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Abstract

This thesis documents a research project on communication interfaces for a
distributed embedded multiprocessor system. This resulted in the development of a novel

embedded distributed multiprocessor system on a single chip.

The initial feasibility studies involved a review of the relevant embedded
distributed multiprocessor systems and their inter-processor communication. The
research aimed to expand the potential of a multiprocessor communication system on a
single chip. System designs were adapted to achieve more efficient Direct Memory

Access (DMA) and reduced processor intervention.

A development board with advanced FPGA technology is used to implement the
designed modules. The single chip solution consists of two processing nodes and an ‘off-
the-shelf” hardware message router. Each processing node includes: a NIOS II processor,
a memory module, and a network interface controller. The network interface controller,
which interconnects the processor and the embedded routing network, was developed

using VHDL.

All basic routing features and functions of this novel VHDL system model have
been proven and verified through hardware testing and simulation. The system was
synthesised and implemented into a single FPGA chip as a System-on-Programmable-
Chip (SOPC). A test program was written to test the functionality of the interface. The
research resulted in a fully operational prototype. The features of the system are

discussed and compared and contrasted with the state-of-the-art research literature.

The router and NIOS II processors with their interface form the building blocks of a
robust, embedded network on the single chip platform. The router interconnects all the
processing nodes and allows them to operate in the same network simultaneously, thus
increasing system flexibility and applications. The in-built differential output feature on

the FPGA chip enables the system to be cascaded to more processing nodes off-chip.
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1 Introduction

1.1 Introduction

The principle of ‘Parallel Processing’ is to achieve a solution to a problem, which is
too complicated or time consuming for a single processor, by task division to multiple
processorsl. In a parallel processing system, a problem is first broken down into many
sub-problems. All the sub-problems will then be solved through task distribution to the

interconnected processors in the same network, which operate concurrently.

With increasing requirements of higher computation power, there will always be
computationally intensive problems that are beyond the capability of a uniprocessor
system?2 3. Parallel processing becomes a way of overcoming the limitation of traditional
computer architectures. Early generations of parallel machines, such as the CRAY-1
supercomputer4, were used in highly numerical intensive research and scientific areas.
They used custom built, high speed circuits and utilized array processing as their

underlying architecture.

The rapid development of parallel processing has been motivated by the demand of
high computational power in current applications and the advance of Very Large Scale
Integration (VLSI) technology. Microprocessors have become more powerful, cheaper
and smaller in size, therefore a basic- parallel system can be constructed by
interconnecting multiple processorsS utilising the advantages such as: low cost, high

performance and ‘off the shelf’ market availability.

A multiprocessor System-on-a-Chip (SoC) is the latest incarnation of VLSI
technology6. A ‘SoC’ is an integrated circuit that implements the necessary functions of
an electronic system, including microprocessor cores. The components that are

implemented on a SoC vary with the application. The system may consist of memory
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blocks, processors, interface busses, and other custom digital functions. The architecture

of a system is more application specific than general purpose.

SoC devices are implemented in many products ranging from daily consumer
applications to high-end industrial systems. For example: cellular phopes for signal
processing and user’s telephony applications7; networking for data handling from modern
communication equipment; video games for real-time game action renderingo. The
applications often use parallel processing to handle real time applications. The use of
general purpose computers in such systems would often be unsuitable9. General puipose

machines would not perform as well for reliable real-time control and would not match

the data rates for high-end video 10.

One of the requirements of many real-time applications is to ‘embed’ the processor
within a larger system so that the ‘embedded system’ can interact and respond within that
system. Embedded systems usually require low power consumption and a small physical
size to be used in applications such as: power plants, automobile control, home networks
and in monitoring and control operations B Large scale parallel systems, such as
supercomputers, are too large, consume too much power and are too expensive to be

embedded for use in many real-time commercial applications.

The Parallel Processing Group in Nottingham Trent University (NTU) was initially
involved in research based on the Transputers 13but following the demise of Transputer
has focused on other specialised custom embedded processors. One of the main
achievements of the research group was the development of series of hardware message
routing devices to improve network efficiency and fault tolerance for distributed
embedded multiprocessor systems14 15. The intention of this research project was to build
on previous research and utilise the new SoC technology to investigate an embedded
distributed multiprocessor prototype platform, interconnected by routers, on a single

programmable chip.
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1.2 The Transputer

The Transputer was a 32 bit bus microprocessor designed by INMOS (now SGS-
Thomson Microelectronic) to be used as a processing building block in parallel
processing systemsl6 17. Due to its Reduced Instruction Set Computer (RISC) like
architecture, state-of-the-art performance (at that time), high speed serial links and low
power consumption, it was used in the area of high performance embedded parallel
computing systems. And because of that, it was able to support real-time programming 16.
The Transputer consisted of internal memory, an external memory control interface,

Input/Output (I/0O) devices, and four bi-directional serial communication links.

The Transputer had four high speed serial links to communicate with other
Transputers (or other devices): called OS Links5. It was based partly on Hoare’s
Communicating Sequential Processes (CSP) model proposal that each processing node is
connected via physical point-to-point connections 18 . The Over Sampling (OS)
communication links between four neighbouring processing nodes were full duplex bi-

directional serial communication links, illustrated by the example in Figure 1-1.

T m Tfa’psei' TrarfBwter Trai&Ikifer
Prooasiptg Nod© Process lag Nod® Praeesiijf Nod® Processing Node

TratfesIwter Traidjnlter
Procssdiijg Hods F~focesalag Nc
Trarfspter Trarapiter TradeStfter Trampisr

Prooesaiih Node Process ily Node ProeeBEiijg Node Process mg Node

Transputer Transputer Transputer
Processing Node Processing Node Processing Node

Figure 1-1: Transputer Network.
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This mesh network topology was very efficient when only four or less processing
nodes were utilised because communication was almost immediate between adjacent
processing nodes. When utilising more than four Transputers, messages had to be
forwarded via at least one intermediate processing node. This message forwarding not
only reduced the efficiency of resource distribution, it also introduced latency and
increased the message overhead to the message handling tasks (required to forward the
message to other processors). As a result, processor performance was reduced, due to the
increase of communication loading (as the processor needed to handle forwarding the
messages from other processing nodes as well processing its own messages19). The ‘Store
and Forward’ methodology of this point-to-point connection produced a message delay
each time the message was forwarded. The message delay produced was proportional to
the message size and the distance that the message had to travel20. This resulted in a
variation of time in communication between processors, based on these factors. A large

inter-processor latency reduced the overall performance of the Transputer system.

A reason for the success of Transputer was its built-in communication controller on
the same chip. This provided efficient point-to-point message passing between adjacent
Transputersgl. However, this used up silicon space that could be used to implement useful
functionality to the processor. Therefore extra engineering design effort was required to
build dedicated interfaces for external functions. With the Application Specified
Integrated Circuit (ASIC) technology available at that time, upgrading the processor or

the network interface was time consuming and costly.

1.3 Research Background and Objectives

The Nottingham Trent University Parallel Processing Research Group has been
investigating and designing inter-processor communication devices, for embedded
parallel processing systems, for many years. The multiprocessor system research began

with the implementation of Transputer systems22 23 24 25 26.
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The design and fabrication of a commercial 16-channel dynamic hardware routing
switch, the ICR C416 device 27 28129 30 31, overcame some of the limitations of the
Transputer system. The ICR C416 offloaded much of the communication tasks from the
Transputer System by providing direct point-to-point connections to up to 16 Transputers.
In addition to that, this device could be cascaded to support scalable larger systems. The
use of the ICR C416 in the Transputer systems, successfully demonstrated the efficiency
of a routing device as a simple solution to medium scale, low cost, high performance
embedded inter-processor communicationsD. This device could be implemented as the
backbone of an embedded distributed multiprocessor system, as shown in the example in
Figure 1-2, where each PN block is a processing node. It can also be connected to a PC

via a custom Peripheral Component Interface (PCI) 33 34.

PC

K

PN

Router Router
Further
Extension

Figure 1-2: Transputer Network with ICR C416 Routers.

The rapid increase of computational power has prompted the need to upgrade the
processors used in the ICR C416 network in order to keep pace with other embedded

systems. Since the demise of the Transputer, attention switched to the design of routing
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networks for other processors, while looking to maintain the successful features of the
Transputer network (such as a router based serial communication network with low
message latency and minimal processor intervention; i.e. minimise communication

overheads).

The research group then extended the research attention to incorporating a state-of-
the-art RISC processor into a parallel network. The StrongARM SA-110
microprocessor was chosen (as a replacement for the Transputer) because it was a low
cost, low power, easily available processor that offered state-of-the-art performance. The
32 bit SA-110 RISC processor could support a core bus and a data bus of up to 233 MHz
and 66 MHz respectively. The SA-110 had 32 kBytes of internal cache memory and
128 bytes of write buffer, and it also supported fast interrupt handling. The on-chip cache
and write buffer increased the average instruction execution speed and reduced the
average memory bandwidth usage of the processor; this enabled the memory bus to be

accessed for data transfer to and from a custom network interface device.

The data transfer between the memory module and the network controller was done
during the time when the processor was not accessing memory. This technique is called
Direct Memory Access (DM A)36. This ‘cycle stealing’ is a special hardware arrangement
utilising the free memory bus cycle to read from or write to memory very quickly without

incurring overhead in accessing the data bus.

The research group eventually developed the StrongARM Router Network
Interface Controller (SARNIC)3738394041 to perform the communication interface role
between the chosen processor and the router network. The SARNIC was developed and
implemented on a Programmable Logic Device (PLD). The PLD consists of a bus-based
SARNIC, a memory interface controller and a processor interface. The PLD was then
mounted onto a Printed Circuit Board (PCB), interconnecting the memory module and
the StrongARM processor, forming a processing node. The processing node could then

be used as a building block in a scalable distributed parallel processing system,
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interconnected by ICR C416 routers. In other words, the Transputer in the previous

system has been directly replaced by the processing node (PN) as shown in Figure 1-3.

NIC

PC ccT

M
emory Processing Node

VV V

PN (" pn

C416 ICRC416
Further
Extension

PN

Figure 1-3: Block Diagram of a processing node and the distributed parallel processing Network.

The NTR-FTMO08 router was the most recent routing device developed by the
NTU research group. It was adapted from the ICR C416 Router design with enhanced
fault tolerance, alongside support of a new adapted OS-Link protocol. It was integrated
with basic fault detection and isolation methodology. Removing faults from the system
will free resources held by faulty messages and would often allow communications (in a

network with a fault) to be re-established automatically42.

1.4 The New Distributed Multiprocessing System

The key aim of this project was to build a low cost, medium scale, high
performance embedded distribute parallel processing network on a single chip. The target

was not to construct a parallel processing system to compete with high-end and expensive
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supercomputer, but to build a powerful single chip multiprocessor parallel platform for

embedded systems.

The following are the objectives of this research project:

s To investigate the relevant router architectures used in the literature and
especially in the NTU research group and then apply the routing device as the
backbone of a scalable interconnect network, to provide non-blocking point-to-
point communication for processing nodes.

s To build a multiprocessor network prototype platform on a System-On-
Programmable-Chip. Implementing the multiprocessor embedded system onto a
single chip to obtain optimised performance.

s To conduct performance analysis on the prototype platform. Design and run tests

on the platform to ensure functionality and performance of the system.

At the initial stage, the NTR-FTMO08 routing switch was chosen as the
communication backbone for the network. The use of the NTR-FTMO08 routing switch
was to build on the advantage in the existing system. The serial communication routing
device used would offer the advantage of reduced wiring and pin connection, and

complexity in constructing a distributed system.

The design work started with the investigation and study of the design of recent
Fault Tolerant PCI Link (FT-PCI-Li) designs with NTR-FTMO08 router on an
APEK20K43 chip. The designs were later optimised; in particular by reducing the
processor’s intervention when passing a message and/or the message header capacity was

increased.
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ARMO22T
External
Processor Interface

Memory

OS-Link

Figure 1-4: StrongARM Processing Node.

The design work then moved to the implementation of single chip solution for the
StrongARM processing node. The Excalibur chip 4 was selected to develop the
StrongARM processing node. The Excalibur is the combination of ARM 922T™ 4532 bit
RISC processor system and programmable logic on a single device. The network
interface controller, external memory interface controller, and a routing device were
developed in the programmable logic of the chip, as shown in Figure 1-4. A
multiprocessor network can be achieved by interconnecting the processing nodes, via the
routing device implemented on each Excalibur chip, on a PCB. Therefore this board,

called the XA1, was developed.

The introduction of the NIOS II processord6 and Stratix II 47family FPGA made the
group realise that there were potential benefits implementing a distributed embedded
multiprocessor system on this new technology. NIOS II is a 32 bit softcore RISC
processor (as compared to the ARM 922T on an Excalibur, which is a hardcore (built-in)
processor). A key benefit was that more than one NIOS II processor can be implemented
on the same Stratix II chip, where there is only one ARM 922T processor available in the

Excalibur. NIOS II also offered advantages in terms of flexibility and resource saving,
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while the Stratix II chip offered higher densities of logic elements and on-chip memory
compared to the Excalibur. The features of the NIOS II and Stratix II have given an
opportunity for System-on-Chip (SoC) prototyping and more space for further expansion

and development.

Stratix 1

NIOSIT  Timer NIOSI  Timer
Network Network

Memory Interface Memory Interface
Controller Controller

NIOST  Timer NIOS I Timer
Network Network

Memory Interface Memory Interface
Controller Controller

w Vv

Network Extension

Figure 1-5: Distributed embedded multiprocessor system on Stratix II chip.

As shown in Figure 1-5, a basic distributed embedded multiprocessor SoC solution
has been designed, tested and verified, with a novel Avalon Bus based OS-Link network
interface controller. The OS-Link Network Interface Controller, which was AMBA bus
interface, was modified to Avalon Bus interface so that it can be implemented into NIOS
I processing node. Each processing node consists of a NIOS II processor, on-chip
memory, timer, and network interface controller. All the processing nodes will be
interconnected in a single chip by an OS-Link based router. The distributed embedded

multiprocessors system was prototyped on the NIOS II development kit.
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All the design was described using VLSI Hardware Description Language48

(VHDL) and partitioned into a modular, top-down hierarchy. VHDL was the chosen
language for design because it is an ANSI standard language used to describe hardware
components and systems and the research group was very experienced with its use.
VHDL is very powerful for digital system design, the written model is easy to modify
and verify functionality, and it supports concurrent design. The language itself is publicly
available, human and machine readable49. It is a recognised design entry standard,
therefore the designed model is transferable between chip vendors and between different

target technologies.

The PC based Quartus II design software50 was used throughout the design cycle. It
was provided by Altera5l and also included the design synthesis tool and post-synthesis
Stratix II chip programming tool52. Quartus II can give timing analysis reports to indicate
whether the timing requirements are met before implementation of the design (onto the
FPGA, or hardware in the future). The NIOS II Integrated Development Environment
software53 was used to compile programs, written to run in the processing nodes, to test
the functionality of each processing node and the whole system. After compilation of
both VHDL codes and testing codes, they were downloaded onto the Stratix II chip for

real-time functionality verification and performance measurement.

The research described in this thesis has resulted in the design and realisation of
SoC building blocks for an embedded multiprocessor network system. Multiple
processing nodes were constructed by using the ‘off-the-shelf’ soft-core processors,
available memory space and Adaptive Look-up Table (ALUT) in the target FPGA chip.
The adapted OS-Link based routing switch, which was previously developed to
interconnect and to provide a robust communication network for a distributed
multiprocessor system, was implemented as a point-to-point communication medium for
all the implemented processing nodes. The network utilised a serial adapted Over
Sampling link (adapted OS-Link) based protocol 4 for message passing between

processors.
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1.5 Structure of the Thesis

Chapter Two gives an overview of the subject area. It is an introduction to the inter-
processor communications methods, with a review of their characteristics. This chapter
also reviews how the implementation of different inter-processor communication systems
affects the performance of a network. The three routing network systems reviewed
(interprocessor and not general purpose such as Ethernet) are some of the main ones used
in packet switched multiprocessor systems: the OS-Link based systems, the Myrinet55

based system and the Xpipes56 system are compared and contrasted.

Chapter Three examines the characteristics of a Multiprocessor SoC. Modern SoC
devices show a trend towards integrating processor core(s) on a single ship alongside
memory, [/O support and customisable Programmable Logic Arrays (PLAs). This chapter
reviews the challenge and necessary considerations when constructing a SoC device for
use in parallel embedded systems. It also focuses on the influence of the multiprocessor

architectures on the overall system performance.

Chapter Four documents implementing the OS-Linlc based network in a prototype
system based on the XAl board. It details the design, architecture used and how each
processing node (an Excalibur(n processing node), was interconnected using the OS-Link
based network. It also describes why this approach was ultimately abandoned for an

improved system.

Chapter Five describes the implementation of the final selected design
methodology. This used a new multiprocessor system on a SoC, the Stratix II chip with
NIOS processing cores. It discusses the design on a modular basis: broken down, in order

of hierarchy, with description of the functionality and interface of each module.

Chapter Six discusses the hardware tests that were created and their results. A test

program was written including functions to perform read and write to the mapped
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memory and registers. The result of these tests demonstrated the basic network

performance of the new designs.

Chapter Seven concludes the thesis, documenting the main achievements of the
research. It also describes the potential expansion of utilising a multiprocessor system on

a single chip alongside some other potential avenues of further work.



2 Some Characteristics of Multiprocessor communications

The increasing complexity of on-chip system integration means that more
functional wunits require to be integrated. The effective use of multiprocessors in
embedded systems does not just rely on the processing power of the processors, it is also
affected by the availability and latency constrains of other system resources such as
interfaces, routers and memory, and the design structure of that system. The accessibility
of resources for computation or manipulation by the processing element (processor) is

often crucial to determine an efficient multiprocessor system.

2.1 Symmetric Multiprocessing and Massively Parallel Processing

The data before and after it is processed must be stored somewhere in the system;
either in registers or in memory, so that the processor can carry out the next dedicated
task. The processing element must often be able to access these locations very quickly.
There are basically two different ways of utilising the system memory: Shared Memory
Systems and Distributed Memory Systems2. The choice of implementation depends on

the requirements of the application and the requirements of the system.

Symmetric Multiprocessing (SMP) is a multiprocessor system, where two or more
processors are housed together with shared memory resources. It is a type of Shared
Memory System. The SMP system allows any implemented processor to execute a task
regardless of the location of the data in the memory. By using a suitable operating system,
an SMP system can move tasks amongst the available processors to balance the workload
of the system efficiently58. The memory resources are centralised and can be accessed by
any processor (master) or other type of bus masters. There will be central arbitration
control to manage the access of memory resource from all the processors. This system is
simple to design and offers fast data access with very low latency. Plowever, this kind of

system suffers from lack of scalability. As the number of processors increase, each
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processor will be allocated a lower average access time, reducing the effective bandwidth
of each processor. Therefore, memory management is a crucial issue in Shared Memory
Systems, to prevent memory access from becoming the performance bottleneck of the
system. The programmer must also ensure that fewer processors, if possible, are
attempting to access the memory simultaneously and preventing one processor from
monopolising the memory resource because this might contribute to a performance

bottleneck of the system59.

Another problem with Shared Memory Systems is a security issue. Since the
memory is accessible by all processors, it is very difficult for one processor to determine
whether the content of a memory location has been modified by another processor. Once
again it is up to the careful design by the programmer, when mapping and dividing the

memory resources, for each processor to avoid problematic memory usage overlap.

Early SMP systems were accessing memory that ran much slower than the
processor accessing them. As aresult, the processors spent a considerable amount of time
waiting for data from memory resources. Modern memory resources are able to
overcome this problem as they are running at comparatively higher clock speed and faster
access time. However, they still face a memory access bandwidth problem as only one
processor can access memory at a time; while one processor is accessing the memory, the

rest of the processors must wait.

Massively Parallel Processing (MPP)®0 is another technique for implementing
multiprocessor systems. The principle operation of parallel processing in MPP, similar to
SMP, is to break a problem into smaller pieces which are then distributed to the
processing nodes, to be solved concurrently. This is particularly useful in scientific and
complex mathematics calculations that can more easily be split in this way. The number
of processors in an MPP system is not such a crucial issue as the system architecture. In
MPP systems, each processor has its own memory resource to form a basic processing
node. By having a private memory resource, without memory competition from other

processors, the processor will have full bandwidth to access its memory resources. Each



processing node has a copy of its allocated application tasks. All the processing nodes

communicate by message passing to each other via a high speed interconnect.

