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Abstract        

Nowadays, shape memory polymers (SMPs)-based devices are required to be much smarter to 

produce large shape memory recovery and recovery force with lower working temperatures. They 

could play a vital role in the advancement of soft robot manipulators, biomedical tools and wearable 

devices where the working temperatures is a key challenge and must be around the body temperature, 

or in sustainable smart systems with low energy consumption. The aim of this paper is to introduce 

thermo-electro-magneto-responsive fibrous SMPs (TEMFSMPs) as a new class of SMPs with highly 

enhanced shape recovery and recovery force and reduced working temperature. A three-dimensional 

constitutive model is developed to simulate thermo-electro-magneto-visco-hyperelastic behaviors of 

SMPs under large deformation for the first time. Constitutive relations are derived by adopting an 

electro-magneto-visco-hyperelasticity theory and implementing it in a thermo-mechanical cycle of 

SMPs. To improve the strength of thermo-electro-magneto-responsive SMPs, a bunch of fibers is also 

embedded into the SMP matrix. Then, the proposed model for thermo-electro-magneto-responsive 

fibrous shape memory polymers (TEMFSMPs) under uniaxial tension and complex loading regimes 

such as simultaneous torsion and extension are solved semi-analytically. In addition, the thermo-

mechanical response through the proposed model is validated via available SMP experimental tests. 

Numerical results reveal that electro-magnetic features can significantly enhance shape memory 

recovery and recovery force of TEMFSMPs and lower their working temperatures. It is found that the 

electro-magnetic field, the orientation, and stiffness of fibers can effectively be set to tune the shape 

memory effect and bio-applicability of TEMFSMPs with highly enhanced stress/strain recovery and 

reduced working temperature.  

Keyword: Multi-Stimuli-Responsive Polymers; Constitutive modeling; thermo-electro-magneto-

visco-hyperelasticity; fiber-reinforced shape memory polymers; large deformation; semi-analytical 

solution. 
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1 Introduction 

As an emerging class of smart polymers, shape memory polymers (SMPs) feature the 

ability to recover their permanent shapes from one (or multiple [1, 2]) programmed 

temporary shape(s) when exposed to specific stimuli, such as heat [3-5] electricity [6, 7], 

light [8, 9], magnetic fields [10, 11] and solvents [12]. Also, they can work in one cycle, 

called one-way SMPs or several reversible cycles, called two-way SMPs [13]. Compared 

with shape memory alloys, SMPs possess the advantages of high strain recovery (up to 

1000% [14]), low density, low cost, biocompatibility and easy shape-programming process 

[15]. SMPs due to their Shape Memory Effect (SME) and self-healing property are designed 

into actuators or sensors offering outstanding advantages and extensively utilized in various 

fields such as aerospace, biomedical, civil engineering, and 3D (or 4D) printing [16-22]. 

Among different stimuli, heat is the most common to stimulate SMPs. Besides, heat can be 

generated in direct and indirect ways (e.g., inducing heat remotely). Considering the open 

literature, there are a lot of constitutive models for thermally-induced SMPs under small and 

large strains [22]. For other types of SMPs (e.g., electro-magneto-responsive SMPs), 

however, there is only one model for electro-responsive SMPs [23]. Thermally-induced 

SMPs have some disadvantages. One of them is their softening effect due to the temperature 

rise. It means that, under heating recovery step when the temperature of SMPs is being more 

than their glass transition temperature, SMPs stiffness dramatically decreases. This 

disadvantage mostly restricts the application of SMPs in soft robotics and manipulators in 

which using nanocomposites is a method to improve the SMP recovery force [24, 25]. 

Another one is that in some applications such as biomedical devices, working temperature of 

SMPs must be around body temperature. However, most thermally-induced SMPs have 

working temperatures higher than the body temperature. To settle these issues, other stimuli-

responsive SMPs can be more satisfying alternatives. In this respect, electro- or magneto-

responsive SMPs or electro-magneto-responsive SMPs have been developed due to their 

remotely actuation and stiffening effect. 

Electro-magneto-rheological elastomers (EMREs) can be categorized as another class of 

smart materials that are capable of changing their electric, magnetic and mechanical 

properties in the presence of electric, magnetic and mechanical fields [26]. In fact, in electro-

rheological or magneto-rheological materials including fluids or polymers, ferromagnetic or 

electric particles are oriented parallel to applied fields while being triggered by electric, 

magnetic, or their coupling [27]. Adding electro-active particles such as carbon nanotubes 
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and magneto-active particles such as Fe3O4 or carbonyl iron to elastomers makes the matrix 

multi-trigger EMREs. Thanks to their unique properties, they have found great potential in 

many engineering applications such as multi-trigger soft actuators [28]. Electric and magnetic 

fields are used to activate SMPs and EMREs in two different ways. While electric and 

magnetic fields induce heating into SMPs and activate the shape recovery, these fields change 

strength properties of EMREs. In recent years, a world-wide activity has been devoted to 

simulating behaviors of SMPs and EMREs. More details in constitutive modeling SMPs and 

EMREs can be found in research works done by Yarali et al. [22] and Rossi et al. [29]. As the 

understanding of SMP properties is getting deeper and deeper in material research 

community, the list of applications continues to expand. It has been found that SMP-based 

soft actuators are required to produce larger shape recovery and recovery force for practical 

applications like artificial muscles [30]. As mentioned before, several strategies have been 

introduced to increase the shape recovery and recovery force in SMPs. A preliminary work to 

enhance SME of SMPs is SMP composites through short fibers [25, 31], coiled carbon 

nanotubes (CCNTs) [24], ZnO nanoparticles [25], multi-directional circular braided tube 

[32]. In this way, more specifically, Yarali et al. [24] investigated the effect of different 

geometrical parameters of CCNTs (e.g., spring length scale, pitch, and mean diameter), their 

volume factions and directions. They showed that by increasing volume faction of CCNTs up 

to 0.6%, the effective recovery force of the SMP is increased by 15% or the effective 

recovery force can be increased up to 25% utilizing adjusting CCNT’s distributions. Zhang et 

al. [32] introduced circular braided tube preforms and the preform/silicone elastomer matrix 

composites to enhance the shape memory behavior and recovery force in SMPs. The effects 

of braiding angle, tube wall thickness, and shape recovery temperature on the shape memory 

behavior of tube preforms and their silicone elastomer matrix composites were found to be 

significant. In addition, Liu et al. [33] showed that reinforcing thermally-induced SMPs with 

carbon nanotubes can improve the recovery force up to 144%. They also found that the 

infusion of the silicone matrix can increase the final shape recovery ratio to 97.3%, improve 

the recovery force, and enhance the flexural property. In some other approaches, by adapting 

rational designs and changing the geometry of structures, the SME of SMPs may be enhanced 

[34]. 

