
1 3 MAR 2003

FOR REFERENCE ONLY

The Nottingham Trent University
Library & Information Services
SHORT LOAN COLLECTION

Time TimeDateDate

2

Please return this item to the issuing library.
Fines are payable for late return.

/O34
40 0732591 3

ProQuest Number: 10183204

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183204

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

INTERFACES FOR EMBEDDED
PARALLEL

MULTIPROCESSOR
NETWORKS

SIMON TRIGER

A thesis submitted in partial fulfilment of the requirements of
The Nottingham Trent University for the degree of Doctor of

Philosophy

Department of Electrical and Electronic Engineering
School of Engineering

The Nottingham Trent University
Burton Street

Nottingham, United Kingdom

December 2002

Collaborating Establishment: IC Routing Ltd, UK

This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with the author and that no
quotation from the thesis and no information derived from it may be published

without the author’s prior written consent.

Introduction

Abstract

This thesis documents research to improve tolerance to faults of an embedded parallel

network. This resulted in the development of two building blocks of a novel

embedded communications system with enhanced fault detection and recovery.

A review of embedded inter-processor communications was initially performed. The

research aimed to expand the potential of embedded parallel systems in three main

areas: improving bi-directional throughput; implementing a distributed fault detection,

isolation and recovery mechanism; and the implementation of hardware virtual

channels utilising Context Addressable Memory (CAM) to reduce processor

intervention.

The embedded multiprocessor network comprises off-the-shelf custom hardware

message routers. An interface between a StrongArm SA-110 microprocessor and the

embedded routing network was developed using VHDL. This was simulated and

synthesised, with post-synthesis simulations used as a means of gauging performance.

An interface was also developed between a PC and the network, utilising the PCI bus

standard for communication. The research resulted in a fully operational hardware

prototype, whose results were compared and contrasted with both the previous non

fault tolerant PCI interface and theoretical expectations.

The routers, StrongArm processors, PCs and their respective interfaces form the

building blocks of a robust, embedded network with improved tolerance to faults. The

StrongArm and PCI interfaces allow RISC and general-purpose processors to operate

as processor nodes in the same network, thus increasing system flexibility and

applications. The possibility of adapting the interface design to other processors offers

further possible increases in system flexibility. The new protocol allows a much

greater degree of tolerance to faults in the system, reducing the dependence on

external intervention in the event of network failure.

Introduction

Acknowledgements

This thesis is dedicated to my father, who I am sure would have been proud of me

and to Richard and Michael, whose circumstances were a major influence in my

decision to remain in academia and who will always be sadly missed. Finally to my

grandfather and uncle Keith both of whom saw me begin my studies but sadly are not

present to witness their completion. Special thanks, first and foremost to Mum and

Sara for absolutely everything.

I would like to thank the following people for the limitless amounts of help and

support over the duration of my studies and beyond. Firstly to my supervisors,

Professor Brian O’Neill and Dr Steve Clark for being the most supportive and

understanding supervisors imaginable. Also thanks to Steve for dragging me out of

the office on cold, damp days to climb up some godforsaken, green, slimy, vegetated

choss masquerading as a rock climb. To my colleagues, Dr Robin Hotchkiss, Dr Kar

Leong Wong and Dr Jien Hau Ng without whom there would have been no research

for this project to build on, and to Dr Kenny Liew for his ‘alternative’ sense of

humour. I would also like to thank Jean, Lynn, Iain and Ali for not letting me take

things too seriously. Thanks are also due to all my climbing, running, swimming and

drinking partners from the last three years, who were always ready and more than

willing to provide a welcome distraction.

Lastly, to anyone I’ve not mentioned, thanks.

Introduction

Table of Contents

ABSTRACT II

ACKNOWLEDGEMENTS... I ll

TABLE OF CONTENTS.. IV

LIST OF ACRONYMS AND ABBREVIATIONS... VIII

LIST OF FIGURES .. XI

1 INTRODUCTION.. 1
1.1 The Transputer ... 2

1.2 Research History and Objectives... 4

1.3 The FT-SARNet Routing Network... 11

1.4 Key Achievements... 14

1.5 Structure of the Thesis...14

2 TECHNOLOGY REVIEW...17
2.1 Fundamental Principles of Interprocessor Communications............... 17

2.1.1 Efficiency.. 17
2.1.1.1 Bandwidth... 18
2.1.1.2 Latency... 19
2.1.1.3 Processor Overhead... 20
2.1.2 Scalability... 20
2.1.3 Reliability............................... 21

2.2 Characteristics of Interprocessor Communications Networks..23
2.2.1 Shared and Distributed Memory Multiprocessor Systems ... 23
2.2.2 Serial Vs Parallel Communication Links..25
2.2.3 Bus and Switch Based Network Topologies..26
2.2.4 Tightly Coupled Vs Loosely Coupled Processor Interfaces... 30
2.2.5 I/O Bus Based Interfaces Vs Memory Bus Based Interfaces.......................................31

2.3 Hardware Router System Comparison..32
2.3.1 ICR-C416 Based Systems.............. 32
2.3.2 STC-104 Based Systems..34
2.3.3 Myrinet Based Systems... 35
2.3.3.1 Myrinet / PCI Host Interface.. 36
2.3.4 The Reliable Router.. 37

2.4 Interfacing to PCs - The PCI B us....................... 38
2.4.1 PCI Bus Operation....................................... 40

3 FAULT TOLERANCE.. 43
3.1 Overview.................... 43

3.2 Fault Detection.. 44

3.3 Buffer Overflow... 45

3.4 Flow Control Protocols..46
3.4.1 Credit Based Flow Control...46

Introduction

3.4.2 Permission Based Flow Control... 48

3.5 Retaining Link Confidence... 50

3.6 Message Delivery Errors...51
3.6.1 Packet Arrival Out of Order.................. 51
3.6.2 Incorrect Message Length.................... 52

3.7 Synchronisation Errors 55

3.8 Incorrect Message Address / Undeliverable Messages........................ 55

3.9 Deadlock... 56
3.9.1 Deadlock Prevention................................. 57
3.9.2 Deadlock Avoidance...58
3.9.3 Deadlock Recovery................................. 58

3.10 Tolerance to Faults In Other Studied Systems... 59
3.10.1 Fault Detection and Recovery in the STC-104 Based System......................................59
3.10.2 Fault Detection and Recovery in the Myrinet Based System....................................... 61

4 DESIGN DISCUSSION..62
4.1 Introduction... 62

4.2 FT-SARNIC Network Interface... 62

4.3 FT-PCI-OSLi Network Interface... 63
4.3.1 PCI Bus Performance...65

4.4 Areas of Improvement Following Analysis of Previous Research.. 67
4.4.1 Communications Links...................... 67
4.4.2 Flow Control..68
4.4.2.1 Permission Based Flow Control Threshold Level Analysis... 70
4.4.2.2 Determination o f Stop and Go Flow Control Levels....................................... 71
4.4.2.3 Flow Control Differential Analysis... 73
4.4.3 Control And Message Information... 73
4.4.4 Faulty Packet Removal..75
4.4.5 Link Initialisation Procedure.. ... 76
4.4.6 Link Dormancy... 78
4.4.7 Virtual Channels... 79
4.4.8 Header Storage - CAM... 81
4.4.9 Message Storage... 83

4.5 Digital Systems Implementation Issues.................. 84

4.6 Synthesis..87
4.6.1 Target Device Characteristics..88
4.6.2 Apex 20KE Architecture............................... 89
4.6.2.1 Logic Elements... 90
4.6.2.2 Logic Array Blocks.......................... ..91
4.6.2.3 MegaLAB..92
4.6.2.4 FastTrack Interconnect.......................92
4.6.2.5 Context A ddressable Mem ory...93
4.6.3 High Performance Digital Design Implementation..94

5 DESIGN STRUCTURE..96
5.1 FT-PCI-OSLi Module Description.. 96

5.1.1 PCI Interface... 97
5.1.1.1 PCI Master / Target Controller..98
5.1.1.2 Address Decode Module ...101
5.1.1.3 Address / Data Path Module... 101
5.1.1.4 Parity Generator / Verifier... 102
5.1.1.5 PCI Configuration Registers... 102

- V-

Introduction

5.1.1.6 DMA Registers... 102
5.1.1.7 Interrupt Controller.. 103

5.1.2 Data Flow Layer and Communications Link Interface...103
5.1.2.1 Link Interface.. 104
5.1.2.2 Link Interface Buffering.. 105
5.1.2.3 Transmitter Message Control............... 106
5.1.2.4 Receiver Message Control.. 108
5.1.2.5 DMA Buffer..I l l
5.1.2.6 DMA Controller... 111

5.1.3 Virtual Channel Message Store.. 113
5.1.3.1 VCMS Operation..113
5.1.3.2 Virtual Channel Message Store Modular Breakdown........................... 118

5.2 FT-SARNIC Module Description.. 120
5.2.1 Bus Controller..121
5.2.1.1 Arbiter Core.. 122
5.2.1.2 SDRAM Interface... 123
5.2.1.3 External I/O Interface..124
5.2.1.4 Internal Registers Interface...125
5.2.2 Communications Controller.................................. 125
5.2.2.1 DMA Channels.............................. 126
5.2.2.2 DMA Arbiter Core................................ 128
5.2.2.3 Message Allocator Switch.. 128
5.2.2.4 Communications Links Interface..129
5.2.2.5 Link Interface... 131
5.2.2.6 Link Interface Buffering.................................... 131
5.2.2.7 Packetiser... 132
5.2.2.8 Depacketiser................ 133
5.2.3 Interrupt Controller... 134
5.2.4 Timer...135
5.2.5 UART Communication Port... 136

6 RESULTS .. 137
6.1 FT-PCI-OSLi Hardware Test Results...137

6.1.1 Hardware Test Parameters and Criteria..138

6.2 PCI Access Efficiency... 139

6.3 Bi-directional Data Transfer Tests.. 142
6.3.1 Bi-directional Data Transfer Duration... 142
6.3.2 Bi-directional Data Bandwidth Utilisation... 147
6.3.3 DMA Message Transmission... 148
6.3.4 DMA Message Reception...158

6.4 Fault Detection and Recovery Hardware Tests... 160
6.4.1 Incorrect Message Length Hardware Test...160
6.4.2 Incorrect Message Header Hardware T est..160
6.4.3 Disconnected Link Hardware Test................................ 161
6.4.4 Flow Control Hardware Test.. 162
6.4.5 Link Dormancy Hardware Test.. 165

6.5 Resource Usage.. 165

6.6 Power Consumption... 168

6.7 FT-SARNIC Post-synthesis Simulation..169
6.7.1 Bi-directional Data Transfer Duration.. 170
6.7.2 Bi-directional Data Bandwidth Utilisation...173

6.8 Summary ..174

7 DISCUSSION 176

Introduction

7.1 Target Networks... 176

7.2 FT-PCI-OSLi Performance.. 177

7.3 FT-SARNIC Performance.. 180

7.4 Buffering Considerations .. 182

7.5 Data Streaming..184

7.6 Interface Coupling... 185

7.7 Virtual Channels.. 186

7.8 Modified Message Router Protocol.. 187

7.9 Proprietary Vs Custom Prototype PCI Interfaces...189

7.10 66MHz PCI Bus Operation.. 191

8 CONCLUSIONS AND FURTHER WORK.. 193
8.1 Conclusions... 193

8.2 Further Work..198
8.2.1 Realisation of the FT-SARNet... 198
8.2.2 Additional Communications Channels.. 199
8.2.3 Interface Adaptation for use with Alternative Processors... 200
8.2.4 Enhanced Virtual Channel Capabilities for the FT-SARNIC Interface..................201
8.2.5 FT-SARNIC Asynchronous Interface.. 201
8.2.6 System On a Programmable Chip Solution... 202

Publications..204

References..205

APPENDIX A: FT-PCI-OSLI INTERFACE HARDWARE TEST RESULTS 214

APPENDIX B: PCI SIGNAL DESCRIPTIONS FOR THE FT-PCI-OSLI
INTERFACE...220

APPENDIX C; REGISTERS OF THE FT-PCI-OSLI..222

APPENDIX D: FT-SARNET CONTROL TOKEN DEFINITIONS...................239

APPENDIX E: FT-PCI-OSLI CONFIGURATION REGISTERS CONTENTS
240

APPENDIX F: SPECIFICATION FOR PCI/RS485 INTERFACE BOARD ...241

APPENDIX G: FT-PCI-OSLI POWER CONSUMPTION CALCULATION. 253

Introduction

List of Acronyms and Abbreviations

AE Almost Empty

AF Almost Full

AMB A Advanced Microcontroller Bus Architecture

ASIC Application Specific Integrated Circuit

BEOP Bad End Of Packet

CAM Context Addressable Memory

CAS Column Address Strobe

Cat 5 Category 5 unshielded twisted pair

CBFC Credit Based Flow Control

CONREQ Connection Request

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access / Collision Detect

CSP Communicating Sequential Processes

DMA Direct Memory Access

DS Data Strobe

EAB Embedded Array Block

EEPROM Electrically Erasable Programmable ROM

EISA Extended ISA

EOM End Of Message

EOP End Of Packet

EOPE End Of Packet Error

EPROM Electrically Programmable ROM

ESB Embedded System Block

ESP Embedded Standard Product

FEC Forward Error Correction

FIFO F irst In F irst Out

FIQ Fast Interrupt Request

FRES Forward Reset

FT-PCI-OSLi Fault Tolerant PCI-OSLi

FT-SARNIC Fault Tolerant SARNIC

FT-SARNet Fault Tolerant SARNet

Introduction

IC Integrated Circuit

ID Identification

IECR Interrupt Enable Clear Register

IER Interrupt Enable Register

IESR Interrupt Enable Status Register

I/O Input / Output

IOE Input / Output Element

IP Intellectual Property

IRQ Standard Priority Interrupt Request

ISA Industrial Standard Architecture

ISR Interrupt Status Register

IRSR Interrupt Raw Status Register

JTAG Joint Test Action Group

LAB Logic Array Block

LAN Local Area Network

LE Logic Element

LUT Look Up Table

MPP Massively Parallel Processor

MSB Most Significant Bit

NRZ Non-Return to Zero

OS Over Sampling

PBFC Permission Based Flow Control

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCI-OSLi PCI OS Link Interface

PLD Programmable Logic Device

PQFP Plastic Quad Flat Pack

RAM Random Access Memory

RCSMA/CA Reservation Carrier Sense Multiple Access / Collision Avoidance

Rhop Router hop

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

SARNet StrongArm Router Network

Introduction

SARNIC StrongArm Router Network Interface Controller

SARNode StrongArm Router Network processing Node

SDRAM Synchronous Dynamic RAM

SRAM Static RAM

SMT Surface Mount Technology

SOC System On a Chip

SOPC System On a Programmable Chip

UART Universal Asynchronous Receiver / Transmitter

USB Universal Serial Bus

UPT Unique Token Protocol

Vcclnt PLD Internal Voltage

Vcclo PLD I/O Voltage

VCMS Virtual Channel Message Store

VHDL Very high speed integrated circuit Hardware Description Language

VLSI Very Large Scale Integration

Introduction

List of Figures

Figure 1: 2D ‘mesh* network topology utilised by first generation Transputers....... 3
Figure 2: Processing nodes interconnected using NTR-08 routers.............................5
Figure 3: ICR-C416 and Transputer Routing Network.. 5
Figure 4: SARNode Block Diagram..7
Figure 5 : SARNet Routing Network comprising ICR-C416, SARNIC and SA-110 8

Figure 6 : SARNet Routing Network with a link to a generic PC via the PCI-OSLi
hardware interface.................................. 11

Figure 7: Fault Tolerant SARNet Routing Network... 12
Figure 8: 2-Dimensional ‘Mesh* Network Topology... 27
Figure 9 :1CR-C41616 Channel hardware router .. 30
Figure 10: A typical PCI bus arrangement..41
Figure 11: Unidirectional Data Transfer Using Credit Based Flow Control...........47
Figure 12: Bi-directional Data Transfer Using Credit Based Flow Control............47
Figure 13: Unidirectional and Bi-directional Permission Based Flow Control.......49
Figure 14: Token Loss Resulting in Incorrect Message Interpretation.................... 53
Figure 15: Network Failure in a Multi-router NTR-FTM08 Network..................... 54
Figure 16: Deadlock in a simple router network 57
Figure 17: Ring and Star topologies as used to connect the control ports o f the
STC-104 and ICR-C4 16. Note; these are fixed, unlike the data connections. 60
Figure 18: Representation o f Permission Based Flow Control and how its rules
translate into practical buffer implementation for correct operation.........................71
Figure 19: Link Status State Machine Diagram.. 77
Figure 20: Link Initialisation Flow Diagram.. 78
Figure 21: Virtual channels showing multiple messages traversing the same
physical link ... 79

Figure 22: Messages arriving at the receiving node showing multiplexed packets. 79
Figure 23: Messages stored in memory ‘pots* prior to processing......................... 80
Figure 24: Apex 20KE Device Architcture.. 89
Figure 25: Apex 2OK Logic Element.. 90

Figure 26: LAB Structure Demonstrating Surrounding Interconnections..............91
Figure 27: FastTrack Interconnection Grid Structure... 92

Figure 28: nIRDYand nTRDYsignal improvement between the two PCI-OSLi
designs...95
Figure 29: Block Diagram o f the FT-PCI-OSLi Interface.................. 96
Figure 30: Block Diagram o f the PCI Interface and its associated I/O signals... 97

-XI-

Introduction

Figure 31: FT-PCI-OSLi Master State Machine...99
Figure 32: FT-PCI-OSLi Target State Machine..100
Figure 33: Block Diagram o f the Data Flow and Link Interface sections o f the FT-
PCI-OSLi interface.. 104
Figure 34: FT-PCI-OSLi Transmitter Link Controller State Machine.................. 106
Figure 35: FT-PCI-OSLi Transmitter Message Controller DMA State Machine. 107

Figure 36: FT-PCI-OSLi Receiver Link Controller State Machine....................... 109
Figure 37: FT-PCI-OSLi Receiver Message Controller DMA State Machine.......110
Figure 38: FT-PCI-OSLi DMA Controller State Machine......................................112
Figure 39: CAM Priority Loading Principle.. 114
Figure 40: FT-PCI-OSLi Expected Message Information Load Procedure..........116
Figure 41: FT-PCI-OSLi Incoming Message Header Verification Procedure......117

Figure 42: Block Diagram of the Virtual Channel Message Store Submodules... 118
Figure 43: Block diagram of the top-level modules of the FT-SARNIC design.... 120
Figure 44: FT-SARNIC Bus Controller submodule block diagram....................... 122
Figure 45: FT-SARNIC Bus Arbiter State Machine Diagram........................ 123
Figure 46: FT-SARNIC SDRAM Interface State Machine.....................................124
Figure 47: FT-SARNIC Communications Controller Block Diagram 126
Figure 48: FT-SARNIC DMA Channels State Machine Flow Diagram 127
Figure 49: FT-SARNIC Communications Link Interface Module Block Diagram
... 129
Figure 50: FT-SARNIC Packetiser State Machine Diagram...................................133
Figure 51: FT-SARNIC Depacketiser State Machine Diagram...............................134
Figure 52: FT-SARNIC Timer with Past and Future Time References................. 135
Figure 53: Loopback Test Block Diagram for FT-PCI-OSLi 137

Figure 54: An example o f waveforms demonstrating PCI transaction initiation
latency...140
Figure 55: Efficiency of PCI bus accesses for the FT-PCI-OSLi and PCI-OSLi
devices in terms o f latency as a percentage o f overall PCI transaction duration.. 141
Figure 56: Message duration results for FT-PCI-OSLi hardware tests at
42Mbits/sec link rate.................... 143
Figure 57: Message duration results for FT-PCI-OSLi hardware tests at lower
message lengths at 42Mbits/sec link rate.. 144
Figure 58: Normalised message duration for the FT-PCI-OSLi and PCI-OSLi
interfaces at 42 Mbits/s data rates.......................... 145
Figure 59: FT-PCI-OSLi and PCI-OSLi percentage data bandwidth utilisation at
42Mbits/s data rate...147

Introduction

Figure 60: DMA transmission throughput for the FT-PCI-OSLi and PCI-OSLi
interface devices including FT-PCI-OSLi with modified buffer capacities............149
Figure 61: FT-PCI-OSLi (with modified link interface buffer capacity) DMA
transmission throughput graph split into three areas... 150
Figure 62: Diagram displaying frequency of PCI accesses in each of the three areas
of the DMA transmission throughput characteristic....................................... 150
Figure 63: DMA transmission throughput characteristics diagram compared with
characteristics made in previous research during development o f the PCI-OSLi. 151
Figure 64: FT-PCI-OSLi DMA transmission throughput for varied DMA
transmitter buffer capacities... 154

Figure 65: DMA transmission throughput for the FT-PCI-OSLi with lkByte deep
link interface buffer for varied DMA transmitter buffer capacities........................ 156
Figure 66: Summary of the effects on DMA transmission throughput caused by
alterations to the FT-PCI-OSLi DMA and link interface buffer capacities...........158
Figure 67: DMA reception throughput during bi-directional data transfer for the
FT-PCI-OSLi, PCI-OSLi and modified buffer FT-PCI-OSLi interfaces...............159
Figure 68: State machine showing the six states used in the flow control test 162
Figure 69: Modular Resource Usage in the FT-PCI-OSLi Interface..................... 167
Figure 70: Loopback Test Block Diagram for FT-SARNIC....................................169
Figure 71: Message duration results for FT-SARNIC post-synthesis simulation. 171
Figure 72: Message duration results for FT-SARNIC post-synthesis simulations at
lower message lengths.. 172

Figure 73: Data throughput results for the FT-SARNIC and SARNIC interfaces173

- XIII-

Introduction

1 INTRODUCTION

Parallel processing is based upon the principles of task division and concurrency

with multiple processors striving to achieve a solution to a problem that is too

complex or time consuming for a single processor [1], Whilst the operating speed and

processing power of computers continues to improve, there will always be

computationally intensive problems that are beyond the capabilities of a single

processor [2]. Computer aided VLSI design [3] and the simulation of weather patterns

used in long term weather forecasting are two examples of parallel processing

applications.

One of the drawbacks of parallel processing is the limited ability to handle real

time applications, which often require parallel task executions. The computers used in

parallel processing systems were originally expensive, custom processors [4], The

critically short task execution times required by real time applications are more suited

to RISC processors, such as the Transputer [5], which was developed specifically for

use in parallel systems. Interconnected multiple single processors [6] can also form

the basis of parallel systems, utilising advantages such as high performance, low cost,

availability, relative ease of development and possible scope for upgrades, which led

to their use in certain niche applications. The performance is often lower than that of

custom parallel systems but for some applications their versatility and accessibility

can offset this, particularly in embedded systems.

Many real-time applications require processors to be ‘embedded’ within a larger

system and to act on responses from within the larger system or in its external

environment. Embedded systems are often housed within a small area, such as inside

a medical instrument [7] or in a military or vehicular application [52]. Many large-

scale parallel systems have sufficient processing power but are too large and relatively

expensive to be embedded for use in real-time applications. Embedded systems often

require portability, deriving power from a battery (a prime example being a mobile

phone) and hence requiring minimal power consumption.

1

Introduction

There exists a need to minimise failure in embedded processing systems due to the

nature of such systems. Embedded systems often perform complex and sometimes

safety critical tasks in applications and frequently operate in remote or inaccessible

locations. Embedded parallel systems are more susceptible to failure as the network

size and number of nodes increases [8] and the systems tolerance to faults becomes

increasingly important, however performance is a key aspect of embedded systems

and the techniques aimed at improving fault tolerance should minimise overheads so

as not to greatly compromise throughput.

The research described in this thesis resulted in the design and realisation of

building blocks for a multiprocessor routing network with improved tolerance to

faults. The NTR-FTM08 router was previously developed to provide a robust

replacement for the commercial 16-channel ICR-C416 router [9]. The serial OS (Over

Sampling) links based protocol [5] (similar to that employed by the first generation

Transputer parallel processors) utilised by the ICR-C416 was replaced with a new

protocol, modified to permit the transmission of control information required for the

implementation of fault detection and recovery functions between processors. The

new protocol meant that the NTR-FTM08 had no means of interfacing to the

processing nodes and external PCs, requiring the redesign of these interfaces. A key

aim of the research was to enhance the systems tolerance to faults through alterations

to the interface architecture, giving a robust communications environment, to reduce

network down-time and the systems reliance on external intervention to recover from

faults.

1.1 The Transputer

The Transputer was a microprocessor designed for use as a parallel processing

building block. It was often used to construct low cost embedded parallel computing

systems due to its ability to support real time programming [10]. This ability was

partly due to its RISC architecture, instruction set, reduced silicon usage and state-of-

the-art performance for processors at the time. Additionally, the Occam Network

Description Language [11, 12] was a vital component in the process of the

construction of Transputer networks.

- 2-

Introduction

Communication with other processors was mainly via four OS serial links [5].

Communications responsibilities were devolved to a co-processor providing a

physical point-to-point connection between processing nodes, based on the

Communicating Sequential Processes (CSP) model proposed by Hoare [13]. These

four full-duplex bi-directional serial communication links allowed for connections to

four neighbouring processors, as the two-dimensional mesh topology shows in Figure

1.

Key: N - Processor Node

Figure 1: 2D ‘mesh ’ network topology utilised by first generation Transputers

Networks utilising more than five processor nodes encountered problems with

messages destined for nodes that were not adjacent to the transmitting node. These

messages required forwarding by the intermediate nodes, thus reducing their

efficiency as they devoted resources, incurred latency and increased message

overheads to message handling tasks required in the forwarding of other processors

messages. This results in a reduction of processor performance as the computation:

communication ratio [14] increases in favour of communications as processors handle

communications from other nodes as well as their own.

Such ‘store and forward’ methodologies produce message delays proportional to

the product of message size and distance [15], giving a wide variation in

communication times between processors, based on their relative distances. Large

Introduction

interprocessor latencies could reduce the performance benefits obtained through

parallel processing.

Key features that contributed to the success of the Transputer were the efficient

transfer of information between processor and network and the minimal processor

intervention. The Transputer achieved the former through the integration of its tightly

coupled, built-in communications controller onto the same silicon as the processor.

However this approach used up space on silicon, which could have been used for

extra processor functionality, in addition to requiring extra engineering effort to

design, and build a dedicated interface [16]. Study of the Transputer family history

has shown that upgrading either the microprocessor core or the interconnection

network or network interface was time consuming and costly [17] due to ASIC design

techniques and costs.

1.2 Research History and Objectives

The parallel processing research group at The Nottingham Trent University has

for some years focused on hardware routing devices used to link embedded parallel

processors. The research group developed a distributed processing system consisting

of end nodes (microprocessors) linked together using high-speed serial

interconnections. Messages sent between nodes use hardware switches (routers) to

reach their destination.

The research began with the development of the NTR-08 [18, 19], a prototype 8-

link router that utilised serial transmission links to form interconnections between

Transputers. This allowed a processor to form connections with any other Transputer

linked to that router without the message needing to be routed via intermediate

Transputers, relieving the intermediate processors of the burden imposed by other

communications and increasing their efficiency. The NTR-08 allowed up to 8

simultaneous bi-directional communications between its attached entities. More

Transputers could be added by including more routers, permitting large increases in

network size for relatively small latency increases - hence creating a scalable

network. Figure 2 shows a simple routing network utilising NTR-08 routers. The

- 4-

Introduction

communications links of the NTR-08, as with all other routers developed by the

research group, could form independent and concurrent communications channels

between all other links, permitting 8 concurrent bi-directional data transfers.

To other Transputers
and Routers

NTR-08
Router

NTR-08 Router

To other Transputers
and Routers

Key: T - Transputer

Figure 2: Processing nodes interconnected using NTR-08 routers

The NTR-08 was developed further, resulting in the fabrication of a commercial

16-channel dynamic hardware routing switch, the ICR-C416 [9, 20]. This device

demonstrated the efficiency of a routing device as a simple solution to medium scale,

low cost, high performance inter-processor communications. One of its major

applications has been the hub of a control network for QuanteTs CLIPBOX Video

Server [21], The ICR-C416 router formed the backbone of an embedded distributed

multiprocessor system as shown in Figure 3.

Serial OS Links

TransputerTransputer

Transputer Transputer

Transputer

Transputer

ICR-C416
Router

ICR-C416
Router

ICR-C416
Router

Figure 3: ICR-C416 and Transputer Routing Network

Further developments improved the features of the research groups original router,

the NTR-08, via the addition of extra functions resulting in the NTR-M04, a prototype

Introduction

4-channel router. A new function was Multicasting: the ability to support in hardware

the transmission of a message to multiple destinations, whilst simultaneously

supporting other unicast messages [22], Multicasting was added without

compromising existing important features of the router. Other enhancements included

the Split Channel Link, which allowed for effective doubling of link bandwidth [23]

and access to the control port via any of the communication links.

The rapid increase in microprocessor performance was the spur that prompted the

need to upgrade the processors used in the ICR-C416 network in order to keep pace

with other embedded networks. The first generation Transputers were superseded by

the less successful T9000 Transputer family [24, 25], The demise of both generations

of Transputer proved to be the catalyst in switching attention to the design of routing

networks for other processors, whilst maintaining the successful features of the

Transputer parallel network. The main focus was on state-of-the-art Reduced

Instruction Set Computer (RISC) processors [26]. Technology upgrades to both

processors and interconnection networks were also necessary to take advantage of

power consumption improvements, which in embedded networks is of much greater

importance than in large-scale multicomputer systems.

The StrongArm SA-110 microprocessor [27] was chosen to replace the Transputer

in the ICR-C416 network, as it was a low cost, easily available processor offering

state-of-the-art performance. Transputer networks, such as those constructed using

ICR-C416 routers were designed to enable efficient execution of embedded

applications, not to rival high-end supercomputers. The ‘processor node’ architecture

of the ICR-C416 network lends itself to multiple low cost processors. The 32-bit SA-

110 microprocessor can support core and data bus frequencies of up to 233MHz and

66MHz respectively. The processors on-chip cache and write buffer increased average

execution speed and reduced average bandwidth required for memory accesses. This

permitted the memory bus to be used to transfer data to and from the communications

interface, improving throughput, but at a cost of a processor-specific solution.

The transfer of messages to and from the SA-110s memory by the

communications controller was done during periods when the processor is not

accessing the memory using Direct Memory Access (DMA) transfers. Cycle- stealing

-6-

Introduction

DMA is a special hardware arrangement utilising idle processor cycles to transfer data

to and from memory very quickly without the overheads incurred in accessing the I/O

bus [28]. A loosely coupled custom processor interface, utilising the built-in cache

memory of a processor can achieve a highly efficient and seemingly transparent

memory transfer [29]. This is of particular importance in fine-grain computation

systems where the communication tasks of a processor are much larger than the

computation tasks [30].

The research group subsequently developed the StrongArm Router Network

Interface Controller (SARNIC) [31], which was designed to perform the

communication interface for the chosen processor. The research resulted in the design,

development and hardware implementation of . a PLD based interface controller,

integrating a bus-based network interface controller, a memory interface controller

and a processor interface controller in a single chip mounted on a processor node PCB

with dedicated, distributed SDRAM. This interface, the SA-110 and an SDRAM

memory module, formed a StrongArm Router Network (SARNet) processing node

(SARNode), as shown in Figure 4. The SARNode could be used as a building block

in a scaleable distributed parallel processing system, interconnected by ICR-C416

routers.

SDRAM
MEMORY

StrongArm
PROCESSOR.

Memory Address &
I Control Buses

SARNIC
CUSTOM

PROCESSOR
INTERFACE

32-bit
Data
Bus

Control
SignalsCPU

Address Bus
«-----------

Figure 4: SARNode Block Diagram

Introduction

The idea was for the processor node in Figure 4 to directly replace the Transputer

in a parallel router based network, as shown in Figure 5. The purpose of the SARNIC

is to take control of the communications to and from the network, allowing the

processor to devote its resources to program execution.

SARNode SARNode

SARNode

SARNode

SARNode SARNode

ICR-C416
Router

ICR-C416
Router

ICR-C416
Router

Figure 5 : SARNet Routing Network comprising ICR-C416, SARNIC and SA-110

The SARNIC included the following features [17, 32]:

• Minimised processor intervention.

• It attempted to supply continuous data transfer between memory and network

interface whilst utilising minimal buffering.

• A memory bus arbitration system, to guarantee bandwidth for each message

channel whilst minimising any interference in the CPU operation.

• DMA assisted message channels, packetising and depacketising messages in

hardware.

• Two serial communication links doubled the effective network interface

bandwidth. This increased the range of possible network topologies and provided

a backup data path in event of a faulty link.

• Link resource allocation, implemented in hardware instead of software, allowing

hardware virtual channels that can be allocated to either of the two physical

communications links and increasing header-matching efficiency by reducing the

degree of software involvement in this process.

• ICR-C416 compatible control link to monitor communications link status.

Introduction

• Option of booting the interface and real-time processor node reconfiguration

possible via the serial communications link. Internal ROM could also be used to

boot the interface. These options facilitated real-time system reconfiguration.

Whilst the NTR-M04 attempted to address some of the shortcomings of the ICR-

0 4 16, it still utilised a centralised control port, to monitor faults in the event of a

failure. In addition the NTR-M04 had no coherent recovery strategy. The wormhole

routing mechanism [33, 34] (see section 3.2) employed by the ICR-C416 reduced the

message buffering requirements but stretched the message across the network. The

credit based flow control mechanism (see section 4.4.2) employed by the ICR-C416

resulted in a communication link stalling in event of a fault. One part of the message

stalling would result in the rest of the message that follows to stall, as it could not

progress further in the network until resources were free to take the message. Features

such as Adaptive routing [35] and Virtual channels [36] helped other messages to

bypass the network resources occupied by the stalled links but could not free those

resources for use by other messages. Such situations resulted in the effects of a fault

spreading across the network within a very short space of time.

Tolerance to network failure with the ICR-C416 was limited and centred on a

single, centralised monitoring and intervention solution. This had little scalability as

the efficiency decreased as the number of network elements increased [11]. The fault

monitoring and intervention strategy was provided via a separate control port and, as

such, required an extra bi-directional communications link. As the mean time to

failure was high, the solution was acceptable for board level systems, where the

network nodes were situated very close together. As the network could tolerate

transmission distances of over 100m, an extra link becomes proportionately

expensive. The aspects of the design that enhance the systems response to failure must

be conveyed across the data transmission line itself, rather than a dedicated control

link.

A new router was designed with a view to improving the systems response to

failure, in order to form the backbone of a more robust routing network. The NTR-

FTM08 [37, 6] was a prototype 8-channel router with increased fault handling

capabilities, whose aim was to provide a fast response to faults, implementing fault

-9-

Introduction

tolerant functions in hardware, which had previously been performed using software

(if at all). The NTR-FTM08 was designed with a view to containing an integrated

detection method for basic faults, which would isolate them, to minimise their effects

and enable normal network operation in as large a part of the network as possible. The

system would then recover from the failure by removing the faulty message, freeing

the resources held by it and would attempt to re-establish any lost network

connections. The network should be able to recover from failure without requiring

user intervention, whenever possible.

General-purpose microprocessor systems, such as PCs are often better suited to

dealing with diverse applications rather than dedicated tasks such as distributed real

time control. A potential use. for the SARNet is the ability to enhance the

computational abilities of a general-purpose processor by providing the real-time

processing advantages gained through RISC processing. The creation of such a

heterogeneous network required the development of a dedicated interface to connect

to a general-purpose processor and the embedded SARNet system. Commercial

general-purpose processor interfaces have been developed, such as the BBK-PCI [38]

and BBK-PCI Light [39] but these are not aimed at supporting communications

between embedded systems. Such devices are not optimised to the communications

protocols utilised by the SARNet, requiring a software implemented communications

mechanism, introducing extra overheads and reducing the efficiency of the

communications. Embedded system communications are built on a core principle of

efficiency where latency and overheads are minimised to maximise performance.

A custom interface was designed, tested and built, with its communications

optimised for the ICR-C416’s OS Links based routing network and linked to the PCI

bus [40, 41] of a general-purpose computer (for example a PC). This interface, termed

the PCI-OSLi [42, 43] would allow connection to any other network that utilised a

similar PCI interface and allows construction of flexible systems, in terms of wider,

ranges of applications such as that shown in Figure 6.

Introduction

32 Bit PCI Bus

PC PC

p.

SARNode SARNode

SARNodePCI-OS Li

SARNode

PCI-OSLi

ICR-C416
Router

ICR-C416
Router

ICR-C416
Router

Figure 6: SARNet Routing Network with a link to a generic PC via the PCI-OSLi

hardware interface

Additionally, a novel Operating System that supported inter-processor

communications [44] was developed. The operating system addressed some real time

control requirements and was optimised for embedded, distributed parallel processing

system applications. The operating system was complemented by the following two

tools that were developed to aid the user in parallel programming: a Network

Specifier allowed the network mapping to be captured graphically, using the graphic

user interface, and an NTU-Configurer used Artificial Intelligence to generate routing

headers automatically.

1.3 The FT-SARNet Routing Network

As the SARNIC and the PCI-OSLi were developed for use with the OS Link

based protocol of the ICR-C416 these interfaces were incompatible with the NTR-

FTM08, with its protocol aimed at conveying status infonnation across the

communications links, in addition to data. The focus of this project is to implement a

range of features aimed at improving the systems response to faults, into devices

similar to the SARNIC and the PCI-OSLi to enable the construction of an NTR-

FTM08 router network linking StrongArm processors and PCs. These interface

Introduction

devices are called the Fault Tolerant SARNIC (FT-SARNIC) and Fault Tolerant PCI

(FT-PCI-OSLi) respectively.

Fault tolerant in this respect signifies the enhancment of fault detection and

recovery in comparison to the designs resulting from the previous research.

The more robust communications system, which could be constructed with these

devices is called the Fault Tolerant SARNet (referred to hereafter as the FT-SARNet)

and is shown in Figure 7. The ultimate aim of the development of a network with

increased fault tolerance, and its full implementation, including software support, is

beyond the scope of this work. The main building blocks are the NTR-FTM08, the

FT-SARNIC and the FT-PCI-OSLi. The project aims to achieve for the SARNet the

same improvements in the systems fault tolerance that the NTR-FTM08 achieved for

the ICR-C416. The FT-SARNIC and the FT-PCI-OSLi would be vital building blocks

in a StrongArm parallel processing system with enhanced fault tolerance.

i k
32 Bit P Q Bus

PC

FT-SARNode

PC

FT-SARNode

FT-PCI-OSLi

FT-SARNode

FT-PCI-OSLi

NTR-FIM08
Router

NTR-FTM08
Router

NTR-FTM08
Router

Figure 7: Fault Tolerant SARNet Routing Network

The FT-SARNet would ensure that when communications failure occurs, the

effects are confined to as small an area of the network as possible. Initial work on the

project identified the salient features of embedded multiprocessor networks, how

these features affect the potential causes of network failure and methods of recovering

from such failures. Background research involved a review of several types of

hardware failure common to such networks and identified a strategy for detecting,

- 12-

Introduction

isolating and recovering from each of these faults when they occur. This led to a

specification for the FT-PCI-OSLi and FT-SARNIC interface device and an

investigation into how these could be realised in hardware.

A low-level, Register Transfer Level (RTL), VHDL model of the FT-PCI-OSLi

and FT-SARNIC designs were created. The design was described using RTL level

VHDL and partitioned into a modular, top-down hierarchy. VHDL was the chosen

tool for design entry as it allowed developers to obtain information about the designs

functionality with far greater ease than with schematic design entry. VHDL still

provided compilation tools with enough low level information concerning the designs

implementation and functionality. Being a recognised design entry standard, VHDL

allowed portability between different target technologies, such as PLDs, gate arrays

and ASICs as well as between different manufacturers’ families within these

technologies.

VHDL specified design functionality as opposed to implementation, which was

left for interpretation by individual synthesis tools. The development software used

throughout the design cycle was Alteras generic MaxPlus II and Quartus II software,

based on PCs. Model Technology’s ModelSim and Exemplar Logic’s

Leonardo Spectrum synthesis tools were also used. Post-synthesis simulations of the

designs verified their functionality and timing analyses gave an indication of whether

the timing requirements were met before implementation of the device in hardware.

The FT-PCI-OSLi interface design was implemented in a Programmable Logic

Device (PLD). The latest generations of PLD offer a high density of logic functions

with programmable features, and large amounts of programmable embedded memory.

The FT-PCI-OSLi design was not fully optimised. This was to allow for a more

generic solution, which can be targeted towards other PLD families with a minimum

of alterations and to permit further developments. The FT-PCI-OSLi test results

obtained from hardware testing were then compared for those of the PCI-OSLi device,

simulations, predictions, and current research developments.

The FT-SARNIC design was not implemented in hardware due to the significant

hardware developments and software support required evaluating its performance.

- 13-

Introduction

The design is ready for programming onto a PLD and post-synthesis simulations have

been conducted in order to gauge its performance. Identical tests were performed on a

post-synthesis simulation of the original SARNIC design in order to enable

comparisons to be made.

1.4 Key Achievements

The work described in this thesis makes four main original contributions to the

area of research:

• The FT-PCI-OSLi outperformed the PCI-OSLi in terms of efficient use of

communications link bandwidth, due mainly to the adoption of the new flow

control protocol.

• The implementation of a scalable autonomic distributed fault detection and

recovery strategy that devolved responsibility for link monitoring and intervention

to the nodes at either end of the communications link.

• Novel implementation of hardware Virtual Channel capabilities via the use of

Context Addressable Memory [142].

• Significant improvement in the understanding of the host system interface of the

FT-PCI-OSLi and PCI-OSLi devices. This was because previous research during

the development of the PCI-OSLi did not observe the behaviour of the interface to

the same degree of accuracy due to a different measure of DMA transmission

duration being used, leading to a less accurate representation of the DMA

transmission characteristic.

1.5 Structure of the Thesis

Chapter Two gives an overview of the subject area. An introduction to the

relevant inter-processor communications is preceded by a review of the characteristics

of such systems. This review identifies parameters used to characterise network

performance and how they affect this performance, taking into account the

requirements of the target network. Thirdly, three router networks used in multi

Introduction

processor systems, the ICR-C416, the STC-104 and the Myrinet routing networks are

compared and contrasted. Another system, the Reliable Router, is also studied, despite

differing target applications and an alternative approach to the previous three systems,

because it has features which can be applied in the field of distributed fault tolerance.

Finally, the PCI local bus, the interface between the PC and the communications

network, is introduced.

Chapter Three examines fault tolerance from a systems level, investigating some

of the possible faults that can occur in a distributed, asynchronous, multi-router

communications network, why they occur, their effects and possible solutions. The

faults detailed were prevalent in the ICR-C416 based router network. The protocol of

the NTR-FTM08 based router network has provided the ability to detect and recover

from, or in certain cases, prevent these faults. Firstly, the concept of network failure is

discussed. Secondly, a study of the different types of network failure covered by the

FT-SARNet network protocol is undertaken. Finally, the fault detection and recovery

mechanisms in the three router networks under review are discussed.

Chapter Four discusses the FT-SARNIC and FT-PCI-OSLi interface designs from

both theoretical and functional levels. It builds on chapter 3 by describing the means

by which the features aimed at improving the systems tolerance to faults discussed in

that chapter are to be realised. The chapter begins with a review of the design

strengths of the SARNIC and PCI-OSLi interfaces and specifies the requirements for

the FT-SARNIC and FT-PCI-OSLi devices. The areas of the design that require

improvement in order to realise the fault tolerant features are researched and

discussed. A synthesis review looks at the target technology of the FT-PCI-OSLi and

how it contributes to the realisation of this device. The results from the synthesis of

this design on to the target device, in terms of resource usage, timing analysis and

power consumption are detailed and analysed in retrospect.

Chapter Five discusses the FT-SARNIC and FT-PCI-OSLi designs on a modular

basis and identifies the functions performed by each module. Both designs are broken

down in order of their modular hierarchy, with details of the functionality of each

module, how they fit into the design and to which modules each interfaces.

Introduction

Chapter Six includes results and details of the tests performed to obtain these.

Post-synthesis simulations of the FT-SARNIC design are contrasted with comparative

tests performed on a post-synthesis simulation of the SARNIC and with the estimated

theoretical performance of the FT-SARNIC. Results obtained from the hardware

testing of the FT-PCI-OSLi design are compared with results obtained from

comparative hardware tests performed on identical hardware on the PCI-OSLi design

and are also contrasted with the estimated theoretical performance of the FT-PCI-

OSLi.

Chapter Seven discusses the implications of the results and the effects of the

interfaces on the network performance. Several key points that affect the performance

of the FT-SARNIC and FT-PCI-OSLi interfaces are discussed and compared, both

between the interface devices and their non-fault tolerant predecessors and, in the case

of the FT-PCI-OSLi, with commercially available IP.

Chapter 8 concludes the thesis, noting the achievements of the research and

summarising how the addition of distributed system-wide fault tolerance expands on

the previous interprocessor communications network. Finally, it details potential

avenues of further work.

Technology Review

2 TECHNOLOGY REVIEW

2.1 Fundamental Principles of Interprocessor Communications

Three of the main characteristics used to define the overall performance of the

communications in embedded real time parallel systems are efficiency, scalability and

reliability.

• Efficiency defines how the system performs relative to the theoretical maximum.

As discussed previously, performance is often a key requirement in embedded

applications.

• Scalability dictates the ease with which the system can expand and thus

determines its flexibility in handling a wide range of applications and network

configurations.

• Reliability determines the robustness and stability of a system [45]. A crucial

factor given the inaccessibility of some embedded networks and their use in safety

critical applications, such as those used in the aerospace industry.

2.1.1 Efficiency

An efficient inter-processor communications model could be said to be one

capable of performing communications duties without reducing its computational

abilities significantly. A solitary processor can dedicate most of its processing power

towards computational tasks, as it is not required to communicate with any other

entities. The addition to the network of other communicating entities requires the

processor to dedicate an increasing proportion of its processing power towards

communication tasks, to the detriment of its computational capabilities.

A processor’s performance depends on the compute : communicate ratio [14],

which expresses the amount of communication overhead associated with each

computation. Some programmes opt for coarse grain computation methods, reducing

communications where possible in the interests of boosting computational throughput.

Such an approach results in tasks that could be executed in parallel on multiple nodes

17

Technology Review

being executed sequentially on a single node, reducing the amount of parallelism and

therefore defeating the object of parallel processing. Ultimately this leads to a

reduction in efficiency as it takes longer to perform tasks sequentially and also

because this approach leads to task duplication as data is not shared between

processors. Others opt for fine grain parallelism, utilising large and complex

communication networks to ensure that communications bottlenecks do not occur and

devolving communications tasks to a communications co-processor to alleviate the

microprocessor of some of the communications related overheads.

The efficiency of a systems inter-processor communications is often gauged by

assessing the three parameters of bandwidth, latency and processor overhead.

2.1.1.1 Bandwidth

Bandwidth indicates the maximum amount of information that can be transferred

across a communications medium in a given time and is often seen, rightly or

wrongly, as the vital parameter in assessing the performance of a communications

system [11]. The bandwidth of a communications network is primarily determined by

the maximum clock rate at which the system can run without causing timing

problems. Whilst a higher bandwidth communications medium allows faster data

transfer, an inter-processor communication can only operate at the speed of the

slowest component. As cost limits the available network bandwidth, protocol

efficiency, in terms of the number of message bits relative to the raw network

bandwidth, is crucial.

The bandwidth of the interconnection network should be high enough to prevent

the communications network becoming the bottleneck of the system. An excessively

high network bandwidth would be a waste of resources [45]. A high bandwidth,

whilst being desirable, can lead to an increased number of transactions to and from

memory in a given time (assuming that the processor is fast enough) and care must be

taken to ensure that the incursion of overheads on the processors memoiy bus is not

excessive. The maximum clock rate of the network depends on its implementation on

silicon. Advances in silicon fabrication technology have led to a reduction in feature

sizes, allowing designs to occupy less area than before, reducing the skew limitations

Technology Review

on clock speeds. The performance bottleneck of a circuit can be located with the aid

of timing analysis by revealing the longest delay path between two clocked signals.

Extra design effort in the areas identified can yield performance benefits.

2.1.1.2 Latency

The definition of latency is the time taken to transfer an empty message between

source and destination [46]. Latency depends on the ‘background’ processes that are

required in order to prepare the medium for the proposed message transfer. The

latency in a communications interface is due to the overheads incurred in the setting

up and receipt of a message transfer. When the transfer has been initiated, the data

must pass through the transmission circuitry before it is outputted onto the

transmission medium. Whilst this happens the transmission line is idle, reducing the

efficiency of the communication and lowering the actual bandwidth from its

theoretical maximum.

Network latency depends on the latency of the communications interfaces, their

speed and the number of stages or hops the message must traverse in order to reach its

destination. Bus based systems have low latency as there is only one stage between

source and destination although access contention increases this significantly. Early

switch based systems, utilising store and forward routing, incurred large latencies but

the introduction of wormhole [47] and virtual cut through [48] routing methodologies

have reduced hop related latency dependencies significantly. The latency of a device

can also be reduced with the aid of considered circuit design and logic optimisation.

Techniques such as pipelining can allow data to progress through the circuit more

rapidly. Simplification and a reduction in clocked logic can also reduce latency but

care must be taken to avoid timing problems associated with the latter.

Latency is an important factor for short communications such as control,

synchronisation, acknowledgement and error signals as the latency incurred is large in

comparison to the data contents of such transmissions. Sending multiple short

messages is less efficient than sending one long message, as each message incurs its

own latency period [45]. In short, a high bandwidth system with high latency can be

Technology Review

less efficient and thus have a lower throughput than a slower system with lower

latency.

Real time applications require deterministic latency, in particular worst case

scenarios to ensure that the process is completed within the given time despite such

delay [11].

2.1.1.3 Processor Overhead

Communications related processor overhead is the time the processor dedicates to

initiating or receiving a message. The latency of current communications is affected

directly and contributes obliquely to those of subsequent communications. The design

of the network interface hardware directly affects the overhead as it dictates to what

extent communications related functions are off-loaded from the processor and thus

the overlap between computation and communication tasks. This is best achieved via

the use of a communications co-processor, freeing the processor to concentrate on

program execution. A communications co-processor takes control of the tasks

involved in transferring data to and from the communications network formats it

appropriately and transfers it to memory where it is fetched when needed by the

processor. Software overheads can also be reduced with the relatively recent

introduction of direct support for communications at the user level [49, 50].

2.1.2 Scalability

A system can be said to be scaleable if it is able to retain its efficiency as it

expands in size [11]. It dictates the ease with which a system can tolerate alterations

to the number of processing elements and the arrangement of these which may occur

as a result of a change in application. Scalability is affected by network topology [45]

and it affects flexibility, which is an important consideration, given factors such as the

cost, durability, lifespan and time and effort that are put into selecting, installing and

maintaining a multiprocessor network. An architecture is said to be scaleable if it

continues to yield performance increases in proportion to the number of processors in

the network, whether that number is two or two hundred. Expansion should be

Technology Review

possible with minimal disruption to the system, ideally involving as few alterations as

possible to both the system’s hardware and software.

Scalability is also important as it affects the access to the resources required by the

network’s constituent nodes. As the number of nodes in the system increases, the

amount of access each node has to the resources of the system decreases. This leads to

the formation of performance bottlenecks, hence, reducing the efficiency of the

system. The demand for scalability has led to a design philosophy in which no single

resource is assumed to be in restricted supply [51]. This is achievable by replicating

the resource that is in demand. For example, shared memory becomes a performance

bottleneck in systems that utilise this method of data storage. Providing multiple

memory stores increases the effective amount of memory bandwidth per processor

and distributed memory guarantees the bandwidth for each processor irrespective of

the network size.

Scalability is highly desirable in real time embedded parallel communications due

to the need to guarantee task completion within a given time frame.

2.1.3 Reliability

Reliability is crucial to achieving an efficient communications medium. The

system must ensure the integrity of both the communications medium and the

information transmitted over it. Reliability can be defined as the probability of correct

system operation occurring for a long enough time for the system to be useful [52].

There are several other terms in addition to the likelihood of the system ceasing to

perform its function [45]. These include:

• Availability: The measure of how much of the system will be affected by faults. A

more available system experiences minimal network ‘down-time’ following

faults.

• Performability: Quantifies to what extent the systems performance is degraded by

the occurrence of faults. A more performable system loses less of its capabilities

following a fault.

Technology Review

• Maintainability: Measures the ease with which faults can be corrected. A more

maintainable system can recover from faults more easily.

Interconnection failure will result in messages arriving either with errors or not at

all. The former scenario can be detected via the use of error detection algorithms such

as parity or checksum bytes. Error correction mechanisms can also be employed to

ensure that erroneous data can be detected and amended without requiring

retransmission. Communications protocols such as Bluetooth [53] employ 1/3 rate

foiward error correction (FEC) [54] which involves transmitting each data bit three

times and interpreting the most common logic level as the correct one. In the case of

wireless protocols such as Bluetooth, this is because free space transmission is more

prone to interference.

The probability of single bit errors in the target network is of the order of 1.74 x

10~12 and 9.76 x 10"13 for OS link speeds of 10 Mbits/s and 20 Mbits/s respectively

[55]. This was considered low enough for error detection and / or correction codes to

be an excessive overhead / use of bandwidth.

