc [13 12 20] line sn[ll 20] sn[12 20]
sc [14 11 20] circ sn[12 20] sn[32 20] [76.45 0]
sc234 circ sn232 snl2 76.45
sc [15 12 20] line sn[l 20] sn[13 20]

| sc [16 12 20] line sn[6 20] sn[14 20]
| sc [17 11 20] circ sn[14 20] sn [33 20] [45.82 0]

sc237 circ sn234 snl3 45.82
sc [18 12 20] line sn [4 20] sn[9 20]

I sc [19 12 20] line sn[l 20] sn[6 20]
' }
I parts {

sicl {
length 96

| bh newcor
coils { swl }
curves { scl sc7 sc8 sc9 sclO sell scl2 sc22 sc23 sc24 sc25 }
entry { sell scl2 }
exit { scl sc7 sc8 sc22 sc23 }

}sll {
length 96

! bh air
! curves { sc2 sc3 sc4 scl8 scl9 sc7 sc8 sc9 }
I entry { sc7 sc8 }
I exit { sc2 sc3 }

}

sibl {
length 96
bh newcor
curves { sc6 sell scl3 sc232 sc233 sc234 }
entry { sell scl3 }
exit { sc232 sc233 }

}sagl {
length 96
bh air
curves { scl scl6 sc35 scl7 }
entry { scl }
exit { scl7 }

}
sic2 {

length 96
bh newcor
coils { swl sw3 }
curves { sc21 sc27 sc28 sc29 sc30 sc31 sc32 sc42 sc43 sc44 sc45 }
entry { sc31 sc32 }
exit { sc21 sc27 sc28 sc42 sc43 }

}sl2 {
length 96
bh air
curves { sc22 sc23 sc24 sc38 sc39 sc27 sc28 sc29 }
entry { sc27 sc28 }
exit { sc22 sc23 }

}sib2 {
length 96
bh newcor
curves { sc26 sc31 sc33 scl2 scl3 scl4 }
entry { sc31 sc33 }
exit { scl2 scl3 }

sag2 {
length 96
bh air
curves { sc21 sc36 sc55 sc37 }
entry { sc21 }
exit { sc37 }

}
sic3 {

length 96
bh newcor
coils { sw3 }
curves { sc41 sc47 sc48 sc49 sc50 sc51 sc52 sc62 sc63 sc64 sc65 }
entry { sc51 sc52 }
exit { sc41 sc47 sc48 sc62 sc63 }

}sl3 {
length 96
bh air
curves { sc42 sc43 sc44 sc58 sc59 sc47 sc48 sc49 }
entry { sc47 sc48 }
exit { sc42 sc43 }

}sib3 {
length 96
bh newcor
curves { sc46 sc51 sc53 sc32 sc33 sc34 }
entry { sc51 sc53 }
exit { sc32 sc33 }

}sag3 {
length 96
bh air
curves { sc41 sc56 sc75 sc57 }
entry { sc41 }
exit { sc57 }

}

sic4 {
length 96
bh newcor
coils { sw3 sw5 }
curves { sc61 sc67 sc68 sc69 sc70 sc71 sc72 sc82 sc83 sc84 sc85 }
entry { sc71 sc72 }
exit { sc61 sc67 sc68 sc82 sc83 }

}sl4 {
length 96
bh air
curves { sc62 sc63 sc64 sc78 sc79 sc67 sc68 sc69 }
entry { sc67 sc68 }
exit { sc62 sc63 }

}sib4 {
length 96
bh newcor
curves { sc66 sc71 sc73 sc52 sc53 sc54 }
entry { sc71 sc73 }
exit { sc52 sc53 }

}sag4 {
length 96
bh air
curves { sc61 sc76 sc95 sc77 }
entry { sc61 }
exit { sc77 }

}

sic5 {
length 96
bh newcor
coils { sw5 }
curves { sc81 sc87 sc88 sc89 sc90 sc91 sc92 scl02 SC103 scl04 scl05 }
entry { sc91 sc92 }
exit { sc81 sc87 sc88 scl02 scl03 }

sl5 {
length 96
bh air
curves { sc82 sc83 sc84 sc98 sc99 sc87 sc88 sc89 }
entry { sc87 sc88 }
exit { sc82 sc83 }

}sib5 {
length 96
bh newcor
curves { sc86 sc91 sc93 sc72 sc73 sc74 }
entry { sc91 sc93 }
exit { sc72 sc73 }

}sag5 {
length 96
bh air
curves { sc81 sc96 scll5 sc97 }
entry { sc81 }
exit { sc97 }

}
sic6 {

length 96
bh newcor
coils { sw5 sw2 }
curves { sclOl scl07 scl08 scl09 scllO sclll scll2 scl22 scl23 scl24 scl25 }
entry { sclll scll2 }
exit { sclOl scl07 scl08 scl22 scl23 }

}sl6 {
length 96
bh air
curves { scl02 scl03 scl04 scll8 scll9 scl07 scl08 scl09 }
entry { scl07 scl08 }
exit { scl02 scl03 }

}

sib6 {
length 96
bh newcor
curves { scl06 sclll scll3 sc92 sc93 sc94 }
entry { sclll scll3 }
exit { sc92 sc93 }

}sag6 {
length 96
bh air
curves { sclOl scll6 scl35 scll7 }
entry { sclOl }
exit { scll7 }

}

sic7 {
length 96
bh newcor
coils { sw2 }
curves { scl21 scl27 scl28 scl29 SC130 scl31 SC132 scl42 scl43 scl44 scl45 }
entry { scl31 scl32 }
exit { scl21 scl27 scl28 scl42 scl43 }

}sl7 {
length 96
bh air
curves { scl22 scl23 scl24 scl38 scl39 scl27 scl28 scl29 }
entry { scl27 scl28 }
exit { scl22 scl23 }

}sib7 {
length 96
bh newcor
curves { scl26 scl31 scl33 scll2 scll3 scll4 }
entry { scl31 scl33 }
exit { scll2 scll3 }

}sag7 {
length 96
bh air
curves { scl21 scl36 scl55 scl37 }
entry { scl21 }
exit { scl37 }

}

s i c 8 {
length 96
bh newcor
coils { sw4 sw2 }
curves { scl41 scl47 SC148 scl49 scl50 scl51 scl52 scl62 scl63 scl64 scl65 }
entry { scl51 scl52 }
exit { SC141 scl47 scl48 scl62 scl63 }

}
s l 8 {

length 96
bh air
curves { scl42 scl43 scl44 scl58 scl59 scl47 scl48 SC149 }
entry { scl47 scl48 }
exit { scl42 scl43 }

}
s i b 8 {

length 96
bh newcor
curves { scl46 scl51 scl53 scl32 scl33 scl34 }
entry { scl51 scl53 }
exit { scl32 scl33 }

}sag8 {
length 96
bh air
curves { scl41 scl56 scl75 scl57 }
entry { scl41 }
exit { scl57 }

}

sic9 {
length 96
bh newcor
coils { sw4 }
curves { scl61 scl67 scl68 scl69 scl70
entry { scl71 scl72 }
exit { SC161 scl67 scl68 scl82 scl83 }

}sl9 {
length 96
bh air
curves { scl62 scl63 scl64 scl78 scl79
entry { scl67 scl68 }
exit { scl62 scl63 }

}sib9 {
length 96
bh newcor
curves { scl66 scl71 scl73 scl52 scl53
entry { scl71 scl73 }
exit { scl52 scl53 }

}sag9 {
length 96
bh air
curves { scl61 scl76 scl95 scl77 }
entry { scl61 }
exit { s c l l l }

}

siclO {
length 96
bh newcor
coils { sw4 sw6 }
curves { scl81 scl87 scl88 scl89 scl90
entry { scl91 scl92 }
exit { SC181 scl87 scl88 sc202 sc203 }

sllO {
length 96
bh air
curves { scl82 scl83 scl84 scl98 scl99
entry { scl87 scl88 }
exit { scl82 scl83 }

}siblO {
length 96
bh newcor
curves { scl86 scl91 scl93 scl72 scl73
entry { scl91 scl93 }
exit { scl72 scl73 }

}saglO {
length 96
bh air
curves { scl81 scl96 sc215 scl97 }
entry { scl81 }
exit { scl97 }

}

sicll {
length 96
bh newcor
coils { sw6 }
curves { sc201 sc207 sc208 sc209 sc210
entry { sc211 sc212 }
exit { sc201 sc207 sc208 sc222 sc223 }

}sill {
length 96
bh air
curves { sc202 sc203 sc204 sc218 sc219
entry { sc207 sc208 }
exit { sc202 sc203 }

}

s c l 7 1 s c l7 2 s c l 8 2 s c l 8 3 s c l 8 4 s c l 8 5 }

scl67 scl68 scl69 }

scl54 }

s c l 9 1 s c l9 2 sc202 sc 203 sc 20 4 sc205 }

s c l 8 7 s c l8 8 s c l 8 9 }

SC174 }

sc211 sc212 sc222 sc 22 3 sc224 sc 22 5 }

sc207 sc208 sc209 }

sibll {
length 96
bh newcor
curves { sc206 sc211 sc213 scl92 scl93 scl94 }
entry { sc211 sc213 }
exit { scl92 scl93 }

}sagll {
length 96
bh air
curves { sc201 sc216 sc235 sc217 }
entry { sc201 }
exit { sc217 }

}

sicl2 {
length 96
bh newcor
coils { sw6 swl }
curves { sc221 sc227 sc228 sc229 sc230 sc231 sc232 sc2 sc3 sc4 sc5 }
entry { sc231 sc232 }
exit { sc221 sc227 sc228 sc2 sc3 }

}sll2 {
length 96
bh air
curves { sc222 sc223 sc224 sc238 sc239 sc227 sc228 sc229 }
entry { sc227 sc228 }
exit { sc222 sc223 }

}sibl2 {
length 96
bh newcor
curves { sc226 sc231 sc233 sc212 sc213 sc214 }
entry { sc231 sc233 }
exit { sc212 sc213 }

sagl2 {
length 96
bh air
curves { sc221 sc236 scl5 sc237 }
entry { sc221 }
exit { sc237 }

}

}
}

rotor {
skewangle d 30
coils { rwl 324 rbla rblb }
nodes {

rnO 0 d 0
rn [1 2 20] [31 0] d [-25 180]
rn [2 2 20] [45.6 0] d [-25 180]
rn [3 2 20] [45.82 0] d [-25 180]
rn [4 2 20] [31 0] d [25 180]
rn [5 2 20] [45.6 0] d [25 180]
rn [6 2 20] [45.82 0] d [25 180]
rn [7 2 20] [15.875 0] d [0 180]
rn [8 2 20] [31 0] d [0 180]
rn [9 2 20] [40 0] d [-25 180]
rn [10 2 20] [40 0] d [25 180]

}

curves {
rc[l 2 20] circ rn[3 20] rn[6 20] [45.82 0]
rc [2 2 20] circ rn [2 20] rn[5 20] [45.6 0]
rc [3 2 20] line rn[l 20] rn[9 20]
rc [4 2 20] line rn [2 20] rn[3 20]
rc [5 2 20] line rn [4 20] rn[10 20]
rc [6 2 20] line rn[5 20] rn[6 20]

rc [7 2 20] circ rn[l 20] rn[8 20] [31 0]
rc [8 2 20] circ rn[8 20] rn [4 20] [31 0]
rc [9 2 20] line rn[7 20] m [8 20]
rclO circ rn7 rn27 15.88
rc30 circ rn27 rn7 15.88
rcll circ rn4 rn21 31
rc31 circ rn24 rnl 31
rcl2 circ rnlO rn29 40
rc32 circ rn30 rn9 40
rcl3 circ rn5 rn22 45.6
rc33 circ rn25 rn2 45.6
rc [14 2 20] line rn[9 20] rn[2 20]
rc [15 2 20] line rn[10 20] rn [5 20]

}

parts {
riel {

length 98
bh newcor
coils { rwl }
curves { rc2 rc3 rc5 rc7 rc8 rcl4 rcl5 }
entry { rc2 rcl4 rcl5 }
exit { rc7 rc8 }

}
ripl {

length 98
bh newcor
curves { rc8 rc9 rclO rcll rc27 rc29 }
entry { rc8 }
exit { rc27 }

}ragl {
length 98
bh air
curves { rcl rc2 rc4 rc6 }
entry { rcl }
exit { rc2 }

}rll {
length 98
bh air
curves { rcl2 rcl3 rcl5 rc34 }
entry { rcl5 }
exit { rc34 }

}

ric2 {
length 98
bh newcor
curves { rc22 rc23 rc25 rc27 rc28 rc34 rc35 }
entry { rc22 rc34 rc35 }
exit { rc27 rc28 }

}rip2 {
length 98
bh newcor
curves { rc7 rc9 rc28 rc29 rc30 rc31 }
entry { rc28 }
exit { rc7 }

}rag2 {
length 98
bh air
curves { rc21 rc22 rc24 rc26 }
entry { rc21 }
exit { rc22 }

}rl2 {
length 98
bh air
curves { rc32 rc33 rc35 rcl4 }
entry { rc35 }
exit { rcl4 }

Appendices

D

Spice circuit description from conversion program

* Circuit description generated by GDL program
.subckt magnetic TORQ_P TORQ_N POS_P POS_N
+ swla swlb sw2a sw2b sw3a sw3b sw4a sw4b sw5a sw5b sw6a sw6b sw7a sw7b sw8a sw8b sw9a
sw9b swlOa swlOb swlla swllb swl2a swl2b
+ rbla rblb ************************************
* Stator magnetic circuit elements *************************************
* part 'sib8' length: 0.096 integral: 14.673 entry cct node: 1 exit cct node: 2
* magnetic capacitance:
Csib8 1 2 0.000685121 IC=0
* coils:
* part 'sic2' length: 0.096 integral: 5.62713 entry cct node: 3 exit cct node: 4
* magnetic capacitance:
Csic2 3 43 0.00178649 IC=0
* coils:
Vsenssic2 43 44 0
Hsic2sw2 4 44 Vsenssw2 -81
* part 'sib2' length: 0.096 integral: 14.6818 entry cct node: 3 exit cct node: 5
* magnetic capacitance:
Csib2 3 5 0.000684709 IC=0
* coils:
* part 'sill' length: 0.096 integral: 30.8315 entry cct node: 8 exit cct node: 9
* magnetic capacitance:
Cslll 8 9 4.0757e-08 IC=0
* coils:
* part 'sicl' length: 0.096 integral: 5.62713 entry cct node: 5 exit cct node: 10
* magnetic capacitance:
Csicl 5 45 0.00178649 IC=0
* coils:
Vsenssicl 45 46 0
Hsiclswl 10 46 Vsensswl -81
* part 'sibl' length: 0.096 integral: 14.673 entry cct node: 5 exit cct node: 11
* magnetic capacitance:
Csibl 5 11 0.000685121 IC=0
* coils:
* part 'sicll' length: 0.096 integral: 5.62713 entry cct node: 16 exit cct node: 8
* magnetic capacitance:
Csicll 16 47 0.00178649 IC=0
* coils:
Vsenssicll 47 48 0
Hsicllswll 8 48 Vsensswll -81
* part 'siblO' length: 0.096 integral: 14.673 entry cct node: 17 exit cct node: 18
* magnetic capacitance:
CsiblO 17 18 0.000685121 IC=0
* coils:
* part 'sic6' length: 0.096 integral: 5.62713 entry cct node: 19 exit cct node: 20
* magnetic capacitance:
Csic6 19 49 0.00178649 IC=0
* coils:
Vsenssic6 49 50 0
Hsic6sw6 20 50 Vsenssw6 -81
* part 'sibll' length: 0.096 integral: 14.673 entry cct node: 16 exit cct node: 17
* magnetic capacitance:
Csibll 16 17 0.000685121 IC=0
* coils:

| * part 'siclO' length: 0.096 integral: 5.62713 entry cct node: 17 exit cct node: 9
* magnetic capacitance:
CsiclO 17 51 0.00178649 IC=0
* coils:
VsenssiclO 51 52 0
HsiclOswlO 9 52 VsensswlO -81
* part 'sib6' length: 0.096 integral: 14.673 entry cct node: 19 exit cct node: 21
* magnetic capacitance:
Csib6 19 21 0.000685121 IC=0
* coils:
* part 'sibl2' length: 0.096 integral: 14.673 entry cct node: 11 exit cct node: 16
* magnetic capacitance:
Csibl2 11 16 0.000685121 IC=0
* coils:
* part 'sicl2' length: 0.096 integral: 5.62713 entry cct node: 11 exit cct node: 22
* magnetic capacitance:
Csicl2 11 53 0.00178649 IC=0
* coils:
Vsenssicl2 53 54 0

Hsicl2swl2 22 54 Vsensswl2 -81
* part 'sic5' length: 0.096 integral: 5.62713 entry cct node: 21 exit cct node: 23
* magnetic capacitance:
Csic5 21 55 0.00178649 IC=0
* coils:
Vsenssic5 55 56 0
Hsic5sw5 23 56 Vsenssw5 -81
* part 'sib5' length: 0.096 integral: 14.673 entry cct node: 21 exit cct node: 24
* magnetic capacitance:
Csib5 21 24 0.000685121 IC=0
* coils:
* part 'sll2' length: 0.096 integral: 30.8315 entry cct node: 22 exit cct node: 8
* magnetic capacitance:
Csll2 22 8 4.0757e-08 IC=0
* coils:
* part 'sic4' length: 0.096 integral: 5.62713 entry cct node: 24 exit cct node: 12
* magnetic capacitance:
Csic4 24 57 0.00178649 IC=0
* coils:
Vsenssic4 57 58 0
Hsic4sw4 12 58 Vsenssw4 -81
* part 'sll' length: 0.096 integral: 30.8315 entry cct node: 10 exit cct node: 22
* magnetic capacitance:
Csll 10 22 4.0757e-08 IC=0
* coils:
* part ' sib4' length: 0.096 integral: 14.673 entry cct node: 24 exit cct node: 31
* magnetic capacitance:
Csib4 24 31 0.000685121 IC=0
* coils:
* part 'sl2' length: 0.096 integral: 30.8315 entry cct node: 4 exit cct node: 10
* magnetic capacitance:
Csl2 4 10 4.0757e-08 IC=0
* coils:
* part 'sic9' length: 0.096 integral: 5.62713 entry cct node: 18 exit cct node: 6
* magnetic capacitance:
Csic9 18 59 0.00178649 IC=0
* coils:
Vsenssic9 59 60 0
Hsic9sw9 6 60 Vsenssw9 -81
* part 'sl3' length: 0.096 integral: 30.8315 entry cct node: 14 exit cct node: 4
* magnetic capacitance:
Csl3 14 4 4.0757e-08 IC=0
* coils:
* part 'sib9' length: 0.096 integral: 14.673 entry cct node: 18 exit cct node: 1
* magnetic capacitance:
Csib9 18 1 0.000685121 IC=0
* coils:
* part 'sl4' length: 0.096 integral: 30.8315 entry cct node: 12 exit cct node: 14
* magnetic capacitance:
Csl4 12 14 4.0757e-08 IC=0
* coils:
* part 'sl5' length: 0.096 integral: 30.8315 entry cct node: 23 exit cct node: 12
* magnetic capacitance:
Csl5 23 12 4.0757e-08 IC=0
* coils:
* part 'sl6' length: 0.096 integral: 30.8315 entry cct node: 20 exit cct node: 23
* magnetic capacitance:
Csl6 20 23 4.0757e-08 IC=0

| * coils:
| * part 'sl7' length: 0.096 integral: 30.8315 entry cct node: 27 exit cct node: 20
I * magnetic capacitance:
! Csl7 27 20 4.0757e-08 IC=0
j * coils:
* part 'sl8' length: 0.096 integral: 30.8315 entry cct node: 25 exit cct node: 27
* magnetic capacitance:
Csl8 25 27 4.0757e-08 IC=0

; * coils:
* part 'sl9' length: 0.096 integral: 30.8315 entry cct node: 6 exit cct node: 25

: * magnetic capacitance:
| Csl9 6 25 4.0757e-08 IC=0
* coils:

| * part 'sic3' length: 0.096 integral: 5.62713 entry cct node: 31 exit cct node: 14
! * magnetic capacitance:
j Csic3 31 61 0.00178649 IC=0
* coils:

Vsenssic3 61 62 0
Hsic3sw3 14 62 Vsenssw3 -81
* part 'sib3' length: 0.096 integral: 14.673 entry cct node: 31 exit cct node: 3
* magnetic capacitance:
Csib3 31 3 0.000685121 IC=0
* coils:
* part 'sllO' length: 0.096 integral: 30.8315 entry cct node: 9 exit cct node: 6
* magnetic capacitance:
CsllO 9 6 4.0757e-08 IC=0
* coils:
* part 'sic7' length: 0.096 integral: 5.62713 entry cct node: 2 exit cct node: 27
* magnetic capacitance:
Csic7 2 63 0.00178649 IC=0
* coils:
Vsenssic7 63 64 0
Hsic7sw7 27 64 Vsenssw7 -81
* part 'sib7' length: 0.096 integral: 14.673 entry cct node: 2 exit cct node: 19
* magnetic capacitance:
Csib7 2 19 0.000685121 IC=0
* coils:
* part 'sic8' length: 0.096 integral: 5.62713 entry cct node: 1 exit cct node: 25
* magnetic capacitance:
Csic8 1 65 0.00178649 IC=0
* coils:
Vsenssic8 65 66 0
Hsic8sw8 25 66 VsensswS -81
* Grounding resistors:
RGND1 1 0 1G
RGND2 2 0 1G
RGND3 3 0 1G
RGND4 4 0 1G
RGND5 5 0 1G
RGND8 8 0 1G
RGND9 9 0 1G
RGND10 10 0 1G
RGND11 11 0 1G
RGND16 16 0 1G
RGND17 17 0 1G
RGND18 18 0 1G
RGND19 19 0 1G
RGND20 20 0 1G
RGND21 21 0 1G
RGND22 22 0 1G
RGND23 23 0 1G
RGND24 24 0 1G
RGND12 12 0 1G
RGND31 31 0 1G
RGND6 6 0 1G
RGND14 14 0 1G
RGND27 27 0 1G
RGND25 25 0 1G ***********************************
* Rotor magnetic circuit elements ************************************
* part 'ripl' length: 0.098 integral: 34.0226 entry cct node: 37 exit cct node: 38
* magnetic capacitance:
Cripl 37 38 0.000295474 IC=0
* coils:
* part 'ric2' length: 0.098 integral: 2.41523 entry cct node: 39 exit cct node: 38
* magnetic capacitance:
Cric2 39 38 0.00416225 IC=0
* coils:
* part 'riel' length: 0.098 integral: 2.41523 entry cct node: 40 exit cct node: 37
* magnetic capacitance:
Cricl 40 67 0.00416225 IC=0
* coils:
Vsensricl 67 68 0
Hriclrwl 37 68 Vsensrwl -324
* part 'rll' length: 0.098 integral: 153.243 entry cct node: 40 exit cct node: 39
* magnetic capacitance:
Crll 40 39 8.20004e-09 IC=0
* coils:
* part 'rl2' length: 0.098 integral: 153.243 entry cct node: 39 exit cct node: 40
* magnetic capacitance:
Crl2 39 40 8.20004e-09 IC=0

* coils:
* part 'rip2' length: 0.098 integral: 34.0226 entry cct node: 38 exit cct node: 37
* magnetic capacitance:
Crip2 38 37 0.000295474 IC=0
* coils:
* Grounding resistors:
RGND37 37 0 1G
RGND38 38 0 1G
RGND39 39 0 1G
RGND40 40 0 1G **
* Connection of stator coils to circuit terminations * ****************************** + *******************■****
Vsensswl swla 69 0
Hswlsicl swlb 69 Vsenssicl 81
Vsenssw2 sw2a 70 0
Hsw2sic2 sw2b 70 Vsenssic2 81

i Vsenssw3 sw3a 71 0
; Hsw3sic3 sw3b 71 Vsenssic3 81
Vsenssw4 sw4a 72 0
Hsw4sic4 sw4b 72 Vsenssic4 81

| Vsensswll swlla 73 0
1 Hswllsicll swllb 73 Vsenssicll 81
Vsenssw5 sw5a 74 0
Hsw5sic5 sw5b 74 Vsenssic5 81
Vsenssw6 sw6a 75 0
Hsw6sic6 sw6b 75 Vsenssic6 81
Vsenssw7 sw7a 76 0
Hsw7sic7 sw7b 76 Vsenssic7 81
Vsenssw8 sw8a 77 0
Hsw8sic8 sw8b 77 Vsenssic8 81
Vsenssw9 sw9a 78 0
Hsw9sic9 sw9b 78 Vsenssic9 81
VsensswlO swlOa 79 0
HswlOsiclO swlOb 79 VsenssiclO 81
Vsensswl2 swl2a 80 0
Hswl2sicl2 swl2b 80 Vsenssicl2 81
i t *

* Connection of rotor coils to circuit terminations *
Vsensrwl rbla 81 0
Hrwlricl rblb 81 Vsensricl 324 *************************************
* Magnetic to mechanical conversion ********★*★************★***+**★***★***
* frame: stator part: sag9 cct node: 6 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 7.59218 c: 5
B2sag9rag2 82 TORQ_P V=V(6,39)*V(6,39)*8.37593e-06
+ *(exp (-1*29.5121*abs(sin(V(P0S_P,POS_N)/2)*cos(3.79659)+cos(V(POS_P,
POS_N)/2)*sin(3.79659)) * 5)
+ -exp(-1*29.5121*abs(sin(V(POS_P,P0S_N)/2)*cos(3.79559)+cos(V(POS_P,
POS_N)/2)*sin(3.79559))*5))/0.004
Blsag9rag2 Blsag9rag2_P Blsag9rag2_N V=V(6,39)
+ *exp(-1*29.5121*abs(sin (V(POS_P, P0S_N)/2)*cos(3.79609)+cos(V(POS_P,

! P0S_N)/2)*sin(3.79609))A5)
Clsag9rag2 Blsag9rag2_P 0 8.37593e-06 IC=0

| VFlsag9rag2 0 Blsag9rag2_N 0
| FFlsag9rag2 39 6 VFlsag9rag2 -1
[* frame: stator part: sag9 cct node: 6 frame: rotor part: ragl cct node: 40
| * top: 0.620398 bottom: 1.2913 a: 29.5121 b: 4.45059 c: 5
i B2sag9ragl 83 82 V=V(6,40)*V(6,40)*8.37474e-06
- + *(exp(-1*29.5121*abs(sin(V(P0S_P,POS_N)/2)*cos(2.22579) +cos(V(P0S_P,
P0S_N)/2)*sin(2.22579))A5)

i + -exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(2.22479)+cos(V(P0S_P,
POS_N) /2)*sin(2.22479))A5))/0.004
Blsag9ragl Blsag9ragl_P Blsag9ragl_N V=V(6,40)
+ *exp (-1*29.5121*abs(sin(V(POS_P,P0S_N)/2)*cos(2.22529)+cos(V(P0S_P,
POS_N)/2)*sin(2.22529))"5)

i Clsag9ragl Blsag9ragl_P 0 8.37474e-06 IC=0
VFlsag9ragl 0 Blsag9ragl_N 0

: FFlsag9ragl 40 6 VFlsag9ragl -1
* frame: stator part: sag4 cct node: 12 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 4.97419 C: 5

; B2sag4rag2 84 83 V=V(12,39)*V(12,3 9)*8.37593e-06
| + *(exp (-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(2.48759) +cos(V(POS_P,
I POS_N) /2)*sin(2.48759))*5)

+ -exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(2.48659)+cos(V(POS_P,
POS_N)/2)*sin(2.48659))A5))/0.004
Blsag4rag2 Blsag4rag2_P Blsag4rag2_N V=V(12,39)
+ *exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(2.48709)+cos(V(POS_P,
POS_N)/2)*sin(2.48709))A5)
Clsag4rag2 Blsag4rag2_P 0 8.37593e-06 IC=0
VFlsag4rag2 0 Blsag4rag2_N 0
FFlsag4rag2 39 12 VFlsag4rag2 -1
* frame: stator part: sag4 cct node: 12 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 1.8326 c: 5
B2sag4ragl 85 84 V=V(12,40)*V(12,40) *8.37474e-06
+ *(exp(-1*29.5121*abs(sin(V(POS_P, POS_N)/2)*cos(0.916798)+cos(V(P0S_P,
P0S_N)/2)*sin(0.916798))A5)
+ -exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.915798)+cos(V(P0S_P,
POS_N)/2)*sin(0.915798))a5))/0.004
Blsag4ragl Blsag4ragl_P Blsag4ragl_N V=V(12,40)
+ *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.916298)+cos(V(P0S_P,

; P0S_N)/2)*sin(0.916298))a5)
Clsag4ragl Blsag4ragl_P 0 8.37474e-06 IC=0
VFlsag4ragl 0 Blsag4ragl_N 0
FFlsag4ragl 40 12 VFlsag4ragl -1
* frame: stator part: sag3 cct node: 14 frame: rotor part: rag2 cct node: 39

I * top: 0.620398 bottom: 1.2913 a: 29.5121 b: 4.45059 c: 5
s B2sag3rag2 86 85 V=V(14,39)*V(14,39)*8,37593e-06
| + *(exp(-1*29.5121*abs(sin(V(P0S_P, POS_N)/2)*cos(2.22579)+cos(V(P0S_P,
i P0S_N)/2)*sin(2.22579))a5)
! + -exp(-1*29.5121*abs(sin(V(P0S_P, P0S_N)/2)*cos(2.22479)+cos(V(P0S_P,
P0S_N)/2)*sin(2.22479)) A5))/0.004
Blsag3rag2 Blsag3rag2_P Blsag3rag2_N V=V(14,39)
+ *exp(-1*29.5121*abs(sin(V(P0S_PfP0S_N)/2)*cos(2.22529)+cos(V(P0S_P,
POS_N)/2)*sin(2.22529)) A5)
Clsag3rag2 Blsag3rag2_P 0 8.37593e-06 IC=0
VFlsag3rag2 0 Blsag3rag2_N 0
FFlsag3rag2 3 9 14 VFlsag3rag2 -1
* frame: stator part: sag3 cct node: 14 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 1.309 c: 5
B2sag3ragl 87 86 V=V(14,40)*V(14,40)*8.37474e-06
+ *(exp(-1*2 9.5121*abs(sin(V(P0S_P,POS_N)/2)*cos(0.654998)+cos(V(P0S_P,
P0S_N)/2)*sin(0.654998))A5)
+ -exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.653998)+cos(V(POS_P,
P0S_N)/2)*sin(0.653998))A5))/0.004
Blsag3ragl Blsag3ragl_P Blsag3ragl_N V=V(14,40)
+ *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.654498)+cos(V(P0S_P,
P0S_N)/2)*sin(0.654498))A5)
Clsag3ragl Blsag3ragl_P 0 8.37474e-06 IC=0
VFlsag3ragl 0 Blsag3ragl_N 0
FFlsag3ragl 40 14 VFlsag3ragl -1
* frame: stator part: sag8 cct node: 25 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 7.06858 c: 5

| B2sag8rag2 88 87 V=V(25,39)*V(25,39)*8.37593e-06
+ *(exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(3.53479)+cos(V(P0S_P,
P0S_N)/2)*sin(3.53479))a5)