In the field of electro- or magneto-responsive SMPs, there are some numerical and 

experimental research works which are briefly introduced here. For the first time, recently, a 

constitutive model for electro-responsive SMPs under large deformation was developed by 

Niyonzima et al. [23]. They developed a 3D model employing a multiphysics coupling of 
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thermal, electric, and mechanical phenomena and eventually discretized and solved it using a 

finite element approach, and finally implemented it for the application of stents. In an 

experimental work, a magneto-responsive SMP including a crosslinked 

poly(dimethylsiloxane) (PDMS) porous matrix and magnetorheological fluid drops was 

introduced by Testa et al. [11]. They tested the proposed SMP under different loading 

regimes and found it fully reversible and fast response. In addition, there are several research 

works led by Leng’s group on electro-responsive SMPs including carbon nanotubes (CNTs) 

[7] and magneto-responsive Fe3O4–based SMPs [35] and by Calvo-Correas et al. [36] on 

magneto-responsive SMPs including synthesized magnetic nanoparticles. They showed that 

increasing the volume fraction of additives not only makes the pure SMP much stiffer and 

eventually changes the glass transition temperature of the SMP, but also the additives keep 

the surface temperature of the SMP around 40oC which is useful for biomedical applications.  

As mentioned previously, two key challenges of thermally-induced SMPs, especially for 

biomedical applications, are the softening effect induced during the recovery stage, and their 

high working temperature which restrict their applicability when used in the body. The 

literature review reveals that there are no constitutive models for thermo-electro-magneto-

responsive SMPs. The aim of this paper is to introduce a novel class of SMPs so-called 

thermo-electro-magneto-responsive fibrous SMPs (TEMFSMPs) with highly enhanced shape 

recovery and recovery force and reduced working temperature, see Figure 1 for inspiration. 

The strength of thermo-electro-magneto-responsive SMPs is improved by coupling different 

fields and embedding a bunch of fibers into the matrix. A 3D constitutive model is developed 

for TEMFSMPs based on the non-linear electro-magneto-visco-hyperelasticity theory. The 

proposed model is then considered for the cases of uniaxial tension and simultaneous torsion 

and extension loading regimes and solved semi-analytically. A comparison between semi-

analytical results and experimental data available in the literature for thermally-responsive 

pure SMPs is conducted verifying the accuracy of the model and solution methodology. 

Finally, the effects of some parameters such as purely electric field, purely magnetic field, 

electro-magnetic fields, the stiffness of fibers, and their orientation are investigated. 

Numerical results reveal that these parameters can be tuned to significantly enhance shape 

memory recovery and recovery force of TEMFSMPs and lower their working temperatures. 

Due to the absence of similar concepts and constitutive models in the specialized literature, 

this paper is likely to advance the state of the art SMPs and provide pertinent insights that are 

instrumental in the design of SMP devices for remote applications such as robot arms, 

artificial muscles, and tissue scaffolds.  
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This paper is organized as follows. In section 2.1, constitutive equations for thermo-

visco-hyperelastic materials are introduced. Then, in section 2.2 and two sub-sections 2.2.1 

and 2.2.2, the constitutive equations for fibrous electro-magneto-responsive polymers are 

presented. Transversely isotropic hyperelastic materials and electro-magneto-responsive 

theory are expressed in sections 2.2.1 and 2.2.2, respectively. Based on the elastic stress 

associating with electro-magneto-hyperelastic fibrous response, the total Cauchy stress is 

calculated in section 2.2. Then, in section 2.3, the proposed model is time-discretized. In 

section 3, a non-linear continuum framework of a uniaxial tension problem is proposed. In 

section 4.1, results and relevant discussions for the uniaxial tension are presented 

investigating the effects of different parameters such as purely electric field, purely magnetic 

field, electro-magnetic fields, the stiffness of fibers, and their orientation on the shape 

memory features of TEMFSMPs. Also, in section 4.2, the proposed model is solved semi-

analytically under simultaneous torsion and extension loading regime. Concluding remarks 

are finally presented in section 5. 

2 Constitutive Modeling of TEMFSMPs 

2.1 Constitutive Equations for Thermo-Visco-Hyperelastic Materials 

In time-dependent materials, it is a realistic assumption that the total stress can be 

separated into mechanical deformation and time. Based on the insight from this assumption, 

the generalized constitutive equation of time-dependent materials for stress relaxation tests is 

commonly represented as [37]: 

   0 ,( , ) tt σ ε σ ε ε  (1) 

in which σ, ε , t, 𝝈0 and Г represent total stress, total strain, time, the stress associated with 

the instantaneous response of the material and a non-dimensional function to describe the 

relaxation phenomenon which is normally represented by Prony series as: 

     
1

, exp
n

i

i i

t
t






 
      

 
ε ε ε   (2) 

where Г∞ and Г𝑖 (i=1:n) are dimensionless functions that identify the contribution of 

equilibrium (i.e., elastic) and non-equilibrium (i.e., viscous), respectively, and 𝜏𝑖 stands for 

the relaxation times of the viscous part.  

Substituting Eq. (2) into Eq. (1) results in [37]: 
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         0 0 0

1 1

, exp exp( , )
n n

e v

i i

i ii i
Equilibrioum Part

Viscous Part

t t
tt

 
 

 

     
             

    
  σ ε σ ε σ ε ε σ ε ε σ σ  

(3) 

Eq. (3) reveals that the total stress in time-dependent materials is composed of two terms. The 

equilibrium term (i.e., 𝝈𝑒) is deformation-dependent and may obtained from linear (or non-

linear) elastic theory. The second term represents the stress induced by viscous properties of 

the material (i.e., 𝝈𝑣). In fact, Eq. (3) shows that to simulate visco-hyperelastic materials, we 

can use a rheological model constituting two parallel parts including hyperelastic part and 

viscous part. More explicitly, to obtain parameters associated with time-dependent behavior 

of the material (e.g., Г∞, Г𝑖 and 𝜏𝑖), a rheological model so called Generalized Maxwell-

Kelvin is employed. To this end, its corresponding shear modulus can be written as [38]: 

  0
1 1

exp 1 exp
i

n n

i i
i i i

t t
G t G G G G

 
 

              


     

 

(4) 

in which G, 𝐺∞, 𝐺𝑖 and 𝐺0 stand for total shear modulus, long-term or equilibrium shear 

modulus, shear modulus in i-th branch of Generalized Maxwell-Kelvin model and 

instantaneous shear modulus which is equal to 𝐺∞+∑ 𝐺𝑖
𝑛
𝑖=1 . Thus, the parameter of Г𝑖 can be 

expressed as 𝐺𝑖/𝐺0. 