Disconnected links and failed processors affect all transmissions and can be

detected using time-outs or acknowledge tokens, which also incur overheads. A

system may be robust enough to get faults very infrequently but failure can always

occur and it is impossible to achieve a truly error free medium. Consideration must be

given as to the appropriate response after the occurrence of a fault.

Faults must firstly be detected: detecting errors using parity or cyclic redundancy

checks (CRC) once the message has been retrieved from the multiprocessor network

can be ineffective, as such error checksums are usually appended to the tail of the

message. In multi-router networks, ordering a message retransmission is impractical

as the receiving node does not have the origin of the erroneous message and therefore

does not know where to make the request. In addition, by the time the error is detected

at the receiver, the transmitting node is already executing another task and would need

to ‘step back’ to the task involving the transmission of the erroneous message, which

may be impractical. A better solution would be to flush the erroneous message from

the system before it causes further problems, such as when a processor attempts to

process the faulty data.

Technology Review

Following detection, the next stage involves isolating the error to prevent its

effects from disrupting the system. If the fault cannot be isolated, the entire network
may need to be reset (which is always viewed as a last resort as it is more desirable to

maintain system operation, even if part of the system is unusable due to the fault). It is

then necessary to enable the system to recover to a normal operational state, often

initiated by the user. Convenience dictates that it is far more efficient to have a system

capable of resetting itself, as it is impractical to expect the user to be on standby to

perform such a task that occurs rarely. Despite this, resetting the entire multiprocessor

network, irrespective of whether or not it is performed automatically or otherwise,

causes significant disruption. Network down-time can be significantly reduced if the

effects of the fault can be localised, allowing the remainder of the network to continue

functioning whilst the affected entities are restored to an operational state, via

automatic reset.

This research recognised that there is more to system reliability than minimising

the occurrence of failure and that the manner in which such failures are handled can

be just as influential to a system’s reliability as the frequency with which they occur.

The probability of failure can be minimised, but not eradicated and a network with an

effective error detection, isolation and recovery mechanism can operate more

efficiently and with less network down time, than a network with a lower frequency of

failure but also possessing a less effective error handling procedure.

2.2 Characteristics of Interprocessor Communications Networks

2.2.1 Shared and Distributed Memory Multiprocessor Systems

The efficiency of an embedded multiprocessor processing system is affected in

part by the need to provide the computational elements (processors) with the correct

data for manipulation in time for it to be processed. The data must be stored elsewhere

before and after manipulation to allow the processor to work on the next task. This

storage usually takes the form of some sort of memory. A processing element must be

able to gain fast access to the required information in memory. There are two different

ways of using a systems memory to achieve this, dependent on the systems

requirements. These are Shared and Distributed memory.

-23-

Technology Review

Shared memory systems contain a single, centralised memory resource that can be

accessed by any processor. This offers fast transfer of information with very low

latency, as all information is only a single memory access away. As it is a shared

resource, it suffers from a lack of scalability. As more entities have access to the

memory, each has access to it for less time, reducing the effective bandwidth of each

node. Another disadvantage is shared resources require careful access arbitration in

the form of some sort of central arbiter to prevent any user from monopolising

memory access at the expense of others. This must manage access to the resource,

synchronise tasks and resolve access contentions. Programmers must take care to

ensure that multiple resources are not attempting to access memory simultaneously as

this will lead to processors wasting bandwidth as they stand idle whilst waiting for

data from memory. Memory bus management in shared memory systems must be

performed efficiently in order to maximise available bandwidth and to prevent

memory access becoming the performance bottleneck of the system. Scalability is

ultimately controlled by the nature of the communications medium.

The largest problem encountered with memory that is shared amongst multiple

processors is that of data validity. As every processor can access all memory

locations, there is no way for a processor to know whether another processor has

modified memory location contents.

Distributed memory affords each processing node a dedicated memory resource,

to have direct and unlimited access to, thus requiring no arbitration. This allows for a

flexible and scalable solution as the effective bandwidth of each node remains

constant, irrespective of network size, topology or architecture. The principle behind

this method is a processor will access its own memory far more frequently than it will

need to access the memory of another processor. As parallel processing is based on

the division of labour between multiple computational elements, such a situation is

highly probable as process’s input variables can depend on the output of a previous

process. When this occurs, the required data must be passed between processing

nodes in the form of messages. Message passing solves many of the problems

incurred by shared memory, as proven by Hoare [13] but can suffer from increased

latency depending on the length of the message path. Such a solution can require the

programmer to be aware of which messages need sending between which processors

Technology Review

and must ensure that the receiver does not stall while waiting for them. The research

described here is concerned with the development of new protocols with the aim of

reducing message latency and increasing reliability.

There also exist hybrid systems, such as the Cray T3D [56], which have logically

shared memory whilst having a distributed memory architecture. Shared data is

moved around the system on a high-speed 3 dimensional Torus interconnect [57] (a

popular distributed memory architecture) similar to the cache or virtual memory

operations of recent mainstream processor’s systems. This system allows the software

designer to think of the processors as sharing memory, whilst the network gains all

the benefits scalability offers. Such systems are aimed at the higher end of the

distributed systems market and lack other factors such as flexibility, efficiency and

cost offered by smaller scale parallel and distributed systems.

Real time embedded multiprocessor applications typically utilise distributed

memory, to allocate storage to each processor for data unique to that node, utilising

interprocessor communications to transport data required by other nodes. Real time

applications cannot afford to hold up task execution due to memory access contention.

Whilst the efficiency of memory access is important, the means by which it is

transported to and from memory also plays a part in the performance of interprocessor

communications.

2.2.2 Serial Vs Parallel Communication Links

As microprocessor technology has developed over the past few years, the width of

the microprocessors data bus has increased from 8 through 16 and 32, to 64 bits wide.

The decision on the optimum width of the communications links between processors

depends on many factors, such as the network topology, architecture, speed,

application and cost. Physically distributed systems minimise cost and clock skew,

which can adversely affect speed, by utilising serial based communications.

Embedded networks that occupy a very small space, for example communicating

nodes situated on the same PCB, may benefit from parallel interconnections. Data

throughput, a key feature in many embedded systems, is maximised by sending as

much data in parallel as is practical.

Technology Review

As clock speeds increase, synchronisation of the parallel data becomes harder as

set-up times fall. This highlights an advantage of asynchronous communications,

which are more suited to high-speed serial communications. Asynchronous data

requires either an encoded clock signal to be sent with the data [58, 59] or receiver

over-sampling at a higher data rate to recover the data [60]. Parallel communication

links result in increasingly complex circuit board design and increased wiring space

and costs, important factors in embedded system design. Whilst the medium used to

transport data (serial or parallel) is important, one must also consider how the medium

is utilised in terms of how data travels from inception to destination in the most

efficient fashion.

2.2.3 Bus and Switch Based Network Topologies

Early embedded multiprocessor systems generally had a static or predefined

network layout [5, 56] and used point-to-point connections between processors. The

number of entities a processor could connect to depended on the numbers of

communications links it possessed, a factor limited by practicalities, available silicon

area and cost. Such networks were suited to particular applications dependent on the

number of communications links per node. As this parameter could not be altered,

there was little scope for flexibility, making these networks application specific.

Regular network topologies benefited from reductions in cost and complexity but

were only suitable for systems with specific communications patterns. An example of

such a network [57] is shown in Figure 8. The processing entities are arranged in a 2

dimensional ‘mesh’ topology to which each entity can connect 4 adjacent nodes via

its communications links. Communications to other nodes must be forwarded via

these and any other processors on the desired communication path. Early embedded

networks used such ‘store-and-forward’ mechanisms. A message travelling from node

1 to node 16, say, must be sent via 5 intermediate nodes, all of which must dedicate

time and effort to forwarding this message instead of dealing with their own tasks. It

is more desirable to have a dynamic network in which nodes can be placed anywhere

in the system to suit the intended application. Such networks require arbiters or

switches to make the decisions relating to routing messages to their required

destination.

-26-

Technology Review

Figure 8: 2-Dimensional ‘Mesh ’ Network Topology

Some multiprocessor systems use a global shared bus communications medium

where only one communication can take place at any one time [50]. All nodes can

access data on the bus, providing an effective means of transferring information to

multiple entities simultaneously. A central arbiter is required to grant access to the

bus. Some models, such as the PCI bus [20, 21], utilise a bus-mastering technique,

whereby the node wishing to initiate a data transfer must first acquire ownership of

the bus. Bus users are polled in turn on a ‘round robin’ basis to make requests for bus

ownership.

Some systems, such as Ethernet [61, 62, 63], attempt to start bus access, only

stopping when bus contention is encountered. A Carrier Sense, Multiple Access /

Collision Detect (CSMA/CD) protocol is used, whereby on bus contention (where two

or more nodes attempt to gain control of the bus simultaneously) both nodes suspend

bus access for a period of time before attempting to re-establish control of the bus. All

nodes can master the idle bus with the first one to do so gaining control of it and the

other nodes must wait until this node has finished the bus transfer, before attempting

to access the bus again. This approach wastes bandwidth and leads to low efficiency,

which can be a valuable commodity in bus based systems.

Technology Review

A more suitable shared medium based protocol for real time embedded

applications is that of Reservation Carrier Sense Multiple Access with Collision

Avoidance (RCSMA/CA) [64]. Access contentions are detected in the same way as in

CSMA/CD but the contention slot is allocated to a transmitting node instead of

allowing the bus to idle. This combines the benefits of the predictable performance

token-based protocols, inefficient in light traffic conditions, with CSMA/CD, which is

a poor choice for real time systems under heavy traffic conditions.

Bus systems usually suit closely coupled processor nodes. Networks utilising

buses as a communications medium usually position nodes that access the bus

physically close together as there is often a limited transmission distance. This is due

to propagation delays on the arbitration signals wasting valuable bandwidth. Buses

often operate in parallel, achieving very high bandwidth. This bandwidth must be

shared amongst all the entities that can access the system, resulting in each having an

effective bandwidth that is inversely proportional to the number of entities that can

access the bus. This often results in bus access becoming the system bottleneck and as

such bus networks do not scale well. Bus systems are low cost and offer low latency

for closely coupled processors. The scalability and contention issues make buses less

suitable for real time embedded multiprocessor communications as access cannot be

guaranteed under heavy network traffic conditions. An additional disadvantage of bus

based multiprocessor systems is the lack of tolerance to faults due to the

communications medium becoming the single point of failure with the probability of

failure increasing with the number of entities attached to the bus [45].

Point to point networks offer guaranteed bandwidth and low latency between two

communicating entities due to the formation of an exclusive link between them. Point

to point connections require no arbitration and cannot have access conflicts as there is

only one message channel per physical link. The disadvantage of these is that

optimally, every node would require a link to every other node in the network, which

is unrealistic as the network size increases, due to extra resources being needed. For

example, a network with n nodes requires each node to have n-1 communications

channels in order to communicate with every other node in the network. This is an

extremely inefficient use of communications resources, as any given processor will

not be required to send messages to any other processor at any one time. Whilst point

to point communications links are impractical for use in larger networks, they have

Technology Review

been used effectively in the 3D Torus [57] topology used by the DEC Alpha Cray

T3D supercomputer [56]. A more simple and cost effective method of achieving point

to point links between two processor nodes is to utilise a switched network.

‘ Store-and-forward’ communications methodologies reduce the efficiency of

intermediate nodes, as they must devote time and resources to receiving, storing and

forwarding the message that would normally be devoted to program execution. Multi

hop communications that traverse more than one link, between the message origin and

destination, incur massive latency increases compared to messages that only traverse a

single link. This is due to the delay increasing proportionally for each link, plus delay

incurred at each forwarding node.

Switched networks use message routing devices (routers) to pass messages

throughout the network and allow for simultaneous transfer of messages, provided

there is no contention for the destination node. No direct route exist between

processors, with all communications routed via the router, allowing an entity with a

single communications link connected to an n channel router to communicate with n-1

other nodes. Adding more routers allows the network to scale exponentially whilst

adding only one ‘router-hop’ or Rhop [23] per router. Routers utilising the full-

crossbar architecture [65] allow n/2 bi-directional communications transactions to

take place simultaneously, provided there is no contention for destinations, as shown

in Figure 9. Switched networks scale well, guaranteeing bandwidth irrespective of

network size or topology. System complexity increases exponentially as the number

of connections increase and latency is worse than that encountered in bus based

systems but better than that of the point to point networks. Tight and loosely coupled

systems are supported equally well. Routing permits flexible or irregular networks to

be formed where network layout is independent of size and application. Advances in

silicon technology have enabled switching devices to be developed more easily than

ever before and have aided research into network communications, much of which

was aimed at switching topologies.

-29-

Technology Review

SARNet
Processor
Nodes

ICR-C416
7 16 channel
I hardware
I router

Path of Bi-directional
message between 2
processing nodes,
showing the ability to
route 8 separate 2 way
message transfers
provided there is no
contention for outputs

Figure 9: ICR-C41616 Channel hardware router

2.2.4 Tightly Coupled Vs Loosely Coupled Processor Interfaces

The terms ‘tightly-coupled’ and ‘loosely-coupled’ refer to the level of integration

between the processor and the interface with the communications network and

represents a trade off between system performance and adaptability. Higher

bandwidth and lower latency can be achieved by implementing the host system

adapter of the network interface onto the same silicon as the processor itself.

Processing nodes that utilise such a ‘tight’ approach include Transputers, iWarp [66,

67] and MDP [68]. Closely coupled communications may seem desirable, particularly

in compact embedded applications where space is at a premium, until one takes into

consideration the rapid pace of development in the microprocessor market. Advances

in the network interface must track those of the processor in order to prevent the

interface becoming the performance bottleneck of the system. Enhancements to either

the processor or interface may or may not require modifications to the other device,

but if both are implemented on the same silicon, the layout for both must be

redesigned. A loosely coupled processor interface allows the designer to utilise IP

-30-

Technology Review

when upgrading either device. Recent advances in PLD technology have resulted in

software based processor core [69] implementation with the remaining logic resources

devoted to the design of an easily modifiable tightly coupled processor interface.

Closely coupled communications are often suited to parallel bus based

interconnections whilst loosely coupled systems are often targeted towards serial

links, subject to bandwidth availability.

The success of a tightly coupled processor interface is measured in its efficiency.

As a rule, greater performance is achieved through closer integration between the

processor and the interface, but at a cost of lack of flexibility. Interfacing to the

processor memory bus or its cache controller can integrate the processor and network

interfaces more closely. There are other methods of increasing performance without

sacrificing flexibility, such as alterations to the interface medium.

2.2.5 I/O Bus Based Interfaces Vs Memory Bus Based Interfaces

A network interface can connect to the microprocessor and its memory via either

the system I/O bus or the system memory bus. The I/O bus connection allows the
interface, and thus the network, to be connected to any processor with such an I/O

bus, affording close tracking of processor technology. This is a particularly favourable

solution when interfacing PC’s / workstations to the communications network. I/O

bus based systems can also be developed relatively inexpensively in comparison to

network interfaces utilising proprietary system adapters. The disadvantage of such an

interconnection strategy is the competition for I/O bus access with other users of the

bus. If the interface is unable to obtain a fixed interval bandwidth from the I/O bus

arbiter, the data throughput of the interface will be compromised. Additionally the

performance of the I/O bridge, responsible for handling I/O bus transactions, is

variable due to wide variations in overhead, bandwidth, and hence latency, between

different PC chipsets. Despite such vague implementation parameters, many recent

parallel systems, such as Myrinet [70] and SHRIMP [71], use I/O bus based interfaces

due to the flexibility obtained from using current, state-of-the-art, low cost, easily

upgradeable PC / Workstation processing elements in such systems.

Technology Review

A system utilising the processors memory bus, as its connection between the

processor and network interface, forms a more tightly coupled architecture than that

of the I/O bus based system, even if the processor and interface are physically

distributed on separate IC’s. The performance is enhanced for three reasons:

• Messages originate from, or are destined for, memory that is accessed via the

memory bus. Overheads are reduced if the message does not require transferring

from the I/O bus to the memory bus, thus reducing latency.

• The memory bus normally operates at a higher data rate than the I/O bus, boosting

bandwidth.

• The memory bus usually has fewer devices accessing it, thus reducing bus

contention.

Memory bus based systems can be viewed as a compromise between the tightly

coupled integrated processor systems where the processor and interface occupy the

same IC, and the loosely coupled I/O bus based systems, as they afford both

performance gains and flexibility. A disadvantage of memory bus based systems is

that they must not impede the processors access to the memory bus, as this would

affect the processor efficiency. Cycle stealing DMA is often used by such systems to

access memory as it utilises unused processor cycles, minimises bus congestion and

increases efficiency despite incurring initial overheads. Tailoring individual accesses

to the transfer size with burst mode DMA can make further gains in efficiency. The

MAGIC network controller, utilised in the FLASH multiprocessor [72], utilised the

closeness of communications provided by a memory bus based network interface

whilst maintaining flexible support for both message passing and shared memory

models, with little performance loss [73].

2.3 Hardware Router System Comparison

2.3.1 ICR-C416 Based Systems

The ICR-C416 is a 16-channel dynamic hardware routing switch developed by the

parallel processing research group at The Nottingham Trent University and

subsequently marketed by IC Routing Ltd for use in distributed control applications

Technology Review

requiring fast and flexible connections between first generation Transputers [5]. The

router switch architecture allows up to 8 simultaneous bi-directional messages,

provided there is no resource contention. Each of the 16 links consists of a pair of

serial, asynchronous, full duplex lines transferring data at rates of either 10 or 20Mbits

per second. As data transfer is asynchronous, no clock information is encoded into the

data stream and the receiving node uses an over-sampling (OS) technique to recover

the data. Data is transmitted to and from the router in token form, with each token

consisting of 11 bits. These are: a logic 1 Start bit, logic 1 ID bit, a data byte and a

logic 0 Stop bit. The communication links employ a credit-based stop-and-wait flow

control mechanism, requiring the acknowledgement of every token before the next
can be transmitted. The 2-bit acknowledgement token consists of a logic 1 Start bit

followed by logic 0 ID bit.

The maximum theoretical unidirectional data throughput is 14.55Mbits/s or

1.82MBytes/s at a 20Mbits/s data rate [74]. Bi-directional data requires the

acknowledge tokens to be inserted into the bit-stream between data tokens and
increases the number of bits that need to be transmitted over the communications link

in order to convey a byte of information, referred to hereafter as ‘bits per byte’, from

11 to 13. In theory, this gives a maximum bi-directional data throughput of

3.08MBytes/s at 20Mbits/s but in practice the system has been shown to take up to 17

bits per byte [5]. This parameter is dependent on factors such as transmission length,

network traffic and receiver buffer status. Messages in the ICR-C416 network are

divided into 256 byte packets. The maximum message length is 64kBytes.

The packet format of the ICR-C416 system adheres to a Header, Length, Payload

format. Headers can be multiple bytes with one routing header for each of the routers

that the message passes through and one message header to identify to which message

that packet belongs. Routing headers are stripped as the message traverses the router

network and the last header byte is identified by an MSB of 0, indicating to the

receiver that the next byte contains the length information for that packet. The router

network utilises wormhole routing to minimise buffering requirements.

The ICR-C416 could not transmit link status information within the data stream,

relying on a control port to monitor faults. This utilised a bi-directional OS link

channel separate from the data stream. The control ports enabled a network controller

-33-

Technology Review

to configure, monitor and control the devices. A basic mechanism for detecting stalled

messages was achievable, whose response to such faults was to issue a global reset.

This approach did not scale well due to its design being targeted towards single router

networks. The controller required a dedicated link to each router and interface in the

network, requiring increased overheads, circuit complexity and a proportionate

increase in fault detection and intervention times as the network scaled. The dedicated

link was required because the data transmitted along the control link was not

packetised and, as such information from one source was not distinguishable from

another.

In summary, the ICR-C416 is a simple, flexible, low cost solution for

interprocessor communications for irregular embedded networks. It operates at a

slower link speed than many comparable networks but its generic format suits many

applications. Minimal wiring and low pin counts are considered advantageous in

physically distributed networks. When differential transceiver circuits are fitted, the

network has been proved to operate with a bit error rate of 3.6 x 10'12 at a data rate of

44Mbits/s over 100m of Cat 5 unshielded twisted pair cable [75].

2.3.2 STC-104 Based Systems

The STC-104 [76, 77] was developed by SGS-Thomson as a routing switch aimed

at the second generation T9000 Transputer series. It has 32 bi-directional serial

communications channels and each channel consists of two pairs of serial, full duplex

links, one pair per direction. The links utilise the Data Strobe (DS) links protocol,

doubling the wiring requirements for each channel. The Data and Strobe lines carry

data together with an encoded clock signal used by the receiving node to synchronise

incoming data. Data rates of up to lOOMbits/s are achievable. Data tokens are 10 bits

long, consisting of a parity bit, a logic 0 ID bit and a data byte. Four bit long control

tokens consist of a parity bit, logic 1 ID bit and two bits determining the nature of the

control token. Theoretically a maximum unidirectional data rate of 80Mbits/s or

lOMBytes/s is achievable.

Like the ICR-C416, a credit based stop and wait mechanism is utilised but the

number of tokens that can be sent before an acknowledgement token is required is

Technology Review

increased from 1 to 8, permitting a maximum bi-directional bandwidth of

19.05MBytes/s. Messages can be split into packets but there is no limitation on

packet size. Messages and packets follow the Header, Payload, Termination token

format, with the latter indicating either end of message or packet. Message movement

inside the router utilises virtual channels [78] and transfers along these channels

require acknowledgement. Unlike the ICR-C416, which possessed little hardware

error detection, the STC-104 checks the parity of each token and the DS links provide

an inherent disconnection error detection mechanism, as either the data or strobe lines

must change state every clock cycle. These oscillations occur even when there is no

data to transmit increasing power consumption.

In summary, the STC-104 was one of the highest performance routers available

and has managed to remain in demand long after the demise of the T9000, due to the

DS links protocol being incorporated into the IEEE-1355 standard [79]. DS links are

aimed at systems with distances between nodes of up to 1 metre, increasing to 10

metres if differential drivers are used and 500 metres with fibre optics.

2.3.3 Myrinet Based Systems

Myrinet, developed by Myricom [80, 81], is a switched network originally

designed for use within Massively Parallel Processor (MPP) systems. Myrinet built

upon the results of two earlier research projects; the Caltech Mosaic multicomputer

[82], and the ATOMIC LAN, [83, 84] which comprised Mosaic components. The

ATOMIC LAN had some similarities with the ICR-C416 network, most notably, the

adoption of the credit based flow control mechanism. Like the other two routers

examined, wormhole routing is utilised and devices are available with 4, 8, 16 or 32

bi-directional communication channels. A single channel consists of 9 foil duplex

pairs of wires, transferring data in parallel at a frequency of 80MHz, or 720Mbits/s

per channel. A Myrinet message consists of a series of 9 bit parallel characters, with

each character being either an 8 bit data byte or 5 bit control token. No start or stop

bits are required, boosting bandwidth efficiency further. This gives a maximum

unidirectional data throughput of 640Mbits/s. A foil duplex pair of 640Mbits/s

channels is referred to as a 1.28Gbits/s link. 10 and 100 Base-T Ethernet use such

-35-

Technology Review

figures to determine bandwidth despite the fact that Ethernet channels only transfer

data in one direction at any one time [30].

Interprocessor communications in Myrinet systems are asynchronous, with

receivers employing a pipeline-synchroniser circuit [85] to recover the data.

Cumulative signal skew effects limit the maximum distance between nodes to 25m for

cable connections but fibre optics enable the realisation of more physically remote

systems. Non-retum-to-zero (NRZ) encoding and a sampling window technique

enable bit error rates of the order of 10'15 over 25m cables to be achieved. The worst

case (path formation) latency through an 8 port router is quoted as 550ns [30].

Unlike the ICR-C416 and STC-104 systems, Myrinet utilises a permission based

flow control mechanism that does not require acknowledgement of characters before

transmission of the next character can begin. This approach allows back-to-back data

transmission to be achieved and, if receiver buffer throughput is maintained bi

directional data rates of 160MBytes/s are achievable. The packet fonnat is similar to

that used by the STC-104, which is Header, Payload, and Termination (the

termination can also contain a CRC checksum). The header can be of variable length

and follows the same technique as the ICR-C416 to denote end of header, with the last

header character indicated by an MSB of 0 instead of 1. Header stripping techniques

are employed at each router. Fault detection and correction exists in the form of a

50ms link time-out period after which a Forward Reset (FRES) token reinitialises the

link. Myrinet offers very high bandwidth in comparison to the other systems studied

due to the parallel nature of communications, but at a cost of increased wiring and

connections (a single 32 port switch has over 900 pins).

2.3.3.1 M yrinet/PCIHost Interface

The Myrinet system is of particular interest as it possesses commercial interface

hardware to link PCs / workstations to Myrinet routers. The interface contains a

custom designed processor [81], host system interface and memoiy. The processor

can be programmed to handle different communication protocols. The interface

significantly reduces the PC’s involvement in packet transmission to achieve low-

latency communications.

-36-

Technology Review

2.3.4 The Reliable Router

The Reliable Router [86] was designed solely for use in high performance parallel

systems, as were its contemporaries, the Chaos router [87], and the WARRP [88].

Whilst its target applications are very different to those of the Transputer based

networks studies, it is worth noting for its refinements in features and functionality.

The Reliable Router utilised 28 transmission lines per bi-directional channel,

including 16 data lines, 8 control lines and 4 clock lines. The links were bi-directional

to reduce the pin count, but permitting communications in one direction only at any

one time. To compensate for this the links were capable of operating at bit rates of up

to 3.2 Gbits/s, utilising a streamlined switching technique to maximise throughput and

minimise delay along the message path. The Reliable Router was designed for board

level or backplane level systems, where the distance between nodes was minimal due

to the network being targeted at very high bandwidth parallel processing applications.

Plesiochronous data recovery [89] was employed, the transmitting clock was sent with

the data, then decoded and used to read the received data.

Unlike the ICR-C416 based system, which thrived on a minimal protocol, the

Reliable Router utilised a complex data format required in very high bandwidth

systems. Data transfer occurred in parallel, but four consecutive transfers were used to

assemble a ‘frame’ of data. Each frame included 16 bits of data plus 8 control bits,

three of which were parity, one for each data byte, one for control information. This

may seem excessive, but it should be considered that the bit rates and synchronisation

techniques of the Reliable Router were revolutionary at the time. The Reliable Router

had four channels plus one control channel, with each physical channel possessing

five 16 deep, 75 bit wide buffers, as it could implement up to 5 virtual channels. A

‘permission to release’ buffering mechanism prevented the overwriting of a buffer

until its contents had been successfully transferred ahead. This permitted frame

retransmission following failure. Though implemented at a cost of massive buffering

increases, fewer resources were required than with the 32 channel STC-104. Virtual

channels had also been used up to this point in regular networks to implement

deadlock avoidance and adaptive routing mechanisms.

Technology Review

The Reliable Router utilised a Unique Token Protocol (UTP) in conjunction with

the flow control mechanism. Data transfer was confirmed on a per-hop basis,

removing end-to-end acknowledgements and thus distributing the responsibility for

ensuring message arrival amongst the network resources, in addition to providing a

scalable transmission media. Resources were only released when the flow control

system was certain of the delivery of the flow group, whose integrity was ensured

upon receiving a unique token (which followed the packet) acting in a similar manner

to a termination token. If a link failed during packet transfer, each part of the message

could continue to the destination node, appended with a modified token highlighting

the error and requiring routers to store the routing header for the duration a packet was

active. Message reconstruction could take place given the severed message, modified

token and other packet information, presumably using the software layers of the

protocol. This highly complex, flow control based, fault handling mechanism attempts

to minimise the overheads of fault recovery by including enough information within

the transmission to enable message reconstruction. One can assume that for such an

approach to he viable, the frequency of failure was high enough to warrant

transmission of such a great number of extraneous non-data bits in each message.

Such a premise is similar to that of deadlock avoidance versus deadlock detection and

recovery schemes, where the overheads of the latter is preferable when compared with

the penalties imposed through the routing restrictions of the former. Whilst the

Reliable Router is clearly unsuitable for the target applications of this research,

important lessons can be learnt in terms of the recovery-based fault tolerance

implementation in the data stream and its merits.

2.4 Interfacing to PCs - The PCI Bus

Most processors need to communicate with peripheral components and the outside

world by some means or other and to this end a plethora of communications standards

and protocols have been developed, some communicating data serially, others in

parallel. This section reviews some of the communications protocols utilised by PCs,

focussing mainly on the PCI bus [32, 33].

Serial PC interfaces include the IEEE 1394 (Firewire) standard [90, 91], Serial

ATA [92] and Universal Serial Bus (USB) [93, 94]. Parallel interconnection methods

-38-

Technology Review

are preferred where bandwidth is crucial, especially when it is recalled that access to

these bus based communications media must be shared amongst all of the devices

attached to that bus. As modem, graphic oriented PC applications require large data

transfers, so the interface to the PC becomes the bottleneck. As processors tend to

operate at substantially higher clock frequencies than their associated I/O buses, it

makes sense to provide a bus that operates at the same speed as the CPU, which is the

essence of the local bus. A local bus moves peripherals from the slower I/O bus and

places them closer to the processor’s system bus that permits faster data transfer to the

processors memory. The PCI local bus is becoming the most popular in modem PCs.

It is not directly dependent on the speed or size of the processor bus and offers

expansion as processors develop.

Many types of expansion bus have been developed, some have become

standardised, and others are targeted at particular applications or particular platforms.

With a variety of different buses on offer, the bus selected should be fast, cheap and in

common use.

Several bus systems, used in various different processor configurations, have

been compared [95], identifying the PCI bus as the most suitable for the three criteria

specified above. The ISA bus [96], used in PCs, is cheap and in common use, but

suffers in terms of performance and can only be used with x86 processors. The MCA

[97] and EISA [98] buses are fairly fast with data transfer rates of up to 20MBytes/s

and 33MBytes/s respectively, but are not widely used. The former is moderately

expensive and only used in IBM computers whereas the latter is expensive and can

only interface to x86 processors, in addition to being held back due to backwards

compatibility with the ISA bus, limiting its bandwidth to 33MBytes/s. The industrial

VME bus standard IEEE 1014-1987 [99] can be used on any platform, has a

bandwidth of 20MBytes/s, fairly common but suffers from costs which whilst

acceptable for large scale industrial applications, are excessive for most PC users. The

PCI bus is ubiquitous, being included in virtually every modem PC, very cheap, very

fast and has no limitations in terms of target platforms. Unlike some of the other

buses, such as the ISA bus, it is also a recognised standard [33].

When selecting an interface medium to link to the SARNet, during development

of the PCI-OSLi, as discussed in section 1.2, it was considered that the shared nature

Technology Review

of the PCI bus was offset by its high bandwidth, relative to the serial router link. In

the implementation of the PCI, the 32 bit parallel bus operating at a 33MHz-bus rate

gave a throughput of 132MBytes/s. Higher data throughput is achievable by

increasing either the width of the PCI bus to 64 bits or the operating speed to 66 MHz,

giving total data throughputs of up to 528MBytes/s. The ISA bus throughput of

16MBytes/s, whilst higher than the 3.08MBytes/s achieved by the credit based ICR-

C416 protocol at 20Mbits/s was considered too low, given that the bandwidth must be

shared amongst all the other devices connected to the ISA bus. Given the proven

ability of the ICR-C416 to operate at data rates up to 44Mbits/s, giving a theoretical

maximum throughput of 3.38MBytes/s, the higher data rate and enhanced technology

of the PCI bus was strongly favoured during development of the PCI-OSLi. The same

argument applies when interfacing the PC to the NTR-FTM08 router network via the

FT-PCI-OSLi.

The PCI bus has the following characteristics:

• The processor and bus are coupled via a bridge separating the processor and its

main memory from all other devices attached to the bus.

• Arbitrary length DMA burst transactions are synchronised to the rising clock edge

of the PCI bus clock.

• Address and data buses utilise the same physical connections, and therefore

require multiplexing. Only 49 pins are required for the 32-bit bus implementation,

reducing connector and chip sizes and pin counts.

• Supports ISA / EISA and MCA buses via an interface to the expansion bus.

• Configurable through software and registers.

• Platform independent specification.

2.4.1 PCI Bus Operation

Data transfer operations on the PCI bus occur between two devices attached to the

bus, known as PCI agents, as shown in Figure 10. The agent that requests the transfer

is known as the initiator, or master, whereas the recipient is referred to as the target, or

slave agent. By definition, a target cannot initiate the transfer. A PCI data transfer has

-40-

Technology Review

similarities to a DMA transfer, where data is written directly to or from the system

memory. The PCI master initiates the transfer to acquire ownership of the bus as is

necessary to access the system memory in a technique termed bus-mastering. The

bus-mastering technique allows data transfer between the system memory and the PCI

agent without involving the host system, freeing it for other purposes.

Processor Bus
Memory bus

PCI Local Bus

PCI Agents

Expansion Bus (ISA/EISA)

RAM

AudioMotion
Video

I/OI/O

Microprocessor

LAN AdapterAudio / Video
Expansion

Memory

Expansion Bus
Interface

Graphics Adapter

PCI Bridge

Figure 10: A typical PCI bus arrangement

Arbitration of the PCI bus is performed separately for each access, preventing an

initiator from holding up the bus between accesses (which can occur with the EISA /

MCA buses). A burst transfer is seen as a single access in arbitration terms.

Arbitration can be performed whilst the bus is still running, preventing it from

reducing the bus bandwidth. A central arbiter receives requests from each initiator and

grants control of the bus. Control must be assumed, in the form of starting a transfer

within 16 clock cycles, otherwise access is surrendered and an error flagged. The PCI

specification leaves the arbiter implementation to the system designer rather than

specifying a particular model.

-41-

Technology Review

The PCI bridge is far more intelligent than the bus controllers used in the ISA /

EISA and MCA buses and can optimally co-ordinate CPU accesses to the addressed

PCI unit. The PCI bridge can effectively function as a fast buffer between the initiator

and the target, synchronising those devices, and permitting the bridge to translate a

single CPU access into a PCI burst.

Fault Tolerance

3 FAULT TOLERANCE

The specification for the features aimed at improving the tolerance to faults

possessed by the FT-PCI-OSLi and FT-SARNIC was determined by implementation

of these features in the NTR-FTM08 router. This section of the thesis defines the

mechanisms employed by the router to achieve a robust communications medium and

their operation. Fault detection and recovery in the ICR-C416, STC-104 and Myrinet

routing networks is reviewed to compare and highlight the increased functionality

gained through utilisation of the NTR-FTM08 network.

3.1 Overview

Network failure can be classed as either ‘hard’ (permanent) or ‘soft’ (transient)

[52]. Failures are initially treated as transient, as the higher levels of the system

attempt to recover from the fault by trying to repeat the failed action. Failure to

recover indicates the presence of a hard fault that must be isolated and bypassed. A

fault in wormhole routing networks [22, 34] will result in the network stalling as

progress depends on available buffering resources. The inability of a message to make

progress directly affects all other messages, as they require the use of the storage

resources occupied by the stalled message.

In the event of a fault occurring, one can either attempt to work around the fault or

fix it. Much of the research associated with fault tolerance in parallel processing

systems has focused on adaptive routing algorithms [100], which enable network

traffic to bypass permanently disabled links by finding alternate paths through the

network. Such action is possible due to the fixed, regular layout of such network

topologies as the 2D-mesh topology, commonly utilised by Transputers. No attempt is

made to fix the fault and return the network to its full operational capacity; hence

traffic increases on the remaining operational links. Multiple faults may eventually

bring the network to the point where it would be more productive to reset it. Adaptive

routing algorithms facilitate network operation in partially disabled networks. The

NTR-FTM08 router, like the ICR-C416, utilised Group Adaptive Routing [60] to

43

Fault Tolerance

allow the user to configure network-specific node groupings, permitting multiple

paths to avoid failed links.

Irregular networks, such as those employing routers and including the target area

of networks in this research, have a myriad of possible network topologies, further

complicating the use of adaptive routing algorithms. Adaptive routing algorithms

must ensure that deadlock cannot occur as a result of their action as this results in the

effects of the fault becoming far more widespread. In such networks a more

productive solution would be to restore the network to a fully functional operational

status as soon as possible. This requires the detection, isolation and removal of faults

by the network constituent parts. Many earlier switched networks ignored the

possibility of hardware failure and incurred large overheads due to their reliance on

software layers to provide fault tolerance.

Minimal adaptive algorithms, such as Group Adaptive Routing [101], can easily

be incorporated into irregular networks. Group Adaptive Routing is used in the ICR-

C416 and NTR-FTM08 based routing networks, where there is a limited control over

possible alternate routes. Group adaptive routing maximises link bandwidth by

spreading network traffic over as many links as possible, allowing the easing of

bottlenecks and improving a network’s cross-sectional bandwidth [102].

3.2 Fault Detection

The NTR-FTM08 router provided hardware support to detect and isolate faults,
reduced software overheads and increased system reliability and robustness. The

NTR-FTM08 network ensured that when errors occurred, they were isolated and their

effects were prevented from propagating through the network. This section of the

thesis identifies the types of faults detected by the NTR-FTM08 and thus defines the

fault detection requirements for the FT-SARNIC and FT-PCI-OSLi interfaces.

The previous OS links based ICR-C416 network, with the SARNIC and PCI-OSLi

interface, possessed no means of error detection within the token format. Group

adaptive routing enabled blocked links to be bypassed but the lack of error detection

and isolation meant the network might stall before the fault was isolated and a detour

- 44-

Fault Tolerance

could be taken. The system could be monitored via the control port of the ICR-C416

but, as only a single control port monitored the system, reaction and intervention

times increased proportionally with system size and as such the solution was not

scaleable.

The modified OS links based protocol, employed by the NTR-FTM08 routing

network and utilised by the FT-SARNIC and FT-PCI-OSLi, provided a means of

verifying link functionality and offered protection against several failure scenarios.

Instead of a single, centralised, fault monitoring system, the responsibility for fault

detection and recovery was shifted from a global solution to a local one, where each

communications link was monitored by the two nodes at either end. This allowed for

a fully scaleable, decentralised network with improved tolerance to faults.

The enhanced fault detection and recovery solution provided by the NTR-FTM08

network addressed several possible causes of network failure [103, 6], including:

• Buffer overflow

• Retaining Link Confidence

• Loss of an acknowledge token

• Disconnected network connection

• Message Delivery Errors

• Packet arrival out of order

• Incorrect message length

• Synchronisation errors

• Delivery of message to the wrong address

• Undeliverable messages

• Deadlock detection and avoidance

3.3 Buffer Overflow

When data was received but there were no free resources to accept the data, the

buffer overflowed, resulting in either ‘spilled’ or overwritten data. Such a situation

resulted in the loss of part or all of a message, which in certain systems was

Fault Tolerance

undesirable, and in others fatal. Point to point networks could order the retransmission

of the message but this was impractical, if not impossible, in multi-router networks, as

the node ordering the retransmission was ignorant of the origin of the lost message

(beyond the link the node received the message on). Even in point to point networks,

ordering a retransmission might not have been possible due to the nature of the error.

As there was insufficient space in the receiver buffer for the incoming message,

existing data, which was part of another message, was overwritten by the incoming

message. As the incoming message replaced the existing data, the receiving node

treated it as part of the existing message and might not have been aware there was a

new message or that it was erroneous and thus a retransmission would not be

requested. The easiest way to prevent buffer overflow was to ensure there was always

sufficient buffering resources available at the receiver before transmitting data.

3.4 Flow Control Protocols

3.4.1 Credit Based Flow Control

Credit based flow control is a stop-and-wait data handshaking procedure in which

data transmission is prevented until acknowledgement of the receipt of the previous

data is received, informing the transmitting node that sufficient buffering resources

are available at the receiver. This flow control method was used in OS and DS [79]

links and the OS link based protocol used by the ICR-C416 router and SARNIC and

PCI-OSLi interfaces. An acknowledgement token was returned for each 'frame' of

data received, as Figure 11 demonstrates. For OS and DS links, a frame of data was

set at 1 token and 8 tokens respectively. An 11 bit token consists of a logic 1 start bit,

an ID bit, 8 data bits and a logic 0 stop bit. The ID bit was logic 1 for data tokens and

logic 0 for acknowledge tokens. Acknowledge tokens were just 2 bits long, and

consisted of a logic 1 start bit and a logic 0 ID bit. Transmission of subsequent tokens

was suspended until the transmitting node has been made aware that the previous

token had been recognised by the receiver. Back-to-back data transfer could occur in

unidirectional credit based data transfer, as Figure 11 shows, but bi-directional

transfers required the interleaving of acknowledge tokens between data tokens,

reducing the bi-directional throughput, as shown in Figure 12.

-46-

Fault Tolerance

T x A - R x B

T x B - R x A

Data \ / Data \ / Data \ / Data \ / Data \ / Data

u \ <

Transmission Time

Figure 11: Unidirectional Data Transfer Using Credit Based Flow Control

TxA - Rx B Data \ ___ / -X V Data \ ___ / ^ V/ Data \ ___ Data

TT x B - R x A ----------- (S K Da‘a M I K ° ata V Date

Idle time due to wait
for acknowledge token

Figure 12: Bi-directional Data Transfer Using Credit Based Flow Control

Thirteen bits were required for every byte of data transferred over the serial ICR-

0416 link with the acknowledge token contributing to the duration of the data token.

Unless the transmission of an acknowledge token occurred the instant the received

token arrived at the receiver, transmission of the next data token was delayed until

receipt of the acknowledgement, thus taking in excess of 13 bit periods to transmit a

data byte, as discussed in section 2.3.1. Failure of the credit based flow control

protocol to achieve 13 ‘bits per byte’ transmission resulted in idle periods on the

transmission link and reduced the link efficiency. The minimum 13 bits per byte

transmission also assumed zero delay across the transmission medium and, more

significantly, the transceiver chips. Figure 12 shows how ICR-C416 bandwidth could

be wasted because the transmitter could not send out the next token until arrival of an

acknowledge token.

Hence, in practice, the implementation of the OS Links protocol in hardware

would not achieve 13 bits per data byte bi-directional transfers. It was documented

Fault Tolerance

that Transputers, utilising the OS Links protocol, could demand up to 17 bits per data

byte for bi-directional data transmission [5].

A major shortcoming of the credit based flow control mechanism was the

problems incurred with the loss of a control token. As the transmission of subsequent

tokens relied on the receipt of an acknowledgement, the transmitter would assume that

the receiver buffer was full, whilst the receiver would assume that the transmitter had

run out of data to send. The result would be a stalled link, which cannot be detected

and whose operation could only be restored following the reset of the link.

3.4.2 Permission Based Flow Control

The issue of link stalling, in addition to the loss of bandwidth incurred in the

transmission of acknowledgement tokens, led to the development of an alternative

method of controlling communications. This method, also referred to as Stop/Go or

Xon/Xoff flow control, permitted back-to-back data transfer, subject to the receiver

buffer being able to handle the incoming data stream. It was utilised by the Myrinet

[70, 80, 81] message-passing network from Myricom for communications within

Massively-Parallel Processors (MPPs) and is also prevalent in point-to-point

networks.

Figure 13 demonstrates the flow of data between processors across the NTR-

FTM08 communications network, using a permission based flow control protocol to

dictate when the communicating entities could transmit data tokens. Initially, a Go (or

Xon) token was transmitted when the node was ready to receive data. The Go token

was one of the new flow control tokens, denoted by an ID bit set to zero. The other

side of the link transmitted data tokens back to back, requiring no acknowledgement

before subsequent tokens were transmitted. Once the number of tokens stored in the

receivers buffer reached a predetermined figure, the receiving node sent a Stop (or

Xoff) token to the other side of the link, to inform the transmitting node to

temporarily suspend data transmission. The receiving node could then clear the

backlog of tokens stored in its receiver buffer. Once the number of tokens in the

receiver buffer fell below a certain level, the receiving node sent a Go token to the

transmitting node, informing it to resume transmission.

-48-

Fault Tolerance

Permission based flow control - unidirectional data transfer

TxA - Rx B

T x B - R x A

Permission based flow control - bi-directional data transfer

T x B - R x A

Key Data token 1 Xon (Start) 1 XofF (Stop)
__ V-n 11

Figure 13: Unidirectional and Bi-directional Permission Based Flow Control

The amount of data throughput across the link was dependent on the ability of the

receiver to keep data flowing through its buffer. Theoretically, the receiver could

prevent the accumulation of a token in its buffer by passing it through, for transfer to

memory, before the next token entered the buffer. Hence, the maximum data rate

depended on the rate at which data could be sent down the transmission medium,

which was determined by the clock speed. However, in practice the receiver may not

be able to transfer the data to memory as fast as it would like. If the receiving node

was another router, it might not be able to output the incoming data to its destination

as that particular output could be in use. Grouped adaptive routing could reduce the

likelihood of this occurring, but not eliminate it completely. If the receiving node was

a processor interface, such as the SARNIC, the data may have to wait to be transferred

to memory, if the memory was being used. This was because it utilised cycle stealing

DMA transfers to access memory where the processor always assumed a higher

priority. Other factors that could impede the receiver, in the ejection of tokens from its

buffer, included: faults on other links, delivery of messages to the wrong destination,

synchronisation and framing errors resulting in corruption of data and undeliverable

messages monopolising network resources.

-49-

Fault Tolerance

When the link was in the 'Go' mode of transmission, only 11 bits were required to

send each data byte, due to the lack of acknowledge tokens. This meant that the

maximum amount of data present in each token (Number of data bits / total number of

bits) increased from 61.5% to 72.7%. A disadvantage of this protocol was that it was

harder to calculate data throughput for any given time as it depended on suspension of

transmission, which in turn is dependent on many factors.

The Stop, or Almost Full (AF) [37] and Go, or Almost Empty (AE) [37] values

determined the efficiency of the protocol, most notably the difference between these

two values. If they were too close together, the link spent more time than necessary

with link activity suspended. If they are too far apart, the link was not as responsive as

possible to variations in network traffic, wasting the network’s bandwidth. For a link

to be operating at its most efficient, the receiver should always have some data to

process, and should never have to suspend link operation, due to there being too much

data to process.

3.5 Retaining Link Confidence

For a communications link to operate successfully, both end nodes must always be

aware of the current state of the link. Link activity can be monitored, indeed certain

systems, such as IEEE Std. 1355-1995 (DS Links), require constant signal activity in

order to operate successfully, as clock recovery data is encoded into the data and

strobe lines. The OS links based system utilised by the ICR-C416 based system did

not require such activity and in the absence of data to transmit, the line was dormant.

In fact there was no way of distinguishing between a dormant link and a faulty link.

One possible way of overcoming this was to provide a status check on the link in the

absence of data. A control token could be used for such a purpose but by using the Go

and Stop flow control tokens further information about the link status could be

conveyed. Continuous transmission of link activity signals increased power

consumption and noise and was unnecessary. So it was more efficient to transmit such

tokens periodically, signalling an error if further activity had not occurred since the

last status token, whether in the form of data or another status token. Such tokens

were referred to as Heartbeat tokens and were used in the NTR-FTM08 to detect

disconnection errors. Following such errors, the link must be reset in order to re

establish the disconnected link. This was done by a handshaking mechanism, whereby

-50-

Fault Tolerance

the first node to detect such an error sent a ‘Connection Request’ token. This was

repeated periodically until the connection request token was received, indicating the

restoration of the channel between the two nodes.

Heartbeat tokens meant that the loss of a Go token did not lead to the link stalling

as retransmission occurred after another time-out period had elapsed. The only loss

incurred was in terms of bandwidth. The loss of a Stop token was more serious.

Another would be transmitted but the receiver buffer might have filled by the time the

time-out had elapsed and the next Stop token sent. Expanding the receiver link

interface buffer to be able to accommodate the loss of a single Stop token could

require up to 32 more buffer locations above the AF level to store the data tokens that

could arrive before the next Stop token. There was no guarantee that the second Stop

token would not be lost also, so this precaution was not really worth the resources

required in implementation.

3.6 Message Delivery Errors

3.6.1 Packet Arrival Out of Order

Long messages could be split into multiple packets to prevent monopolisation of

system resources by a single message. In multi-router networks with Group Adaptive

Routing, where many possible paths between source and destination existed, uneven

network loading could result in a packet reaching the destination before its

predecessor. Such a scenario could also occur if an earlier packet was lost or stalled

during transit across the network. This would result in the message being reassembled

in the wrong order, leading to the data being incorrectly interpreted.

A solution was to ensure that the data arrived in the same order that it was sent;

alternatively to number the packets so that they were rearranged into the correct order

by the receiving node. Numbering packets could be a problematic solution for three

reasons:

Fault Tolerance

• Numbering packets required another header byte, which would need to be

distinguishable from routing and message headers. The header contained the

message ID, which is identical for all packets in the message.

• An alternative packet numbering strategy was to assume that few packets from

any message were actively in transit across the network at any given time, and

assign a single bit, set on alternate packets to identify a packet relative to the

packets either side of it.

• If an out of order packet was detected, it could not be removed from the network,

as it was still required. Therefore it must be stored until the expected packet(s)

arrived at the receiver. When the out of order packet was the next in sequence, it

could be transferred to memory from the system. However, if a packet were

removed from the network due to an error, the next packet in the sequence would

not arrive. Hence the receiving node, unaware of this, would store every packet,

utilising massive buffering resources.

A lesson from the ICR-C416 network protocol was that 256 bytes was an adequate

packet length for small control messages of the type used in the Transputer based

control applications it was designed for use in. For larger data communications, of the

type favoured by microprocessors such as the SA-110 and the PC, it increased

overheads, as multiple packets were required to send relatively small messages. An

alternative solution [37] was developed which allowed the user to dictate the

maximum packet size and also to allow an entire message to be sent in a single

packet. This affords the user greater flexibility in network operation by giving them

the option of sending a message in a single burst, reducing overheads, or splitting it to

share resources.

3.6.2 Incorrect Message Length

This error occurred when tokens were lost or incorrectly sampled. In the OS links

based protocol employed by the ICR-C416 based network, packets had no ‘end of

packet’ delimiter. Once a message channel was set up to sample incoming data

tokens, all incoming tokens were assumed to be part of that packet until the counter

-52-

Fault Tolerance

reached zero, to indicate end of packet. In the lost token scenario, illustrated in the

ICR-C416 network depicted in Figure 14, packet 1 has one missing token. As the last

token from packet 1 is received, the count is not zero, so the first few tokens from

packet 2 are assumed to belong to packet 1 and are assigned thus. The next tokens

from packet 2 are interpreted as packet 2’s header and if they are not what is expected,

packet 2 stalls at the receiver whilst packet 1 is transferred to memory, with no error

being noticed until the data is used.

Packet 1 Length Count

3 2 1

Packet 2 Length Count

Header Length L - 1 L - 2

Packet 1 Paybad Last Token

■

Packet 1 (1 Token Lost) Length Count

3 2 1

wmSmmM

Packet 1 Paybad Last Token

Packet 1 Last Token
Packet 2

0 Header Length L - 1

Packet 2 header becomes last token ofpacket 1 payload and packet 2 contents are
shifted 1 token, causing problems as the header, length and data is corrupted.

Figure 14: Token Loss Resulting in Incorrect Message Interpretation

There was obviously a need to monitor messages for missing tokens. The addition

of an End Of Message termination token in the NTR-FTM08 protocol permitted the

message length count to be checked against the occurrence of such a missing token. If

the message termination token occurred simultaneously with the message count

reaching zero, there was no error. Otherwise, both longer and shorter than expected

messages could be detected. The detection of an incorrect message length at a

midpoint through the network, before the message reached the destination, required a

Fault Tolerance

means of notifying the receiving node that an error had occurred and that the message

data should be treated with caution.

Point of
failure

Rtr 1

Rtr 2Key
Router

Source

Destination ■“ Reserved link for Message 1
mm Reserved link for Message 2c=3 Unreserved

Figure 15: Network Failure in a Multi-router NTR-FTM08 Network

As the NTR-FTM08 router network in Figure 15 shows, the failure at point X

affected message 1, travelling from SI to D l, and message 2, midway between S2 and

D2. Once this problem was detected, the headers of the messages had already reached

the destination, but due to the use of wormhole routing techniques, the tails of the

messages had not left the source node. Message 1 was terminated prior to Router 2

and was flushed from the network, freeing the other links of router 1 for use by other

messages. At Router 2, Message 1 was terminated with a ‘Bad End of Packet’

(BEOP) termination token, informing destination Dl that it was the end of that

particular packet. This also freed other links from Router 2 for use by other messages,

as the transmission of that packet could be considered complete. The same actions

were taken for Message 2: the part of the message held in Router 2 was flushed, as

were any remaining tokens to be transmitted by S2. The tokens belonging to Message

2 which were held in the buffers in Router 1 were passed to destination D2 as normal,

but were appended with a BEOP token, indicating the message had been prematurely

terminated. The user could decide, at a higher level, the action to be taken on

receiving a BEOP token, allowing greater flexibility.

Fault Tolerance

This approach allowed the message to be terminated as soon as a fault had been

discovered, freeing up network resources for other messages and informing further

nodes along the messages path that no further tokens were expected, preventing the

lost data scenario described earlier.

