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Introduction

Abstract

This thesis documents research to improve tolerance to faults of an embedded parallel 

network. This resulted in the development of two building blocks of a novel 

embedded communications system with enhanced fault detection and recovery.

A review of embedded inter-processor communications was initially performed. The 

research aimed to expand the potential of embedded parallel systems in three main 

areas: improving bi-directional throughput; implementing a distributed fault detection, 

isolation and recovery mechanism; and the implementation of hardware virtual 

channels utilising Context Addressable Memory (CAM) to reduce processor 

intervention.

The embedded multiprocessor network comprises off-the-shelf custom hardware 

message routers. An interface between a StrongArm SA-110 microprocessor and the 

embedded routing network was developed using VHDL. This was simulated and 

synthesised, with post-synthesis simulations used as a means of gauging performance. 

An interface was also developed between a PC and the network, utilising the PCI bus 

standard for communication. The research resulted in a fully operational hardware 

prototype, whose results were compared and contrasted with both the previous non

fault tolerant PCI interface and theoretical expectations.

The routers, StrongArm processors, PCs and their respective interfaces form the 

building blocks of a robust, embedded network with improved tolerance to faults. The 

StrongArm and PCI interfaces allow RISC and general-purpose processors to operate 

as processor nodes in the same network, thus increasing system flexibility and 

applications. The possibility of adapting the interface design to other processors offers 

further possible increases in system flexibility. The new protocol allows a much 

greater degree of tolerance to faults in the system, reducing the dependence on 

external intervention in the event of network failure.
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Introduction

1 INTRODUCTION

Parallel processing is based upon the principles of task division and concurrency 

with multiple processors striving to achieve a solution to a problem that is too 

complex or time consuming for a single processor [1], Whilst the operating speed and 

processing power of computers continues to improve, there will always be 

computationally intensive problems that are beyond the capabilities of a single 

processor [2]. Computer aided VLSI design [3] and the simulation of weather patterns 

used in long term weather forecasting are two examples of parallel processing 

applications.

One of the drawbacks of parallel processing is the limited ability to handle real 

time applications, which often require parallel task executions. The computers used in 

parallel processing systems were originally expensive, custom processors [4], The 

critically short task execution times required by real time applications are more suited 

to RISC processors, such as the Transputer [5], which was developed specifically for 

use in parallel systems. Interconnected multiple single processors [6] can also form 

the basis of parallel systems, utilising advantages such as high performance, low cost, 

availability, relative ease of development and possible scope for upgrades, which led 

to their use in certain niche applications. The performance is often lower than that of 

custom parallel systems but for some applications their versatility and accessibility 

can offset this, particularly in embedded systems.

Many real-time applications require processors to be ‘embedded’ within a larger 

system and to act on responses from within the larger system or in its external 

environment. Embedded systems are often housed within a small area, such as inside 

a medical instrument [7] or in a military or vehicular application [52]. Many large- 

scale parallel systems have sufficient processing power but are too large and relatively 

expensive to be embedded for use in real-time applications. Embedded systems often 

require portability, deriving power from a battery (a prime example being a mobile 

phone) and hence requiring minimal power consumption.

1
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There exists a need to minimise failure in embedded processing systems due to the 

nature of such systems. Embedded systems often perform complex and sometimes 

safety critical tasks in applications and frequently operate in remote or inaccessible 

locations. Embedded parallel systems are more susceptible to failure as the network 

size and number of nodes increases [8] and the systems tolerance to faults becomes 

increasingly important, however performance is a key aspect of embedded systems 

and the techniques aimed at improving fault tolerance should minimise overheads so 

as not to greatly compromise throughput.

The research described in this thesis resulted in the design and realisation of 

building blocks for a multiprocessor routing network with improved tolerance to 

faults. The NTR-FTM08 router was previously developed to provide a robust 

replacement for the commercial 16-channel ICR-C416 router [9]. The serial OS (Over 

Sampling) links based protocol [5] (similar to that employed by the first generation 

Transputer parallel processors) utilised by the ICR-C416 was replaced with a new 

protocol, modified to permit the transmission of control information required for the 

implementation of fault detection and recovery functions between processors. The 

new protocol meant that the NTR-FTM08 had no means of interfacing to the 

processing nodes and external PCs, requiring the redesign of these interfaces. A key 

aim of the research was to enhance the systems tolerance to faults through alterations 

to the interface architecture, giving a robust communications environment, to reduce 

network down-time and the systems reliance on external intervention to recover from 

faults.

1.1 The Transputer

The Transputer was a microprocessor designed for use as a parallel processing 

building block. It was often used to construct low cost embedded parallel computing 

systems due to its ability to support real time programming [10]. This ability was 

partly due to its RISC architecture, instruction set, reduced silicon usage and state-of- 

the-art performance for processors at the time. Additionally, the Occam Network 

Description Language [11, 12] was a vital component in the process of the 

construction of Transputer networks.

- 2-
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Communication with other processors was mainly via four OS serial links [5]. 

Communications responsibilities were devolved to a co-processor providing a 

physical point-to-point connection between processing nodes, based on the 

Communicating Sequential Processes (CSP) model proposed by Hoare [13]. These 

four full-duplex bi-directional serial communication links allowed for connections to 

four neighbouring processors, as the two-dimensional mesh topology shows in Figure 

1.

Key: N -  Processor Node

Figure 1: 2D ‘mesh ’ network topology utilised by first generation Transputers

Networks utilising more than five processor nodes encountered problems with 

messages destined for nodes that were not adjacent to the transmitting node. These 

messages required forwarding by the intermediate nodes, thus reducing their 

efficiency as they devoted resources, incurred latency and increased message 

overheads to message handling tasks required in the forwarding of other processors 

messages. This results in a reduction of processor performance as the computation: 

communication ratio [14] increases in favour of communications as processors handle 

communications from other nodes as well as their own.

Such ‘store and forward’ methodologies produce message delays proportional to 

the product of message size and distance [15], giving a wide variation in 

communication times between processors, based on their relative distances. Large
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interprocessor latencies could reduce the performance benefits obtained through 

parallel processing.

Key features that contributed to the success of the Transputer were the efficient 

transfer of information between processor and network and the minimal processor 

intervention. The Transputer achieved the former through the integration of its tightly 

coupled, built-in communications controller onto the same silicon as the processor. 

However this approach used up space on silicon, which could have been used for 

extra processor functionality, in addition to requiring extra engineering effort to 

design, and build a dedicated interface [16]. Study of the Transputer family history 

has shown that upgrading either the microprocessor core or the interconnection 

network or network interface was time consuming and costly [17] due to ASIC design 

techniques and costs.

1.2 Research History and Objectives

The parallel processing research group at The Nottingham Trent University has 

for some years focused on hardware routing devices used to link embedded parallel 

processors. The research group developed a distributed processing system consisting 

of end nodes (microprocessors) linked together using high-speed serial 

interconnections. Messages sent between nodes use hardware switches (routers) to 

reach their destination.

The research began with the development of the NTR-08 [18, 19], a prototype 8- 

link router that utilised serial transmission links to form interconnections between 

Transputers. This allowed a processor to form connections with any other Transputer 

linked to that router without the message needing to be routed via intermediate 

Transputers, relieving the intermediate processors of the burden imposed by other 

communications and increasing their efficiency. The NTR-08 allowed up to 8 

simultaneous bi-directional communications between its attached entities. More 

Transputers could be added by including more routers, permitting large increases in 

network size for relatively small latency increases -  hence creating a scalable 

network. Figure 2 shows a simple routing network utilising NTR-08 routers. The

- 4-
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communications links of the NTR-08, as with all other routers developed by the 

research group, could form independent and concurrent communications channels 

between all other links, permitting 8 concurrent bi-directional data transfers.

To other Transputers 
and Routers

NTR-08
Router

NTR-08 Router

To other Transputers 
and Routers

Key: T - Transputer

Figure 2: Processing nodes interconnected using NTR-08 routers

The NTR-08 was developed further, resulting in the fabrication of a commercial 

16-channel dynamic hardware routing switch, the ICR-C416 [9, 20]. This device 

demonstrated the efficiency of a routing device as a simple solution to medium scale, 

low cost, high performance inter-processor communications. One of its major 

applications has been the hub of a control network for QuanteTs CLIPBOX Video 

Server [21], The ICR-C416 router formed the backbone of an embedded distributed 

multiprocessor system as shown in Figure 3.

Serial OS Links

TransputerTransputer

Transputer Transputer

Transputer

Transputer

ICR-C416 
Router

ICR-C416
Router

ICR-C416
Router

Figure 3: ICR-C416 and Transputer Routing Network

Further developments improved the features of the research groups original router, 

the NTR-08, via the addition of extra functions resulting in the NTR-M04, a prototype
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4-channel router. A new function was Multicasting: the ability to support in hardware 

the transmission of a message to multiple destinations, whilst simultaneously 

supporting other unicast messages [22], Multicasting was added without 

compromising existing important features of the router. Other enhancements included 

the Split Channel Link, which allowed for effective doubling of link bandwidth [23] 

and access to the control port via any of the communication links.

The rapid increase in microprocessor performance was the spur that prompted the 

need to upgrade the processors used in the ICR-C416 network in order to keep pace 

with other embedded networks. The first generation Transputers were superseded by 

the less successful T9000 Transputer family [24, 25], The demise of both generations 

of Transputer proved to be the catalyst in switching attention to the design of routing 

networks for other processors, whilst maintaining the successful features of the 

Transputer parallel network. The main focus was on state-of-the-art Reduced 

Instruction Set Computer (RISC) processors [26]. Technology upgrades to both 

processors and interconnection networks were also necessary to take advantage of 

power consumption improvements, which in embedded networks is of much greater 

importance than in large-scale multicomputer systems.

The StrongArm SA-110 microprocessor [27] was chosen to replace the Transputer 

in the ICR-C416 network, as it was a low cost, easily available processor offering 

state-of-the-art performance. Transputer networks, such as those constructed using 

ICR-C416 routers were designed to enable efficient execution of embedded 

applications, not to rival high-end supercomputers. The ‘processor node’ architecture 

of the ICR-C416 network lends itself to multiple low cost processors. The 32-bit SA- 

110 microprocessor can support core and data bus frequencies of up to 233MHz and 

66MHz respectively. The processors on-chip cache and write buffer increased average 

execution speed and reduced average bandwidth required for memory accesses. This 

permitted the memory bus to be used to transfer data to and from the communications 

interface, improving throughput, but at a cost of a processor-specific solution.

The transfer of messages to and from the SA-110s memory by the 

communications controller was done during periods when the processor is not 

accessing the memory using Direct Memory Access (DMA) transfers. Cycle- stealing

-6-
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DMA is a special hardware arrangement utilising idle processor cycles to transfer data 

to and from memory very quickly without the overheads incurred in accessing the I/O 

bus [28]. A loosely coupled custom processor interface, utilising the built-in cache 

memory of a processor can achieve a highly efficient and seemingly transparent 

memory transfer [29]. This is of particular importance in fine-grain computation 

systems where the communication tasks of a processor are much larger than the 

computation tasks [30].

The research group subsequently developed the StrongArm Router Network 

Interface Controller (SARNIC) [31], which was designed to perform the 

communication interface for the chosen processor. The research resulted in the design, 

development and hardware implementation of . a PLD based interface controller, 

integrating a bus-based network interface controller, a memory interface controller 

and a processor interface controller in a single chip mounted on a processor node PCB 

with dedicated, distributed SDRAM. This interface, the SA-110 and an SDRAM 

memory module, formed a StrongArm Router Network (SARNet) processing node 

(SARNode), as shown in Figure 4. The SARNode could be used as a building block 

in a scaleable distributed parallel processing system, interconnected by ICR-C416 

routers.

SDRAM
MEMORY

StrongArm
PROCESSOR.

Memory Address &
I  Control Buses

SARNIC
CUSTOM

PROCESSOR
INTERFACE

32-bit
Data
Bus

Control
SignalsCPU

Address Bus 
«-----------

Figure 4: SARNode Block Diagram
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The idea was for the processor node in Figure 4 to directly replace the Transputer 

in a parallel router based network, as shown in Figure 5. The purpose of the SARNIC 

is to take control of the communications to and from the network, allowing the 

processor to devote its resources to program execution.

SARNode SARNode

SARNode

SARNode

SARNode SARNode

ICR-C416
Router

ICR-C416
Router

ICR-C416
Router

Figure 5 : SARNet Routing Network comprising ICR-C416, SARNIC and SA-110

The SARNIC included the following features [17, 32]:

• Minimised processor intervention.

• It attempted to supply continuous data transfer between memory and network 

interface whilst utilising minimal buffering.

• A memory bus arbitration system, to guarantee bandwidth for each message 

channel whilst minimising any interference in the CPU operation.

• DMA assisted message channels, packetising and depacketising messages in 

hardware.

• Two serial communication links doubled the effective network interface 

bandwidth. This increased the range of possible network topologies and provided 

a backup data path in event of a faulty link.

• Link resource allocation, implemented in hardware instead of software, allowing 

hardware virtual channels that can be allocated to either of the two physical 

communications links and increasing header-matching efficiency by reducing the 

degree of software involvement in this process.

•  ICR-C416 compatible control link to monitor communications link status.



Introduction

• Option of booting the interface and real-time processor node reconfiguration 

possible via the serial communications link. Internal ROM could also be used to 

boot the interface. These options facilitated real-time system reconfiguration.

Whilst the NTR-M04 attempted to address some of the shortcomings of the ICR- 

0 4 16, it still utilised a centralised control port, to monitor faults in the event of a 

failure. In addition the NTR-M04 had no coherent recovery strategy. The wormhole 

routing mechanism [33, 34] (see section 3.2) employed by the ICR-C416 reduced the 

message buffering requirements but stretched the message across the network. The 

credit based flow control mechanism (see section 4.4.2) employed by the ICR-C416 

resulted in a communication link stalling in event of a fault. One part of the message 

stalling would result in the rest of the message that follows to stall, as it could not 

progress further in the network until resources were free to take the message. Features 

such as Adaptive routing [35] and Virtual channels [36] helped other messages to 

bypass the network resources occupied by the stalled links but could not free those 

resources for use by other messages. Such situations resulted in the effects of a fault 

spreading across the network within a very short space of time.

Tolerance to network failure with the ICR-C416 was limited and centred on a 

single, centralised monitoring and intervention solution. This had little scalability as 

the efficiency decreased as the number of network elements increased [11]. The fault 

monitoring and intervention strategy was provided via a separate control port and, as 

such, required an extra bi-directional communications link. As the mean time to 

failure was high, the solution was acceptable for board level systems, where the 

network nodes were situated very close together. As the network could tolerate 

transmission distances of over 100m, an extra link becomes proportionately 

expensive. The aspects of the design that enhance the systems response to failure must 

be conveyed across the data transmission line itself, rather than a dedicated control 

link.

A new router was designed with a view to improving the systems response to 

failure, in order to form the backbone of a more robust routing network. The NTR- 

FTM08 [37, 6] was a prototype 8-channel router with increased fault handling 

capabilities, whose aim was to provide a fast response to faults, implementing fault

-9-
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tolerant functions in hardware, which had previously been performed using software 

(if at all). The NTR-FTM08 was designed with a view to containing an integrated 

detection method for basic faults, which would isolate them, to minimise their effects 

and enable normal network operation in as large a part of the network as possible. The 

system would then recover from the failure by removing the faulty message, freeing 

the resources held by it and would attempt to re-establish any lost network 

connections. The network should be able to recover from failure without requiring 

user intervention, whenever possible.

General-purpose microprocessor systems, such as PCs are often better suited to 

dealing with diverse applications rather than dedicated tasks such as distributed real

time control. A potential use. for the SARNet is the ability to enhance the 

computational abilities of a general-purpose processor by providing the real-time 

processing advantages gained through RISC processing. The creation of such a 

heterogeneous network required the development of a dedicated interface to connect 

to a general-purpose processor and the embedded SARNet system. Commercial 

general-purpose processor interfaces have been developed, such as the BBK-PCI [38] 

and BBK-PCI Light [39] but these are not aimed at supporting communications 

between embedded systems. Such devices are not optimised to the communications 

protocols utilised by the SARNet, requiring a software implemented communications 

mechanism, introducing extra overheads and reducing the efficiency of the 

communications. Embedded system communications are built on a core principle of 

efficiency where latency and overheads are minimised to maximise performance.

A custom interface was designed, tested and built, with its communications 

optimised for the ICR-C416’s OS Links based routing network and linked to the PCI 

bus [40, 41] of a general-purpose computer (for example a PC). This interface, termed 

the PCI-OSLi [42, 43] would allow connection to any other network that utilised a 

similar PCI interface and allows construction of flexible systems, in terms of wider, 

ranges of applications such as that shown in Figure 6.
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Figure 6: SARNet Routing Network with a link to a generic PC via the PCI-OSLi

hardware interface

Additionally, a novel Operating System that supported inter-processor 

communications [44] was developed. The operating system addressed some real time 

control requirements and was optimised for embedded, distributed parallel processing 

system applications. The operating system was complemented by the following two 

tools that were developed to aid the user in parallel programming: a Network 

Specifier allowed the network mapping to be captured graphically, using the graphic 

user interface, and an NTU-Configurer used Artificial Intelligence to generate routing 

headers automatically.

1.3 The FT-SARNet Routing Network

As the SARNIC and the PCI-OSLi were developed for use with the OS Link 

based protocol of the ICR-C416 these interfaces were incompatible with the NTR- 

FTM08, with its protocol aimed at conveying status infonnation across the 

communications links, in addition to data. The focus of this project is to implement a 

range of features aimed at improving the systems response to faults, into devices 

similar to the SARNIC and the PCI-OSLi to enable the construction of an NTR- 

FTM08 router network linking StrongArm processors and PCs. These interface
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devices are called the Fault Tolerant SARNIC (FT-SARNIC) and Fault Tolerant PCI 

(FT-PCI-OSLi) respectively.

Fault tolerant in this respect signifies the enhancment of fault detection and 

recovery in comparison to the designs resulting from the previous research.

The more robust communications system, which could be constructed with these 

devices is called the Fault Tolerant SARNet (referred to hereafter as the FT-SARNet) 

and is shown in Figure 7. The ultimate aim of the development of a network with 

increased fault tolerance, and its full implementation, including software support, is 

beyond the scope of this work. The main building blocks are the NTR-FTM08, the 

FT-SARNIC and the FT-PCI-OSLi. The project aims to achieve for the SARNet the 

same improvements in the systems fault tolerance that the NTR-FTM08 achieved for 

the ICR-C416. The FT-SARNIC and the FT-PCI-OSLi would be vital building blocks 

in a StrongArm parallel processing system with enhanced fault tolerance.

i  k
32 Bit P Q  Bus

PC

FT-SARNode

PC

FT-SARNode

FT-PCI-OSLi

FT-SARNode

FT-PCI-OSLi

NTR-FIM08
Router

NTR-FTM08
Router

NTR-FTM08
Router

Figure 7: Fault Tolerant SARNet Routing Network

The FT-SARNet would ensure that when communications failure occurs, the 

effects are confined to as small an area of the network as possible. Initial work on the 

project identified the salient features of embedded multiprocessor networks, how 

these features affect the potential causes of network failure and methods of recovering 

from such failures. Background research involved a review of several types of 

hardware failure common to such networks and identified a strategy for detecting,

- 12-
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isolating and recovering from each of these faults when they occur. This led to a 

specification for the FT-PCI-OSLi and FT-SARNIC interface device and an 

investigation into how these could be realised in hardware.

A low-level, Register Transfer Level (RTL), VHDL model of the FT-PCI-OSLi 

and FT-SARNIC designs were created. The design was described using RTL level 

VHDL and partitioned into a modular, top-down hierarchy. VHDL was the chosen 

tool for design entry as it allowed developers to obtain information about the designs 

functionality with far greater ease than with schematic design entry. VHDL still 

provided compilation tools with enough low level information concerning the designs 

implementation and functionality. Being a recognised design entry standard, VHDL 

allowed portability between different target technologies, such as PLDs, gate arrays 

and ASICs as well as between different manufacturers’ families within these 

technologies.

VHDL specified design functionality as opposed to implementation, which was 

left for interpretation by individual synthesis tools. The development software used 

throughout the design cycle was Alteras generic MaxPlus II and Quartus II software, 

based on PCs. Model Technology’s ModelSim and Exemplar Logic’s 

Leonardo Spectrum synthesis tools were also used. Post-synthesis simulations of the 

designs verified their functionality and timing analyses gave an indication of whether 

the timing requirements were met before implementation of the device in hardware.

The FT-PCI-OSLi interface design was implemented in a Programmable Logic 

Device (PLD). The latest generations of PLD offer a high density of logic functions 

with programmable features, and large amounts of programmable embedded memory. 

The FT-PCI-OSLi design was not fully optimised. This was to allow for a more 

generic solution, which can be targeted towards other PLD families with a minimum 

of alterations and to permit further developments. The FT-PCI-OSLi test results 

obtained from hardware testing were then compared for those of the PCI-OSLi device, 

simulations, predictions, and current research developments.

The FT-SARNIC design was not implemented in hardware due to the significant 

hardware developments and software support required evaluating its performance.

- 13-
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The design is ready for programming onto a PLD and post-synthesis simulations have 

been conducted in order to gauge its performance. Identical tests were performed on a 

post-synthesis simulation of the original SARNIC design in order to enable 

comparisons to be made.

1.4 Key Achievements

The work described in this thesis makes four main original contributions to the 

area of research:

• The FT-PCI-OSLi outperformed the PCI-OSLi in terms of efficient use of 

communications link bandwidth, due mainly to the adoption of the new flow 

control protocol.

• The implementation of a scalable autonomic distributed fault detection and 

recovery strategy that devolved responsibility for link monitoring and intervention 

to the nodes at either end of the communications link.

• Novel implementation of hardware Virtual Channel capabilities via the use of 

Context Addressable Memory [142].

• Significant improvement in the understanding of the host system interface of the 

FT-PCI-OSLi and PCI-OSLi devices. This was because previous research during 

the development of the PCI-OSLi did not observe the behaviour of the interface to 

the same degree of accuracy due to a different measure of DMA transmission 

duration being used, leading to a less accurate representation of the DMA 

transmission characteristic.

1.5 Structure of the Thesis

Chapter Two gives an overview of the subject area. An introduction to the 

relevant inter-processor communications is preceded by a review of the characteristics 

of such systems. This review identifies parameters used to characterise network 

performance and how they affect this performance, taking into account the 

requirements of the target network. Thirdly, three router networks used in multi
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processor systems, the ICR-C416, the STC-104 and the Myrinet routing networks are 

compared and contrasted. Another system, the Reliable Router, is also studied, despite 

differing target applications and an alternative approach to the previous three systems, 

because it has features which can be applied in the field of distributed fault tolerance. 

Finally, the PCI local bus, the interface between the PC and the communications 

network, is introduced.

Chapter Three examines fault tolerance from a systems level, investigating some 

of the possible faults that can occur in a distributed, asynchronous, multi-router 

communications network, why they occur, their effects and possible solutions. The 

faults detailed were prevalent in the ICR-C416 based router network. The protocol of 

the NTR-FTM08 based router network has provided the ability to detect and recover 

from, or in certain cases, prevent these faults. Firstly, the concept of network failure is 

discussed. Secondly, a study of the different types of network failure covered by the 

FT-SARNet network protocol is undertaken. Finally, the fault detection and recovery 

mechanisms in the three router networks under review are discussed.

Chapter Four discusses the FT-SARNIC and FT-PCI-OSLi interface designs from 

both theoretical and functional levels. It builds on chapter 3 by describing the means 

by which the features aimed at improving the systems tolerance to faults discussed in 

that chapter are to be realised. The chapter begins with a review of the design 

strengths of the SARNIC and PCI-OSLi interfaces and specifies the requirements for 

the FT-SARNIC and FT-PCI-OSLi devices. The areas of the design that require 

improvement in order to realise the fault tolerant features are researched and 

discussed. A synthesis review looks at the target technology of the FT-PCI-OSLi and 

how it contributes to the realisation of this device. The results from the synthesis of 

this design on to the target device, in terms of resource usage, timing analysis and 

power consumption are detailed and analysed in retrospect.

Chapter Five discusses the FT-SARNIC and FT-PCI-OSLi designs on a modular 

basis and identifies the functions performed by each module. Both designs are broken 

down in order of their modular hierarchy, with details of the functionality of each 

module, how they fit into the design and to which modules each interfaces.
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Chapter Six includes results and details of the tests performed to obtain these. 

Post-synthesis simulations of the FT-SARNIC design are contrasted with comparative 

tests performed on a post-synthesis simulation of the SARNIC and with the estimated 

theoretical performance of the FT-SARNIC. Results obtained from the hardware 

testing of the FT-PCI-OSLi design are compared with results obtained from 

comparative hardware tests performed on identical hardware on the PCI-OSLi design 

and are also contrasted with the estimated theoretical performance of the FT-PCI- 

OSLi.

Chapter Seven discusses the implications of the results and the effects of the 

interfaces on the network performance. Several key points that affect the performance 

of the FT-SARNIC and FT-PCI-OSLi interfaces are discussed and compared, both 

between the interface devices and their non-fault tolerant predecessors and, in the case 

of the FT-PCI-OSLi, with commercially available IP.

Chapter 8 concludes the thesis, noting the achievements of the research and 

summarising how the addition of distributed system-wide fault tolerance expands on 

the previous interprocessor communications network. Finally, it details potential 

avenues of further work.
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2 TECHNOLOGY REVIEW 

2.1 Fundamental Principles of Interprocessor Communications

Three of the main characteristics used to define the overall performance of the 

communications in embedded real time parallel systems are efficiency, scalability and 

reliability.

• Efficiency defines how the system performs relative to the theoretical maximum. 

As discussed previously, performance is often a key requirement in embedded 

applications.

• Scalability dictates the ease with which the system can expand and thus 

determines its flexibility in handling a wide range of applications and network 

configurations.

• Reliability determines the robustness and stability of a system [45]. A crucial 

factor given the inaccessibility of some embedded networks and their use in safety 

critical applications, such as those used in the aerospace industry.

2.1.1 Efficiency

An efficient inter-processor communications model could be said to be one 

capable of performing communications duties without reducing its computational 

abilities significantly. A solitary processor can dedicate most of its processing power 

towards computational tasks, as it is not required to communicate with any other 

entities. The addition to the network of other communicating entities requires the 

processor to dedicate an increasing proportion of its processing power towards 

communication tasks, to the detriment of its computational capabilities.

A processor’s performance depends on the compute : communicate ratio [14], 

which expresses the amount of communication overhead associated with each 

computation. Some programmes opt for coarse grain computation methods, reducing 

communications where possible in the interests of boosting computational throughput. 

Such an approach results in tasks that could be executed in parallel on multiple nodes
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being executed sequentially on a single node, reducing the amount of parallelism and 

therefore defeating the object of parallel processing. Ultimately this leads to a 

reduction in efficiency as it takes longer to perform tasks sequentially and also 

because this approach leads to task duplication as data is not shared between 

processors. Others opt for fine grain parallelism, utilising large and complex 

communication networks to ensure that communications bottlenecks do not occur and 

devolving communications tasks to a communications co-processor to alleviate the 

microprocessor of some of the communications related overheads.

The efficiency of a systems inter-processor communications is often gauged by 

assessing the three parameters of bandwidth, latency and processor overhead.

2.1.1.1 Bandwidth

Bandwidth indicates the maximum amount of information that can be transferred 

across a communications medium in a given time and is often seen, rightly or 

wrongly, as the vital parameter in assessing the performance of a communications 

system [11]. The bandwidth of a communications network is primarily determined by 

the maximum clock rate at which the system can run without causing timing 

problems. Whilst a higher bandwidth communications medium allows faster data 

transfer, an inter-processor communication can only operate at the speed of the 

slowest component. As cost limits the available network bandwidth, protocol 

efficiency, in terms of the number of message bits relative to the raw network 

bandwidth, is crucial.

The bandwidth of the interconnection network should be high enough to prevent 

the communications network becoming the bottleneck of the system. An excessively 

high network bandwidth would be a waste of resources [45]. A high bandwidth, 

whilst being desirable, can lead to an increased number of transactions to and from 

memory in a given time (assuming that the processor is fast enough) and care must be 

taken to ensure that the incursion of overheads on the processors memoiy bus is not 

excessive. The maximum clock rate of the network depends on its implementation on 

silicon. Advances in silicon fabrication technology have led to a reduction in feature 

sizes, allowing designs to occupy less area than before, reducing the skew limitations
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on clock speeds. The performance bottleneck of a circuit can be located with the aid 

of timing analysis by revealing the longest delay path between two clocked signals. 

Extra design effort in the areas identified can yield performance benefits.

2.1.1.2 Latency

The definition of latency is the time taken to transfer an empty message between 

source and destination [46]. Latency depends on the ‘background’ processes that are 

required in order to prepare the medium for the proposed message transfer. The 

latency in a communications interface is due to the overheads incurred in the setting 

up and receipt of a message transfer. When the transfer has been initiated, the data 

must pass through the transmission circuitry before it is outputted onto the 

transmission medium. Whilst this happens the transmission line is idle, reducing the 

efficiency of the communication and lowering the actual bandwidth from its 

theoretical maximum.

Network latency depends on the latency of the communications interfaces, their 

speed and the number of stages or hops the message must traverse in order to reach its 

destination. Bus based systems have low latency as there is only one stage between 

source and destination although access contention increases this significantly. Early 

switch based systems, utilising store and forward routing, incurred large latencies but 

the introduction of wormhole [47] and virtual cut through [48] routing methodologies 

have reduced hop related latency dependencies significantly. The latency of a device 

can also be reduced with the aid of considered circuit design and logic optimisation. 

Techniques such as pipelining can allow data to progress through the circuit more 

rapidly. Simplification and a reduction in clocked logic can also reduce latency but 

care must be taken to avoid timing problems associated with the latter.

Latency is an important factor for short communications such as control, 

synchronisation, acknowledgement and error signals as the latency incurred is large in 

comparison to the data contents of such transmissions. Sending multiple short 

messages is less efficient than sending one long message, as each message incurs its 

own latency period [45]. In short, a high bandwidth system with high latency can be
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less efficient and thus have a lower throughput than a slower system with lower 

latency.

Real time applications require deterministic latency, in particular worst case 

scenarios to ensure that the process is completed within the given time despite such 

delay [11].

2.1.1.3 Processor Overhead

Communications related processor overhead is the time the processor dedicates to 

initiating or receiving a message. The latency of current communications is affected 

directly and contributes obliquely to those of subsequent communications. The design 

of the network interface hardware directly affects the overhead as it dictates to what 

extent communications related functions are off-loaded from the processor and thus 

the overlap between computation and communication tasks. This is best achieved via 

the use of a communications co-processor, freeing the processor to concentrate on 

program execution. A communications co-processor takes control of the tasks 

involved in transferring data to and from the communications network formats it 

appropriately and transfers it to memory where it is fetched when needed by the 

processor. Software overheads can also be reduced with the relatively recent 

introduction of direct support for communications at the user level [49, 50].

2.1.2 Scalability

A system can be said to be scaleable if it is able to retain its efficiency as it 

expands in size [11]. It dictates the ease with which a system can tolerate alterations 

to the number of processing elements and the arrangement of these which may occur 

as a result of a change in application. Scalability is affected by network topology [45] 

and it affects flexibility, which is an important consideration, given factors such as the 

cost, durability, lifespan and time and effort that are put into selecting, installing and 

maintaining a multiprocessor network. An architecture is said to be scaleable if it 

continues to yield performance increases in proportion to the number of processors in 

the network, whether that number is two or two hundred. Expansion should be
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possible with minimal disruption to the system, ideally involving as few alterations as 

possible to both the system’s hardware and software.

Scalability is also important as it affects the access to the resources required by the 

network’s constituent nodes. As the number of nodes in the system increases, the 

amount of access each node has to the resources of the system decreases. This leads to 

the formation of performance bottlenecks, hence, reducing the efficiency of the 

system. The demand for scalability has led to a design philosophy in which no single 

resource is assumed to be in restricted supply [51]. This is achievable by replicating 

the resource that is in demand. For example, shared memory becomes a performance 

bottleneck in systems that utilise this method of data storage. Providing multiple 

memory stores increases the effective amount of memory bandwidth per processor 

and distributed memory guarantees the bandwidth for each processor irrespective of 

the network size.

Scalability is highly desirable in real time embedded parallel communications due 

to the need to guarantee task completion within a given time frame.

2.1.3 Reliability

Reliability is crucial to achieving an efficient communications medium. The 

system must ensure the integrity of both the communications medium and the 

information transmitted over it. Reliability can be defined as the probability of correct 

system operation occurring for a long enough time for the system to be useful [52]. 

There are several other terms in addition to the likelihood of the system ceasing to 

perform its function [45]. These include:

• Availability: The measure of how much of the system will be affected by faults. A 

more available system experiences minimal network ‘down-time’ following 

faults.

• Performability: Quantifies to what extent the systems performance is degraded by 

the occurrence of faults. A more performable system loses less of its capabilities 

following a fault.
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• Maintainability: Measures the ease with which faults can be corrected. A more

maintainable system can recover from faults more easily.

Interconnection failure will result in messages arriving either with errors or not at 

all. The former scenario can be detected via the use of error detection algorithms such 

as parity or checksum bytes. Error correction mechanisms can also be employed to 

ensure that erroneous data can be detected and amended without requiring 

retransmission. Communications protocols such as Bluetooth [53] employ 1/3 rate 

foiward error correction (FEC) [54] which involves transmitting each data bit three 

times and interpreting the most common logic level as the correct one. In the case of 

wireless protocols such as Bluetooth, this is because free space transmission is more 

prone to interference.

The probability of single bit errors in the target network is of the order of 1.74 x 

10~12 and 9.76 x 10"13 for OS link speeds of 10 Mbits/s and 20 Mbits/s respectively 

[55]. This was considered low enough for error detection and / or correction codes to 

be an excessive overhead / use of bandwidth.

Disconnected links and failed processors affect all transmissions and can be 

detected using time-outs or acknowledge tokens, which also incur overheads. A 

system may be robust enough to get faults very infrequently but failure can always 

occur and it is impossible to achieve a truly error free medium. Consideration must be 

given as to the appropriate response after the occurrence of a fault.

Faults must firstly be detected: detecting errors using parity or cyclic redundancy 

checks (CRC) once the message has been retrieved from the multiprocessor network 

can be ineffective, as such error checksums are usually appended to the tail of the 

message. In multi-router networks, ordering a message retransmission is impractical 

as the receiving node does not have the origin of the erroneous message and therefore 

does not know where to make the request. In addition, by the time the error is detected 

at the receiver, the transmitting node is already executing another task and would need 

to ‘step back’ to the task involving the transmission of the erroneous message, which 

may be impractical. A better solution would be to flush the erroneous message from 

the system before it causes further problems, such as when a processor attempts to 

process the faulty data.
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Following detection, the next stage involves isolating the error to prevent its 

effects from disrupting the system. If the fault cannot be isolated, the entire network 
may need to be reset (which is always viewed as a last resort as it is more desirable to 

maintain system operation, even if part of the system is unusable due to the fault). It is 

then necessary to enable the system to recover to a normal operational state, often 

initiated by the user. Convenience dictates that it is far more efficient to have a system 

capable of resetting itself, as it is impractical to expect the user to be on standby to 

perform such a task that occurs rarely. Despite this, resetting the entire multiprocessor 

network, irrespective of whether or not it is performed automatically or otherwise, 

causes significant disruption. Network down-time can be significantly reduced if the 

effects of the fault can be localised, allowing the remainder of the network to continue 

functioning whilst the affected entities are restored to an operational state, via 

automatic reset.

This research recognised that there is more to system reliability than minimising 

the occurrence of failure and that the manner in which such failures are handled can 

be just as influential to a system’s reliability as the frequency with which they occur. 

The probability of failure can be minimised, but not eradicated and a network with an 

effective error detection, isolation and recovery mechanism can operate more 

efficiently and with less network down time, than a network with a lower frequency of 

failure but also possessing a less effective error handling procedure.

2.2 Characteristics of Interprocessor Communications Networks

2.2.1 Shared and Distributed Memory Multiprocessor Systems

The efficiency of an embedded multiprocessor processing system is affected in 

part by the need to provide the computational elements (processors) with the correct 

data for manipulation in time for it to be processed. The data must be stored elsewhere 

before and after manipulation to allow the processor to work on the next task. This 

storage usually takes the form of some sort of memory. A processing element must be 

able to gain fast access to the required information in memory. There are two different 

ways of using a systems memory to achieve this, dependent on the systems 

requirements. These are Shared and Distributed memory.
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Shared memory systems contain a single, centralised memory resource that can be 

accessed by any processor. This offers fast transfer of information with very low 

latency, as all information is only a single memory access away. As it is a shared 

resource, it suffers from a lack of scalability. As more entities have access to the 

memory, each has access to it for less time, reducing the effective bandwidth of each 

node. Another disadvantage is shared resources require careful access arbitration in 

the form of some sort of central arbiter to prevent any user from monopolising 

memory access at the expense of others. This must manage access to the resource, 

synchronise tasks and resolve access contentions. Programmers must take care to 

ensure that multiple resources are not attempting to access memory simultaneously as 

this will lead to processors wasting bandwidth as they stand idle whilst waiting for 

data from memory. Memory bus management in shared memory systems must be 

performed efficiently in order to maximise available bandwidth and to prevent 

memory access becoming the performance bottleneck of the system. Scalability is 

ultimately controlled by the nature of the communications medium.

The largest problem encountered with memory that is shared amongst multiple 

processors is that of data validity. As every processor can access all memory 

locations, there is no way for a processor to know whether another processor has 

modified memory location contents.

Distributed memory affords each processing node a dedicated memory resource, 

to have direct and unlimited access to, thus requiring no arbitration. This allows for a 

flexible and scalable solution as the effective bandwidth of each node remains 

constant, irrespective of network size, topology or architecture. The principle behind 

this method is a processor will access its own memory far more frequently than it will 

need to access the memory of another processor. As parallel processing is based on 

the division of labour between multiple computational elements, such a situation is 

highly probable as process’s input variables can depend on the output of a previous 

process. When this occurs, the required data must be passed between processing 

nodes in the form of messages. Message passing solves many of the problems 

incurred by shared memory, as proven by Hoare [13] but can suffer from increased 

latency depending on the length of the message path. Such a solution can require the 

programmer to be aware of which messages need sending between which processors



Technology Review

and must ensure that the receiver does not stall while waiting for them. The research 

described here is concerned with the development of new protocols with the aim of 

reducing message latency and increasing reliability.

There also exist hybrid systems, such as the Cray T3D [56], which have logically 

shared memory whilst having a distributed memory architecture. Shared data is 

moved around the system on a high-speed 3 dimensional Torus interconnect [57] (a 

popular distributed memory architecture) similar to the cache or virtual memory 

operations of recent mainstream processor’s systems. This system allows the software 

designer to think of the processors as sharing memory, whilst the network gains all 

the benefits scalability offers. Such systems are aimed at the higher end of the 

distributed systems market and lack other factors such as flexibility, efficiency and 

cost offered by smaller scale parallel and distributed systems.

Real time embedded multiprocessor applications typically utilise distributed 

memory, to allocate storage to each processor for data unique to that node, utilising 

interprocessor communications to transport data required by other nodes. Real time 

applications cannot afford to hold up task execution due to memory access contention. 

Whilst the efficiency of memory access is important, the means by which it is 

transported to and from memory also plays a part in the performance of interprocessor 

communications.

2.2.2 Serial Vs Parallel Communication Links

As microprocessor technology has developed over the past few years, the width of 

the microprocessors data bus has increased from 8 through 16 and 32, to 64 bits wide. 

The decision on the optimum width of the communications links between processors 

depends on many factors, such as the network topology, architecture, speed, 

application and cost. Physically distributed systems minimise cost and clock skew, 

which can adversely affect speed, by utilising serial based communications. 

Embedded networks that occupy a very small space, for example communicating 

nodes situated on the same PCB, may benefit from parallel interconnections. Data 

throughput, a key feature in many embedded systems, is maximised by sending as 

much data in parallel as is practical.
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As clock speeds increase, synchronisation of the parallel data becomes harder as 

set-up times fall. This highlights an advantage of asynchronous communications, 

which are more suited to high-speed serial communications. Asynchronous data 

requires either an encoded clock signal to be sent with the data [58, 59] or receiver 

over-sampling at a higher data rate to recover the data [60]. Parallel communication 

links result in increasingly complex circuit board design and increased wiring space 

and costs, important factors in embedded system design. Whilst the medium used to 

transport data (serial or parallel) is important, one must also consider how the medium 

is utilised in terms of how data travels from inception to destination in the most 

efficient fashion.

2.2.3 Bus and Switch Based Network Topologies

Early embedded multiprocessor systems generally had a static or predefined 

network layout [5, 56] and used point-to-point connections between processors. The 

number of entities a processor could connect to depended on the numbers of 

communications links it possessed, a factor limited by practicalities, available silicon 

area and cost. Such networks were suited to particular applications dependent on the 

number of communications links per node. As this parameter could not be altered, 

there was little scope for flexibility, making these networks application specific. 

Regular network topologies benefited from reductions in cost and complexity but 

were only suitable for systems with specific communications patterns. An example of 

such a network [57] is shown in Figure 8. The processing entities are arranged in a 2 

dimensional ‘mesh’ topology to which each entity can connect 4 adjacent nodes via 

its communications links. Communications to other nodes must be forwarded via 

these and any other processors on the desired communication path. Early embedded 

networks used such ‘store-and-forward’ mechanisms. A message travelling from node 

1 to node 16, say, must be sent via 5 intermediate nodes, all of which must dedicate 

time and effort to forwarding this message instead of dealing with their own tasks. It 

is more desirable to have a dynamic network in which nodes can be placed anywhere 

in the system to suit the intended application. Such networks require arbiters or 

switches to make the decisions relating to routing messages to their required 

destination.
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Figure 8: 2-Dimensional ‘Mesh ’ Network Topology

Some multiprocessor systems use a global shared bus communications medium 

where only one communication can take place at any one time [50]. All nodes can 

access data on the bus, providing an effective means of transferring information to 

multiple entities simultaneously. A central arbiter is required to grant access to the 

bus. Some models, such as the PCI bus [20, 21], utilise a bus-mastering technique, 

whereby the node wishing to initiate a data transfer must first acquire ownership of 

the bus. Bus users are polled in turn on a ‘round robin’ basis to make requests for bus 

ownership.

Some systems, such as Ethernet [61, 62, 63], attempt to start bus access, only 

stopping when bus contention is encountered. A Carrier Sense, Multiple Access / 

Collision Detect (CSMA/CD) protocol is used, whereby on bus contention (where two 

or more nodes attempt to gain control of the bus simultaneously) both nodes suspend 

bus access for a period of time before attempting to re-establish control of the bus. All 

nodes can master the idle bus with the first one to do so gaining control of it and the 

other nodes must wait until this node has finished the bus transfer, before attempting 

to access the bus again. This approach wastes bandwidth and leads to low efficiency, 

which can be a valuable commodity in bus based systems.
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A more suitable shared medium based protocol for real time embedded 

applications is that of Reservation Carrier Sense Multiple Access with Collision 

Avoidance (RCSMA/CA) [64]. Access contentions are detected in the same way as in 

CSMA/CD but the contention slot is allocated to a transmitting node instead of 

allowing the bus to idle. This combines the benefits of the predictable performance 

token-based protocols, inefficient in light traffic conditions, with CSMA/CD, which is 

a poor choice for real time systems under heavy traffic conditions.

Bus systems usually suit closely coupled processor nodes. Networks utilising 

buses as a communications medium usually position nodes that access the bus 

physically close together as there is often a limited transmission distance. This is due 

to propagation delays on the arbitration signals wasting valuable bandwidth. Buses 

often operate in parallel, achieving very high bandwidth. This bandwidth must be 

shared amongst all the entities that can access the system, resulting in each having an 

effective bandwidth that is inversely proportional to the number of entities that can 

access the bus. This often results in bus access becoming the system bottleneck and as 

such bus networks do not scale well. Bus systems are low cost and offer low latency 

for closely coupled processors. The scalability and contention issues make buses less 

suitable for real time embedded multiprocessor communications as access cannot be 

guaranteed under heavy network traffic conditions. An additional disadvantage of bus 

based multiprocessor systems is the lack of tolerance to faults due to the 

communications medium becoming the single point of failure with the probability of 

failure increasing with the number of entities attached to the bus [45].

Point to point networks offer guaranteed bandwidth and low latency between two 

communicating entities due to the formation of an exclusive link between them. Point 

to point connections require no arbitration and cannot have access conflicts as there is 

only one message channel per physical link. The disadvantage of these is that 

optimally, every node would require a link to every other node in the network, which 

is unrealistic as the network size increases, due to extra resources being needed. For 

example, a network with n nodes requires each node to have n-1 communications 

channels in order to communicate with every other node in the network. This is an 

extremely inefficient use of communications resources, as any given processor will 

not be required to send messages to any other processor at any one time. Whilst point 

to point communications links are impractical for use in larger networks, they have
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been used effectively in the 3D Torus [57] topology used by the DEC Alpha Cray 

T3D supercomputer [56]. A more simple and cost effective method of achieving point 

to point links between two processor nodes is to utilise a switched network.

‘ Store-and-forward’ communications methodologies reduce the efficiency of 

intermediate nodes, as they must devote time and resources to receiving, storing and 

forwarding the message that would normally be devoted to program execution. Multi

hop communications that traverse more than one link, between the message origin and 

destination, incur massive latency increases compared to messages that only traverse a 

single link. This is due to the delay increasing proportionally for each link, plus delay 

incurred at each forwarding node.