To achieve a solution to a problem by task division to multiple processors, it is
highly probable that the resultant data from one processor will be used as an input to
another processor. Data exchange between processors/processing nodes is required and
this is usually in the form of messages. Message passing in an MPP system has been
presented as a solution to overcome the disadvantages suffered in Symmetric
Multiprocessing systems, as proven by Hoare ]R However this involves a trade-off as the
system may have latency problems during message passing which depends on the
efficiency of the interconnection network used and the distance between the processing

nodes.

2.2 Inter-processor Communications

2.2.1 Parallel and Serial Communications

The technology of the microprocessor has been improved rapidly over the past few
years. As the speed and data bus width of the processor increases, the communication and
data exchange between processors become more and more critical to prevent data
starvation. The decision of using parallel or serial communications (in order to optimise
the overall efficiency of the system) relies on a few factors: network topology,

architecture, speed requirement of the application and development costs.

Early embedded systems utilised bus based parallel communication because
multiple bits can be transferred simultaneously. At lower data rates, parallel
communication performs adequately. However, as the clock speed and distances increase,
synchronisation of parallel data becomes a problem as setup times fall, propagation
delays increase, noise has more effect (especially crosstalk), and additionally there is a
requirement for multiple line drivers6l. Pin count is also a problem with parallel

communications because the number of pins available in an IC is usually limited. A high
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number of parallel bits also involve a more complex PCB design, increasing track and

wiring space as well as the cost.

Parallel communication could be clocked at higher data rate and travels longer
distance if correctly terminated differential signal were implemented for each signal.
However serial communications offers a better solution when I/O pin count of a chip
become a constraint in parallel communications. This is because two pins will be utilised
for each signal when differential signal was implemented, it will actually double the I/O
pin requirement of a system. Serial communication is capable of being clocked at a
higher rate because a correctly terminated differential serial link is less susceptible to
noise54. Using serial communication can also reduce the track on PCB or wiring space

when comparing to parallel communication.

Distributed systems, by utilising serial communication, could minimise the cost of
development because of the requirement for a lower pin count therefore resulting in a
simpler PCB design. Implementation of serial communications in distributed systems
also provides a more reliable and robust point-to-point communication due to the reduced
effect of clock skew. Having the key feature of scalability, it is more suitable to utilise
serial based communications to reduce the complexity of the network design.
Asynchronous data communication can be achieved by either encoding the clock signal
to be sent with the data62 or by using an over-sampling technique, at a higher data rate, to

recover the data at the receiving side63.

2.2.2 Bus-based Topologies

A majority of multiprocessor systems interconnection architectures fall within the
SMP design type8 64 6566 67, or global shared bus system; one of the simplest interconnect
structures. In this, the communication medium (the ‘backbone’ bus) is shared by all
integrated devices and only one device (bus master) can drive the network or access the

bus slave at a time. A basic block diagram for a SMP System is shown in Figure 2-1.
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Backbone Bus

Figure 2-1Block Diagram for Shared Medium System

The bus used is usually a convenient and low overhead interconnection for a small
number of active processors and bus masters, and a large number of passive modules (bus
slaves) that only respond to the request from bus masters. The bus bandwidth must be
shared by all the bus masters that can access that system. This results in effective
bandwidth for each processor being inversely proportional to the number of bus masters68.
Due to nature of central memory sharing, an error in memory might cause the whole

system to crash.

Bus arbitration mechanisms are required when more than one processor or bus
master attempts to access the bus simultaneously. A critical issue in the design of a
shared medium bus is the ‘arbitration strategy’ that will assign the bus ownership of the
system and resolve the access conflicts by multiple bus masters. Arbitration is performed
in a centralised fashion by a bus arbiter module. The arbiter must be carefully designed to
prevent any processing node from monopolising the memory access, and to resolve
access contentions. Therefore any bus master wishing to access the memory module or

peripheral must gain bus ownership from the arbiter.

27



2.2.3 Point-to-point and Switch-based Topologies
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Figure 2-2: 2-DMesh Network Topology

Point-to-point networks were used to overcome the scalability problem of SMP
systems. They were the network architecture used in MPP systems, as a communication
medium between processing nodes. Each node was connected directly with the adjacent
neighbouring processing nodes. Figure 2-2 shows an example of point-to-point network.
The processing nodes here are arranged in a 2 dimensional Mesh topology where each
processing node is connected to 4 adjacent nodes. This network topology offers
guaranteed bandwidth and low latency between two adjacent processing nodes, due to the
exclusive link connection between them. Therefore no arbitration is required and no
access conflict occurs as there is only one communication channel per connection link.
However, when sending a message to a non-adjacent processing node, for example from
processing node 1, through processing node 2, to processing node 3, extra effort and time
must be used by the intermediate processing node 2 to forward that message instead of
running their own dedicated task. This kind of regular network topology benefits from
reduction in cost and complexity, however were only optimised for systems with specific

communication patterns.
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Switch-based networks are an alternative to point-to-point networks. In switch-
based networks, interconnections between processing nodes are via a set of message
routing devices (routers). Each processing node will have a network adaptor, which
connects to a port of a router. The implemented switch does not perform any information
processing. Instead, they provide a programmable connection between their ports.
Communication paths can be setup or changed over time, depending on the application
requirements 69 . The routers pass messages throughout the network and allowed
simultaneous transfer of messages provided there is no contention for the same
destination node. Because there is no direct route between processing nodes (all
communications are via routers) switch-based networks allow one processing node with a
single communication channel to connect via an » channel router to communicate with .-
1 of processing nodes. Routers that implement full crossbar architecture allow . .. bi-
directional communication to take place simultaneously when there is no contention for
the same destination or output port, as shown in Figure 2-3 which illustrates the NTU

research groups ICR C416 (16 channel) commercial message router 27.

The switch-based network offers bandwidth guarantee irrespective of the network
size or topology. Due to its flexibility, switch-based networks were very suitable to form
irregular networks where network layout is independent of size and application. As the
number of processing node in the system increases, latency will be introduced because a
message might have to pass through more than one router. The latency introduced by a

router will depends on the type of router used and the traffic conditions.
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Figure 2-3: Simultaneous communication using ICR C416 hardware router

2.2.3.1 Switching Methodologies in Switch Based Network

The Store-and-forward methodology is one of the communication methodologies
used in multiprocessor systems. As named, it stores first and forwards later: a packet or
message will be forwarded from one switch to another when the latter has enough storage
space available for the entire message. The entire packet has to be stored in the network
switch before being transmitted to the next destination. This approach demands very high
storage for buffering purposes in the switch and it can incur very high communication
latency. The latency of any message is directly proportional to the message size and
increases with the number of switching devices between the source and destination, as
well as the traffic conditions of the network. This Store-and-forward approach is rarely

used as a SoC communication method due to limited memory resources on the chip.
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The Virtual Cut-through methodology70is ail approach to overcome the penalty
introduced by store-and-forward. A packet is forwarded as soon as the header is received
and resources, such as buffer and channel approval, are acquired without having to store
the entire packet. The message’s tail information will release the output channel as it
passes. In this approach, if a packet is blocked due to the utilisation of the same path by
another message, the content of the message will then be buffered until the message path
is free. More advanced versions of the Virtual Cut-Through approach, such as used in
BLAMT7I, utilise bypass buffers, which allow the new arrival to pass through the switch
by storing the entire blocked message into the bypass buffer. This provides the advantage

of low latency communication but requires enough buffering for blocked messages.

Comparing with Store-and-forward and Virtual Cut-through methods, the
Wormhole Switchingzgnmethod has more efficient use of buffer space. It connects the
incoming message to the output channel as soon as the routing information has been
received and the connection resources are available. As a result, switching latency is
minimised. Wormhole switching can be implemented with minimal buffering resources
at each switching device as the message is effectively distributed across the network. The
primary advantages offered by this approach are minimum message latency and
minimum buffer requirement. However, because the channel bandwidth is dedicated to

one message, a message block can cause the channel to go idle or deadlock.

2.2.3.2 Switching Network Flow Control

All routing/switching methods using buffering need to communicate with the
neighbouring processing nodes or switching devices when message passing takes place,
to ensure the availability of buffers. Resource management will inform the upstream node
when they should stop sending flits (a flit is the smallest possible unit of information in a

message) due to the downstream buffer being full and vice versa.
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In ‘credit-based’ flow control73, each channel consists of a flit control counter to
manage the number of free flits. Each input flit will consume an empty flit at the output
buffer, the flit counter will decrease by one until it reaches zero, and the buffer is full.
Therefore no further flits can be received until the buffer is free again. Once a flit is
forwarded and an associated flit is freed, a credit will be sent to the upstream router.
Meanwhile, the control counter will be incremented by one. For each flit received, a
corresponding credit is eventually returned. Forwarding a flit to the downstream router
will involve immediately returning a credit flit to the upstream router. Credit based flow
control requires significant amounts of upstream signalling: it can introduce large

overheads, especially for small flits.

In ‘ACK/NACK’ flow control74, the upstream router will send a flit whenever
bandwidth is available. The downstream router will accept all the flits as long as the
buffer is available and an ‘ACK’ flit will be sent upstream. However, the flit will be
dropped if no buffer is available and an ‘NACK’ will be sent upstream as notification.
The upstream router must remain and hold the previous flit until an ‘ACK flit is received.
An ‘ACK’ flit will only be sent by the downstream router when its buffer is freed. When
the upstream router receives the ‘NACK’ flit, it will retransmit the dropped flit and in
addition to the N succeeding flits that were transmitted during the round trip delay before
continuing to transmit the remainder of the message. This flow mechanism is effective
when it is applied to a routing device with a large buffer resource because the sent flit
must be retained (in case a ‘NACK’ flit is received). A blocked downstream resource will

incur poor link utilisation.

Finally, ‘On-Off’ flow control74 is a widely used flow control mechanism that
greatly reduces the amount of upstream signalling compared to ‘ACK/NACK”’. A signal
will be sent to the upstream router only when it is necessary to change the state of
permission. An ‘On’ flit indicates a flit transmit is permitted and ‘Off’ means a flit
transmit is not permitted. In some case, an ‘O ff can be sent to indicate that the number of
free buffer spaces is equal or below a pre-defined threshold, so that the upstream router

knows how many more flits can be transmitted before it has to stop and wait for the
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permission flit. Similar to the credit-based flow control, one must take consideration of
the availability of the buffer before it becomes empty, then sending an ‘Off’ flit (so that
there is always enough buffer to receive those flits, that are sent before the ‘Off’ flit is
received by the upstream router). However, with adequate buffering and management
mechanisms, ‘On/Off” flow control can operate efficiently with very little upstream

signalling.

2.3 Message Router System Comparisons

2.3.1 Myrinet System

Myrinet is a cost effective, high performance, packet switching technology that is
widely used in distributed computing systems55. It is used to interconnect clusters of
workstations, PCs, servers or single-board computers. The Myrinet network system
consists of two main components, the Myrinet’s computer interface component and the

Myrinet switch55.

Myrinet’s computer interface connects a processing node to the network. There are
two memory blocks in the Myrinet computer interfaces and they are used for transmit and
receive packet buffering. A DMA engine transfers the data packet between the processing
node’s memory and Myrinet’s network interface. Meanwhile the Myrinet switches are
multiple-port switches that employ Virtual Cut-through routing. If the selected outgoing
channel is not already occupied by another packet, the head of the incoming packet is
advanced into this outgoing channel, as soon as the head of the packet is received and
decoded. The packet is then spooled through this established path until the path is broken
by the tail of the packet. If the selected outgoing channel is occupied by another packet or
is blocked, the incoming packet is blocked. Switches are powered separately from hosts,

so that the network will continue to function even when some of the hosts are turned off.
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2.3.2 Xpipes System

MPEG
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Figure 2-4: Example of Xpipes NoC.

Xpipes architecture utilises on-chip packet-switched micro-network of
interconnects, known as a Network-on-Chip (NoC) architecture. Xpipes architecture
consists of two main components: the network interface and the router. Each component
interconnected to the on-chip micro-network via network interface. Routers were used to
interconnect implemented components (master components and slave components) in
SoC as shown in Figure 2-4. The network interfaces use Open Core Protocol (OCP) and
convert the OCP to adapt to the network protocol. Designers can specify the arbitrary
network topologies to meet the system requirement and to optimise the overall

performance of the SoC.

Routers implemented in the Xpipes utilise Wormhole switching methodology to
reduce router memory requirement and allowing low latency communication. The
retransmission policy (GO-BACK-N) was implemented as ‘ACK/NACK’ flow control
was used. Flits were transmitted continuously without waiting for the ‘ACK’. When a
‘NACK’ is received, the transmitter will retransmit the negatively acknowledged flit in

addition to the N succeeding flits that were transmitted during the round trip delay. The



downstream node will discard N-1 of the received Hits following the corrupted flits

regardless of they are error free or not.

2.3.3 OS-Link Based System

Start bit Stop bit
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Figure 2-5: Token format for OS-Link protocol.

The OS-link is an oversampling serial link communication protocol, originally
designed for the Transputer and is used by the early routers designed by the NTU
research group. It is a bi-directional full-duplex communication protocol with data
transferred over the link using tokens. The oversampling technique was capable of
achieving a maximum bit rate of 44 Mbit/s. To provide more efficient support for higher
level protocols, the size of the token is kept as small as possible. Figure 2-5 shows the
format of a token. Each token was marked by logic ‘1’ as a Start bit, and ends with a Stop
bit, logic ‘O'. Logic ‘1’ in the Type bit will indicate the following 8 bits were a byte of
data; logic ‘0’ in the Type bit will indicate that the following 8 bits were control

information.

2.3.3.1 The ICR C416 Message Router

The ICR C416 z is a hardware routing switch developed by the NTU research

group. It was marketed by IC Routing Ltd (now dormant) for use as interconnection
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between the first generation Transputers5 in embedded control applications75. The 16
channel dynamic router switch architecture 76 allows up to 8 bi-directional
communications simultaneously when there is no output contention. It is an asynchronous
serial communication network device with each channel consisting of a pair of full
duplex lines transferring data at rates of either 10 or 20 Mbit/s. The ICR C416 uses an
Over-Sampling technique for data recovery at the receiver. Therefore no clock

information is encoded ihto the data stream.

Data is transmitted in the form of tokens and each token consists of 11 bits. The
resultant routing switch has the maximum theoretical unidirectional data throughput of
14.55 Mbit/s when it is configure to run at data rate of 20 Mbit/s77. The credit-based flow
control was implemented in this hardware routing switch, an acknowledgement of every
token is required for every token sent. The acknowledgement token consists ofjust 2 bits,
a Start bit and a Stop bit. Due to the requirement of an acknowledge token the actual
conveyed bits per token data (or control) byte in the bi-directional communication is 13
bits. Taking this into account, the credit-based flow control gives a theoretical maximum
bi-directional data throughput of up to 12.31 Mbit/s when operating at data rate of
20 Mbit/s. However, practically, the data rate is lower due to the factors such as

transmission length, network traffic and the receiver buffer status.

Messages in the ICR C416 network are divided into 256 bytes per packet and the
maximum message length is 64 kBytes. A packet consists of a Header section, a Length
section, and finally the payload. The Header section contains two bytes of output link
information and one message identity header for a particular message. The header bytes
will be stripped, one by one, as they pass through the routers, and the message identity
with the most significant bit of ‘O’ will be identified at the destination node. It will
followed by the length information decoding. The OS-Link based network utilises

wormhole routing to minimise buffering requirements.

The ICR C416 is designed to provide a simple, flexible and low cost solution to

interconnect multiple processing nodes in an irregular embedded network. Although it
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operated at a lower link speed than its current network interconnects devices, its generic
format suited many applications because it provided direct communication between
processors and it could be easily cascaded to form a larger embedded network. The
features of minimal wiring and low pin count are other advantages offered in a physically
distributed network. When differential transceiver circuit are implemented on the board,
it was capable of operating at a data rate of 44 Mbit/s over 100m of CAT 5 unshielded

twisted pair cable54.

2335 2> The NTR-FTMO08 Message Router

The FT-PCI-Li42 interface development board had an NTR-FTMO08 routing switch
with enhanced tolerance to faults features and an OS-Link PCI interface. The FT-PCI-Li
was implemented in a PLD (Altera’s APEK20KC43 device) which offered a high density
of logic functions with programmable features, large amounts of programmable
embedded memory (which support Content Addressable Memory78 (CAM)), and a high
speed I/0 interface. Enhanced features implemented were the distributed fault detection,
isolation and recovery mechanism, and the utilisation of CAM 7 as hardware virtual
channel in order to reduce processor intervention. The CAM was used to store up to 16
expected message IDs with pre-allocated memory addresses which can be pre-loaded at
any time. The use of CAM reduces the need of the processor to allocate the memory

address in the DM A channel in the event of the arrival of new message.

The FT-PCI-OSLi was clocked at maximum sample clock frequency of 66 MHz,
which gives a 42 Mbit/s data rate; NTR-FTMO08 was clocked at the same sample clock
frequency, 66 MHz, giving 42 Mbit/s data rate for each channel. Therefore, with 8
channels, NTR-FTMO08 was able to give approximately 336 Mbit/s when 8 channels
operate simultaneously with no output port contention. The StrongARM and PCI
interface allowed the RISC and general purpose processors to operate simultaneously in

the same network as processing nodes. Using the NTR-FTMO08 allowed up to 8
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processing nodes to be interconnected or using extra NTR-FTMOS8 to cascade ands

increase the size of the scalable network.

The NTR-FTMO08 also supports the Group Adaptive Routing technique. The Group
Adaptive Routing technique allows different output ports of the routing device, which
connect to the same destination node, to be grouped together. When one channel was
busy with message passing and a new message was designated to the same output port,
instead of waiting for the first one to finish, the routing device can provide an alternative
path, which will reach the same designated node (the designated node or following

routing device must have 2 or more channels interconnected).

FT-PCI-Li utilised a Permission Based or ‘STOP/GO’ mechanism for data flow
control. This method is also used by Myrinet for control of message passing within it’s
Massively-Parallel Processor (MPP) system8). The ‘STOP/GO’ (Xon/Xoff) simply
means message transmission will either stop or continue depending on the status of the
receiver’s buffer. Figure 2-6 shows the data flow control between processors in the

communication network using this adapted protocol (adapted from OS links).

Transmitter Data Data Data Data Data Data Data Data Data
1 2 3 4 5 6 7 8 c
Receiver Go Slop Go
t e >
Single direction message Transfer
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Transmitter 12 3 4 W g 6 9 % 9
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Bi-direction m essage Transfer

Figure 2-6 Flow control of the adapted OS-Link based system



Initially a GO/Xon is transmitted by the receiver node to indicate that the receiver
node is ready to receive data. The transmitting node will start to transmit data as soon as a
Xon token is received. The received data token will start to fill up the receiver node’s
token buffer waiting to be de-packetised. The receiver side will send a STOP/Xoff token
when the receiver’s buffer has reached a pre-determined level, referred to as ‘Almost
Full’, as shown in Figure 2-7. The Xoff/STOP token will stop the transmitting node from
sending any more data until the next Xon/GO token is received. This will give the
receiver node time to clear its buffer before it overflows. The receiver node will send the
Xon/GO when the buffer level reaches the pre-determined level, referred to as ‘Almost

Empty.’

Token buffer
g— — Full

Bend Stop"

Xoff ¢ Almost Full

Almost Empty Send Go/Xon

* Empty

Figure 2-7 Receiver buffering control

The buffer gap between the ‘Almost Full’ and ‘Full’ was used to fill up the tokens
that were sent by the transmitting node before the Stop/Xoff was received; Go/Xon was
sent when it reach ‘Almost Empty’ to resume the transmission before the buffer was
actually empty. This will provide more efficient use of the communication bandwidth
between the two processing node. The End of Message token (EOM) and End of Packet
token (EOP) are also used to indicate the termination of message and termination of
packet respectively. Finally the Bad End of Packet (BEOP) token is used to indicate

when a fault condition occurs.
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3 Multiprocessor Platform

FPGA devices have emerged as prototyping tool alternative in digital design in
many markets.. It can also be used to prototype custom ASIC designs before
manufacturing. Evolution of FPGA technology has changed rapidly and greatly increases
its programmable element capacity. FPGA devices’ are starting to be integrated into SoC
because they can now implement most (or all) of the functions of a complete electronic
system. The system may contain memory, processors, specialized logic, communication

buses and other digital functions.