3.7 Synchronisation Errors

Framing errors were possible in the ICR-C416 based network due to the

asynchronous data transfer and the over-sampling techniques employed in data

recovery at the receiver. The over-sampling technique employed by the receiver

allowed a skew tolerance of up to 1/3 of a bit per 11-bit token. Cumulative skew in

excess of this lead to synchronisation errors of which the ICR-C416 network had no

means of detecting or responding to.

The last bit of each token was a logic 0 stop bit, required to allow the sampling

circuit to ‘recover’ between each token. Asynchronous data was recovered from the

communications links by taking three samples per bit. Sampling on the leading and

trailing edges of the sampling clock effectively doubled the link data rate with respect

to the sample clock. The operation of the asynchronous ‘1.5-times’ oversampling

technique [60] employed by the serial communications links was dependent on

whether or not the start bit of each token was first detected on the leading or trailing

edge of the sampling clock. The synchronisation error mechanism checked the

incoming serial data line and flagged an error if logic 1 was detected when the stop bit

was expected. Such an error detection system was not foolproof as a synchronisation

error may be overlooked if the bit preceding the stop bit was incorrectly sampled and

was zero.

3.8 Incorrect Message Address / Undeliverable Messages

‘Lost’ messages could occur due to header corruption or a blocked or damaged

link. If the routing header was corrupted to another valid header value, the message

would be delivered to the wrong destination. If the routing header was corrupted but

did not conform to any valid headers, the message would not be outputted from the

router, its progress across the network would cease and it could block the progress of

-55-

Fault Tolerance

other messages reliant on the resources that this message was occupying.

Undeliverable messages must be removed from the network as quickly as possible to

prevent them blocking resources required by other messages and also to impede the

formation of deadlock dependency cycles.

The arrival of an unexpected message at an end node in the ICR-C416 network,

such as the SARNIC or PCI-OSLi interface, triggered an interrupt requesting a

software header check. Unexpected packets could not always be identifiable in

software, making this an unreliable and time-consuming process. The user had to

respond to the interrupt either by providing the interface with the information required

for processing the message, or flushing it from the network. On receiving a message

intended for another node, the recipient could not pass it back onto the network for the

intended node to collect. It had to retrieve the message, depacketise it to store in

memory and then construct a new message for the intended node (after having found

out which node the message was intended for, requiring user intervention), and output

it back onto the router network. In almost all cases removal of the message from the

network was the only viable solution.

Removal of messages from the network required their retransmission, involving

initiation by the user via the higher software levels of the system. This was hard to

achieve, as the user was unaware of the problem that had occurred.

3.9 Deadlock

Deadlock is a state caused by the cyclic dependency of two or more messages on

each another, which results in the network stalling [103]. Deadlock was not of major

concern to the FT-PCI-OSLI and FT-SARNIC designs as, being end nodes, they

could not form part of a deadlock cycle. Hence the FT-SARNet and the FT-PCI-OSLI

formed part of a system with an integrated deadlock detection and recovery strategy.

Figure 16 displays a single cycle deadlock situation, possible in ICR-C416

networks, in which a message can not advance towards its destination until other

messages have relinquished resources, which is in turn dependent on the movement of

another message and so on.

-56-

Fault Tolerance

Research was carried out to assess the effects of this complex problem in irregular

switched networks [104, 105]. Three strategies were identified for dealing with

deadlock: Prevention, Avoidance and Recovery [106].

Figure 16: Deadlock in a simple router network

3.9.1 Deadlock Prevention

Deadlock prevention requires the reservation of all required network resources

between source and destination before message transmission. This is essentially a step

backwards, in terms of network communications, as it reduces the network from

packet switched to circuit switched, guaranteeing bandwidth whilst monopolising

network resources for the duration of message transmission. The techniques of

Pipelined Circuit Switching [107] and Scouting Routing [108] have been used in

wormhole routing networks.

All preventative approaches enforced routing restrictions on paths prone to the

formation of deadlock cycles, reducing the number of available paths and, therefore

throughput. Bit errors on the data link could cause many of these techniques to fail.

Fault Tolerance

3.9.2 Deadlock Avoidance

This approach reduced the probability of deadlock cycle formation by

constraining routing algorithms in compliance with certain rules. There were many

types of routing algorithms for regular topologies. However irregular topologies had a

far wider range of possible network permutations, making network behaviour more

unpredictable, limiting irregular topologies to derivatives of the same avoidance

technique. Such algorithms were based around a ‘tree structure’ of valid routes, by

which a message traversed the network with routing decisions made on the basis of

whether or not it was moving towards or away from the root of the tree [109].

Avoidance strategies could result in non-minimal paths being taken, leading to further

research into minimising path lengths whilst retaining functionality [110]. Virtual

channels could also be used to prevent deadlock cycles as part of a partially adaptive

deadlock evasion solution [111]. Each physical link could have several virtual

channels associated with it in descending priority with routing decisions assigned to

the next virtual channel in the sequence.

3.9.3 Deadlock Recovery

Recovery systems were shown to have certain performance advantages over some

avoidance-based solutions [112] due to the low cost of recovery if executed

infrequently. Care must be taken to ensure that the bandwidth lost in resolving

deadlock was not greater than the bandwidth lost through the implementation of an

avoidance algorithm. The probability of deadlock occurring in a fully adaptive

network only becomes unacceptably large as the network approached saturation. This

could be reduced by restricting traffic entering the network, reducing deadlock

probability, relaxing routing restrictions, enhancing bandwidth and relying on high-

confidence recovery based systems when necessary [113].

Most deadlock detection systems relied on time outs to indicate an incomplete

data transfer in a specified period [114, 115]. This guaranteed detection, but

introduced the need for a time-out value dependent on several variables. These

included the topology, size and data throughput of the network, as well as the sizes of

the packets that traversed the network. A generic time-out value resulted in false

-58-

Fault Tolerance

detections if the time-out value was too low or loss of efficiency as the stalled

network awaited attention if too high.

Three methods of deadlock recovery have been identified [116], all of which

resulted in message removal in order to escape from cyclic dependency, but each

differed with respect to what happened following removal from the deadlock cycle.

The methods were:

• Deflection - Message moved away from its destination.

• Progression - Message moved towards its destination.

• Regression - Message removed from network and was retransmitted from source.

In summary, the ICR-C416 router employed source routing, exposing it to the

formation of cyclic dependencies, and thus required the use of deadlock avoidance

strategies, at a cost of network performance. Avoidance mechanisms were the most

prevalent in irregular wormhole routing networks, such as the ICR-C416, due to ease

of implementation. Networks incorporating recovery [106, 116, 117] and preventative

[118] strategies were relatively new. Deadlock was dependent on network topology

and the routing algorithm used. Most irregular networks used algorithms that were

derived from a single algorithm to take account of the myriad of possible network

topologies.

3.10 Tolerance to Faults In Other Studied Systems

3.10.1 Fault Detection and Recovery in the STC-104 Based System

The STC-104 router, like the ICR-C416, utilised source routing and also required

deadlock avoidance techniques to prevent the formation of cyclic dependencies. The

router also possessed a control port, similar to that employed by the ICR-C416, but

with the ability to daisy-chain multiple control ports together, to form a ‘ring’

network, whereas the ICR-C416 control port could be said to be a ‘star’ network.

Both are shown in Figure 17.

Fault Tolerance

a) STC-104 ‘ring’ network

Node

Node

Node

Node

Node

NodeNode

Node

NodeNode
Controller

Controller

b) ICR-C416 ‘star’ network

Figure 17; Ring and Star topologies as used to connect the control ports o f the

STC-104 and ICR-C416. Note; these are fixed, unlike the data connections.

The centralised control port protocol was different to the DS links protocol of the

data links and possessed the ability to address each of the devices in the daisy-chain

separately. This approach reduced overheads compared to the ICR-C416 approach but

required extra wiring. The STC-104 had the ability to reset a link and remove any

further tokens to be sent, following an error, if the ‘localise error’ configuration

setting was set. Another configuration setting, ‘discard if inactive’ sought to delete

packets destined for inactive outputs and ensured the network would not stall due to

the inability of a message to progress through the network. The STC-104

documentation [76] implied that this function did not take into account any grouped

outputs and as such, may have removed the routing availability provided by group

adaptive routing. These two configuration settings were the only automatic fault

detection and recovery mechanisms in the STC-104 router. All others required a

command from the central control port to remove faulty packets.

Like the ICR-C416, the STC-104 network had no means of conveying information

concerning the operational status of the network within the token format of the

communications protocol. The only means of verifying that a token was correctly

received was by receipt of the four-bit acknowledge token after the transmission of

eight tokens. In its absence, the presence of a problem was recorded. As with the ICR-

C416 network, acknowledgement transmission was delayed until sufficient buffering

resources were available to accommodate the next flow group.

-60-

Fault Tolerance

Unlike the ICR-C416 protocol, the DS links utilised by the STC-104 ensured that

link disconnection could be detected quickly and easily as the protocol demanded

either the data or strobe lines to switch every clock cycle.

3.10.2 Fault Detection and Recovery in the Myrinet Based System

The Myrinet network utilised the 9 bit parallel data links to convey control

information across the network, employing dedicated control tokens to this end. A

forward reset (FRES) token was designed to clear the resources it encountered as it

progressed across the network, following detection of a fault. It operated at a lower

level than the data sent across the link, allowing its use irrespective of the status of the

link flow control mechanism. After sensing a FRES, a node cleared its buffers and

transmitted it on to any links that had connections to other nodes that were occupied

by that particular message. This had the ability to remove many messages from the

network, which could be complex, regressive and highly resource intensive. The first

generation Myrinet specification detailed several additional control tokens that were

not implemented, possibly due to their complex operation. These tokens included:

backward reset (BRES), over run alarm (ORUN), probe (PRB) and probe reply

(REPL) [37, 80].

- 61-

Design Discussion

4 DESIGN DISCUSSION

4.1 Introduction

This chapter details alterations made to the protocol and the fault detection and

recovery features of the PCI-OSLi and SARNIC designs at a conceptual level. The

ideas detailed in chapter 3 are developed to describe the methods used to detect faults.

The fault detection and recovery features of the NTR-FTM08 dictated the

specification for the FT-PCI-OSLi and FT-SARNIC as the end nodes must interface

to the routing elements in the FT-SARNet. Firstly, the design requirements of the FT-

SARNIC and FT-PCI-OSLi interfaces were examined. Secondly, the decisions made

involving certain network criteria are developed into the basis of a system with

improved fault tolerance. Thirdly, the operation of these new features is detailed.

4.2 FT-SARNIC Network Interface

The purpose of the FT-SARNIC device was to facilitate data transfers between the

communications network and the SA-110 CPU’s SDRAM module. Data from other

processors entered the FT-SARNode via the communications links of the FT-

SARNIC. The data was stored in the SDRAM until the SA-110 accessed it for

manipulation. This procedure of transferring data to the processor via the SDRAM

allowed data to be made available for use by the processor prior to it being required.

This reduced the possibility of the processor idling, whilst waiting for data held up in

heavy traffic conditions.

The FT_SARNIC interface built on the SARNIC whose main achievement was

the development of a single chip network interface, designed to relieve the processor

of as much of the message transfer overheads as possible. The design consisted of

three main parts: a memory bus interface controller, a processor interface controller

and a communication link interface controller. The purpose of these was to

interconnect the constituent parts of the SARNet processor node: the microprocessor,

SDRAM and communications link respectively.

62

Design Discussion

The salient features of the SARNIC [17, 32] were detailed in section 1.2 but the FT-

SARNIC was required to possess the following enhancements over the SARNIC

interface [119]:

• The performance of the FT-SARNIC had to equal, and preferably exceed that of

the SARNIC in terms of data throughput and latency.

• The FT-SARNIC interface required an integrated, decentralised, automatic

approach to fault tolerance that built on lessons from previous research. The

centralised control port of the SARNIC design had to be removed, being replaced

by a protocol that aided the systems fault tolerance transferred across the

communications medium, whilst incurring minimal losses in data throughput.

These aspects are discussed in greater detail in this chapter.

• The protocol utilised by the communication links of the FT-SARNIC was bound

by the operating characteristics of that used by the NTR-FTM08 router.

4.3 FT-PCI-OSLi Network Interface

The purpose of the FT-PCI-OSLi interface was to form an efficient means of

transferring data from the serial NTR-FTM08 router network to the 32-bit parallel

format required by the memory of a PC.

Incoming data from the router network was to be converted from serial to 9-bit

parallel format by the interface, whereupon control tokens (excluding message

termination tokens) would be removed from the incoming data stream. The message

would pass through a link interface buffer, whose capacity governed the flow control

of the communications link. Header and terminator tokens would then be removed,

leaving only data tokens, whose ID bits were stripped and the data bytes assembled

into 32-bit data words. These will be loaded into a DMA buffer until the buffer was

frill or the message terminated. A DMA ‘burst’ transfer would be utilised to transfer

the contents of the DMA buffer to the PCs memory.

Design Discussion

The cycle stealing DMA transactions employed in the SARNIC consisted of an

address transfer, followed by the transfer of a single data word. Burst mode transfer

consisted of an address phase, giving the start address for the assigned block of

memory to which the data was destined, followed by consecutive data transfers until

the transaction was complete. The length of the block governed the amount of time

the DMA controller had access to the memory at any one time.

The system requirements of the FT-PCI-OSLi were deemed to be similar in many

ways to those of the PCI-OSLi interface. These included [42, 43]:

• The interface should be capable of constant data transmission onto the router

network in order to saturate the serial communications links. The interface should

always be ready to receive data from the router network in order to avoid

suspension of data flow due to a receiver bottleneck. Avoiding suspension of data

flow is vital to ensuring an efficient communications medium.

• The data throughput of the interface to the 32-bit PCI bus must be many times that

of the serial communications links. Full-duplex bi-directional data flow across the

communications link must be possible without monopolising the shared PCI bus.

Whilst the serial communications links could support full-duplex bi-directional

data transfer, incoming and outgoing data transactions to and from memory were

multiplexed onto the bi-directional PCI bus, where data flow occurred in only one

direction at a time.

• The hardware and software of the PCI interface that linked to the host system had

to be versatile enough to be supported by many different platforms.

• Functions should be implemented on hardware if possible to reduce the load and

complexity of the communications overhead on the software. Such hardware, as in

the example of packet assembly and de-assembly should be efficient enough to

prevent major performance bottlenecks occurring.

• The interface was to be integrated onto a single programmable logic device

(PLD), in order to facilitate tight system integration and to meet the stringent PCI

timing requirements for set-up and hold times. The interface was mounted on a

PCB designed to slot directly into a vacant PCI slot with the track distances

Design Discussion

between the edge connector and the PLD minimised for those signals with the

most stringent timing requirements.

The FT-PCI-OSLi interface was deemed to require the following enhancements over

the original design:

• The performance of the FT-PCI-OSLi must equal, and preferably exceed that of

the PCI-OSLi in terms of data throughput and latency.

• The FT-PCI-OSLi interface was required to possess an integrated, decentralised,

automatic approach to fault detection and recovery, building on lessons learnt

from previous research. The removal of the centralised control port of the PCI-

OSLi was necessary. An efficient communications protocol transferring control

information across the communications medium was to be implemented.

• The protocol utilised by the communication links of the FT-PCI-OSLi was bound

by the operating characteristics of that used by the NTR-FTM08 router.

• An important feature of a design committed to reducing inefficiency, should be

the ability to accommodate message information for multiple messages. One of

the major disadvantages of both the SARNIC and the PCI-OSLi interfaces was the

requirement that an interrupt be called every time a packet or message arrived

belonging to a different message than the previous communication. Software

would then be required to perform a header check to ascertain to which message

the arrival belonged.

• Several additional features to enable the user to devolve task execution powers to

the interface.

4.3.1 PCI Bus Performance

In section 2.1, three parameters were identified that were used to assess the

performance, in terms of efficiency of a communications system. These were

bandwidth, latency and processor overhead. Bandwidth represented the amount of

data that could be transferred across the medium, or its throughput. Latency

represented the time taken to initiate a transfer, and reduced the throughput from the

-65-

Design Discussion

theoretical maximum. Processor overhead measured the extent to which message

handling impeded the normal operation of the processor.

As the FT-PCI-OSLi and its non-fault tolerant predecessor were both PCI agents

operating in the same manner, they incurred similar overheads on the processor due to

the operation of the PCI transaction procedure. The higher level software also affected

the overhead, but the PCI-OSLi driver software was not updated for use with the FT-

PCI-OSLi, making comparison of processor overhead academic.

The latency incurred in initiating a PCI transaction has four components. These are:

• The time elapsed between making a request for a PCI transaction and the granting

of ownership of the bus.

• The time taken for the initiator to begin the address phase after being granted

ownership of the PCI bus.

• The delay between the address phase and the first data transfer.

• The insertion of wait states when either of the communicating entities is not ready

to transfer data.

These total latencies can be expressed as the time taken following assertion of the

active low Grant signal (nGNT), to the assertion of the active low Initiator Ready

(nIRDY). A PCI transfer consists of a burst of transfers to / from sequential memory

locations following the initiation of a PCI transaction. The latency lowers the

efficiency from its theoretical maximum as no data is transferred in this period. The

efficiency Eff pci is given by:

No PCI Transfer Cycles

Eff pci = No PCI Transfer Cycles + Total PCI Latency

The efficiency of a PCI burst lowers the PCI bus throughput proportionately;

Throughputpci = Eff pci * PCI Bandwidth

Design Discussion

Where PCI Bandwidth = 132MBytes/s for a 32-bit, 33MHz PCI bus

To maintain bandwidth efficiency, latency must be minimised, whilst the number of

data transfers that follow the set-up latency should be maximised.

4.4 Areas of Improvement Following Analysis of Previous Research

The realisation of network-wide fault tolerance must not be at the expense of

network performance. As was noted in chapter 3, conveying status information across

the network, via the data channels, could be more efficient than having a dedicated

control link, especially if the transmission of status information was infrequent. In

order to maintain an efficient throughput of data, whilst incorporating system integrity

information into the data link, communication and protocol overheads must be

minimised wherever possible. Earlier research demonstrated that bi-directional data

transfers were a source of lost bandwidth due to the credit based flow control

mechanism. A more efficient protocol could be advantageous, but a change in the

physical link was also considered as a means of increasing data throughput.

4.4.1 Communications Links

The option of communicating tokens in parallel, as in the Myrinet network was

rejected. This was due to the expense of multi-core cabling required to minimise skew

and the high pin counts incurred, especially in routers. If the total communications

link throughput was too high with respect to the PCI throughput, the host system

interface would become the performance bottleneck of the system, denying other

users access to the bus. The serial data / data strobe (DS) technique used in the IEEE-

1355 standard incurred skew problems and doubled the wiring requirements whilst

encoding a clock signal within the bit-stream. An encoded clock signal was not

deemed necessary as the over-sampling technique employed by the current

technologies performed adequately, despite the need for a clock speed 50% faster than

the data rate.

-67-

Design Discussion

The NTR-M04 router utilised an optional second pair of bi-directional serial DS

links in an attempt to double link bandwidth. Such an approach differed from previous

parallel link implementations, as bits were not sent in parallel. Separate serial data

streams permitted two links to share in the burden of transferring a message by

alternating where the link tokens were transmitted down. In normal operation, there

was a skew of at least four bit periods between tokens arriving at the top and bottom

links. The NTR-M04 incurred higher than expected resource usage as each bi

directional link required four transmitter circuits, four receiver circuits and additional

control logic, whilst increasing the bandwidth by only 1.85 times [23].

The lower bandwidth offered by a single pair of serial transmission links was

acceptable considering the benefits of increased transmission distances and reduced

costs. The over-sampling technique was already proven and was capable of operating

at speeds up to 44Mbits/s over 100m of Category 5 unshielded twisted pair cable [75].

The DS protocol had one advantage over the OS protocol, due to improvements in

the token format, which gained a theoretical bandwidth improvement of up to 14.7%

over the ICR-C416 protocol. This improvement was achieved by reducing the data

token to 10 bits and implementing a 4-bit control token. Modifying the protocol to

send the minimum amount of control tokens per data token would increase bandwidth

utilisation further still.

4.4.2 Flow Control

As stated in chapter 3, the credit based flow control protocol employed by ICR-

C416 based networks reduced data throughput. This was due to waits for

acknowledgement and the appending of each 11-bit data token with a 2-bit

acknowledge token for bi-directional communications. In theory this made the data

content only 61.5% per token, although in practice it could fall as low as 47.1% if 17

bits were required to transmit a byte of data [5]. This was due to the delay incurred in

interleaving data and acknowledge tokens for bi-directional communications as

demonstrated in section 3.4.1.

Design Discussion

The DS links protocol used by the STC-104 and the NTR-M04 increased the flow

group (the number of tokens which can be sent before acknowledgement was

required) from one token to eight. This increased the ratio of data bits per

acknowledge token, limiting bandwidth losses on bi-directional transfers caused by

the injection of acknowledgement tokens into the data stream, but incurred

proportionately larger buffering increases. A single path across the STC-104, with its

8 token flow group, required 70 tokens of buffering [120], whereas the corresponding

path across the ICR-C416 required only enough buffering to store three data tokens

[121]. As DS link flow control tokens were only four bits long, theoretically up to

76.2% of the link bandwidth could be devoted to data transfer.

The NTR-M04 reduced the buffering requirements for an 8 token flow group from

70 to 22 tokens as buffering was minimised due to limited buffering resources in the

target technology at the time, limiting the number of ports on the device. The STC-

104 utilised ASIC technology and as such was not affected by this problem. NTR-

M04 data and flow control token were 11 bits long, theoretically allowing bandwidth

utilisation of up to 64.6% for data.

The permission based flow control employed by Myrinet required a buffering

capacity of 59 tokens per receiver, as inferred by the first generation specification

[122], a figure dependent on link speed and transmission length. Permission based

flow control was dependent on the ability of the receiving node to process the

contents of the receiver buffer. In an ideal case, where data was processed as soon as

it entered the buffer, bandwidth loss was zero. Clause 3 of the flow control dictates

the length of time data flow was suspended for when the Stop level was reached. The

first generation Myrinet figure of 16 tokens gave a worst case bandwidth loss of

6.25% due to flow control but an average of 8% improvement over the NTR-M04 was

noted in behavioural tests [123].

The flow control and fault handling features of the Reliable Router were

incorporated into the 75-bit data unit, split into four frames. Each receiver possessed

buffering resources capable of holding 16 data units for each of the five virtual

channels per physical link. Data was held in the buffer until a successful transfer had

-69-

Design Discussion

been confirmed, allowing retransmission via the use of the Unique Token Protocol

(UTP) discussed in section 2.3.4.

4.4.2.1 Permission Based Flow Control Threshold Level Analysis

As mentioned in section 3.4.2, the efficacy of Permission Based Flow Control

(PBFC) depended on the levels of the Almost Full (AF) and Almost Empty (AE)

thresholds, as these respectively governed the suspension and resumption of data

flow. There were conditions for setting these levels to prevent buffer overflow, buffer

underrun and excessive loss of bandwidth due to flow control token transmission.

These were:

1. The receiver must possess sufficient buffering to store any incoming data tokens

that arrive following the assertion of a Stop and this request taking effect.

2. The receiver must have sufficient buffering to pass data tokens continuously from

the link buffer to the DMA message controller, to prevent the receiver buffer

emptying before the arrival of the first data token across the link following

resumption in data flow.

3. The distance between the AF and AE levels must be sufficient to ensure that the

link did not devote unnecessary bandwidth to the transmission of flow control

tokens.

The flow control mechanism must adhere to Rule 1, as it was unacceptable to lose

data due to buffer overrun. Rules 2 and 3 affect the efficiency, with the former

determining whether or not the message handling elements of the design are idle or

not due to the link status. Flow control tokens must have a higher priority than data

tokens in order to allow the system to operate. If the Stop and Go levels were too

close together, the link wastes bandwidth transmitting unnecessary flow control

tokens. In the sample circuit of Figure 18, whose transmission time was nominally set

to one token, Rule 1 required node B to store four data tokens once the AF level

triggered transmission of a Stop token. If node B had less than four tokens in its link

interface buffer when data flow resumed, the depacketiser at the buffers output would

idle, wasting link bandwidth whilst waiting for the arrival of data token D5. Rule 3

-70-

Design Discussion

dictated how soon after the transmission of the Stop token the data transmission could

resume, and depended on the rate at which the depacketiser could empty the receiver

link interface buffer. The first generation Myrinet specification [80] required 23

tokens for clauses 1 and 2, and 16 tokens for clause 3, for a maximum cable length of

25 metres at 80MBytes/s data rate.

Rule 3

Rule 1

t x a — (i>0

r x b ------------

Rule 2 < ►

Txb

Rxa

id>

\
— t e >

<z>
Key Dx Data Token S Stop Flow Token ^ G y Go Flow Token

N (Full)

Stop Level

Go Level

0 (Empty)

Node A
Rx

Tx Rx

Tx
N o d eB

Rule 1

Rule 3

Rule 2

FIFO
Almost

mmm
Almost
Empty

Figure 18: Representation o f Permission Based Flow Control and how its rules

translate into practical buffer implementation for correct operation

4.4.2.2 Determination o f Stop and Go Flow Control Levels

The levels at which the AF and AE levels were set depend on the amount of data

that could cross the link from the transmitter to the receiver and back, plus the delay

Design Discussion

incurred. In the case of rule 1, this was due to the possibility of back-to-back data

tokens doubling the amount of time taken between generation of a Stop token and the

token taking effect. Rule 2 stated that it would take a time equivalent to the

transmission of two tokens following generation of a Go token before arrival of the

first data token. This was reflected in the ‘total extra delay’ parameter where the

transmission times for the flow control token and data token were added to the

equation.

D

SigR .
V

S . 2 + Dly
J

Bpu

Permission Based Flow Control AF / AE Levels Equation

SigR (Signalling Rate) = 50Mbits/s

D (Distance) = 110 metres - These are the two worst case link bandwidth and

distance values used for calculations in a 30Mbits/s 100 metres communications

link.

S (Propagation Speed) = 2 x 108 metres/second [124].

Bpu (Bits per unit) = 11 (Start, ID, Data Byte, Stop bits).

Dly (Total Extra Delay) = Logic Delay + Flow Control Transmission Time + Data

Token Transmission Time

The interface logic delay depended on the amount of time taken to generate the

control signal and the time for it to take effect, where both were worst case values. As

flow control tokens possessed a higher priority than data tokens, the worst case

transmission delay was one whole data token. Calculations for the NTR-FTM08

determined minimum rule 1 and rule 2 values of 6 buffer locations and on the

recommendation of Myrinet, rule 3 requires a minimum of 12 buffer locations

separating the AF and AE thresholds [125].

Design Discussion

4.4.2.3 Flow Control Differential Analysis

The permission based flow control experiments conducted during the development

of the NTR-FTM08 included post-synthesis simulations to determine the effect that

flow control variations had on multi-router network performance [124]. The two

network topologies studied were a four router 2D mesh and an eight router 2D torus

network [126]. The receiver buffers had a capacity of 48 tokens with the Stop

threshold held at 40 tokens for all tests. The Go threshold was set at 32, 24 and 8

tokens giving differentials between the Stop and Go levels of 8, 16 and 32 tokens

respectively. The tests concluded that when offered vs accepted data load graphs

were plotted [124], the maximum variance between the different thresholds on the

same network was approximately 1%. The difference between the mesh and torus

networks was approximately 6%. The threshold differential had much less effects on

network performance than network topology, although the tests were not

comprehensive.

When accepted data loads were plotted against average normalised packet

latencies, more conclusive trends were visible. It was shown that, for a network

approaching saturation, a differential of 16 tokens provided the best performance

characteristics. The results demonstrated a lower latency for the same data load and a

higher saturation level than differentials of 8 and 32 tokens respectively. These results

indicated that the optimum Stop threshold level might not be the same as the Stop

threshold level determined using equation 1 in section 4.4.2.2. The NTR-FTM08

routers 32 token receiver buffers Almost Full and Almost Empty threshold levels

were set to 20 and 10 respectively. Following the above conclusions, the FT-PCI-

OSLi and FT-SARNIC interfaces utilised 32 token buffers with AF and AE levels of

24 and 8 respectively, giving a differential of 16.

4.4.3 Control And Message Information

In addition to the transport of data and flow control information across the

communications channels, information relating to the functional status of the network

must also be transferred to give increased fault tolerance. The centralised fault

-73-

Design Discussion

monitoring and intervention features offered by the ICR-C416 and STC-104 lacked

scalability and thus increased intervention times. If a central monitoring point failed,

the entire network could be left with no tolerance to faults at all (referred to as a

‘single point failure’). A distributed fault tolerance mechanism allowed scalability and

forced the hardware implementation of features to detect and recover from faults. This

was because fewer functions could be performed at higher (software) levels without

replicating functionality and reducing efficiency. An autonomous low-level

(hardware) mechanism that improved tolerance to faults was highly desirable.

Distributed fault tolerance provided a generic solution whereas centralised fault

handling systems tend to be tailored to the requirements of a particular networks and

were therefore less flexible and portable between applications.

The dedicated control link employed by the ICR-C416 and STC-104 networks

was an expensive resource, in terms of both wiring and logic usage when compared to

the functionality provided. The Myrinet, Reliable Router, NTR-M04 and NTR-

FTM08 protocols used the 9th ‘type’ bit set to zero to convey control information

allowing up to 256 separate control tokens. In comparison, the DS links four-bit long

control token was fixed, preventing further expansion.

Two disadvantages of the control tokens sharing the data link were the loss of

bandwidth due to the transmission of excess control tokens and the difficulty in

conveying control information across a failed link. Minimising the frequency of

control token transmission could reduce the bandwidth loss of the foimer. The

problem of link failure could be solved by way of an effective link blockage detection

and reset mechanism, discussed in section 4.4.5. In this approach the reliability of the

data link was carried over to the control link.

The complex Unique Token Protocol (UTP) employed by the Reliable Router

utilised a software based message reconstruction mechanism and required the

transmission of many other non-data bits in each data unit. In spite of this, the

network provided a good example of distributed fault tolerance, where the

responsibility for ensuring link integrity was devolved to the nodes at either end of the

link. Software overheads were spread across the network with short and constant

Design Discussion

intervention times, providing a scalable solution. These advantages made the Reliable

Routers fault handling strategy, rather than its protocol worth investigating.

4.4.4 Faulty Packet Removal

The ICR-C416 network possessed no means of removing disconnected messages

from the network. The failure to include any tolerance to faults in the token layer of

the link meant that, in the case of message truncation demonstrated in section 3.6.2

the receiving node stalled. The non-zero value in the receiver’s packet length counter

indicated that more data was expected. A count of zero denoted the end of the packet.

The error prevented further data from being received and the occupation of the

physical channel by that particular message meant that until the resource was

relinquished, by way of an operator initiated reset, other messages could not use the

resource and the system remained stalled until it was reset. Such a system was deemed

acceptable at the time given the extremely low failure rate but could be considered

unacceptable in safety critical systems where it is preferable to have an automatic

fault detection and recovery system.

The STC-104 possessed such autonomy via the configurable ‘localise error’ and

‘discard if inactive’ settings which allowed packet truncation and deletion

respectively, at the expense of any group adaptive routing configurations. These

features were the minimum for an autonomous fault detection and recovery strategy

but were implemented, along with others including group adaptive routing, in the

NTR-FTM08. The forward reset token (FRES) used by Myrinet and the NTR-M04

freed up resources for the next message initiated by a time-out through lack of link

activity. The FRES had the capability to remove many messages from the network but

retransmission was impractical, as the higher levels of the protocol had no knowledge

of what was removed.

After the truncation of a packet, the receiving end node, whether the FT-SARNIC

or the FT-PCI-OSLi, needed to be aware that a fault had occurred and that the

message contents should be treated with caution. The Bad End of Packet (BEOP)

token, similar to the Exceptional End of Packet (EOP2 or EOPE) token defined in

-75-

Design Discussion

IEEE Std. 1355-1995, was appended to the data destined for the end node. The

remainder was flushed. Detection of this packet called an interrupt and higher

software levels were required to decide whether or not to retain the truncated

message.

4.4.5 Link Initialisation Procedure

There was a requirement to define a start-up procedure to ensure that both sides of

the communication link were ready before beginning data transfer. Defining which

tokens were valid for each state allowed the state machine to presume that receipt of

any other tokens constituted an error, returning the state machine to the ‘reset’ state.

Figures 19 and 20 demonstrate the link initialisation procedure utilised by the FT-

PCI-OSLi and FT-SARNIC devices. After reset, a short time-out elapsed before

transmission of connection request (CONREQ) token moved the state machine into

the ‘asleep’ state. A node receiving such a token also moved into the ‘Asleep’ state

before returning a ‘CONREQ’ token, indicating its readiness, and moving the state

machine into the transient ‘Waking’ state. On completion of the handshake between

the two nodes, the system moved to the ‘Awake’ state, the only one where data tokens

could legally be transferred. The handshake involved both nodes exchanging ‘Start’,

or ‘Xon’ tokens demonstrating that they were ready for receipt of data and their

buffers had sufficient capacity to accommodate the incoming tokens. Failure to

complete the handshake within a set time restarted the procedure.

Design Discussion

Received Incorrect token
Power on
reset

or Kicks tart

AsleepReset

Send
ConReq

Link
Error

Handshake
Timeout

WakingAwake
Valid
Handshake
Co mp lete

Tx/ Rx ConReq

Link Sleep Received
Timeout AND Incorrect
Link Dormant Token

Figure 19: Link Status State Machine Diagram

Receipt of a ‘CONREQ’ token whilst ‘Awake’ informed a node that an error had

been detected by the other end of the link, returning the state machine to the ‘Reset’

state. The procedure followed either of the two available paths shown in Figure 20

dependent on whether the node received or sent a connection request first. After a

reset, a short timeout elapsed before a node transmitted this token. As two nodes were

not reset at exactly the same time, one node would transmit a connection request

token before the other one.

Design Discussion

c Start - RESET >

c

Send
CONREQ

r

Receive
CONREQ

r
ASLEEP

'i r

Rx

2) ASLEEP

CONREQ

r
Send

CONREQ

r
WAKING WAKING

Send T imeout
Elapsed?

T imeout
Elapsed? Rx

CONREQ

Rx
CONREQ

Ready for Data Transmission
A W A K E

Figure 20: Link Initialisation Flow Diagram

4.4.6 Link Dormancy

Link dormancy was a configurable feature of the NTR-FTM08 protocol that

permitted a link to fall asleep after a pre-defined period of link inactivity. It allowed

the state machine in section 4.4.5 that determined link status to make a possible state

move from the ‘Awake’ state directly to the ‘Asleep’ state. The NTR-FTM08 protocol

required the transmission of flow control tokens approximately every 15 tokens time,

following assertion of ‘Heartbeat’. This interval might be too frequent for some

Design Discussion

applications and undesirable for others. If both ends of the link were configured as

dormant, no flow control tokens were transmitted in the absence of data and the links

remained silent. Once asleep, in the event of one of the nodes wishing to transmit a

message, writing to the transmitter message length register triggered the kickstart

process. Kickstart returned the link state machine to the reset state, from which the

initialisation procedure commenced. Link dormancy was asserted in the FT-PCI-OSLi

module by setting bit 19 in the Command register (register offset 0FH) (see Appendix

C for more information).

4.4.7 Virtual Channels

In a multiprocessor network employing routers, different messages were

multiplexed onto the same physical channel as shown in Figure 21. In Figure 22,

messages are divided into packets in order to avoid domination of the physical

channel by any one message.

Node 1 Node 2

Message 1Message 1

Physical Channel
Message 2Message 2

Message 3 Message 3

Figure 21: Virtual channels showing multiple messages traversing the same

physical link

Time Message ID

i I
1 2 3 1 2 1 3 2

Figure 22: Messages arriving at the receiving node showing multiplexed packets

Design Discussion

Each message had a unique header to aid identification. Messages were

depacketised and transferred to memory at the receiving node. The processor fetched

the data from memory for manipulation when required, as shown in Figure 23. The

message length and address in memory of the data were specified by the software

programmer and the operating system respectively.

FFFF FFFF H

Processor fetches
message to / from
memory for
manipulation

* ►

0000 0000 H

Memory

Message 1

Message 2

Message 3

Interface transfers
data to / from
memory for storage
prior to processing

w--------------------- ►

Figure 23: Messages stored in memory ‘pots’ prior to processing

On receiving notification of a message arrival, the communications interface must

first match the received message header against all expected headers, as the receiver

does not know in what order messages might arrive. Following a header match, the

corresponding address and length must be obtained to identify where the message was

to be transferred to and when transfer would be complete. The PCI-OSLi interface

stored such information in software, requiring incoming headers to trigger an

interrupt, requiring the processor to intervene and search for a matching message

header. This approach was expensive in terms of time and resource utilisation as the

processor must suspend activities and devote time to searching for a matching header.

If an unexpected header arrived, the user had to flush the message in the PCI-OSLi

interface before another message could occupy the interfaces’ resources again. This

allowed messages arriving at the wrong node to be removed from the network but did

not permit the user to process the message.

The PCI-OSLi generated an interrupt every time a header arrived that was not

identical to the header of the previous message, as only one message ID was stored at

any one time. Messages split into packets possessed identical message headers so the

-80-

Design Discussion

consecutive arrival of packets from the same message did not trigger a new message

search. Incoming packets whose ownership alternated between two or more messages,

such as those shown in Figure 22 required new message ID searches. The SARNIC

receiver had two DMA channels and could thus handle two different messages

without requiring an interrupt to be called when a packet from either message arrived.

Arrival of a third message header initiated an interrupt and required the removal of

one of the existing message ID’s from the message allocator. Message removal was

performed in software with user assistance required to determine which packet was

removed. Message header comparisons were performed in software, necessitating an

interrupt so the only advantage gained was when multiplexing two messages onto one

link. The FT-SARNIC had the same message handling features, but improved on the

PCI-OSLi interface by possessing a second message channel.

4.4.8 Header Storage - CAM

The PCI-OSLi design required an interrupt to be called following arrival of an

incoming message to the interface. Servicing the interrupt required the PC to suspend

its activities, validate the authenticity of the message ID and supply associated

message information. Devolving the message ID checking functionality to the

communications network interface permits its execution without involving the

processor, hence increasing efficiency. Such an operation required the message

information, (message ID, address and length) to be pre-loaded into the FT-PCI-OSLi

in anticipation of the arrival of that particular message. This approach suffered from

the two main drawbacks of the system used in the PCI-OSLi but both were easily

resolved. These were:

• Many messages might be expected at the receiver, yet their order of arrival was

unknown. If the message information for a different message resided in the FT-

PCI-OSLi, the message IDs would not match, halting data transfer to memory.

• Incoming packets that alternated between two or more messages required the same

message infonnation to be reloaded several times.

Design Discussion

To avoid these situations, the message information storage facility must possess these

respective characteristics:

• It must possess the ability to store multiple message IDs.

• The option of the message IDs being reusable or one-time active must be available

to allow messages occupying multiple packets.

In addition, it would be beneficial to the message ID validation procedure if the

following features were available:

• The header validation process, which starts on header reception and concludes

with the DMA channel enabling, must be performed as quickly as possible.

• The ability must exist for the user to remove or overwrite message IDs if they

were no longer needed.

• Functionality must exist to allow the user to ‘probe’ or view the contents of the

storage facility.

• The user should retain the right to pass or flush, either manually or automatically,

messages whose headers do not match.

• Possibility of clearing the message information storage facility.

• The user must be allowed to pre-set message address and length, enabling

message information to be loaded into the FT-PCI-OSLi with a minimum of write

accesses.

Such a system effectively created X virtual channels, where X was the number of

message IDs that could be stored in the message storage facility. This provided rapid

header verification whilst minimising the need to call a processor interrupt. Network

efficiency could be maximised by devolving as much message handling responsibility

as possible to the FT-PCI-OSLi.

-82-

Design Discussion

4.4.9 Message Storage

This section examines what occurred once the authenticity of an incoming

message had been verified, and its contents depacketised ready for transfer to the host

systems memory. The host system must exercise caution over where the FT-PCI-

OSLi interface will transfer data, to ensure memory contents were not overwritten.

Several memory ‘pots’ were assigned, into which messages could be stored before

being accessed by the host system, manipulated and stored elsewhere. The concept

was to have multiple designated ‘pots’ for message storage prior to receiving attention

from the processor. More than one was necessary as the processor could manipulate

information from messages in a different order to that which they were transferred to

memory. A message could not be overwritten if it was yet to receive the processor’s

attention. The message ‘pots’ permitted the message information (message ID, length

and start address) to be active and readable for the entire duration that the message

was assigned to that ‘pot’. Other messages were prevented from utilising that ‘pot’

until the processor had handled the message.

To aid message storage, messages were grouped into three classes, determined by

length and application. The header storage facility, located in the CAM, was

effectively split into three sections, and possessed the ability to store CX* class 1

messages, T class 2 messages and ‘Z’ class 3 messages. Class 1 had 10 locations,

class 2 had 4 locations and class 3 had 2 locations. Expansion of class sizes and / or

the CAM size was relatively simple, requiring logic duplication. The class lengths

were user configurable by addressing registers in the interface and were the maximum

permitted, not the only message lengths allowed. Class 3 was intended to be a ‘catch

all’ class with no specified maximum length, and any maximum message length up to

the current 1Mbyte maximum for the FT-PCI-OSLi. Class 3 messages were designed

for one time use only and as such were removed from the CAM following the match.

Grouping messages into classes according to lengths and assigning each group a

designated message storage area in memory reduced message information storage

space. Each message address was 30 bits long, due to word accesses making the least

significant two bits redundant. Each messages length required 18 bits with the least

significant two bits ignored for the same reason. Header storage required 8 bits for

-83-

Design Discussion

each header byte that was to be sent. For a single header byte, a minimum of 54 bits

worth of information, whether stored in memory or registers, was needed for each

message. This figure increased proportionately, so to store 16 messages of

information required a total of 864 bits. As all messages in a particular class possessed

the same maximum message length, only three length registers were required,

reducing logic requirements significantly with no real loss in flexibility.

4.5 Digital Systems Implementation Issues

An overview of some of the problems encountered in the implementation of

prototype digital designs and some potential solutions is offered in this section. It is

not intended to be a definitive discussion on this open-ended subject and focuses on

solutions utilised in the development of the FT-SARNIC and FT-PCI-OSLi interfaces.

An important issue in digital circuit design is currently that of the length of the

design cycle. Many designs build on previous designs in some way, retaining

common features or components. Utilising these reusable aspects of the design, called

Intellectual Property (IP), can significantly reduce the design cycle and increase cost

effectiveness. The time taken to verify the design can also be reduced as the IP

aspects of the design have been proven to function correctly although the design effort

required in integrating IP into the design can be significant [127].

Improvements in silicon fabrication techniques have led to higher gate counts

being implemented on ever decreasing areas of silicon. Combined with advances in

Surface Mount Technology (SMT) [128], devices are decreasing in size, putting a

strain on the device I/O. Larger designs require larger devices but can also require

increases in the I/O requirements due to the increase in microprocessor bus width

from 8 bits (in the 1980’s) [129], to 64 bits in contemporary state of the art processors

[130]. This creates a pin out bottleneck, as the Printed Circuit Board (PCB) track

layout around the device becomes more complex. Serial communications links allow

a high number of logical connections to be realised whilst maintaining a relatively low

number of physical wire connections. Serial communications technologies have

advanced significantly, resulting in much higher speeds than were previously possible

Design Discussion

when parallel connections replaced serial. Modem serial based communications

systems include IEEE Std. 1394 (FIREWIRE) [90, 91] and Universal Serial Bus

(USB) [93, 94]. These communicate via media shared between users, similar to a bus.

Performance is guaranteed by limiting the number of connections and transmission

distance.

Until relatively recently, the only means of implementing large-scale digital

designs involved utilising Application Specific Integrated Circuit (ASIC) technology

[131]. ASICs are full custom devices requiring massive investment in terms of time

(for laying the design out on silicon) and money (cost of die production). For very

high volume production, per unit costs become very low, but for prototyping and

small production runs, these initial overheads are prohibitively high. At that time the

design of highly complex circuits could only be contemplated on ASICs, making the

development of high-speed communications switches an option available to few.

Some systems attempted to implement a processor node on a single integrated circuit,

[5] permitting a complete high-speed solution but offering design flexibility at a very

high cost.

Programmable Logic Devices (PLDs) are arrays of programmable logic that allow

the implementation of custom designs tailored specifically to the application. Early

PLDs contained few programmable elements and could only be used to implement

glue logic. ASICs and PLDs have both benefited from advances in silicon technology

such as improved fabrication methods and the reduction of minimum feature size to

enable higher gate counts [132]. Higher speed and noise immunity was achieved via

the use of new materials. PLDs have also benefited from improved internal

architectures. The ability to implement hardware functionality using Look Up Tables

(LUTs) [133] and on-chip memory resulted in devices such as the Altera

EP20K1500E, capable of implementing 1.5 million programmable gates [134].

The first generation PLDs were one time programmable with the logic functions

programmed by ‘blowing fuses’ within the device [135]. Most current PLDs utilise

Electrically Erasable Programmable Read Only Memory (EEPROMs) [136] to

program Static Random Access Memory (SRAM) devices [134]. The latter lose their

device program when power is removed and so use the former to reload the program

-85-

Design Discussion

on power up. The ability to reprogram the EEPROM and thus SRAM devices in

system made these PLDs particularly suited to prototype and development work

where modifications to the design were required.

PLDs have started to eclipse ASICs in terms of the increased flexibility offered,

technological and architectural advances, ease of modification and even increased

performance in certain functions [137]. Vendors have developed PLD logic cores with

a fixed design feature implemented alongside a large amount of programmable logic

for the customer to implement an on-chip interface. The PLD is sold or licensed to the

customer as IP. IP cores have been developed by Altera to cover application areas

such as signal processing, bus interfaces, communications protocols and controllers. It

is the introduction of embedded processor cores developed by Altera [69] and Xilinx,

that are more relevant to the subject area. Such features allow the opportunity to

realise a System-on-a-Chip (SOC) or System-on-a-Programmable-Chip (SOPC)

solution [138, 139].

IP cores are usually ‘soft’ cores, being software based with the function

implemented by the compiler during synthesis. The customer purchases source code

with which to realise these functions. The soft core will have certain design

constraints and parameters defined by the vendor. Information on how the design

would be implemented in the PLD was also included in the source code although the

synthesis tool dealt with layout. As the vendor encrypted the source code, the core

features were fixed and could not be modified by the user to suit the application,

allowing for a generic, but inflexible implementation of the core. Some core vendors

permitted users to alter the core features by charging additional license fees in return

for extra access rights. Another aspect of IP cores was the need to spend a significant

amount of time and effort evaluating the core to examine its suitability, although most

vendors provide IP cores for evaluation before licensing them.

An alternative approach is to provide ‘hard’ cores. These were referred to as

Embedded Standard Products (EPSs) [140], by one vendor, QuickLogic. Hardware

functions and their associated glue logic are replaced with hardwired IP cores and

programmable logic on a single programmable device. This resolved layout problems,

Design Discussion

which were normally dealt with by the synthesis tool in soft cores. The lack of

flexibility with regard to modifying the core still remained.

ASICs still dominate the high volume, high performance end of the IC market,

despite a recent shift away from their use in an attempt to cut costs [141]. PLDs were

better suited for low volume production and for implementing projects requiring

rapid, easily verifiable solutions as the development cycle times were much faster in

comparison to ASICs.

4.6 Synthesis

As discussed in the previous section, digital designs could be implemented on

ASICs, Gate Arrays or PLDs. The former two technologies incurred expensive initial

development costs. This made them highly unsuitable for development purposes but

they became more cost effective with volume production. For these, and additional

advantages outlined below, PLD technology was selected. These advantages included:

• Flexible designs due to reprogrammable devices.

• Low initial costs made PLDs suitable for prototyping.

• Shorter development cycles relative to ASICs as layout already existed and the

compilation software performed logic connections and optimisation tasks.

• Modular designs could be reused as DP.

• PLD designs were portable to ASICs but not vice-versa.

The FT-PCI-OSLi interface was implemented on an Altera EP20K200EQC240-1

programmable logic device. Previous design work performed by the research group

had targeted Altera’s Flex 10K PLD family. The PCI-OSLi interface utilised 83% of

available logic resources and 70% of available memory on a Flex 10K50S device

[43], leaving little room for significant alterations to the design. The decision to

advance to the newer Apex 20K technology was prompted by several requirements.

These included: increased logic resources, increased performance, improved software

support and the rapidly advanced PLD market, which resulted in the rapid

obsolescence and discontinuation of device families. Like the Flex 10K devices, the

Design Discussion

Apex 20K devices are SRAM based, requiring programming on power-up. This suits

prototyping as design modifications could be implemented quickly and with no need

for component replacement. Timing-based simulation could effectively be performed

by way of hardware verification, omitting a stage of the design cycle and reducing

design time. The following section discusses how the internal architecture of the Apex

20KE device family is beneficial in achieving maximum performance for a generic,

non-optimised design solution.

4.6.1 Target Device Characteristics

The Apex 20KE [134] device family had an internal operating voltage (Vcclnt) of

1.8V to attain the low power consumption often required in embedded systems and a

PCI compatible external I/O voltage (Vcclo) of 3.3V. Fast, bi-directional, tri-state I/O

pins made it suitable for a PCI interface. The 168 user pins available on the 240 pin

device were more than adequate for the number of pins required by the interface and

left many more that could be used as debug pins. The 20K200E device had 526,000

system gates that typically translated to 200,000 user gates. These gates form 8,320

Logic Elements (LEs) and 52 Embedded System Blocks (ESBs) comprising 104kbits

of programmable memory. If more resources were required, the device could be

substituted for the 20K300E PLD as they shared identical packaging and dedicated

(non-user configurable) pins. The 20K300E device possessed 50% more LEs than the

20K200E device and a similar increase in ESBs. The device required two Electrically

Erasable Programmable ROM devices (EEPROM) to configure the PLD after power-

up. The EEPROMs were programmed via a 10-pin JTAG header from the

programming PC’s parallel port and retained their program until overwritten.

Design Discussion

FastTrack

Figure 24: Apex 20KE Device Architcture

4.6.2 Apex 20KE Architecture

The internal architecture of the Apex 20KE devices distributes the design features

in blocks throughout the device to reduce delays between logic and memory, as

shown in Figure 24. Programmable logic in the PLD has one of four functions:

• ClockLock - Clock management circuit. The fastest available (-1) speed grade

[134] can support both 32 and 64bit and 33 or 66 MHz PCI timing requirements.

Multiple clocks could be used on the same device with clock skew minimised in

even the largest of designs.

• IOE - I/O Elements supporting a wide range of I/O standards, including PCI.

Dedicated ‘Fast I/P’ pins used dedicated device-wide routing channels to

distribute signals across large designs, minimising set-up times to meet the

stringent PCI timing requirements on bi-directional I/O,

• LAB - Logic array blocks implement registered and combinatorial logic functions

based around small, four variable look-up tables. These are discussed in greater

detail below.

InterconnectClock
Lock

MEMORY MEMORY

438555383

MEMORYMEMORY

' _ :

Design Discussion

• Memory - Embedded memory within the device allows for reduced area and

increased performance. Cascadable memory blocks permitted the implementation

of variable areas of memory. Memory was available as dual port RAM, FIFO

buffers, RAM, ROM and CAM. Separate ESB blocks allowed the creation of

many independent memories in terms of both size and function. For example, the

FT-PCI-OSLi device contained two 64 deep by 32-bit wide FIFO buffers, two 32

deep by 9-bit wide buffers and one 16 deep by 8-bit wide CAM.

Carry-in Cascade-in LA B-wide Sync Load / Clear

4 Data
Inputs

Global
Reset
Clr l Outputs to

FastTrack,
MegaLAB
and Local
Interconnect

Clr 2

Clock
Clock
Enable To other LEs in LABCarry-out Cascade-out

Cascade
Chain

Sync
Load /
Clear
Logic

A sync
Load /
Clear
Logic

D-type
Flip-
Flop

Look-up
Table
(LUT)

Carry
Chain _

Figure 25: Apex 20K Logic Element

4.6.2.1 Logic Elements

Logic Elements (LEs) were the smallest logic units in the device and could

implement any logic function requiring up to four input variables. A fifth input could

be utilised by way of the Carry and Cascade functions. The LE inputs fed a four input

look-up table with an optional registered output, as Figure 25 demonstrates. Control

pins could be any global or local I/O or logic signal. The flip-flop was bypassed when

implementing combinatorial logic but a single LE could implement two outputs, one

clocked, one not. Additionally, device utilisation can be improved by utilising unused

flip-flops to clock signals external to the device, a technique known as register

-90-

Design Discussion

packing [134]. LEs permitted the formulation of any type of digital circuit whilst still

retaining a degree of efficiency.

4.6,2.2 Logic Array Blocks

A Logic Array Block (LAB) was a group of 10 LEs, interconnected by fast local

interconnects with LEs in the same and immediately adjacent LABs. These allowed a

LE to drive up to 29 other LEs, minimising global interconnect usage. LEs in the

same LAB could be connected using carry and cascade chains. Each LABs could be

controlled by any combination of the following signals: two separate clocks, two

clock enables, and asynchronous and synchronous load and clear signals. Input signals

for the LAB entered via the local interconnect either side of the LAB. The LAB

output signals could drive either local, row, column or MegaLAB interconnects as

shown in Figure 26. LABs permitted the realisation of simultaneously triggered logic

with minimised skew, aiding the implementation of parallel design features.

