
41 0675849 9

ProQuest Number: 10183205

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183205

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

NOTTINGHAM TRENT
UNIVERSITY LIBRARY

Communication Interfaces for A
Distributed Embedded Multiprocessor

System

Wei Kiong, Chin

A thesis subm itted in partial fulfilm ent o f the requirem ents o f the N ottingham Trent
U niversity for the degree of D octor o f Philosophy

School o f Com puting and Inform atics
The N ottingham Trent University

C lifton Lane
N ottingham
NG11 8NS

Abstract

This thesis docum ents a research project on com m unication interfaces for a

distributed em bedded m ultiprocessor system. This resulted in the developm ent of a novel

em bedded distributed m ultiprocessor system on a single chip.

The initial feasibility studies involved a review of the relevant em bedded

distributed m ultiprocessor systems and their inter-processor com m unication. The

research aim ed to expand the potential o f a m ultiprocessor com m unication system on a

single chip. System designs were adapted to achieve m ore efficient D irect M em ory

Access (DM A) and reduced processor intervention.

A developm ent board with advanced FPG A technology is used to im plem ent the

designed m odules. The single chip solution consists o f two processing nodes and an ‘off-

the-shelf’ hardware m essage router. Each processing node includes: a NIOS II processor,

a m em ory m odule, and a network interface controller. The network interface controller,

which interconnects the processor and the em bedded routing network, was developed

using VHDL.

All basic routing features and functions o f this novel VH D L system model have

been proven and verified through hardware testing and sim ulation. The system was

synthesised and im plem ented into a single FPG A chip as a System -on-Program m able-

Chip (SOPC). A test program was written to test the functionality o f the interface. The

research resulted in a fully operational prototype. The features o f the system are

discussed and com pared and contrasted with the state-of-the-art research literature.

The router and NIOS II processors w ith their interface form the building blocks o f a

robust, em bedded netw ork on the single chip platform . The router interconnects all the

processing nodes and allows them to operate in the same network sim ultaneously, thus

increasing system flexibility and applications. The in-built differential output feature on

the FPG A chip enables the system to be cascaded to m ore processing nodes off-chip.

Acknowledgements

This thesis is dedicated to m y parents, who have given m e full support and concern

all the time. W ithout their support, m entally and financially, I would not have com e here

to further my studies.

I would like to take this opportunity to thank m y director o f studies, Dr. Steve Clark,

for offering me the opportunity for this research post, also for his helpfulness and

understanding o f my difficult m om ents during m y studies. I ’d also like to thank the rest

o f m y supervisor team: Dr. D avid D ownes, Prof. Brian O ’Neill, and D r R ichard Germon,

for their technical support and guidance.

Special thanks to my best friend, Mi'. Fook Chang, Ooi, and his girlfriend,

Ms. Phoebe Jiang for their tolerance and support during my studies. They are like a

fam ily to m e as they take care o f all the cooking, w ashing up and housew ork in the

busiest time so that I will be least distracted from m y work. They also keep my spirits up

all the time when going through difficult times.

Last but not least, to two o f my very good friends I m et in Nottingham , Mr. Ian

R ollinson and Dr. Lee W holton for being supportive as well, and not letting me take

thing too seriously. L ife has becom e m ore fun and interesting know ing these two friends.

To anyone whom I have not mentioned, thank you very much.

2

Table of Contents

A bstract..1

A cknow ledgem ents... 2

List o f Acronym s and A bbreviations... 5

L ist o f F igu res.. 7

1 Introduction.. 10

1.1 Introduction... 10

1.2 The T ransputer..12

1.3 Research B ackground and O b jec tiv es13

1.4 The New D istributed M ultiprocessing S ystem .. 16

1.5 Structure o f the T h es is ... 21

2 Som e Characteristics o f M ultiprocessor com m unications... 23

2.1 Sym m etric M ultiprocessing and M assively Parallel P rocessing23

2.2 Inter-processor C om m unications... 25

2.3 M essage Router System C om parisons..33

3 M ultiprocessor P la tfo rm ..40

3.1 Digital System Im plem entation ..40

3.2 Processor Choice for an Em bedded S o C ...42

3.3 System Bus A rch itec tu re ..46

3.4 M odern Solutions in M ultiprocessor S ystem s... 50

4 The XA1 System Prototype B o a rd .. 53

4.1 Introduction... 53

4.2 The XA1 c h ip .. 54

4.3 The APEK20KC c h ip ..62

4.4 Design O ptim isa tion .. 63

4.5 Technology M ig ra tio n ...65

5 D esign Structure for NIOS Based S oC ... 67

5.1 O S-Link N etw ork Interface M odule... 67

5.2 The Stratix II Subsystem (ST2SS) M odule D escription... 86

5.3 Em bedded D istributed M ultiprocessor prototype platform , O S L -S T 292

6 Tests and R e su lts ... 95

3

6.1 Test S e tu p ...95

6.2 The N IO SN IC Test p ro g ra m ..99

6.3 H ardware T e s ts ... 101

6.4 Resource U tilisation R eport.. 116

6.5 Pow er Consum ption R eport.. 117

6.6 Sum m ary and D iscu ss io n ..118

7 Conclusions and Future W o rk ... 121

7.1 C onclusions.. 121

7.2 Future W ork ... 125

Appendix A: Test R e s u lt .. 130

A ppendix B: FPG A device S pecification 134

A ppendix C: Register o f N IO SN IC ... 137

Appendix D: Avalon Bus Signal D escriptions for the N IO S N IC ..141

R eferences..142

4

List of Acronyms and Abbreviations

AHB
A LM
ALU
A LU T
AM BA
APB
ASB
ASIC
B EO P
CAD
CA M
C A T 5
CPU
CSP
D D R SD RA M
D M A
DM IPS
EO M
EO P
ESB
EX
FIFO
FPG A
FPU
FSL
FT-PCI-Li
I/O
ID
ID
IF
IP
JTAG
JTA G -U A RT

LE
LMB
M EM

A dvanced High Perform ance Bus o f AM BA
Adaptive Logic M odule
A rithm etic Logic U nit
Adaptive Look-up Table
Advanced M icrocontroller Bus A rchitecture
A dvance Peripheral Bus o f AM BA
Advanced System Bus o f AM BA
A pplication Specific Integrated Circuit
Bad End o f Packet
com puter aided design
Content Addressable M em ory
C ategory 5 unshielded tw isted pair
Central Processing U nit
Com m unicating Sequential Processes
Double D ata Rate Synchronous D ynam ic Random A ccess M em ory
D irect M em ory Access
D hrystone M illion Instruction per Second
End of M essage token
End o f Packet token
Em bedded System B lock
Instruction Execution (as in Instruction Pipeline)
First-In-First-O ut
Field Program m able G ate Array
Floating Point U nit
Fast Sim ple L ink
Fault Tolerant PCI Link
Input/O utput
Identification
Instruction D ecode (as in Instruction Pipeline)
Instruction Fetch (as in Instruction Pipeline)
Intellectual Property
Joint Test Action Group
Joint Test Action G roup-U niversal Asynchronies R eceiver and
Transm itter
Logic E lem ent
Local M em ory Bus
M em ory access (as in Instruction Pipeline)

5

M PP M assively Parallel Processing
NIO SN IC NIOS II based N etw ork Interface Controller
NoC N etw ork-on-Chip
NTU N ottingham Trent U niversity
OPB On-chip Peripheral Bus
OPC Open Core Protocol
OS Over Sam pling
PC Personal C om puter
PCB Printed Circuit Board
PC I Peripheral C om ponent Interface
PD A Personal D ata Assistants
PIO Program m able Input/O utput
PLA Program m able Logic Arrays
PLD Program m able Logic Device
PLL Phase Lock Loop
PN Processing Node
RA M Random Access M em ory
RISC R educed Instruction Set C om puter
SDRA M Synchronous D ynam ic Random Access M em ory
SM P Sym m etric M ultiprocessing
SoC System -on-a-Chip
SoPC System -on-Program m able-Chip
SPU Synergistic Processor U nit
SRA M Static Random Access M em ory
ST2SS Stratix II Sub System
U A R T Universal A synchronies R eceiver and Transm itter
V D H L Very High Speed Integrated C ircuit Hardware D escription Language
VLSI Very Large Scale Integration
WB W rite-Back (as in Instruction Pipeline)

6

List of Figures
Figure 1-1: Transputer N etw ork ..12

Figure 1-2: Transputer N etw ork with ICR C416 R outers... 14

Figure 1-3: B lock Diagram o f a processing node and the distributed parallel processing

N etw ork... 16

Figure 1-4: S trongA RM Processing N ode..18

Figure 1-5: D istributed em bedded m ultiprocessor system on Stratix II ch ip 19

Figure 2 -lB lo ck D iagram for Shared M edium S y stem ... 27

Figure 2-2: 2-D M esh N etw ork T opology .. 28

Figure 2-3: Sim ultaneous com m unication using ICR C416 hardware ro u te r 30

Figure 2-4: Exam ple o f Xpipes N oC ... 34

Figure 2-5: Token form at for OS-Link protocol.. 35

Figure 2-6 Flow control o f the adapted O S-Link based sy stem 38

Figure 2-7 R eceiver buffering co n tro l.. 39

Figure 3-1: Sim ple Five-Stage P ipeline..43

Figure 3-2: Typical AM BA S y s te m ..48

Figure 3-3: Slave Side A rbitration T echnique..49

Figure 3-4 : Sim ultaneous m ultiple Bus m aster data Transactions.. 50

Figure 3-5 Cell architecture block d iagram ... 51

Figure 3-6: XA10 System B lock D iagram ...52

Figure 4-1 The X A l’s H ardware lay o u t...53

Figure 4-2: Excalibur XA1 device with the O S-link Interface and a 5 port rou ter............. 54

Figure 4-3: B lock Diagram for C om ponent Interconnection in PLD area............................. 55

Figure 4-4: B lock diagram for design m odules in N etw ork Interface Controller of

Excalibur ch ip ..57

Figure 4-5: M ulti processor em bedded system ...60

Figure 4-6: Grouped A daptive Routing utilisation in XA1 system ... 61

Figure 4-7: a) Old m essage structure, b) New m essage structure...63

Figure 4-8: M essage Structure in M em ory when Zero H eader was used...............................64

Figure 5-1: Basic construction o f OS-Link Netw ork Interface controller block diagram .67

Figure 5-2: B lock Diagram for the Avalon Bus interface section and its associated signals.

...69

Figure 5-3: Tim ing diagram for bus access or m em ory read/ write operation70

Figure 5-4: T ransm itter bus m aster state-m achine operation... 71

Figure 5-5: R eceiver Bus m aster’s state-m achine... 72

Figure 5-6: B lock diagram for O S-Link netw ork in terface’s Avalon Bus slave module. .73

Figure 5-7: Tim ing diagram for a) synchronous Legacy FIFO and b) synchronous Show-

ahead F IF O ...75

Figure 5-8: B lock diagram for the back-end m odules o f the OS-Link N etw ork Interface

Controller... 76

Figure 5-9: H eader and data token arrangem ent.. 77

Figure 5-10: M essage state-m achine... 77

Figure 5-11: M essage state-m achine flow chart...78

Figure 5-12: B uffer R ead-W rite controller S tate-m achine...79

Figure 5-13: D epacketiser’s M essage state-m achine..80

Figure 5-14: State diagram for De~paclcetiser’s R ead-W rite S tate-m achine......................... 81

Figure 5-15: B lock diagram for N etw ork L ink In terface.. 84

Figure 5-16: B lock diagram o f a subsystem design .. 86

Figure 5-17: Slave-side arbitration... 88

Figure 5-18: D M A Channel operational Flow diagram ...91

Figure 5-19: Em bedded D istributed M ultiprocessor platform with 4 processing nodes

setup diagram ...92

Figure 5-20: Em bedded D istributed M ultiprocessor prototype platform setup diagram. .93

Figure 6-1: Shared and D istributed m em ory setup for hardware testing................................96

Figure 6-2: SDRAM utilisation in the test... 97

Figure 6-3: a) Connection o f the pulse generator in tim ing m easurem ent test, b) State

m achine in the Pulse G enerator... 98

Figure 6-4: Tim ing diagram for pulse generator.. 99

Figure 6-5: Console w indow in NIOS II E D S .. 100

Figure 6-6: Tests setup a) Self Loop back o f one processing node, b) D irect connection

between 2 processing nodes, c) Interconnection o f 2 processing nodes via OS-Link

R outer...102

Figure 6-7: Captured Tim ing diagram for a fundam ental A valon bus transfer at 100 MHz

system clock...103

Figure 6-8: Captured T im ing diagram for SD RA M arbiter at 100 M Hz system clock... 104

Figure 6-9: Captured T im ing diagram for on-chip RAM arbiter at 100 M Hz system clock.

... 104

Figure 6-10: Block diagram of m essage transfer duration test setup.....................................107

Figure 6-11: Chosen bit patterns in Hexadecim al for m essage passing tests115

9

1 Introduction

1.1 Introduction

The principle o f ‘Parallel Processing’ is to achieve a solution to a problem , which is

too com plicated or time consum ing for a single processor, by task division to multiple

processors1. In a parallel processing system, a problem is first broken down into many

sub-problem s. All the sub-problem s will then be solved through task distribution to the

interconnected processors in the same network, which operate concurrently.

W ith increasing requirem ents of higher com putation power, there will always be

com putationally intensive problem s that are beyond the capability o f a uniprocessor

system 2 3. Parallel processing becom es a way o f overcom ing the lim itation o f traditional

com puter architectures. Early generations o f parallel m achines, such as the CRAY-1

supercom puter4, were used in highly num erical intensive research and scientific areas.

They used custom built, high speed circuits and utilized array processing as their

underlying architecture.

The rapid developm ent o f parallel processing has been m otivated by the dem and of

high com putational pow er in current applications and the advance o f V ery Large Scale

Integration (VLSI) technology. M icroprocessors have becom e m ore pow erful, cheaper

and sm aller in size, therefore a basic- parallel system can be constructed by

interconnecting m ultiple p rocessors5 utilising the advantages such as: low cost, high

perform ance and ‘off the shelf’ m arket availability.

A m ultiprocessor System -on-a-Chip (SoC) is the latest incarnation o f VLSI

technology6 . A ‘SoC ’ is an integrated circuit that im plem ents the necessary functions o f

an electronic system, including m icroprocessor cores. The com ponents that are

im plem ented on a SoC vary with the application. The system m ay consist o f m em ory

10

blocks, processors, interface busses, and other custom digital functions. The architecture

of a system is m ore application specific than general purpose.

SoC devices are im plem ented in m any products ranging from daily consum er

applications to high-end industrial system s. For example: cellular phopes for signal

processing and user’s telephony applications7; networking for data handling from m odern
o

com m unication equipm ent; video games for real-tim e game action rendering . The

applications often use parallel processing to handle real time applications. The use of

general purpose com puters in such system s w ould often be unsuitable9. General puipose

m achines would not perform as well for reliable real-tim e control and w ould not match

the data rates for high-end video10.

One o f the requirem ents o f m any real-tim e applications is to ‘em bed’ the processor

within a larger system so that the ‘em bedded system ’ can interact and respond within that

system . Em bedded system s usually require low pow er consum ption and a small physical

size to be used in applications such as: pow er plants, autom obile control, hom e networks
11 12and in m onitoring and control operations . Large scale parallel system s, such as

supercom puters, are too large, consum e too m uch pow er and are too expensive to be

em bedded for use in m any real-tim e com m ercial applications.

The Parallel Processing Group in N ottingham Trent University (NTU) was initially

involved in research based on the Transputers 13 but follow ing the dem ise o f Transputer

has focused on other specialised custom em bedded processors. One o f the main

achievem ents o f the research group was the developm ent o f series o f hardw are m essage

routing devices to im prove netw ork efficiency and fault tolerance for distributed

em bedded m ultiprocessor system s14 15. The intention o f this research project was to build

on previous research and utilise the new SoC technology to investigate an em bedded

distributed m ultiprocessor prototype platform , interconnected by routers, on a single

program m able chip.

11

1.2 The Transputer

The T ransputer was a 32 bit bus m icroprocessor designed by INM O S (now SGS-

Thom son M icroelectronic) to be used as a processing building block in parallel

processing sy s tem s16 17. D ue to its R educed Instruction Set C om puter (RISC) like

architecture, state-of-the-art perform ance (at that time), high speed serial links and low

pow er consum ption, it was used in the area o f high perform ance em bedded parallel

com puting systems. A nd because o f that, it was able to support real-tim e program m ing16.

The T ransputer consisted o f internal m em ory, an external m em ory control interface,

Input/O utput (I/O) devices, and four bi-directional serial com m unication links.

The T ransputer had four high speed serial links to com m unicate with other

Transputers (or other devices): called OS Links5. It was based partly on H oare’s

Com m unicating Sequential Processes (CSP) m odel proposal that each processing node is

connected via physical point-to-point connections 18 . The Over Sam pling (OS)

com m unication links betw een four neighbouring processing nodes were full duplex b i

directional serial com m unication links, illustrated by the exam ple in Figure 1-1.

T m T fa^psei'
Prooasiptg Nod© Process lag Nod®

TrarfBwter Trai&Ikifer
Praeesiijf Nod® Processing Node

TratfesJwter
Procssdiijg Hods

T r a i 4 j » J t e r
F^focesalag Nc

Trarfspter Trarapiter
Prooesaiih Node Process ily Node

TradeStfter T r a m p i s r
ProeeBEiijg Node Process mg Node

= 11

Transputer
Processing Node

Transputer
Processing Node

Transputer
Processing Node

Figure 1-1: Transputer Network.

12

This m esh netw ork topology was very efficient when only four or less processing

nodes were utilised because com m unication was alm ost im m ediate betw een adjacent

processing nodes. W hen utilising m ore than four Transputers, m essages had to be

forw arded via at least one interm ediate processing node. This m essage forw arding not

only reduced the efficiency o f resource distribution, it also introduced latency and

increased the m essage overhead to the m essage handling tasks (required to forward the

m essage to other processors). As a result, processor perform ance was reduced, due to the

increase o f com m unication loading (as the processor needed to handle forw arding the

m essages from other processing nodes as well processing its own m essages19). The ‘Store

and Forw ard’ m ethodology o f this point-to-point connection produced a m essage delay

each time the m essage was forwarded. The m essage delay produced was proportional to

the m essage size and the distance that the m essage had to travel20. This resulted in a

variation o f time in com m unication betw een processors, based on these factors. A large

inter-processor latency reduced the overall perform ance o f the T ransputer system.

A reason for the success o f Transputer was its built-in com m unication controller on

the sam e chip. This provided efficient point-to-point m essage passing between adjacent
91Transputers . How ever, this used up silicon space that could be used to im plem ent useful

functionality to the processor. Therefore extra engineering design effort was required to

build dedicated interfaces for external functions. W ith the A pplication Specified

Integrated Circuit (ASIC) technology available at that time, upgrading the processor or

the netw ork interface was time consum ing and costly.

1.3 Research Background and Objectives

The N ottingham Trent U niversity Parallel Processing Research G roup has been

investigating and designing inter-processor com m unication devices, for em bedded

parallel processing systems, for m any years. The m ultiprocessor system research began

with the im plem entation o f Transputer system s22 23 24 25 26.

13

The design and fabrication o f a com m ercial 16-channel dynam ic hardw are routing

switch, the ICR C416 device 27 28 29 30 31 , overcam e som e of the lim itations o f the

T ransputer system. The ICR C416 offloaded m uch of the com m unication tasks from the

Transputer System by providing direct point-to-point connections to up to 16 Transputers.

In addition to that, this device could be cascaded to support scalable larger systems. The

use o f the ICR C416 in the T ransputer systems, successfully dem onstrated the efficiency

o f a routing device as a sim ple solution to m edium scale, low cost, high perform ance
T9em bedded inter-processor com m unications . This device could be im plem ented as the

backbone o f an em bedded distributed m ultiprocessor system, as shown in the exam ple in

Figure 1-2, w here each PN block is a processing node. It can also be connected to a PC

via a custom Peripheral Com ponent Interface (PCI) 33 34.

PC

a.

'Tf'

P N
Router Router

Further
Extension

Figure 1-2: Transputer Network with ICR C416 Routers.

The rapid increase o f com putational pow er has prom pted the need to upgrade the

processors used in the ICR C416 netw ork in order to keep pace with other em bedded

systems. Since the dem ise o f the Transputer, attention sw itched to the design o f routing

14

netw orks for other processors, while looking to m aintain the successful features o f the

T ransputer netw ork (such as a router based serial com m unication netw ork with low

m essage latency and m inim al processor intervention; i.e. m inim ise com m unication

overheads).

The research group then extended the research attention to incorporating a state-of-

the-art RISC processor into a parallel network. The S trongA R M SA-110

m icroprocessor was chosen (as a replacem ent for the Transputer) because it was a low

cost, low power, easily available processor that offered state-of-the-art perform ance. The

32 bit S A -110 RISC processor could support a core bus and a data bus o f up to 233 M Hz

and 66 M Hz respectively. The SA-110 had 32 kBytes o f internal cache m em ory and

128 bytes o f w rite buffer, and it also supported fast interrupt handling. The on-chip cache

and write buffer increased the average instruction execution speed and reduced the

average m em ory bandw idth usage o f the processor; this enabled the m em ory bus to be

accessed for data transfer to and from a custom netw ork interface device.

The data transfer betw een the m em ory m odule and the netw ork controller was done

during the tim e when the processor was not accessing m em ory. This technique is called

D irect M em ory Access (D M A)36. This ‘cycle stealing’ is a special hardw are arrangem ent

utilising the free m em ory bus cycle to read from or write to m em ory very quickly w ithout

incurring overhead in accessing the data bus.

The research group eventually developed the StrongA RM R outer Network

Interface Controller (SA R N IC)37 38 39 40 41 to perform the com m unication interface role

betw een the chosen processor and the router network. The SARNIC was developed and

im plem ented on a Program m able Logic D evice (PLD). The PLD consists o f a bus-based

SARNIC, a m em ory interface controller and a processor interface. The PLD was then

m ounted onto a Printed C ircuit Board (PCB), interconnecting the m em ory m odule and

the S trongA RM processor, form ing a processing node. The processing node could then

be used as a building block in a scalable distributed parallel processing system,

15

interconnected by ICR C416 routers. In other words, the T ransputer in the previous

system has been directly replaced by the processing node (PN) as shown in Figure 1-3.

NIC
PC “ T

Memory Processing Node

PCI V V V
(' pnPN

C416 ICRC416
Further

Extension

PN

Figure 1-3: Block Diagram of a processing node and the distributed parallel processing Network.

The NTR-FTM 08 router was the m ost recent routing device developed by the

NTU research group. It was adapted from the IC R C416 R outer design with enhanced

fault tolerance, alongside support o f a new adapted O S-Link protocol. It was integrated

with basic fault detection and isolation m ethodology. R em oving faults from the system

will free resources held by faulty m essages and would often allow com m unications (in a

netw ork with a fault) to be re-established autom atically42.

1.4 The New Distributed Multiprocessing System

The key aim o f this project was to build a low cost, m edium scale, high

perform ance em bedded distribute parallel processing netw ork on a single chip. The target

was not to construct a parallel processing system to com pete with high-end and expensive

16

supercom puter, but to build a powerful single chip m ultiprocessor parallel platform for

em bedded systems.

The follow ing are the objectives o f this research project:

S To investigate the relevant router architectures used in the literature and

especially in the N TU research group and then apply the routing device as the

backbone o f a scalable interconnect network, to provide non-blocking point-to-

point com m unication for processing nodes.

S To build a m ultiprocessor netw ork prototype platform on a System -On-

Program m able-Chip. Im plem enting the m ultiprocessor em bedded system onto a

single chip to obtain optim ised perform ance.

S To conduct perform ance analysis on the prototype platform . Design and run tests

on the platform to ensure functionality and perform ance o f the system.

A t the initial stage, the NTR-FTM 08 routing switch was chosen as the

com m unication backbone for the network. The use o f the NTR-FTM 08 routing switch

was to build on the advantage in the existing system . The serial com m unication routing

device used would offer the advantage o f reduced wiring and pin connection, and

com plexity in constructing a distributed system.

The design w ork started with the investigation and study of the design o f recent

Fault Tolerant PCI L ink (FT-PCI-Li) designs with NTR-FTM 08 router on an

A P E K 20K 43 chip. The designs were later optim ised; in particular by reducing the

processor’s intervention when passing a m essage and/or the m essage header capacity was

increased.

17

ARM922T
Processor External

Interface M em ory

OS-Link

Figure 1-4: StrongARM Processing Node.

The design work then m oved to the im plem entation o f single chip solution for the

S trongA RM processing node. The Excalibur chip 44 was selected to develop the

S trongA RM processing node. The Excalibur is the com bination o f ARM 922T™ 4532 bit

RISC processor system and program m able logic on a single device. The network

interface controller, external m em ory interface controller, and a routing device were

developed in the program m able logic o f the chip, as shown in Figure 1-4. A

m ultiprocessor netw ork can be achieved by interconnecting the processing nodes, via the

routing device im plem ented on each Excalibur chip, on a PCB. Therefore this board,

called the XA1, was developed.

The introduction o f the NIOS II processor46 and Stratix II 47fam ily FPG A m ade the

group realise that there were potential benefits im plem enting a distributed em bedded

m ultiprocessor system on this new technology. NIOS II is a 32 bit softcore RISC

processor (as com pared to the A RM 922T on an Excalibur, which is a hardcore (built-in)

processor). A key benefit was that m ore than one NIOS II processor can be im plem ented

on the sam e Stratix II chip, where there is only one ARM 922T processor available in the

Excalibur. NIOS II also offered advantages in term s o f flexibility and resource saving,

18

while the Stratix II chip offered higher densities o f logic elem ents and on-chip m em ory

com pared to the Excalibur. The features o f the NIOS II and Stratix II have given an

opportunity for System -on-Chip (SoC) prototyping and m ore space for further expansion

and developm ent.

Stratix II

NIOS II Timer

Memory
Network
Interface

Controller

NIOS II Timer

Memory
Network
Interface

Controller

Router

NIOS II Timer

Memory
Network
Interface

Controller

W V v
Network Extension

NIOS I! Timer

Memory
Network
Interface

Controller

Figure 1-5: Distributed embedded multiprocessor system on Stratix II chip.

As shown in Figure 1-5, a basic distributed em bedded m ultiprocessor SoC solution

has been designed, tested and verified, with a novel Avalon Bus based O S-Link network

interface controller. The O S-Link N etw ork Interface Controller, w hich was AM BA bus

interface, was m odified to Avalon Bus interface so that it can be im plem ented into NIOS

II processing node. Each processing node consists o f a NIOS II processor, on-chip

m em ory, timer, and netw ork interface controller. All the processing nodes will be

interconnected in a single chip by an O S-Link based router. The distributed em bedded

m ultiprocessors system was prototyped on the NIOS II developm ent kit.

1

. I
All the design was described using V LSI H ardw are D escription L anguage48 |

I
(VHDL) and partitioned into a m odular, top-dow n hierarchy. V H D L was the chosen §

language for design because it is an A NSI standard language used to describe hardware

com ponents and system s and the research group was very experienced with its use. ■ %
a

V H D L is very pow erful for digital system design, the written m odel is easy to m odify

and verify functionality, and it supports concurrent design. The language itself is publicly

available, hum an and m achine readab le49. It is a recognised design entry standard,

therefore the designed m odel is transferable betw een chip vendors and betw een different

target technologies.

The PC based Quartus II design softw are50 was used throughout the design cycle. It

was provided by A lte ra 51 and also included the design synthesis tool and post-synthesis

Stratix II chip program m ing tool52. Quartus II can give tim ing analysis reports to indicate

w hether the tim ing requirem ents are m et before im plem entation o f the design (onto the

FPGA, or hardw are in the future). The NIOS II Integrated D evelopm ent Environm ent |

softw are53 was used to com pile program s, w ritten to run in the processing nodes, to test 4
the functionality o f each processing node and the whole system. A fter com pilation of

both V H D L codes and testing codes, they were dow nloaded onto the Stratix II chip for §

real-tim e functionality verification and perform ance m easurem ent.

