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Abstract

Abstract

The advent of proteomics and high-throughput technologies has allowed scientists to derive 

protein expression patterns of potential use in predictive medicine. The application of 

bioinformatics to analyse complex data makes it possible to identify important protein 

biomarkers. These biomarkers may have predictive capability to determine, for example, 

the presence and progression of disease and how an individual patient might respond to 

therapy.

Mass spectrometry (MS) has increasingly become the method of choice for the analysis of 

complex samples and new MS systems have been developed that can rapidly profile and 

generate proteomic ‘fingerprints’ from tissue and body fluids. In particular, MALDI mass 

spectrometry coupled with Ciphergen® chip technology (SELDI MS) has been widely used 

to identify discriminatoiy patterns to distinguish patients at different clinical stages of 

disease, for example, in ovarian, prostate, colon and breast cancer. All of these studies 

incorporate the use of computer algorithms to mine the proteomic data obtained from the 

mass spectra, allowing large cohorts of samples to be included into the analysis.

The aim of this study was to introduce the use of MS and bioinfonnatics to analyse the 

cancer proteome, in particular melanoma and breast cancer and to investigate the 

information obtained from profiling cell lines, tissue and serum samples, as well as 

evaluating the type of analytical methods currently available.

The methods used in this study for sample preparation and analysis demonstrate that good 

quality proteomic data from cell lines, tissue and serum can be obtained and that it is 

possible to generate discriminatory protein profiles that correlate with clinical outcomes 

when analysed using Artificial Neural Networks (ANNs). Through the analysis of the 

proteome of melanoma cell lines, it is possible to classify samples according to the 

presence of specific genetic mutations, the site of the tumour sample from which the cell 

line was derived, as well as the overall survival of a patient. Comparison of melanoma cell 

line proteomes and their tumour tissue of origin revealed that both sample types were able 

to provide discriminating patterns that correlated to clinical outcomes. This finding has 

significance for future proteomic-based biomarker discovery research where it is possible 

to use cell lines in place of “precious” tumour tissue for the identification of clinically 

relevant biomarkers. The presence of a basal phenotype, which signifies the aggressive
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Abstract

nature of breast cancer, can be identified from the proteomic profiling of patients’ breast 

cancer tissue. The analysis of melanoma patient serum was investigated and patterns that 

predicted the stage of disease, as well as disease progression, were identified, using SELDI 

MS and ANNs. These results demonstrate that it is possible to obtain clinically valid 

information from the proteome of samples derived from melanoma and breast cancer 

patients through the use of SELDI MS and ANN analysis.

Although SELDI MS has proven useful in generating protein profiles that can be used for 

identifying patients with different clinical outcomes, this technology has limitations. One 

aspect of the study was to determine if similar, or more accurate, discriminatoiy analysis 

could be achieved using higher resolution and higher sensitivity MALDI instrumentation. 

A set of melanoma cell line samples were subjected to SELDI MS and MALDI MS 

analysis and the data from both methods were analysed in the same way by ANNs. Slightly 

different sample preparation methods were used prior to MS analysis, thus the spectra 

obtained by SELDI MS and MALDI MS was dissimilar; the data revealed that MALDI MS 

did not improve upon the accuracy of classifying samples.

The work presented demonstrates a proof-of-principle of the different types of information 

that can be obtained from samples derived from melanoma and breast cancer patients. It 

has also been revealed that the analysis of MS spectra by ANNs can be used for predicting 

blind datasets which is not necessarily dependent on the MS method used; however, this is 

likely to have significant implications for biomarker identification as the different methods 

used will reveal different disease-associated proteins.
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Chapter 1

Chapter 1 Introduction

1.1 Cancer development, progression and treatment

Cancer is a disease that involves dynamic changes in the genome and is defined as any 

malignant growth or tumour caused by abnormal and uncontrolled cell division. (Hanahan 

et al. 2000). There are over 100 different types of cancer and they can occur in almost any 

tissue in the body. Cancer occurs as the result of the disrupted regulation of biomolecular 

processes that determine whether a cell remains quiescent, proliferates, differentiates or 

dies via apoptosis (Li et al. 2000). The following sub-sections detail some of the events 

necessary for cell transformation.

1.1.1 Carcinogenesis

Random mutations in the genes which control apoptosis or proliferation are responsible for 

promoting uncontrolled cell growth leading to cancer. A large proportion of the mutations 

are not inherited but are in fact spontaneous and occur in response to chemical damage of 

the DNA, resulting in the altered functions of crucial genes. In order for chemical damage 

to cause an inheritable change in the DNA, it is necessary for DNA replication and cell 

division to occur. The frequency of mutations is at a rate of 1 cell in 1 million but with a 

large number of proliferating stem cells there is a high probability of unrepaired DNA 

damage causing a single mutation, leading to the formation of an initiated cell. Mutations 

in at least 5 genes are required for a cell to become fully malignant, however the probability 

of an “initiated cell” obtaining the additional 4 mutations is low, due to the number of 

repair mechanisms or death pathways that become activated as a result of cellular 

irregularity (Loeb et al. 2003). The mutations have 2 consequences, they either allow the 

inappropriate expression or activation of genes, oncogenes, or they result in the functional 

inactivation of tumour suppressor genes.

Six essential pathways must be altered in the normal cell physiology to dictate the 

fonnation of a malignant tumour and its capability of spreading to secondary sites; the 

development of independent growth stimulatory signals; resistance to growth inhibitory 

signals; the development of resistance to apoptosis; the acquisition of infinite proliferation;

19



Chapter 1

the capacity to form new blood vessels and capillaries; and the ability to undergo tissue 

invasion and metastasis (Bertram 2001; Hanahan & Weinberg 2000).

1.1.2 Oncogenes and Tumour Suppressor Genes

Under normal homeostasis oncogenes and tumour suppressor genes are involved in the 

control of the cell cycle. Proto-oncogenes encourage cell growth and when mutated can 

become carcinogenic oncogenes that drive excessive multiplication. The mechanisms of 

action to transform proto-oncogenes into carcinogenic oncogenes are via mutations, gene 

amplification or chromosome rearrangement and the activation of proto-oncogenes leads to 

an unrestrained progression of the cell cycle and cell growth (Rieger 2004). The proteins 

encoded by proto-oncogenes fall into one of four categories, growth factor receptors, 

growth factors, transcription factors and signal transducers. Since oncogenes are dominant 

genes, only 1 allele needs to carry the mutation for it to be expressed and cause a gain-of- 

function (activating) mutation in cancer (Fearon et al. 1999). Many oncogenes have been 

discovered that are involved in tumour initiation, progression, angiogenesis and metastasis 

and more than 50 oncogenes have been identified in human cancers including K-ras, N-ras, 

H-ras, cdk4, bcr-abl and neu (erb-b2), table 1-1 summarises some of the important known 

oncogenes (Haber et a l 1998; Michor et al. 2004).

Ras proteins have essential roles in controlling the activity of several signaling pathways 

that regulate normal cellular proliferation. Ras proteins activated by point mutations in the 

ras gene are expressed in 20% of all tumours (Bos 1989). When activated in human 

tumours, ras proteins contribute to the deregulation of cell growth, programmed cell death, 

invasiveness and the induction of angiogenesis (Shields et al. 2000). Ras proteins can be 

bound to GTP in their active state or GDP in their inactive state. In normal cells, the 

activity of ras proteins is controlled by the ratio of bound GTP to GDP (Campbell et al. 

1998). GTP-bound ras can bind and activate effector enzymes and thus control cell 

proliferation and survival. Mutations in the ras gene compromise the GTPase activity of 

ras proteins, preventing the GTPase activating proteins (GAPs) from promoting the 

hydrolysis of GTP on ras. This causes ras to accumulate in the GTP bound active form 

allowing it to interact with several effector proteins resulting in the stimulation of their 

catalytic activity and triggering downstream signaling pathways. The best characterized 

effector pathways activated by ras are shown in the figure 1-1 (Downward 2003).
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Figure 1-1 Ras activated signalling pathways, Downward 2003.
Ras controls several signaling pathways that regulate normal cellular proliferation. Ras binds GTP allowing it 
to bind effector enzymes and triggering downstream pathways in volved in cell cycle progression, 
transcription, and cell survival.
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Gene

Mechanism of 

Activation of 

gene

Function of gene 

products

Human tumours associated with 

oncogene mutation/activation

Myc

Amplification,

chromosomal

translocation

Nuclear transcription 

factor
Lymphomas, carcinomas

Bel 2
Chromosomal Cytoplasmic perhaps Follicular and undifferentiated

translocation mitochondrial lymphomas

E rbB l Amplification Growth factor receptor
Mammary carcinoma, 

glioblastoma

Erb B2 Amplification
Cell surface growth 

factor receptor

Mammary, ovarian and stomach 

cancers

Bladder cancer (.H-ras), lung and

Ras Point mutation GDP/GTP binding colon cancer (K-ras), lymphomas 

and carcinomas (N-ras)

R af Rearrangement
Cytoplasmic 

serine/threonine kinase
Stomach cancer

Hst Rearrangement Growth factor Stomach cancer

Ret Rearrangement Growth factor receptor Thyroid cancer

Cdk4
Amplification, 

point mutation
Cyclin dependent kinase Sarcoma, familial melanoma

Table 1-1 Oncogenes.

Examples o f oncogenes their mechanism of activation, and function o f the gene products for main cancer 
types.
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The mechanisms of action of tumour suppressor genes to initiate cancer cells result from 

the loss of large portions of their genetic sequence, methylation of promoter regions or 

complete loss of one allele plus a mutation in the other (Rieger 2004). This causes a loss of 

functional suppressor proteins which deprive the cell of the crucial brakes that prevent 

inappropriate growth. Tumour suppressor genes are recessive as in most cases the normal 

tumour suppressor allele can function in the presence of the damaged allele. Mutations in 

both alleles are required for the loss of function (inactivation) in that particular gene. Loss 

of only one allele of a tumour suppressor gene allows that gene to become silent and so 

permits the genn-line inheritance of the damaged gene (Weinberg 1991). Rbl, tp53, 

p l6 INK4A, Pten and APC are all examples of tumour suppressor genes associated with 

cancer, a summary of some of these genes is shown in table 1-2 (Haber & Fearon 1998). 

The retinoblastoma gene (Rbl) and the tp53 gene are the best characterized tumour 

suppressor genes.

Retinoblastoma is a rare malignant tumour of the developing retina that occurs in children. 

The Rb gene has been mapped to chromosome 13ql4 by linkage studies and detection 

analysis (Godbout et al. 1983). Rbl encodes the retinoblastoma protein, Rb, which 

functions as a transcription factor and is regulated by phosphorylation through the cell 

cycle, playing a critical role in the control of proliferation (DiCiommo et al. 2000). Many 

of the amino acid substitutions and in-frame deletions that occur in Rb mutations affect the 

A/B pocket in Rb, which is necessary for biological functions including regulating growth 

and differentiation and biological activities including transcriptional regulation (Kouzarides 

1995). E2F proteins activate genes that are required for DNA synthesis by recruiting 

general transcription factors such as TBP and TFIIH. When Rb binds to E2F proteins it 

prevents E2F interacting with factors like TBP and so represses transcription (Pearson et al. 