Switched networks use message routing devices (routers) to pass messages 

throughout the network and allow for simultaneous transfer of messages, provided 

there is no contention for the destination node. No direct route exist between 

processors, with all communications routed via the router, allowing an entity with a 

single communications link connected to an n channel router to communicate with n-1 

other nodes. Adding more routers allows the network to scale exponentially whilst 

adding only one ‘router-hop’ or Rhop [23] per router. Routers utilising the full- 

crossbar architecture [65] allow n/2 bi-directional communications transactions to 

take place simultaneously, provided there is no contention for destinations, as shown 

in Figure 9. Switched networks scale well, guaranteeing bandwidth irrespective of 

network size or topology. System complexity increases exponentially as the number 

of connections increase and latency is worse than that encountered in bus based 

systems but better than that of the point to point networks. Tight and loosely coupled 

systems are supported equally well. Routing permits flexible or irregular networks to 

be formed where network layout is independent of size and application. Advances in 

silicon technology have enabled switching devices to be developed more easily than 

ever before and have aided research into network communications, much of which 

was aimed at switching topologies.
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2.2.4 Tightly Coupled Vs Loosely Coupled Processor Interfaces

The terms ‘tightly-coupled’ and ‘loosely-coupled’ refer to the level of integration 

between the processor and the interface with the communications network and 

represents a trade off between system performance and adaptability. Higher 

bandwidth and lower latency can be achieved by implementing the host system 

adapter of the network interface onto the same silicon as the processor itself. 

Processing nodes that utilise such a ‘tight’ approach include Transputers, iWarp [66, 

67] and MDP [68]. Closely coupled communications may seem desirable, particularly 

in compact embedded applications where space is at a premium, until one takes into 

consideration the rapid pace of development in the microprocessor market. Advances 

in the network interface must track those of the processor in order to prevent the 

interface becoming the performance bottleneck of the system. Enhancements to either 

the processor or interface may or may not require modifications to the other device, 

but if both are implemented on the same silicon, the layout for both must be 

redesigned. A loosely coupled processor interface allows the designer to utilise IP
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when upgrading either device. Recent advances in PLD technology have resulted in 

software based processor core [69] implementation with the remaining logic resources 

devoted to the design of an easily modifiable tightly coupled processor interface. 

Closely coupled communications are often suited to parallel bus based 

interconnections whilst loosely coupled systems are often targeted towards serial 

links, subject to bandwidth availability.

The success of a tightly coupled processor interface is measured in its efficiency. 

As a rule, greater performance is achieved through closer integration between the 

processor and the interface, but at a cost of lack of flexibility. Interfacing to the 

processor memory bus or its cache controller can integrate the processor and network 

interfaces more closely. There are other methods of increasing performance without 

sacrificing flexibility, such as alterations to the interface medium.

2.2.5 I/O Bus Based Interfaces Vs Memory Bus Based Interfaces

A network interface can connect to the microprocessor and its memory via either 

the system I/O bus or the system memory bus. The I/O bus connection allows the 
interface, and thus the network, to be connected to any processor with such an I/O 

bus, affording close tracking of processor technology. This is a particularly favourable 

solution when interfacing PC’s / workstations to the communications network. I/O 

bus based systems can also be developed relatively inexpensively in comparison to 

network interfaces utilising proprietary system adapters. The disadvantage of such an 

interconnection strategy is the competition for I/O bus access with other users of the 

bus. If the interface is unable to obtain a fixed interval bandwidth from the I/O bus 

arbiter, the data throughput of the interface will be compromised. Additionally the 

performance of the I/O bridge, responsible for handling I/O bus transactions, is 

variable due to wide variations in overhead, bandwidth, and hence latency, between 

different PC chipsets. Despite such vague implementation parameters, many recent 

parallel systems, such as Myrinet [70] and SHRIMP [71], use I/O bus based interfaces 

due to the flexibility obtained from using current, state-of-the-art, low cost, easily 

upgradeable PC / Workstation processing elements in such systems.
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A system utilising the processors memory bus, as its connection between the 

processor and network interface, forms a more tightly coupled architecture than that 

of the I/O bus based system, even if the processor and interface are physically 

distributed on separate IC’s. The performance is enhanced for three reasons:

• Messages originate from, or are destined for, memory that is accessed via the 

memory bus. Overheads are reduced if the message does not require transferring 

from the I/O bus to the memory bus, thus reducing latency.

• The memory bus normally operates at a higher data rate than the I/O bus, boosting 

bandwidth.

• The memory bus usually has fewer devices accessing it, thus reducing bus 

contention.

Memory bus based systems can be viewed as a compromise between the tightly 

coupled integrated processor systems where the processor and interface occupy the 

same IC, and the loosely coupled I/O bus based systems, as they afford both 

performance gains and flexibility. A disadvantage of memory bus based systems is 

that they must not impede the processors access to the memory bus, as this would 

affect the processor efficiency. Cycle stealing DMA is often used by such systems to 

access memory as it utilises unused processor cycles, minimises bus congestion and 

increases efficiency despite incurring initial overheads. Tailoring individual accesses 

to the transfer size with burst mode DMA can make further gains in efficiency. The 

MAGIC network controller, utilised in the FLASH multiprocessor [72], utilised the 

closeness of communications provided by a memory bus based network interface 

whilst maintaining flexible support for both message passing and shared memory 

models, with little performance loss [73].

2.3 Hardware Router System Comparison

2.3.1 ICR-C416 Based Systems

The ICR-C416 is a 16-channel dynamic hardware routing switch developed by the 

parallel processing research group at The Nottingham Trent University and 

subsequently marketed by IC Routing Ltd for use in distributed control applications
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requiring fast and flexible connections between first generation Transputers [5]. The 

router switch architecture allows up to 8 simultaneous bi-directional messages, 

provided there is no resource contention. Each of the 16 links consists of a pair of 

serial, asynchronous, full duplex lines transferring data at rates of either 10 or 20Mbits 

per second. As data transfer is asynchronous, no clock information is encoded into the 

data stream and the receiving node uses an over-sampling (OS) technique to recover 

the data. Data is transmitted to and from the router in token form, with each token 

consisting of 11 bits. These are: a logic 1 Start bit, logic 1 ID bit, a data byte and a 

logic 0 Stop bit. The communication links employ a credit-based stop-and-wait flow 

control mechanism, requiring the acknowledgement of every token before the next 
can be transmitted. The 2-bit acknowledgement token consists of a logic 1 Start bit 

followed by logic 0 ID bit.

The maximum theoretical unidirectional data throughput is 14.55Mbits/s or 

1.82MBytes/s at a 20Mbits/s data rate [74]. Bi-directional data requires the 

acknowledge tokens to be inserted into the bit-stream between data tokens and 
increases the number of bits that need to be transmitted over the communications link 

in order to convey a byte of information, referred to hereafter as ‘bits per byte’, from 

11 to 13. In theory, this gives a maximum bi-directional data throughput of 

3.08MBytes/s at 20Mbits/s but in practice the system has been shown to take up to 17 

bits per byte [5]. This parameter is dependent on factors such as transmission length, 

network traffic and receiver buffer status. Messages in the ICR-C416 network are 

divided into 256 byte packets. The maximum message length is 64kBytes.

The packet format of the ICR-C416 system adheres to a Header, Length, Payload 

format. Headers can be multiple bytes with one routing header for each of the routers 

that the message passes through and one message header to identify to which message 

that packet belongs. Routing headers are stripped as the message traverses the router 

network and the last header byte is identified by an MSB of 0, indicating to the 

receiver that the next byte contains the length information for that packet. The router 

network utilises wormhole routing to minimise buffering requirements.

The ICR-C416 could not transmit link status information within the data stream, 

relying on a control port to monitor faults. This utilised a bi-directional OS link 

channel separate from the data stream. The control ports enabled a network controller
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to configure, monitor and control the devices. A basic mechanism for detecting stalled 

messages was achievable, whose response to such faults was to issue a global reset. 

This approach did not scale well due to its design being targeted towards single router 

networks. The controller required a dedicated link to each router and interface in the 

network, requiring increased overheads, circuit complexity and a proportionate 

increase in fault detection and intervention times as the network scaled. The dedicated 

link was required because the data transmitted along the control link was not 

packetised and, as such information from one source was not distinguishable from 

another.

In summary, the ICR-C416 is a simple, flexible, low cost solution for 

interprocessor communications for irregular embedded networks. It operates at a 

slower link speed than many comparable networks but its generic format suits many 

applications. Minimal wiring and low pin counts are considered advantageous in 

physically distributed networks. When differential transceiver circuits are fitted, the 

network has been proved to operate with a bit error rate of 3.6 x 10'12 at a data rate of 

44Mbits/s over 100m of Cat 5 unshielded twisted pair cable [75].

2.3.2 STC-104 Based Systems

The STC-104 [76, 77] was developed by SGS-Thomson as a routing switch aimed 

at the second generation T9000 Transputer series. It has 32 bi-directional serial 

communications channels and each channel consists of two pairs of serial, full duplex 

links, one pair per direction. The links utilise the Data Strobe (DS) links protocol, 

doubling the wiring requirements for each channel. The Data and Strobe lines carry 

data together with an encoded clock signal used by the receiving node to synchronise 

incoming data. Data rates of up to lOOMbits/s are achievable. Data tokens are 10 bits 

long, consisting of a parity bit, a logic 0 ID bit and a data byte. Four bit long control 

tokens consist of a parity bit, logic 1 ID bit and two bits determining the nature of the 

control token. Theoretically a maximum unidirectional data rate of 80Mbits/s or 

lOMBytes/s is achievable.

Like the ICR-C416, a credit based stop and wait mechanism is utilised but the 

number of tokens that can be sent before an acknowledgement token is required is
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increased from 1 to 8, permitting a maximum bi-directional bandwidth of 

19.05MBytes/s. Messages can be split into packets but there is no limitation on 

packet size. Messages and packets follow the Header, Payload, Termination token 

format, with the latter indicating either end of message or packet. Message movement 

inside the router utilises virtual channels [78] and transfers along these channels 

require acknowledgement. Unlike the ICR-C416, which possessed little hardware 

error detection, the STC-104 checks the parity of each token and the DS links provide 

an inherent disconnection error detection mechanism, as either the data or strobe lines 

must change state every clock cycle. These oscillations occur even when there is no 

data to transmit increasing power consumption.

In summary, the STC-104 was one of the highest performance routers available 

and has managed to remain in demand long after the demise of the T9000, due to the 

DS links protocol being incorporated into the IEEE-1355 standard [79]. DS links are 

aimed at systems with distances between nodes of up to 1 metre, increasing to 10 

metres if differential drivers are used and 500 metres with fibre optics.

2.3.3 Myrinet Based Systems

Myrinet, developed by Myricom [80, 81], is a switched network originally 

designed for use within Massively Parallel Processor (MPP) systems. Myrinet built 

upon the results of two earlier research projects; the Caltech Mosaic multicomputer 

[82], and the ATOMIC LAN, [83, 84] which comprised Mosaic components. The 

ATOMIC LAN had some similarities with the ICR-C416 network, most notably, the 

adoption of the credit based flow control mechanism. Like the other two routers 

examined, wormhole routing is utilised and devices are available with 4, 8, 16 or 32 

bi-directional communication channels. A single channel consists of 9 foil duplex 

pairs of wires, transferring data in parallel at a frequency of 80MHz, or 720Mbits/s 

per channel. A Myrinet message consists of a series of 9 bit parallel characters, with 

each character being either an 8 bit data byte or 5 bit control token. No start or stop 

bits are required, boosting bandwidth efficiency further. This gives a maximum 

unidirectional data throughput of 640Mbits/s. A foil duplex pair of 640Mbits/s 

channels is referred to as a 1.28Gbits/s link. 10 and 100 Base-T Ethernet use such
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figures to determine bandwidth despite the fact that Ethernet channels only transfer 

data in one direction at any one time [30].

Interprocessor communications in Myrinet systems are asynchronous, with 

receivers employing a pipeline-synchroniser circuit [85] to recover the data. 

Cumulative signal skew effects limit the maximum distance between nodes to 25m for 

cable connections but fibre optics enable the realisation of more physically remote 

systems. Non-retum-to-zero (NRZ) encoding and a sampling window technique 

enable bit error rates of the order of 10'15 over 25m cables to be achieved. The worst 

case (path formation) latency through an 8 port router is quoted as 550ns [30].

Unlike the ICR-C416 and STC-104 systems, Myrinet utilises a permission based 

flow control mechanism that does not require acknowledgement of characters before 

transmission of the next character can begin. This approach allows back-to-back data 

transmission to be achieved and, if receiver buffer throughput is maintained bi

directional data rates of 160MBytes/s are achievable. The packet fonnat is similar to 

that used by the STC-104, which is Header, Payload, and Termination (the 

termination can also contain a CRC checksum). The header can be of variable length 

and follows the same technique as the ICR-C416 to denote end of header, with the last 

header character indicated by an MSB of 0 instead of 1. Header stripping techniques 

are employed at each router. Fault detection and correction exists in the form of a 

50ms link time-out period after which a Forward Reset (FRES) token reinitialises the 

link. Myrinet offers very high bandwidth in comparison to the other systems studied 

due to the parallel nature of communications, but at a cost of increased wiring and 

connections (a single 32 port switch has over 900 pins).

2.3.3.1 M yrinet/PCIHost Interface

The Myrinet system is of particular interest as it possesses commercial interface 

hardware to link PCs / workstations to Myrinet routers. The interface contains a 

custom designed processor [81], host system interface and memoiy. The processor 

can be programmed to handle different communication protocols. The interface 

significantly reduces the PC’s involvement in packet transmission to achieve low- 

latency communications.
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2.3.4 The Reliable Router

The Reliable Router [86] was designed solely for use in high performance parallel 

systems, as were its contemporaries, the Chaos router [87], and the WARRP [88]. 

Whilst its target applications are very different to those of the Transputer based 

networks studies, it is worth noting for its refinements in features and functionality. 

The Reliable Router utilised 28 transmission lines per bi-directional channel, 

including 16 data lines, 8 control lines and 4 clock lines. The links were bi-directional 

to reduce the pin count, but permitting communications in one direction only at any 

one time. To compensate for this the links were capable of operating at bit rates of up 

to 3.2 Gbits/s, utilising a streamlined switching technique to maximise throughput and 

minimise delay along the message path. The Reliable Router was designed for board 

level or backplane level systems, where the distance between nodes was minimal due 

to the network being targeted at very high bandwidth parallel processing applications. 

Plesiochronous data recovery [89] was employed, the transmitting clock was sent with 

the data, then decoded and used to read the received data.

Unlike the ICR-C416 based system, which thrived on a minimal protocol, the 

Reliable Router utilised a complex data format required in very high bandwidth 

systems. Data transfer occurred in parallel, but four consecutive transfers were used to 

assemble a ‘frame’ of data. Each frame included 16 bits of data plus 8 control bits, 

three of which were parity, one for each data byte, one for control information. This 

may seem excessive, but it should be considered that the bit rates and synchronisation 

techniques of the Reliable Router were revolutionary at the time. The Reliable Router 

had four channels plus one control channel, with each physical channel possessing 

five 16 deep, 75 bit wide buffers, as it could implement up to 5 virtual channels. A 

‘permission to release’ buffering mechanism prevented the overwriting of a buffer 

until its contents had been successfully transferred ahead. This permitted frame 

retransmission following failure. Though implemented at a cost of massive buffering 

increases, fewer resources were required than with the 32 channel STC-104. Virtual 

channels had also been used up to this point in regular networks to implement 

deadlock avoidance and adaptive routing mechanisms.
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The Reliable Router utilised a Unique Token Protocol (UTP) in conjunction with 

the flow control mechanism. Data transfer was confirmed on a per-hop basis, 

removing end-to-end acknowledgements and thus distributing the responsibility for 

ensuring message arrival amongst the network resources, in addition to providing a 

scalable transmission media. Resources were only released when the flow control 

system was certain of the delivery of the flow group, whose integrity was ensured 

upon receiving a unique token (which followed the packet) acting in a similar manner 

to a termination token. If a link failed during packet transfer, each part of the message 

could continue to the destination node, appended with a modified token highlighting 

the error and requiring routers to store the routing header for the duration a packet was 

active. Message reconstruction could take place given the severed message, modified 

token and other packet information, presumably using the software layers of the 

protocol. This highly complex, flow control based, fault handling mechanism attempts 

to minimise the overheads of fault recovery by including enough information within 

the transmission to enable message reconstruction. One can assume that for such an 

approach to he viable, the frequency of failure was high enough to warrant 

transmission of such a great number of extraneous non-data bits in each message. 

Such a premise is similar to that of deadlock avoidance versus deadlock detection and 

recovery schemes, where the overheads of the latter is preferable when compared with 

the penalties imposed through the routing restrictions of the former. Whilst the 

Reliable Router is clearly unsuitable for the target applications of this research, 

important lessons can be learnt in terms of the recovery-based fault tolerance 

implementation in the data stream and its merits.

2.4 Interfacing to PCs -  The PCI Bus

Most processors need to communicate with peripheral components and the outside 

world by some means or other and to this end a plethora of communications standards 

and protocols have been developed, some communicating data serially, others in 

parallel. This section reviews some of the communications protocols utilised by PCs, 

focussing mainly on the PCI bus [32, 33].

Serial PC interfaces include the IEEE 1394 (Firewire) standard [90, 91], Serial 

ATA [92] and Universal Serial Bus (USB) [93, 94]. Parallel interconnection methods
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are preferred where bandwidth is crucial, especially when it is recalled that access to 

these bus based communications media must be shared amongst all of the devices 

attached to that bus. As modem, graphic oriented PC applications require large data 

transfers, so the interface to the PC becomes the bottleneck. As processors tend to 

operate at substantially higher clock frequencies than their associated I/O buses, it 

makes sense to provide a bus that operates at the same speed as the CPU, which is the 

essence of the local bus. A local bus moves peripherals from the slower I/O bus and 

places them closer to the processor’s system bus that permits faster data transfer to the 

processors memory. The PCI local bus is becoming the most popular in modem PCs. 

It is not directly dependent on the speed or size of the processor bus and offers 

expansion as processors develop.

Many types of expansion bus have been developed, some have become 

standardised, and others are targeted at particular applications or particular platforms. 

With a variety of different buses on offer, the bus selected should be fast, cheap and in 

common use.

Several bus systems, used in various different processor configurations, have 

been compared [95], identifying the PCI bus as the most suitable for the three criteria 

specified above. The ISA bus [96], used in PCs, is cheap and in common use, but 

suffers in terms of performance and can only be used with x86 processors. The MCA 

[97] and EISA [98] buses are fairly fast with data transfer rates of up to 20MBytes/s 

and 33MBytes/s respectively, but are not widely used. The former is moderately 

expensive and only used in IBM computers whereas the latter is expensive and can 

only interface to x86 processors, in addition to being held back due to backwards 

compatibility with the ISA bus, limiting its bandwidth to 33MBytes/s. The industrial 

VME bus standard IEEE 1014-1987 [99] can be used on any platform, has a 

bandwidth of 20MBytes/s, fairly common but suffers from costs which whilst 

acceptable for large scale industrial applications, are excessive for most PC users. The 

PCI bus is ubiquitous, being included in virtually every modem PC, very cheap, very 

fast and has no limitations in terms of target platforms. Unlike some of the other 

buses, such as the ISA bus, it is also a recognised standard [33].

When selecting an interface medium to link to the SARNet, during development 

of the PCI-OSLi, as discussed in section 1.2, it was considered that the shared nature
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of the PCI bus was offset by its high bandwidth, relative to the serial router link. In 

the implementation of the PCI, the 32 bit parallel bus operating at a 33MHz-bus rate 

gave a throughput of 132MBytes/s. Higher data throughput is achievable by 

increasing either the width of the PCI bus to 64 bits or the operating speed to 66 MHz, 

giving total data throughputs of up to 528MBytes/s. The ISA bus throughput of 

16MBytes/s, whilst higher than the 3.08MBytes/s achieved by the credit based ICR- 

C416 protocol at 20Mbits/s was considered too low, given that the bandwidth must be 

shared amongst all the other devices connected to the ISA bus. Given the proven 

ability of the ICR-C416 to operate at data rates up to 44Mbits/s, giving a theoretical 

maximum throughput of 3.38MBytes/s, the higher data rate and enhanced technology 

of the PCI bus was strongly favoured during development of the PCI-OSLi. The same 

argument applies when interfacing the PC to the NTR-FTM08 router network via the 

FT-PCI-OSLi.

The PCI bus has the following characteristics:

• The processor and bus are coupled via a bridge separating the processor and its

main memory from all other devices attached to the bus.

• Arbitrary length DMA burst transactions are synchronised to the rising clock edge 

of the PCI bus clock.

• Address and data buses utilise the same physical connections, and therefore 

require multiplexing. Only 49 pins are required for the 32-bit bus implementation, 

reducing connector and chip sizes and pin counts.

• Supports ISA / EISA and MCA buses via an interface to the expansion bus.

• Configurable through software and registers.

• Platform independent specification.

2.4.1 PCI Bus Operation

Data transfer operations on the PCI bus occur between two devices attached to the 

bus, known as PCI agents, as shown in Figure 10. The agent that requests the transfer 

is known as the initiator, or master, whereas the recipient is referred to as the target, or 

slave agent. By definition, a target cannot initiate the transfer. A PCI data transfer has
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similarities to a DMA transfer, where data is written directly to or from the system 

memory. The PCI master initiates the transfer to acquire ownership of the bus as is 

necessary to access the system memory in a technique termed bus-mastering. The 

bus-mastering technique allows data transfer between the system memory and the PCI 

agent without involving the host system, freeing it for other purposes.

Processor Bus
Memory bus

PCI Local Bus

PCI Agents

Expansion Bus (ISA/EISA)

RAM

AudioMotion
Video

I/OI/O

Microprocessor

LAN AdapterAudio / Video 
Expansion

Memory

Expansion Bus 
Interface

Graphics Adapter

PCI Bridge

Figure 10: A typical PCI bus arrangement

Arbitration of the PCI bus is performed separately for each access, preventing an 

initiator from holding up the bus between accesses (which can occur with the EISA / 

MCA buses). A burst transfer is seen as a single access in arbitration terms. 

Arbitration can be performed whilst the bus is still running, preventing it from 

reducing the bus bandwidth. A central arbiter receives requests from each initiator and 

grants control of the bus. Control must be assumed, in the form of starting a transfer 

within 16 clock cycles, otherwise access is surrendered and an error flagged. The PCI 

specification leaves the arbiter implementation to the system designer rather than 

specifying a particular model.
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The PCI bridge is far more intelligent than the bus controllers used in the ISA / 

EISA and MCA buses and can optimally co-ordinate CPU accesses to the addressed 

PCI unit. The PCI bridge can effectively function as a fast buffer between the initiator 

and the target, synchronising those devices, and permitting the bridge to translate a 

single CPU access into a PCI burst.
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3 FAULT TOLERANCE

The specification for the features aimed at improving the tolerance to faults 

possessed by the FT-PCI-OSLi and FT-SARNIC was determined by implementation 

of these features in the NTR-FTM08 router. This section of the thesis defines the 

mechanisms employed by the router to achieve a robust communications medium and 

their operation. Fault detection and recovery in the ICR-C416, STC-104 and Myrinet 

routing networks is reviewed to compare and highlight the increased functionality 

gained through utilisation of the NTR-FTM08 network.

3.1 Overview

Network failure can be classed as either ‘hard’ (permanent) or ‘soft’ (transient) 

[52]. Failures are initially treated as transient, as the higher levels of the system 

attempt to recover from the fault by trying to repeat the failed action. Failure to 

recover indicates the presence of a hard fault that must be isolated and bypassed. A 

fault in wormhole routing networks [22, 34] will result in the network stalling as 

progress depends on available buffering resources. The inability of a message to make 

progress directly affects all other messages, as they require the use of the storage 

resources occupied by the stalled message.

In the event of a fault occurring, one can either attempt to work around the fault or 

fix it. Much of the research associated with fault tolerance in parallel processing 

systems has focused on adaptive routing algorithms [100], which enable network 

traffic to bypass permanently disabled links by finding alternate paths through the 

network. Such action is possible due to the fixed, regular layout of such network 

topologies as the 2D-mesh topology, commonly utilised by Transputers. No attempt is 

made to fix the fault and return the network to its full operational capacity; hence 

traffic increases on the remaining operational links. Multiple faults may eventually 

bring the network to the point where it would be more productive to reset it. Adaptive 

routing algorithms facilitate network operation in partially disabled networks. The 

NTR-FTM08 router, like the ICR-C416, utilised Group Adaptive Routing [60] to
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allow the user to configure network-specific node groupings, permitting multiple 

paths to avoid failed links.

Irregular networks, such as those employing routers and including the target area 

of networks in this research, have a myriad of possible network topologies, further 

complicating the use of adaptive routing algorithms. Adaptive routing algorithms 

must ensure that deadlock cannot occur as a result of their action as this results in the 

effects of the fault becoming far more widespread. In such networks a more 

productive solution would be to restore the network to a fully functional operational 

status as soon as possible. This requires the detection, isolation and removal of faults 

by the network constituent parts. Many earlier switched networks ignored the 

possibility of hardware failure and incurred large overheads due to their reliance on 

software layers to provide fault tolerance.

Minimal adaptive algorithms, such as Group Adaptive Routing [101], can easily 

be incorporated into irregular networks. Group Adaptive Routing is used in the ICR- 

C416 and NTR-FTM08 based routing networks, where there is a limited control over 

possible alternate routes. Group adaptive routing maximises link bandwidth by 

spreading network traffic over as many links as possible, allowing the easing of 

bottlenecks and improving a network’s cross-sectional bandwidth [102].

3.2 Fault Detection

The NTR-FTM08 router provided hardware support to detect and isolate faults, 
reduced software overheads and increased system reliability and robustness. The 

NTR-FTM08 network ensured that when errors occurred, they were isolated and their 

effects were prevented from propagating through the network. This section of the 

thesis identifies the types of faults detected by the NTR-FTM08 and thus defines the 

fault detection requirements for the FT-SARNIC and FT-PCI-OSLi interfaces.

The previous OS links based ICR-C416 network, with the SARNIC and PCI-OSLi 

interface, possessed no means of error detection within the token format. Group 

adaptive routing enabled blocked links to be bypassed but the lack of error detection 

and isolation meant the network might stall before the fault was isolated and a detour

- 44-



Fault Tolerance

could be taken. The system could be monitored via the control port of the ICR-C416 

but, as only a single control port monitored the system, reaction and intervention 

times increased proportionally with system size and as such the solution was not 

scaleable.

The modified OS links based protocol, employed by the NTR-FTM08 routing 

network and utilised by the FT-SARNIC and FT-PCI-OSLi, provided a means of 

verifying link functionality and offered protection against several failure scenarios. 

Instead of a single, centralised, fault monitoring system, the responsibility for fault 

detection and recovery was shifted from a global solution to a local one, where each 

communications link was monitored by the two nodes at either end. This allowed for 

a fully scaleable, decentralised network with improved tolerance to faults.

The enhanced fault detection and recovery solution provided by the NTR-FTM08 

network addressed several possible causes of network failure [103, 6], including:

• Buffer overflow

• Retaining Link Confidence

• Loss of an acknowledge token

• Disconnected network connection

• Message Delivery Errors

• Packet arrival out of order

• Incorrect message length

• Synchronisation errors

• Delivery of message to the wrong address

• Undeliverable messages

• Deadlock detection and avoidance

3.3 Buffer Overflow

When data was received but there were no free resources to accept the data, the 

buffer overflowed, resulting in either ‘spilled’ or overwritten data. Such a situation 

resulted in the loss of part or all of a message, which in certain systems was
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undesirable, and in others fatal. Point to point networks could order the retransmission 

of the message but this was impractical, if not impossible, in multi-router networks, as 

the node ordering the retransmission was ignorant of the origin of the lost message 

(beyond the link the node received the message on). Even in point to point networks, 

ordering a retransmission might not have been possible due to the nature of the error. 

As there was insufficient space in the receiver buffer for the incoming message, 

existing data, which was part of another message, was overwritten by the incoming 

message. As the incoming message replaced the existing data, the receiving node 

treated it as part of the existing message and might not have been aware there was a 

new message or that it was erroneous and thus a retransmission would not be 

requested. The easiest way to prevent buffer overflow was to ensure there was always 

sufficient buffering resources available at the receiver before transmitting data.

3.4 Flow Control Protocols

3.4.1 Credit Based Flow Control

Credit based flow control is a stop-and-wait data handshaking procedure in which 

data transmission is prevented until acknowledgement of the receipt of the previous 

data is received, informing the transmitting node that sufficient buffering resources 

are available at the receiver. This flow control method was used in OS and DS [79] 

links and the OS link based protocol used by the ICR-C416 router and SARNIC and 

PCI-OSLi interfaces. An acknowledgement token was returned for each 'frame' of 

data received, as Figure 11 demonstrates. For OS and DS links, a frame of data was 

set at 1 token and 8 tokens respectively. An 11 bit token consists of a logic 1 start bit, 

an ID bit, 8 data bits and a logic 0 stop bit. The ID bit was logic 1 for data tokens and 

logic 0 for acknowledge tokens. Acknowledge tokens were just 2 bits long, and 

consisted of a logic 1 start bit and a logic 0 ID bit. Transmission of subsequent tokens 

was suspended until the transmitting node has been made aware that the previous 

token had been recognised by the receiver. Back-to-back data transfer could occur in 

unidirectional credit based data transfer, as Figure 11 shows, but bi-directional 

transfers required the interleaving of acknowledge tokens between data tokens, 

reducing the bi-directional throughput, as shown in Figure 12.
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Figure 11: Unidirectional Data Transfer Using Credit Based Flow Control
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Figure 12: Bi-directional Data Transfer Using Credit Based Flow Control

Thirteen bits were required for every byte of data transferred over the serial ICR- 

0416 link with the acknowledge token contributing to the duration of the data token. 

Unless the transmission of an acknowledge token occurred the instant the received 

token arrived at the receiver, transmission of the next data token was delayed until 

receipt of the acknowledgement, thus taking in excess of 13 bit periods to transmit a 

data byte, as discussed in section 2.3.1. Failure of the credit based flow control 

protocol to achieve 13 ‘bits per byte’ transmission resulted in idle periods on the 

transmission link and reduced the link efficiency. The minimum 13 bits per byte 

transmission also assumed zero delay across the transmission medium and, more 

significantly, the transceiver chips. Figure 12 shows how ICR-C416 bandwidth could 

be wasted because the transmitter could not send out the next token until arrival of an 

acknowledge token.

Hence, in practice, the implementation of the OS Links protocol in hardware 

would not achieve 13 bits per data byte bi-directional transfers. It was documented
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that Transputers, utilising the OS Links protocol, could demand up to 17 bits per data 

byte for bi-directional data transmission [5].

A major shortcoming of the credit based flow control mechanism was the 

problems incurred with the loss of a control token. As the transmission of subsequent 

tokens relied on the receipt of an acknowledgement, the transmitter would assume that 

the receiver buffer was full, whilst the receiver would assume that the transmitter had 

run out of data to send. The result would be a stalled link, which cannot be detected 

and whose operation could only be restored following the reset of the link.

3.4.2 Permission Based Flow Control

The issue of link stalling, in addition to the loss of bandwidth incurred in the 

transmission of acknowledgement tokens, led to the development of an alternative 

method of controlling communications. This method, also referred to as Stop/Go or 

Xon/Xoff flow control, permitted back-to-back data transfer, subject to the receiver 

buffer being able to handle the incoming data stream. It was utilised by the Myrinet 

[70, 80, 81] message-passing network from Myricom for communications within 

Massively-Parallel Processors (MPPs) and is also prevalent in point-to-point 

networks.

Figure 13 demonstrates the flow of data between processors across the NTR- 

FTM08 communications network, using a permission based flow control protocol to 

dictate when the communicating entities could transmit data tokens. Initially, a Go (or 

Xon) token was transmitted when the node was ready to receive data. The Go token 

was one of the new flow control tokens, denoted by an ID bit set to zero. The other 

side of the link transmitted data tokens back to back, requiring no acknowledgement 

before subsequent tokens were transmitted. Once the number of tokens stored in the 

receivers buffer reached a predetermined figure, the receiving node sent a Stop (or 

Xoff) token to the other side of the link, to inform the transmitting node to 

temporarily suspend data transmission. The receiving node could then clear the 

backlog of tokens stored in its receiver buffer. Once the number of tokens in the 

receiver buffer fell below a certain level, the receiving node sent a Go token to the 

transmitting node, informing it to resume transmission.
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Figure 13: Unidirectional and Bi-directional Permission Based Flow Control

The amount of data throughput across the link was dependent on the ability of the 

receiver to keep data flowing through its buffer. Theoretically, the receiver could 

prevent the accumulation of a token in its buffer by passing it through, for transfer to 

memory, before the next token entered the buffer. Hence, the maximum data rate 

depended on the rate at which data could be sent down the transmission medium, 

which was determined by the clock speed. However, in practice the receiver may not 

be able to transfer the data to memory as fast as it would like. If the receiving node 

was another router, it might not be able to output the incoming data to its destination 

as that particular output could be in use. Grouped adaptive routing could reduce the 

likelihood of this occurring, but not eliminate it completely. If the receiving node was 

a processor interface, such as the SARNIC, the data may have to wait to be transferred 

to memory, if the memory was being used. This was because it utilised cycle stealing 

DMA transfers to access memory where the processor always assumed a higher 

priority. Other factors that could impede the receiver, in the ejection of tokens from its 

buffer, included: faults on other links, delivery of messages to the wrong destination, 

synchronisation and framing errors resulting in corruption of data and undeliverable 

messages monopolising network resources.
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When the link was in the 'Go' mode of transmission, only 11 bits were required to 

send each data byte, due to the lack of acknowledge tokens. This meant that the 

maximum amount of data present in each token (Number of data bits / total number of 

bits) increased from 61.5% to 72.7%. A disadvantage of this protocol was that it was 

harder to calculate data throughput for any given time as it depended on suspension of 

transmission, which in turn is dependent on many factors.

The Stop, or Almost Full (AF) [37] and Go, or Almost Empty (AE) [37] values 

determined the efficiency of the protocol, most notably the difference between these 

two values. If they were too close together, the link spent more time than necessary 

with link activity suspended. If they are too far apart, the link was not as responsive as 

possible to variations in network traffic, wasting the network’s bandwidth. For a link 

to be operating at its most efficient, the receiver should always have some data to 

process, and should never have to suspend link operation, due to there being too much 

data to process.

3.5 Retaining Link Confidence

For a communications link to operate successfully, both end nodes must always be 

aware of the current state of the link. Link activity can be monitored, indeed certain 

systems, such as IEEE Std. 1355-1995 (DS Links), require constant signal activity in 

order to operate successfully, as clock recovery data is encoded into the data and 

strobe lines. The OS links based system utilised by the ICR-C416 based system did 

not require such activity and in the absence of data to transmit, the line was dormant. 

In fact there was no way of distinguishing between a dormant link and a faulty link. 

One possible way of overcoming this was to provide a status check on the link in the 

absence of data. A control token could be used for such a purpose but by using the Go 

and Stop flow control tokens further information about the link status could be 

conveyed. Continuous transmission of link activity signals increased power 

consumption and noise and was unnecessary. So it was more efficient to transmit such 

tokens periodically, signalling an error if further activity had not occurred since the 

last status token, whether in the form of data or another status token. Such tokens 

were referred to as Heartbeat tokens and were used in the NTR-FTM08 to detect 

disconnection errors. Following such errors, the link must be reset in order to re

establish the disconnected link. This was done by a handshaking mechanism, whereby
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the first node to detect such an error sent a ‘Connection Request’ token. This was 

repeated periodically until the connection request token was received, indicating the 

restoration of the channel between the two nodes.

Heartbeat tokens meant that the loss of a Go token did not lead to the link stalling 

as retransmission occurred after another time-out period had elapsed. The only loss 

incurred was in terms of bandwidth. The loss of a Stop token was more serious. 

Another would be transmitted but the receiver buffer might have filled by the time the 

time-out had elapsed and the next Stop token sent. Expanding the receiver link 

interface buffer to be able to accommodate the loss of a single Stop token could 

require up to 32 more buffer locations above the AF level to store the data tokens that 

could arrive before the next Stop token. There was no guarantee that the second Stop 

token would not be lost also, so this precaution was not really worth the resources 

required in implementation.

3.6 Message Delivery Errors

3.6.1 Packet Arrival Out of Order

Long messages could be split into multiple packets to prevent monopolisation of 

system resources by a single message. In multi-router networks with Group Adaptive 

Routing, where many possible paths between source and destination existed, uneven 

network loading could result in a packet reaching the destination before its 

predecessor. Such a scenario could also occur if an earlier packet was lost or stalled 

during transit across the network. This would result in the message being reassembled 

in the wrong order, leading to the data being incorrectly interpreted.

A solution was to ensure that the data arrived in the same order that it was sent; 

alternatively to number the packets so that they were rearranged into the correct order 

by the receiving node. Numbering packets could be a problematic solution for three 

reasons:
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• Numbering packets required another header byte, which would need to be 

distinguishable from routing and message headers. The header contained the 

message ID, which is identical for all packets in the message.

• An alternative packet numbering strategy was to assume that few packets from 

any message were actively in transit across the network at any given time, and 

assign a single bit, set on alternate packets to identify a packet relative to the 

packets either side of it.

• If an out of order packet was detected, it could not be removed from the network, 

as it was still required. Therefore it must be stored until the expected packet(s) 

arrived at the receiver. When the out of order packet was the next in sequence, it 

could be transferred to memory from the system. However, if a packet were 

removed from the network due to an error, the next packet in the sequence would 

not arrive. Hence the receiving node, unaware of this, would store every packet, 

utilising massive buffering resources.

A lesson from the ICR-C416 network protocol was that 256 bytes was an adequate 

packet length for small control messages of the type used in the Transputer based 

control applications it was designed for use in. For larger data communications, of the 

type favoured by microprocessors such as the SA-110 and the PC, it increased 

overheads, as multiple packets were required to send relatively small messages. An 

alternative solution [37] was developed which allowed the user to dictate the 

maximum packet size and also to allow an entire message to be sent in a single 

packet. This affords the user greater flexibility in network operation by giving them 

the option of sending a message in a single burst, reducing overheads, or splitting it to 

share resources.

3.6.2 Incorrect Message Length

This error occurred when tokens were lost or incorrectly sampled. In the OS links 

based protocol employed by the ICR-C416 based network, packets had no ‘end of 

packet’ delimiter. Once a message channel was set up to sample incoming data 

tokens, all incoming tokens were assumed to be part of that packet until the counter
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reached zero, to indicate end of packet. In the lost token scenario, illustrated in the 

ICR-C416 network depicted in Figure 14, packet 1 has one missing token. As the last 

token from packet 1 is received, the count is not zero, so the first few tokens from 

packet 2 are assumed to belong to packet 1 and are assigned thus. The next tokens 

from packet 2 are interpreted as packet 2’s header and if they are not what is expected, 

packet 2 stalls at the receiver whilst packet 1 is transferred to memory, with no error 

being noticed until the data is used.

Packet 1 Length Count 

3 2 1

Packet 2 Length Count

Header Length L -  1 L -  2

Packet 1 Paybad Last Token

■

Packet 1 (1 Token Lost) Length Count 

3 2 1

wmSmmM

Packet 1 Paybad Last Token

Packet 1 Last Token 
Packet 2 

0 Header Length L - 1

Packet 2 header becomes last token ofpacket 1 payload and packet 2 contents are 
shifted 1 token, causing problems as the header, length and data is corrupted.

Figure 14: Token Loss Resulting in Incorrect Message Interpretation

There was obviously a need to monitor messages for missing tokens. The addition 

of an End Of Message termination token in the NTR-FTM08 protocol permitted the 

message length count to be checked against the occurrence of such a missing token. If 

the message termination token occurred simultaneously with the message count 

reaching zero, there was no error. Otherwise, both longer and shorter than expected 

messages could be detected. The detection of an incorrect message length at a 

midpoint through the network, before the message reached the destination, required a
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means of notifying the receiving node that an error had occurred and that the message 

data should be treated with caution.

Point of 
failure

Rtr 1

Rtr 2Key
Router

Source

Destination ■“  Reserved link for Message 1 
mm Reserved link for Message 2c=3 Unreserved

Figure 15: Network Failure in a Multi-router NTR-FTM08 Network

As the NTR-FTM08 router network in Figure 15 shows, the failure at point X 

affected message 1, travelling from SI to D l, and message 2, midway between S2 and 

D2. Once this problem was detected, the headers of the messages had already reached 

the destination, but due to the use of wormhole routing techniques, the tails of the 

messages had not left the source node. Message 1 was terminated prior to Router 2 

and was flushed from the network, freeing the other links of router 1 for use by other 

messages. At Router 2, Message 1 was terminated with a ‘Bad End of Packet’ 

(BEOP) termination token, informing destination Dl that it was the end of that 

particular packet. This also freed other links from Router 2 for use by other messages, 

as the transmission of that packet could be considered complete. The same actions 

were taken for Message 2: the part of the message held in Router 2 was flushed, as 

were any remaining tokens to be transmitted by S2. The tokens belonging to Message 

2 which were held in the buffers in Router 1 were passed to destination D2 as normal, 

but were appended with a BEOP token, indicating the message had been prematurely 

terminated. The user could decide, at a higher level, the action to be taken on 

receiving a BEOP token, allowing greater flexibility.
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This approach allowed the message to be terminated as soon as a fault had been 

discovered, freeing up network resources for other messages and informing further 

nodes along the messages path that no further tokens were expected, preventing the 

lost data scenario described earlier.

3.7 Synchronisation Errors

Framing errors were possible in the ICR-C416 based network due to the 

asynchronous data transfer and the over-sampling techniques employed in data 

recovery at the receiver. The over-sampling technique employed by the receiver 

allowed a skew tolerance of up to 1/3 of a bit per 11-bit token. Cumulative skew in 

excess of this lead to synchronisation errors of which the ICR-C416 network had no 

means of detecting or responding to.

The last bit of each token was a logic 0 stop bit, required to allow the sampling 

circuit to ‘recover’ between each token. Asynchronous data was recovered from the 

communications links by taking three samples per bit. Sampling on the leading and 

trailing edges of the sampling clock effectively doubled the link data rate with respect 

to the sample clock. The operation of the asynchronous ‘1.5-times’ oversampling 

technique [60] employed by the serial communications links was dependent on 

whether or not the start bit of each token was first detected on the leading or trailing 

edge of the sampling clock. The synchronisation error mechanism checked the 

incoming serial data line and flagged an error if logic 1 was detected when the stop bit 

was expected. Such an error detection system was not foolproof as a synchronisation 

error may be overlooked if the bit preceding the stop bit was incorrectly sampled and 

was zero.

3.8 Incorrect Message Address / Undeliverable Messages

‘Lost’ messages could occur due to header corruption or a blocked or damaged 

link. If the routing header was corrupted to another valid header value, the message 

would be delivered to the wrong destination. If the routing header was corrupted but 

did not conform to any valid headers, the message would not be outputted from the 

router, its progress across the network would cease and it could block the progress of
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other messages reliant on the resources that this message was occupying. 

Undeliverable messages must be removed from the network as quickly as possible to 

prevent them blocking resources required by other messages and also to impede the 

formation of deadlock dependency cycles.

The arrival of an unexpected message at an end node in the ICR-C416 network, 

such as the SARNIC or PCI-OSLi interface, triggered an interrupt requesting a 

software header check. Unexpected packets could not always be identifiable in 

software, making this an unreliable and time-consuming process. The user had to 

respond to the interrupt either by providing the interface with the information required 

for processing the message, or flushing it from the network. On receiving a message 

intended for another node, the recipient could not pass it back onto the network for the 

intended node to collect. It had to retrieve the message, depacketise it to store in 

memory and then construct a new message for the intended node (after having found 

out which node the message was intended for, requiring user intervention), and output 

it back onto the router network. In almost all cases removal of the message from the 

network was the only viable solution.

Removal of messages from the network required their retransmission, involving 

initiation by the user via the higher software levels of the system. This was hard to 

achieve, as the user was unaware of the problem that had occurred.

3.9 Deadlock

Deadlock is a state caused by the cyclic dependency of two or more messages on 

each another, which results in the network stalling [103]. Deadlock was not of major 

concern to the FT-PCI-OSLI and FT-SARNIC designs as, being end nodes, they 

could not form part of a deadlock cycle. Hence the FT-SARNet and the FT-PCI-OSLI 

formed part of a system with an integrated deadlock detection and recovery strategy.

Figure 16 displays a single cycle deadlock situation, possible in ICR-C416 

networks, in which a message can not advance towards its destination until other 

messages have relinquished resources, which is in turn dependent on the movement of 

another message and so on.
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Research was carried out to assess the effects of this complex problem in irregular 

switched networks [104, 105]. Three strategies were identified for dealing with 

deadlock: Prevention, Avoidance and Recovery [106].

Figure 16: Deadlock in a simple router network

3.9.1 Deadlock Prevention

Deadlock prevention requires the reservation of all required network resources 

between source and destination before message transmission. This is essentially a step 

backwards, in terms of network communications, as it reduces the network from 

packet switched to circuit switched, guaranteeing bandwidth whilst monopolising 

network resources for the duration of message transmission. The techniques of 

Pipelined Circuit Switching [107] and Scouting Routing [108] have been used in 

wormhole routing networks.

All preventative approaches enforced routing restrictions on paths prone to the 

formation of deadlock cycles, reducing the number of available paths and, therefore 

throughput. Bit errors on the data link could cause many of these techniques to fail.
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3.9.2 Deadlock Avoidance

This approach reduced the probability of deadlock cycle formation by 

constraining routing algorithms in compliance with certain rules. There were many 

types of routing algorithms for regular topologies. However irregular topologies had a 

far wider range of possible network permutations, making network behaviour more 

unpredictable, limiting irregular topologies to derivatives of the same avoidance 

technique. Such algorithms were based around a ‘tree structure’ of valid routes, by 

which a message traversed the network with routing decisions made on the basis of 

whether or not it was moving towards or away from the root of the tree [109]. 

Avoidance strategies could result in non-minimal paths being taken, leading to further 

research into minimising path lengths whilst retaining functionality [110]. Virtual 

channels could also be used to prevent deadlock cycles as part of a partially adaptive 

deadlock evasion solution [111]. Each physical link could have several virtual 

channels associated with it in descending priority with routing decisions assigned to 

the next virtual channel in the sequence.

3.9.3 Deadlock Recovery

Recovery systems were shown to have certain performance advantages over some 

avoidance-based solutions [112] due to the low cost of recovery if executed 

infrequently. Care must be taken to ensure that the bandwidth lost in resolving 

deadlock was not greater than the bandwidth lost through the implementation of an 

avoidance algorithm. The probability of deadlock occurring in a fully adaptive 

network only becomes unacceptably large as the network approached saturation. This 

could be reduced by restricting traffic entering the network, reducing deadlock 

probability, relaxing routing restrictions, enhancing bandwidth and relying on high- 

confidence recovery based systems when necessary [113].