I + -exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(3.53379)+cos(V(P0S_P,
! P0S_N)/2)*sin(3.53379))a5))/0.004
I Blsag8rag2 Blsag8rag2_P Blsag8rag2_N V=V(25,39)
! + *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(3.53429)+cos(V(P0S_P,
! POS_N)/2)*sin(3.53429))a5)
j Clsag8rag2 Blsag8rag2_P 0 8.37593e-06 IC=0
VFlsag8rag2 0 Blsag8rag2_N 0
FFlsag8rag2 39 25 VFlsag8rag2 -1
* frame: stator part: sag8 cct node: 25 frame: rotor part: ragl cct node: 40

| * top: 0.620398 bottom: 1.2913 a: 29.5121 b: 3.92699 C: 5
B2sag8ragl 89 88 V=V(25,40)*V(25,40)*8.37474e-06
+ *(exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(l.964)+cos(V(P0S_P,
POS_N)/2)*sin(1.964))a5)
+ -exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.963)+cos(V(P0S_P,
P0S_N)/2)*sin(1.963))A5))/0.004

! Blsag8ragl Blsag8ragl_P Blsag8ragl_N V=V(25,40)
; + *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.9635)+cos(V(P0S_P/
POS_N)/2)*sin(1.9635))A5)

| Clsag8ragl Blsag8ragl_P 0 8.37474e-06 IC=0
i VFlsag8ragl 0 Blsag8ragl_N 0
| FFlsag8ragl 40 25 VFlsag8ragl -1
I * frame: stator part: sag7 cct node: 27 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 6.54498 C: 5

B2sag7rag2 90 89 V=V(27,39)*V(27,39)*8.37593e-06
+ * (exp (-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(3.27299)+cos(V(POS_P,
POS_N)/2)*sin(3.27299))A5)
+ -exp (-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(3.27199)+cos(V(POS_P,
POS_N)/2)*sin(3.27199))A5))/0.004
Blsag7rag2 Blsag7rag2_P Blsag7rag2_N V=V(27,39)
+ *exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(3.27249)+cos(V(POS_P,
POS_N)/2)*sin(3.27249))A5)
Clsag7rag2 Blsag7rag2_P 0 8.37593e-06 IC=0
VFlsag7rag2 0 Blsag7rag2_N 0
FFlsag7rag2 39 27 VFlsag7rag2 -1
* frame: stator part: sag7 cct node: 27 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 3.40339 c: 5
B2sag7ragl 91 90 V=V(27,40)*V(27,40)*8.37474e-06
+ *(exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.7022)+cos(V(P0S_P,
POS_N)/2)*sin(1.7022))a5)

‘ + -exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.7012)+cos(V(P0S_P,
I P0S_N)/2)*sin(1.7012))a5))/0.004
i Blsag7ragl Blsag7ragl_P Blsag7ragl_N V=V(27,40)
I + *exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.7017)+cos(V(P0S_P,
1 P0S_N)/2)*sin(1.7017))a5)
; Clsag7ragl Blsag7ragl_P 0 8.37474e-06 IC=0
: VFlsag7ragl 0 Blsag7ragl_N 0
! FFlsag7ragl 40 27 VFlsag7ragl -1
I * frame: stator part: sag2 cct node: 4 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 3.92699 c: 5
B2sag2rag2 92 91 V=V(4,39)*V(4,39)*8.37593e-06
+ *(exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.964)+cos(V(P0S_P,
P0S_N)/2)*sin(1.964))A5)
+ -exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.963)+cos(V(P0S_P,
P0S_N)/2)*sin(1.963))a5))/0.004
Blsag2rag2 Blsag2rag2_P Blsag2rag2_N V=V(4,39)
+ *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.9635)+cos(V(P0S_P,
P0S_N)/2)*sin(1.9635))A5)
Clsag2rag2 Blsag2rag2_P 0 8.37593e-06 IC=0
VFlsag2rag2 0 Blsag2rag2_N 0
FFlsag2rag2 39 4 VFlsag2rag2 -1
* frame: stator part: sag2 cct node: 4 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 0.785398 c: 5
B2sag2ragl 93 92 V=V(4,40)*V(4,40)*8.37474e-06
+ *(exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.393199)+cos(V(P0S_P,
P0S_N)/2)*sin(0.393199)) A5)
+ -exp (-1*29.5121*abs(sin(V(POS_P,P0S_N)/2)*cos(0.392199)+cos(V(P0S_P,
P0S_N)/2)*sin(0.392199))a5))/0.004
Blsag2ragl Blsag2ragl_P Blsag2ragl_N V=V(4,40)
+ *exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.392699)+cos(V(P0S_P,
P0S_N)/2)*sin(0.392699))A5)
Clsag2ragl Blsag2ragl_P 0 8.37474e-06 IC=0
VFlsag2ragl 0 Blsag2ragl_N 0
FFlsag2ragl 40 4 VFlsag2ragl -1
* frame: stator part: sagl cct node: 10 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 3.40339 c: 5
B2saglrag2 94 93 V=V(10,39)*V(10,39)*8.37593e-06
+ * (exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.7022)+cos(V(P0S_P,

i P0S_N)/2)*sin(1.7022))A5)
i + -exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.7012)+cos(V(P0S_P,
| P0S_N)/2)*sin(1.7012))a5))/0.004
! Blsaglrag2 Blsaglrag2_P Blsaglrag2_N V=V(10,39)
j + *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(1.7017)+cos(V(POS_P,
| P0S_N)/2)*sin (1.7017))a5)
Clsaglrag2 Blsaglrag2_P 0 8.37593e-06 IC=0
VFlsaglrag2 0 Blsaglrag2_N 0
FFlsaglrag2 39 10 VFlsaglrag2 -1
* frame: stator part: sagl cct node: 10 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 0.261799 c: 5
B2saglragl 95 94 V=V(10,40)*V(10,40)*8.37474e-06
+ *(exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.1314)+cos(V(P0S_P,
P0S_N)/2)*sin (0.1314))a5)
+ -exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.1304)+cos(V(P0S_P,

I P0S_N)/2)*sin(0.1304))a5))/0.004
| Blsaglragl Blsaglragl_P Blsaglragl_N V=V(10,40)
+ *exp (-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(0.1309)+cos(V(P0S_P,

I P0S_N)/2)*sin(0.1309))a5)
Clsaglragl Blsaglragl_P 0 8.37474e-06 IC=0
VFlsaglragl 0 Blsaglragl_N 0

FFlsaglragl 40 10 VFlsaglragl -1
* frame: stator part: sagll cct node: 8 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 8.63938 C: 5
B2sagllrag2 96 95 V=V(8,39)*V(8,39)*8.37732e-06
+ * (exp (-1*29.5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (4 .32019) +cos (V(P0S_P,
P0S_N) /2)*sin(4.32019))A5)
+ -exp (-1*29.5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (4.31919) +cos (V(P0S_P,
POS_N)/2)*sin(4.31919))A5))/0.004
Blsagllrag2 Blsagllrag2_P Blsagllrag2_N V=V(8,39)
+ *exp (-1*29 . 5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (4 .31969) +cos (V(P0S_P,
P0S_N)/2)*sin(4.31969))A5)
Clsagllrag2 Blsagllrag2_P 0 8.37732e-06 IC=0
VFlsagllrag2 0 Blsagllrag2_N 0
FFlsagllrag2 39 8 VFlsagllrag2 -1
* frame: stator part: sagll cct node: 8 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 5.49779 c: 5
B2sagllragl 97 96 V=V(8,40)*V(8,40)*8.37613e-06

; + *(exp (-1*29 .5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (2 . 74939) +cos (V (P0S_P,
! P0S_N)/2)*sin(2.74939))A5)
+ -exp (-1*29.5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (2.74839) +cos (V(P0S_P,
P0S_N)/2)*sin(2.74839))A5))/0.004

; Blsagllragl Blsagllragl_P Blsagllragl_N V=V(8,40)
: + *exp (-1*29 .5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (2 .74889) +cos (V(P0S_P,
I P0S_N)/2)*sin(2.74889))A5)
| Clsagllragl Blsagllragl_P 0 8.37613e-06 IC=0
VFlsagllragl 0 Blsagllragl_N 0
FFlsagllragl 40 8 VFlsagllragl -1
* frame: stator part: sag6 cct node: 20 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 6.02139 c: 5
B2sag6rag2 98 97 V=V(20,39)*V(20, 39)*8.37593e-06
+ * (exp (-1*29 .5121*abs (sin (V(P0S_P, P0S_N) /2) *cos (3 .01119) +cos (V(P0S_P,
P0S_N)/2)*sin(3.01119))A5)
+ -exp (-1*29.5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (3 .01019) +cos (V(P0S_P,
POS_N)/2)*sin(3.01019))A5))/0.004
Blsag6rag2 Blsag6rag2_P Blsag6rag2_N V=V(20,39)
+ *exp(-1*29.5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (3.01069) +cos (V(P0S_P,
POS_N)/2)*sin(3.01069))A5)
Clsag6rag2 Blsag6rag2_P 0 8.37593e-06 IC=0
VFlsag6rag2 0 Blsag6rag2_N 0
FFlsag6rag2 39 20 VFlsag6rag2 -1
* frame: stator part: sag6 cct node: 20 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 2.87979 C: 5
B2sag6ragl 99 98 V=V(20,40)*V(20,40)*8.37474e-06
+ * (exp (-1*29.5121*abs (sin (V(P0S_P, P0S_N) /2) *cos (1.4404) +cos (V(P0S_P,
P0S_N) /2) *sin (1.4404)) A5)
+ -exp (-1*29 .5121*abs (sin (V(P0S_P, P0S_N) /2) *cos (1.4394) +cos (V(POS_P,
P0S_N)/2) *sin (1.4394))A5))/0.004
Blsag6ragl Blsag6ragl_P Blsag6ragl_N V=V(20,40)
+ *exp (-1*29 .5121*abs (sin (V (P0S_P, POS_N) /2) *cos (1.4399) +cos (V(P0S_P,
POS_N)/2)*sin(1.4399))A5)
Clsag6ragl Blsag6ragl_P 0 8.37474e-06 IC=0
VFlsag6ragl 0 Blsag6ragl_N 0
FFlsag6ragl 40 20 VFlsag6ragl -1
* frame: stator part: saglO cct node: 9 frame: rotor part: rag2 cct node: 39

| * top: 0.620398 bottom: 1.2913 a: 29.5121 b: 8.11578 C: 5
| B2sagl0rag2 100 99 V=V(9,39)*V(9,39)*8.37593e-06
| + *(exp (-1*29 .5121*abs (sin (V (P0S_P, POS_N) /2) *cos (4 . 05839) +cos (V (P0S_P,
| P0S_N)/2)*sin(4.05839))a5)
j + -exp (-1*29.5121*abs (sin (V (P0S_P, P0S_N) /2) *cos (4 . 05739)+cos (V(P0S_P,
j P0S_N)/2)*sin(4.05739))a5))/0.004
• Blsagl0rag2 Blsagl0rag2_P Blsagl0rag2_N V=V(9,39)
' + *exp (-1*29 .5121*abs (sin (V(P0S_P, P0S_N) /2) *cos (4 . 05789) +cos (V(P0S_P,
s P0S_N)/2)*sin(4.05789))a5)
I Clsagl0rag2 Blsagl0rag2_P 0 8.37593e-06 IC=0
I VFlsagl0rag2 0 Blsagl0rag2_N 0
FFlsagl0rag2 39 9 VFlsagl0rag2 -1

| * frame: stator part: saglO cct node: 9 frame: rotor part: ragl cct node: 40
I * top: 0.620398 bottom: 1.2913 a: 29.5121 b: 4.97419 c: 5
I B2sagl0ragl 101 100 V=V(9,40)*V(9,40)*8.37474e-06
+ *(exp (-1*29 .5121*abs (sin (V (P0S_P, POS_N) /2) *cos (2 .48759) +cos (V (P0S_P,

| POS_N)/2)*sin(2.48759))a5)
+ -exp (-1*29.5121*abs (sin (V (P0S_P, POS__N) /2) *cos (2 .48659) +cos (V(P0S_P,
P0S_N)/2)*sin(2.48659))A5))/0.004
BlsaglOragl Blsagl0ragl_P Blsagl0ragl_N V=V(9,40)
+ *exp (-1*29 . 5121*abs (sin (V (P0S_P, POS_N) /2) *cos (2 .48709) +cos (V(P0S_P,
POS_N)/2)*sin(2.48709))A5)

ClsaglOragl BlsaglOragl_P 0 8.37474e-06 IC=0
VFlsaglOragl 0 BlsaglOragl_N 0
FFlsaglOragl 40 9 VFlsaglOragl -1
* frame: stator part: sagl2 cct node: 22 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 9.16298 c: 5
B2sagl2rag2 102 101 V=V(22,39)*V(22,39) *8.37593e-06
+ *(exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(4.58199)+cos(V(POS_P,
POS_N)/2)*sin(4.58199))A5)
+ -exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(4.58099)+cos(V(POS_P,
POS_N)/2)*sin(4.58099))A5))/0.004
Blsagl2rag2 Blsagl2rag2_P Blsagl2rag2_N V=V(22,39)
+ *exp(-1*2 9.5121*abs(sin(V(POS_P,POS_N)/2)*cos(4.58149)+cos(V(POS_P,
POS_N)/2)*sin(4.58149))A5)
Clsagl2rag2 Blsagl2rag2_P 0 8.37593e-06 IC=0
VFlsagl2rag2 0 Blsagl2rag2_N 0
FFlsagl2rag2 39 22 VFlsagl2rag2 -1
* frame: stator part: sagl2 cct node: 22 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 6.02139 c: 5
B2sagl2ragl 103 102 V=V(22,40)*V(22,40)*8.37474e-06
+ *(exp(-1*29.5121*abs(sin(V(POS_P,P0S_N)/2)*cos(3.01119)+cos(V(P0S_P,
P0S_N)/2)*sin(3.01119))A5)
+ -exp(-1*29.5121*abs(sin(V(P0S_P,POS_N)/2)*cos(3.01019)+cos(V(P0S_P,
P0S_N)/2)*sin(3.01019))A5))/0.004

: Blsagl2ragl Blsagl2ragl_P Blsagl2ragl_N V=V(22,40)
! + *exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(3.01069) +cos(V(POS_P,
j POS_N)/2)*sin(3.01069))a5)
[Clsagl2ragl Blsagl2ragl_P 0 8.37474e-06 IC=0
i VFlsagl2ragl 0 Blsagl2ragl_N 0
FFlsagl2ragl 40 22 VFlsagl2ragl -1
* frame: stator part: sag5 cct node: 23 frame: rotor part: rag2 cct node: 39
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 5.49779 c: 5
B2sag5rag2 104 103 V=V(23,39)*V(23,39)*8.37593e-06
+ *(exp(-1*29.5121*abs(sin(V(POS_P,P0S_N)/2)*cos(2.74939)+cos(V(POS_P,
POS_N)/2)*sin(2.74939))A5)
+ -exp(-1*29,5121*abs(sin(V(POS_P,POS_N)/2)*cos(2.74839)+cos(V(P0S_P,
POS_N)/2)*sin(2.74839)) A5))/0.004
Blsag5rag2 Blsag5rag2_P Blsag5rag2_N V=V(23,39)
+ *exp(-1*29.5121*abs(sin(V(P0S_P,P0S_N)/2)*cos(2.74889)+cos(V(POS_P,
POS_N)/2)*sin(2.74889))A5)
Clsag5rag2 Blsag5rag2_P 0 8.37593e-06 IC=0
VFlsag5rag2 0 Blsag5rag2_N 0
FFlsag5rag2 39 23 VFlsag5rag2 -1
* frame: stator part: sag5 cct node: 23 frame: rotor part: ragl cct node: 40
* top: 0.620398 bottom: 1.2913 a: 29.5121 b: 2.35619 c: 5
B2sag5ragl 105 104 V=V(23,40)*V(23,40)*8.37474e-06
+ *(exp(-1*29.5121*abs(sin(V(POS_P,POS_N)/2)*cos(1.1786)+cos(V(POS_P,
POS_N)/2)*sin(1.1786))A5)
+ -exp(-1*29.5121*abs(sin(V(POS_P,P0S_N)/2)*cos(1.1776)+cos(V(POS_P,
P0S_N)/2)*sin(1.1776))A5))/0.004
Blsag5ragl Blsag5ragl_P Blsag5ragl_N V=V(23,40)
+ *exp(-1*29.5121*abs(sin(V(P0S_P,POS_N)/2)*cos(1.1781)+cos(V(P0S_P,
POS_N)/2)*sin(1.1781))A5)

I Clsag5ragl Blsag5ragl_P 0 8.37474e-06 IC=0
S VFlsag5ragl 0 Blsag5ragl_N 0
I FFlsag5ragl 40 23 VFlsag5ragl -1
i VEND 105 TORQ_N 0
| RPOS POS_P POS_N 1G
I .ends
i

tII

Appendices

E

Instructions to retrieve magnetic circuit simulation data

* ripl 0.00154833 37 38 34.0133 rip2 0.00154833 38 37 34.0133 rll 0.000523809 39 40
153.361 riel 0.00295584 39 37 2.42806 ric2 0.00295584 40 38 2.42806 rl2 0.000523809 40
39 153.361 ragl 0.0043613 41 39 0.0458184 rag2 0.00436163 42 40 0.0456052 sic5 0.0019629
1 2 5.62439 sl5 8.90547e-05 2 3 30.7718 sag3 0.00204481 4 5 0.104395 sic6 0.0019629 6 7
5.62439 sag4 0.00204481 3 8 0.104395 sicl2 0.0019629 9 10 5.62439 sic7 0.0019629 11 12
5.62439 sl3 8.90547e-05 4 13 30.7718 siclO 0.0019629 14 15 5.62439 sicll 0.0019629 16 17
5.62439 sag5 0.00204481 2 18 0.104395 sibl 0.0014012 19 9 14.7614 sl8 8.90547e-05 20 12
30.7718 sic8 0.0019629 21 20 5.62439 sag6 0.00204481 7 22 0.104395 sib2 0.0014012 23 19
14.7614 sic9 0.0019629 24 25 5.62439 sll 8.90547e-05 26 10 30.7718 sagl2 0.00204481 10
27 0.104395 sag7 0.00204456 12 28 0.104645 saglO 0.00204456 15 29 0.104645 sib3
0.0014012 30 23 14.6724 sagll 0.00204481 17 31 0.104395 sl6 8.39771e-05 7 2 31.0886 sag8
0.00204481 20 32 0.104395 sib4 0.0014012 33 30 14.6724 sag9 0.00204481 25 34 0.104395
sib5 0.0014012 1 33 14.6724 sl4 8.90547e-05 3 4 30.7718 sicl 0.0019629 19 26 5.62439 sl9
8.90547e-05 25 20 30.7718 sib6 0.0014012 6 1 14.7614 sic2 0.0019629 23 13 5.62439 sllO
8.39771e-05 15 25 31.0886 sibl2 0.0014012 9 16 14.6724 sib7 0.0014012 11 6 14.6724 sl2
8.90547e-05 13 26 30.7718 siblO 0.0014012 14 24 14.6724 sibll 0.0014012 16 14 14.6724
sic3 0.0019629 30 4 5.62439 sill 8.39771e-05 17 15 31.0886 sl7 8.90547e-05 12 7 30.7718
sagl 0.00204481 26 35 0.104395 sib8 0.0014012 21 11 14.7614 sic4 0.0019629 33 3 5.62439
sll2 8.90547e-05 10 17 30.7718 sag2 0.00204481 13 36 0.104395 sib9 0.0014012 24 21
14.6724
* 1 2 3 6 7 9 10 11 12 4 13 14 15 16 17 19 20 21 23 24 25 26 30 33 37 38 39 40
*
show /file gen.dat xl.xl.l xl.xl.2 xl.xl.3 xl.xl.6 xl.xl.7 xl.xl.9 xl.xl.10 xl.xl.ll
xl.xl.12 xl.xl.4 xl.xl.13 xl.xl.14 xl.xl.15 xl.xl.16 xl.xl.17 xl.xl.19 xl.xl.20 xl.xl.21
xl.xl.23 xl.xl.24 xl.xl.25 xl.xl.26 xl.xl.30 xl.xl.33 xl.xl.37 xl.xl.38 xl.xl.39
xl.xl.40

Appendices

F

Circuit simualtion data

Time
0
5e-05
0.0001
0 . 0 0 0 2
0.0004
0.0008
0.0016
0.0026
0.0036
0.0046
0.005
0.0050056980132
0.00501709403961
0.00502643614368
0.00503607116367
0.00504979337793
0.00506638270339
0.00509006760344
0.0051207429074
0.00516311374512
0.00521943569559
0.00529615118653
0.00539920484359
0.00550207219785
0.00559994243392
0.00569952381287
0.00581170903302
0.00593541836754
0.0060778983535
0.00623931341813
0.00642532872917
0.00663815111522
0.00688332797445
0 . 00716504042405
0.00748971391162
0.00786365837826
0.00829502425169
0.00879265997372
0.00936712519421
0.01
0.0100097879765
0.0100293639296
0.0100685158358
0.0101115261827
0.0101975468765
0.0103695882642
0.0105576690849
0.0107608801946
0.0109342913109
0.0111238590444
0.0113184586678
0.0115567377047
0.01185342376
0.0122122464159
0.0126487127918
0.0131696740386
0.0137948890164
0.0145428602966
0.015
0.0150903146325
0.0152709438974
0.0156322024272
0.0163547194868
0.0166
0.016603615245
0.0166108457351
0.0166253067152
0.0166542286754
0.0167120725958
0.0168277604367
0.0170591361184
0.0175218874819
0.0181250949456
0.0186980255681

:xl.xl.2
0
0
0
0
0
0
0
0
0
0
0
9.26212690364e-05
0.000500445608639
0.00108952085605
0.00195104950067
0.00363185389973
0.00637858553845
0.0116534801598
0.0208498942108
0.0379343874731
0.0684899927331
0.12445926723
0.225559293492
0.355942734346
0.50715448735
0.688028254461
0.92421429739
1.22420280005
I.62067806763
2.13516998649
2.81324433456
3.69957529232
4.86489417391
6.3915610552
8.39553161452
II.0213580853
14.4628923413
18.9671472115
24.855915177
32.1685140194
32 .2873558218
32.5227060143
32.9822780278
33.4697132534
34.3894524746
36.0100741084
37.4523456499
38.6314880612
39.3330522305
39.7879641454
39.9265267726
39.6617432325
38 .7005507224
36.6746450548
33.0798626244
27.4361054542
19.2274632144
8.27340581457
1.35064467946
-0.0251241714233
-2 .74751426273
-7.99362278624
-17.181459227
-19.832476945
-19.8697143554
-19.9440764773
-20.0920014876
-20.3846556923
-20.9565837127
-22.0454569214
-23.9893755905
-26.8401721535
-28.2326718436
-26.9142030109

rxl.xl.l
0
0
0
0
0
0
0
0
0
0
0
9.2664357932le-05
0.000500678904266
0.00109003026845
0.00195196426523
0.00363356341251
0.00638160246974
0.0116590326019
0.0208599235928
0.037952875284
0.0685239514162
0.124522415197
0.225677244837
0.356134280968
0.507434622008
0.68841820246
0.924753143439
1.22493860506
I.62168596526
2.13654848456
2 .81513778109
3.70218177552
4.86849870102
6.39656481185
8.40251138057
II.0311386442
14 .476665724
18.9866363813
24.8836231152
32 .2074774557
32 .3265128555
32 .5622542566
33.022627849
33 .5109737217
34.4326282344
36.0574465336
37.5048439207
38.6901248275
39.3973950799
39.8590066268
40.0049149817
39.7497170879
38 .8012691955
36.791796593
33 .2181810441
27.6008230618
19.4245574894
8.50873790212
1.60853295855
0.237113760877
-2 .47669551641
-7.70627557552
-16.8640982528
-19.5059026044
-19.5430097407
-19.6171158788
-19.7645508386
-20.0563155063
-20.6268287381
-21.7143281731
-23.6612876498
-26.5408675556
-28.0143368128
-26.8150291293

0.0193492960554
0.0197452691275
0 . 0 2
0.0200571464359
0.0201714393076
0.020400025051
0.0207391248861
0.0210563843774
0.021414257931
0.0216
0.0216351554386
0.0217054663157
0.02184608807
0.0221273315785
0.022586267285
0.0230123251614
0.0233
0.0233042239127
0.0233126717382
0.0233295673892
0.0233633586911
0.023430941295
0 .0235661065027
0.0237417941865
0.0239306734224
0.0241007306623
0.0242329057745
0.0243448342406
0.0244433737
0.0245337353575
0.024626795622
0.0247123595199
0.0247976854496
0.0248829525194
0.0249484939455
0.025
0.0250075379979
0.0250226139938
0.0250527659855
0.025113069969
0.0251674651245
0.0252169693918
0.0252658057473
0.0253152665879
0.0253646238537
0.0254140554371
0.0254637383631
0.0255137883857
0.0255642188409
0.0256137349697
0.0256618699182
0.0257093279356
0.0257563617144
0.0258032493919
0.0258502584534
0.0258976817004
0.0259457739317
0.0259947724776
0.0260448976825
0.0260963646558
0.0261493899983
0.0262042032212
0.0262610570837
0.0263202382592
0.0263820757339
0.0264469450611
0.0265152638047
0.0265874710613
0.0266
0.0266072888893
0.026621866668
0.0266510222253
0.0267030329774
0.0267567505058
0 . 0268115433771

-22.1741735502
-17.6343387799
-14.0687247392
-13.1875019115
-11.3660335764
-7.43301969825
-0.827349948706
6.28514504254
15.6334549763
21.1531267165
22 .2633922197
24 .5371225514
29.3540607402
40.3305227988
63.9361626622
96.7271880185
129.606558269
130.177579147
131.328915826
133 .673911057
138.543227942
149.069615308
173.95039213
216.904615089
284 .534161342
378.148085272
486.715403342
616.119965595
768.063520056
942.226317401
1148.6215273
1340.69305435
1503.86361955
1614.87289562
1660.74239763
1675.31148495
1676.04367168
1676.55275434
1674.04501822
1656.91666617
1629.79040785
1596.46433154
1555.46669078
1505.00871135
1444.66116139
1373.34851869
1290.58220914
1197.1142074
1095.39037627
991.970539967
892.134206303
797.945186121
711.421293854
633.594644643
564.787505376
504.808806703
453.261501123
409.659272133
373.533219078
344.501603848
322.33473364
307.022203587
298.865862208
298.625236228
307.764943317
328.89850473
366.622048423
429.14630592
442.926288181
451.430000955
469.504649842
510.447643917
602.65644977
731.329315823
909.617594574

-22 .2541872868
-17.8431544367
-14.3671669279
-13.5068522278
-11.7276660702
-7.88117544827
-1.40756046961
5.57905705599
14.7854486307
20.2323256319
21.3289228489
23.5754580715
28.3388040651
39.2125714798
62.6711846646
95.3629137371
128.207505679
128.778240213
129.929021083
132 .272983341
137.140573108
147.665016666
172.549408845
215.529374976
283 .228804454
376.968825702
485.702469874
615.320506512
767.529598954
942.015507328
1148.82606226
1341.33380579
1504.95110298
1616.37525491
1662.52505573
1677.28794639
1678.04663806
1678.6072512
1676.19692054
1659.24254361
1632.25235694
1599.03561591
1558.13449256
1507.76483896
1447.4979275
1376.26029901
1293.56502434
1200.16510421
1098.50668996
995.147786573
895.367076348
801.228912287
714.751164425
636.966157924
568.196465757
508.251403302
456.734291812
413.159155599
377.057384716
348.047469643
325.899868225
310.604229257
302.462326286
302.233428499
311.381617533
332.519424986
370.241204728
432 .754482173
446.531396983
455.033128164
473.10339309
514.035708904
606.217814554
734.849787219
913.077609303

0.0268643883111
0.0269144413191
0.0269621028106
0.0270079374704
0.02705300916
0.0270983899886
0.0271383030848
0.0271695083662
0.0271989940469
0.0272274815029
0.0272576883755
0.0272853870147
0.0273127568145
0.0273398248648
0.0273669263169
0.0273939816827
0.0274211259495
0.0274483761188
0.0274757550314
0.0275032465689
0.0275297410549
0.0275555096265
0.027580733406
0.0276055557501
0.0276300797436
0.02765444471
0.0276787752444
0.0277031853706
0.0277277769512
0.027752647167
0.0277778916803
0.0278036106337
0.0278299144233
0.0278569304579
0.0278848102347
0.0279137370772
0.027943934234
0.0279756729678
0.0280092796542
0.0280451399736
0.0280836971413
0.0281254375832
0.0281660290066
0.0282064167469
0.0282460579406
0.0282853316834
0.0283
0.0283039367576
0.0283118102728
0.0283275573033
0.0283590513641
0.0283964334041
0.0284372451087
0.0284683967966
0.0284973060951
0.0285251689337
0.0285547570037
0.0285817244467
0.0286082610138
0.0286344167028
0.0286605372019
0.0286865448361
0.0287125719161
0.0287386320412
0.0287647396413
0.0287908621938
0.028816954932
0.0288416861069
0.0288656157249
0.0288887863149
0.0289113356621
0.0289333415839
0.0289549448249
0.0289762612626
0.0289974033518

1139.40663131
1416.69700295
1727.79930188
2043.34552327
2326.29697233
2541.72180643
2657.29562732
2701.38548445
2711.6131301
2698.02343739
2663.23254148
2615.51633327
2554.31727434
2479.46466399
2388.7301796
2280.57130731
2153.10095218
2006.20406921
1841.9836153
1665.36962034
1490.60632173
1322.97891372
1166.74241487
1024.62961604
898.010833327
786.857277367
690.46991193
607.785869394
537.615960952
478.773994707
430.172890269
390.88180421
360.170272273
337.549810126
322.826670712
316.17950919
318.283305446
330.510979233
355.264918666
396.517485891
460.665455618
557.745153782
685.041061246
848.319273276
1044.4933314
1266.37999458
1352.87630424
1376.17840467
1422.64070343
1514.2712928
1685.59608177
1852.19204528
1972.93718077
2021.06295237
2036.07734275
2028.67782604
2002.39828592
1965.2206798
1918.07056257
1861.80133737
1795.41670968
1718.09706787
1628.22613594
1524.84138075
1408.02904449
1279.75773343
1143.9815047
1012.92851246
888 .642264185
774.597561095
672.395681306
582.714008044
505.091865225
438.675694892
382.384083657

1142.78507808
1419.97349194
1730.95737943
2046.37778772
2329.20702037
2544.52250196
2660.01481819
2704.04809649
2714.22438624
2700.58327166
2665.73159745
2617.94998419
2556.67333508
2481.72762425
2390.88020359
2282.58629952
2154.95708234
2007.8786463
1843.4581169
1666.632979
1491.66519993
1323.84600043
1167.4346839
1025.16624903
898.411538156
787.140745005
690.653168335
607.88399268
537.642052829
478.739271878
430.086848744
390.752408013
360.004145208
337.352416727
322.602480212
315.932139235
318.015644601
330.225288282
354.962911269
396.200389419
460.3340531
557.399809142
684.683174586
847.949531888
1044.11232049
1265.98804321
1352.48031191
1375.78133156
1422.24147492
1513.86777878
1685.1841151
1851.77030157
1972.50514255
2020.62333462
2035.63089558
2028.22496329
2001.93876148
1964.75518991
1917.59927082
1861.3243609
1794.93405374
1717.60871509
1627.73199756
1524.34132052
1407.52287861
1279.24524405
1143.46244717
1012.40296396
888.110156497
774.058805438
671.850133679
582.161476264
504.532077228
438 .108291288
381.808601315