Row Interconnect

MegaLAB
Interconnect

To 14 other
LABs and 1
ESB in same
MegaLAB

Column
Interconnect Local Interconnect10 LEs form an LAB

Figure 26: LAB Structure Demonstrating Surrounding Interconnections

-91-

Design Discussion

4.6.2.3 MegaLAB

In the Apex 20KE devices, a group of 16 LABs and an ESB block formed a

MegaLAB, interconnected by a MegaLAB interconnect. Signals external to the

MegaLAB entered via FastTrack and local interconnects. Carry and cascade functions

could be implemented between any LAB in a MegaLAB. MegaLABs allowed fast

signal paths between resources both inside and outside the MegaLAB and could be

useful in partitioning designs to gain speed advantages in large designs.

4.6.2.4 FastTrack Interconnect

Column
Interconnect

MegaLAB
Interconnect

I/O I/O I/O

MegaLAB MegaLAB MegaLAB

MegaLAB MegaLAB MegaLAB

Row Interconnect

Figure 27: FastTrack Interconnection Grid Structure

FastTrack interconnect was a series of horizontal and vertical (row and column)

global routing channels, as shown in Figure 27. LEs with a high fan-out (ie drove a

high number of other LEs) could connect directly to the row interconnect by being

placed in the last LE of an LAB, or the column interconnect if placed in the LAB

nearest the column interconnect. To achieve lower set-up times, column I/O pins can

also drive the FastRow interconnect to route signals directly to the local interconnect,

bypassing the MegaLAB interconnect.

-92-

Design Discussion

The architecture of the device was of note when designing a PCI interface, which

was subject to strict timing characteristics. This was especially true when

implemented on PLDs, which are slower than ASICs, despite other advantages as

mentioned in section 4.5. The mapping of the designs onto logic resources was

performed by Alteras Quartus II synthesis software [155]. The user could influence

the outcome by specifying certain synthesis options. The user could even dictate

certain modules and parts of modules to be implemented in certain sections of the

PLD, even down to specifying the use of particular LEs in order to obtain higher

speeds. The layout and placement of the design was left to software, apart from the

pin-out, which was predefined in order to place all PCI I/O along one side of the

device. This minimised PCB track layout length and complexity and in turn reduced

skew, delay, noise and crosstalk on these signals.

4.6.2.5 Context Addressable Memory

Context Addressable Memory (CAM) [142] was a memory feature first

introduced with the Apex 20KE family. CAM was unavailable on the Flex 10K

devices used in the implementation of the SARNIC and PCI-OSLi interfaces and the

Apex 20K family. CAM could be thought of as the inverse of RAM. When retrieving

data from RAM, the address of the desired data was entered with the output being the

contents of that address. Retrieving data from a CAM entailed entering the expected

data, termed ‘pattern’, and if the pattern already existed in the CAM, a match was

declared with the output being the address of the matched pattern.

CAM achieved very fast search speeds, irrespective of the CAM size, as locations

were searched concurrently as opposed to the sequential operation of RAM. Searching

the CAM took a single clock cycle with a single ESB capable of implementing a 32-

bit wide 32 pattern deep CAM. The CAM implemented in the FT-PCI-OSLi design

was 8 bits wide and 16 pattern deep but was expandable if desirable, with most

additional work involving the replication of surrounding glue logic. The CAM could

support ‘don’t care’ mask bits but this feature was deemed unnecessary, as message

-93-

Design Discussion

ID bits must be exact. It could be used if message IDs were numbered by masking out

the number bits.

4.6.3 High Performance Digital Design Implementation

This section identifies ways in which the internal architecture of the PLD aided

the implementation of the FT-PCI-OSLi. The PLDs defined layout gave accurate

estimations of the delay paths through the design. Every gate that the signal passed

through could be used to form a timing analysis prior to hardware implementation.

Post-synthesis simulation was used to obtain performance results for the FT-SARNIC.

A timing analysis was used extensively during the development of the FT-PCI-OSLi

to ensure that the PCI timing requirements were met before implementation. Certain

signals, most notably nIRDY and nTRDY (initiator and target ready respectively)

were associated with timing problems due to their fast set-up times and high fan-outs.

Pipelining these signals and using high speed interconnects helped reduce the delays

to acceptable levels. As designs and their target technologies increase in size, delays

across the device increase, leading to signal skew and implementation problems. The

internal PLD architecture attempted to minimise such problems through the global

clocking which used dedicated clock pins. Clock management circuitry distributed

clocks around the design with minimal skew.

The MegaLAB architecture permitted neighbouring design functions to be placed

in close proximity physically. The skew incurred through the implementation of

combinatorial logic in large designs could cause timing problems due to signals

changing at different times. A pipelined architecture was an obvious, but sometimes

impractical, solution.

The location of memory segments in the MegaLAB, along with the LABs

reflected the need of many circuit elements that utilised memory to have associated

glue logic. For example, the Virtual Channel Message Store circuit that surrounded

the CAM, detailed in section 5.4. Dividing the memory into multiple smaller blocks

allowed for flexibility of implementation and reflected the idea that some designs, like

the FT-PCI-OSLi, have many memory requirements.

-94-

Design Discussion

The PCI bus standard utilised bi-directional I/O reflecting the shared nature of

communications and reduced the pin count. The PCI-OSLi design required the bi

directional nIRDY and nTRDY signals to use separate input and output signals and

merge the signals externally. This permitted the use of the dedicated fast input pins of

the PLD, necessary to meet the timing requirements of this signal. Internal

optimisation of these signals, in conjunction with the more advanced Apex 20KE

devices, enabled these signals to be implemented as bi-directional I/O, as shown in

Figure 28, simplifying PCB layout and reducing noise on these signals.

nIRDY <4-

nTRDY -4-

PCI-OSLi
Flex 10KE

FT-PCI-OSLi
Apex 20KE

nIRDY i
nIRDY < ----------► nIRDY

nIRDY_o

nTRDYji nTRDY 4 ----------► nTRDY
nTRDY o

Figure 28: nIRDY and nTRDY signal improvement between the two PCI-OSLi
designs

Results

5 DESIGN STRUCTURE

5.1 FT-PCI-OSLi Module Description

The design of the FT-PCI-OSLi interface was divided into three main areas, as

shown in Figure 29. The Host System Interface was responsible for co-ordinating

transactions with other devices connected to the PCI bus. Message Format Processing

Logic was responsible for altering the 32-bit data words to a format more suitable for

transmission on the NTR-FTM08 network. The Communications Link Interface was

responsible for data insertion and extraction to and from the NTR-FTM08 router

network, and the encoding and decoding of tokens respectively. The Host System

Interface and Data Flow Layer were linked by two DMA buffers, one for each

direction. The 64-word deep buffers accumulated data until there was sufficient to

warrant a PCI transfer. The Link Interface buffering formed the boundary between the

Data Flow Layer, which was synchronised to the 33MHz PCI clock and the

Communications Link Interface. The Communications Link Interface was

synchronised to the sample clock, which formed the basis of the 1.5 times

oversampling technique utilised, by the asynchronous communications across the

NTR-FTM08 network [37]. The 32 token deep Link Interface buffers facilitated the

flow of data across the serial communications links. The FT-PCI-OSLi design

differed from that of the PCI-OSLi in virtually all modules, with many completely

redesigned.

Host
Communications

Link Interface
System

Interface Data Flow Layer

Message
Format

Processing
Logic

32-bit Parallel Bi
directional Bus

Serial
9-bit Parallel Bus Asynchronous32-bit Parallel Bus

Links

Figure 29: Block Diagram o f the FT-PCI-OSLi Interface

96

Design Structure

5.1.1 PCI Interface

The PCI Interface block was responsible for the initiation of PCI bus transactions

involving data sent to and received from the serial communications link. Reception

required the PCI interface to monitor the capacity of the receiver channel DMA

buffer, initiating a transfer when the number of data words stored reached a certain

value. Transmission required the PCI Interface to monitor the PCI bus control signals

to identify the initiation of a transfer by another device attached to the bus. These

control signals were decoded to determine if the FT-PCI-OSLi was the intended

recipient of the transaction, requiring the FT-PCI-OSLi to prepare for data reception.

AD [31:0]

nC/BE [3:0]

nFRAME 4 -
nDEVSEL 4 -
nIRDY 4 ------
nTRDY 4 ------
nSTOP 4 ------
nPAR 4 ------
nSERR 4 ------
nPERR 4 ------
nlNTA 4 ------
IDSEL ----------
nGNT ----------
nREQ 4 --------
CLK ------------

nRST -----------

PCI M aster/
Target

Controller

Target
Address
Decoder

Address /
Data Path

■N
-

fell

Parity Check
/ Generation - N-v

DMA
Registers

Interrupt
Controller

Virtual
Channels
Modules

Test
Counters

PCI
Configuration

Registers

32-Bit Data
W ords from Rx
DMA buffer

^ 32-Bit Data
Words to Tx
DMA buffer

 Interrupt Signals
fro m Link Interface

_____ Various I/P and
O/P signals to /

^ from the Data
Flow / Link
Interface Modules

To PCI Bus Host System Interface To DMA Interface

Figure 30: Block Diagram o f the PCI Interface and its associated I/O signals

The PCI Interface consisted of six main components, as Figure 30 demonstrates.

• A PCI Master / Target Controller determined the mode of operation for the current

transaction.

• The Target Address Decoder determined if PCI transactions initiated by another

PCI agent were destined for the FT-PCI-OSLi.

Design Structure

• The Address / Data Path module multiplexed and demultiplexed these two buses

onto a single bus and synchronised the PCI data bus signals to meet the strict set

up times of the bus.

• A Parity Check / Generator controller maintained the integrity of communications

over the PCI data bus and the four bit Command / Bus Enable (nC/BE) signals.

• PCI Configuration Registers hold information necessary to identify the FT-PCI-

OSLi to other users of the PCI bus.

• The DMA Registers housed three main functional blocks: An Interrupt Controller,

hardware to implement Virtual Channels and a series of test counters used to aid

development.

5.1.1.1 PCI Master / Target Controller

The PCI Master / Target controller module controlled the interface between the

FT-PCI-OSLi and the PCI bus. It was responsible for the creation and monitoring of

many of the PCI bus signals used in transactions involving the FT-PCI-OSLi. The

main difference between the Master / Target controller implemented in the FT-PCI-

OSLi and the comparable module in its non-fault tolerant predecessor was the

implementation of the master and target state machines. The number of states in the

state machines were reduced from 7 to 4, and from 8 to 5 for the master and target

state machines respectively. These two state machines operate independently from

one another but only one should be active at any one time.

Acquiring PCI Bus Ownership

A request for ownership of the PCI bus is made following assertion of the active

low ‘nREQ’ PCI signal (see Appendix B). Request arbitration is handled by the PCI

chipset with priority usually given on a ‘round-robin’ basis although the actual

implementation is left to the PCI chipset designer, being unspecified in PCI

specification 2.1. Making the request decrements the count stored in the latency

counter. This 8-bit value is stored in bits 8 to 15 of configuration register offset 0CH

-98-

Design Structure

(see Appendix E) and is decremented every PCI clock cycle whilst a transfer is

occurring. When the count reaches zero, the FT-PCI-OSLi must surrender bus

ownership and make another request to transfer data if the message has not yet been

completed. The latency count is decremented both when the PCI transfer is occurring

and whilst it is being set up and can be used to calculate the number of clock cycles

taken to acquire ownership and to initiate transfer following the granting of

ownership.

Bus Master Mode o f Operation

M Idle

M AddrM Extra

M Data

Figure 31: FT-PCI-OSLi Master State Machine

Figure 31 illustrates the operation of the Master State Machine. The first state,

entered on reset was ‘M_Idle’ and it remains in this state until one of two conditions

was met. Either there was enough data in the receiver DMA buffer for the FT-PCI-

OSLi to initiate a transfer or the PCI Bus Arbiter could decide to allocate the FT-PCI-

OSLi the task of ‘bus parking’ [41, 145]. These conditions de-asserted the ‘nREQ’

(see Appendix B) signal, indicating that the device had requested ownership of the

PCI bus. The second, ‘M_Address’ state was entered on being granted ownership of

the PCI bus, indicated by receipt of the ‘nGNT’ signal. This state was occupied for a

single PCI clock cycle, during which the initial memory address for the transfer was

loaded into an internal register as part of the PCI address cycle.

-99-

Design Structure

On the following PCI clock cycle, the ‘MJData’ state was entered, during which

data transactions could occur. This state was left when either:

• Data transfer had been completed - initiated by the ‘m_lstl_data’ signal from the

DMA Registers module indicating that the number of data words transferred

equalled the number of expected transfers.

• The FT-PCI-OSLi device was forced to surrender bus ownership. This occurred if

the transfer was not completed within a set time, indicated by the expiration of

the latency counter.

• The target requested that the bus master halt the transfer through assertion of the

‘nSTOP’ signal (see Appendix B).

Satisfying any of these conditions moved the state machine into the ‘MJExtra’

state, again only for a single PCI clock cycle. During this state the FT-PCI-OSLi

surrendered bus ownership before returning to the ‘M Idle’ state.

Target Mode o f Operation

"►(S DecodeS Idle

S Data B B u sy

S Extra

Figure 32: FT-PCI-OSLi Target State Machine

If the FT-PCI-OSLi became the recipient of a PCI transaction, the interface

became the ‘target’, invoking the use of the target state machine, illustrated in Figure

32. This state machine entered the ‘S_Idle’ state on reset, moving to the ‘S_Decode’

- 100-

Design Structure

decode state on assertion of the ‘nFRAME’ PCI signal (see Appendix B). Assertion of

the *hit_f* signal from the ‘Decode’ module or the ‘cnfg_cyc’ signal indicated that the

FT-PCI-OSLi was the intended recipient of the transaction. These signals were

decoded from the address bus and ‘nC/BE’ buses respectively. If the FT-PCI-OSLi

was the intended destination for the transaction, the target state machine moved from

the ‘S_Decode’ to the ‘S Data’ state.

If another device attached to the PCI bus was the intended recipient then the state

machine entered the ‘B Busy’ state, indicating bus activity not connected with the

device. The FT-PCI-OSLi target state machine remained in either of these states until

the de-assertion of the ‘nFRAME’ signal indicated the end of the data transfer,

irrespective of the recipient. This moved the state machine to the ‘ S JExtra’ state, valid

for one clock cycle during which time the FT-PCI-OSLi must handover possession of

the bus and return to the ‘S_Idle’ state.

5A. 1.2 Address Decode Module

This module latched the PCI address bus signals to determine if the FT-PCI-OSLi

was the target of the next PCI bus transaction. These signals were also decoded to

provide pointers to the address of the current data word in the configuration and data

storage spaces in memory. Address lines 2 to 7 and 20 to 31 were latched with the

former used to determine the read / write address for the next memory access. Bits 20

to 31 decoded a 1MByte area of memory with the ‘hitJP signal indicating an address

match with a configuration register address. The Master / Target Controller used this

signal to indicate that the FT-PCI-OSLi was the intended recipient of the transaction.

5.1 A .3 Address / Data Path Module

The separate 32-bit address and data buses of the PCI interface were multiplexed

in this module and were latched to ensure the stringent timing requirements dictated

by the PCI bus specification were adhered to.

- 101-

Design Structure

5.1.1.4 Parity Generator / Verifier

The 32-bit PCI data bus, AD[31:0] and the 4-bit active low ‘nC/BE’ bus (see

Appendix B) were sampled in this module and an even parity signal was generated for

each PCI word outputted onto the bus. The receiving PCI entity checked the parity

signal against the received buses. The ‘nSERR’ or ‘nPERR’ parity error signals

denoted errors detected in the address or data phases of the PCI transfer respectively.

5.1.1.5 PCI Configuration Registers

This module contained sixteen 32-bits wide registers used for storing information

denoting the identity and characteristics of the FT-PCI-OSLi, used in setting up the

PCI bus and determining which devices were attached to it. Appendix E lists all

registers used in this design.

5.1.1.6 DMA Registers

This module contained thirty-two word-length user registers, mapped into the PC

memory, as listed in Appendix C. These registers were used for several different

functions. These included the display of control and status signals to assist

development and the writing of message information to the registers to initiate

transfers. Interrupt sources were configured and controlled via the Interrupt Enable

Register and Interrupt Pending Register respectively.

The FT-PCI-OSLi user registers were accessed via free software called the

PCIWave Exerciser from PLD Applications [156]. It permitted the user to read and

write data directly to the host system memory without the need of a device driver.

Such a task needed performing with care to avoid corrupting the memory contents. A

program searched through the devices attached to the PCI bus, checking the device ID

against that of the FT-PCI-OSLi. When found, the program allocated several available

Design Structure

memory segments of 65,536 double words (262,144 bytes) for use by the FT-PCI-

OSLi as data sources and receptacles.

The DMA Registers module also contained the Virtual Channels sub-modules that

are discussed in greater detail in section 5.4.4.

5.1.1.7 Interrupt Controller

Located within the DMA Registers module, the Interrupt Controller was

responsible for the generation of the active low ‘nINTA’ PCI signal. The host system

serviced requests following the assertion of any of the multiple interrupt sources when

that interrupt source was enabled in the Interrupt Enable Register. All interrupt

sources requesting interrupts set corresponding bits in the Interrupt Pending Register.

Only enabled interrupts resulted in the generation of ‘nINTA’ and the interrupt being

serviced.

5.1.2 Data Flow Layer and Communications Link Interface

This section gives a detailed breakdown of data path through the data flow

modules of the FT-PCI-OSLi design, from the serial communications network to the

DMA FIFOs prior to transfer over the PCI bus. Figure 33 demonstrates the flow of

data, and its format, through this part of the FT-PCI-OSLi interface.

- 103-

Design Structure

To PCI Bus via Address / Data Path AD[31:0]
Multiplexer

Message Layer
(32-bit words)

Packet Layer
(9-bit tokens)

Token Layer
(Serial bit
stream)

TX DMA FIFO
(64 WORDS DEEP)

7— ■

TX MESSAGE
CONTROLLER
(PACKETISER)

RX DMA FIFO
(64 WORDS DEEP)

RX MESSAGE
CONTROLLER

(DEPACKETISER

> -

33MHz PCI
Clock
Domain

TX LINK
INTERFACE BUFFER 11

RX LINK
INTERFACE BUFFER

32 TOKEN BUFFER 32 TOKEN BUFFER

LINK INTERFACE

Communications
Link Sample

' Clock Domain

NTR-FTM08 Router Network

Figure 33: Block Diagram o f the Data Flow and Link Interface sections o f the FT-
PCI-OSLi interface

5A .2,1 Link Interface

The link interface converted 9-bit parallel tokens into a serial bit stream for

transmission onto the router network and vice versa. Only the data byte and type bit

were transferred to and from the link interface and its buffers. Start and stop bits were

inserted into the bit stream immediately before transmission and removed

immediately after reception. Control tokens were inserted into and removed from the

data stream at the link interface with only termination tokens progressing to the link

interface buffers. Stop and Go flow control tokens took a higher priority than data

tokens and were inserted and extracted from the bit-stream when required. The link

interface determined which state the link was in, as detailed in section 4.4.5, and

regulated the link initialisation and connection request procedure.

Design Structure

The disconnection detection mechanism was located within the link interface

module. It utilised two signals, namely ‘Heartbeat’ and ‘CheckPulse’ to generate and

verify link activity respectively. Heartbeat tokens were generated once every 255

sample clock cycles, approximately equal to the time taken to transmit 15 tokens. In

the absence of any data to transmit, a heartbeat token (introduced in section 3.5) was

sent to allow the receiver to verify that the link was still operational. Periodic token

transmission reduced signal activity when compared to protocols such as IEEE Std.

1355-1995, which required constant logic transitions on the physical channels.

Assertion of the Heartbeat signal resulted in the transmission of the flow control token

relative to the current link status. This allowed regular link status verification and

safeguarded against the loss of control tokens. The CheckPulse signal cleared a flag

which was set on receipt of any token, whether data or control. If the flag had not

been set when the CheckPulse signal was next asserted a disconnection error was

flagged. This was because a flow control token should have been received through

assertion of the Heartbeat signal, even in the absence of data. Triggering any error

detection mechanism moved the state machine that governed link status into the reset

state. This invalidated any further tokens received before the link had been correctly

initialised by way of the connection request procedure (see section 4.4.5).

5.1.2.2 Link Interface Buffering

The link interface buffers formed the boundary between the sampling clock

controlled link interface and the PCI clock controlled message interface. The buffers

were 32 tokens deep, 9 bits wide and operated in a first-in-first-out (FIFO) manner.

Type (or ID) bits passed through the FIFOs as termination tokens were added and

removed at the message interface part of the design. Data entering and leaving the

transmitter buffer was synchronised to the PCI and sample clocks respectively. ‘Full’

and ‘Empty’ signals left the buffers to notify other modules of data saturation and

starvation respectively. The receiver buffer created two additional level pointers,

termed ‘Almost-full’ and ‘Almost-empty’, set to trigger when the number of tokens in

the buffer was in excess of 24 and less than 8 respectively. The buffers were

- 105-

Design Structure

implemented in the embedded memory arrays of the PLD as dual-port RAM to allow

simultaneous read and write accesses.

5.1.2.3 Transmitter Message Control

This Transmitter Message Controller co-ordinated the transfer of data from the

transmitter’s DMA buffer to the link interface buffer and the intermediate message

formatting, as shown in Figure 33. The data was packetised in hardware to reduce

software overheads. Header and termination tokens were added at this stage. Data

words were split into four data bytes and a logic one ID bit was added to form the

ninth bit of the token passed to the link interface buffer. Up to four header tokens

could precede the start of the data stream with up to three of these being optional

routing headers. These could be stripped as the message traversed the router network.

The final and mandatory header was the message ID. All header tokens possessed a

logic one type bit and were denoted by their position in the received data stream. The

message length information was passed to this module from the DMA registers

module. As data was outputted from the transmitter DMA buffer, the message length

counter was decremented until a count of zero denoted the end of message. At this

point, an EOM token, with a logic zero ID bit was appended to the data stream.

■►v TerminationIdle Header Data

Figure 34: FT-PCI-OSLi Transmitter Link Controller State Machine

The transmitter message controller possessed two state machines. Their functions

were to control data transfers to the transmitter DMA buffer and the transmitter link

interface buffer. The transmitter link interface state machine had four states; ‘Idle’,

‘Header’, ‘Data’ and ‘Termination’. These reflected the type of tokens that were being

transferred to the link interface buffer at that time. This state machine is shown in

- 106-

Desigii Structure

Figure 34. The state machine moved from ‘Idle’ to the ‘Header’ stage when the

command to start packet transfer was received from the higher levels of the design.

This occurred by writing to the Transmitter Length Register (Offset 0DH) in the DMA

Registers module. In the ‘Header’ state, header tokens were loaded onto the link

interface FIFO from the register, where they were stored after being fetched from

memory. Once the last header token had been loaded into the link interface buffer, the

state machine moved into the ‘Data’ state, loading data from the DMA buffer. After

the last data token had been packetised and written to the link interface buffer, the

‘Termination’ state was entered. An EOM token was loaded into the buffer and the

state machine returned to the ‘Idle’ state to await the next message.

Idle Read Write

Figure 35: FT-PCI-OSLi Transmitter Message Controller DMA State Machine

The transmitter DMA state machine shown in Figure 35 had three states; ‘Idle’,

‘Read’ and ‘Write’. It only operated when the transmitter link interface state machine

was in the ‘Data’ state. On entering this state, the DMA state machine advanced from

‘Idle’ to ‘Read’. This transferred a 32-bit data word from the DMA FIFO for

packetisation, before moving to the ‘Write’ state. The ‘Write’ state appended a logic 1

ID bit to each of the four data bytes that made up the 32-bit data word and transferred

each 9-bit token to the link interface buffer in turn. The state machine moved back to

the ‘Read’ state upon reading the fourth byte in the word into the link interface buffer.

The process was repeated until the transmitter DMA buffer was empty. The empty

transmitter DMA buffer indicated that the packetisation of the data transferred in that

PCI transaction was complete, moving the state machine to ‘Idle’ to prepare the

transmitter DMA channel for another PCI transaction.

- 107-

Design Structure

5.1.2.4 Receiver Message Control

The Receiver Message Controller facilitated the transfer of data from the receiver

link interface buffer to the receiver DMA buffer via the depacketiser. Data was

converted from the 9-bit token format of the link interface buffer to the 32-bit data

words required for PCI transactions.

The type bit of tokens passed from the link interface FIFO to the receiver DMA

FIFO was examined in this module. All other control tokens had been removed from

the data stream by this stage with only the EOP, EOM and BEOP tokens remaining in

addition to the data tokens. On receiving acknowledgement from the header storage

module that the received message ID was valid (or expected and therefore the length

and address for transfer to memory was also known), an associated message length

value was transferred from the header storage module. The length was decremented as

data was outputted from the receiver link interface FIFO. The time at which the

message length counter reached zero, relative to the detection of the termination token

in the depacketiser, determined the mode of termination, of which there were three:

• If the message count did not equal zero when the termination token was read then

the message was terminated earlier than anticipated - Early tennination.

• If the message count equalled zero when the termination token was read then the

message was terminated when expected - Normal termination.

• If the message count reached zero and the termination token was not present then

the message was longer than expected - Late termination.

Early and normal termination resulted in the message being transferred to memory

in its entirety. The setting of bit 2 in the interrupt pending register was used to denote

early termination. Late termination indicated that the message was longer than

expected, and as such there could be insufficient resources allocated to that message

in memory. The expected number of data bytes were transferred to memory and the

remainder flushed from the receiver. A late termination error was flagged using bit 3

of the interrupt pending register. Header tokens were compared with the contents of

Design Structure

the CAM to determine whether or not a header match was achieved. Termination

tokens were removed upon identification so that only data was transferred to memory.

Like the transmitter message controller, the receiver message controller had two

state machines. One controlled the passage of data from the link interface buffer,

shown in Figure 36, the other, shown in Figure 37 controlled the writing of data to the

DMA buffer.

PCI Read
Header

Idle Header

Wait Data
Stage

Terminate Data

Figure 36: FT-PCI-OSLi Receiver Link Controller State Machine

The Receiver Link Controller State Machine resided in the ‘Idle’ state until the

loading of the first received token into the link interface buffer. Its position in the

incoming bit-stream indicated that it should be the header of the message, moving the

state machine into the ‘Header’ stage. Once complete, the received header was

compared with the contents of the CAM to determine whether the header was

expected. Whilst this occurred the state machine was in the ‘PCI Read Header’ state,

advancing to the ‘Wait Data Stage’ state when the header had been validated. This

state synchronised the two state machines preventing the passage of data until the

DMA buffer was ready to receive it. When the receiver message controller DMA state

machine, shown in Figure 37, reached the ‘DMA Sync’ state, the link interface state

machine advanced to the ‘Data’ stage. It remained there until a termination token was

read from the output of the link interface buffer. The state machine then moved into

the ‘Terminate’ state, returning to the ‘Idle’ state when the termination token had been

removed from the data stream.

Design Structure

Write
Data

Read Link
FIFO

DMA
Sync

Idle

Early / Normal Termination

Transfer
End

FIFO
EmptyFlush

Late Termination

Figure 37: FT-PCI-OSLi Receiver Message Controller DMA State Machine

The Receiver Message Controller DMA State Machine initially resided in the

‘Idle’ state. It moved to the ‘DMA Sync’ stage when the received header had been

validated by the contents of the CAM. This state was equivalent to the ‘Wait Data

Stage’ in the link interface state machine in Figure 36. When both states were active

simultaneously the DMA state machine advanced to the ‘Read Link FIFO’ state. In

this state data tokens were transferred from the link interface buffer to the

depacketiser. After four bytes had been transferred from the Link Interface Buffer, a

32-bit word was ready for transfer to the DMA buffer, forcing the state machine into

the ‘Write Data’ state. Once the data word had been transferred to the DMA buffer the

state machine returned to the ‘Read Link FIFO’. This procedure was repeated until the

DMA buffer was full, advancing the state machine to the ‘FIFO Empty’ state. Whilst

in this state the DMA buffers contents were transferred to memory. Once completed

the ‘Transfer End’ state was entered whilst the mode of termination was determined.

If normal or early termination occurred, the state machine returned to the ‘Idle’ state.

Late termination moved the state machine to the ‘Flush’ state removing the excess

data from the link interface buffer before returning the state machine to the ‘Idle’

state.

- 110-

Design Structure

5.L2.5 DMA Buffer

The DMA buffers were temporary data stores for data that had been read from or

written to the PCI bus. There was one buffer per direction operating on a first-in-first-

out (FIFO) principle. The DMA transmitter buffer stored data previously fetched from

the host system memory, via the PCI bus, prior to packetisation and transmission onto

the serial router network. PCI data bursts allowed data to be loaded onto the buffer at

a rate of one 32-bit double word per PCI clock cycle. Data exited the buffer at one

quarter of the rate it entered, being packetised at a rate of one token per PCI clock

cycle. Following a DMA burst the link interface was required to catch up, as it

effectively became a bottleneck in the system. Despite this, the serial link interface

was the true bottleneck as it took 11 sample clock cycles to transmit a data token onto

the router network.

The receiver DMA buffer provided temporary data storage for data coming from

the link interface, storage was necessary to accumulate sufficient data to make an

efficient DMA transfer to the host system memory, via the PCI bus. A request was

made when the receiver DMA buffer was almost full or when the end of the message

was reached. If message transfer was not complete following the emptying of the

buffer, subsequent requests to master the bus were made at a rate dependent on link

throughput. The 64 word deep DMA buffer used in the non-fault tolerant PCI-OSLi

interface was implemented in the FT-PCI-OSLi.

5.1.2.6 DMA Controller

Data flow within the FT-PCI-OSLi interface could occur in both directions

simultaneously in every part of the design except one. The 32-bit bi-directional PCI

bus could only transfer data in one direction at any one time, requiring the

multiplexing of the transmitter and receiver DMA channels. The DMA controller

arbitrated between these two functions to ensure that no one resource could

monopolise access to the bus. Figure 38 illustrates the state machine of the DMA

controller. The controller initiated a transfer when either:

- I l l -

Design Structure

• The transmitter DMA buffer was almost empty, in order to request a transfer from

memory or,

• The receiver DMA buffer was almost full, in order to request a transfer to

memory.

Receive
Idle

Transmit
Idle

Transmit
Request

Receive
Request

Transmit
Transfer

Receive
Transfer

Figure 38: FT-PCI-OSLi DMA Controller State Machine

On the leading edge of every PCI clock cycle the DMA controller checked both

DMA channels to see if either were ready to transfer data. Control over which channel

took priority toggled between the transmitter and receiver DMA channels every clock

cycle. If a channel was ready to transfer data, the DMA controller made a request to

master the PCI bus and initiated a transfer, moving the state machine into the request

state for the appropriate channel. On being granted bus access, the corresponding

transfer state was entered and on completion of the transfer, the state machine moved

to the idle state associated with the other type of transfer. For instance if a

transmission transfer had just completed, the state machine would move to the

‘Receiver Idle’ state. This ensures fair arbitration by giving a pending receive

transaction a chance to execute.

- 112-

Design Structure

5.1.3 Virtual Channel Message Store

Although part of the DMA Registers submodule, the VCMS (Virtual Channel

Message Store) is dealt with separately as it is a major novel part of the FT-PCI-OSLi.

The VCMS (Virtual Channel Message Store) enabled the pre-loading of expected

message headers and their associated address and length information into the FT-PCI-

OSLi interface. Pre-loading multiple message IDs allowed the interface to handle the

scenarios noted in chapter 3 that were observed in the ICR-C416 based network.

These included: Message arrival out of order, alternating incoming messages and

minimising the need for user intervention following message arrivals from the

embedded network. The VCMS had the capacity to hold sixteen byte-length message

IDs. As mentioned in section 4.4.9, messages were assigned to one of three classes,

based on maximum length. The class 1 and 2 length values were user definable. These

stores had capacity for ten and four message IDs respectively. Class 3 possessed two

locations, and no defined maximum length, other than that of the maximum message

size. This class was designed for one-off messages whose message IDs were removed

from the CAM after use. Class 1 and 2 headers remained in the CAM for future use,

only being removed if that particular (or all) message IDs were deleted. These

procedures occurred through the user accessing the Command Register (offset OFh).

The Command Register was used to input user commands into the FT-PCI-OSLi.

Its contents are detailed in Appendix C. The Status Register was used to display

information from FT-PCI-OSLi relating to the last messge read or write transaction to

or from the interface in addition to displaying the contents of the CAM. Its contents

are detailed in Appendix C.

5.1.3.1 VCMS Operation

Initially maximum message lengths for classes 1 and 2 were written to registers

(additional details in Appendix C) which enabled the message length comparator

necessary to determine message class. Message IDs and lengths were written to the

appropriate registers. This process compared the expected message length with the

class 1 and 2 preset values. The result of this comparison determined which class the

Design Structure

message belonged to and its position in the CAM. Each location in the CAM had a

mask bit associated with it indicating if that particular CAM location contained a

header or not. Each class had an priority encoder to fill the CAM locations in order.

Header deletion cleared the mask bit for that location, forcing the next expected

header write to fill that CAM location as it had a higher priority than subsequent

locations, as Figure 39 shows. The order in the CAM is irrelevant but the priority

encoder ensured that the status of each class of the CAM (full or empty) was always

known and appropriate action could be taken.

0 CAM
loaded
in this

r order

0 0
1 I y Filled locations l
2 2 , 2
3 3

Free
locations

, 3
4 4 1 4
5 5 5

Deleting
header in
location 1
makes this
the next free
location

Figure 39: CAM Priority Loading Principle

If all locations associated with that particular class have been filled, no write could

occurr and bit 30 in the Status Register was set to denote a failed CAM load. If this

was the case, the message could be written to one of the two class 3 locations, if free.

The procedure for handling incoming message headers received from the routing

network was different to the handling of expected message headers. The former

classified messages according to the header pattern whilst the latter classified

messages according to length. Incoming message IDs were loaded into the ‘Pattern’

input of the CAM but as the write signal was not asserted, the CAM compared the

pattern with its contents, returning the address of a match, if one existed. The match

address was decoded to determine the class of the received message. Its associated

length and address parameters were loaded into registers in the DMA Registers

module. Class 3 messages were used only once and the mask bit for that message was

cleared at this point. A match signal was generated and used to start the

depacketisation procedure. Figures 40 and 41 show the procedures for writing and
reading message information to and from the VCMS.

Design StructureDesign Structure

- 115-

Design Structure

Expected Message Information Load Procedure

Class 3
Message

Yes

No

Space in
that

Class ? .

No

Yes

Start

Store Header and
set Mask Bit

Write Class 1
Preset Length

Write Class 2
Preset Length

Compare Length
and Determine

Class

Repeat for All
Other Expected

Message IDs

Write Expected
Message ID to
Rx Header Reg

Write Expected
Message Length

to Rx Length
Register

Store Header in
Class 3, Store

Length in Class 3
Length Reg and

set Mask Bit

Figure 40: FT-PCI-OSLi Expected Message Information Load Procedure

Design Structure

Incoming Received Message Header Verification Procedure

Header
Match ?

Flush
Enabled

YesNo

NoYes

Start

Clear Mask Bit if
Class 3 Match

Output Match
Signal

Depacketisation
Starts

Receive
Incoming
Header

Determine Class
from CAM
Location

Flush Message
from Rx Link

Interface FIFO

Compare Header
with CAM

contents

User to Enter
Message

Information

Output Message
Length and

Enable Addr Reg
for that Class

Figure 41: FT-PCI-OSLi Incoming Message Header Verification Procedure

Design Structure

5.7.3.2 Virtual Channel Message Store Modular Breakdown

Control
Signals

M----------- ►

Virtual C

■* -

Channel Message Store

------------------- ---------- ►
Header Store

Mask Bit
Header ------------- ► —* Address Pointer
Length ^

* Class «— CAM

Match Match - 4 ^
^ --------- -------- -

Length Out
M.................

■»
■ N H H I \r

Match
Address
DecodeLength Mux *hr Class 3 Length 1

Figure 42: Block Diagram o f the Virtual Channel Message Store Submodules

The VCMS was the top-level module in this part of the design, housing all the

lower level modules, as shown in Figure 42 and latched the flags that make up the

Status Register.

Class 1 and 2 maximum message lengths were stored in registers located in the

Class Match module. Expected message length values were compared and message

class determined on this basis. Length comparison could not occur until class 1 and 2

values had been specified, as writes to these registers are required to enable the

comparator. Message length comparison occurred concurrently for all locations in all

three classes.

In addition to the CAM, which stored the message IDs, the Header Store module

also housed synchronisation logic to control CAM access. CAM comparison was

constantly active so there existed a requirement to ensure that comparison only

occurred on receipt of a header from the communications link. Logic was required to

prevent a header match from starting the depacketisation process until the interface

was ready. This was when the transfer of the previous message in that class to

memory had been acknowledged by the clearing of the appropriate ‘next message’

flag in the Status Register. This module was also responsible for the removal of

Design Structure

message IDs from the CAM. This could be performed manually, via user commands

or automatically (class 3 header removal following a match).

The Address Pointer module selected the next free location for that particular class, if

available, for writes to the CAM. Signals from the Class Match module indicated the

class of the message and this module indicated if there was a free location for that

particular class.

The Mask Bit module was located within the Address Pointer module, it contained

one flag per CAM location. The flag was set on a CAM write, and cleared following a

deletion of that location. The flag also cleared following receipt of a message header

from the communications link that matched a header held in the class 3 section of the

CAM.

The CAM possessed 16 locations, each of which held a byte length message ID.

Message IDs were presented at the ‘Pattern’ input of the CAM. Assertion of the write

signal determined whether or not the header was written to the CAM or compared

with the contents of the CAM. The CAM address signals, generated in the Address

Pointer module dictated the location in which the header was stored. In the case of

header deletion, the address pointer gives the location whose contents were to be

removed. Write and delete signals were asserted for two clock cycles. If the message

ID at the ‘Pattern’ input to the module matched the contents of the CAM, the ‘Match’

output was asserted. At this point the ‘Match Address’ bus indicated the location of

the match, from which the message class was deduced. The CAM was not set up to

allow multiple matches. Although this option was available, it was deemed

unnecessary as message IDs could be reused (with the exception of class 3 headers)

and a message ID associated with two or more classes defeated the object of message

classes. If the same message ID was written to multiple CAM locations, only the most

recent was valid. The internal operation of the CAM is detailed more thoroughly in

section 4.6.2.5.

The Match Address Decode module decoded the address of the matching message

ID to decide which class the message belonged to and which maximum message

length should be used. A two bit select signal was generated whose value indicated

- 119-

Design Structure

message class: 00b indicated a class 1 message, 01b indicated a class 2 message, 10b

indicated a class 3 message (lower location), and 11b indicated a class 3 message

(upper location). Class 3 had two selects as the two messages could be of different

maximum lengths.

The Class Three Length Module stored up to two class 3 message lengths

following a message ID write to the CAM whose length did not match either class 1

or 2 criteria. Class 3 message lengths could only be overwritten following a class 3

header match or deletion of one of the class 3 messages.

The Length Multiplexer module used the two bit select lines generated in the

Match Address Decode module to output the maximum message length. This was

passed to the receiver length register in the DMA Registers module and used for

determining the end of the DMA transfer to memory.

5.2 FT-SARNIC Module Description

This section gives an overview of the submodules of the FT-SARNIC design and

their functions.

External NTR-FTM08
I/O SARNIC Router

SDRAM Devices Regs Network

Communications
Controller

Bus Controllero

Data Busoo

-W-_
32-bit
Timer

.. .•"sH?’:_
UARTInterrupt

Controller
— UART

Devices

Figure 43: Block diagram o f the top-level modules o f the FT-SARNIC design

Design Structure

The FT-SARNIC design illustrated in Figure 43 consisted of five main

components which are described in the following subsections in more detail.

The FT-SARNIC design built on that of the SARNIC, adding to it the hardware

fault detection and recovery features described in section 4.4. The implementation of

these was largely confined to the Communications Controller, leaving the remainder

of the interface design largely unchanged, except for the removal of the ICR-C416

control port as it was replaced by the ability to transport link status information across

the communications links.

5.2.1 Bus Controller

The Bus Controller co-ordinated access to the data bus by the CPU, the

addressable memory mapped devices and the FT-SARNICs DMA channels. There

were three addressable memory mapped devices each controlled by its own separate

module, located within the Bus Controller, as illustrated in Figure 44. The SDRAM

controller allowed the addressing of up to 32Mbytes of SDRAM. The External I/O

interface allowed up to four devices 256Mbytes of addressable memory locations

each. The Internal Registers interface provided access to 256 bytes of the FT-

SARNICs user configurable registers. The Arbiter Core was the final component in

the Bus Controller. It arbitrated between access requests from the CPU and DMA

channels and selected which memory device should be activated. Requests from the

CPU always have priority over DMA requests in order to prevent network

communications affecting the processors performance.

Design Structure

SDRAM

CPU
Request

External
1/0

Devices
SARNIC
Registers

Internal
Registers
Interface

Arbiter Core

SDRAM
Interface

External
I/O

Interface

DMA
Channels
0 and 1

Requests

Figure 44: FT-SARNIC Bus Controller submodule block diagram

5.2.1.1 Arbiter Core

The Arbiter Core received requests to access the memory from the StrongArm

SA-110 microprocessor and the two DMA channels of the communications controller.

Transfer requests were latched, pipelined, queued and serviced in turn. The bus arbiter

state machine in Figure 45 demonstrates the order in which they were serviced. When

the memory bus was idle, CPU requests were given priority. Bus access alternated

between the CPU and either of the two DMA channels when requests were pending.

This prevented a single resource monopolising bus access, providing fair access and

permitting high DMA data throughput without affecting the CPU performance. The

memory address was decoded to select the target memory device: SDRAM, External

I/O, the FT-SARNICs internal registers or either of the transmitter DMA channels.

The selected memory device interface was activated to commence the bus transaction

once several wait states (the number dependant on the memory device activated) had

elapsed. These were required to stall the request source until the data bus was ready

for the commencement of data transmission.

Design Structure

CPU T rans fer End
No Transfer

DMA Req &
No CPU Req &
\No CPU WaitCPU Req

D M A \
Transfer
End

DMA TransferCPU Wait

CPU Wait
States
Elapsed

Figure 45: FT-SARNIC Bus Arbiter State Machine Diagram

5.2.1.2 SDRAM Interface

The SDRAM interface was responsible for the generation of the SDRAM start-up

sequence, the physical row and column address signals and the SDRAM control

signals. The interface could address up to 32Mbytes of memory, having 4 chip select

lines, 11 row address lines, 9 column address lines and a bank address line. The

memory must be capable of operating at variable speeds. This was because the FT-

SARNIC derived its core clock frequency from the user-configurable StrongArm SA-

110 processor clock. Allowing user-configurable SDRAM timing parameters tailored

the SDRAMs timing to the chosen clock speed, maximising efficiency. Additionally,

different SDRAM families and manufacturers might have different timing

specifications. The user-addressable SDRAM timing register affords the possibility of

optimising the SDRAM timing to a specific SDRAM model. The SDRAM refresh

rate was fixed at the standard rate of 4096 cycles every 64ms, as used by most

SDRAMs [146, 147]. As the refresh rate was fixed, it was generated from the

communication controllers 30MHz sample clock instead of the variable CPU clock.

The four-state SDRAM access state machine, illustrated in Figure 46 determined

the amount of cycles spent in each state. The state machine moved from the ‘Idle’

- 123-

Design Structure

state to ‘Row Address’ upon receiving a request where the row address of the

SDRAM was decoded from the memory access address. The column address was

decoded in the ‘Column Address’ state and the appropriate read or write command

was generated. SDRAM data writes occurred in the same clock cycle but read

operations took several clock cycles before the data was available. Read operations

followed a delay defined by the SDRAMs CAS (Column Address Strobe) latency.

The final ‘Pre-charge’ state cleared the SDRAM address lines and prepared the

memory for the next access.

Column
Address

Row
Address

Idle Pre-charge

Figure 46: FT-SARNIC SDRAM Interface State Machine

The SDRAM operation could support 2, 4 or 8 word bursts, requiring the column

states to be specified only once with the burst commencing from that location. Most

SA-110 CPU accesses took the form of 8 word cache line fills suited to the bursts.

Shorter accesses, from a single word to four word bursts could also occur.

The advantage of the 8 word cache line fill was the SDRAM interface could tell

exactly when the operation would end, as it was the longest allowable access.

Unfortunately it exceeded the memory bus access window. Operation of the shorter

cache line fill bursts was awkward, as the interface must wait for the de-assertion of

the microprocessors memory request signal indicating the end of these transfers. The

SDRAM interface avoided this by limiting burst lengths to one word and issuing

back-to-back read / write commands [148].

5.2.1.3 External I/O Interface

The External VO Interface provided control signals to perform read and write

operations on up to four low speed peripherals. Each of the I/O devices had up to

Design Structure

256Mbytes of addressable locations with address lines 28 and 29 used as device select

lines. The I/O control register provided software configurable timing parameters to

determine: the duration of each I/O access, which cycles in each I/O access were read

or write cycles and the frequency of the I/O interface control. These parameters

allowed the user to tailor the I/O interface signals to the attached device.

5.2.1.4 Internal Registers Interface

This module created the control signals for the FT-SARNIC internal registers,

covered in greater depth in previous research [149]. Address lines a2 to a7 were

decoded to give access for up to 64 different internal word-length registers used in the

operation of the FT-SARNIC.

5.2.2 Communications Controller

The largest part of the FT-SARNIC interface was the Communications Controller,

responsible for the passage of all messages to and from the interconnection network.

The Communications Controller module of the FT-SARNIC housed the fault

detection and recovery features of the interface. It represented the majority of the

novel design work on the FT-SARNIC that resulted from the research. Unlike the

SARNIC interface, which possessed two communications links, the FT-SARNIC had

only one bi-directional communications link due to limited available logic resources.

The FT-SARNIC, like its non-fault tolerant predecessor, implemented four DMA

message channels, allowing two full-duplex, bi-directional virtual channels. A

hardware Message Allocator switch routed messages to and from the appropriate

DMA channel. Figure 47 illustrates the block diagram of the Communications

Controller submodule.

Design Structure

Figure 47: FT-SARNIC Communications Controller Block Diagram

5.2.2.1 DMA Channels

Four DMA channels, two in either direction, supported message passing

operations between the Communications Link Interface and the SDRAM via the

memory bus of the SA-110 processor. FT-SARNIC memory accesses utilised a cycle

stealing mechanism, transferring one data word at a time during periods when the

processor was not accessing the memory. As mentioned in section 5.5.1.1, CPU

accesses were given priority over DMA accesses to memory. The pipelined DMA

Arbiter Core reduced memory bus switching inefficiencies. The two DMA message

channels in each direction could be multiplexed onto the Communications Link

Interface to allow hardware virtual channel support. This gave more efficient

switching and higher bandwidth utilisation as the communications link could switch

to a second message immediately after completion of the first.

Incoming DMA Ch 0

Outgoing DMA Ch 0

Incoming DMA Ch 1

Outgoing DMA Ch 1

Allocator
Switch

fllll

Comms
Link -►

Interface
|

Goo O
§ ’ cSI l le a *Z o ^ o

Design Structure

Idle

Write Tx
Length

Active

Message
End

Done

Acknowledge
Message End

Figure 48: FT-SARNIC DMA Channels State Machine Flow Diagram

All DMA message channels operated on the same basis, with each channel having

its own state machine, illustrated in Figure 48. This has with three states; ‘Idle’,

‘Active’ and ‘Done’. Message channels were ‘Idle’ until supplied with message

channel information (Header, Address and Length parameters). The write to the

Length Register must be the last of these three as it was responsible for moving the

state machine into the ‘Active’ state, permitting no further register modifications.

When ‘Active’, a DMA transaction occurred subject to sufficient empty resources at

the destination of the transfer, whether it was the memory bus or the communications

link. At the end of the message transfer, the message channel terminated and moved

to the ‘Done’ state. No further use could be made of the DMA channel until the CPU

had acknowledged completion of the message transfer. This was achieved by

returning the state machine to ‘Idle’ and readying it for another transfer. DMA

message channel 0 possessed additional functionality to enable a ‘boot from link’

option, upon which the incoming data bytes were transferred to the memory area that

the SA-110 CPU boots from.

Design Structure

5.2.2.2 DMA Arbiter Core

This module was responsible for arbitrating between the four DMA channels. It

also made requests to the bus controller module to gain access to the memory bus.

The four channels were sampled every clock cycle when the processor was not

accessing memory and any requests were latched. The receiver channels had a higher

priority than the transmitter channels to attempt to keep data flowing through the

interface, reducing the chances of having to suspend transmission across the link. If

more than one-channel requested a transfer, the latched requests were serviced in turn

following completion of the highest priority transaction.

5.2.2.3 Message Allocator Switch

The message allocator was responsible for matching the message IDs of messages

in DMA channels with those in communications channels, and routing data between

them accordingly. Hardware message channel allocation reduced the overheads

incurred in virtual message channel support, reducing the need for processor

intervention. Assigning both message channels to the communication link effectively

implemented hardware virtual channel transmission as both DMA channels

multiplexed messages onto the same physical channel. This reduced switching

inefficiencies as one message channel could be set up whilst the other was in

operation. It had the additional benefit of inserting a short message in between packets

of a long message in cases where multi-packet transmission was used.

Hardware virtual channel reception was possible by routing two incoming

messages onto the communications link to each of the two DMA receiver channels.

Support for more than two incoming virtual channels required software intervention,

as one of the DMA channels must be freed in order to service the new message.

- 128-

Design Structure

5.2.2.4 Communications Links Interface

This section of the design converted outgoing data from 32-bit parallel words to a

serial bit stream and vice-versa for incoming data, as illustrated in Figure 49. It was

responsible for packetising and depacketising messages and inserting and extracting

headers and termination tokens into the data stream. The Link Interface submodule

handled the flow of information across the link and the implementation of the

hardware fault detection and recovery features. Booting features were implemented in

this section of the design, with the option of booting from an internal ROM or from

the NTR-FTM08 router network.

To Message Channel Allocator

Message Layer
(32-bit words)

r

Packet Layer J
(9-bit tokens) \

Token Layer C
(Serial bit -J
stream) I

PACKETISER

-

DEPA CKETIS ER

1 WORD BUFFER 1 I WORD BUFFER 11

ASYNCHRONOUS 1
INTERFACE |

ASYNCHRONOUS i
INTERFACE

TX LINK
INTERFACE BUFFER

RX LINK
INTERFACE BUFFER

32 TOKEN BUFFER 32 TOKEN BUFFER

LINK INTERFACE

TX LINK
--7—-—I-."..

RX LINK

StrongArm
v SA-110 CPU
^ Core Clock

Domain

Communications
Link Interface
Sample Clock
Domain

NTR-FTM08 Router Network

Figure 49: FT-SARNIC Communications Link Interface Module Block Diagram

Design Structure

Transmission Procedure

As data progressed through the communications link it was converted from one

format to another to allow for certain operations and procedures to be performed on

the data. Data entered the communications link from the DMA channels in the form of

32-bit words, each of which was subsequently split into four data bytes. Before these

were outputted from the Packetiser submodule, a header prefixed each message. This

could be of user-configurable variable length between 0 and 6 tokens to allow up to

five routing IDs and a message ID. The routing header tokens were limited to five due

to the small to medium size of target systems. Once the last word of the message had

been packetised and outputted from the module, a termination token was appended to

the data stream. A ninth ‘Type’ bit was added to differentiate between header and

control tokens, appending a logic zero to termination and control tokens, logic one to

all others. The nine-bit parallel tokens crossed the Asynchronous Interface boundary

between the core and sample clock domains. The former was supplied by the SA-110

CPU’s bus clock whilst the latter was driven by a 30MHz external oscillator. The

tokens were stored in the 32 token deep Transmitter Link Interface Buffer, being

outputted onto the Link Interface when logic resources were free. Logic one start and

logic zero stop bits were added at this stage and the 11-bit token was serialised for

transmission onto the router network. Flow control tokens were added at this point.

Reception Procedure

Serial data was retrieved from the router network and converted into an 11-bit

parallel token. The start and stop bits were removed, leaving a 9-bit token whose type

bit was tested to determine the presence or otherwise of flow control tokens. Flow

control tokens were removed and acted upon. The remaining tokens were header, data

or termination tokens, and were transferred to the Receiver Link Interface Buffer. The

tokens were passed to the depacketiser when there was sufficient space in the one

word deep DMA buffer. Headers were removed in the depacketiser and were

identified by their position in the incoming data stream. They were checked with the

message IDs held in the Message Allocator Switch to see if they had been allocated a

Design Structure

DMA channel. Termination tokens were identified by their logic zero type bits and

were removed and the message terminated.

5.2.2.5 Link Interface

In addition to the procedures described above, the link interface determined which

state the link was in, as detailed in section 4.4.5 and regulated the link initialisation

and connection request procedure. Section 5.3.1 described the operation of the link

activity verification procedure implemented in the FT-SARNIC, being the same as

that of the FT-PCI-OSLi.