Multiprocessor SoC (MPSoC) design is a complex process that involves different
steps at different abstraction levels. It can be grouped into two major tasks: design space
exploration and architectural design. Design space exploration involves hardware or
software partitioning, selection of architectural platform and components; architectural
design refers to design of components, for example hardware and software interface

design.

3.1 Digital System Implementation

An overview of some of the issues regarding digital design prototyping and
implementation solution is offered in this section. This section is not intended to be a
definite discussion on this open-ended subject, it focuses mainly on solutions utilised in

the development of the OSL-ST2.

The FPGA 1is one type of Programmable Logic Devices (PLD). It is a
semiconductor device containing programmable logic components and programmable
interconnects. It allows the implementation of custom digital designs tailored specifically
to applications. Early FPGA devices included gate numbers in the order of tens or

hundreds and were mainly used to implement ‘glue’ logic. The growing sophistication of
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FPGAs has had a great impact on digital design. The number of transistors and logic
gates that can be implemented on a single chip has increased dramatically. FPGA
technology continues to advance and mature, making a SoC possible. This is due to the
increase of clock speed, reduced power consumption and reduced cost in contrast with an
increase of logic element count. The hardware capacity offered by modern FPGA devices
is a compelling proposition and gives designers the opportunity to integrate more

functions in a single chip.

Application Specific Integrated Circuits (ASICs) are full custom device usually
produced in the final stage of mass production. For very high volume production, per unit
costs become very low. However for prototyping and $mall production runs the FPGA is
a better solution, it requires less investment in terms of time (laying the new design out
on silicon when redesigning due to error(s)) and money (cost of die production). The
programmability and flexible nature of FPGAs allows them to become an alternative
when prototyping a design. Upon the occurrence of design errors or the need of re-design,
the same FPGA can be reprogrammed for verification (until error free) or provide a

means for design optimisation before the product reaches the manufacturing stage.

A lot of designs are built on previous designs, common features and components
being retained. Recycling these reusable parts of the design, called Intellectual Property
(IP)81, can significantly reduce the design time or cycle and thus increasing the cost
effectiveness. IPs are now also functions offered by FPGA vendors. These IP cores are

pre-verified functions that can be easily plugged in, easing the design effort.

These IP cores come with either source code or a net list. They have been optimised
to work on a manufacturer’s architecture. By providing components in IP form, designers
can choose the components that are required in their design up to the capacity of the
FPGA device used. Some of the IP cores provided are industrial standard functions, such
as: PCI34, PCI Express8 and Double Data Rate Synchronous Dynamic Random Access

Memory8 (DDR SDRAM) Controller. These IP cores help accelerate the design process.
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Later FPGA devices came with on-chip embedded processors. There were two
kinds of embedded processor available: the ‘hard’ embedded processor and the ‘soft’
embedded processor. An example of an FPGA that comes with a ‘hard’ processor is the
Excalibur device family from Altera. The Excalibur device family is the combination of
an industrial standard 32 bit ARM™922T RISC processor and APEX20™KE-like
programmable logic. An Excalibur chip was divided into two partitions, the embedded
processor stripe and the programmable logic partition. The embedded processor stripe
consists of an ARM™922T RISC processor and other basic components including a
Phase Lock Loop (PLL), a Timer, and an interrupt controller. Further details can be
found in Chapter 4. Meanwhile, examples of the ‘soft’ processors are the NIOSS4, NIOS

1146 from Altera and the MicroBlaze™ &5 from Xilinx.

3.2 Processor Choice for an Embedded SoC

SoC designs are powered by one or more general processors, digital signal
processors, or fixed-function co-processors. Understanding of processor architecture
provides a context for choosing the right processor(s) for the SoC. Embedded processors
are general purpose in a different sense than the high performance processors used in
personal computers. A personal computer is expected or mostly used to run arbitrary
software: word processing, computer aided design (CAD), games, multimedia, and the
Operating System itself; whereas a closed embedded system runs a fixed set of tasks.

Embedded processors also can have extra application specific instructions implemented.

The micro-architecture of a RISC microprocessor reflects the nature of the
instruction fetch/execute cycle. The instruction execution is divided into multiple stages,
forming an instruction pipeline. An example of a simple pipeline is the five-stage pipeline
shown in Figure 3-1. The first stage is the instruction fetch from the memory (IF). The
next stage is the Instruction Decode (ID); the instruction is decoded and its operands are
read from register file. Then the instruction is executed (EX stage) using the operands. In

the next stage, memory access (MEM) to retrieve or to store a value, for load and store
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command respectively, using the computed address. Finally, register update as a result of
instruction execution (write-back WB). The Pipeline increases the performance by
simultaneously processing multiple instructions in different stages. It takes 5 cycles to fill
the pipeline assuming that the pipeline can be kept flowing smoothly. There are
conditions, such as execution of the branch with conditions, which will stall the pipeline
and techniques to minimize the stalls. These techniques are the characteristic of the high
performance microprocessor. The difference between the embedded and high

performance processor lies in their stage of evolution.

In this section, architecture of ARMO922T processor from ARM, MicroBlaze™

from Xilinx and NIOS II from Altera were surveyed.

IF ->ID > EX -> MEM -> WB

Figure 3-1: Simple Five-Stage Pipeline

3.2.1 The ARM922T

The ARMO922T & is member of ARMOITDMI family of general purpose
microprocessors. It is a high performance RISC processor, which supports both 32 bit
ARM and 16 bit Thumb instruction sets, allowing the user to trade off between high
performance and high code density. The processor is targeted at multimedia applications,
such as smart phones, Personal Data Assistants (PDA), digital cameras, and set-top boxes;
also at other embedded applications, for example as communicator, audio and video

decoding and platform OS based device.

It has a Harvard architecture (separate instruction and data path), implemented
using a five stage pipeline, consisting of Fetch, Decode, Execute, Memory and Write
stages. It also has a trace interface port that allows the use of trace hardware and tools for
real-time instruction and data tracing (for the ease of debugging and the development of

application software, operating system and hardware).
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The ARMO922T has been designed to work with the Advanced Microcontroller Bus
Architecture8 (AMBA) unidirectional Advanced System Bus (ASB) interface. It also
contains the necessary extra control signals to enable the implementation of both the
Advanced High Performance Bus (AHB) and ASB interfaces of AMBA. The ARM922T
can be used as single master with no additional logic, or used with multiple bus masters
with only the granted master controls to drive the bus system according to AMBA

specification version 2.0.

3.2.2 NIOS I

The NIOS 1146 is a 32 bit general puipose RISC processor introduced by Altera Ltd.
NIOS II is a configurable softcore processor. Features can be added or removed in order
to meet the performance and price requirements. The concept of ‘softcore’ is related to
flexibility for the hardware engineer to optimise the system implementation according to
the design requirements, as the processor core is offered in a soft design form instead of a
chip or FPGA ‘stripe’. It is to be implemented onto NIOS II supported FPGA families,

together with other peripherals.

The configurable nature of the NIOS II processor also allows the integration of
custom instructions directly into the Arithmetic Logic Unit (ALU). System performance
can be increased by offloading portions of the software code to hardware functions,

extending the CPU instruction set to accelerate time-critical software.

Currently there are three NIOS II processor cores available that implement a

common instruction set architecture, each optimised for specific price and performance

. . 87
requirements. The processor cores are in standard form, economy form and fast form

Table 1 shows some of the differences between the NIOS II processors.
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Features

Description

Performance
Area
Pipeline

Instruction
Bus

Arithmetic

Logic Unit

Max DMIPS
Fmax (MHz)

stage

Cache

Pipeline
memory access

Tightly

Couple Memory

Hardware
Multiply

Hardware Divide

Economy
Minimal core
size
31
200
<700 LEs;
<350 ALMs
1

Core
Standard

Small core size

127
165
<1400 LEs;
<700 ALMs
5
512-64 kBytes
Yes

Optional

3 cycle

Optional

Table 1: Some of NIOS II Processor cores features

Fast

Fast Execution Speed
core

218
185
<1800 LEs;
<900 ALMs
6
512-64 kBytes
Yes

Optional

1 cycle

Optional

Notel: DMIPS: Dhrystone Million Instruction per Second is a synthetic benchmark for general processors

(CPU).

Note2: LE means Logic Element

Note3: ALM means Adaptive Logic Module

The NIOS II economy core is the smallest core of the three. It was designed in such

a way that it consumes the least resource among the three while remain compatible with

NIOS II instruction set architecture; the NIOS II fast core consumed the most resource as

it was designed for high execution performance; the NIOS II standard core was optimal

for cost sensitive, medium performance applications. The standard core has medium

performance and medium resource consumption compared to the other two cores.

3.2.3 MicroBlaze

The MicroBlaze& is a softcore processor from Xilinx. It is a 32 bit RISC processor

optimised for implementation in Xilinx FPGA devices. It is a highly configurable
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processor as it allows the user to include specific sets of optional features to suit the
design requirements. There are a few fixed features in the processor: thirty two 32 bit
general purpose registers, 32 bit instruction word with three operands and two addressing
modes, 32 bit address bus and a single issue pipeline. Some of the optional features are:
Hardware Barrel Shifter, Multiplier, Divider, Floating Point Unit (FPU) and Fast Simple

Link (FSL) Interface.

The MicroBlaze supports up to three interfaces for memory access. The Local
Memory Bus (LMB) provides single cycle access to an on-chip dual-port RAM block.
The IBM On-chip Peripheral Bus8 (OPB) was used to interface on-chip and off-chip
peripheral and memory. The CacheLink Interface is for use with a specialised external
memory controller. The system designer can chose a suitable memory access interface to

suit and optimise the utilisation of the implemented memory modules.

The MicroBlaze supports up to 8 FSL channels. The FSL channels are dedicated
uni-directional point-to-point data streaming interface between and output First-In-First-
Out (FIFO) and input FIFO. This can be used for fast transfer of data between master and
slave that utilise FSL. The FSL can be used with custom hardware acceleration functions.
This is similar to implementing a custom instruction, with the benefit of not making the

overall speed of the processor pipeline dependant on the custom function.

3.3 System Bus Architecture

The system bus architecture has great influence on the overall performance of the

system because each system has a different combination of components and requirements.

In a complex embedded system, not all implemented slave devices are high speed, low
latency devices such as Universal Asynchronies Receiver and Transmitter (UART) and
Programmable Input/Output (PIO) device; and also a large number of the embedded

systems have more than one bus master. There are a few possible bus architectures
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available and each offers different arbitration schemes and benefits to suit the

requirements of the target system.

3.3.1 TheAMBABus

The Advanced Microcontroller Bus Architecture6S 8 (AMBA) is one of the
commonly used interface bus types in embedded systems. It is an open standard bus used
to interconnect the processor and all other implemented functional blocks. It is designed
for the ease of development of embedded microcontroller products with one or more
processors. An important feature of AMBA is that it is technology-independent, which
ensures that highly reusable peripheral and system macrocells can be migrated across a
different range of IC processes and be appropriate for full-custom, standard cell and gate-

array technologies.

The AMBA consists of a high performance backbone bus, AHB or ASB, which are
used to interconnect high performance functional units such as microprocessor, high
speed on-chip or off-chip memory and other Direct Memory Access featured bus masters.
ASB is the first generation AMBA. It is a multiple bus master system bus that supports
burst transfer and pipeline transfer operation. AHB is the second generation AMBA. It
inherits the advantages of ASB with new features added to support the latest embedded
system designs. The new included features in AHB are: split transfer protocol, single-
cycle bus master handover, and wider data bus support of up to 1024 bits. The AMBA
specification 2.0 recommended minimum bus width is 32 bits and it is expected that a

maximum of 256 bits will be adequate for almost all applications.

The Advance Peripheral Bus (APB) is the secondary local bus that is designed to
interface devices that do not require too high performance, of a pipeline bus interface. A
‘bridge’ is required to convert AHB or ASB transfer into more suitable format for the

slave devices attached in APB. The bridge will latch all address, data and control signal,
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and then decode the address to select the appropriate slave device before performing the

data transfer operation. Figure 3-2 shows a typical AMBA system.

UA.RT

Figure 3-2: Typical AMBA System

In split transaction architecture90, as implemented in AMBA, the operation of the
bus master providing the address to the slave (when requesting an access) and the
response operation of the slave to the bus master is separated. The bus master will only
be allowed to perform data transfers when the slave device is ready. If the slave device is
not ready, the bus master will have to retry again later or wait. Meanwhile, the bus
ownership will be granted to other bus masters. This bus architecture can support
multiple outstanding transactions, but it comes with the price of more complex design of

bus master and bus interface.

3.3.2 The Avalon Switch Fabric

The Avalon Switch Fabric9l is a specialised system interconnects technology from
Altera. It is generated automatically by SOPC Builder, which is part of the Quartus II

software.
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The Avalon Switch Fabric includes chip select signals for each slave device. This
provides an easy to interface to custom on-chip peripheral. It has a dynamic bus sizing
feature to enhance the data transfer between a bus master and slave of different data bus
widths. For example, the dynamic bus sizing logic will execute multiple bus cycles, to
perform re-sizing and alignment, to fetch data value from peripheral with a narrower data
bus size. For a system that has peripherals running in different frequencies, the switch

fabric will add special circuitry to support the transaction between peripherals.

Processor 1

Arbiter

Processor 2

Figure 3-3: Slave Side Arbitration Technique

The Avalon Switch fabric also supports the simultaneous multiple bus masters. The
Avalon masters and slaves interact with each other based on a slave-side arbitration
technique, as shown in Figure 3-3. Each bus slave will have an arbiter. The arbiter will
determine which interconnected bus master will gain access to that slave device when
there are multiple masters attempting to access the same slave. This technique offers two
advantages:

> Firstly, each bus master interfaces to the Avalon bus as if it was the only bus
master on the bus, because the detail of the arbitration are encapsulated inside the
Avalon bus. Therefore, the master and slave interface are consistent regardless of
the number of masters or slaves implemented on the same system.

> Secondly, multiple masters can perform data transactions simultaneously,
provided they are not accessing the same slave device in the same time, as shown

in Figure 3-4.
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Processor

Arbiter

i Peripheral 2
Processor Arbiter p

Figure 3-4 : Simultaneous multiple Bus master data Transactions.

The Avalon Bus Interface’ is a simple bus interface implemented into designs to
interact with the Avalon Switch Fabrics Interconnect. The principal design goals of the
Avalon Bus interface were to provide a simple and easy to understand protocol; to
optimise the resource utilization for bus logic; and synchronise with all other user logic
implemented on the same PLD, while avoiding complex timing analysis. The Avalon bus
specification supports different bus transfer types between the bus master and slave pair.
The fundamental transfer types stated in Avalon Bus Specification version 2.3119 are the
transfer with fixed or variable latency type and the streaming transfer type. The latest
Avalon Bus Specification09 (renamed to Avalon Memory-Mapped Interfaces
Specification) has included new transfer types to support different design requirements

such as: burst transfer mode, pipeline transfer mode, and transfer with tristate property.

3.4 Modem Solutions in Multiprocessor Systems

Multiprocessor SoC design use complex on-chip network and interconnection to
integrate multiple programmable processor cores, specialised memories and other

intellectual property (IP) components on a single chip.
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3.4.1 Cell Based Systems

Cell architecture%4, also called Cell Broadband Engine Architecture, was based on
research conducted by IBM, Sony and Toshiba to provide a power-efficient, cost-
effective high performance for wide range of applications such as gaming consoles,
scientific calculation and data processing. It is a heterogeneous multiprocessor system
that consists of one IBM 64 bits Power Architecture ™ core and eight specialized co-
processors called Synergistic Processor Units (SPU). The system was integrated by a
coherent on-chip bus as shown in Figure 3-5. It’s design can be classified as SMP. All
processing units rely on their DMA engines to access the memory resources for
instruction and data fetching. A DMA engine has become an important component in
modern multiprocessor systems as it consumes the idle slots in the interconnection bus to
fetch instruction and data to prevent starvation of the processing unit. It can help to
improve the efficiency of the overall performance of the system by keeping all the

processing units busy by feeding enough data to it.

SPU SPU SPU SPU SPU SPU SPU

DMA DMA DMA DMA DMA DMA DMA

Coherent on-chip Bus

DMA DMA

Memory Controller Interface Controller

SPU
64 bit Power

Architecture Core

Figure 3-5 Cell architecture block diagram.



3.4.2 The XA10 System

Extension
SDRAM SDRAM SDRAM
z 1z
PCI /U \ Excalibur Excalibur Excalibur
Interface v APEK20KC XA10 XA10 XA10
TF----- T

Figure 3-6: XA10 System Block Diagram.

The XA109 system was a distributed multiprocessor embedded system developed
by IC Routing Ltd. It consists of three XA 10 chips and an APEK20K chip. The three
XA10 chips form three processing nodes, each processing node has its own dedicated on-
chip RAM and external SDRAM memory resource. The APEK20K chip consists of an
OS-Link Router and OS-Link based Network Interface Controller with PCI interface.
Four chips were interconnected by OS-Link based network and they were linked together
in a daisy-chain connection, as shown in Figure 3-6. Inter-processor communications

were performed via message passing through the OS-Link network.

The PCI interface in the XA 10 system enables it to be plugged into any system with
PCI slots, such as a Host PC. In the case of plugging it to a Host PC, the Host PC can be
used as a main control processing node which dedicates tasks to the three or more
processing nodes% (the system can be cascaded by connecting it to more processing
nodes via the OS-Link network). The detail of the XA 10 designs will be covered in more

detail in Chapter 4.

52



4 The XAl System Prototype Board

4.1 Introduction

This chapter details the XAl board, which was a prototype of OS-Link based
networked distributed multiprocessor embedded system. The OS-Link network
interconnects three processing nodes and a host PC. This chapter also details the
alterations made to the protocol and the network interface controller in order to reduce

processor intervention when passing messages.

JTAG

Network Altera Excalibur
Extension APEK20KC XA1

SDRAM SDRAM SDRAM

PCJ Interface Edge

Figure 4-1 The X Al’s Hardware layout

Figure 4-1 shows the hardware layout of the XA1 board including an APEX20KC
chip, and three Excalibur XA144 chips. The three XAl chips each provided one
processing node. Each processing node had an in-built processor and an external 128
Mbytes SDRAM. The APEX20KC device consisted of a PCI bus interface, an OS-link
Interface and an 8 port router. Figure 4-2 shows the architecture of the Excalibur XAl
chip with the OS-link Interface and NTR-FTMO0S5 router. The NTR-FTMO05 router was

adapted from an NTR-FTMO08 router, and modified (from 8 ports to 5 ports), to fit into
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the XAl chip (because XAl chip had lower logic element counts than APEK20KC

devices) and connected to form the chosen topology.

4.2 The XAl chip

Excalibur XA1
Timer ARM922T PLL

Watchdog Interrupt

Timer Controller
AMBA Bus

SDRAM OS Link UART < UART
SDRAM Controller Interface

NTR-FTMO05

Figure 4-2: Excalibur XAl device with the OS-link Interface and a 5 port router.

The Excalibur devices44 are a combination of a RISC core processor and
programmable logic in a single device. It integrates an industrial standard ARM922T
processor, on-chip memory, and peripheral with APEK20KE device-like architecture.
The ARM922T45 processor and peripheral such as PLL, Watchdog Timer, Timer,

Interrupt controller, UART, and SRAM were in-built to the ‘Embedded Stripe’.

The OS-Link Network Interface Controller and NTR-FTMO05 router were
implemented in the APEK20KE device-like architecture part of the XA1l. The OS-Link

Network Interface Controller formed the interconnection between the processor and the
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OS-Link embedded network. The NTR-FTMO05 router was used to interconnect that

processing node to other adjacent processing nodes.

42.1 XAl Internal System design

Embedded Stripe

AHB
Tx-ctrl AMBA OS-Link
Arbiter Register
IN etV\;ork Rx-ctrl
Controller NTR
FTMO05

Figure 4-3: Block Diagram for Component Interconnection in PLD area.