0.0290184712811
0.0290395620697
0.0290607702232
0.0290821934773
0.0291039372831
0.0291261208089
0.0291488831898
0.0291723908614
0.0291968456627
0.0292224937225
0.0292496345592
0.0292786293482
0.0293099060293
0.0293439571352
0.0293789930269
0.0294140604865
0.0294495465974
0.029485540776
0.0295225624878
0.0295611538596
0.0296019127701
0.029638772907
0.0296704993658
0.0297004433382
0.0297197473229
0.0297391315472
0.0297594993381
0.0297894741082
0.0298183899636
0.0298457680835
0.0298729210861
0.029900314918
0.0299277166161
0.0299551232766
0.0299825374865
0.03
0.0300027388493
0.030008216548
0.0300191719454
0.0300410827402
0.0300648180017
0.0300879666516
0.030112692475
0.0301354240306
0.030157718453
0.0301795029163
0.0302010915068
0.0302224904246
0.0302438869716
0.0302653980722
0.0302871712305
0.0303093480088
0.0303320961658
0.0303556041284
0.0303800942209
0.0304058272583
0.0304331108018
0.0304623027686
0.0304938115859
0.0305277516948
0.0305609132232
0.030594424672
0.0306278390744
0.03066156986
0.0306959784528
0.0307315310509
0.0307687819437
0.0308082460654
0.0308393341924
0.0308680569283
0.030895651253
0.0309249680124
0.0309516667783
0.03097791219
0.0310037550539

335.109020936
295.796166742
263.508780657
237.454130251
217.002013991
201.698708554
191.287124697
185.740349324
185.318366103
190.665304338
202.967402549
224 .205644069
257.535878639
307.786172961
376.613769558
464.086640685
570.501883316
691.847365679
820.550293877
944.262866589
1048.40758957
1112.48007029
1145.11533656
1159.58174065
1161.9639512
1159.82247572
1153.40471379
1137.34759843
1115.17691285
1088.21873394
1055.24411731
1014 .785745
966.064940788
908.314817536
841.487091324
794.637588953
787.032655375
771.627021482
740.14154325
675.25106644
603.946739976
535.78154397
466.974984744
409.139840145
358.531460078
315.406363197
278.908117156
248.6656400^1
223.989524293
204.37675578
189.409990128
178.832742966
172.56099372
170.739171046
173.812679759
182.650843633
198.748011241
224.549070029
263.957974466
322 .382857529
398.396994447
496.739632817
616.99303013
757.747164352
912.541440825
1069.24416615
1211.26716965
1321.80808359
1377.02272079
1405.47573908
1415.95549976
1412.77500656
1399.62711135
1378.61426903
1350.52564472

334 .524876443
295.202631722
262 .904949644
236.838875461
216.373922061
201.05599006
190.627483076
185.060787362
184.614894933
189.932497379
202.197699707
223 .388252102
256.655029863
306.818430146
375.532704236
462 .863573421
569.103796978
690.241964576
818.709902332
942.171449753
1046.06612719
1109.93961809
1142.42814539
1156.77621516
1159.09145824
1156.88920829
1150.41373178
1134.28136859
1112.04697341
1085.03471113
1052.01095545
1011.50620353
962 .741006724
904.947482797
838.076677198
791.199789525
783 .590567292
768.176363686
736.673793534
671.749476368
600.409435261
532 .210941828
463.371131415
405.507978237
354.874763971
311.728004399
275.210792226
244.951859953
220.261469202
200.636374254
185.659031689
175.072825145
168.79366475
166.965994494
170.035343698
178.87131611
194.968771526
220.773465316
260.190775425
318.630914713
394.667338218
493.040987924
613.334289795
754.137055271
908.986945867
1065.74880681
1207.82984014
1318.42351065
1373.67314853
1402 .15489688
1412.6609761
1409.50947058
1396.39110938
1375.41231908
1347.36414582

Appendices

G

Full Brook DL100 Induction Motor GDL Description File

Brook Crompton D100L induction motor
unitdistance 0.001
airgap 1
bh {

newcor exp 3.8 2.17 396.2 # linear 1989
newcorril exp 3.8 2.17 396.2
si linear 1

stator
{ length 96

coils { swl 81 swla swlb sw2 81 sw2a sw2b sw3 81 sw3a sw3b sw4 81 sw4a sw4b
sw5 81 sw5a sw5b sw6 81 sw6a sw6b sw7 81 sw7a sw7b sw8 81 sw8a sw8b
sw9 81 sw9a sw9b swlO 81 swlOa swlOb swll 81 swlla swllb sw!2 81 sw!2a

sw!2b
swl6a swl6b

swl3 81 swl3a swl3b swl4 81 swl4a swl4b swl5 81 swl5a swl5b swl6 81
swl7 81 swl7a swl7b swl8 81 swl8a swl8b }

nodes {

}
curves {

snO 0 d 0
sn [1 36 20] [46. 04 0] d [-1. 56 10]
sn [2 36 20] [46.294 0] d [-1 .55 10]
sn [3 36 20] [46. 802 0] d [-2 .15 10]
sn [4 36 20] [47. 074 0] d [-2 .47 10]
sn [5 36 20] [58. 92 0] d [-3. 09 10]
sn [6 36 20] [46. 04 0] d [1.56 10]
sn [7 36 20] [46.294 0] d [1.55 10]
sn [8 36 20] [46. 802 0] d [2.15 10]
sn [9 36 20] [47. 074 0] d [2.47 10]
sn [10 36; 20] [58 .92 0] d [3.09 10]
sn [11 36 20] [62 0] d [5 10]
sn [12 36 20] [76 .45 0] d [5 10]

sc [1 35 20] circ sn [6 20!1 sn [21 20]
sc701 circ sn706 snl 46.04

}

parts {

line sn[l 20]
circ sn[3 20]
circ sn[3 20]
line sn[4 20]
circ sn[5 20]
line sn[6 20]
circ sn[7 20]
circ sn[9 20]
line sn[9 20]
line sn[10 20]
line sn[ll 20]

sc [2 36 20]
sc [3 36 20]
sc [4 36 20]
sc [5 36 20]
sc [6 36 20]
sc [7 36 20]
sc [8 36 20]
sc [9 36 20]
sc [10 36 20]
sc [11 36 20]
sc [12 35 20]
sc712 line sn711 sn5
sc [13 36 20] line sn[ll 20]
sc [14 35 20] circ sn[12 20]
sc714 circ sn712 snl2 76.45
sc [18 36 20] line sn [4 20]
sc [19 36 20] line sn[l 20]

sn [2 20]
sn [2 20]
sn [4 20]
sn [5 20]
sn[10 20]
sn [7 20]
sn [8 20]
sn [8 20]

[46.04 0]

[0.508 0]
[0.84 0]
[3.18 0]

[0.84 0]
[0.508 0]

sn[10 20]
sn [11 20]
sn [25 20]
sn[12 20]
sn [32 20]

sn [9 20]
sn [6 20]

[76.45 0]

sicl {

}s l l

bh newcor
coils { swl sw2 sw3 }
curves { scl sc7 sc8 sc9 sclO sell scl2 sc22 sc23 sc24 sc25 }
entry { sell scl2 }
exit { scl sc7 sc8 sc22 sc23 }

bh si
curves { sc2 sc3 sc4 scl8 scl9 sc7 sc8
entry { sc7 sc8 }
exit { sc2 sc3 }

sc9 }

}sibl {
bh newcor
curves { sc6 sell scl3 sc712 sc713 sc714 }
entry { sell scl3 }
exit { sc712 sc713 }

}
sic2 {

bh newcor
coils { swl sw2 sw3 sw4 }
curves { sc21 sc27 sc28 sc29 sc30 sc31 sc32 sc42 sc43 sc44 sc45 }
entry { sc31 sc32 }
exit { sc21 sc27 sc28 sc42 sc43 }

}sl2 {
bh si
curves { sc22 sc23 sc24 sc38 sc39 sc27 sc28 sc29 }
entry { sc27 sc28 }
exit { sc22 sc23 }

}sib2 {
bh newcor
curves { sc26 sc31 sc33 scl2 scl3 scl4 }
entry { sc31 sc33 }
exit { scl2 scl3 }

}
sic3 {

bh newcor
coils { swl sw2 sw3 sw4 sw5 }
curves { sc41 sc47 sc48 sc49 sc50 sc51 sc52 sc62 sc63 sc64 sc65 }
entry { sc51 sc52 }
exit { sc41 sc47 sc48 sc62 sc63 }

sl3 {
bh si
curves { sc42 sc43 sc44 sc58 sc59 sc47 sc48 sc49 }
entry { gc47 sc48 }
exit { sc42 sc43 }

}sib3 {
bh newcor
curves { sc46 sc51 sc53 sc32 sc33 sc34 }
entry { sc51 sc53 }
exit { sc32 sc33 }

}
sic4 {

bh newcor
coils { swl sw2 sw3 sw4 sw5 sw6 }
curves { sc61 sc67 sc68 sc69 sc70 sc71 sc72 sc82 sc83 sc84 sc85 }
entry { sc71 sc72 }
exit { sc61 sc67 sc68 sc82 sc83 }

}sl4 {
bh si
curves { sc62 sc63 sc64 sc78 sc79 sc67 sc68 sc69 }
entry { sc67 sc68 }
exit { sc62 sc63 }

}sib4 {
bh newcor
curves { sc66 sc71 sc73 sc52 sc53 sc54 }
entry { sc71 sc73 }
exit { sc52 sc53 }

}
sic5 {

bh newcor
coils { swl sw2 sw4 sw5 sw6 }
curves { sc8l sc87 sc88 sc89 sc90 sc91 sc92 scl02 scl03 scl04

scl05 }
entry { sc91 sc92 }
exit { sc81 sc87 sc88 scl02 scl03 }

}sl5 {
bh si
curves { sc82 sc83 sc84 sc98 sc99 sc87 sc88 sc89 }
entry { sc87 sc88 }
exit { sc82 sc83 }

}sib5 {
bh newcor
curves { sc86 sc91 sc93 sc72 sc73 sc74 }
entry { sc91 sc93 }
exit { sc72 sc73 }

sic6 {
bh newcor
coils { swl sw4 sw5 sw6 }
curves { sclOl scl07 scl08 scl09 scllO sclll scll2 scl22 scl23

scl24 scl25 }
entry { sclll scll2 }
exit { sclOl scl07 scl08 scl22 scl23 }

}sl6 {
bh si
curves { scl02 scl03 scl04 scll8 scll9 scl07 scl08 scl09 }
entry { scl07 scl08 }
exit { scl02 scl03 }

}sib6 {
bh newcor
curves { scl06 sclll scll3 sc92 sc93 sc94 }
entry { sclll scll3 }
exit { sc92 sc93 }

sic7 {
bh newcor
coils { sw4 sw5 sw6 }
curves { SC121 SC127 SC128 SC129 scl30 scl31 scl32 scl42 scl43

scl44 scl45 }
entry { scl31 scl32 }
exit { scl21 scl27 scl28 SC142 scl43 }

}sl7 {
bh si
curves { scl22 scl23 scl24 SC138 scl39 scl27 scl28 SC129 }
entry { scl27 scl28 }
exit { scl22 scl23 }

}sib7 {
bh newcor
curves { scl26 scl31 scl33 scll2 scll3 scll4 }
entry { scl31 scl33 }
exit { scll2 scll3 }

sic8 {
bh newcor
coils { sw4 sw5 sw6 sw7 }
curves { scl41 scl47 SC148 SC149 SC150 SC151 SC152 scl62 scl63

scl64 scl65 }
entry { scl51 scl52 }
exit { scl41 scl47 scl48 scl62 scl63 }

}sl8 {
bh si
curves { scl42 scl43 scl44 scl58 scl59 scl47 scl48 scl49 }
entry { scl47 scl48 }
exit { scl42 scl43 }

}sib8 {
bh newcor
curves { scl46 scl51 scl53 scl32 scl33 scl34 }
entry { scl51 scl53 }
exit { scl32 scl33 }

}
sic9 {

bh newcor
coils { sw4 sw5 sw6 sw7 sw8 }
curves { scl61 scl67 scl68 scl69 scl70 scl71 scl72 scl82 scl83

scl84 scl85 }
entry { scl71 scl72 }
exit { scl61 scl67 scl68 scl82 scl83 }

}sl9 {
bh si
curves { scl62 scl63 scl64 scl78 SC179 SC167 SC168 scl69 }
entry { scl67 scl68 }
exit { scl62 scl63 }

}sib9 {
bh newcor
curves { scl66 scl71 scl73 scl52 scl53 scl54 }
entry { scl71 scl73 }
exit { scl52 scl53 }

}
siclO {

bh newcor
coils { sw4 sw5 sw6 sw7 sw8 sw9 }
curves { SC181 scl87 scl88 scl89 scl90 scl91 scl92 sc202 sc203

sc204 sc205 }
entry { scl91 scl92 }
exit { scl8l scl87 scl88 sc202 sc203 }

}
sllO {

bh si
curves { SC182 scl83 scl84 scl98 scl99 scl87 scl88 scl89 }
entry { scl87 scl88 }
exit { scl82 scl83 }

}
giblO {

bh newcor
curves { scl86 scl91 scl93 scl72 scl73 scl74 }
entry { scl91 scl93 }
exit { scl72 scl73 }

}
sicll {

bh newcor
coils { sw4 sw5 sw7 sw8 sw9 }
curves { sc201 sc207 sc208 sc209 sc210 sc211 sc212 sc222 sc223

sc224 sc225 }
entry { sc211 sc212 }
exit { sc201 sc207 sc208 sc222 sc223 }

}sill {
bh si
curves { sc202 sc203 sc204 sc218 SC219 sc207 sc208 sc209 }
entry { sc207 sc208 }
exit { sc202 sc203 }

}sibll {
bh newcor
curves { sc206 sc211 sc213 scl92 scl93 scl94 }
entry { sc211 sc213 }
exit { scl92 scl93 }

}
sicl2 {

bh newcor
coils { sw4 sw7 sw8 sw9 }
curves { sc221 sc227 sc228 sc229 sc230 sc231 sc232 sc242 sc243

sc244 sc245 }
entry { sc231 sc232 }
exit { sc221 sc227 sc228 sc242 sc243 }

}sll2 {

bh si
curves { sc222 sc223 sc224 sc238 sc239 sc227 sc228 sc229 }
entry { sc227 sc228 }
exit { sc222 sc223 }

}sibl2 {
bh newcor
curves { sc226 sc231 sc233 SC212 sc213 sc214 }
entry { sc231 sc233 }
exit { sc212 sc213 }

}
sicl3 {

bh newcor
coils { sw7 sw8 sw9 }
curves { sc241 sc247 sc248 sc249 sc250 sc251 sc252 sc262 sc263

SC264 SC265 }
entry { sc251 sc252 }
exit { sc241 sc247 sc248 sc262 sc263 }

}sll3 {
bh si
curves { sc242 sc243 sc244 sc258 sc259 sc247 sc248 sc249 }
entry { sc247 sc248 }
exit { sc242 sc243 }

}sibl3 {
bh newcor
curves { sc246 sc251 sc253 sc232 sc233 sc234 }
entry { sc251 sc253 }
exit { sc232 sc233 }

}
sicl4 {

bh newcor
coils { sw7 sw8 sw9 swlO }
curves { sc261 sc267 sc268 sc269 sc270 sc271 sc272 sc282 sc283

sc284 sc285 }
entry { sc271 sc272 }
exit { sc261 sc267 sc268 sc282 sc283 }

}sll4 {
bh si
curves { sc262 sc263 sc264 sc278 SC279 sc267 SC268 sc269 }
entry { sc267 sc268 }
exit { sc262 sc263 }

}sibl4 {
bh newcor
curves { sc266 SC271 sc273 sc252 sc253 sc254 }
entry { sc271 sc273 }
exit { sc252 sc253 }

}
sicl5 {

bh newcor
coils { sw7 sw8 sw9 swlO swll }
curves { sc281 SC287 sc288 sc289 sc290 sc291 sc292 sc302 sc303

sc304 sc305 }
entry { sc291 sc292 }
exit { sc281 sc287 sc288 sc302 sc303 }

}sll5 {
bh si
curves { sc282 sc283 SC284 sc298 SC299 SC287 sc288 sc289 }
entry { sc287 sc288 }
exit { sc282 sc283 }

}sibl5 {
bh newcor
curves { sc286 sc291 sc293 sc272 sc273 sc274 }
entry { sc291 sc293 }
exit { sc272 sc273 }

sicl6 {
bh newcor
coils { sw7 sw8 sw9 swlO swll swl2 }
curves { sc301 sc307 sc308 SC309 sc310 sc311 sc312 sc322 sc323

sc324 sc325 }
entry { sc311 sc312 }
exit { SC301 sc307 sc308 sc322 sc323 }

}sll6 {
bh si
curves { sc302 sc303 sc304 sc318 sc319 sc307 sc308 sc309 }
entry { sc307 sc308 }
exit { sc302 sc303 }

}sibl6 {
bh newcor
curves { sc306 sc311 sc313 sc292 sc293 sc294 }
entry { sc311 sc313 }
exit { sc292 sc293 }

}
sicl7 {

bh newcor
coils { sw7 sw8 swlO swll swl2 }
curves { sc321 sc327 sc328 SC329 sc330 sc331 SC332 sc342 sc343

sc344 sc345 }
entry { sc331 sc332 }
exit { SC321 sc327 sc328 sc342 sc343 }

}sll7 {
bh si
curves { sc322 sc323 sc324 sc338 sc339 sc327 sc328 sc329 }
entry { sc327 sc328 }
exit { SC322 sc323 }

}sibl7 {
bh newcor
curves { sc326 sc331 SC333 sc312 sc313 sc314 }
entry { sc331 sc333 }
exit { sc312 sc313 }

}
sicl8 {

bh newcor
coils { sw7 swlO swll swl2 }
curves { sc341 sc347 sc348 sc349 sc350 sc351 sc352 sc362 sc363

sc364 sc365 }
entry { sc351 sc352 }
exit { sc341 SC347 sc348 sc362 sc363 }

}sll8 {
bh si
curves { sc342 sc343 sc344 sc358 sc359 sc347 sc348 SC349 }
entry { sc347 sc348 }
exit { sc342 sc343 }

}sibl8 {
bh newcor
curves { sc346 sc351 sc353 SC332 sc333 SC334 }
entry { sc351 sc353 }
exit { sc332 sc333 }

}
sicl9 {

bh newcor
coils { swlO swll swl2 }
curves { sc361 sc367 sc368 sc369 SC370 sc371 sc372 sc382 sc383

sc384 sc385 }
entry { sc371 sc372 }
exit { sc361 sc367 sc368 sc382 sc383 }

}sll9 {
bh si
curves { sc362 sc363 sc364 sc378 sc379 sc367 sc368 sc369 }
entry { sc3S7 sc368 }

exit { sc362 sc363 }
}sibl9 {

bh newcor
curves { sc366 sc371 sc373 sc352 sc353 sc354 }
entry { sc371 sc373 }
exit { sc352 sc353 }

sic20 {
bh newcor
coils { swlO swll swl2 swl3 }
curves { sc381 sc387 sc388 sc389 sc390 sc391 sc392 sc402 sc403

sc404 sc405 }
entry { sc391 sc392 }
exit { sc381 sc387 sc388 SC402 sc403 }

}sl20 {
bh si
curves { sc382 sc383 sc384 sc398 sc399 sc387 sc388 sc389 }
entry { sc387 sc388 }
exit { sc382 sc383 }

}sib20 {
bh newcor
curves { sc386 sc391 sc393 sc372 sc373 sc374 }
entry { sc391 sc393 }
exit { sc372 sc373 }

sic21 {
bh newcor
coils { swlO swll swl2 swl3 swl4 }
curves { sc401 sc407 sc408 sc409 sc410 sc411 sc412 sc422 sc423

sc424 sc425 }
entry { sc411 sc412 }
exit { sc401 sc407 sc408 sc422 sc423 }

}
sl21 {

bh si
curves { sc402 sc403 sc404 sc418 sc419 sc407 sc408 sc409 }
entry { sc407 sc408 }
exit { sc402 sc403 }

}sib21 {
bh newcor
curves { sc406 sc411 sc413 sc392 sc393 sc394 }
entry { sc411 sc413 }
exit { sc392 sc393 }

sic22 {
bh newcor
coils { swlO swll swl2 swl3 swl4 swl5 }
curves { sc421 sc427 sc428 sc429 sc430 sc431 sc432 SC442 SC443

sc444 SC445 }
entry { sc431 sc432 }
exit { sc421 sc427 sc428 sc442 sc443 }

}sl22 {
bh si
curves { sc422 sc423 SC424 SC438 sc439 sc427 sc428 sc429 }
entry { sc427 sc428 }
exit { sc422 sc423 }

}sib22 {
bh newcor
curves { sc426 sc431 sc433 sc412 sc413 sc414 }
entry { sc431 sc433 }
exit { sc412 sc413 }

sic23 {
bh newcor
coils { swlO swll swl3 swl4 swl5 }

bh newcor
curves { sc506 sc511 sc513 sc492 sc493 sc494 }
entry { sc511 sc513 }
exit { sc492 sc493 }

}
sic27 {

bh newcor
coils { swl3 swl4 swl5 swl6 swl7 }
curves { sc521 sc527 sc528 SC529 sc530 sc531 sc532 sc542 sc543

sc544 sc545 }
entry { sc531 sc532 }
exit { SC521 sc527 sc528 sc542 sc543 }

}sl27 {
bh si
curves { sc522 SC523 SC524 sc538 sc539 sc527 sc528 sc529 }
entry { sc527 sc528 }
exit { sc522 sc523 }

}sib27 {
bh newcor
curves { SC526 SC531 sc533 sc512 sc513 sc514 }
entry { sc531 sc533 }
exit { sc512 sc513 }

}

sic28 {
bh newcor
coils { swl3 swl4 swl5 swl6 swl7 swl8 }
curves { sc541 sc547 sc548 sc549 sc550 sc551 sc552 sc562 sc563

sc564 sc565 }
entry { sc551 sc552 }
exit { SC541 sc547 sc548 sc562 sc563 }

sl28 {
bh si
curves { sc542 sc543 sc544 sc558 sc559 sc547 sc548 SC549 }
entry { gc547 sc548 }
exit { sc542 sc543 }

}sib28 {
bh newcor
curves { sc546 sc551 sc553 sc532 sc533 SC534 }
entry { sc551 sc553 }
exit { sc532 sc533 }

}

sic29 {
bh newcor
coils { swl3 swl4 swl6 swl7 swl8 }
curves { sc561 SC567 sc568 sc569 sc570 sc571 sc572 sc582 sc583

SC584 sc585 }
entry { sc571 sc572 }
exit { sc561 sc567 sc568 sc582 sc583 }

}sl29 {
bh si
curves { sc562 SC563 sc564 SC578 sc579 sc567 sc568 sc569 }
entry { sc567 sc568 }
exit { sc562 sc563 }

}sib29 {
bh newcor
curves { sc566 sc571 sc573 SC552 sc553 sc554 }
entry { sc571 sc573 }
exit { sc552 sc553 }

}

sic30 {
bh newcor
coils { swl3 swl6 swl7 swl8 }
curves { sc581 sc587 sc588 sc589 sc590 sc591 sc592 sc602 sc603

sc604 sc605 }
entry { sc591 sc592 }

exit { sc581 sc587 sc588 sc602 sc603 }
}sl30 {

bh si
curv

}
sl30

exit { sc581 sc587 sc588 sc602 sc603 }

bh sl
curv

Brook Crompton D100L induction motor
unitdistance 0.001
airgap 1
bh {

newcor exp 3.8 2.17 396.2 # linear 1989
newcorril exp 3.8 2.17 396.2
si linear 1

}

stator
{ length 96
coils { swl 81 swla swlb sw2 81 sw2a sw2b sw3 81 sw3a sw3b sw4 81 sw4a sw4b

sw5 81 sw5a sw5b sw6 81 sw6a sw6b sw7 81 sw7a sw7b sw8 81 sw8a sw8b
sw9 81 sw9a sw9b swlO 81 swlOa swlOb swll 81 swlla swl lb swl2 81 swl2a swl2b
swl3 81 swl3a swl3b swl4 81 swl4a swl4b swl5 81 swl5a swl5b swl6 81 swl6a swl6b
swl7 81 swl7a swl7b swl8 81 swl8a swl8b }

nodes {
snO 0 d 0
sn [1 36 20] [46. 04 0] d [-1. 56 10]
sn [2 36 20] [46. 294 0] d [-1 .55 10]
sn [3 36 20] [46. 802 0] d [-2 .15 10]
sn [4 36 20] [47. 074 0] d [-2 .47 10]
sn [5 36 20] [58. 92 0] d [-3. 09 10]
sn [6 36 20] [46. 04 0] d [1.56 10]
sn [7 36 20] [46. 294 0] d [1.55 10]
sn [8 36 20] [46 .802 0] d [2.15 10]
sn [9 36 20] [47. 074 0] d [2.47 10]
sn [10 36; 20] [58 .92 0] d [3.09 10]
sn [11 36; 20] [62 0] d [5 10]
sn

}
[12 36; 2 0] [76 .45 0] d [5 10]

curves {sc [1 35 20] circ sn [6 20!1 sn [21 20] [46.04 0]
sc701 circ sn706 snl 46.04

}

36 20
36 20
36 20
36 20
36 20
36 20

8 36 20
9 36 20

line sn[l 20]
circ sn[3 20]
circ sn[3 20]
line sn[4 20]
circ sn[5 20]
line sn[6 20]
circ sn[7 20]
circ sn[9 20]

sn [2 20]
sn [2 20] [0.508 0]
sn [4 20] [0.84 0]
sn [5 20]
sn [10 20] [3.18 0]
sn [7 20]
sn[8 20] [0.84 0]
sn [8 20] [0.508 0]

10 36 20] line sn[9 20] sn[10 20]
11 36 20] line sn[10 20] sn[ll 20]
12 35 20] line sn[ll 20]

sc
sc
sc
sc
sc
sc
sc
sc
sc
sc
sc
sc712 line sn711 sn5
sc [13 36 20] line sn[ll 20]
sc [14 35 20] circ sn[12 20]
sc714 circ sn712 snl2 76.45
sc
sc

sn [25 20]
sn[12 20]
sn [32 20]

18 36 20] line sn[4 20] sn[9 20]
19 36 20] line sn[l 20] sn [6 20]

[76.45 0]

parts {
sicl {
bh newcor
coils { swl sw2 sw3 }
curves { scl sc7 sc8 sc9 sclO sell scl2 sc22 sc23 sc24 sc25 }
entry { sell scl2 }
exit { scl sc7 sc8 sc22 sc23 }

}s l l {
bh si
curves { sc2 sc3 sc4 scl8 scl9 sc7 sc8 sc9 }
entry { sc7 sc8 }
exit { sc2 sc3 }

}sibl {

bh newcor
curves { sc6 sell scl3 sc712 sc713 sc714 }
entry { sell scl3 }
exit { sc712 sc713 }

}

sic2 {
bh newcor
coils { swl sw2 sw3 sw4 }
curves { sc21 sc27 sc28 sc29 sc30 sc31 sc32 sc42 sc43 sc44 sc45 }
entry { sc31 sc32 }
exit { sc21 sc27 sc28 sc42 sc43 }

}sl2 {
bh si
curves { sc22 sc23 sc24 sc38 sc39 sc27 sc28 sc29 }
entry { sc27 sc28 }
exit { sc22 sc23 }

}sib2 {
bh newcor
curves { sc26 sc31 sc33 scl2 scl3 scl4 }
entry { sc31 sc33 }
exit { scl2 scl3 }

}

sic3 {
bh newcor
coils { swl sw2 sw3 sw4 sw5 }
curves { sc41 sc47 sc48 sc49 sc50 sc51 sc52 sc62 sc63 sc64 sc65 }
entry { sc51 sc52 }
exit { sc41 sc47 sc48 sc62 sc63 }

}sl3 {
bh si
curves { sc42 sc43 sc44 sc58 sc59 sc47 sc48 sc49 }
entry { sc47 sc48 }
exit { sc42 sc43 }

}sib3 {
bh newcor
curves { sc46 sc51 sc53 sc32 sc33 sc34 }
entry { sc51 sc53 }
exit { sc32 sc33 }

}

sic4 {
bh newcor
coils { swl sw2 sw3 sw4 sw5 sw6 }
curves { sc61 sc67 sc68 sc69 sc70 sc71 sc72 sc82 sc83 sc84 sc85 }
entry { sc71 sc72 }
exit { sc61 sc67 sc68 sc82 sc83 }

}sl4 {
bh si
curves { sc62 sc63 sc64 sc78 sc79 sc67 sc68 sc69 }
entry { sc67 sc68 }
exit { sc62 sc63 }

}sib4 {
bh newcor
curves { sc66 sc71 sc73 sc52 sc53 sc54 }
entry { sc71 sc73 }
exit { sc52 sc53 }

}

sic5 {
bh newcor
coils { swl sw2 sw4 sw5 sw6 }
curves { sc81 sc87 sc88 sc89 sc90 sc91 sc92 scl02 scl03 scl04 scl05 }
entry { sc91 sc92 }
exit { sc81 sc87 sc88 scl02 scl03 }

}sl5 {
bh si

curves { sc82 sc83 sc84 sc98 sc99 sc87 sc88 sc89 }
entry { sc87 sc88 }
exit { sc82 sc83 }

}sib5 {
bh newcor
curves { sc86 sc91 sc93 sc72 sc73 sc74 }
entry { sc91 sc93 }
exit { sc72 sc73 }

}

sic6 {
bh newcor
coils { swl sw4 sw5 sw6 }
curves { sclOl scl07 scl08 scl09 scllO sclll scll2 scl22 scl23 scl24 scl25 }
entry { sclll scll2 }
exit { sclOl scl07 scl08 scl22 scl23 }

}sl6 {
bh si
curves { scl02 scl03 scl04 scll8 scll9 scl07 scl08 scl09 }
entry { scl07 scl08 }
exit { scl02 scl03 }

}sib6 {
bh newcor
curves { scl06 sclll scll3 sc92 sc93 sc94 }
entry { sclll scll3 }
exit { sc92 sc93 }

}

sic7 {
bh newcor
coils { sw4 sw5 sw6 }
curves { scl21 scl27 scl28 SC129 scl30 SC131 scl32 scl42 scl43 scl44 scl45 }
entry { scl31 scl32 }
exit { scl21 scl27 scl28 SC142 scl43 }

}sl7 {
bh si
curves { scl22 scl23 scl24 scl38 scl39 scl27 scl28 scl29 }
entry { scl27 scl28 }
exit { scl22 scl23 }

}sib7 {
bh newcor
curves { scl26 scl31 scl33 scll2 SC113 scll4 }
entry { scl31 scl33 }
exit { scll2 scll3 }

}

sic8 {
bh newcor
coils { sw4 sw5 sw6 sw7 }
curves { scl41 scl47 scl48 scl49 SC150 SC151 scl52 scl62 scl63 scl64 scl65 }
entry { scl51 scl52 }
exit { scl41 scl47 scl48 scl62 scl63 }

}sl8 {
bh si
curves { scl42 scl43 scl44 scl58 scl59 scl47 scl48 scl49 }
entry { scl47 scl48 }
exit { scl42 scl43 }

}sib8 {
bh newcor
curves { scl46 scl51 scl53 scl32 scl33 scl34 }
entry { scl51 scl53 }
exit { scl32 scl33 }

}

sic9 {
bh newcor
coils { sw4 sw5 sw6 sw7 sw8 }
curves { scl61 scl67 scl68 scl69 scl70 scl71 scl72 scl82 scl83 scl84 scl85 }

entry { scl71 scl72 }
exit { scl61 scl67 scl68 scl82 scl83 }

sl9 {
bh si
curves { scl62 scl63 scl64 scl78 scl79 scl67 scl68 scl69 }
entry { scl67 scl68 }
exit { scl62 scl63 }

}sib9 {
bh newcor
curves { scl66 scl71 scl73 scl52 scl53 scl54 }
entry { scl71 scl73 }
exit { scl52 scl53 }