5.2.2.6 Link Interface Buffering

The transmitter link interface buffer must be large enough to ensure that a data

drought would not occur between successive DMA transactions. The following

equation [17] gave the worst case delay between successive DMA transactions to be

the same amount of time taken to transfer 3.15 tokens across the communications link.

This value was rounded up to the next token, giving a four token deep transmitter link

interface buffer.

(4 x (4 + DMASize)) + (4 x (Byte Length)) x Data Rate

^MAX Mem Bus Clk Mem Bus Clk Token Length

Maximum time between DMA operations, in terms o f link byte time

The equation uses the following parameters;

• Mem Bus Clk (Memory Bus Clock, or SA-110 CPU clock) = 36.9MHz

• DMA Size - 1 word per transfer

• Token Length - 11 bits, not 13 as was the case in the SARNIC

- 131-

Design Structure

• Data Rate - 20Mbits/sec being 2/3 of the 30MHz oscillator frequency

The receiver link interface buffer was 32 tokens deep, 9 bits wide and operated in

a First-In-First-Out (FIFO) manner. Full and empty signals left the buffers to notify

other modules of data saturation and starvation respectively. The receiver buffer

created two additional level pointers, termed ‘Almost-Full’ and ‘Almost-Empty’.

These were set to trigger when the number of tokens in the buffer was in excess of 24

and less than 8 respectively. In the FT-SARNIC interface, the buffer was

implemented in the embedded array blocks (EAB) of the PLD to reduce logic

requirements. Due to the internal architecture of the Flex 10KE and the MaxPlus2

version 10.0 synthesis software, the buffer occupied two EABs, in a 9 x 16

configuration. This was an inefficient use of the memory resources as only 144 bits of

a possible 2048 were utilised in each EAB. This was an additional incentive to

upgrade to the Apex 20KE and Quartus technology utilised in the implementation of

the FT-PCI-OSLi.

5.2.2.7 Packetiser

The Packetiser formatted data ready for transmission as tokens by splitting 32-bit

words into bytes and adding a ninth (ID) bit and header and termination tokens. The

header arrived from the ‘DMA Transmitter Header’ register [149], of which there

were two (upper and lower). This allowed for a header up to six bytes long to be used

whose length was determined by the user by writing to the most significant three bits

in the upper register. Unlike the ICR-C416 protocol, the most significant bit of the

header did not determine the presence of the last header byte. The packet length was

not limited to 256 bytes, being user configurable at any value up to the 64kbytes

message length.

The Packetiser state machine had four states, demonstrated in Figure 50. It moved

from ‘Idle’ to ‘Header Enable’ upon activation of a DMA message channel or moved

straight to the ‘Data Request’ state if the header length was set to zero bytes (an

option which might favour certain applications). Once all header tokens had been

transferred to the link interface buffer, the ‘Data Request’ state was entered. This

- 132-

Design Structure

advanced to ‘Data Enable’ upon receiving a data word from the DMA channel. At the

end of each word the state machine returned to ‘Data Request’ to load another data

word. It returned to ‘Idle’ and loaded the termination token into the link interface

buffer after the packetisation of the last data word.

Message End Message activeIdle

Message active
in skip header
mode

Message
Not

Ended

Data
Enable

Header
Enable

Data
Request Header transferred

to Link Interface
FIFO

Word sent from DMA

Figure 50: FT-SARNIC Packetiser State Machine Diagram

5.2.2.8 Depacketiser

The FT-SARNICs Depacketiser requested DMA transactions following receipt of

an incoming message. The four-state Depacketiser state machine, illustrated in Figure

51, defaulted to the ‘Header Enable’ state. The first bytes to enter the submodule were

labelled as header bytes by their position at the start of the message. Once the

expected number of header bytes was read from the FIFO and loaded into the receiver

header register the state machine advanced to the ‘Header Ready’ state. In this state

the received message ID was compared with the message IDs in the Message

Allocator Switch. On finding a match, the Depacketiser received a header

acknowledge signal indicating that there was a DMA message channel ready to

receive the data. This moved the state machine into the ‘Data Enable’ state in which

data tokens were outputted from the Receiver Link Interface Buffer. The ID bit was

tested to identify termination tokens then stripped. The remaining data byte formed

part of a 32-bit word transferred to the DMA channel, freeing the one word deep

DMA buffer for the next word. After reading four tokens from the FIFO the state

Design Structure

machine advanced to the ‘Data Ready’ state and transferred the data word to the

DMA channel.

A successful DMA transfer freed up resources for another transfer, returning the

state machine to the ‘Data Enable’ state to assemble another data word. The state

machine moved from ‘Data Ready’ to ‘Header Enable’ when a termination token was

detected or when flushing the remainder of the message following a fault. As with the

FT-PCI-OSLi’s ‘Receiver Message Controller’ module, three modes of termination

existed: Early, Normal and Late, as discussed in section 5.3.4. Both the packetiser and

depacketiser modules each contained a one word DMA buffer. This was the first stage

of the link buffer pipeline and was used to hold the data word during assembly and

deassembly.

Message End
/ Flush Read HeaderHeader

Enable

Message
Not

v Ended

Data
Ready Header

Ready

Data
EnableRead Data Byte from

Link Interface Buffer
Header Acknowledge

Figure 51: FT-SARNIC Depacketiser State Machine Diagram

5.2.3 Interrupt Controller

This module generated interrupt requests for the SA-110 CPU from sources such

as the DMA message channels, timer and four additional external interrupts for the

external peripherals addressed by the External I/O Controller. Two levels of SA-110

interrupts were handled. FIQ and IRQ were the fast and standard priority interrupts

respectively. Interrupt sources could activate either interrupt dependent on the

Design Structure

interrupt register status. Enabling one interrupt type disabled the other type for that

source.

Each set of interrupt registers had an Internal Enable Register (IER), write only

Interrupt Enable Set Register (IESR), write-only Interrupt Enable Clear Register

(IECR) and read-only Interrupt Status Register (ISR) associated with it. The FIQ and

IRQ lines shared an Interrupt Raw Status Register (IRSR) for each source.

5.2.4 Timer

The timer function was carried over from the SARNIC interface to give the

debugger and software developer additional support. A 32-bit wraparound counter

incremented every lps, giving a 1MHz real-time timer, used in a similar way to the

OCCAM timer function [24]. A special relation operator function determined whether

or not a timer value was supplied before or after the current timer value, as shown in

Figure 52. The most significant bit determined whether or not the timer event

occurred in the past or the future as a comparison result of logic 1 for this bit indicated

a negative number. Timing events separated by up to 35 minutes 47 seconds could be

handled. The heartbeat and checkpulse signals, used to verify the presence or

otherwise of link activity, were generated in this module.

T, (Current Time)

Time

T (Past Time) T2 (Future Time)

Figure 52: FT-SARNIC Timer with Past and Future Time References

- 135-

Design Structure

5.2.5 UART Communication Port

A Universal Asynchronous Receiver / Transmitter interface was implemented in

the FT-SARNIC design, carried over from the non-fault tolerant SARNIC interface. It

provided a low speed serial link to a PC, via the COM port, allowing the display of

infonnation on a monitor and input from a keyboard, assisting debugging. The UART

functionality was reduced to minimise resource usage, omitting error detection

mechanisms and buffering. The UART operates at a fixed baud rate of either 9600,

19200,38400 or 57600 bps.

Results

6 RESULTS

6.1 FT-PCI-OSLi Hardware Test Results

This section of the thesis reports on the hardware tests performed on the FT-PCI-

OSLi interface. Similar tests were undertaken using the PCI-OSLi interface,

implemented on an identical APEX 20K200EQC240-1 to aid comparison between the

two designs. The test results were also compared to the theoretical performance

characteristics of the FT-PCI-OSLi.

The FT-PCI-OSLi interface was implemented on a custom made, multi-layer,

PCB slotted into a PCs empty PCI slot. A ‘loopback’ test method was utilised, as

shown in Figure 53. This form of test involved fetching the data from the PCs

memory and processing it ready for transmission onto the serial communications

network. The message was transmitted through the differential driver circuitry and

across a short length of cable (approximately 5cm long) before returning back to the

interface board and the FT-PCI-OSLi via the differential transceivers. The FT-PCI-

OSLi reformatted the data, assembling it into 32-bit data words and accumulated

sufficient words to initiate a PCI transaction, which passed the message to the PCs
memory.

Host System
(PC) Memory

33MHz
PCI Bus PCI-OSLi/ fct- Driver OutW

FT- PCI-OSLi
Interface Driver In

Comms
Links

Figure 53: Loopback Test Block Diagram for FT-PCI-OSLi

This method of hardware testing assessed the bi-directional communication

capabilities of the interface, requiring the interleaving of transmission and reception

PCI bus block transfers between all other transactions on the PCI bus. The PCI bus

operated at 33MHz for all tests. The link interface clock, derived from an external

crystal oscillator was altered between tests from 30MHz to 40, 48 and 64MHz to give

link data rates of 20, 26.67, 32 and 42Mbits/s respectively. Only the results of tests

performed at the maximum data rate (42Mbits/s) are detailed in this section.

137

Results

Performing similar tests on the FT-PCI-OSLi and PCI-OSLi designs on identical

hardware allowed many differences regarding implementation to be eliminated and

allowed a focus on the comparison of the two interface designs and respective

protocols. Neither interface design was optimised in any way for implementation to

the target technology. Both PLDs used identical pin-outs and synthesis parameters

with respect to meeting I/O timing requirements and speed / area trade off.

An advantage of the loopback tests was that the FT-PCI-OSLi / PCI-OSLi

interface board was the only hardware required, other than a PC with a 33MHz PCI

bus. The interface board was fitted with differential transceiver drivers for all input

and output communications channels. Data transmission behaviour over these

channels has already been investigated and documented [123]. An advantage of

testing the interfaces was, being end nodes, they were not subject to routing

considerations encountered by the NTR-FTM08 (such as the effects of network

topologies, message addressing methods and adaptive routing algorithms) and were

not affected by deadlock. The interface outputted data when the recipient was ready

for it and accepted data subject to sufficient buffer space.

6.1.1 Hardware Test Parameters and Criteria

The loopback tests used the PCIWave software, introduced in section 5.2.6, to

allow the user to load the DMA submodule necessary to initiate message transfer. Due

to the lack of software drivers for the FT-PCI-OSLi, the only way in which a message

could be transferred at this stage of development was manually via user initiation.

Several counters in the DMA Registers module were set up in order to monitor the

time taken to perform certain parts of the message transfer. Several criteria were

specified in order to denote key stages in the processing of the message:

• Message transmission was said to have started following a write of the message

length to the Transmitter Message Length Register (offset 0DH). This action was

also deemed to have started the DMA transmission as the request for PCI bus
ownership was initiated by this command.

Results

• Data transmission began after the transition on the serial communications link of

the first bit of the header token. It ended following the transmission of the stop bit

of the last data token of the outbound message.

• Data reception began once the first start bit of the header token arrived on the

serial communications input line. Reception ended when the last data byte was

transferred from the link interface buffer to the depacketiser for assembling into a

32-bit word.

• Message reception began following the transfer of the first data byte from the link

interface buffer to the receiver DMA buffer via the depacketiser and ended when

the message had been transferred to memory in its entirety.

The hardware tests operated on the principle that:

• Message tokens were transmitted back-to-back, with interleaved acknowledge

tokens in the case of the PCI-OSLi. Subject to sufficient space being available in

the receiver link interface buffer, the receiver was always ready to receive data,

allowing the transmitter to send a continuous stream of message tokens.

• Each message had a single byte header and a byte length termination or length

byte in the case of the FT-PCI-OSLi and PCI-OSLi respectively. No routing

header bytes were sent.

• The FT-PCI-OSLi message was sent as a continuous transmission whereas the

PCI-OSLi split its message into 256 token packets, each prefixed by the two bytes

mentioned above. As there was only one message, subsequent packets utilised the

message channel set up from the transfer of the previous packet, eliminating the

need to assign a message channel more than once for the message duration.

Message headers must be matched for message channel allocation to occur.

6.2 PCI Access Efficiency

The calculations in section 4.3.1 provide a means of measuring the performance of

a PCI access burst by comparing the latency incurred in initiating a PCI transfer with

the amount of data transferred. The PCI access procedure begins with the initiating

device requesting ownership of the PCI bus by asserting the active low ‘nREQ’ signal

(see Appendix B). Assertion of the active low ‘nGNT’ signals the granting of bus

- 139-

Results

ownership to one of the devices attached to the PCI bus. The decoded states of signals

on the ‘AD’ and ‘nC/BE’ buses indicates which of the attached PCI devices has been

granted ownership of the bus.

The initiator indicates that it is ready to begin data transfer by asserting the active

low Initiator Ready ‘nIRDY’ signal. Between the assertion of the ‘nGNT’ and

‘nIRDY’ signals, the PCI access is in operation but no data is transferred across the

bus, hence this is the transfer initiation latency. The transfer of data across the PCI bus

begins when both the initiator and target are ready to transfer data, indicated by the

assertion of ‘nIRDY’ and ‘nTRDY’ respectively. A 32-bit double-word is transferred

across the bus every PCI clock cycle until the transaction is suspended. This occurs

when either the ‘nIRDY’ or ‘nTRDY’ signals are de-asserted, after a time period

specified by the latency counter of the PCI agents. The latency counter was

introduced in section 5.2.1.1 and was initially set to 64. An explanation of the

functions of these, and all other PCI signals can be found in Appendix B.

CLK

nREQ

nGNT

AD

nFRAME

nIRDY

nTRDY

PCI Transaction
Initiation
Latency

Figure 54: An example o f waveforms demonstrating PCI transaction initiation

latency
Figure 54 demonstrates a sample of some of the waveforms during a typical PCI

memory-read operation. The user counters in the DMA registers submodule of the

interface were configured to measure the initiation latency and PCI transaction length

as shown in the above diagram, in terms of PCI clock cycles. The latency incurred in

44974079576446604220349046572016344967^369254815

Results

setting up the transaction, following ownership of the bus being granted, lasted for 3

and 5 PCI clock cycles for the FT-PCI-OSLi and the PCI-OSLi interfaces

respectively.

Figure 55 demonstrates the efficiency of PCI accesses, in terms of the amount of

time that data transfers occur as a percentage of the total transaction time. Messages

with payloads under 228 bytes could be transferred in a single PCI transaction using

the FT-PCI-OSLi and PCI-OSLi interfaces. Messages longer than this value required

multiple transfers. The test measured the duration of the longest PCI access in the case

of multiple accesses. As these values were less than the total DMA buffer capacity of

64 double words (256 bytes), it was the initial value of the latency counter mentioned

in section 5.2.1.1 that limited the length of the PCI transactions, instead of the DMA

buffer capacity. The latency counter was initialised following a request to acquire bus

ownership. It included the time taken to gain bus ownership (including access

arbitration, if necessary), set up the transfer and transfer the data, hence, less than 64

double-words were transferred.

100%

80%

60%

40%

20%

0%CL

8 16 644 32 128 256 1024
Message Payload (Bytes)

»— FT-PCI-OSLi PCI Access Efficiency - a— PCI-OSLi Access Efficiency

Figure 55: Efficiency ofPCI bus accesses for the FT-PCI-OSLi and PCI-OSLi
devices in terms o f latency as a percentage o f overall PCI transaction duration

As can be seen from Figure 55, the efficiency was lowest for small transfers.

When only a single double word was transferred (message length 4 bytes), the

Results

initiation latency was three and five times greater than the actual data transfer time for

the FT-PCI-OSLi and PCI-OSLi interfaces respectively.

Once the payload exceeds the level required to fill the transmitter DMA buffer,

the efficiency characteristic remains constant. The maximum efficiency is reached

when the buffer is filled in its entirety and the remainder of the message must be

loaded in subsequent bursts, the frequency of which depends on the rate at which the

buffer can be emptied. Maximum efficiency, in terms of PCI burst length is reached

for payloads above the transmitter DMA buffer capacity and remains constant as

payload increases. For this reason, the payload graph does not exceed the level at

which this occurs in order to emphasise the increase at lower message lengths.

6.3 Bi-directional Data Transfer Tests

6.3.1 Bi-directional Data Transfer Duration

Figure 56 shows the message duration for messages of varying payloads

transmitted and received by the FT-PCI-OSLi and the PCI-OSLi. At a message size of

64kbytes, the PCI-OSLi took 46.6% longer to complete its message transfer than the

FT-PCI-OSLi, due to the limitations of the credit based flow control mechanism. The

increase in message duration is linear, although at different rates of increase due to the

different flow control mechanisms. Message lengths up to 64kBytes are observed, as

this was the maximum allowable message length in the SARNet system. The

characteristic would continue for longer messages, up to the maximum allowable
message length of 1Mbyte in the FT-PCI-OSLi.

Results

30

25

£ 20

O)

10

5

0
0 10 20 30 5040 60 70

Message Payload (kBytes)

FT-PCI-OSLi Observed Average Message Duration

PCI-OSLi Observed Average Message Duration

Figure 56: Message duration results for FT-PCI-OSLi hardware tests at
42Mbits/sec link rate

Figure 57 is more informative in terms of assessing the FT-PCI-OSLi performance

as it shows more clearly the differences in message duration for payloads under 256

bytes compared to the theoretical message duration of the FT-PCI-OSLi. Increases in

message size resulted in linear increases in message duration with the gradient of the

PCI-OSLi characteristic increasing at a faster rate than that of the FT-PCI-OSLi, due

to the back-to-back data transfer capability of the latter device. The message duration

for the FT-PCI-OSLi for payloads of four bytes was almost double the theoretical

maximum due to the initiation latency. The FT-PCI-OSLi took three PCI clock cycles

to set up the PCI transaction following the granting of bus ownership, but required a

single PCI clock cycle to transfer the message across the bus which as Figure 55

showed, gave a PCI access efficiency of 25%.

- 143-

Results

0.1

0.09

0.08

0.07

r o.o6

0.05

? 0.04

0.03

0.02

0.01

0 50 100 150 200 250 300
M e s sa g e Payload (Bytes)

— FT-PCI-OSLi O bserved A verage M e s sa g e Duration

—a — PCI-OSLi O bserved A verage M e s sa g e D uration

— FT-PCI-OSLi T heoretical M e s sa g e Duration

Figure 57: Message duration results for FT-PCI-OSLi hardware tests at lower

message lengths at 42Mbits/sec link rate

The difference between the theoretical (meaning ‘simplified model’, in this case)

and observed characteristics was due to the theoretical (simplified model) maximum

transfer duration only taking into account the length of time taken to transmit the

message across the transmission medium. It ignored factors such as message

formatting delays incurred as the message passed through the FT-PCI-OSLi, although

the latency incurred in initiating the PCI transaction, (both to transmit and receive the

data), was taken into account. As message length increased, the FT-PCI-OSLi

message duration increased at an almost identical rate to the theoretical (simplified

model) message duration, suggesting that the discrepancy between the two was due to

initial start-up latencies that became insignificant as the message size increased. The

slight divergence between the two is due to delays such as those incurred by the

- 144-

Results

transceiver circuitry. The linear increases in message length suggest that the bulk of

the message duration was due to the transmission of the serial data across the

communications link. Although the link interface circuitry was driven at almost twice

the rate as the rest of the FT-PCI-OSLi interface, the serial nature of the

communications link made this the bottleneck.

Figure 58 shows the normalised message duration times for the FT-PCI-OSLi and

PCI-OSLi interfaces with respect to the theoretical (simplified model) message

durations for these devices respectively. In calculating the theoretical minimum

message duration it is assumed that the message transit time between the link interface

serial output and input is negligible. As both designs used identical transceiver

circuitry, there will be a slight increase in the message duration due to the passage of

the signal through the driver circuits, relative to the theoretical values.

1.8

1.7

T J
<D 1 co

o 1.5 z
c
5 1.4
2 d
1=1 1 3CD '-0
CD
CO
CO

o 1.2
2

101 100 1000 10000 100000

IVfessage F&yload (kBytes)

FT-FQ-OSLi Normalised Massage Duration —at— FO-OSLi Normalised Massage Duration

Figure 58: Normalised message duration for the FT-PCI-OSLi and PCI-OSLi

interfaces at 42 Mbits/s data rates

- 145-

Results

The theoretical calculations used here take into account the PCI latency by adding

two sets of PCI initiation latency (set at 3 and 5 PCI clock cycles duration for the FT-

PCI-OSLi and the PCI-OSLi characteristics respectively) to the theoretical message

duration times.

At the minimum payload length of four bytes, the FT-PCI-OSLi took 1.73 times

longer than the theoretical minimum message duration. This is due to message

overheads and the passage of the message through the FT-PCI-OSLi circuitry being

large in comparison to the time taken to transmit the message. The same transfer on

the PCI-OSLi takes 1.79 times the theoretical minimum message length. This figure

includes the time taken to send an acknowledge token in receipt of the last data byte

as the message begins the process of transferring the data to memory on arrival of this

data byte. Calculation of the theoretical minimum message time for the PCI-OSLi also

included the transmission of acknowledge tokens, except for the last, for the reason

above. It was assumed in these calculations that acknowledge tokens were interleaved

between data tokens and that back-to-back transmission occurred.

As message sizes increased, the ratio between the observed message duration and

the theoretical minimum message duration decreased rapidly as parameters not taken

into account in the theoretical calculations became less significant compared to the

total message duration. When the message size exceeded 4kbytes, both performance

characteristics leveled out with the FT-PCI-OSLi taking under 2% longer to complete

message transfer than the minimum theoretical duration. The PCI-OSLi took

approximately 25% longer than the minimum theoretical duration. This loss of

bandwidth was most likely due to the need to have received an acknowledge token

before transmission of the next data token could begin, in addition to the increased

overheads incurred through the PCI-OSLi due to its less efficient PCI interface. It has

already been documented that the credit based flow control mechanism, utilised by the

PCI-OSLi, can occupy up to 17 bits per token [5], four tokens more than the minimum

13 used to send a data token and acknowledge token, giving an increase of 30%.

The normalised message duration characteristic for the FT-PCI-OSLi and PCI-

OSLi interfaces demonstrates the efficacy of permission based flow control with

respect to credit based flow control.

- 146-

Results

6.3.2 Bi-directional Data Bandwidth Utilisation

co
roto

3
JC
~o
T3
c
COCQ
0
COQ
0O)
&c0oU
CD

75%

70%

65%

60%

55%

50%

45%

40%

35%

30%

25%

20%

1 10 100 1000 10000 100000

Message Payload (Bytes)

FT-PCI-OSLi Maximum Data Bandwidth Utilisation

FT-PCI-OSLi Theoretical Maximum Data Bandwidth Utilisation

PCI-OSLi Ma>dmum Data Bandwidth Utilisation

PCI-OSLi Theoretical Maximum Data Bandwidth Utilsation

Figure 59: FT-PCI-OSLi and PCI-OSLi percentage data bandwidth utilisation at

42Mbits/s data rate

The percentage of the communications link maximum message bandwidth that

was devoted to transferring data is displayed in Figure 59. The theoretical percentage

data bandwidth utilisation characteristic for the FT-PCI-OSLi and PCI-OSLi are

displayed alongside the results recorded from the hardware tests. The theoretical

characteristics take into account the inclusion of non-data tokens in the message, such

as header, length, termination and acknowledge tokens. This aberration between the

theoretical and observed measurements was due to inefficiencies in message

Results

transmission across the communications link and the overheads incurred in initiating

message transmission and reception.

Minimum message sizes of four bytes utilised approximately 50% of the available

data bandwidth in both devices making, such transfers inefficient in terms of the

amount of data transferred across the network as a proportion of the total number of

message bits sent. The FT-PCI-OSLi characteristic rose at a steeper gradient than the

PCI-OSLi curve because of the latter incurring two extra non-data bits per token due

to the presence of acknowledge tokens. All four characteristics plateau once the

message size exceeded lkByte. The difference between the FT-PCI-OSLi’s

theoretical and observed data bandwidth utilisation was 0.9% whereas the difference

between these values for the PCI-OSLi was 12.54%. Whilst the former value was

largely due to the overheads incurred in setting up the message transfer, the latter was

due to the bandwidth lost in failing to achieve the 13 bits-per-token throughput. The

credit based flow control utilised by the PCI-OSLi prevents the data throughput of the

device from reaching that of the FT-PCI-OSLi.

6.3.3 DMA Message Transmission

Figure 60 demonstrates the observed throughput characteristic of data transferred

from memory, across the PCI bus to the DMA Transmitter Buffer, with respect to the

message size. The DMA transmission was said to have started following the write of

the transmitter message length. This action asserts the active low ‘nREQ’ signal (see

Appendix B), which initiates the request for ownership of the PCI bus. The latency

count, set to 64 in this case, decrements towards zero following this action. The actual

DMA transfer began following the assertion of the ‘nGNT’ (see Appendix B) signal

granting ownership to the PCI bus but starting the transfer from the message initiation

meant that the overhead involved in acquiring the PCI bus was also taken into

account. The DMA transmission ends when the last double word of data was

transferred into the DMA buffer.

- 148-

Results

The DMA transmission throughput determines the frequency of PCI data access

bursts initiated by the FT-PCI-OSLi interface when transferring data to the PCI

interface. This is important as the PCI bus is a shared resource.

o(D
"w0)
■5*CO

3Q.szZ3o

<
Q

80

70

60

50

40

30

20

10

0
1 10 100 1000 10000 100000

Message Payload (Bytes)

FT-PCI-OSLi DMA Transmission Throughput
-it— FT-PCI-OSLi DMA Transmission Throughput (Modified Buffer)

-a— PCI-OSLi DMA Transmission Throughput

Figure 60: DMA transmission throughput for the FT-PCI-OSLi and PCI-OSLi

interface devices including FT-PCI-OSLi with modified buffer capacities

The DMA transmission throughput characteristic shown in Figure 61 can be split

into three parts. Area 1 is the part of the graph where the throughput is determined by

the capacity of the transmitter DMA buffer. The characteristic of area 2 is governed

by the ability of the link interface buffer to store data prior to transmission onto the

serial communications link (The more data that can be stored in the link interface

buffer, the less frequently PCI access bursts will need to be made). In area 3 the DMA

and link interface buffers are both full so the serial communications link is the

performance bottleneck and the data rate and data bandwidth utilisation will be the

Results

limiting factors. As all buffering is full, the rate at which data can be outputted onto

the communications link will govern the rate at which the buffers can empty

sufficiently to initiate another PCI transfer.

A

f
I
ao
CO
CO

CO

Area 1 Area 2
Q

Message Payload (Bytes) - Logarithmic Scale

Figure 61: FT-PCI-OSLi (with modified link interface buffer capacity) DMA

transmission throughput graph split into three areas

Typical Area
1 Peak PCI
bus accesses

Area 2 PCI
bus accesses

Area 3 PCI
bus accesses

Figure 62: Diagram displaying frequency o f PCI accesses in each o f the three

areas o f the DMA transmission throughput characteristic

- 150-

Results

The boundary between areas 1 and 2 is determined by the DMA buffer capacity

and the boundary between areas 2 and 3 is determined by the capacity of the link

interface buffer. The DMA buffer capacity is effectively altered by modifying the

latency count of the device, limiting the number of data bursts per PCI transaction.

Figure 62 demonstrates the relative frequency of the PCI bus accesses in each of

the three areas in order to maintain the maximum possible data throughput over the

serial communications link. The relevance to this is due to the shared nature of the

PCI bus and the need for other users of the bus to be able to access it. Short messages

that can be transferred across the bus in a single burst have the potential to

monopolise bus access. Hence it is important that the PCI bus arbitration mechanism

prevents this occurring.

Characteristics observed in this
research

Characteristics observed in previous
researchw>

Area 1 Area 3Area 2

Message Payload (Bytes) - Logarithmic Scale

Figure 63: DMA transmission throughput characteristics diagram compared with

characteristics made in previous research during development o f the PCI-OSLi

A comparison of PCI-OSLi DMA transmission throughput characteristics in this

and previous research are shown in Figure 63. These show earlier research with

noticeably different characteristics to those observed in Figure 61. Previously there

was no peak in area 1 of the graph and the DMA throughput characteristic ramped

upwards to the plateau of area 2, giving an apparent maximum DMA throughput of

approximately 25MBytes/s, much lower than the maximum 92.8MBytes/s noted

during this research (see Figure 64). This was due to the PCI-OSLi interface
development tests declaring the end of the DMA transmission process to be the

- 151-

Results

passing of the last data byte from the link interface buffer to the link interface.

Measuring the end of the DMA transmission at this point took into account the

packetiser outputting data at a quarter of the rate it entered and missed the peak

observed in area 1, showing instead a much more conservative throughput figure. This

did not give a true measurement of DMA throughput and consequently, tests

undertaken in this research for both PCI-OSLi and FT-PCI-OSLi terminated DMA

transmission when the last data byte entered the DMA transmitter buffer.

Figure 60 also displays a third characteristic: the performance of the FT-PCI-OSLi

when the transmitter and receiver link interface buffer sizes were altered from the 32

token depth specified in section 4.4.2.3 to the respective lkByte and 2kByte depths

used in the PCI-OSLi interface. This ‘modified buffer’ FT-PCI-OSLi design was

subjected to all tests used to assess the FT-PCI-OSLi performance but the

characteristics for most tests were very similar to that of the FT-PCI-OSLi interface.

Where the results matched those of the FT-PCI-OSLi, they were omitted from the
result graphs in this chapter for the sake of clarity.

In area 1 of Figure 60, the three interfaces exhibited a similar performance

characteristic due to the similar nature of PCI bus access between the FT-PCI-OSLi

and PCI-OSLi. The PCI transmission throughput was 5.28MBytes/s for messages four

bytes long, rising sharply to a peak around message lengths of 128 bytes. The PCI

throughput at the peak was 92.84MBytes/s for the FT-PCI-OSLi and 88.93MBytes/s

for the FT-PCI-OSLi interface with the increased link interface buffering and

90.86MBytes/s for the PCI-OSLi. The differences in throughput are relatively small

with a maximum variation of 3.5% between these characteristics. This variation was

caused by a difference in the DMA transmission counter values of one between each

of the three values. The DMA transmission counter value measured the time taken

between the start and end of the message transfer across the PCI bus. The value used

was the average taken after five repetitions of each test. The counter was synchronised

from the 33MHz PCI bus clock and a single bit difference made a difference in the

DMA transmission throughput. Figure 60 demonstrated that a 4-byte message took

6.25 PCI clock cycles to be transferred to the FT-PCI-OSLi DMA transmitter buffer

whereas a 128-byte message took 56 PCI clock cycles.

- 152-

Results

In area 2 of Figure 60 the size of the transmitter link interface buffer dictated the

DMA transmission throughput, as several further PCI data bursts could occur before

this resource was filled. The throughput was much lower than in area 1 due to the

need for the data to pass through the transmitter message controller, responsible for

converting data from 32-bit double words to 8-bit bytes, taking four PCI clock cycles

to process a data word. In area 2 of the graph the FT-PCI-OSLi reached a maximum

throughput of 4.51 MBytes/s before the transmitters 32 token link interface buffer was

filled. The PCI-OSLi and modified buffer FT-PCI-OSLi interfaces had lkByte

transmitter link interface buffers, giving DMA transmission throughputs of

25.48MBytes/s and 26.86MBytes/s respectively. Figure 60 demonstrated that a

lkByte message took 7,492 PCI clock cycles to be transferred in its entirety to the

DMA transmitter buffer.

The communications link throughput limited the DMA transmission throughput in

area 3 of the graph, as all buffering resources were filled and further transactions must

wait for these to empty via the transmission of data. The DMA transmission

throughput for this section of the graph reduced significantly due to the lower data

rate of the serial communications link. The throughput was 3.837MBytes/s for the FT-

PCI-OSLi, 3.898MBytes/s for the modified buffer FT-PCI-OSLi and 2.656MBytes/s
for the PCI-OSLi when all three interfaces transmitted 64kByte messages. This

corresponds to the link interface data throughput for messages of this length as shown

in Figure 60, the data throughputs across the communications link being 30.65Mbits/s

for the FT-PCI-OSLi (both implementations) and 20.91Mbits/s for the PCI-OSLi.

Figure 64 shows the DMA transmission throughput for the FT-PCI-OSLi at a

variety of latency count values. The DMA transmitter buffer size cannot be altered

without significant design changes but the latency timer, dictating the length of each

PCI burst can be altered. As subsequent bursts can only be made once the transmitter

DMA buffer is almost empty, this action effectively reduces the buffer size to that

dictated by the latency count value. In reality, this level is reduced further due to the

latency counter starting decrementing when a request for bus ownership is made,

taking into account bus acquisition and set-up overheads. Thus a latency count value

of 64 resulted in only a burst of 55 double-words of data on average. As the FT-PCI-

OSLi took three PCI clock cycles to set-up a PCI transaction, following the granting

of bus ownership, it took an average of 6 PCI clock cycles to gain bus ownership.

- 153-

Results

100

90

800 0)
V)

1
* 70
OQ
2

60

50

40

30

<
2 20
a

10

1 100010 100 10000 100000
Message Payload (Bytes)

—x— FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 96)
— FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 64)
-~®— FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 32)
— FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 24)
—*r— FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 16)

Figure 64: FT-PCI-OSLi DMA transmission throughput for varied DMA

transmitter buffer capacities

Figure 64 shows the peak area 1 throughput to be 92.8MBytes/s for a latency

count value of 96, filling the entire DMA buffer. The throughput increases linearly in

proportion with the latency count value once bus acquisition and set-up overheads are

taken into consideration. The plot for a latency count value of 96 peaks for message

lengths of 256 bytes whilst the peak occurs at message lengths of 128 bytes and 64

bytes for latency counts of 64 and 32 respectively. The plots for the FT-PCI-OSLi
with latency count values of 16 and 24 peak at message lengths of 32 bytes. These

- 154-

Results

characteristics at latency counts of 16 and 24 are different shapes to the others due to

the relatively large overheads incurred in the acquisition of the PCI bus affecting the

amount of data that can be transferred in a single burst. Once the message length

exceeds the DMA buffer capacity, DMA transmission throughput falls with all

characteristics being equal for payloads in excess of lkByte.

Figure 64 demonstrates the effect that transmitter DMA buffer capacity has on

area 1 of the FT-PCI-OSLi DMA transmission throughput characteristic. The graph

demonstrates the 32-token capacity link interface buffer is small enough to make the

throughput in area 2 virtually identical to that of area 3. The thirty two tokens required

to fill the link interface buffer can be transferred across the PCI bus in eight clock

cycles. Further data can only enter the link interface buffer following the outputting of
data onto the serial link.

Figure 65 shows the effect that altering the transmitter DMA buffer capacity has

on the area 1 characteristic of the modified buffer FT-PCI-OSLi (with a lkByte

transmitter DMA buffer capacity). These show noticeably different characteristics

compared to Figure 64; for example the area 1 throughput for a latency count of 96

peaks at 88.93MBytes/s, 3.87MBytes/s below the comparable result in Figure 64. The

characteristics for the FT-PCI-OSLi with the alternate buffer capacities, with latency

count values of 64 and 32, peak at similar values to those in Figure 64. The

characteristics for the latency count values of 16 and 24 are noticeably different as

instead of peaking at message lengths of 32 and falling, as shown in Figure 64, they

continue rising, at a reduced rate, before peaking at message payloads of 128 bytes at
31.29MBytes/s and 35.2MBytes/s respectively.

- 155-

Results

100

90

o0)JW
10
2>.DQ
5

70

•*->3
CLsz3
2

JZH
co

40<73</>
1wc
2h
<2Q

1001 10 1000 10000 100000
Message Payload (Bytes)

—♦-FT-P C I-O S L i DMA Transmission Throughput (Latency Timer = 96)
- a - FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 64)

FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 32)
—h — FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 24)

FT-PCI-OSLi DMA Transmission Throughput (Latency Timer = 16)

Figure 65: DMA transmission throughput for the FT-PCI-OSLi with lkByte deep

link interface buffer for varied DMA transmitter buffer capacities

With the exception of the characteristic for the FT-PCI-OSLi with a latency count

of 96, all other characteristics plateau at around 25MBytes/s for message lengths

between 256 and 1024 bytes - this being area 2 of the DMA transmitter throughput

characteristic. The plot for the latency count of 96 does not level like the others as the

latency count value is large enough to fill the DMA transmitter buffer to capacity for

message sizes of 256 bytes, providing only an area 1 peak.

The latency count value of 96 is high enough to fill the DMA transmission buffer
completely and also partially fill the link interface buffer. This is due to the streamed

Results

buffering employed by the interface, which passes data straight through the DMA

buffer to the link interface buffer. For this reason, the throughput for message

payloads of 256 tokens is greater than that of 128 tokens as the PCI transaction is

stopped by the DMA buffer filling to its 256 token capacity. This does not occur for

the other characteristics in Figure 65 as the PCI transactions are stopped in these cases

by the latency timer reaching zero before the DMA buffer reaches capacity. This is

intentional as the reduced latency counter value is limiting the degree to which the

DMA buffer can fill in order to observe the effect of different DMA buffer sizes on

DMA throughput.

At message payloads of lkByte, the throughput of this characteristic is affected by

the link interface buffer capacity and so the throughput at this point falls to the same

level as the other characteristics in the graph.

Altering the capacity of the transmitter DMA buffer affects the position and height

of the peak in area 1. Altering the link interface buffer capacity was proven to affect

the height of the characteristic in area 2 of the DMA transmission throughput, with an

increased buffering capacity giving greater throughput, at a cost of increased

buffering resources. This increase was not proportionate, therefore a trade off must be

made according to the systems requirements. Increasing the FT-PCI-OSLi buffer

capacity to 32 times its original size resulted in only a six-fold increase in the

transmitter DMA throughput, in this section of the characteristic, as shown in Figure

65.

The communications link data rate affected the height of the area 3 characteristic,

but as both the FT-PCI-OSLi and the PCI-OSLi operated on a 42Mbits/s bit rate, the

differences in these characteristics were wholly due to the different flow control

mechanisms utilised by these two designs. Figure 66 summarised the effects that

could be achieved via alteration of the FT-PCI-OSLi parameters.

Results

Increased
DMA Buffer

Capacity Increased
Link Buffer

Capacity
Increased Link

Data Rate

Reduced Link
Data Rate

Reduced
• DMA Buffer

Capacity

Message Payload (Bytes)

Figure 66: Summary o f the effects on DMA transmission throughput caused by

alterations to the FT-PCI-OSLi DMA and link interface buffer capacities

6.3.4 DMA Message Reception

Figure 67 shows the DMA reception throughput for the FT-PCI-OSLi compared

to that of the PCI-OSLi and a FT-PCI-OSLi interface with a 2kByte deep receiver link

interface buffer at a 42Mbits/s link data rate. PCI transactions were only initiated

when the DMA buffer was full or the message had ended. The former event depended

on the speed at which the message could be received from the communications

network. At lower message lengths the overhead incurred in setting up the PCI bus

transaction limited the throughput.

The DMA reception throughput for payloads of four bytes was severely limited by

the proportionately high PCI bus acquisition overheads, due to the inclusion of the

latency incurred in acquiring ownership of the bus in these measurements.

Throughput increased with payload, reaching a plateau of 3.813MBytes/s and

2.613MBytes/s for the FT-PCI-OSLi and PCI-OSLi devices respectively. The plateau

started at about lkByte, being approximately equal to the communications link data

throughput for payloads of this size upwards. The modified buffer FT-PCI-OSLi

Results

interface (with the 2kByte capacity link interface receiver buffer) had an almost

identical characteristic to the FT-PCI-OSLi interface but a slight increase in

throughput between payloads of 256 and 2048 bytes which was due to the increased

link interface buffer capacity. All three characteristics were steepest for message

payloads below 64 bytes, when the DMA buffer was filling. All these characteristics

had levelled out once message size exceeded 2048 bytes, filling both the DMA and

link interface buffers.

oov>~u>
£CQ

as:O)
3O

Co
Q.a>uo
O'
<
S
a

4

3.5

3

2.5

2

1.5

1
101 100 1000 10000 100000

Message Payload (Bytes)

-♦— FT-PCI-OSLi DMA M essage Reception Throughput

—n — FT-PCI-OSLi DMA M essage Reception Throughput (Modified Buffer)

PCI-OSLi DMA M essage Reception Throughput

Figure 67: DMA reception throughput during bi-directional data transfer for the
FT-PCI-OSLi, PCI-OSLi and modified buffer FT-PCI-OSLi interfaces

The difference in the magnitude of the FT-PCI-OSLi and PCI-OSLi graphs was

due to the amount of data that could be transmitted across the communications link in

a given time. Both interfaces operated at the same link data rate but the permission

based flow control of the FT-PCI-OSLi permitted much more data to be sent as it

reduced the amount of excess non-data tokens. Increasing the sample clock rate

Results

increased the amount of data that could be transmitted across the link, and hence the
receiver DMA throughput.

6.4 Fault Detection and Recovery Hardware Tests

In addition to the performance tests, a series of hardware tests were undertaken

using the FT-PCI-OSLi, operating at a 64MHz sample clock rate, to verify correct

operation of a variety of the features used in fault detection and recoveiy. The tests

were performed using the loopback operation described previously and utilised debug

counters and flags located in the DMA Registers module, visible using the PCIWave

[156] software, to indicate the status of the interface.

6.4.1 Incorrect Message Length Hardware Test

This test consisted of a bi-directional message transfer where the message lengths

that were loaded into the Transmitter and Receiver Message Length Registers

(register offsets 0EH and 0D„ respectively) were deliberately different. The purpose of

this was to check the FT-PCI-OSLi could detect a shorter or longer than expected

message and trigger an early or late message termination respectively (denoted by the

assertion of bits 2 and 3 respectively in the Interrupt Pending Register). The number

of data words transferred to memory equalled the smaller of the two message lengths,

with any remaining data tokens in the link interface buffer being flushed.

6.4.2 Incorrect Message Header Hardware Test

This test was identical to the previous test but different message IDs were written

to the Byte-length Receiver and Transmitter Header Registers (register offsets 0AH

and 0Bh respectively). The transmitted header was not held in any of the CAM

locations, thus on arrival at the receiver no match was made. The message sat in the

receiver link interface buffer, filling it to the point where data flow across the

communications link was suspended. The test then had two possible actions, which
were:

- 160-

Results

• The user entered the correct message header into the CAM (equal to that of the

incoming header). The test verified that the message was successfully transferred

into memory in its entirety.

• Setting bit 29 in the Receiver Command Register (see Appendix C) to flush the

message from the link interface buffer. The test verified that on clearing the

contents of the receiver link interface buffer, flow of data across the

communications link resumed and the message was flushed.

6.4.3 Disconnected Link Hardware Test

This test verified the operation of the ‘link activity time out’ detection mechanism

and subsequent attempts to reinitialise a valid path across the communications

channel. The test consisted of a bi-directional loopback message transfer that was

terminated midway through the test by driving the serial communications link output

to ground, preventing the passage of any tokens across the channel. Once this

occurred, a timer was started and incremented until the receiver detected the presence

of a fault, through lack of link activity. The link was set to disconnect after

transmission of the fourth token (including the header token). Tests showed that the

link was declared faulty after a time period equating to 60 tokens, following link

disconnection. This was due to the FT-PCI-OSLi hardware being set up to trigger a

disconnected link following an adjustable time-out equivalent to the transmission of

four heartbeat tokens without reception.

The use of permission based flow control meant that, in event of network failure,

the transmitting node kept outputting data when the network failed. Doing this

effectively removed the message from the system and prevented the indefinite stalling

characteristic of credit based protocols. The receiving node did not append a ‘Bad End

of Packet’ token to the message as it was not forwarded to any other nodes and was

destined for memory. The FT-PCI-OSLi must indicate to the software that the

message was prematurely terminated. The steps have not yet been taken to implement

software functionality to deal with premature message termination. Hence, currently

there is no means of informing the transmitting node that the message was terminated

unsuccessfully at this (hardware) level of the network.

- 161-

Results

6.4.4 Flow Control Hardware Test

This test verified the operation of the permission based flow control protocol. Data

was prevented from passing from the receiver link interface buffer to the depacketiser

until the buffer had filled to the point that traffic across the communications link was

suspended. Data was then allowed to leave the receiver link interface buffer, for

processing, emptying it so that data flow could resume and complete the message

transfer. The message payload was 128 data bytes. The test was conducted in the

same loopback bi-directional communications manner as before but an additional

state machine was incorporated into the FT-PCI-OSLi design to control the passage of

data out of the receiver link interface buffer. The state machine possessed six states,

which were entered in order during execution of the message transfer.

State 2:
Fill FIFO

State 6:
Message

End

State 4:
Stabilise

V J JV
RX DMA FIFO

Disabled
RX DMA FIFO

Enabled

Figure 68: State machine showing the six states used in the flow control test

Results

1. Start Test - entered on power on reset. Left when the first (header) byte was

written to the receiver link interface buffer (whose output was disabled in this

state to allow data to accumulate).

2. Fill FIFO - entered when first byte was written to the receiver link interface

buffer. Left when buffer contents reached 24 tokens, triggering the assertion of the

Almost Full flag. The receiver link interface buffer output was disabled in this

state.

3. Stop Data - entered on assertion of the Almost Full flag. Exited when the

transmitter has received and successfully decoded the command to halt data flow.

The receiver link interface buffer output was disabled in this state.

4. Stabilise - entered following the suspension of data flow. Entering this state

enabled an 8-bit counter, incremented every PCI clock cycle. The counter

incremented until full, before leaving the state. This state allowed the traffic flow

to stop with checks made to ensure that no data tokens were active on the link at

this stage. The receiver link interface buffer output was disabled in this state.

5. Empty FIFO - entered when the 8-bit counter reached capacity, enabling the

receiver link interface buffer output and allowing the data to progress out of the

buffer to the depacketiser. Left when the amount of data tokens in the buffer fell

to 8 tokens, triggering the Almost Empty flag to resume the flow of link traffic.

The receiver link interface buffer output was enabled in this state.

6- Message End - state signifying the message end was entered following assertion

of Almost Empty. Left when transfer of the message to the depacketiser had been

completed. The receiver link interface buffer output is enabled in this state.

The state machine returned to state 1 for the next test. The results showed that the

FT-PCI-OSLi took a time equal to 24.131 token periods to complete state 2, filling the

receiver link interface buffer. It took 1.6527 token periods to initiate, transmit, decode

and act upon the command to halt data flow via the generation of a Stop flow token

(state 3). It took 28.28 PCI clock cycles to enable the buffer output, match the

message ID with one held in the CAM and read 18 tokens into the depacketiser (state

5). Once data flow resumed, it took 110.345 token periods to complete the message

(state 6).

The test demonstrated the successful operation of the permission based flow

control mechanism. Data flow across the communications link was suspended and

- 163-

Results

resumed after a short delay. Data was prevented from leaving the receiver link

interface buffer until it had filled to the Almost Full level and the 8 bit counter

triggered by this event had incremented to capacity (which occurred approximately 23

token periods later). A maximum of 26 tokens were held in the receiver link interface

buffer. Therefore following triggering of the Almost Full flag, when 24 tokens were

held in the buffer, two more tokens were transmitted in the time taken to initiate,

transmit and act upon a Stop token.

The loopback test sent the output signals through the differential line driver

circuitry in the same manner as would occur if communicating with another interface.

However the length of cable between the serial output and input was minimal, being

only a few centimetres long. The target network of the FT-PCI-OSLi was aimed at

physically distributed processor nodes, separated by distances of up to 100 metres.

Stopping the flow of link traffic across a communications distance of this length

would take longer. Therefore more data tokens would be received in the interval

between requesting the suspension of data flow and the receipt of the last token. The

receiver buffer must have sufficient resources to accommodate these extra tokens. The

time taken for an electric signal to traverse a length of wire is given by the formula:

Cable Length
twiRE = Speed of Signal

If the cable length was 100 metres and the speed of the signal across the wire

could be approximated to 66% of the speed of light, or 2 x 108 metres/second [124],

the transmission time is 500ns but as the signal must effectively travel there and back,

the total signal transmission time is 1 ps (plus the processing time taken from state 3

of the test). At a 42Mbits/s data rate, a single bit lasts for 23.43ns. 42.67 bits can be

transmitted across the link, equating to 3.878 tokens if back-to-back transmission

takes place. Therefore an extra four tokens could be received by the FT-PCI-OSLi

following suspension of link traffic, increasing the receiver link interface buffer

occupancy to 30 tokens, but averting buffer overflow.

Results

6.4.5 Link Dormancy Hardware Test

The link dormancy test used a sequence of flags in the DMA Registers module,

visible via the PCIWave software, to verify that when the link dormancy option was

selected that the Link Interface state machine returned to the Asleep state after

initialisation. Link dormancy was enabled via the assertion of bit 19 in the Receiver

Command Register (offset 0FH). A write to the Transmitter Length Register (offset

0Dh) when in this state issued a KickStart command (see section 4.4.6), returning the

state machine to the Reset state and causing the re-initialisation of the

communications channel between the two nodes. Upon completion of the message

transfer a count was started. If no other link activity occurred before the counter timed

out, the link returned to the Asleep state and further message transfers initiated link

re-initialisation.

The test proved that the link entered dormancy after an interval equal to the time

taken to generate three checkpulse signals (approximately equal to 93 tokens). Exiting

a dormant state and resuming link activity via link re-initialisation was performed

successfully and without affecting message transfer, as it was completed in part whilst

the message progresses through the transmitter, imposing minimal additional

overhead on the message. Overhead was not an issue, due to link dormancy being

used in situations where there is very little link traffic, making loss of throughput a

relatively minor concern.

6.5 Resource Usage

The FT-PCI-OSLi used 3109 LEs (37% of the total available on the Apex

20K200E device) and 6720 memory bits (6% of the total available), grouped in 83

embedded memory blocks. The maximum PCI clock frequency was specified at

74.88MHz.

In contrast the non-fault tolerant PCI-OSLi design, implemented originally on a

Flex 10K50S device occupied 2392 LEs (83% of the total available for that particular

device), 28kbits of available embedded memory (70% of available resources for the

Flex 10K device). Timing analyses stipulated a maximum PCI clock frequency of

Results

51.54MHz for the PCI-OSLi for this hardware set-up. A new device was required to

implement the FT-PCI-OSLi due to the tight fit of the previous design and the

significant logic increases.

For the hardware tests, the PCI-OSLi design was implemented on an identical

Apex 20K200E device to the FT-PCI-OSLi. This enabled a more accurate comparison

between the two designs. This was because all performance advantages gained from

the use of a faster and improved PLD architecture and high speed PCB design were

cancelled out as both designs benefited from these features. Neither design was

optimised for the target technology. When implemented on the Apex 20K200E

device, the PCI-OSLi utilised 2929 LEs (35% of the total available) and 28kbits of

memory implemented in 80 memory segments (26% of the total available for the

target device). The maximum PCI clock rate of the FT-PCI-OSLi was specified at

72.08MHz.

Comparisons between resource utilisation in modules of the two designs were

hard to make as the internal module hierarchy was altered significantly. Parts of the

FT-PCI-OSLi design benefited from logic reductions, in particular the consolidation

of multiple counters into one, in the packetiser and depacketiser modules of the

design. The FT-PCI-OSLi design used more logic resources due to the increased

functionality in the design, although fewer memory resources were used due to the

minimal buffering requirements.

Resource usage in the DMA Registers module leapt from 752 LEs in the PCI-

OSLi design to 1620 LEs, as shown in the table in Figure 69. This was due to the

Virtual Channels section of the design being situated in this module, adding 371 LEs.

Also situated in the DMA Registers were several 32-bit counters, used for test

purposes and the debug signals visible via debug software. The DMA FIFO

Controller module resource usage rose from 160 LEs to 223 LEs. This was due to

logic alterations to improve the set-up and hold times required for interfacing to the

PCI interface. Resource usage in the packetiser module of the FT-PCI-OSLi dropped

to 74 LEs from 131 LEs, due largely to the reduction in message length counters and

a simplification of the state machines in this module. A similar approach led to a

reduction in the depacketiser resource usage from 290 LEs to 162 LEs. The

transmitter and receiver DMA buffers hold 64 of 32-bit data words, as before, but

- 166-

Results

each buffer utilised 33 LEs for glue logic, as opposed to 41 LEs in the PCI-OSLi

design.

Main
Module Sub Modules

Logic
Elements
Utilised

Memory
Blocks
Used

Regs
Used

Highest
PCI Clock
Freq (MHz)

Highest Link
Clock

Freq (MHz)

Top Level FT-PCI-OSLi 3109 83 1531 74.88 See Note

PCI
Interface

Master Control 620 0 198 146.46 N.A.

Master / Target
Controller 71 0 50 216.59 N.A.

Data Path 366 0 32 290.02 N.A.

Target Decode 31 0 24 181.81 N.A.

Parity Checker 70 0 46 260.48 N.A.
Configuration

Registers 79 0 46 182.68 N.A.

DMA
Registers

DMA Registers 1620 1 749 87.00 N.A.

Virtual Channel
Store 371 1 145 85.86 N.A.

Interrupt
Controller 3 0 1 140.84 N.A.

DMA
Interface

Link Interface 869 82 584 91.18 N.A.

DMA FIFO
Controller 223 0 155 174.92 N.A.

DMA Transmit
Buffer 33 32 21 179.28 N.A.

DMA Receive
Buffer 33 32 21 179.28 N.A.

Message
Interface

Packetiser 74 0 14 252.78 N.A.

Depacketiser 162 0 104 115.73 N.A.