1997). Hypophosphorylated Rb binds target proteins such as E2F and histone deacetylators 

(HDACs) and so can arrest cells in the G1 phase of the cell cycle. CDK mediated 

phosphorylation of Rb occurs to reverse this block and so drive cells through G1 into S 

phase (Mittnacht 1998). Hyperphosphorylated Rb causes the release of free E2Fs and the 

dissociation of transcriptional repression complexes. The freed E2F proteins then activate 

the transcription genes necessary for S phase entry and progression of the cell cycle 

(Lipinski et al. 1999). A summary of the Rb pathway is shown in figure 1-2.
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Figure 1-2 Retinoblastoma pathway.
Rb functions as a transcription factor, playing a critical role in cell proliferation. It is regulated through its 
phosphorylation by cyclin dependant kinases. Rb binds E2F, stopping E2F from activating transcription, 
thereby arresting cells in the G1 phase o f the cell cycle. When Rb is phosphorylated, E2F is freed and the cell 
cycle progresses from the G1 to S phase o f the cell cycle (Vogelstein et al. 2004)

The tp53 gene has been shown to be lost or contain mutations that inactivate the p53 

protein in approximately 50% of human cancers (Hollstein et al. 1996). Most of the 

mutations are missense mutations that cause single residue changes in the binding core 

domain of the protein (Sigal et al. 2000). Mutations in codons 175, 249, 273 and 282 

accounts for 40% of total missense mutations reported in tp53 positive human cancers 

(May et al. 1999). Mutations in the tp53 gene can result in loss of function of the p53 

protein or acquisition of new functions that contribute to the transformation and 

tumourigenic potential (Dittmer et al. 1993). P53 can regulate a wide range of cellular 

processes including cell cycle control, DNA repair, genome stability, programmed cell 

death, differentiation, senescence, angiogenesis and is a major component of the DNA 

damage response pathway (Rotter et al. 1994). A summary of the pathways p53 affects is 

shown on figure 1-3. The expression of p53 is up-regulated in response to hypoxia, 

nucleotide deprivation and DNA damage caused by ionizing radiation, UV light and
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chemicals (Lakin et al. 1999). It is also subjected to extensive post-translational 

modifications including phosphorylation and acetylation which modulate its stability and 

activities. Some of the normal cellular functions can be modulated and sometimes inhibited 

by the interaction with the cellular protein MDM-2, a product of the mdm-2 oncogene 

which can be amplified in some types of tumour. This alternative mechanism of p53 

activation is common in many tumours including soft tissue sarcomas, bladder, cervical and 

breast carcinomas and leukemia (May & May 1999). Li-Fraumeni syndrome is an inherited 

disease where tp53 is mutated in one allele in the germ line. This syndrome causes the 

onset of cancers at an early age, most commonly these are sarcomas but breast, colon and 

several other types of cancers can occur (Frebourg et al. 1992). One major consideration 

when developing therapies that try to restore wild-type p53 to tumour cells containing 

mutated tp53 is that p53 acts as a tetramer and the presence of mutated tp53 acts in a 

dominant manner and inhibits the actions of the wild-type protein (Bertram 2001). 

Approximately 50% of all cancers have tp53 somatic mutations in both alleles, 

teratocarcinomas, however, are one of the few types of cancer that do not usually have tp53 

mutations. In this particular cancer, the p53 protein is not functional and so the p53 protein 

can be activated to induce apoptosis, therefore teratocarcinomas respond well to 

chemotherapy and can be cured in most cases (Lutzker et al. 1996).
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Figure 1-3 The p53 pathway.
P53 regulates a wide range o f cellular processes including cell cycle control, DNA repair, genome stability, 
programmed cell death, differentiation, senescence, angiogenesis and is a major component o f the DNA 
damage response pathway. It is regulated by p l4 /a r f  and has been shown to bind MDM-2 which blocks the 
ability o f p53 to act as a transcription factor. MDM-2 has also been shown to be transcriptionally regulated 
by p53 forming an auto regulatory loop where increased p53 activity increases MDM-2 levels which in turn 
decreases p53 activity resulting in declining MDM-2 levels (Bertram 2001; Vogelstein & Kinzler 2004).
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Gene Chromosomal
location Function

Human tumours and 
cancer syndromes 

associated with mutation

Rbl 13ql4
Transcriptional regulator of Retinoblastoma,

the cell cycle osteosarcoma

WT1 l lp l3 Transcriptional regulator
Nephroblastoma, Wilms 

tumour

tp53 17qll
Transcriptional regulator, 

growth arrest, apoptosis

Sarcomas, breast, brain 

tumours, Li-Fraumeni 

syndrome

NF1 17qll Ras-GAP activity
Neurofibromas, sarcomas, 

gliomas

APC 5q21
Binds/regulates p-catenin Colon cancer, familial

activity adenomatous polyposis

ink4a 9p21
p J 6 INK4Acdkj for cycjin D/c(jk Melanoma, pancreatic

4/6 cancer, familial melanoma

BRCA1 17q21
Transcriptional regulator, Breast and ovarian tumours,

DNA repair familial breast cancer

BRCA2 13ql2
Transcriptional regulator, Breast and ovarian tumours,

DNA repair familial breast cancer

Pten 10q23 Dual specificity phosphatase
Glioblastoma, prostate and 

breast cancer

Table 1-2 Known tumour Suppressor Genes
Outlining the main tumour suppressor genes identified to date, their chromosomal location, function and the 
cancers or cancer syndromes reported to be associated with gene inactivation.
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1.1.3 Cancer: A Multistep Disease

Each cell in the body has the potential to change its genotype and phenotype on the 

pathway to malignancy. Each tissue can be classified at various points on the progression 

to malignancy including fully normal, hyperplastic, metaplastic, neoplastic and metastatic. 

These different stages suggest that a single genetic change only pushes a cell part of the 

way towards a malignant state, and that multiple changes need to occur for the process to 

complete (Weinberg 1994). Fearon et al. (1990) have illustrated this multistep 

carcinogenesis in the colon cancer model, as follows: the mutation of the tumour suppressor 

gene APC allows the growth of polyps in the colon, subsequently a somatic mutation in the 

ras oncogenes may occur to create a more advanced, benign polyp which may then 

eventually gain mutations in its DCC and tp53 tumour suppressor genes causing the 

uncontrolled growth of the colon carcinoma cell (Fearon et a l 1990).

1.1.4 Tumour Progression and Survival

As previously mentioned, cancer cells must obtain the ability to generate their own 

mitogenic signals, to resist exogenous growth inhibitory signals, to evade apoptosis, to 

infinitely proliferate, to acquire vasculature and to invade and metastasize in order to 

survive and progress (Eccles 2005; Rieger 2004).

For a normal cell to move from a quiescent into a proliferative state, growth signals are 

transmitted into the cell via transmembrane receptors. Many known oncogenes mimic 

normal growth signals and so disrupt an important mechanism which usually ensures the 

proper behaviour of cells within tissue (Hanahan & Weinberg 2000). Growth factor 

receptors are also dysregulated during carcinogenesis and their over expression allows the 

cancer cell to become hyper-responsive to levels of growth factors that would not normally 

trigger proliferation (Fedi et a l 1997). Extracellular matrix (ECM) receptors (integrins) 

link cells to the ECM and transduce signals into the cytoplasm (from the ECM) that 

influences cellular quiescence in normal tissue, cell motility, resistance to apoptosis and 

entrance into the cell cycle. Cancer cells can alter integrin expression, favouring ones that 

transmit pro-growth signals.

Soluble growth factor inhibitors and immobilized inhibitors are molecules that are 

embedded in the ECM and on the surfaces of nearby cells act as anti-proliferative signal
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that function to maintain normal cellular quiescence and tissue homeostasis. These signals 

can block proliferation in two ways; either by forcing cells into quiescence (Go), from 

which they may start proliferating at a later stage when signaled to do so, or by being 

induced into a post-mitotic state (Hanahan & Weinberg 2000). Most anti-proliferative 

signals are regulated by the retinoblastoma protein (pRb) as well as related proteins such as 

p i07 and p i30. When hypophosphorylated, pRb sequesters and alters the function of E2F 

transcription factors. These transcription factors control the expression of genes that are 

essential for the progression of cells from Gi into the S phase and so when altered, 

proliferation is blocked (Weinberg 1995). The disruption of the pRb pathway activates the 

E2F transcription factors causing expression of the genes that allow cell proliferation to 

occur. This also means that these cells are resistant to the anti-growth factors that would 

normally act on the pRb pathway blocking the cell cycle progression.

The ability of a cell to enter into the apoptotic pathway is a feature of nearly all types of 

cell found in the body. When this pathway is triggered, the cellular membranes become 

disrupted, the cytoplasmic and nuclear skeletons are broken down, the cytosol is extruded, 

the chromosomes become degraded and the nucleus fragments. Finally, the degenerating 

cell is engulfed by nearby cells in the tissue and disappears (Wyllie et al. 1980). The 

mitochondria receive the majority of the proapoptotic signals and respond by releasing 

cytochrome C. The Bcl-2 family have either pro-apoptotic (Bax, Bak, Bid, Bim) or anti- 

apoptotic (Bcl-2, Bcl-XL, Bcl-W) functions and part of their mechanism of action is to 

direct the mitochondrial signals via the release of Cytochrome C. P53 can induce apoptosis 

by upregulating the expression of Bax in response to DNA damage (Green et al. 1998). 

The most common mechanism of resistance to apoptosis in cancer cells is via the loss of the 

tp53 tumour suppressor gene and is seen in over 50% of human cancers (Harris 1996).

Many cells have an intrinsic program that limits the number of times they can replicate and 

it operates independently of the signaling pathways mentioned previously; this pathway 

must be disrupted in order for a clone of cells to expand to such a size that it becomes a life 

threatening tumour. This program involves telomeres, located at the ends of chromosomes, 

which are made up of several thousand repeats of a 6 base pair sequence. At each 

replication, 50-100 base pairs are lost from the telomere and eventually this shortening of 

the telomeres causes the ends of the chromosomes to become unprotected. The 

chromosomes fuse end-to-end and cause the death of the affected cell (Shay et al. 2005).
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Maintenance of the telomere occurs in virtually all types of malignant cell and 85-90% of 

these cells acheive this by upregulating telomerase, which adds 6 base pair repeats onto the 

ends of the telomere (Ahmed et a l 2003; Shay et a l 1997). By maintaining the telomeres 

at a length above the critical threshold, the cells are permitted to replicate limitlessly.

All cells within a tissue must reside within 100pm of a capillary or blood vessel in order to 

receive the oxygen and nutrients required for cell function and survival. The induction of 

angiogenesis is an early to mid-stage event in many cancers and is necessary if a solid 

tumour is to grow beyond l-2mm. Angiogenesis is activated by changing the balance of 

angiogenic inducers and inhibitors seen in normal tissues. This can be achieved by either 

upregulating the expression of VEGF and/or FGF (angiogenic activators) or by 

downregulating the expression of thrombospondin-1 or [3-interferon (angiogenic inhibitors) 

(Hanahan et a l 1996; Volpert et a l 1997).

During the development of most cancers, cells from the primary tumour develop the ability 

to invade into adjacent tissues and travel to and colonise distant sites. A tumour cell 

detaches from the primary tumour and actively infiltrates the surrounding stromal tissue. It 

then enters the circulatory system, travelling to specific sites to establish a secondary 

tumour. The altered binding of cell adhesion molecules (CAMs) and the activation of 

extracellular proteases, contributes to the invasive and metastatic ability of cancer cells. 

CAMs are divided into 2 main groups the immunoglobulin superfamily and some members 

of the cadherin family (Harlozinska 2005). E-cadherin has been widely studied as being an 

important factor in tumour cell invasion and metastasis and decreased expression or loss of 

function occurs in a majority of epithelial cancers. E-cadherin transmits anti-growth 

signals via [3-catenin which in turn activates intracellular signaling pathways and 

transcription factors. The loss of E-cadherin function, therefore, occurs via inactivation of 

the E-cadherin and y3-catenin genes and transcriptional repression (Christofori et a l 1999). 

As well as altering the physical relationship of cells with their microenvironment, increased 

extracellular protease activity can occur. This can be achieved by the upregulation of the 

proteases, the downregulation of protease inhibitors and activation of inactive forms of 

proteases (Werb 1997). Cancer cells can invade into the nearby stroma, across blood vessel 

walls, and through normal epithelial cell layers via the docking of proteases onto the cell 

surface.

30



Chapter 1

Recently it has been suggested that there is a small subset of cells within leukaemias and 

solid tumours that have the ability to proliferate extensively and form new tumours and also 

have the ability to reproduce the variety of cell types that comprise the tumour, these cells 

have been identified as ‘cancer stem cells’ (Al-Hajj et al. 2004). The existence of these 

cancer stem cells was first suggested in 1963 and provided an explanation of the 

heterogenous nature of tumours but the best evidence of the existence of these cells has 

come from studies of haematological malignancies (Bhatia et al. 1997; Bonnet et al. 1997; 

Bruce et al. 1963; Holyoake et al. 1999). A cancer stem cell is defined as a cell that has the 

ability to self-renew giving rise to another malignant stem cell as well as being able to 

differentiate and produce the diverse number of non-tumourigenic cancer cell types. The 

origin of cancer stem cells is unclear: they may have derived from a transformed normal 

stem cell, where only its proliferative pathways have been altered, or from a progenitor cell 

that has acquired oncogenic mutations allowing it to self-renew and so acting as a stem cell 

Evidence suggests that it is most likely that the former hypothesis is true and has been 

supported by functional assays (Al-Hajj et al. 2004; Hope et a l 2004; Wang et a l  2005; 

Zhang et a l 2006a).