}

siclO {
bh newcor
coils { sw4 sw5 sw6 sw7 sw8 sw9 }
curves { scl81 SC187 scl88 scl89 scl90 scl91 SC192 sc202 sc203 sc204 sc205 }
entry { scl91 scl92 }
exit { scl81 scl87 scl88 sc202 sc203 }

}

sllO {
bh si
curves { scl82 scl83 scl84 scl98 scl99 scl87 scl88 SC189 }
entry { scl87 scl88 }
exit { scl82 scl83 }

}siblO {
bh newcor
curves { scl86 scl91 scl93 SC172 scl73 scl74 }
entry { scl91 scl93 }
exit { SC172 SC173 }

}
sicll {

bh newcor
coils { sw4 sw5 sw7 sw8 sw9 }
curves { sc201 SC207 sc208 sc209 sc210 sc211 sc212 sc222 sc223 sc224 sc225 }
entry { sc211 sc212 }
exit { sc201 sc207 sc208 sc222 SC223 }

sill {
bh si
curves { sc202 SC203 sc204 sc218 sc219 sc207 sc208 sc209 }
entry { sc207 sc208 }
exit { sc202 sc203 }

sibll {
bh newcor
curves { sc206 sc211 sc213 scl92 scl93 scl94 }
entry { sc211 sc213 }
exit { scl92 scl93 }

}

sicl2 {
bh newcor
coils { sw4 sw7 sw8 sw9 }
curves { sc221 sc227 sc228 sc229 sc230 sc231 sc232 sc242 sc243 sc244 sc245 }
entry { sc231 sc232 }
exit { sc221 sc227 sc228 sc242 sc243 }

sll2 {
bh si
curves { sc222 sc223 sc224 sc238 sc239 sc227 sc228 sc229 }
entry { sc227 sc228 }
exit { sc222 sc223 }

}sibl2 {
bh newcor
curves { sc226 sc231 sc233 sc212 sc213 sc214 }
entry { sc231 sc233 }
exit { sc212 sc213 }

}
sicl3 {

bh newcor
coils { sw7 sw8 sw9 }
curves { sc241 sc247 sc248 sc249 sc250 sc251 sc252 sc262 sc263 sc264 sc265 }
entry { sc251 sc252 }
exit { sc241 sc247 sc248 sc262 sc263 }

}sll3 {
bh si
curves { sc242 sc243 sc244 sc258 sc259 sc247 sc248 sc249 }
entry { sc247 sc248 }
exit { sc242 sc243 }

}sibl3 {
bh newcor
curves { sc246 sc251 sc253 sc232 sc233 sc234 }
entry { sc251 sc253 }
exit { sc232 sc233 }

}
sicl4 {

bh newcor
coils { sw7 sw8 sw9 swlO }
curves { sc261 sc267 sc268 SC269 sc270 sc271 sc272 sc282 sc283 sc284 sc285 }
entry { sc271 sc272 }
exit { sc261 sc267 sc268 sc282 sc283 }

}sll4 {
bh si
curves { sc262 sc263 sc264 sc278 sc279 SC267 sc268 sc269 }
entry { sc267 sc268 }
exit { sc262 sc263 }

}sibl4 {
bh newcor
curves { sc266 sc271 sc273 sc252 sc253 sc254 }
entry { §c271 OC273 }
exit { sc252 sc253 }

sicl5 {
bh newcor
coils { sw7 sw8 sw9 swlO swll }
curves { sc281 sc287 sc288 sc289 sc290 sc291 sc292 sc302 sc303 sc304 sc305 }
entry { sc291 sc292 }
exit { sc281 sc287 sc288 sc302 sc303 }

}sll5 {
bh si
curves { sc282 sc283 sc284 sc298 sc299 sc287 sc288 sc289 }
entry { sc287 sc288 }
exit { sc282 sc283 }

}sibl5 {
bh newcor
curves { sc286 sc291 sc293 sc272 sc273 sc274 }
entry { sc291 sc293 }
exit { sc272 sc273 }

}
sicl6 {

bh newcor
coils { sw7 sw8 sw9 swlO swll swl2 }
curves { sc301 sc307 sc308 sc309 sc310 sc311 sc312 sc322 sc323 sc324 sc325 }
entry { sc311 sc312 }
exit { sc301 sc307 sc308 sc322 sc323 }

}sll6 {
bh si
curves { sc302 sc303 sc304 SC318 sc319 sc307 sc308 sc309 }
entry { sc307 sc308 }
exit { sc302 sc303 }

}

sibl6 {
bh newcor
curves { sc306 sc311 sc313 sc292 sc293 sc294 }
entry { sc311 sc313 }
exit { sc292 sc293 }

}
sicl7 {

bh newcor
coils { sw7 sw8 swlO swll swl2 }
curves { sc321 sc327 sc328 sc329 sc330 sc331 sc332 sc342 sc343 sc344 sc345 }
entry { sc331 sc332 }
exit { sc321 sc327 sc328 sc342 SC343 }

}sll7 {
bh si
curves { sc322 sc323 sc324 sc338 sc339 sc327 sc328 sc329 }
entry { sc327 sc328 }
exit { sc322 sc323 }

}sibl7 {
bh newcor
curves { sc326 sc331 sc333 sc312 sc313 sc314 }
entry { sc331 sc333 }
exit { sc312 sc313 }

}
sicl8 {

bh newcor
coils { sw7 swlO swll swl2 }
curves { sc341 sc347 sc348 sc349 sc350 sc351 sc352 sc362 sc363 sc364 sc365 }
entry { sc351 sc352 }
exit { sc341 sc347 sc348 sc362 sc363 }

}sll8 {
bh si
curves { sc342 sc343 sc344 sc358 sc359 sc347 sc348 sc349 }
entry { sc347 sc348 }
exit { sc342 sc343 }

}sibl8 {
bh newcor
curves { sc346 sc351 sc353 sc332 sc333 sc334 }
entry { sc351 sc353 }
exit { sc332 sc333 }

}
sicl9 {

bh newcor
coils { swlO swll swl2 }
curves { sc361 sc367 sc368 sc369 sc370 sc371 sc372 sc382 sc383 sc384 sc385 }
entry { sc371 sc372 }
exit { sc361 SC367 sc368 sc382 sc383 }

}sll9 {
bh si
curves { sc362 sc363 sc364 sc378 SC379 sc367 sc368 sc369 }
entry { sc367 sc368 }
exit { sc362 sc363 }

}sibl9 {
bh newcor
curves { sc366 sc371 sc373 sc352 sc353 sc354 }
entry { sc371 sc373 }
exit { sc352 sc353 }

}
sic20 {

bh newcor
coils { swlO swll swl2 swl3 }
curves { sc381 sc387 sc388 sc389 sc390 sc391 sc392 sc402 sc403 sc404 sc405 }
entry { sc391 sc392 }
exit { sc381 sc387 sc388 sc402 sc403 }

}sl20 {

bh si
curves { sc382 sc383 sc384 sc398 sc399 sc387 sc388 sc389 }
entry { sc387 sc388 }
exit { sc382 sc383 }

}sib20 {
bh newcor
curves { sc386 sc391 sc393 sc372 sc373 sc374 }
entry { sc391 sc393 }
exit { sc372 sc373 }

}
sic21 {

bh newcor
coils { swlO swll swl2 swl3 swl4 }
curves { sc401 SC407 sc408 sc409 sc410 SC411 SC412 sc422 sc423 sc424 sc425 }
entry { sc411 sc412 }
exit { SC401 sc407 sc408 sc422 sc423 }

}sl21 {
bh si
curves { sc402 sc403 sc404 sc418 sc419 sc407 sc408 sc409 }
entry { sc407 sc408 }
exit { sc402 sc403 }

}sib21 {
bh newcor
curves { sc406 sc411 sc413 sc392 sc393 sc394 }
entry { sc411 sc413 }
exit { sc392 sc393 }

}
sic22 {

bh newcor
coils { swlO swll swl2 swl3 swl4 swl5 }
curves { sc421 sc427 sc428 sc429 sc430 SC431 sc432 sc442 sc443 sc444 sc445 }
entry { sc431 sc432 }
exit { sc421 sc427 sc428 sc442 sc443 }

}sl22 {
bh si
curves { sc422 sc423 sc424 sc438 sc439 sc427 sc428 sc429 }
entry { sc427 sc428 }
exit { sc422 sc423 }

}sib22 {
bh newcor
curves { SC426 SC431 sc433 sc412 sc413 sc414 }
entry { sc431 sc433 }
exit { sc412 sc413 }

}
sic23 {

bh newcor
coils { swlO swll swl3 swl4 swl5 }
curves { SC441 SC447 sc448 sc449 sc450 SC451 sc452 sc462 sc463 SC464 sc465 }
entry { sc451 sc452 }
exit { SC441 SC447 sc448 sc462 sc463 }

}sl23 {
bh si
curves { sc442 sc443 SC444 SC458 sc459 sc447 sc448 sc449 }
entry { sc447 sc448 }
exit { sc442 sc443 }

}sib23 {
bh newcor
curves { sc446 sc451 sc453 sc432 sc433 sc434 }
entry { sc451 sc453 }
exit { sc432 sc433 }

}
sic24 {

bh newcor
coils { swlO swl3 swl4 swl5 }

curves { sc461 sc467 sc468 sc469 sc470 sc471 sc472 sc482 sc483 sc484 sc485 }
entry { sc471 sc472 }
exit { sc461 sc467 sc468 sc482 sc483 }

sl24 {
bh si
curves { sc462 sc463 sc464 sc478 SC479 sc467 sc468 sc469 }
entry { sc467 sc468 }
exit { sc462 sc463 }

}sib24 {
bh newcor
curves { sc466 sc471 sc473 sc452 sc453 sc454 }
entry { sc471 sc473 }
exit { sc452 sc453 }

}
sic25 {
bh newcor
coils { swl3 swl4 swl5 }
curves { sc481 sc487 sc488 sc489 sc490 sc491 sc492 sc502 sc503 sc504 sc505 }
entry { sc491 sc492 }
exit { sc481 sc487 sc488 sc502 sc503}

}sl25 {
bh si
curves { sc482 sc483 sc484 sc498 sc499 sc487 sc488 sc489 }
entry { sc487 sc488 }
exit { sc482 sc483 }

}sib25 {
bh newcor
curves { sc486 sc491 sc493 sc472 sc473 sc474 }
entry { sc491 sc493 }
exit { sc472 sc473 }

}
sic26 {
bh newcor
coils { swl3 swl4 swl5 swl6 }
curves { sc501 sc507 sc508 sc509 sc510 sc511 sc512 sc522 sc523 sc524 sc525 }
entry { sc511 sc5l2 }
exit { sc501 SC507 sc508 sc522 SC523 }

sl26 {
bh si
curves { sc502 sc503 sc504 sc518 SC519 sc507 sc508 sc509 }
entry { sc507 sc508 }
exit { sc502 sc503 }

}sib26 {
bh newcor
curves { sc506 sc511 sc513 sc492 SC493 sc494 }
entry { sc511 sc513 }
exit { sc492 sc493 }

}
sic27 {
bh newcor
coils { swl3 swl4 swl5 swl6 swl7 }
curves { sc521 sc527 sc528 sc529 sc530 sc531 sc532 SC542 SC543 sc544 sc545 }
entry { sc531 sc532 }
exit { sc521 sc527 sc528 sc542 sc543 }

}sl27 {
bh si
curves { sc522 sc523 sc524 sc538 sc539 SC527 sc528 SC529 }
entry { sc527 sc528 }
exit { sc522 sc523 }

}sib27 {
bh newcor
curves { sc526 sc531 sc533 sc512 sc513 sc514 }
entry { sc531 sc533 }
exit { sc512 sc513 }

}
sic28 {

bh newcor
coils { swl3 swl4 swl5 swl6 swl7 swl8 }
curves { sc541 sc547 sc548 sc549 sc550 sc551 sc552 sc562 sc563 sc564 SC565 }
entry { sc551 sc552 }
exit { sc541 sc547 sc548 sc562 SC563 }

}sl28 {
bh si
curves { sc542 sc543 sc544 sc558 SC559 sc547 sc548 sc549 }
entry { sc547 sc548 }
exit { sc542 sc543 }

}sib28 {
bh newcor
curves { sc546 SC551 sc553 sc532 sc533 sc534 }
entry { sc551 sc553 }
exit { sc532 sc533 }

}
sic29 {

bh newcor
coils { swl3 swl4 swl6 swl7 swl8 }
curves { sc561 sc567 sc568 sc569 sc570 sc571 sc572 sc582 sc583 SC584 sc585 }
entry { sc571 sc572 }
exit { sc561 SC567 sc568 sc582 sc583 }

}sl29 {
bh si
curves { sc562 sc563 sc564 sc578 sc579 sc567 sc568 sc569 }
entry { sc567 sc568 }
exit { sc562 sc563 }

sib29 {
bh newcor
curves { sc566 sc571 sc573 sc552 sc553 sc554 }
entry { s c § 7 1 § c 5 7 3 }
exit { sc552 sc553 }

sic30 {
bh newcor
coils { swl3 swl6 swl7 swl8 }
curves { sc581 sc587 sc588 sc589 sc590 sc591 sc592 sc602 sc603 sc604 sc605 }
entry { sc591 sc592 }
exit { sc581 sc587 sc588 sc602 sc603 }

sl30 {
bh si
curves { sc582 sc583 sc584 sc598 SC599 sc587 sc588 SC589 }
entry { sc587 sc588 }
exit { sc582 sc583 }

}sib30 {
bh newcor
curves { sc586 sc591 SC593 sc572 SC573 sc574 }
entry { sc591 sc593 }
exit { sc572 sc573 }

}
sic31 {

bh newcor
coils { swl6 swl7 swl8 }
curves { sc601 sc607 sc608 sc609 sc610 sc611 sc612 sc622 sc623 SC624 sc625 }
entry { sc611 sc612 }
exit { sc601 sc607 sc608 sc622 sc623 }

}sl31 {
bh si
curves { sc602 sc603 sc604 sc618 sc619 sc607 sc608 sc609 }
entry { sc607 sc608 }
exit { sc602 sc603 }

}

sib31 {
bh newcor
curves { sc606 sc611 sc613 sc592 sc593 sc594 }
entry { sc611 sc613 }
exit { sc592 sc593 }

}
sic32 {

bh newcor
coils { swl swl6 swl7 swl8 }
curves { sc621 sc627 sc628 sc629 sc630 sc631 sc632 sc642 sc643 sc644 sc645 }
entry { sc631 sc632 }
exit { sc621 sc627 sc628 sc642 sc643 }

}sl32 {
bh si
curves { sc622 sc623 sc624 sc638 sc639 sc627 sc628 sc629 }
entry { sc627 sc628 }
exit { sc622 sc623 }

}sib32 {
bh newcor
curves { sc626 sc631 sc633 sc612 sc613 sc614 }
entry { sc631 sc633 }
exit { sc612 sc613 }

}
sic33 {
bh newcor
coils { swl sw2 swl6 swl7 swl8 }
curves { sc641 sc647 sc648 sc649 sc650 sc651 sc652 sc662 sc663 sc664 sc665 }
entry { sc651 sc652 }
exit { sc641 sc647 sc648 sc662 SC663 }

sl33 {
bh si
curves { sc642 sc643 sc644 sc658 sc659 sc647 sc648 sc649 }
entry { sc647 sc648 }
exit { sc642 sc643 }

}sib33 {
bh newcor
curves { sc646 sc651 sc653 sc632 sc633 sc634 }
entry { sc651 sc653 }
exit { sc632 sc633 }

}
sic34 {
bh newcor
coils { swl sw2 sw3 swl6 swl7 swl8 }
curves { sc661 sc667 sc668 sc669 sc670 sc671 sc672 sc682 sc683 sc684 sc685 }
entry { sc671 sc672 }
exit { sc661 sc667 sc668 sc682 sc683 }

}sl34 {
bh si
curves { sc662 sc663 sc664 sc678 sc679 sc667 sc668 sc669 }
entry { sc667 sc668 }
exit { sc662 sc663 }

}sib34 {
bh newcor
curves { sc666 sc671 sc673 sc652 sc653 sc654 }
entry { sc671 sc673 }
exit { sc652 sc653 }

}

sic35 {
bh newcor
coils { swl sw2 sw3 swl7 swl8 }
curves { sc681 sc687 sc688 sc689 sc690 sc691 sc692 sc702 sc703 sc704 sc705 }
entry { sc691 sc692 }
exit { sc681 sc687 sc688 sc702 sc703 }

sl35 {

}

bh si
curves { sc682 sc683 sc684 sc698 sc699 sc687 sc688 sc689 }
entry { sc687 sc688 }
exit { sc682 sc683 }

sib35 {
bh newcor
curves { sc686 sc691 sc693 sc672 sc673 sc674 }
entry { sc691 sc693 }
exit { sc672 sc673 }

}
sic36 {
bh newcor
coils { swl sw2 sw3 swl8 }
curves { sc701 sc707 sc708 sc709 sc710 sc711 sc712 sc2 sc3 sc4 sc5 }
entry { sc711 sc712 }
exit { sc701 SC707 sc708 sc2 sc3 }

}sl36 {
bh si
curves { sc702 sc703 sc704 sc718 SC719 sc707 SC708 sc709 }
entry { sc707 sc708 }
exit { sc702 sc703 }

}sib36 {
bh newcor
curves { sc706 sc711 sc713 sc692 sc693 sc694 }
entry { sc7ll sc713 }
exit { sc692 sc693 }

}
}

}
rotor {

length 98
skewangle d 3.5
coils { rbl 1 rbla rblb rb2 1 rb2a rb2b rb3 1 rb3a rb3b rb4 1 rb4a rb4b

rb5 1 rb5a rb5b rb6 1 rb6a rb6b rb7 1 rb7a rb7b rb8 1 rb8a rb8b
rb9 1 rb9a rb9b rblO 1 rblOa rblOb rbll 1 rblla rbllb rbl2 1 rbl2a rbl2b
rbl3 1 rbl3a rbl3b rbl4 1 rbl4a rbl 4b rbl5 1 rbl5a rbl 5b rbl6 1 rbl6a rbl 6b
rbl7 1 rbl7a rbl 7b rbl 8 1 rbl8a rbl 8b rbl 9 1 rbl9a rbl 9b rb20 1 rb20a rb20b
rb21 1 rb21a rb21b rb22 1 rb22a rb22b rb23 1 rb23a rb23b rb24 1 rb24a rb24b
rb25 1 rb25a rb25b rb26 1 rb26a rb26b rb27 1 rb27a rb27b rb28 1 rb28a rb28b
rb29 1 rb29a rb2 9b rb30 1 rb30a rb30b rb31 1 rb31a rb31b rb32 1 rb32a rb32b }

nodes {
rnO () d 0
rn [1 32 20] [32..39 0] d [-1 .88 11.25]
rn [2 32 20] [43..26 0] d [-2 .82 11.25]
rn [3 32 20] [32..39 0] d [1.88 11.25]
rn [4 32 20] [43..26 0] d [2.82 11.25]
rn [5 32 20] [15,.875 0] (i [5.625 11.25]
rn [6 32 20] [31 0] d [5.625 11 .25]
rn [7 32 20] [45..6 0] d [-2. 82 11.25]
rn [9 32 20] [45..6 0] d [2.82 11.25]

}
curves {

rc[l 32 20] circ rn[3 20] rn[l 20] [1.1 0]
rc [2 32 20] circ rn[2 20] rn[4 20] [2.2 0]
rc [3 32 20] line rn[l 20] rn [2 20]
rc [4 32 20] line rn[4 20] rn [3 20]
rc [5 31 20] circ rn[5 20] rn[25 20] [15.875 0]
rc625 circ rn625 rn5 15.875
rc [6 32 20] line rn[5 20] rn[6 20]
rc [7 32 20] line rn[3 20] rn[6 20]
rc [8 31 20] line rn[6 20] rn[21 20]
rc62 8 line rn626 rnl
rc[9 32 20] line rn[2 20] rn[7 20]
rc [11 32 20] line rn [4 20] rn[9 20]
rc [13 31 20] circ rn [27 20] rn [9 20] [45.6 0]
rc633 circ rn7 rn629 45.6

rc [15 32 20] circ rn[9 20] rn[7 20] [45.6 0]
}
parts {

riel {
bh newcor
coils { rbl }
curves { rc4 rc7 rc8 rcll rcl3 rc23 rc29 }
entry { rc7 rc8 }
exit { rcll rcl3 rc29 }

}rill {
bh newcorril
curves { rc2 rc9 rcll rcl5 }
entry { rcll }
exit { rc9 }

}ribl {
bh newcor
curves { rcl rc625 rc6 rc7 rc626 rc628 }
entry { rc6 rc7 }
exit { rc626 rc628 }

}
ric2 {

bh newcor
coils { rb2 }
curves { rc24 rc27 rc28 rc31 rc33 rc43 rc49 }
entry { rc27 rc28 }
exit { rc31 rc33 rc49 }

ril2 {
bh newcorril
curves { rc22 rc29 rc31 rc35 }
entry { rc31 }
exit { rc29 }

}rib2 {
bh newcor
curves { rc21 rc5 rc26 rc27 rc6 rc8 }
entry { rc26 rc27 }
exit { rc6 rc8 }

}
ric3 {

bh newcor
coils { rb3 }
curves { rc44 rc47 rc48 rc51 rc53 rc63 rc69 }
entry { rc47 rc48 }
exit { rc51 rc53 rc69 }

}ril3 {
bh newcorril
curves { rc42 rc49 rc51 rc55 }
entry { rc51 }
exit { rc49 }

}rib3 {
bh newcor
curves { rc41 rc25 rc46 rc47 rc26 rc28 }
entry { rc46 rc47 }
exit { rc26 rc28 }

}
ric4 {

bh newcor
coils { rb4 }
curves { rc64 rc67 rc68 rc71 rc73 rc83 rc89 }
entry { rc67 rc68 }
exit { rc71 rc73 rc89 }

}ril4 {
bh newcorril
curves { rc62 rc69 rc71 rc75 }
entry { rc71 }

exit { rc69 }
}rib4 {
bh newcor
curves { rc61 rc45 rc66 rc67 rc46 rc48 }
entry { rc66 rc67 }
exit { rc46 rc48 }

}
ric5 {
bh newcor
coils { rb5 }
curves { rc84 rc87 rc88 rc91 rc93 rcl03 rcl09 }
entry { rc87 rc88 }
exit { rc91 rc93 rcl09 }

}ril5 {
bh newcorril
curves { rc82 rc89 rc91 rc95 }
entry { rc91 }
exit { rc89 }

}rib5 {
bh newcor
curves { rc81 rc65 rc86 rc87 rc66 rc68 }
entry { rc86 rc87 }
exit { rc66 rcS8 }

}
ric6 {

bh newcor
coils { rb6 }
curves { rcl04 rcl07 rcl08 rclll rcll3 rcl23 rcl29 }
entry { rcl07 rcl08 }
exit { rclll rcll3 rcl29}

}ril6 {
bh newcorril
curves { rcl02 rcl09 rclll rcll5 }
entry { rclll }
exit { rcl09 }

}rib6 {
bh newcor
curves { rclOl rc85 rcl06 rcl07 rc86 rc88 }
entry { rcl06 rcl07 }
exit { rc86 rc88 }

}
ric7 {

bh newcor
coils { rb7 }
curves { rcl24 rcl27 rcl28 rcl31 rcl33 rcl43 rcl49 }
entry { rcl27 rcl28 }
exit { rcl31 rcl33 rcl49 }

}ril7 {
bh newcorril
curves { rcl22 rcl29 rcl31 rcl35 }
entry { rcl31 }
exit { rcl2 9 }

}rib7 {
bh newcor
curves { rcl21 rcl05 rcl26 rcl27 rcl06 rcl08 }
entry { rcl26 rcl27 }
exit { rcl06 rcl08 }

}
ric8 {

bh newcor
coils { rb8 }
curves { rcl44 rcl47 rcl48 rcl51 rcl53 rcl63 rcl69 }
entry { rcl47 rcl48 }
exit { rcl51 rcl53 rcl69 }

}ril8 {
bh newcorril
curves { rcl42 rcl49 rcl51 rcl55 }
entry { rcl51 }
exit { rcl49 }

}rib8 {
bh newcor
curves { rcl41 rcl25 rcl46 rcl47 rcl26 rcl28 }
entry { rcl46 rcl47 }
exit { rcl26 rcl28 }

}
ric9 {

bh newcor
coils { rb9 }
curves { rcl64 rcl67 rcl68 rcl71 rcl73 rcl83 rcl89 }
entry { rcl67 rcl68 }
exit { rcl71 rcl73 rcl89 }

}ril9 {
bh newcorril
curves { rcl62 rcl69 rcl71 rcl75 }
entry { rcl71 }
exit { rcl69 }

}rib9 {
bh newcor
curves { rcl61 rcl45 rcl66 rcl67 rcl46 rcl48 }
entry { rcl66 rcl67 }
exit { rcl46 rcl48 }

}
riclO {

bh newcor
coils { rblO }
curves { rcl84 rcl87 rcl88 rcl91 rcl93 rc203 rc209 }
entry { rcl87 rcl88 }
exit { rcl91 rcl93 rc209 }

}rillO {
bh newcorril
curves { rcl82 rcl89 rcl91 rcl95 }
entry { rcl91 }
exit { rcl89 }

}riblO {
bh newcor
curves { rcl81 rcl65 rcl86 rcl87 rcl6S rcl68 }
entry { rcl86 rcl87 }
exit { rcl66 rcl68 }

}
ricll {

bh newcor
coils { rbll }
curves { rc204 rc207 rc208 rc211 rc213 rc223 rc229 }
entry { rc207 rc208 }
exit { rc211 rc213 rc229 }

}rilll {
bh newcorril
curves { rc202 rc209 rc211 rc215 }
entry { rc211 }
exit { rc209 }

}ribll {
bh newcor
curves { rc201 rcl85 rc206 rc207 rcl86 rcl88 }
entry { rc206 rc207 }
exit { rcl86 rcl88 }

}
ricl2 {

bh newcor
coils { rbl2 }
curves { rc224 rc227 rc228 rc231 rc233 rc243 rc249
entry { rc227 rc228 }
exit { rc231 rc233 rc249 }

}rill2 {
bh newcorril
curves { rc222 rc229 rc231 rc235 }
entry { rc231 }
exit { rc229 }

}ribl2 {
bh newcor
curves { rc221 rc205 rc226 rc227 rc206 rc208 }
entry { rc226 rc227 }
exit { rc206 rc208 }

}

ricl3 {
bh newcor
coils { rbl3 }
curves { rc244 rc247 rc248 rc251 rc253 rc263 rc269
entry { rc247 rc248 }
exit { rc251 rc253 rc269 }

}rill3 {
bh newcorril
curves { rc242 rc249 rc251 rc255 }
entry { rc251 }
exit { rc249 }

}ribl3 {
bh newcor
curves { rc241 rc225 rc246 rc247 rc226 rc228 }
entry { rc246 rc247 }
exit { rc226 rc228 }

}
ricl4 {

bh newcor
coils { rbl4 }
curves { rc264 rc267 rc268 rc271 rc273 rc283 rc289
entry { rc267 rc268 }
exit { rc271 rc273 rc289 }

rill4 {
bh newcorril
curves { rc262 rc269 rc271 rc275 }
entry { rc271 }
exit { rc269 }

}ribl4 {
bh newcor
curves { rc261 rc245 rc266 rc267 rc246 rc248 }
entry { rc266 rc267 }
exit { rc246 rc248 }

}
ricl5 {

bh newcor
coils { rbl5 }
curves { rc284 rc287 rc288 rc291 rc293 rc303 rc309
entry { rc287 rc288 }
exit { rc291 rc293 rc309 }

}rillS {
bh newcorril
curves { rc282 rc289 rc291 rc295 }
entry { rc291 }
exit { rc289 }

}ribl5 {
bh newcor
curves { rc281 rc265 rc286 rc287 rc266 rc268 }

entry { rc286 rc287 }
exit { rc266 rc268 }

ricl6 {
bh newcor
coils { rbl6 }
curves { rc304 rc307 rc308 rc311 rc313 rc323 rc329 }
entry { rc307 rc308 }
exit { rc311 rc313 rc329 }

}rill6 {
bh newcorril
curves { rc302 rc309 rc311 rc315 }
entry { rc311 }
exit { rc309 }

}ribl6 {
bh newcor
curves { rc301 rc285 rc306 rc307 rc286 rc288 }
entry { rc306 rc307 }
exit { rc286 rc288 }

}
ricl7 {

bh newcor
coils { rbl7 }
curves { rc324 rc327 rc328 rc331 rc333 rc343 rc349 }
entry { rc327 rc328 }
exit { rc331 rc333 rc349 }

}rill7 {
bh newcorril
curves { rc322 rc329 rc331 rc335 }
entry { rc331 }
exit { rc329 }

}ribl7 {
bh newcor
curves { rc321 rc305 rc326 rc327 rc306 rc308 }
entry { rc326 rc327 }
exit { rc306 rc308 }

ricl8 {
bh newcor
coils { rbl8 }
curves { rc344 rc347 rc348 rc351 rc353 rc363 rc369 }
entry { rc347 rc348 }
exit { rc351 rc353 rc369 }

}rill8 {
bh newcorril
curves { rc342 rc349 rc351 rc355 }
entry { rc351 }
exit { rc349 }

}ribl8 {
bh newcor
curves { rc341 rc325 rc346 rc347 rc326 rc328 }
entry { rc346 rc347 }
exit { rc326 rc328 }

}
ricl9 {

bh newcor
coils { rbl9 }
curves { rc364 rc367 rc368 rc371 rc373 rc383 rc389 }
entry { rc367 rc368 }
exit { rc371 rc373 rc389 }

}
rill9 {

bh newcorril
curves { rc362 rc369 rc371 rc375 }
entry { rc371 }

exit { rc369 }
}ribl9 {
bh newcor
curves { rc361 rc345 rc366 rc367 rc346 rc348 }
entry { rc366 rc367 }
exit { rc346 rc348 }

}
ric20 {

bh newcor
coils { rb20 }
curves { rc384 rc387 rc388 rc391 rc393 rc403 rc409 }
entry { rc387 rc388 }
exit { rc391 rc393 rc409 }

}ril20 {
bh newcorril
curves { rc382 rc389 rc391 rc395 }
entry { rc3 91 }
exit { rc389 }

}rib20 {
bh newcor
curves { rc381 rc365 rc386 rc387 rc366 rc368 }
entry { rc386 rc387 }
exit { rc366 rc368 }

}
ric21 {

bh newcor
coils { rb21 }
curves { rc404 rc407 rc408 rc411 rc413 rc423 rc429 }
entry { rc407 rc408 }
exit { rc411 rc413 rc429 }

}ril21 {
bh newcorril
curves { rc402 rc409 rc411 rc415 }
entry { rc411 }
exit { rc409 }

}rib21 {
bh newcor
curves { rc401 rc385 rc406 rc407 rc386 rc388 }
entry { rc406 rc407 }
exit { rc386 rc388 }

ric22 {
bh newcor
coils { rb22 }
curves { rc424 rc427 rc428 rc431 rc433 rc443 rc449 }
entry { rc427 rc428 }
exit { rc431 rc433 rc449 }

}ril22 {
bh newcorril
curves { rc422 rc429 rc431 rc435 }
entry { rc431 }
exit { rc429 }

}rib22 {
bh newcor
curves { rc421 rc405 rc426 rc427 rc406 rc408 }
entry { rc426 rc427 }
exit { rc406 rc408 }

}
ric23 {
bh newcor
coils { rb23 }
curves { rc444 rc447 rc448 rc451 rc453 rc463 rc469 }
entry { rc447 rc448 }
exit { rc451 rc453 rc469 }