Figure 4-3 shows the block diagram of the design modules implemented in the
APEK20KE device-like architecture part of the Excalibur Chip. The AMBA bus arbiter
was in charge of deciding which bus master granted the permission to drive the bus to
access a memory-mapped bus slave. There were three bus masters in each XAl device.
They were the ARMO922T Processor, the Transmitter DMA Controller (Tx-ctrl) and the
Receiver DM A Controller (Rx-ctrl). The data transfer between the Embedded Stripe and

the PLD was performed via the AHB Bridge.

Transmitter DM A Controller

The Transmitter DMA Controller module was the AMBA interfaced DMA

controller. The DM A was initiated by the processor by loading the target memory address,
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the header information and the length of the payload in order. Then the Transmitter DM A
Controller would request memory access. The Transmitter DMA Controllers accessed
target memory as soon as permission was grant by AMBA arbiter, acquired data would
then be stored in the DM A buffer (FIFO). The value in the address register indicating the
target location was incremented by 4 (because it is a 32 bit data transfer) each time a
valid data was sampled from the data bus, while the value in the Length register was
decremented. When the value in the Length register reached zero, the Transmitter DMA
Controller terminated the DM A operation. The Transmitter DMA Controller paused and
released the DM A access if the DMA Buffer signalled that it was full. It would request
memory access again to fetch the remainder data when a further ‘kick-start” was asserted,

when the DM A buffer was almost empty.

Receiver DM A Controller

The de-packetised data was stored in the receiver DMA buffer (FIFO). The
Receiver DM A Controller started the DM A operation when the DM A buffer was nearly
full and a ‘kick-start’ signal was asserted. The Receiver DM A Controller first made a
memory access request to the address input into the receiver channel’s Address Register.
When the request was granted it started fetching data from DMA Buffer and writing it to
the memory module via the data bus. The Address register was incremented by 4 for each
32 bit data written to the memory module. The Receiver DM A Controller released the
DMA when the DMA Buffer was emptied. If the message was unfinished, a ‘kick-start’

signal was asserted again when the DM A Buffer is filled up.

DMA Register

The DMA Register was a list of registers associated with the network interface
controller. It had the control registers which were used to kick-start DM A operations and
also the status registers used for monitoring purposes. It was an AMBA bus slave module
that’s accessed by the processor in the Excalibur chip. To transmit a message, the

processor inputted the address location where the message was stored to the transmitter’s
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address register, followed by the length of the message into the Length register (writing
to the Length register will kick-start the DMA). To prepare the receiver to start a DMA
transfer, the address allocated to the new message was inputted into the receiver’s
Address register, followed by the expected length into the Length register. The status
registers showed information about the network interface controller, such as the device’s
ID, current operation, and received header information. This module was particularly
useful when debugging the network interface controller because signal information from

other module could be sampled and accessed by the processor.

Tx-Ctrl * jip

Tx DMA Buffer L J\ Token N
Packetiser Buffer
0OS-Link Re
Rx-Ctrl De-packetiser Ci\j Token I\

Rx DMA Buffer “y Buffer pil

Network interface Controller

Figure 4-4: Block diagram for design modules in Network Interface Controller of Excalibur chip.

The Network Interface Controller was the interconnection between the processing
node and the OS-Link network. Figure 4-4 illustrates the main modules implemented in

the Network Interface Controller.

DMA buffer

There was one DMA buffer in each direction. The DM A buffers were in the form
of FIFOs (the first data written in will be the first data read out). Each was 32 bits wide
and 64 words depth. They acted like an intermediate storage, to buffer the data

transferred from memory to be packetised for the transmit operation, and vice versa.



The DMA buffer at the transmitter channel stored the data fetched from the
memory by the Transmitter controller. The data stored here was read by the packetiser to
convert the 32 bit data into OS-link protocol tokens. The receiver channel’s DM A would
have the reverse function, to buffer the de-packetised data. The storage was accumulated
so that there was sufficient data to make an efficient DM A transfer to the memory. The
Receiver controller asserted a memory write request when the receiver channel’s DMA

buffer was almost full or when it was the end of message.

Packetiser/ Depacketiser

The Packetiser fetched the buffered data from the transmitter channel’s DMA
buffer. The 32 bit data was split and formatted into 9 bit tokens. After that, the tokens
were buffered in the Token buffer. The Packetiser had three stages to packetise a message.
The first stage was to identify all the message headers, format it and then store all the
headers into the Token buffer; the second stage formated the remainder of the data into
tokens and stored them in the Token Buffer; the final stage inserted a message
termination token to the tail of the message. The Packetiser buffered the tokens into the
Token Buffer as long as the ‘Almost Full’ flag was not set, otherwise it paused and

waited.

The Depacketiser was responsible to de-fonnat every four 9 bit data tokens from
the receiver’s Token Buffer and combined them into 32 bit data. First it identified the
message’s header ID then stored the message ID into the Received Header register in the
DMA Register module. Next, every four data tokens were de-formatted (removing the
type bit) then re-arranged in the order of the original 32 bit data before being buffered

into the receiver channel’s DM A Buffer.

Data was packetised and de-packetised in hardware in order to reduce software

overheads. Therefore the software just had to input the address location of the first 32 bit

data and input the length of the message.
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Token Buffer

There were two token buffers in the network interface controller, one in each
direction. The Token Buffers were 9 bits wide and 32 token in depth FIFO. The least
significant bit of the token was the token type bit to indicate the token type (bit ‘1’ for a
data token, bit ‘O’ for a message termination control token). Both functioned as
temporary storage for the formatted token and received token from the network for the

transmitter channel and the receiver channel, respectively.

The transmitter channel was the intermediate buffer for the packetised tokens prior
to being transmitted out to the network. It had an ‘Almost Full’ flag to signal the
Packtiser, so that it held further packetising operations until the buffer was cleared down
to a pre-defined ‘Almost Empty’ level, to avoid FIFO overflow. When it reached the
‘Almost Empty’ level, the FIFO set the ‘Almost Empty’ flag to permit the Packetiser to

resume the packetising operation.

The receiver channel’s Token Buffer stored the valid incoming token, sampled by
the Network Link Interface module, waiting to be de-packetised. It also used the ‘Almost
Full’ flag and ‘Almost Empty’ flags to control the buffering space availability. When the
buffer reached the pre-defined ‘Almost Full’ level, the ‘Almost Full’ flag was set. This
signal caused the Network Link Interface to transmit an ‘X off token to the upstream
node to pause the transmission until the buffer was cleared. The ‘Xon’ was transmitted to
permit the upstream node to resume transmission when the buffer level dropped to a pre-

defined ‘Almost Empty’ level (‘Almost Empty’ flag set).

Network Link interface

The Network Link Interface was the module that interfaced the processing node to

OS-Link network. The Transmitter first fetched tokens buffered in the transmit channel’s

Token Buffer. The tokens were transmitted out in a serial bit stream, alongside the Start

bit and Stop bit (refer to 2.3.3). In the case when the receiver channel’s ‘Almost Full’ flag
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was set, the Transmitter transmitted an X off token so that the upstream node paused the
transmission operation. It later transmitted an ‘Xoff’ token to permit the upstream node to

continue to transmit the remaining tokens.

The Receiver sampled and validated the received signal. Then later stored the valid
tokens from the network into the receiver channel’s Token Buffer. Only data tokens and
message termination tokens were stored into Token Buffer because the rest of the
network control token were invisible control tokens, used between the Network Link
Interface and OS-Link, for flow control. If an ‘X off token was received, the Network

Link Interface stopped the Transmitter’s operation until an ‘Xon’ is received.

422 XAl External communication

The UART of each XAl system was connected to the serial port of the host PC
through a selector circuit. This enabled the host PC to monitor and access the mapped
register or memory location of each XAl system when tests were run on it. A boot
program was developed by the research groupQ7 and run in the Excalibur device. It
enabled the remote map registers or memory location access from the Host PC via a

UART connection.

Monitoring
Host PC
FT-PCI-Li Processing Processing Processing
I T Node Node Node
J\ I\ A
V— YV NTR-FTM08 NTR-FTM05 7\ NTR-FTMOS \r N NIRFIMQ5 < =D
A\ “y <I=1>
\7 \7

Figure 4-5: Multi processor embedded system.
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Figure 4-5 is an example of topology of a distributed multiprocessor embedded
system that could be formed by the XAl prototype system, a daisy chain topology. In the
example the host PC could act as the main control. The Host PC could be used to
configure all the routers, boot up the all the processing nodes and dedicate a task to each
processor. All the communications between the processors (including the host PC) are via

the routers. Every router will have two channels connected to each neighbouring router9s.

4.2.3 Group Adaptive Routing in XAl Prototype Board

The use of the NTR-FTMO0S5 routing device has inherited the Group Adaptive
Routing features from the NTR-FTMO8 routing device. Therefore the 4 OS-Link
channels, which were to be connected to other processing nodes, can be configured and

grouped to form the target network topology.

Host PC
Processing Processing Processing
Node Node Node
NTR-FTMO08 NTR-FTMO05 NTR-FTMO05 NTR-FTMO05

Grouped channels

Figure 4-6: Grouped Adaptive Routing utilisation in XA1 system

An example of the utilisation of Group Adaptive Routing feature in the XAl
system is illustrated in Figure 4-6. The communication channels between two adjacent
NTR-FTMO0S routing devices were grouped together by configuring both routing devices.
If two message were to be passed to the same destination NTR-FTMO0S5 routing device but

both had the same output port header information, one of the messages would be passed
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via an alternative channel (if that channel was free), when the communication channels

were grouped in advance.

4.3 The APEK20KC chip

The designs implemented in the APEK20KC were inherited from the FT-PCI-Li
interface development board (see section 2.3.3.2). It contained a PCI based OS-Link
Network interface controller (FT-PCI-Li), and an NTR-FTMO08 router. The PCI interface,
illustrated in Figure 4-1, could be plugged into a Host PC to include the Host PC to the

embedded network.

The FT-PCI-Li had two bi-directional communication channels connected to the
NTR-FTMO08 router. This allowed multiple message passing using two bi-directional
channels. Both communication channels could be grouped together by configuring the
router to have more efficient use of the communication bandwidth between the FT-PCI-
Li and the NTR-FTMO08 router. The NTR-FTMO08 router had 8§ communication channels.
Two of the communication channels were connected to the first XAl processing node,
another two could be either connected to the third XAl or to an extended network (by
changing the jumper setting on the XAl prototype board), the remainder of the channels

could be used to extend the embedded network.

The Host PC could be used to boot up all processing nodes in the network, to
configure all the implemented routers (grouping) and pass messages to the processing
nodes in the network via the FT-PCI-Li interface. During the investigation and design
optimisation, the Host PC was used to transmit messages to the processing nodes to

verify the functionality of designs.



4.4 Design Optimisation

The network interface controller was adapted and modified to reduce processor
intervention when passing messages. The previous design required the processor to input
the header information into the DM A register, prior to kick-starting the Transmitter DM A
Controller. It needed three write operations to transmit a message: input the address,
input the header and input the length of message. Therefore the header information was
included in the message (in memory) and header information was identified when the
message was packetised. This resulted in only two write operations, to input the address
and message’s length into the DM A register, to ‘kick-start’ a DM A when transmitting a

message.

4.4.1 New message Structure

Header 1 Header 1
Header 2 Header 2
Message ID Header 3
Header 4
Header 5
Payload Header 6

Message ID

Payload

a b)
n = old header count n =new header count

1<n<3 0<x<7

Figure 4-7: a) Old message structure, b) New message structure.

The optimisation resulted in a new message structure in memory. Each header byte

informed the downstream router which output port the message was designated to and the

63



Message ID used by the processing node to identify the new incoming message. The
original design supported up to three header bytes, including the Message ID byte,
because the Header register in the DM A Register module was only 32 bit. Therefore the
message was limited to pass through only 2 routers. By including the header information
in the message in memory, it enabled the header information to have a higher capacity, to

support up to seven header bytes including the Message ID.

Referring to Figure 4-7, the least significant 3 bits of the first most significant bytes
of the message structure was the header count. It indicated the number of header bytes in
the header section of the message, including the Message ID byte when the message was
being packetised. The headers were packetised in the sequence from the most significant
byte to the least significant byte. Higher capacity in the header section enabled the
message to travel via more routers, thus increased the network’s scalability. This also
offered an option of using a Zero Header, which included all the headers into the message
payload to support more than 7 headers. If a zero header count was used, then the header
information must be re-arranged because the payload was packetised from least

significant byte to most significant byte for every 32 bit of data.

n X X X
Header 4 Header 3 Header 2 Header 1
Header 8 Header 7 Header 6 Header 5

Message ID

Payload

n=0
X=Don't care

Figure 4-8: Message Structure in Memory when Zero Header was used.
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4.5 Technology Migration

At the end of the design optimisation, the research group decided to migrate to a

new technology because improved SoC options were available.

The initial XA1 prototype board consisted of three Excalibur XAl chips and each
had an in-built ‘hard’ core ARM922T processor. Although the ARM922T could operate
at high clock frequencies, up to 200 MHz, comparing to the NIOS II and MicroBlaze
softcore processors, but because it is an ‘in-built’ processor, it is lack of reusability. It
cannot be replicated in the same chip to form multiprocessor SoC. The NIOS II and the
MicroBlaze softcore processor had the potential of implementing multiple processors in a
single programmable chip, as softcore processors were provided in the form of IP,
therefore they could be replicated as many time as possible within the available

programmable elements in the FPGA device.

In term of flexibility, the configurability of a softcore processor allows designers to
include only the optional features that are required for their design. Hence, the
programmable elements in the FPGA would not be wasted and more functions or IP
could be implemented. Designers could also construct different kinds of systems to suit
their application. Features of the ‘Embedded Stripe’ in Excalibur devices were in-built:
silicon area has been consumed whether the application required the usage of the in-built

features or not.

Most of the components were custom built or provided by the FPGA vendor in the
form of soft [P (VHDL or Verilog HDL code). Therefore configurations of components
could be changed to suit the target application. Most importantly the most updated

component designs can be obtained from the FPGA vendor.
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The capacity of the FPGA’s programmable elements was also a crucial decision
factor when migrating to the new technology. Comparing the specification of FPGA
devices of Excalibur XA1, Stratix II devices47, and Virtex-4 family (in Appendix B) the
Excalibur devices had the lowest LE count. Therefore the Stratix II device shows a higher

capability of including multiple processing nodes.

Using the Excalibur devices to construct an embedded distributed multiprocessor
system on a PCB involved more hardware design and tracking. By using a higher
programmable element FPGA to implement multiple processing nodes, the risk of
hardware tracking errors, which could result in investment in new PCB designs, could be

reduced.

The NIOS II processor (with Stratix II device) and the MicroBlaze (with Virtex
device) showed more potential of improvement in OS-Link network implementation
when comparing the FPGA’s specification and their capacity with the Excalibur devices.
After taking consideration, the research group reached a decision to migrate the designs
to a Stratix II device. This was partly due to thexeason that the research group had many
years of experience with Altera devices and partly due to the flexibility of NIOS II

processor.
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S Design Structure for NIOS Based SoC

5.1 OS-Link Network Interface Module

The OS-Link network interface controller (NIOSNIC) was built as the
communication medium between the processing node and the interconnected OS-Link-
based network. The design was divided into two sections, as shown in Figure 5-1. The
main contribution was in the front end section. The front-end section was the custom
build Avalon bus interface for NIOSNIC, which was designed to interconnect the system
and the back-end section of NIOSNIC. Both of the DMA Buffers and Control/Status
register module were also modified to facilitate the Avalon Bus Interface built. This
front-end was responsible for initiating the Direct Memory Access transfer to move the
received data to the designated memory location. The back-end section was the Message
Packetiser/ Depacketiser and the network link interface, to transmit and receive messages
to and from the interconnected OS-Link-based network, and to encode and decode the

control tokens.

Tx DMA Token

Buffer Buffer
Avalon Control/ Packetiser Network

Bus Status / De- Link

interface Register packetiser Interface

Rx DMA Token

Buffer Buffer

Front end Backend

Figure 5-1: Basie construction of OS-Link Network Interface controller block diagram.

From Figure 5-1, the front-end section consists of an Avalon bus interface module
and it was separated from the back end section by two FIFO buffers, one for the transmit

channel and one for the receive channel. The entire module was synchronised to the
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system clock except the Network Link Interface which was synchronised by the Over
Sampling (OS) clock. The token buffers facilitated the data flow between asynchronous
serial link of the OS-Link network and the Packetiser/ Depacketiser. The developed OS-
Link network interface controller was adapted from the optimised AMBA bus-based
design, with modules redesigned to interface to the Avalon Bus in the new distributed

embedded multiprocessors system.

5.1.1 Avalon Bus Interface Module

The Avalon Bus interface module in the OS-Link network interface controller was
designed to initialise and to kick-start the data transfer between the OS-Link network
interface controller and the memory module in a processing node. Besides that, it also
contained registers to indicate the OS-Link network interface controller’s status. The
Avalon Bus interface was divided into three main modules, the Transmitter module, the

Receiver module and the OS-Link Register module.

Fa DMA Buffer

Tx DMA Buffer
Controller Interface

Tx DMA Kick Start Signal

Various status signals from back end

Register

Rx DMA Kick Start Signal

From DMA Buffer
DMA

Rx DMA Buffer
Controlle
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Figure 5-2: Block Diagram for the Avalon Bus interface section and its associated signals.

Referring to Figure 5-2, both the Transmitter and Receiver modules were
designed as Avalon bus masters while the OS-Link Register module was designed as the
Avalon Slave device in a processing node. The Transmitter bus master (Tx master) was
responsible to initialise DM A operation to transfer the message from a memory module
then store the message in the 32 bit transmitter channel DMA buffer, waiting for
packetisation before being transmitted out from the NIOSNIC. The Receiver bus master
(Rx Master) was responsible for transfer of the de-packetised message from the 32 bit
receiver channel’s DMA buffer to a memory module. The OS-Link Register was
designed to store and indicate the current status of the OS-Link network interface
controller. The OS-Link Register was also used to configure both Transmitter and

Receiver bus masters to kick-start a DM A transfer.

The Avalon bus interface modules were designed as separate bus masters so that
both bus masters can operate simultaneously. The Avalon Bus allows multiple bus
masters to drive the system bus, providing that the bus masters were not accessing the
same slave device93. For example, when the processing node was transmitting a message,
data was transferred from SDRAM via the Transmitter module to the transmit channel
DMA buffer. During this time, if a new message was received and the destination address
where the received data was going to be stored at another memory module on that
processing node, say the on-chip RAM, then both transmit and receive operations would
operate simultaneously. In the worst case scenario when both bus masters were accessing
the same memory module, then the decision would be made by the memory module’s

arbitration, to choose which of the bus masters would gain access.

5.1,1.1 The Bus Masters and Bus Slave Modules

Both Transmitter and Receiver bus master modules initialised and monitored the

DMA operation. They were also connected directly to their target memory arbitration

69



module by the Avalon Bus. Each bus master module, shown in Figure 5-2, consisted of
an address generator and DMA size counter. The address generator and size counter were

controlled by a state-machine.

Avalon Bus Ownership request

clock
Address HX address )<ddress j%address” ~
readn/ write_n \

readdata writedata

waitre quest

Figure 5-3: Timing diagram for bus access or memory read/ write operation.

To access a slave device, such as a memory module, the target memory address
was asserted to the address bus as the same time as asserting the active low read request
(signal ‘read n’) or active low write request (signal ‘write_n’) for memory read and

memory write operations respectively.

The Avalon Bus used slave-side arbitration where the access arbitration was
handled by the slave device’s arbitrator (see section 3.3.2). The way to determine that the
bus master had successfully gained the bus ownership was by sampling the active high
‘waitrequest’ signal. For example, referring to Figure 5-3, if the ‘waitrequest’ was set
high at the following rising clock after the read or write signal was asserted, then the read
or write operation had to be stalled until the ‘waitrequest’ signal was de-asserted. When
the ‘waitrequest’ signal was de-asserted, the data transaction could take place at the

following rising clock edge.
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Bus master controller

The bus master operation was controlled by a state-machine. The state-machine
was responsible for the start and halt of data transaction operation (DMA operation),

address generation and DM A size counting.

Transmitter Bus master

Start transfer = 'ls

Read

Figure 5-4: Transmitter bus master state-machine operation.