J

The research described in this thesis has resulted in the design and realisation of

SoC building blocks for an em bedded m ultiprocessor netw ork system . M ultiple 4

■p,

processing nodes were constructed by using the ‘off-the-shelf’ soft-core processors,

available m em ory space and A daptive Look-up Table (ALUT) in the target FPG A chip.

The adapted O S-Link based routing switch, which was previously developed to if

interconnect and to provide a robust com m unication netw ork for a distributed

m ultiprocessor system , was im plem ented as a point-to-point com m unication m edium for

all the im plem ented processing nodes. The netw ork utilised a serial adapted Over

Sam pling link (adapted OS-Link) based protocol 54 for m essage passing between

processors. •;>!

20

1.5 Structure of the Thesis

Chapter Two gives an overview of the subject area. It is an introduction to the inter

processor com m unications m ethods, with a review o f their characteristics. This chapter

also review s how the im plem entation o f different inter-processor com m unication systems

affects the perform ance o f a network. The three routing netw ork system s reviewed

(interprocessor and not general purpose such as Ethernet) are som e of the m ain ones used

in packet sw itched m ultiprocessor systems: the O S-Link based system s, the M yrinet55

based system and the X pipes56 system are com pared and contrasted.

C hapter Three exam ines the characteristics o f a M ultiprocessor SoC. M odern SoC

devices show a trend towards integrating processor core(s) on a single ship alongside

m emory, I/O support and custom isable Program m able Logic Arrays (PLAs). This chapter

reviews the challenge and necessary considerations when constructing a SoC device for

use in parallel em bedded systems. It also focuses on the influence o f the m ultiprocessor

architectures on the overall system perform ance.

C hapter Four docum ents im plem enting the OS-Linlc based netw ork in a prototype

system based on the XA1 board. It details the design, architecture used and how each
cn

processing node (an Excalibur processing node), was interconnected using the OS-Link

based network. It also describes why this approach was ultim ately abandoned for an

im proved system.

Chapter Five describes the im plem entation o f the final selected design

m ethodology. This used a new m ultiprocessor system on a SoC, the Stratix II chip with

NIOS processing cores. It discusses the design on a m odular basis: broken down, in order

o f hierarchy, w ith description o f the functionality and interface o f each module.

Chapter Six discusses the hardw are tests that were created and their results. A test

program was written including functions to perform read and write to the m apped

21

m em ory and registers. The result o f these tests dem onstrated the basic network

perform ance o f the new designs.

Chapter Seven concludes the thesis, docum enting the main achievem ents o f the

research. It also describes the potential expansion o f utilising a m ultiprocessor system on

a single chip alongside som e other potential avenues o f further work.

2 Some Characteristics of Multiprocessor communications

The increasing com plexity o f on-chip system integration m eans that more

functional units require to be integrated. The effective use of m ultiprocessors in

em bedded system s does not ju st rely on the processing pow er o f the processors, it is also

affected by the availability and latency constrains o f other system resources such as

interfaces, routers and m em ory, and the design structure o f that system. The accessibility

o f resources for com putation or m anipulation by the processing elem ent (processor) is

often crucial to determ ine an efficient m ultiprocessor system.

2.1 Symmetric Multiprocessing and Massively Parallel Processing

The data before and after it is processed m ust be stored som ewhere in the system;

either in registers or in m em ory, so that the processor can carry out the next dedicated

task. The processing elem ent m ust often be able to access these locations very quickly.

There are basically two different ways o f utilising the system m em ory: Shared M em ory

System s and D istributed M em ory System s2. The choice of im plem entation depends on

the requirem ents o f the application and the requirem ents o f the system.

Sym m etric M ultiprocessing (SM P) is a m ultiprocessor system, w here two or more

processors are housed together with shared m em ory resources. It is a type o f Shared

M em ory System. The SM P system allows any im plem ented processor to execute a task

regardless o f the location o f the data in the m em ory. By using a suitable operating system,

an SM P system can m ove tasks am ongst the available processors to balance the workload

of the system efficiently58. The m em ory resources are centralised and can be accessed by

any processor (m aster) or other type o f bus masters. There will be central arbitration

control to m anage the access o f m em ory resource from all the processors. This system is

sim ple to design and offers fast data access with very low latency. Plowever, this kind of

system suffers from lack o f scalability. As the num ber o f processors increase, each

23

processor will be allocated a low er average access time, reducing the effective bandwidth

o f each processor. Therefore, m em ory m anagem ent is a crucial issue in Shared M em ory

System s, to prevent m em ory access from becom ing the perform ance bottleneck of the

system. The program m er m ust also ensure that few er processors, if possible, are

attem pting to access the m em ory sim ultaneously and preventing one processor from

m onopolising the m em ory resource because this m ight contribute to a perform ance

bottleneck o f the system 59.

A nother problem with Shared M em ory System s is a security issue. Since the

m em ory is accessible by all processors, it is very difficult for one processor to determine

w hether the content o f a m em ory location has been m odified by another processor. Once

again it is up to the careful design by the program m er, when m apping and dividing the

m em ory resources, for each processor to avoid problem atic m em ory usage overlap.

Early SM P system s were accessing m em ory that ran m uch slow er than the

processor accessing them. As a result, the processors spent a considerable am ount o f time

waiting for data from m em ory resources. M odern m em ory resources are able to

overcom e this problem as they are running at com paratively higher clock speed and faster

access time. However, they still face a m em ory access bandw idth problem as only one

processor can access m em ory at a time; while one processor is accessing the m em ory, the

rest o f the processors m ust wait.

M assively Parallel Processing (M P P)60 is another technique for im plem enting

m ultiprocessor systems. The principle operation o f parallel processing in M PP, sim ilar to

SM P, is to break a problem into sm aller pieces which are then distributed to the

processing nodes, to be solved concurrently. This is particularly useful in scientific and

com plex m athem atics calculations that can m ore easily be split in this way. The num ber

o f processors in an M PP system is not such a crucial issue as the system architecture. In

M PP system s, each processor has its own m em ory resource to form a basic processing

node. By having a private m em ory resource, w ithout m em ory com petition from other

processors, the processor will have full bandw idth to access its m em ory resources. Each

processing node has a copy o f its allocated application tasks. All the processing nodes

com m unicate by m essage passing to each other via a high speed interconnect.

To achieve a solution to a problem by task division to m ultiple processors, it is

highly probable that the resultant data from one processor will be used as an input to

another processor. D ata exchange betw een processors/processing nodes is required and

this is usually in the form o f m essages. M essage passing in an M PP system has been

presented as a solution to overcom e the disadvantages suffered in Symmetric
1RM ultiprocessing systems, as proven by H oare . H ow ever this involves a trade-off as the

system m ay have latency problem s during m essage passing w hich depends on the

efficiency o f the interconnection netw ork used and the distance betw een the processing

nodes.

2.2 Inter-processor Communications

2.2.1 Parallel and Serial Communications

The technology o f the m icroprocessor has been im proved rapidly over the past few

years. As the speed and data bus w idth o f the processor increases, the com m unication and

data exchange betw een processors becom e m ore and m ore critical to prevent data

starvation. The decision o f using parallel or serial com m unications (in order to optimise

the overall efficiency o f the system) relies on a few factors: netw ork topology,

architecture, speed requirem ent o f the application and developm ent costs.

Early em bedded system s utilised bus based parallel com m unication because

m ultiple bits can be transferred sim ultaneously. At low er data rates, parallel

com m unication perform s adequately. H ow ever, as the clock speed and distances increase,

synchronisation o f parallel data becom es a problem as setup times fall, propagation

delays increase, noise has m ore effect (especially crosstalk), and additionally there is a

requirem ent for m ultiple line d riv ers61. Pin count is also a problem with parallel

com m unications because the num ber o f pins available in an IC is usually lim ited. A high

25

num ber o f parallel bits also involve a m ore com plex PCB design, increasing track and

wiring space as well as the cost.

Parallel com m unication could be clocked at higher data rate and travels longer

distance if correctly term inated differential signal were im plem ented for each signal.

H ow ever serial com m unications offers a better solution when I/O pin count of a chip

becom e a constraint in parallel com m unications. This is because two pins will be utilised

for each signal when differential signal was im plemented, it will actually double the I/O

pin requirem ent o f a system. Serial com m unication is capable o f being clocked at a

higher rate because a correctly term inated differential serial link is less susceptible to

noise54. Using serial com m unication can also reduce the track on PCB or wiring space

when com paring to parallel com m unication.

D istributed systems, by utilising serial com m unication, could m inim ise the cost of

developm ent because o f the requirem ent for a low er pin count therefore resulting in a

sim pler PCB design. Im plem entation o f serial com m unications in distributed systems

also provides a m ore reliable and robust point-to-point com m unication due to the reduced

effect o f clock skew. H aving the key feature o f scalability, it is m ore suitable to utilise

serial based com m unications to reduce the com plexity o f the netw ork design.

A synchronous data com m unication can be achieved by either encoding the clock signal

to be sent with the data62 or by using an over-sam pling technique, at a higher data rate, to

recover the data at the receiving side63.

2.2.2 Bus-based Topologies

A m ajority o f m ultiprocessor system s interconnection architectures fall within the

SM P design type8 64 65 66 67, or global shared bus system; one of the sim plest interconnect

structures. In this, the com m unication m edium (the ‘backbone’ bus) is shared by all

integrated devices and only one device (bus m aster) can drive the netw ork or access the

bus slave at a time. A basic block diagram for a SM P System is shown in F igure 2-1.

P r o c e s s o r 1 M e m o r y

Backbone Bus

Figure 2-lBlock Diagram for Shared Medium System

The bus used is usually a convenient and low overhead interconnection for a small

num ber o f active processors and bus m asters, and a large num ber o f passive m odules (bus

slaves) that only respond to the request from bus m asters. The bus bandw idth m ust be

shared by all the bus m asters that can access that system. This results in effective

bandw idth for each processor being inversely proportional to the num ber o f bus m asters68.

D ue to nature o f central m em ory sharing, an error in m em ory m ight cause the whole

system to crash.

Bus arbitration m echanism s are required when m ore than one processor or bus

m aster attem pts to access the bus sim ultaneously. A critical issue in the design o f a

shared m edium bus is the ‘arbitration strategy’ that will assign the bus ow nership of the

system and resolve the access conflicts by m ultiple bus m asters. Arbitration is perform ed

in a centralised fashion by a bus arbiter module. The arbiter m ust be carefully designed to

prevent any processing node from m onopolising the m em ory access, and to resolve

access contentions. Therefore any bus m aster w ishing to access the m em ory m odule or

peripheral m ust gain bus ownership from the arbiter.

27

2.2.3 Point-to-point and Switch-based Topologies

P NP N P NP N

P N

P NP N

P N P N

P N P N

P N

P N

P N

P N

PH = Processing
no da

Figure 2-2: 2-DMesh Network Topology

Point-to-point networks were used to overcom e the scalability problem of SM P

systems. They were the netw ork architecture used in M PP systems, as a com m unication

m edium betw een processing nodes. Each node was connected directly with the adjacent

neighbouring processing nodes. Figure 2-2 shows an exam ple o f point-to-point network.

The processing nodes here are arranged in a 2 dim ensional M esh topology where each

processing node is connected to 4 adjacent nodes. This netw ork topology offers

guaranteed bandw idth and low latency betw een two adjacent processing nodes, due to the

exclusive link connection between them. Therefore no arbitration is required and no

access conflict occurs as there is only one com m unication channel per connection link.

H owever, when sending a m essage to a non-adjacent processing node, for exam ple from

processing node 1, through processing node 2, to processing node 3, ex tra effort and time

m ust be used by the interm ediate processing node 2 to forward that m essage instead of

running their own dedicated task. This kind o f regular netw ork topology benefits from

reduction in cost and com plexity, how ever were only optim ised for system s with specific

com m unication patterns.

28

Sw itch-based netw orks are an alternative to point-to-point networks. In switch-

based networks, interconnections betw een processing nodes are via a set o f m essage

routing devices (routers). Each processing node will have a network adaptor, which

connects to a port o f a router. The im plem ented sw itch does not perform any inform ation

processing. Instead, they provide a program m able connection betw een their ports.

Com m unication paths can be setup or changed over time, depending on the application

requirem ents 69 . The routers pass m essages throughout the netw ork and allowed

sim ultaneous transfer o f m essages provided there is no contention for the same

destination node. B ecause there is no direct route betw een processing nodes (all

com m unications are via routers) sw itch-based netw orks allow one processing node with a

single com m unication channel to connect via an n channel router to com m unicate with n -

1 of processing nodes. Routers that im plem ent full crossbar architecture allow n / 2 b i

directional com m unication to take place sim ultaneously when there is no contention for

the sam e destination or output port, as shown in Figure 2-3 which illustrates the NTU

research groups ICR C416 (16 channel) com m ercial m essage router 27.

The sw itch-based netw ork offers bandw idth guarantee irrespective o f the network

size or topology. D ue to its flexibility, sw itch-based networks w ere very suitable to form

irregular networks w here netw ork layout is independent o f size and application. As the

num ber o f processing node in the system increases, latency will be introduced because a

m essage m ight have to pass through m ore than one router. The latency introduced by a

router will depends on the type o f router used and the traffic conditions.

29

PN

i i

PN
ICRC416

PN = Processing node

Figure 2-3: Simultaneous communication using ICR C416 hardware router

2.2.3.1 Sw itching M ethodologies in Switch Based Network

The Store-and-forw ard m ethodology is one o f the com m unication m ethodologies

used in m ultiprocessor systems. As named, it stores first and forwards later: a packet or

m essage will be forw arded from one switch to another when the latter has enough storage

space available for the entire m essage. The entire packet has to be stored in the network

switch before being transm itted to the next destination. This approach dem ands very high

storage for buffering purposes in the switch and it can incur very high com m unication

latency. The latency of any message is directly proportional to the m essage size and

increases with the num ber o f sw itching devices between the source and destination, as

well as the traffic conditions o f the network. This Store-and-forw ard approach is rarely

used as a SoC com m unication m ethod due to lim ited m em ory resources on the chip.

30

The Virtual Cut-through m ethodology70 is ail approach to overcom e the penalty

introduced by store-and-forward. A packet is forw arded as soon as the header is received

and resources, such as buffer and channel approval, are acquired w ithout having to store

the entire packet. The m essage’s tail inform ation will release the output channel as it

passes. In this approach, if a packet is blocked due to the utilisation o f the same path by

another m essage, the content o f the m essage will then be buffered until the m essage path

is free. M ore advanced versions o f the V irtual Cut-Through approach, such as used in

B LA M 71, utilise bypass buffers, which allow the new arrival to pass through the switch

by storing the entire blocked m essage into the bypass buffer. This provides the advantage

o f low latency com m unication but requires enough buffering for blocked m essages.

Com paring with Store-and-forw ard and V irtual Cut-through m ethods, the
29 72W orm hole Sw itching m ethod has m ore efficient use o f buffer space. It connects the

incom ing m essage to the output channel as soon as the routing inform ation has been

received and the connection resources are available. As a result, sw itching latency is

m inim ised. W orm hole sw itching can be im plem ented with m inim al buffering resources

at each sw itching device as the m essage is effectively distributed across the network. The

prim ary advantages offered by this approach are m inim um m essage latency and

m inim um buffer requirem ent. However, because the channel bandw idth is dedicated to

one m essage, a m essage block can cause the channel to go idle or deadlock.

2.2.3.2 Switching Netw ork Flow Control

All routing/sw itching m ethods using buffering need to com m unicate with the

neighbouring processing nodes or sw itching devices when m essage passing takes place,

to ensure the availability o f buffers. Resource m anagem ent will inform the upstream node

when they should stop sending flits (a flit is the sm allest possible unit o f inform ation in a

m essage) due to the dow nstream buffer being full and vice versa.

31

V'-■?
In ‘credit-based’ flow control73, each channel consists o f a flit control counter to

m anage the num ber o f free flits. Each input flit will consum e an em pty flit at the output

buffer, the flit counter will decrease by one until it reaches zero, and the buffer is full.

Therefore no further flits can be received until the buffer is free again. Once a flit is

forw arded and an associated flit is freed, a credit will be sent to the upstream router.

M eanw hile, the control counter will be increm ented by one. For each flit received, a

corresponding credit is eventually returned. Forw arding a flit to the dow nstream router

will involve im m ediately returning a credit flit to the upstream router. C redit based flow

control requires significant am ounts of upstream signalling: it can introduce large

overheads, especially for small flits.

In ‘A C K /N A C K ’ flow contro l74, the upstream router will send a flit whenever

bandw idth is available. The dow nstream router will accept all the flits as long as the

buffer is available and an ‘A C K ’ flit will be sent upstream. H ow ever, the flit will be

dropped if no buffer is available and an ‘N A C K ’ will be sent upstream as notification.

The upstream router m ust rem ain and hold the previous flit until an ‘A C K ’ flit is received.

An ‘A C K ’ flit will only be sent by the dow nstream router when its buffer is freed. W hen

the upstream router receives the ‘N A C K ’ flit, it will retransm it the dropped flit and in

addition to the N succeeding flits that were transm itted during the round trip delay before

continuing to transm it the rem ainder o f the m essage. This flow m echanism is effective

when it is applied to a routing device with a large buffer resource because the sent flit

m ust be retained (in case a ‘N A C K ’ flit is received). A blocked dow nstream resource will

incur poor link utilisation.

Finally, ‘O n-O ff’ flow control74 is a widely used flow control m echanism that

greatly reduces the am ount o f upstream signalling com pared to ‘A C K /N A C K ’. A signal

will be sent to the upstream router only when it is necessary to change the state of

perm ission. An ‘O n’ flit indicates a flit transm it is perm itted and ‘O ff’ m eans a flit

transm it is not permitted. In some case, an ‘O f f can be sent to indicate that the num ber o f

free buffer spaces is equal or below a pre-defined threshold, so that the upstream router

knows how m any m ore flits can be transm itted before it has to stop and w ait for the

32

—
r

U
.

....
\

l.
if

,
H

,

..

.
.

,
y

,-
r„

■ .

A
.t

.1

—

£
t

perm ission flit. Sim ilar to the credit-based flow control, one m ust take consideration of

the availability o f the buffer before it becom es em pty, then sending an ‘O ff’ flit (so that

there is always enough buffer to receive those flits, that are sent before the ‘O ff’ flit is

received by the upstream router). However, with adequate buffering and m anagem ent

m echanism s, ‘O n/O ff’ flow control can operate efficiently with very little upstream

signalling.

2.3 Message Router System Comparisons

2.3.1 Myrinet System

M yrinet is a cost effective, high perform ance, packet sw itching technology that is

widely used in distributed com puting system s55. It is used to interconnect clusters of

w orkstations, PCs, servers or single-board com puters. The M yrinet netw ork system

consists o f two main com ponents, the M yrinet’s com puter interface com ponent and the

M yrinet sw itch55.

M yrinet’s com puter interface connects a processing node to the network. There are

two m em ory blocks in the M yrinet com puter interfaces and they are used for transm it and

receive packet buffering. A D M A engine transfers the data packet betw een the processing

node’s m em ory and M yrinet’s netw ork interface. M eanw hile the M yrinet switches are

m ultiple-port sw itches that em ploy Virtual Cut-through routing. If the selected outgoing

channel is not already occupied by another packet, the head o f the incom ing packet is

advanced into this outgoing channel, as soon as the head o f the packet is received and

decoded. The packet is then spooled through this established path until the path is broken

by the tail o f the packet. If the selected outgoing channel is occupied by another packet or

is blocked, the incom ing packet is blocked. Sw itches are pow ered separately from hosts,

so that the netw ork will continue to function even when som e of the hosts are turned off.

33

2.3.2 Xpipes System

. | i n w k v m i r>

Router

Figure 2-4: Example of Xpipes NoC.

Xpipes architecture utilises on-chip packet-sw itched m icro-netw ork of

interconnects, known as a N etw ork-on-Chip (NoC) architecture. Xpipes architecture

consists o f two main com ponents: the netw ork interface and the router. Each com ponent

interconnected to the on-chip m icro-netw ork via netw ork interface. Routers were used to

interconnect im plem ented com ponents (m aster com ponents and slave com ponents) in

SoC as shown in Figure 2-4. The netw ork interfaces use Open Core Protocol (OCP) and

convert the O CP to adapt to the netw ork protocol. Designers can specify the arbitrary

netw ork topologies to m eet the system requirem ent and to optim ise the overall

perform ance o f the SoC.

Routers im plem ented in the Xpipes utilise W orm hole sw itching m ethodology to

reduce router m em ory requirem ent and allow ing low latency com m unication. The

retransm ission policy (GO -BACK -N) was im plem ented as ‘A C K /N A C K ’ flow control

was used. Flits were transm itted continuously w ithout waiting for the ‘A C K ’. W hen a

‘N A C K ’ is received, the transm itter will retransm it the negatively acknow ledged flit in

addition to the N succeeding flits that were transm itted during the round trip delay. The

MPEG

dow nstream node will discard N -l o f the received Hits following the corrupted flits

regardless o f they are error free or not.

2.3.3 OS-Link Based System

Start bit S top bit

1f i r■

1; ..:
0

A
< ►

Data
T ype bit

Figure 2-5: Token format for OS-Link protocol.

The O S-link is an oversam pling serial link com m unication protocol, originally

designed for the Transputer and is used by the early routers designed by the NTU

research group. It is a bi-directional full-duplex com m unication protocol with data

transferred over the link using tokens. The oversam pling technique was capable of

achieving a m axim um bit rate o f 44 M bit/s. To provide more efficient support for higher

level protocols, the size o f the token is kept as small as possible. Figure 2-5 shows the

form at o f a token. Each token was m arked by logic ‘ 1’ as a Start bit, and ends with a Stop

bit, logic ‘O'. Logic ‘1’ in the Type bit will indicate the follow ing 8 bits were a byte of

data; logic ‘0 ’ in the Type bit will indicate that the following 8 bits were control

inform ation.

2.3.3.1 The ICR C416 M essage Router

27The ICR C416 is a hardware routing switch developed by the NTU research

group. It was m arketed by IC Routing Ltd (now dorm ant) for use as interconnection

35

between the first generation Transputers5 in em bedded control applications75. The 16

channel dynam ic router switch architecture 76 allows up to 8 bi-directional

com m unications sim ultaneously w hen there is no output contention. It is an asynchronous

serial com m unication netw ork device w ith each channel consisting o f a pair o f full

duplex lines transferring data at rates o f either 10 or 20 M bit/s. The ICR C416 uses an

O ver-Sam pling technique for data recovery at the receiver. Therefore no clock

inform ation is encoded ihto the data stream.

D ata is transm itted in the form o f tokens and each token consists o f 11 bits. The

resultant routing switch has the m axim um theoretical unidirectional data throughput of

14.55 M bit/s when it is configure to run at data rate o f 20 M bit/s77. The credit-based flow

control was im plem ented in this hardware routing switch, an acknow ledgem ent o f every

token is required for every token sent. The acknow ledgem ent token consists o f ju s t 2 bits,

a Start bit and a Stop bit. Due to the requirem ent o f an acknowledge token the actual

conveyed bits per token data (or control) byte in the bi-directional com m unication is 13

bits. Taking this into account, the credit-based flow control gives a theoretical m axim um

bi-directional data throughput o f up to 12.31 M bit/s when operating at data rate of

20 M bit/s. However, practically, the data rate is low er due to the factors such as

transm ission length, netw ork traffic and the receiver buffer status.

M essages in the ICR C416 netw ork are divided into 256 bytes per packet and the

m axim um m essage length is 64 kBytes. A packet consists o f a H eader section, a Length

section, and finally the payload. The H eader section contains two bytes o f output link

inform ation and one m essage identity header for a particular m essage. The header bytes

will be stripped, one by one, as they pass through the routers, and the m essage identity

with the m ost significant bit o f ‘O’ will be identified at the destination node. It will

follow ed by the length inform ation decoding. The OS-Link based netw ork utilises

w orm hole routing to m inim ise buffering requirem ents.

The ICR C416 is designed to provide a simple, flexible and low cost solution to

interconnect m ultiple processing nodes in an irregular em bedded netw ork. A lthough it

36

operated at a low er link speed than its current netw ork interconnects devices, its generic

form at suited m any applications because it provided direct com m unication between

processors and it could be easily cascaded to form a larger em bedded network. The

features o f m inim al wiring and low pin count are other advantages offered in a physically

distributed network. W hen differential transceiver circuit are im plem ented on the board,

it was capable o f operating at a data rate o f 44 M bit/s over 100m of C A T 5 unshielded

tw isted pair cable54.

2 3 3 . 2 The NTR-FTM 08 M essage R outer

The FT-PCI-Li42 interface developm ent board had an NTR-FTM 08 routing switch

with enhanced tolerance to faults features and an O S-Link PCI interface. The FT-PCI-Li

was im plem ented in a PLD (A ltera’s A PEK 20K C 43 device) which offered a high density

o f logic functions with program m able features, large am ounts o f program m able

em bedded m em ory (which support C ontent A ddressable M em ory78 (CAM)), and a high

speed I/O interface. Enhanced features im plem ented were the distributed fault detection,
70isolation and recovery m echanism , and the utilisation of CAM as hardw are virtual

channel in order to reduce processor intervention. The CAM was used to store up to 16

expected m essage IDs with pre-allocated m em ory addresses which can be pre-loaded at

any time. The use o f CAM reduces the need o f the processor to allocate the memory

address in the D M A channel in the event o f the arrival of new m essage.

The FT-PCI-O SLi was clocked at m axim um sam ple clock frequency o f 66 MHz,

which gives a 42 M bit/s data rate; NTR-FTM 08 was clocked at the sam e sample clock

frequency, 66 M Hz, giving 42 M bit/s data rate for each channel. Therefore, with 8

channels, NTR-FTM 08 was able to give approxim ately 336 M bit/s when 8 channels

operate sim ultaneously with no output port contention. The Strong A RM and PCI

interface allowed the RISC and general purpose processors to operate sim ultaneously in

the sam e netw ork as processing nodes. U sing the NTR-FTM 08 allow ed up to 8

37

processing nodes to be interconnected or using extra NTR-FTM 08 to cascade ands

increase the size o f the scalable network.

The N TR-FTM 08 also supports the G roup Adaptive Routing technique. The Group

A daptive Routing technique allows different output ports of the routing device, which

connect to the sam e destination node, to be grouped together. W hen one channel was

busy with m essage passing and a new m essage was designated to the sam e output port,

instead o f waiting for the first one to finish, the routing device can provide an alternative

path, which will reach the sam e designated node (the designated node or following

routing device m ust have 2 or m ore channels interconnected).

FT-PCI-Li utilised a Perm ission Based or ‘STO P/G O ’ m echanism for data flow

control. This m ethod is also used by M yrinet for control o f m essage passing within i t ’s

M assively-Parallel Processor (M PP) system 80. The ‘STO P/G O ’ (X on/X off) simply

m eans m essage transm ission will either stop or continue depending on the status o f the

receiver’s buffer. F igure 2-6 shows the data flow control betw een processors in the

com m unication netw ork using this adapted protocol (adapted from OS links).

Transmitter Data Data Data Data Data Data Data Data
1 2 3 4 5 6 7 8

Data
c.

Receiver

t • ►

Go Slop Go

S i n g le d i r e c t i o n m e s s a g e T r a n s f e r

Transmitter

Receiver

t *~

I Data Data Data Data Data Data Data Data Data
1 2 3 4 WO S 6 ? 8 9

Data Data Data Data Data Data Data
a b a d e 1 9

B i-d i re c t io n m e s s a g e T r a n s f e r

Figure 2-6 Flow control of the adapted OS-Link based system

Initially a G O/Xon is transm itted by the receiver node to indicate that the receiver

node is ready to receive data. The transm itting node will start to transm it data as soon as a

Xon token is received. The received data token will start to fill up the receiver node’s

token buffer waiting to be de-packetised. The receiver side will send a STO P/X off token

when the receiver’s buffer has reached a pre-determ ined level, referred to as ‘Alm ost

F u ll’, as shown in Figure 2-7. The X off/STO P token will stop the transm itting node from

sending any m ore data until the next X on/G O token is received. This will give the

receiver node tim e to clear its buffer before it overflows. The receiver node will send the

Xon/GO when the buffer level reaches the pre-determ ined level, referred to as ‘Alm ost

E m pty .’