Most deadlock detection systems relied on time outs to indicate an incomplete 

data transfer in a specified period [114, 115]. This guaranteed detection, but 

introduced the need for a time-out value dependent on several variables. These 

included the topology, size and data throughput of the network, as well as the sizes of 

the packets that traversed the network. A generic time-out value resulted in false
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detections if the time-out value was too low or loss of efficiency as the stalled 

network awaited attention if too high.

Three methods of deadlock recovery have been identified [116], all of which 

resulted in message removal in order to escape from cyclic dependency, but each 

differed with respect to what happened following removal from the deadlock cycle. 

The methods were:

• Deflection -  Message moved away from its destination.

• Progression -  Message moved towards its destination.

• Regression -  Message removed from network and was retransmitted from source.

In summary, the ICR-C416 router employed source routing, exposing it to the 

formation of cyclic dependencies, and thus required the use of deadlock avoidance 

strategies, at a cost of network performance. Avoidance mechanisms were the most 

prevalent in irregular wormhole routing networks, such as the ICR-C416, due to ease 

of implementation. Networks incorporating recovery [106, 116, 117] and preventative 

[118] strategies were relatively new. Deadlock was dependent on network topology 

and the routing algorithm used. Most irregular networks used algorithms that were 

derived from a single algorithm to take account of the myriad of possible network 

topologies.

3.10 Tolerance to Faults In Other Studied Systems

3.10.1 Fault Detection and Recovery in the STC-104 Based System

The STC-104 router, like the ICR-C416, utilised source routing and also required 

deadlock avoidance techniques to prevent the formation of cyclic dependencies. The 

router also possessed a control port, similar to that employed by the ICR-C416, but 

with the ability to daisy-chain multiple control ports together, to form a ‘ring’ 

network, whereas the ICR-C416 control port could be said to be a ‘star’ network. 

Both are shown in Figure 17.
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a) STC-104 ‘ring’ network
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b) ICR-C416 ‘star’ network

Figure 17; Ring and Star topologies as used to connect the control ports o f the 

STC-104 and ICR-C416. Note; these are fixed, unlike the data connections.

The centralised control port protocol was different to the DS links protocol of the 

data links and possessed the ability to address each of the devices in the daisy-chain 

separately. This approach reduced overheads compared to the ICR-C416 approach but 

required extra wiring. The STC-104 had the ability to reset a link and remove any 

further tokens to be sent, following an error, if the ‘localise error’ configuration 

setting was set. Another configuration setting, ‘discard if inactive’ sought to delete 

packets destined for inactive outputs and ensured the network would not stall due to 

the inability of a message to progress through the network. The STC-104 

documentation [76] implied that this function did not take into account any grouped 

outputs and as such, may have removed the routing availability provided by group 

adaptive routing. These two configuration settings were the only automatic fault 

detection and recovery mechanisms in the STC-104 router. All others required a 

command from the central control port to remove faulty packets.

Like the ICR-C416, the STC-104 network had no means of conveying information 

concerning the operational status of the network within the token format of the 

communications protocol. The only means of verifying that a token was correctly 

received was by receipt of the four-bit acknowledge token after the transmission of 

eight tokens. In its absence, the presence of a problem was recorded. As with the ICR- 

C416 network, acknowledgement transmission was delayed until sufficient buffering 

resources were available to accommodate the next flow group.
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Unlike the ICR-C416 protocol, the DS links utilised by the STC-104 ensured that 

link disconnection could be detected quickly and easily as the protocol demanded 

either the data or strobe lines to switch every clock cycle.

3.10.2 Fault Detection and Recovery in the Myrinet Based System

The Myrinet network utilised the 9 bit parallel data links to convey control 

information across the network, employing dedicated control tokens to this end. A 

forward reset (FRES) token was designed to clear the resources it encountered as it 

progressed across the network, following detection of a fault. It operated at a lower 

level than the data sent across the link, allowing its use irrespective of the status of the 

link flow control mechanism. After sensing a FRES, a node cleared its buffers and 

transmitted it on to any links that had connections to other nodes that were occupied 

by that particular message. This had the ability to remove many messages from the 

network, which could be complex, regressive and highly resource intensive. The first 

generation Myrinet specification detailed several additional control tokens that were 

not implemented, possibly due to their complex operation. These tokens included: 

backward reset (BRES), over run alarm (ORUN), probe (PRB) and probe reply 

(REPL) [37, 80].
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4 DESIGN DISCUSSION 

4.1 Introduction

This chapter details alterations made to the protocol and the fault detection and 

recovery features of the PCI-OSLi and SARNIC designs at a conceptual level. The 

ideas detailed in chapter 3 are developed to describe the methods used to detect faults. 

The fault detection and recovery features of the NTR-FTM08 dictated the 

specification for the FT-PCI-OSLi and FT-SARNIC as the end nodes must interface 

to the routing elements in the FT-SARNet. Firstly, the design requirements of the FT- 

SARNIC and FT-PCI-OSLi interfaces were examined. Secondly, the decisions made 

involving certain network criteria are developed into the basis of a system with 

improved fault tolerance. Thirdly, the operation of these new features is detailed.

4.2 FT-SARNIC Network Interface

The purpose of the FT-SARNIC device was to facilitate data transfers between the 

communications network and the SA-110 CPU’s SDRAM module. Data from other 

processors entered the FT-SARNode via the communications links of the FT- 

SARNIC. The data was stored in the SDRAM until the SA-110 accessed it for 

manipulation. This procedure of transferring data to the processor via the SDRAM 

allowed data to be made available for use by the processor prior to it being required. 

This reduced the possibility of the processor idling, whilst waiting for data held up in 

heavy traffic conditions.

The FT_SARNIC interface built on the SARNIC whose main achievement was 

the development of a single chip network interface, designed to relieve the processor 

of as much of the message transfer overheads as possible. The design consisted of 

three main parts: a memory bus interface controller, a processor interface controller 

and a communication link interface controller. The purpose of these was to 

interconnect the constituent parts of the SARNet processor node: the microprocessor, 

SDRAM and communications link respectively.
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The salient features of the SARNIC [17, 32] were detailed in section 1.2 but the FT- 

SARNIC was required to possess the following enhancements over the SARNIC 

interface [119]:

• The performance of the FT-SARNIC had to equal, and preferably exceed that of 

the SARNIC in terms of data throughput and latency.

• The FT-SARNIC interface required an integrated, decentralised, automatic 

approach to fault tolerance that built on lessons from previous research. The 

centralised control port of the SARNIC design had to be removed, being replaced 

by a protocol that aided the systems fault tolerance transferred across the 

communications medium, whilst incurring minimal losses in data throughput. 

These aspects are discussed in greater detail in this chapter.

• The protocol utilised by the communication links of the FT-SARNIC was bound 

by the operating characteristics of that used by the NTR-FTM08 router.

4.3 FT-PCI-OSLi Network Interface

The purpose of the FT-PCI-OSLi interface was to form an efficient means of 

transferring data from the serial NTR-FTM08 router network to the 32-bit parallel 

format required by the memory of a PC.

Incoming data from the router network was to be converted from serial to 9-bit 

parallel format by the interface, whereupon control tokens (excluding message 

termination tokens) would be removed from the incoming data stream. The message 

would pass through a link interface buffer, whose capacity governed the flow control 

of the communications link. Header and terminator tokens would then be removed, 

leaving only data tokens, whose ID bits were stripped and the data bytes assembled 

into 32-bit data words. These will be loaded into a DMA buffer until the buffer was 

frill or the message terminated. A DMA ‘burst’ transfer would be utilised to transfer 

the contents of the DMA buffer to the PCs memory.
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The cycle stealing DMA transactions employed in the SARNIC consisted of an 

address transfer, followed by the transfer of a single data word. Burst mode transfer 

consisted of an address phase, giving the start address for the assigned block of 

memory to which the data was destined, followed by consecutive data transfers until 

the transaction was complete. The length of the block governed the amount of time 

the DMA controller had access to the memory at any one time.

The system requirements of the FT-PCI-OSLi were deemed to be similar in many 

ways to those of the PCI-OSLi interface. These included [42, 43]:

• The interface should be capable of constant data transmission onto the router 

network in order to saturate the serial communications links. The interface should 

always be ready to receive data from the router network in order to avoid 

suspension of data flow due to a receiver bottleneck. Avoiding suspension of data 

flow is vital to ensuring an efficient communications medium.

• The data throughput of the interface to the 32-bit PCI bus must be many times that 

of the serial communications links. Full-duplex bi-directional data flow across the 

communications link must be possible without monopolising the shared PCI bus. 

Whilst the serial communications links could support full-duplex bi-directional 

data transfer, incoming and outgoing data transactions to and from memory were 

multiplexed onto the bi-directional PCI bus, where data flow occurred in only one 

direction at a time.

• The hardware and software of the PCI interface that linked to the host system had 

to be versatile enough to be supported by many different platforms.

• Functions should be implemented on hardware if possible to reduce the load and 

complexity of the communications overhead on the software. Such hardware, as in 

the example of packet assembly and de-assembly should be efficient enough to 

prevent major performance bottlenecks occurring.

• The interface was to be integrated onto a single programmable logic device 

(PLD), in order to facilitate tight system integration and to meet the stringent PCI 

timing requirements for set-up and hold times. The interface was mounted on a 

PCB designed to slot directly into a vacant PCI slot with the track distances
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between the edge connector and the PLD minimised for those signals with the 

most stringent timing requirements.

The FT-PCI-OSLi interface was deemed to require the following enhancements over 

the original design:

• The performance of the FT-PCI-OSLi must equal, and preferably exceed that of 

the PCI-OSLi in terms of data throughput and latency.

• The FT-PCI-OSLi interface was required to possess an integrated, decentralised, 

automatic approach to fault detection and recovery, building on lessons learnt 

from previous research. The removal of the centralised control port of the PCI- 

OSLi was necessary. An efficient communications protocol transferring control 

information across the communications medium was to be implemented.

• The protocol utilised by the communication links of the FT-PCI-OSLi was bound 

by the operating characteristics of that used by the NTR-FTM08 router.

• An important feature of a design committed to reducing inefficiency, should be 

the ability to accommodate message information for multiple messages. One of 

the major disadvantages of both the SARNIC and the PCI-OSLi interfaces was the 

requirement that an interrupt be called every time a packet or message arrived 

belonging to a different message than the previous communication. Software 

would then be required to perform a header check to ascertain to which message 

the arrival belonged.

• Several additional features to enable the user to devolve task execution powers to 

the interface.

4.3.1 PCI Bus Performance

In section 2.1, three parameters were identified that were used to assess the 

performance, in terms of efficiency of a communications system. These were 

bandwidth, latency and processor overhead. Bandwidth represented the amount of 

data that could be transferred across the medium, or its throughput. Latency 

represented the time taken to initiate a transfer, and reduced the throughput from the
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theoretical maximum. Processor overhead measured the extent to which message 

handling impeded the normal operation of the processor.

As the FT-PCI-OSLi and its non-fault tolerant predecessor were both PCI agents 

operating in the same manner, they incurred similar overheads on the processor due to 

the operation of the PCI transaction procedure. The higher level software also affected 

the overhead, but the PCI-OSLi driver software was not updated for use with the FT- 

PCI-OSLi, making comparison of processor overhead academic.

The latency incurred in initiating a PCI transaction has four components. These are:

• The time elapsed between making a request for a PCI transaction and the granting 

of ownership of the bus.

• The time taken for the initiator to begin the address phase after being granted 

ownership of the PCI bus.

• The delay between the address phase and the first data transfer.

• The insertion of wait states when either of the communicating entities is not ready 

to transfer data.

These total latencies can be expressed as the time taken following assertion of the 

active low Grant signal (nGNT), to the assertion of the active low Initiator Ready 

(nIRDY). A PCI transfer consists of a burst of transfers to / from sequential memory 

locations following the initiation of a PCI transaction. The latency lowers the 

efficiency from its theoretical maximum as no data is transferred in this period. The 

efficiency Eff pci is given by:

No PCI Transfer Cycles 

Eff pci = No PCI Transfer Cycles + Total PCI Latency

The efficiency of a PCI burst lowers the PCI bus throughput proportionately;

Throughputpci = Eff pci * PCI Bandwidth
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Where PCI Bandwidth = 132MBytes/s for a 32-bit, 33MHz PCI bus

To maintain bandwidth efficiency, latency must be minimised, whilst the number of 

data transfers that follow the set-up latency should be maximised.

4.4 Areas of Improvement Following Analysis of Previous Research

The realisation of network-wide fault tolerance must not be at the expense of 

network performance. As was noted in chapter 3, conveying status information across 

the network, via the data channels, could be more efficient than having a dedicated 

control link, especially if the transmission of status information was infrequent. In 

order to maintain an efficient throughput of data, whilst incorporating system integrity 

information into the data link, communication and protocol overheads must be 

minimised wherever possible. Earlier research demonstrated that bi-directional data 

transfers were a source of lost bandwidth due to the credit based flow control 

mechanism. A more efficient protocol could be advantageous, but a change in the 

physical link was also considered as a means of increasing data throughput.

4.4.1 Communications Links

The option of communicating tokens in parallel, as in the Myrinet network was 

rejected. This was due to the expense of multi-core cabling required to minimise skew 

and the high pin counts incurred, especially in routers. If the total communications 

link throughput was too high with respect to the PCI throughput, the host system 

interface would become the performance bottleneck of the system, denying other 

users access to the bus. The serial data / data strobe (DS) technique used in the IEEE- 

1355 standard incurred skew problems and doubled the wiring requirements whilst 

encoding a clock signal within the bit-stream. An encoded clock signal was not 

deemed necessary as the over-sampling technique employed by the current 

technologies performed adequately, despite the need for a clock speed 50% faster than 

the data rate.
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The NTR-M04 router utilised an optional second pair of bi-directional serial DS 

links in an attempt to double link bandwidth. Such an approach differed from previous 

parallel link implementations, as bits were not sent in parallel. Separate serial data 

streams permitted two links to share in the burden of transferring a message by 

alternating where the link tokens were transmitted down. In normal operation, there 

was a skew of at least four bit periods between tokens arriving at the top and bottom 

links. The NTR-M04 incurred higher than expected resource usage as each bi

directional link required four transmitter circuits, four receiver circuits and additional 

control logic, whilst increasing the bandwidth by only 1.85 times [23].

The lower bandwidth offered by a single pair of serial transmission links was 

acceptable considering the benefits of increased transmission distances and reduced 

costs. The over-sampling technique was already proven and was capable of operating 

at speeds up to 44Mbits/s over 100m of Category 5 unshielded twisted pair cable [75].

The DS protocol had one advantage over the OS protocol, due to improvements in 

the token format, which gained a theoretical bandwidth improvement of up to 14.7% 

over the ICR-C416 protocol. This improvement was achieved by reducing the data 

token to 10 bits and implementing a 4-bit control token. Modifying the protocol to 

send the minimum amount of control tokens per data token would increase bandwidth 

utilisation further still.

4.4.2 Flow Control

As stated in chapter 3, the credit based flow control protocol employed by ICR- 

C416 based networks reduced data throughput. This was due to waits for 

acknowledgement and the appending of each 11-bit data token with a 2-bit 

acknowledge token for bi-directional communications. In theory this made the data 

content only 61.5% per token, although in practice it could fall as low as 47.1% if 17 

bits were required to transmit a byte of data [5]. This was due to the delay incurred in 

interleaving data and acknowledge tokens for bi-directional communications as 

demonstrated in section 3.4.1.
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The DS links protocol used by the STC-104 and the NTR-M04 increased the flow 

group (the number of tokens which can be sent before acknowledgement was 

required) from one token to eight. This increased the ratio of data bits per 

acknowledge token, limiting bandwidth losses on bi-directional transfers caused by 

the injection of acknowledgement tokens into the data stream, but incurred 

proportionately larger buffering increases. A single path across the STC-104, with its 

8 token flow group, required 70 tokens of buffering [120], whereas the corresponding 

path across the ICR-C416 required only enough buffering to store three data tokens

[121]. As DS link flow control tokens were only four bits long, theoretically up to 

76.2% of the link bandwidth could be devoted to data transfer.

The NTR-M04 reduced the buffering requirements for an 8 token flow group from 

70 to 22 tokens as buffering was minimised due to limited buffering resources in the 

target technology at the time, limiting the number of ports on the device. The STC- 

104 utilised ASIC technology and as such was not affected by this problem. NTR- 

M04 data and flow control token were 11 bits long, theoretically allowing bandwidth 

utilisation of up to 64.6% for data.

The permission based flow control employed by Myrinet required a buffering 

capacity of 59 tokens per receiver, as inferred by the first generation specification

[122], a figure dependent on link speed and transmission length. Permission based 

flow control was dependent on the ability of the receiving node to process the 

contents of the receiver buffer. In an ideal case, where data was processed as soon as 

it entered the buffer, bandwidth loss was zero. Clause 3 of the flow control dictates 

the length of time data flow was suspended for when the Stop level was reached. The 

first generation Myrinet figure of 16 tokens gave a worst case bandwidth loss of 

6.25% due to flow control but an average of 8% improvement over the NTR-M04 was 

noted in behavioural tests [123].

The flow control and fault handling features of the Reliable Router were 

incorporated into the 75-bit data unit, split into four frames. Each receiver possessed 

buffering resources capable of holding 16 data units for each of the five virtual 

channels per physical link. Data was held in the buffer until a successful transfer had
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been confirmed, allowing retransmission via the use of the Unique Token Protocol 

(UTP) discussed in section 2.3.4.

4.4.2.1 Permission Based Flow Control Threshold Level Analysis

As mentioned in section 3.4.2, the efficacy of Permission Based Flow Control 

(PBFC) depended on the levels of the Almost Full (AF) and Almost Empty (AE) 

thresholds, as these respectively governed the suspension and resumption of data 

flow. There were conditions for setting these levels to prevent buffer overflow, buffer 

underrun and excessive loss of bandwidth due to flow control token transmission. 

These were:

1. The receiver must possess sufficient buffering to store any incoming data tokens 

that arrive following the assertion of a Stop and this request taking effect.

2. The receiver must have sufficient buffering to pass data tokens continuously from 

the link buffer to the DMA message controller, to prevent the receiver buffer 

emptying before the arrival of the first data token across the link following 

resumption in data flow.

3. The distance between the AF and AE levels must be sufficient to ensure that the 

link did not devote unnecessary bandwidth to the transmission of flow control 

tokens.

The flow control mechanism must adhere to Rule 1, as it was unacceptable to lose 

data due to buffer overrun. Rules 2 and 3 affect the efficiency, with the former 

determining whether or not the message handling elements of the design are idle or 

not due to the link status. Flow control tokens must have a higher priority than data 

tokens in order to allow the system to operate. If the Stop and Go levels were too 

close together, the link wastes bandwidth transmitting unnecessary flow control 

tokens. In the sample circuit of Figure 18, whose transmission time was nominally set 

to one token, Rule 1 required node B to store four data tokens once the AF level 

triggered transmission of a Stop token. If node B had less than four tokens in its link 

interface buffer when data flow resumed, the depacketiser at the buffers output would 

idle, wasting link bandwidth whilst waiting for the arrival of data token D5. Rule 3
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dictated how soon after the transmission of the Stop token the data transmission could 

resume, and depended on the rate at which the depacketiser could empty the receiver 

link interface buffer. The first generation Myrinet specification [80] required 23 

tokens for clauses 1 and 2, and 16 tokens for clause 3, for a maximum cable length of 

25 metres at 80MBytes/s data rate.
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Figure 18: Representation o f Permission Based Flow Control and how its rules 

translate into practical buffer implementation for correct operation

4.4.2.2 Determination o f Stop and Go Flow Control Levels

The levels at which the AF and AE levels were set depend on the amount of data 

that could cross the link from the transmitter to the receiver and back, plus the delay
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incurred. In the case of rule 1, this was due to the possibility of back-to-back data 

tokens doubling the amount of time taken between generation of a Stop token and the 

token taking effect. Rule 2 stated that it would take a time equivalent to the 

transmission of two tokens following generation of a Go token before arrival of the 

first data token. This was reflected in the ‘total extra delay’ parameter where the 

transmission times for the flow control token and data token were added to the 

equation.

D

SigR .
V

S . 2 + Dly
J

Bpu

Permission Based Flow Control AF /  AE Levels Equation 

SigR (Signalling Rate) = 50Mbits/s

D (Distance) = 110 metres -  These are the two worst case link bandwidth and 

distance values used for calculations in a 30Mbits/s 100 metres communications 

link.

S (Propagation Speed) = 2 x  108 metres/second [124].

Bpu (Bits per unit) = 11 (Start, ID, Data Byte, Stop bits).

Dly (Total Extra Delay) = Logic Delay + Flow Control Transmission Time + Data 

Token Transmission Time

The interface logic delay depended on the amount of time taken to generate the 

control signal and the time for it to take effect, where both were worst case values. As 

flow control tokens possessed a higher priority than data tokens, the worst case 

transmission delay was one whole data token. Calculations for the NTR-FTM08 

determined minimum rule 1 and rule 2 values of 6 buffer locations and on the 

recommendation of Myrinet, rule 3 requires a minimum of 12 buffer locations 

separating the AF and AE thresholds [125].
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4.4.2.3 Flow Control Differential Analysis

The permission based flow control experiments conducted during the development 

of the NTR-FTM08 included post-synthesis simulations to determine the effect that 

flow control variations had on multi-router network performance [124]. The two 

network topologies studied were a four router 2D mesh and an eight router 2D torus 

network [126]. The receiver buffers had a capacity of 48 tokens with the Stop 

threshold held at 40 tokens for all tests. The Go threshold was set at 32, 24 and 8 

tokens giving differentials between the Stop and Go levels of 8, 16 and 32 tokens 

respectively. The tests concluded that when offered vs accepted data load graphs 

were plotted [124], the maximum variance between the different thresholds on the 

same network was approximately 1%. The difference between the mesh and torus 

networks was approximately 6%. The threshold differential had much less effects on 

network performance than network topology, although the tests were not 

comprehensive.

When accepted data loads were plotted against average normalised packet 

latencies, more conclusive trends were visible. It was shown that, for a network 

approaching saturation, a differential of 16 tokens provided the best performance 

characteristics. The results demonstrated a lower latency for the same data load and a 

higher saturation level than differentials of 8 and 32 tokens respectively. These results 

indicated that the optimum Stop threshold level might not be the same as the Stop 

threshold level determined using equation 1 in section 4.4.2.2. The NTR-FTM08 

routers 32 token receiver buffers Almost Full and Almost Empty threshold levels 

were set to 20 and 10 respectively. Following the above conclusions, the FT-PCI- 

OSLi and FT-SARNIC interfaces utilised 32 token buffers with AF and AE levels of 

24 and 8 respectively, giving a differential of 16.

4.4.3 Control And Message Information

In addition to the transport of data and flow control information across the 

communications channels, information relating to the functional status of the network 

must also be transferred to give increased fault tolerance. The centralised fault
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monitoring and intervention features offered by the ICR-C416 and STC-104 lacked 

scalability and thus increased intervention times. If a central monitoring point failed, 

the entire network could be left with no tolerance to faults at all (referred to as a 

‘single point failure’). A distributed fault tolerance mechanism allowed scalability and 

forced the hardware implementation of features to detect and recover from faults. This 

was because fewer functions could be performed at higher (software) levels without 

replicating functionality and reducing efficiency. An autonomous low-level 

(hardware) mechanism that improved tolerance to faults was highly desirable. 

Distributed fault tolerance provided a generic solution whereas centralised fault 

handling systems tend to be tailored to the requirements of a particular networks and 

were therefore less flexible and portable between applications.

The dedicated control link employed by the ICR-C416 and STC-104 networks 

was an expensive resource, in terms of both wiring and logic usage when compared to 

the functionality provided. The Myrinet, Reliable Router, NTR-M04 and NTR- 

FTM08 protocols used the 9th ‘type’ bit set to zero to convey control information 

allowing up to 256 separate control tokens. In comparison, the DS links four-bit long 

control token was fixed, preventing further expansion.

Two disadvantages of the control tokens sharing the data link were the loss of 

bandwidth due to the transmission of excess control tokens and the difficulty in 

conveying control information across a failed link. Minimising the frequency of 

control token transmission could reduce the bandwidth loss of the foimer. The 

problem of link failure could be solved by way of an effective link blockage detection 

and reset mechanism, discussed in section 4.4.5. In this approach the reliability of the 

data link was carried over to the control link.

The complex Unique Token Protocol (UTP) employed by the Reliable Router 

utilised a software based message reconstruction mechanism and required the 

transmission of many other non-data bits in each data unit. In spite of this, the 

network provided a good example of distributed fault tolerance, where the 

responsibility for ensuring link integrity was devolved to the nodes at either end of the 

link. Software overheads were spread across the network with short and constant
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intervention times, providing a scalable solution. These advantages made the Reliable 

Routers fault handling strategy, rather than its protocol worth investigating.

4.4.4 Faulty Packet Removal

The ICR-C416 network possessed no means of removing disconnected messages 

from the network. The failure to include any tolerance to faults in the token layer of 

the link meant that, in the case of message truncation demonstrated in section 3.6.2 

the receiving node stalled. The non-zero value in the receiver’s packet length counter 

indicated that more data was expected. A count of zero denoted the end of the packet. 

The error prevented further data from being received and the occupation of the 

physical channel by that particular message meant that until the resource was 

relinquished, by way of an operator initiated reset, other messages could not use the 

resource and the system remained stalled until it was reset. Such a system was deemed 

acceptable at the time given the extremely low failure rate but could be considered 

unacceptable in safety critical systems where it is preferable to have an automatic 

fault detection and recovery system.

The STC-104 possessed such autonomy via the configurable ‘localise error’ and 

‘discard if inactive’ settings which allowed packet truncation and deletion 

respectively, at the expense of any group adaptive routing configurations. These 

features were the minimum for an autonomous fault detection and recovery strategy 

but were implemented, along with others including group adaptive routing, in the 

NTR-FTM08. The forward reset token (FRES) used by Myrinet and the NTR-M04 

freed up resources for the next message initiated by a time-out through lack of link 

activity. The FRES had the capability to remove many messages from the network but 

retransmission was impractical, as the higher levels of the protocol had no knowledge 

of what was removed.

After the truncation of a packet, the receiving end node, whether the FT-SARNIC 

or the FT-PCI-OSLi, needed to be aware that a fault had occurred and that the 

message contents should be treated with caution. The Bad End of Packet (BEOP) 

token, similar to the Exceptional End of Packet (EOP2 or EOPE) token defined in
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IEEE Std. 1355-1995, was appended to the data destined for the end node. The 

remainder was flushed. Detection of this packet called an interrupt and higher 

software levels were required to decide whether or not to retain the truncated 

message.

4.4.5 Link Initialisation Procedure

There was a requirement to define a start-up procedure to ensure that both sides of 

the communication link were ready before beginning data transfer. Defining which 

tokens were valid for each state allowed the state machine to presume that receipt of 

any other tokens constituted an error, returning the state machine to the ‘reset’ state. 

Figures 19 and 20 demonstrate the link initialisation procedure utilised by the FT- 

PCI-OSLi and FT-SARNIC devices. After reset, a short time-out elapsed before 

transmission of connection request (CONREQ) token moved the state machine into 

the ‘asleep’ state. A node receiving such a token also moved into the ‘Asleep’ state 

before returning a ‘CONREQ’ token, indicating its readiness, and moving the state 

machine into the transient ‘Waking’ state. On completion of the handshake between 

the two nodes, the system moved to the ‘Awake’ state, the only one where data tokens 

could legally be transferred. The handshake involved both nodes exchanging ‘Start’, 

or ‘Xon’ tokens demonstrating that they were ready for receipt of data and their 

buffers had sufficient capacity to accommodate the incoming tokens. Failure to 

complete the handshake within a set time restarted the procedure.
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Figure 19: Link Status State Machine Diagram

Receipt of a ‘CONREQ’ token whilst ‘Awake’ informed a node that an error had 

been detected by the other end of the link, returning the state machine to the ‘Reset’ 

state. The procedure followed either of the two available paths shown in Figure 20 

dependent on whether the node received or sent a connection request first. After a 

reset, a short timeout elapsed before a node transmitted this token. As two nodes were 

not reset at exactly the same time, one node would transmit a connection request 

token before the other one.
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Figure 20: Link Initialisation Flow Diagram

4.4.6 Link Dormancy

Link dormancy was a configurable feature of the NTR-FTM08 protocol that 

permitted a link to fall asleep after a pre-defined period of link inactivity. It allowed 

the state machine in section 4.4.5 that determined link status to make a possible state 

move from the ‘Awake’ state directly to the ‘Asleep’ state. The NTR-FTM08 protocol 

required the transmission of flow control tokens approximately every 15 tokens time, 

following assertion of ‘Heartbeat’. This interval might be too frequent for some
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applications and undesirable for others. If both ends of the link were configured as 

dormant, no flow control tokens were transmitted in the absence of data and the links 

remained silent. Once asleep, in the event of one of the nodes wishing to transmit a 

message, writing to the transmitter message length register triggered the kickstart 

process. Kickstart returned the link state machine to the reset state, from which the 

initialisation procedure commenced. Link dormancy was asserted in the FT-PCI-OSLi 

module by setting bit 19 in the Command register (register offset 0FH) (see Appendix 

C for more information).

4.4.7 Virtual Channels

In a multiprocessor network employing routers, different messages were 

multiplexed onto the same physical channel as shown in Figure 21. In Figure 22, 

messages are divided into packets in order to avoid domination of the physical 

channel by any one message.

Node 1 Node 2

Message 1Message 1

Physical Channel
Message 2Message 2

Message 3 Message 3

Figure 21: Virtual channels showing multiple messages traversing the same

physical link

Time Message ID

i I
1 2 3 1 2 1 3 2

Figure 22: Messages arriving at the receiving node showing multiplexed packets
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Each message had a unique header to aid identification. Messages were 

depacketised and transferred to memory at the receiving node. The processor fetched 

the data from memory for manipulation when required, as shown in Figure 23. The 

message length and address in memory of the data were specified by the software 

programmer and the operating system respectively.

FFFF FFFF H

Processor fetches 
message to / from 
memory for 
manipulation 

*  ►

0000 0000 H

Memory

Message 1

Message 2

Message 3

Interface transfers 
data to / from 
memory for storage 
prior to processing

w--------------------- ►

Figure 23: Messages stored in memory ‘pots’ prior to processing

On receiving notification of a message arrival, the communications interface must 

first match the received message header against all expected headers, as the receiver 

does not know in what order messages might arrive. Following a header match, the 

corresponding address and length must be obtained to identify where the message was 

to be transferred to and when transfer would be complete. The PCI-OSLi interface 

stored such information in software, requiring incoming headers to trigger an 

interrupt, requiring the processor to intervene and search for a matching message 

header. This approach was expensive in terms of time and resource utilisation as the 

processor must suspend activities and devote time to searching for a matching header. 

If an unexpected header arrived, the user had to flush the message in the PCI-OSLi 

interface before another message could occupy the interfaces’ resources again. This 

allowed messages arriving at the wrong node to be removed from the network but did 

not permit the user to process the message.

The PCI-OSLi generated an interrupt every time a header arrived that was not 

identical to the header of the previous message, as only one message ID was stored at 

any one time. Messages split into packets possessed identical message headers so the
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consecutive arrival of packets from the same message did not trigger a new message 

search. Incoming packets whose ownership alternated between two or more messages, 

such as those shown in Figure 22 required new message ID searches. The SARNIC 

receiver had two DMA channels and could thus handle two different messages 

without requiring an interrupt to be called when a packet from either message arrived. 

Arrival of a third message header initiated an interrupt and required the removal of 

one of the existing message ID’s from the message allocator. Message removal was 

performed in software with user assistance required to determine which packet was 

removed. Message header comparisons were performed in software, necessitating an 

interrupt so the only advantage gained was when multiplexing two messages onto one 

link. The FT-SARNIC had the same message handling features, but improved on the 

PCI-OSLi interface by possessing a second message channel.

4.4.8 Header Storage -  CAM

The PCI-OSLi design required an interrupt to be called following arrival of an 

incoming message to the interface. Servicing the interrupt required the PC to suspend 

its activities, validate the authenticity of the message ID and supply associated 

message information. Devolving the message ID checking functionality to the 

communications network interface permits its execution without involving the 

processor, hence increasing efficiency. Such an operation required the message 

information, (message ID, address and length) to be pre-loaded into the FT-PCI-OSLi 

in anticipation of the arrival of that particular message. This approach suffered from 

the two main drawbacks of the system used in the PCI-OSLi but both were easily 

resolved. These were:

• Many messages might be expected at the receiver, yet their order of arrival was 

unknown. If the message information for a different message resided in the FT- 

PCI-OSLi, the message IDs would not match, halting data transfer to memory.

• Incoming packets that alternated between two or more messages required the same 

message infonnation to be reloaded several times.



Design Discussion

To avoid these situations, the message information storage facility must possess these 

respective characteristics:

• It must possess the ability to store multiple message IDs.

• The option of the message IDs being reusable or one-time active must be available 

to allow messages occupying multiple packets.

In addition, it would be beneficial to the message ID validation procedure if the 

following features were available:

• The header validation process, which starts on header reception and concludes

with the DMA channel enabling, must be performed as quickly as possible.

• The ability must exist for the user to remove or overwrite message IDs if they

were no longer needed.

• Functionality must exist to allow the user to ‘probe’ or view the contents of the 

storage facility.

• The user should retain the right to pass or flush, either manually or automatically, 

messages whose headers do not match.

• Possibility of clearing the message information storage facility.

• The user must be allowed to pre-set message address and length, enabling

message information to be loaded into the FT-PCI-OSLi with a minimum of write 

accesses.

Such a system effectively created X  virtual channels, where X  was the number of 

message IDs that could be stored in the message storage facility. This provided rapid 

header verification whilst minimising the need to call a processor interrupt. Network 

efficiency could be maximised by devolving as much message handling responsibility 

as possible to the FT-PCI-OSLi.
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4.4.9 Message Storage

This section examines what occurred once the authenticity of an incoming 

message had been verified, and its contents depacketised ready for transfer to the host 

systems memory. The host system must exercise caution over where the FT-PCI- 

OSLi interface will transfer data, to ensure memory contents were not overwritten. 

Several memory ‘pots’ were assigned, into which messages could be stored before 

being accessed by the host system, manipulated and stored elsewhere. The concept 

was to have multiple designated ‘pots’ for message storage prior to receiving attention 

from the processor. More than one was necessary as the processor could manipulate 

information from messages in a different order to that which they were transferred to 

memory. A message could not be overwritten if it was yet to receive the processor’s 

attention. The message ‘pots’ permitted the message information (message ID, length 

and start address) to be active and readable for the entire duration that the message 

was assigned to that ‘pot’. Other messages were prevented from utilising that ‘pot’ 

until the processor had handled the message.

To aid message storage, messages were grouped into three classes, determined by 

length and application. The header storage facility, located in the CAM, was 

effectively split into three sections, and possessed the ability to store CX* class 1 

messages, T  class 2 messages and ‘Z’ class 3 messages. Class 1 had 10 locations, 

class 2 had 4 locations and class 3 had 2 locations. Expansion of class sizes and / or 

the CAM size was relatively simple, requiring logic duplication. The class lengths 

were user configurable by addressing registers in the interface and were the maximum 

permitted, not the only message lengths allowed. Class 3 was intended to be a ‘catch

all’ class with no specified maximum length, and any maximum message length up to 

the current 1Mbyte maximum for the FT-PCI-OSLi. Class 3 messages were designed 

for one time use only and as such were removed from the CAM following the match.

Grouping messages into classes according to lengths and assigning each group a 

designated message storage area in memory reduced message information storage 

space. Each message address was 30 bits long, due to word accesses making the least 

significant two bits redundant. Each messages length required 18 bits with the least 

significant two bits ignored for the same reason. Header storage required 8 bits for
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each header byte that was to be sent. For a single header byte, a minimum of 54 bits 

worth of information, whether stored in memory or registers, was needed for each 

message. This figure increased proportionately, so to store 16 messages of 

information required a total of 864 bits. As all messages in a particular class possessed 

the same maximum message length, only three length registers were required, 

reducing logic requirements significantly with no real loss in flexibility.

4.5 Digital Systems Implementation Issues

An overview of some of the problems encountered in the implementation of 

prototype digital designs and some potential solutions is offered in this section. It is 

not intended to be a definitive discussion on this open-ended subject and focuses on 

solutions utilised in the development of the FT-SARNIC and FT-PCI-OSLi interfaces.

An important issue in digital circuit design is currently that of the length of the 

design cycle. Many designs build on previous designs in some way, retaining 

common features or components. Utilising these reusable aspects of the design, called 

Intellectual Property (IP), can significantly reduce the design cycle and increase cost 

effectiveness. The time taken to verify the design can also be reduced as the IP 

aspects of the design have been proven to function correctly although the design effort 

required in integrating IP into the design can be significant [127].

Improvements in silicon fabrication techniques have led to higher gate counts 

being implemented on ever decreasing areas of silicon. Combined with advances in 

Surface Mount Technology (SMT) [128], devices are decreasing in size, putting a 

strain on the device I/O. Larger designs require larger devices but can also require 

increases in the I/O requirements due to the increase in microprocessor bus width 

from 8 bits (in the 1980’s) [129], to 64 bits in contemporary state of the art processors

[130]. This creates a pin out bottleneck, as the Printed Circuit Board (PCB) track 

layout around the device becomes more complex. Serial communications links allow 

a high number of logical connections to be realised whilst maintaining a relatively low 

number of physical wire connections. Serial communications technologies have 

advanced significantly, resulting in much higher speeds than were previously possible
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when parallel connections replaced serial. Modem serial based communications 

systems include IEEE Std. 1394 (FIREWIRE) [90, 91] and Universal Serial Bus 

(USB) [93, 94]. These communicate via media shared between users, similar to a bus. 

Performance is guaranteed by limiting the number of connections and transmission 

distance.

Until relatively recently, the only means of implementing large-scale digital 

designs involved utilising Application Specific Integrated Circuit (ASIC) technology

[131]. ASICs are full custom devices requiring massive investment in terms of time 

(for laying the design out on silicon) and money (cost of die production). For very 

high volume production, per unit costs become very low, but for prototyping and 

small production runs, these initial overheads are prohibitively high. At that time the 

design of highly complex circuits could only be contemplated on ASICs, making the 

development of high-speed communications switches an option available to few. 

Some systems attempted to implement a processor node on a single integrated circuit, 

[5] permitting a complete high-speed solution but offering design flexibility at a very 

high cost.

Programmable Logic Devices (PLDs) are arrays of programmable logic that allow 

the implementation of custom designs tailored specifically to the application. Early 

PLDs contained few programmable elements and could only be used to implement 

glue logic. ASICs and PLDs have both benefited from advances in silicon technology 

such as improved fabrication methods and the reduction of minimum feature size to 

enable higher gate counts [132]. Higher speed and noise immunity was achieved via 

the use of new materials. PLDs have also benefited from improved internal 

architectures. The ability to implement hardware functionality using Look Up Tables 

(LUTs) [133] and on-chip memory resulted in devices such as the Altera 

EP20K1500E, capable of implementing 1.5 million programmable gates [134].

The first generation PLDs were one time programmable with the logic functions 

programmed by ‘blowing fuses’ within the device [135]. Most current PLDs utilise 

Electrically Erasable Programmable Read Only Memory (EEPROMs) [136] to 

program Static Random Access Memory (SRAM) devices [134]. The latter lose their 

device program when power is removed and so use the former to reload the program
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on power up. The ability to reprogram the EEPROM and thus SRAM devices in 

system made these PLDs particularly suited to prototype and development work 

where modifications to the design were required.

PLDs have started to eclipse ASICs in terms of the increased flexibility offered, 

technological and architectural advances, ease of modification and even increased 

performance in certain functions [137]. Vendors have developed PLD logic cores with 

a fixed design feature implemented alongside a large amount of programmable logic 

for the customer to implement an on-chip interface. The PLD is sold or licensed to the 

customer as IP. IP cores have been developed by Altera to cover application areas 

such as signal processing, bus interfaces, communications protocols and controllers. It 

is the introduction of embedded processor cores developed by Altera [69] and Xilinx, 

that are more relevant to the subject area. Such features allow the opportunity to 

realise a System-on-a-Chip (SOC) or System-on-a-Programmable-Chip (SOPC) 

solution [138, 139].

IP cores are usually ‘soft’ cores, being software based with the function 

implemented by the compiler during synthesis. The customer purchases source code 

with which to realise these functions. The soft core will have certain design 

constraints and parameters defined by the vendor. Information on how the design 

would be implemented in the PLD was also included in the source code although the 

synthesis tool dealt with layout. As the vendor encrypted the source code, the core 

features were fixed and could not be modified by the user to suit the application, 

allowing for a generic, but inflexible implementation of the core. Some core vendors 

permitted users to alter the core features by charging additional license fees in return 

for extra access rights. Another aspect of IP cores was the need to spend a significant 

amount of time and effort evaluating the core to examine its suitability, although most 

vendors provide IP cores for evaluation before licensing them.

An alternative approach is to provide ‘hard’ cores. These were referred to as 

Embedded Standard Products (EPSs) [140], by one vendor, QuickLogic. Hardware 

functions and their associated glue logic are replaced with hardwired IP cores and 

programmable logic on a single programmable device. This resolved layout problems,
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which were normally dealt with by the synthesis tool in soft cores. The lack of 

flexibility with regard to modifying the core still remained.

ASICs still dominate the high volume, high performance end of the IC market, 

despite a recent shift away from their use in an attempt to cut costs [141]. PLDs were 

better suited for low volume production and for implementing projects requiring 

rapid, easily verifiable solutions as the development cycle times were much faster in 

comparison to ASICs.

4.6 Synthesis

As discussed in the previous section, digital designs could be implemented on

ASICs, Gate Arrays or PLDs. The former two technologies incurred expensive initial

development costs. This made them highly unsuitable for development purposes but 

they became more cost effective with volume production. For these, and additional 

advantages outlined below, PLD technology was selected. These advantages included:

• Flexible designs due to reprogrammable devices.

• Low initial costs made PLDs suitable for prototyping.

• Shorter development cycles relative to ASICs as layout already existed and the

compilation software performed logic connections and optimisation tasks.

• Modular designs could be reused as DP.

• PLD designs were portable to ASICs but not vice-versa.

The FT-PCI-OSLi interface was implemented on an Altera EP20K200EQC240-1 

programmable logic device. Previous design work performed by the research group 

had targeted Altera’s Flex 10K PLD family. The PCI-OSLi interface utilised 83% of 

available logic resources and 70% of available memory on a Flex 10K50S device 

[43], leaving little room for significant alterations to the design. The decision to 

advance to the newer Apex 20K technology was prompted by several requirements. 

These included: increased logic resources, increased performance, improved software 

support and the rapidly advanced PLD market, which resulted in the rapid 

obsolescence and discontinuation of device families. Like the Flex 10K devices, the
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Apex 20K devices are SRAM based, requiring programming on power-up. This suits 

prototyping as design modifications could be implemented quickly and with no need 

for component replacement. Timing-based simulation could effectively be performed 

by way of hardware verification, omitting a stage of the design cycle and reducing 

design time. The following section discusses how the internal architecture of the Apex 

20KE device family is beneficial in achieving maximum performance for a generic, 

non-optimised design solution.

4.6.1 Target Device Characteristics

The Apex 20KE [134] device family had an internal operating voltage (Vcclnt) of 

1.8V to attain the low power consumption often required in embedded systems and a 

PCI compatible external I/O voltage (Vcclo) of 3.3V. Fast, bi-directional, tri-state I/O 

pins made it suitable for a PCI interface. The 168 user pins available on the 240 pin 

device were more than adequate for the number of pins required by the interface and 

left many more that could be used as debug pins. The 20K200E device had 526,000 

system gates that typically translated to 200,000 user gates. These gates form 8,320 

Logic Elements (LEs) and 52 Embedded System Blocks (ESBs) comprising 104kbits 

of programmable memory. If more resources were required, the device could be 

substituted for the 20K300E PLD as they shared identical packaging and dedicated 

(non-user configurable) pins. The 20K300E device possessed 50% more LEs than the 

20K200E device and a similar increase in ESBs. The device required two Electrically 

Erasable Programmable ROM devices (EEPROM) to configure the PLD after power- 

up. The EEPROMs were programmed via a 10-pin JTAG header from the 

programming PC’s parallel port and retained their program until overwritten.
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Figure 24: Apex 20KE Device Architcture 

4.6.2 Apex 20KE Architecture

The internal architecture of the Apex 20KE devices distributes the design features 

in blocks throughout the device to reduce delays between logic and memory, as 

shown in Figure 24. Programmable logic in the PLD has one of four functions:

• ClockLock -  Clock management circuit. The fastest available (-1) speed grade 

[134] can support both 32 and 64bit and 33 or 66 MHz PCI timing requirements. 

Multiple clocks could be used on the same device with clock skew minimised in 

even the largest of designs.

• IOE -  I/O Elements supporting a wide range of I/O standards, including PCI. 

Dedicated ‘Fast I/P’ pins used dedicated device-wide routing channels to 

distribute signals across large designs, minimising set-up times to meet the 

stringent PCI timing requirements on bi-directional I/O,

• LAB -  Logic array blocks implement registered and combinatorial logic functions 

based around small, four variable look-up tables. These are discussed in greater 

detail below.
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• Memory -  Embedded memory within the device allows for reduced area and 

increased performance. Cascadable memory blocks permitted the implementation 

of variable areas of memory. Memory was available as dual port RAM, FIFO 

buffers, RAM, ROM and CAM. Separate ESB blocks allowed the creation of 

many independent memories in terms of both size and function. For example, the 

FT-PCI-OSLi device contained two 64 deep by 32-bit wide FIFO buffers, two 32 

deep by 9-bit wide buffers and one 16 deep by 8-bit wide CAM.