}ril23 {
bh newcorril
curves { rc442 rc449 rc451 rc455 }
entry { rc451 }
exit { rc449 }

}rib23 {
bh newcor
curves { rc441 rc425 rc446 rc447 rc426 rc428 }
entry { rc446 rc447 }
exit { rc426 rc428 }

}
ric24 {

bh newcor
coils { rb24 }
curves { rc464 rc467 rc468 rc471 rc473 rc483 rc489 }
entry { rc467 rc468 }
exit { rc471 rc473 rc489 }

ril24 {
bh newcorril
curves { rc462 rc469 rc471 rc475 }
entry { rc471 }
exit { rc469 }

rib24 {
bh newcor
curves { rc461 rc445 rc466 rc467 rc44S rc448 }
entry { rc466 rc467 }
exit { rc446 rc448 }

}
ric25 {

bh newcor
coils { rb25 }
curves { rc484 rc487 rc488 rc491 rc493 rc503 rc509 }
entry { rc487 rc488 }
exit { rc491 rc493 rc509 }

}ril25 {
bh newcorril
curves { rc482 rc489 rc491 rc495 }
entry { rc491 }
exit { rc489 }

}rib25 {
bh newcor
curves { rc481 rc465 rc486 rc487 rc466 rc468 }
entry { rc486 rc487 }
exit { rc466 rc468 }

}
ric26 {
bh newcor
coils { rb26 }
curves { rc504 rc507 rc508 rc511 rc513 rc523 rc529 }
entry { rc507 rc508 }
exit { rc511 rc513 rc529 }

}ril26 {
bh newcorril
curves { rc502 rc509 rc511 rc515 }
entry { rc511 }
exit { rc509 }

}rib26 {
bh newcor
curves { rc501 rc485 rc506 rc507 rc486 rc488 }
entry { rc506 rc507 }
exit { rc486 rc488 }

}
ric27 {

bh newcor
coils { rb27 }
curves { rc524 rc527 rc528 rc531 rc533 rc543 rc549
entry { rc527 rc528 }
exit { rc531 rc533 rc549 }

}ril27 {
bh newcorril
curves { rc522 rc529 rc531 rc535 }
entry { rc531 }
exit { rc529 }

}rib27 {
bh newcor
curves { rc521 rc505 rc526 rc527 rc506 rc508 }
entry { rc526 rc527 }
exit { rc506 rc508 }

}
ric28 {

bh newcor
coils { rb28 }
curves { rc544 rc547 rc548 rc551 rc553 rc563 rc569
entry { rc547 rc548 }
exit { rc551 rc553 rc569 }

}ril28 {
bh newcorril
curves { rc542 rc549 rc551 rc555 }
entry { rc551 }
exit { rc549 }

}rib28 {
bh newcor
curves { rc541 rc525 rc546 rc547 rc526 rc528 }
entry { rc546 rc547 }
exit { rc526 rc528 }

}
ric29 {

bh newcor
coils { rb29 }
curves { rc564 rc567 rc568 rc571 rc573 rc583 rc589
entry { rc567 rc568 }
exit { rc571 rc573 rc589 }

ril29 {
bh newcorril
curves { rc562 rc569 rc571 rc575 }
entry { rc571 }
exit { rc569 }

}rib29 {
bh newcor
curves { rc561 rc545 rc566 rc567 rc546 rc548 }
entry { rc566 rc567 }
exit { rc546 rc548 }

}
ric30 {
bh newcor
coils { rb30 }
curves { rc584 rc587 rc588 rc591 rc593 rc603 rc609
entry { rc587 rc588 }
exit { rc591 rc593 rc609 }

}ril30 {
bh newcorril
curves { rc582 rc589 rc591 rc595 }
entry { rc591 }
exit { rc589 }

}rib30 {
bh newcor
curves { rc581 rc565 rc586 rc587 rc566 rc568 }

entry { rc586 rc587 }
exit { rc566 rc568 }

ric31 {
bh newcor
coils { rb31 }
curves { rc604 rc607 rc608 rc611 rc613 rc623 rc629 }
entry { rc607 rc608 }
exit { rc611 rc613 rc629 }

}ril31 {
bh newcorril
curves { rc602 rc609 rc611 rc615 }
entry { rc611 }
exit { rc609 }

}rib31 {
bh newcor
curves { rc601 rc585 rc606 rc607 rc586 rc588 }
entry { rc606 rc607 }
exit { rc586 rc588 }

}
ric32 {

bh newcor
coils { rb32 }
curves { rc624 rc627 rc628 rc631 rc633 rc3 rc9 }
entry { rc627 rc628 }
exit { rc631 rc633 rc9 }

}ril32 {
bh newcorril
curves { rc622 rc629 rc631 rc635 }
entry { rc631 }
exit { rc629 }

}rib32 {
bh newcor
curves { rc621 rc605 rc626 rc627 rc606 rc608 }
entry { rc626 rc627 }
exit { rc606 rc608 }

Appendices

H
‘gdl2spice’ program listing

#if !defined(bh_h)
#define bh h

// Sentry, use file only if it's not already included.

/* Project, gdl
TNTU
Copyright '9 1996

SUBSYSTEM:
FILE:
AUTHOR:

gdl.exe Applicat i on
bh. h
D. Downes

OVERVIEW

Class definitions for b h.
*/
#include <string>
#include "unique.h"
#include "descobj.h"
#include "part.h"
class Description;

i / / Bh
class Bh : public DescriptionObject

i L upublic:
enum BhType {UNKNOWN, LINEAR, EXP};

private:
BhType type;
Description* description;
double kl, k2, k3;

public:
Bh(Description* d, const strings n);
Bh(Description* d, const char* n = "unknovm");
~Bh();
BhType GetType();
double GetKlO;
doxible GetK2 () ;
double GetK3 () ;
Description* GetDescription();
Bh::BhType SetType(Bh::BhType);
double SetKl(double);
double SetK2 Tdotible) ;
double SetK3(double);
void SetK(double, double, double);
string GetCapNode(Parts) ;
do\jble GetCapValue (double) ;
void WriteProperties(ofstream&);
static bool Parse(LexGDLS, Description*, bool inform=true);
bool ConvertLinear(doubles, double);
bool Convert(ofstreams, Parts, long, long, double, double); // needs reference to

part to build voltage source
};
typedef Unique<Bh *> Bhs;
typedef Unique<Bh *>::iterator Bhslterator;
void BhsWrite(ofstreams, BhsS);
#endif // bh_h sentry.

/* Project gdl
TNTU
Copyright '•5 1996
SUBSYSTEM: gdl.exe Application
FILE: bh.cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of bh.
*/

: #include "bh.h"
#include "desc.h"
const double BH_PERM = 1.2566E-6; // 4*M_PI*lF,-7 H/m
void BhsWrite (ofstreams out, Bhs&. bhs)

: { out << "bh {
i Bhslterator iter=bhs.begin() ;
: while (iter i= bhs.endO) {
; (*iter) -• >WriteProperties (out) ;

out < < " ";
iter++;

}out < < "}";
}
void Bh::WriteProperties(ofstreams out)
{ out << GetNameO << " ";

if (type==Bh: -.LINEAR) out << "linear " << kl;
if (type==Bh::EXP) out << "exp " << kl << " " << k2 << " " << k3 ;

}
bool Bh::ConvertLinear(double& value, double integral)
{ if (type==Bh: -.LINEAR) {

value = ((1.O/integral)*kl*BH_PERM);
return true;

}
e l s e {

return false;
}

}
string Bh: .-GetCapNode (Part& part)
{ return string("B"+part.GetName()+"_P") ;
}

I
[dovible Bh: :GetCapValue (double integral)
! (| if (type==Bh::LINEAR) return ((kl*BH_PERM)/integral);
! if (type==Bh::EXP) return (1.0/integral);
I return 0;
| }
bool Bh::Convert(ofstreams cct,Parts part, long fNode, long sNode, double integral,
double volume)
{ bool ok=false;

if (type==Bh::LINEAR) {
cct << "* magnetic capacitance: \n" ,-
cct << "C" << part.GetName() << " " << fNode << " "

((kl*BH_PERM)/integral) << " ic=0\n";
I // cct << ”RMC" << part. GetName () << " " << fNode <<

ok = true;
}if (type==Bh::EXP) {

long rNode=GetDescription() • >GetCctNode () ; // midpoint node for flux loss
equivalent resistance

<< sNode << " " <<
" ” « sNode « " 1e12\n

cct << "* flux loss equivalent resistance: \n"; // needs volume
cct << "R L " << part .GetName () << 11 11 << fNode << " " << rNode
cct << "* nonlinear magnetic capacitance:\n";
cct << "B" << part.GetName() << " B" << part.GetName() << "_P i

<< ", " << sNode <<
cct << "/(" << kl << "*exp(" << k2 << "*V(B" << part.GetName()

part.GetName() << "_P))+" << k3 << ")";
cct << "\nC" << part .GetName () << " B" << part .GetName () << "_]

part.GetName() << "_P " << {1.O/integral) << " ic=0\n";
cct << "V" << part.GetName() << " V" << part.GetName() << "_P
cct << " F " << part.GetName() << " " << rNode << " " << sNode <■

part.GetName() << " l\n";
// cct << "RMC" << part .GetName () << " B" << part .GetName () <<

ok = true;
}return ok;

I Bh::Bh(Description* d, const strings n) :DescriptionObject (n)
description=d;
type=Bh::UNKNOWN;

I kl = k2 = k3 = 0;

I Bh::Bh(Description* d, const char* n):DescriptionObject(n)
{ description=d;

type=Bh::UNKNOWN;
kl = k2 = k3 - 0;

Bh::~Bh()

Description* Bh::GetDescription()
{ return description;

Bh::BhType Bh::GetType()
{ return type;

double Bh::GetKl()
{ return kl;

do\lble Bh: :GetK2 ()
{ return k2;

I double Bh::GetK3()
I return k3;
! }i
| Bh:-.BhType Bh: -.SetType (Bh: .-BhType t)

return (type-t);

double Bh: .-SetKl (double s)
{ return (kl=s);

I double Bh: :SetK2 (do\ible s)
return (k2=s);

calculation added
<< " ln\n";
v=V(" < < rNode

<< "_P)*V(B" «
1 V" <<
0 0\n";
" V" <<

_.P 0 lel2\n”;

double Bh::SetK3(double s)
{ return Ck3=s)?
}
void Bh::SetK(double si, double s2, double s3)
{ kl=sl;

k2=s2;
k3=s3;

}
bool Bh: :Parse (LexGDLS. lex, Description* desc, bool inform) // expects to find a new
token
{ int state = 0;

bool ok = true;
bool currok = true;
string nameld;
Bh::BhType type;
double kl=0;
double k2 = 0;
double k3=0;
do {

switch (state) {
case 0 : {

if (lex.CurrStr()=="{") {
lex.GetToken(); // set up for parse
state++;

}else {
cerr << "ERROR (line: " << lex.LineCount() << ") '{' expected" <<

endl ;
state = 8; // get out of parser
currok = false;

}
}
break;
case 1 : {

if (lex. CurrToken () ==LexGDL: :UNKNOWN) {
nameld = lex.CurrStr();
kl = k2 = k3 = 0;
lex.GetToken() ; // new token
currok = true; // reset ok flag as new bh
state++;

}else {
lex.GetToken() ; // get rid of token
currok = false;
state = 7; // find unknown

}
}break;
case 2 : {

switch (lex.CurrToken()) {
case LexGDL: :LINEAR : type=Bh: .-LINEAR; state++; break;
case LexGDL::EXP : type=Bh::EXP; state++; break;
default : currok = false; state =7; // find unknown

}lex.GetToken(); // new token
1break;
case 3 : {

currok &= lex.CurrVar(kl);
lex.GetToken(); // new token
if (type==Bh::EXP)

state++;
else

state = 6; // create new bh objcet
}break;
case 4 : {

currok &= lex.CurrVar(k2);
state++;

lex.GetToken();
}
break;
case 5 : {

currok lex.CurrVar(k3);
state++;
lex.GetToken();

}
break;
case 6 : {

if (currok) {
Bh* bh = new Bh(desc, nameld);
if (desc->Add(bh)) {

bh->SetType(type);
bh->SetK(kl,k2,k3);
if (inform) {

cout << "BH: " << bh->GetName() << " #" << desc-
>GetBhs().size() << " added" << endl;

else {
cerr << "ERROR (bh: " << bh->GetName() << ") duplicate" << endl
ok = false;
delete bh;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() << " bh: " << nameld
<< ") syntax '{ <name> linear]exp <float> [<float> <float>] }'

expected" << endl;
ok = false;

}state++;
}break;
case 7 : { // check for closing bracket

if (lex.CurrStr()=="}") {
lex.GetToken(); // new token
state++;

}else {
state = 1; // get unknown

break;
default : {

currok = false;
cerr << "Bh parser illegal state";
state = 7; / / ge t unkno'wn

}
}ok &= currok;

/* if (.inform) {
cout « "Bh parse state: " << state << endl;

} * /} while (lex.CurrToken () ! =LexGDL: :END state<8) ;
if (lex.PrevStr()!="}") {

cerr << "ERROR (line: " << lex. LineCount ()-1 << ") '}' expected" << endl;
lex.GetToken(); // set up for parse

}return ok;
}

#if !defined(coil_h)
#define coil h

// Sexitry, use file only if it's not already included.

/* Project gdl
TNTU
Copyright 1996

SUBSYSTEM:
FILE:
AUTHOR :

grd.7..exe Applicat ion
coil.h
D. Downes

OVERVIEW

Class definitions fox' coil.
*/
#include <string>
#include "unique.h"
#include "descobj.h"
class Frame;

I // Coil
| class Coil : public DescriptionObject
private:

Frame* frame;
string firstTerminal;
string secondTerminal;
double turns;

public:
Coil (Frame*, const string&.) ;
Coil(Frame*, const char* n = "unknown");
-Coil() ;
Frame* GetFrame();
strings SetFirst(strings);
strings SetSecond(strings);
double SetTurns(const doubles);
strings. GetFirstO;
strings GetSecond();
double GetTurnsO;
void WriteProperties(ofstreams);
static bool Parse(LexGDLS, Frame*, bool inform=true);
bool Convert(ofstreams);

typedef Unique<Coil *> Coils;
typedef Unique<Coil *>: .-iterator Coilslterator;
typedef Unique<Coil *>::reverse_iterator CoilsReverselterator;

! void CoilsWrite(ofstreams, CoilsS);
I void CoilsConvertElectrical (of streams, CoilsS); // convert coils to circuit description
| void CoilListConvertTerminals (of streams, CoilsS); // output a list of the circuit

{

terminals

#endif // coiljh. senti'y.

/* Project gdl
TNTU
Copyright 'Q 1996

SUBSYSTEM: gdl.exe Application
FILE: coi1.cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of coil.
*/
#include <strstream>
#include "coil.h"
#include "desc.h"
void CoilsWrite(ofstreams out, CoilsS coils)

out << "coils { ";
Coilslterator iter=coils.begin();
while (iter 1= coils.end()) {

(*iter)->WriteProperties(out);
out << " " ;
iter++;

}out < < "}";
}
void CoilsConvertElectrical(ofstreams cct, CoilsS coils) // convert coil list to circuit
description
{ Coilslterator iter=coils.begin();

while (iter != coils.end()) {
(*iter)->Convert(cct);
iter++;

}
}

void CoilListConvertTerminals (ofstreams cct, CoilsS coils) // output a list of the
ci. rcu. i t terrn.i na 1 s
{ CoilsReverselterator iter=coils.rbegin();

while (iter != coils.rend()) { // list coils
cct << (*iter)->GetFirst() << " " << (*iter)->GetSecond();
if (++iter != coils.rend()) cct << " *

}
}
void Coil::WriteProperties(ofstreams out)
{ out << GetName () << " " << turns << " " << f irstTerminal << " " << secondTerminal;
}
bool Coil: .-Convert (ofstreams cct)
{ // build list of parts that are linked to this coil

Parts parts; // new list of parts that are linked, to coil
Partslterator iter= (frame->GetParts ()) .begin() ; / /p a rt s contained in frame
while (iter != (frame->GetParts ()) .end()) { // step through part list

if ((*iter)->Find(this)) //part contains this coil in its coil list?
parts .Add (*iter) ; // if it. does then add the part to the coils part list

iter++;
}// generate gyrators
Partslterator iterParts=parts.begin();
if (iterParts != parts.endO) { // check coil belongs to at least one part

string cctNode;
Part* partptr;
long prevCctNode = frame >GetDescription()->GetCctNode();
long midCctNode=prevCctNode// mid. point connection of src pair, always numeric
cct "Vsens" << GetName () << " " << firstTerminal << " " << midCctNode << "

0\n" ;
do {

// f rame - >AddCct.Node (m.idCctNode) ; // provide ground point for mid node
partptr = * (iterParts++) ; // set pointer' so as to find out if its the last

part in the list
if (iterParts == parts.end()) {// last coil

cctNode=secondTerminal; // last coil so use the second coil terminal
1else {

strstream num; // used to convert numeric to string
prevCctNode = frame•>GetDescription()->GetCctNode();
num << prevCctNode; // needs a new cct node
cctNode=num.str();

}cct << "H" << GetName () << partptr->GetName() << " " << cctNode << " " <<
midCctNode

<< " Vsens" << partptr->GetName() << " " << (turns) << "\n";
midCctNode=prevCctNode;

} while (iterParts != parts.end());
return true;

: }
; else {

return false;
}

C o i l C o i l (Frame* f, const strings n) :DescriptionObject (n)
{ frame=f;

turns=1 ;

Coil::Coil(Frame* f, const char* n) :DescriptionObject (n)
{ frame=f;

turns-1;

Coil::-Coil()

Frame* Coil::GetFrame()
{ return frame;

strings Coil:: SetFirst (strings, first)
{ return (firstTerminal=first);

strings Coil::SetSecond(strings second)
{ return (secondTerminal=second);

double Coil::SetTurns(const doubles t)
I return (turns=t);
| }
| strings Coil::GetFirst()

return firstTerminal;

strings Coil::GetSecond()
{ return secondTerminal;

double Coil::GetTurns()
{ return turns;

bool Coil:: Parse (LexGDLS lex, Frame * frame, bool inform) // expects to find two n<
tokens
{ int state = 0;

bool ok = true;
bool currok = true;
string nameld, firstTerm, secTerm;
double turns;
do {

switch (state) {
case 0 : {

if (lex.CurrStr()=="{") {
lex.GetToken(); // set up for parse
state++;

}else {
cerr << "ERROR (line: " << lex.LineCount{) << ") '{' expected"

endl.
state - 1; // get ot of parser
currok = false;

}
1break;
case 1 : {

if (lex.CurrToken()==LexGDL::UNKNOWN) {
nameld = lex.CurrStr();
lex.GetToken(); // new token
currok = true; // reset ok flag as new bh
state++;

}else {
lex.GetToken() ; // get. rid of token
currok = false;
state - 6; // find unknown

}
}break;
case 2 : {

if (currok &= lex.CurrVar(turns)) {
lex.GetToken();
state++;

else {
currok = false;
state=6;

}
1
break;
case 3 : {

if (currok &= lex.CurrVar(firstTerm)) {
lex.GetToken();
state++;

}else {
currok = false;
state=6;

}
}
break;
case 4 : {

if (currok &= lex.CurrVar(secTerm)) {
lex.GetToken();
state++;

}else {
currok = false;
state=6;

1
J

}break;
case 5 : {

if (currok) {
Coil* coil = new Coil(frame, nameld);
if (frame->Add(coil)) {

frame->AddCoilList(coil);

coil->SetFirst(firstTerm);
coil ~>SetSecond(secTerm);
coil->SetTurns(turns);
if (inform) {

cout << "TERMINAL: " << coil->GetName() << " # ” << frame-
>GetCoils () .size() << " added" << endl;

}
}
else {

cerr << "ERROR (coil: " << coil->GetName() << ") duplicate" <<
endl ;

ok = false;
delete coil;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() << " coil: " << nameld
<< ") syntax '{ <coil_name> <terminal_name> <terminal_name> }'

expected" << endl;
ok = false;

}state++;
}break;
case 6 : { // check for closing bracket

if (lex.CurrStr()=="}") {
lex.GetToken(); // new token
state++;

}else {
state = 1; // get unknown

}

)break;
default : {

currok = false;
cerr << "Coil parser illegal state" << endl;
state - 6 ; // get unknown

}
}ok &= currok;

/* if (inform) {
cout « "Coil parse state: " << state << endl;

} */} while (lex.CurrToken()!=LexGDL::END && state<7);
if (lex.PrevStr()!="}") {

cerr << "ERROR (line: " << lex. LineCount ()-1 << ") '}' expected" << endl ;
lex.GetToken(); // set up for parse

}return ok;

#if !defined(coord_h)
#define coord h

// Sentz-y, use file only if it's not already included.

/* Project gdl
TNTU
Copyri grh fc ";5 1996
SUBSYSTEM:
FILE:
AUTHOR:

gdl.exe Application
coord.h
I). Downes

OVERVIEW

Class definitions for cooordinate.
*/

#include <string>
#include "unique.h"
#include "vector2d.h"
#include "descobj.h"
class Description;
class Frame;
// Coordinate
class Coord : public DescriptionObject
private:

Frame* frame;
Vector2d pos;

public:
Coord();
Coord(Frame* f, const string^ n);
Coord(Frame* f, const char* n = "unknown");
-Coord () ;
Vector2d& SetPos(Vector2d&);
Vector2d& GetPos();
Frame* GetFrameO;
Description* GetDescription();
void WriteProperties(ofstreams);
static bool Parse(LexGDLS, Frame*, bool inform=true);

typedef Unique<Coord *> Coords;
typedef UniquecCoord *>::iterator Coordslterator;
void CoordsWrite(ofstreams, CoordsS);
#endif // coord_h sentry.

/* Project gdl
TNTU
Copyright 199G

SUBSYSTEM: gdl.exe Application
FILE: coord.cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of coordinate.
* /

#include <cmath>
#include <strstream>
#include "coord.h"
#include "frame.h"
#include "desc.h"
void CoordsWrite(ofstreams out, CoordsS coords)
{ out << "nodes { ";

Coordslterator iter=coords.begin();
while (iter != coords.end()) {

(*iter)->WriteProperties(out);
out << " ";
iter++;

1out <<

void Coord::WriteProperties(ofstreams out)
{ out << GetName() << " ";

out << (Mag (pos)/GetDescription () ■->GetUnitDistance ()) << "
out << Angle(pos);

Coord:-.Coord(Frame* f, const strings n) .-DescriptionObject (n)
{ frame=f;

Coord:-. Coord (Frame* f, const char* n) :DescriptionObject (n)
{ frame=f;

Coord::-Coord()

Frame* Coord::GetFrame()
{ return frame;

Description* Coord: -.GetDescription ()
{ return (frame?frame->GetDescription():NULL);

Vector2d& Coord::SetPos(Vector2d& p)
{ return (pos=p);

Vector2d& Coord::GetPos{)
{ return pos;

bool Coord: : Parse (LexGDLS lex, Frame* frame, bool inform) // expects to find new token
a1 ready current

string nameld;
double p, q;
bool degrees = false;
long start, rep, inc;
double startp, incp;
double startq, incq;
bool pattern = false;
bool currok = true;
bool ok = true;
int state = 0;
do {

switch (state) {
case 0 : {

if (lex.CurrStr()=="{") {
lex.GetToken(); // set up for parse
state++;

}else {
cerr << "ERROR (line: " << lex.LineCount() << ") '{' expected"

endl ;
state = 10; // get. out of parser
currok = false;

}
1break;
case 1 : {

if (lex.CurrToken()==LexGDL::UNKNOWN) {
nameld = lex.CurrStr();
start = inc = 0;
rep = 1; // by default, if a plain name, then repeat just once
startp = incp = 0;
startq - incq = 0;
p = q = 0;
currok = true; // reset ok flag as new coord
lex.GetToken();
state++;

}
else {

currok = false;
lex.GetToken();
state = 9; // find, unknown

}

}

break;
case 2 : {

if ’(lex. CurrStr () ==" [") {
currok &= lex.ParseBracket(start, rep, inc);
pattern = true;
state = 4;

}else {
pattern = false;
state = 3;

}
}break;
case 3 : {

if (currok &= lex.CurrVar(p)) {
lex.GetToken();
state=5;

}else {
currok = false;
state=9;

}
}break;
case 4 : {

if (currok &= lex.ParseBracket(startp, incp)) {
state++;

Jelse {
currok = false;
state=9;

}}
break;
case 5 : {

if (degrees = (lex.CurrToken()==LexGDL::DEG)) 1ex.GetToken();
state = (pattern?7:6);

}
break;
case 6 : {

if (currok &= lex.CurrVar(q)) {
lex.GetToken();
state=8;

}else {
currok = false;
state=9;

}
}break;
case 7 : {

if (currok &= lex.ParseBracket(startq, incq)) {
S t c l f c G + + }

}else {
currok = false;
state=9;

}
}
break;
case 8 : {

if (currok) {
long curr = start;
long c = 0;
double currp = startp;
double currq = startq;
Vector2d pos;
Coord* coord;
while (c<rep) {

if (pattern) {
strstream number;
number << curr; // change integer to char string
coord = new Coord(frame, nameld + number.str());
p » currp;
q = currq;

}else {
coord = new Coord(frame, nameld);

}if (frame->Add(coord)) {
if (degrees) q*=M_Pl/l80;
pos(Vector2d::POLAR,p*frame->GetDescription()-

>GetUnitDistance 0 , q) ;
// cout << "unit distance: " << fra.me->GetDescription () -

>GetUni t.Di stance {) << "\n " ;
coord->SetPos(pos);
if (inform) {

cout << "Coord: " << coord->GetName() << " #" << frame-
>GetCoords().size() << " added" << endl;

}
}else {

cerr << "ERROR (coord: " << coord->GetName() << ")
duplicate" << endl;

ok = false;
delete coord;

}currp += incp;
currq += incq;
curr += inc;
C + + ;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() << " coord: "
<< nameld << ") syntax '<name|[int int int]> <float|(float

float]> [d] <float| [float float]>' expected" << endl;

ok = false;}state++;
1break;
case 9 : {

if (lex.CurrStr()=="}") { // check for c3.os.ing bracket
lex.GetToken() ;
state++;

}else {
state =1; // get unknown

}
}break;
default : {

currok = false;
cerr << "Coord parser illegal state" << endl;
state =9; // get unknown

}
}ok &= currok;

if (.inform) {
cout « "Coord parse state: " << state << endl;

} */} while (lex.CurrToken() !=LexGDL::END && state<10) ;
if (lex.PrevStr{)!="}") {

cerr << "ERROR (line: " << lex.LineCount{)-1 << ") '}' expected" <
}return ok;

:< endl

#if ! defined (curve__h) // Sentry, use file only if it's not already included.
#define curve_h
/* Project gdl

TNTU
Copyright 1996
SUBSYSTEM: gdl.exe Application
FILE: curve.h
AUTHOR: D. Downes

OVERVIEW

Class definitions fox' curve.
*/
#include <string>
#include "unique.h"
#include "vector2d.h"
#include "descobj.h"
class Description;
class Frame;
class Coord;
// Curve
class Curve : public DescriptionObject
{public:

enum CurveType {UNKNOWN, LINE, CIRC};
private:

CurveType type;
Frame* frame;
Coord* begin;
Coord* end;
double radius;
bool boundary;

public:
Curve();
Curve(Frame* f, const strings n);
Curve(Frame* f, const char* n = "unknown");
-Curve();
CurveType GetType();
Coord* GetBeginO;
Coord* GetEnd();
double GetRadius() ;
Frame* GetFrameO;
Description* GetDescription();
CurveType SetType(CurveType);
Coord* SetBegin(Coord*);
Coord* SetEnd(Coord*);
double SetRadius (doiible) ;
bool IsBoundary(bool);
bool IsBoundary();
bool Centre(Vector2d&);
bool GetMinMax(Vector2d&, Vector2d&);
double Length();
Coord* OtherlfValid(Coord*);
Vector2d FractionPos(Coord*, double);
void WriteProperties(ofstream&);
static bool Parse(LexGDL&, Frame*, bool inform=true);
friend Coord* SharedCoord(Curve*, Curve*);

};
typedef Unique<Curve *> Curves;
typedef UniquecCurve *>::iterator CurvesIterator;
typedef UniquecCurve *>::reverse_iterator CurvesReverseIterator;

void CurvesWrite(ofstreams, CurvesS);
void CurvesSetBoundary(CurvesS curves);
Coord* SharedCoord(Curve*, Curve*);
#endif // curve_h sentry.

void CurvesWrite(ofstream&, Curves&);
void CurvesSetBoundary(Curves& curves);
Coord* SharedCoord(Curve*, Curve*);
#endif // curve 11 se.nt.ry.