Link
Interface

Transmit Link
Interface FIFO 101 9 87 290.02 252.27

Receive Link
Interface FIFO 100 9 87 242.78 290.02

Transmitter 54 0 34 N.A. See Note

Receiver 43 0 31 N.A. 139.9

Figure 69: Modular Resource Usage in the FT-PCI-OSLi Interface

Note: The Quartus II Timing Analyzer did not recognise the 1.5 times oversampling method utilised in
the transmitter as producing a valid clock signal, claiming the circuit was not operational due to the
clock skew exceeding the data delay. A timing analysis o f this module performed on the MaxPlus2
version 10.0fitted to a Flex 10K device revealed a maximum sampling clockfrequency of129.87MHz.

- 167-

Results

The Link Interface Transmitter module saw an increase in resource usage from 31

to 43 and from 34 to 54 LEs. These increases were due to the protocol alterations

required to achieve improvements in fault tolerance. These alterations included the

generation and decoding of control tokens and logic to prevent them from progressing

from the receiver module. The Link Interface buffers were reduced significantly in

size from lkBytes and 2kBytes for the PCI-OSLi transmitter and receiver buffers

respectively, to the 32 deep 9-bit wide FT-PCI-OSLi buffers. The number of logic

elements used as glue logic for the receiver buffer halved from 203 to 100 LEs. The

FT-PCI-OSLi utilised 101 LEs for the transmitter link interface buffer whilst the

corresponding non-fault tolerant module utilised 186 LEs. For additional hardware

tests, link interface buffer sizes were altered to 256 deep 9-bit wide buffers.

Architectural alterations to the PCI interface resulted in most modules in this part

of the design experiencing reductions in resource usage. The Address / Data Path

module experienced a large increase, from 160 to 366 LEs, cancelling out most of the

reductions. Movement of functions to the DMA Registers and DMA FIFO Controller

modules reduced the resource usage of some of the PCI interface modules.

6.6 Power Consumption

Embedded systems are often used in portable / hand held electronic applications

due to their compact nature. Such applications are frequently battery powered for

convenience, requiring minimal power consumption. It was therefore veiy important

to be able to assess the power consumption of a large PLD, which in SoC applications

may represent the main drain of energy.

The PLDs pre-defined internal architecture allowed the synthesis tool to identify

which resources were utilised following the fitting of a design to a device. This

permitted Altera’s proprietary Quartus II software to make a highly accurate

assessment of the power consumption of the device. Such calculations were possible

in ASICs but only after the time consuming process of design layout. Altera’s

electronic literature possessed a design specific power calculator [143] for the Apex

- 168-

Results

20KE device family that was used to determine the power consumption of the FT-

PCI-OSLi interface.

The approximate total power consumption values for the device were:

IccINX = 109.5mA, IccIO = 3.19mA, P ^ = 179.11, PI0 = 10.53mW.

These values were only approximate as estimations were made in certain

calculations and average values were used in others. When operating at an ambient

temperature of 20 degrees centigrade without a heatsink, it was decided that airflow

around the device would be adequate to ensure that no thermal design issues arose.

6.7 FT-SARNIC Post-synthesis Simulation

This section of the results chapter presents the performance of the FT-SARNIC

based on post-synthesis simulation using Altera’s MaxPlus2 simulation and synthesis

software. Similar tests were performed with the SARNIC design fitted to the same

FLEX 10K50VRC240-3 device in order to enable comparisons to be made between

the two interface designs. The simulation results were also compared to the FT-

SARNICs theoretical performance characteristics to identify how closely the design

conformed to the ideal.

SA-110
Data Bus

SARNIC/
FT-SARNIC

Interface 4-----

Communications
links connected
together

Figure 70: Loopback Test Block Diagram for FT-SARNIC

The simulations were performed using a ‘loopback’ method involving fetching of

data from the SA-llO’s SDRAM to the FT-SARNIC via the data bus. The data was

formatted ready for transmission onto the serial communications link, and was then

routed back into the device as Figure 70 demonstrates.

Results

Such tests utilised bi-directional link bandwidth, requiring fair arbitration of DMA
accesses as the interface transmitted and received data simultaneously. It assumed that

the interface could always access the SDRAM via the SA-110’s bus, which might not

always be the case. Previous research [150] demonstrated that the processor overhead

incurred through the utilisation of 4 DMA channels at a 20Mbits/s link rate reduced

the computational performance of the SA-110 by 3.34%. The FT-SARNIC utilised a

virtually identical bus access mechanism as the SARNIC so it was presumed that the

communications overhead would be similar. The post-synthesis loopback simulations

were performed at data rates of 20Mbits/s and 39Mbits/s but only two DMA channels

were utilised, (one in each direction) as all packets in the communication belonged to

the same message. The loopback test simulated bi-directional traffic flow on the

communications links, requiring the interleaving of data and control tokens, exposing

inefficiencies incurred in doing this. Simulation of both devices did not take into

account the delay incurred by external transceivers on the communications link as the

serial communications output signal was routed back to the input before leaving the

PLD, in order for the post-synthesis simulation to work.

6.7.1 Bi-directional Data Transfer Duration

Figure 71 shows the linear increase in message duration observed during post

synthesis simulation of the FT-SARNIC design. The FT-SARNIC characteristic

demonstrated noticeably larger savings in message duration as the payload increased,

in comparison to the SARNIC characteristic. This was due to each SARNIC token

requiring the receipt of an acknowledgement token, increasing the number of bits per

token to 13. In addition, the SARNIC protocol required a new packet to be set up

every 256 data tokens, requiring three additional tokens and the incursion of extra

overheads in the process of packet initialisation. The ability of the FT-SARNIC to

transmit large messages as single packets eliminated such overheads and as such the

ramp of the message duration characteristic increases at a lower rate than that of the

SARNIC.

- 170-

Results

<oo
CD(/)
JE
co
CD u 13Q
O)
CO
c o
(0

CD
CO

J Oo

50

45

40

35

25

20
.^ x

15

10

5

0
0 10 20 30 40 50 60 70

Message Payload (kBytes)

SARNIC Message Duration (20Mb/s)

SARNIC Message Duration (39Mb/s)
FT-SARNIC Message Duration (20Mb/s)

■x— FT-SARNIC Message Duration (39Mb/s)

Figure 71: Message duration results for FT-SARNIC post-synthesis simulation

Figure 72 magnified the lower region of Figure 71 to display the message duration

versus payload characteristic for message sizes up to 64 bytes at data rates of

20Mbits/s and 39Mbits/s. At the minimum message length of 4 bytes, the SARNIC

took 376ns longer to complete message transmission as two extra bits per token were

transmitted. An overhead of three tokens per packet (up to 256-bytes) was necessary

comprising two header tokens and a length token. So the 4-byte message required the

SARNIC to send 12 extra bits (6 acknowledge tokens), occupying 25.5ns apiece at a

39Mbits/s data rate, assuming back-to-back data and acknowledge token interleaving.

The last acknowledge token could be discounted as the receiver began processing the

message whilst this acknowledge token was still being transmitted. These extra bits

took a total of 306ns to transmit, assuming no extra overheads, allowing the FT-

SARNIC to complete its message transfer 70ns faster than the SARNIC.

- 171-

Results

o
2rsQ
D)ro $
CO0) W
^ J=TJ
CD
&
CDCOJQo

0.05

0.04

0.03

0.02

0.01

0
0 8 16 24 4832 40 56 64

Message Payload (Bytes)

—■— SARNIC Message Duration (20Mbit/s data rate)
—n— FT-SARNIC Message Duration (20Mbits/s data rate)
—a— SARNIC Message Duration (39Mbits/s data rate)
—x— FT-SARNIC Message Duration (39Mbits/s data rate)
— FT-SARNIC Theoretical Message Duration (20Mbits/s data rate)

Figure 72: Message duration results for FT-SARNIC post-synthesis simulations at
lower message lengths

As message size increased, the latency incurred in initiating and concluding a

message becomes relatively insignificant relative to the message duration. A greater

proportion of non-data tokens meant the SARNIC message duration versus payload

characteristics increased at a faster rate than that of the FT-SARNIC.

Results

6.7.2 Bi-directional Data Bandwidth Utilisation

25

Q.
D> 15

& 10

1 10 100 100001000 100000
Message Payload (Bytes)

—x— FT-SARNIC Observed Maximum Data Throughput (20Mb/s Link Rate)
- A — FT-SARNIC Theoretical Maximum Data Throughput (20Mb/s Link Rate)

SARNIC Observed Maximum Data Throughput (20Mb/s Link Rate)
—■— FT-SARNIC Observed Maximum Data Throughput (39Mb/s Link Rate)
--♦—SARNIC Observed Maximum Data Throughput (39Mb/s Link Rate)

Figure 73: Data throughput results for the FT-SARNIC and SARNIC interfaces

Figure 73 shows the data throughput of the SARNIC and FT-SARNIC interfaces

plotted against message payload for data rates of 20Mbits/s and 39Mbits/s. The

theoretical performance characteristic of the FT-SARNIC at a data rate of 20Mbits/s

was also plotted for comparison.

Figure 73 demonstrated the extent to which message overheads limit throughput

as data rates increased. It also demonstrates the effect that permission based flow

control has on data throughput. All three plots began to plateau once message size

exceeded the 256 token packet boundary imposed on the SARNIC design. The

performance characteristics up to this point were much steeper for the 39Mbits/s

characteristics than at 20Mbits/s, for both FT-SARNIC and SARNIC devices.

- 173-

The FT-SARNIC data throughput was much greater than that of the SARNIC as it

did not need to send acknowledgement tokens or multiple packets, freeing more

bandwidth for data. At a 20Mbits/s data rate, the FT-SARNICs throughput was over

14% higher than the SARNIC for the maximum message length (64kBytes). This

figure increased to over 28% when the interfaces operated at a 39Mbits/s link rate.

The FT-SARNIC performed poorly at lower message lengths in comparison to its

theoretical performance, with the 20Mbits/s characteristic being closer to that of the

SARNICs response at this link rate. The theoretical performance characteristics only

took account of the speed at which data could be sent across the communications

medium, given the network protocols, excluding message set-up and reception delays.

As message size increased, these overheads reduced in significance relative to the

overall message duration and the FT-SARNICs performance characteristic conformed

more closely to the theoretical prediction, almost reaching parity at the maximum

message length. Differences in bandwidth utilisation for messages above 256 bytes

are almost entirely due to the different flow control mechanisms.

The data throughput characteristic measured the proportion of data bits in the

entire message, comprising of: header, length, termination and acknowledge tokens.

Each message had a 2-byte long header and a byte length termination or length token

for the FT-SARNIC and SARNIC interfaces respectively. Thus, the data content of a

4-byte message was 32 bits out of a total of 77 and 91 bits for the FT-SARNIC and

SARNIC interfaces respectively, making a large difference to data throughput.

6.8 Summary

Section 6.2 compared the tests performed on the hardware implementation of the

FT-PCI-OSLi with those of the PCI-OSLi and the FT-PCI-OSLi’s theoretical

performance characteristics. These results demonstrate the increased efficiency in

terms of the PCI set-up latency of the FT-PCI-OSLi when compared to the PCI-OSLi.

The results also show the reduction in message duration due to the use of permission

based flow control. The DMA transmission and reception results in section 6.3

demonstrate the effect that the transmitter DMA and link interface buffer capacities

- 174-

Results

have on the DMA transmission throughput. This section also demonstrates the effect
to which the data rate of the communications link affects the receiver DMA

throughput. The results in section 6.4 demonstrated the correct operation of the

hardware fault tolerance features, showing the ability of the FT-PCI-OSLi to detect

and recover from faults.

Section 6.5 (and Appendix G) calculate the estimated power consumption for the

FT-PCI-OSLi dependent on the number of gates and I/O pins utilised by the design.

Section 6.6 displays the resource usage and maximum theoretical clock speeds for

each individual design unit in the FT-PCI-OSLi interface. It compares the resource

usage in different parts of the design with that of the PCI-OSLi interface.

Section 6.7 compared the post-synthesis simulation of the FT-SARNIC with those

of the SARNIC and the FT-SARNICs theoretical performance characteristics. The

results demonstrated the superior data throughput of the FT-SARNIC relative to the

SARNIC due to the adoption of the permission based flow control. The deviation in

the FT-SARNICs observed performance relative to its theoretical performance at

lower message lengths was due to the overheads incurred in setting up messages being

relatively large with respect to the time taken to transmit the message. Figure 73

indicated the difference between the theoretical and observed characteristic became

negligible for message lengths above 256 tokens. These results compared the

implementation of the designs by eliminating external delays that would be cancelled

out via the implementation of the devices on identical hardware, but would also

reduce the performance characteristics slightly.

- 175-

Discussion

7 DISCUSSION

Network interfaces are responsible for the conversion of data from one format to

another. The FT-PCI-OSLi and FT-SARNIC convert data from the serial format of

the communications link to 32-bit parallel words for transfer to PC memory or

StrongArm SA-110 microprocessor memory, respectively. The research resulted in

the implementation of two processor interfaces with improved fault tolerance that

form building blocks in an embedded parallel processing system. These processor

interfaces are used to implement a distributed fault detection and recovery mechanism

in addition to improving performance.

Much of the previous work into improving fault tolerance in parallel systems

concentrated on ensuring networks could operate in a degraded state, bypassing

disabled links via the use of adaptive routing algorithms. Such a strategy suits regular

network topologies, but not irregular switched networks. This method increases traffic

on the remaining links leading to access contention and the formation of bottlenecks.

Eventually network throughput and efficiency will be lowered to the point where a

system wide reset is required to restore effective network operation. Faults between

network end nodes, such as the FT-PCI-OSLi and FT-SARNIC and routers isolate the

interface from the rest of the network, unless duplicate communications links are

utilised.

This section of the thesis discusses the ways in which the FT-SARNet embedded

parallel system and its end nodes, the FT-PCI-OSLi and the FT-SARNIC improve

upon their non-fault tolerant predecessors.

7.1 Target Networks

The target applications for the FT-SARNet embedded parallel network are

typically control based. Multiple FT-SARNIC processor nodes perform

computational, data processing tasks with results and other information passed to the

user via a PC and the FT-PCI-OSLi. Real time applications will require a regular flow

of input data for monitoring and manipulation at the appropriate sampling interval.

176

Discussion

Bandwidth will limit the amount of data that can be sent per sample and the sample

interval must be frequent enough for the system to be responsive to change. These

requirements are suited to the cycle-stealing DMA transfer methods used by the FT-

SARNIC. Transfers of data to and from the FT-PCI-OSLi must be performed as

rapidly as possible to prevent other bus users being denied frequent bus access.

7.2 FT-PCI-OSLi Performance

As the results in chapter 6 demonstrate, the FT-PCI-OSLi achieved a throughput

of over 92.8MBytes/s when the message size equalled the 256 byte DMA buffer

capacity. This fell to a throughput determined by the communications link data rate

for payloads above this level. Competition from other PCI agents for bus ownership

reduced throughput further due to access arbitration delaying the granting of bus

ownership to the FT-PCI-OSLi.

Whilst attempting to push the DMA throughput towards the maximum throughput

of the PCI bus might seem desirable, in reality it could result in wasted design effort.

This is due to the shared nature of the bus preventing any one resource monopolising

access in a practical situation. Additionally, the majority of FT-SARNet

communications would involve the FT-SARNIC, which would not be able to achieve

such high DMA throughput levels without preventing processor operation. Focussing

on improvements to the DMA throughput of the FT-PCI-OSLi could result in wasted

bandwidth as the FT-SARNIC becomes the system bottleneck.

If 92MBytes/s of the available PCI bandwidth of 132MBytes/s were devoted to

data transfer from memory to the FT-PCI-OSLi, a maximum of 40MBytes/s would be

available for all other PCI agents, severely constraining other PC resources.

Such imbalances in data throughput would require data to be ready for use long

before it was necessary, due to the time taken to transfer the message. This is

unacceptable in systems aimed at real-time embedded applications. Figure 62 in

section 6.3.3 showed the effect that message size could have on the requests for PCI

bus ownership, were it possible to transmit messages of a size equal to the transmitter

Discussion

DMA buffer back-to-back. The peak data throughputs displayed in Figures 64 and 65

in section 6.3.3 would be hard to achieve, due to the PCI arbiters’ fair access

algorithms. These algorithms ensure high priority resources would not monopolise

bus access [151]. The PCI specification 2.1 [41] specifies criteria for the operation of

a ‘fair access’ arbitration mechanism [151]. It leaves the implementation of this to the

PCI chipset designer, producing variations between systems [144].

The addition of extra links or the substantial increase in the communications link

data rate could result in the FT-PCI-OSLi monopolising PCI bus access to the

detriment of other bus users. As an example, the first generation Myrinet/PCI host

interface [81] linked an 8-bit parallel Myrinet link to a 32-bit 33MHz PCI bus for use

in connecting processing nodes in MPPs. The Myrinet throughput of 1.28Gbits/s (per

direction) was significantly larger than that of the 1.056Gbits/s of the PCI bus. In such

a situation, the PCI bus was the performance bottleneck, irrespective of its use, by

other bus users. The Myrinet link never reached saturation whilst the PCI bus could

not devote its full bandwidth to the interface as it must be shared. Later generation

Myrinet/PCI host interfaces utilised 64-bit 66MHz PCI buses allowing 2Gbits/s (per

direction) links to the PCI bus, whose maximum throughput was now 4.224Gbits/s.

Although the PCI bandwidth was increased to over twice that of the Myrinet

bandwidth, the Myrinet communications channels might still not saturate due to PCI

bus access by other users.

Despite the shared nature of the PCI resource, its difficulty in predicting and

guaranteeing bandwidth and the possibility of data starvation on the communications

link, the PCI bus was still favoured for the following reasons:

• It was an industry-wide specification permitting a generic processor independent

I/O bus based connection to many different platforms.

• A maximum data throughput of 132MBytes/s was considered high enough for

many applications, including real-time parallel, embedded networks such as the

FT-SARNet, with scope for upgrades.

• The burst mode operation of PCI transactions allowed rapid data transfer across

the shared resource, increasing the frequency of accesses.

- 178-

Discussion

The total PCI latency incurred in initiating transfers was hard to predict due to its

dependency on many variables, including other FT-PCI-OSLi bus accesses and

accesses by other PCI agents. The arbitration mechanism employed by the PCI chipset

was shown to affect the ease and regularity with which PCI agents could be granted

ownership of the bus [43]. Hardware testing of the FT-PCI-OSLi was performed on a

single PC with both FT-PCI-OSLi and PCI-OSLi devices tested using identical

hardware to determine their respective access latencies.

During the development of the PCI-OSLi [43], tests were performed on two

different PCs, yielding different results. It follows therefore that the FT-PCI-OSLi

performance would vary when used with different hardware and configurations.

Altering the latency timer (section 5.2.1.1) of the FT-PCI-OSLi adjusted the number

of double words transferred across the PCI bus per transaction, effectively altering the

DMA buffer size and thus the efficiency of each burst, as shown in section 6.3.3. The

ability to alter burst sizes, coupled with the PCI bus access uncertainties, meant that

the FT-PCI-OSLi required adequate buffering to ensure data starvation did not occur

on the communications links. The relatively slow communications link data rate

ensured that data starvation would be unlikely, although multiple smaller accesses

increased the bus acquisition and set-up overheads.

The maximum observed DMA transmission throughput of the FT-PCI-OSLi was

lower than the theoretical maximum of 132MBytes/s due to several latencies incurred

in initiating a transfer; these included:

• Acquiring ownership of the bus - 9 PCI clock cycles,

• Initiating a PCI transaction once granted bus ownership - 3 PCI clock cycles,

• Delay incurred in the PC fetching the first data word from memory and placing it

on the PCI bus (Delay unknown but the use of the ‘multiple memory read’

command located in the Master / Target Controller (section 5.2.1), meant that the

fetching subsequent words was not subject to a delay, unlike the ‘memory read’

command).

Discussion

The bandwidth limitations of the FT-PCI-OSLi were not crucial in the target

network, as a throughput of 132MBytes/s would be unattainable for any one device in

the shared PCI bus. The latencies were of consequence for shorter message lengths

where the delays were very large relative to the message transfer time across the PCI

bus.

The DMA transmission results for the FT-PCI-OSLi observed the utilisation of the

shared resource in a way that was previously overlooked. The large peak in area one

of the DMA transmission throughput graph was not detected in previous research

[144] during the development of the host system interface of the PCI-OSLi. This was

due to a different definition being used in determining the end of the DMA transfer.

The research conducted into the development of the FT-PCI-OSLi used a more

accurate definition of DMA transfer termination. As a result of this, an advance was

made in the understanding of the operation of the PCI bus and its interface to the host

system interface of the FT-PCI-OSLi.

7.3 FT-SARNIC Performance

In a small scale FT-SARNet the majority of communications will be between FT-

SARNIC end nodes and NTR-FTM08 routers. There will be a proportionate increase

in communications between routers as the network scales. The performance of inter

router communications has been documented in previous research [37]. The ability of

the end node to transmit and receive data depended on the rate at which it could

access the node’s memory and the rate at which data could be outputted onto the

communications link. The minimum DMA access interval of the FT-SARNIC was

equal to that of the SARNIC. This was due to the Bus Controller design remaining

unchanged with the main differences between the designs located in the

Communications Controller.

The results in chapter 6 demonstrate a significant improvement in

communications link throughput due to the adoption of permission based flow

control. This led to a shorter message duration for a given payload, thus increasing the

frequency of memory accesses. Unlike the FT-PCI-OSLi the maximum interval

- 180-

Discussion

between FT-SARNIC memory accesses could be calculated (section 5.52.6) as the

FT-SARNIC and the CPU were the only devices that utilised the memory bus. It

should be noted that the FT-SARNIC possessed two DMA channels per direction but

only a single bi-directional communications channel. This effectively implemented

two hardware virtual channels.

The post-synthesis simulations of the FT-SARNIC and SARNIC designs utilised a

single DMA channel per direction to simulate bi-directional communications. This

used only two of the four available DMA channels as only a single bi-directional

communications link was implemented due to logic constraints. Targeting the design

to a larger device and implementing the second communications link would benefit

the data throughput of the FT-SARNIC. This had the potential to double the amount

of data that could be transmitted and received by the FT-SARNIC as the

communications links could operate concurrently.

The SARNIC design implemented two communications channels due to the

reduced functionality of the communications controller, but the FT-SARNIC omitted

the second channel in favour of the ROM module. This was required to initialise the

interface for testing as the use of loopback tests prevented the booting from an

external device as the communications links were driven and received by the FT-

SARNIC.

The SARNIC operated two bi-directional channels at 20Mbits/s link rate with only

a 3.34% drop in processor performance [151], but the FT-SARNIC exhibited a 14.4%

increase in bi-directional throughput at this link rate, compared to the SARNIC. This

would increase the frequency of memory accesses. At a 39Mbits/s link rate, the

difference in throughputs increased to 28.75% for larger message sizes (section 6.7.2),

which would increase DMA activity further. Increased DMA activity would reduce

processor performance as memory bus access alternates between the CPU and DMA

when accesses were pending (section 5.5.1.1). The extent to which this occurred

would be worth investigating, but requires new hardware.

Discussion

7.4 Buffering Considerations

The FT-SARNIC utilised a cycle stealing DMA approach to data transfer,

transferring a single word of data at a time. Such an approach required a single stage

of buffering large enough to hold enough data for processing, during the time between

two FT-SARNIC memory accesses, to prevent data starvation. As the FT-SARNIC

utilised the same host system adapter as the SARNIC, the same ‘fair chance’ (see

section 5.5.1.1) arbitration mechanism was used, interspersing DMA accesses

between CPU accesses. The FT-SARNIC interfaced directly to the memory bus of the

SA-110, being the only external component in competition for this resource, thus

guaranteeing bandwidth at fixed intervals.

The packetiser and depacketiser of the FT-SARNIC possessed a one word deep

DMA buffer in each direction, which held a data word whilst it was packetised and

depacketised to and from byte format, respectively. However, the link interface

buffer held sufficient data to keep the communications link saturated between DMA

transfers. The Transmitter Link Interface Buffer used in the SARNIC design was four

tokens deep in order to hide the interval between memory accesses. The credit based

flow control mechanism utilised by the SARNIC meant that a single token would be

sufficient to prevent data starvation, were the time interval between DMA accesses

short enough. The permission based flow control adopted by the FT-SARNIC

required the Receiver Link Interface Buffer to be 32 tokens deep, for reasons

discussed in section 4.4.2.3. This was due to the ability of the FT-SARNIC to transmit

data tokens back-to-back. Increased buffering was also required due to the increased

throughput of the FT-SARNIC caused by the adoption of the new protocol.

The block transfer approach of the FT-PCI-OSLi only initiated a PCI transaction

when the DMA buffer was full or the message was completed, whichever occurred

first. Messages longer than the 64 double word capacity of the DMA required

subsequent bursts to transfer the message following the emptying of the resource.

A two stage buffering strategy was required with the first stage necessary to

maintain access efficiency and maximise throughput across the PCI bus. The second

stage provided buffering to store data to pass on to the communications link. This

Discussion

prevented data starvation and provided data for processing by the receiver during

periods where data transfer was halted across the communications link. Figure 65 in

section 6.3.3 showed how the capacity of the link interface buffer affected the

characteristic of area 2 of the DMA transmission throughput graph.

Increasing the link interface buffer size to the levels used in the PCI-OSLi

increased throughput in area 2 of the graph to 25MBytes/s. This gave a six-fold

throughput increase for messages of lkByte, but at the cost of increased buffer size:

32 times the size used in the FT-PCI-OSLi. Short messages, that could be transferred

across the PCI bus in a single PCI burst, could monopolise the bus if sent back-to-

back. Longer messages must be emptied from the DMA transmitter buffer before

subsequent PCI bursts could refill it. This action was dependent on the

communications link data rate. The ability to drive the communications link into

saturation at a 42Mbits/s link rate will depend on the length of the messages being

transmitted. The PCI chipsets arbitration mechanism could prevent saturation if

shorter message lengths are used, due to PCI bus acquisition overheads.

If the FT-PCI-OSLi utilised a single buffering stage, similar to that of the FT-

SARNIC, the PCI bus bandwidth would be utilised inefficiently due to the relatively

large overheads incurred in initiating a PCI transfer for a 4 byte message. The FT-

PCI-OSLi must acquire ownership of the shared PCI bus. Conversely the FT-

SARNIC utilised idle memory bus cycles, with only the SA-110 CPU in contention

for access to this resource. Similarly, transferring data from the FT-SARNIC to

memory in a burst would be possible, but awkward. This was due to the difficulties in

terminating the transfer without incurring inefficient bus usage, as mentioned in

section 5.5.1.2. Eight double words of data could be transferred in a single cache line

fill but PCI bursts of this length are relatively inefficient due to overheads reducing

PCI bus throughput to 10.15MBytes/s. Performing data transfers of 64 double word

bursts for the FT-SARNIC in a manner similar to that of the FT-PCI-OSLi would

interfere with the SA-110 access to the memory bus, and as such cannot be considered

a viable option.

Discussion

7.5 Data Streaming

Both the FT-PCI-OSLi and the FT-SARNIC employed streamed data

transmission: formatting data and outputting it onto the serial communications link as

soon as it was transferred from the host systems memory. Streamed data transmission

was favoured as it required minimal buffering and did not impose any limits on the

length of transactions. An other advantage of streamed data transmission was the

ability to disguise message-formatting delays by the injection of subsequent data

tokens into the DMA buffer. An inconsistency of transfers across the host system

interface could result in data starvation in a streamed network as the link interface of

the FT-PCI-OSLi waits on data to transfer. In reception, the inability of the PCI agent

to gain access to the bus would result in the DMA Receiver Buffer not emptying fast

enough resulting in the need to suspend data flow across the communications link.

Both data starvation and network back pressure result in inefficient communications

link bandwidth utilisation.

An alternative strategy, as adopted by the Myrinet/PCI host system interface, was

to transfer an entire packet across the PCI bus to a temporary data storage buffer.

Transfer of the message from the buffer to the communications network began once

the entire packet was held in this buffer. Buffered transmission will impose a limit on

either the buffer capacity or the packet length, with consequent resource or overhead

implications. Once a buffered transmission was stored in memory, it could be

outputted onto the communications link, via the message processing logic, in back-to-

back transmissions. This resulted in more efficient use of the communications link

bandwidth. Buffered transmission can be advantageous in I/O bus based systems,

where the presence of several competing entities make it impossible to guarantee

bandwidth. The Myrinet/PCI host interface [81] communications link data rate, of

1.28Gbits/s, was already much higher than that of the 32 bit 33MHz PCI bus

(1.056Gbits/s). This resulted in data flow problems in the Myrinet / PCI system

irrespective of accesses by other PCI agents. For this reason, buffered transmission

was required.

The streamed transmission SHRIMP [71] interface, whilst having a peak transfer

bandwidth of 200MBytes/s, only passed data to other users via its communications

Discussion

links at a rate of 33MBytes/s. This was due to the performance bottleneck of the EISA

bus [98]. Streamed data transmission allowed the EISA bus to become saturated but

utilised little of the available interface bandwidth [71].

The communications link throughput of the FT-PCI-OSLi was sufficiently low

with respect to the PCI bus throughput. Data starvation and network back pressure

was unlikely due to the FT-PCI-OSLi serial format. The addition of other

communications channels would increase the total communications link bandwidth to

levels that could cause data starvation / network back pressure. This is discussed as a

potential avenue of further research in section 8.2.2.

7.6 Interface Coupling

The FT-SARNIC interfaced to the SA-110s memory bus, creating a high

performance, processor specific interface, tailored to that particular processor. Its

tightly coupled host system interface increased communications efficiency due to its

close proximity to the processor, but reduced the design generality. Migrating the FT-

SARNIC design for use with a different microprocessor could require substantial

design alterations, due to the interface design being optimised for the SA-110 timing

requirements. However, the modular hierarchy of the FT-SARNIC would permit the

alteration of either the processor interface, or the network interface without altering

the other design unit.

The FT-PCI-OSLi, being an I/O bus based interface, sacrificed efficiency and

therefore performance for the ability to provide a processor independent interface.

The FT-PCI-OSLi must share the PCI bus bandwidth with the other PCI agents

attached to the bus. The FT-SARNIC connected to the SA-110s memory bus and

therefore only competed with the CPU for bus access. The FT-SARNIC could only

transfer data during processor idle cycles to prevent communications interfering with

the processor’s memory accesses and therefore computational abilities. The FT-PCI-

OSLi could request ownership of the PCI bus at any time but the amount of bus

access granted depended on many variables, such the number of devices accessing the

- 185-

Discussion

bus, the activity of these devices and the arbitration mechanism utilised by the PCI

bus arbiter.

The PCI bus standard, being a recognised transfer protocol, had a defined bus

acquisition sequence in order to set up a PCI transaction between two agents. This

procedure incurred significant overheads onto small transactions, making the PCI bus

better suited to the transfer of large amounts of data. The FT-PCI-OSLi offered the

FT-SARNet an interface to a far wider range of processors than previously available.

7.7 Virtual Channels

The FT-PCI-OSLi design built significantly on the previous PCI-OSLi interface

by providing a hardware virtual channel capability to deal with the arrival of both

expected and unexpected out of order message arrivals. Expected message IDs were

loaded into the CAM prior to the message arrival. Headers of messages recovered

from the serial communications link were compared with the contents of the CAM, a

match being generated if the message was expected. CAM searches operated

concurrently, making for fast comparisons, irrespective of CAM size, and providing

an easily expandable solution.

The use of virtual channels eliminated the need for processor intervention when a

valid message arrived at the receiver ahead of the expected message. Message arrival

ahead of time triggered an interrupt and required the removal of the expected message

information from the receivers’ message information buffers. This was then replaced

with the received message information. The virtual channel functionality of the FT-

PCI-OSLi demultiplexed a single DMA channel to one of three message ‘class’

locations in memory. This method was found to be more effective than the twin DMA

channels utilised by the FT-SARNIC.

The FT-SARNIC had two receiver DMA channels, to which packets belonging to

one of two messages could be routed to, before being transferred to the SA-110s

SDRAM. The FT-SARNIC could handle incoming packets that alternated between

two messages. It required intervention when a third message was received, as

- 186-

Discussion

software must be used to decide which message must be replaced with the third

message. This could be performed more efficiently if a ‘least recently used’ algorithm

was implemented. The implementation of the virtual channel functionality of the FT-

SARNIC was performed using logic elements due to the memory constraints of the

Flex 10K50 PLD. Available resources limited the number of virtual channels to two

per direction. Updating the target tPLD technology for implementation of the FT-

SARNIC to the Apex 20K device family [134] would provide more logic resources in

addition to increased operating speeds.

7.8 Modified Message Router Protocol

The ICR-C416 based message routing protocol used in the PCI-OSLi and

SARNIC devices was abandoned in favour of the improved protocol used by the

NTR-FTM08. The new protocol permitted the transmission of information relevant to

the operational status of the communications links over the data link. This removed

the need for the inefficient and unscalable control link used by the SARNIC and PCI-

OSLi in the ICR-C416 based network. The ICR-C416 protocol suffered in event of

link failure due to the inability of a node to detect the difference between an idle link

and a faulty link. In event of link failure the nodes at either end could stall

indefinitely, as discussed in chapter 3. Even if a mechanism existed to detect a stalled

link, the node detecting this could not communicate the information to the other end

of the link.

The periodic transmission to reaffirm link activity was similar to that used by DS

links [79], but idle tokens were transmitted at intervals to reduce switching (see

section 3.5). This provided both sides of a communications link with a fault detection

mechanism, and confirmed link status. Further power savings, desirable in portable

embedded applications, were available via the link dormancy mode of operation. The

ability to shut down unused links was a marked improvement over the simple ICR-

C416 based protocol. The FT-SARNIC was able to distinguish dormant links from

stalled or faulty links, and return them to an active status with a fast and simple start

up sequence.

Discussion

The removal of the 256-byte maximum packet size enabled more efficient use of

the communications link bandwidth and signalled an expansion in target applications

from short, control messages to include longer communications. This was reflective of

the increasingly compact nature of modern multiprocessor networks as well as the

increased performance requirements of embedded systems.

Altering the communications link’s flow control mechanism from credit based to

permission based increased the data throughput of the FT-SARNIC and FT-PCI-OSLi

interfaces due to the removal of acknowledge tokens. This action permitted back-to-

back bi-directional data flow. It freed two bits per token for the transmission of data

and utilised bandwidth previously wasted due to the need to interleave data and

acknowledge tokens, as outlined theoretically in section 3.4.1 and confirmed in

practice in chapter 6. The new flow control mechanism benefited the fault detection

and recovery strategy as the loss of tokens no longer caused the link to stall with no

means of resetting. Lack of link activity was used to indicate link failure. Receipt of a

‘connection request’ token was used to reset the receiving node’s link interface state

machine.

The addition of three different delimiter tokens to denote ‘End of Message’, ‘End

of Packet’ and ‘Exceptional End of Packet’, aided the process of active packet

recovery by providing the receiving node with information on the received message.

The latter token informed the node that an error was detected during the transmission

of the message and resulted in premature termination.

The distribution of fault detection and recovery features throughout the network

permitted a more scalable fault detection and recovery solution with faster response

times and the responsibility for each link devolved to the nodes at each end of it. Any

unexpected behaviour on a link, which did not conform to the expected link traffic for

that particular link state, would reset the link interface state machine. This action

forced a node to transmit a connection request token, the receipt of which reset the

state machine for the node at the other end of the communications link.

It should be noted that the hardware tests all utilised bi-directional

communications, due to the nature of the loopback tests. These tests showed the

- 188-

Discussion

performance of credit based flow control, utilised by the SARNIC and PCI-OSLi, to

be inferior to that of permission based flow control used by the FT-SARNIC and FT-

PCI-OSLi. Uni-directional credit based transfers, which were more likely to occur to

and from end nodes in a control-based network, could achieve 13 bits per byte

(section 2.3.1), and thus achieve back-to-back data transmission. Communications

between routers were more likely to be bi-directional as more messages will be active

in the central branches of the network. Applications utilising uni-directional credit

based communications will still be subject to bi-directional communications

constraints, reducing their performance in the areas of the system with the heaviest

workload.

7.9 Proprietary Vs Custom Prototype PCI Interfaces

With several commercially available PCI interfaces available, the benefits and

costs of designing a custom interface in house must be considered when a proprietary

one could be bought. A System on Chip (SOC) solution was desirable, eliminating

many interfaces as additional functionality would be required to link the device to the

communications link. This was not a problem as PCI cores were obtainable for PLDs,

implemented in embedded memory, leaving on-chip programmable logic for the

implementation of a communications link interface. These programmable interfaces,

such as the Altera PCI Master/Target MegaCore [152] and Xilinx PCI LogicCORE

[153] might seem attractive options initially but when design flexibility was

considered, PCI IP cores lose much of their appeal. The interface developer buys the

IP but does not necessarily buy the right or ability to modify it. The developer could

buy a licence to customise the core, at a cost, in some cases, but otherwise no

modifications were possible. The ability to modify the interface, tailoring it to the

application, can make a significant difference to its operation. The Altera PCI

MegaCore provides a single DMA channel, with a buffer capacity of 16 double

words. Figure 60 showed that the DMA transmission throughput for messages of this

size was 19.2MBytes/s. This would become the peak throughput for area 1 of the

DMA transmission throughput graph. Figure 55 showed that the efficiency of FT-

PCI-OSLi PCI accesses would become 84.2%, reduced from 94.7% for a DMA buffer

capacity of 16 double words. A PCI interface utilising this core would be significantly

- 189-

Discussion

less efficient than the PCI interface of the FT-PCI-OSLi. The implementation of a

single DMA channel would require sharing the DMA buffer. This would delay

transfers until the buffer was emptied and would reduce efficiency, removing the

performance gains obtained from full-duplex internal communications in the FT-PCI-

OSLi.

Most PLD based PCI cores provide only the master / target controllers for the PCI

interface, without DMA support as standard, this important feature costing extra. The

user may benefit with the ability to design custom DMA channels, tailored to the

communications link, at a cost of extra design effort. When the time and effort spent

evaluating different IP, and integrating the IP with the custom designed DMA

interface, is taken into account it may prove easier to design the entire interface. Many

problems could be encountered when attempting to interface third party IP to other

designs. The increased design time incurred with a fully customised interface was less

important as time-to-market is less crucial in research, than in the commercial

electronics field.

Other PCI IP interfaces, such as that available from PLD Applications [154],

provide the logic to implement DMA channels but the responsibility for DMA buffer

implementation falls to the developer. Internal implementation of these buffers

requires the availability of large amounts of on-chip buffering whilst external

implementation would represent a major design challenge in order to meet the

stringent PCI timing requirements required to achieve zero wait-state burst reads and

writes.

The ability to modify the PCI interface of the FT-PCI-OSLi was a major

advantage compared to proprietary IP cores, as the source code was readily available

and could be tailored and updated for optimum transfer over the PCI bus. Features not

available in proprietary IP could be implemented as desired and unnecessary features

omitted.

The use of other PCI interfaces, such as the Myrinet/PCI host interface may seem

attractive, due to its bandwidth of 1.28Gbits/s. This solution would require the design

of an interface to link the Myrinet link with the serial communications channel

- 190-

Discussion

utilised by the NTR-FTM08, incurring an extra stage of message formatting and

latency. Additionally, the serial communications link would become the performance

bottleneck of the interface and the bandwidth figure of 1.28Gbits/s would never be

attainable.

A fully flexible, easily modifiable, licence free source code solution, already

tailored to the format of the communications link, was readily available. Were the

project to start at the time of writing, with the advances that have been made in

available PCI interfaces, a different conclusion may have been made. Hence, during

development of the PCI-OSLi the option of using a third party PCI interface was

considered and rejected due to the limited choices and features of the available IP.

Since then the boom in off-the-shelf solutions has resulted in the increase in the

specifications, performance and available features of PCI IP, coupled with reduced

costs. The PCI-OSLi itself could be considered IP, with many advantages compared

to a proprietary PCI IP interface.

7.10 66MHz PCI Bus Operation

The data throughput of the PCI bus could be doubled to 264MBytes/s by

increasing the clock rate of the bus from 33MHz to 66MHz. Post-synthesis timing

analysis of the FT-PCI-OSLi revealed the maximum PCI clock frequency to be

74.88MHz. This makes 66MHz PCI operation theoretically possible, until the PCI

timing requirements are considered. The PCI clock period is 15ns at this frequency,

which cannot meet the PCI timing requirements. Certain PCI signals, most notably the

initiator and target ready signals ‘nlRDY’ and ‘nTRDY’ (see Appendix B), must meet

strict timing requirements in order to synchronise PCI transactions. These signals had

a maximum set-up time of 7ns and a maximum clock-to-output delay of 11ns [41].

The FT-PCI-OSLi design had a set-up time (tsu) of 5.091ns and 5.404ns for the

‘nlRDY’ and ‘nTRDY’ signals respectively. The clock-to-output time (tco) of the FT-

PCI-OSLi was 10.593ns and 11.909ns for the ‘nlRDY’ and ‘nTRDY’ signals

respectively. The time of the clock period when the signals could be reliably sampled

was 14.316ns and 12.687 for the ‘nlRDY’ and ‘nTRDY’ signals respectively with the

33MHz PCI bus. The time when the signals could not be sampled, was 15.684, and

- 191-

Discussion

17.313, for the ‘nlRDY’ and ‘nTRDY’ signals respectively. These times exceed the

15ns clock period for the 66MHz PCI bus. Therefore, to achieve 66MHz PCI

operation, the tsu and tco times must be significantly reduced.

Faster designs can be realised through effective targeting of design effort towards

specific areas. As the devices used to implement the design increase in performance

with advances in PLD technology, designs will benefit from speed increases. It could

be argued that the FT-PCI-OSLi and FT-SARNIC interfaces are at a disadvantage in

comparison to commercial interfaces as the latter are implemented on faster ASIC

technology. Although as section 4.5 pointed out, the difference in performance

between the two technologies is reducing [137].

Conclusions And Further Work

8 CONCLUSIONS AND FURTHER WORK

8.1 Conclusions

This thesis has documented research into multiprocessor systems with a view to

enhancing fault tolerance, which led to the development of two network interface

devices. These were designed to form building blocks in a router based serial

communications network with increased fault tolerance. The FT-SARNet network

was targeted at real-time distributed embedded multiprocessor applications. The

interface devices could be utilised to produce a novel decentralised fault handling

communications network linking PCs and StrongArm processors. The system would

allow RISC and general-purpose processors to operate as processor nodes in the same

network, increasing system flexibility and applications. Interprocessor bi-directional

data throughput was increased compared to previous non-fault tolerant devices due to

flow control modifications. The addition of hardware fault tolerance features provided

the embedded network with the ability to detect, isolate and recover from several fault

scenarios.

Inteiprocessor communications in this embedded multiprocessor network utilised

custom NTR-FTM08 8-channel off-the-shelf, hardware message routers. One

interface was designed to connect StrongArm SA-110 processors to the router

network using a protocol that facilitated the implementation of improved fault

tolerance features. This was named the FT-SARNIC. The functionality and

performance of the FT-SARNIC was verified via post-synthesis simulation and a

synthesised design was produced ready for hardware implementation. A second

interface, called the FT-PCI-OSLi, was designed to link a general purpose PC, via the

PCI bus, to the network and was implemented in hardware. Both interfaces built on

previous non-fault tolerant prototype designs, making significant alterations to

accommodate the features aimed at enhancing the fault detection and recovery

abilities of the NTR-FTM08 routing protocol.

Nodes in the FT-SARNet were required to exchange information relating to the

operational status of the link in order to provide distributed fault tolerance. This

required different design features to the previous SARNIC and PCI-OSLi interfaces,

as outlined below:

193

Conclusions And Further Work

• Credit based flow control was abandoned in favour of a permission-based

mechanism. This eliminated the acknowledgement token system, made better use

of the link bandwidth and reduced the chance of stalled links due to loss of

acknowledgements.

• Back-to-back data transmission was achievable, subject to the availability of

receiver buffering resources. Stop and Go flow control tokens utilised the data

path to inform the transmitting node of the link’s operational status and prevent

buffer overflow.

• Idle tokens were transmitted periodically, in the absence of link activity, to

reaffirm the integrity of the data path. Stop and Go flow control tokens were used

to provide validation of link status.

• Inactive links could be configured as dormant, in order to reduce power

consumption, re-activating upon the command to transmit a message. Link

dormancy provided a means of distinguishing between idle and disabled links that
was previously impossible.

• The addition of a handshaking start-up procedure, to ensure that both end nodes

on a link were ready to transmit data, provided a means of resetting individual
links on detection of irregular link activity.

• Altering the message format, by eliminating the need to packetise data in

multiples of 256-bytes, reduced the message overheads. It also signalled an

expansion in applications from shorter control-style messages to encompass PC

based applications that could require longer data communications.

• Altering the message format, from header-length-payload to header-payload-

terminator, enabled the truncation of messages affected by link failure. This

provided the receiving node with a warning that the message had ended

prematurely and a reset had occurred on that link, terminating that particular
communication.

The FT-PCI-OSLi design built on the previous non-fault tolerant device, with the

new and modified submodules of the design simulated in software to verify

functionality, before being incorporated into the design. Hardware testing and

debugging of the interface was aided by the in-system re-programmable SRAM based

PLD. This device could be programmed by an EEPROM allowing hardware

- 194-

Conclusions And Further Work

modifications and experimentation without the need for investment in additional

hardware. The FT-PCI-OSLi design was implemented on an Altera Apex 20K200E

PLD mounted on a custom interface PCB containing transmitter and receiver

differential line drivers for the communications links. The operation of the FT-PCI-

OSLi communications channels was tested at several data rates, up to a maximum

sample clock frequency of 64MHz, giving a 42Mbits/s data rate. A PCI-OSLi

interface was implemented on identical hardware for similar testing, eliminating many

differences in implementation and enabling comparisons to be made between the two

designs.

The FT-PCI-OSLi improved on its non-fault tolerant predecessor by

implementing hardware virtual channels via the use of Context Addressable Memory

(CAM). The CAM was used to store up to sixteen expected message IDs at any one

time, allowing pre-loading in anticipation of their use. This reduced the need for

processor intervention to replace message IDs in the DMA channels in event of the

arrival of a new message. The use of CAM provided concurrent search capabilities

and a scalable solution whilst minimising logic usage via embedded memory
implementation.

The key conclusions obtained from the hardware tests of the FT-PCI-OSLi are
presented below:

• The FT-PCI-OSLi outperformed the PCI-OSLi in terms of efficient use of

communications link bandwidth, due mainly to the adoption of the new flow
control protocol.

• The efficiency of PCI bursts was improved upon, reducing the PCI bus set-up

latency from five clock cycles to three.

• The transmission throughput of the PCI interface reached a maximum of

92.8MBytes/s when the message size is equal to that of the DMA transmission

buffer. This was a significant improvement in the understanding of the host

system interface of the FT-PCI-OSLi and PCI-OSLi devices as previous research

during the development of the PCI-OSLi did not observe the behaviour of the

interface to the same degree of accuracy. This was due to a different measure of

DMA transmission duration being used, leading to a less accurate representation

of the DMA transmission characteristic. The previous incorrect maximum DMA

- 195-

Conclusions And Further Work

throughput observed during development of the PCI-OSLi was only 25Mbytes/s.

The PCI throughput of the FT-PCI-OSLi has not increased in comparison to that

of the PCI-OSLi, but the more accurate measurement enabled its characteristics to

be observed more accurately than was previously performed, demonstrating the

Area 1 peak that was overlooked during development of the PCI-OSLi.

• The DMA transmission throughput was always sufficiently high to saturate the

communications link, even when back-to-back transmission was used. This

indicated that the communications channel was the system bottleneck. It is

possibile that the arbitration mechanism of the PCI chipset could prevent the

communications channel from saturating at smaller message lengths. This would

require verification but could not be taken as definitive as the arbitration

mechanism could vary between systems, as documented in section 7.2.

• A correlation was found between the DMA and link interface buffer capacities

and the DMA transmission throughput.

• The fault detection and recovery strategy showed the FT-PCI-OSLi could prevent

buffer overflow and stalled links due to lost acknowledge tokens. This was an

improvement on the ICR-C416 based router network utilised by the PCI-OSLi and

SARNIC. The FT-PCI-OSLi could detect and recover from faults such as

disconnected network connection, packet arrival out of order, incorrect message

length, synchronisation errors and the delivery of messages to the wrong address.

Post-synthesis simulation of the FT-SARNIC, with similar tests performed on a

post-synthesis simulation of the SARNIC revealed similar improvements in the

utilisation of the communications link bandwidth, again due to the alterations to the

link protocol. The host system interface of the FT-SARNIC was left unchanged,

leaving the communications between the FT-SARNICs DMA channels and the

SDRAM of the SA-110 operating in an identical manner to that of the SARNIC.

The FT-SARNet improved on the previous non-fault tolerant SARNet network in

the following ways with respect to the parameters used to gauge network performance
described in section 2.1:

• Bandwidth: The communications network gained significantly due to the

adoption of permission based flow control. The design of the host system interface

- 196-

Conclusions And Further Work

of the FT-PCI-OSLi remained unchanged but a greater understanding of its
operation was obtained.

• Latency: The initialisation latency incurred between acquiring ownership of the

PCI interface and commencing a transfer was reduced by 40% due to hardware

refinements to the master/target controller in the host system interface of the FT-

PCI-OSLi.

• Processor Overhead: The FT-SARNIC and FT-PCI-OSLi interfaces reduced

software involvement from their respective processors when handling faults. The

FT-PCI-OSLi reduced the need for processor intervention, following out of order

message arrival, due to the implementation of hardware virtual channels.

• Scalability: The control port monitoring mechanism of the ICR-C416 based

network was replaced by a fully scalable fault detection and recovery strategy. A

solution valid for networks of any size could be realised by devolving fault

detection and recovery features so that responsibility for fault tolerance over a

commmunications link lay with the nodes at either end of the link.

• Reliability: Enhanced fault tolerance functionality permitted the detection of a

wider range of network faults. Hardware implementation reduced software

overheads. An automatic recover strategy enabled a rapid response, of particular

use in remote systems.

The strength of a message processing interface utilising a shared bandwidth

resource such as the FT-PCI-OSLi or the FT-SARNIC is its ability to saturate the

dedicated communications link whilst utilising minimal bandwidth of the shared

resource. Access to the shared resource must be guaranteed, despite its dependence on

many variables. Real time systems require message delivery within a short enough

time for the information to still be useful. Access contentions to shared resources

delay this process. The communications link was the performance bottleneck of the

FT-PCI-OSLi design, as expected. This was preferable to the shared resource being

the bottleneck, as the communications link throughput would not hinder bus access by

other users.

A possible description of fault tolerance in the NTR-FTM08 embedded routing

network could be the ability to enable faults to occur without impairing the network

performance to a significant extent. This is possible due to features such as group

- 197-

Conclusions And Further Work

adaptive routing, which permit faulty links to be bypassed. The FT-PCI-OSLi and FT-

SARNIC network interfaces are end nodes of the routing network, and as such are

either the source or destination of a message, and thus cannot be bypassed. Both

interfaces possess a single bi-directional communications channel, which if faulty

isolates the processor node from the network. Such situations require the link failure

to be detected and fixed rapidly. The PCI-OSLi and SARNIC devices did not possess

any means of doing this, relying on software and thus imposing large overheads, in

implementing any form of fault detection and recovery. A robust network must

possess the ability to detect link failure and automatically recover from it.

8.2 Further Work

8.2.1 Realisation of the FT-SARNet

The research concluded with the design and synthesis of the FT-SARNIC

interface and the hardware implementation of the FT-PCI-OSLi. The FT-PCI-OSLi

was tested using the loopback tests, effectively sending messages to itself. To enable

the construction of an embedded FT-SARNet network one must integrate the

processor nodes (comprising a processor, interface and memory) into an NTR-FTM08

router network. This would permit research to assess the effectiveness of the network

as a whole and identify the weak links of the FT-SARNet as scope for further

improvements. The FT-SARNIC design is ready for hardware implementation and the

other two building blocks of the FT-SARNet, the FT-PCI-OSLi and the NTR-FTM08,
have been successfully implemented in hardware.

The main focus of effort required in construction of the FT-SARNet is in the

software levels of the design, as software designed for use with the SARNIC and PCI-

OSLi requires significant modification for use with the improved fault tolerance

devices. In particular, work is required to implement support for the features and

actions that must be taken to enhance fault tolerance. The software supporting the

network interfaces must be minimised in order to reduce operating system

intervention, thus minimising overheads and maximising the computational abilities
of the parallel network.

- 198-

Conclusions And Further Work

Hardware realisation of the FT-SARNet would permit research into permission

based throughput in multi-router networks for various different network topologies.

Such tests would advance the understanding of the efficacy of permission based flow

control. They would show how network topology could influence traffic patterns,

which could be used to minimise the necessity to suspend traffic flow across links,

thus increasing the efficiency of the system as a whole.

The testing of the FT-SARNIC implemented in hardware would result in

performance characteristics that were very similar to those achieved in the post

synthesis simulations documented in chapter 6. This is due to the accuracy of the

proprietary simulation and synthesis tools used in the development of the designs.