Carry-in Cascade-in LA B-wide Sync Load / Clear

4 Data 
Inputs

Global
Reset
Clr l Outputs to 

FastTrack, 
MegaLAB 
and Local 
Interconnect

Clr 2

Clock
Clock
Enable To other LEs in LABCarry-out Cascade-out

Cascade
Chain

Sync 
Load / 
Clear 
Logic

A sync 
Load / 
Clear 
Logic

D-type
Flip-
Flop

Look-up
Table
(LUT)

Carry 
Chain _

Figure 25: Apex 20K Logic Element

4.6.2.1 Logic Elements

Logic Elements (LEs) were the smallest logic units in the device and could 

implement any logic function requiring up to four input variables. A fifth input could 

be utilised by way of the Carry and Cascade functions. The LE inputs fed a four input 

look-up table with an optional registered output, as Figure 25 demonstrates. Control 

pins could be any global or local I/O or logic signal. The flip-flop was bypassed when 

implementing combinatorial logic but a single LE could implement two outputs, one 

clocked, one not. Additionally, device utilisation can be improved by utilising unused 

flip-flops to clock signals external to the device, a technique known as register
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packing [134]. LEs permitted the formulation of any type of digital circuit whilst still 

retaining a degree of efficiency.

4.6,2.2 Logic Array Blocks

A Logic Array Block (LAB) was a group of 10 LEs, interconnected by fast local 

interconnects with LEs in the same and immediately adjacent LABs. These allowed a 

LE to drive up to 29 other LEs, minimising global interconnect usage. LEs in the 

same LAB could be connected using carry and cascade chains. Each LABs could be 

controlled by any combination of the following signals: two separate clocks, two 

clock enables, and asynchronous and synchronous load and clear signals. Input signals 

for the LAB entered via the local interconnect either side of the LAB. The LAB 

output signals could drive either local, row, column or MegaLAB interconnects as 

shown in Figure 26. LABs permitted the realisation of simultaneously triggered logic 

with minimised skew, aiding the implementation of parallel design features.

Row Interconnect

MegaLAB
Interconnect

To 14 other 
LABs and 1 
ESB in same 
MegaLAB

Column
Interconnect Local Interconnect10 LEs form an LAB

Figure 26: LAB Structure Demonstrating Surrounding Interconnections
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4.6.2.3 MegaLAB

In the Apex 20KE devices, a group of 16 LABs and an ESB block formed a 

MegaLAB, interconnected by a MegaLAB interconnect. Signals external to the 

MegaLAB entered via FastTrack and local interconnects. Carry and cascade functions 

could be implemented between any LAB in a MegaLAB. MegaLABs allowed fast 

signal paths between resources both inside and outside the MegaLAB and could be 

useful in partitioning designs to gain speed advantages in large designs.

4.6.2.4 FastTrack Interconnect

Column
Interconnect

MegaLAB
Interconnect

I/O I/O I/O

MegaLAB MegaLAB MegaLAB

MegaLAB MegaLAB MegaLAB

Row Interconnect

Figure 27: FastTrack Interconnection Grid Structure

FastTrack interconnect was a series of horizontal and vertical (row and column) 

global routing channels, as shown in Figure 27. LEs with a high fan-out (ie drove a 

high number of other LEs) could connect directly to the row interconnect by being 

placed in the last LE of an LAB, or the column interconnect if placed in the LAB 

nearest the column interconnect. To achieve lower set-up times, column I/O pins can 

also drive the FastRow interconnect to route signals directly to the local interconnect, 

bypassing the MegaLAB interconnect.
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The architecture of the device was of note when designing a PCI interface, which 

was subject to strict timing characteristics. This was especially true when 

implemented on PLDs, which are slower than ASICs, despite other advantages as 

mentioned in section 4.5. The mapping of the designs onto logic resources was 

performed by Alteras Quartus II synthesis software [155]. The user could influence 

the outcome by specifying certain synthesis options. The user could even dictate 

certain modules and parts of modules to be implemented in certain sections of the 

PLD, even down to specifying the use of particular LEs in order to obtain higher 

speeds. The layout and placement of the design was left to software, apart from the 

pin-out, which was predefined in order to place all PCI I/O along one side of the 

device. This minimised PCB track layout length and complexity and in turn reduced 

skew, delay, noise and crosstalk on these signals.

4.6.2.5 Context Addressable Memory

Context Addressable Memory (CAM) [142] was a memory feature first 

introduced with the Apex 20KE family. CAM was unavailable on the Flex 10K 

devices used in the implementation of the SARNIC and PCI-OSLi interfaces and the 

Apex 20K family. CAM could be thought of as the inverse of RAM. When retrieving 

data from RAM, the address of the desired data was entered with the output being the 

contents of that address. Retrieving data from a CAM entailed entering the expected 

data, termed ‘pattern’, and if the pattern already existed in the CAM, a match was 

declared with the output being the address of the matched pattern.

CAM achieved very fast search speeds, irrespective of the CAM size, as locations 

were searched concurrently as opposed to the sequential operation of RAM. Searching 

the CAM took a single clock cycle with a single ESB capable of implementing a 32- 

bit wide 32 pattern deep CAM. The CAM implemented in the FT-PCI-OSLi design 

was 8 bits wide and 16 pattern deep but was expandable if desirable, with most 

additional work involving the replication of surrounding glue logic. The CAM could 

support ‘don’t care’ mask bits but this feature was deemed unnecessary, as message
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ID bits must be exact. It could be used if message IDs were numbered by masking out 

the number bits.

4.6.3 High Performance Digital Design Implementation

This section identifies ways in which the internal architecture of the PLD aided 

the implementation of the FT-PCI-OSLi. The PLDs defined layout gave accurate 

estimations of the delay paths through the design. Every gate that the signal passed 

through could be used to form a timing analysis prior to hardware implementation. 

Post-synthesis simulation was used to obtain performance results for the FT-SARNIC. 

A timing analysis was used extensively during the development of the FT-PCI-OSLi 

to ensure that the PCI timing requirements were met before implementation. Certain 

signals, most notably nIRDY and nTRDY (initiator and target ready respectively) 

were associated with timing problems due to their fast set-up times and high fan-outs. 

Pipelining these signals and using high speed interconnects helped reduce the delays 

to acceptable levels. As designs and their target technologies increase in size, delays 

across the device increase, leading to signal skew and implementation problems. The 

internal PLD architecture attempted to minimise such problems through the global 

clocking which used dedicated clock pins. Clock management circuitry distributed 

clocks around the design with minimal skew.

The MegaLAB architecture permitted neighbouring design functions to be placed 

in close proximity physically. The skew incurred through the implementation of 

combinatorial logic in large designs could cause timing problems due to signals 

changing at different times. A pipelined architecture was an obvious, but sometimes 

impractical, solution.

The location of memory segments in the MegaLAB, along with the LABs 

reflected the need of many circuit elements that utilised memory to have associated 

glue logic. For example, the Virtual Channel Message Store circuit that surrounded 

the CAM, detailed in section 5.4. Dividing the memory into multiple smaller blocks 

allowed for flexibility of implementation and reflected the idea that some designs, like 

the FT-PCI-OSLi, have many memory requirements.
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The PCI bus standard utilised bi-directional I/O reflecting the shared nature of 

communications and reduced the pin count. The PCI-OSLi design required the bi

directional nIRDY and nTRDY signals to use separate input and output signals and 

merge the signals externally. This permitted the use of the dedicated fast input pins of 

the PLD, necessary to meet the timing requirements of this signal. Internal 

optimisation of these signals, in conjunction with the more advanced Apex 20KE 

devices, enabled these signals to be implemented as bi-directional I/O, as shown in 

Figure 28, simplifying PCB layout and reducing noise on these signals.

nIRDY <4-

nTRDY -4-

PCI-OSLi 
Flex 10KE

FT-PCI-OSLi 
Apex 20KE

nIRDY i
nIRDY < ----------► nIRDY

nIRDY_o

nTRDYji nTRDY 4 ----------► nTRDY
nTRDY o

Figure 28: nIRDY and nTRDY signal improvement between the two PCI-OSLi
designs
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5 DESIGN STRUCTURE

5.1 FT-PCI-OSLi Module Description

The design of the FT-PCI-OSLi interface was divided into three main areas, as 

shown in Figure 29. The Host System Interface was responsible for co-ordinating 

transactions with other devices connected to the PCI bus. Message Format Processing 

Logic was responsible for altering the 32-bit data words to a format more suitable for 

transmission on the NTR-FTM08 network. The Communications Link Interface was 

responsible for data insertion and extraction to and from the NTR-FTM08 router 

network, and the encoding and decoding of tokens respectively. The Host System 

Interface and Data Flow Layer were linked by two DMA buffers, one for each 

direction. The 64-word deep buffers accumulated data until there was sufficient to 

warrant a PCI transfer. The Link Interface buffering formed the boundary between the 

Data Flow Layer, which was synchronised to the 33MHz PCI clock and the 

Communications Link Interface. The Communications Link Interface was 

synchronised to the sample clock, which formed the basis of the 1.5 times 

oversampling technique utilised, by the asynchronous communications across the 

NTR-FTM08 network [37]. The 32 token deep Link Interface buffers facilitated the 

flow of data across the serial communications links. The FT-PCI-OSLi design 

differed from that of the PCI-OSLi in virtually all modules, with many completely 

redesigned.

Host
Communications 

Link Interface
System

Interface Data Flow Layer

Message
Format

Processing
Logic

32-bit Parallel Bi
directional Bus

Serial
9-bit Parallel Bus Asynchronous32-bit Parallel Bus

Links

Figure 29: Block Diagram o f the FT-PCI-OSLi Interface
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5.1.1 PCI Interface

The PCI Interface block was responsible for the initiation of PCI bus transactions 

involving data sent to and received from the serial communications link. Reception 

required the PCI interface to monitor the capacity of the receiver channel DMA 

buffer, initiating a transfer when the number of data words stored reached a certain 

value. Transmission required the PCI Interface to monitor the PCI bus control signals 

to identify the initiation of a transfer by another device attached to the bus. These 

control signals were decoded to determine if the FT-PCI-OSLi was the intended 

recipient of the transaction, requiring the FT-PCI-OSLi to prepare for data reception.

AD [31:0] 

nC/BE [3:0]

nFRAME 4 -
nDEVSEL 4 -
nIRDY 4 ------
nTRDY 4 ------
nSTOP 4 ------
nPAR 4 ------
nSERR 4 ------
nPERR 4 ------
nlNTA 4 ------
IDSEL ----------
nGNT ----------
nREQ 4 --------
CLK ------------

nRST -----------

PCI M aster/ 
Target 

Controller

Target
Address
Decoder

Address / 
Data Path

■N 
-

fell

Parity Check 
/ Generation - N-v

DMA
Registers

Interrupt
Controller

Virtual
Channels
Modules

Test
Counters

PCI
Configuration

Registers

32-Bit Data 
W ords from Rx 
DMA buffer

^ 32-Bit Data 
Words to Tx 
DMA buffer

 Interrupt Signals
fro m Link Interface

_____ Various I/P and 
O/P signals to /

^  from the Data 
Flow / Link 
Interface Modules

To PCI Bus Host System Interface To DMA Interface

Figure 30: Block Diagram o f the PCI Interface and its associated I/O signals

The PCI Interface consisted of six main components, as Figure 30 demonstrates.

• A PCI Master / Target Controller determined the mode of operation for the current 

transaction.

• The Target Address Decoder determined if PCI transactions initiated by another 

PCI agent were destined for the FT-PCI-OSLi.
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• The Address / Data Path module multiplexed and demultiplexed these two buses 

onto a single bus and synchronised the PCI data bus signals to meet the strict set

up times of the bus.

• A Parity Check / Generator controller maintained the integrity of communications 

over the PCI data bus and the four bit Command / Bus Enable (nC/BE) signals.

• PCI Configuration Registers hold information necessary to identify the FT-PCI- 

OSLi to other users of the PCI bus.

• The DMA Registers housed three main functional blocks: An Interrupt Controller, 

hardware to implement Virtual Channels and a series of test counters used to aid 

development.

5.1.1.1 PCI Master /  Target Controller

The PCI Master / Target controller module controlled the interface between the 

FT-PCI-OSLi and the PCI bus. It was responsible for the creation and monitoring of 

many of the PCI bus signals used in transactions involving the FT-PCI-OSLi. The 

main difference between the Master / Target controller implemented in the FT-PCI- 

OSLi and the comparable module in its non-fault tolerant predecessor was the 

implementation of the master and target state machines. The number of states in the 

state machines were reduced from 7 to 4, and from 8 to 5 for the master and target 

state machines respectively. These two state machines operate independently from 

one another but only one should be active at any one time.

Acquiring PCI Bus Ownership

A request for ownership of the PCI bus is made following assertion of the active 

low ‘nREQ’ PCI signal (see Appendix B). Request arbitration is handled by the PCI 

chipset with priority usually given on a ‘round-robin’ basis although the actual 

implementation is left to the PCI chipset designer, being unspecified in PCI 

specification 2.1. Making the request decrements the count stored in the latency 

counter. This 8-bit value is stored in bits 8 to 15 of configuration register offset 0CH
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(see Appendix E) and is decremented every PCI clock cycle whilst a transfer is 

occurring. When the count reaches zero, the FT-PCI-OSLi must surrender bus 

ownership and make another request to transfer data if the message has not yet been 

completed. The latency count is decremented both when the PCI transfer is occurring 

and whilst it is being set up and can be used to calculate the number of clock cycles 

taken to acquire ownership and to initiate transfer following the granting of 

ownership.

Bus Master Mode o f  Operation

M Idle

M AddrM Extra

M Data

Figure 31: FT-PCI-OSLi Master State Machine

Figure 31 illustrates the operation of the Master State Machine. The first state, 

entered on reset was ‘M_Idle’ and it remains in this state until one of two conditions 

was met. Either there was enough data in the receiver DMA buffer for the FT-PCI- 

OSLi to initiate a transfer or the PCI Bus Arbiter could decide to allocate the FT-PCI- 

OSLi the task of ‘bus parking’ [41, 145]. These conditions de-asserted the ‘nREQ’ 

(see Appendix B) signal, indicating that the device had requested ownership of the 

PCI bus. The second, ‘M_Address’ state was entered on being granted ownership of 

the PCI bus, indicated by receipt of the ‘nGNT’ signal. This state was occupied for a 

single PCI clock cycle, during which the initial memory address for the transfer was 

loaded into an internal register as part of the PCI address cycle.
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On the following PCI clock cycle, the ‘MJData’ state was entered, during which 

data transactions could occur. This state was left when either:

• Data transfer had been completed -  initiated by the ‘m_lstl_data’ signal from the 

DMA Registers module indicating that the number of data words transferred 

equalled the number of expected transfers.

• The FT-PCI-OSLi device was forced to surrender bus ownership. This occurred if 

the transfer was not completed within a set time, indicated by the expiration of 

the latency counter.

• The target requested that the bus master halt the transfer through assertion of the 

‘nSTOP’ signal (see Appendix B).

Satisfying any of these conditions moved the state machine into the ‘MJExtra’ 

state, again only for a single PCI clock cycle. During this state the FT-PCI-OSLi 

surrendered bus ownership before returning to the ‘M Idle’ state.

Target Mode o f Operation

"►( S DecodeS Idle

S Data B B u sy

S Extra

Figure 32: FT-PCI-OSLi Target State Machine

If the FT-PCI-OSLi became the recipient of a PCI transaction, the interface 

became the ‘target’, invoking the use of the target state machine, illustrated in Figure 

32. This state machine entered the ‘S_Idle’ state on reset, moving to the ‘S_Decode’
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decode state on assertion of the ‘nFRAME’ PCI signal (see Appendix B). Assertion of 

the *hit_f* signal from the ‘Decode’ module or the ‘cnfg_cyc’ signal indicated that the 

FT-PCI-OSLi was the intended recipient of the transaction. These signals were 

decoded from the address bus and ‘nC/BE’ buses respectively. If the FT-PCI-OSLi 

was the intended destination for the transaction, the target state machine moved from 

the ‘S_Decode’ to the ‘S Data’ state.

If another device attached to the PCI bus was the intended recipient then the state 

machine entered the ‘B Busy’ state, indicating bus activity not connected with the 

device. The FT-PCI-OSLi target state machine remained in either of these states until 

the de-assertion of the ‘nFRAME’ signal indicated the end of the data transfer, 

irrespective of the recipient. This moved the state machine to the ‘ S JExtra’ state, valid 

for one clock cycle during which time the FT-PCI-OSLi must handover possession of 

the bus and return to the ‘S_Idle’ state.

5A. 1.2 Address Decode Module

This module latched the PCI address bus signals to determine if the FT-PCI-OSLi 

was the target of the next PCI bus transaction. These signals were also decoded to 

provide pointers to the address of the current data word in the configuration and data 

storage spaces in memory. Address lines 2 to 7 and 20 to 31 were latched with the 

former used to determine the read / write address for the next memory access. Bits 20 

to 31 decoded a 1MByte area of memory with the ‘hitJP signal indicating an address 

match with a configuration register address. The Master / Target Controller used this 

signal to indicate that the FT-PCI-OSLi was the intended recipient of the transaction.

5.1 A .3 Address / Data Path Module

The separate 32-bit address and data buses of the PCI interface were multiplexed 

in this module and were latched to ensure the stringent timing requirements dictated 

by the PCI bus specification were adhered to.
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5.1.1.4 Parity Generator /  Verifier

The 32-bit PCI data bus, AD[31:0] and the 4-bit active low ‘nC/BE’ bus (see 

Appendix B) were sampled in this module and an even parity signal was generated for 

each PCI word outputted onto the bus. The receiving PCI entity checked the parity 

signal against the received buses. The ‘nSERR’ or ‘nPERR’ parity error signals 

denoted errors detected in the address or data phases of the PCI transfer respectively.

5.1.1.5 PCI Configuration Registers

This module contained sixteen 32-bits wide registers used for storing information 

denoting the identity and characteristics of the FT-PCI-OSLi, used in setting up the 

PCI bus and determining which devices were attached to it. Appendix E lists all 

registers used in this design.

5.1.1.6 DMA Registers

This module contained thirty-two word-length user registers, mapped into the PC 

memory, as listed in Appendix C. These registers were used for several different 

functions. These included the display of control and status signals to assist 

development and the writing of message information to the registers to initiate 

transfers. Interrupt sources were configured and controlled via the Interrupt Enable 

Register and Interrupt Pending Register respectively.

The FT-PCI-OSLi user registers were accessed via free software called the 

PCIWave Exerciser from PLD Applications [156]. It permitted the user to read and 

write data directly to the host system memory without the need of a device driver. 

Such a task needed performing with care to avoid corrupting the memory contents. A 

program searched through the devices attached to the PCI bus, checking the device ID 

against that of the FT-PCI-OSLi. When found, the program allocated several available
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memory segments of 65,536 double words (262,144 bytes) for use by the FT-PCI- 

OSLi as data sources and receptacles.

The DMA Registers module also contained the Virtual Channels sub-modules that 

are discussed in greater detail in section 5.4.4.

5.1.1.7 Interrupt Controller

Located within the DMA Registers module, the Interrupt Controller was 

responsible for the generation of the active low ‘nINTA’ PCI signal. The host system 

serviced requests following the assertion of any of the multiple interrupt sources when 

that interrupt source was enabled in the Interrupt Enable Register. All interrupt 

sources requesting interrupts set corresponding bits in the Interrupt Pending Register. 

Only enabled interrupts resulted in the generation of ‘nINTA’ and the interrupt being 

serviced.

5.1.2 Data Flow Layer and Communications Link Interface

This section gives a detailed breakdown of data path through the data flow 

modules of the FT-PCI-OSLi design, from the serial communications network to the 

DMA FIFOs prior to transfer over the PCI bus. Figure 33 demonstrates the flow of 

data, and its format, through this part of the FT-PCI-OSLi interface.
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To PCI Bus via Address / Data Path AD[31:0] 
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Figure 33: Block Diagram o f the Data Flow and Link Interface sections o f the FT-
PCI-OSLi interface

5A .2,1 Link Interface

The link interface converted 9-bit parallel tokens into a serial bit stream for 

transmission onto the router network and vice versa. Only the data byte and type bit 

were transferred to and from the link interface and its buffers. Start and stop bits were 

inserted into the bit stream immediately before transmission and removed 

immediately after reception. Control tokens were inserted into and removed from the 

data stream at the link interface with only termination tokens progressing to the link 

interface buffers. Stop and Go flow control tokens took a higher priority than data 

tokens and were inserted and extracted from the bit-stream when required. The link 

interface determined which state the link was in, as detailed in section 4.4.5, and 

regulated the link initialisation and connection request procedure.
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The disconnection detection mechanism was located within the link interface 

module. It utilised two signals, namely ‘Heartbeat’ and ‘CheckPulse’ to generate and 

verify link activity respectively. Heartbeat tokens were generated once every 255 

sample clock cycles, approximately equal to the time taken to transmit 15 tokens. In 

the absence of any data to transmit, a heartbeat token (introduced in section 3.5) was 

sent to allow the receiver to verify that the link was still operational. Periodic token 

transmission reduced signal activity when compared to protocols such as IEEE Std. 

1355-1995, which required constant logic transitions on the physical channels. 

Assertion of the Heartbeat signal resulted in the transmission of the flow control token 

relative to the current link status. This allowed regular link status verification and 

safeguarded against the loss of control tokens. The CheckPulse signal cleared a flag 

which was set on receipt of any token, whether data or control. If the flag had not 

been set when the CheckPulse signal was next asserted a disconnection error was 

flagged. This was because a flow control token should have been received through 

assertion of the Heartbeat signal, even in the absence of data. Triggering any error 

detection mechanism moved the state machine that governed link status into the reset 

state. This invalidated any further tokens received before the link had been correctly 

initialised by way of the connection request procedure (see section 4.4.5).

5.1.2.2 Link Interface Buffering

The link interface buffers formed the boundary between the sampling clock 

controlled link interface and the PCI clock controlled message interface. The buffers 

were 32 tokens deep, 9 bits wide and operated in a first-in-first-out (FIFO) manner. 

Type (or ID) bits passed through the FIFOs as termination tokens were added and 

removed at the message interface part of the design. Data entering and leaving the 

transmitter buffer was synchronised to the PCI and sample clocks respectively. ‘Full’ 

and ‘Empty’ signals left the buffers to notify other modules of data saturation and 

starvation respectively. The receiver buffer created two additional level pointers, 

termed ‘Almost-full’ and ‘Almost-empty’, set to trigger when the number of tokens in 

the buffer was in excess of 24 and less than 8 respectively. The buffers were
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implemented in the embedded memory arrays of the PLD as dual-port RAM to allow 

simultaneous read and write accesses.

5.1.2.3 Transmitter Message Control

This Transmitter Message Controller co-ordinated the transfer of data from the 

transmitter’s DMA buffer to the link interface buffer and the intermediate message 

formatting, as shown in Figure 33. The data was packetised in hardware to reduce 

software overheads. Header and termination tokens were added at this stage. Data 

words were split into four data bytes and a logic one ID bit was added to form the 

ninth bit of the token passed to the link interface buffer. Up to four header tokens 

could precede the start of the data stream with up to three of these being optional 

routing headers. These could be stripped as the message traversed the router network. 

The final and mandatory header was the message ID. All header tokens possessed a 

logic one type bit and were denoted by their position in the received data stream. The 

message length information was passed to this module from the DMA registers 

module. As data was outputted from the transmitter DMA buffer, the message length 

counter was decremented until a count of zero denoted the end of message. At this 

point, an EOM token, with a logic zero ID bit was appended to the data stream.

■►v TerminationIdle Header Data

Figure 34: FT-PCI-OSLi Transmitter Link Controller State Machine

The transmitter message controller possessed two state machines. Their functions 

were to control data transfers to the transmitter DMA buffer and the transmitter link 

interface buffer. The transmitter link interface state machine had four states; ‘Idle’, 

‘Header’, ‘Data’ and ‘Termination’. These reflected the type of tokens that were being 

transferred to the link interface buffer at that time. This state machine is shown in
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Figure 34. The state machine moved from ‘Idle’ to the ‘Header’ stage when the 

command to start packet transfer was received from the higher levels of the design. 

This occurred by writing to the Transmitter Length Register (Offset 0DH) in the DMA 

Registers module. In the ‘Header’ state, header tokens were loaded onto the link 

interface FIFO from the register, where they were stored after being fetched from 

memory. Once the last header token had been loaded into the link interface buffer, the 

state machine moved into the ‘Data’ state, loading data from the DMA buffer. After 

the last data token had been packetised and written to the link interface buffer, the 

‘Termination’ state was entered. An EOM token was loaded into the buffer and the 

state machine returned to the ‘Idle’ state to await the next message.

Idle Read Write

Figure 35: FT-PCI-OSLi Transmitter Message Controller DMA State Machine

The transmitter DMA state machine shown in Figure 35 had three states; ‘Idle’, 

‘Read’ and ‘Write’. It only operated when the transmitter link interface state machine 

was in the ‘Data’ state. On entering this state, the DMA state machine advanced from 

‘Idle’ to ‘Read’. This transferred a 32-bit data word from the DMA FIFO for 

packetisation, before moving to the ‘Write’ state. The ‘Write’ state appended a logic 1 

ID bit to each of the four data bytes that made up the 32-bit data word and transferred 

each 9-bit token to the link interface buffer in turn. The state machine moved back to 

the ‘Read’ state upon reading the fourth byte in the word into the link interface buffer. 

The process was repeated until the transmitter DMA buffer was empty. The empty 

transmitter DMA buffer indicated that the packetisation of the data transferred in that 

PCI transaction was complete, moving the state machine to ‘Idle’ to prepare the 

transmitter DMA channel for another PCI transaction.
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5.1.2.4 Receiver Message Control

The Receiver Message Controller facilitated the transfer of data from the receiver 

link interface buffer to the receiver DMA buffer via the depacketiser. Data was 

converted from the 9-bit token format of the link interface buffer to the 32-bit data 

words required for PCI transactions.

The type bit of tokens passed from the link interface FIFO to the receiver DMA 

FIFO was examined in this module. All other control tokens had been removed from 

the data stream by this stage with only the EOP, EOM and BEOP tokens remaining in 

addition to the data tokens. On receiving acknowledgement from the header storage 

module that the received message ID was valid (or expected and therefore the length 

and address for transfer to memory was also known), an associated message length 

value was transferred from the header storage module. The length was decremented as 

data was outputted from the receiver link interface FIFO. The time at which the 

message length counter reached zero, relative to the detection of the termination token 

in the depacketiser, determined the mode of termination, of which there were three:

• If the message count did not equal zero when the termination token was read then 

the message was terminated earlier than anticipated -  Early tennination.

• If the message count equalled zero when the termination token was read then the 

message was terminated when expected -  Normal termination.

• If the message count reached zero and the termination token was not present then 

the message was longer than expected -  Late termination.

Early and normal termination resulted in the message being transferred to memory 

in its entirety. The setting of bit 2 in the interrupt pending register was used to denote 

early termination. Late termination indicated that the message was longer than 

expected, and as such there could be insufficient resources allocated to that message 

in memory. The expected number of data bytes were transferred to memory and the 

remainder flushed from the receiver. A late termination error was flagged using bit 3 

of the interrupt pending register. Header tokens were compared with the contents of
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the CAM to determine whether or not a header match was achieved. Termination 

tokens were removed upon identification so that only data was transferred to memory.

Like the transmitter message controller, the receiver message controller had two 

state machines. One controlled the passage of data from the link interface buffer, 

shown in Figure 36, the other, shown in Figure 37 controlled the writing of data to the 

DMA buffer.

PCI Read 
Header

Idle Header

Wait Data 
Stage

Terminate Data

Figure 36: FT-PCI-OSLi Receiver Link Controller State Machine

The Receiver Link Controller State Machine resided in the ‘Idle’ state until the 

loading of the first received token into the link interface buffer. Its position in the 

incoming bit-stream indicated that it should be the header of the message, moving the 

state machine into the ‘Header’ stage. Once complete, the received header was 

compared with the contents of the CAM to determine whether the header was 

expected. Whilst this occurred the state machine was in the ‘PCI Read Header’ state, 

advancing to the ‘Wait Data Stage’ state when the header had been validated. This 

state synchronised the two state machines preventing the passage of data until the 

DMA buffer was ready to receive it. When the receiver message controller DMA state 

machine, shown in Figure 37, reached the ‘DMA Sync’ state, the link interface state 

machine advanced to the ‘Data’ stage. It remained there until a termination token was 

read from the output of the link interface buffer. The state machine then moved into 

the ‘Terminate’ state, returning to the ‘Idle’ state when the termination token had been 

removed from the data stream.
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Figure 37: FT-PCI-OSLi Receiver Message Controller DMA State Machine

The Receiver Message Controller DMA State Machine initially resided in the 

‘Idle’ state. It moved to the ‘DMA Sync’ stage when the received header had been 

validated by the contents of the CAM. This state was equivalent to the ‘Wait Data 

Stage’ in the link interface state machine in Figure 36. When both states were active 

simultaneously the DMA state machine advanced to the ‘Read Link FIFO’ state. In 

this state data tokens were transferred from the link interface buffer to the 

depacketiser. After four bytes had been transferred from the Link Interface Buffer, a 

32-bit word was ready for transfer to the DMA buffer, forcing the state machine into 

the ‘Write Data’ state. Once the data word had been transferred to the DMA buffer the 

state machine returned to the ‘Read Link FIFO’. This procedure was repeated until the 

DMA buffer was full, advancing the state machine to the ‘FIFO Empty’ state. Whilst 

in this state the DMA buffers contents were transferred to memory. Once completed 

the ‘Transfer End’ state was entered whilst the mode of termination was determined. 

If normal or early termination occurred, the state machine returned to the ‘Idle’ state. 

Late termination moved the state machine to the ‘Flush’ state removing the excess 

data from the link interface buffer before returning the state machine to the ‘Idle’ 

state.
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5.L2.5 DMA Buffer

The DMA buffers were temporary data stores for data that had been read from or 

written to the PCI bus. There was one buffer per direction operating on a first-in-first- 

out (FIFO) principle. The DMA transmitter buffer stored data previously fetched from 

the host system memory, via the PCI bus, prior to packetisation and transmission onto 

the serial router network. PCI data bursts allowed data to be loaded onto the buffer at 

a rate of one 32-bit double word per PCI clock cycle. Data exited the buffer at one 

quarter of the rate it entered, being packetised at a rate of one token per PCI clock 

cycle. Following a DMA burst the link interface was required to catch up, as it 

effectively became a bottleneck in the system. Despite this, the serial link interface 

was the true bottleneck as it took 11 sample clock cycles to transmit a data token onto 

the router network.

The receiver DMA buffer provided temporary data storage for data coming from 

the link interface, storage was necessary to accumulate sufficient data to make an 

efficient DMA transfer to the host system memory, via the PCI bus. A request was 

made when the receiver DMA buffer was almost full or when the end of the message 

was reached. If message transfer was not complete following the emptying of the 

buffer, subsequent requests to master the bus were made at a rate dependent on link 

throughput. The 64 word deep DMA buffer used in the non-fault tolerant PCI-OSLi 

interface was implemented in the FT-PCI-OSLi.

5.1.2.6 DMA Controller

Data flow within the FT-PCI-OSLi interface could occur in both directions 

simultaneously in every part of the design except one. The 32-bit bi-directional PCI 

bus could only transfer data in one direction at any one time, requiring the 

multiplexing of the transmitter and receiver DMA channels. The DMA controller 

arbitrated between these two functions to ensure that no one resource could 

monopolise access to the bus. Figure 38 illustrates the state machine of the DMA 

controller. The controller initiated a transfer when either:

- I l l -
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• The transmitter DMA buffer was almost empty, in order to request a transfer from 

memory or,

• The receiver DMA buffer was almost full, in order to request a transfer to 

memory.

Receive
Idle

Transmit
Idle

Transmit
Request

Receive
Request

Transmit
Transfer

Receive
Transfer

Figure 38: FT-PCI-OSLi DMA Controller State Machine

On the leading edge of every PCI clock cycle the DMA controller checked both 

DMA channels to see if either were ready to transfer data. Control over which channel 

took priority toggled between the transmitter and receiver DMA channels every clock 

cycle. If a channel was ready to transfer data, the DMA controller made a request to 

master the PCI bus and initiated a transfer, moving the state machine into the request 

state for the appropriate channel. On being granted bus access, the corresponding 

transfer state was entered and on completion of the transfer, the state machine moved 

to the idle state associated with the other type of transfer. For instance if a 

transmission transfer had just completed, the state machine would move to the 

‘Receiver Idle’ state. This ensures fair arbitration by giving a pending receive 

transaction a chance to execute.
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5.1.3 Virtual Channel Message Store

Although part of the DMA Registers submodule, the VCMS (Virtual Channel 

Message Store) is dealt with separately as it is a major novel part of the FT-PCI-OSLi. 

The VCMS (Virtual Channel Message Store) enabled the pre-loading of expected 

message headers and their associated address and length information into the FT-PCI- 

OSLi interface. Pre-loading multiple message IDs allowed the interface to handle the 

scenarios noted in chapter 3 that were observed in the ICR-C416 based network. 

These included: Message arrival out of order, alternating incoming messages and 

minimising the need for user intervention following message arrivals from the 

embedded network. The VCMS had the capacity to hold sixteen byte-length message 

IDs. As mentioned in section 4.4.9, messages were assigned to one of three classes, 

based on maximum length. The class 1 and 2 length values were user definable. These 

stores had capacity for ten and four message IDs respectively. Class 3 possessed two 

locations, and no defined maximum length, other than that of the maximum message 

size. This class was designed for one-off messages whose message IDs were removed 

from the CAM after use. Class 1 and 2 headers remained in the CAM for future use, 

only being removed if that particular (or all) message IDs were deleted. These 

procedures occurred through the user accessing the Command Register (offset OFh).

The Command Register was used to input user commands into the FT-PCI-OSLi. 

Its contents are detailed in Appendix C. The Status Register was used to display 

information from FT-PCI-OSLi relating to the last messge read or write transaction to 

or from the interface in addition to displaying the contents of the CAM. Its contents 

are detailed in Appendix C.

5.1.3.1 VCMS Operation

Initially maximum message lengths for classes 1 and 2 were written to registers 

(additional details in Appendix C) which enabled the message length comparator 

necessary to determine message class. Message IDs and lengths were written to the 

appropriate registers. This process compared the expected message length with the 

class 1 and 2 preset values. The result of this comparison determined which class the
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message belonged to and its position in the CAM. Each location in the CAM had a 

mask bit associated with it indicating if that particular CAM location contained a 

header or not. Each class had an priority encoder to fill the CAM locations in order. 

Header deletion cleared the mask bit for that location, forcing the next expected 

header write to fill that CAM location as it had a higher priority than subsequent 

locations, as Figure 39 shows. The order in the CAM is irrelevant but the priority 

encoder ensured that the status of each class of the CAM (full or empty) was always 

known and appropriate action could be taken.

0 CAM 
loaded 
in this 

r order

0 0
1 I y  Filled locations l
2 2 , 2
3 3

Free
locations

, 3
4 4 1 4
5 5 5

Deleting 
header in 
location 1 
makes this 
the next free 
location

Figure 39: CAM Priority Loading Principle

If all locations associated with that particular class have been filled, no write could 

occurr and bit 30 in the Status Register was set to denote a failed CAM load. If this 

was the case, the message could be written to one of the two class 3 locations, if free.

The procedure for handling incoming message headers received from the routing 

network was different to the handling of expected message headers. The former 

classified messages according to the header pattern whilst the latter classified 

messages according to length. Incoming message IDs were loaded into the ‘Pattern’ 

input of the CAM but as the write signal was not asserted, the CAM compared the 

pattern with its contents, returning the address of a match, if one existed. The match 

address was decoded to determine the class of the received message. Its associated 

length and address parameters were loaded into registers in the DMA Registers 

module. Class 3 messages were used only once and the mask bit for that message was 

cleared at this point. A match signal was generated and used to start the 

depacketisation procedure. Figures 40 and 41 show the procedures for writing and 
reading message information to and from the VCMS.
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Expected Message Information Load Procedure
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Figure 40: FT-PCI-OSLi Expected Message Information Load Procedure
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Incoming Received Message Header Verification Procedure
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Figure 41: FT-PCI-OSLi Incoming Message Header Verification Procedure
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5.7.3.2 Virtual Channel Message Store Modular Breakdown

Control 
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M----------- ►

Virtual C 
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Channel Message Store 
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* Class «— CAM

Match Match - 4  ^
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Length Out 
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Match
Address
DecodeLength Mux *hr Class 3 Length 1

Figure 42: Block Diagram o f the Virtual Channel Message Store Submodules

The VCMS was the top-level module in this part of the design, housing all the 

lower level modules, as shown in Figure 42 and latched the flags that make up the 

Status Register.

Class 1 and 2 maximum message lengths were stored in registers located in the 

Class Match module. Expected message length values were compared and message 

class determined on this basis. Length comparison could not occur until class 1 and 2 

values had been specified, as writes to these registers are required to enable the 

comparator. Message length comparison occurred concurrently for all locations in all 

three classes.

In addition to the CAM, which stored the message IDs, the Header Store module 

also housed synchronisation logic to control CAM access. CAM comparison was 

constantly active so there existed a requirement to ensure that comparison only 

occurred on receipt of a header from the communications link. Logic was required to 

prevent a header match from starting the depacketisation process until the interface 

was ready. This was when the transfer of the previous message in that class to 

memory had been acknowledged by the clearing of the appropriate ‘next message’ 

flag in the Status Register. This module was also responsible for the removal of
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message IDs from the CAM. This could be performed manually, via user commands 

or automatically (class 3 header removal following a match).

The Address Pointer module selected the next free location for that particular class, if 

available, for writes to the CAM. Signals from the Class Match module indicated the 

class of the message and this module indicated if there was a free location for that 

particular class.

The Mask Bit module was located within the Address Pointer module, it contained 

one flag per CAM location. The flag was set on a CAM write, and cleared following a 

deletion of that location. The flag also cleared following receipt of a message header 

from the communications link that matched a header held in the class 3 section of the 

CAM.

The CAM possessed 16 locations, each of which held a byte length message ID. 

Message IDs were presented at the ‘Pattern’ input of the CAM. Assertion of the write 

signal determined whether or not the header was written to the CAM or compared 

with the contents of the CAM. The CAM address signals, generated in the Address 

Pointer module dictated the location in which the header was stored. In the case of 

header deletion, the address pointer gives the location whose contents were to be 

removed. Write and delete signals were asserted for two clock cycles. If the message 

ID at the ‘Pattern’ input to the module matched the contents of the CAM, the ‘Match’ 

output was asserted. At this point the ‘Match Address’ bus indicated the location of 

the match, from which the message class was deduced. The CAM was not set up to 

allow multiple matches. Although this option was available, it was deemed 

unnecessary as message IDs could be reused (with the exception of class 3 headers) 

and a message ID associated with two or more classes defeated the object of message 

classes. If the same message ID was written to multiple CAM locations, only the most 

recent was valid. The internal operation of the CAM is detailed more thoroughly in 

section 4.6.2.5.

The Match Address Decode module decoded the address of the matching message 

ID to decide which class the message belonged to and which maximum message 

length should be used. A two bit select signal was generated whose value indicated
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message class: 00b  indicated a class 1 message, 01b  indicated a class 2 message, 10b  

indicated a class 3 message (lower location), and 11b  indicated a class 3 message 

(upper location). Class 3 had two selects as the two messages could be of different 

maximum lengths.

The Class Three Length Module stored up to two class 3 message lengths 

following a message ID write to the CAM whose length did not match either class 1 

or 2 criteria. Class 3 message lengths could only be overwritten following a class 3 

header match or deletion of one of the class 3 messages.

The Length Multiplexer module used the two bit select lines generated in the 

Match Address Decode module to output the maximum message length. This was 

passed to the receiver length register in the DMA Registers module and used for 

determining the end of the DMA transfer to memory.

5.2 FT-SARNIC Module Description

This section gives an overview of the submodules of the FT-SARNIC design and 

their functions.

External NTR-FTM08
I/O SARNIC Router

SDRAM Devices Regs Network

Communications
Controller

Bus Controllero

Data Busoo

-W-_
32-bit
Timer

.. .•"sH?’:_
UARTInterrupt

Controller
— UART 

Devices

Figure 43: Block diagram o f the top-level modules o f the FT-SARNIC design
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The FT-SARNIC design illustrated in Figure 43 consisted of five main 

components which are described in the following subsections in more detail.

The FT-SARNIC design built on that of the SARNIC, adding to it the hardware 

fault detection and recovery features described in section 4.4. The implementation of 

these was largely confined to the Communications Controller, leaving the remainder 

of the interface design largely unchanged, except for the removal of the ICR-C416 

control port as it was replaced by the ability to transport link status information across 

the communications links.

5.2.1 Bus Controller

The Bus Controller co-ordinated access to the data bus by the CPU, the 

addressable memory mapped devices and the FT-SARNICs DMA channels. There 

were three addressable memory mapped devices each controlled by its own separate 

module, located within the Bus Controller, as illustrated in Figure 44. The SDRAM 

controller allowed the addressing of up to 32Mbytes of SDRAM. The External I/O 

interface allowed up to four devices 256Mbytes of addressable memory locations 

each. The Internal Registers interface provided access to 256 bytes of the FT- 

SARNICs user configurable registers. The Arbiter Core was the final component in 

the Bus Controller. It arbitrated between access requests from the CPU and DMA 

channels and selected which memory device should be activated. Requests from the 

CPU always have priority over DMA requests in order to prevent network 

communications affecting the processors performance.
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Figure 44: FT-SARNIC Bus Controller submodule block diagram

5.2.1.1 Arbiter Core

The Arbiter Core received requests to access the memory from the StrongArm 

SA-110 microprocessor and the two DMA channels of the communications controller. 

Transfer requests were latched, pipelined, queued and serviced in turn. The bus arbiter 

state machine in Figure 45 demonstrates the order in which they were serviced. When 

the memory bus was idle, CPU requests were given priority. Bus access alternated 

between the CPU and either of the two DMA channels when requests were pending. 

This prevented a single resource monopolising bus access, providing fair access and 

permitting high DMA data throughput without affecting the CPU performance. The 

memory address was decoded to select the target memory device: SDRAM, External 

I/O, the FT-SARNICs internal registers or either of the transmitter DMA channels. 

The selected memory device interface was activated to commence the bus transaction 

once several wait states (the number dependant on the memory device activated) had 

elapsed. These were required to stall the request source until the data bus was ready 

for the commencement of data transmission.
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Figure 45: FT-SARNIC Bus Arbiter State Machine Diagram

5.2.1.2 SDRAM  Interface

The SDRAM interface was responsible for the generation of the SDRAM start-up 

sequence, the physical row and column address signals and the SDRAM control 

signals. The interface could address up to 32Mbytes of memory, having 4 chip select 

lines, 11 row address lines, 9 column address lines and a bank address line. The 

memory must be capable of operating at variable speeds. This was because the FT- 

SARNIC derived its core clock frequency from the user-configurable StrongArm SA- 

110 processor clock. Allowing user-configurable SDRAM timing parameters tailored 

the SDRAMs timing to the chosen clock speed, maximising efficiency. Additionally, 

different SDRAM families and manufacturers might have different timing 

specifications. The user-addressable SDRAM timing register affords the possibility of 

optimising the SDRAM timing to a specific SDRAM model. The SDRAM refresh 

rate was fixed at the standard rate of 4096 cycles every 64ms, as used by most 

SDRAMs [146, 147]. As the refresh rate was fixed, it was generated from the 

communication controllers 30MHz sample clock instead of the variable CPU clock.

The four-state SDRAM access state machine, illustrated in Figure 46 determined 

the amount of cycles spent in each state. The state machine moved from the ‘Idle’
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state to ‘Row Address’ upon receiving a request where the row address of the 

SDRAM was decoded from the memory access address. The column address was 

decoded in the ‘Column Address’ state and the appropriate read or write command 

was generated. SDRAM data writes occurred in the same clock cycle but read 

operations took several clock cycles before the data was available. Read operations 

followed a delay defined by the SDRAMs CAS (Column Address Strobe) latency. 

The final ‘Pre-charge’ state cleared the SDRAM address lines and prepared the 

memory for the next access.

Column
Address

Row
Address

Idle Pre-charge

Figure 46: FT-SARNIC SDRAM Interface State Machine

The SDRAM operation could support 2, 4 or 8 word bursts, requiring the column 

states to be specified only once with the burst commencing from that location. Most 

SA-110 CPU accesses took the form of 8 word cache line fills suited to the bursts. 

Shorter accesses, from a single word to four word bursts could also occur.

The advantage of the 8 word cache line fill was the SDRAM interface could tell 

exactly when the operation would end, as it was the longest allowable access. 

Unfortunately it exceeded the memory bus access window. Operation of the shorter 

cache line fill bursts was awkward, as the interface must wait for the de-assertion of 

the microprocessors memory request signal indicating the end of these transfers. The 

SDRAM interface avoided this by limiting burst lengths to one word and issuing 

back-to-back read / write commands [148].

5.2.1.3 External I/O Interface

The External VO Interface provided control signals to perform read and write 

operations on up to four low speed peripherals. Each of the I/O devices had up to
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256Mbytes of addressable locations with address lines 28 and 29 used as device select 

lines. The I/O control register provided software configurable timing parameters to 

determine: the duration of each I/O access, which cycles in each I/O access were read 

or write cycles and the frequency of the I/O interface control. These parameters 

allowed the user to tailor the I/O interface signals to the attached device.

5.2.1.4 Internal Registers Interface

This module created the control signals for the FT-SARNIC internal registers, 

covered in greater depth in previous research [149]. Address lines a2 to a7 were 

decoded to give access for up to 64 different internal word-length registers used in the 

operation of the FT-SARNIC.

5.2.2 Communications Controller

The largest part of the FT-SARNIC interface was the Communications Controller, 

responsible for the passage of all messages to and from the interconnection network. 

The Communications Controller module of the FT-SARNIC housed the fault 

detection and recovery features of the interface. It represented the majority of the 

novel design work on the FT-SARNIC that resulted from the research. Unlike the 

SARNIC interface, which possessed two communications links, the FT-SARNIC had 

only one bi-directional communications link due to limited available logic resources. 