In addition, based on the instantaneous shear modulus defined, Eq. (2) can be rewritten 

in another form as: 

   
1

, 1 1 exp
n

i

i i

t
t



  
       

  
ε ε  (5) 

As mentioned before, Eq. (1) is only used for stress relaxation tests. Therefore, the 

general form of Eq. (1) based on the linear viscoelastic theory in a convolution integral form 

and by additive decomposition it into elastic and viscous parts can be expressed as: 

      0 0

1

( ) ( ) exp( , )
tn

e v

i

i i

t
tt

 




 

  
      

  
  ε σ ε ε σ ε σ σσ ε  (6) 

Another form of Eq. (6) can be written as [39, 40]: 

0
( , ) ( )

et
t t d




  


σ

σ ε  
(

7) 

Now, to consider the effect of temperature on viscoelastic properties of amorphous 

polymers (i.e., modeling stiffening effect while changing temperature), the time-temperature 

superposition principle (TTSP) is employed. In this way, the reduced time, 𝑡𝑟, is defined and 
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the thermal effect is considered by replacing the real time, t, by the reduced time. The 

relationship between t and 𝑡𝑟 is usually expressed through shift factor parameter 𝑎𝑇 as 

follows [39, 40]: 

 0

r

t

T

d
t






   (8) 

Then, to determine 𝑎𝑇, Williams–Landel–Ferry empirical equation well-known as WLF 

equation is adopted with the following correlation. 

 
 

 
1

10 10

2

( ( ) )
log log

( ( ) )

r
T

r r

T c T t T
a

T c T t T





  
       

 (9) 

where 𝑐1, 𝑐2 and 𝑇𝑟 are material constants and they together with Г∞, Г𝑖 and 𝜏𝑖 can usually be 

calibrated by Dynamic Mechanical Thermal Analysis (DMTA) testing data. In this study, we 

use DMTA test data reported by Arrieta et al. [41] to calibrate thermo-time-dependent 

parameters. As a result, by replacing t with 𝑡𝑟 in Eq. (6) or Eq. (7), the influence of thermal 

effect is considered. It is noted that the thermo-visco-hyperelastic contribution of the 

proposed model has been adopted by Westbrook et al. [42] and Diani and Arrieta [41, 43] and 

recently solved semi-analytically by Baniasadi et al. [39]. 

Here, to consider the electro-magnetic response of thermo-visco-hyperelastic materials, 

similar to recently proposed models [26, 28], we assume that the equilibrium part includes 

fibrous electro-magneto-hyperelastic behavior. Therefore, Eq. (7) can be reformulated as: 

   
0

, , ,
t

t t d
r r

 



  


FEHεσ

σ E H ε  (10) 

where 𝛔𝐅𝐄𝐇ɛ is the stress depending on electric field, magnetic field, and mechanical strain 

which will be discussed in the next section. 

 

2.2 Constitutive Equations for Fibrous Electro-Magneto-Responsive Polymers 

2.2.1 Transversely isotropic hyperelastic materials 

The transversely isotropic hyperelastic behavior of the incompressible material is 

defined using a single fiber family with angle of θ. Then, the unit vector of the anisotropy 

direction in the reference configuration is assumed to be A. In this way, to obtain the total 

stress, invariants 𝐼1 to 𝐼5 are defined as [44]: 
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        
2 2

1 2 3

4 5

1
; ; det 1

2

;

I tr I tr tr I

I I

    

  T T

b b b b

FA.FA F a.F a

 (11) 

in which tr represents the symbol of trace. F is the deformation gradient tensor, b is the left 

Cauchy-Green tensor that is equal to 𝐅𝐅𝐓. Also, a is the unit vector of the anisotropy 

direction in the current configuration and it is equal to FA. It is noted that the fourth invariant 

presents the square of the stretch in the direction of A. Then, based on the non-linear solid 

mechanics and utilizing the chain rule of differentiation, the Cauchy stress of fibrous 

hyperelastic materials, 𝝈𝐹𝐻, is obtained in terms of the strain energy function as [45]: 

5

1

i
i

FH
i i

I
p p

I





 
 
 
 

 
     

 σ I F I F
F F

 (12) 

wherein I and p are the second order identity tensor and hydrostatic parameter, respectively. 

To calculate 
𝜕𝐼4

𝜕𝐅
 and 

𝜕𝐼5

𝜕𝐅
, we have the following relationship: 

 54 2 ; 2
II 

     
 

A FA A FCA CA FA
F F

 (13) 

in which C and   represent the right Cauchy-Green tensor and outer product, respectively. 

Finally, based on non-linear solid mechanics and Eqs. (11)-(13), the general form of the 

Cauchy stress with the strain-energy density function in terms of (𝐼1: 𝐼5) for incompressible 

transversely hyperelastic materials by assuming perfect bonding between fibers and matrix is 

given by: 

   2

1 2 1 4 52 2 2FH p I             σ = I b 2 b b a a a ba ba a  (14) 

 

2.2.2 Electro-magneto-responsive polymers 

In the electro-magneto-elasticity theory, the total Cauchy stress tensor is commonly 

derived by two approaches of superposition of purely elastic, electric, and magnetic stresses 

and using nominal Helmholtz free energy density function. The first approach by ignoring 

couple mechanical-electric and magnetic terms, is usually used for small strain deformation 

and eventually it may produce a remarkable error in the calculation of the total stress under 

large deformations [46-49]. Based on the first approach, the total Cauchy stress, 𝝈𝐸𝑀, based 

on Maxwell’s concept for electro-magneto-elastic materials can be expressed as [50]: 

EM FH   p e mσ σ τ τ τ  (15) 
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where 𝝈𝐹𝐻, 𝛕𝐩, 𝛕𝐞 and 𝛕𝐦 are mechanical Cauchy stress, polarization stress tensor, 

electrostatic Maxwell stress tensor, and magnetic Maxwell stress tensor defined as [51, 52]: 

   0

0

1 1 1
. ; . ;

2 2




   
          

   
e m Pτ E E EE I τ B B BB I τ P E  (16) 

in which E, B, P, ɛ0 and µ0 are the electric field vector in the current configuration, magnetic 

induction vector in the current configuration, polarization density vector in the current 

configuration, electric permittivity of free space, and magnetic permeability of free space, 

respectively.  

The second approach that considers the deformation dependency on the electric 

permittivity and the magnetic permeability, is an alternative and reliable method in electro-

magneto-elasticity theory, in particular, at large strains [46-49]. In this way, many researchers 

have used different types of nominal Helmholtz free energy density functions such as Kumar 

and Sarangi [48, 49], Yarali et al. [28], and Dorfmann and Ogden [50, 53]. In this study, a 

nominal Helmholtz free energy density function in terms of deformation gradient tensor, 

electric field vector, and magnetic field vector introduced by Kumar and Sarangi [49] is 

adopted as: 

       1

0

0

1 1
, , , , . .