1.1.5 Cancer Therapy

There are a number of therapies currently available for the treatment of cancer, including 

surgery, radiotherapy, chemotherapy, hormone therapy and immunotherapy. All of these 

treatments are used in different ways to treat different types of cancers, but all have their 

limitations. Surgery can be effective as long as the tumour is localised and has not invaded 

surrounding tissues. Chemotherapy and radiotherapy both target rapidly dividing cells, 

including but not exclusively tumour cells and therefore significant toxicity usually occurs. 

Hormone therapy is only effective on certain types of cancer and immunotherapy is still not 

developed enough for widespread use, but it has potential useage as a treatment that only 

has low toxicity as the immune system is highly specific and could be directed to target 

only tumour cells.

The choice of treatment usually depends on the type and the stage of the cancer but to date 

no therapy has been shown to substantially prolong the survival in patients with advanced
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disease (Wagner et al. 2005). It is desirable, therefore, to diagnose the cancer early in the 

disease process when treatment is more likely to be effective.

The presence of a cancer stem cell population within a tumour has implications for the 

diagnosis and treatment of cancer. If tumour formation is driven by these cells, then the 

goal of therapy should be to identify and target this population. The failure to eliminate 

these cells could be responsible for the re-growth seen in many tumours once the 

chemotherapy treatment has been stopped (Clarke et al. 2006). The identification and 

characterisation of this group of cells as well as the identification of the differences and 

similarities between these and normal stem cells could provide novel targets for future 

cancer therapies (Perez-Caro et al. 2006).
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1,2 Melanoma

Melanoma is an aggressive malignant cancer of melanocytes that occurs most frequently in 

the skin but also less commonly in the eye and mucosal surfaces as primary sites. Despite 

the increase in public awareness of the dangers of excessive sun exposure, one of the risk 

factors associated with melanoma, the incidences of this cancer are still rising in the UK 

(Kalkman et al. 2004). Malignant melanoma is the least common form of skin cancer but it 

is the most aggressive, claiming 1,700 lives each year in the UK compared with only 514 

deaths for non-melanoma skin cancer. The incidence rates of melanoma increase with age, 

the highest rate being in the over 75s. It is the second most commonly diagnosed cancer in 

the 15-34 age group, however (Melanoma Statistics and Prognosis 2006). The cure rates in 

patients with early stage disease is up to 90%, however the survival rate for patients with 

locoregional disease is 24 months and for patients with metastatic disease the median 

survival is 6 months, therefore prognosis remains poor for patients with advanced disease 

(Balch etal. 1997).

1.2.1 Melanoma Tumourigenesis

Six steps have been identified during melanoma tumourigenesis; 1) common acquired 

melanocytic naevus (BN); 2) melanocytic naevus with lentigenous melanocytic hyperplasia 

(abberant differentiation); 3) melanocytic naevus with aberrant differentiation and 

melanocytic nuclear atypia -  melanocytic dysplasia; 4) radial growth phase of primary 

melanoma (RGP); 5) vertical growth phase of primary melanoma (VGP); and 6) metastatic 

melanoma (Clark et al. 1984). Most melanomas progress through a slow RGP that is 

restricted to just the epidermis and into a more rapid VGP, see figure 1-4. Alongside this 

progression, the treatment options, cure rates and survival rates decrease dramatically. In 

the RGP the melanoma cells lack the ability to invade and metastasise and therefore can be 

cured, in general, by surgical excision. The VGP, however, is more aggressive, invades the 

dermis and possesses the ability to metastasise (Chudnovsky et al. 2005). These metastases 

can spread locally through the lymphatic system or to distant sites via the bloodstream to 

any organ but lung and liver metastases are the most common (Souhami et al. 1998).

Each of the six steps in melanoma tumourigenesis involves genetic alterations including 

allelic loss, microsatellite instability and alterations of tumour suppressor genes, mismatch
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repair proteins, oncogenes and some growth factors (Hussein 2004). The earliest genetic 

changes appear to involve mutation of the melanocytes of the melanocytic dysplastic naevi 

(Hussein et al. 2002). The transition from a normal melanocyte to a BN or dysplastic naevi 

involves the loss of genes at lp or 9p and/or lOq chromosomal regions. Progression of 

tumourigenesis from the dysplastic naevi into the RGP involves further loss of genes at the 

9p, lOq and 6q chromosomal regions. Finally the progression of the VGP into metastatic 

disease involves the loss of genes at the lp, l lq  and 17q as well as other undetermined 

chromosomal regions (Hussein et al. 2003; Park et al. 1998).

1.2.2 Genetic involvement in Melanoma

Several genes have been shown to be involved in malignant melanoma including germline 

mutations in cdJm2A, Arf, cdk4 and somatic mutations in Pten and Braf. These melanoma 

associated genes have been summarised in table 1-3, but this is by no means an exhaustive 

list as the genetic events leading to the transformation of a melanocyte is still being 

investigated (Castellano et al. 1999). A summary of the six steps that take place during 

tumourigenesis along with some known mutations at each stage is illustrated in figure 1-5. 

The expression of cyclin D l, cyclin A, CDK1, CDK2 and STAT1 have been identified in 

the radial growth phase; Ki 67, survivin and PKC-B have been shown to be expressed in 

the vertical growth phase; and expression of cyclin Dl, cyclin D3, loss of p l6 INK4A, loss of 

Bcl-2 and loss of MUM1 have been shown in metastatic melanoma. In general, the 

increase of expression of cyclins and CDKs in conjunction with a loss of CDK inhibitors 

facilitates the progression to advanced stages of melanoma (Alonso et al. 2004). The main 

genes involved in melanoma development and progression are discussed more fully in 

chapter 3, section 3.1.2.
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Figure 1-4 Figure showing melanoma progression from normal skin (A), into RGP melanoma (B), and 
then into VGP melanoma (Q .
Typically in melanoma, the cancer cells progress through a slow radial growth phase (RGP) that is restricted 
to just the epidermis and into a more rapid vertical growth phase (VGP). In the RGP the melanoma cells lack 
the ability to invade and metastasise, however the VGP is more aggressive. In the VGP the cancer cells 
invade the dermis which allows them access to the lymphatic and blood vessels, thereby allowing metastasis 
to distant sites (Chudnovsky et al. 2005).
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Figure 1-5 Figure showing the genes and proteins known to be involved in specific stages of melanoma 
progression.
There are six stages of melanoma progression, from normal melanocytes to metastasis and each stage 
involves the loss or mutation of a set of genes that facilitate the progression of melanoma. Although the 
identity of specific genes involved at each stage has not been fully characterised, losses of genes at 
chromosomal regions of lp, 9p and lOq are thought to have a role. It is thought that changes in the expression 
of various ECM related proteins lead to the aggressive nature of melanoma (Bogenrieder et al. 2002)
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Gene or chromosomal 

region

Mutation present in 

familial or sporadic 

melanoma?

Nature of mutation/genetic 

alteration

p l6 INK4A Familial and Sporadic
Point mutation, homozygous 

deletion, promoter methylation

cdk4 Familial and Sporadic Point mutation

lp36 Familial -

6p Familial -

Rbl Sporadic Point mutation

tp53 Sporadic Point mutation

6q Sporadic
Loss of heterozygosity and 

cytogenetic alterations

10q23; Pten Sporadic
Loss of heterozygosity and 

point mutation

llq22-23 Sporadic Loss of heterozygosity

N-ras Sporadic Point mutation

B-catenin Sporadic Point mutations

c-myc Sporadic Overexpression

MC1R melanocortin receptor Sporadic Point mutations

Table 1-3 A summary of genes involved in malignant melanoma.
There are a number o f genes which are thought to be involved in familial and/or sporadic melanoma, however 
characterisation o f melanoma related genes and their mutations is still being investigated.
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1.2.3 Melanoma Staging

The prognosis of melanoma is determined according to the thickness (Breslow scale) and/or 

level of invasion (Clark level) of the melanoma, mitotic index, the presence of tumour 

infiltrating lymphocytes, number of regional lymph nodes involved, ulceration or bleeding 

at the primary site and lactate dehydrogenase (LDH) levels in stage IV disease. Clark et al. 

1969 have described 5 separate levels of invasiveness and demonstrated that prognosis 

correlated well with the depth of invasion. Work by Breslow 1975 has suggested that the 

vertical tumour thickness in millimetres may be a better guide to prognosis, tumours less 

than 0.75mm in thickness rarely metastasise. In 2002, a new AJCC staging system for 

melanoma was formed providing more accurate and precise information regarding patient 

prognosis (Kim et al. 2002b). Patients are classified into primary tumour (T), regional 

lymph nodes (N) and distant metastases (M). T is now calculated by tumour thickness 

(Breslow) and the presence of ulceration in the primary tumour. The Clarks level still 

carries prognostic information in patients with ‘thin’ (< 1.0mm) melanoma and so 

pathologists still include the Clark level in the histology report of the primary tumour. The 

presence of lymph node metastases (N) is one of the most important predictors of survival 

in melanoma patients. These are identified by haemotoxylin and eosin (H and E) staining 

and immunohistochemistry with S-100 and HMB-45 stains of the sentinel lymph node. M 

identifies patients with distant and systemic metastatic melanoma. Three factors are 

important in determining prognosis for advanced stage melanoma: the site of the 

metastasis, the number of metastatic sites and the level of LDH in the patient’s serum. Ml 

disease includes distant skin, subcutaneous or lymph node metastases, M2 disease includes 

lung metastases and M3 includes all other visceral organ or distant metastases and/or 

elevated serum LDH levels.

1.2.4 Melanoma Treatment

As well as surgical therapy, which is the main treatment for melanoma, adjuvant 

chemotherapy, immunotherapy, radiotherapy and biologic therapy are also important. A 

summary of melanoma treatments is shown in table 1-4.
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Different treatments available for melanoma.

Therapy for primary melanoma

• Complete surgical excision of the primary tumour

• Elective lymph node dissection

• Sentinel lymph node biopsy 

Therapy for regional metastases

• Surgery

• Isolated limb perfusion

• Adjuvant therapy (radiotherapy, chemotherapy, regional limb perfusion, IFN-alpha) 

Therapy for distant metastases

• Surgery

• Radiotherapy

• Chemotherapy (single-agent or combination including Dacarbazine (DTIC), 

Carmustine (BCNU), Lomustine (CCNU), Vindesine, taxanes, platinum compounds 

and combinations of DTIC, BCNU and Cisplatin)

• Chemoimmunotherapy (IFN-alpha + chemotherapy)

• Biologic therapy (IFN-alpha, IL-2, monoclonal antibodies, melanoma vaccines)

Table 1-4 A summary of the different treatments currently used for the treatment of melanoma, 
adapted from Lugovic et al. 2005; Kim et al. 2002a.

1.2.5 The Future for M elanoma Detection and Treatment

Advanced melanoma is relatively resistant to therapy and so new and innovative 

approaches for melanoma detection and treatment are needed (Kim et al. 2002a). The 

identification of tumour markers could aid detection and treatment but as yet none have 

been identified that are associated with the early detection of melanoma. Most of the 

serological markers detected so far are detected in advanced disease, these include SI00, 

melanoma inhibitory activity, cytokines, cytokine receptors, neurone specific enolase and 

melanin metabolites (Brochez et al. 2000). SI00 levels have no clinical value in detecting 

early disease in melanoma patients but it has been associated with aggressive tumour 

behaviour (Hansson et al. 1997). There has also been the identification of melanoma 

associated antigens, for example MART-1 (also known as Melanin-A) which is widely
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expressed in primary and metastatic melanoma and so could be used as a histological 

marker of melanoma or as a potential target in peptide vaccinations for immunotherapy of 

patients (Pittet et al. 2002). Other potential peptide targets for immunotherapy include 

tyrosinase, gp!00/pMEL17, gp75/TRP-l, TRP-2, MAGE-1, MAGE-2, MAGE-3, BAGE, 

GAGE-1,2, NY-ESO-1, mutated (3-catenin and pl5 (Kim et al. 2002a). However, despite 

advances in our understanding of the disease the incidence of melanoma has continued to 

rise, with no decline in death rates and no progression into its treatment of disease (Herlyn 

2002). In the absence of advances in the non-surgical treatment of advanced melanoma, 

diagnosing patients with early disease, where the invasion of the tumour is much shallower, 

will result in much better prognosis and the possibility of complete cure with surgical 

excision of the tumour (Brenner et al. 2002). With this in mind it is important to take 

advantage of new technologies and embark upon new strategies for identification of genetic 

and proteomic markers that associate with disease progression, diagnosis, prognosis and 

more significantly response to therapy which will hopefully lead to the early diagnosis and 

more successful treatment of the disease.
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1.3 Breast Cancer

Breast cancer is the most common cancer in women with an incidence rate of 1 in 10. The 

term breast cancer describes a breast malignancy that has invaded beyond the basement 

membrane of the duct and therefore has the potential to spread to the lymph nodes and 

distant sites. It is viewed as a clonal disease that depends on genetic mutation and can 

originate from either of the glands (lobular) or the ducts of the breast; caused by the 

irregular growth of cells found in either of these areas. Virtually all invasive breast cancers 

are adenocarcinomas with 85% ductal adenocarcinomas and 15% lobular adenocarcinomas. 