The FT-SARNIC, like its non-fault tolerant predecessor, implemented four DMA 

message channels, allowing two full-duplex, bi-directional virtual channels. A 

hardware Message Allocator switch routed messages to and from the appropriate 

DMA channel. Figure 47 illustrates the block diagram of the Communications 

Controller submodule.
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Figure 47: FT-SARNIC Communications Controller Block Diagram

5.2.2.1 DMA Channels

Four DMA channels, two in either direction, supported message passing 

operations between the Communications Link Interface and the SDRAM via the 

memory bus of the SA-110 processor. FT-SARNIC memory accesses utilised a cycle 

stealing mechanism, transferring one data word at a time during periods when the 

processor was not accessing the memory. As mentioned in section 5.5.1.1, CPU 

accesses were given priority over DMA accesses to memory. The pipelined DMA 

Arbiter Core reduced memory bus switching inefficiencies. The two DMA message 

channels in each direction could be multiplexed onto the Communications Link 

Interface to allow hardware virtual channel support. This gave more efficient 

switching and higher bandwidth utilisation as the communications link could switch 

to a second message immediately after completion of the first.
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Figure 48: FT-SARNIC DMA Channels State Machine Flow Diagram

All DMA message channels operated on the same basis, with each channel having 

its own state machine, illustrated in Figure 48. This has with three states; ‘Idle’, 

‘Active’ and ‘Done’. Message channels were ‘Idle’ until supplied with message 

channel information (Header, Address and Length parameters). The write to the 

Length Register must be the last of these three as it was responsible for moving the 

state machine into the ‘Active’ state, permitting no further register modifications. 

When ‘Active’, a DMA transaction occurred subject to sufficient empty resources at 

the destination of the transfer, whether it was the memory bus or the communications 

link. At the end of the message transfer, the message channel terminated and moved 

to the ‘Done’ state. No further use could be made of the DMA channel until the CPU 

had acknowledged completion of the message transfer. This was achieved by 

returning the state machine to ‘Idle’ and readying it for another transfer. DMA 

message channel 0 possessed additional functionality to enable a ‘boot from link’ 

option, upon which the incoming data bytes were transferred to the memory area that 

the SA-110 CPU boots from.
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5.2.2.2 DMA Arbiter Core

This module was responsible for arbitrating between the four DMA channels. It 

also made requests to the bus controller module to gain access to the memory bus. 

The four channels were sampled every clock cycle when the processor was not 

accessing memory and any requests were latched. The receiver channels had a higher 

priority than the transmitter channels to attempt to keep data flowing through the 

interface, reducing the chances of having to suspend transmission across the link. If 

more than one-channel requested a transfer, the latched requests were serviced in turn 

following completion of the highest priority transaction.

5.2.2.3 Message Allocator Switch

The message allocator was responsible for matching the message IDs of messages 

in DMA channels with those in communications channels, and routing data between 

them accordingly. Hardware message channel allocation reduced the overheads 

incurred in virtual message channel support, reducing the need for processor 

intervention. Assigning both message channels to the communication link effectively 

implemented hardware virtual channel transmission as both DMA channels 

multiplexed messages onto the same physical channel. This reduced switching 

inefficiencies as one message channel could be set up whilst the other was in 

operation. It had the additional benefit of inserting a short message in between packets 

of a long message in cases where multi-packet transmission was used.

Hardware virtual channel reception was possible by routing two incoming 

messages onto the communications link to each of the two DMA receiver channels. 

Support for more than two incoming virtual channels required software intervention, 

as one of the DMA channels must be freed in order to service the new message.
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5.2.2.4 Communications Links Interface

This section of the design converted outgoing data from 32-bit parallel words to a 

serial bit stream and vice-versa for incoming data, as illustrated in Figure 49. It was 

responsible for packetising and depacketising messages and inserting and extracting 

headers and termination tokens into the data stream. The Link Interface submodule 

handled the flow of information across the link and the implementation of the 

hardware fault detection and recovery features. Booting features were implemented in 

this section of the design, with the option of booting from an internal ROM or from 

the NTR-FTM08 router network.
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Figure 49: FT-SARNIC Communications Link Interface Module Block Diagram
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Transmission Procedure

As data progressed through the communications link it was converted from one 

format to another to allow for certain operations and procedures to be performed on 

the data. Data entered the communications link from the DMA channels in the form of 

32-bit words, each of which was subsequently split into four data bytes. Before these 

were outputted from the Packetiser submodule, a header prefixed each message. This 

could be of user-configurable variable length between 0 and 6 tokens to allow up to 

five routing IDs and a message ID. The routing header tokens were limited to five due 

to the small to medium size of target systems. Once the last word of the message had 

been packetised and outputted from the module, a termination token was appended to 

the data stream. A ninth ‘Type’ bit was added to differentiate between header and 

control tokens, appending a logic zero to termination and control tokens, logic one to 

all others. The nine-bit parallel tokens crossed the Asynchronous Interface boundary 

between the core and sample clock domains. The former was supplied by the SA-110 

CPU’s bus clock whilst the latter was driven by a 30MHz external oscillator. The 

tokens were stored in the 32 token deep Transmitter Link Interface Buffer, being 

outputted onto the Link Interface when logic resources were free. Logic one start and 

logic zero stop bits were added at this stage and the 11-bit token was serialised for 

transmission onto the router network. Flow control tokens were added at this point.

Reception Procedure

Serial data was retrieved from the router network and converted into an 11-bit 

parallel token. The start and stop bits were removed, leaving a 9-bit token whose type 

bit was tested to determine the presence or otherwise of flow control tokens. Flow 

control tokens were removed and acted upon. The remaining tokens were header, data 

or termination tokens, and were transferred to the Receiver Link Interface Buffer. The 

tokens were passed to the depacketiser when there was sufficient space in the one 

word deep DMA buffer. Headers were removed in the depacketiser and were 

identified by their position in the incoming data stream. They were checked with the 

message IDs held in the Message Allocator Switch to see if they had been allocated a
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DMA channel. Termination tokens were identified by their logic zero type bits and 

were removed and the message terminated.

5.2.2.5 Link Interface

In addition to the procedures described above, the link interface determined which 

state the link was in, as detailed in section 4.4.5 and regulated the link initialisation 

and connection request procedure. Section 5.3.1 described the operation of the link 

activity verification procedure implemented in the FT-SARNIC, being the same as 

that of the FT-PCI-OSLi.

5.2.2.6 Link Interface Buffering

The transmitter link interface buffer must be large enough to ensure that a data 

drought would not occur between successive DMA transactions. The following 

equation [17] gave the worst case delay between successive DMA transactions to be 

the same amount of time taken to transfer 3.15 tokens across the communications link. 

This value was rounded up to the next token, giving a four token deep transmitter link 

interface buffer.

( 4 x (4  + DMASize)) + (4 x (Byte Length)) x Data Rate 

^MAX Mem Bus Clk Mem Bus Clk Token Length

Maximum time between DMA operations, in terms o f link byte time 

The equation uses the following parameters;

• Mem Bus Clk (Memory Bus Clock, or SA-110 CPU clock) = 36.9MHz

• DMA Size -  1 word per transfer

• Token Length -  11 bits, not 13 as was the case in the SARNIC
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• Data Rate -  20Mbits/sec being 2/3 of the 30MHz oscillator frequency

The receiver link interface buffer was 32 tokens deep, 9 bits wide and operated in 

a First-In-First-Out (FIFO) manner. Full and empty signals left the buffers to notify 

other modules of data saturation and starvation respectively. The receiver buffer 

created two additional level pointers, termed ‘Almost-Full’ and ‘Almost-Empty’. 

These were set to trigger when the number of tokens in the buffer was in excess of 24 

and less than 8 respectively. In the FT-SARNIC interface, the buffer was 

implemented in the embedded array blocks (EAB) of the PLD to reduce logic 

requirements. Due to the internal architecture of the Flex 10KE and the MaxPlus2 

version 10.0 synthesis software, the buffer occupied two EABs, in a 9 x 16 

configuration. This was an inefficient use of the memory resources as only 144 bits of 

a possible 2048 were utilised in each EAB. This was an additional incentive to 

upgrade to the Apex 20KE and Quartus technology utilised in the implementation of 

the FT-PCI-OSLi.

5.2.2.7 Packetiser

The Packetiser formatted data ready for transmission as tokens by splitting 32-bit 

words into bytes and adding a ninth (ID) bit and header and termination tokens. The 

header arrived from the ‘DMA Transmitter Header’ register [149], of which there 

were two (upper and lower). This allowed for a header up to six bytes long to be used 

whose length was determined by the user by writing to the most significant three bits 

in the upper register. Unlike the ICR-C416 protocol, the most significant bit of the 

header did not determine the presence of the last header byte. The packet length was 

not limited to 256 bytes, being user configurable at any value up to the 64kbytes 

message length.

The Packetiser state machine had four states, demonstrated in Figure 50. It moved 

from ‘Idle’ to ‘Header Enable’ upon activation of a DMA message channel or moved 

straight to the ‘Data Request’ state if the header length was set to zero bytes (an 

option which might favour certain applications). Once all header tokens had been 

transferred to the link interface buffer, the ‘Data Request’ state was entered. This
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advanced to ‘Data Enable’ upon receiving a data word from the DMA channel. At the 

end of each word the state machine returned to ‘Data Request’ to load another data 

word. It returned to ‘Idle’ and loaded the termination token into the link interface 

buffer after the packetisation of the last data word.

Message End Message activeIdle

Message active 
in skip header 
mode

Message
Not

Ended

Data
Enable

Header
Enable

Data
Request Header transferred 

to Link Interface 
FIFO

Word sent from DMA

Figure 50: FT-SARNIC Packetiser State Machine Diagram 

5.2.2.8 Depacketiser

The FT-SARNICs Depacketiser requested DMA transactions following receipt of 

an incoming message. The four-state Depacketiser state machine, illustrated in Figure 

51, defaulted to the ‘Header Enable’ state. The first bytes to enter the submodule were 

labelled as header bytes by their position at the start of the message. Once the 

expected number of header bytes was read from the FIFO and loaded into the receiver 

header register the state machine advanced to the ‘Header Ready’ state. In this state 

the received message ID was compared with the message IDs in the Message 

Allocator Switch. On finding a match, the Depacketiser received a header 

acknowledge signal indicating that there was a DMA message channel ready to 

receive the data. This moved the state machine into the ‘Data Enable’ state in which 

data tokens were outputted from the Receiver Link Interface Buffer. The ID bit was 

tested to identify termination tokens then stripped. The remaining data byte formed 

part of a 32-bit word transferred to the DMA channel, freeing the one word deep 

DMA buffer for the next word. After reading four tokens from the FIFO the state
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machine advanced to the ‘Data Ready’ state and transferred the data word to the 

DMA channel.

A successful DMA transfer freed up resources for another transfer, returning the 

state machine to the ‘Data Enable’ state to assemble another data word. The state 

machine moved from ‘Data Ready’ to ‘Header Enable’ when a termination token was 

detected or when flushing the remainder of the message following a fault. As with the 

FT-PCI-OSLi’s ‘Receiver Message Controller’ module, three modes of termination 

existed: Early, Normal and Late, as discussed in section 5.3.4. Both the packetiser and 

depacketiser modules each contained a one word DMA buffer. This was the first stage 

of the link buffer pipeline and was used to hold the data word during assembly and 

deassembly.

Message End 
/ Flush Read HeaderHeader

Enable

Message 
Not 

v Ended

Data
Ready Header

Ready

Data
EnableRead Data Byte from 

Link Interface Buffer
Header Acknowledge

Figure 51: FT-SARNIC Depacketiser State Machine Diagram 

5.2.3 Interrupt Controller

This module generated interrupt requests for the SA-110 CPU from sources such 

as the DMA message channels, timer and four additional external interrupts for the 

external peripherals addressed by the External I/O Controller. Two levels of SA-110 

interrupts were handled. FIQ and IRQ were the fast and standard priority interrupts 

respectively. Interrupt sources could activate either interrupt dependent on the
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interrupt register status. Enabling one interrupt type disabled the other type for that 

source.

Each set of interrupt registers had an Internal Enable Register (IER), write only 

Interrupt Enable Set Register (IESR), write-only Interrupt Enable Clear Register 

(IECR) and read-only Interrupt Status Register (ISR) associated with it. The FIQ and 

IRQ lines shared an Interrupt Raw Status Register (IRSR) for each source.

5.2.4 Timer

The timer function was carried over from the SARNIC interface to give the 

debugger and software developer additional support. A 32-bit wraparound counter 

incremented every lps, giving a 1MHz real-time timer, used in a similar way to the 

OCCAM timer function [24]. A special relation operator function determined whether 

or not a timer value was supplied before or after the current timer value, as shown in 

Figure 52. The most significant bit determined whether or not the timer event 

occurred in the past or the future as a comparison result of logic 1 for this bit indicated 

a negative number. Timing events separated by up to 35 minutes 47 seconds could be 

handled. The heartbeat and checkpulse signals, used to verify the presence or 

otherwise of link activity, were generated in this module.

T, (Current Time)

Time

T (Past Time) T2 (Future Time)

Figure 52: FT-SARNIC Timer with Past and Future Time References
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5.2.5 UART Communication Port

A Universal Asynchronous Receiver / Transmitter interface was implemented in 

the FT-SARNIC design, carried over from the non-fault tolerant SARNIC interface. It 

provided a low speed serial link to a PC, via the COM port, allowing the display of 

infonnation on a monitor and input from a keyboard, assisting debugging. The UART 

functionality was reduced to minimise resource usage, omitting error detection 

mechanisms and buffering. The UART operates at a fixed baud rate of either 9600, 

19200,38400 or 57600 bps.
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6 RESULTS

6.1 FT-PCI-OSLi Hardware Test Results

This section of the thesis reports on the hardware tests performed on the FT-PCI- 

OSLi interface. Similar tests were undertaken using the PCI-OSLi interface, 

implemented on an identical APEX 20K200EQC240-1 to aid comparison between the 

two designs. The test results were also compared to the theoretical performance 

characteristics of the FT-PCI-OSLi.

The FT-PCI-OSLi interface was implemented on a custom made, multi-layer, 

PCB slotted into a PCs empty PCI slot. A ‘loopback’ test method was utilised, as 

shown in Figure 53. This form of test involved fetching the data from the PCs 

memory and processing it ready for transmission onto the serial communications 

network. The message was transmitted through the differential driver circuitry and 

across a short length of cable (approximately 5cm long) before returning back to the 

interface board and the FT-PCI-OSLi via the differential transceivers. The FT-PCI- 

OSLi reformatted the data, assembling it into 32-bit data words and accumulated 

sufficient words to initiate a PCI transaction, which passed the message to the PCs 
memory.

Host System 
(PC) Memory

33MHz 
PCI Bus PCI-OSLi/ fct- Driver OutW

FT- PCI-OSLi
Interface Driver In

Comms
Links

Figure 53: Loopback Test Block Diagram for FT-PCI-OSLi

This method of hardware testing assessed the bi-directional communication 

capabilities of the interface, requiring the interleaving of transmission and reception 

PCI bus block transfers between all other transactions on the PCI bus. The PCI bus 

operated at 33MHz for all tests. The link interface clock, derived from an external 

crystal oscillator was altered between tests from 30MHz to 40, 48 and 64MHz to give 

link data rates of 20, 26.67, 32 and 42Mbits/s respectively. Only the results of tests 

performed at the maximum data rate (42Mbits/s) are detailed in this section.
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Performing similar tests on the FT-PCI-OSLi and PCI-OSLi designs on identical 

hardware allowed many differences regarding implementation to be eliminated and 

allowed a focus on the comparison of the two interface designs and respective 

protocols. Neither interface design was optimised in any way for implementation to 

the target technology. Both PLDs used identical pin-outs and synthesis parameters 

with respect to meeting I/O timing requirements and speed / area trade off.

An advantage of the loopback tests was that the FT-PCI-OSLi / PCI-OSLi 

interface board was the only hardware required, other than a PC with a 33MHz PCI 

bus. The interface board was fitted with differential transceiver drivers for all input 

and output communications channels. Data transmission behaviour over these 

channels has already been investigated and documented [123]. An advantage of 

testing the interfaces was, being end nodes, they were not subject to routing 

considerations encountered by the NTR-FTM08 (such as the effects of network 

topologies, message addressing methods and adaptive routing algorithms) and were 

not affected by deadlock. The interface outputted data when the recipient was ready 

for it and accepted data subject to sufficient buffer space.

6.1.1 Hardware Test Parameters and Criteria

The loopback tests used the PCIWave software, introduced in section 5.2.6, to 

allow the user to load the DMA submodule necessary to initiate message transfer. Due 

to the lack of software drivers for the FT-PCI-OSLi, the only way in which a message 

could be transferred at this stage of development was manually via user initiation. 

Several counters in the DMA Registers module were set up in order to monitor the 

time taken to perform certain parts of the message transfer. Several criteria were 

specified in order to denote key stages in the processing of the message:

• Message transmission was said to have started following a write of the message 

length to the Transmitter Message Length Register (offset 0DH). This action was 

also deemed to have started the DMA transmission as the request for PCI bus 
ownership was initiated by this command.
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• Data transmission began after the transition on the serial communications link of 

the first bit of the header token. It ended following the transmission of the stop bit 

of the last data token of the outbound message.

• Data reception began once the first start bit of the header token arrived on the 

serial communications input line. Reception ended when the last data byte was 

transferred from the link interface buffer to the depacketiser for assembling into a 

32-bit word.

• Message reception began following the transfer of the first data byte from the link 

interface buffer to the receiver DMA buffer via the depacketiser and ended when 

the message had been transferred to memory in its entirety.

The hardware tests operated on the principle that:

• Message tokens were transmitted back-to-back, with interleaved acknowledge 

tokens in the case of the PCI-OSLi. Subject to sufficient space being available in 

the receiver link interface buffer, the receiver was always ready to receive data, 

allowing the transmitter to send a continuous stream of message tokens.

• Each message had a single byte header and a byte length termination or length 

byte in the case of the FT-PCI-OSLi and PCI-OSLi respectively. No routing 

header bytes were sent.

• The FT-PCI-OSLi message was sent as a continuous transmission whereas the 

PCI-OSLi split its message into 256 token packets, each prefixed by the two bytes 

mentioned above. As there was only one message, subsequent packets utilised the 

message channel set up from the transfer of the previous packet, eliminating the 

need to assign a message channel more than once for the message duration. 

Message headers must be matched for message channel allocation to occur.

6.2 PCI Access Efficiency

The calculations in section 4.3.1 provide a means of measuring the performance of 

a PCI access burst by comparing the latency incurred in initiating a PCI transfer with 

the amount of data transferred. The PCI access procedure begins with the initiating 

device requesting ownership of the PCI bus by asserting the active low ‘nREQ’ signal 

(see Appendix B). Assertion of the active low ‘nGNT’ signals the granting of bus
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ownership to one of the devices attached to the PCI bus. The decoded states of signals 

on the ‘AD’ and ‘nC/BE’ buses indicates which of the attached PCI devices has been 

granted ownership of the bus.

The initiator indicates that it is ready to begin data transfer by asserting the active 

low Initiator Ready ‘nIRDY’ signal. Between the assertion of the ‘nGNT’ and 

‘nIRDY’ signals, the PCI access is in operation but no data is transferred across the 

bus, hence this is the transfer initiation latency. The transfer of data across the PCI bus 

begins when both the initiator and target are ready to transfer data, indicated by the 

assertion of ‘nIRDY’ and ‘nTRDY’ respectively. A 32-bit double-word is transferred 

across the bus every PCI clock cycle until the transaction is suspended. This occurs 

when either the ‘nIRDY’ or ‘nTRDY’ signals are de-asserted, after a time period 

specified by the latency counter of the PCI agents. The latency counter was 

introduced in section 5.2.1.1 and was initially set to 64. An explanation of the 

functions of these, and all other PCI signals can be found in Appendix B.

CLK

nREQ

nGNT

AD

nFRAME

nIRDY

nTRDY

PCI Transaction
Initiation
Latency

Figure 54: An example o f waveforms demonstrating PCI transaction initiation

latency
Figure 54 demonstrates a sample of some of the waveforms during a typical PCI 

memory-read operation. The user counters in the DMA registers submodule of the 

interface were configured to measure the initiation latency and PCI transaction length 

as shown in the above diagram, in terms of PCI clock cycles. The latency incurred in
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setting up the transaction, following ownership of the bus being granted, lasted for 3 

and 5 PCI clock cycles for the FT-PCI-OSLi and the PCI-OSLi interfaces 

respectively.

Figure 55 demonstrates the efficiency of PCI accesses, in terms of the amount of 

time that data transfers occur as a percentage of the total transaction time. Messages 

with payloads under 228 bytes could be transferred in a single PCI transaction using 

the FT-PCI-OSLi and PCI-OSLi interfaces. Messages longer than this value required 

multiple transfers. The test measured the duration of the longest PCI access in the case 

of multiple accesses. As these values were less than the total DMA buffer capacity of 

64 double words (256 bytes), it was the initial value of the latency counter mentioned 

in section 5.2.1.1 that limited the length of the PCI transactions, instead of the DMA 

buffer capacity. The latency counter was initialised following a request to acquire bus 

ownership. It included the time taken to gain bus ownership (including access 

arbitration, if necessary), set up the transfer and transfer the data, hence, less than 64 

double-words were transferred.
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Figure 55: Efficiency ofPCI bus accesses for the FT-PCI-OSLi and PCI-OSLi 
devices in terms o f latency as a percentage o f overall PCI transaction duration

As can be seen from Figure 55, the efficiency was lowest for small transfers. 

When only a single double word was transferred (message length 4 bytes), the
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initiation latency was three and five times greater than the actual data transfer time for 

the FT-PCI-OSLi and PCI-OSLi interfaces respectively.

Once the payload exceeds the level required to fill the transmitter DMA buffer, 

the efficiency characteristic remains constant. The maximum efficiency is reached 

when the buffer is filled in its entirety and the remainder of the message must be 

loaded in subsequent bursts, the frequency of which depends on the rate at which the 

buffer can be emptied. Maximum efficiency, in terms of PCI burst length is reached 

for payloads above the transmitter DMA buffer capacity and remains constant as 

payload increases. For this reason, the payload graph does not exceed the level at 

which this occurs in order to emphasise the increase at lower message lengths.

6.3 Bi-directional Data Transfer Tests

6.3.1 Bi-directional Data Transfer Duration

Figure 56 shows the message duration for messages of varying payloads 

transmitted and received by the FT-PCI-OSLi and the PCI-OSLi. At a message size of 

64kbytes, the PCI-OSLi took 46.6% longer to complete its message transfer than the 

FT-PCI-OSLi, due to the limitations of the credit based flow control mechanism. The 

increase in message duration is linear, although at different rates of increase due to the 

different flow control mechanisms. Message lengths up to 64kBytes are observed, as 

this was the maximum allowable message length in the SARNet system. The 

characteristic would continue for longer messages, up to the maximum allowable 
message length of 1Mbyte in the FT-PCI-OSLi.
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Figure 56: Message duration results for FT-PCI-OSLi hardware tests at
42Mbits/sec link rate

Figure 57 is more informative in terms of assessing the FT-PCI-OSLi performance 

as it shows more clearly the differences in message duration for payloads under 256 

bytes compared to the theoretical message duration of the FT-PCI-OSLi. Increases in 

message size resulted in linear increases in message duration with the gradient of the 

PCI-OSLi characteristic increasing at a faster rate than that of the FT-PCI-OSLi, due 

to the back-to-back data transfer capability of the latter device. The message duration 

for the FT-PCI-OSLi for payloads of four bytes was almost double the theoretical 

maximum due to the initiation latency. The FT-PCI-OSLi took three PCI clock cycles 

to set up the PCI transaction following the granting of bus ownership, but required a 

single PCI clock cycle to transfer the message across the bus which as Figure 55 

showed, gave a PCI access efficiency of 25%.
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Figure 57: Message duration results for FT-PCI-OSLi hardware tests at lower 

message lengths at 42Mbits/sec link rate

The difference between the theoretical (meaning ‘simplified model’, in this case) 

and observed characteristics was due to the theoretical (simplified model) maximum 

transfer duration only taking into account the length of time taken to transmit the 

message across the transmission medium. It ignored factors such as message 

formatting delays incurred as the message passed through the FT-PCI-OSLi, although 

the latency incurred in initiating the PCI transaction, (both to transmit and receive the 

data), was taken into account. As message length increased, the FT-PCI-OSLi 

message duration increased at an almost identical rate to the theoretical (simplified 

model) message duration, suggesting that the discrepancy between the two was due to 

initial start-up latencies that became insignificant as the message size increased. The 

slight divergence between the two is due to delays such as those incurred by the
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transceiver circuitry. The linear increases in message length suggest that the bulk of 

the message duration was due to the transmission of the serial data across the 

communications link. Although the link interface circuitry was driven at almost twice 

the rate as the rest of the FT-PCI-OSLi interface, the serial nature of the 

communications link made this the bottleneck.

Figure 58 shows the normalised message duration times for the FT-PCI-OSLi and 

PCI-OSLi interfaces with respect to the theoretical (simplified model) message 

durations for these devices respectively. In calculating the theoretical minimum 

message duration it is assumed that the message transit time between the link interface 

serial output and input is negligible. As both designs used identical transceiver 

circuitry, there will be a slight increase in the message duration due to the passage of 

the signal through the driver circuits, relative to the theoretical values.
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Figure 58: Normalised message duration for the FT-PCI-OSLi and PCI-OSLi 

interfaces at 42 Mbits/s data rates
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The theoretical calculations used here take into account the PCI latency by adding 

two sets of PCI initiation latency (set at 3 and 5 PCI clock cycles duration for the FT- 

PCI-OSLi and the PCI-OSLi characteristics respectively) to the theoretical message 

duration times.

At the minimum payload length of four bytes, the FT-PCI-OSLi took 1.73 times 

longer than the theoretical minimum message duration. This is due to message 

overheads and the passage of the message through the FT-PCI-OSLi circuitry being 

large in comparison to the time taken to transmit the message. The same transfer on 

the PCI-OSLi takes 1.79 times the theoretical minimum message length. This figure 

includes the time taken to send an acknowledge token in receipt of the last data byte 

as the message begins the process of transferring the data to memory on arrival of this 

data byte. Calculation of the theoretical minimum message time for the PCI-OSLi also 

included the transmission of acknowledge tokens, except for the last, for the reason 

above. It was assumed in these calculations that acknowledge tokens were interleaved 

between data tokens and that back-to-back transmission occurred.

As message sizes increased, the ratio between the observed message duration and 

the theoretical minimum message duration decreased rapidly as parameters not taken 

into account in the theoretical calculations became less significant compared to the 

total message duration. When the message size exceeded 4kbytes, both performance 

characteristics leveled out with the FT-PCI-OSLi taking under 2% longer to complete 

message transfer than the minimum theoretical duration. The PCI-OSLi took 

approximately 25% longer than the minimum theoretical duration. This loss of 

bandwidth was most likely due to the need to have received an acknowledge token 

before transmission of the next data token could begin, in addition to the increased 

overheads incurred through the PCI-OSLi due to its less efficient PCI interface. It has 

already been documented that the credit based flow control mechanism, utilised by the 

PCI-OSLi, can occupy up to 17 bits per token [5], four tokens more than the minimum 

13 used to send a data token and acknowledge token, giving an increase of 30%.

The normalised message duration characteristic for the FT-PCI-OSLi and PCI- 

OSLi interfaces demonstrates the efficacy of permission based flow control with 

respect to credit based flow control.
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6.3.2 Bi-directional Data Bandwidth Utilisation
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Figure 59: FT-PCI-OSLi and PCI-OSLi percentage data bandwidth utilisation at

42Mbits/s data rate

The percentage of the communications link maximum message bandwidth that 

was devoted to transferring data is displayed in Figure 59. The theoretical percentage 

data bandwidth utilisation characteristic for the FT-PCI-OSLi and PCI-OSLi are 

displayed alongside the results recorded from the hardware tests. The theoretical 

characteristics take into account the inclusion of non-data tokens in the message, such 

as header, length, termination and acknowledge tokens. This aberration between the 

theoretical and observed measurements was due to inefficiencies in message
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transmission across the communications link and the overheads incurred in initiating 

message transmission and reception.

Minimum message sizes of four bytes utilised approximately 50% of the available 

data bandwidth in both devices making, such transfers inefficient in terms of the 

amount of data transferred across the network as a proportion of the total number of 

message bits sent. The FT-PCI-OSLi characteristic rose at a steeper gradient than the 

PCI-OSLi curve because of the latter incurring two extra non-data bits per token due 

to the presence of acknowledge tokens. All four characteristics plateau once the 

message size exceeded lkByte. The difference between the FT-PCI-OSLi’s 

theoretical and observed data bandwidth utilisation was 0.9% whereas the difference 

between these values for the PCI-OSLi was 12.54%. Whilst the former value was 

largely due to the overheads incurred in setting up the message transfer, the latter was 

due to the bandwidth lost in failing to achieve the 13 bits-per-token throughput. The 

credit based flow control utilised by the PCI-OSLi prevents the data throughput of the 

device from reaching that of the FT-PCI-OSLi.

6.3.3 DMA Message Transmission

Figure 60 demonstrates the observed throughput characteristic of data transferred 

from memory, across the PCI bus to the DMA Transmitter Buffer, with respect to the 

message size. The DMA transmission was said to have started following the write of 

the transmitter message length. This action asserts the active low ‘nREQ’ signal (see 

Appendix B), which initiates the request for ownership of the PCI bus. The latency 

count, set to 64 in this case, decrements towards zero following this action. The actual 

DMA transfer began following the assertion of the ‘nGNT’ (see Appendix B) signal 

granting ownership to the PCI bus but starting the transfer from the message initiation 

meant that the overhead involved in acquiring the PCI bus was also taken into 

account. The DMA transmission ends when the last double word of data was 

transferred into the DMA buffer.
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The DMA transmission throughput determines the frequency of PCI data access 

bursts initiated by the FT-PCI-OSLi interface when transferring data to the PCI 

interface. This is important as the PCI bus is a shared resource.
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Figure 60: DMA transmission throughput for the FT-PCI-OSLi and PCI-OSLi 

interface devices including FT-PCI-OSLi with modified buffer capacities

The DMA transmission throughput characteristic shown in Figure 61 can be split 

into three parts. Area 1 is the part of the graph where the throughput is determined by 

the capacity of the transmitter DMA buffer. The characteristic of area 2 is governed 

by the ability of the link interface buffer to store data prior to transmission onto the 

serial communications link (The more data that can be stored in the link interface 

buffer, the less frequently PCI access bursts will need to be made). In area 3 the DMA 

and link interface buffers are both full so the serial communications link is the 

performance bottleneck and the data rate and data bandwidth utilisation will be the
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limiting factors. As all buffering is full, the rate at which data can be outputted onto 

the communications link will govern the rate at which the buffers can empty 

sufficiently to initiate another PCI transfer.
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Figure 61: FT-PCI-OSLi (with modified link interface buffer capacity) DMA 

transmission throughput graph split into three areas
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Figure 62: Diagram displaying frequency o f PCI accesses in each o f the three 

areas o f the DMA transmission throughput characteristic
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The boundary between areas 1 and 2 is determined by the DMA buffer capacity 

and the boundary between areas 2 and 3 is determined by the capacity of the link 

interface buffer. The DMA buffer capacity is effectively altered by modifying the 

latency count of the device, limiting the number of data bursts per PCI transaction.

Figure 62 demonstrates the relative frequency of the PCI bus accesses in each of 

the three areas in order to maintain the maximum possible data throughput over the 

serial communications link. The relevance to this is due to the shared nature of the 

PCI bus and the need for other users of the bus to be able to access it. Short messages 

that can be transferred across the bus in a single burst have the potential to 

monopolise bus access. Hence it is important that the PCI bus arbitration mechanism 

prevents this occurring.
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Characteristics observed in previous 
researchw>
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Figure 63: DMA transmission throughput characteristics diagram compared with 

characteristics made in previous research during development o f the PCI-OSLi

A comparison of PCI-OSLi DMA transmission throughput characteristics in this 

and previous research are shown in Figure 63. These show earlier research with 

noticeably different characteristics to those observed in Figure 61. Previously there 

was no peak in area 1 of the graph and the DMA throughput characteristic ramped 

upwards to the plateau of area 2, giving an apparent maximum DMA throughput of 

approximately 25MBytes/s, much lower than the maximum 92.8MBytes/s noted 

during this research (see Figure 64). This was due to the PCI-OSLi interface 
development tests declaring the end of the DMA transmission process to be the
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passing of the last data byte from the link interface buffer to the link interface. 

Measuring the end of the DMA transmission at this point took into account the 

packetiser outputting data at a quarter of the rate it entered and missed the peak 

observed in area 1, showing instead a much more conservative throughput figure. This 

did not give a true measurement of DMA throughput and consequently, tests 

undertaken in this research for both PCI-OSLi and FT-PCI-OSLi terminated DMA 

transmission when the last data byte entered the DMA transmitter buffer.

Figure 60 also displays a third characteristic: the performance of the FT-PCI-OSLi 

when the transmitter and receiver link interface buffer sizes were altered from the 32 

token depth specified in section 4.4.2.3 to the respective lkByte and 2kByte depths 

used in the PCI-OSLi interface. This ‘modified buffer’ FT-PCI-OSLi design was 

subjected to all tests used to assess the FT-PCI-OSLi performance but the 

characteristics for most tests were very similar to that of the FT-PCI-OSLi interface. 

Where the results matched those of the FT-PCI-OSLi, they were omitted from the 
result graphs in this chapter for the sake of clarity.

In area 1 of Figure 60, the three interfaces exhibited a similar performance 

characteristic due to the similar nature of PCI bus access between the FT-PCI-OSLi 

and PCI-OSLi. The PCI transmission throughput was 5.28MBytes/s for messages four 

bytes long, rising sharply to a peak around message lengths of 128 bytes. The PCI 

throughput at the peak was 92.84MBytes/s for the FT-PCI-OSLi and 88.93MBytes/s 

for the FT-PCI-OSLi interface with the increased link interface buffering and 

90.86MBytes/s for the PCI-OSLi. The differences in throughput are relatively small 

with a maximum variation of 3.5% between these characteristics. This variation was 

caused by a difference in the DMA transmission counter values of one between each 

of the three values. The DMA transmission counter value measured the time taken 

between the start and end of the message transfer across the PCI bus. The value used 

was the average taken after five repetitions of each test. The counter was synchronised 

from the 33MHz PCI bus clock and a single bit difference made a difference in the 

DMA transmission throughput. Figure 60 demonstrated that a 4-byte message took 

6.25 PCI clock cycles to be transferred to the FT-PCI-OSLi DMA transmitter buffer 

whereas a 128-byte message took 56 PCI clock cycles.
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In area 2 of Figure 60 the size of the transmitter link interface buffer dictated the 

DMA transmission throughput, as several further PCI data bursts could occur before 

this resource was filled. The throughput was much lower than in area 1 due to the 

need for the data to pass through the transmitter message controller, responsible for 

converting data from 32-bit double words to 8-bit bytes, taking four PCI clock cycles 

to process a data word. In area 2 of the graph the FT-PCI-OSLi reached a maximum 

throughput of 4.51 MBytes/s before the transmitters 32 token link interface buffer was 

filled. The PCI-OSLi and modified buffer FT-PCI-OSLi interfaces had lkByte 

transmitter link interface buffers, giving DMA transmission throughputs of 

25.48MBytes/s and 26.86MBytes/s respectively. Figure 60 demonstrated that a 

lkByte message took 7,492 PCI clock cycles to be transferred in its entirety to the 

DMA transmitter buffer.

The communications link throughput limited the DMA transmission throughput in 

area 3 of the graph, as all buffering resources were filled and further transactions must 

wait for these to empty via the transmission of data. The DMA transmission 

throughput for this section of the graph reduced significantly due to the lower data 

rate of the serial communications link. The throughput was 3.837MBytes/s for the FT- 

PCI-OSLi, 3.898MBytes/s for the modified buffer FT-PCI-OSLi and 2.656MBytes/s 
for the PCI-OSLi when all three interfaces transmitted 64kByte messages. This 

corresponds to the link interface data throughput for messages of this length as shown 

in Figure 60, the data throughputs across the communications link being 30.65Mbits/s 

for the FT-PCI-OSLi (both implementations) and 20.91Mbits/s for the PCI-OSLi.

Figure 64 shows the DMA transmission throughput for the FT-PCI-OSLi at a 

variety of latency count values. The DMA transmitter buffer size cannot be altered 

without significant design changes but the latency timer, dictating the length of each 

PCI burst can be altered. As subsequent bursts can only be made once the transmitter 

DMA buffer is almost empty, this action effectively reduces the buffer size to that 

dictated by the latency count value. In reality, this level is reduced further due to the 

latency counter starting decrementing when a request for bus ownership is made, 

taking into account bus acquisition and set-up overheads. Thus a latency count value 

of 64 resulted in only a burst of 55 double-words of data on average. As the FT-PCI- 

OSLi took three PCI clock cycles to set-up a PCI transaction, following the granting 

of bus ownership, it took an average of 6 PCI clock cycles to gain bus ownership.
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Figure 64: FT-PCI-OSLi DMA transmission throughput for varied DMA 

transmitter buffer capacities

Figure 64 shows the peak area 1 throughput to be 92.8MBytes/s for a latency 

count value of 96, filling the entire DMA buffer. The throughput increases linearly in 

proportion with the latency count value once bus acquisition and set-up overheads are 

taken into consideration. The plot for a latency count value of 96 peaks for message 

lengths of 256 bytes whilst the peak occurs at message lengths of 128 bytes and 64 

bytes for latency counts of 64 and 32 respectively. The plots for the FT-PCI-OSLi 
with latency count values of 16 and 24 peak at message lengths of 32 bytes. These
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characteristics at latency counts of 16 and 24 are different shapes to the others due to 

the relatively large overheads incurred in the acquisition of the PCI bus affecting the 

amount of data that can be transferred in a single burst. Once the message length 

exceeds the DMA buffer capacity, DMA transmission throughput falls with all 

characteristics being equal for payloads in excess of lkByte.

Figure 64 demonstrates the effect that transmitter DMA buffer capacity has on 

area 1 of the FT-PCI-OSLi DMA transmission throughput characteristic. The graph 

demonstrates the 32-token capacity link interface buffer is small enough to make the 

throughput in area 2 virtually identical to that of area 3. The thirty two tokens required 

to fill the link interface buffer can be transferred across the PCI bus in eight clock 

cycles. Further data can only enter the link interface buffer following the outputting of 
data onto the serial link.

Figure 65 shows the effect that altering the transmitter DMA buffer capacity has 

on the area 1 characteristic of the modified buffer FT-PCI-OSLi (with a lkByte 

transmitter DMA buffer capacity). These show noticeably different characteristics 

compared to Figure 64; for example the area 1 throughput for a latency count of 96 

peaks at 88.93MBytes/s, 3.87MBytes/s below the comparable result in Figure 64. The 

characteristics for the FT-PCI-OSLi with the alternate buffer capacities, with latency 

count values of 64 and 32, peak at similar values to those in Figure 64. The 

characteristics for the latency count values of 16 and 24 are noticeably different as 

instead of peaking at message lengths of 32 and falling, as shown in Figure 64, they 

continue rising, at a reduced rate, before peaking at message payloads of 128 bytes at 
31.29MBytes/s and 35.2MBytes/s respectively.
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Figure 65: DMA transmission throughput for the FT-PCI-OSLi with lkByte deep 

link interface buffer for varied DMA transmitter buffer capacities

With the exception of the characteristic for the FT-PCI-OSLi with a latency count 

of 96, all other characteristics plateau at around 25MBytes/s for message lengths 

between 256 and 1024 bytes -  this being area 2 of the DMA transmitter throughput 

characteristic. The plot for the latency count of 96 does not level like the others as the 

latency count value is large enough to fill the DMA transmitter buffer to capacity for 

message sizes of 256 bytes, providing only an area 1 peak.

The latency count value of 96 is high enough to fill the DMA transmission buffer 
completely and also partially fill the link interface buffer. This is due to the streamed
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buffering employed by the interface, which passes data straight through the DMA 

buffer to the link interface buffer. For this reason, the throughput for message 

payloads of 256 tokens is greater than that of 128 tokens as the PCI transaction is 

stopped by the DMA buffer filling to its 256 token capacity. This does not occur for 

the other characteristics in Figure 65 as the PCI transactions are stopped in these cases 

by the latency timer reaching zero before the DMA buffer reaches capacity. This is 

intentional as the reduced latency counter value is limiting the degree to which the 

DMA buffer can fill in order to observe the effect of different DMA buffer sizes on 

DMA throughput.

At message payloads of lkByte, the throughput of this characteristic is affected by 

the link interface buffer capacity and so the throughput at this point falls to the same 

level as the other characteristics in the graph.

Altering the capacity of the transmitter DMA buffer affects the position and height 

of the peak in area 1. Altering the link interface buffer capacity was proven to affect 

the height of the characteristic in area 2 of the DMA transmission throughput, with an 

increased buffering capacity giving greater throughput, at a cost of increased 

buffering resources. This increase was not proportionate, therefore a trade off must be 

made according to the systems requirements. Increasing the FT-PCI-OSLi buffer 

capacity to 32 times its original size resulted in only a six-fold increase in the 

transmitter DMA throughput, in this section of the characteristic, as shown in Figure 

65.

The communications link data rate affected the height of the area 3 characteristic, 

but as both the FT-PCI-OSLi and the PCI-OSLi operated on a 42Mbits/s bit rate, the 

differences in these characteristics were wholly due to the different flow control 

mechanisms utilised by these two designs. Figure 66 summarised the effects that 

could be achieved via alteration of the FT-PCI-OSLi parameters.
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Figure 66: Summary o f the effects on DMA transmission throughput caused by 

alterations to the FT-PCI-OSLi DMA and link interface buffer capacities

6.3.4 DMA Message Reception

Figure 67 shows the DMA reception throughput for the FT-PCI-OSLi compared 

to that of the PCI-OSLi and a FT-PCI-OSLi interface with a 2kByte deep receiver link 

interface buffer at a 42Mbits/s link data rate. PCI transactions were only initiated 

when the DMA buffer was full or the message had ended. The former event depended 

on the speed at which the message could be received from the communications 

network. At lower message lengths the overhead incurred in setting up the PCI bus 

transaction limited the throughput.

The DMA reception throughput for payloads of four bytes was severely limited by 

the proportionately high PCI bus acquisition overheads, due to the inclusion of the 

latency incurred in acquiring ownership of the bus in these measurements. 

Throughput increased with payload, reaching a plateau of 3.813MBytes/s and 

2.613MBytes/s for the FT-PCI-OSLi and PCI-OSLi devices respectively. The plateau 

started at about lkByte, being approximately equal to the communications link data 

throughput for payloads of this size upwards. The modified buffer FT-PCI-OSLi
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interface (with the 2kByte capacity link interface receiver buffer) had an almost 

identical characteristic to the FT-PCI-OSLi interface but a slight increase in 

throughput between payloads of 256 and 2048 bytes which was due to the increased 

link interface buffer capacity. All three characteristics were steepest for message 

payloads below 64 bytes, when the DMA buffer was filling. All these characteristics 

had levelled out once message size exceeded 2048 bytes, filling both the DMA and 

link interface buffers.
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Figure 67: DMA reception throughput during bi-directional data transfer for the 
FT-PCI-OSLi, PCI-OSLi and modified buffer FT-PCI-OSLi interfaces

The difference in the magnitude of the FT-PCI-OSLi and PCI-OSLi graphs was 

due to the amount of data that could be transmitted across the communications link in 

a given time. Both interfaces operated at the same link data rate but the permission 

based flow control of the FT-PCI-OSLi permitted much more data to be sent as it 

reduced the amount of excess non-data tokens. Increasing the sample clock rate
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increased the amount of data that could be transmitted across the link, and hence the 
receiver DMA throughput.

6.4 Fault Detection and Recovery Hardware Tests

In addition to the performance tests, a series of hardware tests were undertaken 

using the FT-PCI-OSLi, operating at a 64MHz sample clock rate, to verify correct 

operation of a variety of the features used in fault detection and recoveiy. The tests 

were performed using the loopback operation described previously and utilised debug 

counters and flags located in the DMA Registers module, visible using the PCIWave 

[156] software, to indicate the status of the interface.

6.4.1 Incorrect Message Length Hardware Test

This test consisted of a bi-directional message transfer where the message lengths 

that were loaded into the Transmitter and Receiver Message Length Registers 

(register offsets 0EH and 0D„ respectively) were deliberately different. The purpose of 

this was to check the FT-PCI-OSLi could detect a shorter or longer than expected 

message and trigger an early or late message termination respectively (denoted by the 

assertion of bits 2 and 3 respectively in the Interrupt Pending Register). The number 

of data words transferred to memory equalled the smaller of the two message lengths, 

with any remaining data tokens in the link interface buffer being flushed.

6.4.2 Incorrect Message Header Hardware Test

This test was identical to the previous test but different message IDs were written 

to the Byte-length Receiver and Transmitter Header Registers (register offsets 0AH 

and 0Bh respectively). The transmitted header was not held in any of the CAM 

locations, thus on arrival at the receiver no match was made. The message sat in the 

receiver link interface buffer, filling it to the point where data flow across the 

communications link was suspended. The test then had two possible actions, which 
were:
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• The user entered the correct message header into the CAM (equal to that of the 

incoming header). The test verified that the message was successfully transferred 

into memory in its entirety.

• Setting bit 29 in the Receiver Command Register (see Appendix C) to flush the 

message from the link interface buffer. The test verified that on clearing the 

contents of the receiver link interface buffer, flow of data across the 

communications link resumed and the message was flushed.

6.4.3 Disconnected Link Hardware Test

This test verified the operation of the ‘link activity time out’ detection mechanism 

and subsequent attempts to reinitialise a valid path across the communications 

channel. The test consisted of a bi-directional loopback message transfer that was 

terminated midway through the test by driving the serial communications link output 

to ground, preventing the passage of any tokens across the channel. Once this 

occurred, a timer was started and incremented until the receiver detected the presence 

of a fault, through lack of link activity. The link was set to disconnect after 

transmission of the fourth token (including the header token). Tests showed that the 

link was declared faulty after a time period equating to 60 tokens, following link 

disconnection. This was due to the FT-PCI-OSLi hardware being set up to trigger a 

disconnected link following an adjustable time-out equivalent to the transmission of 

four heartbeat tokens without reception.