2 2

l l l l l l l l 


   F H E F H E E b E B bB  (17) 

wherein 𝐇𝑙, 𝐄𝑙, ρ and 𝐁𝑙 represent the magnetic field in the reference configuration, electric 

field in the reference configuration, mass density in the current configuration, and magnetic 

induction vector in the reference configuration, respectively. Meanwhile, the correlation 

between electric and magnetic fields vectors in the reference and current configurations are 

expressed as 𝐸𝑙=𝐅𝐓E and 𝐻𝑙=𝐅𝐓H, respectively. It is noted that quantities without 

superscript ‘l’ represent those quantities in the current configuration.  

 In addition, the principal invariants depending on the tensor b, 𝐄𝑙 and 𝐇𝑙 can be 

expressed as [49]: 

     

     

1 2

6 7 8

2

9 10 11

: ; : ; :

: ; : ; :

l l l l l l

l l l l l l

I I I

I I I

      

     

E E I E E b E E b

H H I H H b H H b
 (18) 

wherein : represents the symbol of double-contraction. In this study, it is assumed that the 

electric field and magnetic field are constant. Also, the direct coupling between the electric 

field and the magnetic field is ignored (e.g., ignoring another invariant associating with both 

electric and magnetic fields). Analogous to Eq. (12), the total Cauchy stresses for electro-

magneto elastomers can be expressed as [51]: 
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11

6

i
i

EM
i i

I
p p

I





 
 
 
 

 
     

 σ I F I F
F F

 (19) 

Then, from Eqs. (18) and (19), the explicit form of 𝛔𝐸𝑀 is obtained by performing some 

mathematical manipulation as: 

 

 

1 1

7 8

2 2

10 11

2

2 2

EM p            

      

I 2 E E b E E E b E

bH bH bH b H b H bH

σ
 (20) 

where  7 :11 /i ii I     .  

As a result, by considering both sections 2.2.1 and 2.2.2, the total Cauchy stress for 

fibrous electro-magneto-hyperelastic materials employing the chain rule of differentiation can 

be derived as: 

11

1

i
i

i i

I
p p

I





 
 
 
 

 
     

 FEHε
σ I F I F

F F
 (21) 

Finally, by integrating Eqs. (12), (14), (19), (20), and (21), the total Cauchy stress for 

fibrous electro-magneto-hyperelastic elastomers can be expressed as: 

 

   

   

2

1 2 1 4

1 1

5 7 8

2 2

10 11

2 2

2 2

2 2

p I

 

          

            

      

FEHε
I b 2 b b a a

a ba ba a 2 E E b E E E b E

bH bH bH b H b H bH

σ

 (22) 

Therefore, by identifying and adopting a nominal Helmholtz free energy density function 

(i.e., Ω) and deformation gradient tensor, total Cauchy stress for fibrous electro-magneto-

hyperelastic elastomers can be calculated. 

Here, by adopting the Neo-Hookean model for the purely mechanical hyperelastic 

property of the material, and based on the research works done in [28, 48, 50, 53, 54], a 

version of the nominal Helmholtz free energy density function for transversely isotropic 

electro-magneto-hyperelastic materials by ignoring the matric-fiber interaction is considered 

as: 

 
 

   
2

4 0 0
1 1 3 6 4 7 6 9 7 10

1
3 ln 1

2 2 2

IE
C I q C I C I C I C I

q

  
         

 
 

 (23) 

in which 𝐶1, 𝐶3, 𝐶4, 𝐶6 and 𝐶7 are materials constants. q is a positive non-dimensional 

parameter that measures the rapidly increasing stiffness of the fibers with increasing stretch 

[55], and 𝐸̅ is a positive material modulus that measures the degree of anisotropy.  
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Finally, by substituting Eq. (23) into Eq. (22), and consequent results in Eq. (10), the 

total Cauchy stress for TEMFSMPs is obtained. Thus, in this paper, we show that the 

proposed model can successfully be used for the SME of TEMFSMPs. In other words, by 

implementing the proposed model for a thermo-mechanical cycle of SMPs, we can get 

thermally-induced SME in the presence of electric and magnetic fields. To apply the model 

and solve the proposed constitutive equations, we need to discretize it which is detailed in the 

following section. 

 

2.3 Time-Discretization of the Constitutive Equations for Thermo-Electro-Magneto-

Responsive SMPs 

Firstly, Eq. (10), by considering Eq. (5), at 𝑡𝑛 in a generic time interval (𝑡𝑛-1
, 𝑡𝑛) is 

discretized as follows: 

10

1 exp1
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i
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i
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t
d
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



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         


  


FEHεσ

σ  (24) 

Then, Eq. (24) can be rewritten in another form as: 

1

n
n

n n
i i

i 

  FEHεσσ σ  (25) 

in which n
iσ  is 

0

nn
r r

in n
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i ie d
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 



 
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FEHεσ σ
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σ  (26) 

where n
i  is expressed as: 

1
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FEHε FEHεσ σ

 (27) 

Since the time step from tn−1 to tn is small, assuming a linear approximation for fibrous 

electro-magneto-hyperelastic stress variations in each time increment results in: 

1
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

 
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 

     
     
     

   


  





 

FEHε

FEHε FEHε

σσ

σ σ
 (28) 
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Employing Eq. (28), the total stress in each time increment can be found using its 

corresponding value from the previous increment, while 
1n

i



  behaves like a history variable 

on the stress.  

Then, since the WLF has an exponential form, its time-discretization is not 

straightforward and demands a high computational cost. To settle this issue, alternatively, we 

use a satisfying linear approximation as follows [39]: 

 

1

2

( )

( ( ) )

( ( ) )
( )

1

ln( ) ln 10

exp

r

r

T t

c T t T

c T t T
T T t

t

h a t

a  

 



 



 
 
 
 



     



 (29) 

where parameters  and are defined as: 

1 1

1

1
( )

1
( )

n n n n n
T Tn

n n n
T Tn

t h t h
t

h h
t





 



 


 


 (30) 

Therefore, the reduced time at the current increment can be calculated through the 

previous increment and Eq. (30) as: 

 
1

1 exp

n

n

t
n n
r r

t

t t d  


    (31) 

3 A Non-Linear Continuum Framework for a Uniaxial Tension Problem 

In this section, to implement and solve the proposed model, a uniaxial tension test is 

applied. In this regard, an incompressible visco-hyperelastic rectangular beam in the presence 

of thermal effect and uniaxial electric and magnetic fields is considered as shown in Figure 