Figure 5-4 is a diagram that shows the state-machine of the Transmitter Bus master
controller. Upon reset, the state-machine would be in the Idle State. When the Address
and DMA size was loaded to kick start the DM A operation, the state-machine would
enter the Read State. At this state, the active low read signal (read n) would be set LOW
to request for memory access permission. For each rising clock edge, if the ‘waitrequest’
was de-asserted, the data present at the data bus would be written to the 32 bit DMA
buffer, the address generator would increase the address by one and the DMA size
counter would decrease by one. If the ‘waitrequest’ was asserted then all operations
would be stalled until it was de-asserted. The read operation would be repeated until the

DMA size decreased to zero and the state-machine would return to the Idle State, waiting

for next memory read operation. However, during the DMA read operation, if the
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Transmitter DMA buffer was full before the DMA size decreased to zero, the state-
machine would return to the Idle State to wait for the DMA buffer to be cleared to

‘Almost Empty’ level before resuming the DM A read operation.

Receiver Bus master

Part of the structure of the Receiver Bus master module was similar to the
Transmitter Bus master module. It also had a state-machine to control and monitor the
data transaction between the DMA buffer and target memory location via DMA write

operation. Its operation is illustrated in Figure 5-5.

Almost Full fl

Write

Figure 5-5: Receiver Bus master’s state-machine.

Upon reset, it entered the Idle state and waited. When a message was received and
the Receiver DM A buffer was filled to a level when it is almost full, the state-machine
was notified and the state-machine entered the Write State. Therefore the DMA write
operation was kick-started to transfer all the data from the Receiver DM A buffer to a
designated memory location. During the data transaction operation, the transaction was
only paused when the ‘waitrequest’ signal was set HIGH. At this stage, the ‘write_n’
signal remained LOW but the module stopped reading the Receiver DM A buffer until the

‘waitrequest’ signal was de-asserted. When the Receiver DMA buffer was empty, the
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state-machine would return to the ‘Idle’ state from the Write State and wait for the next

DMA write operation.
OS-Link Register Slave module
Avalon Slav® Interface

DMA Kick-Start Signal!
DMA Kick-Start

Os-UnK /\ Status Signals
Register Arbiter

Figure 5-6: Block diagram for OS-Link network interface’s Avalon Bus slave module.

Figure 5-6 illustrates the block diagram structure of the OS-Link Register module.
It consisted of 3 main modules: the Avalon Slave Bus interface, DMA Operation
Initialization Logic and the Status Registers. The processor could read or write data to the
relevant registers. In the Avalon Specification , individual peripherals did not need to
decode the address lines to generate chip-select signals because they were generated by
the address decoding logic from the Avalon Bus. However the offset of the address,

where registers would be accessed by the system, had to be decoded.

The Register module was the module where all the necessary registers, such as
control registers and status registers, in the OS-Link Network Interface device were
placed. There were twelve 32 bit registers contained in the OS-Link Register module, as
listed in Appendix C. The registers were used to assist the development, testing and

monitoring of the network interface.

The DMA Operation Initialization Logic was used to initialise and kick start the

DMA read and write operations of the Transmitter Bus master and Receiver Bus master
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respectively. To begin a DM A data transfer, either DM A read or DM A write, the address
or the target memory location must be loaded into the address register, and then followed
by the size of the message to be loaded into the message size register. When the size
register was being loaded, a pulse would be sent to the OS-Link bus master to kick start

the DM A operation and to get the back end OS-Link module ready.

DM A Buffers

From Figure 5-1, there are two DM A buffer modules, one buffer for each direction.
The buffers operated based on FIFO principles. The Transmitter DM A buffer was the
temporary storage for data obtained from the system’s memory via the Transmitter Bus
master before packetisation. The FIFO was allowed to store one 32bit data per clock

cycle when the request to write to the FIFO was asserted.

The Receiver DM A buffer also operated based on FIFO principles. It provided the
temporary storage for the depacketised 32 bit data from the Receiver Message De-
Packetiser. The data stored here would be waiting for the DMA operation to be
transferred to the system’s memory via the Receiver Bus master. The storage capacity
needed to be sufficient to provide a smooth data flow between the Receiver Bus master
and the Receiver’s Message DePacketiser, so that there was no need to stall read/write
operations because the buffer was either empty or full. The FIFO was able to unload one
32bit data word per clock cycle to the data bus, provided the target memory module was

ready to receive data with no access latency.

The Transmitter DM A buffer was a synchronous Legacy FIFO while the Receiver
DMA buffer was a synchronous Show-ahead FIFO. For a synchronous Legacy FIFO, the
data would only be present on the data bus at the next clock cycle after a read request was
asserted; for the synchronous Show-ahead FIFO, the first data would be presented on the
data bus immediately after the data was written into it. The read request was asserted for
the next data to be presented on the data bus at the next clock cycle. The simplified

timing diagrams to explain the operation of synchronous Legacy FIFO and Show-ahead
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FIFO are shown in Figure 5-7 below. The use of Show-ahead FIFO as a Receiver DM A
buffer was to optimise the DMA transfer in Avalon Bus, because the address, data, and
write requests were asserted together in the address bus, data bus and write request
signals respectively. If Legacy FIFO was used, then one clock cycle delay needed to be

added in order to read a data from the buffer, for each DM A write operation.

Data /  Data / Data

Write

Output

CLK j

Data —
Write
Read

Output Data 1 Data 2

b)

Figure 5-7: Timing diagram for a) synchronous Legacy FIFO and b) synchronous Show-ahead FIFO.



5.1.2 Back-end Module

Tx DMA Control er
Tx DMA Buffer A Token _ \
v Packetiser Buffer

OS-Link Registe
3F
i/
Rx DMA Controller Dewpacketiser Token i\
V Rx DMA Buffer 7\ Buffer ;.y/

Network Interface Controller

Figure 5-8: Block diagram for the back-end modules of the OS-Link Network Interface Controller.

Figure 5-8 is a block diagram that shows the important modules in the back-end
section. They are the Message Packetiser, Depacketiser, Token Buffers and Network

Link Interface. The functionality of these modules will be discussed next.
Transmitter Message Packetiser

The Transmitter Message Packetiser was to read data from the DMA buffer,
packetise it, and then write it to the Transmitter Token buffer. The message packetisation
was done in hardware in order to reduce software overhead. Each 32 bit data from DMA
buffer was split into four 8 bits sections. A token type bit of logic ‘1’ was added to each
data section to form a 9 bit data token before it was transferred to the Token Buffer. The
optimised OS-Link Network interface device supported up to seven header tokens. The
header tokens included up to six routing information bytes including a message identity
byte. The Header Token Number, which was located at the most significant byte of the
first 32 bits header word, was to count the number of routing information bytes. However,
if the network was larger and required more than 6 routing headers, the user can use the
Zero Header mode. Each header byte also had a data type bit of logic ‘1’. The

arrangements of headers and data tokens are illustrated in Figure 5-9.
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EOF

Figure 5-9: Header and data token arrangement.

The header routing bytes would be stripped one after the other, according to their
position in the message stream, as the message traverses the OS-Link-based network. The
obligatory message identity byte would be received by the destination processing node.
The packetising process would end when Length Register in the DMA module was
decreased to zero and the DMA buffer was emptied. At the end of message, a control

token, End Of Message (EOM), with data type bit logic ‘O’, would be appended.

X, Headerend /'

Idle Header Data

Figure 5-10: Message state-machine.
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Figure 5-11: Message state-machine flow chart

The Transmitter Message Packetiser contained two state-machines. The Message
state-machine was to control and monitor the data packetising process. The Message
state-machine had four states; ‘Idle’, ‘Header’, ‘Data’, and the ‘Termination’, as shown in
Figure 5-10. Each stage reflected the type of data being processed and transferred.
Referring to Figure 5-11, a message was started in the ‘Idle’ state when the processing
node was booted or reset. It would enter the ‘Header’ state when the start message
command pulse was received from the OS-Link Register module’s control logic. This
command pulse occurred when the message’s length was loaded into the message size
register in OS-Link Register module. At this stage, the header information would be
loaded into the Token Buffer with the type bit. When all the header information was
loaded, the state-machine would enter the ‘Data’ state. However if the Zero Pleader mode

was used, the Header Token Number was made ‘Zero’. This means there was no header
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information as all the header information was included into the payload, no header count
was necessary and forced the state-machine to move into the ‘Data’ state immediately. In
the ‘Data’ state, the payload of the message was loaded into the Token Buffer. After the
data packetisation process was finished, the state-machine would move to the
‘Termination’ state before returning to the ‘Idle’ state. At ‘Termination’ state, the EOM
token was loaded into the Token Buffer. After returning to the ‘Idle’ state, the state-

machine would wait for the next message transmits to begin.

Write

DMA Buffer

Figure 5-12: Buffer Read-Write controller State-machine

The second state-machine was the Buffer Read Write controller State-machine. As
illustrated in Figure 5-12, it had three states; ‘Idle’, ‘Read’, and ‘Write’. It would start
operating, moving from °‘Idle’ to ‘Read’ when the Message state-machine entered the
‘Header Stage’. When in the ‘Read’ state, it might have remained in the current state or

advanced to one of the other two states, depending on the condition status:

*> Condition 1: If a 32bit data was successfully read from the DM A buffer, it would
advance to the “Write’ state.

(] Condition 2: If the DMA buffer was empty and the message transmission is not
ended yet, it would remain in the ‘Read’ state since there was no data to be

acquired from the DMA buffer.
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[0 Condition 3: If the DM A buffer was empty and the message transmission is ended,

then it advanced to the ‘Idle’ state.

When in the ‘Write’ state, the obtained 32bit data from DM A buffer would be split
into four 8 bit sections. Each data section would be formatted into a 9 bit data token by
appending a logic bit ‘1’ as a type bit before being written into the token buffer. After
writing the data token into Token Buffer, the state-machine would return to the ‘Read’
state immediately. The state-machine would go back and forward between the ‘Read’ and
‘Write’ states until the all the data in the DM A buffer was emptied, it would return to the

‘Idle’ state waiting for the next transaction.

Receiver Message Depacketiser.

The receiver message Depacketiser transferred and depacketised the received data
tokens from the Receiver Token Buffer (to the Receiver DM A buffer). The 9 bit data
tokens were converted back to 8 bit data sections, by removing the data type bit. Every
four data sections were combined to form a 32 bit data word, before it was written to the
Receiver DM A buffer. Upon receiving a message before the depacketising process, the
type bit of each token was checked. Before the received tokens were stored into the
Receiver Token Buffer, all the control tokens have been removed, except the EOP, EOM

and BEOP tokens.

Header

Figure 5-13: Depacketiser’s Message state-machine.

The whole de-packetising process was also controlled and monitored by two state-

machines; the Message state-machine and the Read-Write state-machine. The Message
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state-machine had three states; the ‘Idle’ state, the ‘Header’ state and the ‘Data’ state. The
states of the Message state-machine are shown in Figure 5-13. Upon reset, the Message
state would be in the ‘Idle’ state waiting for a kick start. From the ‘Idle’ state, it would
move to the ‘Header’ state, as the address of the target memory location and then the
length of the message has been loaded (‘Rx_pkt strt’ pulse received). In the ‘Header’
state, as soon as the Message ID was written into the Receiver Token buffer, the data
would be de-packetised and then written into the Header register in OS-Link Register
module, indicating the new received header from the expected message. After that, the
state-machine entered the ‘Data’ state. In the ‘Data’ state, the data tokens were extracted

from the Receiver Token buffer and transferred to the Receiver DM A buffer.

: ' Wait \ .
Write 'y, / Wait
DMA DMA D ) | Transfer
Buffer _/ \  Fnd
Data empty

Flush

Figure 5-14: State diagram for De-packetiser’s Read-Write State-machine.

The second state-machine was responsible for the Read-Write operation, as
shown in Figure 5-14. Starting from reset, it entered the ‘Idle’ state. As the ‘Rx_pkt_ strt’
pulse was received, it would move to the ‘DMA Sync Stage’ and wait until the Message
state-machine moved from the ‘Header’ state into the ‘Data’ state. When the Message
state was in the ‘Data’ state, it would advance into ‘Read OS Data’ to read from the
Token Buffer while extracting the type bit from the data token. Each time a data token
was read, the Message Size register would be decremented by one. The Read-Write
State-machine would have read the Token Buffer four times to obtain a four 8bit data

bytes, after the type bit was extracted, and combined them to form a 32 bit data word.
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After four reads, the Read-Write State would enter the ‘Write DM A Data’ state to
transfer the 32bit data word into the Receiver DM A buffer. The four reads and one write
procedure would repeat until the whole message was received (when the value in the
message size register was decrement to zero), or the receiving operation was terminated
due to the unexpected control token; EOP, EOM or BEOP. If the message was fully
received or the control token was received before the Message Size register decreased to
zero (early termination) the Read-Write State-machine would proceed to ‘Wait DMA
Buffer Empty’ state. In the case of early termination, the Early Termination Flag would
be set in the status register. As soon as the DM A buffer was emptied by the Receiver Bus
master, the state-machine would move to the ‘Wait Transfer End’ state to confirm that
the Receiver DMA buffer was empty and the control token was received. If both
conditions were fulfilled, the state-machine would return to the ‘Idle’ state. However, at
this point if the control token was still not received but the Message Size Register had
already reduced to zero, a Late Termination Flag would be set in the status register, and
the state-machine will proceed to the ‘Flush’ state where the unexpected extra data token

would be flushed until a control token was received, before returning to the ‘Idle’ state.
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Token Buffers

The Token Buffers were the temporary storage for the tokens waiting to be
transmitted or de-packetised for the transmitter channel and receiver channel respectively.
It was a FIFO of 9 bits wide and 32 tokens depth. The type bit to indicate the token type
(data token OFmessage termination control token) was located at the least significant bit

of each token.

For the transmitter channel, the data read and data write operations were
synchronised to the OS clock and sample clock respectively. The transmitter channel’s
Token Buffer stored the packetised tokens from the Packetiser. The transmitter channel’s
Token Buffer had a ‘Full’ flag to prevent data storage saturation (to pause the data write
operation from the Packetise) and an ‘Almost Empty’ flag to signal the Packetiser to

resume packetising operation, to prevent data starvation.

The receiver channel’s Token Buffer worked initially in the reverse direction. The
receiver channel’s Token Buffer was used to store the received token from the network,
via the Network Link Interface. Instead of using a ‘Full’ flag and an ‘Empty’ flag, the
receiver Token Buffer used ‘Almost Full’ and ‘Almost Empty’ flags for data flow control.
The ‘Almost Full’ flag would set if the stored token was more than four tokens below the
full value. The ‘Almost Full’ flag would signal the Network Link Interface to transmit an
‘Xoff” to stop the upstream node from transmitting any more data tokens until an ‘Xon’
was sent. For Almost Empty flag, it would set when the Token Buffer storage level
dropped to four or less tokens before empty, so that the Network Link Interface could

sent an ‘Xon’ to permit the upstream node to continue sending data tokens.
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Network Link Interface
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TX Link
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To Receiver Token
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Figure 5-15: Block diagram for Network Link Interface.

Figure 5-15 shows the different modules in the Network Link Interface. It consisted
of a TX Link module and an RX Link module. The 9 bit tokens were read from the
Token Buffer and converted into a serial bit stream when transmitting a message to the
network and vice versa. The Start bit and stop bit were attached at the beginning and
ending of each token respectively before being transmitted out of the processing node,

and both would be removed immediately upon receiving each token.

The Network Link Interface also monitored the data flow and the link connection
status. Control tokens, such as ‘Xoff’ and Xon’ tokens, were inserted into the bit stream
between the data tokens or removed when necessary. The ‘Xoff’ token was transmitted
when the receiver channel’s Token Buffer reached the ‘Almost Full’ level, to signal the
upstream node to hold the transmission process; ‘Xon’ token were sent to give
permission to the upstream node to resume the unfinished data transmission. Among the
tokens used in the OS-Link network, only the termination token was allowed to progress
into the token buffer to end the de-packetisation process of that message, other tokens

would be removed at the RX Link module.
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The link connection status was monitored to maintain and verify the connectivity
between upstream and downstream nodes. A ‘Heartbeat’ was asserted every 128 OS
clock cycles and the upstream node would require the transmission of flow control token.
When the communication link was idle, i.e. no data transmission took place, a flow
control token was sent to the receiver to verify that the link is still connected and
operational. Link verification was made periodic to reduce the signal activity and power
consumption. When a flow control token was received, a flag named ‘got token’ was set.
The ‘Heartbeat’ assertion was to send flow control tokens to verify link status. The
‘Checkpulse’ procedure was to check and clear the ‘got token’ flag every 512 OS clock
cycles. If the ‘got token’ flag was not set when the ‘Checkpulse’ was asserted, a link
disconnection was detected (because flow control tokens should have been received
before the ‘Checkpulse’ was asserted). This not only allowed link status to be updated
regularly, but also to avoid data loss due to unknown link disconnection. Triggering the
link disconnection flag would disable the data transmission until the communication link

was correctly re-initialised.

Link dormancy was one of the configurable features implemented in the adapted
OS-Link protocol, working alongside the NTR-FTMO08 router. It allowed a link to go into
a ‘sleeping’ mode after a pre-defined period of link inactivity. No flow control tokens
were required and the links remained silent when the link was in sleeping mode. In the
event of transmitting a message when the link was in sleeping mode, the link was reset
and awoken through a handshaking process (sending control tokens) between the
upstream and downstream nodes. Power consumption was reduced when the link was in

sleeping mode as no flow control tokens were required to be transmitted.
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5.2 The Stratix II Subsystem (ST2SS) Module Description

This section describes the overview of the subsystem (processing node) of the

Distributed Embedded Multiprocessor System built on the Stratix II development board.

NiOS II JTAG-

Timer Processor UART

Avalon Bus

NiQSNIC SDRAM

Figure 5-16: Block diagram of a subsystem design.

The subsystem module is illustrated in Figure 5-16 and consists of six main
components: the NIOS II processor, a Timer, on-chip RAM, SDRAM, a Joint Test
Action Group-Universal Asynchronies Receiver and Transmitter (JTAG-UART) and an

OS-Link Network Interface module.

The ST2SS was adapted from the XAl ARM-based platform design, with a novel
OS-Link Network Interface module design; a new system bus interface with an improved

DMA controller was added.



5.2.1 NIOS II processor

The NIOS II processor was the main processing unit in the ST2SS. This was the
component where calculation or read/write operation control took place. Task and
application program codes were executed there. It fetched instructions from the memory

to be executed and returned the results.

5.2.2 Avalon Bus

The Avalon Bus was the communication medium between all the Bus masters and
Bus slaves. There were 3 bus masters (the NIOS II processor, and the Transmitter bus
master and the Receiver bus master from the OS-Link Network Interface module) and 5
bus slaves (Timer, on-chip RAM, SDRAM, JTAG-UART and OS-Link Register). The
SDRAM controller allowed addressing of up to 16 Mbytes of SDRAM (pre-fixed on the
development board). The implemented on-chip RAM allowed up to 50 kBytes of
addressable memory. The OS-Link Register consisted of 128 bytes of the OS-Link

Network Interface module configurable registers.
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5.2.2.1 Avalon Bus Arbitrator

Tx DMA
Controller
Arbiter SDRAM
RX DIVIA A I'b iter
Controller

Figure 5-17: Slave-side arbitration.

The Avalon bus was a slave-side arbitration bus architecture, so each bus slave
device was only associated with its own arbitrator. All the bus masters that had access to
that particular bus slave would have to access requests via the slave arbitrator. Figure

5-17 illustrates an example of the Slave-side arbitration strategy arrangement.

The Slave Arbitrator received slave device access requests from interconnected bus
masters. It decided which bus master gained the access permission, based on its hidden
arbitration scheme, when there were multiple bus masters access requests. The
architecture of the Avalon Bus also enabled multiple bus masters to access the system bus,
providing the target device that each bus master accesses is different. For example, if the
Transmitter bus master was accessing the SDRAM to fetch a message and meanwhile the
Receiver Bus master kick-started a DM A transfer to the on-chip RAM to store the
received message, both processes could proceed simultaneously because both were
accessing different slave memory module. This was an advantage offered by the slave-

side bus architecture compared to a single master driven bus architecture.



The memory location was decoded by the arbitrator and thus the chip select was
generated by the target device’s arbitrator. The target device was activated to commence
bus transaction after its latency had elapsed. The arbitrator asserted the wait request
signal to the bus master until the slave device was ready to commence the data

transaction.