The use of permission based flow control meant that, in event of network failure, 

the transmitting node kept outputting data when the network failed. Doing this 

effectively removed the message from the system and prevented the indefinite stalling 

characteristic of credit based protocols. The receiving node did not append a ‘Bad End 

of Packet’ token to the message as it was not forwarded to any other nodes and was 

destined for memory. The FT-PCI-OSLi must indicate to the software that the 

message was prematurely terminated. The steps have not yet been taken to implement 

software functionality to deal with premature message termination. Hence, currently 

there is no means of informing the transmitting node that the message was terminated 

unsuccessfully at this (hardware) level of the network.
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6.4.4 Flow Control Hardware Test

This test verified the operation of the permission based flow control protocol. Data 

was prevented from passing from the receiver link interface buffer to the depacketiser 

until the buffer had filled to the point that traffic across the communications link was 

suspended. Data was then allowed to leave the receiver link interface buffer, for 

processing, emptying it so that data flow could resume and complete the message 

transfer. The message payload was 128 data bytes. The test was conducted in the 

same loopback bi-directional communications manner as before but an additional 

state machine was incorporated into the FT-PCI-OSLi design to control the passage of 

data out of the receiver link interface buffer. The state machine possessed six states, 

which were entered in order during execution of the message transfer.

State 2: 
Fill FIFO

State 6: 
Message 

End

State 4: 
Stabilise

V J JV
RX DMA FIFO 

Disabled
RX DMA FIFO 

Enabled

Figure 68: State machine showing the six states used in the flow control test
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1. Start Test -  entered on power on reset. Left when the first (header) byte was 

written to the receiver link interface buffer (whose output was disabled in this 

state to allow data to accumulate).

2. Fill FIFO -  entered when first byte was written to the receiver link interface 

buffer. Left when buffer contents reached 24 tokens, triggering the assertion of the 

Almost Full flag. The receiver link interface buffer output was disabled in this 

state.

3. Stop Data -  entered on assertion of the Almost Full flag. Exited when the 

transmitter has received and successfully decoded the command to halt data flow. 

The receiver link interface buffer output was disabled in this state.

4. Stabilise -  entered following the suspension of data flow. Entering this state 

enabled an 8-bit counter, incremented every PCI clock cycle. The counter 

incremented until full, before leaving the state. This state allowed the traffic flow 

to stop with checks made to ensure that no data tokens were active on the link at 

this stage. The receiver link interface buffer output was disabled in this state.

5. Empty FIFO -  entered when the 8-bit counter reached capacity, enabling the 

receiver link interface buffer output and allowing the data to progress out of the 

buffer to the depacketiser. Left when the amount of data tokens in the buffer fell 

to 8 tokens, triggering the Almost Empty flag to resume the flow of link traffic. 

The receiver link interface buffer output was enabled in this state.

6- Message End -  state signifying the message end was entered following assertion 

of Almost Empty. Left when transfer of the message to the depacketiser had been 

completed. The receiver link interface buffer output is enabled in this state.

The state machine returned to state 1 for the next test. The results showed that the 

FT-PCI-OSLi took a time equal to 24.131 token periods to complete state 2, filling the 

receiver link interface buffer. It took 1.6527 token periods to initiate, transmit, decode 

and act upon the command to halt data flow via the generation of a Stop flow token 

(state 3). It took 28.28 PCI clock cycles to enable the buffer output, match the 

message ID with one held in the CAM and read 18 tokens into the depacketiser (state 

5). Once data flow resumed, it took 110.345 token periods to complete the message 

(state 6).

The test demonstrated the successful operation of the permission based flow 

control mechanism. Data flow across the communications link was suspended and
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resumed after a short delay. Data was prevented from leaving the receiver link 

interface buffer until it had filled to the Almost Full level and the 8 bit counter 

triggered by this event had incremented to capacity (which occurred approximately 23 

token periods later). A maximum of 26 tokens were held in the receiver link interface 

buffer. Therefore following triggering of the Almost Full flag, when 24 tokens were 

held in the buffer, two more tokens were transmitted in the time taken to initiate, 

transmit and act upon a Stop token.

The loopback test sent the output signals through the differential line driver 

circuitry in the same manner as would occur if communicating with another interface. 

However the length of cable between the serial output and input was minimal, being 

only a few centimetres long. The target network of the FT-PCI-OSLi was aimed at 

physically distributed processor nodes, separated by distances of up to 100 metres. 

Stopping the flow of link traffic across a communications distance of this length 

would take longer. Therefore more data tokens would be received in the interval 

between requesting the suspension of data flow and the receipt of the last token. The 

receiver buffer must have sufficient resources to accommodate these extra tokens. The 

time taken for an electric signal to traverse a length of wire is given by the formula:

Cable Length 
twiRE = Speed of Signal

If the cable length was 100 metres and the speed of the signal across the wire 

could be approximated to 66% of the speed of light, or 2 x 108 metres/second [124], 

the transmission time is 500ns but as the signal must effectively travel there and back, 

the total signal transmission time is 1 ps (plus the processing time taken from state 3 

of the test). At a 42Mbits/s data rate, a single bit lasts for 23.43ns. 42.67 bits can be 

transmitted across the link, equating to 3.878 tokens if back-to-back transmission 

takes place. Therefore an extra four tokens could be received by the FT-PCI-OSLi 

following suspension of link traffic, increasing the receiver link interface buffer 

occupancy to 30 tokens, but averting buffer overflow.
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6.4.5 Link Dormancy Hardware Test

The link dormancy test used a sequence of flags in the DMA Registers module, 

visible via the PCIWave software, to verify that when the link dormancy option was 

selected that the Link Interface state machine returned to the Asleep state after 

initialisation. Link dormancy was enabled via the assertion of bit 19 in the Receiver 

Command Register (offset 0FH). A write to the Transmitter Length Register (offset 

0Dh) when in this state issued a KickStart command (see section 4.4.6), returning the 

state machine to the Reset state and causing the re-initialisation of the 

communications channel between the two nodes. Upon completion of the message 

transfer a count was started. If no other link activity occurred before the counter timed 

out, the link returned to the Asleep state and further message transfers initiated link 

re-initialisation.

The test proved that the link entered dormancy after an interval equal to the time 

taken to generate three checkpulse signals (approximately equal to 93 tokens). Exiting 

a dormant state and resuming link activity via link re-initialisation was performed 

successfully and without affecting message transfer, as it was completed in part whilst 

the message progresses through the transmitter, imposing minimal additional 

overhead on the message. Overhead was not an issue, due to link dormancy being 

used in situations where there is very little link traffic, making loss of throughput a 

relatively minor concern.

6.5 Resource Usage

The FT-PCI-OSLi used 3109 LEs (37% of the total available on the Apex 

20K200E device) and 6720 memory bits (6% of the total available), grouped in 83 

embedded memory blocks. The maximum PCI clock frequency was specified at 

74.88MHz.

In contrast the non-fault tolerant PCI-OSLi design, implemented originally on a 

Flex 10K50S device occupied 2392 LEs (83% of the total available for that particular 

device), 28kbits of available embedded memory (70% of available resources for the 

Flex 10K device). Timing analyses stipulated a maximum PCI clock frequency of
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51.54MHz for the PCI-OSLi for this hardware set-up. A new device was required to 

implement the FT-PCI-OSLi due to the tight fit of the previous design and the 

significant logic increases.

For the hardware tests, the PCI-OSLi design was implemented on an identical 

Apex 20K200E device to the FT-PCI-OSLi. This enabled a more accurate comparison 

between the two designs. This was because all performance advantages gained from 

the use of a faster and improved PLD architecture and high speed PCB design were 

cancelled out as both designs benefited from these features. Neither design was 

optimised for the target technology. When implemented on the Apex 20K200E 

device, the PCI-OSLi utilised 2929 LEs (35% of the total available) and 28kbits of 

memory implemented in 80 memory segments (26% of the total available for the 

target device). The maximum PCI clock rate of the FT-PCI-OSLi was specified at 

72.08MHz.

Comparisons between resource utilisation in modules of the two designs were 

hard to make as the internal module hierarchy was altered significantly. Parts of the 

FT-PCI-OSLi design benefited from logic reductions, in particular the consolidation 

of multiple counters into one, in the packetiser and depacketiser modules of the 

design. The FT-PCI-OSLi design used more logic resources due to the increased 

functionality in the design, although fewer memory resources were used due to the 

minimal buffering requirements.

Resource usage in the DMA Registers module leapt from 752 LEs in the PCI- 

OSLi design to 1620 LEs, as shown in the table in Figure 69. This was due to the 

Virtual Channels section of the design being situated in this module, adding 371 LEs. 

Also situated in the DMA Registers were several 32-bit counters, used for test 

purposes and the debug signals visible via debug software. The DMA FIFO 

Controller module resource usage rose from 160 LEs to 223 LEs. This was due to 

logic alterations to improve the set-up and hold times required for interfacing to the 

PCI interface. Resource usage in the packetiser module of the FT-PCI-OSLi dropped 

to 74 LEs from 131 LEs, due largely to the reduction in message length counters and 

a simplification of the state machines in this module. A similar approach led to a 

reduction in the depacketiser resource usage from 290 LEs to 162 LEs. The 

transmitter and receiver DMA buffers hold 64 of 32-bit data words, as before, but
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each buffer utilised 33 LEs for glue logic, as opposed to 41 LEs in the PCI-OSLi 

design.

Main
Module Sub Modules

Logic
Elements
Utilised

Memory
Blocks
Used

Regs
Used

Highest 
PCI Clock 
Freq (MHz)

Highest Link 
Clock

Freq (MHz)

Top Level FT-PCI-OSLi 3109 83 1531 74.88 See Note

PCI
Interface

Master Control 620 0 198 146.46 N.A.

Master / Target 
Controller 71 0 50 216.59 N.A.

Data Path 366 0 32 290.02 N.A.

Target Decode 31 0 24 181.81 N.A.

Parity Checker 70 0 46 260.48 N.A.
Configuration

Registers 79 0 46 182.68 N.A.

DMA
Registers

DMA Registers 1620 1 749 87.00 N.A.

Virtual Channel 
Store 371 1 145 85.86 N.A.

Interrupt
Controller 3 0 1 140.84 N.A.

DMA
Interface

Link Interface 869 82 584 91.18 N.A.

DMA FIFO 
Controller 223 0 155 174.92 N.A.

DMA Transmit 
Buffer 33 32 21 179.28 N.A.

DMA Receive 
Buffer 33 32 21 179.28 N.A.

Message
Interface

Packetiser 74 0 14 252.78 N.A.

Depacketiser 162 0 104 115.73 N.A.

Link
Interface

Transmit Link 
Interface FIFO 101 9 87 290.02 252.27

Receive Link 
Interface FIFO 100 9 87 242.78 290.02

Transmitter 54 0 34 N.A. See Note

Receiver 43 0 31 N.A. 139.9

Figure 69: Modular Resource Usage in the FT-PCI-OSLi Interface

Note: The Quartus II Timing Analyzer did not recognise the 1.5 times oversampling method utilised in 
the transmitter as producing a valid clock signal, claiming the circuit was not operational due to the 
clock skew exceeding the data delay. A timing analysis o f this module performed on the MaxPlus2 
version 10.0fitted to a Flex 10K device revealed a maximum sampling clockfrequency of129.87MHz.
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The Link Interface Transmitter module saw an increase in resource usage from 31 

to 43 and from 34 to 54 LEs. These increases were due to the protocol alterations 

required to achieve improvements in fault tolerance. These alterations included the 

generation and decoding of control tokens and logic to prevent them from progressing 

from the receiver module. The Link Interface buffers were reduced significantly in 

size from lkBytes and 2kBytes for the PCI-OSLi transmitter and receiver buffers 

respectively, to the 32 deep 9-bit wide FT-PCI-OSLi buffers. The number of logic 

elements used as glue logic for the receiver buffer halved from 203 to 100 LEs. The 

FT-PCI-OSLi utilised 101 LEs for the transmitter link interface buffer whilst the 

corresponding non-fault tolerant module utilised 186 LEs. For additional hardware 

tests, link interface buffer sizes were altered to 256 deep 9-bit wide buffers.

Architectural alterations to the PCI interface resulted in most modules in this part 

of the design experiencing reductions in resource usage. The Address / Data Path 

module experienced a large increase, from 160 to 366 LEs, cancelling out most of the 

reductions. Movement of functions to the DMA Registers and DMA FIFO Controller 

modules reduced the resource usage of some of the PCI interface modules.

6.6 Power Consumption

Embedded systems are often used in portable / hand held electronic applications 

due to their compact nature. Such applications are frequently battery powered for 

convenience, requiring minimal power consumption. It was therefore veiy important 

to be able to assess the power consumption of a large PLD, which in SoC applications 

may represent the main drain of energy.

The PLDs pre-defined internal architecture allowed the synthesis tool to identify 

which resources were utilised following the fitting of a design to a device. This 

permitted Altera’s proprietary Quartus II software to make a highly accurate 

assessment of the power consumption of the device. Such calculations were possible 

in ASICs but only after the time consuming process of design layout. Altera’s 

electronic literature possessed a design specific power calculator [143] for the Apex
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20KE device family that was used to determine the power consumption of the FT- 

PCI-OSLi interface.

The approximate total power consumption values for the device were:

IccINX = 109.5mA, IccIO = 3.19mA, P ^  = 179.11, PI0 = 10.53mW.

These values were only approximate as estimations were made in certain 

calculations and average values were used in others. When operating at an ambient 

temperature of 20 degrees centigrade without a heatsink, it was decided that airflow 

around the device would be adequate to ensure that no thermal design issues arose.

6.7 FT-SARNIC Post-synthesis Simulation

This section of the results chapter presents the performance of the FT-SARNIC 

based on post-synthesis simulation using Altera’s MaxPlus2 simulation and synthesis 

software. Similar tests were performed with the SARNIC design fitted to the same 

FLEX 10K50VRC240-3 device in order to enable comparisons to be made between 

the two interface designs. The simulation results were also compared to the FT- 

SARNICs theoretical performance characteristics to identify how closely the design 

conformed to the ideal.

SA-110 
Data Bus

SARNIC/
FT-SARNIC

Interface 4-----

Communications 
links connected 
together

Figure 70: Loopback Test Block Diagram for FT-SARNIC

The simulations were performed using a ‘loopback’ method involving fetching of 

data from the SA-llO’s SDRAM to the FT-SARNIC via the data bus. The data was 

formatted ready for transmission onto the serial communications link, and was then 

routed back into the device as Figure 70 demonstrates.



Results

Such tests utilised bi-directional link bandwidth, requiring fair arbitration of DMA 
accesses as the interface transmitted and received data simultaneously. It assumed that 

the interface could always access the SDRAM via the SA-110’s bus, which might not 

always be the case. Previous research [150] demonstrated that the processor overhead 

incurred through the utilisation of 4 DMA channels at a 20Mbits/s link rate reduced 

the computational performance of the SA-110 by 3.34%. The FT-SARNIC utilised a 

virtually identical bus access mechanism as the SARNIC so it was presumed that the 

communications overhead would be similar. The post-synthesis loopback simulations 

were performed at data rates of 20Mbits/s and 39Mbits/s but only two DMA channels 

were utilised, (one in each direction) as all packets in the communication belonged to 

the same message. The loopback test simulated bi-directional traffic flow on the 

communications links, requiring the interleaving of data and control tokens, exposing 

inefficiencies incurred in doing this. Simulation of both devices did not take into 

account the delay incurred by external transceivers on the communications link as the 

serial communications output signal was routed back to the input before leaving the 

PLD, in order for the post-synthesis simulation to work.

6.7.1 Bi-directional Data Transfer Duration

Figure 71 shows the linear increase in message duration observed during post

synthesis simulation of the FT-SARNIC design. The FT-SARNIC characteristic 

demonstrated noticeably larger savings in message duration as the payload increased, 

in comparison to the SARNIC characteristic. This was due to each SARNIC token 

requiring the receipt of an acknowledgement token, increasing the number of bits per 

token to 13. In addition, the SARNIC protocol required a new packet to be set up 

every 256 data tokens, requiring three additional tokens and the incursion of extra 

overheads in the process of packet initialisation. The ability of the FT-SARNIC to 

transmit large messages as single packets eliminated such overheads and as such the 

ramp of the message duration characteristic increases at a lower rate than that of the 

SARNIC.
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Figure 71: Message duration results for FT-SARNIC post-synthesis simulation

Figure 72 magnified the lower region of Figure 71 to display the message duration 

versus payload characteristic for message sizes up to 64 bytes at data rates of 

20Mbits/s and 39Mbits/s. At the minimum message length of 4 bytes, the SARNIC 

took 376ns longer to complete message transmission as two extra bits per token were 

transmitted. An overhead of three tokens per packet (up to 256-bytes) was necessary 

comprising two header tokens and a length token. So the 4-byte message required the 

SARNIC to send 12 extra bits (6 acknowledge tokens), occupying 25.5ns apiece at a 

39Mbits/s data rate, assuming back-to-back data and acknowledge token interleaving. 

The last acknowledge token could be discounted as the receiver began processing the 

message whilst this acknowledge token was still being transmitted. These extra bits 

took a total of 306ns to transmit, assuming no extra overheads, allowing the FT- 

SARNIC to complete its message transfer 70ns faster than the SARNIC.
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Figure 72: Message duration results for FT-SARNIC post-synthesis simulations at
lower message lengths

As message size increased, the latency incurred in initiating and concluding a 

message becomes relatively insignificant relative to the message duration. A greater 

proportion of non-data tokens meant the SARNIC message duration versus payload 

characteristics increased at a faster rate than that of the FT-SARNIC.
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6.7.2 Bi-directional Data Bandwidth Utilisation
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Figure 73: Data throughput results for the FT-SARNIC and SARNIC interfaces

Figure 73 shows the data throughput of the SARNIC and FT-SARNIC interfaces 

plotted against message payload for data rates of 20Mbits/s and 39Mbits/s. The 

theoretical performance characteristic of the FT-SARNIC at a data rate of 20Mbits/s 

was also plotted for comparison.

Figure 73 demonstrated the extent to which message overheads limit throughput 

as data rates increased. It also demonstrates the effect that permission based flow 

control has on data throughput. All three plots began to plateau once message size 

exceeded the 256 token packet boundary imposed on the SARNIC design. The 

performance characteristics up to this point were much steeper for the 39Mbits/s 

characteristics than at 20Mbits/s, for both FT-SARNIC and SARNIC devices.
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The FT-SARNIC data throughput was much greater than that of the SARNIC as it 

did not need to send acknowledgement tokens or multiple packets, freeing more 

bandwidth for data. At a 20Mbits/s data rate, the FT-SARNICs throughput was over 

14% higher than the SARNIC for the maximum message length (64kBytes). This 

figure increased to over 28% when the interfaces operated at a 39Mbits/s link rate.

The FT-SARNIC performed poorly at lower message lengths in comparison to its 

theoretical performance, with the 20Mbits/s characteristic being closer to that of the 

SARNICs response at this link rate. The theoretical performance characteristics only 

took account of the speed at which data could be sent across the communications 

medium, given the network protocols, excluding message set-up and reception delays. 

As message size increased, these overheads reduced in significance relative to the 

overall message duration and the FT-SARNICs performance characteristic conformed 

more closely to the theoretical prediction, almost reaching parity at the maximum 

message length. Differences in bandwidth utilisation for messages above 256 bytes 

are almost entirely due to the different flow control mechanisms.

The data throughput characteristic measured the proportion of data bits in the 

entire message, comprising of: header, length, termination and acknowledge tokens. 

Each message had a 2-byte long header and a byte length termination or length token 

for the FT-SARNIC and SARNIC interfaces respectively. Thus, the data content of a 

4-byte message was 32 bits out of a total of 77 and 91 bits for the FT-SARNIC and 

SARNIC interfaces respectively, making a large difference to data throughput.

6.8 Summary

Section 6.2 compared the tests performed on the hardware implementation of the 

FT-PCI-OSLi with those of the PCI-OSLi and the FT-PCI-OSLi’s theoretical 

performance characteristics. These results demonstrate the increased efficiency in 

terms of the PCI set-up latency of the FT-PCI-OSLi when compared to the PCI-OSLi. 

The results also show the reduction in message duration due to the use of permission 

based flow control. The DMA transmission and reception results in section 6.3 

demonstrate the effect that the transmitter DMA and link interface buffer capacities
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have on the DMA transmission throughput. This section also demonstrates the effect 
to which the data rate of the communications link affects the receiver DMA 

throughput. The results in section 6.4 demonstrated the correct operation of the 

hardware fault tolerance features, showing the ability of the FT-PCI-OSLi to detect 

and recover from faults.

Section 6.5 (and Appendix G) calculate the estimated power consumption for the 

FT-PCI-OSLi dependent on the number of gates and I/O pins utilised by the design. 

Section 6.6 displays the resource usage and maximum theoretical clock speeds for 

each individual design unit in the FT-PCI-OSLi interface. It compares the resource 

usage in different parts of the design with that of the PCI-OSLi interface.

Section 6.7 compared the post-synthesis simulation of the FT-SARNIC with those 

of the SARNIC and the FT-SARNICs theoretical performance characteristics. The 

results demonstrated the superior data throughput of the FT-SARNIC relative to the 

SARNIC due to the adoption of the permission based flow control. The deviation in 

the FT-SARNICs observed performance relative to its theoretical performance at 

lower message lengths was due to the overheads incurred in setting up messages being 

relatively large with respect to the time taken to transmit the message. Figure 73 

indicated the difference between the theoretical and observed characteristic became 

negligible for message lengths above 256 tokens. These results compared the 

implementation of the designs by eliminating external delays that would be cancelled 

out via the implementation of the devices on identical hardware, but would also 

reduce the performance characteristics slightly.
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7 DISCUSSION

Network interfaces are responsible for the conversion of data from one format to 

another. The FT-PCI-OSLi and FT-SARNIC convert data from the serial format of 

the communications link to 32-bit parallel words for transfer to PC memory or 

StrongArm SA-110 microprocessor memory, respectively. The research resulted in 

the implementation of two processor interfaces with improved fault tolerance that 

form building blocks in an embedded parallel processing system. These processor 

interfaces are used to implement a distributed fault detection and recovery mechanism 

in addition to improving performance.

Much of the previous work into improving fault tolerance in parallel systems 

concentrated on ensuring networks could operate in a degraded state, bypassing 

disabled links via the use of adaptive routing algorithms. Such a strategy suits regular 

network topologies, but not irregular switched networks. This method increases traffic 

on the remaining links leading to access contention and the formation of bottlenecks. 

Eventually network throughput and efficiency will be lowered to the point where a 

system wide reset is required to restore effective network operation. Faults between 

network end nodes, such as the FT-PCI-OSLi and FT-SARNIC and routers isolate the 

interface from the rest of the network, unless duplicate communications links are 

utilised.

This section of the thesis discusses the ways in which the FT-SARNet embedded 

parallel system and its end nodes, the FT-PCI-OSLi and the FT-SARNIC improve 

upon their non-fault tolerant predecessors.

7.1 Target Networks

The target applications for the FT-SARNet embedded parallel network are 

typically control based. Multiple FT-SARNIC processor nodes perform 

computational, data processing tasks with results and other information passed to the 

user via a PC and the FT-PCI-OSLi. Real time applications will require a regular flow 

of input data for monitoring and manipulation at the appropriate sampling interval.

176



Discussion

Bandwidth will limit the amount of data that can be sent per sample and the sample 

interval must be frequent enough for the system to be responsive to change. These 

requirements are suited to the cycle-stealing DMA transfer methods used by the FT- 

SARNIC. Transfers of data to and from the FT-PCI-OSLi must be performed as 

rapidly as possible to prevent other bus users being denied frequent bus access.

7.2 FT-PCI-OSLi Performance

As the results in chapter 6 demonstrate, the FT-PCI-OSLi achieved a throughput 

of over 92.8MBytes/s when the message size equalled the 256 byte DMA buffer 

capacity. This fell to a throughput determined by the communications link data rate 

for payloads above this level. Competition from other PCI agents for bus ownership 

reduced throughput further due to access arbitration delaying the granting of bus 

ownership to the FT-PCI-OSLi.

Whilst attempting to push the DMA throughput towards the maximum throughput 

of the PCI bus might seem desirable, in reality it could result in wasted design effort. 

This is due to the shared nature of the bus preventing any one resource monopolising 

access in a practical situation. Additionally, the majority of FT-SARNet 

communications would involve the FT-SARNIC, which would not be able to achieve 

such high DMA throughput levels without preventing processor operation. Focussing 

on improvements to the DMA throughput of the FT-PCI-OSLi could result in wasted 

bandwidth as the FT-SARNIC becomes the system bottleneck.

If 92MBytes/s of the available PCI bandwidth of 132MBytes/s were devoted to 

data transfer from memory to the FT-PCI-OSLi, a maximum of 40MBytes/s would be 

available for all other PCI agents, severely constraining other PC resources.

Such imbalances in data throughput would require data to be ready for use long 

before it was necessary, due to the time taken to transfer the message. This is 

unacceptable in systems aimed at real-time embedded applications. Figure 62 in 

section 6.3.3 showed the effect that message size could have on the requests for PCI 

bus ownership, were it possible to transmit messages of a size equal to the transmitter
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DMA buffer back-to-back. The peak data throughputs displayed in Figures 64 and 65 

in section 6.3.3 would be hard to achieve, due to the PCI arbiters’ fair access 

algorithms. These algorithms ensure high priority resources would not monopolise 

bus access [151]. The PCI specification 2.1 [41] specifies criteria for the operation of 

a ‘fair access’ arbitration mechanism [151]. It leaves the implementation of this to the 

PCI chipset designer, producing variations between systems [144].

The addition of extra links or the substantial increase in the communications link 

data rate could result in the FT-PCI-OSLi monopolising PCI bus access to the 

detriment of other bus users. As an example, the first generation Myrinet/PCI host 

interface [81] linked an 8-bit parallel Myrinet link to a 32-bit 33MHz PCI bus for use 

in connecting processing nodes in MPPs. The Myrinet throughput of 1.28Gbits/s (per 

direction) was significantly larger than that of the 1.056Gbits/s of the PCI bus. In such 

a situation, the PCI bus was the performance bottleneck, irrespective of its use, by 

other bus users. The Myrinet link never reached saturation whilst the PCI bus could 

not devote its full bandwidth to the interface as it must be shared. Later generation 

Myrinet/PCI host interfaces utilised 64-bit 66MHz PCI buses allowing 2Gbits/s (per 

direction) links to the PCI bus, whose maximum throughput was now 4.224Gbits/s. 

Although the PCI bandwidth was increased to over twice that of the Myrinet 

bandwidth, the Myrinet communications channels might still not saturate due to PCI 

bus access by other users.

Despite the shared nature of the PCI resource, its difficulty in predicting and 

guaranteeing bandwidth and the possibility of data starvation on the communications 

link, the PCI bus was still favoured for the following reasons:

•  It was an industry-wide specification permitting a generic processor independent

I/O bus based connection to many different platforms.

• A maximum data throughput of 132MBytes/s was considered high enough for

many applications, including real-time parallel, embedded networks such as the

FT-SARNet, with scope for upgrades.

• The burst mode operation of PCI transactions allowed rapid data transfer across

the shared resource, increasing the frequency of accesses.
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The total PCI latency incurred in initiating transfers was hard to predict due to its 

dependency on many variables, including other FT-PCI-OSLi bus accesses and 

accesses by other PCI agents. The arbitration mechanism employed by the PCI chipset 

was shown to affect the ease and regularity with which PCI agents could be granted 

ownership of the bus [43]. Hardware testing of the FT-PCI-OSLi was performed on a 

single PC with both FT-PCI-OSLi and PCI-OSLi devices tested using identical 

hardware to determine their respective access latencies.

During the development of the PCI-OSLi [43], tests were performed on two 

different PCs, yielding different results. It follows therefore that the FT-PCI-OSLi 

performance would vary when used with different hardware and configurations. 

Altering the latency timer (section 5.2.1.1) of the FT-PCI-OSLi adjusted the number 

of double words transferred across the PCI bus per transaction, effectively altering the 

DMA buffer size and thus the efficiency of each burst, as shown in section 6.3.3. The 

ability to alter burst sizes, coupled with the PCI bus access uncertainties, meant that 

the FT-PCI-OSLi required adequate buffering to ensure data starvation did not occur 

on the communications links. The relatively slow communications link data rate 

ensured that data starvation would be unlikely, although multiple smaller accesses 

increased the bus acquisition and set-up overheads.

The maximum observed DMA transmission throughput of the FT-PCI-OSLi was 

lower than the theoretical maximum of 132MBytes/s due to several latencies incurred 

in initiating a transfer; these included:

• Acquiring ownership of the bus -  9 PCI clock cycles,

• Initiating a PCI transaction once granted bus ownership -  3 PCI clock cycles,

• Delay incurred in the PC fetching the first data word from memory and placing it 

on the PCI bus (Delay unknown but the use of the ‘multiple memory read’ 

command located in the Master / Target Controller (section 5.2.1), meant that the 

fetching subsequent words was not subject to a delay, unlike the ‘memory read’ 

command).



Discussion

The bandwidth limitations of the FT-PCI-OSLi were not crucial in the target 

network, as a throughput of 132MBytes/s would be unattainable for any one device in 

the shared PCI bus. The latencies were of consequence for shorter message lengths 

where the delays were very large relative to the message transfer time across the PCI 

bus.

The DMA transmission results for the FT-PCI-OSLi observed the utilisation of the 

shared resource in a way that was previously overlooked. The large peak in area one 

of the DMA transmission throughput graph was not detected in previous research 

[144] during the development of the host system interface of the PCI-OSLi. This was 

due to a different definition being used in determining the end of the DMA transfer. 

The research conducted into the development of the FT-PCI-OSLi used a more 

accurate definition of DMA transfer termination. As a result of this, an advance was 

made in the understanding of the operation of the PCI bus and its interface to the host 

system interface of the FT-PCI-OSLi.

7.3 FT-SARNIC Performance

In a small scale FT-SARNet the majority of communications will be between FT- 

SARNIC end nodes and NTR-FTM08 routers. There will be a proportionate increase 

in communications between routers as the network scales. The performance of inter

router communications has been documented in previous research [37]. The ability of 

the end node to transmit and receive data depended on the rate at which it could 

access the node’s memory and the rate at which data could be outputted onto the 

communications link. The minimum DMA access interval of the FT-SARNIC was 

equal to that of the SARNIC. This was due to the Bus Controller design remaining 

unchanged with the main differences between the designs located in the 

Communications Controller.

The results in chapter 6 demonstrate a significant improvement in 

communications link throughput due to the adoption of permission based flow 

control. This led to a shorter message duration for a given payload, thus increasing the 

frequency of memory accesses. Unlike the FT-PCI-OSLi the maximum interval
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between FT-SARNIC memory accesses could be calculated (section 5.52.6) as the 

FT-SARNIC and the CPU were the only devices that utilised the memory bus. It 

should be noted that the FT-SARNIC possessed two DMA channels per direction but 

only a single bi-directional communications channel. This effectively implemented 

two hardware virtual channels.

The post-synthesis simulations of the FT-SARNIC and SARNIC designs utilised a 

single DMA channel per direction to simulate bi-directional communications. This 

used only two of the four available DMA channels as only a single bi-directional 

communications link was implemented due to logic constraints. Targeting the design 

to a larger device and implementing the second communications link would benefit 

the data throughput of the FT-SARNIC. This had the potential to double the amount 

of data that could be transmitted and received by the FT-SARNIC as the 

communications links could operate concurrently.

The SARNIC design implemented two communications channels due to the 

reduced functionality of the communications controller, but the FT-SARNIC omitted 

the second channel in favour of the ROM module. This was required to initialise the 

interface for testing as the use of loopback tests prevented the booting from an 

external device as the communications links were driven and received by the FT- 

SARNIC.

The SARNIC operated two bi-directional channels at 20Mbits/s link rate with only 

a 3.34% drop in processor performance [151], but the FT-SARNIC exhibited a 14.4% 

increase in bi-directional throughput at this link rate, compared to the SARNIC. This 

would increase the frequency of memory accesses. At a 39Mbits/s link rate, the 

difference in throughputs increased to 28.75% for larger message sizes (section 6.7.2), 

which would increase DMA activity further. Increased DMA activity would reduce 

processor performance as memory bus access alternates between the CPU and DMA 

when accesses were pending (section 5.5.1.1). The extent to which this occurred 

would be worth investigating, but requires new hardware.



Discussion

7.4 Buffering Considerations

The FT-SARNIC utilised a cycle stealing DMA approach to data transfer, 

transferring a single word of data at a time. Such an approach required a single stage 

of buffering large enough to hold enough data for processing, during the time between 

two FT-SARNIC memory accesses, to prevent data starvation. As the FT-SARNIC 

utilised the same host system adapter as the SARNIC, the same ‘fair chance’ (see 

section 5.5.1.1) arbitration mechanism was used, interspersing DMA accesses 

between CPU accesses. The FT-SARNIC interfaced directly to the memory bus of the 

SA-110, being the only external component in competition for this resource, thus 

guaranteeing bandwidth at fixed intervals.

The packetiser and depacketiser of the FT-SARNIC possessed a one word deep 

DMA buffer in each direction, which held a data word whilst it was packetised and 

depacketised to and from byte format, respectively. However, the link interface 

buffer held sufficient data to keep the communications link saturated between DMA 

transfers. The Transmitter Link Interface Buffer used in the SARNIC design was four 

tokens deep in order to hide the interval between memory accesses. The credit based 

flow control mechanism utilised by the SARNIC meant that a single token would be 

sufficient to prevent data starvation, were the time interval between DMA accesses 

short enough. The permission based flow control adopted by the FT-SARNIC 

required the Receiver Link Interface Buffer to be 32 tokens deep, for reasons 

discussed in section 4.4.2.3. This was due to the ability of the FT-SARNIC to transmit 

data tokens back-to-back. Increased buffering was also required due to the increased 

throughput of the FT-SARNIC caused by the adoption of the new protocol.

The block transfer approach of the FT-PCI-OSLi only initiated a PCI transaction 

when the DMA buffer was full or the message was completed, whichever occurred 

first. Messages longer than the 64 double word capacity of the DMA required 

subsequent bursts to transfer the message following the emptying of the resource.

A two stage buffering strategy was required with the first stage necessary to 

maintain access efficiency and maximise throughput across the PCI bus. The second 

stage provided buffering to store data to pass on to the communications link. This
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prevented data starvation and provided data for processing by the receiver during 

periods where data transfer was halted across the communications link. Figure 65 in 

section 6.3.3 showed how the capacity of the link interface buffer affected the 

characteristic of area 2 of the DMA transmission throughput graph.

Increasing the link interface buffer size to the levels used in the PCI-OSLi 

increased throughput in area 2 of the graph to 25MBytes/s. This gave a six-fold 

throughput increase for messages of lkByte, but at the cost of increased buffer size: 

32 times the size used in the FT-PCI-OSLi. Short messages, that could be transferred 

across the PCI bus in a single PCI burst, could monopolise the bus if sent back-to- 

back. Longer messages must be emptied from the DMA transmitter buffer before 

subsequent PCI bursts could refill it. This action was dependent on the

communications link data rate. The ability to drive the communications link into

saturation at a 42Mbits/s link rate will depend on the length of the messages being 

transmitted. The PCI chipsets arbitration mechanism could prevent saturation if 

shorter message lengths are used, due to PCI bus acquisition overheads.

If the FT-PCI-OSLi utilised a single buffering stage, similar to that of the FT- 

SARNIC, the PCI bus bandwidth would be utilised inefficiently due to the relatively 

large overheads incurred in initiating a PCI transfer for a 4 byte message. The FT-

PCI-OSLi must acquire ownership of the shared PCI bus. Conversely the FT-

SARNIC utilised idle memory bus cycles, with only the SA-110 CPU in contention 

for access to this resource. Similarly, transferring data from the FT-SARNIC to 

memory in a burst would be possible, but awkward. This was due to the difficulties in 

terminating the transfer without incurring inefficient bus usage, as mentioned in 

section 5.5.1.2. Eight double words of data could be transferred in a single cache line 

fill but PCI bursts of this length are relatively inefficient due to overheads reducing 

PCI bus throughput to 10.15MBytes/s. Performing data transfers of 64 double word 

bursts for the FT-SARNIC in a manner similar to that of the FT-PCI-OSLi would 

interfere with the SA-110 access to the memory bus, and as such cannot be considered 

a viable option.
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7.5 Data Streaming

Both the FT-PCI-OSLi and the FT-SARNIC employed streamed data 

transmission: formatting data and outputting it onto the serial communications link as 

soon as it was transferred from the host systems memory. Streamed data transmission 

was favoured as it required minimal buffering and did not impose any limits on the 

length of transactions. An other advantage of streamed data transmission was the 

ability to disguise message-formatting delays by the injection of subsequent data 

tokens into the DMA buffer. An inconsistency of transfers across the host system 

interface could result in data starvation in a streamed network as the link interface of 

the FT-PCI-OSLi waits on data to transfer. In reception, the inability of the PCI agent 

to gain access to the bus would result in the DMA Receiver Buffer not emptying fast 

enough resulting in the need to suspend data flow across the communications link. 

Both data starvation and network back pressure result in inefficient communications 

link bandwidth utilisation.

An alternative strategy, as adopted by the Myrinet/PCI host system interface, was 

to transfer an entire packet across the PCI bus to a temporary data storage buffer. 

Transfer of the message from the buffer to the communications network began once 

the entire packet was held in this buffer. Buffered transmission will impose a limit on 

either the buffer capacity or the packet length, with consequent resource or overhead 

implications. Once a buffered transmission was stored in memory, it could be 

outputted onto the communications link, via the message processing logic, in back-to- 

back transmissions. This resulted in more efficient use of the communications link 

bandwidth. Buffered transmission can be advantageous in I/O bus based systems, 

where the presence of several competing entities make it impossible to guarantee 

bandwidth. The Myrinet/PCI host interface [81] communications link data rate, of 

1.28Gbits/s, was already much higher than that of the 32 bit 33MHz PCI bus 

(1.056Gbits/s). This resulted in data flow problems in the Myrinet / PCI system 

irrespective of accesses by other PCI agents. For this reason, buffered transmission 

was required.

The streamed transmission SHRIMP [71] interface, whilst having a peak transfer 

bandwidth of 200MBytes/s, only passed data to other users via its communications
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links at a rate of 33MBytes/s. This was due to the performance bottleneck of the EISA 

bus [98]. Streamed data transmission allowed the EISA bus to become saturated but 

utilised little of the available interface bandwidth [71].

The communications link throughput of the FT-PCI-OSLi was sufficiently low 

with respect to the PCI bus throughput. Data starvation and network back pressure 

was unlikely due to the FT-PCI-OSLi serial format. The addition of other 

communications channels would increase the total communications link bandwidth to 

levels that could cause data starvation / network back pressure. This is discussed as a 

potential avenue of further research in section 8.2.2.

7.6 Interface Coupling

The FT-SARNIC interfaced to the SA-110s memory bus, creating a high 

performance, processor specific interface, tailored to that particular processor. Its 

tightly coupled host system interface increased communications efficiency due to its 

close proximity to the processor, but reduced the design generality. Migrating the FT- 

SARNIC design for use with a different microprocessor could require substantial 

design alterations, due to the interface design being optimised for the SA-110 timing 

requirements. However, the modular hierarchy of the FT-SARNIC would permit the 

alteration of either the processor interface, or the network interface without altering 

the other design unit.

The FT-PCI-OSLi, being an I/O bus based interface, sacrificed efficiency and 

therefore performance for the ability to provide a processor independent interface. 

The FT-PCI-OSLi must share the PCI bus bandwidth with the other PCI agents 

attached to the bus. The FT-SARNIC connected to the SA-110s memory bus and 

therefore only competed with the CPU for bus access. The FT-SARNIC could only 

transfer data during processor idle cycles to prevent communications interfering with 

the processor’s memory accesses and therefore computational abilities. The FT-PCI- 

OSLi could request ownership of the PCI bus at any time but the amount of bus 

access granted depended on many variables, such the number of devices accessing the
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bus, the activity of these devices and the arbitration mechanism utilised by the PCI 

bus arbiter.

The PCI bus standard, being a recognised transfer protocol, had a defined bus 

acquisition sequence in order to set up a PCI transaction between two agents. This 

procedure incurred significant overheads onto small transactions, making the PCI bus 

better suited to the transfer of large amounts of data. The FT-PCI-OSLi offered the 

FT-SARNet an interface to a far wider range of processors than previously available.

7.7 Virtual Channels

The FT-PCI-OSLi design built significantly on the previous PCI-OSLi interface 

by providing a hardware virtual channel capability to deal with the arrival of both 

expected and unexpected out of order message arrivals. Expected message IDs were 

loaded into the CAM prior to the message arrival. Headers of messages recovered 

from the serial communications link were compared with the contents of the CAM, a 

match being generated if the message was expected. CAM searches operated 

concurrently, making for fast comparisons, irrespective of CAM size, and providing 

an easily expandable solution.

The use of virtual channels eliminated the need for processor intervention when a 

valid message arrived at the receiver ahead of the expected message. Message arrival 

ahead of time triggered an interrupt and required the removal of the expected message 

information from the receivers’ message information buffers. This was then replaced 

with the received message information. The virtual channel functionality of the FT- 

PCI-OSLi demultiplexed a single DMA channel to one of three message ‘class’ 

locations in memory. This method was found to be more effective than the twin DMA 

channels utilised by the FT-SARNIC.

The FT-SARNIC had two receiver DMA channels, to which packets belonging to 

one of two messages could be routed to, before being transferred to the SA-110s 

SDRAM. The FT-SARNIC could handle incoming packets that alternated between 

two messages. It required intervention when a third message was received, as
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software must be used to decide which message must be replaced with the third 

message. This could be performed more efficiently if a ‘least recently used’ algorithm 

was implemented. The implementation of the virtual channel functionality of the FT- 

SARNIC was performed using logic elements due to the memory constraints of the 

Flex 10K50 PLD. Available resources limited the number of virtual channels to two 

per direction. Updating the target tPLD technology for implementation of the FT- 

SARNIC to the Apex 20K device family [134] would provide more logic resources in 

addition to increased operating speeds.

7.8 Modified Message Router Protocol

The ICR-C416 based message routing protocol used in the PCI-OSLi and 

SARNIC devices was abandoned in favour of the improved protocol used by the 

NTR-FTM08. The new protocol permitted the transmission of information relevant to 

the operational status of the communications links over the data link. This removed 

the need for the inefficient and unscalable control link used by the SARNIC and PCI- 

OSLi in the ICR-C416 based network. The ICR-C416 protocol suffered in event of 

link failure due to the inability of a node to detect the difference between an idle link 

and a faulty link. In event of link failure the nodes at either end could stall 

indefinitely, as discussed in chapter 3. Even if a mechanism existed to detect a stalled 

link, the node detecting this could not communicate the information to the other end 

of the link.

The periodic transmission to reaffirm link activity was similar to that used by DS 

links [79], but idle tokens were transmitted at intervals to reduce switching (see 

section 3.5). This provided both sides of a communications link with a fault detection 

mechanism, and confirmed link status. Further power savings, desirable in portable 

embedded applications, were available via the link dormancy mode of operation. The 

ability to shut down unused links was a marked improvement over the simple ICR- 

C416 based protocol. The FT-SARNIC was able to distinguish dormant links from 

stalled or faulty links, and return them to an active status with a fast and simple start 

up sequence.
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The removal of the 256-byte maximum packet size enabled more efficient use of 

the communications link bandwidth and signalled an expansion in target applications 

from short, control messages to include longer communications. This was reflective of 

the increasingly compact nature of modern multiprocessor networks as well as the 

increased performance requirements of embedded systems.

Altering the communications link’s flow control mechanism from credit based to 

permission based increased the data throughput of the FT-SARNIC and FT-PCI-OSLi 

interfaces due to the removal of acknowledge tokens. This action permitted back-to- 

back bi-directional data flow. It freed two bits per token for the transmission of data 

and utilised bandwidth previously wasted due to the need to interleave data and 

acknowledge tokens, as outlined theoretically in section 3.4.1 and confirmed in 

practice in chapter 6. The new flow control mechanism benefited the fault detection 

and recovery strategy as the loss of tokens no longer caused the link to stall with no 

means of resetting. Lack of link activity was used to indicate link failure. Receipt of a 

‘connection request’ token was used to reset the receiving node’s link interface state 

machine.

The addition of three different delimiter tokens to denote ‘End of Message’, ‘End 

of Packet’ and ‘Exceptional End of Packet’, aided the process of active packet 

recovery by providing the receiving node with information on the received message. 

The latter token informed the node that an error was detected during the transmission 

of the message and resulted in premature termination.

The distribution of fault detection and recovery features throughout the network 

permitted a more scalable fault detection and recovery solution with faster response 

times and the responsibility for each link devolved to the nodes at each end of it. Any 

unexpected behaviour on a link, which did not conform to the expected link traffic for 

that particular link state, would reset the link interface state machine. This action 

forced a node to transmit a connection request token, the receipt of which reset the 

state machine for the node at the other end of the communications link.

It should be noted that the hardware tests all utilised bi-directional 

communications, due to the nature of the loopback tests. These tests showed the
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performance of credit based flow control, utilised by the SARNIC and PCI-OSLi, to 

be inferior to that of permission based flow control used by the FT-SARNIC and FT- 

PCI-OSLi. Uni-directional credit based transfers, which were more likely to occur to 

and from end nodes in a control-based network, could achieve 13 bits per byte 

(section 2.3.1), and thus achieve back-to-back data transmission. Communications 

between routers were more likely to be bi-directional as more messages will be active 

in the central branches of the network. Applications utilising uni-directional credit 

based communications will still be subject to bi-directional communications 

constraints, reducing their performance in the areas of the system with the heaviest 

workload.