1.a. Cartesian coordinates (X, Y, Z) and (x, y, z) are employed for reference and current 

configurations, respectively. Both the electric and magnetic fields are applied in the 𝑋1 

direction with the magnitude of 𝐸0 and 𝐻0, respectively. The mapping of a pure 

homogeneous deformation can be expressed as: 

1 1 1 2 2 2 3 3 3x X x X x X      (32) 

where 𝜆𝑖′𝑠 (i=1:3) are the principal stretches. Therefore, based on the definition of 

deformation gradient tensor in the Cartesian-Cartesian system and Eq. (32), the following 

equation can be obtained. 
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 
1

2 1 2 3

3

X Y Z 0 0

0 0 diag , ,
X Y Z

0 0
z z

Y Z

x x x

y y y

z

X



   



   
   

  
       

    
       

    

F  (33) 

Then, by applying the assumption of incompressibility, we have 𝐽𝐅𝐄𝐇ɛ = det(𝐅𝐅𝐄𝐇ɛ) =

𝜆1𝜆2𝜆3 = 1. Consequently, for the uniaxial tension, we have 𝜆1 = 𝜆, 𝜆2 = 𝜆3 = 𝜆−0.5 and 

eventually by employing Eq. (33), the deformation gradient tensor becomes equal to 𝐅 =

diag (𝜆, 𝜆−0.5, 𝜆−0.5). In addition, based on the multiplicative decomposition of tensors, the 

total deformation gradient tensor can be decomposed into an electro-magneto-mechanical 

contribution 𝐅𝐅𝐄𝐇ɛ and a purely thermal one 𝐅𝑇 as described in Eq. (34), which represents the 

Duhamel-Neumann hypothesis in the nonlinear deformation theory [56]. 

,T TJ J J 
FEHε FEHε

F F F  (34) 

Since TEMFSMPs are assumed to be thermally isotropic, the deformation gradient 𝐅𝑇 

can be given by a diagonal tensor as: 

 
0

0

ˆ ˆ( ) ( ) exp ( ) 1 ( )
T

T
T

T

T

F T F T T dT T dT T    
  

   F I  
(

35) 

where 𝐹(𝑇) is a scalar function determining the thermal volume change, and 𝛼 = 𝛼(𝑇) 

stands for the temperature-dependent thermal expansion coefficient. Then, by considering 

Eqs. (34) and (35), one may argue that 𝐅𝐅𝐄𝐇ɛ = 𝐅𝐅𝑇
−1 resulting in: 

 0.5 0.51
diag , ,   


FEHεF  

(

36) 

Besides, as mentioned before, the anisotropy vector in the reference configuration, 

electric and magnetic fields are defined as: 

        0 0,0,0 ; ,0,0 ; sin ,cos ,0E H  E = H = A =  (

37) 

Subsequently, the left and right Cauchy-Green deformation tensors are derived as: 

 2

2 1 1diag ,
1

,   


b = C  
(

38) 

Then, based on Eqs. (11) and (18), the invariants are obtained as: 
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(

39) 

Then, considering Eqs. (22) and (23), and 𝝈𝐅𝐄𝐇ɛ22
= 𝝈𝐅𝐄𝐇ɛ33

= 0, the hydrostatic 

parameter p can be found as: 

 2

1

2 2

cos2C
p Eq



 


 

 
  

(

40) 

wherein the parameter ∆ is defined as: 
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(

41) 

Finally, the uniaxial stress is obtained as: 

   
11

2 3 2 4 23
2 0 7 0

1 0 4 02 2 2 4

cos sin2 2 C HEq
C C E

    
 

  

   
     

      
FEHε   

(

42) 

Then, to eliminate material parameters, Eq. (42) is non-dimensionalized as: 

   
11

2 3 2 4 * 23
* * 2 0

02 2 2 4

cos sin2 2 Hq
E

    


  

   
     

      
FEHε  (43) 

in which 𝝈∗
𝐅𝐄𝐇ɛ11

= 𝝈𝐅𝐄𝐇ɛ11
/𝐶1, η=𝐸̅/𝐶1, 𝐸0

∗=𝐸0√ɛ0𝐶4/𝐶1, and 𝐻0
∗=𝐻0√µ0𝐶7/𝐶1. Finally, 

by substituting Eq. (43) into Eq. (10), the total Cauchy stress for TEMFSMPs is obtained. As 

mentioned before, the material parameters associated with viscous part are adopted from 

Arrieta et al. [41] for an acrylate-based SMP.  

As shown in Figure 1.d, the sample during the loading step is first deformed at a high 

temperature (i.e., 𝑇ℎ), and then it is cooled down to a low temperature (i.e., 𝑇𝐿) by 

maintaining the constraints applied during the previous stage. Next, the unloading process is 

performed by removing the mentioned constraints at 𝑇𝐿. Then, at the latest step, the sample is 

reheated up to retrieve its initial state so that it can recover both stored force and/or shape so-

called fixed-strain stress recovery and stress-free strain recovery, respectively. 

                  



16  

 

4 Results and Discussions 

In this section, the results of the proposed model under uniaxial tension and torsion-

extension loading regimes are presented. For this purpose, the proposed model under those 

loading regimes are solved semi-analytically using Maple software package (ver. 2018). 

Sections 4.1 and 4.2 represent the results of the model under uniaxial tension and 

simultaneous torsion and extension loadings, respectively.  

4.1 Uniaxial tension loading 

In section 4.1.1, the results for pure SMPs (i.e., thermally-responsive SMPs without 

fibers in the absence of electric and magnetic fields) under the uniaxial tension are presented. 

In addition, the proposed semi-analytical solution is verified by experimental data reported in 

[41]. In section 4.1.2, the influence of fibers (e.g., direction and stiffness of fibers) on the 

SME is investigated. In sections 4.1.3-4.1.5, the effects of purely electric field, purely 

magnetic field, and electro-magnetic fields are studied, respectively. 

4.1.1 Thermally-Responsive Pure SMPs 

In this section, in the absence of electric and magnetic fields, a thermo-mechanical cycle 

of the pure SMP without fibers is studied. 20% axial strain with 0.0018 𝑠−1 strain rate is 

applied to an SMP specimen to stretch it. The temperature is varied from 25oC to 65oC (or 

vis versa) with 
5oC

min
 temperature rise rate. The problem is solved for both stress-free strain 

recovery and fixed-strain stress recovery cases to show shape memory recovery and recovery 

force of the pure SMP while being triggered by heat, respectively. Meanwhile, it should be 

mentioned that the thermo-mechanical cycle applied here is composed of four steps, see 

Figure 2: 

I. Step ① (Loading): applying 20% axial strain at high temperature, 𝑇ℎ. 

II. Step ② (Cooling): decreasing the temperature of the SMP from 𝑇ℎ to low 

temperature, 𝑇𝑙, while the strain is kept fixed.  