T o k e n b u f f e r

Bend Stop''
Xoff

g*— •— • F u ll

♦ Almost Full

A lm o s t E m p ty

 * Empty

Figure 2-7 Receiver buffering control

Send Go/Xon

The buffer gap between the ‘A lm ost F ull’ and ‘F u ll’ was used to fill up the tokens

that were sent by the transm itting node before the Stop/X off was received; Go/Xon was

sent when it reach ‘A lm ost E m pty’ to resum e the transm ission before the buffer was

actually empty. This will provide m ore efficient use of the com m unication bandw idth

between the two processing node. The End o f M essage token (EOM) and End o f Packet

token (EOP) are also used to indicate the term ination o f m essage and term ination of

packet respectively. Finally the Bad End o f Packet (BEOP) token is used to indicate

when a fault condition occurs.

39

3 Multiprocessor Platform

FPG A devices have em erged as prototyping tool alternative in digital design in

m any m arkets.. It can also be used to prototype custom ASIC designs before

m anufacturing. Evolution o f FPG A technology has changed rapidly and greatly increases

its program m able elem ent capacity. FPG A dev ices’ are starting to be integrated into SoC

because they can now im plem ent m ost (or all) o f the functions o f a com plete electronic

system. The system m ay contain m em ory, processors, specialized logic, com m unication

buses and other digital functions.

M ultiprocessor SoC (M PSoC) design is a com plex process that involves different

steps at different abstraction levels. It can be grouped into two m ajor tasks: design space

exploration and architectural design. D esign space exploration involves hardw are or

software partitioning, selection o f architectural platform and com ponents; architectural

design refers to design o f com ponents, for exam ple hardw are and software interface

design.

3.1 Digital System Implementation

An overview of som e o f the issues regarding digital design prototyping and

im plem entation solution is offered in this section. This section is not intended to be a

definite discussion on this open-ended subject, it focuses m ainly on solutions utilised in

the developm ent o f the OSL-ST2.

The FPG A is one type o f Program m able Logic Devices (PLD). It is a

sem iconductor device containing program m able logic com ponents and program m able

interconnects. It allows the im plem entation o f custom digital designs tailored specifically

to applications. Early FPG A devices included gate num bers in the order of tens or

hundreds and were m ainly used to im plem ent ‘g lue’ logic. The grow ing sophistication of

40

FPG A s has had a great im pact on digital design. The num ber o f transistors and logic

gates that can be im plem ented on a single chip has increased dram atically. FPGA

technology continues to advance and m ature, m aking a SoC possible. This is due to the

increase o f clock speed, reduced pow er consum ption and reduced cost in contrast with an

increase of logic elem ent count. The hardw are capacity offered by m odern FPG A devices

is a com pelling proposition and gives designers the opportunity to integrate more

functions in a single chip.

A pplication Specific Integrated Circuits (ASICs) are full custom device usually

produced in the final stage o f m ass production. For very high volum e production, per unit

costs becom e very low. H ow ever for prototyping and ‘small production runs the FPG A is

a better solution, it requires less investm ent in term s o f time (laying the new design out

on silicon w hen redesigning due to error(s)) and m oney (cost o f die production). The

program m ability and flexible nature o f FPG As allows them to becom e an alternative

when prototyping a design. Upon the occurrence o f design errors or the need o f re-design,

the sam e FPG A can be reprogram m ed for verification (until error free) or provide a

m eans for design optim isation before the product reaches the m anufacturing stage.

A lot o f designs are built on previous designs, com m on features and com ponents

being retained. Recycling these reusable parts o f the design, called Intellectual Property

(IP)81, can significantly reduce the design time or cycle and thus increasing the cost

effectiveness. IPs are now also functions offered by FPG A vendors. These IP cores are

pre-verified functions that can be easily plugged in, easing the design effort.

These IP cores com e w ith either source code or a net list. They have been optim ised

to w ork on a m anufacturer’s architecture. By providing com ponents in IP form, designers

can choose the com ponents that are required in their design up to the capacity o f the

FPG A device used. Som e of the IP cores provided are industrial standard functions, such

as: PC I34, PCI Express82 and Double D ata Rate Synchronous D ynam ic Random Access

M em ory83 (DDR SDRAM) Controller. These IP cores help accelerate the design process.

41

Later FPG A devices cam e with on-chip em bedded processors. There were two

kinds o f em bedded processor available: the ‘hard’ em bedded processor and the ‘soft’

em bedded processor. An exam ple o f an FPG A that comes with a ‘hard’ processor is the

Excalibur device fam ily from Altera. The Excalibur device fam ily is the com bination of

an industrial standard 32 b it A R M ™ 922T RISC processor and APEX 20™ K E-like

program m able logic. An Excalibur chip was divided into two partitions, the em bedded

processor stripe and the program m able logic partition. The em bedded processor stripe

consists o f an A RM ™ 922T RISC processor and other basic com ponents including a

Phase Lock Loop (PLL), a Tim er, and an interrupt controller. Further details can be
84found in Chapter 4. M eanwhile, exam ples o f the ‘so ft’ processors are the NIOS , NIOS

II46 from A ltera and the M icroB laze™ 85 from Xilinx.

3.2 Processor Choice for an Embedded SoC

SoC designs are pow ered by one or m ore general processors, digital signal

processors, or fixed-function co-processors. U nderstanding o f processor architecture

provides a context for choosing the right processor(s) for the SoC. Em bedded processors

are general purpose in a different sense than the high perform ance processors used in

personal com puters. A personal com puter is expected or m ostly used to run arbitrary

software: w ord processing, com puter aided design (CAD), games, m ultim edia, and the

Operating System itself; whereas a closed em bedded system runs a fixed set of tasks.

Em bedded processors also can have extra application specific instructions im plem ented.

The m icro-architecture o f a RISC m icroprocessor reflects the nature o f the

instruction fetch/execute cycle. The instruction execution is divided into m ultiple stages,

form ing an instruction pipeline. An exam ple o f a sim ple pipeline is the five-stage pipeline

shown in Figure 3-1. The first stage is the instruction fetch from the m em ory (IF). The

next stage is the Instruction Decode (ID); the instruction is decoded and its operands are

read from register file. Then the instruction is executed (EX stage) using the operands. In

the next stage, m em ory access (M EM) to retrieve or to store a value, for load and store

42

com m and respectively, using the com puted address. Finally, register update as a result of

instruction execution (w rite-back W B). The Pipeline increases the perform ance by

sim ultaneously processing m ultiple instructions in different stages. It takes 5 cycles to fill

the pipeline assum ing that the pipeline can be kept flow ing sm oothly. There are

conditions, such as execution o f the branch with conditions, which will stall the pipeline

and techniques to m inim ize the stalls. These techniques are the characteristic o f the high

perform ance m icroprocessor. The difference between the em bedded and high

perform ance processor lies in their stage o f evolution.

In this section, architecture o f A RM 922T processor from ARM , M icroBlaze™

from X ilinx and NIOS II from A ltera were surveyed.

IF -> ID -> EX -> M EM -> WB

Figure 3-1: Simple Five-Stage Pipeline

3.2.1 The ARM922T

The A R M 922T 86 is m em ber o f A RM 9TD M I family o f general purpose

m icroprocessors. It is a high perform ance RISC processor, w hich supports both 32 bit

A RM and 16 bit Thum b instruction sets, allowing the user to trade off between high

perform ance and high code density. The processor is targeted at m ultim edia applications,

such as sm art phones, Personal D ata Assistants (PDA), digital cameras, and set-top boxes;

also at other em bedded applications, for exam ple as com m unicator, audio and video

decoding and platform OS based device.

It has a H arvard architecture (separate instruction and data path), im plem ented

using a five stage pipeline, consisting o f Fetch, Decode, Execute, M em ory and W rite

stages. It also has a trace interface port that allows the use o f trace hardw are and tools for

real-tim e instruction and data tracing (for the ease o f debugging and the developm ent of

application software, operating system and hardware).

43

The A R M 922T has been designed to work with the A dvanced M icrocontroller Bus

A rchitecture89 (AM BA) unidirectional A dvanced System Bus (ASB) interface. It also

contains the necessary extra control signals to enable the im plem entation of both the

A dvanced H igh Perform ance Bus (AHB) and ASB interfaces o f AM BA. The ARM 922T

can be used as single m aster with no additional logic, or used with m ultiple bus masters

with only the granted m aster controls to drive the bus system according to AM BA

specification version 2.0.

3.2.2 NIOS II

The NIOS II46 is a 32 bit general puipose RISC processor introduced by A ltera Ltd.

NIOS II is a configurable softcore processor. Features can be added or rem oved in order

to m eet the perform ance and price requirem ents. The concept o f ‘softcore’ is related to

flexibility for the hardw are engineer to optim ise the system im plem entation according to

the design requirem ents, as the processor core is offered in a soft design form instead o f a

chip or FPG A ‘stripe’. It is to be im plem ented onto NIOS II supported FPG A families,

together with other peripherals.

The configurable nature o f the NIOS II processor also allows the integration of

custom instructions directly into the A rithm etic Logic Unit (ALU). System perform ance

can be increased by offloading portions o f the software code to hardw are functions,

extending the CPU instruction set to accelerate tim e-critical software.

C urrently there are three NIOS II processor cores available that im plem ent a

com m on instruction set architecture, each optim ised for specific price and perform ance
87requirem ents. The processor cores are in standard form, econom y form and fast form .

Table 1 shows som e of the differences betw een the NIOS II processors.

44

Table 1: Some of NIOS II Processor cores features

Notel: DMIPS: Dhrystone Million Instruction per Second is a synthetic benchmark for general processors

(CPU).

Note2: LE means Logic Element

Note3: ALM means Adaptive Logic Module

The NIOS II econom y core is the sm allest core o f the three. It was designed in such

a way that it consum es the least resource am ong the three while rem ain com patible with

NIOS II instruction set architecture; the NIOS II fast core consum ed the m ost resource as

it was designed for high execution perform ance; the NIOS II standard core was optimal

for cost sensitive, m edium perform ance applications. The standard core has m edium

perform ance and m edium resource consum ption com pared to the other tw o cores.

3.2.3 MicroBlaze

The M icroB laze85 is a softcore processor from Xilinx. It is a 32 bit RISC processor

optim ised for im plem entation in Xilinx FPG A devices. It is a highly configurable

45

i

Features Core
Econom y Standard Fast

A

Description
M inim al core

size
Small core size

Fast Execution Speed
core

%k
1

Perform ance M ax DM IPS 31 127 218 4
Fmax (M Hz) 200 165 185 1

Area <700 LEs; <1400 LEs; <1800 LEs; 4
i

<350 ALM s <700 ALM s <900 ALM s i
X

Pipeline stage 1 5 6
Instruction Cache - 512-64 kBytes 512-64 kBytes i

Bus Pipeline
m em ory access

- Yes Yes 4A

Tightly - Optional Optional
Couple M em ory

1
Arithm etic H ardw are

M ultiply - 3 cycle 1 cycle

Logic U nit H ardw are D ivide - Optional Optional -4
£

*<sJt

■I
1

?*'
A

processor as it allows the user to include specific sets o f optional features to suit the

design requirem ents. There are a few fixed features in the processor: thirty two 32 bit

general purpose registers, 32 bit instruction word with three operands and two addressing

m odes, 32 bit address bus and a single issue pipeline. Some of the optional features are:

H ardw are Barrel Shifter, M ultiplier, D ivider, Floating Point U nit (FPU) and Fast Simple

L ink (FSL) Interface.

The M icroBlaze supports up to three interfaces for m em ory access. The Local

M em ory Bus (LM B) provides single cycle access to an on-chip dual-port RA M block.

The IBM O n-chip Peripheral B us88 (OPB) was used to interface on-chip and off-chip

peripheral and m em ory. The C acheLink Interface is for use with a specialised external

m em ory controller. The system designer can chose a suitable m em ory access interface to

suit and optim ise the utilisation o f the im plem ented m em ory m odules.

The M icroBlaze supports up to 8 FSL channels. The FSL channels are dedicated

uni-directional point-to-point data stream ing interface betw een and output First-In-First-

Out (FIFO) and input FIFO. This can be used for fast transfer o f data betw een m aster and

slave that utilise FSL. The FSL can be used with custom hardw are acceleration functions.

This is sim ilar to im plem enting a custom instruction, with the benefit o f not m aking the

overall speed o f the processor pipeline dependant on the custom function.

3.3 System Bus Architecture

The system bus architecture has great influence on the overall perform ance of the

system because each system has a different com bination o f com ponents and requirem ents.

In a com plex em bedded system, not all im plem ented slave devices are high speed, low

latency devices such as U niversal A synchronies Receiver and Transm itter (UART) and

Program m able Input/O utput (PIO) device; and also a large num ber o f the em bedded

system s have m ore than one bus m aster. There are a few possible bus architectures

46

-
a

-
,

-
.

a
d

S
!

'
a

d
d

s
£

^
s

i
-~

£
_

'
•

if
cs

£±

±
i£

'H
i±

a
...
...
...
..
a

-

available and each offers different arbitration schemes and benefits to suit the

requirem ents o f the target system.

3.3.1 TheAMBABus

The A dvanced M icrocontroller Bus A rchitecture65 89 (AM BA) is one o f the

com m only used interface bus types in em bedded system s. It is an open standard bus used

to interconnect the processor and all other im plem ented functional blocks. It is designed

for the ease o f developm ent of em bedded m icrocontroller products w ith one or more

processors. An im portant feature o f A M B A is that it is technology-independent, which

ensures that highly reusable peripheral and system m acrocells can be m igrated across a

different range of IC processes and be appropriate for full-custom , standard cell and gate-

array technologies.

The AM BA consists o f a high perform ance backbone bus, AHB or ASB, which are

used to interconnect high perform ance functional units such as m icroprocessor, high

speed on-chip or off-chip m em ory and other D irect M em ory Access featured bus masters.

ASB is the first generation AM BA. It is a m ultiple bus m aster system bus that supports

burst transfer and pipeline transfer operation. AHB is the second generation AM BA. It

inherits the advantages o f ASB with new features added to support the latest em bedded

system designs. The new included features in AHB are: split transfer protocol, single

cycle bus m aster handover, and w ider data bus support of up to 1024 bits. The AM BA

specification 2.0 recom m ended m inim um bus width is 32 bits and it is expected that a

m axim um of 256 bits will be adequate for alm ost all applications.

The Advance Peripheral Bus (APB) is the secondary local bus that is designed to

interface devices that do not require too high perform ance, o f a pipeline bus interface. A

‘b ridge’ is required to convert AHB or ASB transfer into m ore suitable form at for the

slave devices attached in APB. The bridge will latch all address, data and control signal,

47

and then decode the address to select the appropriate slave device before perform ing the

data transfer operation. Figure 3-2 shows a typical AM BA system.

UA.RT

Figure 3-2: Typical AM BA System

In split transaction architecture90, as im plem ented in AM BA, the operation of the

bus m aster providing the address to the slave (when requesting an access) and the

response operation o f the slave to the bus m aster is separated. The bus m aster will only

be allowed to perform data transfers when the slave device is ready. If the slave device is

not ready, the bus m aster will have to retry again later or wait. M eanwhile, the bus

ow nership will be granted to other bus m asters. This bus architecture can support

m ultiple outstanding transactions, but it com es with the price o f more com plex design of

bus m aster and bus interface.

3 .3 .2 T h e A v a lo n S w itch F ab ric

The Avalon Switch Fabric91 is a specialised system interconnects technology from

Altera. It is generated autom atically by SOPC Builder, which is part o f the Quartus II

software.

48

The Avalon Sw itch Fabric includes chip select signals for each slave device. This

provides an easy to interface to custom on-chip peripheral. It has a dynam ic bus sizing

feature to enhance the data transfer betw een a bus m aster and slave o f different data bus

widths. For example, the dynam ic bus sizing logic will execute m ultiple bus cycles, to

perform re-sizing and alignm ent, to fetch data value from peripheral with a narrow er data

bus size. For a system that has peripherals running in different frequencies, the switch

fabric will add special circuitry to support the transaction between peripherals.

Processor 1

Arbiter

Processor 2

Figure 3-3: Slave Side Arbitration Technique

The Avalon Switch fabric also supports the sim ultaneous m ultiple bus masters. The

Avalon m asters and slaves interact with each other based on a slave-side arbitration

technique, as shown in Figure 3-3. Each bus slave will have an arbiter. The arbiter will

determ ine which interconnected bus m aster will gain access to that slave device when

there are m ultiple m asters attem pting to access the sam e slave. This technique offers two

advantages:

> Firstly, each bus m aster interfaces to the Avalon bus as if it was the only bus

m aster on the bus, because the detail of the arbitration are encapsulated inside the

Avalon bus. Therefore, the m aster and slave interface are consistent regardless of

the num ber o f m asters or slaves im plem ented on the sam e system.

> Secondly, m ultiple m asters can perform data transactions sim ultaneously,

provided they are not accessing the sam e slave device in the sam e time, as shown

in Figure 3-4.

49

Arbiter

Arbiter

Processor

P ro c e sso r
P e r i p h e r a l 2

Figure 3-4 : Simultaneous multiple Bus master data Transactions.

09The Avalon Bus Interface is a sim ple bus interface im plem ented into designs to

interact w ith the Avalon Switch Fabrics Interconnect. The principal design goals of the

A valon Bus interface were to provide a sim ple and easy to understand protocol; to

optim ise the resource utilization for bus logic; and synchronise with all o ther user logic

im plem ented on the sam e PLD, while avoiding com plex tim ing analysis. The Avalon bus

specification supports different bus transfer types betw een the bus m aster and slave pair.
no

The fundam ental transfer types stated in A valon Bus Specification version 2.3 ' are the

transfer w ith fixed or variable latency type and the stream ing transfer type. The latest
09A valon Bus Specification (renam ed to Avalon M em ory-M apped Interfaces

Specification) has included new transfer types to support different design requirem ents

such as: burst transfer m ode, pipeline transfer mode, and transfer with tristate property.

3.4 Modem Solutions in Multiprocessor Systems

M ultiprocessor SoC design use com plex on-chip netw ork and interconnection to

integrate m ultiple program m able processor cores, specialised m em ories and other

intellectual property (IP) com ponents on a single chip.

50

3.4.1 Cell Based Systems

Cell architecture94, also called Cell B roadband Engine A rchitecture, was based on

research conducted by IBM , Sony and Toshiba to provide a pow er-efficient, cost-

effective high perform ance for wide range o f applications such as gam ing consoles,

scientific calculation and data processing. It is a heterogeneous m ultiprocessor system

that consists of one IBM 64 bits Pow er Architecture ™ core and eight specialized co

processors called Synergistic Processor Units (SPU). The system was integrated by a

coherent on-chip bus as shown in Figure 3-5. I t’s design can be classified as SMP. All

processing units rely on their D M A engines to access the m em ory resources for

instruction and data fetching. A D M A engine has becom e an im portant com ponent in

m odern m ultiprocessor system s as it consum es the idle slots in the interconnection bus to

fetch instruction and data to prevent starvation o f the processing unit. It can help to

im prove the efficiency o f the overall perform ance o f the system by keeping all the

processing units busy by feeding enough data to it.

SPU SPUSPU SPU SPUSPU SPU

DMADMA DMA DMA DMA DMA DMA

Coherent on-chip Bus

DMADMA

Memory Controller Interface Controller
SPU

64 bit Power
Architecture Core

Figure 3-5 Cell architecture block diagram.

3.4.2 The XA10 System

PCI / U \
Interface W

Extension

z . 1 z;

APEK20KC

Tv------- T

SDRAM

Excalibur
XA10

SD RA M

Excalibur
XA10

Figure 3-6: XA10 System Block Diagram.

SDRAM

_ _

Excalibur
XA10

The X A 1095 system was a distributed m ultiprocessor em bedded system developed

by IC Routing Ltd. It consists o f three X A 10 chips and an A PEK 20K chip. The three

XA10 chips form three processing nodes, each processing node has its ow n dedicated on-

chip R A M and external SD RAM m em ory resource. The A PEK 20K chip consists of an

O S-Link R outer and O S-Link based N etw ork Interface C ontroller w ith PCI interface.

Four chips were interconnected by O S-Link based netw ork and they were linked together

in a daisy-chain connection, as shown in Figure 3-6. Inter-processor com m unications

were perform ed via m essage passing through the O S-Link network.

The PCI interface in the X A10 system enables it to be plugged into any system with

PCI slots, such as a H ost PC. In the case o f p lugging it to a H ost PC, the H ost PC can be

used as a main control processing node which dedicates tasks to the three or more

processing nodes96 (the system can be cascaded by connecting it to m ore processing

nodes via the O S-Link network). The detail of the XA10 designs will be covered in more

detail in Chapter 4.

52

4 The XA1 System Prototype Board

4.1 Introduction

This chapter details the XA1 board, which was a prototype o f O S-Link based

netw orked distributed m ultiprocessor em bedded system. The O S-Link network

interconnects three processing nodes and a host PC. This chapter also details the

alterations m ade to the protocol and the netw ork interface controller in order to reduce

processor intervention when passing m essages.

Network
Extension

Figure 4-1 shows the hardw are layout o f the XA1 board including an APEX20KC

chip, and three Excalibur X A 144 chips. The three XA1 chips each provided one

processing node. Each processing node had an in-built processor and an external 128

M bytes SDRAM . The APEX 20K C device consisted o f a PCI bus interface, an O S-link

Interface and an 8 port router. Figure 4-2 shows the architecture o f the Excalibur XA1

chip with the O S-link Interface and NTR-FTM 05 router. The N TR-FTM 05 router was

adapted from an NTR-FTM 08 router, and m odified (from 8 ports to 5 ports), to fit into

JTAG

Excalibur
XA1

Altera
APEK20KC

SDRAMSDRAM SDRAM

PCJ Interface Edge

Figure 4-1 The X A l’s Hardware layout

53

the XA1 chip (because XA1 chip had lower logic elem ent counts than APEK20KC

devices) and connected to form the chosen topology.

4.2 The XA1 chip

SDRAM

Excalibur XA1

ARM922T PLLTimer

Watchdog
Timer

Interrupt
Controller

AMBA Bus

OS Link
Interface

SDRAM
Controller

UART <

NTR-FTM05

UART

Figure 4-2: Excalibur XA1 device with the OS-link Interface and a 5 port router.

The Excalibur devices44 are a com bination o f a RISC core processor and

program m able logic in a single device. It integrates an industrial standard ARM 922T

processor, on-chip memory, and peripheral with A PEK 20KE device-like architecture.

The ARM 922T45 processor and peripheral such as PLL, W atchdog Tim er, Timer,

Interrupt controller, UART, and SRAM were in-built to the ‘Em bedded S tripe’.

The O S-Link Netw ork Interface Controller and NTR-FTM 05 router were

im plem ented in the APEK 20KE device-like architecture part of the XA1. The OS-Link

Netw ork Interface Controller formed the interconnection between the processor and the

54

O S-Link em bedded network. The NTR-FTM 05 router was used to interconnect that

processing node to other adjacent processing nodes.

4.2.1 XA1 Internal System design

Embedded Stripe
AHB

AMBA
Arbiter

OS-Link
RegisterTx-ctrl

Network
Interface

Controller

Rx-ctrl
NTR-

FTM05

Figure 4-3: Block Diagram for Component Interconnection in PLD area.

Figure 4-3 shows the block diagram of the design m odules im plem ented in the

APEK 20K E device-like architecture part o f the Excalibur Chip. The AM BA bus arbiter

was in charge o f deciding which bus m aster granted the perm ission to drive the bus to

access a m em ory-m apped bus slave. There were three bus m asters in each XA1 device.

They were the ARM 922T Processor, the T ransm itter DM A Controller (Tx-ctrl) and the

Receiver DM A Controller (Rx-ctrl). The data transfer between the Em bedded Stripe and

the PLD was perform ed via the AHB Bridge.

Transm itter DM A Controller

The Transm itter DM A Controller m odule was the AM BA interfaced DM A

controller. The DM A was initiated by the processor by loading the target m em ory address,

55

the header inform ation and the length o f the payload in order. Then the Transm itter DM A

Controller w ould request m em ory access. The Transm itter D M A Controllers accessed

target m em ory as soon as perm ission was grant by AM BA arbiter, acquired data would

then be stored in the D M A buffer (FIFO). The value in the address register indicating the

target location was increm ented by 4 (because it is a 32 bit data transfer) each time a

valid data was sam pled from the data bus, while the value in the Length register was

decrem ented. W hen the value in the Length register reached zero, the Transm itter DM A

Controller term inated the D M A operation. The Transm itter D M A C ontroller paused and

released the D M A access if the D M A B uffer signalled that it was full. It would request

m em ory access again to fetch the rem ainder data when a further ‘k ick-start’ was asserted,

when the D M A buffer was alm ost em pty.

Receiver D M A C ontroller

The de-packetised data was stored in the receiver D M A buffer (FIFO). The

Receiver D M A Controller started the D M A operation when the D M A buffer was nearly

full and a ‘k ick-start’ signal was asserted. The R eceiver D M A C ontroller first m ade a

m em ory access request to the address input into the receiver channel’s A ddress Register.

W hen the request was granted it started fetching data from D M A B uffer and writing it to

the m em ory m odule via the data bus. The Address register was increm ented by 4 for each

32 bit data written to the m em ory module. The Receiver D M A C ontroller released the

D M A when the D M A Buffer was em ptied. If the m essage was unfinished, a ‘kick-start’

signal was asserted again when the D M A B uffer is filled up.

D M A R egister

The D M A R egister was a list o f registers associated with the netw ork interface

controller. It had the control registers which were used to kick-start D M A operations and

also the status registers used for m onitoring purposes. It was an AM BA bus slave m odule

that’s accessed by the processor in the Excalibur chip. To transm it a m essage, the

processor inputted the address location where the m essage was stored to the transm itter’s

56

address register, follow ed by the length o f the m essage into the Length register (writing

to the Length register will kick-start the DM A). To prepare the receiver to start a DM A

transfer, the address allocated to the new m essage was inputted into the receiver’s

Address register, followed by the expected length into the Length register. The status

registers show ed inform ation about the netw ork interface controller, such as the device’s

ID, current operation, and received header inform ation. This m odule was particularly

useful w hen debugging the netw ork interface controller because signal inform ation from

other m odule could be sam pled and accessed by the processor.

Tx-Ctrl ^ j p

OS-Link Re

Rx-Ctrl

Tx DMA Buffer

Rx DMA Buffer

Packet iser

De-packetiser

L _ J \ Token
Buffer

__N

_ j \ j
“ V

Token
Buffer

J \
p i /

1

Network interface Controller

Figure 4-4: Block diagram for design modules in Network Interface Controller of Excalibur chip.

The N etw ork Interface Controller was the interconnection between the processing

node and the O S-Link network. F igure 4-4 illustrates the m ain m odules im plem ented in

the N etw ork Interface Controller.

D M A buffer

There was one D M A buffer in each direction. The D M A buffers were in the form

of FIFOs (the first data written in will be the first data read out). Each was 32 bits wide

and 64 words depth. They acted like an interm ediate storage, to buffer the data

transferred from m em ory to be packetised for the transm it operation, and vice versa.

The D M A buffer at the transm itter channel stored the data fetched from the

m em ory by the Transm itter controller. The data stored here was read by the packetiser to

convert the 32 bit data into O S-link protocol tokens. The receiver channel’s D M A would

have the reverse function, to buffer the de-packetised data. The storage was accum ulated

so that there was sufficient data to m ake an efficient D M A transfer to the m em ory. The

Receiver controller asserted a m em ory w rite request when the receiver channel’s DM A

buffer was alm ost full or when it was the end o f m essage.

Packetiser/ D epacketiser

The Packetiser fetched the buffered data from the transm itter channel’s DM A

buffer. The 32 bit data was split and form atted into 9 bit tokens. A fter that, the tokens

were buffered in the Token buffer. The Packetiser had three stages to packetise a m essage.

The first stage was to identify all the m essage headers, form at it and then store all the

headers into the Token buffer; the second stage form ated the rem ainder o f the data into

tokens and stored them in the Token Buffer; the final stage inserted a m essage

term ination token to the tail o f the m essage. The Packetiser buffered the tokens into the

Token B uffer as long as the ‘A lm ost F u ll’ flag was not set, otherw ise it paused and

waited.