The risk of developing breast cancer increases with advancing age; the risk is 5.8 times 

higher after the age of 65 although this is not the only risk factor for developing the disease. 

The other risks include age at pregnancy, age at menopause, hormone replacement therapy, 

alcohol consumption and exposure to ionizing radiation but overall they can be assigned to 

two categories: excessive exposure to oestrogens or deficiency in the maintenance of 

genomic integrity (Singletary 2003). Mortality from breast cancer has fallen by 31% in the 

UK since 1989 but still accounts for 17% of female deaths from cancer and for women in 

the 35-54 yr age group, breast cancer accounts for 17% of all deaths. The reason for the 

decline in mortality rates includes widespread mammographic screening, more precise 

diagnosis and better treatment (Anon 2006)

1.3.1 Breast Cancer Tumourigeneis

The development of breast cancer involves many genes but the sequential steps involved in 

the progression of the tumour are not clear. Inconclusive evidence suggests that it may 

begin with the hyperproliferation of the epithelial cells progressing through a preneoplastic 

phase called ductal carcinoma in situ (DCIS), which is contained within the basement 

membrane of the duct, to invasive breast cancer, where the cancer has breached the 

basement membrane (Lakhani 1999). LOH in the chromosomal regions of 8p, 16q and 17q 

have been detected in the precursor stages, specifically in ductal hyperplasia and atypical 

hyperplasia, suggesting that these are early genetic changes. In the same study it was also 

detennined that atypical, ductal hyperplasia is a premalignant lesion for the development of 

breast cancer (Amari et al. 1999). The ovarian hormone, oestrogen, has been found to be 

involved in stimulating breast cancer growth, by stimulating proliferation in malignant

40



Chapter 1

cells, leading to the development of therapies that inhibit the synthesis of this hormone or 

block its receptor. Approximately 15-25% of the epithelial cells within the normal breast 

are oestrogen receptor (ER) positive and these have been found to be mainly non-dividing 

cells. Proliferation that is stimulated by oestrogen occurs mainly in ER-negative cells that 

surround the ER-positive cells, probably due to the secretion of paracrine factors. 

Proliferation of ER-positive cells is mainly regulated by oestrogen although the conversion 

of these cells from a non-dividing state remains unclear (Ali et al. 2002). Two-thirds of 

breast cancers are ER-positive and most of these respond to endocrine therapy (Khan et al. 

1998).

1.3.2 Genetic Involvement in Breast Cancer

Most cases of breast cancer are sporadic not familial and are caused by genetic damage to 

the breast cells that are acquired during a woman’s lifetime. Chromosomal instability 

caused by enormous chromosomal abnormalities tends to be the most characteristic feature 

of the breast cancer genome along with the widespread hypermethylation of regulatory 

regions of the genome (Lerebours et al. 2002; Widschwendter et al. 2002). Single 

nucleotide instability is less common in breast cancer but it has been shown that alterations 

in mitochondrial DNA occurs (Bianchi et al. 2001). A wide variety of genes have been 

implicated in the development and progression of the disease including genes encoding 

growth factors and receptors, intracellular signaling molecules, cell cycle regulators, 

apoptosis regulators, adhesion molecules and the high risk breast cancer susceptibility 

genes BRCA1 and BRAC2. Three of the more breast cancer specific genes are discussed 

briefly below.

1.3.2.1 Her-2(Her-2/neu or erbB-2)

This gene is located on chromosome 17q and encodes a tyrosine kinase growth factor 

receptor, which is initiated by binding to specific ligands leading to the activation of 

multiple signaling cascades including the MAP kinase and PI3K/Akt pathways causing 

proliferation, angiogenesis, increased cell motility and resistance to apoptosis (Osborne et 

al. 2004). This gene is rarely amplified in benign breast disease and is found to be either
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amplified or over-expressed in 10-34% of invasive breast cancers and in the majority of 

high-grade DCIS cases (Ross et al. 1999; van de Vijver et al. 1988).

1.3.2.2 BRCAJ

BRCA1 is a tumour suppressor gene that is located on chromosome 17q21 and it has been 

estimated that approximately 0.12% of the population carries a mutation in this gene. 

BRCA1 mutations account for approximately 5% of all breast cancer cases in women under 

the age of 40 but this figure rises to more than 90% if there is a family histoiy of more than 

four cases of breast cancer and more than 1 case of ovarian cancer (Ford et al. 1995). 

BRCA1 encodes a 208 kDa protein that has been shown to have an involvement in 

transcription, replication and DNA repair (Liu et al. 2002; Scully et al. 1997). Over 200 

individual mutations of this gene have been described including deletions, substitutions and 

insertions and these can be found along the whole length of the gene (Osborne et al. 2004). 

The location of the mutation can suggest the severity of the disease with mutations at either 

the amino or carboxy terminus associating with tumours that have a high proliferation rate 

(Sobol et al. 1996).

1.3.2.3 BRCA2

The BRCA2 gene is located at chromosome 13ql2-13 and is also a tumour suppressor gene, 

sharing many of the same features as BRCA1. The structures of BRCA1 and BRCA2, 

however, are different, for example this gene also localises to areas of damaged DNA. 

Over 100 mutations of this gene have been described most of which cause premature 

truncation of the protein. The incidence of someone in the general population carrying a 

mutation in this gene is the same as in BRCA1. The BRCA2 gene encodes a 384 kDa 

protein that has many of the same functions as BRCA1, although evidence suggests that 

BRCA2 has more of a direct role in DNA repair than BRCA1 (Yoshida et al. 2004). 

Mutations in BRCA2 are also associated with increased risk of developing other cancers 

including melanoma, prostate cancer and gastric cancer (Consortium 1997).
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Gene
Chromosomal

Location
Normal Function

Type of 

Genetic Event
% of tumours

c-myc 8q24
Transcription

factor
Amplification 15-25%

Her-2 17ql2-21
Tyrosine kinase 

receptor

Induces cell cycle

Amplification 30-70%

tp53 17p arrest, triggers 

apoptosis

Deletion 41-73%

BRCA1 17q21
Regulates DNA 

transcription
Deletion 30-70%

BRCA2 13ql2-13
Repairs damaged 

DNA
Deletion 33-75%

Pten lOq Phosphatase Deletion
Increased risk 

of breast cancer

E-cadherin 16q22
Cell adhesion 

molecule

Loss of 

homozygosity
>85%

Cyclin D l 1 lq l3
Cell cycle 

regulator
Over-expressed 40-50%

Cyclin E 19ql2
Cell cycle 

regulator
Amplification 2% !

Table 1-5 Breast cancer associated genes.
This table shows the most well-known breast cancer associated genes, their chromosomal locations, normal 
function, type o f genetic alteration and the frequency o f their mutations in breast cancer (Ingvarsson 1999; 
Osborne et al. 2004).
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1.3.3 Therapy of Breast Cancer

Treatment of breast cancer involves 3 main areas: treatment of the breast with either breast 

conservation surgery and radiotherapy or mastectomy and/or radiotherapy and/or breast 

reconstruction; treatment of the regional lymph nodes with axillary clearance or sentinal 

node biopsy or a combination of both; and systemic treatment which could include 

hormone therapy (tamoxifen, aromatase inhibitors or ovarian suppression), chemotherapy 

or new treatments such as monoclonal antibodies (Brennan et al. 2005).

A number of chemotherapy combinations have been shown to be effective in the treatment 

of breast cancer. A regimen of cyclophosphamide, methotrexate and fluorouracil (CMF) is 

commonly used as a therapeutic treatment of breast cancer and has been shown to improve 

the 10 year survival in patients under the age of 50 by 7-11% but regimens containing 

modem anthracyclines, such as adriamycin and epimbicin, have proven more effective 

although causing more side effects (Howell et al. 2005).

Endocrine therapy is considered for patients that have breast tumours expressing oestrogen 

or progesterone receptors as this therapy has been found to be reasonably non-toxic. This 

type of therapy is aimed at reducing the oestrogen that is available to the tumour cells by 

blocking the oestrogen receptor or by reducing the levels of oestrogen in the blood. 

Tamoxifen is a non-steroidal partial anti-oestrogen which was first used in clinical trials for 

the treatment of breast cancer in 1971 (Jordan 1988). It has been a highly successful drug 

for the treatment of ER-positive breast cancer and works by blocking the oestrogen 

receptor, although it is now clear that extended use of tamoxifen for more than five years 

has a detrimental effect on patients, causing endometrial cancer and thromboembolism with 

long term use (Fisher et al. 2001). Aromatase inhibitors work by blocking aromatase, 

which is an enzyme that converts testosterone to oestrogen in peripheral tissues, but are 

only effective in post-menopausal women. Anastrazole (Arimidex®), letrozole (Femara®) 

and exemestane (Aromasin®) are third generation aromatase inhibitors and recent trials 

have shown that these are more effective than tamoxifen in preventing breast cancer relapse 

and have fewer side effects (Winer et al. 2005). Trastuzumab (Herceptin) is a monoclonal 

antibody that targets the cell surface receptor Her-2 and so is only effective in those 

patients whose tumours have an amplification or overexpression of the gene that encodes 

for this receptor. In trials where trastuzumab was given to patients after completion of 

chemotherapy, the disease free survival at 2 years was 85.8% compared with 77.4% for
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patients who received no further treatment although deterioration in left ventricular 

function was noted. Data from clinical trials has shown that trastuzumab should be 

considered as an adjuvant therapy for patients with Her-2 positive tumours but long-term 

safety data stills needs to be obtained before it can become routinely used (Houssami et al. 

2006).

1.3.4 The Future for Breast Cancer Detection and Treatment

The discovery that the endocrine system has an important role in the development of breast 

cancers has lead to the development of effective and safe drugs, such as tamoxifen, that 

have contributed to the decrease in mortality seen in the past few years. However, a large 

proportion of patients with localized disease and all patients with metastatic disease become 

resistant to endocrine therapies, which have fuelled the search for alternative strategies for 

overcoming or bypassing this resistance (Ali & Coombes 2002). Traditional methods for 

the treatment of metastatic breast cancer have included the use of multiple lines of hormone 

therapies and the increased duration, dose and intensity of chemotherapy but despite 

prolonging the time to progression of the cancer, there has been no improvement in the 

overall survival of patients. Another problem also occurs in patients that develop 

anthracyclin and taxane resistant tumours as there are few alternative therapies available for 

effective treatment (Awada et al. 2003). New strategies are needed to provide prognostic 

and predictive information for established treatments as well as for the discovery of new 

therapeutic targets. It may be possible, with the advancement of DNA microarrays and 

proteomics, to tailor treatment for each patient as well as gain a better understanding into 

the progression of breast cancer and the mechanism by which endocrine therapy and 

chemotherapy resistance occurs.
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1.4 Biomarker Identification

The combination of tumour size or depth (T), lymph node spread (N) and presence or 

absence of metastases (M), the TNM staging system, has provided the basis for diagnosis 

of cancer progression, predicting survival and deciding the choice of treatment in cancer 

patients since 1958. Individual or groups of molecular markers are now becoming more 

widely used to classify tumours into subsets that behave differently from each other 

(Ludwig et al. 2005). Biomarkers can indicate the physiological state of the cell at a 

specific point in time and so the identification of these markers could prove important in 

gaining an understanding of the physiology and pathology of cancers and therefore improve 

patient diagnosis and treatment. Biomarkers that are currently in use to assess cancers 

include chorionic gonadotropin and a-fetoprotein for germ cell tumours, monoclonal 

immunoglobulin and urine electrophoretic peaks in myeloma, prostate serum antigen (PSA) 

for prostate cancer (Pritzker 2002), VEGF mRNA expression in lung cancer (Yano et al. 