III. Step ③ (Unloading): the strain constraint is removed at 𝑇𝑙. 

IV. Step ④ (Heating): increasing temperature of the SMP from 𝑇𝑙  to 𝑇ℎ  for two different 

purposes: i. shape memory recovery (4s in Figure 2) and ii. recovery force (4f in 

Figure 2). 

The results presented in Figure 2 show that there is a good correlation between 

experimental data [41] and the results from the present semi-analytical solution verifying the 

accuracy of the solution. It is noted that for all of the simulations in this study, we consider 
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𝑇𝑙 = 25oC, 𝑇ℎ = 65oC and 20% axial strain with 0.0018 𝑠−1 strain rate, except for studies 

presented in Figure 4.e and f and Figure 5.c. 

 

4.1.2 Thermally-Responsive Fibrous SMPs 

In this section, to reinforce pure SMPs, fibers are embedded into the matrix. As 

mentioned before, one of the disadvantages of thermally-responsive SMPs is the softening 

effect during the recovery step. It means that by increasing the temperature of the SMP, it 

becomes much softer and eventually restricts its applications for soft robotics and 

manipulators. To settle this issue, fibrous SMPs are introduced and the effects of fiber’s 

orientation and stiffness are disused in detail (see Figure 3).  

Firstly, the influence of fiber’s direction on the recovery force and shape memory 

recovery is investigated as shown in Figure 3.a and b, respectively. It is noted that θ is 

defined as the angle between fibers’ direction and transverse direction of the tensile 

specimen. When fibers are parallel to the longitudinal direction of the specimen, maximum 

reinforcement can be achieved compared to other angles. Figure 3.a reveals that, while pure 

SMPs and SMP composites with 𝜃 = 0o and 30o have an increasing trend of the stress 

recovery versus the temperature, a decreasing-increasing trend is seen for SMP composites 

with 𝜃 = 45o, 60o and 90o. It is directly related to the strong effect of the fiber reinforcement 

on the composite thermal expansion and its overall stiffness. It is seen that the SMP produces 

small and large negative compressive stresses for these two cases by initial heating due to the 

thermal expansion effect. Extra heating activates the programmed SMP composite and 

produces a positive stress recovery that makes the compressive stress faded, see Figure 3.a. It 

is found that the positive tensile stress recovery finally becomes dominant. From the shape 

memory recovery point of view, Figure 3.b shows that fibers do not have a significant effect 

on the strain recovery of the SMP that is in agreement with the conclusion drawn in Ref. [24]. 

It is observed that, by increasing the fiber’s orientation (from the perpendicular state to the 

parallel state), the strain recovery path shifts to right. It means that at a specific temperature, 

the temporary shape is recovered more at the perpendicular state compared to the parallel 

state. 

Next, the effect of fiber’s stiffness is illustrated in Figure 3.c and d. From Figure 3.c, it is 

found that selecting stiffer fibers leads to larger final stress recovery. Regarding the strain 

recovery, a trend similar to the trend of the fiber orientation is seen, so that increasing the 
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stiffness of fibers shifts the strain recovery graph to right. It means that using stiffer fibers 

leads to a lower strain recovery at a specific temperature lower than 65o, see Figure 3.d. 

Since one of the main motivations of this study is the improvement of the recovery force 

of SMPs, the stress recovery ratio for different fiber’s orientation and stiffness is presented in 

Figure 3.e. Axial stress recovery ratio is defined as 
𝜎∗

11
𝐹𝑆𝑀𝑃

−𝜎∗
11

𝑃𝑆𝑀𝑃

𝜎∗
11

𝑃𝑆𝑀𝑃 × 100 in which 

𝜎∗
11

𝑃𝑆𝑀𝑃
 and 𝜎∗

11
𝐹𝑆𝑀𝑃

 represent non-dimensional axial stresses for pure SMP and fibrous 

SMP, respectively. It is interestingly found that, for example, using fibers with η = 10 and θ = 

π/2 results in a significant increase in the axial stress recovery ratio of about 640%. It is also 

seen that the maximum axial stress recovery ratio occurs when η = 30 and θ = π/2 are 

selected. 

 

4.1.3 Thermo-Electro-Responsive Fibrous SMPs 

In this section, the effect of the purely electric field on thermally-responsive fibrous 

SMPs with η = 10 and θ = π/2 is demonstrated in Figure 4.a and b. As shown in a recent 

research work [28], in the presence of the electric field, the material becomes stiffer. As can 

be seen in Figure 4.a, by increasing the non-dimensional electric field from 0 to 1.5, the final 

non-dimensional axial stress recovery increases by 5.5 times which makes the SMP more 

suitable for robotics applications where large forces are required. Regarding the strain 

recovery as investigated in Figure 4.b, two interesting phenomena can be observed. Firstly, it 

is found that under a high electric field, a shrinkage may occur in the specimen. This could 

enhance the applicability of SMPs for some specific applications such as biomedical stents 

with expanding and shrinking features. In fact, after a full shape memory recovery, by extra 

heating, the specimen becomes shorter and this feature could be exploited for removal 

purposes in biomedical applications. Secondly and more interestingly, through the electric 

field, the working temperature of the SMP is decreased which is an amazing achievement of 

the present modeling. For example, at non-dimensional electric field of 1.5, the SMP fully 

retrieves at 55.9oC, while the SMP in the absence of electric field is recovered at temperature 

of 65𝑜𝐶. This phenomenon makes SMPs more bio-applicable. As mentioned before, one of 

the main challenges in the application of SMPs for biomedical devices is their working 

temperature. In this study, for the first time, the electric field effect is exploited to reduce the 

SMP working temperature. In this way, working temperature reduction upon purely electric 

or magnetic field is presented in Figure 4.e. By interpolating the working temperature 
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reduction in terms of external purely electric field, one may obtain a relation ∆𝑇𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =

1/1000(98 + 7812𝐸∗
0 − 1165𝐸∗

0
2). 