/* Project, gdl
TNTU
Copyright 1996

SUBSYSTEM: gdl.exe Application
FILE: curve.cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of curve.
*/
#include <strstream>
#include "coord.h"
#include "frame.h"

i #include "curve.h"
#include "desc.h"

f void CurvesWrite(ofstreams out, CurvesS curves)
: {I out << "curves {
t CurvesIterator iter=curves.begin();
| while (iter != curves.end()) {
j (*iter) ->WriteProperties(out);

out << " ";
iter++;

}out <<
}
void CurvesSetBoundary(CurvesS curves)
{ CurvesIterator iter=curves.begin();

while (iter != curves.end()) {
(* (iter+ +)) -•> IsBoundary (true) ;

}
}
void Curve: :WriteProperties (ofstreams out)
{ out << GetName() << " " ;

if (type==Curve: :LINE) out << "line " << begin - >GetName () << " " << end->GetName ()
if (type==Curve: :CIRC) out << "circ " << begin - >GetName () << " " << end - >GetName {)

<< " " << (radius/GetDescription()->GetUnitDistance());
}
Curve:-.Curve (Frame* f, const strings n) .-DescriptionObject (n)
{ frame=f;

begin=NULL;
end=NULL;
radius=0;
boundary=true;

| }
[Curve: :Curve (Frame* f, const char* n) .-DescriptionObject (n)
! (I frame=f;
(begin=NULL;

end=NULL;
radius=0;
boundary=true;

}
Curve::-Curve()
{
}
Frame* Curve::GetFrame()

return frame;

Description* Curve::GetDescription{)
{ return (frame?frame->GetDescription{):NULL);

Curve::CurveType Curve::GetType()
{ return type;

Coord* Curve::GetBegin{)
{ return begin;

Coord* Curve::GetEnd{5
{ return end;

double Curve::GetRadius()
{ return radius;

Curve::CurveType Curve::SetType(Curve::CurveType t)
{ return (type=t);

Coord* Curve::SetBegin(Coord* c)
{ return (begin=c);

Coord* Curve::SetEnd(Coord* c)
{ return (endsC);

double Curve::SetRadius(double r)
{ return (radius=r);

bool Curve::IsBoundary(bool b)
{ return (boundary=b);

bool Curve::IsBoundary()
{ return (boundary);

; bool Curve::Centre(Vector2d& g)
| double r = fabs(radius);
I Vector2d b, e;
I b=begin->GetPos() ;

e=end->GetPos() ;
bool ok = true;
if (type==Curve::CIRC) {

if (b.XO ==e.X() && b.YO ==e.Y()) {
g-b;

}else {
Vector2d c;
c = e - b ;
if (Mag(c)>2*r) {

cerr << "ERROR (curve: " << nameld << ") Curve radius "
<< " specified is too small for nodes: "

; « b.XO << " , " << b.YO « " Sc " « e.X() << " ,
I endl;I
i

<< radius
" << e.Y() <<

i

ok = false;}
else {

if (Mag(c)==2*r)
g = b + (c/2);

else
g = b+c/2+UnitNorm(c)*sqrt(pow(r,2)-pow(Mag(c)/2,2));

}
}

}
else {

ok = false;
return ok;

bool Curve:: Parse (LexGDLSr lex, Frame* frame, bool inform) // expects to find new token
already current
{ string nameld;

string p ,q ,pname,qname;
double r = 0.0;
double startr, incr;
Curve::CurveType type;
bool circ = false;
long start, rep, inc;
long startp, incp;
long startq, incq;
bool pattern = false;
bool currok = true;
bool ok = true;
int state = 0;
do {

switch (state) {
case 0 : {

if (lex.CurrStr()=="{") {
lex.GetToken(); // set up for parse
state++;

else {
cerr << "ERROR (line: " << lex.LineCount() << ") '{’ expected" <<

endl;
state s 12; // get. ot of parser
currok = false;

break;
case 1 : {

if (lex.CurrToken()==LexGDL::UNKNOWN) {
nameld = lex.CurrStr();
start = inc = 0;
rep = 1; // by default if parsed a plain name then repeat just once
startp = incp = 0;
startq = incq = 0;
currok = true; // reset ok flag as curve bh
lex.GetToken{);
state++;

}else {
currok = false;
lex.GetToken();
state =11; // find unknown

}
}
break;
case 2 : {

if (lex.CurrStr()=="[") {
currok &= lex.ParseBracket(start, rep, inc);
pattern = true;
state++;

}else {
pattern = false;
state++;

case 3 : {
switch (lex.CurrToken()) {

case LexGDL: :LINE : type=Curve:-.LINE; circ=false; lex.GetToken ()
state++; break;
state++; break;

1

case LexGDL::CIRC : type=Curve::CIRC; circ=true; 1ex.GetToken();
default : currok = false; state = 1; // find next unknown

Sbreak;
case 4 : {

if (currok &= lex.CurrVar(p)) {
lex.GetToken();
state = (pattern?5:6);

}else {
currok = false;
state=ll;

}
1break;
case 5 : {

if (currok &= lex.ParseBracket(startp, incp)) {
state++;

}else {
currok = false;
state=ll;

}
}break;
case 6 : {

if (currok &= lex.CurrVar(q)) {
lex.GetToken();
state = (pattern?7: (circ?8:10)) ;

}
else {

currok = false;
state=ll;

}
}
break;
case 7 : {

if (currok &= lex.ParseBracket(startq, incq)) {
state=(circ?9:10);

}else {
currok = false;
state=ll;

}
}
break;
case 8 : {

if (currok &= lex.CurrVar(r)) {
lex.GetToken();
state=10;

}else {
currok = false;
state=ll;

}
1
break;
case 9 : {

if (currok &= lex.ParseBracket(startr, incr)) {
state=10;

}else {
currok = false;
state=ll;

case 10 : {
if (currok) {

long curr = start;
long c = 0;
long currp = startp;
long currq = startq;
double currr = startr;
Curve* curve;
while (c<rep) {

if (pattern) {
strstream number;
strstream numberp;
strstream numberq;
number << curr; // change integer to char string
curve = new Curve(frame, nameld + number.str());
numberp << currp;
pname = p + numberp.str();
numberq << currq;
qname = q + numberq.str();
r = currr;
// reset strstream I!!

}else {
curve = new Curve(frame, nameld);
pname = p;
qname = q;

}if (!(curve->SetBegin(frame->Find(&Coord(frame,pname))))) {
cerr << "ERROR (curve: " << curve ->GetName() << ") node: "

<< pname << " doesn't exist" << endl;
currok = false;

}
if (!(curve•>SetEnd(frame->Find(&Coord(frame,qname))))) {

cerr << "ERROR (curve: " << curve->GetName() << ") node: "
<< qname << " doesn't exist" << endl;

currok = false;
}if (currok) {

if (frame->Add(curve)) {
curve->SetType(type);
curve->SetRadius(r*frame->GetDescription()-

>GetUnitDistance 0) ;
if (inform) {

cout << "Curve: " << curve ->GetName() << " #" <<
frame-->GetCurves 0 .size {) << " added" << endl;

}
}
else {

cerr << "ERROR (curve: " << curve~>GetName() << ")
duplicate" << endl;

ok = false;
delete curve;

}
}currp += incp;
currq += incq;
currr += incr;
curr += inc;
C + + ;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() << " coord: " << nameld
<< ") syntax 'cname|[int int int]> <line|circ> <name|[int int]>

cname| [int int]> <float| [float float]>' expected" << endl;
ok = false;

}state++;
}break;
case 11 : {

if (lex.CurrStr () =="}") { // check, for closing bracket

lex.GetToken{);
state++;}else {
state = 1; // get unknown

\i
1
break;
default : {

currok = false;
cerr << "Curve parser illegal state" << endl;
state = 11; // get unknown

}
}ok &= currok;

/* if (inform) {
cout << "Curve parse state: " << state << endl;

} */} while {lex.CurrToken()!=LexGDL::END && state<12);
| if (lex.PrevStr()!="}") {

cerr << "ERROR (line: " << lex.LineCount()-1 << ") 1}1 expected" << endl;
}return ok;

; }
t
| bool Curve::GetMinMax(Vector2d& cmin, Vector2d& cmax)

{ if (begin!=NULL && end!=NULL) {
Vector2d b(begin->GetPos());
Vector2d e(end->GetPos());
if (type==Curve::CIRC) {

Vector2d r(radius,radius);
Vector2d origin;
if (Centre(origin)) {

b=origin+r;
e=origin-r;

}else {
b+=r;
e - =r ;

}
}cmin ((b.XO <e.X() ?b.X() : e .X ()) , (b. Y () <e. Y () ?b. Y () : e . Y ())) ;
cmax ((b.XO >e.X{) ?b.X() :e.X()) , (b.YO >e.Y() ?b.Y() :e.Y())) ;
return true;

}
else {

return false;
}

}
double Curve::Length()
{ double length = 0.0;

if (type==Curve::LINE)
! length = fabs(Mag(end->GetPos()-begin->GetPos ())) ;

if (type==Curve::CIRC) {
if (begin->GetPos()==end->GetPos())

: length = fabs(2*M_PI*radius);
I else
! length = fabs(2*radius*asin(Mag(end~>GetPos{)-begin->GetPos())/(2*radius)))

// length = fabs(Mag(end->GetPos()-begin~>GetPos()));
}return length;

Coord* Curve::OtherIfValid(Coord* coord)
{ Coord* c=NULL;

if (coord==begin) c=end;
if (coord==end) c=begin;
return c ;

}
Vector2d Curve::FractionPos(Coord* coord, double fraction)

{ Vector2d pos;
if (begin && end && begin!=end && (coord==begin i | coord==end)) {

Coord* start=coord;
Coord* finish=(coord==begin?end:begin);
if (type==Curve::LINE) {

pos= (finish->GetPos () - start - >GetPos ())*fraction+start->GetPos() ;
}if (type==Curve::CIRC) {

Vector2d origin;
if (Centre(origin)) {

double newAngle = 2*asin (Mag (finish- >GetPos () -start--
>GetPos())/ (2*radius)5 *fraction;

Vector2d pos_origin;
if (start==begin) {

pos_or igin (Vec tor2d: : POLAR, radius, Angle (start - >Get Pos {) -
origin)+newAngle);

}else {
pos_origin (Vector2d: : POLAR, radius, Angle (start- >GetPos () - origin)

newAngle);
}pos=origin+pos_origin;

}else {
// use an apro.xima.tion of straight line if origin calc. failed
pos= (finish->GetPos () -start- >GetPos ()) *fraction+start->GetPos () ;

}
}

}return pos;
}
Coord* SharedCoord(Curve* cl, Curve* c2)
{ Coord* c=NULL;

if (cl~>begin==c2->begin || cl->begin==c2->end) c=cl~>begin;
if (cl-->end==c2->begin || cl - >end==c2->end) c=cl->end;
return c;

}

#if !defined(objdesc_h)
included.
#define objdesc_h

/ / Sentry, use file only if it's not already

/* Project gdl
TNTU
Copyright 1996

SUBSYSTEM:
FILE:
AUTHOR:

gd 1. exre Appl icati on
descobj.h
D. Downes

OVERVIEW

Class definitions for description type objects.
*/
#include <string>
#include "lex.h"
// descobject
class DescriptionObject
protected:

string nameld;
public:

DescriptionObject() {nameId="unknown";}
DescriptionObject(const strings n) {nameld=n;}
DescriptionObject(const char* n) {nameld=n;}
virtual -DescriptionObject() {}
const string GetName() {return nameld;}
virtual int operator==(const DescriptionObject& other) const (return

other.nameld==nameld;}
// virtual unsigned HashValueO const {return nameld .hash ();}

friend ostream& operator <* (o§tream& os, const DescriptionObject obj)
{return os << "No proper stream function for " << obj.nameld;}

{

};
#endif // objdesc_h sentry.

#if !defined(desc_h)
#define deec h

/ / Sentry, use file only if it's not already included.

/* Project gdl
TNTU
Copyright 1996

SUBSYSTEM:
FILE:
AUTHOR:

gdl.exe Applicat1on
desc.h
D. Downes

OVERVIEW

Class definitions for description.
*/
#include <string>
#include "descobj.h"
#include "lex.h"
#include "vector2d.h"
#include "bh.h"

| #include "frame.h"
// Description
class Description : public DescriptionObject
private:

Frame stator;
Frame rotor;
Bhs bhs;
long cctNodeCount;
double unitDistance;
double torqueModifier;
double airgap;

public:
Description(const strings n);
Description(const char* n = "unknown");
-Description();
Frames GetStator();
Frames GetRotor();
BhsS GetBhs();
long GetCctNode();
long SetCctNode(const longs cctNodeCount=l);
Bh* Find(Bh*);
bool Add(Bh*);
double GetUnitDistance();
double GetTorqueModifier() ;
double SetUnitDistance(double);
double SetTorqueModifier(double);
bool Convert(ofstreams, ofstreamS, const char *name, const char *prefix, long

sections, bool verbose, bool torq);
void Write(ofstreams);
bool Parse(ifstream*, bool inform=true);
void Check(long);
void Info();

{

};
I #endif // desc_h sentry.

/* Project gdl
TNTU
Copyright 1996

SUBSYSTEM: gdl. exe Appl i ca. t. i on
FILE: desc. cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of description.
*/
#include "desc.h"
Description::Description{ const strings n):stator(this, "stator"),rotor(this,"rotor"),

! DescriptionObject(n)
I {| cctNodeCount=l; // cct node count set to 1

unitDistance=l;
I torqueModifier=l;

airgap=l;
}
Description::Description{ const char* n):stator(this, "stator"),rotor(this,"rotor"),
DescriptionObject(n)
{ cctNodeCount=l; // cct node count set to 1

unitDistance=l;
torqueModifier=1;
airgap-1;

}
Description::-Description()
{// bhs.FIush(true);
}
double Description::GetUnitDistance()
{ return (unitDistance);
}
double Description::GetTorqueModifier()
{ return (torqueModifier);
}
double Description::SetUnitDistance(double d)
{ return (unitDistance=d);
}
double Description::SetTorqueModifier(double m)
{I return (torqueModifier=m);

i }
| long Description::GetCctNode{)
; (return (cctNodeCount++);

}
long Description::SetCctNode(const longS cctNode)
{ return (cctNodeCount=cctNode);

; }
Frames Description::GetStator()
{ return stator;

; }
| Frames. Description:-.GetRotor (3

return rotor;

Bhs& Description::GetBhs()
return bhs;

Bh* Description::Find(Bh* b)
return bhs.Find(b);

bool Description::Add(Bh* b)
return bhs.Add (b);

void Description::Write(ofstreams outstream)
outstream << "# file generated by GDL program\n\n";
outstream << "unitdistance " <
outstream << "torquemodifier "
BhsWrite(outstream, bhs);
outstream << "\n\n";
FrameWrite(outstream, stator);
outstream << "\n\n";
FrameWrite(outstream, rotor);
outstream << "\n\n";

unitDistance << ’
c< torqueModifier

1 \n" ;
<< "\n\n"

bool Description:‘.Convert (ofstreams, cct, ofstreamS 1st, const char *name, const char
*prefix, long sections, bool verbose, bool torq)
{ bool ok;

SetCctNode(); // set cct node count to initial value
cct <« "* Circuit description generated by GDL program\n";
if (ok = (stator.GenerateCctNodes(verbose) SS rotor.GenerateCctNodes(verbose)

//generate messages = true
&& stator.FindBoundaryCurves() S& rotor.FindBoundaryCurves()))

// carry on and generate the subcircuit file
cct << ".subckt magnetic";
if (!stator.GetCoilList().empty() SS !rotor.GetCoilList().empty()) {

if (torq) {
cct << " TORQ P TORQ N";

{

}
}CCt « " POS_P POS_N";

cct << "\n";
if (!stator.GetCoilList().empty()) {

cct << "+
CoilListConvertTerminals(cct, stator.GetCoilList()); // output a list of the

stator circuit terminals
cct << "\n";

}if (!rotor.GetCoilList().empty()) {
cct << "+
CoilListConvertTerminals(cct, rotor.GetCoilList()); // output a list of the

rotor circuit terminals
cct << "\n";

}cct << 11 * \n 11 *
cct << "* Stator magnetic circuit elements *\n";
cct << *
ok &= stator.Convert(cct, sections);
cct << ************************************\n"’
cct << "* Rotor magnetic circuit elements *\n";
cct << M***********************************\ri11 *
ok S= rotor.Convert(cct, sections);
cct << "**\n"
cct << "* Connection of stator coils to circuit terminations *\n"
cct << 11 **\nn
CoilsConvertElectrical(cct, stator.GetCoils()) ; // convert to coil circuit

description

cct << \n" •
cct << "* Connection of rotor coils to circuit terminations *\n";
cct << 11 ***\n11;
CoilsConvertElectrical(cct, rotor.GetCoils()); // convert to coil circuit

description
cct << 11 *************************************\n11 •
cct << "* Magnetic to mechanical conversion *\n";
Cct << 11 *************************************\jjw *
ok &= FrameGenerateMech(cct, stator, rotor, sections, torq, verbose);
cct << ".ends\n\n\n\n"; // extra three returns as simetrix seems to need them
// generate the node list file

1st << "* ";
Partslterator rPartsIter=rotor.GetParts().begin();
while (rPartsIter != rotor.GetParts().end()) {

if ((*rPartsIter)->IsMagPart(}) {
1st << (*rPartsIter)->GetName() << " " << (*rPartsIter)->GetMinArea() <If .

1st << (*rPartsIter)~>GetEntryCctNode{) << " " << (*rPartsIter)-
>GetExitCctNode() << "

1st << (*rPartsIter)->GetLineIntegral() << " ";
}rPartsIter++;

| }Partslterator sPartsIter=stator.GetParts().begin();
! while (sPartsIter != stator.GetParts().end()) {
| if ((*sPartsIter)->IsMagPart()) {
| 1st << (*sPartsIter)->GetName() << " " << (*sPartsIter)->GetMinArea() <II ./

1st << (*sPartsIter)->GetEntryCctNode{) << " " << (*sPartsIter) -
>GetExitCctNode() << "

1st << (*sPartsIter)->GetLineIntegral() << "
}sPartsIter++;

}DiffNodesIterator sDiffNodesIter=stator.GetDiffNodes().begin();
DiffNodesIterator rDiffNodesIter=rotor.GetDiffNodes().begin();
1st << "\n*
while (sDiffNodealter U stator.GetDiffNodes().end()) {

1st << (*sDiffNodesIter) << "
sDiffNodesIter++;

}while (rDiffNodesIter != rotor.GetDiffNodes().end{)) {
1st << (*rDiffNodesIter) << "
rDiffNodesIter++;

}1st << "\n";
sDiffNodesIter=stator.GetDiffNodes().begin();
rDiffNodesIter=rotor.GetDiffNodes().begin();
1st << "*\n.control\nwrite " << name << "
while (sDiffNodesIter != stator.GetDiffNodes{).end()) {

1st << prefix << (*sDiffNodesIter) << "
sDiffNodesIter++;

}while (rDiffNodesIter != rotor.GetDiffNodes().end()) {
1st << prefix << (*rDiffNodesIter) << "
rDiffNodesIter++;

}1st << "\n.endc\n";
| }I else {
! cct << "Error occured when generating circuit nodes and boundary curves\n";
1)| return ok;

}
bool Description:-.Parse (ifstream* instream, bool inform)

: (LexGDL lex(instream);
lex.GetToken(); // prepare for first token check
bool ok = true;
do {

switch (lex.CurrToken()) {
case LexGDL::UNIT :

{ lex.GetTokenO ; // get new token

if (1 lex.CurrVar(unitDistance)) {
cerr << "ERROR (line: " << lex.LineCount() << ") value for unit

distance expected" << endl;
ok = false;

}else {
1 ex. Get Token () ; // get new token

}
}break;

case LexGDL::AIRGAP :
{ lex.GetToken(); // get new token

if (!lex.CurrVar(airgap)) {
cerr << "ERROR (line: " << lex.LineCount() << ") value for

airgap distance expected" << endl;
ok = false;

}
else {

lex.GetToken(); // get new token
}

}break;
case LexGDL::TORQUE :

{ lex.GetToken(); // get new token
if (!lex.CurrVar(torqueModifier)) {

cerr << "ERROR (line: " << lex.LineCount() << ") value for
torque modifier expected" << endl;

ok = false;
}
else {

lex.GetToken() ; // get new token
}

}break;
case LexGDL::STATOR : {

cout << "found STATOR" << endl;
lex.GetToken(}; // get new token
ok &= stator. Parse (lex, inform) ; // expects a new token and returns a

)
break;
case LexGDL::ROTOR : {

cout << "found ROTOR" << endl;
lex.GetToken(); // get new token
ok &= rotor .Parse (lex, inform) ; // expects a new token and returns a new

token
}break;
case LexGDL::BH : {

lex.GetToken(); // get new token
ok &= Bh::Parse(lex, this, inform);

}break;
default : {

cerr << "ERROR (line: " << lex. LineCount () << ") '" << lex. CurrStr () <<
"' not valid" << endl;

lex.GetToken(); // get a new token
ok = false;

1
}} while (lex.CurrToken () !=LexGDL::END && ! instream->eof ()) ;

cout << "PARSER SUMMARY:" « endl;
cout << "bh: " << bhs.size() << " created" << endl;
cout << "Stator nodes: " << stator .GetCoords (). size () << " created" << endl;
cout << "Stator curves: " << stator.GetCurves ().size () << " created" << endl;
cout << "stator parts: " << stator.GetParts () .size () << " created" << endl;
cout << "stator coils: " << stator .GetCoils (). size () << " created" << endl;
cout << "rotor nodes: " << rotor .GetCoords () .size () << " created" << endl;
cout << "rotor curves: " << rotor .GetCurves (). size () << " created" << endl;
cout << "rotor parts: " << rotor.GetParts (). size () << " created" << endl;
cout << "rotor coils: " << rotor .GetCoils () . size() << " created" << endl;
return ok;

new token

void Description::Check(long sections)

{ SetCctNode(); // set cct node count to initial value
if (i stator.FindBoundaryCurves()) {

cerr << "Error occured while finding stator boundary curves" << endl;
}if (S rotor.FindBoundaryCurves()) {

cerr << "Error occured while finding rotor boundary curves" << endl;
}
if (!stator.GenerateCctNodes(true)) {

cerr << "Error occured while generating stator nodes" << endl;
}
if (!rotor.GenerateCctNodes(true)) {

cerr << "Error occured while generating rotor nodes" << endl;
1cout << "Stator check:" << endl;
stator.Check(sections);
cout << "Rotor check:" << endl;
rotor.Check(sections);

void Description::Info()
{ cout << "summary:" << endl

cout << "bh: " << bhs.size
cout << "Stator nodes: " <
cout << "Stator curves: "
cout << "stator parts: " <
cout << "stator coils: " <
cout << "rotor nodes: " <<
cout << "rotor curves: " <
cout << "rotor parts: " <<
cout << "rotor coils: " <<

() << " created" << endl;
< stator.GetCoords().size{) <
<< stator.GetCurves().size()
< stator.GetParts().size() <<
< stator.GetCoils().size() <<
rotor.GetCoords().size() <<
< rotor.GetCurves().size() <<
rotor.GetParts().size() << "
rotor.GetCoils().size() << "

< " created" << endl;
<< " created" << endl
" created" << endl;
" created" << endl;

" created" << endl;
" created" << endl;
created" << endl;
created" << endl;

#if ! defined (fratne_h)
#define frame h

/ / Sentry, use file only if it's not already included.

/* Project gdl
TNTU
Copyright ‘9 IS$6

SUBSYSTEM:
FILE:
AUTHOR:

cdl. ex.e Appl i ca t i on
frame. h
I). Downes

OVERVIEW

Class definitions for frame.
*/
#include <string>
#include "unique.h”
#include "descobj.h"
#include "curve.h"
#include "coord.h"
#include "part.h"
#include "coil.h"

[class Description;
typedef list<long> CctNodes;
typedef list<long> :: iterator CctNodesIterator;
typedef list<string> DiffNodes;
typedef list<string>:: iterator Dif fNodesIterator ;
// Frame
class Frame : public DescriptionObject
private:

Description* description;
Parts parts;
Curves curves;
Coords coords;
Coils coils;
Coils coilList;
double skew;
double length?
CctNodes cctNodss;
Dif fNodes diffNDdes;

public:
Frame(Description* d, const strings n);
Frame (Description* d, const char* n = "unknown");
-Frame();
PartsS GetPartsO ;
CurvesS GetCur-ves () ;
Coords& GetCoords ();
Description* GetDescription () ;
Part* Find (Part*-) ;
Curve* Find (Curve*) ;
Coord* Find (Cocrd*) ;
bool Add (Part*);
bool Add (Curve*) ;
bool Add (Coord*) ;
CoilsS GetCoilsO;
Coil* Find (Coil*) ;
bool Add (Coil*);
CoilsS GetCoilList () ;
bool AddCoilList (Coil*) ;
double GetSkewO ;
double SetSkew(dovible) ;
double GetLength () ;
double SetLength(double) ;
bool AddCctNode(long) ;
CctNodesS GetCctNodes () ;
bool AddDiffNocfe (string);

{

DiffNodess GetDiffNodes();
bool CurvesMinMax(Vector2d&, Vector2dS);
void Info();
void Check(long);
void WriteProperties(ofstreams);
bool Parse(LexGDLS, bool inform=true);
bool Convert(ofstreams, long);
bool GenerateCctNodes(bool messages = true);
bool FindBoundaryCurves();

};
void FrameWrite(ofstreams, Frames);
bool FrameGenerateMech(ofstreams, Frames, Frames, long sections, bool torq, bool
messages=true);
#endif // fx'a.me_h sentry.

/* Project gdl
TNTU
Copyright ® 1996

SUBSYSTEM: gdl.exe Application
FILE: frame.cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of frame.
*/
const int MIN_COEFF_POW = 0 ; // position curve fit max. values
const int MAX_COEFF_POW = 12;
const float TOP_LIMIT = 0.2;
const float B0T_LIMIT = 0.8;
const int ARCjSTEPS = 100; // number of steps for each arc
const float TYPICAL_LENGTH=0.1; // typical length of frame, inherited by parts

#include <strstream>
> #include <algorithm>i
| #include "fratne.h"

#include "desc.h"
#include "part.h"
// given a value pos, which is a fraction of the total tooth pithch, calculate the high
boundary value
float calcHi{float skew, float length, float radius, float angle, float pos)
{ float x=pos*(radius+angle+fabs(tan(skew)*length));
float y=fabs(x/tan(skew));
return (y>length?length;y);

}
// given a value pos, which is a fraction of the total tooth pithch, calculate the low
boundary value
float calcLo(float skew, float length, float radius, float angle, float pos)
{ float x = (1-pos)* (radius*angle+fabs(tan(skew)*length));
float y=length-fabs(x/tan(skew));
return (y<0?0:y);

}
double triangleArea(double xl, double yl, double x2, double y2, double x3, double y3) {

double a=sqrt(pow(xl-x2,2)+pow(yl-y2,2));
double b=sqrt(pow(x2-x3,2)+pow(y2-y3,2));
double c=sqrt(pow(x3-xl,2)+pow(y3-yl,2));
dotible s= (a+b+c)/2 .0 ;
return sqrt(s*(s-a)* (s-b)* (s-c)) ;

I)
void FrameWrite(ofstreams out, Frames frame)

! {i frame-WriteProperties(out);
! }

bool FrameGenerateMech(ofstreams cct, Frames fFrame, Frames sFrame, long sections, bool
torq, bool messages)
{ double diff = le-3;

bool ok=true;
bool needsEndSource = false;
Partslterator fPIter=fFrame.GetParts().begin();
Partslterator sPIter=sFrame.GetParts().begin(};
string cctTorqueP = "T’0RQ_P"; // needs initialising for the first pass
string cctTorqueN;
while (fPIter != fFrame.GetParts().end()) {

sPIter=sFrame.GetP'arts () .begin () ;
j while (sPIter != s. Frame . GetParts () .end()) {
| Part* fPart= (*fPiter) ;

< < f Part->GetName()
<< sPart->GetName()

Part* sPart=(*sPIter);
long fNode;
long sNode;
Curves* fCurves=NULL;
Curves* sCurves=NULL;
if (fPart->IsEntryBoundary()) {

fNode=fPart->GetEntryCctNode();
fCurves = & (fPart->GetEntry{));

}if (fPart~>IsExitBoundary()) {
fNode=fPart->GetExitCctNode();
fCurves = &(fPart->GetExit());

}if (sPart->IsEntryBoundary()) {
sNode=sPart->GetEntryCctNode();
sCurves = & (sPart->GetEntry());

1if (sPart->IsExitBoundary()) {
sNode=sPart->GetExitCctNode();
sCurves = & (sPart->GetExit());

1if (fCurves && sCurves) {
cct << "* frame: " << fFrame.GetName() << " part:

<< " cct node: " << fNode
<< " frame: " << sFrame.GetName() << " part:

<< " cct node: " << sNode << "
CurvesIterator fCurvesIter=fCurves->begin();
CurvesIterator sCurvesIter=sCurves->begin();
CurvesIterator fCurvesIter2=fCurves->begin();
CurvesIterator sCurvesIter2=sCurves->begin();
// find the extent of the boundary and its centre
Coord* fBegin = (*fCurvesIter)->GetBegin();
Coord* fEnd = (*fCurvesIter)->GetEnd();
Coord* sBegin = (*sCurvesIter)->GetBegin();
Coord* sEnd = (*sCurvesIter)->GetEnd();
double fCurveAngle = 0;
double fAvgBoundaryMag = 0;
if (fCurves ->size()>1) {

// find begin and end curves
double dist = Mag(fEnd->GetPos()-fBegin->GetPos());
double avgTotal = 0;
double avgCount = 0;
while (fCurvesIter!=fCurves - >end()) {

Curve* fCurve=(*fCurveslter);
if (fCurve->IsBoundary{)) {

double fAngle = fabs(Angle(fCurve->GetEnd()->GetPos())-
Angle(fCurve ->GetBegin()->GetPos()));

fCurveAngle += (fAngle>M_PI)?(2*M_PI-fAngle):fAngle; //
add all the curve angles to give the total boundary extent

avgTotal += (Mag(fCurve->GetEnd()->GetPos())+Mag(fCurve
>GetBegin()->GetPos()))/2;

avgCount++;
fCurvesIter2=fCurves->begin();
while (fCurvesIter2!=fCurves->end()) {

Curve* fCurve2=(*fCurvesIter2);
if (fCurve!=fCurve2 && fCurve2->IsBoundary()) {

if (Mag((fCurve->GetEnd()->GetPos())-(fCurve2-
>GetBegin()->GetPos{)))>dist) {

>GetEnd()->GetPos())) >dist) {

>GetEnd()->GetPos()))>dist) {

>GetBegin()->GetPos{)))>dist) {

fEnd = fCurve->GetEnd();
fBegin = fCurve2->GetBegin();
dist = Mag(fEnd->GetPos()-fBegin->GetPos())

}if (Mag{(fCurve->GetEnd()->GetPos())-(fCurve2~
fEnd = fCurve->GetEnd();
fBegin = fCurve2->GetEnd();
dist = Mag(fEnd->GetPos()-fBegin->GetPos())

}if (Mag{(fCurve->GetBegin()->GetPos{))-(fCurve2
fEnd = fCurve->GetBegin();
fBegin = fCurve2->GetEnd{);
dist = Mag(fEnd->GetPos()-fBegin->GetPos())

}if (Mag((fCurve ->GetBegin() ->GetPos{))-(fCurve2

>GetPos()))

fEnd = fCurve•>GetBegin();
fBegin = fCurve2->GetBegin();
dist = Mag(fEnd->GetPos()-fBegin->GetPos());}}fCurvesIter2++;

}
}fCurveslter++ ;

}if (avgCount) fAvgBoundaryMag = avgTotal/avgCount;
1
else {

double fAngle = fabs(Angle(fEnd->GetPos())-Angle(fBegin
fCurveAngle = (fAngle>M_PI)? (2*M_PI-fAngle):fAngle;
fAvgBoundaryMag = (Mag(fEnd->GetPos())+Mag(fBegin->GetPos()))/2;

1
double sCurveAngle = 0;
double sAvgBoundaryMag = 0;
if (sCurves->size()>1) {

// find begin and end curves
double dist = Mag(sEnd->GetPos()-sBegin->GetPos());
double avgTotal = 0;
double avgCount = 0;
while (sCurvesIter!=sCurves->end()) {

Curve* sCurve=(*sCurvesIter);
if (sCurve->IsBoundary()) {

double sAngle = fabs (Angle(sCurve->GetEnd()->GetPos()) -
Angle(sCurve->GetBegin()->GetPos()));

sCurveAngle += (sAngle>M_PI)?(2*M_PI-sAngle):sAngle;
avgTotal += (Mag(sCurve->GetEnd()->GetPos())+Mag(sCurve-

>GetBegin()->GetPos())) /2 ;

>GetBegin()->GetPos())) >dist) {

>GetEnd()->GetPos()))>dist) {

>GetEnd()->GetPos{)))>dist) {

>GetBegin()->GetPos())) >dist) {

avgCount++;
sCurvesIter2=sCurves ->begin () ;
while (sCurvesIter2!=sCurves->end()) {

Curve* sCurve2=(*sCurvesIter2);
if (sCurve!=sCurve2 && sCurve2->IsBoundary()) {

if (Mag((sCurve->GetEnd()~>GetPos())-(sCurve2~
sEnd = sCurve->GetEnd();
sBegin = sCurve2->GetBegin();
dist = Mag(sEnd->GetPos()-sBegin->GetPos());

}if (Mag((sCurve->GetEnd()->GetPos())-(sCurve2-
sEnd = sCurve->GetEnd();
sBegin = sCurve2->GetEnd();
dist = Mag(sEnd->GetPos()-sBegin->GetPos());

}if (Mag((sCurve->GetBegin()->GetPos())-(sCurve2-
sEnd = sCurve->GetBegin();
sBegin = sCurve2->GetEnd();
dist = Mag(sEnd->GetPos()-sBegin->GetPos());

}if (Mag((sCurve->GetBegin()->GetPos())-(sCurve2-
sEnd = sCurve->GetBegin();
sBegin = sCurve2->GetBegin();
dist = Mag(sEnd->GetPos()-sBegin->GetPos());

>GetPos()))

}sCurvesIter2++;
}

}sCurvesIter++;
Jif (avgCount) sAvgBoundaryMag = avgTotal/avgCount;

1j
else {

double sAngle = fabs(Angle(sEnd->GetPos())-Angle(sBegin-
sCurveAngle = (sAngle>M_PI)? (2*M_PI-sAngle):sAngle;
sAvgBoundaryMag = (Mag(sEnd- >GetPos())+Mag(sBegin->GetPos()))12 ;