2000), tyrosine kinases in leukaemia (Druker et al. 2001) and HER-2 in breast cancer 

(Molina et al. 2001).

Potential important biomarkers are those genes and proteins that are involved in the growth 

and maintenance of cancer cells and can arise due to over-expression, mutation, 

chromosomal rearrangement, altered pre-mRNA processing, post-translational 

modifications and viral antigens (Miles et al. 2006). Relevant biomarkers have yet to be 

identified that have a high enough sensitivity and specificity to be accepted in the 

assessment of early-stage cancers. It is also important to attempt to identify new 

biomarkers than can be detected in patients via non-invasive tests, for example in urine, 

saliva and sputum (Negm et al. 2002). For example, molecular assays have shown 

mutations in tp53 in urine taken from bladder cancer patients and ras mutations in stool 

samples taken from colorectal cancer patients (Sidransky et al. 1991; Sidransky et al. 

1992).

There are a number of ways tumour antigens or biomarkers can be identified. cDNA 

expression cloning is a technique used for the isolation of tumour antigens recognized by T 

cells. This method has provided a catalogue of melanoma antigens including mutated 

peptides derived from genetic alterations in the tumour cells, self-peptides derived from
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tissue-specific proteins, over-expressed proteins in tumour cells and cancer testis antigens. 

Direct identification of tumour antigens bound to tumour cell human leukocyte antigens 

(HLA) has proven successful in isolating naturally presented antigens including those with 

post-translational modifications using HPLC fractionation and mass spectrometry. These 

two methods have identified antigens, for example peptides, for use, more specifically, as 

targets for vaccine therapy (Clark et al. 2001; Kawakami et al. 2004). 

cDNA expression cloning using serum IgG antibodies from cancer patients, known as 

SEREX, has led to the identification of antigens which have proven useful for the 

diagnosis, prognosis and therapy of different cancers (Heubeck et al. 2006; Li et al. 2004; 

Okada et al. 2006).

Expressed sequence tags (ESTs) can be used to predict the expression patterns of specific 

genes in different tissues. By data mining these ESTs it may be possible to identify genes 

that are expressed in cancer tissues and therefore identify new biomarkers. It is then 

possible to validate these findings using real-time RT-PCR.

Protein-based technologies have recently been applied to the discovery of new biomarkers. 

These technologies include low-throughput methods such as western blotting, in situ 

hybridisation, immuno-histochemistry and 2-D gel electrophoresis. More high throughput 

methods have recently lead to biomarker identification including protein microarrays, 

MALDI MS and ProteinChip technology, also known as SELDI MS (Miles et al. 2006). 

Each of these methods has yet to provide antigens that have significantly facilitated the 

diagnosis or treatment of cancer patients. An approach that incorporates both genomic and 

proteomic technologies along with sophisticated data mining methods may prove to be the 

key to identifying biomarkers that have real clinical significance. Success must rely on 

using these approaches to validate identified markers against disease endpoints, to establish 

quantitative criteria for the presence or absence of the biomarkers and to confirm the 

predictive value of the marker in prospective population trials (Tockman et al. 1992).
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1.5 The Application o f  Proteomics in Cancer Research

Cancer is known as a disease caused by defects or mutations in certain genes but genes, 

however, only contain information that has yet to become functional. The functional 

information, in the form of proteins, occurs as a result of the translation of mRNA (Posadas 

et al. 2005). The gene-encoded information can also change by the time the proteins are 

translated. This is due to gene amplification, alternative RNA splicing, co-translational 

modifications, post-translational modifications, differential stability and secretion of 

proteins (Verma et al. 2001).

To date the majority of studies have analysed single genetic mutations as potential 

biomarkers but correlating the presence of these mutations with disease progression has 

proven difficult. Other studies have investigated RNA expression levels in cancer, but this 

does not necessarily correlate with protein expression and does not take into account any 

post-translational modifications of these proteins. The advent of proteomics and high- 

throughput technology allows scientists to determine protein expression patterns that may 

allow the discrimination between disease states and with further interrogation the identity 

of the proteins. These proteins may then become the “next generation” of clinically 

significant biomarkers important in diagnosis, disease progression and response to therapy. 

Development of sophisticated, high-throughput and sensitive technologies has enabled 

researchers to begin to dissect the genomic changes, expression events and the differential 

expression, activation and signalling of a wide variety of proteins isolated from tumour 

samples. These technologies include 2-dimensional polyacrylamide gel electrophoresis 

(2D PAGE), protein microarrays, laser capture microdissection and mass spectrometry 

(Michener et al. 2002). The application of proteomics to cancer marker identification is 

becoming increasingly popular. These approaches include the analysis of protein 

expression in normal and tumour tissue to detect over or under-expressed proteins that may 

serve as novel markers, analysis of secreted proteins in cell lines and direct serum protein 

profiling to identify potential new markers (Shin et al. 2002).

1,5.1 2-D Polyacrylamide Gel Electrophoresis (2D PAGE)

2D PAGE has the capability to separate thousands of proteins in a single analysis according 

to isoelectric point (pi) and then according to molecular weight. In practice, high resolution
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gels can resolve approximately 3000 proteins depending on the sample used and the 

sensitivity of the staining technique (Lopez 1999). For the last 25 years 2D PAGE has been 

the technique of choice for analyzing the protein content of human samples and over this 

time there have been many alternatives in the method to try to improve the resolving power. 

These improvements include the use of immobilised pH gradient (IPG) strips, (Righetti

1990), the introduction of new reducing agents, (Herbert et al. 1998), and new surfactants, 

(Chevallet et al. 1998), to improve sample solubilisation. Traditional 2D PAGE required 

large amounts of material and complex sample preparation, however with recent advances 

in technology this is no longer necessary (Liotta et al. 2001b). To improve the detection of 

low abundant proteins in whole cell lysates or body fluids, the use of chromatography as a 

prefractionation step has been applied. This is not for the purification of individual proteins 

but instead for die enrichment of certain classes of proteins using group specific resins, for 

example the use of lectin affinity resins to enrich for glycoproteins (Lopez 1999).

The methods for the identification of proteins present in single 2D PAGE spots have been 

improved with the development of mass spectrometric techniques including matrix assisted 

laser desorption ionisation (MALDI) and electrospray ionisation (ESI) mass spectrometry. 

Proteins from gel spots can be characterised using mass spectrometry via peptide mass 

fingerprinting (PMF). The masses of peptides derived from a protease (usually trypsin) 

digest of 1 gel spot are determined using mass spectrometry and the masses are then used to 

search various databases such as Genbank and SwissProt. Depending on the mass accuracy 

of the instrument used, an unknown protein from a gel spot can be identified from as few as 

5 peptides (Lopez 1999).

A recent study has shown that only the most abundant proteins are seen on a 2D gel and 

identified by mass spectrometry (Gygi et al. 2000). Despite the limitations of 2D PAGE it 

is still widely used for the analysis of protein mixtures and one of its strengths is the 

reliable and rapid comparison of healthy and diseased protein samples (Issaq et al. 2002a). 

2D PAGE has been used to analyse a wide range of samples including plasma taken from 

Alzheimer’s patients, colon carcinoma cell lines, hepatocellular carcinoma samples, 

membrane proteins and cerebrospinal fluid, to name a few (Seow et al. 2000; Simpson et 

al. 2000; Ueno et al. 2000). It has also facilitated the discovery of biomarkers in ovarian, 

oesophageal and bladder cancer, amongst others (Celis et al. 2000; Jones et al. 2002; 

Petricoin et al. 2002b; Zhou et al. 2002).
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It has been suggested that a mammalian cell could produce on average 50,000 unique 

proteins. This means that even though it is possible to visualise between 3000 and 10,000 

protein spots on a 2D gel, these only represent between 7-24% of the most abundant 

proteins in a cell (Vuong et al. 2000). This then suggests that 76% of proteins expressed in 

a cell are below the detection limits of standard gel staining methods. Improvements to this 

resolution problem could include the use of radioactive labels, or increasing the separation 

by using ultrazoom gels.

As well as its ability to resolve thousands on proteins and provide rapid comparison of 

proteins between samples of different types, it is also economical when compared with 

other separation methods such as HPLC and capillary electrophoresis (CE), which both 

need special equipment. The limitations far outweigh the advantages, however, and include 

the poor solubility of hydrophobic and membrane proteins, narrow dynamic range, 

difficulty in focusing highly basic and acidic proteins, inadequate sensitivity, poor 

quantification and the fact that it is very labour intensive, and that post-translationally 

modified proteins will increase the repertoire of the proteome (Lilley et al. 2002; 

Timperman et al. 2000).

1.5.2 Protein Microarrays

Protein microarrays allow the systematic analysis of thousands of proteins simultaneously 

and can be used to determine the post-tranlational modifications of the proteins analysed, 

their levels in biological samples and their selective interaction with other proteins and 

antibodies. Most protein microarrays are affinity-based, being chemically robust, stable 

and compact with a high binding efficiency and specificity. Protein-to-protein based arrays 

include antibody, phage displayed antibodies or polypeptide recognition moieties (Jenkins 

et al. 2001). One of the main problems in using this approach, however, is the lack of 

available antibodies. Also, post-translational modifications are not captured using 

recombinant proteins or antibodies that do not distinctly recognize specific forms of a 

protein (Misek et al. 2004). Finally, there is also a problem with cross-reactivity of the 

proteins with affinity agents (Baak et al. 2003).
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1.5.3 Mass Spectrometry

The principle of mass spectrometry is to generate ions from either inorganic or organic 

compounds by a suitable method, separate those ions by their mass-to-charge ratio (m/z) 

and detect them either qualitatively or quantitatively. Mass spectrometers are capable of 

generating 2 types of information, firstly an accurate measurement of molecular weight and 

secondly a partial amino acid sequence, which can be achieved using tandem mass 

spectrometry.

A mass spectrometer consists of three essential components, an ion source, a mass analyser 

and a detector which are operated under high vacuum. The analyte can be ionised 

thermally, by electric fields or by impacting energetic electrons, ions, photons, neutral 

atoms or heavy cluster ions causing the production of gas-phase ions. The mass analyser 

then separates the ions by static or dynamic electric or magnetic fields or by time-of-flight 

(TOF) in a field free region according to their m/z value before they strike the detector. 

When ions hit the detector they are represented in mass spectrum; this is a 2-D 

representation of signal intensity versus m/z. The signal intensity of a peak reflects the 

abundance of ions at that particular m/z value that have been generated via ionisation of the 

analyte. Because the charge (z) is often equal to one (more specifically in the case of 

MALDI-MS) then the m/z value directly reflects the mass of the ion (Gross 2004a). The 

development of both MALDI and electrospray ionisation (ESI) to create ions from large 

molecules have been important breakthroughs for proteomic studies. MALDI creates ions 

by firing a laser at a sample which is combined with an energy absorbing matrix. The 

energy from the laser causes the excitation of the matrix and subsequent ejection of the 

matrix and analyte ions into the gas-phase. ESI creates ions by the application of a 

potential to a flowing liquid, usually coupled to LC, causing the liquid to become charged 

and then spray. The spray creates small droplets of solvent containing analyte. The solvent 

is removed by heat or energetic collisions with a gas, as the droplets enter the mass 

spectrometer, whilst multiply charged ions are formed (Yates 2000).

There are four basic types of mass analysers that are currently used in proteomic studies, 

each with their own design and performance; Quadmpole mass analysers, which resolve 

m/z by applying radio frequency and DF voltages. This allows only a narrow mass range to 

reach the detector, and so have limited mass range and low resolution; Time-of-flight 

analysers are most commonly used with MALDI. These accelerate ions by using a short
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voltage gradient and measure the time it takes for the ions to travel through the flight tube, 

the flight time is proportional to the square root of the m/z. The resolution of this analyser 

is quite good, it is able to separate ions to 0.1 Da; Quadmpole ion traps focus the ions into a 

small volume where ions are captured (or trapped), activated and ejected by the electronic 

manipulation of an oscillating electric field. This concentration of ions means that these 

analysers are very sensitive but have low mass accuracy. This is due to the limited number 

of ions that can be accumulated before space-charging distorts their distribution and 

therefore the accuracy. Recently, linear ion traps have been developed where the ions are 

stored in a larger area allowing the increase in sensitivity, resolution and mass accuracy. 