5.2.3 SDRAM controller interface and On-Chip memory

In the development board, the SDRAM controller was to interact with the off-chip

pre-connected 16 Mbytes SDRAM.

5.2.4 On-chip RAM

There were three different kinds of embedded RAM blocks in the Stratix II FPGA
device: M512, M4K, and M-RAM. Each memory block type provided different
performance specifications and configurations to support different applications in FPGA
designs; some of the specifications are shown in Appendix B. The M4K type memory
was used in the processing node design as ‘distributed memory’ because it was easy to
configure and include into the design in SOPC. 50 kBytes of on-chip RAM were

allocated for each processing node.

5.2.5 Timer Core

The implemented Timer core was a 32 bit interval timer for ST2SS. It could be
configured to function in different modes. When it was configured as a counter, it could
be controlled to start, stop and to reset. It counted in two modes; count down once or
continuous count down. The timer was equipped with a maskable interrupt request where
an interrupt was asserted by the counter upon reaching zero. With this feature, it could

also be configured as a watchdog timer, or periodic pulse generator, depending on
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application requirements. Using it as a time-stamp driver, the time taken to perform or to

run a function could be measured.

5.2.6 JTAG-UART

The JTAG Universal Asynchronous Receiver/Transmitter (UART) was
implemented as a serial character stream communication between the host PC and the
target processing node on the FPGA. The JTAG-UART used the JTAG cable to interact
with the NIOS II Embedded Design Suite (EDS)%99. NIOS II EDS was software with a
collection of tools, utilities, drivers and libraries that was used to develop the embedded
software for the NIOS II processor. By using the NIOS II EDS, software could be written
to display the required information on the host PC screen for development and debugging

purposes.

5.2.7 NIOSNIC

This module contained two bus masters and a bus slave. This OS-Link Register,
bus slave module, was used to monitor the status of the back-end designs. It also created
the control signal to configure both of the bus masters for operation. The bus masters

operation was covered in section 5.1.1.1.

The OS-Link Network Interface was responsible for the incoming and outgoing
messages between the subsystem and the interconnected network. It formed full duplex
bi-directional communication links. The incoming and outgoing messages were passed
between the OS-Link Network Interface device and memory modules (either the
SDRAM or on-chip RAM) via the system bus. The OS-Link Network Interface device’s
bus master modules were accessing the memory of the processing node using the DMA
cycle stealing technique. Both were able to transfer one 32 bits data word each time when
the target memory module was not accessing the processor. The nature of the Avalon Bus

allowed the processor to continue to drive the system and the OS-Link Network Interface
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device to access its target memory module simultaneously as long as both of them were
not accessing the same memory module. This improved the overall performance of the

processing node.

No
Yes
No
Length \
\ - Loaded? a*/
Yes
DMA Active
No

<  End count?

Figure 5-18: DMA Channel operational Flow diagram.

Both DMA channels operated on the same procedure. Figure 5-18 shows the DMA
channel operational flow diagram. It started in the Idle State as no message passing takes
place. To kick start a DMA transfer, the address and message length parameter was
loaded into the OS-Link Register module where the message length information was the
last one to be loaded. This was because loading the message length information sent a
command pulse to the particular bus master to start the DM A operation. Hence the DMA

channel was in the Active state where data transaction between the bus master and
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memory module takes place. The DM A data transaction was subject to the resource status
of the DM A buffer of that channel. The message transmit process was considered ended
when the message length count was decreased to zero and the packedsation/de-
packetisation was finished with no more data in the buffers. This would put an end to the
message transfer and the channel would return to the idle status to wait for the next DMA

operation to begin.

5.3 Embedded Distributed Multiprocessor prototype platform, OSL-ST2

SDRAM

Processing Processing Processing Processing
node 1 node 2 node 3 node 4

29 NTR_ l.
FTMO08

TV

Figure 5-19: Embedded Distributed Multiprocessor platform with 4 processing nodes setup diagram.
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SDRAM

Processing Processing
node 1 node 2

NTR-
FTMO08

Figure 5-20: Embedded Distributed Multiprocessor prototype platform setup diagram.

Figure 5-19 shows the possible setup and connection of the Embedded Distributed
Multiprocessor prototype platform, with the OS-Link embedded network, to be fit into
the Stratix II 2S60 development board100. However two nodes prototype (the OSL-ST2),
as shown in Figure 5-20, was realised in order to prove the principle. There were two
processing nodes and a router implemented on the chip. Processing node 1 consisted of a
NIOS II processor, 50 kBytes of on-chip RAM, a JTAG-UART and an OS-Link Network
Interface Controller. Processing node 2 consisted of a NIOS II processor, 50 kBytes on-
chip RAM and an OS-Link Network Interface Controller. Besides a ‘dedicated’ memory
module for data storage in each processing node, both of the processing nodes shared the
off-chip SDRAM. The SDRAM was used to store the program codes. The other reason
SDRAM was shared, was to make the hardware testing easier, further explained in the

next chapter.

A Bus based interconnection system is a well understood and widely used

architecture in embedded systems. However its scalability is seriously limited. This bus-
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based structure is still convenient for a SoC that integrates less than 5 processors 1 and
rarely more than 10 bus masters. It is not suitable for long distance communications.
Therefore in OSL-ST2, the interconnection of components within a subsystem utilised a
bus based interconnection for the ease of data transaction between the bus master and bus
slave pair, while serial communications (via routers) were used between processing nodes
for message and data passing, just like a distributed system. This improved the

performance of the processing node and increased the scalability of the overall system.

The router used was the OS-Link based Routing switch, NTR-FTMO08. The router
was connected to the constructed processing nodes as shown in Figure 5-19. All the
remaining communication ports were temporary made ioop back’ (Transmit link
connected directly to the Receive link of the same port) since only two processing nodes
were implemented at this stage. All the ‘loop-backed’ connection could in future be

modified to connect to more processing nodes or NTR-FTMO08 routers.
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6 Tests and Results

This chapter reports on the hardware tests performed on the design implemented on
the Stratix II development platform. The aim of running the hardware tests was to ensure
the functionality of the design and evaluate its success compared to previous
implementations. The test results were also compared to the theoretical performance of

the OS-Link Network Interface device.

The tests included investigation of the correct operation of the OS-Link Network
Interface device i.e. transmission and reception of correct data; the DM A modules were
able to perform various sizes of DMA transfer and to control the OS-Link Network

Interface device.

6.1 Test Setup

6.1.1 Memory Distribution and Sharing

As all the off-chip memory and user I/O pins were fixed in the development board,
in order to test the functionality of the developed multiprocessor system, only certain
arrangements of memory mapping were possible. The OSL-ST2 was designed in such a

way that some memory resources were shared, as shown in Figure 6-1.
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CPU 0 CPU 1

NIOSNIC

Figure 6-1: Shared and Distributed memory setup for hardware testing.

Each processing node has its own ‘distributed’ memory resource, the dedicated on-
chip RAM, the SDRAM was shared by all processing nodes. The reasons that the

SDRAM was shared were:

> Only one SDRAM chip was available on the development board. It required extra
design effort to develop an extra SDRAM chip interface. Since all the hardware
wiring was already fixed in the development board, only a few I/O pins were
available for user interface, the remaining was unused as they are unconnected.
Therefore the on-board SDRAM was either shared among the processing nodes or
dedicated to one processing node only.

> The development board contained a 16 Mbytes SDRAM. It had enough memory
space to store the program code for all the processing nodes in developed
multiprocessor system, and it also had enough storage for other data.

> Testing was made easier because the original message could be setup in SDRAM
or dedicated on-chip RAM in the first processing node; meanwhile the received
message could be stored in an unused region in the SDRAM by the second
processing node. The first processing node, which sent the message, would then
compare the message received by the second processing node by accessing the

dedicated memory region in the SDRAM.
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QxOIFFFFFF
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0x0300000  *

Processing node 1
0x0200000 *

Processing node 0

0x0000000 #

Figure 6-2: SDRAM utilisation in the test.

As shown in Figure 6-2, the address range starting from 0x000000 to OxIFFFFF
was dedicated to the program code of the first processing node; the address range from
0x200000 to Ox2FFFFF was dedicated for program code of the second processing node.
The rest of the unused region was free and could be accessed by any processing node at

any time.

Because it was a shared memory resource, the read and write operations had to be
planned carefully, avoiding writing to any of the processing node’s program code region,

potentially causing that particular processing node to crash.



6.1.2 Pulse Generator

A pulse generator module was created to enable timing measurements. It had three
input signals (reset, trigger and stop) and an output signal. The reset was an asynchronous
reset used to reset the pulse generator in case of system failure; the trigger signal caused
the pulse generator to start outputting a ‘High’ signal (when the stop signal was asserted,
it will return to Low’). The output signal was connected to a user I/O pin where an

oscilloscope was connected, as illustrated in Figure 6-3.

Reset
Idle
Trigget®
Processing Puise
node 0 Stop Generator
Stratix I Active

a) b)

Figure 6-3: a) Connection of the pulse generator in timing measurement test, b) State machine in the

Pulse Generator.

In the pulse generator module there was a state-machine, as shown in Figure 6-3b,
which switched between the idle state and the active state. It started in the idle state upon
reset. In the case when a trigger signal was asserted, it immediately proceeded to an
active state and the output went high. As long as the stop signal was not asserted, the high

continued, as shown in the timing diagram in Figure 6-4.
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Trigger

Stop

Generated
Pulse

Figure 6-4: Timing diagram for pulse generator.

6.2 The NIOSNIC Test program

The test program was written in C and cross-compiled into binary code by NIOS II
EDS software, before downloading into the SDRAM for real time testing. As the focus of
this project was on the construction of the hardware of an Embedded Distributed
Multiprocessor prototype platform, the software was designed purely to achieve the
objectives of hardware testing. No operating system was implemented. The written
program interacted with the host PC via the JTAG-UART. NIOS Il EDS allows the user
to interact with the developed embedded system on the development board via a console
window, as shown in Figure 6-5. Through the console window, information or data can

be displayed and data can be inputted and transferred to the embedded system.
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*C/C4 4 hello world.c Nios II IDE

navtaaccN I f @ heBo_world.c
PN Problems 0 Console | Properties Progress
s 1"EEJigBas] ‘ . A
multi_p_cpuO Nios IIHW configuration [Nios [l Hardware] Nios Il Terminal Window (11/10/06 14:54)

B ots~
Si”

mufti_p_cpul
® >»a mufti_p_cpul_syslib[std_2s60ES]

Navigate Trols  Window Help

o * 5 <Pl

multi_p_cpu0 _syslib [std_2s60E 3]

mos2-terminal: Warning: The JTAG cable you are using

not supported for Nios

nio32-terminal: Il systems. You may experience intermittent JTAG communication
nios2-terminal e+ failures with this cable. Please use a USB Blaster revision
ruos2-teirminal: cable or another supported cable. Please

nios2-terminal: errata.txt included in the Nios II development kit documents

mos2-terminal: directory for more information.

nios2-terroinal: connected to hardware target using JTAG UART on cable
nios2-terminal: "ByteBlasterHV [LPTI1] ", device 1, instance

nios2-terminal: (Use the IDE stop button or Ctrl-C to

7665642F OS_LINK_NIC BASE 2110800
OS-Link Found

Please enter your choise.

Write data to memory or register.

Write multiple data to memory or register.
Read data from memory or register.

Read data from memory block or registers.

Set Tx and Rx Address to default.

Loop back test.

Loop back test ver2.

Default Message setup. (Increamenting data)

R I - N7 I U N

Default Memory compare.

Figure 6-5: Console window in NIOS II EDS.

One program was written for each processing node. For the first processing node,

the functions that were implemented in the test program included:

1)
2)
3)
4)
5)
6)
7)
8)

Single memory/register write.

Block memory write.

Single memory/register read.

Block memory read.

Message setup.

Selfloop-back test.

Processor 1 transmit, Processor 2 receive test.

Memory block compare.

The first five functions were to perform single or block read/write operations. A

user’s 32 bits of data was written to a specific memory location or block of memory by

using function numbers 1 or 2 respectively. Memory can be read and displayed on the
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host PC’s screen by calling Function 3 for a single location or 4 for a block of memory.
These functions were used to create and manipulate data contained in the free memory
region. They could also be used to configure or access the OS-Link Network Interface

Controller device registers.

Function numbers 5 to 7 were used to test the OS-Link Network Interface
Controller device via the processing node. Function 5 was used to create a message with
different data patterns. There are 23 possible data patterns for a 32 bit data word;
however, it is very difficult to run hardware tests for all possible patterns. Therefore only
selected patterns were used in the hardware test. The user could either perform a loop-
back test using Function 0, or processing node to processing node message passing using

Function 7.

To use Function 7, the second processing node had to be pre-loaded with a fixed
task to load the Receiver Address register and the Message Length register in advance or
reload both after a new message has been fully received. In other words, the receiver of
the second processing node was always be ready to receive a new message. The Host PC
had neither access to the second processing node (to manipulate the relevant registers to
prepare the NIOSNIC for new messages) nor was able to display any messages from the
second processing node. Therefore the user was not able to interact with both of the

processing nodes simultaneously via the same JTAGUART.

6.3 Hardware Tests

The hardware tests were divided into three stages. The first stage was run when the
first processing node was successfully constructed. The setup of the first stage of the
experiment was shown in Figure 6-0, section a. The communication link at this stage was
made a ‘loop-back’. The second stage was to connect both processing nodes directly so

that one processing node sent messages and the other one received messages as shown in
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Figure 6-0, section b. Finally the last stage, illustrated in diagram c) of Figure 6-6, was to

interconnect both processing nodes via the Router.

Processing node Processing node Processing node
a) b)
IProcessing node NTR-PTMO08 Processing node
0 1
router
©)

Figure 6-6: Tests setup a) Self Loop back of one processing node, b) Direct connection between 2

processing nodes, c) Interconnection of 2 processing nodes via OS-Link Router.

The ‘loop-back’ communication test involved message fetching from the target
memory location via DMA operation, and then processing the message in the OS-Link
Network Interface device. The message was then transmitted by the OS-Link Network
Interface device. Because it was all built on-chip, the receiver would pick up the message
almost immediately after the message left the transmitter. The receiver reassembled the
data tokens into 32 bit data and then transferred the data to the target memory location via

DMA transfer.

This ‘loop-back’ test ensured the functionality of the constructed OS-Link Network
Interface device and assessed its bi-directional communication capability. The clock
source was from the Phase Lock-Loop (PLL) core. The PLL was used to generate the
system clock and the OS clock. The Avalon Bus was operating at 50 MHz (system clock).
The OS clock was altered from 50 MHz to the maximum operational frequency for the
OS-Link Network Interface device, within the PLL specification. Only results from the

maximum data rate are detailed here.



Due to lack of software drivers developed for the new Embedded Distributed
Multiprocessor system, all the read/write, transmit and receiver operations were
performed through the test program written, compiled, downloaded and interacted with
via the NIOS II EDS. Parameters to initialise the DMA operation of the OS-Link

Network Interface device were loaded manually via the functions in the test program.

6.3.1 Avalon Bus Access Testing

The Avalon Bus access procedure began with the address and read or write signal
asserted. Data was sampled from the data bus at the rising synchronising clock after the
read or write request was made, if the ‘waitrequest’ was not asserted. The switch fabric in
the Avalon bus used round robin schedulingl02. The bandwidth allocated for each bus
master’s transfer was determined by the number of bus masters that were attempting to
access the same memory module and the transfer type used by bus masters involved.
There were 3 reasons that ‘waitrequest’ would be asserted by the arbiter: a) Target slave
already being accessed by another bus master; b) Latency required for the target slave
module to produce valid data; c) The slave module was not ready for any transaction yet.
If ‘waitrequest’ was asserted, the bus master had to wait until ‘waitrequest’ was de-
asserted to perform a valid read/write operation. Figure 6-7 shows a sample of timing
diagram of a DMA transfer by the Transmitter Bus master. Figure 6-8 shows a captured

timing diagram for SDRAM arbiter when accessed by the Transmitter Bus Master.

master: TX_MODULE|reset_n
ik|tx_master: TX_MODULE|clk

ter:TX_MODULE]|tx_address 01400000h T~ 01400004h ~! X 014000C)8h
.master: TX_MODULE|read_n

rer:TX_MODULE|waitrequest ~~ | J "™ "| 1
ter:TX_MODULE|data2dmaff 0101 jSOOh $ 01234567h ~)X 07060S04h

Figure 6-7: Captured Timing diagram for a fundamental Avalon bus transfer at 100 MHz system

clock.
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Figure 6-8: Captured Timing diagram for SDRAM arbiter at 100 MHz system clock.

nk_nic_0_Tajnaster_Ojjranted_orichip_rafr_50_kbytes_sl

SiinstloncW p_ram SO _kbytesithe_oneNp_ram _50_kbyteslelk [ | umemlJanl
n-'r

_Tx_master_0_quolified_request_onchip_ram 50 _kbytes_sl
3 Ta_master_0_read_data_vaSd_onchlp_ram _50_kbytes_sl
Np_ram 50 kbyles_slos_Buk_nic_0_Tx_master_0_read_n

konle 0 Tx_master_0_rec(uests_onchip_ram 50 _kbytes sl

Figure 6-9: Captured Timing diagram for on-chip RAM arbiter at 100 MHz system clock.

Both Figure 6-7 and Figure 6-8 were diagrams captured simultaneously by tapping
some of the signals from Transmitter DM A module of the NIOSNIC bus master and the
SDRAM arbiter (respectively) using the Signal Tap function from the Quartus II software.
Both timing diagrams were captured when the Transmitter bus master was accessing the
SDRAM to read data. Figure 6-9 shows the captured timing diagram for activity in the
on-chip RAM arbiter when the Transmitter DMA module of NIOSNIC bus master was

accessing the on-chip RAM to read data.

The following explains the sequence of events captured when accessing the

SDRAM:

>  Point A - The bus master asserted ‘read n’.

>  Point B - Valid access request received by the SDRAM arbiter.

>  Point C - Valid data was available in data bus.

> Point D - ‘Waitrequest’ de-asserted so that bus master could samplethe data from

the data bus at the first raising clock edge after ‘waitrequest’ wasde-asserted.
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Observing the signal pattern of the SDRAM arbiter in Figure 6-8 and Figure 6-9,
the timing diagram suggests that each transaction of 32 bit data was treated as a single
memory access request because the memory request was repeated after each valid data
was presented on the data bus. The difference between both timing diagrams is that the
SDRAM incurred a higher latency cycle than the on-chip RAM. On average, the
SDRAM and on-chip RAM have 8 latency cycles and 1 latency cycle respectively. This
will give a data throughput of 22.2 MByte/s and 100 MByte/s for SDRAM and on-chip

RAM respectively, using the equation below:

transaction _length wystem _clock

data _throughput =
no_of latency cycles+1 transaction _ cycle

Where transactionjength = 4 Bytes

Equation 1: Data Throughput for DMA.

6.3.1.1 Clock Cycle Efficiency Testing

The clock cycle efficiency of the OS-Link Network Interface device Bus master’s
DMA transfer was calculated. Referring to Figure 6-8, the arbiter treated each assertion
of read or write request as a single transaction request. The formula that was used to

calculate its efficiency was as below:

number of transactions

efficiency = 100

setup _ latency +number of _ transactions

Transaction = Data exchange between a bus master and slave pair.

Equation 2: Clock Cycle Efficiency equation.

The efficiency of the DM A transfer of the OS-Link Network Interface Device was
calculated based on the equation above. To calculate the efficiency of the DM A module,

two counters were implemented in the Transmitter bus master module. One to count the
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number of successive transaction, and the other was to count the number clock cycles the
DMA module has to wait for valid data. Graph 1 shows the results of the calculated
Avalon Bus access efficiency for OS-Link Network Interface device’s Bus Master verses

the message payload length.

DMA access efficiency Vs message size

20 -+

4 32 256 1024 12288 51199 131072 1024575
Message Paylod (Bytes)

p — SDRAM Access on-chip RAM |

Graph 1: Graph of the Efficiency of the OS-Link Network Interface device’s Bus Master versus

message size.