The D epacketiser was responsible to de-fonnat every four 9 bit data tokens from

the receiver’s Token B uffer and com bined them into 32 bit data. First it identified the

m essage’s header ID then stored the m essage ID into the R eceived H eader register in the

D M A Register module. Next, every four data tokens were de-form atted (rem oving the

type bit) then re-arranged in the order of the original 32 bit data before being buffered

into the receiver channel’s D M A Buffer.

D ata was packetised and de-packetised in hardw are in order to reduce software

overheads. Therefore the software ju st had to input the address location o f the first 32 bit

data and input the length o f the m essage.

58

Token Buffer

There were two token buffers in the netw ork interface controller, one in each

direction. The Token Buffers were 9 bits w ide and 32 token in depth FIFO. The least

significant bit o f the token was the token type bit to indicate the token type (bit ‘1’ for a

data token, bit ‘O’ for a m essage term ination control token). Both functioned as

tem porary storage for the form atted token and received token from the netw ork for the

transm itter channel and the receiver channel, respectively.

The transm itter channel was the interm ediate buffer for the packetised tokens prior

to being transm itted out to the network. It had an ‘A lm ost F u ll’ flag to signal the

Packtiser, so that it held further packetising operations until the buffer was cleared down

to a pre-defined ‘A lm ost E m pty’ level, to avoid FIFO overflow. W hen it reached the

‘A lm ost E m pty’ level, the FIFO set the ‘A lm ost E m pty’ flag to perm it the Packetiser to

resum e the packetising operation.

The receiver channel’s Token B uffer stored the valid incom ing token, sam pled by

the N etw ork L ink Interface module, w aiting to be de-packetised. It also used the ‘Alm ost

F u ll’ flag and ‘A lm ost E m pty’ flags to control the buffering space availability. When the

buffer reached the pre-defined ‘A lm ost Full’ level, the ‘A lm ost F u ll’ flag was set. This

signal caused the N etw ork L ink Interface to transm it an ‘X o ff token to the upstream

node to pause the transm ission until the buffer was cleared. The ‘X on’ was transm itted to

perm it the upstream node to resum e transm ission when the buffer level dropped to a pre

defined ‘A lm ost E m pty’ level (‘A lm ost E m pty’ flag set).

N etw ork L ink interface

The N etw ork Link Interface was the m odule that interfaced the processing node to

O S-Link network. The Transm itter first fetched tokens buffered in the transm it channel’s

Token Buffer. The tokens were transm itted out in a serial bit stream, alongside the Start

bit and Stop bit (refer to 2.3.3). In the case when the receiver channel’s ‘A lm ost Full’ flag

59

was set, the Transm itter transm itted an ‘X o ff token so that the upstream node paused the

transm ission operation. It later transm itted an ‘X off’ token to perm it the upstream node to

continue to transm it the rem aining tokens.

The R eceiver sam pled and validated the received signal. Then later stored the valid

tokens from the netw ork into the receiver channel’s Token Buffer. Only data tokens and

m essage term ination tokens were stored into Token Buffer because the rest o f the

netw ork control token were invisible control tokens, used betw een the N etw ork Link

Interface and OS-Link, for flow control. If an ‘X o ff token was received, the Network

L ink Interface stopped the T ransm itter’s operation until an ‘X on’ is received.

4.2.2 XA1 External communication

The U A R T of each XA1 system was connected to the serial port o f the host PC

through a selector circuit. This enabled the host PC to m onitor and access the m apped

register or m em ory location o f each XA1 system when tests were run on it. A boot
Q7program was developed by the research group and run in the Excalibur device. It

enabled the rem ote map registers or m em ory location access from the H ost PC via a

U A RT connection.

Host PC

FT-PCI-Li

I T
J\

V — V NTR-FTM08

\ 7 \ 7

Monitoring

Processing
Node

NTR-FTM05
J \

J \
V" — \ /

Processing
Node

NTR-FTM05 \ r
— N
“~V

Processing
Node

NTR-FTMQ5 <^=D
< != !>

Figure 4-5: Multi processor embedded system.

60

Figure 4-5 is an exam ple o f topology o f a distributed m ultiprocessor em bedded

system that could be form ed by the XA1 prototype system, a daisy chain topology. In the

exam ple the host PC could act as the main control. The H ost PC could be used to

configure all the routers, boot up the all the processing nodes and dedicate a task to each

processor. All the com m unications betw een the processors (including the host PC) are via

the routers. Every router will have two channels connected to each neighbouring router95.

4.2.3 Group Adaptive Routing in XA1 Prototype Board

The use o f the NTR-FTM 05 routing device has inherited the G roup Adaptive

R outing features from the NTR-FTM 08 routing device. Therefore the 4 OS-Link

channels, which were to be connected to other processing nodes, can be configured and

grouped to form the target network topology.

Host PC

Processing
Node

Processing
Node

Processing
Node

NTR-FTM05 NTR-FTM05 NTR-FTM05NTR-FTM08

Grouped channels

Figure 4-6: Grouped Adaptive Routing utilisation in XA1 system

An exam ple o f the utilisation o f G roup A daptive Routing feature in the XA1

system is illustrated in Figure 4-6. The com m unication channels betw een two adjacent

NTR-FTM 05 routing devices were grouped together by configuring both routing devices.

If two m essage were to be passed to the sam e destination NTR-FTM 05 routing device but

both had the same output port header inform ation, one o f the m essages w ould be passed

61

via an alternative channel (if that channel was free), when the com m unication channels

were grouped in advance.

4.3 The APEK20KC chip

The designs im plem ented in the A PEK 20K C were inherited from the FT-PCI-Li

interface developm ent board (see section 2.3.3.2). It contained a PC I based OS-Link

N etw ork interface controller (FT-PCI-Li), and an NTR-FTM 08 router. The PCI interface,

illustrated in Figure 4-1, could be plugged into a H ost PC to include the H ost PC to the

em bedded network.

The FT-PCI-Li had two bi-directional com m unication channels connected to the

NTR-FTM 08 router. This allowed m ultiple m essage passing using two bi-directional

channels. Both com m unication channels could be grouped together by configuring the

router to have m ore efficient use o f the com m unication bandw idth betw een the FT-PCI-

Li and the NTR-FTM 08 router. The NTR-FTM 08 router had 8 com m unication channels.

Tw o of the com m unication channels were connected to the first XA1 processing node,

another tw o could be either connected to the third XA1 or to an extended netw ork (by

changing the jum per setting on the XA1 prototype board), the rem ainder o f the channels

could be used to extend the em bedded network.

The H ost PC could be used to boot up all processing nodes in the network, to

configure all the im plem ented routers (grouping) and pass m essages to the processing

nodes in the netw ork via the FT-PCI-Li interface. During the investigation and design

optim isation, the H ost PC was used to transm it m essages to the processing nodes to

verify the functionality o f designs.

4.4 Design Optimisation

The netw ork interface controller was adapted and m odified to reduce processor

intervention when passing m essages. The previous design required the processor to input

the header inform ation into the D M A register, prior to kick-starting the T ransm itter DM A

Controller. It needed three write operations to transm it a message: input the address,

input the header and input the length o f m essage. Therefore the header inform ation was

included in the m essage (in m em ory) and header inform ation was identified when the

m essage was packetised. This resulted in only tw o write operations, to input the address

and m essage’s length into the D M A register, to ‘k ick-start’ a D M A when transm itting a

m essage.

4.4.1 New message Structure

H eader 1

H eader 2

M essage ID

P ayload

a)
n = old header count

1 < n < 3

H eader 1

H eader 2

H eader 3

H eader 4

H eader 5

H eader 6

M essage ID

P ayload

b)
n = new header count

0 < x < 7

Figure 4-7: a) Old message structure, b) New message structure.

The optim isation resulted in a new m essage structure in m em ory. Each header byte

inform ed the dow nstream router which output port the m essage was designated to and the

63

M essage ID used by the processing node to identify the new incom ing m essage. The

original design supported up to three header bytes, including the M essage ID byte,

because the H eader register in the D M A R egister m odule was only 32 bit. Therefore the

m essage was lim ited to pass through only 2 routers. By including the header inform ation

in the m essage in memory, it enabled the header inform ation to have a higher capacity, to

support up to seven header bytes including the M essage ID.

Referring to Figure 4-7, the least significant 3 bits of the first m ost significant bytes

o f the m essage structure was the header count. It indicated the num ber o f header bytes in

the header section o f the m essage, including the M essage ID byte when the m essage was

being packetised. The headers were packetised in the sequence from the m ost significant

byte to the least significant byte. H igher capacity in the header section enabled the

m essage to travel via m ore routers, thus increased the netw ork’s scalability. This also

offered an option o f using a Zero Header, which included all the headers into the m essage

payload to support m ore than 7 headers. If a zero header count was used, then the header

inform ation m ust be re-arranged because the payload was packetised from least

significant byte to m ost significant byte for every 32 bit o f data.

n X X X

Header 4 H eader 3 H eader 2 H eader 1

H eader 8 H eader 7 H eader 6 H eader 5

Payload
M essage ID

n = 0
X = Don't care

Figure 4-8: Message Structure in Memory when Zero Header was used.

64

4.5 Technology Migration

A t the end o f the design optim isation, the research group decided to m igrate to a

new technology because im proved SoC options were available.

The initial XA1 prototype board consisted o f three Excalibur XA1 chips and each

had an in-built ‘hard’ core A RM 922T processor. A lthough the A R M 922T could operate

at high clock frequencies, up to 200 M Hz, com paring to the NIOS II and M icroBlaze

softcore processors, but because it is an ‘in -bu ilt’ processor, it is lack o f reusability. It

cannot be replicated in the sam e chip to form m ultiprocessor SoC. The NIO S II and the

M icroBlaze softcore processor had the potential o f im plem enting m ultiple processors in a

single program m able chip, as softcore processors were provided in the form of IP,

therefore they could be replicated as m any tim e as possible w ithin the available

program m able elem ents in the FPG A device.

In term o f flexibility, the configurability o f a softcore processor allows designers to

include only the optional features that are required for their design. Hence, the

program m able elem ents in the FPG A would not be wasted and m ore functions or IP

could be im plem ented. D esigners could also construct different kinds o f system s to suit

their application. Features o f the ‘Em bedded S tripe’ in Excalibur devices w ere in-built:

silicon area has been consum ed whether the application required the usage o f the in-built

features or not.

M ost o f the com ponents were custom built or provided by the FPG A vendor in the

form o f soft IP (V H D L or V erilog H D L code). Therefore configurations o f com ponents

could be changed to suit the target application. M ost im portantly the m ost updated

com ponent designs can be obtained from the FPG A vendor.

65

The capacity o f the FPG A ’s program m able elem ents was also a crucial decision

factor when m igrating to the new technology. Com paring the specification o f FPGA

devices o f Excalibur XA1, Stratix II devices47, and V irtex-4 family (in A ppendix B) the

Excalibur devices had the low est LE count. Therefore the Stratix II device shows a higher

capability of including m ultiple processing nodes.

U sing the Excalibur devices to construct an em bedded distributed m ultiprocessor

system on a PCB involved m ore hardw are design and tracking. By using a higher

program m able elem ent FPG A to im plem ent m ultiple processing nodes, the risk of

hardw are tracking errors, which could result in investm ent in new PCB designs, could be

reduced.

The NIOS II processor (with Stratix II device) and the M icroB laze (with Virtex

device) showed m ore potential o f im provem ent in O S-Link netw ork im plem entation

when com paring the FPG A ’s specification and their capacity with the Excalibur devices.

A fter taking consideration, the research group reached a decision to m igrate the designs

to a Stratix II device. This was partly due to thexeason that the research group had many

years o f experience with A ltera devices and partly due to the flexibility o f NIOS II

processor.

66

5 Design Structure for NIOS Based SoC

5.1 OS-Link Network Interface Module

The O S-Link netw ork interface controller (NIOSNIC) was built as the

com m unication m edium between the processing node and the interconnected OS-Link-

based network. The design was divided into two sections, as shown in Figure 5-1. The

m ain contribution was in the front end section. The front-end section was the custom

build Avalon bus interface for NIOSN IC, which was designed to interconnect the system

and the back-end section o f NIOSN IC. Both o f the DM A Buffers and Control/Status

register m odule were also m odified to facilitate the Avalon Bus Interface built. This

front-end was responsible for initiating the D irect M em ory Access transfer to m ove the

received data to the designated m em ory location. The back-end section was the M essage

Packetiser/ D epacketiser and the netw ork link interface, to transm it and receive m essages

to and from the interconnected OS-Link-based network, and to encode and decode the

control tokens.

Tx DMA
Buffer

Token
Buffer

Rx DMA
Buffer

Control/
Status

Register
— —

Token
Buffer

Network
Link

Interface

Avalon
Bus

interface

Packetiser
/ De

packetiser

Front end Backend

Figure 5-1: Basie construction of OS-Link Network Interface controller block diagram.

From Figure 5-1, the front-end section consists o f an A valon bus interface m odule

and it was separated from the back end section by two FIFO buffers, one for the transm it

channel and one for the receive channel. The entire m odule was synchronised to the

67

system clock except the N etw ork L ink Interface which was synchronised by the Over

Sam pling (OS) clock. The token buffers facilitated the data flow betw een asynchronous

serial link of the O S-Link netw ork and the Packetiser/ Depacketiser. The developed OS-

L ink netw ork interface controller was adapted from the optim ised A M B A bus-based

design, with m odules redesigned to interface to the Avalon Bus in the new distributed

em bedded m ultiprocessors system.

5.1.1 Avalon Bus Interface Module

The Avalon Bus interface m odule in the O S-Link network interface controller was

designed to initialise and to kick-start the data transfer between the O S-Link network

interface controller and the m em ory m odule in a processing node. B esides that, it also

contained registers to indicate the O S-Link netw ork interface contro ller’s status. The

Avalon Bus interface was divided into three m ain m odules, the T ransm itter m odule, the

Receiver m odule and the OS-Link Register m odule.

Fa DMA Buffer

Buffer
Interface

Tx DMA
Controller

Tx DMA Kick Start Signal

Various status signals from back end

Register

Rx DMA Kick Start Signal

From DMA Buffer
DMA

BufferRx DMA
Controlle

68

Figure 5-2: Block Diagram for the Avalon Bus interface section and its associated signals.

R eferring to Figure 5-2, both the Transm itter and R eceiver m odules were

designed as A valon bus m asters while the O S-Link Register m odule was designed as the

A valon Slave device in a processing node. The Transm itter bus m aster (Tx m aster) was

responsible to initialise D M A operation to transfer the m essage from a m em ory module

then store the m essage in the 32 bit transm itter channel D M A buffer, waiting for

packetisation before being transm itted out from the NIOSNIC. The R eceiver bus m aster

(Rx M aster) was responsible for transfer o f the de-packetised m essage from the 32 bit

receiver channel’s D M A buffer to a m em ory m odule. The OS-Link Register was

designed to store and indicate the current status o f the O S-Link netw ork interface

controller. The O S-Link R egister was also used to configure both Transm itter and

R eceiver bus m asters to kick-start a DM A transfer.

The A valon bus interface m odules were designed as separate bus m asters so that

both bus m asters can operate sim ultaneously. The Avalon Bus allows m ultiple bus

m asters to drive the system bus, providing that the bus m asters were not accessing the

sam e slave device93. For example, when the processing node was transm itting a message,

data was transferred from SDRA M via the Transm itter m odule to the transm it channel

D M A buffer. D uring this time, if a new m essage was received and the destination address

w here the received data was going to be stored at another m em ory m odule on that

processing node, say the on-chip RAM , then both transm it and receive operations would

operate sim ultaneously. In the worst case scenario when both bus m asters were accessing

the sam e m em ory m odule, then the decision w ould be made by the m em ory m odule’s

arbitration, to choose which o f the bus m asters would gain access.

5.1,1.1 The Bus M asters and Bus Slave M odules

Both Transm itter and R eceiver bus m aster m odules initialised and m onitored the

DM A operation. They were also connected directly to their target m em ory arbitration

69

m odule by the Avalon Bus. Each bus m aster m odule, shown in Figure 5-2, consisted of

an address generator and DM A size counter. The address generator and size counter were

controlled by a state-m achine.

Avalon Bus Ownership request

clock

Address HX address) < ddress j%a d d r e s s ^ ~

r e a d n / write_n \

readdata write data

waitre quest

Figure 5-3: Timing diagram for bus access or memory read/ write operation.

To access a slave device, such as a m em ory module, the target m em ory address

was asserted to the address bus as the same time as asserting the active low read request

(signal ‘read_n’) or active low write request (signal ‘w rite_n’) for m em ory read and

m em ory write operations respectively.

The Avalon Bus used slave-side arbitration where the access arbitration was

handled by the slave device’s arbitrator (see section 3.3.2). The way to determ ine that the

bus m aster had successfully gained the bus ownership was by sam pling the active high

‘w aitrequest’ signal. For example, referring to Figure 5-3, if the ‘w aitrequest’ was set

high at the following rising clock after the read or write signal was asserted, then the read

or write operation had to be stalled until the ‘w aitrequest’ signal was de-asserted. When

the ‘w aitrequest’ signal was de-asserted, the data transaction could take place at the

follow ing rising clock edge.

70

Bus m aster controller

The bus m aster operation was controlled by a state-m achine. The state-m achine

was responsible for the start and halt o f data transaction operation (DM A operation),

address generation and D M A size counting.

Transm itter Bus m aster

Start tran sfe r = '1s

Read

Figure 5-4: Transmitter bus master state-machine operation.

Figure 5-4 is a diagram that shows the state-m achine o f the Transm itter Bus m aster

controller. Upon reset, the state-m achine would be in the Idle State. W hen the Address

and D M A size was loaded to kick start the D M A operation, the state-m achine would

enter the R ead State. A t this state, the active low read signal (read_n) w ould be set LO W

to request for m em ory access perm ission. For each rising clock edge, if the ‘w aitrequest’

was de-asserted, the data present at the data bus would be written to the 32 bit DM A

buffer, the address generator would increase the address by one and the DM A size

counter w ould decrease by one. If the ‘w aitrequest’ was asserted then all operations

would be stalled until it was de-asserted. The read operation would be repeated until the

D M A size decreased to zero and the state-m achine would return to the Idle State, waiting

for next m em ory read operation. However, during the D M A read operation, if the

71

T ransm itter D M A buffer was full before the D M A size decreased to zero, the state-

m achine would return to the Idle State to wait for the DM A buffer to be cleared to

‘A lm ost E m pty’ level before resum ing the D M A read operation.

R eceiver Bus m aster

Part o f the structure o f the R eceiver Bus m aster m odule was sim ilar to the

Transm itter Bus m aster module. It also had a state-m achine to control and m onitor the

data transaction between the D M A buffer and target m em ory location via D M A write

operation. Its operation is illustrated in Figure 5-5.

Alm ost F u l l fl

Write

Figure 5-5: Receiver Bus master’s state-machine.

Upon reset, it entered the Idle state and waited. W hen a m essage was received and

the R eceiver D M A buffer was filled to a level when it is alm ost full, the state-m achine

was notified and the state-m achine entered the W rite State. Therefore the D M A write

operation was kick-started to transfer all the data from the R eceiver D M A buffer to a

designated m em ory location. D uring the data transaction operation, the transaction was

only paused when the ‘w aitrequest’ signal was set HIGH. At this stage, the ‘w rite_n’

signal rem ained LO W but the m odule stopped reading the R eceiver D M A buffer until the

‘w aitrequest’ signal was de-asserted. W hen the R eceiver D M A buffer was empty, the

72

state-m achine would return to the ‘Id le’ state from the W rite State and w ait for the next

D M A write operation.

OS-Link R egister Slave m odule

A v a lo n S lav® I n te r f a c e

DMA Kick-Start Signal!
D M A K ic k -S ta r t

/ \ Status SignalsOs-UnK
Register Arbiter

Figure 5-6: Block diagram for OS-Link network interface’s Avalon Bus slave module.

Figure 5-6 illustrates the block diagram structure o f the O S-Link R egister module.

It consisted o f 3 main m odules: the Avalon Slave Bus interface, D M A Operation

Initialization Logic and the Status Registers. The processor could read or write data to the

relevant registers. In the Avalon Specification , individual peripherals did not need to

decode the address lines to generate chip-select signals because they were generated by

the address decoding logic from the A valon Bus. H ow ever the offset o f the address,

where registers w ould be accessed by the system, had to be decoded.

The Register m odule was the m odule w here all the necessary registers, such as

control registers and status registers, in the O S-Link N etw ork Interface device were

placed. There were tw elve 32 b it registers contained in the OS-Link R egister m odule, as

listed in A ppendix C. The registers were used to assist the developm ent, testing and

m onitoring o f the netw ork interface.

The D M A Operation Initialization Logic was used to initialise and kick start the

D M A read and write operations o f the T ransm itter Bus m aster and R eceiver Bus m aster

73

respectively. To begin a D M A data transfer, either D M A read or D M A write, the address

or the target m em ory location m ust be loaded into the address register, and then follow ed

by the size o f the m essage to be loaded into the m essage size register. W hen the size

register was being loaded, a pulse would be sent to the OS-Link bus m aster to kick start

the D M A operation and to get the back end O S-Link m odule ready.

DM A Buffers

From Figure 5-1, there are two D M A buffer m odules, one buffer for each direction.

The buffers operated based on FIFO principles. The Transm itter D M A buffer was the

tem porary storage for data obtained from the system ’s m em ory via the Transm itter Bus

m aster before packetisation. The FIFO was allow ed to store one 32bit data per clock

cycle when the request to write to the FIFO was asserted.

The R eceiver D M A buffer also operated based on FIFO principles. It provided the

tem porary storage for the depacketised 32 bit data from the R eceiver M essage De-

Packetiser. The data stored here w ould be waiting for the D M A operation to be

transferred to the system ’s m em ory via the R eceiver Bus master. The storage capacity

needed to be sufficient to provide a sm ooth data flow between the R eceiver Bus m aster

and the R eceiver’s M essage DePacketiser, so that there was no need to stall read/write

operations because the buffer was either em pty or full. The FIFO was able to unload one

32bit data word per clock cycle to the data bus, provided the target m em ory m odule was

ready to receive data with no access latency.

The Transm itter D M A buffer was a synchronous Legacy FIFO w hile the Receiver

D M A buffer was a synchronous Show-ahead FIFO. For a synchronous Legacy FIFO, the

data would only be present on the data bus at the next clock cycle after a read request was

asserted; for the synchronous Show -ahead FIFO, the first data would be presented on the

data bus im m ediately after the data was w ritten into it. The read request was asserted for

the next data to be presented on the data bus at the next clock cycle. The sim plified

tim ing diagram s to explain the operation o f synchronous Legacy FIFO and Show-ahead

74

FIFO are shown in Figure 5-7 below. The use o f Show-ahead FIFO as a R eceiver DM A

buffer was to optim ise the D M A transfer in A valon Bus, because the address, data, and

write requests were asserted together in the address bus, data bus and write request

signals respectively. If Legacy FIFO was used, then one clock cycle delay needed to be

added in order to read a data from the buffer, for each D M A w rite operation.

Data

Write

/ Data/ D ata

Output

CLK j_____ _____ _____ _____

Data —

Write

Read

Output D ata 1 Data 2

b)

Figure 5-7: Timing diagram for a) synchronous Legacy FIFO and b) synchronous Show-ahead FIFO.

5.1.2 Back-end Module

Tx DMA Control er

OS-Link Registe
1/

Tx DMA Buffer

3F

Rx DMA Controller

V

z_

Rx DMA Buffer

J \

■N
i /

j \

Packetiser

De»packetiser

Token
Buffer

— 1\

Token
Buffer

i \
i~~V /

Network Interface Controller

Figure 5-8: Block diagram for the back-end modules of the OS-Link Network Interface Controller.

Figure 5-8 is a block diagram that shows the im portant m odules in the back-end

section. They are the M essage Packetiser, D epacketiser, Token B uffers and Network

L ink Interface. The functionality o f these m odules will be discussed next.

Transm itter M essage Packetiser

The T ransm itter M essage Packetiser was to read data from the D M A buffer,

packetise it, and then write it to the Transm itter Token buffer. The m essage packetisation

was done in hardware in order to reduce softw are overhead. Each 32 bit data from DM A

buffer was split into four 8 bits sections. A token type bit o f logic ‘1’ was added to each

data section to form a 9 bit data token before it was transferred to the Token Buffer. The

optim ised OS-Link N etw ork interface device supported up to seven header tokens. The

header tokens included up to six routing inform ation bytes including a m essage identity

byte. The H eader Token Num ber, which was located at the m ost significant byte of the

first 32 bits header word, was to count the num ber o f routing inform ation bytes. However,

if the netw ork was larger and required m ore than 6 routing headers, the user can use the

Zero H eader mode. Each header byte also had a data type bit o f logic ‘1’. The

arrangem ents o f headers and data tokens are illustrated in Figure 5-9.

76

EOF
Figure 5-9: Header and data token arrangement.

The header routing bytes would be stripped one after the other, according to their

position in the m essage stream, as the m essage traverses the O S-Link-based network. The

obligatory m essage identity byte would be received by the destination processing node.

The packetising process would end when Length Register in the D M A m odule was

decreased to zero and the D M A buffer was em ptied. At the end of m essage, a control

token, End O f M essage (EOM), with data type bit logic ‘O’, would be appended.

X , H eader end / '

HeaderIdle Data

Figure 5-10: Message state-machine.

Start Header End = T ? No

Yes

Idle
Data

No
Start =

No
Data End = ‘1’?

Yes

Yes

Header
Term ination

Figure 5-11: Message state-machine flow chart

The Transm itter M essage Packetiser contained two state-m achines. The M essage

state-m achine was to control and m onitor the data packetising process. The M essage

state-m achine had four states; ‘Id le’, ‘H eader’, ‘D ata’, and the ‘T erm ination’, as shown in

Figure 5-10. Each stage reflected the type o f data being processed and transferred.

Referring to Figure 5-11, a m essage was started in the ‘Id le’ state when the processing

node was booted or reset. It would enter the ‘H eader’ state when the start m essage

com m and pulse was received from the O S-Link Register m odule’s control logic. This

com m and pulse occurred when the m essage’s length was loaded into the m essage size

register in O S-Link Register module. A t this stage, the header inform ation would be

loaded into the Token Buffer with the type bit. W hen all the header inform ation was

loaded, the state-m achine would enter the ‘D ata’ state. However if the Zero Pleader mode

was used, the H eader Token N um ber was m ade ‘Z ero’. This m eans there was no header

78

inform ation as all the header inform ation was included into the payload, no header count

was necessary and forced the state-m achine to m ove into the ‘D ata’ state im m ediately. In

the ‘D a ta ’ state, the payload o f the m essage was loaded into the Token Buffer. After the

data packetisation process was finished, the state-m achine w ould m ove to the

‘Term ination’ state before returning to the ‘Id le’ state. A t ‘T erm ination’ state, the EOM

token was loaded into the Token Buffer. After returning to the ‘Id le’ state, the state-

m achine would wait for the next m essage transm its to begin.

Write

B u f f e rDMA

Figure 5-12: Buffer Read-Write controller State-machine

The second state-m achine was the B uffer R ead W rite controller State-m achine. As

illustrated in Figure 5-12, it had three states; ‘Id le’, ‘R ead’, and ‘W rite’. It would start

operating, m oving from ‘Id le’ to ‘R ead’ when the M essage state-m achine entered the

‘H eader S tage’. W hen in the ‘R ead’ state, it m ight have rem ained in the current state or

advanced to one o f the other two states, depending on the condition status:

*> C ondition 1: If a 32bit data was successfully read from the D M A buffer, it would

advance to the ‘W rite’ state.

❖ C ondition 2: If the DM A buffer was em pty and the m essage transm ission is not

ended yet, it would rem ain in the ‘R ead’ state since there was no data to be

acquired from the DM A buffer.

79

❖ Condition 3: If the D M A buffer was em pty and the m essage transm ission is ended,

then it advanced to the ‘Id le’ state.

W hen in the ‘W rite’ state, the obtained 32bit data from D M A buffer would be split

into four 8 bit sections. Each data section would be form atted into a 9 b it data token by

appending a logic bit ‘1’ as a type bit before being written into the token buffer. After

writing the data token into Token Buffer, the state-m achine would return to the ‘R ead’

state im m ediately. The state-m achine would go back and forw ard betw een the ‘R ead’ and

‘W rite’ states until the all the data in the D M A buffer was em ptied, it would return to the

‘Id le’ state w aiting for the next transaction.