Ion traps can also rapidly shift between scanning for the masses of the analyte (MS scan) 

and generating fragmentation spectra of the ions detected in the MS scan (MS/MS scan); 

Fourier Transform Ion Cyclotron Resonance (FT-ICR) uses high magnetic fields to trap the 

ions and cyclotron resonance is used to detect the ions. This analyser has extremely high 

resolution as it can separate ions to lmDa, although the expense, operational complexity 

and the low peptide fragmentation efficiency has limited their widespread use in proteomics 

research (Aebersold et al. 2003; Wysocki et al. 2005).

New mass spectrometry-based systems have been developed that can rapidly profile and 

generate proteomic “fingerprints” from tissues and body fluids. SELDI MS has been 

applied to the analysis of patient sera to identify protein patterns characteristic of different 

tumour types and stages where only microlitre quantities of crude serum are required for 

MS analysis. Protein patterns, distinct for different cancer patient populations, have been 

reported for a number of different cancers including prostate, colon, breast and ovarian 

cancer (Oehr 2003; Petricoin et al. 2002a). A relatively new approach is to use 

multidimensional liquid chromatography directly coupled to mass spectrometry, either on

line with ESI-MS or off-line with MALDI-MS. This technology is under development and 

needs further work for detecting potential biomarker candidates, but it is very promising 

(Shin et al. 2002; Wang et al. 2003).
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1.6 M ALDI M S

MALDI-MS was first introduced by Tanaka et al and Karas et al in 1988 and has now 

become a widespread analytical tool for the study of peptides, proteins and other 

biomolecules (Tanaka et al. 1988; Karas et al. 1988). The analyte of interest is 

cocrystallised with a large molar excess of an organic matrix that strongly absorbs the 

energy from a laser to desorb and rapidly ionize intact high mass compounds (Chaurand et 

al. 1999a), see figure 1-6.

MALDI matrices are crystalline solids which absorb light at the wavelength which is 

intended to be used for the experiment. They can serve as protonating or deprotonating 

agent or as an electron-donating or -accepting agent so acting to analyse the analyte in both 

positive and negative ion modes. Common matrices for use in UV-MALDI include 2,5- 

dihydroxybenzoic acid, DHB, for oligosaccharides; a-cyano-4-hydroxyeinnamic acid, 

CHCA, for peptides; and 3,5-dimethoxy-4-hydroxycinnamic acid, SPA or sinapinic acid, 

for proteins. Other matrices are also available with their structures based around an 

aromatic core, hi IR-MALDI the wavelengths are absorbed by O-H and N-H vibrations 

and so malonic acid, succinic acid, malic acid, urea and glycerol can all be used as effective 

matrices.

Lasers at wavelengths ranging from ultraviolet (UV) to infra-red (IR) can be used but UV 

nitrogen lasers (337nm) are the most common. The pulse of laser light is focused onto a 

small spot which is usually 0.05-0.2mm in diameter. An attenuator can be used in the laser 

optical path to adjust the laser irradiance. For example, a rotating UV filter can allow the 

transmission of 1-100% of the laser beam energy and this can be adjusted for each 

measurement. UV lasers emit pulses between 3-10ns long whilst IR laser pulses are 

usually between 6-200ns long. Short laser pulses are needed to cause a sudden ablation of 

the sample layer, to avoid thermal degradation during the short time interval of ion 

generation and to give a better starting pulse for the TOF measurement, although this latter 

advantage is also improved with the use of delayed extraction.

Several theories have been developed to explain desorption of molecules from the target. 

Firstly the Thermal Spike Model suggests that the matrix molecules sublime from the 

surface after local heating above a certain laser intensity but a low laser fluence. The 

ejection of the intact analyte molecules is attributed to poor vibrational coupling between
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the matrix and analyte (Vertes et al. 1990). Conversely the Pressure Pulse Theory suggests 

that a pressure gradient is created at the surface and desorption of molecules is enhanced by 

momentum transfer from collisions with fast-moving matrix molecules (Johnson et al.

1991). Many chemical and physical pathways have been suggested as ionization 

mechanisms for MALDI including gas-phase photoionization, excited-state proton transfer, 

ion-molecule reactions and desorption of preformed ions. It has been suggested that 

photoionization occurs when using UV-absorbing matrices as positive and negative radical 

ions (M+* and M'*) have been observed and these can only be generated by the addition or 

removal of an electron. The most widely accepted mechanism involves gas-phase proton 

transfer in the expanding plume and depends critically on the matrix-analyte combination 

(Gross 2004b).

There are 3 types of mass analyzers typically used with the MALDI ionization source, a 

linear time-of-flight (linear TOF), a reflectron TOF, and a Fourier Transform Mass 

Analyzer. The Linear TOF is the simplest of the three and is based on accelerating a set of 

ions to a detector where all of the ions are given the same amount of energy, a diagram is 

shown in figure 1-7. The principle of this method is that if ions are accelerated with the 

same potential at a fixed point and a fixed initial time and are allowed to drift, the ions will 

separate according to their mass to charge ratios. A reflectron TOF combines TOF 

technology with an electrostatic analyser, the reflectron. The main drawback of linear TOF 

analysers is their poor mass resolution. This is affected by factors that cause a distribution 

in the flight time amongst ions with the same m/z value. These factors include length of the 

ion formation pulse (time distribution), the size of space where the ions are formed (space 

distribution), the variation of the initial kinetic energy of the ions (kinetic energy 

distribution). The reflectron increases the amount of time the ions need to reach the 

detector while reducing their kinetic energy distribution therefore increasing the mass 

resolution but at the expense of sensitivity, also it has a relatively low mass range, < 10,000 

Da. Another way to reduce the kinetic energy distribution among ions of the same m/z 

value, and therefore improve mass resolution, is to use delayed extraction, also known as 

delayed pulsed extraction, pulsed ion extraction, pulsed extraction or dynamic extraction. 

This introduces a time lag or delay between the formation of the ions and extraction into the 

TOF analyser. The ions are allowed to expand in the field free region of the source and 

after a delay of ~ 150ns a voltage pulse is applied to extract the ions into the analyser. The
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benefits of delayed extraction are diminished, however, with proteins of mass > 30,000 Da. 

(Lewis et al. 2000).

S am p le  
support

Laser

matrix + 
analyte

Figure 1-6 The mechanism of desorption and ionization of an analyte via MALDI.
A laser pulse is fired on to the sample where the matrix molecules (m) absorb the energy from the laser 
causing the desorption o f the matrix and analyte (a) from the MALDI target surface. Ionisation o f the analyte 
occurs in the gas-phase before the ions enter into the mass analyzer and detector where the m/z values o f the 
ions can be determined.
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Figure 1-7 Diagram of a typical linear TOF mass spectrometer.

The ions are given the same amount o f energy accelerating them towards the detector. As they are 
accelerated with the same potential at a fixed point and a fixed initial time, they drift towards the detector, 
separating according to their mass to charge ratios.

Peptide Mass Fingerprinting (PMF) can be performed using MALDI-TOF for the 

identification of specific proteins as it is relatively easier to use than ESI-MS and is more 

tolerant to salts and other contaminants that may be present after the tryptic digestion of a 

sample. Some pre-mass spectrometry clean-up can be carried out with the use of ZipTips 

(Millipore). Delayed extraction is used within the reflectron MALDI-TOF to improve the 

mass accuracy allowing for a more accurate PMF (Nyman 2001).

Post Source Decay (PSD) can also be performed using MALDI-TOF in which peptides are 

partially sequenced. The ions are fragmented in the TOF mass analyzer by collisions 

between the analyte ions and neutral matrix ions or residual gas molecules during the 

desorption and acceleration stage. As these fragments have the same velocities as their 

precursor ions, they will reach the detector at the same time in a linear TOF and so cannot 

be identified in the mass spectrum. In a reflectron TOF these fragments enter the reflectron 

at different depths and are spatially differentiated causing the individual fragments to hit 

the detector at different times and so are represented in the mass spectrum (Lewis et al. 

2000).

Due to the complexity of biological samples a prefractionation and/or purification is 

required before MALDI-MS analysis. As a result the majority of biomarker identification
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studies in cancer have involved separation of proteins by 2-D PAGE before MALDI-MS 

analysis although there are other methods available. One particular study used serum taken 

from patients with non small cell lung cancer and control patients. The serum was 

fractionated using isoelectric focusing before MALDI-TOF mass spectrometry. Potential 

biomarkers were detected in the spectra using computer-based algorithms and then 

identified (Howard et al. 2003). A new technique involving MALDI MS has emerged in 

recent years, Imaging Mass Spectrometry, where tissue sections can be directly placed upon 

a MALDI target, a matrix applied on top and spectra obtained for different regions of the 

tissue. From the systematic analysis of a tissue section, protein maps that are directly 

correlated with the tissue architecture or morphology can be simultaneously obtained from 

hundreds of different protein species (Chaurand et al. 2004; Stoeckli et al. 2001). It is 

possible that this new approach will have an impact three major areas: tissue-based 

diagnosis, prognosis determination, and prediction of response to specific modes of therapy 

(Chaurand et al. 2006).

57



Chapter 1

2 .7  SE LD IM S

Surface-enhanced laser desorption ionization mass spectrometry (SELDI MS) is a novel, 

analytical high throughput, array-based technology, developed by Hutchens and Yip 

(Hutchens et al. 1993) and is currently utilized in the ProteinChip system developed by 

Ciphergen® Biosystems Inc (Freemont, CA, USA). SELDI technology tries to overcome 

the requirement for purification and separation of proteins prior to mass spectrometry 

analysis by directly analysing proteins retained on the chromatographic surfaces of 

aluminium or stainless steel chips. Spectra are produced of the complex protein mixtures 

and are based on the mass-to-charge ratio of the proteins and on their binding affinity to the 

chip surface. The ProteinChip system is similar to DNA chip technology except that the 

ProteinChip system is much more complex due to the varying nature of the proteins 

compared to DNA.

A variety of chips can be used on which complex samples, for example body fluids and cell 

extracts, can be spotted. The different types of chip surface available include hydrophobic, 

ionic, hydrophilic, receptor, ligand, enzyme, antibody, DNA and protein A/G and these will 

retain a subset of proteins (Bischoff et al. 2004). Biochemically treated surfaces, such as 

antibody treated, are designed to interact with a specific protein, whilst the chemically 

treated surfaces retain whole classes of proteins (Issaq et al. 2002b). A variety of wash 

steps can be applied to the chips to remove any contaminants as well as enhance the 

selectivity of the chips used. Once washed, a matrix is applied to the chip and then it can 

be placed directly into the linear-TOF mass spectrometer and the retained proteins analysed 

in the same way as MALDI mass spectrometry.

Although SELDI MS has not improved on the resolving power of 2D PAGE, this approach 

does overcome a number of limitations presented by MALDI-MS, most importantly the 

direct analysis of crude samples such as body fluids and cell extracts (Vlahou et al. 2005). 

SELDI MS has proven its worth in recent years in pattern recognition and biomarker 

identification in the field of cancer, through the analysis of body fluids such as plasma, 

serum and urine as well as tissue samples. SELDI MS screening of plasma samples taken 

from 11 men with prostate cancer and 12 men with benign prostatic hyperplasia identified 3 

protein peaks which were present in the plasma of the cancer patients and not in the 

controls (Lehrer et al. 2003). Another study identified a panel of 7 protein biomarkers that
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were unique to the plasma samples taken from ovarian cancer patients (Rai et al. 2002). 

Although CA125 is already used as a prognostic tool for detecting and diagnosing ovarian 

cancer, 4 of the 7 markers identified improved the sensitivity of the screening method when 

used in combination with CA125. Zhukov et al (2003) identified protein profiles that were 

unique to malignant lung tumours and pre- malignant epithelium. Three peaks in particular 

were increased in the tumour samples when compared to normal cells, and 1 peak was 

found to be not present in the controls (Zhukov et al. 2003). Assessment of urine from 

patients with TCC of the bladder led to the identification of 5 potential biomarkers that 

were preferentially expressed in the cancer samples (Vlahou et al. 2001). SELDI MS has 

also been used to identify 4 well characterized prostate cancer associated biomarkers in 

prostate cancer specific cell lysates, serum and seminal plasma (Wright Jr et al. 1999). Li 

et al. (2002) screened serum samples taken from breast cancer patients with stage 0, I, II, 

and III disease, healthy women and patients with benign breast disease. A panel consisting 

of 3 biomarkers was found to separate breast cancer and non-cancer samples (Li et al. 