 

4.1.4 Thermo-Magneto-Responsive Fibrous SMPs  

Considering Figure 4.c and d, it is seen that the purely magnetic field has an effect like 

the effect of the purely electric field on the stress recovery, but it is more significant. This is 

due to the effect of the stress induced by the magnetic field and boosted by the stretch term 

that results in a prominent influence on the stress recovery compared to the single applied 

electric field (see Eq. (43)). For example, it is found that applying non-dimensional magnetic 

field of 1.5 increases the non-dimensional axial stress recovery 11.22 times. This also reduces 

the working temperature to 56.7oC when a fully shape recovery happens. It can be concluded 

that the magnetic field like the electric field reduces the working temperature of the SMP and 

additionally makes a shrinkage in the specimen. However, the electric field with the same 

magnitude of the magnetic field results in a little lower working temperature and a larger 

shrinkage, see Figures 4.b and d. Besides, by considering Figure 4.e and by interpolating the 

working temperature reduction upon purely magnetic field, one may obtain a relation 

∆𝑇𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 = 1/100(1 + 753𝐻∗
0 − 135𝐻∗

0
2). As can be seen, while the single electric and 

magnetic fields reduce the working temperature in an almost linear manner until a non-

dimensional field of 2, their effects become less beyond it and a saturation state may happen. 

 

4.1.5 Thermo-Electro-Magneto-Responsive Fibrous SMPs 

In this section, the coupling effect of electric and magnetic fields on the SME of 

TEMFSMPs is studied as shown in Figure 5. Considering Figure 5.a, it can be found that the 

coupled electro-magnetic field has the most influence on reinforcing SMPs compared to 

either purely electric or magnetic field. For example, the non-dimensional axial stress 

recovery of the SMP under non-dimensional purely electric field 1 is 0.069 and becomes 

0.096 under non-dimensional purely magnetic field 1, while at the coupled non-dimensional 

electric and magnetic fields 1 and 1, the stress recovery increases to 0.105 that is larger than 

those induced under pure fields. Furthermore, as discussed in section 4.4 and based on Eq. 

(43), it is found that the effect of the electric field on the strain recovery and working 

temperature reduction is more significant than the magnetic field effect, see Figure 5.b. 

In order to investigate the effect of the applied strain and the strain rate, a full thermo-

mechanical cycle of the stress is demonstrated in Figure 5.c for 50% axial strain and strain 
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rate of 0.01 𝑠−1. The preliminary conclusion drawn from this figure is that the stress changes 

nonlinearly versus time during the mechanical loading stage that is due to the effect of high 

strain rate. As can be seen, by changing the coupled electric and magnetic fields, the axial 

stress can be tailored and increased significantly. For example, at (𝐸0
∗, 𝐻0

∗) = (4,4), the stress 

recovery of the TEMVHSMP can be enhanced by 2.5 times. The maximum stress (in the 

absolute sense) occurs when (𝐸0
∗, 𝐻0

∗) = (4,4) are applied. In addition, since one of the 

interesting achievements of this study is reducing the working temperature, a case study of 

how coupled electro-magnetic field may affect the working temperature is presented in 

Figure 5.d. By interpolating the working temperature reduction in terms of coupled electro-

magnetic field, one may obtain the following relation: 

 * * * * * *

0 0 0 0 0 0

2 21
5 5635 6099 3375 101

1000
CoupledT H E E H E H        (44) 

where 
CoupledT  represents the working temperature reduction induced by the coupled electro-

magnetic field. Finally, a summary of results on the effect of fibers and electro-magnetic field 

on the axial stress recovery ratio is presented in Table 1 that can be useful as benchmark 

results for future numerical and experimental developments. 

4.2 Complex loading regimes  

The proposed model is general and is a 3D model which could be used in general and 

complex loading regimes. To investigate the ability of the model in complex and 3D loading 

regime, here we aim to present the potential of the developed model in torsion-extension of a 

cylinder. Torsion-extension loading of cylinders is one of the complex loading regime which 

can be used for the applications of sensors and biomedicine. Therefore, by considering the 

deformation gradient tensor for torsion-extension loading and applying boundary conditions, 

the total stress components, axial force and moment can be obtained. In this way, the 

deformation gradient tensor, F and left Cauchy-Green tensor, b of such deformation can be 

expressed as follows [26, 57, 58]: 

1/2 1

1/2 1/2 1 2 2 3/2

3/2 2

0 0 0 0

0 ; 0

0 0 0

TR R R

R

 

     

  

 

 

   
   

      
   
   

F b FF  (45) 

wherein γ and β are axial stretch and the amount of pitch per stretched length unit, 

respectively. Also, by applying uni-axial electric and magnetic fields, the anisotropy vector in 

the reference configuration, electric and magnetic fields are defined as: 
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        0 00,0, ; 0,0, ; 0,sin ,cosE H  E = H = A =  (

46) 

After determining the total stress components, the total axial force and total moment can be 

determined by: 
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  (47) 

where (r, 𝜃′, 𝑧) and (R, , Z) are the current and reference coordinate system in cylindrical 

coordinates, respectively. Finally, by non-dimensionalizing the equations of the torsion-

extension of a cylinder, the recovery moment/ recovery pitch angle and axial recovery force/ 

axial recovery strain under 𝜋/4 pitch angle and 20% axial strain through 100 s, are shown in 

Figure 6.a and b, respectively. From the stiffening phenomenon, it could be conducted that 

under the coupled electro-magnetic fields, the cylinder becomes stiffer. For instance, the 

recovery moment or axial force under (𝐸0
∗, 𝐻0

∗) = (0.5, 1.5) are almost three times larger 

than those in the absence of external fields. However, from the shape recovery perspective, 

we see that the axial recovery is more sensitive to external fields than torsional recovery. It 

means that the shrinkage effect can only be appeared in axial deformations not torsional 

deformation. However, it should be noted that since the external field are applied 

longitudinally, therefore, the torsional deformation is not expected to change dramatically. In 

addition, by considering the axial recovery strain, Figure 5.b, the temperature reduction can 

be seen upon increasing the uniaxial longitudinal electro-magnetic fields.  

Meanwhile, by applying γ=1, in the case of simple torsion, the moment and pitch angle by 

considering fibers with η = 10 and θ = π/2 under 𝜋/2 pitch angle through 100 s, are shown in 

Figure 6.c. As mentioned before, due to the direction of the external field applied to the 

cylinder, we do not expect to have a remarkable change in the pitch angle while being 

triggered by electro-magnetic fields. Unlike the pitch angle, the moment has a significant 

change upon the external field (i.e., stiffening effect). It is due to the fact that by such a 

condition, some electric and magnetic-dependent term are included in 𝜎𝜃𝑧 and then in turn, in 

the moment.  

5 Conclusion 

The aim of this work was to model a new class of SMPs so-called thermo-electro-

magneto-responsive fibrous SMPs with highly enhanced shape memory recovery and 
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recovery force and reduced working temperature. The 3D constitutive model was derived for 

TEMFSMPs based on the non-linear electro-magneto-visco-hyperelasticity theory. The semi-

analytical solution was then developed for the cases of the tensile deformation and 

simultaneous torsion and extension loading. The accuracy of the model and the solution was 

validated via the comparative study with experimental results available in the literature for 

thermally-responsive pure SMPs. The detailed analysis of the influence of some parameters 

such as purely electric field, purely magnetic field, electro-magnetic fields, the stiffness of 

fibers, and their orientation was carried out. Numerical results revealed that the electro-

magnetic field, the orientation and stiffness of fibers can effectively be set to tune the shape 

memory effect and bio-applicability of TEMFSMPs with highly enhanced stress/strain 

recovery and reduced working temperature.  