7.9 Proprietary Vs Custom Prototype PCI Interfaces

With several commercially available PCI interfaces available, the benefits and 

costs of designing a custom interface in house must be considered when a proprietary 

one could be bought. A System on Chip (SOC) solution was desirable, eliminating 

many interfaces as additional functionality would be required to link the device to the 

communications link. This was not a problem as PCI cores were obtainable for PLDs, 

implemented in embedded memory, leaving on-chip programmable logic for the 

implementation of a communications link interface. These programmable interfaces, 

such as the Altera PCI Master/Target MegaCore [152] and Xilinx PCI LogicCORE 

[153] might seem attractive options initially but when design flexibility was 

considered, PCI IP cores lose much of their appeal. The interface developer buys the 

IP but does not necessarily buy the right or ability to modify it. The developer could 

buy a licence to customise the core, at a cost, in some cases, but otherwise no 

modifications were possible. The ability to modify the interface, tailoring it to the 

application, can make a significant difference to its operation. The Altera PCI 

MegaCore provides a single DMA channel, with a buffer capacity of 16 double 

words. Figure 60 showed that the DMA transmission throughput for messages of this 

size was 19.2MBytes/s. This would become the peak throughput for area 1 of the 

DMA transmission throughput graph. Figure 55 showed that the efficiency of FT- 

PCI-OSLi PCI accesses would become 84.2%, reduced from 94.7% for a DMA buffer 

capacity of 16 double words. A PCI interface utilising this core would be significantly
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less efficient than the PCI interface of the FT-PCI-OSLi. The implementation of a 

single DMA channel would require sharing the DMA buffer. This would delay 

transfers until the buffer was emptied and would reduce efficiency, removing the 

performance gains obtained from full-duplex internal communications in the FT-PCI- 

OSLi.

Most PLD based PCI cores provide only the master / target controllers for the PCI 

interface, without DMA support as standard, this important feature costing extra. The 

user may benefit with the ability to design custom DMA channels, tailored to the 

communications link, at a cost of extra design effort. When the time and effort spent 

evaluating different IP, and integrating the IP with the custom designed DMA 

interface, is taken into account it may prove easier to design the entire interface. Many 

problems could be encountered when attempting to interface third party IP to other 

designs. The increased design time incurred with a fully customised interface was less 

important as time-to-market is less crucial in research, than in the commercial 

electronics field.

Other PCI IP interfaces, such as that available from PLD Applications [154], 

provide the logic to implement DMA channels but the responsibility for DMA buffer 

implementation falls to the developer. Internal implementation of these buffers 

requires the availability of large amounts of on-chip buffering whilst external 

implementation would represent a major design challenge in order to meet the 

stringent PCI timing requirements required to achieve zero wait-state burst reads and 

writes.

The ability to modify the PCI interface of the FT-PCI-OSLi was a major 

advantage compared to proprietary IP cores, as the source code was readily available 

and could be tailored and updated for optimum transfer over the PCI bus. Features not 

available in proprietary IP could be implemented as desired and unnecessary features 

omitted.

The use of other PCI interfaces, such as the Myrinet/PCI host interface may seem 

attractive, due to its bandwidth of 1.28Gbits/s. This solution would require the design 

of an interface to link the Myrinet link with the serial communications channel
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utilised by the NTR-FTM08, incurring an extra stage of message formatting and 

latency. Additionally, the serial communications link would become the performance 

bottleneck of the interface and the bandwidth figure of 1.28Gbits/s would never be 

attainable.

A fully flexible, easily modifiable, licence free source code solution, already 

tailored to the format of the communications link, was readily available. Were the 

project to start at the time of writing, with the advances that have been made in 

available PCI interfaces, a different conclusion may have been made. Hence, during 

development of the PCI-OSLi the option of using a third party PCI interface was 

considered and rejected due to the limited choices and features of the available IP. 

Since then the boom in off-the-shelf solutions has resulted in the increase in the 

specifications, performance and available features of PCI IP, coupled with reduced 

costs. The PCI-OSLi itself could be considered IP, with many advantages compared 

to a proprietary PCI IP interface.

7.10 66MHz PCI Bus Operation

The data throughput of the PCI bus could be doubled to 264MBytes/s by 

increasing the clock rate of the bus from 33MHz to 66MHz. Post-synthesis timing 

analysis of the FT-PCI-OSLi revealed the maximum PCI clock frequency to be 

74.88MHz. This makes 66MHz PCI operation theoretically possible, until the PCI 

timing requirements are considered. The PCI clock period is 15ns at this frequency, 

which cannot meet the PCI timing requirements. Certain PCI signals, most notably the 

initiator and target ready signals ‘nlRDY’ and ‘nTRDY’ (see Appendix B), must meet 

strict timing requirements in order to synchronise PCI transactions. These signals had 

a maximum set-up time of 7ns and a maximum clock-to-output delay of 11ns [41]. 

The FT-PCI-OSLi design had a set-up time (tsu) of 5.091ns and 5.404ns for the 

‘nlRDY’ and ‘nTRDY’ signals respectively. The clock-to-output time (tco) of the FT- 

PCI-OSLi was 10.593ns and 11.909ns for the ‘nlRDY’ and ‘nTRDY’ signals 

respectively. The time of the clock period when the signals could be reliably sampled 

was 14.316ns and 12.687 for the ‘nlRDY’ and ‘nTRDY’ signals respectively with the 

33MHz PCI bus. The time when the signals could not be sampled, was 15.684, and
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17.313, for the ‘nlRDY’ and ‘nTRDY’ signals respectively. These times exceed the 

15ns clock period for the 66MHz PCI bus. Therefore, to achieve 66MHz PCI 

operation, the tsu and tco times must be significantly reduced.

Faster designs can be realised through effective targeting of design effort towards 

specific areas. As the devices used to implement the design increase in performance 

with advances in PLD technology, designs will benefit from speed increases. It could 

be argued that the FT-PCI-OSLi and FT-SARNIC interfaces are at a disadvantage in 

comparison to commercial interfaces as the latter are implemented on faster ASIC 

technology. Although as section 4.5 pointed out, the difference in performance 

between the two technologies is reducing [137].
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8 CONCLUSIONS AND FURTHER WORK

8.1 Conclusions

This thesis has documented research into multiprocessor systems with a view to 

enhancing fault tolerance, which led to the development of two network interface 

devices. These were designed to form building blocks in a router based serial 

communications network with increased fault tolerance. The FT-SARNet network 

was targeted at real-time distributed embedded multiprocessor applications. The 

interface devices could be utilised to produce a novel decentralised fault handling 

communications network linking PCs and StrongArm processors. The system would 

allow RISC and general-purpose processors to operate as processor nodes in the same 

network, increasing system flexibility and applications. Interprocessor bi-directional 

data throughput was increased compared to previous non-fault tolerant devices due to 

flow control modifications. The addition of hardware fault tolerance features provided 

the embedded network with the ability to detect, isolate and recover from several fault 

scenarios.

Inteiprocessor communications in this embedded multiprocessor network utilised 

custom NTR-FTM08 8-channel off-the-shelf, hardware message routers. One 

interface was designed to connect StrongArm SA-110 processors to the router 

network using a protocol that facilitated the implementation of improved fault 

tolerance features. This was named the FT-SARNIC. The functionality and 

performance of the FT-SARNIC was verified via post-synthesis simulation and a 

synthesised design was produced ready for hardware implementation. A second 

interface, called the FT-PCI-OSLi, was designed to link a general purpose PC, via the 

PCI bus, to the network and was implemented in hardware. Both interfaces built on 

previous non-fault tolerant prototype designs, making significant alterations to 

accommodate the features aimed at enhancing the fault detection and recovery 

abilities of the NTR-FTM08 routing protocol.

Nodes in the FT-SARNet were required to exchange information relating to the 

operational status of the link in order to provide distributed fault tolerance. This 

required different design features to the previous SARNIC and PCI-OSLi interfaces, 

as outlined below:
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• Credit based flow control was abandoned in favour of a permission-based 

mechanism. This eliminated the acknowledgement token system, made better use 

of the link bandwidth and reduced the chance of stalled links due to loss of 

acknowledgements.

• Back-to-back data transmission was achievable, subject to the availability of 

receiver buffering resources. Stop and Go flow control tokens utilised the data 

path to inform the transmitting node of the link’s operational status and prevent 

buffer overflow.

• Idle tokens were transmitted periodically, in the absence of link activity, to

reaffirm the integrity of the data path. Stop and Go flow control tokens were used 

to provide validation of link status.

• Inactive links could be configured as dormant, in order to reduce power 

consumption, re-activating upon the command to transmit a message. Link 

dormancy provided a means of distinguishing between idle and disabled links that 
was previously impossible.

• The addition of a handshaking start-up procedure, to ensure that both end nodes 

on a link were ready to transmit data, provided a means of resetting individual 
links on detection of irregular link activity.

• Altering the message format, by eliminating the need to packetise data in

multiples of 256-bytes, reduced the message overheads. It also signalled an

expansion in applications from shorter control-style messages to encompass PC 

based applications that could require longer data communications.

• Altering the message format, from header-length-payload to header-payload- 

terminator, enabled the truncation of messages affected by link failure. This 

provided the receiving node with a warning that the message had ended 

prematurely and a reset had occurred on that link, terminating that particular 
communication.

The FT-PCI-OSLi design built on the previous non-fault tolerant device, with the 

new and modified submodules of the design simulated in software to verify 

functionality, before being incorporated into the design. Hardware testing and 

debugging of the interface was aided by the in-system re-programmable SRAM based 

PLD. This device could be programmed by an EEPROM allowing hardware
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modifications and experimentation without the need for investment in additional 

hardware. The FT-PCI-OSLi design was implemented on an Altera Apex 20K200E 

PLD mounted on a custom interface PCB containing transmitter and receiver 

differential line drivers for the communications links. The operation of the FT-PCI- 

OSLi communications channels was tested at several data rates, up to a maximum 

sample clock frequency of 64MHz, giving a 42Mbits/s data rate. A PCI-OSLi 

interface was implemented on identical hardware for similar testing, eliminating many 

differences in implementation and enabling comparisons to be made between the two 

designs.

The FT-PCI-OSLi improved on its non-fault tolerant predecessor by 

implementing hardware virtual channels via the use of Context Addressable Memory 

(CAM). The CAM was used to store up to sixteen expected message IDs at any one 

time, allowing pre-loading in anticipation of their use. This reduced the need for 

processor intervention to replace message IDs in the DMA channels in event of the 

arrival of a new message. The use of CAM provided concurrent search capabilities 

and a scalable solution whilst minimising logic usage via embedded memory 
implementation.

The key conclusions obtained from the hardware tests of the FT-PCI-OSLi are 
presented below:

• The FT-PCI-OSLi outperformed the PCI-OSLi in terms of efficient use of 

communications link bandwidth, due mainly to the adoption of the new flow 
control protocol.

• The efficiency of PCI bursts was improved upon, reducing the PCI bus set-up 

latency from five clock cycles to three.

• The transmission throughput of the PCI interface reached a maximum of 

92.8MBytes/s when the message size is equal to that of the DMA transmission 

buffer. This was a significant improvement in the understanding of the host 

system interface of the FT-PCI-OSLi and PCI-OSLi devices as previous research 

during the development of the PCI-OSLi did not observe the behaviour of the 

interface to the same degree of accuracy. This was due to a different measure of 

DMA transmission duration being used, leading to a less accurate representation 

of the DMA transmission characteristic. The previous incorrect maximum DMA
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throughput observed during development of the PCI-OSLi was only 25Mbytes/s. 

The PCI throughput of the FT-PCI-OSLi has not increased in comparison to that 

of the PCI-OSLi, but the more accurate measurement enabled its characteristics to 

be observed more accurately than was previously performed, demonstrating the 

Area 1 peak that was overlooked during development of the PCI-OSLi.

• The DMA transmission throughput was always sufficiently high to saturate the 

communications link, even when back-to-back transmission was used. This 

indicated that the communications channel was the system bottleneck. It is 

possibile that the arbitration mechanism of the PCI chipset could prevent the 

communications channel from saturating at smaller message lengths. This would 

require verification but could not be taken as definitive as the arbitration 

mechanism could vary between systems, as documented in section 7.2.

• A correlation was found between the DMA and link interface buffer capacities 

and the DMA transmission throughput.

• The fault detection and recovery strategy showed the FT-PCI-OSLi could prevent 

buffer overflow and stalled links due to lost acknowledge tokens. This was an 

improvement on the ICR-C416 based router network utilised by the PCI-OSLi and 

SARNIC. The FT-PCI-OSLi could detect and recover from faults such as 

disconnected network connection, packet arrival out of order, incorrect message 

length, synchronisation errors and the delivery of messages to the wrong address.

Post-synthesis simulation of the FT-SARNIC, with similar tests performed on a 

post-synthesis simulation of the SARNIC revealed similar improvements in the 

utilisation of the communications link bandwidth, again due to the alterations to the 

link protocol. The host system interface of the FT-SARNIC was left unchanged, 

leaving the communications between the FT-SARNICs DMA channels and the 

SDRAM of the SA-110 operating in an identical manner to that of the SARNIC.

The FT-SARNet improved on the previous non-fault tolerant SARNet network in 

the following ways with respect to the parameters used to gauge network performance 
described in section 2.1:

•  Bandwidth: The communications network gained significantly due to the 

adoption of permission based flow control. The design of the host system interface
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of the FT-PCI-OSLi remained unchanged but a greater understanding of its 
operation was obtained.

• Latency: The initialisation latency incurred between acquiring ownership of the 

PCI interface and commencing a transfer was reduced by 40% due to hardware 

refinements to the master/target controller in the host system interface of the FT- 

PCI-OSLi.

• Processor Overhead: The FT-SARNIC and FT-PCI-OSLi interfaces reduced 

software involvement from their respective processors when handling faults. The 

FT-PCI-OSLi reduced the need for processor intervention, following out of order 

message arrival, due to the implementation of hardware virtual channels.

• Scalability: The control port monitoring mechanism of the ICR-C416 based 

network was replaced by a fully scalable fault detection and recovery strategy. A 

solution valid for networks of any size could be realised by devolving fault 

detection and recovery features so that responsibility for fault tolerance over a 

commmunications link lay with the nodes at either end of the link.

• Reliability: Enhanced fault tolerance functionality permitted the detection of a 

wider range of network faults. Hardware implementation reduced software 

overheads. An automatic recover strategy enabled a rapid response, of particular 

use in remote systems.

The strength of a message processing interface utilising a shared bandwidth 

resource such as the FT-PCI-OSLi or the FT-SARNIC is its ability to saturate the 

dedicated communications link whilst utilising minimal bandwidth of the shared 

resource. Access to the shared resource must be guaranteed, despite its dependence on 

many variables. Real time systems require message delivery within a short enough 

time for the information to still be useful. Access contentions to shared resources 

delay this process. The communications link was the performance bottleneck of the 

FT-PCI-OSLi design, as expected. This was preferable to the shared resource being 

the bottleneck, as the communications link throughput would not hinder bus access by 

other users.

A possible description of fault tolerance in the NTR-FTM08 embedded routing 

network could be the ability to enable faults to occur without impairing the network 

performance to a significant extent. This is possible due to features such as group
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adaptive routing, which permit faulty links to be bypassed. The FT-PCI-OSLi and FT- 

SARNIC network interfaces are end nodes of the routing network, and as such are 

either the source or destination of a message, and thus cannot be bypassed. Both 

interfaces possess a single bi-directional communications channel, which if faulty 

isolates the processor node from the network. Such situations require the link failure 

to be detected and fixed rapidly. The PCI-OSLi and SARNIC devices did not possess 

any means of doing this, relying on software and thus imposing large overheads, in 

implementing any form of fault detection and recovery. A robust network must 

possess the ability to detect link failure and automatically recover from it.

8.2 Further Work

8.2.1 Realisation of the FT-SARNet

The research concluded with the design and synthesis of the FT-SARNIC 

interface and the hardware implementation of the FT-PCI-OSLi. The FT-PCI-OSLi 

was tested using the loopback tests, effectively sending messages to itself. To enable 

the construction of an embedded FT-SARNet network one must integrate the 

processor nodes (comprising a processor, interface and memory) into an NTR-FTM08 

router network. This would permit research to assess the effectiveness of the network 

as a whole and identify the weak links of the FT-SARNet as scope for further 

improvements. The FT-SARNIC design is ready for hardware implementation and the 

other two building blocks of the FT-SARNet, the FT-PCI-OSLi and the NTR-FTM08, 
have been successfully implemented in hardware.

The main focus of effort required in construction of the FT-SARNet is in the 

software levels of the design, as software designed for use with the SARNIC and PCI- 

OSLi requires significant modification for use with the improved fault tolerance 

devices. In particular, work is required to implement support for the features and 

actions that must be taken to enhance fault tolerance. The software supporting the 

network interfaces must be minimised in order to reduce operating system 

intervention, thus minimising overheads and maximising the computational abilities 
of the parallel network.

- 198-



Conclusions And Further Work

Hardware realisation of the FT-SARNet would permit research into permission 

based throughput in multi-router networks for various different network topologies. 

Such tests would advance the understanding of the efficacy of permission based flow 

control. They would show how network topology could influence traffic patterns, 

which could be used to minimise the necessity to suspend traffic flow across links, 

thus increasing the efficiency of the system as a whole.

The testing of the FT-SARNIC implemented in hardware would result in 

performance characteristics that were very similar to those achieved in the post

synthesis simulations documented in chapter 6. This is due to the accuracy of the 

proprietary simulation and synthesis tools used in the development of the designs. 

Detailed knowledge of the internal architecture of the PLD permits a highly accurate 

analysis of the design to be obtained as the compiler can consider the delay through 

each gate in the design. Any differences between the simulated and observed 

behaviour of the device would mainly be due to timing differences in external signals 

(such as those from the microprocessor or SDRAM).

8.2.2 Additional Communications Channels

The addition of more communication channels to the FT-PCI-OSLi interface is 

possible without monopolising the PCI bus. At 20Mbits/s data rates a modified PCI- 

OSLi design used in a Transputer based network has been shown to be capable of 

driving four bi-directional communications channels operating in saturation (eight 

DMA channels in total). This was achieved without preventing access to the bus, due 

to the PCI bandwidth being far greater than that of the communications links. At 

42Mbits/s data rates the maximum transmitter DMA throughput exceeds 92MBytes/s. 

In area 3 of Figure 64 (section 6.3.3), the throughput was limited to 3.8MBytes/s, due 

to the link data rate. A total of 24 bi-directional DMA channels, 12 in each direction, 

could theoretically be supported.

The addition of extra channels requires the duplication of the link interface and 

data flow parts of the design. Development of the NTR-FTM08 router revealed that 

the duplication of the message formatting parts of the design can lead to large 

increases in resource usage unless functionality can be shared amongst devices.
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Sharing functionality is rarely possible if communications links operate concurrently. 

The state machine in the DMA controller also needs modifying in order to arbitrate 

not only between the direction of DMA transfer but also which of the channels is 

transmitting or receiving. Each channel will require a DMA channel in either direction 

in order to accumulate data for transfer to / from memory. These channels cannot be 

shared as bi-directional data transfers can take place concurrently on all 

communications channels, filling and emptying the receiver and transmitter DMA 

buffers onto the communications channels. The more channels that are added, the 

greater the likelihood of a DMA channel having to wait for completion of a previous 

transaction to access the bus to transfer its contents to memoiy.

It should be noted that the replication of features in a design increases the fan-out 

of signals, which can lead to timing problems, as was noted in the development of the 

FT-PCI-OSLi. The ability to modify source code enables such problems to be solved; 
whereas the use of off-the-shelf components, whilst possessing sufficient resources to 

enable expansion, may not permit a solution due to timing issues that cannot be 

resolved due to the inability of the user to modify the design.

8.2.3 Interface Adaptation for use with Alternative Processors

The rapid advancement of processor technology shortens the amount of time that 

the modern processor is utilised before being upgraded. In order for the embedded 

network to track these processor developments, the network requires frequent 

updating of processor support. Easily adaptable IP is a necessity in such networks as it 
enables as much of the original design to be retained, whilst inserting a proven 

module to fulfil the remaining requirements.

The modular nature of the FT-SARNIC and FT-PCI-OSLi interfaces permits 

updating of the host interface without requiring alteration to the network interface. 

However, modifying the FT-SARNIC for use with another processor would require 

significant design effort due to the host system interface being optimised to the 

StrongArm SA-110.
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The FT-PCI-OSLi is designed to interface to any processor with a 32-bit 33MHz 

PCI bus, irrespective of the processor model and operational parameters. As general 

puipose processor specifications advance, so too will the implementation of the PCI 

bus, from 32-bit, 33MHz to 64-bit, 66MHz. The issues regarding the interfacing of 

the FT-SARNet to a 66MHz PCI bus were discussed in section 7.1.8. It was 

concluded that this would currently require the set-up and clock-to-output times of the 

PCI signals of the FT-PCI-OSLi to be significantly reduced in order to meet the 

timing requirements. Further advances in PLD technology result in the introduction of 

device families with smaller feature sizes, increased gate counts and higher switching 

speeds. Migrating the design to a newer PLD technology would reduce or even 

eliminate the amount of optimisation required to meet the timing requirements. 

Implementing a 64-bit, 33MHz FT-PCI-OSLi interface requires only logic duplication 

and a widening of the bus. This PCI bus implementation would double the maximum 

theoretical PCI bus bandwidth to 264MBytes/s whilst requiring no additional 

optimisation of the interface. The FT-PCI-OSLi PCB would require redesigning, with 

a 64-bit PCI extension to the PCI edge connector and connections made from the 

relevant signals on this to the PLD.

8.2.4 Enhanced Virtual Channel Capabilities for the FT-SARNIC Interface

The CAM based Virtual Channel Message Store utilised in the FT-PCI-OSLi 

could be implemented in the FT-SARNIC to eliminate the message channel allocation 

problems encountered by the latter when handling three or more different incoming 

messages. The twin DMA channels and logic intensive message channel allocator 

could be greatly simplified, considerably reducing logic usage in the Communications 

Controller.

8.2.5 FT-SARNIC Asynchronous Interface

The data paths of the FT-SARNIC interface utilised an asynchronous interface in 

both directions of data flow between the message formatting modules and the link 

interface buffers, as Figure 49 in section 5.5.2.4 shows. The asynchronous interface 

was responsible for synchronising control signals for the link interface buffer read and
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write operations (that were generated using the sample clock) to the core clock. The 

asynchronous interface was housed in the packetiser and depacketiser modules for the 

transmitter and receiver channels, respectively. Implementation of this circuitry was 

complex, requiring large amounts of logic, which could be removed if the link 

interface buffers were implemented using dual-port RAM. This would permit the 

control signals to the write side of the link interface buffer to be synchronised to the 

processors core clock whilst the read side of the link interface buffer is synchronised 

to the sample clock. This effectively moves the clock domain boundary to the link 

interface buffer and has the benefit of requiring no extra logic, as the clock 

synchronisation is performed within the software-based dual-port RAM 

Megafunction.

Dual-port RAM was not available when the SARNIC was under development, as 

the Flex 10KA family did not support this feature. The Flex 10KE and Apex 20KE 

device families can implement such functions.

8.2.6 System On a Programmable Chip Solution

Further development could include the implementation of a complete SARNode 

on a single programmable device to achieve a fully integrated system on a chip 

solution (as noted in section 1.1). This would comprise of an ARM based processor 

core, an FT-SARNIC, an NTR-FTM08 and an FT-PCI-OSLi interface, subject to 

available logic resources. The Excalibur device [69] is one of the first solutions in 

attempting to achieve a balance between the advantages of speed and gate density of 

dedicated hardware, and the flexibility of programmable logic. The Excalibur PLD 

range feature an 200MHz ARM 922T based hard core CPU which occupies a small 

area of the PLD design, leaving the remainder for implementation of up to 38,400 LEs 

and 320k memoiy bits. The FT-PCI-OSLi utilised less than 8% of this total, and the 

FT-SARNIC used even less. Such a device is feasible, although the resources required 

by the router, which are substantial due to the high level of replication, may require a 

reduction from 8 to 6 channels, with current technology.

The Excalibur based ARM processor [69] utilises an AMBA (Advanced 

Microcontroller Bus Architecture) bus to interface to external components, raising the
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possibility of an SOC solution comprising a general purpose embedded processor and 

the FT-PCI-OSLi, with many of the host system interface features of the latter aided 

by the architecture of the Excalibur device. The AMBA bus possesses three buffers: 

address, read data and write data in each direction. The FT-PCI-OSLi had to multiplex 

these buffers together onto a bi-directional bus whereas the AMBA bus reads data 

directly from the buffers onto the bus. This avoids the bus multiplexing issues 

encountered during development of the FT-PCI-OSLi, reducing timing constraints 

and permitting set-up times to be met. AMBA compliant high performance buses 

enable the separation of communications from computational activities, one of the key 

principles of interprocessor communications.

The Excalibur devices would enable a FT-SARNode SOC solution to be 

achievable through the elimination of much of the interface functionality currently 

implemented using programmable logic. Functions such as the interrupt controller, 

UART, timer and debug logic are implemented in the embedded hardware processor 

'stripe* [69], freeing the logic elements used to implement these functions for other 

uses. Additionally, an internal SDRAM controller can address up to 512MBytes of 

memoiy at speeds up to 266MHz and an expansion bus can address 32MBytes of 

memory in up to 4 external devices. Implementing an FT-SARNode on an Excalibur 

device would permit the majority of the SARNode functionality to be implemented on 

the embedded ‘stripe’, leaving the PLD area free for the implementation of the 

communications controller and bus controller modules.
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Appendix B

Appendix A: FT-PCI-OSLi Interface Hardware Test Results 

All Tests performed with 33MHz PCI Clock and 64MHz Sample Clock 

Figure 55 : PCI Bus Access Efficiency

Payload FT-PCI-OSLi FT-PCI-OSLi PCI-OSLi PCI-OSLi FT-PCI-OSLi PCI-OSLi
(B ytes) Latency Cnt A c c e s s  Cnt L atency Cnt A c c e s s  Cnt E fficiency E fficiency

4 3 1 5 1 0.25 0.1666
8 3 2 5 2 0.4 0.2857
16 3 4 5 4 0.5714 0.4444
32 3 8 5 8 0.7272 0.6154
64 3 16 5 16 0.8421 0.7619
128 3 32 5 32 0.9142 0.8648
256 3 54 5 57 0.9473 0.9193
512 3 55 5 58 0.9482 0.9206
1024 3 55 5 58 0.9482 0.9206

* Note: Cnt = Count value for that respective counter

Figure 56 : FT-PCI-OSLi Message Duration

FT-PCI-OSLi FT-PCI-OSLi
(ALT-FF)

PCI-OSLi

M essa g e
Payload
(B ytes)

O bserved
A verage
M essa g e
Duration

(se c o n d s)

O bserved
A verage
M essa g e
Duration

(se c o n d s)

O bserved  A verage  
M essa g e  Duration 

(se c o n d s)

4 3.030E-06 3.030E-06 3.333E-06
8 4.030E-06 4.030E -06 4.788E-06
16 6.333E-06 6.333E -06 7.909E-06
32 1.045E-05 1.045E-05 1.406E-05
64 1.915E-05 1.915E-05 2.664E-05
128 3.621 E-05 3.621 E-05 5.127E-05
256 7 .1 18E-05 7.118E-05 1.008E-04
512 1.381E-04 1.381E-04 1.986E-04
1024 2.694E-04 2.694E-04 3.947E-04
2048 5.367E-04 5.367E-04 7.865E-04
4096 1.071E-03 1.071 E-03 1.570E-03
8192 2.141 E-03 2.141 E-03 3.139E-03
16384 4.279E-03 4.279E -03 6.272E-03
32768 8.555E-03 8.555E-03 1.254E-02
65536 1.711E-02 1.711E-02 2.508E-02

214
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Figure 57 : FT-PCI-OSLi Message Duration at Lower Message Payloads

FT-PCI-OSLi PCI-OSLi FT-PCI-OSLi
Message
Payload
(Bytes)

Observed
Average
Message
Duration

(seconds)

Observed
Average
Message
Duration

(seconds)

Theoretical 
Message Duration 

@ 42.67Mb/s 
(secs)

4 3.030E-06 3.333E-06 1.547E-06
8 4.030E-06 4.788E -06 2.578E-06
16 6.333E-06 7.909E-06 4.641 E-06
32 1.045E-05 1.406E-05 8.766E-06
64 1.915E-05 2.664E-05 1.702E-05
128 3.621 E-05 5.127E-05 3.352E-05
256 7.118E-05 1.008E-04 6.652E-05

Figure 58 : FT-PCI-OSLi Normalised Message Duration

FT-PCI-
OSLi

FT-PCI-
OSLi

FT-PCI-OSLi PCI-OSLi PCI-OSLi PCI-OSLi

Message
Payload
(Bytes)

Observed
Average
Message
Duration

(seconds)

Theoretical 
Message 

Duration @ 
42.67Mb/s 
(seconds)

Normalised 
Message 

Duration @ 
42.67Mb/s

Observed
Average
Message
Duration

(seconds)

Theoretical 
Message 

Duration @ 
42.67Mb/s 
(seconds)

Normalised 
Message 

Duration @ 
42.67Mb/s

4 3.03E-06 1.54E-06 1.734 3.33E-06 1.52E-06 1.795
8 4.03E-06 2.57E-06 1.450 4.78E-06 2.74E-06 1.556
16 6.33E-06 4.64E-06 1.308 7.90 E-06 5.18E-06 1.434
32 1.04 E-05 8.76E-06 1.166 1 .40E-05 1.00E-05 1.353
64 1.91 E-05 1.70 E-05 1.112 2.66E-05 1.98E-05 1.322
128 3.62E-05 3.35E-05 1.074 5.12E-05 3.93E-05 1.293
256 7.11 E-05 6.65E-05 1.066 1.00E-04 7.83E-05 1.282
512 1.38E-04 1.32E-04 1.041 1.98E-04 1.56E-04 1.263

1024 2.69E-04 2.64E-04 1.017 3.94 E-04 3.14 E-04 1.255
2048 5.36E-04 5.28E-04 1.015 7.86E-04 6.28E-04 1.250
4096 1.07E-03 1.05E-03 1.013 1.57E-03 1 .25E-03 1.248
8192 2.14E-03 2.13E-03 1.013 3.13E-03 2.51 E-03 1.247
16384 4.27E-03 4.22E-03 1.012 6.27E-03 5.03E-03 1.246
32768 8.55E-03 8.44E-03 1.012 1.25 E-02 1.00E-02 1.246
65536 1.71E-02 1.69E-02 1.012 2.51 E-02 2.01 E-02 1.246
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Figure 59 : FT-PCI-OSLi Percentge Data Bandwidth Utilisation

PCI-OSLi FT-PCI-OSLi FT-PCI-OSLi PCI-OSLi
M essa g e O bserved O bserved T heoretical Theoretical
Pay load P ercen tage P ercen tage P ercen tage P ercen tage
(B ytes) Maximum Maximum Maximum Maximum

E ffective Data E ffective Data E ffective Data E ffective Data
Bandwidth Bandwidth Bandwidth Bandwidth

4 22.50% 24.75% 48.48% 41.03%
8 31.33% 37.22% 58.18% 49.23%
16 37.93% 47.37% 64.65% 54.70%
32 42.67% 57.39% 68.45% 57.92%
64 45.05% 62.66% 70.52% 59.67%
128 46.81% 66.28% 71.61% 60.59%
256 47.61% 69.47% 72.16% 61.06%
512 48.34% 69.89% 72.44% 61.30%
1024 48.65% 71.27% 72.59% 61.42%
2048 48.82% 71.55% 72.66% 61.48%
4096 48.92% 71.69% 72.69% 61.51%
8192 48.93% 71.74% 72.71% 61.52%
16384 48.98% 71.80% 72.72% 61.53%
32768 48.99% 71.82% 72.72% 61.53%
65536 49.00% 71.83% 72.73% 61.54%

Figure 60 : FT-PCI-OSLi DMA Transmission Throughput

FT-PCI-
OSLi

FT-PCI-OSLi FT-PCI- 
OSLi (Alt)

FT-PCI-OSLi
(Alt)

PCI-OSLi PCI-OSLi

M essa g e
Payload
(B ytes)

DMA 
M essa g e  
T ransm it 
Duration 

(se c o n d s)

DMA
M essa g e
Transm it

Throughput
(B its/sec)

DMA
M essa g e
Transm it
Duration

(se c o n d s )

DMA
M essa g e
Transm it

Throughput
(B its/sec)

DMA
M essa g e
Transm it
Duration

(se c o n d s)

DMA
M essa g e
Transm it

Throughput
(B its/sec)

4 7.576E-07 5.280E+06 7.879E-07 5.077E+06 7.576E-07 5.280E+06
8 7.879E-07 1.015E+07 8.182E -07 9.778E+06 7.879E-07 1.015E+07
16 8.485E-07 1.886E+07 8.788E -07 1.821E+07 8.485E-07 1.886E+07
32 9.394E-07 3.406E+07 9.697E-07 3.300E+07 9.394E-07 3.406E+07
64 1.212E-06 5.280E+07 1.242E-06 5.151E+07 1.212E-06 5.280E+07
128 1.697E-06 7.543E+07 1.727E-06 7 .411E+07 1.667E-06 7.680E+07
256 4.791 E-05 5.343E+06 9.273E-06 2.761 E+07 9.606E-06 2.665E+07
1024 2.270E-04 4.510E+06 3.812E-05 2.686E+07 4.018E -05 2.548E+07
2048 5.058E-04 4.049E+06 2.491 E-04 8.221 E+06 3.789E-04 5.405E+06
4096 1.043E-03 3.928E+06 7.727E-04 5.301 E+06 1.159E-03 3.534E+06
16384 4.250E -03 3.855E+06 3.992E-03 4.104E+06 5.861 E-03 2.795E+06
32768 8.464E-03 3.872E+06 8.265E -03 3.965E+06 1.213E-02 2.701 E+06
65536 1.708E-02 3.837E+06 1.681 E-02 3.898E+06 2.467E-02 2.656E+06
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Figure 64 : FT-PCI-OSLi DMA Transmission Throughput For Alternate 
Latency Counter Values

Lat Cnt in 
WORDS

FT-PCI-OSLi 
(Lat Cnt = 96)

FT-PCI-OSLi 
(Lat Cnt = 64)

FT-PCI-OSLi 
(Lat Cnt = 32)

FT-PCI-OSLi 
(Lat Cnt = 24)

FT-PCI-OSLi 
(Lat Cnt = 16)

Message
Payload
(Bytes)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

4 5.077E+06 5.280E+06 5.280E+06 5.280E+06 5.280E+06
8 9.429E+06 1.015E+07 1.015E+07 1.015E+07 1.015E+07
16 1.650E+07 1.821 E+07 1.886E+07 1.703E+07 1.886E+07
32 2.933E+07 3.200E+07 3.200E+07 2.779E+07 1.920E+07
64 4.591 E+07 5.151 E+07 5.151 E+07 2.321 E+07 1.509E+07
128 6.813E+07 7.543E+07 9.103E+06 1.983E+07 1.170E+07
256 9.284E+07 5.320E+06 5.747E+06 5.029E+06 5.767E+06
1024 5.032E+06 4.571 E+06 4.080E +06 4.180E+06 4.037E+06
2048 4.475E+06 4.032E +06 4.040E +06 3.948E+06 3.941 E+06
4096 4.150E+06 3.923E+06 3.942E+06 3.891 E+06 3.891 E+06
16384 3.941 E+06 3.854E+06 3.864E+06 3.850E+06 3.847E+06
32768 3.906E+06 3.843E+06 3.845E+06 3.838E+06 3.837E+06
65536 3.891 E+06 3.837E+06 3.839E+06 3.835E+06 3.835E+06

Figure 65 : DMA Transmission Throughput Characteristics For Alternate 
Latency Counter Values For Modified Link Interface Buffer FT-PCI-OSLi

Lat Cnt 
in

WORDS

FT-PCI-OSLi 
(Lat Cnt = 96)

FT-PCI-OSLi 
(Lat Cnt = 64)

FT-PCI-OSLi 
(Lat Cnt = 32)

FT-PCI-OSLi 
(Lat Cnt = 24)

FT-PCI-OSLi 
(Lat Cnt = 16)

Message
Payload
(Bytes)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

DMA Message 
Transmission 
Throughput 

(Bits/sec)

4 5.077E+06 5.077E+06 5.077E+06 5.077E+06 5.077E+06
8 9.778E+06 9.778E+06 9.778E+06 9.778E+06 9.778E+06
16 1.650E+07 1.821 E+07 1.886E+07 1.886E+07 1.886E+07
32 2.854E+07 3.300E+07 3.300E+07 3.300E+07 2.514E+07
64 4.693E +07 5.151E+07 5.151 E+07 3.462E+07 2.893E+07
128 8.620E+07 7.411 E+07 2.797E +07 3.520E+07 3.129E+07
256 8.893E+07 2.761 E+07 2.797E+07 2.514E+07 2.463E+07

1024 2.671 E+07 2.686E+07 2.747E+07 2.501 E+07 2.501 E+07
2048 9.436E+06 8.221 E+06 8.238E+06 7.969E+06 7.770E+06
4096 5.611 E+06 5.301 E+06 5.203E+06 5.223E+06 5.174E+06
16384 4.198E +06 4.104E+06 4.111 E+06 4.097E+06 4.101 E+06
32768 4.031 E+06 3.965E+06 3.968E+06 3.960E+06 3.960E+06
65536 3.952E+06 3.898E+06 3.898E+06 3.895E+06 3.895E+06

* Note: Lat Cnt = Initial Value held in the Latency Counter on generation of PCI transaction request
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Figure 67 : FT-PCI-OSLi DMA Reception Throughput

FT-PCI-
OSLi

FT-PCI-OSLi FT-PCI- 
OSLi (Ait)

FT-PCI-OSLi
(Alt)

PCI-OSLi PCI-OSLi

Message
Payload
(Bytes)

DMA
Reception
Duration

(seconds)

DMA
Message

Reception
Throughput

(Bits/sec)

DMA
Reception
Duration

(seconds)

DMA
Message

Reception
Throughput

(Bits/sec)

DMA
Reception
Duration

(seconds)

DMA
Message

Reception
Throughput

(Bits/sec)

4 1.818E-06 2.200E +06 1.848E-06 2.164E+06 2.848E-06 1.404E+06
8 3.091 E-06 2.588E +06 3.091 E-06 2.588E+06 4.000E -06 2.000E+06
16 5.424E-06 2.950E +06 5.424E-06 2.950E+06 7.424E-06 2.155E+06
32 9.333E-06 3.429E+06 9.394E-06 3.406E+06 1.327E-05 2.411 E+06
64 1.821 E-05 3.514E+06 1.821 E-05 3.514E+06 2.552E-05 2.508E+06
128 3.539E-05 3.616E+06 3.539E-05 3.616E+06 4.970E-05 2.576E+06
256 7.009E-05 3.652E+06 6.982E-05 3.667E+06 9.988E-05 2.563E+06
512 1.377E-04 3.717E +06 1.379E-04 3.713E+06 1.988E-04 2.576E+06
1024 2.692E-04 3.803E+06 2.676E-04 3.827E+06 3 .928E-04 2.607E+06
2048 5 .355E-04 3.825E+06 5.343E -04 3.833E+06 7.842E-04 2.611 E+06
4096 1.072E-03 3.821 E+06 1.069E-03 3.832E+06 1.569E-03 2.611 E+06
8192 2.144E-03 3.822E+06 2.142E-03 3.832E+06 3.138E-03 2.611 E+06
16384 4.277E-03 3.830E+06 4.276E -03 3.832E+06 6.271 E-03 2.613E+06
32768 8.554E-03 3.831 E+06 8.553E-03 3.831 E+06 1.254E-02 2.613E+06
65536 1.711 E-02 3.831 E+06 1.711 E-02 3.831 E+06 2.508E-02 2.613E+06

Figure 71 : FT-SARNIC Post-synthesis Simulation Message Duration

Message
Payload
(Bytes)

SARNIC
Message 

Duration @ 
20Mb/s 
(secs)

FT-SARNIC 
Message 

Duration @ 
20Mb/s 
(secs)

SARNIC 
Message 

Duration @ 
39Mb/s 
(secs)

FT-SARNIC 
Message 

Duration @ 
39Mb/s 
(secs)

4 5.284E-06 4.467E -06 2.728E-06 2.352E-06
8 8.075E-06 6.642E-06 4.152E -06 3.473E-06
16 1.366E-05 1.105E-05 7.016E-06 5.729E-06
32 2.481 E-05 1.981 E-05 1.273E-05 1.021 E-05
64 4.712E-05 3.733E-05 2.415E-05 1.918E-05
128 9.173E-05 7.239E-05 4.700E -05 3.714E-05
256 1.810E-04 1.425E-04 9.270E-05 7.304E-05
512 3.616E-04 2.828E -04 1.852E-04 1.448E-04
1024 7.227E-04 5.632E -04 3.700E-04 2 .885E-04
2048 1.445E-03 1.124E-03 7.399E-04 5.757E-04
4096 2.890E-03 2.246E -03 1.480E-03 1.150E-03
8192 5.779E-03 4.490E -03 2.959E -03 2.299E-03
16384 1.154 E-02 8.977E-03 5.918E-03 4.597E-03
32768 2.311 E-02 1.795E-02 1.184E-02 9.193E-03
65536 4.623E-02 3.590E-02 2.367E-02 1.838E-02
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Figure 72 : FT-SARNIC Message Duration at Lower Message Payloads

Message
Payload
(Bytes)

SARNIC 
Message 

Duration @ 
20Mb/s 
(secs)

FT-SARNIC 
Message 

Duration @ 
20Mb/s 
(secs)

SARNIC 
Message 

Duration @  
39Mb/s 
(secs)

FT-SARNIC 
Message 

Duration @  
39Mb/s 
(secs)

FT-S 
Theoretical 

Message 
Duration @  

20 Mb/s

FT-S 
Theoretical 

Message 
Duration @ 

39Mb/s

4 5.284E-06 4.467E -06 2.728E-06 2.352E-06 3.850E-06 1.974E-06
8 8.075E-06 6.642E-06 4.152E -06 3.473E-06 6.050E-06 3.102E-06
16 1.366E-05 1.105E-05 7.016E-06 5.729E-06 1.045E-05 5.359E-06
32 2.481 E-05 1.981 E-05 1.273E-05 1.021 E-05 1.925E-05 9.871 E-06
64 4.712E-05 3.733E-05 2.415E-05 1.918E-05 3.685E-05 1.890E-05

Figure 73 : FT-SARNIC Bi-directional Data Throughput

SARNIC FT-SARNIC FT-SARNIC FT-SARNIC SARNIC
Payload
(Bytes)

Observed
Maximum

Data
Throughput

(20Mb/s)
(Bits/sec)

Observed
Maximum

Data
Throughput

(20Mb/s)
(Bits/sec)

Theoretical
Maximum

Data
Throughput

(20Mb/s)
(Bits/sec)

Observed
Maximum

Data
Throughput

(39Mb/s)
(Bits/sec)

Observed
Maximum

Data
Throughput

(39Mb/s)
(Bits/sec)

4 6.814E+06 7.164E+06 8.345E+06 1.361 E+07 1.173E+07
8 8.916E+06 9.636E+06 1.062E+07 1.843E+07 1.542E+07

16 1.054E+07 1.158E+07 1.230E+07 2.234E+07 1.825E+07
32 1.161 E+07 1.292E+07 1.335E+07 2.508E+07 2.011 E+07
64 1.222E+07 1.372E+07 1.395E+07 2.669E+07 2.120E+07
128 1.256E+07 1.415E+07 1.427E+07 2.757E+07 2.179E+07
256 1.273E+07 1.437E+07 1.443E+07 2.804E+07 2.209E+07
512 1.274E+07 1.449E+07 1.452E+07 2.828E+07 2.212E+07
1024 1.275E+07 1.454E+07 1.456E+07 2.840E+07 2.214E +07
2048 1.276E+0 7 1.457E+07 1.458E+07 2.846E+07 2.214E+07
4096 1.276E+07 1.459E+07 1.459E+07 2.849E+07 2.215E +07
8192 1.276E+07 1.460E+07 1.460E+07 2.851 E+07 2.215E +07
16384 1.278E+07 1.460E+07 1.460E+07 2.851 E+07 2.215E +07
32768 1.276E+07 1.460E+07 1.460E+07 2.852E+07 2.215E +07
65536 1.276E+07 1.460E+07 1.460E+07 2.852E+07 2.215E +07
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Appendix B: PCI Signal Descriptions for the FT-PCI-OSLi Interface

In the following table, the type definitions are from the viewpoint of the PCI Interface of the FT- 
PCI-OSLi. The words ‘Master’ and ‘Target’ mean the PCI Interface works as a PCI master and target 
respectively. Other terms in the type definitions are described below:

• Input -  a standard input-only signal
• Output -  a standard active driver
• Tri-state -  a bi-directional signal, becoming high-impedance when disabled.
• Sustained Tri-state -  an active low tri-state signal that is driven by only one PCI device at a 

time. The device driving the signal low must drive it high for at least one clock cycle before
releasing the signal (go to tri-state). No other device is allowed to drive the signal sooner than
one clock after it has been released. The signal is pulled-up to sustain the inactive state until 
another device drives it.

• Open-drain -  a signal that can be shared by multiple devices through wire-OR circuitry. The 
signal is pulled-up to sustain the inactive state until another device drives it.

The polarity in the table represents the condition when the signal is considered active. ‘0’ and ‘1’ 
means standard logic ‘0’ and ‘1’ respectively while ‘N.A.’ means not applicable.

Name Type Polarity Description

nC/BE[3..0] Tri-state 

Master: Output 

Target: Input

N.A. for 
command;

‘0’ for 
byte-enable

Command/Byte Enable bus (4-bit). The command 
and byte-enable signals are time-multiplexed onto 
the bus. During the address phase and data phases, 
this bus indicates command and byte-enable 
signals respectively.

AD[31..0] Tri-state N.A, Address/Data bus (32-bit). Each PCI data transfer 
consists of an address phase followed by one or 
more data phases. The address and data are 
time-multiplexed onto the bus during an address 
phase and data phases, respectively.

nFRAME Sustained Tri-state 

Master: Output 

Target: Input

‘0’ Cycle Frame. The signal is driven by the PCI 
Interface to indicate the beginning and duration of 
a bus operation. nFRAME is first asserted during 
the address phase, at the same time when 
command and address are presented on their 
respective busses. nFRAME will be asserted for 
all data phases except for the last.

nDEVSEL Sustained Tri-state 

Master: Input 

Target: Output

‘0’ Device Select. The PCI Interface will assert this 
signal when acting as a target and has decoded its 
own address the AD[31:0].

nIRDY Sustained Tri-state 

Master: Output 

Target: Input

‘0’ Initiator Ready. When asserted, the signal 
indicates that the PCI Interface, acting as a master 
now, is ready to complete a data phase.

nTRDY Sustained Tri-state 

Master: Input 

Target: Output

‘0’ Target Ready. The signal indicates that PCI 
Interface, now acting as a target, is ready to 
complete a data phase. The data on the AD[31:0] 
bus is valid when both nIRDY and nTRDY are 
asserted during the data phase.

nSTOP Sustained Tri-state ‘0’ Stop. This signal is asserted by the PCI Interface,
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Name Type Polarity Description

Master: Input 

Target: Output

now a target, during a data phase to terminate a 
data transfer.