2002a). SELDI mass spectra were generated from ovarian cancer serum and identified 

patterns that discriminated cancer from non-cancer with a sensitivity of 100% and a 

specificity of 95% (Petricoin et al. 2002a), however this data has been proven by other 

groups to be misleading due to the manner in which the experiment was performed 

(Baggerly et al. 2004).

One of the main advantages of this technique is that contaminants such as salts and 

detergents can be removed prior to analysis and only proteins that interact with the chip 

spots are analysed allowing for the physicochemical property of identified protein peaks to 

be determined. The analysis of the chip is fully automated so up to 100 samples a day can 

be prepared and analysed. There are limitations to this technique, however. Firstly, the 

resolution and the sensitivity are poor for proteins with molecular weights greater than 

30kDa. Secondly, this technology was developed initially to investigate the differential 

expression of proteins between samples of different types. The identification of some of 

these differentially expressed proteins is not possible using this system. Instead, samples 

would need to be pre-fractionated, proteins of interest isolated and digested and proteins 

identified by their PMF or partial sequence obtained by tandem mass spectrometry. 

Therefore the identification of differentially expressed proteins is still a difficult and low 

throughput task. Also, due to the difficulty in protein quantification the expression levels
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of identified protein peaks is not possible. Despite these limitations the SELDI 

ProteinChip’s strengths lie in the systematic identification and characterization of proteins 

for diagnostic and prognostic markers in tissues and body fluids and the speed at which 

potential targets for therapy can be identified is increased (Seibert et al. 2004). 

Improvements in the instrumentation and bioinformatics methods associated with SELDI 

MS will be needed, however, before this method could be considered as a clinical tool 

(Vlahou & Fountoulakis 2005).
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1.8 Bioinformatics approaches fo r  data analysis

To identify differential biomarkers, a large cohort of patient samples has to be analysed for 

the consistency of the presence of potential markers associated with disease classes of 

interest. Mass spectrometry in conjunction with robotics now allows a large number of 

samples to be analysed in just a few hours. The difficulty then arises when trying to 

analyse such complex data: for a study that may identify the presence of significant 

biomarkers it is necessary to analyse large sample numbers. If the mass spectrum between 

the 2kDa and 30kDa range is analysed then that would equate to approximately 18,000 data 

points per sample and therefore several million data points in the whole study. Much of the 

spectra contain background noise and low amplitude peaks so identifying true protein peaks 

requires a system that can rapidly search through all of the data to distinguish between 

noise and true protein peaks. To determine the presence of any consistent biomarkers 

amongst all this data would be virtually impossible without data interrogation using 

computer algorithms, which would allow a computer to sort through all of the data in a 

much faster and efficient manner. Many data mining systems are being developed but most 

fall into one of 2 main approaches; supervised learning systems that require data where the 

outcome or classification is already known; or unsupervised learning systems where the 

data is clustered without any previous knowledge of the outcome or classification. 

Supervised systems include linear regression models, non-linear feed forward neural 

networks, genetic algorithms and support vector machines. Unsupervised systems include 

K-means clustering, principal components analysis, hierarchal clustering, Euclidean 

distance based non-linear methods, fuzzy logic and self organized maps (Petricoin & Liotta 

2002b). With the vast array of learning systems available, there is no ideal single method 

for the analysis of complex proteomic data. Once the data mining technique has been 

selected, feature selection and data transformation must be performed, where appropriate, 

to obtain the best generalised solution to the question being asked. Dimensionality is a 

result of the asymmetry between the number of inputs (for example, peaks) and the number 

of samples. Any classification algorithm that is given too many features will be able to find 

a solution to the problem that has been presented but these may not be representative 

biomarkers. A given mass spectrum can have tens of thousands of data points per sample 

used and so a process of feature selection must be undertaken before data mining can begin.
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One method is to select the m/z values that represent peaks, peak detection. Other methods 

include use of t-tests, unsupervised learning approaches or supervised learning approaches 

that have feature selection incorporated into them. After selecting the features, data 

transformation is often performed where the values of the features are constrained within a 

defined range reducing the impact that a high variance of a given input feature may have on 

altering the distribution of the original data. Data transformation can be achieved by log 

transformation, square root transformation and linear and logarithmic scaling, but not all 

data mining approaches require data transformation (Fung et al. 2005). Below is a brief 

explanation of a few of the data mining techniques that can be used for the analysis of 

proteomics data.

1.8.1 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are an example of a computer-based algorithm used in 

this study to analyse complex proteomic data to identify key prognostic biomarkers. They 

are based on biological neurons and so can organise and process infonnation allowing them 

to handle data which contains high levels of noise and redundancy (Ball et al. 2002). 

ANNs are non-linear which allow better fit to the data, are robust, have the ability to learn 

and adapt, allow the system to modify its internal structures, and have the capability to 

generalise, which enables application of the model to unseen data. ANNs have been used 

in a variety of applications including modelling, classification, pattern recognition, and 

multivariate analysis and are made up of an input layer, a hidden layer and an output layer 

with a series of weighted links connecting each layer, see figure 1.8.

62



Chapter 1

Input
layerW eighted links

Hidden
layer

W eighted links
Output
layer

Figure 1-8 Schematic showing the basic layout of a neural network.
A basic neural network contains one input layer, which represent independent variables used for training such 
as mass and intensity data from a mass spectral profile; 1 hidden layer, which contains the mathematical 
workings of the model; and 1 output layer which is calculated by the network and can then be compared to the 
actual output. The weighted links are adjusted in proportion to the difference between the actual output and 
the predicted output, the training algorithm is applied here (Ball et al. 2002).

The ANNs are trained using the input layer (representing independent variables), which 

could represent the m/z value and intensity from a set of mass spectral profile data. The 

hidden layer represents the mathematical workings of the model and does not interact with 

the external environment but merely processes the information received from the input 

layer and passes it to the output layer via weighted links. The output layer is calculated by 

the network based on the data inputted, and is then compared with the actual known output. 

For example, in a classification model an output of 1 would represent a control sample and 

an output of 2 would represent a cancer sample, and then the error between the predicted 

and actual outputs is calculated. The training algorithm is applied to the weighted links 

which are adjusted in proportion to the difference between the actual output and the 

predicted output. When using the back-propagation algorithm, the weights are updated in 

proportion to the error calculated and are governed by the learning rate and momentum 

parameters. Other algorithms that could be used are conjugate gradient descent, 

Levenberg-Marquardt, quick propogation and Delta-Bar-Delta (StatSoft 2006). The 

learning process continues repeatedly and attempts to obtain a set of weights that 

correspond to a predetermined parameter, for example a minimum target error or the failure 

of the network to improve after a certain amount of training cycles (epochs).
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Data inputted for neural network analysis can be split into training and test data where the 

ANNs train on the training set and validates its outputs on the test set whilst the training 

occurs. After the training has been completed it is validated by a further set of cases that 

are completely blind to the model, they are applied and an output is calculated based upon 

the new data (Basheer et al. 2000; Lancashire et al. 2005). The performance on unseen 

data indicates whether a generalised model has been obtained or not. By using multiple 

models with different unseen datasets (random sample cross validation) a more generalised 

model may be obtained with only a small sample number. Random sample cross validation 

randomly selects different sample sets into training and test sets for eveiy model run. All 

of the inputs can then be treated as unseen data and by using different data splits, different 

models can be created allowing confidence intervals to be calculated and outliers to be 

identified. Parameterisation is a process that allows the identification of the importance of 

all of the inputs to the model and this can then lead to the elimination of inputs that are of 

little or no importance thereby reducing the complexity of the data and increasing the 

predictive performance. Parameterisation can be achieved by performing a weightings 

analysis, sensitivity analysis or by stepwise approaches. As already described, the ANNs 

work by weighting the links from the inputs to the outputs; the stronger the weight leading 

from a particular output, the greater the influence it has on the model. A sensitivity 

analysis can also be applied to the trained ANN model where the error in the performance 

is monitored when an input is removed from the system; the greater the change in the error 

after removal of the input, the more influential that particular input is. The predictive 

performance when the input is present is compared to the predictive performance when the 

input has been removed and this gives a sensitivity ratio. Therefore, a sensitivity ratio of 1 

or close to 1 indicates there is no influence of that particular input on the system, a value 

greater than 1 indicates that the input has a positive effect on the predictive performance as 

its loss causes degradation in the model indicating its importance.

A stepwise approach is a detailed method of parameterisation whereby the stepwise 

addition of inputs is undertaken allowing the determination of the best subset of ions to 

predict a particular outcome. Interactions between the ions may also be identified in this 

way. The analysis is based on the hypothesis that the change in performance when an input 

is added indicates its influence on the model. Multiple sub models are run with input 1,
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then with input 2, and then with input 3 and so on until all of the inputs are modelled 

separately. The error is determined for each sub model and the input that gives the lowest 

error is selected and put with all of the remaining inputs sequentially in a number of sub 

models once more. This process continues until there is no improvement in the error and so 

a subset of ions is finally identified.

The applications of ANNs are divided into two main classes; supervised and unsupervised 

methods. For supervised learning, a dataset consisting of both input and output data is 

presented to the ANN during a training phase. The ANN tries to find a link between the 

two with the least error, by adjusting the weighted links until the error falls below a certain 

threshold. Once the ANN has established a comiection between the inputs and outputs, the 

model can then be used for unseen data. When using unsupervised learning, only an input 

dataset is presented and the ANN is free to search for hidden relationships amongst these 

data (Tafeit et al. 1999). Recent studies have shown that the application of ANN-based 

approaches can be used to identify patterns strongly associated with specific disease stages 

(Ball et al. 2002; Petricoin et a l 2002a).

1.8.2 Support Vector Machines (SVM)

Support Vector Machines (SVMs) were invented by Vladmir Vapnik (1995) and comprise 

a set of supervised learning methods used for classification and regression. For the 

classification of samples, SVMs map a hyperplane in a multidimensional space of training 

inputs in an attempt to split the cases and the controls (Vapnik 1995). The simplest form of 

SVM plots a linear boundary between the two datasets but real-world problems are not 

usually this straightforward. More sophisticated SVMs can be used where polynomial or 

sigmoidal boundaries between the data points can be found but this has to be carefully 

controlled to ensure that a generalised model is found (Webb 2002). Recently, it has been 

shown that SVMs can outperform neural networks in learning to recognize patterns from a 

dataset with a low number of training inputs, in some instances. SVMs have been 

successfully applied in the analysis of proteomic data in a number of studies (Li et al. 

2002a; Wu et al. 2003a; Zhang et al. 2004b).
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1.8.3 Decision Trees

Decision trees use continual portioning of samples into sub-groups in order to achieve 

classification. They begin with the entire sample set, for example m/z values and intensities 

of mass spectral peaks, and create a rule that causes the sample set to divide into two 

groups. The decision rule looks at the input features and this leads to the creation of a 

second rule that states that if the intensity of a peak is less than x then a sample is 

partitioned to the left branch, if it is not then it is partitioned to the right. Each branch is 

studied in this way and further sub divided by creating another rule until the training is 

complete. New samples are classified by following all of the rules and observing which 

terminal node the sample ends up in (Fung et al. 2005). One advantage of this method is 

that it can create easily interpretable rules for the classification of samples and have 

therefore been used in the analysis of mass spectral data. Adam et al (2002) used this 

method to distinguish between serum taken from prostate cancer patients from serum taken 

from those with benign prostate hyperplasia and healthy men. By using the intensity levels 

of the nine highest discriminatory peaks as features, classification was achieved with 96% 

accuracy (Adam et al. 2002). One disadvantage of this method, however, is that as the 

complexity of the tree increases there are fewer and fewer samples within each group but 

modifications such as bagging and boosting may help to overcome this problem (Fung et 

al. 2005).