Detailed knowledge of the internal architecture of the PLD permits a highly accurate

analysis of the design to be obtained as the compiler can consider the delay through

each gate in the design. Any differences between the simulated and observed

behaviour of the device would mainly be due to timing differences in external signals

(such as those from the microprocessor or SDRAM).

8.2.2 Additional Communications Channels

The addition of more communication channels to the FT-PCI-OSLi interface is

possible without monopolising the PCI bus. At 20Mbits/s data rates a modified PCI-

OSLi design used in a Transputer based network has been shown to be capable of

driving four bi-directional communications channels operating in saturation (eight

DMA channels in total). This was achieved without preventing access to the bus, due

to the PCI bandwidth being far greater than that of the communications links. At

42Mbits/s data rates the maximum transmitter DMA throughput exceeds 92MBytes/s.

In area 3 of Figure 64 (section 6.3.3), the throughput was limited to 3.8MBytes/s, due

to the link data rate. A total of 24 bi-directional DMA channels, 12 in each direction,

could theoretically be supported.

The addition of extra channels requires the duplication of the link interface and

data flow parts of the design. Development of the NTR-FTM08 router revealed that

the duplication of the message formatting parts of the design can lead to large

increases in resource usage unless functionality can be shared amongst devices.

Conclusions And Further Work

Sharing functionality is rarely possible if communications links operate concurrently.

The state machine in the DMA controller also needs modifying in order to arbitrate

not only between the direction of DMA transfer but also which of the channels is

transmitting or receiving. Each channel will require a DMA channel in either direction

in order to accumulate data for transfer to / from memory. These channels cannot be

shared as bi-directional data transfers can take place concurrently on all

communications channels, filling and emptying the receiver and transmitter DMA

buffers onto the communications channels. The more channels that are added, the

greater the likelihood of a DMA channel having to wait for completion of a previous

transaction to access the bus to transfer its contents to memoiy.

It should be noted that the replication of features in a design increases the fan-out

of signals, which can lead to timing problems, as was noted in the development of the

FT-PCI-OSLi. The ability to modify source code enables such problems to be solved;
whereas the use of off-the-shelf components, whilst possessing sufficient resources to

enable expansion, may not permit a solution due to timing issues that cannot be

resolved due to the inability of the user to modify the design.

8.2.3 Interface Adaptation for use with Alternative Processors

The rapid advancement of processor technology shortens the amount of time that

the modern processor is utilised before being upgraded. In order for the embedded

network to track these processor developments, the network requires frequent

updating of processor support. Easily adaptable IP is a necessity in such networks as it
enables as much of the original design to be retained, whilst inserting a proven

module to fulfil the remaining requirements.

The modular nature of the FT-SARNIC and FT-PCI-OSLi interfaces permits

updating of the host interface without requiring alteration to the network interface.

However, modifying the FT-SARNIC for use with another processor would require

significant design effort due to the host system interface being optimised to the

StrongArm SA-110.

Conclusions And Further Work

The FT-PCI-OSLi is designed to interface to any processor with a 32-bit 33MHz

PCI bus, irrespective of the processor model and operational parameters. As general

puipose processor specifications advance, so too will the implementation of the PCI

bus, from 32-bit, 33MHz to 64-bit, 66MHz. The issues regarding the interfacing of

the FT-SARNet to a 66MHz PCI bus were discussed in section 7.1.8. It was

concluded that this would currently require the set-up and clock-to-output times of the

PCI signals of the FT-PCI-OSLi to be significantly reduced in order to meet the

timing requirements. Further advances in PLD technology result in the introduction of

device families with smaller feature sizes, increased gate counts and higher switching

speeds. Migrating the design to a newer PLD technology would reduce or even

eliminate the amount of optimisation required to meet the timing requirements.

Implementing a 64-bit, 33MHz FT-PCI-OSLi interface requires only logic duplication

and a widening of the bus. This PCI bus implementation would double the maximum

theoretical PCI bus bandwidth to 264MBytes/s whilst requiring no additional

optimisation of the interface. The FT-PCI-OSLi PCB would require redesigning, with

a 64-bit PCI extension to the PCI edge connector and connections made from the

relevant signals on this to the PLD.

8.2.4 Enhanced Virtual Channel Capabilities for the FT-SARNIC Interface

The CAM based Virtual Channel Message Store utilised in the FT-PCI-OSLi

could be implemented in the FT-SARNIC to eliminate the message channel allocation

problems encountered by the latter when handling three or more different incoming

messages. The twin DMA channels and logic intensive message channel allocator

could be greatly simplified, considerably reducing logic usage in the Communications

Controller.

8.2.5 FT-SARNIC Asynchronous Interface

The data paths of the FT-SARNIC interface utilised an asynchronous interface in

both directions of data flow between the message formatting modules and the link

interface buffers, as Figure 49 in section 5.5.2.4 shows. The asynchronous interface

was responsible for synchronising control signals for the link interface buffer read and

Conclusions And Further Work

write operations (that were generated using the sample clock) to the core clock. The

asynchronous interface was housed in the packetiser and depacketiser modules for the

transmitter and receiver channels, respectively. Implementation of this circuitry was

complex, requiring large amounts of logic, which could be removed if the link

interface buffers were implemented using dual-port RAM. This would permit the

control signals to the write side of the link interface buffer to be synchronised to the

processors core clock whilst the read side of the link interface buffer is synchronised

to the sample clock. This effectively moves the clock domain boundary to the link

interface buffer and has the benefit of requiring no extra logic, as the clock

synchronisation is performed within the software-based dual-port RAM

Megafunction.

Dual-port RAM was not available when the SARNIC was under development, as

the Flex 10KA family did not support this feature. The Flex 10KE and Apex 20KE

device families can implement such functions.

8.2.6 System On a Programmable Chip Solution

Further development could include the implementation of a complete SARNode

on a single programmable device to achieve a fully integrated system on a chip

solution (as noted in section 1.1). This would comprise of an ARM based processor

core, an FT-SARNIC, an NTR-FTM08 and an FT-PCI-OSLi interface, subject to

available logic resources. The Excalibur device [69] is one of the first solutions in

attempting to achieve a balance between the advantages of speed and gate density of

dedicated hardware, and the flexibility of programmable logic. The Excalibur PLD

range feature an 200MHz ARM 922T based hard core CPU which occupies a small

area of the PLD design, leaving the remainder for implementation of up to 38,400 LEs

and 320k memoiy bits. The FT-PCI-OSLi utilised less than 8% of this total, and the

FT-SARNIC used even less. Such a device is feasible, although the resources required

by the router, which are substantial due to the high level of replication, may require a

reduction from 8 to 6 channels, with current technology.

The Excalibur based ARM processor [69] utilises an AMBA (Advanced

Microcontroller Bus Architecture) bus to interface to external components, raising the

Conclusions And Further Work

possibility of an SOC solution comprising a general purpose embedded processor and

the FT-PCI-OSLi, with many of the host system interface features of the latter aided

by the architecture of the Excalibur device. The AMBA bus possesses three buffers:

address, read data and write data in each direction. The FT-PCI-OSLi had to multiplex

these buffers together onto a bi-directional bus whereas the AMBA bus reads data

directly from the buffers onto the bus. This avoids the bus multiplexing issues

encountered during development of the FT-PCI-OSLi, reducing timing constraints

and permitting set-up times to be met. AMBA compliant high performance buses

enable the separation of communications from computational activities, one of the key

principles of interprocessor communications.

The Excalibur devices would enable a FT-SARNode SOC solution to be

achievable through the elimination of much of the interface functionality currently

implemented using programmable logic. Functions such as the interrupt controller,

UART, timer and debug logic are implemented in the embedded hardware processor

'stripe* [69], freeing the logic elements used to implement these functions for other

uses. Additionally, an internal SDRAM controller can address up to 512MBytes of

memoiy at speeds up to 266MHz and an expansion bus can address 32MBytes of

memory in up to 4 external devices. Implementing an FT-SARNode on an Excalibur

device would permit the majority of the SARNode functionality to be implemented on

the embedded ‘stripe’, leaving the PLD area free for the implementation of the

communications controller and bus controller modules.

Publications

Publications

S.Triger, B.C.O’Neill & S.Clark “Multiprocessor Communications for Embedded
System Applications” Postgraduate Research into Electronics and Photonics 2001

(PREP), Keele University, April 2001, pp 65 - 66.

S.Triger, B.C.O’Neill & S.Clark “Adapted OS link / DS link protocols for use in
Multiprocessor Routing Networks” Communication Processing Architectures 2001

(CPA), University of Bristol, September 2001, pp 37 - 48.

204

References

References

1 Valiant, L.G., “General Purpose Parallel Architectures”, Technical report TR-07-89, Aiken

Computation Laboratory, Harvard University, Prentice-Hall, April 1989.

2 Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K., Walker, D.W., “Solving

Problems on Concurrent Processors: Volume 1 General Techniques & Regular Problems”,

USA, Prentice-Hall International Inc., 1988, pp. 17 - 38.

3 Almasi, G.S., Gottlieb, A., "Highly Parallel Computing", The Benjamin/Cummings Publishing

Company Inc., ISBN 0-8053-0177-1, pp 45-47, 1997.

4 Patterson, D., "Reduced Instruction Set Computers", Communications of the ACM, Vol. 28,

No. 1, January 1985, pp. 9-21.

5 The Transputer Handbook, INMOS Ltd (now part of SGS Thomson), 2nd Edition,

Trowbridge, 1989.

6 Hotchkiss, R., Wong, K.L., O'Neill, B.C., Coulson, G.C., Clark, S.,Thomas, P.D., "The

Building Blocks for a Parallel Network Incorporating the StrongArm Microprocessor", The

1998 International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'98), Las Vegas, July 1998, pp. 1863-1870.

7 Dario, P., Carrozza, M.C., Marcacci, M., D'Attanasio, S., Magnami, B., Tonet, O., Megali, G.

"A Novel Mechatronic Tool for Computer-assisted Arthroscopy", IEEE Transactions on

Information Technology in Biomedicine", Vol. 4, No. 1, March 2000, pp. 15-29.

8 Silva, L.M., Silva, J.G., “Global Checkpoints for Distributed Programs”; Proceedings 11th

Symposium on Reliable Distributed Systems, Houston, TX, USA, 1992, pp 155 - 182.

9 IC Routing Ltd, “16 Port Dynamic Routing Switch for Transputer Link”, Data Sheet, Version

1.3, 1996, pp. 1 -3 .

10 Hinton, J., Pinder, A. “Transputer Hardware and System Design”, Prentice Hall International,

(UK) Ltd., 1993, ISBN 0-13-953001-0 (pbk), pp. 1 - 17, pp. 142 - 154.

11 East, I “Parallel Processing with Communicating Process Architecture”, UCL Press, London,

1995, pp 1 -2 4 ,4 1 -8 3 .

12 Welch, P.H., "The Role and Future of Occam", "Transputer Applications - Progress &

Prospects", IOS Press, 1992, pp. 152-179.

13 Hoare, C.A.R. “Communicating Sequential Processes” Hemel Hempstead : Prentice Hall

International, 1985.

14 Stone, H.S., “High Performance Computer Architectures”; Addison Wesley; 1987

15 Gelernter, D., "A DAG based Algorithm for Prevention of Store and Forward Deadlock in

Packet Networks", IEEE Transactions on Computers, Vol. C30, No. 10, 1981, pp 709-714.

16 Joerg, C. F., Henry, D. S., “A Tightly-Coupled Processor-Network Interface”, Computation

Structures Group Memo 342, Massachusetts Institute of Technology, March 1992.

17 Wong, K. L., “A Message Controller for Distributed Processing Systems”, PhD Thesis, The

Nottingham Trent University, UK, June 2000.

18 O’Neill, B. C., et al. ‘Design and exploitation of a 26 000 gate message routing device’ Fifth

EURCHIP Workshop on VLSI Design Training, Dresden, Germany, Oct 1994, pp 290 - 303.

205

References

19 Ellis, J.W., O’Neill, B. C., Clark, S. “A router design for T800 compatible Transputer arrays”,

Transputer Applications Vol 1(2), 1993, pp 12-18.

20 O’Neill, B. C., Wong, K. L., Coulson, G. C., Clark, S., Thomas, P. D., Cook, B.M., Keele

University, Walker, C. P. H., 4Links., “A Low-cost High-performance Multicast Routing

Switch Chip for Communication Networks”, European Multimedia, Microprocessor Systems

and Electronic Commerce Conference, Florence, ISBN 90-5199-385-4, Nov 1997, pp. 836 -

843.

21 “Clipbox Fact Sheet”, Quantel. http://www.quantel.com (last checked 14 February 2002)

22 McKinley P.K., Xu, H. Esfahanian, A.H., Ni, L.M., “Unicast-Based Multicast Communication

in Wormhole-Routed Networks”, IEEE Transactions on Parallel and Distributed Systems, Vol

5, No 12, December 1994, pp 1252 - 1264.

23 Coulson, G.C. “An ASIC Implementation of a Multicast Message Routing Switch for

Interprocessor Communications”, PhD Thesis. The Nottingham Trent University, UK,
September 1998, pp. 23, 68-70, 122-124.

24 De Carlini, U., Villano, U., "Transputers and Parallel Architectures - Message-Passing

Distributed Systems", UK, Ellis Hoiwood, 1991, pp. 148 - 204.

25 Hinton, J., Pinder, A. “Transputer Hardware and System Design”, Prentice Hall International,

(UK) Ltd., 1993, ISBN 0-13-953001-0 (pbk), pp. 195 - 212.

26 Bakoglu, H.B., Grohoski, G.F., Montoye, R.K., "The IBM RISC System/6000 processor:

hardware overview", IBM Journal of Research and Development, Vol. 34, No, 1, January
1990, pp 12-22.

27 Digital Equipment Corporation "Digital Semiconductor SA-110 Microprocessor - Technical

Reference Manual", Maynard, Massachusetts, October 1996.

28 Mukherjee, S. S., Hill, M. D., “The Impact of Data Transfer and Buffering Alternatives on

Network Interface Design”, Fourth International Symposium on High-performance Computer

Architecture (HPCA), February 1998.

29 Digital Semiconductors SA-110 Microprocessor Technical Reference Manual, EC-QPWLC-

TE, DEC Ltd, Maynard, Massachusetts, USA, 1996.

30 Irwin, G.W., Fleming, P.J., "Real-Time Control Applications of Transputers", "Transputer

Applications - Progress & Prospects", IOS Press, 1992, pp. 26-41.

31 O’Neill, B. C. et al,’An Interface Device to Support a Distributed Parallel System for the

StrongARM Microprocessor’, High Performance Computer Networks 98, Amsterdam, April

1998, pp 1047- 1050.

32 Wong, K. L. et al, "Interfacing StrongArm Microprocessors in a Parallel Network",

Postgraduate Research in Electronics, Photonics & Related Fields (PREP'99), January 1999,

pp. 382-385.

33 Gerla, M., Palnati, P., Walton, S., “Multicasting in Myrinet - A high speed, wormhole-routing

network”, IEEE GLOBECOM 1996. Communications: The Key to Global Prosperity; IEEE.

Vol. 2, ISBN 0 7803 3336 5; New York, USA; pp 1064 - 1068.

34 Ni, L.M., McKinley, P.K., “A Survey of Wormhole Routing Techniques in Direct Networks”,
IEEE Computer, Vol. 26, No 2, February 1993, pp 62 - 76.

-206-

http://www.quantel.com

References

35 Dally, W.J., Aoki, H., “Deadlock-free Adaptive Routing in Multicomputer Networks Using

Virtual Channels”, IEEE Trans. Parallel and Distributed Systems; Vol. 4, No. 4, April 1993.

36 Duato, J. “A New Theory of Deadlock-free Adaptive Routing in Wormhole Networks”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 4, No 12; December 1993, pp 1320 -

1331.

37 Hotchkiss, R. “A Fault Tolerant Multicast Message Routing Switch for Interprocessor

Communications”, PhD Thesis, The Nottingham Trent University, UK; Sept 2000.

38 Ingenieurburo Ingo Mohnen "BBK-PCI User's Manual", Version 1.1, May 1998, Address:

Ingenieurburo Ingo Mohnen, Rottstrasse 33, 52068, Aachen, Germany.

39 Ingenieurburo Ingo Mohnen "BBK-PCI Light User's Manual", Version 3.2, September 1998,

Address: Ingenieurburo Ingo Mohnen, Rottstrasse 33, 52068, Aachen, Germany.

40 Shanley, T., Anderson, D., “PCI System Architecture”, 3rd Edition, Addison-Wesley

Publishing Company, 1995, ISBN 0-201-40993-3.

41 “PCI Local Bus Specification, Revision 2.Is”, PCI Special Interest Group, 1995.

42 Ng, J.H., O'Neill, B.C., Clark, S., "A PC Interface Board for Parallel ARM Processor

Network", PREP 2000, IEE UK., ISBN 0 86341 3218, pp 469-474, April 2000.

43 Ng, J.H., "Message Routing Interface for Multiprocessor Networks”, PhD Thesis, The

Nottingham Trent University, UK, June 2000.

44 Liew, E.W.K., O'Neill, B.C., Wong, K.L., Clark, S., Thomas, P.D., Canr, R., "A Proposal for

an Operating System for a Multi-processor StrongARM System", Concurrent Systems
Engineering, ISSN 1383-7575, 1999, Vol. 57, pp 37-47.

45 Jones, A.M., Davies, N.J., Firth, M.A., Wright, C.J., "The Network Designers Handbook",

IOS Press, Amsterdam, 1997, ISBN 90-5199-380-3, pp. 41 - 45.

46 Wong, K.L., "A Message Controller for Distributed Processing Systems", PhD Thesis, The

Nottingham Trent University, UK, April 2000, pp. 17.

47 Ni, L.M., McKinley, P.K., "A Survey of Wormhole Routing Techniques in Direct Networks",

IEEE Computer, February 1993, Vol. 26, pp. 62-76.

48 Kermani, P., Kleinrock, L., "Virtual Cut-Through: A New Computer Communication

Switching Technique", Computer Networks, Vol. 3, No. 4, September 1979, pp. 267-286.

49 Bhoedjang, R., Ruhl, T., Bal, H.E., "User-Level Network Interface Protocols", IEEE

Computer, November 1998, Vol. 31(11), pp. 23-39.

50 Welsh, M., Basu, A., Eicken, T. von, "ATM and Fast Ethernet Network Interfaces for User-

level Communication", Proceedings of High-Performance Computer Architectures (HPCA) 3,

San Antonio, TX, February 1997.

51 Coulouris, G., Dollimire, J., Kindberg, T., "Distributed Systems - Concepts and Design", 2nd

Ed, Addison-Wesley, Wokingham, UK, 1994, ISBN 0-2016-2433-8, pp. 1-124.

52 Liebowitz, B.H., Carson, J.H., " Multiple Processor Systems for Real-Time Applications",

London, Prentice-Hall, 1985, pp. 50-61, 104-123, 159-216.

53 Morrow, R,, "Bluetooth: Operation and Use (Telecommunications)", McGraw-Hill, ISBN 0-

0713-8779-X, 2002.

54 The Bluetooth SIG, "Bluetooth Specification Version 1.0 A", Nov 1999, pp. 67-69.

-207-

References

55 Wong, K.L., "A Message Controller for Distributed Processing Systems", PhD Thesis, The

Nottingham Trent University, UK, April 2000, pp. 67.

56 Cray Research Inc, "The Cray T3D System Architecture Overview", Cray Research Inc,

Technical Document HR-04033, 1993.

57 Jones, A.M., Davies, N.J., Firth, M.A., Wright, C.J., "PACT The Network Designers

Handbook", IOS Press, Amsterdam, 1997, ISBN 90-5199-380-3, pp. 51 - 211.

58 M.Zhu, D A Thornley, J Pech, B Martin, N H Madsen, R Heeley, S Haas & R W Dobinson, C

R Anderson, ‘Realisation and Performance of IEEE 1355 DS and HS Link Based, High

Speed, low Latency Packet Switching Networks’, IEEE Transactions on Nuclear Science, Vol.

45, No 4, August 1998. pp. 1849 - 1853.

59 A Paskins, ‘The IEEE 1394 Bus’, The Institute of Electrical Engineers Half Day Colloquium

on New High Capacity Digital Media and Their Applications, 1997. Pp. 4/1 - 4/6.

60 Hotchkiss, R. “A Fault Tolerant Multicast Message Routing Switch for Interprocessor

Communications”, PhD Thesis, The Nottingham Trent University, UK; Sept 2000, pp. 14.

61 Minoli, D., Alles, A., "LAN, ATM and LAN Emulation Technologies", Artech House Inc,

ISBN 0-89006-916-6, 1996, pp 6-25.

62 Gigabit Ethernet Alliance, "Gigabit Ethernet: Accelerating the Standard for Speed", White

Paper, 1999. Address: 10 Gigabit Ethernet Alliance, 1300 Bristol Street North, Suite 160,
Newport Beach, CA 92660, USA.

63 Metcalfe, R.M., Boggs, D.R., "Ethernet: Distributed Packet Switching for Local Computer

Networks", Communications of the ACM, Vol. 19, No. 5, July 1976, pp. 395-404.

64 Koopman, P.J., Upender, B.P., “Communication Protocols for Embedded Systems”,

Embedded Systems Programming, Vol. 7, No. 11, Nov 1994, pp 46 - 58.

65 Dally, W.J., Song, P., "Design of a Self-timed VLSI Multicomputer Communication

Controller", Proc. of the International Conference on Computer Design (ICCD-87), 1987, pp.

230 - 234.

66 Hord, R.M., "Parallel Supercomputing in MIMD Architectures", CRC Press, 1993, pp. 61-81.

67 Borkar, S., Cohn, R., Cox, G., Gleason, S., Gross, T., Kung, H.T, Lam, M., Moore, B.,

Peterson, C., Pieper, J., Rankin, L., Tseng, P.S., Sutton, J., Urbanski, J., Webb, J., "iWarp: An

Integrated Solution to High-speed Parallel Computing", Proceedings of Supercomputing'88,

IEEE Computer Society Press, ISBN 0-8186-0882-X, 1988, pp. 330-339.

68 Dally, W.J., Fiske, J.A.S, Keen, J.S., Lethin, R.A., Noakes, M.D., Nuth, P.R., Davison, R.E.,

Fyler, G.A., "The Message-Driven Processor: A Multicomputer Processing Node with

Efficient Mechanisms", IEEE-Micro, April 1992, pp. 23-39.

69 "Excalibur Device Overview Data Sheet", Altera Coproration; Document Part No: DS-

EXCARM-2.0

70 Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., Su, W.K.,

"Myrinet - A Gigabit-per-Second Local-Area Network", IEEE-Micro, February 1995, Vol. 15,
No. 1, pp. 29-36.

-208-

References

71 Blumrich, M.A., Li, K., Alpert, R., Dubnicki, C., Felten, E.W., "Virtual Memory Mapped

Network Interface for the SHRIMP Multicomputer", Proceedings of the 21st Annual

International Symposium on Computer Architecture, April 1994, pp. 142-153.

72 Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K., Chapain, J.,

Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M., Hennessy, J., "The

Stanford FLASH Multiprocessor", Proceedings of the 21st International Symposium on

Computer Architecture, Chicago, IL, April 1994, pp. 302-313.

73 Heinrich, M., Kuskin, J., Ofelt, D., Heinlein, J., Baxter, J., Pal Singh, J., Simoni, R.,

Charachorloo, K., Nakahira, D., Horowitz, M., Gupta, A., Rosenblum, M., Hennessy, J., "The

Performance Impact of Flexibility in the Stanford FLASH Multiprocessor", Proceedings of

the6th International Conference on Architectural Support for Programming Languages and

Operating Systems, San Jose, CA, October, 1994, pp. 274-285.

74 Wong, K. L., “A Message Controller for Distributed Processing Systems”, PhD Thesis, The

Nottingham Trent University, UK, June 2000, pp. 27.

75 Wong, K. L., “A Message Controller for Distributed Processing Systems”, PhD Thesis, The

Nottingham Trent University, UK, June 2000, pp. 70-79.

76 SGS-Thomson Micorelectronics "C l04 Asynchronous Packet Switch Engineering Data", Ref

42-1470-06, April 1995.

77 Simpson, M., Thompson, P.W., "DS Links and C l04 Routers" in "Networks, Routers and

Transputer", May, M.D., Thompson, P.W., Welch, P.H. (eds), IOS Press, 1993.

78 Harrison, S., Brown, C., "Dynamic Creation of Virtual Links within T9000 Networks",

Proceedings of The 19th World Occam and Transputer User Group (WoTUG), IOS Press,

ISBN 90-5199-261-0, April 1996, pp. 11-20.

79 Institute of Electrical and Electronic Engineers Inc, “IEEE Standard for Heterogeneous

Interconnects (HIC) Low-cost, Low-latency, Scaleable Serial Interconnect for Parallel System

Construction)”, IEEE Std 1355-1995, SH94378; IEEE, NY, USA; June 1996

80 Myricom Inc, "Myrinet Link Specification", Archived specification available from: Myricom

Inc, 325 N.Santa Anita Ave, Arcadia, CA 91006, USA.

81 Myricom Inc., “LANai 4”, Draft document, Myricom Inc., February 1999. Address: Myricom

Inc, 325, N.Santa Anita Ave, Arcadia, CA 91006, U.S.A.

82 Seitz, C.L., Boden, N.J., Seizovic, J., Su, W.K., "The Design of the Caltech Mosaic C

Multicomputer", Proceedings of the University of Washington Syposium on Integrated

Systems", MIT Press, 1993, pp. 1-22.

83 Felderman, R., DeSchon, A., Cohen, D., Finn, G., "ATOMIC: A High Speed Local

Communication Architecture", Journal of High Speed Networks, Vol. 3, No. 1 919940, pp. 1-

29.

84 Finn, G.G., "An Integration of Network Communication with Workstation Architecture",

Computer Communication Review", October 1991.

85 Seizovic, J.N., "Pipeline Synchronisation", Proceedings of the International Symposium on

Advanced Research in Asynchronous Circuits and Systems", IEEE Computer Society Press,

Nov 1994.

-209-

References

86 Dally, W.J., Dennison, L.R., Harris, D., Kan, K., Wanthopolous, T. "Architecture and

Implementation of the Reliable Router", Proceedings of Hot Interconnects II, Stanford, USA,

August 1994, pp. 122-133.

87 Bolding, K., Yost, W., "Design of a Router for Fault-tolerant Networks", Proceedings of the

1994 Computer Routing and Communications Workshop, May 1994, pp. 226-240.

88 Pinkston, T.M., Choi, Y., Raksapatcharawong, M., "Architecture and Optoelectronic

Implementation of the WARRP Router", Proceedings of Hot Interconnects V, Palo Alto, CA,

USA, 1997.

89 Dennison, L.R., Dally, W.J., Xanthopoulos, D., "Low Latency Plesiochronous Data Re

timing", 1995 Conference on Advanced Research inVLSI, Chapel Hill, NC, USA, March

1995.

90 Wicklegren, I.J., " The facts about FireWire serial communication bus"; IEEE Spectrum, Vol

34, No 4; April 1997; pp 19 - 25.

91 A Paskins, ‘The IEEE 1394 Bus’, The Institute of Electrical Engineers Half Day Colloquium

on New High Capacity Digital Media and Their Applications, 1997. pp. 4/1 - 4/6.

92 Serial ATA Workgroup, "Serial ATA: High Speed Serialized AT Attachment", Revision 1.0,

Serial ATA Workgroup, August 2001, pp. 11-12.

93 Quinnel, R.A., "USB: a neat package with a few loose ends"; EDN, Vol 41, No 22; October

1996; pp 38-46 , 48, 50, 52.

94 USB Implementers Forum, "Universal Serial Bus Specification", Revision 2, USB-IF, pp 1-

14, April 2000. Address: USB Implementers Forum, Inc., 5440 SW Westgate Drive Suite 217,
Portland, OR 97221, USA.

95 Walker, C.P.H., "Hardware for Transputing Without Transputers", Proc. 19th World Occam

and Transputer User Group (WoTUG-19), IOS Press, 1996, pp. 1 - 10.

96 Shanley, T., Anderson, D., "ISA System Architecture", Third Edition, Addison-Wesley, ISBN

0-201-40996-8, 1995, pp. 335-364.

97 Messmer, H.P., "The Indispensible PC Hardware Book" 2nd Ed. Addison-Wesley, ISBN 0-

201-87697-3, 1995, pp.494 - 498.

98 Messmer, H.P., "The Indispensible PC Hardware Book" 2nd Ed. Addison-Wesley, ISBN 0-

201-87697-3, 1995, pp.477 - 493.

99 Institute of Electrical and Electronic Engineers Inc, “IEEE Standard for a Versatile Backplane

Bus: VMEbus)”, IEEE Std 1014-1987, Available from IEEE Customer Services, 445 Hoes
Lane, PO Box 1331, Piscataway, NJ, 08855-1331, USA.

100 Jones, A.M., Davies, N.J., Firth, M.A., Wright, C.J., "The Network Designers Handbook",

IOS Press, Amsterdam, 1997, ISBN 90-5199-380-3, pp. 17 - 18.

101 Lee, H.J., Song, B.Y., "Performance of multiple links over single link in STC-104 networks",

Proceedings, 1997 International Conference on Parallel and Distributed Systems, (CAT No

97TB100215), Los Alamitos, CA, USA, 1997, pp. 196 - 202.

102 Nguyen, T.D., Snyder, L., "Performance Analysis of a Minimal Adaptive Router",

Proceedings of the 1994 Parallel computer routing and communication workshop, Seattle,

USA, May 1996, pp. 31-44 .

-210-

References

103 Hotchkiss, R. “A Fault Tolerant Multicast Message Routing Switch for Interprocessor

Communications”, PhD Thesis, The Nottingham Trent University, UK; Sept 2000.

104 Warnakulasuriya, S., Pinkston, T.M., "Characterization of deadlocks in interconnection

networks", Proceedings, 11th Int. Parallel processing symposium, IEEE Computer Soc. Press

1997, Los Alamitos, CA, USA, 1997, pp. 80 - 86.

105 Folkestad, A., Roche, C., "Deadlock probability in unrestricted wormhole routing networks",

IEEE Int Conference on Communications, Vol. 3, Montreal, Canada, 1997, pp. 1401 - 1405.

106 Lopez, P., Martinez, J.M., Duato, J., "A Veiy Efficient Distributed Deadlock Detection

Mechanism for Wormhole Networks", Proceedings, 4th Int Symposium on High-Performance

Computer Architecture. IEEE Computer Soc. (1998), pp. 57 - 66.

107 Gaughan, P.T., Yalamanchili, S., "Pipelined circuit switching: A fault-tolerant variant of

wormhole routing", Proceedings, IEEE symposium on Parallel and distributed processing,

ISBN 0 8186 3200 3,1992, pp. 148- 155.

108 Dao, B.V., Duato, J., Yalamanchili, S., "Configurable flow control mechanisms for fault-

tolerant routing", Proceedings, 22nd Annual Int. Symposium on Computer architecture, 1995,
pp. 220 - 229.

109 Flich, J., Malumbres, M.P., Lopez, P., Duato, J., "Performance evaluation of a new routing

strategy for irregular networks with source routing", Proceedings, Int Conference on

supercomputing, ACM Press, ISBN 1 58113 270 0, May 2000, pp.34 - 43.

110 Dally, W.J., Aoki, H., "Deadlock-free adaptive routing in multicomputer networks using

virtual channels", IEEE Transactions, Parallel and Distributed Systems, Vol. 4, No. 4, April
1993.

111 Pinkston, T.M., Warnakulasuriya, S., "On Deadlocks in Interconnection Networks", Computer

Architecture News. Vol. 25, No. 2, 1997, pp. 38 - 49.

112 Martinez, J.M., Lopez, P., Duato, J., Pinkston, T.M., "Software-Based Deadlock Recovery

Techniques for True Fully Adaptive Routing in Wormhole Networks", Proceedings, 1997 Int.

Conference on Parallel Processing, 1997, pp. 182 - 189.

113 Anjan,K.V., Pinkston, T.M., "An efficient, fully-adaptive deadlock recovery scheme:

DISHA", Proceedings, 22nd Int. Symposium on computer architecture, ISBN 0 89791 698 0,

New York, USA, June 1995, pp. 201 - 210.

114 VITA Standards Organisation, "Myrinet-on-VME. Protocol Specification Draft Standard",

VITA 26-199x, Draft 1.1, August 1998, pp. 21.

115 Pinkston, T.M., "Flexible and Efficient Routing Based on Progressive Deadlock Recovery",

IEEE Transactions on computers, Vol. 48, No. 7, 1999, pp 649 - 669.

116 Petrini, F., Vanneschi, M., "Performance Anaysis of Minimal Adaptive Wormhole Routing

with Time-dependent Deadlock Recovery", Proceedings, 11th Int. Parallel Processing

Symposium, Geneva, Switzerland, April 1997, pp. 587 - 595.

117 Duato, J., Yalamanchili, S., Caminero, M.C., Love, D., Quiles, F.J., "MMR: A high-

performance multimedia router - architecture and design trade-offs", Proceedings, 5th

Symposium on High-performance computer architecture, 1999, Los Alamitos, CA, USA, pp.
300 - 309.

-211-

References

118 Wong, K. L., “A Message Controller for Distributed Processing Systems”, PhD Thesis, The

Nottingham Trent University, UK, June 2000, pp. 70 - 78.

119 Triger, S., O'Neill, B.C., Clark, S., "Adapted OS / DS Link Protocols for use in Multiprocessor

Routing Networks", Communicating Processors Architectures 2001, Bristol UK, September

2001, pp. 37-48.

120 Jones, A.M., Davies, N.J., Firth, M.A., Wright, C.J., "The Network Designers Handbook",

IOS Press, Amsterdam, 1997, ISBN 90-5199-380-3, pp. 260.

121 Ellis, J.W., "A Hardware Routing Device for Tranputer Arrays", PhD Thesis, The Nottingham

Trent University, October 1995, pp. 38 - 71.

122 http://www.myri.com/open-specs/link-history/index.html

123 Hotchkiss, R. “A Fault Tolerant Multicast Message Routing Switch for Interprocessor

Communications”, PhD Thesis, The Nottingham Trent University, UK; Sept 2000, pp. 114-

119.

124 Stallings, W., "Data and Computer Communications", 4th Ed, Macmillan Publishing

Comapny, ISBN 0-13-326828-4, 1994, pp. 278.

125 Hotchkiss, R. “A Fault Tolerant Multicast Message Routing Switch for Interprocessor

Communications”, PhD Thesis, The Nottingham Trent University, UK; Sept 2000, pp. 79.

126 Hotchkiss, R. “A Fault Tolerant Multicast Message Routing Switch for Interprocessor

Communications”, PhD Thesis, The Nottingham Trent University, UK; Sept 2000, Appendix
B1 -B4.

127 Ball, R. "IP and trendy"; Electronics Weekly, No 1915; 23rd June 1999; pp 18.

128 Horowitz, P., Hill, W., "The Art of Electronics", Cambridge University Press, 1990, ISBN 0-

521-37095-7, pp 850.

129 Heffer, D.E., King, G.A., Keith, D.C., "Basic Principles and Practice of Microprocessors",

Arnold, 1986, ISBN 0-7131-3569-7, pp 149 - 153.

130 Furber, S,. "ARM System-on-chip architecture", Addison-Wesley, Great Britain, 2000, ISBN

0-201-67519-6, pp 263 - 266.

131 Messmer, H.P., "The Indispensable PC Hardware Book", Addison Wesley, 1995, ISBN 0-

201-87697-3, pp 1223.

132 "News and Views", Altera Corporation, First Quarter 2002, pp 1 & 4

133 Altera Corporation, Data Book pp 35 - 36. Altera Corporation 101 Innovation Drive, San Jose,

California 95134, USA.

134 "APEX 20K Data Sheet", Altera Coproration; Document Part No: A-DS-APEX20K-04.3

135 Horowitz, P., Hill, W., "The Art of Electronics", Cambridge University Press, 1990, ISBN 0-

521-37095-7, pp 527-530.

136 Altera Corporation "Configuration Devices for SRAM-based LUT Devices Data Sheet",

Document Part No: A-DS-EPROM-12.1

137 Altera Corporation "FLEX Devices as Alternatives to ASSPs & ASICs", Technical Brief,

Version 1.0, Document Part No. M-TB-003-01, Altera Corporation, February 1996.

138 Xilinx, Inc., "IP Solutions: System-level Designs for FPGAs", Version 4.0, 15 May 2001,

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA.

-212-

http://www.myri.com/open-specs/link-history/index.html

References

139 Sanquini, A,. "Cover Story: Riding the New Wave of FPGA System-on-Chip", The Quarterly

Journal for Xilinx Programmable Logic Users, XCELL 39, pp 17-19, First Quarter 2001.

140 QuickLogic Corp., "QuckLogic's 2001 Data Book", QuickLogic Corp., pp 1-9 to 1-14, 2001.

QuickLogic.Corp, Orleans Drive, Sunnyvale, CA 94089-1138, USA

141 Edwards, C., "Design moves to FPGAs", Electronics Weekly, No 1047, 25 June 2001, pp 30 -

31.

142 Altera Corporation "Implementing High-speed Search Applications with Altera CAM",

Application Note 119, Version 2.1, Document Part No. A-AN-119-2.1, Altera Corporation,

July 2001.

143 http://www.altera.com/products/devices/apex/utilities/apx-20kec calc/apx-

20kec power index.html

144 Ng, J.H., "Message Routing Interface for Multiprocessor Networks”, PhD Thesis, The

Nottingham Trent University, UK, June 2000. pp. 113 - 117.

145 Shanley, T., Anderson, D., “PCI System Architecture”, 3rd Edition, Addison-Wesley

Publishing Company, 1995, ISBN 0-201-40993-3, pp. 82 - 84.

146 "168 pin unbuffered COB-DIMM Modules HYS64/72V2200GCU-10, HYS64/72V4220GCU-

10", Siemens Semiconductor Group, February 1998.

147 "2,4 MEG x 64 SDRAM DIMMs MT8LSDT264A, MT16LSDT464A", Micron Technology

Inc., June 1998.

148 Novak, M., "Use a CPLD to Implement an SDRAM Controller", EDN Access, June 1997.

149 Wong, K. L., “A Message Controller for Distributed Processing Systems”, PhD Thesis, The

Nottingham Trent University, UK, June 2000, Appendix A, pp. 153 - 167.

150 Wong, K. L., “A Message Controller for Distributed Processing Systems”, PhD Thesis, The

Nottingham Trent University, UK, June 2000, pp. 129.

151 Shanley, T., Anderson, D., “PCI System Architecture”, 3rd Edition, Addison-Wesley

Publishing Company, 1995, ISBN 0-201-40993-3, pp. 77 - 81.

152 Altera Corporation, "PCI Master/Target MegaCore Function with DMA Data Sheet", Version

3.02, Document Part No. A-DS-PCII-03.02, November 1999, Altera Corporation 101

Innovation Drive, San Jose, California 95134, USA.

153 Xilinx Inc. "The Real-PCI Xilinx PCI Data Book", Xilinx Inc., 1999. Address: Xilinx Inc,

2100 Logic Drive, San Jose, CA 95124, U.S.A.

154 PLD Applications, "PCI Core User's Guide, Version 5.1.4", PLD Applications, 14 March

2001. Address: PLD Applications, 32, ZAC de Bompertuis, Avenue d'Armenie, 13120

Gardanne, France.

155 Altera Corporation "Using Quartus II Verilog HDL & VHDL Integrated Synthesis",

Application Note 238, Version 1.1, Document Part No. A-AN-238-1.1, Altera Corporation,

Sept 2002.

156 Utility previously available from PLD Applications web site at http://www.plda.com.

Currently unavailable from this source.

-213-

http://www.altera.com/products/devices/apex/utilities/apx-20kec
http://www.plda.com

Appendix B

Appendix A: FT-PCI-OSLi Interface Hardware Test Results

All Tests performed with 33MHz PCI Clock and 64MHz Sample Clock

Figure 55 : PCI Bus Access Efficiency

Payload FT-PCI-OSLi FT-PCI-OSLi PCI-OSLi PCI-OSLi FT-PCI-OSLi PCI-OSLi
(B ytes) Latency Cnt A c c e s s Cnt L atency Cnt A c c e s s Cnt E fficiency E fficiency

4 3 1 5 1 0.25 0.1666
8 3 2 5 2 0.4 0.2857
16 3 4 5 4 0.5714 0.4444
32 3 8 5 8 0.7272 0.6154
64 3 16 5 16 0.8421 0.7619
128 3 32 5 32 0.9142 0.8648
256 3 54 5 57 0.9473 0.9193
512 3 55 5 58 0.9482 0.9206
1024 3 55 5 58 0.9482 0.9206

* Note: Cnt = Count value for that respective counter

Figure 56 : FT-PCI-OSLi Message Duration

FT-PCI-OSLi FT-PCI-OSLi
(ALT-FF)

PCI-OSLi

M essa g e
Payload
(B ytes)

O bserved
A verage
M essa g e
Duration

(se c o n d s)

O bserved
A verage
M essa g e
Duration

(se c o n d s)

O bserved A verage
M essa g e Duration

(se c o n d s)

4 3.030E-06 3.030E-06 3.333E-06
8 4.030E-06 4.030E -06 4.788E-06
16 6.333E-06 6.333E -06 7.909E-06
32 1.045E-05 1.045E-05 1.406E-05
64 1.915E-05 1.915E-05 2.664E-05
128 3.621 E-05 3.621 E-05 5.127E-05
256 7 .1 18E-05 7.118E-05 1.008E-04
512 1.381E-04 1.381E-04 1.986E-04
1024 2.694E-04 2.694E-04 3.947E-04
2048 5.367E-04 5.367E-04 7.865E-04
4096 1.071E-03 1.071 E-03 1.570E-03
8192 2.141 E-03 2.141 E-03 3.139E-03
16384 4.279E-03 4.279E -03 6.272E-03
32768 8.555E-03 8.555E-03 1.254E-02
65536 1.711E-02 1.711E-02 2.508E-02

214

Appendix A

Figure 57 : FT-PCI-OSLi Message Duration at Lower Message Payloads

FT-PCI-OSLi PCI-OSLi FT-PCI-OSLi
Message
Payload
(Bytes)

Observed
Average
Message
Duration

(seconds)

Observed
Average
Message
Duration

(seconds)

Theoretical
Message Duration

@ 42.67Mb/s
(secs)

4 3.030E-06 3.333E-06 1.547E-06
8 4.030E-06 4.788E -06 2.578E-06
16 6.333E-06 7.909E-06 4.641 E-06
32 1.045E-05 1.406E-05 8.766E-06
64 1.915E-05 2.664E-05 1.702E-05
128 3.621 E-05 5.127E-05 3.352E-05
256 7.118E-05 1.008E-04 6.652E-05

Figure 58 : FT-PCI-OSLi Normalised Message Duration

FT-PCI-
OSLi

FT-PCI-
OSLi

FT-PCI-OSLi PCI-OSLi PCI-OSLi PCI-OSLi

Message
Payload
(Bytes)

Observed
Average
Message
Duration

(seconds)

Theoretical
Message

Duration @
42.67Mb/s
(seconds)

Normalised
Message

Duration @
42.67Mb/s

Observed
Average
Message
Duration

(seconds)

Theoretical
Message

Duration @
42.67Mb/s
(seconds)

Normalised
Message

Duration @
42.67Mb/s

4 3.03E-06 1.54E-06 1.734 3.33E-06 1.52E-06 1.795
8 4.03E-06 2.57E-06 1.450 4.78E-06 2.74E-06 1.556
16 6.33E-06 4.64E-06 1.308 7.90 E-06 5.18E-06 1.434
32 1.04 E-05 8.76E-06 1.166 1 .40E-05 1.00E-05 1.353
64 1.91 E-05 1.70 E-05 1.112 2.66E-05 1.98E-05 1.322
128 3.62E-05 3.35E-05 1.074 5.12E-05 3.93E-05 1.293
256 7.11 E-05 6.65E-05 1.066 1.00E-04 7.83E-05 1.282
512 1.38E-04 1.32E-04 1.041 1.98E-04 1.56E-04 1.263

1024 2.69E-04 2.64E-04 1.017 3.94 E-04 3.14 E-04 1.255
2048 5.36E-04 5.28E-04 1.015 7.86E-04 6.28E-04 1.250
4096 1.07E-03 1.05E-03 1.013 1.57E-03 1 .25E-03 1.248
8192 2.14E-03 2.13E-03 1.013 3.13E-03 2.51 E-03 1.247
16384 4.27E-03 4.22E-03 1.012 6.27E-03 5.03E-03 1.246
32768 8.55E-03 8.44E-03 1.012 1.25 E-02 1.00E-02 1.246
65536 1.71E-02 1.69E-02 1.012 2.51 E-02 2.01 E-02 1.246

Appendix A

Figure 59 : FT-PCI-OSLi Percentge Data Bandwidth Utilisation

PCI-OSLi FT-PCI-OSLi FT-PCI-OSLi PCI-OSLi
M essa g e O bserved O bserved T heoretical Theoretical
Pay load P ercen tage P ercen tage P ercen tage P ercen tage
(B ytes) Maximum Maximum Maximum Maximum

E ffective Data E ffective Data E ffective Data E ffective Data
Bandwidth Bandwidth Bandwidth Bandwidth

4 22.50% 24.75% 48.48% 41.03%
8 31.33% 37.22% 58.18% 49.23%
16 37.93% 47.37% 64.65% 54.70%
32 42.67% 57.39% 68.45% 57.92%
64 45.05% 62.66% 70.52% 59.67%
128 46.81% 66.28% 71.61% 60.59%
256 47.61% 69.47% 72.16% 61.06%
512 48.34% 69.89% 72.44% 61.30%
1024 48.65% 71.27% 72.59% 61.42%
2048 48.82% 71.55% 72.66% 61.48%
4096 48.92% 71.69% 72.69% 61.51%
8192 48.93% 71.74% 72.71% 61.52%
16384 48.98% 71.80% 72.72% 61.53%
32768 48.99% 71.82% 72.72% 61.53%
65536 49.00% 71.83% 72.73% 61.54%

Figure 60 : FT-PCI-OSLi DMA Transmission Throughput

FT-PCI-
OSLi

FT-PCI-OSLi FT-PCI-
OSLi (Alt)

FT-PCI-OSLi
(Alt)

PCI-OSLi PCI-OSLi

M essa g e
Payload
(B ytes)

DMA
M essa g e
T ransm it
Duration

(se c o n d s)

DMA
M essa g e
Transm it

Throughput
(B its/sec)

DMA
M essa g e
Transm it
Duration

(se c o n d s)

DMA
M essa g e
Transm it

Throughput
(B its/sec)

DMA
M essa g e
Transm it
Duration

(se c o n d s)

DMA
M essa g e
Transm it

Throughput
(B its/sec)

4 7.576E-07 5.280E+06 7.879E-07 5.077E+06 7.576E-07 5.280E+06
8 7.879E-07 1.015E+07 8.182E -07 9.778E+06 7.879E-07 1.015E+07
16 8.485E-07 1.886E+07 8.788E -07 1.821E+07 8.485E-07 1.886E+07
32 9.394E-07 3.406E+07 9.697E-07 3.300E+07 9.394E-07 3.406E+07
64 1.212E-06 5.280E+07 1.242E-06 5.151E+07 1.212E-06 5.280E+07
128 1.697E-06 7.543E+07 1.727E-06 7 .411E+07 1.667E-06 7.680E+07
256 4.791 E-05 5.343E+06 9.273E-06 2.761 E+07 9.606E-06 2.665E+07
1024 2.270E-04 4.510E+06 3.812E-05 2.686E+07 4.018E -05 2.548E+07
2048 5.058E-04 4.049E+06 2.491 E-04 8.221 E+06 3.789E-04 5.405E+06
4096 1.043E-03 3.928E+06 7.727E-04 5.301 E+06 1.159E-03 3.534E+06
16384 4.250E -03 3.855E+06 3.992E-03 4.104E+06 5.861 E-03 2.795E+06
32768 8.464E-03 3.872E+06 8.265E -03 3.965E+06 1.213E-02 2.701 E+06
65536 1.708E-02 3.837E+06 1.681 E-02 3.898E+06 2.467E-02 2.656E+06

Appendix A

Figure 64 : FT-PCI-OSLi DMA Transmission Throughput For Alternate
Latency Counter Values

Lat Cnt in
WORDS

FT-PCI-OSLi
(Lat Cnt = 96)

FT-PCI-OSLi
(Lat Cnt = 64)

FT-PCI-OSLi
(Lat Cnt = 32)

FT-PCI-OSLi
(Lat Cnt = 24)

FT-PCI-OSLi
(Lat Cnt = 16)

Message
Payload
(Bytes)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

4 5.077E+06 5.280E+06 5.280E+06 5.280E+06 5.280E+06
8 9.429E+06 1.015E+07 1.015E+07 1.015E+07 1.015E+07
16 1.650E+07 1.821 E+07 1.886E+07 1.703E+07 1.886E+07
32 2.933E+07 3.200E+07 3.200E+07 2.779E+07 1.920E+07
64 4.591 E+07 5.151 E+07 5.151 E+07 2.321 E+07 1.509E+07
128 6.813E+07 7.543E+07 9.103E+06 1.983E+07 1.170E+07
256 9.284E+07 5.320E+06 5.747E+06 5.029E+06 5.767E+06
1024 5.032E+06 4.571 E+06 4.080E +06 4.180E+06 4.037E+06
2048 4.475E+06 4.032E +06 4.040E +06 3.948E+06 3.941 E+06
4096 4.150E+06 3.923E+06 3.942E+06 3.891 E+06 3.891 E+06
16384 3.941 E+06 3.854E+06 3.864E+06 3.850E+06 3.847E+06
32768 3.906E+06 3.843E+06 3.845E+06 3.838E+06 3.837E+06
65536 3.891 E+06 3.837E+06 3.839E+06 3.835E+06 3.835E+06

Figure 65 : DMA Transmission Throughput Characteristics For Alternate
Latency Counter Values For Modified Link Interface Buffer FT-PCI-OSLi

Lat Cnt
in

WORDS

FT-PCI-OSLi
(Lat Cnt = 96)

FT-PCI-OSLi
(Lat Cnt = 64)

FT-PCI-OSLi
(Lat Cnt = 32)

FT-PCI-OSLi
(Lat Cnt = 24)

FT-PCI-OSLi
(Lat Cnt = 16)

Message
Payload
(Bytes)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

DMA Message
Transmission
Throughput

(Bits/sec)

4 5.077E+06 5.077E+06 5.077E+06 5.077E+06 5.077E+06
8 9.778E+06 9.778E+06 9.778E+06 9.778E+06 9.778E+06
16 1.650E+07 1.821 E+07 1.886E+07 1.886E+07 1.886E+07
32 2.854E+07 3.300E+07 3.300E+07 3.300E+07 2.514E+07
64 4.693E +07 5.151E+07 5.151 E+07 3.462E+07 2.893E+07
128 8.620E+07 7.411 E+07 2.797E +07 3.520E+07 3.129E+07
256 8.893E+07 2.761 E+07 2.797E+07 2.514E+07 2.463E+07

1024 2.671 E+07 2.686E+07 2.747E+07 2.501 E+07 2.501 E+07
2048 9.436E+06 8.221 E+06 8.238E+06 7.969E+06 7.770E+06
4096 5.611 E+06 5.301 E+06 5.203E+06 5.223E+06 5.174E+06
16384 4.198E +06 4.104E+06 4.111 E+06 4.097E+06 4.101 E+06
32768 4.031 E+06 3.965E+06 3.968E+06 3.960E+06 3.960E+06
65536 3.952E+06 3.898E+06 3.898E+06 3.895E+06 3.895E+06

* Note: Lat Cnt = Initial Value held in the Latency Counter on generation of PCI transaction request

Appendix A

Figure 67 : FT-PCI-OSLi DMA Reception Throughput

FT-PCI-
OSLi

FT-PCI-OSLi FT-PCI-
OSLi (Ait)

FT-PCI-OSLi
(Alt)

PCI-OSLi PCI-OSLi

Message
Payload
(Bytes)

DMA
Reception
Duration

(seconds)

DMA
Message

Reception
Throughput

(Bits/sec)

DMA
Reception
Duration

(seconds)

DMA
Message

Reception
Throughput

(Bits/sec)

DMA
Reception
Duration

(seconds)

DMA
Message

Reception
Throughput

(Bits/sec)

4 1.818E-06 2.200E +06 1.848E-06 2.164E+06 2.848E-06 1.404E+06
8 3.091 E-06 2.588E +06 3.091 E-06 2.588E+06 4.000E -06 2.000E+06
16 5.424E-06 2.950E +06 5.424E-06 2.950E+06 7.424E-06 2.155E+06
32 9.333E-06 3.429E+06 9.394E-06 3.406E+06 1.327E-05 2.411 E+06
64 1.821 E-05 3.514E+06 1.821 E-05 3.514E+06 2.552E-05 2.508E+06
128 3.539E-05 3.616E+06 3.539E-05 3.616E+06 4.970E-05 2.576E+06
256 7.009E-05 3.652E+06 6.982E-05 3.667E+06 9.988E-05 2.563E+06
512 1.377E-04 3.717E +06 1.379E-04 3.713E+06 1.988E-04 2.576E+06
1024 2.692E-04 3.803E+06 2.676E-04 3.827E+06 3 .928E-04 2.607E+06
2048 5 .355E-04 3.825E+06 5.343E -04 3.833E+06 7.842E-04 2.611 E+06
4096 1.072E-03 3.821 E+06 1.069E-03 3.832E+06 1.569E-03 2.611 E+06
8192 2.144E-03 3.822E+06 2.142E-03 3.832E+06 3.138E-03 2.611 E+06
16384 4.277E-03 3.830E+06 4.276E -03 3.832E+06 6.271 E-03 2.613E+06
32768 8.554E-03 3.831 E+06 8.553E-03 3.831 E+06 1.254E-02 2.613E+06
65536 1.711 E-02 3.831 E+06 1.711 E-02 3.831 E+06 2.508E-02 2.613E+06

Figure 71 : FT-SARNIC Post-synthesis Simulation Message Duration

Message
Payload
(Bytes)

SARNIC
Message

Duration @
20Mb/s
(secs)

FT-SARNIC
Message

Duration @
20Mb/s
(secs)

SARNIC
Message

Duration @
39Mb/s
(secs)

FT-SARNIC
Message

Duration @
39Mb/s
(secs)

4 5.284E-06 4.467E -06 2.728E-06 2.352E-06
8 8.075E-06 6.642E-06 4.152E -06 3.473E-06
16 1.366E-05 1.105E-05 7.016E-06 5.729E-06
32 2.481 E-05 1.981 E-05 1.273E-05 1.021 E-05
64 4.712E-05 3.733E-05 2.415E-05 1.918E-05
128 9.173E-05 7.239E-05 4.700E -05 3.714E-05
256 1.810E-04 1.425E-04 9.270E-05 7.304E-05
512 3.616E-04 2.828E -04 1.852E-04 1.448E-04
1024 7.227E-04 5.632E -04 3.700E-04 2 .885E-04
2048 1.445E-03 1.124E-03 7.399E-04 5.757E-04
4096 2.890E-03 2.246E -03 1.480E-03 1.150E-03
8192 5.779E-03 4.490E -03 2.959E -03 2.299E-03
16384 1.154 E-02 8.977E-03 5.918E-03 4.597E-03
32768 2.311 E-02 1.795E-02 1.184E-02 9.193E-03
65536 4.623E-02 3.590E-02 2.367E-02 1.838E-02

Appendix A

Figure 72 : FT-SARNIC Message Duration at Lower Message Payloads

Message
Payload
(Bytes)

SARNIC
Message

Duration @
20Mb/s
(secs)

FT-SARNIC
Message

Duration @
20Mb/s
(secs)

SARNIC
Message

Duration @
39Mb/s
(secs)

FT-SARNIC
Message

Duration @
39Mb/s
(secs)

FT-S
Theoretical

Message
Duration @

20 Mb/s

FT-S
Theoretical

Message
Duration @

39Mb/s

4 5.284E-06 4.467E -06 2.728E-06 2.352E-06 3.850E-06 1.974E-06
8 8.075E-06 6.642E-06 4.152E -06 3.473E-06 6.050E-06 3.102E-06
16 1.366E-05 1.105E-05 7.016E-06 5.729E-06 1.045E-05 5.359E-06
32 2.481 E-05 1.981 E-05 1.273E-05 1.021 E-05 1.925E-05 9.871 E-06
64 4.712E-05 3.733E-05 2.415E-05 1.918E-05 3.685E-05 1.890E-05

Figure 73 : FT-SARNIC Bi-directional Data Throughput

SARNIC FT-SARNIC FT-SARNIC FT-SARNIC SARNIC
Payload
(Bytes)

Observed
Maximum

Data
Throughput

(20Mb/s)
(Bits/sec)

Observed
Maximum

Data
Throughput

(20Mb/s)
(Bits/sec)

Theoretical
Maximum

Data
Throughput

(20Mb/s)
(Bits/sec)

Observed
Maximum

Data
Throughput

(39Mb/s)
(Bits/sec)

Observed
Maximum

Data
Throughput

(39Mb/s)
(Bits/sec)

4 6.814E+06 7.164E+06 8.345E+06 1.361 E+07 1.173E+07
8 8.916E+06 9.636E+06 1.062E+07 1.843E+07 1.542E+07

16 1.054E+07 1.158E+07 1.230E+07 2.234E+07 1.825E+07
32 1.161 E+07 1.292E+07 1.335E+07 2.508E+07 2.011 E+07
64 1.222E+07 1.372E+07 1.395E+07 2.669E+07 2.120E+07
128 1.256E+07 1.415E+07 1.427E+07 2.757E+07 2.179E+07
256 1.273E+07 1.437E+07 1.443E+07 2.804E+07 2.209E+07
512 1.274E+07 1.449E+07 1.452E+07 2.828E+07 2.212E+07
1024 1.275E+07 1.454E+07 1.456E+07 2.840E+07 2.214E +07
2048 1.276E+0 7 1.457E+07 1.458E+07 2.846E+07 2.214E+07
4096 1.276E+07 1.459E+07 1.459E+07 2.849E+07 2.215E +07
8192 1.276E+07 1.460E+07 1.460E+07 2.851 E+07 2.215E +07
16384 1.278E+07 1.460E+07 1.460E+07 2.851 E+07 2.215E +07
32768 1.276E+07 1.460E+07 1.460E+07 2.852E+07 2.215E +07
65536 1.276E+07 1.460E+07 1.460E+07 2.852E+07 2.215E +07

Appendix E

Appendix B: PCI Signal Descriptions for the FT-PCI-OSLi Interface

In the following table, the type definitions are from the viewpoint of the PCI Interface of the FT-
PCI-OSLi. The words ‘Master’ and ‘Target’ mean the PCI Interface works as a PCI master and target
respectively. Other terms in the type definitions are described below:

• Input - a standard input-only signal
• Output - a standard active driver
• Tri-state - a bi-directional signal, becoming high-impedance when disabled.
• Sustained Tri-state - an active low tri-state signal that is driven by only one PCI device at a

time. The device driving the signal low must drive it high for at least one clock cycle before
releasing the signal (go to tri-state). No other device is allowed to drive the signal sooner than
one clock after it has been released. The signal is pulled-up to sustain the inactive state until
another device drives it.