}double 1=(fPart~>GetLength()<sPart >GetLength())?fPart-
>GetLength() : sPart ••• >GetLength () ;

double fSkew = (tan(fFrame.GetSkew())*1)/fAvgBoundaryMag;
double sSkew = (tan(sFrame.GetSkew())*1)/sAvgBoundaryMag;
double fCurveCentre = Angle{((fEnd >GetPos()-fBegin-

>GetPos())/2.0)+fBegin->GetPos())+fSkew/2;
double sCurveCentre = Angle({(sEnd->GetPos()-sBegin-

>GetPos())/2.0)+sBegin->GetPos())+sSkew/2;
// angle of one curve relative to the other for position of

permeance change
double coeff_b = fCurveCentre-sCurveCentre;
// cout << "Stator: " << fPart->GetName() << " Rotor: " << sPart-

> Ge tName () << " Coeff_b: ”« coeff_b << endl;
double bot = (sCurveAngle+fCurveAngle+fabs(sSkew-fSkew))/2.0; /*

point at which bot_limit% of max.*/
double fPoleWidth = fCurveAngle*fAvgBoundaryMag;
double fSkewWidth = fSkew*fAvgBoundaryMag;
double sPoleWidth = sCurveAngle*sAvgBoundaryMag;
double sSkewWidth = sSkew*sAvgBoundaryMag;
int sections=100; // number of sections to use in the numerical

aproximation
double maxarea=0;
double topx=0;
double botx=0;
double lr=fPoleWidth+fSkewWidth; // total length of rotor tooth
double ls=sPoleWidth+sSkewWidth; // total length of stator tooth
double incx=(lr+ls)/sections; // increment of rotor past stator

// for (double x=-ls; x < - ((Ir-ls)/2. 0) ; x+=incx) { // loop for the
full motion of the rotor

for (double x=-ls; x<=lr; x+=incx) { // loop for the full motion of
the rotor

double area=0; // reset area, to zero
double xs=x>0?x:0; // find coincident start of rotor and stator
double xe=x+ls<lr?x+ls:lr; // find coincident end of rotor and

stator
double incz=(xe-xs)/sections; // setup increment for area
if (incz>0 && incz*10.0>=incx/sections) { // only perform

calculation if valid coincident area (needs to trap corner case of xe==xs)
for (double z=xs; z<=xe; z+=incz) { // integrate over the

coincident area.
double pr=z/lr; // current point on rotor as ratio of length
double ps=xs>0?z/ls:(z-x)/Is; // current point on stator as

ratio of 1 ength
double rhi=calcHi(fSkew,1,fAvgBoundaryMag,fCurveAngle,pr); //

calculate the current values
double rlo=calcLo(fSkew,1,fAvgBoundaryMag,fCurveAngle,pr); //

for the position of the rotor teeth
double shi=calcHi (sSkew, 1, sAvgBoundaryMag, sCurveAngle, ps) ;
double slo=calcLo(sSkew,1,sAvgBoundaryMag,sCurveAngle,ps);
if (rhi>slo && shi>rlo) { // check teeth are coincident

area+=((rhi<shi?rhi:shi)-(rlo>slo?rlo:slo))*incz; //
approximate coincident area

}
}

}double angle = (x+(ls-
lr)/2.0)/((fAvgBoundaryMag+sAvgBoundaryMag)/2.0); // position

if (fabs(angle)>fabs(bot*BOT_LIMIT) && area>botx) botx=area;
if (fabs (angle) >fabs (bot*TOP_LIMIT) &.& area>topx) topx=area;
if (area>maxarea) maxarea=area;

}double magCap = 4*M_PI*lE-7*maxarea/fabs(fAvgBoundaryMag-
sAvgBoundaryMag)*2;

// find position equation coeff.
int coeff_c;
double coeff_a;
int c = MIN_C0EFF_P0W;
double a = 0.0;
double lowest_diff=0;
bool first=true;
while (c<MAX_COEFF_POW) {

c+=2; // must start at 2
a= (log(botx/maxarea)/(-1.0*powl(sin(B0T_LIMIT*bot/2.0),

c)) +log (topx/maxarea) / (-1. 0*powl (sin (TOP_LIMIT*bot/2 .0) , c))) /2 . 0;

dif f=sqrt (pow (botx/maxarea-exp (-l*a*pow (sin (B0T_LIMIT*bot/2 . 0) , c)) ,
2)+pow(topx/maxarea-exp(-l*a*pow(sin(TOP_LIMIT*bot/2.0),c)) ,2)) ;

if (first) {
first=false;

coeff_c=c;
coeff_a=a;
lowest_diff=diff;

} else {
if (diff<lowest_diff) {

coeff_c=c;
coeff_a=a;
lowest_diff-diff;

}
}

}if (messages) {
cout << "mech: " << fFrame.GetName() << "(" << fPart->GetName() <<

") " << s Frame . Ge tName () << 11 (" << sPart->Ge tName {) <<
cout << " b: " << coeff_b << " c: " << coeff_c << "\n";

}cct << " a: " << coeff_a << " b: " << coeff_b << " c: " << coeff_c
« "\n" ;

// torque capacitor
strstream num; // used to convert numeric to string
num << f Frame .GetDescription () ->GetCctNode () ; // needs a new cct node
cctTorqueN=num.str();
if (torq) {

cct << "B2" << fPart->GetName() << sPart->GetName() << " " <<
cctTorqueN << " " << cctTorqueP

« " v=V(" « fNode << « sNode << ")*V(" << fNode << <<
sNode < < ")*"<< magCap < < "\n";

cct << "+ *(exp(" << ~l*coeff_a << "*(sin(V(P0S_P,
P0S_N)/2)*cos(" << (coeff_b/2+diff)

<< ")+cos(V(P0S_P,P0S_N)12) *sin(" << (coeff_b/2+diff) << »))''"
<< coeff_c << ")\n";

cct << "+ - exp (" « -l*coeff_a << »'* (sin (V (P0S_P, P0S_N)/2) *cos ("
<< (coeff_b/2-diff)

« ")+cos(V(P0S_P,P0S_N)/2)*sin(" << (coeff_b/2-diff) << »))A"
<< coeff_c << "))/"

<< (4.0*diff) << "\n";
}cct << "Bl" << fPart->GetName() << sPart->GetName()
<< " Bl" << fPart->GetName() << sPart->GetName() << "_P 0"
<< " v=V(" << fNode << "," << sNode << ")" << "\n";

cct << "+ *" << magCap*le3 << "*exp(" << -l*coeff_a <<
"*(sin(v(P0S_P,P0S_N)/2) *" << cos(coeff_b/2) << "+cos(v(P0S_P,P0S_N)/2)*" <<
sin(coeff_b/2) << ")A2)\n";

cct << "Cl" << fPart->GetName() << sPart->GetName()
<< 11 Bl" << fPart - >GetName () << sPart->GetName () << "_P VF1" <<

f Part->Ge tName () << sPart->Ge tName () << "_P IE-3 ic=0\n"; // << magCap << " ic=0\n
cct << "VF1" << fPart->GetName() << sPart->GetName() << " VF1" <<

fPart->GetName() << sPart->GetName() < c "_P 0 0\n";
cct << "FF1" << fPart->GetName() << sPart->GetName() << " " << fNode

< < " " < < sNode
<< " VF1" << fPart->GetName() << sPart->GetName() << " l\n";

cctTorqueP=cctTorqueN? // next pass connects to previous
needsEndSource = true;

}sPIter++;
}fPIter++;

}if (needsEndSource) {
if (torq) {

cct << "VEND " << cctTorqueP << " T0RQ_N 0\n";
}cct << "RPOS P0S_P P0S_N lG\n";

}return ok;
}
bool Frame::AddCctNode(long node)
{ if (find(cctNodes.begin(),cctNodes.end(),node)==cctNodes.end ()) {

cctNodes.push_front(node) ;

return true;
} else {

return false;
}

CctNodes& Frame::GetCctNodes{)
{ return (cctNodes);
}
bool Frame::AddDiffNode(string node)
{ if (find (dif fNodes .begin () , dif fNodes .end () ,node) ==dif fNodes . end ()) {

diffNodes.push_front(node);
return true;

} else {
return false;

DiffNodes& Frame:-.GetDif fNodes ()
I (return (diffNodes);

}
bool Frame::GenerateCctNodes(bool messages)
{ if (messages) {

cout << "Generation of cct nodes for " << GetNameO << << endl;
}Partslterator partslter=parts.begin ();
bool ok=true;
bool changeNode=true;
while (partslter != parts.endO) { // clear all existing cct node allocations

(*partslter)->ClearCctNodes();
partslter++;

}while (ok && changeNode) {
changeNode = false;
partslter=parts.begin();
while (partslter != parts, end () && ! changeNode) { // only change one node before

checking for propagation
Part* part=(*partslter);
// check that are flux entry and exit curves already defned for current part
if (!part->GetEntry() .empty () && !part->GetExit () .empty ()) {

// flux entry cct node
if (part->GetEntryCctNode () <0 && ! changeNode) { // assume if node is

assigned then all boundary curves must have been found
part->SetEntryCctNode (GetDescription {)->GetCctNode ()) ; // get a new

cct node
if (messages) {

cout << part->GetName() << " exit -> " << part-
>GetEntryCctNode() << " new" << endl;

)changeNode = true;
| }// flux exit cct node
| if (part->GetExitCctNode{)<0 && 1changeNode) {
; part • >SetExitCctNode (GetDescription ()~ >GetCctNode ()) ; // get a. new
! cct node

if (messages) {
cout << part ->GetName() << " entry -> " << part-

>GetExitCctNode() << " new" << endl;
}
changeNode = true;

}
}partslter++;

}bool spread = changeNode;
while (ok && spread) {

spread = false;
partslter=parts.begin();
while (partslter != parts.endO) {

Part* part=(*partslter);
// check that are flux entry and exit curves already defried, for current

part
if ('part->GetEntry().empty{) && !part->GetExit().empty()) {

// flux entry cct node
if {part->GetEntryCctNode()<0) { // assume if node is assigned then

all boundary curves must have been found
CurvesIterator entryIter=part~>GetEntry().begin(); // assign an

iterator to the flux entry curves
long node = -1;
while (entrylter != part->GetEntry().end() && node<0) { // step

through all curves until cct node found
Curve* entry= (*entrylter);
// step through parts until curve found in other parts entry

or exit curve list
Partslterator findPartIter=parts.begin();
while (findPartlter != parts.end{) && node<0) {

Part* findPart=(*findPartlter);
// carry on if not self test and flux entry/exit curves

exist
if (findPart!=part && !findPart->GetEntry().empty() &&

!findPart »GetExit().empty{)) {
// test if current entry curve is in other parts

entry curves

>GetEntryCctNode() >=0) {

>GetExitCctNode()>=0) {

if (findPart->FindEntry(entry) && findPart-
node = findPart->GetEntryCctNode();

}if (findPart->FindExit(entry) && findPart-
node = findPart->GetExitCctNode();

}
}findPartIter++;

}entrylter++;
}if (node>=0) {

part >SetEntryCctNode (node) ; // use existing cct node number
if (messages) {

cout << part->GetName() << " entry -> " << part-
>GetEntryCctNode() << endl;

}spread = true;
}

}
// flux exit cct node
if (part~>GetExitCctNode{)<0) {

CurvesIterator exitIter=part->GetExit().begin (); // assign an
iterator to the flux exit curves

long node = -1;
while (exitlter != part->GetExit().end() && node<0) { // step

through all curves until cct node found
Curve* exit=(*exitlter);
// step through parts until curve found in other parts entry

or exit curve list
Partslterator findPartIter=parts.begin();
while (findPartlter i= parts.end() && node<0) {

Part* findPart=(*findPartlter);
// carry on if not self test and flux entry/exit curves

exist
i f (findPart!=part && !findPart->GetEntry().empty() &&

!findPart->GetExit().empty ()) {
// test if current entry curve is in other parts

entry curves

>GetEntryCctNode{)>=0) {

>GetExitCctNode{)>=0) {

if (findPart->FindEntry(exit) && findPart-
node = findPart->GetEntryCctNode();

}if (findPart->FindExit(exit) && findPart-
node = findPart->GetExitCctNode();

}
}f indPartIter-r+;

}exitlter++;}if (node>=0) {
part - >SetExitCctNode (node) ; // use existing cct node number
if (messages) {

cout << part->GetName{) << " exit -> " << part-
>GetExitCctNode () << endl;

}spread = true;
}

}
}partslter++;

}
}

}return ok;
}

bool Frame::FindBoundaryCurves()
{ Partslterator partslter=parts.begin();

Partslterator findPartIter=parts.begin();
bool ok=true;
CurvesSetBoundary(curves) ; // set all curves to default of boundary indicated
while (partslter != parts.endO) {

Part* part=(*partslter);
CurvesIterator curvelter=part->GetCurves().begin(); // assign an iterator to the

part curves
while (curvelter != part->GetCurves().end()) { // step through all curves

Curve* curve=(*curvelter);
if (curve - >1 sBoundary ()) { // only perform check if its not already been

found to share parts
// step through parts until, curve found in other parts curve list
findPartIter=parts.begin();
bool found=false;
while (f indPartlter != parts.endO && ! found) {

if ((*findPartlter)!*part) found=(((*findPartIter)-
>Find(curve)) !=NULL);

findPartIter++;
}curve->IsBoundary(!found);

}curvelter++;
}partslter++;

}return ok;
}

void Frame::WriteProperties(ofstream& out)
{ out << GetNameO << " {\n";

out << "skewangle " << skew << "\n";
CoilsWrite(out, coils);
out << "\n";
CoordsWrite(out, coords);
out << "\n";
CurvesWrite(out, curves);
out << "\n";
PartsWrite(out, parts);
out << " }";

}

Frame::Frame(Description* d, const strings n):DescriptionObject(n)
{ description=d;

skew = 0;
length = TYPICAL_LENGTH;

}

Frame::Frame(Description* d, const char* n):DescriptionObject(n)
{ description^;

skew = 0;
length = TYPICAL_LENGTH;

Frame::-Frame()
{
// coords. Fl. ush (true) ;
// curves. Fl ush (true) ;
// parts. Fl ush (true) ;

Description* Frame::GetDescription()
{ return description;
}
Part* Frame::Find(Part* p)
{ return parts.Find(p);
}
Curve* Frame::Find(Curve* c)
{ return curves.Find(c);
}
Coord* Frame::Find(Coord* c)
{ return coords.Find(c);
}
bool Frame::Add(Part* p)
{ return parts.Add(p);
}
bool Frame:: Add (Curve* c)
{ return curves.Add(c);
}

bool Frame: : Add (Coord* c)
{ return coords.Add(c);
}
Parts& Frame::GetParts()
{ return parts;
}
CurvesS Frame::GetCurves()
{ return curves;
}
Coords& Frame::GetCoords()
{

return coords;
}
CoilsS Frame::GetCoils()
{ return coils;
}
Coil* Frame::Find(Coil* t)
{ return coils.Find(t);
}
bool Frame::Add(Coil* t)
{ return coils.Add(t);

CoilsS Frame: .-GetCoilList ()
{ return coilList;}

bool Frame: :AddCoilList (Coil* t)
{ return coilList.Add(t) ;

double Frame::GetSkew()
{ return (skew);

double Frame: : Set Skew (double s)
{ return (skew=s);

double Frame::GetLength()
{ return (length);

double Frame: :SetLength(double 1)
{ return (length=l);

bool Frame.--. Parse (LexGDLS lex, bool inform) // expects to find two new tokens
{ bool ok = true;

if (lex.CurrStr()=="{") {
lex.GetToken (); // get new token
do {

switch (lex.CurrTokenO) {
case LexGDL::SKEW :

{ bool deg ;
double s;
if (deg= (lex.GetToken()==LexGDL::DEG)) lex.GetToken(); //

new token
if (lex.CurrVar(s)) {

skew = (deg?s*M_Pl/l80.0:s);
lex.GetToken(); // get new token

}
else {

cerr << "ERROR (line: " << lex.LineCount() << " frame:
nameld << ") value for skew angle expected" << endl;

ok = false;
}

}
break;

case LexGDL::LENGTH :
{ double 1;

lex.GetToken() ; // get new token
if (!lex.CurrVar(1)) {

cerr << "ERROR (line: " << lex.LineCount() << ") value
length expected" << endl;

ok = false;
Jelse {

length=l*(GetDescription()->GetUnitDistance ());
lex.GetToken(); // get new token

}
}break;

case LexGDL::COIL :
{ lex.GetToken(); // get new token

ok &= Coil::Parse(lex, this, inform);
}break;

case LexGDL::NODE :
{ lex.GetToken () ; // set up for parse

get

" <<

for

ok &= Coord::Parse(lex, this, inform);
}
break;

case LexGDL::CURVE :
{ lex. GetToken () ; // set. up for parse

ok &= Curve::Parse(lex, this, inform);
}break;

case LexGDL::PART :
{ lex.GetToken(); // set up for parse

ok &= Part::Parse(lex, this, inform);
}break;

default :
{ cerr << "ERROR (line: " << lex.LineCount{) << ") <<

lex.CurrStr() << not valid" << endl;
ok = false;
lex.GetToken();

}
}} while (lex.CurrToken() !=LexGDL::END && lex.CurrStr()! = "}") ;

if (lex.CurrStr()=="}") {
lex.GetToken() ;

}else {
cerr << "ERROR (line: " << lex. LineCount () << ") '}' expected" << endl;
ok = false;

}
}else {

cerr << "ERROR (line: " << lex. LineCount () << " frame:" << nameld << ") '{'
expected" << endl;

ok = false;
}return ok;

}
bool Frame :: CurvesMinMax (Vector2d& cmin, Vector2d& cmax)
{ Curves Iterator iter=curves .begin () ;

if (iter!=curves.end()) {
Vector2d currmin, currmax;
(*(iter++))->GetMinMax(cmin, cmax);
while (iter != curves.end()) {

(*(iter++))->GetMinMax(currmin, currmax);
cmin((cmin.XO <currmin.X() ?cmin.X() :currmin.X()) ,

(cmin.Y () ccurrmin.Y () ?cmin.Y () :currmin. Y ())) ;
cmax{ (cmax.XO >currmax.X() ?cmax.X() :currmax.X()) ,

(cmax.Y ()>currmax.Y ()?cmax.Y () :currmax.Y ())) ;
}return true;

}
else {

return false;
}

}
void Frame::Info()
{ Curves Iterator iter=curves .begin () ;

while (iter != curves.end()) {
cout << "curve '" << (*iter)->GetName () << length: " << (*iter)->Length ()

endl;
iter++;

}
}
void Frame::Check(long sections)
{ double integral;

bool ok;
Partslterator iter=parts.begin();
while (iter 1= parts.endO) {

ok = (*iter)">LineIntegral(integral,sections);
cout << "part << (*iter)->GetName();

#if !defined(lex_h) // Sentry, use file only if i t ’s not already included
#define lex_h
/* Project gdl

TNTU
Copyright ® 1996

SUBSYSTEM: gdl. exe Application
FILE: desc.h
AUTHOR: D . Downes

OVERVIEW

Class definitions fox' description.
+/
#include <string>
#include <fstream>
// lexical analysis of text file returning tokens
class LexGDL
{public:

enum Token {END, UNKNOWN, CHAR, NUM, IDENT, LENGTH, STATOR, ROTOR, PART, BH, COIL
CURVE,

LINE, CIRC, LINEAR, EXP, NODE, ENTRY, EXIT, INTERFACE, UNIT, TORQUE,
SKEW, DEG, AIRGAP};

i
LexGDL(ifstream* in);
-LexGDL();
long LineCount();
Token CurrToken();
bool CurrVar(strings);
bool CurrVar(doubles);
bool CurrVar(longS.) ;
strings. CurrStr 0;
double CurrNumO;
Token PrevToken();
bool PrevVar(strings);
bool PrevVar(doubles);
bool PrevVar(longs);
string& PrevStrO;
double PrevNumO ;
void DelCurrVarO ;
void DelPrevVarO ;
Token GetToken();
// various constructs used, by other routines
bool ParseBracket(long&, long&, long&);
bool ParseBracket(long&, long&);

i bool ParseBracket(double&, doubles);
{ private:
i ifstream* instream;
! union LexVar {

double *num;
string *str;

! };long lineCount;
j Token prevToken;

LexVar prevVar;
Token currToken;
LexVar currVar;

};
#endif // lex_h sentry.

/* Project, gdl
TNTU
Copyright ® 1996

SUBSYSTEM: gdl.exe Application
FILE: lex.cpp
AUTHOR: D. Downes

OVERVIEW

Source file for implementation of lexical, analyer.
*/
#include "lex.h"
LexGDL::LexGDL(ifstream* in)

| { lineCount=l;
currToken=NUM;
currVar.num=0;

j prevToken=NUM;
| prevVar.num= 0;
1 instream=in;

}
LexGDL::-LexGDL()
{ DelCurrVar();

DelPrevVar() ;
}
long LexGDL::LineCount()
{ return lineCount;
}
LexGDL::Token LexGDL;:CurrToken()
{ return currToken;
}
bool LexGDL::CurrVar(strings str)
{ if (currToken==LexGDL: :UNKNOWN| | currToken==LexGDL: :CHAR) {

str=*(currVar.str);
return true;

}
else {

str="";
return false;

}
; }j

bool LexGDL: : CurrVar (double& num)
! (if (currToken==LexGDL::NUM){

num=*(currVar.num);
return true;

1else {
num=0.0 ;
return false;

}
}
bool LexGDL::CurrVar(longS num)
{ if (currToken==LexGDL::NUM){

num=(long)(*(currVar.num));
return true;

}
else {

num=0;

return false;
}

}
string& LexGDL::CurrStr()
{ if (currToken==LexGDL::UNKNOWN||currToken==LexGDL:-.CHAR)

return * (currVar.str);
else

return *new string("");
}
double LexGDL::CurrNum()
{ if (currToken==LexGDL::NUM)

return *(currVar.num);
else

return 0.0;
}
LexGDL::Token LexGDL::PrevToken()
{ return prevToken;
}
bool LexGDL::PrevVar(strings str)
{ if (prevToken==LexGDL: .-UNKNOWN| j currToken==LexGDL: :CHAR) {

str=*(prevVar.str);
return true;

}
else {

str="";
return false;

}
}
bool LexGDL-.: PrevVar (doubles num)
{ if (prevToken==LexGDL::NUM){

num=*(prevVar.num);
return true;

}
else {

num=0.0;
return false;

}
}
bool LexGDL::PrevVar(longS num)
{ if (prevToken==LexGDL: .-NUM) {

num=(long)(*(prevVar.num));
return true;

}
else {

num= 0;
return false;

)
}strings LexGDL::PrevStr()
{ if (prevToken==LexGDL: .-UNKNOWN| |prevToken==LexGDL: :CHAR)

return * (prevVar.str);
else

return *new string("");
}
double LexGDL::PrevNum()
{ if (prevToken==LexGDL: .-NUM)

return * (prevVar.num);
else

return 0.0;
}

void LexGDL::DelCurrVar()
{ if (currToken==NUM) delete currVar.num;

if (currToken==UNKNOWN |! currToken==CHAR) delete currVar.str;
}
void LexGDL::DelPrevVar()
{ if {prevToken-=NUM) delete prevVar.num;

if (prevToken==UNKNOWN [I prevToken==CHAR) delete prevVar. str;

}
LexGDL::Token LexGDL::GetToken()
{ if (currToken!=END && prevToken!=END) {

DelPrevVar();
prevVar = currVar;
prevToken = currToken;
char c = EOF;
/* Ignore whitespace and newlines, get first nonwhite character. */
if (instream->good() && !instream->eof()) instream->get(c);
while ((c == ' ' j | c == '\t' || c == '\n' || c == |! c == '\r') && c

&& !instream->eof()) {
if (c « '#') {

while (c != '\n' && c != EOF && !instream->eof())
instream->get(c);

}
else {

if (c=='\n')
lineCount++;

instream->get(c);
)

}if (c==EOF || instream->bad() || instream->eof())
return (currToken=END);

/* Char starts a number => parse the number. */
if (c == '-' || c == || isdigit (c)) {

double value;
instream->putback(c) ;
(♦instream) >> value;
currVar.num = new double(value);
return (currToken=NUM);

}
/* Char starts an identifier => read the name. */
string symbol;
symbol = c ;
if (isalpha (c)) {

instream->get(c);
while (c != EOF && !instream->eof() && isalnum (c)) {

symbol += c ;
/* Get another character. */
instream->get(c);

}instream->putback(c);
/* check to see if the input is a keyword */
if (symbol=="length") currToken = LENGTH
else if (symbol=="stator") currToken = STATOR;
else if (symbol=="rotor") currToken = ROTOR;
else if (symbol=="parts") currToken = PART;
else if (symbol=="bh") currToken = BH;
else if (symbol==:" coils") currToken = COIL;
else if (symbol=="curves") currToken = CURVE;
else if (symbol=="line") currToken = LINE;
else if (symbol=="circ") currToken = CIRC;
else if {symbol=="linear") currToken = LINEAR;
else if {symbol=="exp") currToken = EXP;
else if (symbol= = "nodes") currToken = NODE ;
else if (symbol=="entry") currToken = ENTRY;
else if (symbol=="exit") currToken = EXIT;

! = EOF

else if (symbol=="interface") currToken
else if (symbol — "unitdistance") currToken =
else if (symbol=="torquemodifier") currToken =
else if (symbol=="skewangle") currToken
else if (symbol=="d") currToken
else if (symbol=="airgap") currToken
else currToken =

}else {
currToken = CHAR;

}if (currToken==CHAR j | currToken==UNKNOWN)
currVar.str = new string(symbol);

}return currToken;
}
// various constructs used by other routines
bool LexGDL::ParseBracket(long& vl, long St v2, long& v3)
{ int state = 0;

bool ok = true;
do {

switch (state) {
case 0 : {

ok &= (CurrStr ()=="[") ;
break;

)case 1 : {
ok &= CurrVar(vl);
break;

}case 2 : {
ok &= CurrVar(v2);
break;

}case 3 : {
ok &= CurrVar(v3);
break;

case 4 *. {
ok &= (CurrStr()=="]");
break;

}
default: ok = false;

}state++;
} while (GetToken()!=LexGDL::END && state!=5);
return ok;

}
bool LexGDL: : ParseBracket (long& vl, long St v2)
{ int state = 0;

bool ok = true;
do {

switch (state) {
case 0 : {

ok &= (CurrStr ()=="[") ;
break;

}case 1 : {
ok &= CurrVar(vl);
break;

}case 2 : {
ok &= CurrVar(v2);
break;

}case 3 : {
ok (CurrStr()=="]"};
break;

}default: ok = false;

= INTERFACE
UNIT;
TORQUE;
= SKEW;
= DEG;
= AIRGAP;
UNKNOWN;

}state++;
} while (GetToken() !=LexGDL::END && state!=4)
return ok;

bool LexGDL::ParseBracket(double* vl, doubles v2)
{ int state = 0;

bool ok = true;
do {

switch (state) {
case 0 : {

ok &= (CurrStr ()=="[") ;
break;

}
case 1 : {

ok &= CurrVar(vl);
break;

}case 2 : {
ok &.= CurrVar(v2);
break;

}case 3 : {
ok &= (CurrStr ()=="]") ;
break;

}default: ok = false;
}state++;

} while (GetToken()!=LexGDL::END && state!=4)
return ok;

f k 'k 'k - k 'k ’k 'k ick 'k ie iK 'kk 'k -k -k 'k 'k - fc 'k ie 'k ' i r - ic 'k i f- k 'k i t -k - ic 'k 'k i t- k 'k fe 'k -k ic 'k ic - f t 'k 'k -k 'k ' te 'k ic 'k 'k ie 'k ic -k 'k ie - fc ic 'k 'k^c 'k 'k -k 'k 'k ie 'k iF 'k 'k ie

ma.in.cpp ~ description

begin ; Thu Apr 15 18:22:4.3 BST 1999

copyright : (C) 1999 by D. Downes
email : david.downes@ntu.ac.uk***********************+***************++******+***************+*******+***/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <iostream>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include "desc.h"

bool OpenFile(const char*, string, bool);
void ConvertSpice(const char*, string, string, long, bool, bool);

j Description* description = NULL;
int main(int argc, char **argv)
{ long sections=100;

bool verbose=false;
bool info=false;
bool help=false;
bool torq=true;
int opt_char;
string prefix("1:1:");
while ((opt_char = getopt (argc, argv, "vihns:p:")) i= -1) {

swi tch(opt_char) {
case 'v'; verbose=true; break;
case 'i 1: info=true; break;
case 'h': help=true; break;
case help=true; break;
case 'n': torq=false; break;
case 's': sections=atol(optarg); break;
case 'p': prefix=optarg; break;
default: abort();

}
}if (argc-optind!=2 | j help) {

| cout << "Usage: gdl2spice [-vihn] [-s sections] [-p prefix] in.gdl out.cct" <<
; endl;
j } else {
i string name(argv[optind]);
| int x=name.find(".");
| if (x<string::npos) name.erase(x);

if (OpenFile(argv[optind], name, verbose)) {
if (info) {

if (description) {
description~>Info();

} else {
cerr << "Error: description object pointer is null;" << endl;

}} else {
if (verbose) cout << "No. of sections to be used during integration: " <<

sections << endl;
ConvertSpice (argv [optind+1] ,name,prefix, sections, verbose, torq) ;

}
} else {

cerr << "Problem opening file: " << argv[optind] << endl;
}

}
// cout << argc << " : ’’ « argv[0] << endl;
}

mailto:david.downes@ntu.ac.uk

bool OpenFile(const char *fileName, string name, bool verbose)
{ ifstream* instream;

bool ok=false;
if ({instream = new ifstream(fileName))!=NULL) {

if (instream->good()) {
// delete description;

description = NULL;
if ((description = new Description(name.c_str()))!=NULL) {

cout << "Parsing file ..." << endl;
if (ok=description~>Parse{instream,verbose))

cout << "Finished parsing file with no errors." << endl;
else

cerr << "Error while parsing file!" << endl;
}else {

cerr << "Unable to create description class!" << endl;
}

}// Return an error message if we had a stream error and it wasn’t the eof.
if (instream->bad() && !instream->eof()) {

cerr << "Stream error!" << endl;
}delete instream;

}
else {

cerr << "Unable to create description class!" << endl;
»return ok;

| }

void ConvertSpice(const char *cctFileName, string name, string prefix, long sections,
bool verbose, bool torq)
{ if (description) {

ofstream* cctstream = NULL;
ofstream* lststream s NULL;
string lstfile(name);
lstfile+=".1st";
name+=".dat";
if ((cctstream = new ofstream(cctFileName)) && (lststream = new

ofstream(lstfile.c_str()))) {
// write to file
cout << "Converting model ..." << endl;
if (description~>Convert (*cctstream, *lststream,name.c_str () ,prefix.c_str() ,

sections,verbose,torq))
cout << "Model successfully converted" << endl;

else
cerr << "Error occured while converting model" << endl;

delete cctstream;
delete lststream;

} else {
// Return an error message if we had a stream error.
cerr << "Stream error!" << endl;

}
} else {
cout << "Must open a model before it can be converted" << endl;

#if !defined(part_h)
#define part_h

/ / Sentry, use file only .if it's not already included.