Receiver M essage Depacketiser.

The receiver m essage D epacketiser transferred and depacketised the received data

tokens from the R eceiver Token B uffer (to the R eceiver D M A buffer). The 9 bit data

tokens were converted back to 8 bit data sections, by rem oving the data type bit. Every

four data sections were com bined to form a 32 bit data word, before it was written to the

R eceiver D M A buffer. Upon receiving a m essage before the depacketising process, the

type bit o f each token was checked. B efore the received tokens were stored into the

R eceiver Token Buffer, all the control tokens have been rem oved, except the EOP, EO M

and B EO P tokens.

H eader

Figure 5-13: Depacketiser’s Message state-machine.

The whole de-packetising process was also controlled and m onitored by two state-

m achines; the M essage state-m achine and the Read-W rite state-m achine. The M essage

80

state-m achine had three states; the ‘Id le’ state, the ‘H eader’ state and the ‘D ata’ state. The

states o f the M essage state-m achine are shown in Figure 5-13. Upon reset, the M essage

state would be in the ‘Id le’ state waiting for a kick start. From the ‘Id le’ state, it would

m ove to the ‘H eader’ state, as the address o f the target m em ory location and then the

length o f the m essage has been loaded (‘R x_pkt_strt’ pulse received). In the ‘H eader’

state, as soon as the M essage ID was written into the R eceiver Token buffer, the data

w ould be de-packetised and then written into the H eader register in O S-Link Register

module, indicating the new received header from the expected m essage. After that, the

state-m achine entered the ‘D ata’ state. In the ‘D ata’ state, the data tokens were extracted

from the R eceiver Token buffer and transferred to the R eceiver D M A buffer.

' Wait \
DMA \

Buffer /
empty J

/ Wait
| Transfer
\ End

Write
DMA
Data

DMA

Flush

Figure 5-14: State diagram for De-packetiser’s Read-Write State-machine.

The second state-m achine was responsible for the Read-W rite operation, as

shown in Figure 5-14. Starting from reset, it entered the ‘Id le’ state. As the ‘R x_pkt_strt’

pulse was received, it w ould m ove to the ‘D M A Sync S tage’ and w ait until the M essage

state-m achine m oved from the ‘H eader’ state into the ‘D ata’ state. W hen the M essage

state was in the ‘D ata’ state, it would advance into ‘Read OS D ata’ to read from the

Token B uffer while extracting the type bit from the data token. Each tim e a data token

was read, the M essage Size register would be decrem ented by one. The Read-W rite

State-m achine would have read the Token B uffer four times to obtain a four 8 bit data

bytes, after the type bit was extracted, and com bined them to form a 32 bit data word.

81

A fter four reads, the Read-W rite State would enter the ‘W rite D M A D ata’ state to

transfer the 32bit data w ord into the R eceiver D M A buffer. The four reads and one write

procedure would repeat until the whole m essage was received (when the value in the

m essage size register was decrem ent to zero), or the receiving operation was term inated

due to the unexpected control token; EOP, EO M or BEOP. If the m essage was fully

received or the control token was received before the M essage Size register decreased to

zero (early term ination) the Read-W rite State-m achine would proceed to ‘W ait DM A

Buffer E m pty’ state. In the case o f early term ination, the Early Term ination Flag would

be set in the status register. As soon as the D M A buffer was em ptied by the R eceiver Bus

master, the state-m achine would m ove to the ‘W ait Transfer E nd’ state to confirm that

the Receiver DM A buffer was em pty and the control token was received. If both

conditions were fulfilled, the state-m achine would return to the ‘Id le’ state. However, at

this point if the control token was still not received but the M essage Size Register had

already reduced to zero, a Late Term ination Flag would be set in the status register, and

the state-m achine will proceed to the ‘F lush’ state where the unexpected extra data token

would be flushed until a control token was received, before returning to the ‘Id le’ state.

82

Token Buffers

The Token Buffers were the tem porary storage for the tokens waiting to be

transm itted or de-packetised for the transm itter channel and receiver channel respectively.

It was a FIFO o f 9 bits wide and 32 tokens depth. The type bit to indicate the token type

(data token 01* m essage term ination control token) was located at the least significant bit

o f each token.

For the transm itter channel, the data read and data write operations were

synchronised to the OS clock and sam ple clock respectively. The transm itter channel’s

Token Buffer stored the packetised tokens from the Packetiser. The transm itter channel’s

Token Buffer had a ‘F u ll’ flag to prevent data storage saturation (to pause the data write

operation from the Packetise) and an ‘A lm ost E m pty’ flag to signal the Packetiser to

resum e packetising operation, to prevent data starvation.

The receiver channel’s Token B uffer w orked initially in the reverse direction. The

receiver channel’s Token Buffer was used to store the received token from the network,

via the N etw ork Link Interface. Instead o f using a ‘Full’ flag and an ‘E m pty’ flag, the

receiver Token B uffer used ‘A lm ost F u ll’ and ‘A lm ost Em pty’ flags for data flow control.

The ‘A lm ost Full’ flag w ould set if the stored token was m ore than four tokens below the

full value. The ‘A lm ost F u ll’ flag would signal the N etw ork L ink Interface to transm it an

‘X off’ to stop the upstream node from transm itting any m ore data tokens until an ‘X on’

was sent. For A lm ost Em pty flag, it would set when the Token B uffer storage level

dropped to four or less tokens before em pty, so that the Netw ork L ink Interface could

sent an ‘X on’ to perm it the upstream node to continue sending data tokens.

83

Netw ork L ink Interface

From Transmitter
Token Buffer _

Token Buffer Status t

To Receiver Token
Buffer

Token Buffer Status

RX Link

TX Link

GS-Link
Network

Figure 5-15: Block diagram for Network Link Interface.

Figure 5-15 shows the different m odules in the N etw ork Link Interface. It consisted

of a TX Link m odule and an RX Link m odule. The 9 bit tokens were read from the

Token Buffer and converted into a serial bit stream when transm itting a m essage to the

netw ork and vice versa. The Start bit and stop b it were attached at the beginning and

ending o f each token respectively before being transm itted out o f the processing node,

and both w ould be rem oved im m ediately upon receiving each token.

The N etw ork L ink Interface also m onitored the data flow and the link connection

status. Control tokens, such as ‘X off’ and ‘X on’ tokens, were inserted into the bit stream

between the data tokens or rem oved when necessary. The ‘X off’ token was transm itted

when the receiver channel’s Token B uffer reached the ‘A lm ost F u ll’ level, to signal the

upstream node to hold the transm ission process; ‘X on’ token were sent to give

perm ission to the upstream node to resum e the unfinished data transm ission. Am ong the

tokens used in the O S-Link network, only the term ination token was allowed to progress

into the token buffer to end the de-packetisation process o f that m essage, other tokens

w ould be rem oved at the RX Link module.

84

The link connection status was m onitored to m aintain and verify the connectivity

betw een upstream and downstream nodes. A ‘H eartbeat’ was asserted every 128 OS

clock cycles and the upstream node would require the transm ission of flow control token.

W hen the com m unication link was idle, i.e. no data transm ission took place, a flow

control token was sent to the receiver to verify that the link is still connected and

operational. L ink verification was m ade periodic to reduce the signal activity and power

consum ption. W hen a flow control token was received, a flag nam ed ‘got_token’ was set.

The ‘H eartbeat’ assertion was to send flow control tokens to verify link status. The

‘C heckpulse’ procedure was to check and clear the ‘got_token’ flag every 512 OS clock

cycles. If the ‘got_token’ flag was not set when the ‘C heckpulse’ was asserted, a link

disconnection was detected (because flow control tokens should have been received

before the ‘C heckpulse’ was asserted). This not only allowed link status to be updated

regularly, but also to avoid data loss due to unknown link disconnection. Triggering the

link disconnection flag would disable the data transm ission until the com m unication link

was correctly re-initialised.

L ink dorm ancy was one o f the configurable features im plem ented in the adapted

OS-Link protocol, w orking alongside the NTR-FTM 08 router. It allow ed a link to go into

a ‘sleeping’ m ode after a pre-defined period o f link inactivity. N o flow control tokens

were required and the links rem ained silent w hen the link was in sleeping mode. In the

event of transm itting a m essage when the link was in sleeping m ode, the link was reset

and aw oken through a handshaking process (sending control tokens) between the

upstream and dow nstream nodes. Pow er consum ption was reduced when the link was in

sleeping m ode as no flow control tokens were required to be transm itted.

85

5.2 The Stratix II Subsystem (ST2SS) Module Description

This section describes the overview of the subsystem (processing node) o f the

D istributed Em bedded M ultiprocessor System built on the Stratix II developm ent board.

JTAG-
UART

NiOS II
ProcessorTimer

Avalon B us

NiQSNIC SDRAM

Figure 5-16: Block diagram of a subsystem design.

The subsystem m odule is illustrated in Figure 5-16 and consists o f six main

com ponents: the NIOS II processor, a Tim er, on-chip RAM , SDRAM , a Joint Test

A ction Group-Universal A synchronies R eceiver and Transm itter (JTAG -UART) and an

O S-Link N etw ork Interface m odule.

The ST2SS was adapted from the XA1 A R M -based platform design, w ith a novel

O S-Link N etw ork Interface m odule design; a new system bus interface w ith an im proved

D M A controller was added.

5.2.1 NIOS II processor

The NIOS II processor was the m ain processing unit in the ST2SS. This was the

com ponent w here calculation or read/w rite operation control took place. Task and

application program codes were executed there. It fetched instructions from the m em ory

to be executed and returned the results.

5.2.2 Avalon Bus

The A valon Bus was the com m unication m edium between all the Bus m asters and

Bus slaves. There were 3 bus m asters (the NIOS II processor, and the Transm itter bus

m aster and the Receiver bus m aster from the O S-Link N etw ork Interface m odule) and 5

bus slaves (Timer, on-chip RAM , SDRAM , JTA G -U A RT and O S-Link Register). The

SDRA M controller allowed addressing o f up to 16 M bytes of SD RA M (pre-fixed on the

developm ent board). The im plem ented on-chip RAM allow ed up to 50 kBytes of

addressable m em ory. The O S-Link R egister consisted of 128 bytes o f the OS-Link

N etw ork Interface m odule configurable registers.

87

5.2.2.1 Avalon Bus A rbitrator

Arbiter

Arbiter

Tx DMA
Controller

Rx DMA
Controller

SDRAM

Figure 5-17: Slave-side arbitration.

The Avalon bus was a slave-side arbitration bus architecture, so each bus slave

device was only associated with its own arbitrator. All the bus m asters that had access to

that particular bus slave would have to access requests via the slave arbitrator. Figure

5-17 illustrates an exam ple of the Slave-side arbitration strategy arrangem ent.

The Slave A rbitrator received slave device access requests from interconnected bus

m asters. It decided which bus m aster gained the access perm ission, based on its hidden

arbitration scheme, when there were m ultiple bus m asters access requests. The

architecture o f the A valon Bus also enabled m ultiple bus masters to access the system bus,

providing the target device that each bus m aster accesses is different. For example, if the

T ransm itter bus m aster was accessing the SD R A M to fetch a m essage and m eanw hile the

Receiver Bus m aster kick-started a D M A transfer to the on-chip RA M to store the

received m essage, both processes could proceed sim ultaneously because both were

accessing different slave m em ory m odule. This was an advantage offered by the slave-

side bus architecture com pared to a single m aster driven bus architecture.

The m em ory location was decoded by the arbitrator and thus the chip select was

generated by the target device’s arbitrator. The target device was activated to com m ence

bus transaction after its latency had elapsed. The arbitrator asserted the w ait request

signal to the bus m aster until the slave device was ready to com m ence the data

transaction.

5.2.3 SDRAM controller interface and On-Chip memory

In the developm ent board, the SDRAM controller was to interact w ith the off-chip

pre-connected 16 M bytes SDRAM .

5.2.4 On-chip RAM

There were three different kinds o f em bedded RA M blocks in the Stratix II FPGA

device: M 512, M 4K, and M -RAM . Each m em ory block type provided different

perform ance specifications and configurations to support different applications in FPGA

designs; some of the specifications are show n in A ppendix B. The M 4K type m em ory

was used in the processing node design as ‘distributed m em ory’ because it was easy to

configure and include into the design in SOPC. 50 kBytes o f on-chip RA M were

allocated for each processing node.

5.2.5 Timer Core

The im plem ented Tim er core was a 32 bit interval tim er for ST2SS. It could be

configured to function in different modes. W hen it was configured as a counter, it could

be controlled to start, stop and to reset. It counted in two m odes; count down once or

continuous count down. The tim er was equipped with a m askable interrupt request where

an interrupt was asserted by the counter upon reaching zero. W ith this feature, it could

also be configured as a w atchdog timer, or periodic pulse generator, depending on

89

application requirem ents. U sing it as a tim e-stam p driver, the tim e taken to perform or to

run a function could be m easured.

5.2.6 JTAG-UART

The JTA G Universal Asynchronous Receiver/Transm itter (UART) was

im plem ented as a serial character stream com m unication betw een the host PC and the

target processing node on the FPGA. The JTA G -U A R T used the JTA G cable to interact

with the NIOS II Em bedded D esign Suite (ED S)98 99. NIOS II EDS was software with a

collection o f tools, utilities, drivers and libraries that was used to develop the em bedded

software for the NIOS II processor. By using the NIOS II EDS, softw are could be written

to display the required inform ation on the host PC screen for developm ent and debugging

purposes.

5.2.7 NIOSNIC

This m odule contained two bus m asters and a bus slave. This O S-Link Register,

bus slave module, was used to m onitor the status o f the back-end designs. It also created

the control signal to configure both o f the bus m asters for operation. The bus m asters

operation was covered in section 5.1.1.1.

The OS-Link Netw ork Interface was responsible for the incom ing and outgoing

m essages betw een the subsystem and the interconnected network. It form ed full duplex

bi-directional com m unication links. The incom ing and outgoing m essages were passed

betw een the O S-Link N etw ork Interface device and m em ory m odules (either the

SD RA M or on-chip RAM) via the system bus. The OS-Link N etw ork Interface device’s

bus m aster m odules were accessing the m em ory of the processing node using the DM A

cycle stealing technique. Both were able to transfer one 32 bits data w ord each time when

the target m em ory m odule was not accessing the processor. The nature o f the Avalon Bus

allow ed the processor to continue to drive the system and the O S-Link N etw ork Interface

90

device to access its target m em ory m odule sim ultaneously as long as both o f them were

not accessing the sam e m em ory m odule. This im proved the overall perform ance of the

processing node.

No

Yes

Length \
\ Loaded? /

* v a *

Yes

No

DMA Active

< End count?
No

Figure 5-18: DMA Channel operational Flow diagram.

Both D M A channels operated on the same procedure. Figure 5-18 shows the DM A

channel operational flow diagram. It started in the Idle State as no m essage passing takes

place. To kick start a DM A transfer, the address and m essage length param eter was

loaded into the O S-Link Register m odule where the m essage length inform ation was the

last one to be loaded. This was because loading the m essage length inform ation sent a

com m and pulse to the particular bus m aster to start the D M A operation. H ence the DM A

channel was in the Active state where data transaction betw een the bus m aster and

91

m em ory m odule takes place. The D M A data transaction was subject to the resource status

o f the D M A buffer of that channel. The m essage transm it process was considered ended

when the m essage length count was decreased to zero and the packed sation/de-

packetisation was finished with no m ore data in the buffers. This w ould put an end to the

m essage transfer and the channel would return to the idle status to w ait for the next DM A

operation to begin.

5.3 Embedded Distributed Multiprocessor prototype platform, OSL-ST2

SDRAM

Processing Processing Processing

-----..........

Processing
node 1 node 2 node 3 node 4

”” NTR- '•
_ FTM08 „

T V

Figure 5-19: Embedded Distributed Multiprocessor platform with 4 processing nodes setup diagram.

92

NTR-
FTM08

SDRAM

Processing
node 2

Processing
node 1

Figure 5-20: Embedded Distributed Multiprocessor prototype platform setup diagram.

Figure 5-19 shows the possible setup and connection o f the Em bedded D istributed

M ultiprocessor prototype platform , with the O S-Link em bedded netw ork, to be fit into

the Stratix II 2S60 developm ent b oard100. H ow ever two nodes prototype (the OSL-ST2),

as shown in Figure 5-20, was realised in order to prove the principle. There were two

processing nodes and a router im plem ented on the chip. Processing node 1 consisted o f a

NIOS II processor, 50 kBytes of on-chip RAM , a JTA G -U A RT and an O S-Link Network

Interface Controller. Processing node 2 consisted o f a NIOS II processor, 50 kBytes on-

chip RA M and an O S-Link N etw ork Interface Controller. Besides a ‘dedicated’ m em ory

m odule for data storage in each processing node, both o f the processing nodes shared the

off-chip SDRAM . The SD RA M was used to store the program codes. The other reason

SD RAM was shared, was to m ake the hardw are testing easier, further explained in the

next chapter.

A Bus based interconnection system is a well understood and w idely used

architecture in em bedded systems. H ow ever its scalability is seriously lim ited. This bus-

93

based structure is still convenient for a SoC that integrates less than 5 processors 101 and

rarely m ore than 10 bus m asters. It is not suitable for long distance com m unications.

Therefore in OSL-ST2, the interconnection of com ponents within a subsystem utilised a

bus based interconnection for the ease o f data transaction betw een the bus m aster and bus

slave pair, while serial com m unications (via routers) were used betw een processing nodes

for m essage and data passing, ju s t like a distributed system. This im proved the

perform ance o f the processing node and increased the scalability o f the overall system.

The router used was the O S-Link based Routing switch, NTR-FTM 08. The router

was connected to the constructed processing nodes as shown in Figure 5-19. All the

rem aining com m unication ports were tem porary m ade io o p back’ (Transm it link

connected directly to the Receive link o f the sam e port) since only tw o processing nodes

were im plem ented at this stage. All the ‘loop-backed’ connection could in future be

m odified to connect to m ore processing nodes or NTR-FTM 08 routers.

94

6 Tests and Results

This chapter reports on the hardw are tests perform ed on the design im plem ented on

the Stratix II developm ent platform . The aim of running the hardw are tests was to ensure

the functionality o f the design and evaluate its success com pared to previous

im plem entations. The test results were also com pared to the theoretical perform ance of

the O S-Link N etw ork Interface device.

The tests included investigation o f the correct operation o f the O S-Link Network

Interface device i.e. transm ission and reception o f correct data; the D M A m odules were

able to perform various sizes o f DM A transfer and to control the O S-Link N etwork

Interface device.

6.1 Test Setup

6.1.1 Memory Distribution and Sharing

As all the off-chip m em ory and user I/O pins were fixed in the developm ent board,

in order to test the functionality o f the developed m ultiprocessor system , only certain

arrangem ents o f m em ory m apping were possible. The O SL-ST2 was designed in such a

way that som e m em ory resources were shared, as shown in Figure 6-1.

95

NIOSNIC

C PU 0 C PU 1

Figure 6-1: Shared and Distributed memory setup for hardware testing.

Each processing node has its own ‘distributed’ m em ory resource, the dedicated on-

chip RAM , the SDRA M was shared by all processing nodes. The reasons that the

SD RA M was shared were:

> Only one SDRAM chip was available on the developm ent board. It required extra

design effort to develop an extra SDRA M chip interface. Since all the hardware

w iring was already fixed in the developm ent board, only a few I/O pins were

available for user interface, the rem aining was unused as they are unconnected.

Therefore the on-board SD RAM was either shared among the processing nodes or

dedicated to one processing node only.

> The developm ent board contained a 16 M bytes SDRAM . It had enough m em ory

space to store the program code for all the processing nodes in developed

m ultiprocessor system, and it also had enough storage for other data.

> Testing was m ade easier because the original m essage could be setup in SDRAM

or dedicated on-chip R A M in the first processing node; m eanw hile the received

m essage could be stored in an unused region in the SDRAM by the second

processing node. The first processing node, which sent the m essage, would then

com pare the m essage received by the second processing node by accessing the

dedicated m em ory region in the SDRAM .

96

QxOIFFFFFF *-

0x0300000 *-

0x0200000 *

0x0000000 #-

Figure 6-2: SDRAM utilisation in the test.

As shown in Figure 6-2, the address range starting from 0x000000 to O xlFFFFF

was dedicated to the program code o f the first processing node; the address range from

0x200000 to 0x2FFFFF was dedicated for program code of the second processing node.

The rest o f the unused region was free and could be accessed by any processing node at

any time.

Because it was a shared m em ory resource, the read and write operations had to be

planned carefully, avoiding writing to any o f the processing node’s program code region,

potentially causing that particular processing node to crash.

Free region

Processing node 1

Processing node 0

6.1.2 Pulse Generator

A pulse generator m odule was created to enable tim ing m easurem ents. It had three

input signals (reset, trigger and stop) and an output signal. The reset was an asynchronous

reset used to reset the pulse generator in case o f system failure; the trigger signal caused

the pulse generator to start outputting a ‘H igh’ signal (when the stop signal was asserted,

it will return to ‘L ow ’). The output signal was connected to a user I/O pin where an

oscilloscope was connected, as illustrated in Figure 6-3.

R ese t

Processing
node 0

T rigge t̂

S top

Puise
Generator

Stratix II

a)

Idle

Active

b)

Figure 6-3: a) Connection of the pulse generator in timing measurement test, b) State machine in the

Pulse Generator.

In the pulse generator m odule there was a state-m achine, as shown in Figure 6-3b,

which sw itched between the idle state and the active state. It started in the idle state upon

reset. In the case when a trigger signal was asserted, it im m ediately proceeded to an

active state and the output went high. As long as the stop signal was not asserted, the high

continued, as shown in the tim ing diagram in Figure 6-4.

98

Trigger

Stop

G e n e r a t e d
P u ls e __________ ____________

Figure 6-4: Timing diagram for pulse generator.

6.2 The NIOSNIC Test program

The test program was written in C and cross-com piled into binary code by NIOS II

EDS software, before dow nloading into the SDRAM for real tim e testing. As the focus of

this project was on the construction of the hardw are o f an Em bedded Distributed

M ultiprocessor prototype platform , the softw are was designed purely to achieve the

objectives o f hardw are testing. No operating system was im plem ented. The written

program interacted with the host PC via the JTA G-UA RT. NIOS II EDS allows the user

to interact with the developed em bedded system on the developm ent board via a console

window, as shown in Figure 6-5. Through the console window, inform ation or data can

be displayed and data can be inputted and transferred to the em bedded system.

99

•C/C4 4 hello w orld.c Nios II IDE

N a v i g a t e

o * <*.
navtaaccN

si î EEJigBas]
® t s ~ m u l t i _ p _ c p u O _ s y s l i b [s t d _ 2 s 6 0 E 5]
S i ^ m u f t i _ p _ c p u l
® >»■ mufti_p_cpul_syslib[std_2s60ES]

T p o I s W i n d o w H e l p

» <P 1
I f @| heBo_world.c

P r o b l e m s 0 Console I : P r o p e r t i e s P r o g r e s s

m u l t i _ p _ c p u O N i o s I I H W c o n f i g u r a t i o n [N i o s I I H a r d w a r e] N i o s I I T e r m i n a l W i n d o w (1 1 / 1 0 / 0 6 1 4 : 5 4)

m o s 2 - t e r m i n a l :
n i o 3 2 - t e r m i n a l :
n i o s 2 - t e r m i n a l •
r u o s 2 - t e ir m in a l :
n i o s 2 - t e r m i n a l :
m o s 2 - t e r m i n a l :

W arning: The JTAG c a b l e you a r e u s in g i s n o t s u p p o r te d f o r N io s
I I s y s t e m s . You may e x p e r ie n c e i n t e r m i t t e n t JTAG co m m u n ic a tio n
f a i l u r e s w it h t h i s c a b l e . P l e a s e u s e a USB B l a s t e r r e v i s i o n
c a b l e o r a n o t h e r s u p p o r te d c a b l e . P l e a s e r e f e r t o t h e f i l e
e r r a t a . t x t in c lu d e d in t h e N io s I I d e v e lo p m e n t k i t d o cu m en ts
d i r e c t o r y f o r m ore in fo r m a t io n .

n i o s 2 - t e r r o i n a l : c o n n e c te d t o h ard w are t a r g e t u s in g JTAG UART on c a b l e
n i o s 2 - t e r m i n a l : " B y te B la s te r H V [LPT1] ", d e v i c e 1 , i n s t a n c e 1
n i o s 2 - t e r m i n a l : (U se t h e IDE s t o p b u t t o n o r C t r l- C t o t e r m in a te)

76 6 5 6 4 2 F OS_LINK_NIC BASE
O S -L in k Found

2 1 1 0 8 0 0

P l e a s e e n t e r yo u r c h o i s e .
1 W r ite d a t a t o memory o r r e g i s t e r .
2 W r ite m u l t i p l e d a t a t o memory o r r e g i s t e r .
3 Read d a t a fro m memory o r r e g i s t e r .
4 Read d a t a from memory b l o c k o r r e g i s t e r s .
5 S e t Tx and Rx A d d r ess t o d e f a u l t .
6 Loop b a c k t e s t .
7 Loop b a c k t e s t v e r 2 .
8 D e f a u l t M essa g e s e t u p . (I n c r e a m e n t in g d a ta)
9 D e f a u l t Memory co m p a re .

Figure 6-5: Console window in NIOS II EDS.

One program was w ritten for each processing node. For the first processing node,

the functions that were im plem ented in the test program included:

1) Single m em ory/register write.

2) Block m em ory write.

3) Single m em ory/register read.

4) Block m em ory read.

5) M essage setup.

6) S elf loop-back test.

7) Processor 1 transm it, Processor 2 receive test.

8) M em ory block compare.

The first five functions were to perform single or block read/write operations. A

user’s 32 bits o f data was w ritten to a specific m em ory location or block o f m em ory by

using function num bers 1 or 2 respectively. M em ory can be read and displayed on the

100

host P C ’s screen by calling Function 3 for a single location or 4 for a b lock o f memory.

These functions were used to create and m anipulate data contained in the free m em ory

region. They could also be used to configure or access the O S-Link N etw ork Interface

Controller device registers.

Function num bers 5 to 7 were used to test the O S-Link N etw ork Interface

Controller device via the processing node. Function 5 was used to create a m essage with

different data patterns. There are 232 possible data patterns for a 32 bit data word;

however, it is very difficult to run hardware tests for all possible patterns. Therefore only

selected patterns were used in the hardw are test. The user could either perform a loop-

back test using Function 6, or processing node to processing node m essage passing using

Function 7.

To use Function 7, the second processing node had to be pre-loaded with a fixed

task to load the R eceiver Address register and the M essage Length register in advance or

reload both after a new m essage has been fully received. In other words, the receiver o f

the second processing node was always be ready to receive a new m essage. The H ost PC

had neither access to the second processing node (to m anipulate the relevant registers to

prepare the N IO SN IC for new m essages) nor was able to display any m essages from the

second processing node. Therefore the user was not able to interact w ith both o f the

processing nodes sim ultaneously via the sam e JTAGU ART.

6.3 Hardware Tests

The hardware tests were divided into three stages. The first stage was run when the

first processing node was successfully constructed. The setup o f the first stage of the

experim ent was shown in Figure 6-6, section a. The com m unication link at this stage was

m ade a ‘loop-back’. The second stage was to connect both processing nodes directly so

that one processing node sent m essages and the other one received m essages as shown in

101

Figure 6-6, section b. Finally the last stage, illustrated in diagram c) o f F igure 6-6, was to

interconnect both processing nodes via the Router.

P r o c e s s i n g n o d e P r o c e s s i n g n o d eProcessing node

a) b)

1 P r o c e s s i n g n o d e NTR-PTM08 P r o c e s s i n g n o d e
0 r o u t e r 1

c)

Figure 6-6: Tests setup a) Self Loop back of one processing node, b) Direct connection between 2

processing nodes, c) Interconnection of 2 processing nodes via OS-Link Router.