• Open-drain - a signal that can be shared by multiple devices through wire-OR circuitry. The
signal is pulled-up to sustain the inactive state until another device drives it.

The polarity in the table represents the condition when the signal is considered active. ‘0’ and ‘1’
means standard logic ‘0’ and ‘1’ respectively while ‘N.A.’ means not applicable.

Name Type Polarity Description

nC/BE[3..0] Tri-state

Master: Output

Target: Input

N.A. for
command;

‘0’ for
byte-enable

Command/Byte Enable bus (4-bit). The command
and byte-enable signals are time-multiplexed onto
the bus. During the address phase and data phases,
this bus indicates command and byte-enable
signals respectively.

AD[31..0] Tri-state N.A, Address/Data bus (32-bit). Each PCI data transfer
consists of an address phase followed by one or
more data phases. The address and data are
time-multiplexed onto the bus during an address
phase and data phases, respectively.

nFRAME Sustained Tri-state

Master: Output

Target: Input

‘0’ Cycle Frame. The signal is driven by the PCI
Interface to indicate the beginning and duration of
a bus operation. nFRAME is first asserted during
the address phase, at the same time when
command and address are presented on their
respective busses. nFRAME will be asserted for
all data phases except for the last.

nDEVSEL Sustained Tri-state

Master: Input

Target: Output

‘0’ Device Select. The PCI Interface will assert this
signal when acting as a target and has decoded its
own address the AD[31:0].

nIRDY Sustained Tri-state

Master: Output

Target: Input

‘0’ Initiator Ready. When asserted, the signal
indicates that the PCI Interface, acting as a master
now, is ready to complete a data phase.

nTRDY Sustained Tri-state

Master: Input

Target: Output

‘0’ Target Ready. The signal indicates that PCI
Interface, now acting as a target, is ready to
complete a data phase. The data on the AD[31:0]
bus is valid when both nIRDY and nTRDY are
asserted during the data phase.

nSTOP Sustained Tri-state ‘0’ Stop. This signal is asserted by the PCI Interface,

220

Appendix B

Name Type Polarity Description

Master: Input

Target: Output

now a target, during a data phase to terminate a
data transfer.

PAR Tri-State N.A. Even Parity. The signal is generated in a way that
the number of l ’s across the AD[31:0], the
nC/BE[3:0] and the PAR is maintained at even
number.

nSERR Open-drain ‘O’ System Error. The PCI Interface uses this signal to
indicate parity error during an address phase.

nPERR Sustained Tri-state ‘O’ Parity Error. This signal is asserted when the PCI
Interface detects a mismatch between its internal
generated parity bit and the PAR signal during for
a given data phase.

nINTA Open-drain ‘0’ Interrupt A. This signal can be asserted
asynchronous to the CLK. The PCI Interface uses
the signal to make interrupt requests to its host
system.

IDSEL Input ‘1’ Initialisation Device Select. This signal is used as
a chip-select line during configuration-read or
configuration-write operations.

nGNT Input ‘O’ Grant. The PCI Interface has control of the bus
when this signal is active.

nREQ Output ‘O’ Request. The PCI Interface will assert this signal
when it wants to initiate a transfer.

CLK Input N.A. PCI clock. It runs at 33 MHz, providing reference

for all other PCI Interface signals except of the

reset (nRST) and the interrupt (nINTA).

nRST Input ‘0’ Reset. This signal can be asserted asynchronously

to the PCI clock. When active, the PCI Interface is

initialized, all PCI output signals are driven into

tri-state and open-drain signals float.

Appendix E

Appendix C: Registers of the FT-PCI-OSLi

The following gives descriptions for the FT-PCI-OSLi memory-mapped, 32-bit registers. The base of

the register mapped to a memory region is termed as BASE, with a value of 0 in

hexadecimal (expressed as 0x00).

Receiver Control/Status Register (Location: BASE)

Bit
State after

reset
Description

0 'O'

LABEL: dma_wr_nrd (read-only)

This bit indicates the direction of current PCI transfer. It is meaningless when

DMA is currently not active (bit 1).

'O' - Device is reading data from memory

T - Device is writing data to memory

1 '0'

LABEL: dma active (read-only)

This bit indicates if the device is actively transferring data utilising DMA.

'O' - DMA is not active

'1' - DMA is active

2 'O' Unused. Hardwired to 'O'.

3 '0'

LABEL: rx_dma_en (read/write)

This bit controls if the receiver is enabled for DMA transfer.

'O' - DMA is disabled for the receiver

T - DMA for the receiver is enabled

4 '1'

LABEL: rx_less_data_det_en (read/write)

This bit enables the device to detect if the data received is less than expected.

'O' - disable less data detection

T - enable less data detection

5 '1'

LABEL: rx_more_data_det_en (read/write)

This bit enables the device to detect if the data received is more than expected.

'O' - disable more data detection

'1' - enable more data detection

6 'O'

LABEL: autoflush_enable (read/write)

This bit is used to flush the extra bytes of a packet stored in the RX Link

Interface FIFO automatically when the payload of that packet is more than

222

Appendix C

Bit
State after

reset
Description

expected.

'O' - disable auto-flush

T - enable auto-flush

7 'O'

LABEL: manual_flush_rxff (write-only)

This bit is to manually flush the extra bytes of a packet stored in the RX Link

Interface FIFO when data received is more than expected. This bit will reset

itself. This bit is neglected if bit 6 is enabled.

'O' - no action

'1 '- flush the FIFO

8 'O'

LABEL: clear_more_data_err (write-only)

The user can set this bit to clear the more data error after it has been reported.

This bit will reset itself.

'O' - no action

'1' - clear more data error

9 'O'

LABEL: manual_rx_threshold (write-only)

This bit is only used for debugging purpose. When it is set and the receiving

channel has been enabled for DMA transfer, the receiving channel will start

requesting for bus ownership. All data in the DMA FIFO will be transferred into

the system memory later. This bit will revert to 'O' automatically.

'O' - no action

'1' - assert the threshold

[31:10] 'O' All bits are hardwired to 'O'

Transmitter Control/Status Register (Location: BASE + 0x04)

Bit
State after

reset
Description

0 'O'

LABEL: dma_wr_nrd (read-only)

This bit indicates the direction of current PCI transfer. It is meaningless when

DMA is currently not active (bit 1).

'O' - Device is reading data from memory

T - Device is writing data to memory

Appendix C

Bit
State after

reset
Description i

1 'O'

LABEL: m_access (read-only)

This bit indicates if the device is actively transferring data utilising DMA.

'O’ - DMA is not active

T' - DMA is active

2 'O’ Unused. Hardwired to 'O'.

3 'O'

LABEL: tx_dma_en (read/write)

This bit controls if the transmitter is enabled for DMA transfer.

'O' - DMA is disabled for the transmitter

T - DMA for the transmitter is enabled

4 ’O'

LABEL: pci_rd_cmmd_sel (read/write)

This bit allows the user to choose between MEMORYJREAD and

MEMORY_READ_MULTIPLE commands when reading data from the

system memory. This bit is utilised to find out the performance difference of

the two commands.

'O' - using MEMORY READ

T - using MEMORY READ MULTIPLE

[31:5] 'O' All bits are hardwired to 'O'

Receiver Link Interface FIFO and DMA FIFO Status Register (Location: BASE + 0x08)

Bit
State after

reset
Description

[5:0] 'O'
LABEL: RX DMA FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

[7:6] 'O' All bits are hardwired to 'O'

[8] '1'

LABEL: RX DMA FIFO empty (read-only)

'O' - The FIFO is not empty

'1' - The FIFO is empty

[9] 'O'

LABEL: RX DMA FIFO foil (read-only)

'O' - The FIFO is not foil

-2 2 4 -

Appendix C

Bit
State after,

reset
Description

T - The FIFO is full

[15:10] 'O' All bits are hardwired to 'O'

[26:16] 'O'

LABEL: RX Link Interface FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

[27] 'O' Unused. Hardwired to 'O'.

[28] T

LABEL: RX Link Interface FIFO empty (read-only)

'O' - The FIFO is not empty

'1' - The FIFO is empty

[29] ’O’

LABEL: RX Link Interface FIFO full (read-only)

'0' - The FIFO is not full

'1' - The FIFO is full

[31:30] 'O' All bits are hardwired to 'O'

Transmitter Link Interface FIFO and DMA FIFO Status Register (Location: BASE + OxOC)

Bit
State after

reset
Description

[5:0] 'O'

LABEL: TX DMA FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

[7:6] 'O'
All bits are hardwired to '0'

[8] '1'

LABEL: TX DMA FIFO empty (read-only)

'O' - The FIFO is not empty

'1' - The FIFO is empty

[9] 'O'

LABEL: TX DMA FIFO full (read-only)

'O' - The FIFO is not full

'1 '- The FIFO is full

[15:10] '0' All bits are hardwired to ’0’

[25:16] '0'

LABEL: TX Link Interface FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

Appendix C

Bit
State after

reset
Description

[27:26] 'O' All bits are hardwired to 'O'

[28] '1'

LABEL: TX Link Interface FIFO empty (read-only)

'O' - The FIFO is not empty

'1' - The FIFO is empty

[29] 'O’

LABEL: TX Link Interface FIFO full (read-only)

'O' - The FIFO is not full

T '-T h e FIFO is full

31:30] ’O' All bits are hardwired to 'O'

Reset Register (Location: BASE + 0x10)

Bit
State after

reset
Description

0 'O'

LABEL: system_rst (write-only)

Setting this bit resets the FT-PCI-OSLi device to its initial state. The bit

clears itself automatically.

'O' - no action

T - reset the device

1 'O'

LABEL: rx_rst (write-only)

Setting this bit resets the FT-PCI-OSLi transmitter to its initial state. The bit

clears itself automatically.

'O' - no action

T - reset the transmitter

2 'O'

LABEL: tx_rst (write-only)

Setting this bit resets the FT-PCI-OSLi receiver to its initial state. The bit

resets itself automatically.

'0' - no action

T - reset the receiver

3 'O'

LABEL: router_rst (write-only)

Setting this bit resets the NTR-FTM08 to its initial state. The bit clears itself

automatically.

’O’ - no action

Appendix C

Bit
State after

reset
Description

•1' - reset ICRC416

4 ’O’

LABEL: rxtmr rst (write-only)

Setting this bit resets the FT-PCI-OSLi receiver hardware timer to its initial

state. The bit clears itself automatically.

'O' - no action

'1' - reset the receiver hardware timer

5 'O'

LABEL: txtmr_rst (write-only)

Setting this bit resets the FT-PCI-OSLi transmitter hardware timer to its

initial state. The bit clears itself automatically.

'O' - no action

'1* - reset the transmitter hardware timer

[31:6] 'O' All bits are hardwired to 'O'

FT-PCI-OSLi Hardware Timer Register (Location: BASE + 0x14)

Bit
State after

reset
Description

[15:0] 'O'

LABEL: tx_tmr (read-only)

When the timer is started, its value increases by 1 for every PCI clock. This

means it has a resolution of 1/(PCI clock) = 30 ns for 33 MHz clock. This

timer is only used for measuring hardware performance.

[31:16] 'O'

LABEL: rx tmr (read-only)

When the timer is started, its value increases by 1 for every PCI clock. This

means it has a resolution of 1/(PCI clock) = 30 ns for 33 MHz clock. This

timer is only used for measuring hardware performance.

Interrupt Enable Register (Location: BASE + 0x18)

Bit
State after

reset
Description

0 '0'

LABEL: rx_new_hdr_inten0 (read/write)

If this bit is enabled, an interrupt will be generated when a new packet is

Appendix C

Bit
State after

reset
Description

received. This is done by comparing the received header with the previous

value. In case of the payload of the received packet is less or more than

expected, the subsequent packet received will be treated as a new one,

regardless of its message header.

'O' - disable

T' - enable

1 'O'

LABEL: rx_mssg_end_intenO (read/write)

If this bit is enabled, an interrupt will be generated when a whole message

has been received and transferred into the memory.

'O' - disable

'I ' - enable

2 'O'

LABEL: rx_less_data_intenO (read/write)

If this bit is enabled and bit 4 in Receiver Control/Status Register is set, an

interrupt will be generated when less data was received.

'O' - disable

T - enable

3 'O'

LABEL: rx_more_data_intenO (read/write)

If this bit is enabled and bit 5 in Receiver Control/Status Register is set, an

interrupt will be generated when more data was received.

'0' - disable

'1 '- enable

4 ’O'

LABEL: txff_afull_intenO (read/write)

If this bit is enabled, an interrupt will be generated when the TX Link

Interface FIFO is nearly full (less than 64 bytes of space available).

'O' - disable

'1' - enable

5 'O'

LABEL: tx_mssg_end_intenO (read/write)

If this bit is enabled, an interrupt will be generated when a message has been

completely transmitted to the TX Link Interface FIFO.

’O' - disable

'! ' - enable

6 'O' Unused. Hardwired to 'O'.

7 'O' LABEL: rx new hdr intenl (read/write) (RESERVED for future use)

-228-

Appendix C

Bit
State after

reset
Description

If this bit is enabled, an interrupt will be generated when a new packet is

received. This is done by comparing the received header with the previous

value. In case of the payload of the received packet is less or more than

expected, the subsequent packet received will be treated as a new one,

regardless of its message header.

'O' - disable

T - enable

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

8 'O'

LABEL: rx_mssg_end_intenl (read/write) (RESERVED for future use)

If this bit is enabled, an interrupt will be generated when a whole message

has been received and transferred into the memory.

'O' - disable

'1' — enable

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

9 'O'

LABEL: rx_less_data_intenl (read/write) (RESERVED for future use)

If this bit is enabled and bit 4 in Receiver Control/Status Register is set, an

interrupt will be generated when less data was received.

'O' - disable

'1 ' - enable

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

10 'O'

LABEL: rx_more_data_intenl (read/write) (RESERVED for future use)

If this bit is enabled and bit 5 in Receiver Control/Status Register is set, an

interrupt will be generated when more data was received.

'O' - disable

'1' — enable

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

Appendix C

Bit
State after

reset
Description

11 'O'

LABEL: txff_afull_intenl (read/write) (RESERVED for future use)

If this bit is enabled, an interrupt will be generated when the OS TX FIFO is

nearly full (less than 64 bytes of space available).

'O' - disable

T - enable

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

12 'O’

LABEL: tx_mssg_end_intenl (read/write) (RESERVED for future use)

If this bit is enabled, an interrupt will be generated when a message has been

completely transmitted to the OS TX FIFO.

'O' - disable

T — enable

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

[29:13] 'O' All bits are hardwired to 'O'

30 'O'

LABEL: err_int_enablel (read/write)

Reserved. Currently the bit is unused.

31 'O'

LABEL: int_enablel (read/write)

When this bit is cleared, all previous interrupt enable states are overwritten.

No interrupt can be generated.

'O' - disable interrupt generation

'I ' - enable interrupt generation

Interrupt Pending Register (Location: BASE + Ox 1C)

Bit
State after

reset
Description

0 'O'

LABEL: rx_new_hdr_intpdO (read/write)

This bit indicates if the interrupt request after receiving a new message

header is pending. A T must be written to the bit to reset its status to 'O'.

-230-

Appendix C

Bit
State after

reset
Description

'O' - no interrupt pending

'1' - interrupt pending

1 'O'

LABEL: rx_mssg_end_intpdO (read/write)

This bit indicates if the interrupt request for the end of receiver message is

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

T - interrupt pending

2 'O'

LABEL: rx_less_data_intpdO (read/write)

This bit indicates if the interrupt request for less data received is pending. A

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

3 ’O’

LABEL: rx_more_data__intpdO (read/write)

This bit indicates if the interrupt request for more data received is pending. A

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

4 'O’

LABEL: txff_afull_intpdO (read/write)

This bit indicates if the interrupt request for OS TX FIFO almost full is

pending. A '1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

5 'O'

LABEL: tx_mssg_end_intpdO (read/write)

This bit indicates if the interrupt request for the end of transmitter message is

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

6 'O' Unused. Hardwired to 'O'.

7 'O'

LABEL: rx_new_hdr_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request after receiving a new message

header is pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

-231-

Appendix C

Bit
State after

reset
Description

'1' - interrupt pending

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

8 'O'

LABEL: rx_mssg_end_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for the end of receiver message is

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

9 ’O’

LABEL: rx_less_data_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for less data received is pending. A

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

10 'O'

LABEL: rx_more_data_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for more data received is pending. A

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

11 'O’

LABEL: txff_afull_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for OS TX FIFO almost full is

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

'1' - interrupt pending

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

12 'O'

LABEL: tx_mssg_end_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for the end of transmitter message is

Appendix C

Bit
State after

reset
Description

pending. A '1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending

T - interrupt pending

(Reserved for use with second link interface channel - currently duplicate of

the channel 0 equivalent of this signal)

13 'O’ These bits are unused and hardwired to 'O'.

14 'O'

LABEL: mstr_abrt_intpd (read-only)

This bit indicates if the master has aborted a data transfer. It can only be reset

by writing '1' to the appropriate bit in the PCI Configuration Register.

'O' - no interrupt pending

'1' - interrupt pending

15 'O'

LABEL: parity_err_intpd (read-only)

This bit indicates if the parity error has occurred during data phases. It can

only be reset by writing '1' to the appropriate bit in the PCI Configuration

Register.

'O' - no interrupt pending

T - interrupt pending

16 'O'

LABEL: err_int_pending (read-only)

Reserved. Currently the bit is unused.

[31:17] 'O' All bits are hardwired to 'O'

Receiver Address Register (Location: BASE + 0x24)

Bit
State after

reset
Description

[1:0] 'O' These bits have no meaning and are hardwired to 'O'.

[31:2] 'O'

LABEL: rx address (read/write)

These bits contain the address of current memory location the device is

pointing for memory-write operations. Its value increases by 1 after each

successful data transfer.

Writes to ALL message class base addresses are made via this register, with

the class determined by bits 25:23 of the Command Register (BASE + 0x3C)

Appendix C

Receiver Assigned Message Header Register (Location: BASE + 0x28)

Bit
State after

reset
Description

[7:0] 'O'

LABEL: Message Header 1 (read/write)

This byte represents the 1st expected received message header.

[15:8] 'O'

LABEL: Message Header 2 (read/write)

This byte represents the 2nd expected received message header.

Unused in this implementation of the FT-PCI-OSLi and hardwired to 'O'.

[23:16] 'O'

LABEL: Message Header 3 (read/write)

This byte represents the 3rd expected received message header.

Unused in this implementation of the FT-PCI-OSLi and hardwired to 'O'.

[31:24] 'O'

LABEL: Message Header 4 (read/write)

This byte represents the 4th expected received message header.

Unused in this implementation of the FT-PCI-OSLi and hardwired to 'O'.

Transmitter Message Header Register (Location: BASE + 0x2C)

Bit
State after

reset
Description

[7:0] 'O'

LABEL: Message Header 1 (read/write)

This byte represents the 1st message header.

[15:8] 'O'

LABEL: Message Header 2 (read/write)

This byte represents the 2nd message header.

[23:16] 'O'

LABEL: Message Header 3 (read/write)

This byte represents the 3rd message header.

[31:24] 'O'

LABEL: Message Header 4 (read/write)

This byte represents the 4th message header.

Transmitter Address Register (Location: BASE + 0x30)

Appendix C

Bit
State after

reset
Description

[1:0] 'O’ These bits are unused and hardwired to 'O'.

[31:2] 'O’

LABEL: tx_address (read/write)

These bits contain the address of current memory location the device is

pointing. Its value increases by 1 after each successful data transfer.

Transmitter Message Length Register (Location: BASE + 0x34)

Bit
State after

reset
Description

[19:0] 'O'

LABEL: tx_length (read/write)

These bits contain the length for current DMA transfer. Its value decreases

by 4 after each successful data transfer.

[31:20] 'O' These bits are unused and hardwired to 'O'.

Receiver Message Length Register (Location: BASE + 0x38)

Bit
State after

reset
Description

[19:0] 'O'

LABEL: rx_length (read/write)

These bits contain the length for current DMA transfer. Its value decreases

by 4 after each successful data transfer.

[31:20] 'O' These bits are unused, hardwired to 'O' and masked by the Status Register.

Command Register (Location: BASE + 0x3C)

Bit
State after

reset
Description

[18:0] 'O' These bits are unused and hardwired to 'O'.

19 '0'

LABEL: lnkdormant (read/write)

Setting this bit configures the communications link as being dormant after

periods of no link activity.

20 ’0’ LABEL: rx_cmmd_20 (read/write)

Appendix C

Bit
State after

reset
Description

Class 3 Address Register Select

Writing to the rx_addr_reg (Location: BASE + 0x24) when this bit is

asserted writes to the Class 3 Address Register

21 'O'

LABEL: rx_cmmd_21 (read/write)

Class 2 Address Register Select

Writing to the rx_addr_reg (Location: BASE + 0x24) when this bit is

asserted writes to the Class 2 Address Register

22 'O'

LABEL: rx_cmmd_22 (read/write)

Class 1 Address Register Select

Writing to the rx_addr_reg (Location: BASE + 0x24) when this bit is

asserted writes to the Class 1 Address Register

23 'O'

LABEL: rx_cmmd_23 (read/write)

Class 3 Buffer Clear for next message

Setting this bit after a class 3 message transfer clears the class 3 message

acknowledgement flag required to receive another class 3 message

24 'O'

LABEL: rx_cmmd_24 (read/write)

Class 2 Buffer Clear for next message

Setting this bit after a class 2 message transfer clears the class 2 message

acknowledgement flag required to receive another class 2 message

25 'O'

LABEL: rx_cmmd_25 (read/write)

Class 1 Buffer Clear for next message

Setting this bit after a class 1 message transfer clears the class 1 message

acknowledgement flag required to receive another class 1 message

26 'O'

LABEL: rx_cmmd_26 (read/write)

Class 2 Length Preset

Writing to the receiver header register (Location: BASE + 0x24) when this

bit is asserted automatically classifies the message as belonging to class 2

27 'O'

LABEL: rx_cmmd_27 (read/write)

Class 1 Length Preset

Writing to the receiver header register (Location: BASE + 0x24) when this

bit is asserted automatically classifies the message as belonging to class 1

28 ’O’

LABEL: clr_cam (read/write)

Delete all message IDs from the CAM

Asserting this bit removes all message IDs from the CAM

29 'O'

LABEL: rx_osff_autoflush (read/write)

Receiver Link Interface Buffer Autoflush Select

Setting this bit flushes a message form the receiver link interface buffer

Appendix C

Bit
State after

reset
Description

30 'O’

LABEL: rx_cmmd_30 (read/write)

Message ID Probe Mode Select

Writing a message ID to the Receiver Header Register (Location: BASE +

0x28) when this bit is asserted probes the contents of the CAM to determine

if that message ID is stored in the CAM and its location. CAM contents are

NOT deleted (including class 3 message IDs)

31 'O'

LABEL: rx_cmmd_31 (read/write)

Message ID Delete Mode Select

Writing a CAM location to the Receiver Length Register (Location: BASE +

0x38) when this bit is asserted deletes the contents of this CAM location

Class 1 Length Register (Location: BASE + 0x40)

Bit
State after

reset
Description

[23:0] ’O’

LABEL: class l_lgth (read/write)

Class 1 Length Preset Value

This value is the maximum allowable message length for a Class 1 message

[31:24] 'O' These bits are unused and hardwired to ’O'.

Class 2 Length Register (Location: BASE + 0x44)

Bit
State after

reset
Description

[23:0] 'O'

LABEL: class2_lgth (read/write)

Class 2 Length Preset Value

This value is the maximum allowable message length for a Class 2 message

[31:24] ’O' These bits are unused and hardwired to 'O'.

Status Register READ ONLY (Location: BASE + 0x38 - Upper section of Receiver Message Length

Register)

Bit
State after

reset
Description

[19:0] 'O' These bits are unused, hardwaired to ‘O’ and masked by the Receiver

-237-

Appendix C

Bit
State after

reset
Description

Message Length Register

[22:20] ‘O’

LABEL: Message Transfer Complete Flags

These flags were set for classes 3 to 1 respectively to acknowledge message

transfer to memory. They were cleared following acknowledgement from the

PC that the message had been handled and the memory allocation for that

class could be overwritten.

[23] ‘O’ Reserved for future use.

[26:24] ‘O’

LABEL: Class Match

Asserted following a successful write of an expected message ID to the

CAM denoting which class it belonged to. Asserted until a successful write

to a different class forced it to change. Bits 26 to 24 were set for classes 3 to

1 respectively.

[27] ‘O’
LABEL: No Match

Set if the received header did not match any stored in the CAM. Asserted

until a match was found, whether for that header or for others.

[29:28] ‘O’

LABEL: Incoming Message Length Mux

Debug lines used to multiplex the message lengths following a received

header match. 00B - Class 1, 01B - Class 2, 10 B - Class 3 (location 1), 11 B -

Class 3 (location 2).

[30] ‘O’
LABEL: CAM Write Failed

Set following an unsuccessful expected header write to the CAM due to that

particular class being full. Asserted until success occurred.

[31] ’O'

LABEL: CAM Write Successful

Set following a successful expected header write to the CAM. Asserted until

failure occurred.

-238-

Appendix D

Appendix D: FT-SARNet Control Token Definitions

This appendix details the control tokens that have been specified to date, for use

with the FT-SARNet. Control tokens are denoted by an ID bit of zero. The eight data

bits determine the nature of the control token. All unspecified combinations are

available for future use. A note for each token is included specifying whether the

token reaches the end nodes (FT-PCI-OSLi and FT-SARNIC) and if so, how far into
the design it progresses.

Token Name Coding
[Type, LSB...MSB1 Token Function Token

Stripped at:
CONREQ 000000000 Connection Request Link Interface

XON 001100000 Permit Transmission Link Interface
XOFF 001000000 Inhibit Transmission Link Interface
EOM 011000000 End of Message Depacketiser
EOP 010000000 End of Packet Depacketiser

BEOP 010100000 Bad End of Packet Depacketiser
DLPRB 000100000 Deadlock Probe Router
DLCLR 000110000 Deadlock Path Clear Router
DLMOV 000111000 Deadlock Data Movement Router

239

Appendix E

Appendix E: FT-PCI-OSLi Configuration Registers Contents

This appendix details the contents of the configuration registers of the FT-PCI-OSLi

as defined by the PCI specification version 2.1.

Base
Address
Offset

Reg No Contents

0x00 0 Device ID[31:16], Vendor IDr 15:01
0x04 1 Status[31:16], Command[15:0]
0x08 2 ClassCoder31:81, Revision ID[7:01

OxOC 3 BIST[31:24], Header Type[23:16], Latency
Timer[15:8], Cache Line Size[7:0]

0x10 4 Base Address Register 0[31:0] (this design decodes 1
MBytes memory locations)

0x14 5 Base Address Register 1 (not implemented)
0x18 6 Base Address Register 2 (not implemented)
OxlC 7 Base Address Register 3 (not implemented)
0x20 8 Base Address Register 4 (not implemented)
0x24 9 Base Address Register 5 (not implemented)
0x28 10 CardBus CIS Pointer^ 1:0] (not implemented)
0x2C 11 Sub-system 10(31:16], Sub-system Vendor ID[15:0]

0x30 12 Expansion ROM Base Address Register (not
implemented)

0x34 13 [Reserved]
0x38 14 [Reserved]

0x3 C 15 Maximum Latency[31:24], Minimum Grant[23:16],
Interrupt Pin[15:8], Interrupt Line[7:0]

240

Appendix F

Appendix F: Specification for PCI/RS485 Interface board

Design Overview

The interface board is to have standard PCI edge connection at the bottom, with 4 off serial

connections to the left of the board, mounting on the metal back-plate. Interface to the PCI bus is to be

handled by a suitable PLD, for which settings need to be stored in compatible configuration device(s).

PLD settings should be transferred using the JTAG ISP(In-System-Program) connection. Interface to

the serial connections is made by RS485 balanced line transceiver circuits. The diagram below shows

the basic building blocks. These blocks are described in the following sections.

RS485 JTAG Altera
ERC2Driver HEADER

RS485 nCASC
DCLK
DATA
OE
nCS
nINIT CONFIG

Link in/out C Receiver DCLK
DATAO

nSTATUS
CONF_DON

nCONFIG

(RJ45) RS485
Driver

Link in/out 1
(RJ45) Receiver INPUTS/

OUTPUTSRS485
Link in/out Driver Diode

(RJ45) RS485 Altera

20K20
Receiver DCLK

DATA
OELink m /out RS485 FLAGS

(RJ45) Dnver
RS485
Receiver

AD[0..31j (PCI CTRL)RS485 A ltera

EPC2
2x Driver

RS485
2x Receiv<

PCI Edge

RESET_OUT
ANALYSE_OUT
ERRO RJN
RESET IN

P ow er supp ly links Only 1 s lo t for 5V system

System diagram for the PCI-RS485 interface board

Interface to the PCI bus

Board format is to be 32-bit PCI bus connection on a standard short card implementing the 5V system

(single connector key furthest from the back plate).

Pin-out for PCI edge connector on 5V / 32bit system

Pin Signal Name Description

B1 -12V (not used)

A1 TRST# (PCI JTA G -notused)

241

Appendix F

Pin Signal Name Description

B2 TCK (PCI JTAG - not used)

A2 + 12V + 12V Supply to D-connect only

B3,B15,B17,A12,B12,

A13,B13,A18,B22,A24,

B28,A30,B34,A35,A37,

B38,A42,B46,A48,A56,

B57

GND

Ground-plane connection

Decoupling capacitance > 0.0luF per Vcc pin,

equally distributed

B49 M66EN Connect to GND / (Only relevant for 66MHz)

A3 TMS (PCI JTAG - not used)

B4 TDO (PCI JTAG - not used - link to A4/TDI)

A4 TDI (PCI JTAG - not used - link to B4/TDO)

B5, A5 ,B 6, A8 ,B 61 , A61,

B62,A62
+5V +5V for RS485 drivers

A6 INTA# PCI interrupt for PLD

B7 INTB# (not used)

A7 INTC# (not used)

B8 INTD# (not used)

B9 PRSNT1# Link - GND or NC for power requirement

A9,B10,A11,B14,A14,

A19
(RESERVED) (not used) - These pins should NOT be commoned

A10,A16,B19,B59,A59 5 V J /0 (not used) / universal board PLD power only

B ll PRSNT2# Link - GND or NC for power requirement

A15 RST#

B16 CLK PCI clock output to PLD

A17 GNT#

B18 REQ#

A58,B58,A57,B56,A55,

B55,A54,B53,B52,A49,

B48,A47,B47,A46,B45,

A44,A32,B32,A31,B30,

A29,B29,A28,B27,A25,

B24, A23 ,B23, A22 ,B21,

A20,B20

[AD0..3I] 32 bit PCI bus connections

A21,B25,A27,B31,A33,

B3 6, A3 9,B41 ,B43, A45,

A53,B54

3V3 3V3 power-plane connection

-242-

Appendix F

Pin Signal Name Description

B26 C/BE3#

A26 IDSEL

B33 C/BE2#

A34 FRAME#

B35 IRDY#

A3 6 TRDY#

B37 DEVSEL#

A3 8 STOP#

B39 LOCK#

B40 PERR#

A40 SDONE#

A41 SBO#

B42 SERR#

A43 PAR#

B44 C/BE1#

A52 C/BEO#

B60 ACK64# 64bit format only (not used)

A60 REQ64# 64bit format only (not used)

Maximum power requirement for the board is to be set by links between PRSNT1#/PRSNT2# pins and

GND. Once known these short cut jumpers could be replaced with solder links.

Link settings for power requirement

PRSNT1# PRSNT2# Expansion Configuration

OPEN OPEN No board present

GND OPEN Expansion board present, 25W maximum

OPEN GND Expansion board present, 15W maximum

GND GND Expansion board present, 7.5W maximum

PCI Control through PLD

Appendix F

Interface to the PCI bus is to be handled by the Altera programmable logic device (PLD) - ‘Apex

20K200’, powered from 3.3Vdc, in PQFP package. The PCI signalling is at 3V3 level, whereas

internal voltage is lV8dc, therefore step-down on board is needed to supply these pins (VCCINT)

The PLD is not 5V tolerant, so any 5V logic will need converting before connection to PLD pins

(Serial transceivers run at 5V, additionally reference White Paper A-WP-APEX5V-01.02 from Altera

regarding the PCI connections).

FT-PCI-OSLi pin connections assigned to an EP20K200EQC240-1

Pin Signal Name Description

1,5,14,27,32,39,52,60,

90,122,127,140,144,145,

159,168,176,179,210

VCCINT Connects to 1 V8dc derived from +3V3

pins on edge connect

12,45,67,97,120,148,177,

199,229

VCCIO Connects to +3V3 pins on edge connect

142 V CCCLKOUT (not used)

6,15,19,26,28,38,42,51,56,

78,89,108,128,132,137,

139,146,155,162,165,167,

175,188,211,218,240

GND Dedicated ground pin, must be connected

to GND

9,10,11,13,16,17,18,20,21,2

2,

23,24,25,35,36,37,40,41,43,

44,47,48,49,50,53,57,58,54,

55,59,72,73,106,107,129,

130,131,133,134,135,136,

138,143,156,157,160,161,

163,164,166,169,178,180,

181,185,187,189,190,191,

192,193,194,195,196,197,

198,200,201,202,203,204,

205,206,207,221,222,223,

224,225,226,227,228,230,

231,232,233,234,236,237,

238,239

GND* Unused I/O pins. These pins can either be

left unconnected or connected to GND.

Connecting these pins to GND will

improve the device’s immunity to noise.

34,154,209,212 GND+ Unused inputs. These pins should be

connected to GND

147,158 GNDINT Dedicated ground pins, which must be

connected to GND

-244-

Appendix F

Pin Signal Name Description

141 GND_CLKOUT (not used)

125,124,123,121,119,118,

117,116,114,113,112,111,

110,109,105,104,84,83,82,

81,80,79,77,76,71,70,69,68,

66,65,64,63

AD[0..31] 32 bit PCI bus connections

29,30 MSEL0,1 Connect to GND

31 CLK PCI clock input from edge connect

33 CONFIG#

46 RST#

61 GNT#

62 REQ#

74 C/BE3#

75 IDSEL

85 IRDY_0#

86 TMS JTAG mode select

87 TCK JTAG clock signal

88 IRDY J#

91 TR D Y I#

92 STATUS#

93 CONF_DONE

94 TRDY 0#

95 C/BE2#

96 FRAME#

98 DEVSEL#

99 STOP#

100 PERR#

101 SERR#

102 PAR

103 C/BE1#

115 C/BEO#

126 INTA# PCI interrupt

149 TDI JTAG data to device

150 CE#

151 O SC LK Connects to 30MHz clock for links

152 DCLK Configuration address clock

153 DATAO Configuration data input

Appendix F

Pin Signal Name Description

208 TDO JTAG data from device

213 CEO#

214 TRST

2 RESETOUT

3 ANALYSEOUT

4 ERROR J N

7 R ESETIN

170 O SL IN K IN 1

171 O S L IN K O U T 1

172 LINK_SPEED_SEL 1

173 OS_LINK_IN2

174 O SL IN K O U T 2

182 LINK_SPEED_SEL2

215 OS_LINK_IN3

216 OS_LINK_OUT3

235 LINK_SPEED_SEL3

217 OSJLINKJN4

219 0 S_LINK_OUT 4

220 LINK_SPEED_SEL4

Configuration of the PLD

As the chosen PLD is SRAM based, configuration data must be re-loaded each time the system

initialises, or when new configuration data is needed. As the configuration data for the 20K200 is too

large for one storage device, it is necessary to cascade two Altera configuration devices - ‘EPC2’, both

powered from 3.3Vdc (in 20pin PLCC format). These are cascaded using the nCASC pin of device

one connecting to nCS of device two, providing the necessary handshaking.

The JTAG ‘initiate Configuration’ feature is supported by the insertion of a diode (with threshold

voltage Vt less than or equal to 0.7V) between the 20KE #Config pin and the EPC2 #INIT_CONF pin,

as shown in the system diagram on pagel. The diode effectively makes the #INIT_CONF pin open-

drain, and it will only be able to drive low or tri-state, [reference 20KE errata sheet M-ES-APEX-01.1].

When powered up and nCS pin driven low, device one controls configuration of the PLD. After

device one has finished sending data, its nCASC pin is driven low, which being as it is connected to

nCS on device two, causes device two to send the remaining configuration data. Device one clocks

device two until configuration is complete. Once configuration is complete and the nCS pin on device

one is driven high by PLD’s CONF_DONE pin, device one continues to clock an additional 16 clock

-246-

Appendix F

cycles to initialise the PLD. Device one then goes into zero-power (idle) state. If nCS on the master

EPC2 is driven high before all configuration data is transferred, the master EPC2 device drives the

PLD nSTATUS pin low, indicating a configuration error.

Pin connections for the Altera EPC2 configuration devices (20 pin PLCC package)

Pin Signal Name Description

1 TDO JTAG data output

2 DATA Serial data output

3 TCK JTAG clock

4 DCLK Clock output from master EPC2

Clock output to slave EPC2

Drives low on configuration end

5 VCCSEL Mode select for VCC (connect to VCC

if powering from 3V3, or connect to

ground if powering from 5 V)

6,7,15,16,17 (N.C.) (no connection)

8 OE/RST# Low resets address counter

High enables the counter

9 c s# Chip select

10 GND Ground pin (decouple with 0.2uF)

11 TDI JTAG data input

12 CASC# Cascade select output

13 INIT_CONF# Allows JTAG INIT_CONF instruction

to initiate configuration

14 VPPSEL Mode select for VPP. Programming

voltage set to 3V3 by connecting this

pin to VCC or set to 5V by connecting

to GND

18 VPP Programming power pin, normally tied

to VCC

19 TMS JTAG mode select

20 VCC Power supply, +3V3

Appendix F

‘Technical’ Index

No Ref Name No Ref Name
1 190 A Route 51 167 Eliminate
2 239 A6 52 165 Energy
3 145 Aberration 53 25 Entity
4 50 Above The 54 58 Escape
5 I Abstract 55 57 Evasion
6 16 Aerospace 56 27 Exclusive
7 21 After 57 91 Exit
8 28 Aid 58 167 Extra Over
9 29 Al 59 94 Extraction
10 66 Analysis 60 120 Fresh
11 38 And Others 61 245 Grounded
12 99 Andover 62 199 Hardcore
13 48 Another Route 63 200 High Performance
14 50 Another Time 64 31 Impede
15 86 Apex 65 46 In Excess
16 163 Approach 66 15 In Retrospect
17 72 Approaching 67 25 Inception
18 11 Artificial 68 145 Inclusion
19 50 Assembled 69 167 Incursion
20 59 Auto 70 181 Injection
21 74 Autonomy 71 65 Insertion
22 V Avoidance 72 66 Integrity
23 17 Bottleneck 73 1 Introduction
24 42 Bypass 74 II Isolation
25 88 Cascade 75 240 Jumpers
26 6 Catalyst 76 245 L’lndex
27 165 Clit 77 53 Midway
28 176 Command 78 19 Oblique
29 25 Connect 4 79 5 Original Route
30 88 Creation 80 6 Parallel
31 1 Critical 81 1 Relative Ease
32 134 Crystal 82 37 Responsibility
33 58 Daisy Chain 83 240 Short Cut
34 58 Deflection 84 5 Simple Solution
35 91 Desire 85 86 Substitute
36 99 Destination 86 III Thanks
37 43 Detour 87 188 The Boom
38 172 Deviation 88 245 The Chain
39 192 Differential 89 1 The Critic
40 28 Direct Route 90 26 The First One
41 23 Division of Labour 91 64 The Medium
42 77 Domination 92 69 The Message
43 101 Double 93 167 The Ramp
44 lit Drag 94 6 The Spur
45 128 Drought 95 54 The Start
46 X Dynamic 96 158 The Steps
47 54 EStar 97 163 Tight Fit
48 54 Edge 98 55 Trigger
49 48 Ejection 99 145 Toward
50 165 Electron 100 83 Via Media

-248-

Appendix F

JTAG ISP connection

The PLD settings should be transferred using the JTAG ISP (In-System-Program) connection as

outlined in IEEE Std 1149.1 specification. This connects to a suitable interface cable such as Altera

MasterBlaster for download of configuration data and also in-circuit debugging from a remote

computer. Since the PLD and configuration devices are powered at 3V3, programming is also done at

this level by connection of VCC and VIO JTAG pins to the +3V3 power plane. Function described in

previous section.

Pin connections for JTAG lOway header

Pin Signal Name Description

1 TCK Clock Signal

2 GND Signal grounded

3 TDO Data from device

4 VCC Power Supply

5 TMS JTAG mode select

6 VIO Reference voltage for programmer output driver

7 - No connection

8 - No connection

9 TDI Data to device

10 GND Signal ground

Interface to the serial links

Interface to the four serial links is via four independently controlled RS485 balanced line

transceiver circuits. These links need to be capable of data transfer up to 20mbps. Circuits to be based

around the Analog Devices part no.: ADM1485 powered from 5Vde (split power-plane required). As

these transceivers do not have separate driver and receiver sections, then a separate device will be

necessary to perform these functions (i.e.: 8x ADM1485 necessary to facilitate the four bi-directional

serial links).

Appendix F

Status flag inputs/outputs do not require the high speed switching allowed by the ADM 1485 and as

such a more compact device is available to interface these signals, namely National Semiconductors’

DS34C86T/DS34C87T receiver/driver combination which allow 4 signals per device, saving board

space. These are also powered from 5Vdc. Status flags to be incoiporated are: [RESETOUT /

ANALYSE_OUT / ERROR_IN / RESETJN]. Both the ADM1485 and DS34C8xT employ 5V

signalling and must therefore be converted to 3V3 signals before connection to the PLD link

inputs/outputs, using potential dividers.

Pin connections for ADM1485 Differential line transceiver

Pin Signal Name Description

1 RO Receiver output

2 RE# Receiver enable (Active low)

3 DE Driver enable (Active high)

4 DI Driver input

5 GND Ground

6 A

Non-inverting receiver input A /

Driver output A

7 B

Inverting receiver input B /

Driver output B

8 VCC Power supply, +5 V

Pin connections for DS34C86TN Differential line receiver

Pin Signal Name Description

4,12 EN Enable A+B, C+D

2,6,10,14 +IN A,B,C,D non-inverting inputs

1,7,9,15 -IN A,B,C,D inverting inputs

3,5,11,13 OUT A,B,C,D outputs

16 VCC +5V power supply

8 GND Ground connection

Pin connections for DS34C87TN Differential line driver

Pin Signal Name Description

4,12 EN Enable A+B, C+D

Appendix F

2,6,10,14 +OUT A,B,C,D non-inverting outputs

3,5,11,13 -OUT A,B,C,D inverting outputs

1,7,9,15 IN A,B,C,D inputs

16 VCC +5V power supply

8 GND Ground connection

External connections to the serial inputs/outputs are to be made on a right-angle D-type plug

connector mounted on the metal back plate. The +12V auxiliary output will be dual powered from

either the PCI edge-connect (with diode protection) or on-board disc-drive type power connect input

(for higher power usage).

Pin connections for D37P connector

Pin Signal Name Description

1 LINK1 TX+ Link outputl (non-inverted)

20 LINK1 TX- Link outputl (inverted)

2 LINK2 TX+ Link output2 (non-inverted)

21 LINK2 TX- Link output2 (inverted)

3 LINK3 TX+ Link output3 (non-inverted)

22 LINK3 TX- Link output3 (inverted)

4 LINK4 TX+ Link output4 (non-inverted)

23 LINK4 TX- Link output4 (inverted)

5 RESET OUT+ Reset output (non-inverted)

24 RESET OUT- Reset output (inverted)

6 ANALYSE OUT+ Analyse output (non-inverted)

25 ANALYSE OUT- Analyse output (inverted)

7 LINK1 RX+ Linkl input (non-inverted)

26 LINK1 RX- Linkl input (inverted)

8 LINK2 RX+ Link2 input (non-inverted)

27 LINK2 RX- Link2 input (inverted)

9 LINK3 RX+ Link3 input (non-inverted)

28 LINK3 RX- Link3 input (inverted)

10 LINK4 RX+ Link4 input (non-inverted)

29 LINK4 RX- Link4 input (inverted)

11 ERROR IN+ Error input (non-inverted)

30 ERROR IN Error input (inverted)

12 RESET IN+ Reset input (non-inverted)

31 RESET IN- Reset input (inverted)

-251-

Appendix F

18,19 GND Ground connection

36,37 +12V + 12V output allowing 500mA

Appendix G

Appendix G: FT-PCI-OSLi Power Consumption Calculation

This appendix details the power consumption calculations, the result of which was

noted in section 6.6.

The IcCjnt standby current for an Apex 20K200E 240 pin plastic quad flat pack

(PQFP) device with a 1.8V internal voltage, for reduced power consumption, was
specified at 10mA. P ^ (standby) was therefore 18mW.

The report file generated after synthesis specified that the FT-PCI-OSLi possessed

1435 flip-flops clocked at a frequency of 33MHz and 185 flip-flops clocked at

30MHz. These parameters gave internal IccINT values of 30.74mA and 20.07mA

respectively. The internal power consumption was 55.34mW and 36.13mW

respectively, based on a 1.8V internal voltage.

A total of 3109 Logic Elements (LEs) were implemented in the FT-PCI-OSLi.

The total implemented in each clock domain was not specified so they were all

calculated for a 33MHz clock frequency, to give a faster switching speed and thus

greater power consumption. The report specified the average fan-out to be 3.90, and

assumptions were made to determine the total number of LEs with a Cany Chain. The
report file indicated that the design possessed:

10 carry chains between 0 and 2 LEs long,

21 cany chains between 3 and 5 LEs long,

10 carry chains between 6 and 8 LEs long,

1 carry chain between 9 and 11 LEs long,

3 carry chains between 15 and 17 LEs long,

2 carry chains between 18 and 20 LEs long and

9 cany chains between 30 and 32 LEs long.

The average length of the chains was determined, giving;

10 carry chains 1 LE long,

21 carry chains 4 LEs long,

10 carry chains 7 LEs long,

253

Appendix G

1 carry chains 10 LEs long,

3 carry chains 16 LEs long,

2 carry chains 19 LEs long and

9 carry chains 31 LEs long.

This gave a total of 539 LEs with Carry Chains. The literature specified an

assumed average LE toggle of 12.5%, implying that only this percentage of outputs

would change state at any one time, on average. The power calculator determined the

internal power consumption to be 44.37mW and Ic c ^ of 24.65mA.

The FT-PCI-OSLi contained 83 Embedded System Blocks (ESBs), all driven by

the 33MHz PCI clock. All ESBs outputs were set for the Turbo mode of operation,

increasing speed at a cost of increased power consumption. The ESB outputs had an

assumed average specified toggle of 12.5%. The power calculator determined the

IccINT and PM values to be 24.04mA and 43.27mW respectively.

The FT-PCI-OSLi possessed 46 output and bi-directional pins synchronised at

33MHz and one output pin driven at 30MHz (the communications link output). All

outputs operated at the 3.3V PCI standard. All outputs were specified with an

assumed average toggle of 12.5%. These outputs consumed IccI0 current values of

3.13mA and 0.06mA respectively, and had a PI0 power consumption of 10.33mW and
0.2mW respectively.

-254-