/* Project gdl
TNTU
Copyright 1996

SUBSYSTEM:
FILE:
AUTHOR:

gdl.ere Applicati on
part.h
D. Downes

OVERVIEW

Class definitions for part.
*/
#include <string>
#include <cstdlib>
#include "unique.h"
#include "descobj.h"
#include "curve.h"
include "coi1.h "
class Description;
class Frame;
class Bh;
// Part

' class Part : public DescriptionObject
! {

private:
j Frame* frame;
| Curves curves;

Bh* bh;
Coils coils;
Curves fluxEntry;
Curves fluxExit;
long fluxEntryCctNode;
long fluxExitCctNode;
double length;
do\ible minArea;
double fluxEntryPot;
double fluxExitPot;
double diffPot;
double linelntegral;

public:
Part ();
Part(Frame* f, const string& n) ;

I Part(Frame* f, const char* n = "unknown");
-PartO;

i Bh* GetBh();
Bh* SetBh(Bh*);
bool IsMagPartO;
double GetLinelntegral();
double SetLinelntegral (double) ;
double GetMinArea();
double SetMinArea(double) ;
double SetLength(double);
double GetLength();
Curves& GetCurvesO;
Coils& GetCoilsO;
Curves& GetEntryO ;
Curves& GetExitO;
Frame* GetFrame();
Description* GetDescription() ;
long GetEntryCctNode();
long GetExitCctNode();
long SetEntryCctNode(long) ;
long SetExitCctNode(long) ;
double GetEntryPot() ;
double GetExitPot();

double GetDiffPot() ;
double SetEntryPot (double) ;
double SetExitPot (double) ,;
double SetDiffPot(double) ;
Curve* Find(Curve*);
Coil* Find(Coil*);
Curve* FindEntry(Curve*) ;
Curve* FindExit(Curve*) ;
bool Add(Curve*);
bool Add(Coil*);
bool AddEntry(Curve*) ;
bool AddExit(Curve*) ;
bool IsBoundaryO ;
bool IsEntryBoundary();
bool IsExitBoundary();
void ClearCctNodes();
void WriteProperties(ofstreams);
bool LinearMagCap(doubles, long);
static bool Parse(LexGDLS, Frame*, bool inform=true);
bool Linelntegral(doubles, int);
bool Convert(ofstreams, long);

} ?
typedef Unic[ue<Part *> Parts;
typedef Unique<Part *>::iterator Partslterator;
void PartsWrite(ofstreams, PartsS);
#endif // part_h sentry.

/* Project gdl.
TNTU
Copyright 'd 1996
SUBSYSTEM: gdl.exe Application
FILE: pa r t.cpp
AUTHOR: D. Dowries

OVERVIEW

Source file for implementation of part.
*/
#include <cmath>
#include <strstream>
#include "desc.h"
#include "part.h"
#include "frame.h"
#include "bh.h"
void PartsWrite(ofstreams out, Parts& parts)
{ out << "parts {\n";

Partslterator iter=parts.begin() ;
while (iter != parts.end{)) {

(*iter)->WriteProperties(out) ;
out << "\n";
iter++;

}out <<
}
void Part::WriteProperties(ofstreams out)
{ Curves Iterator curvesiter=curves . begiri () ;

Coilslterator coilsiter=coils.begin())
Curves Iterator entryiter=f luxEntry .begin () ;
Curves Iterator exi titer=f luxExi t. begin 0 ;
out << GetNameO << " { length " << length << "
if (bh) out << "bh " << bh •> Get Name () << "\n";
if (curvesiter != curves.end()) {

out << "curves {
do {

out << (* (curvesiter++)) ->GetMame () <<
} while (curvesiter ! = curves.end0) ;
out << "}\n";

}if (coilsiter != coils.endO) {
out << "coils { "?
do {

out << (*(coilsiter++))->GetName() << "
} while (coilsiter != coils.endO);
out << "}\n";

}if (entryiter != fluxEntry.end()) {
out << "entry { ";
do {

out << {* (entryiter++))->GetName () << "
} while (entryiter != fluxEntry. end ()) ;
out << "}\n";

1if (exititer != fluxExit.end()) {
out << "exit { ";
do {

out << (* (exititer++))->GetName () << "
} while (exititer != f luxExit. end()) ;
out << "}\n";

}
out < < "}";

bool Part::LinearMagCap(doubles cap, long sections)

bool ok = false;
if (bh! =NULL) {

if ((bh->GetType())==Bh::LINEAR) {
double integral;
if (Linelntegral(integral,sections)) {

ok = bh >ConvertLinear(cap, integral)
}

}
}return ok;

bool Part: .-Convert (ofstreams cct, long sections)
{ bool ok = true;

double integral = 0;
double volume - 0,-
if (IsMagPart()) { // check that cct nodes and bh exist

// ok=LineT.ntegral (integral, volume, sections) ; // check line integral is valid
ok=LineIntegral(integral,sections) ; // check line integral is valid
if (ok &&. integral!=0) { // bh curve exists and integral isn’t zero

frame->AddCctNode(fluxEntryCctNode); // add nodes to the list of cct nodes
held by frame

frame•>AddCctNode(fluxExitCctNode);
if (bh»>GetType 0 ==Bh: .-LINEAR) {

strstream numl; // used to convert numeric to string
numl << fluxEntryCctNode;
frame->AddDiffNode(numl.str());
strstream num2;
num2 << fluxExitCctNode;
frame ->AddDiffNode(num2.str0) ;

}
else {

frame->AddDiffNode(bh->GetCapNode(*this));
}long cctNode;
// generate circuit elements
if (1 coils.empty())

cctNode=GetDescription()->GetCctNode(); // at least one coil exists
else

cctNode=fluxExitCctNode; // no coils therfore use the existing exit node
cct << "* part << GetNameO << length: " << length << " integral: "

<< integral
<< " entry cct node: " << fluxEntryCctNode << " exit cct node: " <<

fluxExitCctNode << "\n";
// generate magnetic capacitor
bh >Convert(cct, *this, fluxEntryCctNode, cctNode, integral, volume);
cct << "* coils:\n";
// generate gyratora, if any exist for the part
Coilslterator coilsiter=coils.begin();
if (coilsiter != coils.endO) {

long midCctNode;
midCctNode=GetDescription()->GetCctNode(); // mid point connection of

src pair

0\n" ;
cct << "Vsens" << GetNameO << " " << cctNode << " " << midCctNode << "
Coil* coilptr,-
do {

// frame->AddCctNode(midCctNode); // provide ground point for
mid node

coilptr = * (coilsiter++); // set coil pointer ahead so as to find
out if its the last coil in the list

if (coilsiter == coils.endO) // last coil
cctNode=fluxExitCctNode; // last coil so use the exit node

else
cctNode=GetDescription () ->GetCctNode 0 ; // needs a. new cct node

cct << "H" << GetNameO << coilptr->GetName() << " " << cctNode << '
" << midCctNode

<< " Vsens" << coilptr->GetName() << " " << (-1*(coilptr-
>GetTurns 0)) << "\n";

midCctNode=cctNode;
} while (coilsiter != coils.endO);

}

return ok;
}
Part::Part(Frame* f, const strings n):DescriptionObject(n)
{ frame=f;

bh=NULL;
fluxEntryCctNode=-1 ;
fluxExitCctNode=-1 ;
fluxEntryPot-0;
fluxExitPot=0;
diffPot=0;
length=f->GetLength();
minArea=-1;
linelntegral^-1;

}
Part::Part(Frame* f, const char* n):DescriptionObject(n)
{ frame=f;

bh=NULL;
fluxEntryCctNode=-l;
fluxExitCctNode=-1 ;
fluxEntryPot=0;
fluxExitPot=0 ;
diffPot=0;
lengthsf ••• >GetLength () ;
minArea=-1;
linelntegral=-1;

}
Part::-Part()

bool Part: IsMagPart () // check that cct nodes and hh exist.

return (fluxEntryCctNode>=0 &.& fluxExitCctNode=*=0 && bh)

double Part::GetLineIntegral()
{ return linelntegral;

double Part::SetLinelntegral(double i)
{ return (linelntegral=i);

double Part::GetMinArea()
{ return minArea;

double Part::SetMinArea(double a)
{ return (minArea=a);

double Part::SetLength(double 1)
return (length=l);

double Part::GetLength()
return length;

Frame* Part::GetFrame(}

return frame;
}
Description* Part::GetDescription()
{ return (frame?frame->GetDescription () :NULL)
}

Bh* Part::GetBh()
{ return bh;
}
double Part::GetEntryPot()
{ return fluxEntryPot;
}

double Part::GetExitPot()
{ return fluxExitPot;
}
double Part:: SetEntryPot (double value)
{ return (fluxEntryPot=value);
}
double Part::SetExitPot(double value)
{ return (fluxExitPot=value);
}
double Part::GetDiffPot()
{ return diffPot;
}
double Part::SetDiffPot(double value)
{ return (diffPot=value);
}
long Part::GetEntryCctNode()
{ return fluxEntryCctNode;
}
long Part::GetExitCctNode()
{ return fluxExitCctNode;
}
long Part::SetEntryCctNode(long node)
{ return (fluxEntryCctNode=node) ;
}
long Part::SetExitCctNode(long node)
{ return (fluxExitCctNode=node);
}
void Part::ClearCctNodes()
{ fluxEntryCctNode= - I;

fluxExitCctNode= • 1;
}
Bh* Part::SetBh(Bh* b)
{ return (bh = b);

CurvesS Part::GetCurves()
{ return curves;
}
Curve* Part::Find(Curve* c)
{ return curves.Find(c);
}
bool Part:;Add(Curve* c)
{ return curves.Add(c);
}
Coils& Part::GetCoils()
{ return coils;
}
Coil* Part::Find(Coil* c)
{ return coils.Find(c);
}
bool Part::Add(Coil* c)
{ return coils.Add(c);
}
CurvesS Part::GetEntry()
{ return fluxEntry;
}
Curve* Part::FindEntry(Curve* c)
{ return fluxEntry.Find(c);
}
bool Part::AddEntry(Curve* c)
{ return fluxEntry.Add(c);
}
CurvesS Part: .-GetExit (}
{ return fluxExit;
}

Curve* Part::FindExit(Curve* c)
{ return fluxExit.Find(c);
}
bool Part::AddExit(Curve* c)
{ return fluxExit.Add(c);
}
bool Part::IsBoundary()
{ bool b = false;

CurvesIterator iter=curves.begin();
while (iter!=curves.end() && !b) {

b |= ((*(iter++))->IsBoundary());
}
return (b);

}
bool Part::IsEntryBoundary()
{ bool b = false;

CurvesIterator iter=fluxEntry.begin()

while (iter!-fluxEntry.end() && !b) {
b |= ((* (iter+ +)) ■■■> Is Boundary ()) ;

return (b);

bool Part::IsExitBoundary()
{ bool b = false;

CurvesIterator iter=fluxExit.begin();
while (iterS=fluxExit.end() && !b) {

b |= ((*(iter++))->IsBoundary());
return (b);

bool Part:: Parse (LexGDLS lex, Frame* frame, bool inform) // expects to find new token
already current
{ Part* part;

bool ok = true;
string nameld;
bool currok = true;
if (lex.CurrStr()=="{") {

lex.GetToken(); // get new token
do {

if (lex.CurrToken()==LexGDL::UNKNOWN) {
nameld = lex.CurrStr ();
lex .GetToken () ; // get. new token
if (lex.CurrStr()=="{") {

lex.GetToken () ; // get. new token
part = new Part(frame, nameld);
if (frame->Add(part)) {

if (inform) {
cout << "Part: " << part■>GetName () << " #" << frame-

>GetParts().sizeO << " added" << endl;
}currok = true;
do |

switch (lex.CurrToken()) {
case LexGDL::LENGTH : {

lex.GetToken(); // get new token
double 1;
if (lex.CurrVar(1)) {

part >SetLength(1* frame->GetDescription()-
>GetUnitDistance());

lex.GetToken();
}else {

cerr << "ERROR (line: " << lex.LineCount() << ")
numeric argument for length expected" << endl;

currok = false;
}

}break;
case LexGDL::BH : {

lex.GetToken(); // get new token
if (lex.CurrToken()==LexGDL::UNKNOWN && frame-

>GetD<escription ()) {
Bh* b = frame->GetDescription()->Find(&Bh(frame-

>GetDescription(),lex.CurrStr())) ;
if (b) {

part->SetBh (b) ;
}else {

cerr << "ERROR (line: " << lex.LineCount()
<< " part: " << nameld << ") bh: " << lex.CurrStr() << " doesn't exist" << endl;

currok = false;
}lex.GetToken();

}
else {

cerr << "ERROR (line: " << lex.LineCount () << 11)
bh naune expected" << endl;

currok = false;
}

}break;
case LexGDL::CURVE : {

lex.GetToken();
if (lex.CurrStrC)=="{") {

lex.GetToken{); // get new token
do {

if (lex.CurrToken()==LexGDL::UNKNOWN} {
string name;
lex.CurrVar(name);
lex.GetToken();
if (lex.CurrStr()=="[") { // is it a

pattern ?
long start, rep, inc;
currok &= lex.ParseBracket(start,

rep, inc) ; // parses current and leaves new token as current
if (currok) {

long curr, c;
for (curr=start,c=0; c<rep;

curr+=inc,c++) {
strstream number;
number << curr; // change

integer to char string
string full = name +

number, str () ;
Curve* curve = frame-

>Find(SCurve(frame,full));
if (curve) {

part->Add(curve);
}else {

cerr << "ERROR (line:
<< lex. LineCount () << " part: " << nameld << ") curve: " << full << " doesn't exist" <
endl;

currok = false;
}

}
}

}else {
Curve* curve = frame-

»Find(SCurve(frame,name));

}

if (curve) {
part->Add(curve);

else {
cerr << "ERROR (line: " <<

lex.LineCount () << " part: " << nameld << ") curve: " << lex. CurrStr () <<
exist" << endl;

currok = false;
}

}
}else {

cerr << "ERROR (line: " <<
lex.LineCount () << ") curve name expected" << endl;

currok = false;
1ex.GetToken();

}} while (lex.CurrToken()!=LexGDL::END &&
lex.CurrStr()!="}");

if (lex.CurrStr()=="}") {
lex.GetToken();

}else {
cerr << "ERROR (line: " << lex.LineCount()

<< " part: " << nameld << ") '}’ expected" c< endl;
currok = false;

}
1else {

cerr << "ERROR (line: " << lex.LineCount() <<
part: " << nameld << ") '{' expected" << endl;

currok = false;

}break;
case LexGDL:;COIL : {

lex.GetToken(); // get new token
if (lex.CurrStr()=="{") {

lex.GetToken() ; // get. new taken
do {

string name;
if (1ex.CurrVar(name)) {

lex.GetToken(}; // get new token
Coil* coil = frame->Find(&Coil(frame,

name)) ;
if (coil) {

part->Add(coil} ;
}else {

cerr << "ERROR (line: " <<
lex.LineCount() << " part: " << nameld << ") coil: " << name << " doesn't exist" << endl

currok = false;
}

}
else {

cerr << "ERROR (line: " <<
lex.LineCount() << " part: " << nameld << ") coil_name expected" << endl;

currok = false;
lex.GetToken();

}} while (lex.CurrToken()!=LexGDL::END &&
lex.CurrStr()!="}");

if (lex.CurrStr()=="}") {
lex.GetToken();

}else {
cerr << "ERROR (line: " << lex.LineCount()

<< " part: " << nameld << ") '}' expected" << endl;
currok = false;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() << "
part: " << nameld << ") '{' expected" << endl;

currok = false;
}

}break;
case LexGDL::ENTRY : {

lex.GetToken(); // get new token
if (lex.CurrStr()=="{") {

1ex.GetToken(); // get new token
do {

// entry
if (lex.CurrToken()==LexGDL::UNKNOWN) {

string name;
lex.CurrVar(name);
lex.GetToken();
if (lex.CurrStr()=="[") { // is it a

pattern?
long start, rep, inc;
currok &= lex.ParseBracket(start,

rep, inc); // parses current and leaves new token as current
if (currok) {

long curr, c;
curr+=inc,c++) {

integer to char string

number.str();
>Find(&Curve(frame,full)) ;

for (curr=start,c=0; ccrep;
strstream number;
number << curr; // change
string full = name +
Curve* curve = part-
i f (curve) {

part ~>AddEntry(curve);

}else {
cerr << "ERROR (line: "

<< lex.LineCount() << " part: " << nameld << ") curve: " << full <<
in this part" << endl;

}

currok = false;
}

}
}else {

Curve* curve = part-
>Find(&Curve(f rame,name)) ;

if (curve) {
part->AddEntry(curve);

}
else {

cerr << "ERROR (line: " <<
lex. LineCount () << " part: " << nameld << ") curve: " << lex. CurrStr () <<
defined as in this part" << endl;

currok = false;
}

}
}else {

cerr << "ERROR (line: " <<
lex.LineCount () << ") curve_name expected" << endl;

currok = false;
lex.GetToken();

}} while (lex.CurrToken()!=LexGDL::END &&
lex.CurrStr()!="}");

if (lex.CurrStr()=="}") {
lex.GetToken();

}else {
cerr << "ERROR (line: " << lex.LineCount()

<< " part: " << nameld << ") '}' expected" << endl;
currok = false;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() << "
part: " << nameld << ") '{' expected" << endl;

currok = false;
}

}break;
case LexGDL::EXIT : {

lex.GetToken(); // get new token
if (lex.CurrStr()=="{") {

lex.GetToken(); // get new token
do {

// exit
i f (lex.CurrToken()==LexGDL::UNKNOWN) {

string name;
lex.CurrVar(name);
lex.GetToken();
if (lex, CurrStr () =="[") { // is it a

pattern?
long start, rep, inc;
currok &= lex.ParseBracket(start,

rep, inc) ; // parses current and leaves new token as current
if (currok) {

long curr, c;
for (curr=start,c=0; c<rep;

curr+=inc,C++) {
strstream number;
number << curr; // change

integer to char string
string full = name +

number. str () ;
Curve* curve = part-

>Find (&Curve (frame, full)) ;

if (curve) {
part->AddExit(curve);

}else {
cerr << "ERROR (line:

<< lex.LineCount(} << " part: " < c nameld << ") curve: " << full <<
in this part" << endl;

currok = false;
}

}
1

}else {
Curve* curve = part-

>Find (&Curve(frame,name)) ;
if (curve) {

part~>AddExit(curve);
1
else {

cerr << "ERROR (line: " <<
1ex.LineCount() << " part: " << nameld << ") curve: " << lex.CurrStr() <<
defined as in this part" << endl;

currok = false;
}

}
}else {

cerr << "ERROR (line: " <<
lex.LineCount() << ") curve name expected" << endl;

currok = false;
lex.GetToken();

}} while (lex.CurrToken()!=LexGDL::END &&
lex. CiurrStr () ! = "}");

if (lex.CurrStr()=="}") {
lex.GetToken();

}else {
cerr << "ERROR (line: " << lex.LineCount()

<< " part: " << nameld << ") '}' expected" << endl;
currok = false;

}
}else {

cerr << "ERROR (line: " << lex.LineCount() <<
part: " << nameld << ") '{' expected" << endl;

currok = false;
}

}break;
default : {

cerr << "ERROR (line: " << lex.LineCount() << ") '
<< lex.CurrStr() << not valid" << endl;

currok = false;
lex.GetToken();

}
}} while (lex.CurrToken()I=LexGDL::END && lex.CurrStr()!="}");

if (lex.CurrStr()!="}") {
cerr << "ERROR (line: " << lex.LineCount() << " part: " <<

nameld << ") '}' expected" << endl;
currok = false;

}ok &= currok;
}
else {

cerr << "ERROR (part: " << nameld << ") duplicate" << endl;
delete part;
ok = false;

}
}else {

cerr << "ERROR (line: " << lex.LineCount{) << " part: " << nameld
") '{' expected" << endl;

ok = false;

}
}
else {

cerr << "ERROR (line: " << lex.LineCount() << ") part name expected" <<
endl;

ok = false;
}lex.GetToken(); // get new token

} while (lex.CurrToken()I=LexGDL::END && lex.CurrStr()!="}") ;
lex.GetToken(};
if (lex.PrevStr()!="}") {

cerr << "ERROR (line: " << lex.LineCount() << ") '}' expected" << endl;
ok = false;

}
>else {

cerr << "ERROR (line: " << lex.LineCount() << ") '{' expected" << endl;
ok = false;

>return ok;
}
bool Part: .-Linelntegral (double& result, int sections)
{ bool ok=(linelntegral>=0);

if (1 ok) {
result = 0;
if (!fluxEntry.empty() && 1fluxExit.empty()) { // needs entry and exit curves

Curves newlist;
Curves checklist;
CurvesIterator entryiter=fluxEntry.begin(); // point to first curve
Curve* curve=(*entryiter);
Coord* coord=(curve->GetEnd()); // get the first curves end node
newlist.push_back(curve); // add to new list
checklist.Add(curve); // do same to check list
CurvesIterator curvesiter=curves.begin();
Coord* other;
do { // build list

other = NULL; // other coord must be null at start of search
curvesiter=curves.begin(); // start search from begining
do { // find curve that has this current coord

if (! checklist. Find (*curvesiter)) // ignore any curves already added.
to linked list

other= ((*curvesiter)->OtherIfValid (coord)) ; // get. other coord if
valid coord

if (!other) curvesiter++; // go to next curve
} while (curvesiter! =curves .end() &.& other==NULL) ; // while not end of

curves in part
if (other && curvesiter!=curves.end{)) { // valid other coord

curve=*curvesiter; // next curve is current, in part curves
newlist.push_back(curve); // add to linked list
checklist.Add(curve); // do same to check list
coord=other; // prepare for next pass

}} while (other); // still getting valid curves
// if all curves have been transfered then must be a closed topology
ok = (newlist.size()==curves.size());
if (ok) { // c a n y on with performing the line ixitegral

bool upadd = true;
double lengthU = 0;
double lengthD = 0;
Curveslterator listiter=newlist.begin();
do { // step up through curve list changing total variable as exit curves

are passed
if (!fluxEntry.Find(*listiter)) { // check not an entry curve

if (!fluxExit.Find(*listiter)) {
if (upadd)

lengthU += (*listiter)->Length();
else

lengthD += (*listiter)->Length();
}
else { // move to down section of curve list

upadd = false;
}

}

listiter++;
} while(listiter!=newlist.end());
bool validU=(lengthU!=0.0);
bool validD=(lengthD!=0.0);
if (validU || validD) { // at least one length must not be zero

double incU=lengthU/sections; // one of the increments may be zero so
double incD=lengthD/sections; // miss that section from the iteration
Curveslterator iterU=newlist.begin();
Curve* prevU = *iterU;
while (iterU!=newlist.end()?fluxEntry.Find(*iterU):false) { / / m o v e up

past the entry curve
prevU = *(iterU++);

}Curve* curveU = *iterU;
CurvesReverselterator iterD=newlist.rbegin(); // reset to end of

section for down list iteration
Curve* prevD = *iterD; // set previous to the known entry curve
while (iterD!=newlist.rend()?fluxEntry.Find(*iterD) :false) { / /move

down past any entry curves
prevD = *(iterD++);

}Curve* curveD = *iterD;
// start stepping through the curves with, calculated increment
double distU=0;
double distD=0;
if (validU) {

distU += incU;
lengthU -= incU;

}if (validD) {
distD += incD;
lengthD - = incD;

}Coord* nodeU=SharedCoord(prevU,curveU);
Coord* nodeD=SharedCoord(prevD,curveD);
if (nodeU!=NULL && nodeD!=NULL) {

Vector2d currposU=nodeU >GetPos() ;
Vector2d prevposU=currposU;
Vector2d currposD=nodeD->GetPos();
Vector2d prevposD=currposD;
do {

// check for curves long enough for the increment
if (validU) {

while (iterU!=newlist.end() && distU>curveU->Length()) {
// go to next curve
length from distance

distU/curveU->Length())

// go to next curve
length from distance

current

distD/curveD->Length())

distU-=curveU->Length(); // subtract smaller curve
prevU=curveU;
curveU=*(++iterU); // go to next curve and make current

}
// find new position
prevposU=currposU;
currposU=curveU->FractionPos(SharedCoord(prevU,curveU),

}if (validD) {
while (iterD!=newlist.rend() && distD>curveD->Length()) {

distD-=curveD->Length(); // subtract smaller curve
prevD=curveD;
curveD=(*(++iterD)); // go to next curve and make

}
// find new position
prevposD=currposD;
currposD=curveD->FractionPos(SharedCoord(prevD,curveD),

}
// calc of area
double area = fabs(length/cos(frame-

>GetSkew{)))*(fabs(Mag(currposU-currposD))+fabs(Mag(prevposU-prevposD)))/2;
if (minArea==0 || area<minArea) minArea=area;
double dist = (fabs(Mag(currposU-prevposU))+fabs(Mag(currposD-

prevposD)))/2;

result += dist/area;
// go to next position
if (validU) {

distU += incU;
lengthU •- = incU;

}if (validD) {
distD += incD;
lengthD - = incD;

}// cout << "Name: " << GetNameO << " distU: " << distU << "
distD: " << distD << endl;

// make sure list, of curves isn't exhausted and both positions
are mot on exit curves

} while (iterU!=newlist.end() && iterD!=newlist.rend() &&
(validU?!fluxExit.Find(curveU):true) && (validD?!fluxExit.Find(curveD):true) &&
lengfchU>=0 && lengthD>=0);

}
}

}
}

// cout << "Name: " << GetNameO << " Integral: " << result << endl;
if (ok) linelntegral=result;

} else {
result=linelntegral;

}■return ok;
}

// 2d vector utu.il ity class
// (c) D. Downes 96
// Impliments basic operations for a 2d vector class.
// Internal storage of the coordintes is cartesian
#ifndef VECT0R2D_CLASS_DECLARED
#define VECT0R2D_CLASS_DECLARED
#include <cmath>
#include <iostream>
class Vector2d
{protected:
double x,y;

public:
enum Type {CART, POLAR};
Vector2d() { x=0; y=0; }
Vector2d(const Vector2d& v) { x=v.x; y-v.y; }
Vector2d(double sx, double sy) { x=sx; y=sy; }
Vector2d(Type system, double setl, double set2)

x=(system==CART)?setl:(setl*cos(set2));
y=(system==CART)?set2:(setl*sin(set2)); }

double X() { return x; } // x value of vector
double Y() { return y; } // y value of vector
int operator == (const Vector2d& v) {

return (x==v.x && y==v.y); } // comparison
int operator != (const Vector2d& v) {

return (x!=v.x && y!=v.y); }

// no argument constructor
// 1 argument constructor

// 2 argument constructor
{

// .3 argument constructor

Vector2d& operator = (const Vector2d& v) {
x=v.x ;
y=v.y ;
return *this; } // assignment

Vector2d&; operator () (double setl, double set2) {
x=setl;
y=set2;
return *this; } // cartesian values

Vector2d& operator () (Type system, double setl, double set2) {
x=(system==CART)?setl:(setl*cos(set2));
y=(system==CART)?set2:(setl*sin(set2));
return *this; } // polar or cartesian values

Vector2d& operator += (const Vector2d& v) {
x+=v.x;
y+=v.y;
return *this; } // addition with equal

Vector2d& operator -= (const Vector2d& v) {
x=v.x;
y-=v.y;
return *this; } // subtraction with equal

Vector2d& operator *= (double s) {
X * = S ;

y*-S;
return *this; } // scaler multilication with equal

friend Vector2d operator + (const Vector2d& a, const Vector2d& b) {
return Vector2d(a.x+b.x,a.y+b.y); } // addition

friend Vector2d operator - (const Vector2d& a, const Vector2d& b) {
return Vector2d(a.x-b.x,a.y-b.y); } // subtraction

friend Vector2d operator * (double a, const Vector2d& b) {
return Vector2d(b.x*a,b.y*a); } // scaler multiplication

friend Vector2d operator * (const Vector2d& b, double a) {
return Vector2d(b.x*a,b.y*a); }

friend Vector2d operator / (const Vector2d& b, double a) {
return Vector2d(b.x/a,b.y/a); } // scaler division

friend ostream& operator << (ostream& out, Vector2d& v) {
out << v.x << ", " << v.y;
return out; } // output

friend istream& operator >> (istream& in, Vector2d& v) {

in >> v.x >> v.y;
return in; } / / input

// magnutude of vector

// angle of vector wrt x axis

// normal of vector

friend double Mag(const Vector2d& v) {
return sqrt(v.x*v.x+v.y*v.y); }

friend double Angle(const Vector2d& v) {
double mag = sqrt(v.x*v.x+v.y*v.y);
double angle = (mag?acos(v.x/mag):0);
return ((v.y<0)? (2*M_PI-angle):angle); }

friend Vector2d Norm(const Vector2d& v) {
return Vector2d(-1.0*v.y,v.x); }

friend Vector2d UnitNorm(const Vector2d& v) {
double mag = sqrt(v.x*v.x+v.y*v.y);
if (mag==0)

return Vector2d(0,0);
else

return Vector2d(-1.0*v.y/mag,v.x/mag); } // unit normal of vector
friend double Dot(const Vector2d& a, const Vector2d& b) {

return (a.x*b.x+a.y*b.y); } // dot product
friend double Cross(const Vector2d& a, const Vector2d& b) {

return (a.x*b.y-a.y*b.x); } // cross product

#endif

Appendices

I
‘coincident area’ program listing

// Progi:am to calculate the coincident area under the rotor and stator teeth
// Uses brute force numerical .integration of area under rotor and stator

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
float length=0.1; // mutual length of rotor and stator
float rotorskew=3.5*2*M_PI/360; // skew of rotor
float statorskew=0; // skew of stator
float rotorangle=5.64*2*M_PI/360; // angle in radians of r o t o r t o o t h
float statorangle=6.88*2*M_PI/360; // angle in radians of stator tooth
float radius=0.045; // average radius in meters of the stator and rotor
int sections=100; // number of sections to use in the numerical aproximation
// given a value pos, which is a fraction of the total tooth pithch, calculate the high
boundary value
float calcHi(float skew, float length, float radius, float angle, float pos)
{ flo>at x=pos* (radius*angle+fabs (tan (skew) *length)) ;
flo-at y=fabs (x/tan (skew)) ;
return (y>length?length:y) ;

}
// given a. value pos, which is a fi'action of the total tooth pithch, calculate the low
boundary value
float calcLo(float skew, float length, float radius, float angle, float pos)
{ float x = (1-pos)* (radius*angle+fabs(tan(skew)*length));
flo-at y=length-f abs (x/tan (skew)) ;
return (y<0?0:y);

}
int m.ain(int argc, char *argv[])
{ float lr=radius*rotorangle+fabs(tan(rotorskew)*length); // total length of rotor tooth
float ls=radius*statorangle+fabs (tan (statorskew) *length) ; // total .length of stator

t o o t h
float incx=(lr+ls)/sections; // increment of rotor past stator
for (float x=~ls; x<=lr; x+=incx) { // loop for the full motion of the rotor

float xs=x>0?x:0; // find coincident start of rotor and stator
float xe=x+ls<lr?x+ls:lr; // find coincident end of rotor and stator
float area=0;
float incz=(xe-xs)/sections; // setup increment for area
if (incz>0) { // only perform calculation if valid coincident area

for (float z=xs; z<=xe; z+=incz) { // integrate over the coincident area
float pr=z/lr; // current point on rotor as ratio of length
float ps=xs>0?z/ls:(z-x)/Is; // current point on Btator as ratio of length
float rhi=calcHi(rotorskew,length,radius,rotorangle,pr); // calculate the

current values
float rlo=calcLo(rotorskew,length,radius,rotorangle,pr); // for the position of

the rotor teeth
float shi=calcHi(statorskew,length,radius,statorangle,ps);
float slo=calcLo(statorskew,length,radius,statorangle,ps);
if (rhi>slo && shi>rlo) { // check teeth are coincident

area+=((rhi<shi?rhi:shi) - (rlo>slo?rlo:slo))*incz; // approximate coincident
area

}
}

}cout << (x+(ls--lr)/2)/radius << ", " << area << endl; // output position and area
data

}return EXIT_SUCCESS;
J