The ‘loop-back’ com m unication test involved m essage fetching from the target

m em ory location via D M A operation, and then processing the m essage in the OS-Link

N etw ork Interface device. The m essage was then transm itted by the O S-Link Network

Interface device. Because it was all built on-chip, the receiver would pick up the m essage

alm ost im m ediately after the m essage left the transm itter. The receiver reassem bled the

data tokens into 32 b it data and then transferred the data to the target m em ory location via

D M A transfer.

This ‘loop-back’ test ensured the functionality of the constructed O S-Link N etwork

Interface device and assessed its bi-directional com m unication capability. The clock

source was from the Phase Lock-Loop (PLL) core. The PLL was used to generate the

system clock and the OS clock. The Avalon Bus was operating at 50 M H z (system clock).

The OS clock was altered from 50 M Hz to the m axim um operational frequency for the

O S-Link N etw ork Interface device, within the PLL specification. Only results from the

m axim um data rate are detailed here.

Due to lack o f software drivers developed for the new Em bedded Distributed

M ultiprocessor system, all the read/write, transm it and receiver operations were

perform ed through the test program written, com piled, downloaded and interacted with

via the NIOS II EDS. Parameters to initialise the DMA operation o f the OS-Link

N etw ork Interface device were loaded m anually via the functions in the test program.

6.3.1 A v a lo n B us A ccess T estin g

The Avalon Bus access procedure began w ith the address and read or write signal

asserted. Data was sam pled from the data bus at the rising synchronising clock after the

read or write request was made, i f the ‘w aitrequest’ was not asserted. The switch fabric in

the Avalon bus used round robin scheduling102. The bandwidth allocated for each bus

m aster’s transfer was determ ined by the num ber o f bus masters that were attem pting to

access the same m em ory m odule and the transfer type used by bus m asters involved.

There were 3 reasons that ‘w aitrequest’ w ould be asserted by the arbiter: a) Target slave

already being accessed by another bus master; b) Latency required for the target slave

m odule to produce valid data; c) The slave m odule was not ready for any transaction yet.

If ‘w aitrequest’ was asserted, the bus m aster had to wait until ‘w aitrequest’ was de

asserted to perform a valid read/write operation. Figure 6-7 shows a sample o f tim ing

diagram o f a DM A transfer by the Transm itter Bus master. Figure 6-8 shows a captured

tim ing diagram for SDRAM arbiter w hen accessed by the Transm itter Bus Master.

master: TX_MODULE|reset_n

ik|tx_master: TX_MODULE|clk

ter:TX_MODULE|tx_address 01400000h T~ 01400004h ~ ' X 014000C)8h

.master: TX_MODULE|read_n

:er:TX_MODULE|waitrequest ~ ~ | J " ™" "| 1

ter:TX_MODULE|data2dmaff 0101 jSOOh $ 01234567h ~)X 07060S04h

Figure 6-7: Captured Timing diagram for a fundamental Avalon bus transfer at 100 MHz system

clock.

103

n n f i n r L r m j T R j T r L m
0_T x_m aster_0_read_n

_ 0 _ requests_sd ram _s1

fied_request_sdram _s1 . _ * n n
. _____

!r_0_granted_sdram _s1 Bn .. n n
d_data_valid_sdram _s1r i c n _ n
X_MODULE|waitrequest L J

Figure 6-8: Captured Timing diagram for SDRAM arbiter at 100 MHz system clock.

S ; i n s t | o n c W p _ r a m _ S O _ k b y t e s : t h e _ o n c N p _ r a m _ 5 0 _ k b y t e s | c l k [I

n k _ n i c _ 0 _ T x j n a s t e r _ 0 j j r a n t e d _ o r i c h i p _ r a f r _ 5 0 _ k b y t e s _ s 1 _ _ _ _ _ _

_ T x _ m a s t e r _ 0 _ q u o l i f i e d _ r e q u e s t _ o n c h i p _ r a m _ 5 0 _ k b y t e s _ s 1

3 _ T x _ m a s t e r _ 0 _ r e a d _ d a t a _ v a S d _ o n c h l p _ r a m _ 5 0 _ k b y t e s _ s 1

: N p _ r a m _ 5 0 _ k b y l e s _ s 1 | o s _ B n k _ n i c _ 0 _ T x _ m a s t e r _ 0 _ r e a d _ n

k _ n l c _ 0 _ T x _ m a s t e r _ 0 _ r e c (u e s t s _ o n c h i p _ r a m _ 5 0 _ k b y t e s _ s 1

umjmrmjinji
_n_r

Figure 6-9: Captured Timing diagram for on-chip RAM arbiter at 100 MHz system clock.

Both Figure 6-7 and Figure 6-8 were diagram s captured sim ultaneously by tapping

some o f the signals from Transm itter DM A m odule o f the NIOSN IC bus m aster and the

SDRAM arbiter (respectively) using the Signal Tap function from the Quartus II software.

Both tim ing diagram s were captured w hen the Transm itter bus m aster was accessing the

SDRAM to read data. Figure 6-9 shows the captured tim ing diagram for activity in the

on-chip RAM arbiter when the Transm itter DM A module o f NIO SN IC bus m aster was

accessing the on-chip RAM to read data.

The following explains the sequence o f events captured w hen accessing the

SDRAM:

> Point A - The bus m aster asserted ‘read n ’.

> Point B - Valid access request received by the SDRAM arbiter.

> Point C - Valid data was available in data bus.

> Point D - ‘W aitrequest’ de-asserted so that bus m aster could sample the data from

the data bus at the first raising clock edge after ‘w aitrequest’ was de-asserted.

104

Observing the signal pattern o f the SD R A M arbiter in Figure 6-8 and Figure 6-9,

the tim ing diagram suggests that each transaction o f 32 bit data was treated as a single

m em ory access request because the m em ory request was repeated after each valid data

was presented on the data bus. The difference betw een both tim ing diagram s is that the

SD RA M incurred a higher latency cycle than the on-chip RAM . On average, the

SD RA M and on-chip RA M have 8 latency cycles and 1 latency cycle respectively. This

will give a data throughput of 22.2 M Byte/s and 100 M Byte/s for SD RA M and on-chip

R A M respectively, using the equation below:

, , , transaction _ length ■ system _ clockdata _ throughput = --- --------------- -------—-—-
no _ o f _ latency _ cycles + 1 • transaction _ cycle

W here tran sa c tio n je n g th = 4 Bytes

Equation 1: Data Throughput for DMA.

6.3.1.1 C lock Cycle Efficiency Testing

The clock cycle efficiency o f the O S-Link N etw ork Interface device Bus m aster’s

D M A transfer was calculated. Referring to Figure 6-8, the arbiter treated each assertion

o f read or write request as a single transaction request. The form ula that was used to

calculate its efficiency was as below:

. number o f transactions
e ffic iency = ----------------------------- -- 100

setup _ latency + number _ o f _ transactions

Transaction = D ata exchange between a bus m aster and slave pair.

Equation 2: Clock Cycle Efficiency equation.

The efficiency o f the D M A transfer o f the O S-Link N etw ork Interface D evice was

calculated based on the equation above. To calculate the efficiency o f the D M A module,

tw o counters were im plem ented in the T ransm itter bus m aster module. O ne to count the

105

num ber o f successive transaction, and the other was to count the num ber clock cycles the

DM A m odule has to w ait for valid data. Graph 1 shows the results o f the calculated

A valon Bus access efficiency for O S-Link N etw ork Interface device’s Bus M aster verses

the m essage payload length.

DMA access efficiency Vs message size

£ 3 0 --

20 - •

4 32 256 1310721024 12288 51199 1024575
M essage Paylod (Bytes)

p — SDRAM A c c e ss on-chip RAM |

Graph 1: Graph of the Efficiency of the OS-Link Network Interface device’s Bus Master versus

message size.

The m essage size w as varied for the SDRA M tested from 1 byte up to 1 M Byte and

the on-chip RAM up to 50 Kbytes (50 kBytes was dedicated). M essage length restrictions

being due to the lim itation o f the m essage length register (20 bits) and the size o f the

distributed on-chip RAM . The DM A m odule shows higher efficiency w hen accessing the

on-chip RAM com pared to the efficiency o f accessing the SDRAM . The efficiency o f on-

chip RA M access was constantly 50%, w ith only 1 latency cycle incurred by the arbiter

per successive transaction. The efficiency o f the SDRAM access w as about 10% on

average. The result o f the SDRAM access efficiency was not constantly 10% and

different tests m ay give a different variation (w ith the same range o f deviation) because

the m em ory was accessed by the processor for instruction fetching from tim e to tim e and

also the SD RA M needed to be refreshed periodically. Therefore the efficiency difference

between the SDRAM access and on-chip RA M was m ainly due to the access latency o f

the m em ory m odules.

6.3.2 Data Transfer Tests

The data transfer test was the m easurem ent o f the m essage duration for a

com plete transm ission and reception of a m essage. The m easurem ent was perform ed on

m essages o f various sizes, from 1 byte up to 1 M Byte. This was because the m axim um

allowed m essage size for the M essage Length R egister was set to 20 bits, i.e. 1 M Byte.

The time duration was m easured from the m om ent the Packetiser m odule started

to read data from the D M A buffer o f the transm itter until the m essage has fully received

and stored in the D M A buffer o f the receiver. The duration o f D M A operation was not

included due to the reason that the ‘w aitrequest’ signal could be asserted unpredictably

(anytim e w hen there was another bus m aster intending to access the sam e m em ory

device). The setup o f the m essage transfer duration test is shown in Figure 6-10.

Figure 6-10: Block diagram of message transfer duration test setup.

Two signals from the O S-Link Netw ork Interface Controller, a trigger and a stop

signal, will be connected to a pulse generator m odule (refer to section 6.1.2). The OS-

L ink N etw ork Interface Controller asserted the trigger signal when the Packetiser m odule

started to access the D M A buffer to extract data; the stop signal was asserted when the

receiver received the w hole m essage and the last byte was written to the receiver’s DM A

buffer. In the pulse generator m odule, there was a state-m achine. The state-m achine was

in the idle-state upon start-up or reset. W hen a trigger signal was asserted, the state-

107

m achine m oved from the idle-state to the active-state. The state-m achine only returned to

the idle-state when the stop signal or reset signal was asserted. D uring the active-state the

pulse generator outputted a ‘h igh’, which was sam pled by the externally connected

oscilloscope and the duration or the length o f the pulse determ ined the duration of the

m essage transfer.

108

6.3.2.1 Small Message Transfer Duration Tests

Message Duration for Small Message

100 1000

0.1

0.01

<A
E 0.001

eo
•a23a 0.0001

0.00001

0.000001

0.0000001

M essage Payload (Bytes)

Observed average M essage Duration - B — Theoritical Message Duration |

Graph 2: Message duration result for small message up to 1 kBytes at 48.5 Mbit/s Data Rate

Graph 2 shows the perform ance o f the O S-Link w ith a small m essage payload, i.e.

up to 1 kBytes. The increase in m essage size resulted in a linear increase in m essage

duration. It is noticeable that there is a gap betw een the theoretical results and the

observed results. This was because the theoretical results only take into account the

length o f time taken to transm it the m essage across the m edium , factors such as m essage

packetisation or depacketisation delay, FIFO access and token serialization w ere ignored.

The low er the m essage size then such inform ation as m essage headers, type bit and

synchronization bits are m ore significant com pared to the actual data. For example, the

m essage w ith 1 byte o f header and 1 byte o f data w ill consist o f 14 redundancy bits and 8
data bits: only about 36% o f this m essage w ill be the actual transm itted data. Com paring

both results from the graph, as the m essage size increases the slope o f both curves is

alm ost the same. It is suggested that the difference betw een the two was due to initial

‘"109

start-up latency. H ow ever, it becom es insignificant as the m essage size increased, as

show n in Graph 3.

Observed value - Theoretical valuePercentage_dijjerence -------------- = = 100
Theoretical __ value

Equation 3: Percentage difference o f the Observed Data Rate and Theoretical Data Rate for small

m essage.

Percentage Difference between the Theorectical & Observed results

100 -I

90 - 87.87878788

70

8c&

30

>0.61206121

2.321920504

1 10 100 1000

Payload size (bytes)

[—♦— Percentage of Result Difference |

Graph 3: Percentage Difference between the Theoretical and Observed Results for sm all messages.

110

6.3.2.2 Message Passing Duration Tests

Message transfer duration for different test setups

1000

100

V)
E
co•a

100 1000 10000 100000 10000002
0
01 a> nV)in
5

0.1

0.01

0.001

0.0001

M essage size (bytes)

[Single processor node self loop - 8 - Processing node to processing node Processing node to processing node via router

Graph 4: Message round trip duration measurement for different test setups.

Graph 4 was the m easurem ent o f round trip duration for m essages o f various sizes.

The transfer duration m easures the length o f tim e taken for round trip travel o f a m essage

being transm itted and received. It ignores the delay factor for DM A operation due to the

unpredictable w ait assertion.

The duration o f the round trip m essage transfer for the single processing node

loop back and the processing node to processing node setup are nearly the same. W hen

referring to Table A-5, the difference o f the time duration for these tw o set o f tests was so

small that it is approxim ately 1.8%. It is suggested that any extra time is due the

additional transition time required by the m essage to travel from one processing node to

the other, instead o f the shorter im m ediate loop-back. Looking at the third test set up,

w hich was the m essage transfer from one processing node to another v ia a router, at the

111

low er m essage size, it seems to take approxim ately 0.41 ps extra for each m essage. The

tim e difference was m ore obvious for low er m essage payload sizes below 1 kByte. The

extra tim e was consum ed by the router decoding the received header flit and directing the

rem aining m essage to the designated output port. B eyond m essage payload sizes o f

1 kByte, the m essage passing becom es relatively constant at around 47.3 M bit/s.

6.3.2.3 Data Throughput Tests

Data Throughput vs Message size

6.00E+07

^ 5.00E+07
JjM

r 4.00E+07 H
3Q.
f> 3.00E+07
o
i— 2.00E+07
<o
co
Q 1.00E+07

0.00E+00
10

----------------- 1-----------------------1-----------------------1----------------------- 1

1000 10000 100000 1000000100

Message Size (byte)

At 50MHz Clock - e — At 100MHz clock

Graph 5: Average Data throughput of OS-Link network at various message size and system clock

, 7 , 2 • c l o c k • d a t a b i t
d a t a _ t h r o u g h p u t = -------------------- = —

3 ' t o k e n _ b i t s

Equation 4: Data Throughput equation

112

The Sam pling frequency o f 1.5 times o f the link rate was applied in the OS-Link

based network, therefore by substituting data b it (8 bit), token bit (11 bits) and the clock

with the sam pling frequency of 50 M H z and 100 M Hz, the resultant theoretical data

throughput would be 24.4 M bit/s and 48.5 M bit/s respectively. The 1.5 factor arises from

3 times oversam pling using both edges o f the sam pling c lock103.

Graph 5 represents the average data throughput for the first and second test setup,

see Figure 6-6. The m easurem ent o f data throughput was at an OS clock frequency o f

50 M Hz or a clock frequency o f 100 M Hz. The highest frequency that the OS-Link

Netw ork Interface D evice can operate was tested at about 100 M Hz. According to the

graph, increasing the O S-clock frequency successfully increased the data throughput.

It can be observed that a m essage with payload lower than 1000 bytes has lower

throughput. The reasons for this were sim ilar to the analysis in section 6.3.2.1. As the

payload size increases, the ratio o f redundancy to the actual data will becom e less

significant. At a m essage size o f 1 M byte, approxim ately 72% of the m essage was actual

data. W hen m essage payload size was beyond 1 M bytes the data throughput achieved

was about the theoretical value, 48.5 M bit/s.

113

Data Throughput for different test setup

5.00E+07

£ 3.00E+07 -

100 1000 10000
M essage payload (byte)

-Processing node self loop - ^ —Processing node to Processing node Processing Node to processing node via router |

Graph 6: Data Throughput Comparison between Different experiments setup.

G raph 6 shows the data throughput achievem ent o f three o f the experim ents setup.

The results w ere calculated based on the m essage payload size and the duration o f the

m essage passing. The theoretical value o f the O S-Link data throughput is 48.5 M bit/s,

according to Equation 4. The highest data throughput achieved by a single processing

node loop-back, processing-node to processing-node and processing nodes v ia a router

w ere 48.0 M bit/s, 47.3 M bit/s and 47.3 M bit/s respectively, see Table A-4. All three

m axim um achieved results that w ere close to the theoretical value. The data throughput

for the processing node to processing node via router setup was low er for m essage

payloads below 1 kByte. This was due to the overhead added to the data in the data

tokens (such as: header byte, type bits, Start b it and stop bit). A t low er m essage payloads

the ratio was higher com paring overhead to actual data per message.

114

6.3.2.4 Correct Message Passing Test

The im plem ented network was also tested for correct operation i.e. that the

transm itted and received m essages are exactly the same. For every 32bits o f data, there

are 232(4294967296) binary perm utations, not to mention the possible perm utations

available for the whole message, so it was too time consum ing and difficult to test all the

possible perm utations. Therefore only a few com binations of patterns were selected in

order to test the correct operation o f the m essage passing interface and medium. The

chosen patterns were as follow:

Pattern (hex form)

00 00 00 00

F F F F F F F F

00 01 02 03(increm enting)

AA AA AA AA

55 55 55 55

_ 80 80 80 80

08 08 08 08

Figure 6-11: Chosen bit patterns in Hexadecimal for message passing tests.

Each m essage pattern was transm itted, received and com pared for all 3 test setups

i.e. loop back, processor to processor and processor to processor via a router. The result

o f pattern com parison was 100% matched. The logged result is available in Appendix A.

115

6.4 Resource Utilisation Report

The entire design was im plem ented in a EP2S60F672C5ES of the Stratix II Family.

O SL-ST2 and consum ed 24264 ALUTs (50% of the total available on the chip), 928064

mem ory bits (36% of the total available), 17556 registers and finally 126 I/O pins were

used (25% o f 493 I/O pins). Table 2 below is the sim plified Resource Usage Table for the

entire design. It was obtained after the com pilation and fitting process was completed. It

shows the resource utilisation for each m odule in terms o f Logic Cell C om bination, Logic

Cell Register and m em ory bits usage.

M a in M o d u le S u b M o d u le l a y e r 1 I ’ M ° d U ' e C o m b i n a t i o n I R e q i s t e r E S T *
Top Level OSL-ST2 20771 17744 928064
Router 2057 1930 3200
CPU1 2064 1592 76032
JTAGUART 122 106 1024
On-Chip
RAM

OS-link NIC

80 4 409600
Tx
Master(Controller) 131 120
Tx DMA buffer 2145 2144
Rx
Master(Controler) 31 32
Rx DMA buffer 2157 2119
OS Link Register 67
M essage Interface Packetiser 59 20

Depacketiser 94 82
Link Interface Tx OS-Link Buffer 146 324

Rx OS-Link Buffer 151 324
Transmitter 36 34
Receiver 28 24

CPU2
JTAGUART
On-Chip
RAM

OS-link NIC

•

..

Tx
Master(Controller)

..
Rx
Master(Controler)

...Rx DMA bu ffe r........
OS Link Register

■

; ;«

2064
122

80

181 1 O 1
2145

67

1592
106

4

120
2144

32---------------
2119

76032
1024

409600

M essage Interface Packetiser 59 20

1 1 6

,

“ E F — i r

82
...........3 0 4 '---------

324
34
24

------ -----------

......

Table 2: Simplified Table of Resource Usage in OSL-ST2 System.

6 .5 P o w e r C o n s u m p t io n R e p o r t

Em bedded system s are often used in battery pow ered applications, for convenience

or due to their application requirem ents. Pow er consum ption is one o f the crucial factors

that will determ ine the length o f time that the system can operate.

The internal architecture o f the target FPGA allows the synthesis tool to estimate

the logic cell utilisation after fitting the design to the target device, including

configuration details such as clock frequency the software is able to estim ate power

consum ption. Highly accurate power consum ption assessm ent can be made by the

Quartus II software by activating the PowerPlay Power Analyzer. A ssum ptions were

m ade such as am bient tem perature was 25 °C and the cooling solution was a 23 mm heat

sink with 200 LFpM Airflow. An alternative pow er consum ption ca lcu la to r104 is also

available for the Stratix II Family.

Module
Operational Clock Frequency
50 MHz 100 MHz

NIOSNIC
NTR-FTM08

110.02 mW
60.17 mW

121.51 mW
120.32 mW

Table 3: Power Consumption of NIOSNIC and NTR-FTM08 at two different Operational Clock

Frequencies.

Table 3 shows the pow er consum ption results o f the NIO SN IC and the NTR-

FTM 08 router operating at operational clock frequency of 50 M Hz and 100 MHz

obtained from the pow er consum ption report generated by the Pow erPlay Power

117

Analyzer. The table shows only about 10 m W increase o f pow er consum ption in

N IO SN IC while the pow er consum ption o f the NTR-FTM 08 doubled as the operational

clock frequency doubled. This is because only part o f the NIO SNIC was synchronised by

O S-C lock (see section 5.1) while the N TR -FTM router was synchronised by the OS-

Clock. The increase o f pow er consum ption was due to fast-sw itching o f transistors when

operating at higher frequency105.

The total power consum ption for the ST2-OSL was 1532.57 m W while using a

50 M H z System C lock frequency and a 100 M H z OS-Clock frequency.

6.6 Summary and Discussion

Section 6.2 first explains the setup o f the test bed; each processing node has its own

dedicated m em ory resource i.e. on-chip RAM , and shared m em ory resource i.e. SDRAM .

The m em ory resource was distributed and shared in such a way that it makes the

hardware tests easier. This section also included the explanation about the pulse generator,

which was used for duration m easurem ent. The duration of the generated pulse was the

period o f time used in the process o f transm itting a m essage until the m essage was fully

received. This pulse was captured by an externally connected oscilloscope via a user I/O

pin for m easurem ent.

Section 6.2 explains the available functions in the test program that were used to

access the addressable m em ory o f each com ponent. This test program was also used to

setup a m essage, initiate m essage passing, and finally com pare the transm itted and

received m essage.

The result o f the hardw are test was explained in Section 6.3. The D M A m odule’s

m em ory access was tested on both SD RA M and on-chip RAM . The D M A m odules were

using the Avalon bus fundam ental transfer type when accessing target m em ory modules.

The observed tim ing diagram shows that each 32 bit transaction betw een a bus m aster

118

and the target m em ory m odule was treated as single m em ory access request. The transfer

overhead o f the D M A transfer, o f the NIOSNIC, relies on the type o f A valon bus transfer

used and the tim ing property o f the target m em ory m odule accessed, thus different clock

efficiencies and data throughput are obtained dependant on the exact type o f RAM . It is

possible to increase the D M A m odule’s data throughput by using other Avalon bus

transfer types, such as Burst Transfer or Pipeline Transfer. The various properties of each

transfer type are explained in the A valon M em ory-M apped Interface Specification

version 3.292. The other types o f transfer m ust be im plem ented with precaution as each

type will have a different effect on the perform ance of the processor and NIO SNIC.

The hardware tests also dem onstrated a significant im provem ent in the data

throughput of an O S-Link based netw ork when im plem ented in a single program m able

chip, especially when com pared to the XA1 prototype. The operating clock frequency has

been successfully increased from originally 66 M Hz in the XA1 prototype to 100 M Hz in

the Stratix II chip. Each O S-Link channel can give unidirectional data throughput o f up to

48 M bit/s.

The data throughput o f the D M A m odule was higher than the data throughput of

the O S-Link netw ork (see section 6.3.1). The D M A buffer was filled up faster than the

N IO SN IC can transm it the m essage. Therefore m ultiple D M A requests w ere required for

m essage sizes larger than 300 bytes. This is due to the DM A m odules and the Packetiser

being synchronised by the same clock frequency. It took 1 clock cycle to store 32 bit data

into the D M A buffer but 5 clock cycles to packetise (1 clock cycle to read a 32 bit data

from the D M A buffer, 4 clock cycles to form at the 32 bit data into four 9 b it tokens) and

buffer the tokens into the Token buffer.

Section 6.4 is the report o f resource utilisation of each m odule in O SL-ST2 on the

Stratix II chip. For each m odule it states the Logic Cell (either com binational or register)

as well as the m em ory bits used. After im plem enting two processing nodes and a NTR-

FTM 08 router, only approxim ately 50% of the A LU T and 36% of the m em ory bits were

utilised. The Stratix II chip resource utilisation has suggested the potential of

im plem enting up to four processing nodes in it. However, to im plem ent m ore processing

nodes than the initial design will involve the distribution o f on-chip RA M to be

reconsidered. This is because distributing 50 kB ytes o f on-chip R A M to each o f the two

processing nodes initially used up all the M 4K type RAM in the current Stratix II chip.

To use the other two types o f R A M resource available will involve a different

configuration o f the system generation in the SOPC and a redesign o f the m em ory

interface logic.

Section 6.5 is the sum m arised pow er consum ption analysis report. The report

shown in Table 3 shows the increase o f pow er consum ption due to the increase of the

operational clock frequency. A lthough operating at higher clock frequency theoretically

will give higher data rate, the increase o f operational frequency causes higher

consum ption of power. N etw ork interface controllers such as Ethernet, w hich can operate

at m ulti gigabit per second speed, could result in pow er w astage106. A large num ber of

applications run at higher speed than they need to and are also left ‘O n ’ 24x7 with low

utilisation. A white paper provided by E thernet A liance107 stated that A D SL with data

rate o f 24 M bit/s has pow er consum ption o f about 2 W when operating in full data rate.

Even when it is in ‘L ow ’ pow er and ‘O ff’ state the pow er consum ption are 0.75 W and

0.3 W respectively108. Therefore high pow er consum ption com m unication system s may

not be suitable for em bedded system s when pow er consum ption is a crucial requirem ent,

taking factors such as the distance, data rate requirem ent, and pow er supply use into

consideration. The pow er consum ption o f the test FPG A was approx. 1532.57 m W for a

data rate o f 48.5 M bps, excluding the transceiver that would be needed for longer

distances. The design has not been optim ised for pow er consum ption and could offer

possibilities for further w ork in this area.

120

7 Conclusions and Future Work

7.1 Conclusions

This thesis has docum ented research into a novel distributed m ultiprocessor

system on a single program m able chip. This involved the construction o f custom Avalon-

based O S-Link Netw ork Interface controller. The netw ork interface controller was then

im plem ented as part o f a processing node, w hich consisted of a NIOS II processor and

m em ory m odules. These were designed to be used as serial com m unication building

block in a NTR-FTM 08 router based em bedded network. The O S-Link em bedded

netw ork is targeted at real-time, distributed, em bedded m ultiprocessor applications. The

interface device could be utilised to produce a com m unication netw ork linking multiple

processors either on-chip or off-chip. The O S-Link em bedded netw ork would allow

m ultiple RISC processors to operate as processing nodes in the sam e network, thus

increasing system flexibility and applications. Inter-processor bi-directional throughput

was increased by im plem enting m ultiple processing nodes on the same chip (when

com paring to previous system s in the research group).

, The netw ork interface device was designed to interconnect the NIOS II processor

to the router netw ork which utilises an adapted OS-Link protocol. The netw ork interface

controller was nam ed NIO SN IC. It will read the m essages from m em ory, via a DM A

operation, and convert them to router tokens before transm ission (and vice versa). The

netw ork interface controller for the processing node was built follow ing on from work

based on the previous XA1 prototype design; adapted, in am ongst other respects, to

reduce the processor interval required to initiate the DM A operation when m essage

passing (so that the processor can return to its dedicated task faster). The NIOS II system

uses the Avalon Bus interface; therefore the N IO SN IC was designed for this interface.

Tw o processing nodes, sub-system s within the OSL-ST2 SoC, w ere constructed:

each has a NIOS II processor, 50 kBytes o f on-chip RAM , and a N IO SN IC m odule. They

121

were generated by using SOPC software in V H D L format, w here each m odule was

included and connected via a graphical user interface provided by the Quartus II software.

The custom NTR-FTM 08 router was used as inter-processor com m unication

m edium in this em bedded m ultiprocessor network. It is an 8-channel off-the-shelf

hardw are m essage router, which was developed by previous researchers in the NTU

research group. It allow ed up to 8 processing nodes to be connected, or to form a larger

netw ork by linking to additional NTR-FTM 08 routers. U sing the routing device, different

netw ork topologies can be form ed to suit the application, such as: star, daisy chain,

irregular or even hybrid networks.