The message size was varied for the SDRAM tested from 1 byte up to 1 MByte and
the on-chip RAM up to 50 Kbytes (50 kBytes was dedicated). Message length restrictions
being due to the limitation of the message length register (20bits) and the size of the
distributed on-chip RAM. The DM A module shows higher efficiency when accessing the
on-chip RAM compared to the efficiency ofaccessing the SDRAM. The efficiency of on-
chip RAM access was constantly 50%, with only 1 latency cycle incurred by the arbiter
per successive transaction. The efficiency of the SDRAM access was about 10% on
average. The result of the SDRAM access efficiency was not constantly 10% and
different tests may give a different variation (with the same range of deviation) because

the memory was accessed by the processor for instruction fetching from time to time and



also the SDRAM needed to be refreshed periodically. Therefore the efficiency difference
between the SDRAM access and on-chip RAM was mainly due to the access latency of

the memory modules.

6.3.2 Data Transfer Tests

The data transfer test was the measurement of the message duration for a
complete transmission and reception of a message. The measurement was performed on
messages of various sizes, from 1byte up to 1 MByte. This was because the maximum

allowed message size for the Message Length Register was set to 20 bits, i.e. 1 MByte.

The time duration was measured from the moment the Packetiser module started
to read data from the DM A buffer of the transmitter until the message has fully received
and stored in the DM A buffer of the receiver. The duration of DM A operation was not
included due to the reason that the ‘waitrequest’ signal could be asserted unpredictably
(anytime when there was another bus master intending to access the same memory

device). The setup of the message transfer duration test is shown in Figure 6-10.

Figure 6-10: Block diagram of message transfer duration test setup.

Two signals from the OS-Link Network Interface Controller, a trigger and a stop
signal, will be connected to a pulse generator module (refer to section 6.1.2). The OS-
Link Network Interface Controller asserted the trigger signal when the Packetiser module
started to access the DM A buffer to extract data; the stop signal was asserted when the
receiver received the whole message and the last byte was written to the receiver’s DMA
buffer. In the pulse generator module, there was a state-machine. The state-machine was

in the idle-state upon start-up or reset. When a trigger signal was asserted, the state-
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machine moved from the idle-state to the active-state. The state-machine only returned to
the idle-state when the stop signal or reset signal was asserted. During the active-state the
pulse generator outputted a ‘high’, which was sampled by the externally connected
oscilloscope and the duration or the length of the pulse determined the duration of the

message transfer.
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6.3.2.1 Small Message Transfer Duration Tests

Message Duration for Small Message

100 1000

0.1
0.01

4
2 0001
? 0.0001

0.00001
0.000001

0.0000001
Message Payload (Bytes)

Observed average Message Duration -B —Theoritical Message Duration |

Graph 2: Message duration result for small message up to 1 kBytes at 48.5 Mbit/s Data Rate

Graph 2 shows the performance ofthe OS-Link with a small message payload, i.e.
up to 1 kBytes. The increase in message size resulted in a linear increase in message
duration. It is noticeable that there is a gap between the theoretical results and the
observed results. This was because the theoretical results only take into account the
length of time taken to transmit the message across the medium, factors such as message
packetisation or depacketisation delay, FIFO access and token serialization were ignored.
The lower the message size then such information as message headers, type bit and
synchronization bits are more significant compared to the actual data. For example, the
message with 1byte of header and 1byte of data will consist of 14 redundancy bits and 8
data bits: only about 36% ofthis message will be the actual transmitted data. Comparing
both results from the graph, as the message size increases the slope of both curves is

almost the same. It is suggested that the difference between the two was due to initial
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start-up latency. However, it becomes insignificant as the message size increased, as

shown in Graph 3.

Percentage_dijjerence — -—---------— 100
Theoretical _value

Equation 3: Percentage difference of the Observed Data Rate and Theoretical Data Rate for small

message.
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Graph 3: Percentage Difference between the Theoretical and Observed Results for small messages.
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6.3.2.2 Message Passing Duration Tests

Message transfer duration for different test setups
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Graph 4: Message round trip duration measurement for different test setups.

Graph 4 was the measurement ofround trip duration for messages of various sizes.
The transfer duration measures the length oftime taken for round trip travel of a message
being transmitted and received. It ignores the delay factor for DM A operation due to the

unpredictable wait assertion.

The duration of the round trip message transfer for the single processing node
loop back and the processing node to processing node setup are nearly the same. When
referring to Table A-5, the difference ofthe time duration for these two set oftests was so
small that it is approximately 1.8%. It is suggested that any extra time is due the
additional transition time required by the message to travel from one processing node to
the other, instead of the shorter immediate loop-back. Looking at the third test set up,

which was the message transfer from one processing node to another via a router, at the
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lower message size, it seems to take approximately 0.41 ps extra for each message. The
time difference was more obvious for lower message payload sizes below 1 kByte. The
extra time was consumed by the router decoding the received header flit and directing the
remaining message to the designated output port. Beyond message payload sizes of

1 kByte, the message passing becomes relatively constant at around 47.3 Mbit/s.

6.3.2.3 Data Throughput Tests

Data Throughput vs Message size
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Graph 5: Average Data throughput of OS-Link network at various message size and system clock
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Equation 4: Data Throughput equation
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The Sampling frequency of 1.5 times of the link rate was applied in the OS-Link
based network, therefore by substituting data bit (8 bit), token bit (11 bits) and the clock
with the sampling frequency of 50 MHz and 100 MHz, the resultant theoretical data
throughput would be 24.4 Mbit/s and 48.5 Mbit/s respectively. The 1.5 factor arises from

3 times oversampling using both edges of the sampling clock103.

Graph 5 represents the average data throughput for the first and second test setup,
see Figure 6-0. The measurement of data throughput was at an OS clock frequency of
50 MHz or a clock frequency of 100 MHz. The highest frequency that the OS-Link
Network Interface Device can operate was tested at about 100 MHz. According to the

graph, increasing the OS-clock frequency successfully increased the data throughput.

It can be observed that a message with payload lower than 1000 bytes has lower
throughput. The reasons for this were similar to the analysis in section 6.3.2.1. As the
payload size increases, the ratio of redundancy to the actual data will become less
significant. At a message size of 1 Mbyte, approximately 72% of the message was actual
data. When message payload size was beyond 1 Mbytes the data throughput achieved

was about the theoretical value, 48.5 Mbit/s.
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Data Throughput for different test setup
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Graph 6: Data Throughput Comparison between Different experiments setup.

Graph 6 shows the data throughput achievement of three of the experiments setup.
The results were calculated based on the message payload size and the duration of the
message passing. The theoretical value of the OS-Link data throughput is 48.5 Mbit/s,
according to Equation 4. The highest data throughput achieved by a single processing
node loop-back, processing-node to processing-node and processing nodes via a router
were 48.0 Mbit/s, 47.3 Mbit/s and 47.3 Mbit/s respectively, see Table A-4. All three
maximum achieved results that were close to the theoretical value. The data throughput
for the processing node to processing node via router setup was lower for message
payloads below 1kByte. This was due to the overhead added to the data in the data
tokens (such as: header byte, type bits, Start bit and stop bit). At lower message payloads

the ratio was higher comparing overhead to actual data per message.
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6.3.2.4 Correct Message Passing Test

The implemented network was also tested for correct operation i.e. that the
transmitted and received messages are exactly the same. For every 32bits of data, there
are 232(4294967296) binary permutations, not to mention the possible permutations
available for the whole message, so it was too time consuming and difficult to test all the
possible permutations. Therefore only a few combinations of patterns were selected in
order to test the correct operation of the message passing interface and medium. The

chosen patterns were as follow:

Pattern (hex form)
00 00 00 00
FFFFFFFF
00 01 02 03(incrementing)
AA AA AA AA
55 555555
80 80 80 80
08 08 08 08

Figure 6-11: Chosen bit patterns in Hexadecimal for message passing tests.

Each message pattern was transmitted, received and compared for all 3 test setups
i.e. loop back, processor to processor and processor to processor via a router. The result

of pattern comparison was 100% matched. The logged result is available in Appendix A.
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6.4 Resource Utilisation Report

The entire design was implemented in a EP2S60F672CS5ES of the Stratix II Family.

OSL-ST2 and consumed 24264 ALUTs (50% of the total available on the chip), 928064

memory bits (36% of the total available), 17556 registers and finally 126 I/O pins were

used (25% of493 1/O pins). Table 2 below is the simplified Resource Usage Table for the

entire design. It was obtained after the compilation and fitting process was completed. It

shows the resource utilisation for each module in terms of Logic Cell Combination, Logic

Cell Register and memory bits usage.

Main Module
Top Level
Router
CPU1
JTAGUART
On-Chip
RAM

OS-link NIC

CPU2
JTAGUART
On-Chip
RAM

OS-link NIC

Sub Module layer 1

OSL-ST2

Tx

Master(Controller)
Tx DMA buffer

Rx

Master(Controler)
Rx DMA buffer
OS Link Register
Message Interface

Link Interface

Tx

Master(Controller)

Rx

Master(Controler)
..Rx DMA buffer
OS Link Register
Message Interface

[ > M°dU'e

Packetiser
Depacketiser

Tx OS-Link Buffer
Rx OS-Link Buffer
Transmitter
Receiver

e K

Packetiser

Combination
20771
2057
2064
122

80

131
2145

31
2157
67
59
94
146
151
36
28
2064
122

80

18l
2145

67
59

[ Reqister
17744
1930
1592
106

4

120
2144

32
2119

20
82
324
324
34
24
1592
106

120
2144

32

ESTH*
928064
3200
76032
1024

409600

76032
1024

409600

2119

20
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Table 2: Simplified Table of Resource Usage in OSL-ST2 System.

6.5 Power Consumption Report

Embedded systems are often used in battery powered applications, for convenience
or due to their application requirements. Power consumption is one of the crucial factors

that will determine the length of time that the system can operate.

The internal architecture of the target FPGA allows the synthesis tool to estimate
the logic cell utilisation after fitting the design to the target device, including
configuration details such as clock frequency the software is able to estimate power
consumption. Highly accurate power consumption assessment can be made by the
Quartus II software by activating the PowerPlay Power Analyzer. Assumptions were
made such as ambient temperature was 25 °C and the cooling solution was a 23 mm heat
sink with 200 LFpM Airflow. An alternative power consumption calculator is also

available for the Stratix II Family.

Operational Clock Frequency
Module 50 MHz 100 MHz
NIOSNIC 110.02 mW 121.51 mwW
NTR-FTMO08 60.17 mwW 120.32 mW

Table 3: Power Consumption of NIOSNIC and NTR-FTMO08 at two different Operational Clock

Frequencies.

Table 3 shows the power consumption results of the NIOSNIC and the NTR-
FTMO08 router operating at operational clock frequency of 50 MHz and 100 MHz

obtained from the power consumption report generated by the PowerPlay Power
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Analyzer. The table shows only about 10 mW increase of power consumption in
NIOSNIC while the power consumption of the NTR-FTMO08 doubled as the operational
clock frequency doubled. This is because only part of the NIOSNIC was synchronised by
OS-Clock (see section 5.1) while the NTR-FTM router was synchronised by the OS-
Clock. The increase of power consumption was due to fast-switching of transistors when

operating at higher frequency 105.

The total power consumption for the ST2-OSL was 1532.57 mW while using a
50 MHz System Clock frequency and a 100 MHz OS-Clock frequency.

6.6 Summary and Discussion

Section 6.2 first explains the setup of the test bed; each processing node has its own
dedicated memory resource i.e. on-chip RAM, and shared memory resource i.e. SDRAM.
The memory resource was distributed and shared in such a way that it makes the
hardware tests easier. This section also included the explanation about the pulse generator,
which was used for duration measurement. The duration of the generated pulse was the
period of time used in the process of transmitting a message until the message was fully
received. This pulse was captured by an externally connected oscilloscope via a user I/O

pin for measurement.

Section 6.2 explains the available functions in the test program that were used to
access the addressable memory of each component. This test program was also used to
setup a message, initiate message passing, and finally compare the transmitted and

received message.

The result of the hardware test was explained in Section 6.3. The DM A module’s
memory access was tested on both SDRAM and on-chip RAM. The DMA modules were
using the Avalon bus fundamental transfer type when accessing target memory modules.

The observed timing diagram shows that each 32 bit transaction between a bus master
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and the target memory module was treated as single memory access request. The transfer
overhead of the DM A transfer, of the NIOSNIC, relies on the type of Avalon bus transfer
used and the timing property of the target memory module accessed, thus different clock
efficiencies and data throughput are obtained dependant on the exact type of RAM. It is
possible to increase the DMA module’s data throughput by using other Avalon bus
transfer types, such as Burst Transfer or Pipeline Transfer. The various properties of each
transfer type are explained in the Avalon Memory-Mapped Interface Specification
version 3.292. The other types of transfer must be implemented with precaution as each

type will have a different effect on the performance of the processor and NIOSNIC.

The hardware tests also demonstrated a significant improvement in the data
throughput of an OS-Link based network when implemented in a single programmable
chip, especially when compared to the XAl prototype. The operating clock frequency has
been successfully increased from originally 66 MHz in the XAl prototype to 100 MHz in
the Stratix II chip. Each OS-Link channel can give unidirectional data throughput of up to

48 Mbit/s.

The data throughput of the DM A module was higher than the data throughput of
the OS-Link network (see section 6.3.1). The DMA buffer was filled up faster than the
NIOSNIC can transmit the message. Therefore multiple DM A requests were required for
message sizes larger than 300 bytes. This is due to the DMA modules and the Packetiser
being synchronised by the same clock frequency. It took 1 clock cycle to store 32 bit data
into the DM A buffer but 5 clock cycles to packetise (1 clock cycle to read a 32 bit data
from the DM A buffer, 4 clock cycles to format the 32 bit data into four 9 bit tokens) and

buffer the tokens into the Token buffer.

Section 6.4 is the report of resource utilisation of each module in OSL-ST2 on the
Stratix II chip. For each module it states the Logic Cell (either combinational or register)
as well as the memory bits used. After implementing two processing nodes and a NTR-
FTMO08 router, only approximately 50% of the ALUT and 36% of the memory bits were

utilised. The Stratix II chip resource utilisation has suggested the potential of



implementing up to four processing nodes in it. However, to implement more processing
nodes than the initial design will involve the distribution of on-chip RAM to be
reconsidered. This is because distributing 50 kBytes of on-chip RAM to each of the two
processing nodes initially used up all the M4K type RAM in the current Stratix II chip.
To use the other two types of RAM resource available will involve a different
configuration of the system generation in the SOPC and a redesign of the memory

interface logic.

Section 6.5 is the summarised power consumption analysis report. The report
shown in Table 3 shows the increase of power consumption due to the increase of the
operational clock frequency. Although operating at higher clock frequency theoretically
will give higher data rate, the increase of operational frequency causes higher
consumption of power. Network interface controllers such as Ethernet, which can operate
at multi gigabit per second speed, could result in power wastagel06. A large number of
applications run at higher speed than they need to and are also left ‘On’ 24x7 with low
utilisation. A white paper provided by Ethernet Aliance K stated that ADSL with data
rate of 24 Mbit/s has power consumption of about 2 W when operating in full data rate.
Even when it is in ‘Low’ power and ‘O ff’ state the power consumption are 0.75 W and
0.3 W respectively108. Therefore high power consumption communication systems may
not be suitable for embedded systems when power consumption is a crucial requirement,
taking factors such as the distance, data rate requirement, and power supply use into
consideration. The power consumption of the test FPGA was approx. 1532.57 mW for a
data rate of 48.5 Mbps, excluding the transceiver that would be needed for longer
distances. The design has not been optimised for power consumption and could offer

possibilities for further work in this area.

120



7 Conclusions and Future Work

7.1 Conclusions

This thesis has documented research into a novel distributed multiprocessor
system on a single programmable chip. This involved the construction of custom Avalon-
based OS-Link Network Interface controller. The network interface controller was then
implemented as part of a processing node, which consisted of a NIOS II processor and
memory modules. These were designed to be used as serial communication building
block in a NTR-FTMO08 router based embedded network. The OS-Link embedded
network is targeted at real-time, distributed, embedded multiprocessor applications. The
interface device could be utilised to produce a communication network linking multiple
processors either on-chip or off-chip. The OS-Link embedded network would allow
multiple RISC processors to operate as processing nodes in the same network, thus
increasing system flexibility and applications. Inter-processor bi-directional throughput
was increased by implementing multiple processing nodes on the same chip (when

comparing to previous systems in the research group).

, The network interface device was designed to interconnect the NIOS II processor
to the router network which utilises an adapted OS-Link protocol. The network interface
controller was named NIOSNIC. It will read the messages from memory, via a DMA
operation, and convert them to router tokens before transmission (and vice versa). The
network interface controller for the processing node was built following on from work
based on the previous XAl prototype design; adapted, in amongst other respects, to
reduce the processor interval required to initiate the DMA operation when message
passing (so that the processor can return to its dedicated task faster). The NIOS II system

uses the Avalon Bus interface; therefore the NIOSNIC was designed for this interface.

Two processing nodes, sub-systems within the OSL-ST2 SoC, were constructed:

each has a NIOS II processor, 50 kBytes of on-chip RAM, and a NIOSNIC module. They
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were generated by using SOPC software in VHDL format, where each module was

included and connected via a graphical user interface provided by the Quartus II software.

The custom NTR-FTMO08 router was used as inter-processor communication
medium in this embedded multiprocessor network. It is an &-channel off-the-shelf
hardware message router, which was developed by previous researchers in the NTU
research group. It allowed up to 8 processing nodes to be connected, or to form a larger
network by linking to additional NTR-FTMO08 routers. Using the routing device, different
network topologies can be formed to suit the application, such as: star, daisy chain,

irregular or even hybrid networks.

Together with the processing nodes, the entire system was compiled and
synthesised using the Quartus II software, before being incorporated into ASIC design.
After synthesising the designs, the designs were downloaded onto the FPGA chip through
the JTAG so that it can be tested. The test program was also downloaded into the
dedicated memory region in the same manner, via the JTAG. The testing and debugging
were aided and performed on the development board with re-programmable SRAM based
FPGA, Stratix II 2S60 chip. The FPGA can be programmed/re-programmed allowing
modifications and experimentation without the need to invest in new hardware when
design errors occur. The functionality and performance of the NIOSNIC and the router

was verified via real-time hardware tests.

There were two communication architectures implemented in the designs. Within
a processing node, a shared bus or bus based topology was used for the reasons discussed
in section 3.3. The system bus used in the design was the Avalon Bus. As described in
section 3.3, the Avalon Bus is a simple bus architecture used by Altera in its SOPC
design. It provides a simple and easy to understand protocol that will help to keep the
interface design as simple as possible (thus reducing the use of Logic Cells). It also
provides an interesting arbitration technique, which is the Slave-side arbitration where
each bus slave will have its individual arbitrator, which controls the access of the bus

masters that interconnected to it. The implementation of Avalon bus allows multiple bus
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masters to access the interconnected bus slaves simultaneously, provided they are not
accessing the same bus slave. This enables the processor to run its task, while the
NIOSNIC is accessing the memory module for data transfer. This will help to improve
the overall processing node performance and speed up the task execution time, because
one bus master does not have to wait for another to release the bus access in order to

access the target bus slave as in central arbitration system.

One of the processing nodes has a JTAGUART. It is a special UART core that
can transfer data over the JTAG connection. The JTAGUART was used to interact and
communicated with the Host PC. The use of the JTAG-UART has eliminated the need
for separate RS232 connection to host PC for communication compared to the XAl
prototype or previous group designs. Through the JTAGUART, messages or data from
that processing node can be displayed on the console window of the NIOS II EDS

software; also via the console window, data can be inputted to that processing node.

During the development process, it was realised that the amount of memory
resource on chip is a crucial issue that must taken into consideration when designing this
SoC. The on-chip RAM for the processing cores is divided with other peripherals or
modules that require storage. There were a few factors that determined how the memory

resource was distributed:

> The type of system to be developed. A Symmetric Multiprocessor (SMP)
system will be easier because the memory resources are shared by all bus
masters. However the Massively Parallel (MPP) system, or distributed system,
has a more complex distribution of the on-chip RAM. The decision of the
amount of memory to be distributed to one processor will depend on the
requirement of the application or task to be dedicated to that processor.