PAR Tri-State N.A. Even Parity. The signal is generated in a way that 
the number of l ’s across the AD[31:0], the 
nC/BE[3:0] and the PAR is maintained at even 
number.

nSERR Open-drain ‘O’ System Error. The PCI Interface uses this signal to 
indicate parity error during an address phase.

nPERR Sustained Tri-state ‘O’ Parity Error. This signal is asserted when the PCI 
Interface detects a mismatch between its internal 
generated parity bit and the PAR signal during for 
a given data phase.

nINTA Open-drain ‘0’ Interrupt A. This signal can be asserted 
asynchronous to the CLK. The PCI Interface uses 
the signal to make interrupt requests to its host 
system.

IDSEL Input ‘1’ Initialisation Device Select. This signal is used as 
a chip-select line during configuration-read or 
configuration-write operations.

nGNT Input ‘O’ Grant. The PCI Interface has control of the bus 
when this signal is active.

nREQ Output ‘O’ Request. The PCI Interface will assert this signal 
when it wants to initiate a transfer.

CLK Input N.A. PCI clock. It runs at 33 MHz, providing reference 

for all other PCI Interface signals except of the 

reset (nRST) and the interrupt (nINTA).

nRST Input ‘0’ Reset. This signal can be asserted asynchronously 

to the PCI clock. When active, the PCI Interface is 

initialized, all PCI output signals are driven into 

tri-state and open-drain signals float.
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Appendix C: Registers of the FT-PCI-OSLi

The following gives descriptions for the FT-PCI-OSLi memory-mapped, 32-bit registers. The base of 

the register mapped to a memory region is termed as BASE, with a value of 0 in 

hexadecimal (expressed as 0x00).

Receiver Control/Status Register (Location: BASE)

Bit
State after 

reset
Description

0 'O'

LABEL: dma_wr_nrd (read-only)

This bit indicates the direction of current PCI transfer. It is meaningless when 

DMA is currently not active (bit 1).

'O' - Device is reading data from memory 

T  - Device is writing data to memory

1 '0'

LABEL: dma active (read-only)

This bit indicates if the device is actively transferring data utilising DMA. 

'O' - DMA is not active 

'1' - DMA is active

2 'O' Unused. Hardwired to 'O'.

3 '0'

LABEL: rx_dma_en (read/write)

This bit controls if the receiver is enabled for DMA transfer. 

'O' - DMA is disabled for the receiver 

T  - DMA for the receiver is enabled

4 '1'

LABEL: rx_less_data_det_en (read/write)

This bit enables the device to detect if the data received is less than expected. 

'O' - disable less data detection 

T  - enable less data detection

5 '1'

LABEL: rx_more_data_det_en (read/write)

This bit enables the device to detect if the data received is more than expected. 

'O' - disable more data detection 

'1' - enable more data detection

6 'O'

LABEL: autoflush_enable (read/write)

This bit is used to flush the extra bytes of a packet stored in the RX Link 

Interface FIFO automatically when the payload of that packet is more than
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Bit
State after 

reset
Description

expected.

'O' - disable auto-flush 

T  - enable auto-flush

7 'O'

LABEL: manual_flush_rxff (write-only)

This bit is to manually flush the extra bytes of a packet stored in the RX Link 

Interface FIFO when data received is more than expected. This bit will reset 

itself. This bit is neglected if bit 6 is enabled.

'O' - no action 

'1 '- flush the FIFO

8 'O'

LABEL: clear_more_data_err (write-only)

The user can set this bit to clear the more data error after it has been reported. 

This bit will reset itself.

'O' - no action

'1' - clear more data error

9 'O'

LABEL: manual_rx_threshold (write-only)

This bit is only used for debugging purpose. When it is set and the receiving 

channel has been enabled for DMA transfer, the receiving channel will start 

requesting for bus ownership. All data in the DMA FIFO will be transferred into 

the system memory later. This bit will revert to 'O' automatically.

'O' - no action

'1' - assert the threshold

[31:10] 'O' All bits are hardwired to 'O'

Transmitter Control/Status Register (Location: BASE + 0x04)

Bit
State after 

reset
Description

0 'O'

LABEL: dma_wr_nrd (read-only)

This bit indicates the direction of current PCI transfer. It is meaningless when 

DMA is currently not active (bit 1).

'O' - Device is reading data from memory 

T  - Device is writing data to memory
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Bit
State after 

reset
Description i

1 'O'

LABEL: m_access (read-only)

This bit indicates if the device is actively transferring data utilising DMA. 

'O’ - DMA is not active 

T' - DMA is active

2 'O’ Unused. Hardwired to 'O'.

3 'O'

LABEL: tx_dma_en (read/write)

This bit controls if the transmitter is enabled for DMA transfer. 

'O' - DMA is disabled for the transmitter 

T  - DMA for the transmitter is enabled

4 ’O'

LABEL: pci_rd_cmmd_sel (read/write)

This bit allows the user to choose between MEMORYJREAD and 

MEMORY_READ_MULTIPLE commands when reading data from the 

system memory. This bit is utilised to find out the performance difference of 

the two commands.

'O' - using MEMORY READ 

T  - using MEMORY READ MULTIPLE

[31:5] 'O' All bits are hardwired to 'O'

Receiver Link Interface FIFO and DMA FIFO Status Register (Location: BASE + 0x08)

Bit
State after 

reset
Description

[5:0] 'O'
LABEL: RX DMA FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

[7:6] 'O' All bits are hardwired to 'O'

[8] '1'

LABEL: RX DMA FIFO empty (read-only)

'O' - The FIFO is not empty 

'1' - The FIFO is empty

[9] 'O'

LABEL: RX DMA FIFO foil (read-only) 

'O' - The FIFO is not foil
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Bit
State after, 

reset
Description

T -  The FIFO is full

[15:10] 'O' All bits are hardwired to 'O'

[26:16] 'O'

LABEL: RX Link Interface FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

[27] 'O' Unused. Hardwired to 'O'.

[28] T

LABEL: RX Link Interface FIFO empty (read-only)

'O' - The FIFO is not empty 

'1' - The FIFO is empty

[29] ’O’

LABEL: RX Link Interface FIFO full (read-only)

'0' - The FIFO is not full 

'1' - The FIFO is full

[31:30] 'O' All bits are hardwired to 'O'

Transmitter Link Interface FIFO and DMA FIFO Status Register (Location: BASE + OxOC)

Bit
State after 

reset
Description

[5:0] 'O'

LABEL: TX DMA FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.

[7:6] 'O'
All bits are hardwired to '0'

[8] '1'

LABEL: TX DMA FIFO empty (read-only)

'O' - The FIFO is not empty 

'1' - The FIFO is empty

[9] 'O'

LABEL: TX DMA FIFO full (read-only)

'O' - The FIFO is not full 

'1 '- The FIFO is full

[15:10] '0' All bits are hardwired to ’0’

[25:16] '0'

LABEL: TX Link Interface FIFO used entries (read-only)

These bits represent how many spaces of the FIFO are currently used.
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Bit
State after 

reset
Description

[27:26] 'O' All bits are hardwired to 'O'

[28] '1'

LABEL: TX Link Interface FIFO empty (read-only)

'O' - The FIFO is not empty 

'1' - The FIFO is empty

[29] 'O’

LABEL: TX Link Interface FIFO full (read-only)

'O' - The FIFO is not full 

T '-T h e  FIFO is full

31:30] ’O' All bits are hardwired to 'O'

Reset Register (Location: BASE + 0x10)

Bit
State after 

reset
Description

0 'O'

LABEL: system_rst (write-only)

Setting this bit resets the FT-PCI-OSLi device to its initial state. The bit 

clears itself automatically.

'O' - no action 

T  - reset the device

1 'O'

LABEL: rx_rst (write-only)

Setting this bit resets the FT-PCI-OSLi transmitter to its initial state. The bit 

clears itself automatically.

'O' - no action 

T  - reset the transmitter

2 'O'

LABEL: tx_rst (write-only)

Setting this bit resets the FT-PCI-OSLi receiver to its initial state. The bit 

resets itself automatically.

'0' - no action 

T  - reset the receiver

3 'O'

LABEL: router_rst (write-only)

Setting this bit resets the NTR-FTM08 to its initial state. The bit clears itself 

automatically.

’O’ - no action
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Bit
State after 

reset
Description

•1' - reset ICRC416

4 ’O’

LABEL: rxtmr rst (write-only)

Setting this bit resets the FT-PCI-OSLi receiver hardware timer to its initial 

state. The bit clears itself automatically.

'O' - no action

'1' - reset the receiver hardware timer

5 'O'

LABEL: txtmr_rst (write-only)

Setting this bit resets the FT-PCI-OSLi transmitter hardware timer to its 

initial state. The bit clears itself automatically.

'O' - no action

'1* -  reset the transmitter hardware timer

[31:6] 'O' All bits are hardwired to 'O'

FT-PCI-OSLi Hardware Timer Register (Location: BASE + 0x14)

Bit
State after 

reset
Description

[15:0] 'O'

LABEL: tx_tmr (read-only)

When the timer is started, its value increases by 1 for every PCI clock. This 

means it has a resolution of 1/(PCI clock) = 30 ns for 33 MHz clock. This 

timer is only used for measuring hardware performance.

[31:16] 'O'

LABEL: rx tmr (read-only)

When the timer is started, its value increases by 1 for every PCI clock. This 

means it has a resolution of 1/(PCI clock) = 30 ns for 33 MHz clock. This 

timer is only used for measuring hardware performance.

Interrupt Enable Register (Location: BASE + 0x18)

Bit
State after 

reset
Description

0 '0'

LABEL: rx_new_hdr_inten0 (read/write)

If this bit is enabled, an interrupt will be generated when a new packet is
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Bit
State after 

reset
Description

received. This is done by comparing the received header with the previous 

value. In case of the payload of the received packet is less or more than 

expected, the subsequent packet received will be treated as a new one, 

regardless of its message header.

'O' - disable 

T' - enable

1 'O'

LABEL: rx_mssg_end_intenO (read/write)

If this bit is enabled, an interrupt will be generated when a whole message 

has been received and transferred into the memory.

'O' - disable 

'I ' - enable

2 'O'

LABEL: rx_less_data_intenO (read/write)

If this bit is enabled and bit 4 in Receiver Control/Status Register is set, an 

interrupt will be generated when less data was received.

'O' - disable 

T  - enable

3 'O'

LABEL: rx_more_data_intenO (read/write)

If this bit is enabled and bit 5 in Receiver Control/Status Register is set, an 

interrupt will be generated when more data was received.

'0' - disable 

'1 '- enable

4 ’O'

LABEL: txff_afull_intenO (read/write)

If this bit is enabled, an interrupt will be generated when the TX Link 

Interface FIFO is nearly full (less than 64 bytes of space available).

'O' - disable 

'1' - enable

5 'O'

LABEL: tx_mssg_end_intenO (read/write)

If this bit is enabled, an interrupt will be generated when a message has been 

completely transmitted to the TX Link Interface FIFO.

’O' - disable 

'! ' - enable

6 'O' Unused. Hardwired to 'O'.

7 'O' LABEL: rx new hdr intenl (read/write) (RESERVED for future use)
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Bit
State after 

reset
Description

If this bit is enabled, an interrupt will be generated when a new packet is 

received. This is done by comparing the received header with the previous 

value. In case of the payload of the received packet is less or more than 

expected, the subsequent packet received will be treated as a new one, 

regardless of its message header.

'O' - disable 

T  -  enable

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

8 'O'

LABEL: rx_mssg_end_intenl (read/write) (RESERVED for future use)

If this bit is enabled, an interrupt will be generated when a whole message 

has been received and transferred into the memory.

'O' - disable 

'1' — enable

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

9 'O'

LABEL: rx_less_data_intenl (read/write) (RESERVED for future use)

If  this bit is enabled and bit 4 in Receiver Control/Status Register is set, an 

interrupt will be generated when less data was received.

'O' - disable 

'1 ' - enable

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

10 'O'

LABEL: rx_more_data_intenl (read/write) (RESERVED for future use)

If this bit is enabled and bit 5 in Receiver Control/Status Register is set, an 

interrupt will be generated when more data was received.

'O' - disable 

'1' — enable

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)
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Bit
State after 

reset
Description

11 'O'

LABEL: txff_afull_intenl (read/write) (RESERVED for future use)

If this bit is enabled, an interrupt will be generated when the OS TX FIFO is 

nearly full (less than 64 bytes of space available).

'O' - disable 

T -  enable

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

12 'O’

LABEL: tx_mssg_end_intenl (read/write) (RESERVED for future use)

If this bit is enabled, an interrupt will be generated when a message has been 

completely transmitted to the OS TX FIFO.

'O' - disable 

T  — enable

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

[29:13] 'O' All bits are hardwired to 'O'

30 'O'

LABEL: err_int_enablel (read/write) 

Reserved. Currently the bit is unused.

31 'O'

LABEL: int_enablel (read/write)

When this bit is cleared, all previous interrupt enable states are overwritten. 

No interrupt can be generated.

'O' - disable interrupt generation 

'I ' - enable interrupt generation

Interrupt Pending Register (Location: BASE + Ox 1C)

Bit
State after 

reset
Description

0 'O'

LABEL: rx_new_hdr_intpdO (read/write)

This bit indicates if the interrupt request after receiving a new message 

header is pending. A T  must be written to the bit to reset its status to 'O'.
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Bit
State after 

reset
Description

'O' - no interrupt pending 

'1' - interrupt pending

1 'O'

LABEL: rx_mssg_end_intpdO (read/write)

This bit indicates if the interrupt request for the end of receiver message is 

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

T  - interrupt pending

2 'O'

LABEL: rx_less_data_intpdO (read/write)

This bit indicates if the interrupt request for less data received is pending. A 

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

3 ’O’

LABEL: rx_more_data__intpdO (read/write)

This bit indicates if the interrupt request for more data received is pending. A 

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

4 'O’

LABEL: txff_afull_intpdO (read/write)

This bit indicates if the interrupt request for OS TX FIFO almost full is 

pending. A '1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

5 'O'

LABEL: tx_mssg_end_intpdO (read/write)

This bit indicates if  the interrupt request for the end of transmitter message is 

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

6 'O' Unused. Hardwired to 'O'.

7 'O'

LABEL: rx_new_hdr_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request after receiving a new message 

header is pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending
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Bit
State after 

reset
Description

'1' - interrupt pending

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

8 'O'

LABEL: rx_mssg_end_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for the end of receiver message is 

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

9 ’O’

LABEL: rx_less_data_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for less data received is pending. A 

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

10 'O'

LABEL: rx_more_data_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for more data received is pending. A 

'1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

11 'O’

LABEL: txff_afull_intpdl (read/write) (RESERVED for future use)

This bit indicates if  the interrupt request for OS TX FIFO almost full is 

pending. A T ' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

'1' - interrupt pending

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

12 'O'

LABEL: tx_mssg_end_intpdl (read/write) (RESERVED for future use)

This bit indicates if the interrupt request for the end of transmitter message is
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Bit
State after 

reset
Description

pending. A '1' must be written to the bit to reset its status to 'O'.

'O' - no interrupt pending 

T  - interrupt pending

(Reserved for use with second link interface channel -  currently duplicate of 

the channel 0 equivalent of this signal)

13 'O’ These bits are unused and hardwired to 'O'.

14 'O'

LABEL: mstr_abrt_intpd (read-only)

This bit indicates if the master has aborted a data transfer. It can only be reset 

by writing '1' to the appropriate bit in the PCI Configuration Register.

'O' - no interrupt pending 

'1' - interrupt pending

15 'O'

LABEL: parity_err_intpd (read-only)

This bit indicates if the parity error has occurred during data phases. It can 

only be reset by writing '1' to the appropriate bit in the PCI Configuration 

Register.

'O' - no interrupt pending 

T  - interrupt pending

16 'O'

LABEL: err_int_pending (read-only) 

Reserved. Currently the bit is unused.

[31:17] 'O' All bits are hardwired to 'O'

Receiver Address Register (Location: BASE + 0x24)

Bit
State after 

reset
Description

[1:0] 'O' These bits have no meaning and are hardwired to 'O'.

[31:2] 'O'

LABEL: rx address (read/write)

These bits contain the address of current memory location the device is 

pointing for memory-write operations. Its value increases by 1 after each 

successful data transfer.

Writes to ALL message class base addresses are made via this register, with 

the class determined by bits 25:23 of the Command Register (BASE + 0x3C)
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Receiver Assigned Message Header Register (Location: BASE + 0x28)

Bit
State after 

reset
Description

[7:0] 'O'

LABEL: Message Header 1 (read/write)

This byte represents the 1st expected received message header.

[15:8] 'O'

LABEL: Message Header 2 (read/write)

This byte represents the 2nd expected received message header.

Unused in this implementation of the FT-PCI-OSLi and hardwired to 'O'.

[23:16] 'O'

LABEL: Message Header 3 (read/write)

This byte represents the 3rd expected received message header.

Unused in this implementation of the FT-PCI-OSLi and hardwired to 'O'.

[31:24] 'O'

LABEL: Message Header 4 (read/write)

This byte represents the 4th expected received message header.

Unused in this implementation of the FT-PCI-OSLi and hardwired to 'O'.

Transmitter Message Header Register (Location: BASE + 0x2C)

Bit
State after 

reset
Description

[7:0] 'O'

LABEL: Message Header 1 (read/write) 

This byte represents the 1st message header.

[15:8] 'O'

LABEL: Message Header 2 (read/write) 

This byte represents the 2nd message header.

[23:16] 'O'

LABEL: Message Header 3 (read/write) 

This byte represents the 3rd message header.

[31:24] 'O'

LABEL: Message Header 4 (read/write) 

This byte represents the 4th message header.

Transmitter Address Register (Location: BASE + 0x30)
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Bit
State after 

reset
Description

[1:0] 'O’ These bits are unused and hardwired to 'O'.

[31:2] 'O’

LABEL: tx_address (read/write)

These bits contain the address of current memory location the device is 

pointing. Its value increases by 1 after each successful data transfer.

Transmitter Message Length Register (Location: BASE + 0x34)

Bit
State after 

reset
Description

[19:0] 'O'

LABEL: tx_length (read/write)

These bits contain the length for current DMA transfer. Its value decreases 

by 4 after each successful data transfer.

[31:20] 'O' These bits are unused and hardwired to 'O'.

Receiver Message Length Register (Location: BASE + 0x38)

Bit
State after 

reset
Description

[19:0] 'O'

LABEL: rx_length (read/write)

These bits contain the length for current DMA transfer. Its value decreases 

by 4 after each successful data transfer.

[31:20] 'O' These bits are unused, hardwired to 'O' and masked by the Status Register.

Command Register (Location: BASE + 0x3C)

Bit
State after 

reset
Description

[18:0] 'O' These bits are unused and hardwired to 'O'.

19 '0'

LABEL: lnkdormant (read/write)

Setting this bit configures the communications link as being dormant after 

periods of no link activity.

20 ’0’ LABEL: rx_cmmd_20 (read/write)
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Bit
State after 

reset
Description

Class 3 Address Register Select

Writing to the rx_addr_reg (Location: BASE + 0x24) when this bit is 

asserted writes to the Class 3 Address Register

21 'O'

LABEL: rx_cmmd_21 (read/write)

Class 2 Address Register Select

Writing to the rx_addr_reg (Location: BASE + 0x24) when this bit is 

asserted writes to the Class 2 Address Register

22 'O'

LABEL: rx_cmmd_22 (read/write)

Class 1 Address Register Select

Writing to the rx_addr_reg (Location: BASE + 0x24) when this bit is 

asserted writes to the Class 1 Address Register

23 'O'

LABEL: rx_cmmd_23 (read/write)

Class 3 Buffer Clear for next message

Setting this bit after a class 3 message transfer clears the class 3 message 

acknowledgement flag required to receive another class 3 message

24 'O'

LABEL: rx_cmmd_24 (read/write)

Class 2 Buffer Clear for next message

Setting this bit after a class 2 message transfer clears the class 2 message 

acknowledgement flag required to receive another class 2 message

25 'O'

LABEL: rx_cmmd_25 (read/write)

Class 1 Buffer Clear for next message

Setting this bit after a class 1 message transfer clears the class 1 message 

acknowledgement flag required to receive another class 1 message

26 'O'

LABEL: rx_cmmd_26 (read/write)

Class 2 Length Preset

Writing to the receiver header register (Location: BASE + 0x24) when this 

bit is asserted automatically classifies the message as belonging to class 2

27 'O'

LABEL: rx_cmmd_27 (read/write)

Class 1 Length Preset

Writing to the receiver header register (Location: BASE + 0x24) when this 

bit is asserted automatically classifies the message as belonging to class 1

28 ’O’

LABEL: clr_cam (read/write)

Delete all message IDs from the CAM

Asserting this bit removes all message IDs from the CAM

29 'O'

LABEL: rx_osff_autoflush (read/write)

Receiver Link Interface Buffer Autoflush Select

Setting this bit flushes a message form the receiver link interface buffer
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Bit
State after 

reset
Description

30 'O’

LABEL: rx_cmmd_30 (read/write)

Message ID Probe Mode Select

Writing a message ID to the Receiver Header Register (Location: BASE + 

0x28) when this bit is asserted probes the contents of the CAM to determine 

if that message ID is stored in the CAM and its location. CAM contents are 

NOT deleted (including class 3 message IDs)

31 'O'

LABEL: rx_cmmd_31 (read/write)

Message ID Delete Mode Select

Writing a CAM location to the Receiver Length Register (Location: BASE + 

0x38) when this bit is asserted deletes the contents of this CAM location

Class 1 Length Register (Location: BASE + 0x40)

Bit
State after 

reset
Description

[23:0] ’O’

LABEL: class l_lgth (read/write)

Class 1 Length Preset Value

This value is the maximum allowable message length for a Class 1 message

[31:24] 'O' These bits are unused and hardwired to ’O'.

Class 2 Length Register (Location: BASE + 0x44)

Bit
State after 

reset
Description

[23:0] 'O'

LABEL: class2_lgth (read/write)

Class 2 Length Preset Value

This value is the maximum allowable message length for a Class 2 message

[31:24] ’O' These bits are unused and hardwired to 'O'.

Status Register READ ONLY (Location: BASE + 0x38 -  Upper section of Receiver Message Length 

Register )

Bit
State after 

reset
Description

[19:0] 'O' These bits are unused, hardwaired to ‘O’ and masked by the Receiver
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Bit
State after 

reset
Description

Message Length Register

[22:20] ‘O’

LABEL: Message Transfer Complete Flags

These flags were set for classes 3 to 1 respectively to acknowledge message 

transfer to memory. They were cleared following acknowledgement from the 

PC that the message had been handled and the memory allocation for that 

class could be overwritten.

[23] ‘O’ Reserved for future use.

[26:24] ‘O’

LABEL: Class Match

Asserted following a successful write of an expected message ID to the 

CAM denoting which class it belonged to. Asserted until a successful write 

to a different class forced it to change. Bits 26 to 24 were set for classes 3 to 

1 respectively.

[27] ‘O’
LABEL: No Match

Set if the received header did not match any stored in the CAM. Asserted 

until a match was found, whether for that header or for others.

[29:28] ‘O’

LABEL: Incoming Message Length Mux

Debug lines used to multiplex the message lengths following a received 

header match. 00B -  Class 1, 01B -  Class 2, 10 B -  Class 3 (location 1), 11 B -  

Class 3 (location 2).

[30] ‘O’
LABEL: CAM Write Failed

Set following an unsuccessful expected header write to the CAM due to that 

particular class being full. Asserted until success occurred.

[31] ’O'

LABEL: CAM Write Successful

Set following a successful expected header write to the CAM. Asserted until 

failure occurred.
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Appendix D: FT-SARNet Control Token Definitions

This appendix details the control tokens that have been specified to date, for use 

with the FT-SARNet. Control tokens are denoted by an ID bit of zero. The eight data 

bits determine the nature of the control token. All unspecified combinations are 

available for future use. A note for each token is included specifying whether the 

token reaches the end nodes (FT-PCI-OSLi and FT-SARNIC) and if so, how far into 
the design it progresses.

Token Name Coding 
[Type, LSB...MSB1 Token Function Token 

Stripped at:
CONREQ 000000000 Connection Request Link Interface

XON 001100000 Permit Transmission Link Interface
XOFF 001000000 Inhibit Transmission Link Interface
EOM 011000000 End of Message Depacketiser
EOP 010000000 End of Packet Depacketiser

BEOP 010100000 Bad End of Packet Depacketiser
DLPRB 000100000 Deadlock Probe Router
DLCLR 000110000 Deadlock Path Clear Router
DLMOV 000111000 Deadlock Data Movement Router
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Appendix E: FT-PCI-OSLi Configuration Registers Contents

This appendix details the contents of the configuration registers of the FT-PCI-OSLi 

as defined by the PCI specification version 2.1.

Base
Address
Offset

Reg No Contents

0x00 0 Device ID[31:16], Vendor IDr 15:01
0x04 1 Status[31:16], Command[ 15:0]
0x08 2 ClassCoder31:81, Revision ID[7:01

OxOC 3 BIST[31:24], Header Type[23:16], Latency 
Timer[15:8], Cache Line Size[7:0]

0x10 4 Base Address Register 0[31:0] (this design decodes 1 
MBytes memory locations)

0x14 5 Base Address Register 1 (not implemented)
0x18 6 Base Address Register 2 (not implemented)
OxlC 7 Base Address Register 3 (not implemented)
0x20 8 Base Address Register 4 (not implemented)
0x24 9 Base Address Register 5 (not implemented)
0x28 10 CardBus CIS Pointer^ 1:0] (not implemented)
0x2C 11 Sub-system 10(31:16], Sub-system Vendor ID[15:0]

0x30 12 Expansion ROM Base Address Register (not 
implemented)

0x34 13 [Reserved]
0x38 14 [Reserved]

0x3 C 15 Maximum Latency[31:24], Minimum Grant[23:16], 
Interrupt Pin[15:8], Interrupt Line[7:0]
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Appendix F: Specification for PCI/RS485 Interface board

Design Overview

The interface board is to have standard PCI edge connection at the bottom, with 4 off serial 

connections to the left of the board, mounting on the metal back-plate. Interface to the PCI bus is to be 

handled by a suitable PLD, for which settings need to be stored in compatible configuration device(s). 

PLD settings should be transferred using the JTAG ISP(In-System-Program) connection. Interface to 

the serial connections is made by RS485 balanced line transceiver circuits. The diagram below shows 

the basic building blocks. These blocks are described in the following sections.

RS485 JTAG Altera
ERC2Driver HEADER

RS485 nCASC
DCLK 
DATA 
OE 
nCS 
nINIT CONFIG

Link in/out C Receiver DCLK 
DATAO 

nSTATUS 
CONF_DON 

nCONFIG

(RJ45) RS485
Driver

Link in/out 1
(RJ45) Receiver INPUTS/

OUTPUTSRS485
Link in/out Driver Diode

(RJ45) RS485 Altera

20K20
Receiver DCLK

DATA
OELink m /out RS485 FLAGS

(RJ45) Dnver
RS485
Receiver

AD[0..31j (PCI CTRL)RS485 A ltera

EPC2
2x Driver

RS485
2x Receiv<

PCI Edge

RESET_OUT 
ANALYSE_OUT 
ERRO RJN  
RESET IN

P ow er supp ly  links Only 1 s lo t for 5V system

System diagram for the PCI-RS485 interface board

Interface to the PCI bus

Board format is to be 32-bit PCI bus connection on a standard short card implementing the 5V system 

(single connector key furthest from the back plate).

Pin-out for PCI edge connector on 5V / 32bit system

Pin Signal Name Description

B1 -12V (not used)

A1 TRST# (PCI JTA G -notused)
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Pin Signal Name Description

B2 TCK (PCI JTAG -  not used)

A2 + 12V + 12V Supply to D-connect only

B3,B15,B17,A12,B12,

A13,B13,A18,B22,A24,

B28,A30,B34,A35,A37,

B38,A42,B46,A48,A56,

B57

GND

Ground-plane connection 

Decoupling capacitance > 0.0luF per Vcc pin, 

equally distributed

B49 M66EN Connect to GND / (Only relevant for 66MHz)

A3 TMS (PCI JTAG -  not used)

B4 TDO (PCI JTAG -  not used -  link to A4/TDI)

A4 TDI (PCI JTAG -  not used -  link to B4/TDO)

B5, A5 ,B 6, A8 ,B 61 , A61, 

B62,A62
+5V +5V for RS485 drivers

A6 INTA# PCI interrupt for PLD

B7 INTB# (not used)

A7 INTC# (not used)

B8 INTD# (not used)

B9 PRSNT1# Link -  GND or NC for power requirement

A9,B10,A11,B14,A14,

A19
(RESERVED) (not used) -  These pins should NOT be commoned

A10,A16,B19,B59,A59 5 V J /0 (not used) / universal board PLD power only

B ll PRSNT2# Link -  GND or NC for power requirement

A15 RST#

B16 CLK PCI clock output to PLD

A17 GNT#

B18 REQ#

A58,B58,A57,B56,A55, 

B55,A54,B53,B52,A49, 

B48,A47,B47,A46,B45, 

A44,A32,B32,A31,B30, 

A29,B29,A28,B27,A25, 

B24, A23 ,B23, A22 ,B21, 

A20,B20

[AD0..3I] 32 bit PCI bus connections

A21,B25,A27,B31,A33, 

B3 6, A3 9,B41 ,B43, A45, 

A53,B54

3V3 3V3 power-plane connection
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Pin Signal Name Description

B26 C/BE3#

A26 IDSEL

B33 C/BE2#

A34 FRAME#

B35 IRDY#

A3 6 TRDY#

B37 DEVSEL#

A3 8 STOP#

B39 LOCK#

B40 PERR#

A40 SDONE#

A41 SBO#

B42 SERR#

A43 PAR#

B44 C/BE1#

A52 C/BEO#

B60 ACK64# 64bit format only (not used)

A60 REQ64# 64bit format only (not used)

Maximum power requirement for the board is to be set by links between PRSNT1#/PRSNT2# pins and 

GND. Once known these short cut jumpers could be replaced with solder links.

Link settings for power requirement

PRSNT1# PRSNT2# Expansion Configuration

OPEN OPEN No board present

GND OPEN Expansion board present, 25W maximum

OPEN GND Expansion board present, 15W maximum

GND GND Expansion board present, 7.5W maximum

PCI Control through PLD
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Interface to the PCI bus is to be handled by the Altera programmable logic device (PLD) -  ‘Apex 

20K200’, powered from 3.3Vdc, in PQFP package. The PCI signalling is at 3V3 level, whereas 

internal voltage is lV8dc, therefore step-down on board is needed to supply these pins (VCCINT)

The PLD is not 5V tolerant, so any 5V logic will need converting before connection to PLD pins 

(Serial transceivers run at 5V, additionally reference White Paper A-WP-APEX5V-01.02 from Altera 

regarding the PCI connections).

FT-PCI-OSLi pin connections assigned to an EP20K200EQC240-1

Pin Signal Name Description

1,5,14,27,32,39,52,60,

90,122,127,140,144,145,

159,168,176,179,210

VCCINT Connects to 1 V8dc derived from +3V3 

pins on edge connect

12,45,67,97,120,148,177,

199,229

VCCIO Connects to +3V3 pins on edge connect

142 V CCCLKOUT (not used)

6,15,19,26,28,38,42,51,56,

78,89,108,128,132,137,

139,146,155,162,165,167,

175,188,211,218,240

GND Dedicated ground pin, must be connected 

to GND

9,10,11,13,16,17,18,20,21,2

2,

23,24,25,35,36,37,40,41,43,

44,47,48,49,50,53,57,58,54,

55,59,72,73,106,107,129,

130,131,133,134,135,136,

138,143,156,157,160,161,

163,164,166,169,178,180,

181,185,187,189,190,191,

192,193,194,195,196,197,

198,200,201,202,203,204,

205,206,207,221,222,223,

224,225,226,227,228,230,

231,232,233,234,236,237,

238,239

GND* Unused I/O pins. These pins can either be 

left unconnected or connected to GND.

Connecting these pins to GND will 

improve the device’s immunity to noise.

34,154,209,212 GND+ Unused inputs. These pins should be 

connected to GND

147,158 GNDINT Dedicated ground pins, which must be 

connected to GND
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Pin Signal Name Description

141 GND_CLKOUT (not used)

125,124,123,121,119,118,

117,116,114,113,112,111,

110,109,105,104,84,83,82,

81,80,79,77,76,71,70,69,68,

66,65,64,63

AD[0..31] 32 bit PCI bus connections

29,30 MSEL0,1 Connect to GND

31 CLK PCI clock input from edge connect

33 CONFIG#

46 RST#

61 GNT#

62 REQ#

74 C/BE3#

75 IDSEL

85 IRDY_0#

86 TMS JTAG mode select

87 TCK JTAG clock signal

88 IRDY J#

91 TR D Y I#

92 STATUS#

93 CONF_DONE

94 TRDY 0#

95 C/BE2#

96 FRAME#

98 DEVSEL#

99 STOP#

100 PERR#

101 SERR#

102 PAR

103 C/BE1#

115 C/BEO#

126 INTA# PCI interrupt

149 TDI JTAG data to device

150 CE#

151 O SC LK Connects to 30MHz clock for links

152 DCLK Configuration address clock

153 DATAO Configuration data input
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Pin Signal Name Description

208 TDO JTAG data from device

213 CEO#

214 TRST

2 RESETOUT

3 ANALYSEOUT

4 ERROR J N

7 R ESETIN

170 O SL IN K IN 1

171 O S L IN K O U T  1

172 LINK_SPEED_SEL 1

173 OS_LINK_IN2

174 O SL IN K O U T 2

182 LINK_SPEED_SEL2

215 OS_LINK_IN3

216 OS_LINK_OUT3

235 LINK_SPEED_SEL3

217 OSJLINKJN4

219 0  S_LINK_OUT 4

220 LINK_SPEED_SEL4

Configuration of the PLD

As the chosen PLD is SRAM based, configuration data must be re-loaded each time the system 

initialises, or when new configuration data is needed. As the configuration data for the 20K200 is too 

large for one storage device, it is necessary to cascade two Altera configuration devices -  ‘EPC2’, both 

powered from 3.3Vdc (in 20pin PLCC format). These are cascaded using the nCASC pin of device 

one connecting to nCS of device two, providing the necessary handshaking.

The JTAG ‘initiate Configuration’ feature is supported by the insertion of a diode (with threshold 

voltage Vt less than or equal to 0.7V) between the 20KE #Config pin and the EPC2 #INIT_CONF pin, 

as shown in the system diagram on pagel. The diode effectively makes the #INIT_CONF pin open- 

drain, and it will only be able to drive low or tri-state, [reference 20KE errata sheet M-ES-APEX-01.1].

When powered up and nCS pin driven low, device one controls configuration of the PLD. After 

device one has finished sending data, its nCASC pin is driven low, which being as it is connected to 

nCS on device two, causes device two to send the remaining configuration data. Device one clocks 

device two until configuration is complete. Once configuration is complete and the nCS pin on device 

one is driven high by PLD’s CONF_DONE pin, device one continues to clock an additional 16 clock
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cycles to initialise the PLD. Device one then goes into zero-power (idle) state. If nCS on the master 

EPC2 is driven high before all configuration data is transferred, the master EPC2 device drives the 

PLD nSTATUS pin low, indicating a configuration error.

Pin connections for the Altera EPC2 configuration devices (20 pin PLCC package)

Pin Signal Name Description

1 TDO JTAG data output

2 DATA Serial data output

3 TCK JTAG clock

4 DCLK Clock output from master EPC2 

Clock output to slave EPC2 

Drives low on configuration end

5 VCCSEL Mode select for VCC (connect to VCC 

if powering from 3V3, or connect to 

ground if powering from 5 V)

6,7,15,16,17 (N.C.) (no connection)

8 OE/RST# Low resets address counter 

High enables the counter

9 c s# Chip select

10 GND Ground pin (decouple with 0.2uF)

11 TDI JTAG data input

12 CASC# Cascade select output

13 INIT_CONF# Allows JTAG INIT_CONF instruction 

to initiate configuration

14 VPPSEL Mode select for VPP. Programming 

voltage set to 3V3 by connecting this 

pin to VCC or set to 5V by connecting 

to GND

18 VPP Programming power pin, normally tied 

to VCC

19 TMS JTAG mode select

20 VCC Power supply, +3V3
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‘Technical’ Index

No Ref Name No Ref Name
1 190 A Route 51 167 Eliminate
2 239 A6 52 165 Energy
3 145 Aberration 53 25 Entity
4 50 Above The 54 58 Escape
5 I Abstract 55 57 Evasion
6 16 Aerospace 56 27 Exclusive
7 21 After 57 91 Exit
8 28 Aid 58 167 Extra Over
9 29 Al 59 94 Extraction
10 66 Analysis 60 120 Fresh
11 38 And Others 61 245 Grounded
12 99 Andover 62 199 Hardcore
13 48 Another Route 63 200 High Performance
14 50 Another Time 64 31 Impede
15 86 Apex 65 46 In Excess
16 163 Approach 66 15 In Retrospect
17 72 Approaching 67 25 Inception
18 11 Artificial 68 145 Inclusion
19 50 Assembled 69 167 Incursion
20 59 Auto 70 181 Injection
21 74 Autonomy 71 65 Insertion
22 V Avoidance 72 66 Integrity
23 17 Bottleneck 73 1 Introduction
24 42 Bypass 74 II Isolation
25 88 Cascade 75 240 Jumpers
26 6 Catalyst 76 245 L’lndex
27 165 Clit 77 53 Midway
28 176 Command 78 19 Oblique
29 25 Connect 4 79 5 Original Route
30 88 Creation 80 6 Parallel
31 1 Critical 81 1 Relative Ease
32 134 Crystal 82 37 Responsibility
33 58 Daisy Chain 83 240 Short Cut
34 58 Deflection 84 5 Simple Solution
35 91 Desire 85 86 Substitute
36 99 Destination 86 III Thanks
37 43 Detour 87 188 The Boom
38 172 Deviation 88 245 The Chain
39 192 Differential 89 1 The Critic
40 28 Direct Route 90 26 The First One
41 23 Division of Labour 91 64 The Medium
42 77 Domination 92 69 The Message
43 101 Double 93 167 The Ramp
44 lit Drag 94 6 The Spur
45 128 Drought 95 54 The Start
46 X Dynamic 96 158 The Steps
47 54 EStar 97 163 Tight Fit
48 54 Edge 98 55 Trigger
49 48 Ejection 99 145 Toward
50 165 Electron 100 83 Via Media
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JTAG ISP connection

The PLD settings should be transferred using the JTAG ISP (In-System-Program) connection as 

outlined in IEEE Std 1149.1 specification. This connects to a suitable interface cable such as Altera 

MasterBlaster for download of configuration data and also in-circuit debugging from a remote 

computer. Since the PLD and configuration devices are powered at 3V3, programming is also done at 

this level by connection of VCC and VIO JTAG pins to the +3V3 power plane. Function described in 

previous section.

Pin connections for JTAG lOway header

Pin Signal Name Description

1 TCK Clock Signal

2 GND Signal grounded

3 TDO Data from device

4 VCC Power Supply

5 TMS JTAG mode select

6 VIO Reference voltage for programmer output driver

7 - No connection

8 - No connection

9 TDI Data to device

10 GND Signal ground

Interface to the serial links

Interface to the four serial links is via four independently controlled RS485 balanced line 

transceiver circuits. These links need to be capable of data transfer up to 20mbps. Circuits to be based 

around the Analog Devices part no.: ADM1485 powered from 5Vde (split power-plane required). As 

these transceivers do not have separate driver and receiver sections, then a separate device will be 

necessary to perform these functions (i.e.: 8x ADM1485 necessary to facilitate the four bi-directional 

serial links).
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Status flag inputs/outputs do not require the high speed switching allowed by the ADM 1485 and as 

such a more compact device is available to interface these signals, namely National Semiconductors’ 

DS34C86T/DS34C87T receiver/driver combination which allow 4 signals per device, saving board 

space. These are also powered from 5Vdc. Status flags to be incoiporated are: [RESETOUT / 

ANALYSE_OUT / ERROR_IN / RESETJN]. Both the ADM1485 and DS34C8xT employ 5V 

signalling and must therefore be converted to 3V3 signals before connection to the PLD link 

inputs/outputs, using potential dividers.

Pin connections for ADM1485 Differential line transceiver

Pin Signal Name Description

1 RO Receiver output

2 RE# Receiver enable (Active low)

3 DE Driver enable (Active high)

4 DI Driver input

5 GND Ground

6 A

Non-inverting receiver input A / 

Driver output A

7 B

Inverting receiver input B / 

Driver output B

8 VCC Power supply, +5 V

Pin connections for DS34C86TN Differential line receiver

Pin Signal Name Description

4,12 EN Enable A+B, C+D

2,6,10,14 +IN A,B,C,D non-inverting inputs

1,7,9,15 -IN A,B,C,D inverting inputs

3,5,11,13 OUT A,B,C,D outputs

16 VCC +5V power supply

8 GND Ground connection

Pin connections for DS34C87TN Differential line driver

Pin Signal Name Description

4,12 EN Enable A+B, C+D
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2,6,10,14 +OUT A,B,C,D non-inverting outputs

3,5,11,13 -OUT A,B,C,D inverting outputs

1,7,9,15 IN A,B,C,D inputs

16 VCC +5V power supply

8 GND Ground connection

External connections to the serial inputs/outputs are to be made on a right-angle D-type plug 

connector mounted on the metal back plate. The +12V auxiliary output will be dual powered from 

either the PCI edge-connect (with diode protection) or on-board disc-drive type power connect input 

(for higher power usage).

Pin connections for D37P connector

Pin Signal Name Description

1 LINK1 TX+ Link outputl (non-inverted)

20 LINK1 TX- Link outputl (inverted)

2 LINK2 TX+ Link output2 (non-inverted)

21 LINK2 TX- Link output2 (inverted)

3 LINK3 TX+ Link output3 (non-inverted)

22 LINK3 TX- Link output3 (inverted)

4 LINK4 TX+ Link output4 (non-inverted)

23 LINK4 TX- Link output4 (inverted)

5 RESET OUT+ Reset output (non-inverted)

24 RESET OUT- Reset output (inverted)

6 ANALYSE OUT+ Analyse output (non-inverted)

25 ANALYSE OUT- Analyse output (inverted)

7 LINK1 RX+ Linkl input (non-inverted)

26 LINK1 RX- Linkl input (inverted)

8 LINK2 RX+ Link2 input (non-inverted)

27 LINK2 RX- Link2 input (inverted)

9 LINK3 RX+ Link3 input (non-inverted)

28 LINK3 RX- Link3 input (inverted)

10 LINK4 RX+ Link4 input (non-inverted)

29 LINK4 RX- Link4 input (inverted)

11 ERROR IN+ Error input (non-inverted)

30 ERROR IN Error input (inverted)

12 RESET IN+ Reset input (non-inverted)

31 RESET IN- Reset input (inverted)
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18,19 GND Ground connection

36,37 +12V + 12V output allowing 500mA
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Appendix G: FT-PCI-OSLi Power Consumption Calculation

This appendix details the power consumption calculations, the result of which was 

noted in section 6.6.

The IcCjnt standby current for an Apex 20K200E 240 pin plastic quad flat pack 

(PQFP) device with a 1.8V internal voltage, for reduced power consumption, was 
specified at 10mA. P ^  (standby) was therefore 18mW.

The report file generated after synthesis specified that the FT-PCI-OSLi possessed 

1435 flip-flops clocked at a frequency of 33MHz and 185 flip-flops clocked at 

30MHz. These parameters gave internal IccINT values of 30.74mA and 20.07mA 

respectively. The internal power consumption was 55.34mW and 36.13mW 

respectively, based on a 1.8V internal voltage.

A total of 3109 Logic Elements (LEs) were implemented in the FT-PCI-OSLi. 

The total implemented in each clock domain was not specified so they were all 

calculated for a 33MHz clock frequency, to give a faster switching speed and thus 

greater power consumption. The report specified the average fan-out to be 3.90, and 

assumptions were made to determine the total number of LEs with a Cany Chain. The 
report file indicated that the design possessed:

10 carry chains between 0 and 2 LEs long,

21 cany chains between 3 and 5 LEs long,

10 carry chains between 6 and 8 LEs long,

1 carry chain between 9 and 11 LEs long,

3 carry chains between 15 and 17 LEs long,

2 carry chains between 18 and 20 LEs long and

9 cany chains between 30 and 32 LEs long.

The average length of the chains was determined, giving;

10 carry chains 1 LE long,

21 carry chains 4 LEs long,

10 carry chains 7 LEs long,
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1 carry chains 10 LEs long,

3 carry chains 16 LEs long,

2 carry chains 19 LEs long and 

9 carry chains 31 LEs long.

This gave a total of 539 LEs with Carry Chains. The literature specified an 

assumed average LE toggle of 12.5%, implying that only this percentage of outputs 

would change state at any one time, on average. The power calculator determined the 

internal power consumption to be 44.37mW and Ic c ^  of 24.65mA.

The FT-PCI-OSLi contained 83 Embedded System Blocks (ESBs), all driven by 

the 33MHz PCI clock. All ESBs outputs were set for the Turbo mode of operation, 

increasing speed at a cost of increased power consumption. The ESB outputs had an 

assumed average specified toggle of 12.5%. The power calculator determined the 

IccINT and PM values to be 24.04mA and 43.27mW respectively.

The FT-PCI-OSLi possessed 46 output and bi-directional pins synchronised at 

33MHz and one output pin driven at 30MHz (the communications link output). All 

outputs operated at the 3.3V PCI standard. All outputs were specified with an 

assumed average toggle of 12.5%. These outputs consumed IccI0 current values of 

3.13mA and 0.06mA respectively, and had a PI0 power consumption of 10.33mW and 
0.2mW respectively.
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