Together with the processing nodes, the entire system was com piled and

synthesised using the Quartus II software, before being incorporated into A SIC design.

After synthesising the designs, the designs were dow nloaded onto the FPG A chip through

the JTA G so that it can be tested. The test program was also dow nloaded into the

dedicated m em ory region in the sam e manner, via the JTAG. The testing and debugging

were aided and perform ed on the developm ent board with re-program m able SRAM based

FPGA, Stratix II 2S60 chip. The FPGA can be program m ed/re-program m ed allowing

m odifications and experim entation w ithout the need to invest in new hardware when

design errors occur. The functionality and perform ance of the N IO SN IC and the router

was verified via real-tim e hardw are tests.

There were two com m unication architectures im plem ented in the designs. W ithin

a processing node, a shared bus or bus based topology was used for the reasons discussed

in section 3.3. The system bus used in the design was the Avalon Bus. As described in

section 3.3, the Avalon Bus is a sim ple bus architecture used by A ltera in its SOPC

design. It provides a sim ple and easy to understand protocol that will help to keep the

interface design as sim ple as possible (thus reducing the use o f Logic Cells). It also

provides an interesting arbitration technique, w hich is the Slave-side arbitration where

each bus slave will have its individual arbitrator, which controls the access of the bus

m asters that interconnected to it. The im plem entation of Avalon bus allow s m ultiple bus

122

m asters to access the interconnected bus slaves sim ultaneously, provided they are not

accessing the sam e bus slave. This enables the processor to run its task, while the

N IO SN IC is accessing the m em ory m odule for data transfer. This will help to improve

the overall processing node perform ance and speed up the task execution time, because

one bus m aster does not have to wait for another to release the bus access in order to

access the target bus slave as in central arbitration system.

O ne o f the processing nodes has a JTA GU ART. It is a special U A R T core that

can transfer data over the JTA G connection. The JTA G U A RT was used to interact and

com m unicated with the H ost PC. The use o f the JTA G -U A RT has elim inated the need

for separate R S232 connection to host PC for com m unication com pared to the XA1

prototype or previous group designs. Through the JTAGU ART, m essages or data from

that processing node can be displayed on the console window of the NIOS II EDS

software; also via the console window, data can be inputted to that processing node.

D uring the developm ent process, it was realised that the am ount o f m em ory

resource on chip is a crucial issue that m ust taken into consideration when designing this

SoC. The on-chip RAM for the processing cores is divided with other peripherals or

m odules that require storage. There were a few factors that determ ined how the m em ory

resource was distributed:

> The type o f system to be developed. A Sym m etric M ultiprocessor (SMP)

system will be easier because the m em ory resources are shared by all bus

m asters. H ow ever the M assively Parallel (M PP) system, or distributed system,

has a m ore com plex distribution o f the on-chip RAM . The decision of the

am ount o f m em ory to be distributed to one processor will depend on the

requirem ent o f the application or task to be dedicated to that processor.

> The requirem ent o f m em ory by other peripheral or m odules. Besides the

processors, som e of the peripherals or other m odules (for exam ple DM A

m achine, UART, and other custom designs) require storage; to store data

before they are transferred to other locations or processed.

123

In the case o f OSL-ST2, with 2 processing nodes, each allocated 50 kBytes o f M 4K

type O n-Chip R A M with 32bits data bus, only 36% of the total m em ory resources (of

approxim ately 9 M bits availability) were consum ed. The distribution o f 100 kBytes to

both processing nodes has fully consum ed all the M 4k type O n-Chip RAM . However,

adding extra processing nodes is still possible by using other (slow er accessed) memory.

The distribution o f the On-Chip RA M will be different depending on the requirem ent of

the application. In the case w here m ore m em ory resources are required; there are two

options to overcom e the lack o f m em ory resource on-chip. Firstly, use the logic elem ent

or logic cell to construct storage (sacrificing these); secondly, relying on additional off-

chip m em ory resources. Adding off-chip m em ory will require the use o f I/O pins. In this

case the loss o f I/O pins available for the design and the type o f I/O pins to be used will

be a consideration.

The key conclusions resulting from the hardw are tests o f the designs are presented

below:

> The O ver Sam pling technique used in the OS-Link based netw ork proved to be

capable o f operating at sam pling frequencies as high as 100 M H z in the netw ork

on-chip. The Phase Lock Loop (PLL) core enables the alteration o f sam pling

frequency. Therefore the designs can be tested on different sam pling frequencies.

The em bedded netw ork was operating with the sam pling frequency o f 100 M Hz

com pared to the previous prototype XA1 system, which was running at a

m axim um sam pling frequency o f 50 M Hz.

> By including the m essage headers into the m essage payload, the intervention of

the processor in order to initiate a m essage transm itted has been reduced by 33%.

The previous prototype design needed to perform three w rite operations to initiate

a transfer: to input the address w here the m essage payload was stored, to input the

m essage header, and finally to input the m essage length into the registers. By

including the m essage headers into the m essage in advance, the processor

124

required only to write to the address register and the m essage length register to

‘kick start’ a m essage transm it.

> A lteration o f the Packetiser has increased the capacity o f the header inform ation

supported in the NIO SN IC from three to seven header bytes. This enables a

m essage to pass though as m any as six routers.

> B uilding a SoC can im prove the perform ance o f the O S-Link netw ork because the

propagation delay from a transm itter to the receiver has been reduced. This has

enabled the data throughputs o f 48 M Bit/s and 47 M Bit/s for single processing

node loop back and processing node-to-processing node m essage passing

respectively, which is very near to theoretical value o f 48.48 M bit/s.

> The use of NIOS II ‘softcore’ processor enables the construction of a

m ultiprocessor em bedded system on a single program m able chip. W ith current

design and configuration o f a processing node, the Stratix II EP2S60F672C5ES

has the potential capacity to include four processing nodes and a NTR-FTM 08

routing device alongside ancillary devices such as m em ory and I/O.

7.2 Future Work

7.2.1 Enhanced NIONIC’s DMA Modules

The latest version o f the Avalon bus specification92 has suggested that the DM A

m odule can be further im proved and enhanced by supporting “B urst transfer” . The Burst

transfer executes m ultiple transfers as a unit, instead o f treating every unit o f data as an

independent transfer as in the basic A valon transfer. U sing Burst transfer, the Avalon bus

will guarantee an uninterrupted access to the target device, im plem ented on the same bus,

for the duration o f the burst. This will m axim ise the data throughput for each transfer

between the involved bus m aster and slave.

Increasing the D M A buffer’s data width, from 32bits to 64bits or 128bits, will

im prove the data throughput o f the D M A m odules. The Avalon switch fabric provides the

dynam ic bus sizing feature that m anages the data transfer between m aster and slave ports

125

with different data bus sizes. All data will be aligned in contiguous bytes in the bus

m aster’s address space when dynam ic bus sizing property is addressed. H aving the data

bus width increased, say 128bits, four times m ore data bytes can be accessed per transfer.

Hence, the depth of the D M A buffer will need to be reduced to match the original

capacity, with few er transactions to fill the buffer. The shorter the m em ory access burst

period, the faster the access request can be freed for other bus m asters gain their request

to the sam e m em ory m odule. A ltering the D M A buffer’s width will involve alterations on

the Packetiser and D epacketiser m odules to suit the new D M A buffer width. This will

have the benefit that the packetiser/depacketised will work m ore efficiently. W hen

transm itting a m essage for example, in 32bits bus D M A buffer, there will be one read to

the D M A buffer and four writes to the Token buffer; using a 128bits D M A buffer, there

will be. one read to the D M A buffer and sixteen writes to the Token buffer.

7.2.2 Group Adaptive Routing

The NTR-FTM 08 routing device provides the Group A daptive Routing

com m unication feature. It allows a processing node with m ore than one O S-Link based

netw ork interface controller to be connected to it. The group adaptive com m unication

offers the benefit o f an alternative path to the sam e destination when the dedicated path is

busy or down. This will increase the com m unication bandw idth per processing node for

nodes with m ore than one netw ork interface controller. It is im portant to investigate the

potential efficiency gains and influence on the traffic in the network.

7.2.3 Additional Communication Channels

To increase the available bandw idth for com m unication, additional com m unication

channels can be added. U tilisation o f the NTR-FTM 08 Routing D evice allows additional

channels to be added to each processing node, as the Group A daptive R outing Technique

was im plem ented in NTR-FTM 08 R outing Device; all the channels that interconnect the

same processing node and router can be grouped. This will im prove the bandwidth

126

utilisation for each processing node (router pair), allowing sim ultaneous m ultiple

m essages passing as well as im proved tolerance to faults.

A dditional com m unication channels for each processing node are possible

w ithout m onopolising the Avalon Bus if the im plem entation o f m em ory m odules is

planned carefully. For exam ple, having two 25 kBytes on-chip RA M instead o f a single

50 kBytes on-chip RAM , for the A valon Bus would allow sim ultaneous access for

m ultiple bus m asters, provided they are not com peting for the sam e target slave device.

O f course, this w ould m ean the use of extra logic cells to construct the arbiter for the

extra m em ory m odule.

The overall perform ance o f a processing node has to be re-evaluated when more

com m unication channels are added. This is because additional com m unication channels

m ean an increase in the num ber o f bus m asters in the processing node that will compete

for m em ory access.

7.2.4 Virtual Channels for NIOSNIC

V irtual Channels refers to autom atic m essage channel allocation upon the arrival of

a m essage. D evolving the m em ory address allocation function to the netw ork interface

controller allows the m essages, w ith known m essage ID, to be allocated their storage

address autom atically (w ithout involving the processor to suspend its task to process the

new arrival). This operation, however, requires that the m essage ID and target m em ory

address are pre-loaded into Context-A ddressable-M em ory (CAM). V irtual Channels are

useful to handle situations when two or m ore different incom ing m essages arrive at the

sam e tim e109.

The FT-PCI-O SLI design was im plem ented on an A PEK 20K chip, which

supported CAM . CAM was used as a ‘search engine’ which outputs an address for a

m essage ID when the given m essage ID is m atched to the incom ing header. However, the

127

Stratix II fam ily chip does not support the use o f CAM ; therefore V irtual Channels were

abandoned in this design. The function o f CAM m ight possibly be re-constructed with

available registers and a small am ount o f RAM .

7.2.5 Realisation of the Embedded Distributed Multiprocessor System

The research concluded with the design and synthesis o f the OSL-ST2, and then

hardware was im plem ented on the Stratix II 2S60 developm ent board. The OSL-ST2 was

tested using loop back tests and m essage passing between processors, with and without

the routing device. To enable the construction o f an em bedded distributed network,

controlled by a H ost PC, OSL-ST2 should be integrated together with FT-PCI-OSLi on a

custom developed board. This would allow further research to experim ent and access the

effectiveness o f the netw ork as a whole and identify the possibility for further

im provem ent. The OSL-ST2 design is ready for hardw are im plem entation, the FT-PCI-

OSLi and NTR-FTM 08, have been successfully im plem ented in hardw are in the previous

research.

A nother focus o f effort in order to construct the em bedded distributed

m ultiprocessor system will be the softw are aspects o f the system. Softw are drivers for use

in the processing node are required. The software driver that supports the network

interface should be sim ple and m inim ised to reduce the intervention o f the processor, thus

m inim ising the overhead and m axim ising the com puting ability o f each processing node

o f the parallel system.

H ardw are realisation w ould also perm it research into m ulti-router networks for

various netw ork topologies. Such experim ents will show how netw ork topology could

influence traffic patterns and the overall perform ance o f the parallel system. And finally

it will also help to seek ‘room for im provem ent’ to suit any applications in the future.

128

7.2.6 Power efficiency investigation

Pow er considerations are often crucial for em bedded system. The current design

has not been optim ised for pow er consum ption and this could offer possibilities for

further work.

Appendix A: Test Result
Single
processor
Test

number
of loop

Byte Pattern Pattern
2

Pattern
3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

Success

SDRAM
read/write

Write 4 X X X X X X X X

128 X X X X X X X X

512 X X X X X X X X

1 M X X X X X X X X

Read
double 4 X X X X X X X X

Word 128 X X X X X X X X
Loop
back Test
Default 1 1 X X X X X X X X
message
size 1 0 1 X X X X X X X X

1 0 0 1 X X X X X X X X

1 0 0 0 1 X X X X X X X X

1 0 0 0 0 1 X X X X X X X X

1 0 0 0 0 0 1 X X X X X X X X

1 256 X X X X X X X X

1 0 256 X X X X X X X X

1 0 0 256 X X X X X X X X

1 0 0 0 256 X X X X X X X X

1 0 0 0 0 256 X X X X X X X X
1 0 0 0 0 0 256 X X X X X X X X

1 1 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 X X X X X X X X
1 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 X X X X X X X X

1 1 0 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 0 X X X X X X X X
1 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 0 X X X X X X X X
1 0 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 1 0 0 0 0 0 0 X X X X X X X X
1 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

130

Table A-l: Single processor loop back message test with chosen test patterns.

Tes,

PN-to-PN

number
of loop

Byte Pattern
i1

Pattern
2

Pattern

3

Pattern
4

Pattern
5

Pattern
6

Pattern
7

Success

Default 1 1 X X X X X X X X
message
size 1 0 1 X X X X X X X X

1 0 0 1 X X X X X X X X

1 0 0 0 1 X X X X X X X X

1 0 0 0 0 1 X X X X X X X X

1 0 0 0 0 0 1 X X X X X X X X

1 256 X X X X X X X X

1 0 256 X X X X X X X X

1 0 0 256 X X X X X X X X

1 0 0 0 256 X X X X X X X X

1 0 0 0 0 256 X X X X X X X X

1 0 0 0 0 0 256 X X X X X X X X

1 1 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 X X X X X X X X

1 1 0 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 1 0 0 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

Table A-2: Processing node to processing node message passing test with chosen test patterns.

131

Test

Message
Passing Test
via router

number
of loop

Byte Pattern

♦ ■

■ , -

Pattern
2

Pattern
3

Pattern Pattern
5

Pattern
6

Pattern
7

Success

Default 1 1 X X X X X X X X

message 1 0 1 X X X X X X X X
size

1 0 0 1 X X X X X X X X

1 0 0 0 1 X X X X X X X X

1 0 0 0 0 1 X X X X X X X X

1 0 0 0 0 0 1 X X X X X X X X

1 256 X X X X X X X X

1 0 256 X X X X X X X X

1 0 0 256 X X X X X X X X

1 0 0 0 256 X X X X X X X X

1 0 0 0 0 256 X X X X X X X X

1 0 0 0 0 0 256 X X X X X X X X

1 1 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 X X X X X X X X

1 1 0 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 0 X X X X X X X X

1 1 0 0 0 0 0 0 X X X X X X X X

1 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

1 0 0 0 0 0 1 0 0 0 0 0 0 X X X X X X X X

Table A-3: Message Passing Test via Router with chosen test patterns.

132

Single Processor
Loop

i

Percentage
Difference

between Single
Processor &
Processor-to

processor

Processor to
Processor

Percentage
Difference
between

Processor-to-
processor with

and without
router

Processor to
Processor via

Router

Data
Throughput(bit/s)

Data
Throughput(bit/s) %

Data
Throughput(bit/s)

1 1.29E+07 1 . 6

1 0 3.54E+07 1.4
1 0 0 4.10E+07 3.4

1 0 0 0 4.79E+07 1.3
1 0 0 0 0 4.82E+07 1.9

1 0 0 0 0 0 4.80E+07 1.5
1 0 0 0 0 0 0 4.80E+07 1.5

1.27E+07
3.49E+07
3.96E+07
4.73E+07
4.73E+07
4.73E+07
4.73E+07

38
11
0.5
0
0
0
0

7.84E+06
3.09E+07
3.94E+07
4.73E+07
4.73E+07
4.73E+07
4.73E+07

Table A-4: Data Throughput measurement for different test setup.

Single
Processor

L oop
Processor to

Processor

Processor to
Processor via

Router
byte round trip time (ms)

1 0.00062 0.00063 0 . 0 0 1 0 2

1 0 0.00226 0.00229 0.00259
1 0 0 0.0195 0 . 0 2 0 2 0.0203

1 0 0 0 0.167 0.169 0.169
1 0 0 0 0 1 . 6 6 1.69 1.69

1 0 0 0 0 0 16.65 16.9 16.9
1 0 0 0 0 0 0 166.5 169 169

Table A-5: Result of Message Duration measurement for different test setup.

Payload SDR

Transaction

AM
Wait
cycle

......... orvchjp_

Transaction

Ra m
Wait
cycle

1 2 2 0 2 2

1 0 4 34 4 4
1 0 0 26 336 26 26

1 0 0 0 251 2861 251 251
1 0 0 0 0 2501 20414 2501 2501
50000 12501 95027 12501 12501

1 0 0 0 0 0 25001 192281 - -
1 0 0 0 0 0 0 250001 3579901 - -

133

Table A-6: Clock Cycle Efficiency Test.

Appendix B: FPGA device Specification

Altera Stratix II fam ily

This section shows part of the specification o f Stratix II family devices. This Stratix II

2S60 is the target FPGA category used to develop ST2-OSL system. Further detail can be

obtained from reference 47.

.

. „ ...

Adaptive
Logic
Modules
(ALMs)

6,240 13,552 24,176 36,384 53,016 71,760

Equivalent
Logic
Elements
(LEs)

15,600 33,880 60,440 90,960 132,540 179,400

M512
RAM
Blocks

104 2 0 2 329 488 699 930

M4K RAM
Blocks

78 144 255 408 609 768

M-RAM
Blocks

0 1 2 4 6 9

Total RAM
bits

419,328 1,369,728 2,544,192 4,520,448 6,747,840 9,383,040

Phase-
Locked
Loops
(PLLs)

6 6 1 2 1 2 1 2 1 2

Maximum
User I/O
Pins

366 500 718 902 1,126 1,170

Table B-l: Stratix II device family specification.

Note: Each ALM is equivalent to 2.5 Les.

O n-chip RAM properties o f Stratix II device

Feature
M512
block

M4K
block

M-RAM
block

Performance (MHz) 319 290 287
Total RAM bits (including parity bits) 576 4608 589824
Configuration 512 x 1 4K x 1 64K x 8

256 x 2 2K x 2 64K x 9
128 x 4 1K x 4 32 K x 16
64 x 8 512 x 8 32K x 18
64 x 9 512 x 9 16K x 32

32 x 16
256 x

16 16K x 36

32 x 18
256 x

18 8 K x 64
128 x

32 8 K x 72
128 x

36 4K x 128
4K x 144

Single-port memory X X X

Simple dual-port memory X X X

True dual-port memory X X

Memory initialization file (.mif) X X

Mixed-clock mode X X X

Table B-2: Specification of three supported on-chip RAM type in Stratix II device Family.

135

j

Excalibur device fam ily

This section shows part o f the specification o f Excalibur devices family. The EPXA1 was

used in XA1 prototype board. Further detail can be obtained from reference 44.

Feature
EPXA1 EPXA4 ■ EPXA10

Processor ARM922T ARM922T ARM922T
Maximum Operating
Frequency (MHz) 2 0 0 2 0 0 2 0 0

Single-port SRAM
(kBytes) 32 128 256
Dual-port SRAM
(kBytes) 16 64 128
Typical gates 1 0 0 0 0 0 400000 1 0 0 0 0 0 0

Logic Elements (LEs) 4160 16640 38400
Embedded System
Blocks (ESBs) 26 104 160
Maximum User I/O 246 488 711

Table B-3: Exealibur devices Family specification.

136

Appendix C: Register of NIOSNIC

The follow ing gives the descriptions for the N IO SN IC m em ory-m apped, 32 bit registers.

The ‘B ase’ is the base address assigned to the N IO SN IC in the processing node, which it

is im plemented.

Base + 0x00 Device ID
Bit Read/Write Description
31...0 R This 32 bit register is an ID for NIOSNIC. The device ID is label as

'0x2560E001'

Base + 0x04 Status Register
Bit Read/Write Description
31...2 R Unused. Hardwired to 'O'.
1 R Label: Tx_mssg_end

This bit indicate that the message has been transmitted
0 R Label: Rx_mssg_end

This bit indicates that the message has been received. :

Base + 0x08 Received Header
Bit Read/Write Description
31...8 R Unused. Hardwired to 'O'.
7...0 R Label: rx_rcvd_hdr

This byte indicates the received Message ID from the new messge.

Base + 0x10 Receiver address
Bit Read/Write Description
31...2 R/W Label: rx_addr_in

These bits stores the address of the current memory location the
device is pointing for memory write operation. The value increment by
1 after each successful data transfer.

1 . . . 0 R Unused. Hardwired to 'O'.

Base + 0x14 Receiver Length Register
Bit Read/W rite Description
31...20 R Unused. Hardwired to 'O'.
19...0 R/W Label: rx_mssg_lgth_out

These bits store the length of the current DMA transfer. The value
decreased by 4 after each successful data transfer. Writing to this bits
will trigger the DMA receiver bus master DMA operation.

Base + 0x18 Receiver DMA Buffer Status
Bit ReadAA/rite Description
31 R Label: rx_dmaff_fuil

1' Indicating the Receiver DMA buffer is full.
O' indicating the Receiver DMA buffer is not full.

30 R Label: rx_dmaff_emp

1' Indicating the Receiver DMA Buffer is empty.
O' Indicating the Receiver DMA Buffer is not empty.

29...6 R Unused. Hardwired to 'O'.
5...0 R Label: rx_dmaff_usedw

These bits store the number of used word in the Receiver's DMA
buffer.

Base + 0x1 C Receiver Token Buffer Status
Bit ReadAA/rite Description
31 R Label: rx_osff_full

1' Indicating the Receiver Token Buffer is full.
O' Indicating the Receiver Token Buffer is not full.

30 R Label: rx_osff_emp

T Indicating the Receiver Token Buffer is empty.
O' Indicating the Receiver Token Buffer is not empty.

29...5 R Unused. Hardwired to 'O'.
4...0 R Label: rx_dmaff_usedw

These bits store the number of used word in the Receiver's Token
Buffer.

138

• -

1?
I

I

I

Base + 0x10 T ransmitter address
Bit ReadAA/rite Description
31...2 RA/V Label: tx_addr_in

These bits stores the address of the current memory location the
device is pointing for memory read operation. The value increment by
1 after each successful data transfer.

1 . . . 0 R Unused. Hardwired to 'O'.

Base + 0x14 Transmitter Length Register
Bit ReadAA/rite Description

oC
\J

C
O R Unused. Hardwired to 'O'.

19...0 R/W Label: tx_mssgjgth

These bits store the length of the current DMA transfer. The value
decreased by 4 after each successful data transfer. Writing to this bits
will trigger the DMA Transmitter bus master DMA operation.

Base + 0x18 Transmitter DMA Buffer Status
Bit ReadAA/rite Description
31 R Label: tx_dmaff_full

1' Indicating the Transmitter DMA buffer is full.
O' Indicating the Transmitter DMA buffer is not full.

30 R Label: rx„dmaff„emp

1' Indicating the Transmitter DMA Buffer is empty.
O' Indicating the Transmitter DMA Buffer is not empty.

29...6 R Unused. Hardwired to 'O'.
5...0 R Label: rx_dmaff_usedw

These bits store the number of used word in the Transmitter DMA
buffer.

•J

139

Base + 0x1 C Transmitter Token Buffer Status
Bit Read/Write Description
31 R Label: tx_osff_full

1’ Indicating the Transmitter Token Buffer is full.
0’ Indicating the Transmitter Token Buffer is not full.

30 R Label: rx_osff_emp

1’ Indicating the Transmitter Token Buffer is empty.
0’ Indicating the Transmitter Token Buffer is not empty.

29...5 R Unused. Hardwired to 'O'.
4...0 R Label: rx„dmaff_usedw

These bits store the number of used word in the Transmitter Token
Buffer.

Appendix D: Avalon Bus Signal Descriptions for the

NIOSNIC

Tx Bus Master
Signal Width Direction Description
reset_n 1 in Reset signal. When asserted, bus master must enter

the deterministic reset state.
elk 1 in Synchronising clock for Avalon bus master Interface.

address 32 out
Address lines from bus master to Avalon Switch
Fabric

read n 1 out Read request signal from master port.
readdata 32 in Datalines from Avalon Switch Fabric
waitrequest 1 in Signal to force the bus master to wait until the

Avalon Switch Fabric is ready to transfer data

Rx Bus Master
Signal Width Direction Description
reset_n 1 in Reset signal. When asserted, bus master must enter

the deterministic reset state.
elk 1 in Synchronising clock for Avalon bus master Interface.

address 32 out
Address lines from bus master to Avalon Switch
Fabric

write n 1 out Write request signal from master port.
writedata 32 out Data lines to Avalon Switch Fabric
waitrequest 1 in Signal to force the bus master to wait until the

Avalon Switch Fabric is ready to transfer data

OS-Link Bus Slave
Signal Width Direction Description
reset_n 1 in Reset signal. When asserted, bus master must enter

the deterministic reset state.
elk 1 in Synchronising clock for Avalon bus master Interface.
chipselect 1 in Chipselect signal to the slave port. The bus slave

will ignore other Avalon signal input unless
chipselect is asserted.

address 7 in Address lines from Avalon Switch Fabric. Specifies
a word offset into the slave address space.

read n 1 in Read request signal from Avalon Switch Fabric.
readdata 32 out Data lines to Avalon Switch Fabric for read transfer.
write n 1 in Write request signal from Avalon Switch Fabric.

writedata 32 in
Data lines from Avalon Switch Fabric for write
transfer.

141

References

Valiant, L.G., G e n e r a l P u r p o s e P a r a l l e l A r c h i t e c t u r e , Technical report TR-07-89,
April 1989, Aiken com putation Laboratory, H arvard University, Prentice Hall.

Jin, L, P a r a l l e l P r o c e s s i n g - E x p l o r i n g t h e A r c h i t e c t u r e s ’ a n d A l g o r i t h m s ’ c l o s e

r e l a t i o n s h i p , Potential IEEE V olum e 13, Issue 5, Dec 1994- Jan 1995, Page 17-20.

3 Fox, G.C., Johnson, M .A., Lyzenga, G.A., Otto, S.W ., Salm on, J.K ., W alker, D.W.,
S o l v i n g P r o b l e m s o n C o n c u r r e n t P r o c e s s o r , V o l u m e 1 G e n e r a l T e c h n i q u e s a n d

R e g u l a r P r o b l e m s , USA, Prentice Elall International Inc., 1988, Page 17-38.

4 R ichard M. Russell, T h e C R A Y - 1 C o m p u t e r S y s t e m , C om m unications o f the ACM,
January 1978, Pages 63-72.

T h e T r a n s p u t e r H a n d b o o k 2nd Edition, INM OS Ltd (now part o f SGS Thom son),
Trow bridge, 1989.

0 R ob I., I P D e l i v e i y K e y t o U n l o c k i n g F P G A P o t e n t i a l , ESE M agazine Nov/Dec
2005, page 36.

ARM Ltd, A R M M o b i l e , available at
http ,//w w w . arm .com /m arkets/m obile solutions Last V isit February 2007.

0 Kunim atsu, A., et al, V e c t o r U n i t A r c h i t e c t u r e f o r E m o t i o n S y n t h e s i s , IEEE M icro,
Volum e 20, Issue 2, M arch-April 2000, Page 40-47.

Patterson D., R e d u c e d I n s t r u c t i o n S e t C o m p u t e r , Com m unication o f the ACM ,
Vol.28, N o .l, January 1985, Page 9-21.

10 Jerraya, A., W olf, W., M u l t i p r o c e s s o r S y s t e m - O n - C h i p s , E lsevier Inc. Year 2005.
ISBN: 0-12-385251-X.

11 Jen-Hao, T., Chin-Yuan, T., Yu-Hung, C., I n t e g r a t i o n o f N e t w o r k E m b e d d e d

S y s t e m s i n t o P o w e r E q u i p m e n t , R e m o t e C o n t r o l a n d M o n i t o r i n g , TENCON 2004.
2004 IEEE Region 10 C onference V olum e C, 21-24 Nov 2004, Page(s) 566 - 569
Vol. 3.