Due to the absence of similar results and constitutive models in the specialized literature, 

this paper is likely to pave the way for designing advanced SMP devices for mechanical, 

biomedical and aerospace applications where large recovery force and lower working 

temperatures (e.g., body temperature) are desirable. The model is expected to be an 

appropriate computational tool for design and analysis of advanced structures like adaptive 

soft grippers and biomedical stents with enhanced shape memory recovery and recovery 

force. 
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Figure 1. Overall schematic drawing of the present problem including (a) a specimen in the 

presence of the electric field, magnetic field and thermal flow; (b) a tensile specimen and its 

microstructure containing electric and magnetic particles and fibers; (c) a schematic of the 

working temperature reduction in TEMFSMPs compared to pure SMPs; (d) a thermo-

mechanical cycle applied to the tensile specimen. 

Figure 2. A thermo-mechanical cycle of a thermally-responsive pure SMP (i.e., without 

fibers) for both shape memory recovery and recovery force cases with 20% axial strain and 

strain rate of 0.0018 s−1: model predictions versus experimental data [41]. 

Figure 3. The effect of the fiber angle, θ and ratio of stiffness of the fiber and SMP matrix, η 

on (a and c) non-dimensional axial stress recovery and (b and d) axial strain recovery under 

zero electric and magnetic fields; (e) The variation of the axial stress recovery ratio versus 

different fiber angles and fiber stiffness in the absence of electric and magnetic fields under 

20% axial strain and strain rate of 0.0018 𝑠−1. It is noted that while changing θ, η = 10 is kept 

fixed and while changing η, θ = π/2 is kept fixed. 

Figure 4. The effect of the purely electric and magnetic fields on (a and c) non-dimensional 

axial stress recovery and (b and d) axial strain recovery with η = 10 and θ = π/2 under 20% 

axial strain and strain rate of 0.0018 𝑠−1; the variation of the temperature reduction under the 

(e) coupled electro-magnetic fields with η = 10 and θ = π/2 for 0.01 𝑠−1 strain rate and 50% 

axial strain. 

Figure 5. The effect of the electro-magnetic fields on (a) non-dimensional axial stress 

recovery and (b) axial strain recovery with η = 10 and θ = π/2 under 20% axial strain and 

strain rate of 0.0018 𝑠−1; (c) the variation of the non-dimensional axial stress and (d) the 

temperature reduction under the coupled electro-magnetic fields with η = 10 and θ = π/2 for 

0.01 𝑠−1 strain rate and 50% axial strain. 

Figure 6. The effect of the coupled electro-magnetic fields on (a) non-dimensional recovery 

moment and recovery pitch angle (b) axial recovery strain and recovery force under torsion-

extension loading of a cylinder at 20% axial strain through 100 s and 𝜋/4 torsion angle (c) 

moment and pitch angle of a cylinder under simple torsion with η = 10 and θ = π/2 under 𝜋/2 

torsion angle. 
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Figure 2. A thermo-mechanical cycle of a thermally-responsive pure SMP (i.e., without 

fibers) for both shape memory recovery and recovery force cases with 20% axial strain and 

strain rate of 0.0018 s−1: model predictions versus experimental data [41]. 
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Figure 3. The effect of the fiber angle, θ and ratio of stiffness of the fiber and SMP matrix, η 

on (a and c) non-dimensional axial stress recovery and (b and d) axial strain recovery under 

zero electric and magnetic fields; (e) the variation of the axial stress recovery ratio versus 

different fiber angles and fiber stiffness in the absence of electric and magnetic fields under 

a. b. 

c. d. 
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20% axial strain and strain rate of 0.0018 s−1. It is noted that while changing θ, η = 10 is kept 

fixed and while changing η, θ = π/2 is kept fixed. 
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Figure 4. The effect of the purely electric and magnetic fields on (a and c) non-dimensional 

axial stress recovery and (b and d) axial strain recovery with η = 10 and θ = π/2 under 20% 

axial strain and strain rate of 0.0018 s−1; the variation of the temperature reduction under the 

(e) coupled electro-magnetic fields with η = 10 and θ = π/2 for 0.01 s−1 strain rate and 50% 

axial strain.  

a. b. 

d. c. 
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       Figure 5. The effect of electro-magnetic fields on (a) non-dimensional axial stress recovery 

and (b) axial strain recovery with η = 10 and θ = π/2 under 20% axial strain and strain rate of 

0.0018 s−1; (c) the variation of the non-dimensional axial stress and (d) the temperature 

reduction under the coupled electro-magnetic fields with η = 10 and θ = π/2 for 0.01 s−1 

strain rate and 50% axial strain 
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Figure 6. The effect of the coupled electro-magnetic fields on (a) non-dimensional recovery 

moment and recovery pitch angle (b) axial recovery strain and recovery force under torsion-

extension loading of a cylinder at 20% axial strain through 100 s and 𝜋/4 torsion angle (c) 

moment and pitch angle of a cylinder under simple torsion with η = 10 and θ = π/2 under 𝜋/2 

torsion angle. 
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Table 1. Variation of the axial stress recovery ratio with different parameters 𝐸0
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θ under 𝑇𝑙 = 25𝑜𝐶,  𝑇ℎ = 65𝑜𝐶 and 20% axial strain with 0018 𝑠−1 strain rate. 

  

                  



37  

 

 

Table 1. Variation of the axial stress recovery ratio with different parameters 𝐸0
∗, 𝐻0

∗, η and 

θ under 𝑇𝑙 = 25oC,  𝑇ℎ = 65oC and 20% axial strain with 0.0018 s−1 strain rate. 

The coupling between electric and magnetic fields with η= 10 and θ = π/2 

𝐸0
∗ (-) 𝐻0

∗ (-) Stress Recovery Ratio (%) 

0 0 0 

0.6 0.6 12.29 

1.5 0.5 30.78 

1 1 34.13 

0.5 1.5 54.54 

The variations of θ and η in the absence of electric and magnetic fields  

η θ Stress Recovery Ratio (%) 

0 90 0 

1 90 63.96 

5 90 319.80 

10 

0 108.00 

30 3.80 

45 35.58 

60 233.97 

90 639.60 

20 90 1279.20 

30 90 1918.8 

 

 

                  