> The requirement of memory by other peripheral or modules. Besides the
processors, some of the peripherals or other modules (for example DMA
machine, UART,and other custom designs) require storage; to store data

before they are transferred to other locations or processed.
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In the case of OSL-ST2, with 2 processing nodes, each allocated 50 kBytes of M4K
type On-Chip RAM with 32bits data bus, only 36% of the total memory resources (of
approximately 9 Mbits availability) were consumed. The distribution of 100 kBytes to
both processing nodes has fully consumed all the M4k type On-Chip RAM. However,
adding extra processing nodes is still possible by using other (slower accessed) memory.
The distribution of the On-Chip RAM will be different depending on the requirement of
the application. In the case where more memory resources are required; there are two
options to overcome the lack of memory resource on-chip. Firstly, use the logic element
or logic cell to construct storage (sacrificing these); secondly, relying on additional off-
chip memory resources. Adding off-chip memory will require the use of I/O pins. In this
case the loss of I/O pins available for the design and the type of I/O pins to be used will

be a consideration.

The key conclusions resulting from the hardware tests of the designs are presented

below:

> The Over Sampling technique used in the OS-Link based network proved to be
capable of operating at sampling frequencies as high as 100 MHz in the network
on-chip. The Phase Lock Loop (PLL) core enables the alteration of sampling
frequency. Therefore the designs can be tested on different sampling frequencies.
The embedded network was operating with the sampling frequency of 100 MHz
compared to the previous prototype XAl system, which was running at a
maximum sampling frequency of 50 MHz.

> By including the message headers into the message payload, the intervention of
the processor in order to initiate a message transmitted has been reduced by 33%.
The previous prototype design needed to perform three write operations to initiate
a transfer: to input the address where the message payload was stored, to input the
message header, and finally to input the message length into the registers. By

including the message headers into the message in advance, the processor
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required only to write to the address register and the message length register to
‘kick start’ a message transmit.

> Alteration of the Packetiser has increased the capacity of the header information
supported in the NIOSNIC from three to seven header bytes. This enables a
message to pass though as many as six routers.

> Building a SoC can improve the performance of the OS-Link network because the
propagation delay from a transmitter to the receiver has been reduced. This has
enabled the data throughputs of 48 MBit/s and 47 MBit/s for single processing
node loop back and processing node-to-processing node message passing
respectively, which is very near to theoretical value of 48.48 Mbit/s.

> The use of NIOS II ‘softcore’ processor enables the construction of a
multiprocessor embedded system on a single programmable chip. With current
design and configuration of a processing node, the Stratix II EP2S60F672C5ES
has the potential capacity to include four processing nodes and a NTR-FTMO08

routing device alongside ancillary devices such as memory and I/O.

7.2 Future Work

7.2.1 Enhanced NIONIC’s DMA Modules

The latest version of the Avalon bus specification® has suggested that the DMA
module can be further improved and enhanced by supporting “Burst transfer”. The Burst
transfer executes multiple transfers as a unit, instead of treating every unit of data as an
independent transfer as in the basic Avalon transfer. Using Burst transfer, the Avalon bus
will guarantee an uninterrupted access to the target device, implemented on the same bus,
for the duration of the burst. This will maximise the data throughput for each transfer

between the involved bus master and slave.

Increasing the DMA buffer’s data width, from 32bits to 64bits or 128bits, will
improve the data throughput of the DM A modules. The Avalon switch fabric provides the

dynamic bus sizing feature that manages the data transfer between master and slave ports
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with different data bus sizes. All data will be aligned in contiguous bytes in the bus
master’s address space when dynamic bus sizing property is addressed. Having the data
bus width increased, say 128bits, four times more data bytes can be accessed per transfer.
Hence, the depth of the DMA buffer will need to be reduced to match the original
capacity, with fewer transactions to fill the buffer. The shorter the memory access burst
period, the faster the access request can be freed for other bus masters gain their request
to the same memory module. Altering the DM A buffer’s width will involve alterations on
the Packetiser and Depacketiser modules to suit the new DMA buffer width. This will
have the benefit that the packetiser/depacketised will work more efficiently. When
transmitting a message for example, in 32bits bus DM A buffer, there will be one read to
the DM A buffer and four writes to the Token buffer; using a 128bits DM A buffer, there

will be. one read to the DM A buffer and sixteen writes to the Token buffer.

7.2.2 Group Adaptive Routing

The NTR-FTMO08 routing device provides the Group Adaptive Routing
communication feature. It allows a processing node with more than one OS-Link based
network interface controller to be connected to it. The group adaptive communication
offers the benefit of an alternative path to the same destination when the dedicated path is
busy or down. This will increase the communication bandwidth per processing node for
nodes with more than one network interface controller. It is important to investigate the

potential efficiency gains and influence on the traffic in the network.

7.2.3 Additional Communication Channels

To increase the available bandwidth for communication, additional communication
channels can be added. Utilisation of the NTR-FTMO08 Routing Device allows additional
channels to be added to each processing node, as the Group Adaptive Routing Technique
was implemented in NTR-FTMO08 Routing Device; all the channels that interconnect the

same processing node and router can be grouped. This will improve the bandwidth
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utilisation for each processing node (router pair), allowing simultaneous multiple

messages passing as well as improved tolerance to faults.

Additional communication channels for each processing node are possible
without monopolising the Avalon Bus if the implementation of memory modules is
planned carefully. For example, having two 25 kBytes on-chip RAM instead of a single
50 kBytes on-chip RAM, for the Avalon Bus would allow simultaneous access for
multiple bus masters, provided they are not competing for the same target slave device.
Of course, this would mean the use of extra logic cells to construct the arbiter for the

extra memory module.

The overall performance of a processing node has to be re-evaluated when more
communication channels are added. This is because additional communication channels
mean an increase in the number of bus masters in the processing node that will compete

for memory access.

7.2.4 Virtual Channels for NIOSNIC

Virtual Channels refers to automatic message channel allocation upon the arrival of
a message. Devolving the memory address allocation function to the network interface
controller allows the messages, with known message ID, to be allocated their storage
address automatically (without involving the processor to suspend its task to process the
new arrival). This operation, however, requires that the message ID and target memory
address are pre-loaded into Context-Addressable-Memory (CAM). Virtual Channels are
useful to handle situations when two or more different incoming messages arrive at the

same time 109.

The FT-PCI-OSLI design was implemented on an APEK20K chip, which

supported CAM. CAM was used as a ‘search engine’ which outputs an address for a

message ID when the given message ID is matched to the incoming header. However, the
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Stratix II family chip does not support the use of CAM; therefore Virtual Channels were
abandoned in this design. The function of CAM might possibly be re-constructed with

available registers and a small amount of RAM.

7.2.5 Realisation of the Embedded Distributed Multiprocessor System

The research concluded with the design and synthesis of the OSL-ST2, and then
hardware was implemented on the Stratix II 2S60 development board. The OSL-ST2 was
tested using loop back tests and message passing between processors, with and without
the routing device. To enable the construction of an embedded distributed network,
controlled by a Host PC, OSL-ST2 should be integrated together with FT-PCI-OSLi on a
custom developed board. This would allow further research to experiment and access the
effectiveness of the network as a whole and identify the possibility for further
improvement. The OSL-ST2 design is ready for hardware implementation, the FT-PCI-
OSLi and NTR-FTMO08, have been successfully implemented in hardware in the previous

research.

Another focus of effort in order to construct the embedded distributed
multiprocessor system will be the software aspects of the system. Software drivers for use
in the processing node are required. The software driver that supports the network
interface should be simple and minimised to reduce the intervention of the processor, thus
minimising the overhead and maximising the computing ability of each processing node

of the parallel system.

Hardware realisation would also permit research into multi-router networks for
various network topologies. Such experiments will show how network topology could
influence traffic patterns and the overall performance of the parallel system. And finally

it will also help to seek ‘room for improvement’ to suit any applications in the future.
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7.2.6 Power efficiency investigation

Power considerations are often crucial for embedded system. The current design
has not been optimised for power consumption and this could offer possibilities for

further work.



Appendix A: Test Result

Single
processor
Test

SDRAM
read/write

Write

Read
double
Word
Loop
back Test

Default
message
size

number
of loop

100
1000
10000
100000
1

10

100
1000
10000
100000

1

100
1000
10000
100000

1

100
1000
10000
100000

1

100
1000
10000

100000

Byte

128
512
1™

128

1

1
256
256
256
256
256
256

10000
10000
10000
10000
10000
10000
100000
100000
100000
100000
100000
100000
1000000
1000000
1000000
1000000
1000000

1000000

Pattern

X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern
2

x X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern
3

X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern

X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern
5

X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern
6

x X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern

7

x X X X X

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
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Success

x X X X X

X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X



Table A-l: Single processor loop back message test with chosen test patterns.

Tes, number Byte Pattern Pattern Pattern Pattern Pattern Pattern Pattern Success
of loop i 2 4 5 6 7
3
PN-to-PN
Default 1 1 X X X X X X X X
message
Size 10 1 X X X X X X X X
100 1 X X X X X X X X
1000 1 X X X X X X X X
10000 1 X X X X X X X X
100000 1 X X X X X X X X
1 256 X X X X X X X X
10 256 X X X X X X X X
100 256 X X X X X X X X
1000 256 X X X X X X X X
10000 256 X X X X X X X X
100000 256 X X X X X X X X
1 10000 X X X X X X X X
10 10000 X X X X X X X X
100 10000 X X X X X X X X
1000 10000 X X X X X X X X
10000 10000 X X X X X X X X
100000 10000 X X X X X X X X
1 100000 X X X X X X X X
10 100000 X X X X X X X X
100 100000 X X X X X X X X
1000 100000 X X X X X X X X
10000 100000 X X X X X X X X
100000 100000 X X X X X X X X
1 1000000 X X X X X X X X
10 1000000 X X X X X X X X
100 1000000 X X X X X X X X
1000 1000000 X X X X X X X X
10000 1000000 X X X X X X X X
100000 1000000 X X X X X X X X

Table A-2: Processing node to processing node message passing test with chosen test patterns.
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Test

Message
Passing Test
via router

Default

message
size

number
of loop

100
1000
10000
100000

1

100
1000
10000
100000

1

100
1000
10000
100000
1

10

100
1000
10000
100000

1

100
1000
10000

100000

Byte Pattern Pattern Pattern Pattern Pattern  Pattern

2 3 5

* .
1 X X X X X
1 X X X X X

1
1

256

256

256

256

256

256
10000
10000
10000
10000
10000
10000
100000
100000
100000
100000
100000
100000
1000000
1000000
1000000
1000000

1000000

X X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X

1000000

Table A-3: Message Passing Test via Router with chosen test patterns.

6

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Pattern

7

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X
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Success

x

X X X X X X X X X X X X X X X X X X X X X X X X X X X X



Single Processor Percentage Processor to Percentage Processor to

Loop Difference Processor Difference Processor via
between Single between Router
Processor & Processor-to-
Processor-to processor with
processor and without
router
~ Data Data Data

Throughput(bit/s) Throughput(bit/s) % Throughput(bit/s)
1 1.29E+07 1.6 1.27E+07 38 7.84E+06
10 3.54E+07 14 3.49E+07 11 3.09E+07
100 4.10E+07 34 3.96E+07 0.5 3.94E+07
1000 4.79E+07 1.3 4.73E+07 0 4.73E+07
10000 4.82E+07 1.9 4.73E+07 0 4.73E+07
100000 4.80E+07 1.5 4.73E+07 0 4.73E+07
1000000 4.80E+07 15 4.73E+07 0 4.73E+07

Table A-4: Data Throughput measurement for different test setup.

Single Processor to
Processor Processor to Processor via
Loop Processor Router

byte round trip time (ms)
1 0.00062 0.00063 0.00102
10 0.00226 0.00229 0.00259
100 0.0195 0.0202 0.0203
1000 0.167 0.169 0.169
10000 1.66 1.69 1.69
100000 16.65 16.9 16.9
1000000 166.5 169 169

Table A-5: Result of Message Duration measurement for different test setup.

Payload SDRAM ... orvchip. RAM .......
Wait Wait
Transaction cycle Transaction cycle
1 2 20 2 2
10 4 34 4 4
100 26 336 26 26
1000 251 2861 251 251
10000 2501 20414 2501 2501
50000 12501 95027 12501 12501
100000 25001 192281 - -

1000000 250001 3579901
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Table A-6: Clock Cycle Efficiency Test.

Appendix B: FPGA device Specification

Altera Stratix II family

This section shows part of the specification of Stratix II family devices. This Stratix II
2S60 is the target FPGA category used to develop ST2-OSL system. Further detail can be

obtained from reference 47.

Adaptive 6,240 13,552 24,176 36,384 53,016 71,760
Logic

Modules

(ALMs)

Equivalent 15,600 33,880 60,440 90,960 132,540 179,400
Logic

Elements

(LEs)

M512 104 202 329 488 699 930
RAM
Blocks

M4K RAM 78 144 255 408 609 768
Blocks

M-RAM 0 1 2 4 6 9
Blocks

Total RAM 419,328 1,369,728 2,544,192 4,520,448 6,747,840 9,383,040
bits

Phase- 6 6 12 12 12 12
Locked

Loops

(PLLs)

Maximum 366 500 718 902 1,126 1,170
User I/O
Pins

Table B-1: Stratix II device family specification.

Note: Each ALM is equivalent to 2.5 Les.



On-chip RAM properties of Stratix II device

M512
Feature block
Performance (MHz) 319
Total RAM bits (including parity bits) 576
Configuration 512 x 1
256 x 2
128 x 4
64 X s
64 x 9
32 x 16
32 x 18
Single-port memory X
Simple dual-port memory X

True dual-port memory
Memory initialization file (.mif)
Mixed-clock mode

Table B-2: Specification of three supported on-chip RAM type in Stratix II device Family.

M4K
block
290
4608
4K x 1
2K x 2
1K x 4
512 x s
512 x 9
256 x
16
256 x
18
128 x
32
128 x
36

X X X X X

M-RAM
block
287
589824
64K X s
64K x 9
32K x 16
32K x 18
16K x 32

16K x 36

s K x 64

s Kx 72

4K x 128
4K x 144
X
X
X

X
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Excalibur device family

This section shows part of the specification of Excalibur devices family. The EPXA1 was

used in XAl prototype board. Further detail can be obtained from reference 44.

Feature

EPXA1 EPXA4 m EPXA10
Processor ARM922T ARM922T ARM922T
Maximum Operating
Frequency (MHz) 200 200 200
Single-port SRAM
(kBytes) 32 128 256
Dual-port SRAM
(kBytes) 16 64 128
Typical gates 100000 400000 1000000
Logic Elements (LEs) 4160 16640 38400
Embedded System
Blocks (ESBs) 26 104 160
Maximum User 1/O 246 488 71

Table B-3: Exealibur devices Family specification.
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Appendix C: Register of NIOSNIC

The following gives the descriptions for the NIOSNIC memory-mapped, 32 bit registers.

The ‘Base’ is the base address assigned to the NIOSNIC in the processing node, which it

is implemented.

Base + 0x00
Bit
31...0

Base + 0x04
Bit
31...2

1

Base + 0x08
Bit

31...8

7...0

Base + 0x10
Bit
31...2

Device ID
Read/Write
R

Status Register
Read/Write

R

R

Received Header
Read/Write

R

R

Receiver address
Read/Write
R/W

Description

This 32 bit register is an ID for NIOSNIC. The device ID is label as
'0x2560E001'

Description
Unused. Hardwired to 'O.
Label: Tx_mssg_end

This bit indicate that the message has been transmitted
Label: Rx_mssg_end

This bit indicates that the message has been received.

Description
Unused. Hardwired to 'O.
Label: rx_rcvd_hdr

This byte indicates the received Message ID from the new messge.

Description
Label: rx_addr_in

These bits stores the address of the current memory location the
device is pointing for memory write operation. The value increment by
1 after each successful data transfer.

Unused. Hardwired to 'O.



Base + 0x14 Receiver Length Register

Bit Read/Write Description
31...20 R Unused. Hardwired to 'O.
19...0 R/W Label: rx_mssg_Igth_out

These bits store the length of the current DMA transfer. The value
decreased by 4 after each successful data transfer. Writing to this bits
will trigger the DMA receiver bus master DMA operation.

Base + 0x18 Receiver DMA Buffer Status
Bit ReadAA/rite Description
3 R Label: rx_dmaff_fuil

1" Indicating the Receiver DMA buffer is full.
O indicating the Receiver DMA buffer is not full.
30 R Label: rx_dmaff_emp

1" Indicating the Receiver DMA Buffer is empty.

O Indicating the Receiver DMA Buffer is not empty.
29...6 R Unused. Hardwired to 'O.
5...0 R Label: rx_dmaff_usedw

These bits store the number of used word in the Receiver's DMA
buffer.

Base + O0x1C Receiver Token Buffer Status
Bit ReadAA/rite Description
3 R Label: rx_osff_full

1" Indicating the Receiver Token Buffer is full.
O Indicating the Receiver Token Buffer is not full.
30 R Label: rx_osff emp

T Indicating the Receiver Token Buffer is empty.

O Indicating the Receiver Token Buffer is not empty.
29..5 R Unused. Hardwired to 'O.
4.0 R Label: rx_dmaff usedw

These bits store the number of used word in the Receiver's Token
Buffer.
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Base + 0x10 Transmitter address
Bit ReadAA/rite Description
31...2 RANV Label: tx_addr_in

These bits stores the address of the current memory location the
device is pointing for memory read operation. The value increment by
1 after each successful data transfer.

1...0 R Unused. Hardwired to 'O.

Base + Ox14  Transmitter Length Register

Bit ReadAA/rite Description
g8 go R Unused. Hardwired to 'O.
19...0 R/W Label: tx_mssgjgth

These bits store the length of the current DMA transfer. The value
decreased by 4 after each successful data transfer. Writing to this bits
will trigger the DMA Transmitter bus master DMA operation.

Base + 0x18 Transmitter DMA Buffer Status
Bit ReadAA/rite Description
3 R Label: tx_dmaff_full

1" Indicating the Transmitter DMA buffer is full.
O Indicating the Transmitter DMA buffer is not full.
30 R Label: rx,dmaff,emp

1' Indicating the Transmitter DMA Buffer is empty.

O Indicating the Transmitter DMA Buffer is not empty.
29...6 R Unused. Hardwired to 'O.
5..0 R Label: rx_dmaff_usedw

These bits store the number of used word in the Transmitter DMA
buffer.
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Base + 0x1C
Bit
31

30

29..5

Transmitter Token Buffer Status

Read/Write
R

Description
Label: tx_osff_full

1’ Indicating the Transmitter Token Buffer is full.
0’ Indicating the Transmitter Token Buffer is not full.
Label: rx_osff_emp

1’ Indicating the Transmitter Token Buffer is empty.

0’ Indicating the Transmitter Token Buffer is not empty.
Unused. Hardwired to 'O.

Label: rx,dmaff_usedw

These bits store the number of used word in the Transmitter Token
Buffer.



Appendix D: Avalon

NIOSNIC

Tx Bus Master
Signal
reset_n

elk

address
read n
readdata
waitrequest

Rx Bus Master

Signal
reset_n

elk

address
write n
writedata
waitrequest

Width

1

Width

1

32

32
1

OS-Link Bus Slave

Signal
reset_n

elk
chipselect

address

read n
readdata
write n

writedata

Width

1

[

32

32

Direction

Direction
in

out
out
out

Direction

Bus Signal Descriptions for the

Description
Reset signal. When asserted, bus master must enter
the deterministic reset state.

Synchronising clock for Avalon bus master Interface.
Address lines from bus master to Avalon Switch
Fabric

Read request signal from master port.

Datalines from Avalon Switch Fabric

Signal to force the bus master to wait until the
Avalon Switch Fabric is ready to transfer data

Description
Reset signal. When asserted, bus master must enter
the deterministic reset state.

Synchronising clock for Avalon bus master Interface.
Address lines from bus master to Avalon Switch
Fabric

Write request signal from master port.

Data lines to Avalon Switch Fabric

Signal to force the bus master to wait until the
Avalon Switch Fabric is ready to transfer data

Description
Reset signal. When asserted, bus master must enter
the deterministic reset state.

Synchronising clock for Avalon bus master Interface.
Chipselect signal to the slave port. The bus slave
will ignore other Avalon signal input unless
chipselect is asserted.

Address lines from Avalon Switch Fabric. Specifies
a word offset into the slave address space.

Read request signal from Avalon Switch Fabric.
Data lines to Avalon Switch Fabric for read transfer.
Write request signal from Avalon Switch Fabric.

Data lines from Avalon Switch Fabric for write
transfer.
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