12 R.H. Day, R. G erm on, and B. C. O ’Neill, A P u l s e C o m p r e s s i o n R a d a r S i g n a l

P r o c e s s o r , C onference on DSP Chips in real-tim e instrum entation and display
system, IEE Colloquium , Septem ber 1997, pp4 /l-4 /5

142

NTU, IC-Routing Ltd, E l e c t r o n i c S y s t e m D e s i g n a n d P a r a l l e l P r o c e s s i n g G r o u p ,
available at h ttp .//ww w .eee.ntu.ac.uk/research/parallel/index.htm l Last V isit
February 2007.

W ong K.L., A M e s s a g e C o n t r o l l e r f o r D i s t r i b u t e d P r o c e s s i n g S y s t e m , PhD Thesis,
N ottingham Trent University, April 2000.

Robin Hotchkiss, I n t e g r a t e d F a u l t T o l e r a n c e f o r P a c k e t - S w i t c h N e t w o r k s , PhD
Thesis, Nottingham Trent U niversity, O ctober 2000.

Hinton, J., Pinder, A., T r a n s p u t e r H a r d w a r e a n d S y s t e m D e s i g n , Prentice Hall
International (UK) Ltd, Year 1993, ISB N 0-13-95300l-O(pbk), page(s) 1-17,
page(s). 142-154.

Ruth Ivim ey-cook, L e g a c y o f t h e T r a n s p u t e r , A rchitecture, Language and
Techniques for C oncurrent System s; W oTU G -22 Proceeding o f the 22nd W orld
O ccam and Transputer U ser Group Technical M eeting 11 -14 April 1999, Keele,
UK.

Hoare, C.A.R., C o m m u n i c a t i o n S e q u e n t i a l P r o c e s s e s , Hemel H em pstead, Prentice
Hall International, 1985.

Foo, Y. W., Chong Y. K., P e r f o r m a n c e A n a l y s i s o f P a r a l l e l P r o c e s s i n g i n L o c a l

A r e a N e t w o r k , International Conference on Inform ation, Com m unication and
Signal Processing IC IC S’97, Singapore. Septem ber 1997.

D a Qing Zhang, Carlo Cecati and Enzo Chiricozzi, S o m e P r a c t i c a l I s s u e s o f t h e

T r a n s p u t e r B a s e d R e a l - T i m e S y s t e m s , Industrial Electronics, Control,
Instrum entation, and A utom ation, 1992. 'Pow er Electronics and M otion C ontrol’,
Proceedings o f the 1992 International Conference on9-13 Nov. 1992,
V olum e .3Page(s) 1403 - 1407.

Colin W.S., INM OS Lim ited, T r a n s p u t e r s - P a s t , P r e s e n t a n d F u t u r e , IEEE M icro
DEC 1990.

J. W. Ellis, B. C. O ’Neill and S. Clark, P e r f o r m a n c e o f t h e N T R 0 8 R o u t i n g D e v i c e

i n T r a n s p u t e r s N e t w o r k s , - T ransputer A pplications and System s ‘94, ed. A De
Gloria, M R Jane and D M arani, IOS Press, 1994, ISSN 0925-4986, Vol. 41, pp958-
965.

K. M. Curtis, S. W ilde, B. C. O'Neill, J. W. Ellis, I. Jelly and D Lloyd, A D y n a m i c

R o u t i n g S t r a t e g y f o r T r a n s p u t e r N e t w o r k s , Transputer A pplications and Systems
‘94, ed. A De Gloria, M R Jane and D M arani, IOS Press, 1994, ISSN 0925-4986,
Vol. 41, pp235-246.

http://www.eee.ntu.ac.uk/research/parallel/index.html

24 J. W. Ellis, B. C, O ’Neill and S. Clark, A R o u t e r D e s i g n f o r T 8 0 0 C o m p a t i b l e

T r a n s p u t e r A r r a y s , T ransputer A pplications, 1993, Pub. T he Transputer
C onsortium , ISSN 0969-9341 Vol. 1(2) pp l2 -1 8

25 J. W. Ellis, B. C. O ’Neill and S. Clark, T h e R e a l i s a t i o n o f a H a r d w a r e R o u t i n g

D e v i c e f o r T r a n s p u t e r A r r a y s , Fourth EU R O C H IP W orkshop on V LSI Design
Training, Toledo, Spain, Sept. 1993 pp230-235.

2 6 J. W. Ellis, B. C. O ’Neill and S Clark, P e r f o r m a n c e o f a R o u t i n g D e v i c e f o r F i r s t

G e n e r a t i o n T r a n s p u t e r s , Poster presentation to The W orld Transputer Congress,
Aachen, Germ any, Sept. 1993.

" IC Routing Ltd., 1 6 P o r t D y n a m i c R o u t i n g S w i t c h f o r T r a n s p u t e r L i n k , D ata Sheet
Version 1.3, 1996, Page 1-3.

28 E. W. K. Liew, D. Kaye, B. C. O ’Neill and S. Clark, O p e r a t i n g S y s t e m S u p p o r t f o r

S t r o n g A R M M u l t i - P r o c e s s o r C o m m u n i c a t i o n s , Proceedings o f the ISCA 12th
International C onference on Parallel and D istributed C om puting System s, ISBN 1
880843 34 X, Aug 2000, pp 334-339.

29 R Hotchkiss, B. C. O 'Neill and S. Clark, A F a u l t T o l e r a n t R o u t e r f o r P a r a l l e l

N e t w o r k , PREP 2000, ISBN 0 86341 3218, April 2000, IEE, pp 19-24.

30 B. C. O ’Neill, K. L. W ong, G. C. Coulson, R. Hotchkiss, J. H. Ng, S. Clark, P. D.
Thom as and A. Cawley, A D i s t r i b u t e d P a r a l l e l P r o c e s s i n g S y s t e m f o r t h e

S t r o n g A R M M i c r o p r o c e s s o r , Concurrent System s Engineering Vol. 52, ISBN 90-
5199-391-9, April 1998, pp 39-48.

31 IC-Routing LTD, I C R C 4 1 6 - 1 6 P o r t P a c k e t R o u t i n g S w i t c h f o r 2 0 M B i t / s S e r i a l

L i n k D a t a S h e e t , Y ear 1996, available at
http,//ww w .eee.ntu.ac.uk/research/parallel/docs/C 416 D A T.DO C Last V isit
February 2007.

T9 Coulson, G., O p t i m i s a t i o n o f a P r o c e s s i n g F a r m U s i n g H a r d w a r e Routing,
Transputer Application and System s, IOS Press, 1995, Vol. 46, Page 70-77.

33 T. Shanley, D. Anderson, P C I S y s t e m A r c h i t e c t u r e 3 l d E d i t i o n , A ddison-W esley
Publishing Com pany, 1997, ISBN 0-201-40993-3.

34 PCI Special Interest Group, P C I L o c a l B u s S p e c i f i c a t i o n R e v i s i o n 2 . 2 , Dec 1998,
available at http.//w w w .ics.uci,edu/~harris/ics216/pci/PCI 22.pd f Last visit
February 2007.

D igital Equipm ent Corporation, S A - 1 1 0 M i c r o p r o c e s s o r T e c h n i c a l R e f e r e n c e

M a n u a l , M aynard, M assachusetts, USA, 1996.

144

http://www.eee.ntu.ac.uk/research/parallel/docs/C416

Kim, D., M anaguli, R., Kim, Y., D a t a c a c h e a n d d i r e c t m e m o r y a c c e s s i n

p r o g r a m m i n g m e d i a p r o c e s s o r s , M icro IEEE Volum e 21, Issue 4, July-Aug. 2001
Page(s), 33 - 42.

B. C. O 'Neill, K. L. W ong, G. Coulson, R. H otchkiss, J. H. Ng, S. C lark and P. D.
Thom as, A n I n t e r f a c e D e v i c e t o S u p p o r t a D i s t r i b u t e d P a r a l l e l S y s t e m f o r t h e

S t r o n g A R M M i c r o p r o c e s s o r , H igh perform ance Com puter Networks 98,
Am sterdam April 1998 pp 1047-1050,

R. H otchkiss, B. C. O 'Neill and S. Clark, F a u l t T o l e r a n c e f o r a n E m b e d d e d

W o r m h o l e S w i t c h e d N e t w o r k , Parelec’2000, IEEE Com puter Society proceedings,
ISB N 0 7685 0759 X Aug 2000, pp 79-83.

K. W. K. Liew, B. C. O ’Neill, K. L. W ong, S. Clark, P. D. Thom as and R. Cant, A
P r o p o s a l f o r a n O p e r a t i n g S y s t e m f o r a M u l t i - P r o c e s s o r S t r o n g A R M S y s t e m ,

Concurrent System s Engineering, ISBN 90-5199-480-X , Vol. 57, April, 1999, pp
37-47, April, 1999, pp 37-47.

K. L. W ong, B. C. O ’Neill, R. H otchkiss, J. H. Ng, S. C lark and P. D. Thomas,
I n t e r f a c i n g S t r o n g A R M M i c r o p r o c e s s o r s i n a P a r a l l e l N e t w o r k , Postgraduate
R esearch in Electronics, Photonics and R elated Fields (PR EP’99), Jan 1999, pp
382-385.

R. H otchkiss, K. L. W ong, B. C. O ’Neill, G. C. Coulson, S. C lark and P. D.
Thom as, T h e B u i l d i n g B l o c k s f o r a P a r a l l e l N e t w o r k I n c o r p o r a t i n g t h e S t r o n g A R M

M i c r o p r o c e s s o r , The 1998 International C onference on Parallel and D istributed
Processing Techniques and A pplications (PD PTA '98) , Las V egas, Nevada, USA,
ISB N 1-892512-07-6, July, 1998 ppl863-1870.

Simon, T. I n t e r f a c e f o r E m b e d d e d P a r a l l e l M u l t i p r o c e s s o r N e t w o r k , PhD Thesis,
Year 2002.

A ltera Ltd, A P E K 2 0 K d e v i c e f a m i l y O v e r v i e w , available at
http.//w ww. altera.com /products/devices/apex/overview /apx-overview .htm l Last
visit February 2007.

A ltera Ltd, E x c a l i b u r D e v i c e O v e r v i e w M a y 2 0 0 2 V e r s i o n 2 . 0 , available at
httpy /w w w .altera.com /literature/ds/ds arm .pdf Last V isit February 2007.

A RM Ltd, A R M 9 2 2 T T M w i t h A H B - S y s t e m - o n - c h i p P l a t f o r m O S P r o c e s s o r p r o d u c t

o v e r v i e w , Y ear 2001, Rev 1, D ocum ent reference, A RM DVI0025B.

A ltera Ltd, N I O S I I P r o c e s s o r R e f e r e n c e H a n d b o o k , A ltera Ltd, docum ent ID,
NII5V1, last revised in Novem ber 2006, available at
h ttp7 /w w w .altera.com /literature/hb/nios2/n2cpu nii5v 1 .pdf Last visit January 2007.

http://www.altera.com/literature/ds/ds
http://www.altera.com/literature/hb/nios2/n2cpu

A ltera Ltd, S t r a t i x I I D e v i c e F a m i l y , available at
http .//w w w .altera.com /prodiicts/devices/stratix2/st2-index.isp Last V isit February
2007.

IEEE, V A S G , V H D L A n a l y s i s a n d S t a n d a r d i s a t i o n G r o u p , available at
http ,//ww w .eda.org/vhdl-200x/ Last update M arch 2003, Last V isit February 2007.

49 Bhasker, J., V H D L P r i m e r , 3ld Edition, Prentice-H all, Inc. Year 1999.

48

50

51

52

53

54

55

56

57

58

59

Altera Ltd, Q u a r t u s I I S o f t w a r e , available at
http.//w w w .altera.com /products/softw are/products/quartus2/qts-
index.htm l?f=cscsandk=t 1 Last V isit February 2007.

A ltera Ltd, website available at http ,//w w w .altera.com /index.isp Last V isit February
2007.

A ltera Ltd, Q u a r t u s I I P r o g r a m m e r V e r s i o n 6 . 1 , available at
https.//w w w .altera.com /support/softw are/dow nload/program m ing/quartus2/dnl-
quartus2 program m er.isp Last V isit February 2007.

A ltera Ltd, N I O S I I I n t e g r a t e d D e v e l o p m e n t E n v i r o n m e n t , available at
http.//w w w .altera.com /products/ip/processors/nios2/tools/ide/ni2-ide.htm l Last
V isit February 2007.

Brian C. O ’Neil, Steve Clark and K. L. W ong, S e r i a l c o m m u n i c a t i o n c i r c u i t w i t h

o p t i m i z e d s k e w c h a r a c t e r i s t i c s , IEEE Com m unications Letters, IEEE com puter
Society.

M y r i n e t O v e r v i e w , available at h ttp J /w w w .m vricom .com /m vrinet/overview Last
V isit January 2007.

D avide, B., Luca, B., X p i p e s : A N e t w o r k - o n - C h i p A r c h i t e c t u r e f o r G i g a s c a l e

S y s t e m s - o n - C h i p , IEEE Circuits and System M agazine, Second Q uarter 2004.

B. C. O'Neil], P. W. M oore and S. Clark, I n t e r - P r o c e s s o r C o m m u n i c a t i o n s f o r a

D i s t r i b u t e d S y s t e m , Em bedded System Show, M ay 2003, London.

W ikipedia, S y m m e t r i c M u l t i p r o c e s s i n g , available at
http .//en.wikiipedia.org/wiki/Svmmetric m ultiprocessing Last visit February 2007.
W illiam , W ong., B a s i c s o f D e s i g n , A supplem ent to E lectronic D esign, February
2006.

146

http://www.altera.com/prodiicts/devices/stratix2/st2-index.isp
http://www.eda.org/vhdl-200x/
http://www.altera.com/index.isp
http://www.altera.com/support/software/download/programming/quartus2/dnl-
http://www.altera.com/products/ip/processors/nios2/tools/ide/ni2-ide.html
http://www.mvricom.com/mvrinet/overview

W ikipedia, M a s s i v e P a t ' a l l e l i s m , available at
httpV/en.w ikipedia.org/w ikf/M assivelv parallel processing Last visit February
2007. —

Arkadiy, M ., Israel, C., Avinoam, Kolodny, and Ran, G., C o m p a r a t i v e A n a l y s i s o f

S e r i a l Vs P a r a l l e l L i n k s i n N O C , System -on-Chip, 2004. Proceedings 2004
International Sym posium , 2004, Page(s) 185-188.

Jianfeng, Z.,Nan C., Holm -Nielsen, P.V ., Peucheret, C., Jeppesen, P., M e t h o d f o r

h i g h - s p e e d M a n c h e s t e r e n c o d e d o p t i c a l s i g n e d g e n e r a t i o n , Optical Fibre
C om m unication Conference, 2004. OFC 2004, V olum e 1, 23-27 Feb. 2004.

H otchkiss, R. A F a u l t T o l e r a n t M u l t i c a s t M e s s a g e R o u t i n g S w i t c h f o r

I n t e r p r o c e s s o r C o m m u n i c a t i o n s , PhD Thesis, The N ottingham Trent University,
UK, Septem ber 2000, Page 14.

Rem arklus, W., O n - C h i p B u s S t r u c t u r e f o r C u s t o m C o r e L o g i c D e s i g n , IEEE
W escon, Page 714, 1998. D igital Object Identifier 10.1109/W ESCON. 1998.716402

Aldworth, P., S y s t e m - O n - C h i p B u s A r c h i t e c t u r e f o r E m b e d d e d A p p l i c a t i o n , IEEE
International Conference on Com puter Design, Page 297-298, 1999.

Cordan, B., A n E f f i c i e n t B u s A r c h i t e c t u r e f o r S y s t e m - O n - C h i p D e s i g n , IEEE
C ustom Integrated C ircuit Conference, Page 623-626, 1999.

W inegarden, S., A B u s A r c h i t e c t u r e C e n t r i c C o n f i g u r a b l e P r o c e s s o r S y s t e m , IEEE
Custom Integrated C ircuit Conference, Page 627-630, 1999.

Zhang, X, P e r f o r m a n c e m e a s u r e m e n t a n d m o d e l l i n g t o e v a l u a t e v a r i o u s e f f e c t s o n

a s h a r e d m e m o i y m u l t i p r o c e s s o r , Software Engineering, IEEE Transactions on,
V olum e 17, Issue 1, Jan. 1991 Page(s),87 — 93.

Duato, J., Yalamanchili, S. and Ni, L., I n t e r c o n n e c t i o n N e t w o r k s , A n E n g i n e e r i n g

A p p r o a c h , M organ Kaufm ann, 2003.

P. K ennani, L. K leinrock, V i r t u a l C u t - T h r o u g h , A N e w C o m p u t e r C o m m u n i c a t i o n

S w i t c h i n g T e c h n i q u e , C om puter N etw ork Vol. 3, page 267-286, Septem ber 1979.

M ithuna, Thottethodi., A lvin, R., Shubhendu. S., B E A M , A H i g h - P e r f o r m a n c e

R o u t i n g A l g o r i t h m f o r V i r t u a l C u t - T h r o u g h N e t w o r k s , P roceeding o f the
International Parallel and D istributed Processing Sym posium (IPD PS’03) Year
2003.

L. M. Ni., P. K. M cKinley, A S w w e y o f W o r m h o l e R o u t i n g T e c h n i q u e i n D i r e c t

N e t w o r k s , IEEE Com puter, 26(2) page 62-76, February 1993.

Katevenis, M., B u f f e r R e q u i r e m e n t s o f C r e d i t B a s e d F l o w C o n t r o l w h e n A

M i n i m u m D r a i n n i n g R a t e i s G u a n t e e d , H igh Perform ance Com m unication System,
1997, The Forth IEEE W orkshop 011 23-25 June 1997 Page 168 - 178.

Bashir, M., A l-Hashim i, S y s t e m - o n - C h i p , N e x t G e n e r a t i o n E l e c t r o n i c s , The
Institution o f E lectrical Engineers, London, 2006, Page 605 - 607, ISBN, 0-86341-
552-0.

B. C. O ’Neill, P a r a l l e l N e t w o r k S o l u t i o n , F r o m A c a d e m i a i n t o I n d u s t r y , invited
presentation on The Role o f Physicists in Building the Internet conference, the
Institute o f Physics Annual Congress, M arch 2000, PBI.8.3.

B. C. O ’Neill, R o u t i n g H a r d w a r e D e s i g n , Invited presentation to ESA Spacewire
working group, Netherlands, Feb 2000.

K. L. W ong., A M e s s a g e C o n t r o l l e r f o r D i s t r i b u t e P r o c e s s i n g S y s t e m , PhD Thesis,
Nottingham Trent U niversity, UK, June 2000, Page 27.

A ltera Ltd, C o n t e n t A d d r e s s a b l e M e m o i y d e f i n i t i o n , available at
http.7Ayw w.altera.com /support/software/nativelink/quartus2/gIossary/def cam.html
Last visit Decem ber 2006.

A ltera Ltd, I m p l e m e n t i n g H i g h S p e e d S e a r c h A p p l i c a t i o n w i t h A l t e r a C A M ,

A pplication note 119, V ersion 2.1, July 2001 available at
http://www.altera.com/Htefature/an/anl 19.pdf Last visit February 2007. Last visit February
2007.

M Y R IC O M Inc., M y r i n e t L i n k S p e c i f i c a t i o n , A rchived specification available from
M yricom Inc. USA, at http,//ww w .m vri.com /scs/docum entation/link/index.htm l
Last visit October 2006.

Bernie Perrin, Lattice Sem iconductor, I n t e l l e c t u a l P r o p e r t y , Em bedded System
Engineering, V olum e 13, 8 Nov/Dec 2005.

Jeff M oris, Andy M artw ick, Brad Hostler, P H Y I n t e r f a c e f o r t h e P C I E x p r e s s ™

A r c h i t e c t u r e , D raft Version 1.87 Intel Corporation, 2005, available at
http://www.intel.com/technology/pciexpress/devnet/docs/pipel 87.pdf Last visit February 2007
Last visit February 2007.

JED EC Standard, D o u b l e D a t a R a t e (D D R) S D R A M S p e c i f i c a t i o n , JEDEC Solid
State Technology Association, R evision JESD79E, M ay 2005, available at
htto://www.iedec.org/download/search/JESD79E.Ddf Last visit February 2007 Last visit
February 2007.

http://http.7Ayww.altera.com/support/software/nativelink/quartus2/gIossary/def
http://www.altera.com/Htefature/an/anl
http://www.mvri.com/scs/documentation/link/index.html
http://www.intel.com/technology/pciexpress/devnet/docs/pipel
http://www.iedec.org/download/search/JESD79E.Ddf

A ltera Ltd, N I O S 3 . 0 C P U , Version 2.2, October 2004, available at
httpy/www.al tera.com /literature/lit-nio. isp Last visit January 2007.

Xilinx, M i c r o B l a z e P r o c e s s o r R e f e r e n c e G u i d e - E m b e d d e d D e v e l o p m e n t K i t E D K

8 . 2 i , X ilinx Inc, June 2006, available at
h ttp7/w w w .xilinx.com /ise/em bedded/m b re f guide.pdf Last V isit January 2007.

A R M Ltd, A R M 9 2 2 T T e c h n i c a l R e f e r e n c e M a n u a l R e v 0 , A R M Lim ited 2000,
available at http://www.arm.com/pclfs/DDI0184B 922T TRM .pdfLast visit February 2007. Last
visit February 2007.

Altera Ltd, N I O S I I C o r e s I m p l e m e n t a t i o n D e t a i l s , D ocum ent reference NII51015-
6.1.0, N ovem ber 2006, available at
h ttpy /ww w .altera.com /literature/hb/nios2/n2cpu nii51015.pdf Last visit January
2007.

IBM , O n - c h i p P e r i p h e r a l B u s A r c h i t e c t u r e S p e c i f i c a t i o n B u s , Version 2.1
D ocum ent reference S A -142528-02, available at http,//www-
306.ibm .com /chips/techlib/techlib.nsf/techdocs/9A 7 A FA 74D A D 200D 087256A B30
OQ5FOC8/$file/OpbBus.pdf Last visit February 2007.

A R M Ltd, A M B A ™ S p e c i f i c a t i o n R e v . 2 . 0 . , can be requested from, w w w .arm .com .

Ackland, B. Anesko, A., B rinthaupt, D. A S i n g l e - C h i p , 1 . 6 - B i l l i o n , 1 6 - b M A C / s

M u l t i p r o c e s s o r D S P , IEEE Journal o f Solid-State Circuit, Vol. 35, No. 3 M arch
2000.

Altera Ltd, S y s t e m I n t e r c o n n e c t F a b r i c f o r M e m o r y - m a p p e d I n t e r f a c e , A ltera Ltd.
Docum ent reference, Q II54003-6.1.0 available at
h ttpy /ww w .altera.com /literature/hb/qts/qts qii54003.pdf Last Visit, January 2007.

A ltera Ltd, A v a l o n M e m o r y - M a p p e d I n t e r f a c e S p e c i f i c a t i o n V e r 3 . 2 , A ltera Ltd.
D ocum ent reference, M NLAV A BU SREF-3.2. A vailable at
http.//w w w . altera.com/1 i terature/m anual/m nl av al on spec .pdf Last V isit January
2007.

Altera Ltd, A v a l o n B u s S p e c i f i c a t i o n R e f e r e n c e M a n u a l V e r s i o n 2 . 3 , July 2003,
available at http://www.aitera.com.cu/literature/manual/mnl avalon bus.pdf Last visit
February 2007.

IBM , Sony and Toshiba, T h e C e l l A r c h i t e c t u r e , available at
h ttpy /w ww .research.ibm .com /cell/hom e.htm l Last V isit 26 October 2006.

E. W. K. Liew, B. C. O ’Neill and S. Clark, P o r t i n g T r a n s p u t e r A p p l i c a t i o n t o

M u l t i - P r o c e s s o r s S t r o n g A R M s y s t e m , W orkshop on Parallel and D istributed

http://www.al
http://www.xilinx.com/ise/embedded/mb
http://www.arm.com/pclfs/DDI0184B
http://www.altera.com/literature/hb/nios2/n2cpu
http://www.arm.com
http://www.altera.com/literature/hb/qts/qts
http://www.aitera.com.cu/literature/manual/mnl
http://www.research.ibm.com/cell/home.html

C om puting in Im age Processing, V ideo Processing, and M ultim edia (PD IV M 2001)
under the International Parallel and D istributed Processing Sym posium (IPDPS
2001),San Francisco, US, April 23rd, 2001, sponsored by IEEE C om puter Society.

96 J. H. Ng, B. C. O ’Neill and S. Clark, A P C I n t e r f a c e B o a r d f o r P a r a l l e l A R M

P r o c e s s o r N e t w o r k , PREP 2000, ISB N 0 86341 3218, April 2000, IEE, page(s)
469-474.

07 Fook, O., F a u l t D e t e c t i o n f o r A C u s t o m i s e d M u l t i p r o c e s s o r N e t w o r k , M Phil Thesis,
Y ear 2006.

OR
Altera Ltd, E m b e d d e d S o f t w a r e D e v e l o p m e n t T o o l , available at
h ttp://w w w .altera.com /products/ip/processors/nios2/tools/ni2-
developm ent tools.htm l Last visit 15 D ecem ber 2006.

99 A ltera Ltd, N I O S I I S o f t w a r e D e v e l o p e r ' s H a n d b o o k , V ersion NII5V2-6.0.
available at http://www.altera.com/literature/hb/nios2/n2sw nii5v2.pdf Last visit February
2007.

100 A ltera Ltd, N I O S D e v e l o p m e n t B o a r d S t r a t i x I I E d i t i o n R e f e r e n c e M a n u a l ,

available at
http ,//ww w .altera.com /literature/m anual/m nl n ios2 board stratix ll 2s60 rohs.pdf.
Version, 1.2, O ctober 2006 Last visit 09/10/2006.

101 Suh, J., Yoo, Hoi-Jun., A r b i t r a t i o n L a t e n c y A n a l y s i s o f t h e S h a r e d C h a n n e l

A r c h i t e c t u r e f o r H i g h P e r f o r m a n c e M u l t i - M a s t e r S o C , IEEE Asia-Pacific
Conference on A dvanced System Integrated Circuit, A ugust 4 - 5 , 2004.

102 A itera Ltd, Q u a r t u s I I V e r s i o n 6 H a n d b o o k V o l u m e 4 , S O P C B u i l d e r , available at
h ttp ,//w w w .altera.com /literature/lit-qts.isp Last visit 06 Novem ber 2006.

103 J. W. Ellis., A H a r d w a r e R o u t i n g d e v i c e f o r T r a n s p u t e r A r r a y s , PhD Thesis, year
1995.

104 A ltera Ltd, S t r a t i x I I P o w e r P l a y E a r l y P o w e r E s t i m a t o r , available at
h t tp j/www.al tera.com /support/devices/estim ator/st2-estim ator/st2-power-
estim ator.htm l Last V isit 12 Dec 2006.

105 A llan Cantle, I n t o T h e F a s t l a n e , IET Engineer and Technology, January 2007, Page
3 6 - 3 9 .

106 Bryan Betts, I n e f f i c i e n t E t h e r n e t W a s t e o v e r $ 1 b i l l i o n a Y e a r , available at
http ,//ww w .theregister.co.uk/2007/02/05/ethernet energy/ Last visit February 2007.

107 Ethernet, http .//www .ethernetal 1 iance.org/hom e Last V isit February 2007.

150

http://www.altera.com/products/ip/processors/nios2/tools/ni2-
http://www.altera.com/literature/hb/nios2/n2sw
http://www.altera.com/literature/manual/mnl
http://www.altera.com/literature/lit-qts.isp
http://www.al
http://www.theregister.co.uk/2007/02/05/ethernet

M ike, B., Ken, C., Bruce, N. I m p r o v i n g t h e E n e r g y E f f i c i e n c y o f E t h e r n e t , A d a p t i v e

L i n k R a t e P r o p o s a l , V ersion 1.0, July 2006, Page 4 Available at
h ttp ,//w ww .ethernetalliance.org/technology/w hite papers/alr v 10.pdf Last visit
February 2007.

Simon, T., I n t e r f a c e f o r E m b e d d e d P a r a l l e l M u l t i p r o c e s s o r N e t w o r k , PhD Thesis,
Y ear 2002. Page 81-82.

http://www.ethernetalliance.org/technology/white