1.8.4 Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a commonly used unsupervised learning 

technique that can reduce the number of variables and detect structure in the relationships 

between the variables, thereby having the ability to classify them (StatSoft 2006). It 

reorganizes information in a sample data set mathematically and is very useful when there 

are large numbers of variables. It maps highly-dimensional data into more manageable sets 

of dimensions by creating principal components, which accounts for the majority of the 

variability in the data, enabling the data to be explained with far fewer variables than were 

present in the original dataset. The first principal component is placed through the data in 

the direction that explains the most variability. The second principal component is then 

placed at right angles to this to describe the maximum amount of the remaining variability;
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subsequent principal components are placed at right angles to the principal component 

before it. Once the directions of the principal components are plotted, the values of the 

individual samples can be expressed as linear summations of the original data multiplied by 

the coefficient that best describes the principal components, these new values are known as 

Eigenvalues and each sample will have a score for each principal component (Davies et al. 

2005; Fung et al. 2005).

1.8.5 Cluster Analysis

Cluster analysis encompasses a number of different algorithms and methods for grouping 

objects into categories. It is an exploratory tool which aims at sorting different objects into 

groups in a way that if two objects belong to the same group then they must be highly 

associated and if they are not placed in the same group then the reverse is true. It can be 

used to discover structures in data without providing an explanation/interpretation as to 

why they exist (StatSoft 2006). Clustering is done hierarchically to form a dendrogram, or 

relational tree, where the leaves, or nodes, of the tree represent the individual objects, and 

the branches of the tree group the nodes according to the similarity or difference of the 

objects and this is represented by the branch length. Cluster analysis is used extensively in 

the mining of data generated by cDNA microarray experiments but its application to 

proteomic studies is still fairly limited (Harris et al. 2002). Schmidt et al (2003) clustered 

peak lists extracted from the mass spectra of spots on 2-DE gels. They used clustering to 

purify peak lists by removing peaks that came from neighboring spots and so improving 

upon protein identification (Schmidt et al. 2003). Tibshirani et al. (2004) used the 

clustering of peaks across many mass spectra in order to classify samples from patients 

according to disease status from protein MS data and Beer et al (2004) used clustering of 

LC-MS/MS spectra to reduce the large amounts of data generated into a more manageable 

size (Tibshirani et al. 2004; Beer et al. 2004).
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L 9 Cancer Therapy o f  the Future -  Personalised Medicine

One major goal in cancer research is the development of diagnostics and therapeutics that 

will decrease morbidity and mortality of cancer patients within the next decade. The aim is 

to identify diagnostic biomarkers that can detect disease at earlier stages with high 

specificity, and to develop therapies that effectively reduce the tumour burden in patients 

without inducing any side effects (Conrads et al. 2005). As cancer is known to be a 

heterogenous disease it is no surprise that cancers vary genetically and phenotypically 

between patients that may have an identical type and stage of cancer and so explains the 

unpredictable responses of patients to existing cancer therapies (Jain 2004). Advances in 

genetics and proteomics have led to the concept of personalised medicine for improvement 

in the healthcare of patients. This type of medicine involves the direction of specific 

treatments that are best suited to the individual patient’s genotype and various other factors 

that can influence the outcome of the disease and patient’s response to the treatment (Jain 

2002). There are a number of ways proteomics can be of use in the personalised 

management of cancer; it can help in the progress in understanding the pathophysiology of 

cancer thereby helping to search for safer and more effective treatments; global changes in 

the protein expression patterns due to transcriptional and post-transcriptional control and 

post-translational modifications can be monitored; the molecular diagnosis of cancer can be 

improved; glycoproteins that are found on the cell membrane of cancer cells, distinguishing 

them from normal cells, can be identified aiding in the targeted killing of cancer cells; the 

combination of proteomic approaches with biochemical assays for the identification of 

target antigens could lead to antibody-based therapies for cancer; and finally, proteomics 

can also be of use in the identification of biomarkers that will improve the diagnosis, 

prognosis and therapy of patients (Jain 2004).

The use of gene arrays for the molecular profiling of diseases has shown potential in 

classifying patients according to their disease stage or survival (Golub et al. 1999). 

Microarray-based profiling techniques have also provided an opportunity investigate the 

relationship between thousands of genes and the clinical phenotypes of the samples. 

Several groups have used this approach and have been able to identify biologically and 

prognostically distinct tumour subgroups in a number of cancers (Agarwal et al. 2006). In a 

study of early breast cancer, a signature associated with metastasis-free survival has been
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identified, validated in an independent dataset, and is currently the subject of a multi-centre 

randomized clinical trial to establish its use in selecting patients for adjuvant chemotherapy 

(van 't Veer et al. 2002; van de Vijver et al. 2002). Due to the success of these gene 

profiling studies it is likely that protein profiling studies would also give information on the 

relationship between proteins and clinical phenotypes of samples. Protein profiling studies 

also have an advantage over gene profiling studies as these only provide information at the 

genetic level and do not necessarily reflect protein expression on modifications that occur 

during transcription and translation. Also, the expression of certain genes does not provide 

details of protein-protein interactions and so proteomic analysis should be included with 

molecular profiling when selecting an appropriate treatment regimen for a patient (Petricoin 

et al. 2002c). The integration of multiple disciplines such as genetics, proteomics, 

transcriptomics and metabolomics can be used to develop truly personalized therapies by 

directing the selection of appropriate drugs or drug combinations to achieve increased 

benefits to patients and to reduce toxicity and to also predict the response of a individual 

patient to a particular therapy.
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1.10 Aim s and Objectives

The identification of patterns within proteomic profiles of patient samples to predict 

diagnosis and prognosis of patients and identify suitable therapeutic regimens is the 

highlight of one facet of research into personalised medicine. The use of SELDI MS and 

bioinfonnatics to provide this patient information has been widely researched in the fields 

of ovarian, prostate and breast cancer, but as yet these methods have still not been validated 

for their clinical use.

The aim of this research is to apply the principles of SELDI MS and artificial neural 

networks as tools to identify patterns that correlate to certain clinical outcomes in both 

melanoma and breast cancer. Also by identifying patterns, the identification of possible 

biomarkers that can reflect these clinical outcomes will be investigated. As research into 

personalised medicine seeks to identify patterns that can indicate certain clinical outcomes, 

patient material is usually utilised, but this is sometimes limited and difficult to obtain in 

sufficient quantity and numbers to make the findings statistically significant. The first part 

of this study aims to identify whether melanoma cell lines can be used for proteomic 

studies to identify biological traits correlating with clinical information. This will be useful 

for biomarker identification studies, where large amounts of material may be required but 

cannot be obtained. In parallel, tissue samples taken from melanoma patients with known 

clinical history will be investigated in order to determine whether the proteomic patterns 

relate to clinical outcome in melanoma and breast cancer.

The majority of SELDI MS studies to date have utilised patient serum to investigate 

defined clinical outcomes, however research in melanoma has been limited. This aspect of 

the research will investigate 205 melanoma serum samples to determine if stage of 

melanoma can be predicted from the patient serum proteome. Proteomic profiles will also 

be correlated with progression of patients from stage III to stage IV. Disease progression 

has not been widely investigated using pattern recognition and the results of such studies 

may be important for clinical management.

The final part of this study will compare SELDI MS with MALDI MS in order to 

determine if a better predictive capability can be determined using a MS method with 

improved sensitivity and resolution. This will be conducted using melanoma cell line 

lysates which will be subjected to SELDI MS analysis using C\e (H4) chips and to MALDI
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MS analysis after Cis ZipTip sample clean up. The spectra obtained from the SELDI MS 

analysis will then be analysed using ANNs to determine if patterns can be found within the 

data that can classify blind samples according to their genetic mutation. The MALDI 

spectra will be analysed using the same ANN parameters and the results of the analysis 

with the SELDI and MALDI methods compared.

1.11 Collaborations

The results of the present study form part of a 3 year 5th framework European Union 

project, OISTER (Outcome and Impact of Specific Treatment in European Research in 

melanoma). This study involved 7 partners across Europe and was designed to collect 

tissue, serum samples and cultured cell lines from melanoma patients with known clinical 

outcome, for analysis of gene expression patterns, expression of proteins, HLA type and 

other immunological markers. Clinical information on those patients was available in order 

to correlate the scientific findings to specific criteria such as stage of disease or response to 

treatment, thereby allowing clinically significant biomarkers to be identified.
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Chapter 2 Methodology

2.1 Materials

2.1.1 Reagents and list of suppliers

All of the reagents were stored as per the manufacturer’s instructions and used before the 

expiry date.

Sample Preparation reagents

Acrylamide/Bis

BSA

BSA standard

Coomasie Blue

Dithiothreitol

Ethanol

Glycine

Methanol

Octyl glucopyranoside 

PBS

Protein Assay Dye Reagent

Sodium Azide

Sodium Dodecyl Sulphate

Sodium Tetraborate

Trizma Base

Urea

Water

Company

National Diagnostics

Sigma

Bio-Rad

Sigma

Apollo Scientific

Sigma

ICN

Sigma

Apollo Scientific

Bio Whittaker Europe

Bio-Rad

Sigma

Sigma

Sigma

Sigma

Sigma

Sigma

Tissue culture reagents

DMEM

DMSO

Ethanol

Foetal calf serum

Company

Bio Whittaker Europe

Acros

BDH

Bio Whittaker Europe
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Glutamine 

RJPMI 

Trypan blue 

Trypsin

Cambrex

Bio Whittaker Europe

Sigma

Gibco

Proteomics Reagents

Acetonitrile

Dichloromethane

Hexane

Propanaol

Protein calibrant Mix 2 

Sinapinic Acid (3,5 Dimethoxy 4- 

Hydroxycinnamic Acid) 

Trifluoroacetic acid

Company

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Laser Bio Labs 

Sigma

Fisher Scientific

2.1.2 Equipment

2.1.2.1 Cell lines and Media

All of the cell lines used were adherent cell lines. These were obtained from the ESTDAB 

tumour cell line bank, http://www. ebi.ac.uk/ind/estdab/ and therefore were of unknown 

origin, or were established in the laboratory at DKFZ, Mannheim from patients’ metastases 

before the frozen cells were sent to Nottingham Trent University. A comprehensive list of 

the cell lines used and their origin can be found in appendix I.

All of the cell lines used were cultured in RPMI + 10% FCS + 2mM L-glutamine.

2A .2.2 Tumour Tissue

All of the melanoma tumour tissue used in this study was obtained from Professor Dr Dirk 

Schadendorf, DKFZ, Mannheim, Germany, as part of the 5th framework OISTER project. 

A comprehensive list of the samples used can be found in appendix II but briefly, 62 

melanoma tissue samples from stage III and IV patients were analysed.
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All of the breast cancer tumour tissue used in this study was obtained from Professor Ian 

Ellis, City Hospital, Nottingham. A comprehensive list of the samples used can be found in 

appendix III but briefly, 165 breast cancer tissue samples from patients of all stages of the 

disease were analysed.

2.1.2.3 Serum

A list of the serum samples used in this study can be found in appendix IV. The samples 

were taken from patients attending the German Cancer Research Centre (DKFZ) in 

Mannheim, Germany; n=101 stage I and n=T04 stage IV melanoma sera as well as n=28 

progressor and n=28 non-progressor stage III sera.

2.1.2.4 Buffers

Buffers were prepared as indicated below:

Name

PBS
Freshly prepared each day 

Lysis buffer
Aliquoted and stored at -80°C

Composition

1 tablet dissolved into 100ml dH2 0  

(Oxoid)

9.5M Urea 
2% w/v DTT 
1% w/v OGP

Sample reducing buffer
Stored at room temperature

1.5M Tris HC1 buffer (pH 8.8) 
(resolving gel buffer)
(1-D PAGE) Stored at room temperature

0.5M Tris HC1 buffer (pH 6.8) 
(stacking gel buffer)
(1-D PAGE) Stored at room temperature

lOx Running Buffer
(1-D PAGE) Stored at room temperature

2.5ml 0.5M Tris IiCl buffer (pH 6.8) 
400mg SDS 
2ml Glycerol 
200mg DTT
A few grains of bromophenol blue 
make up to 20ml with option 4 H20

18.16g Trizma base 
0.4g SDS
make up to 100ml with option 4 H20  
adjust pH to 8.8 with HC1

6g Trizma base 
0.4g SDS
make up to 100ml with option 4 H20  
adjust pH to 6.8 with HC1

0.25M Trizma base (Sigma)
2M glycine (Fischer Scientific) 
1% (w/v) SDS (Acros)
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2.1.2.5 Consumables

All of the plastic ware used in this study were obtained from Sarstedt except for: 

Plastic Ware

10ml syringe

Company

BD

Miscellaneous Items

lml cryovials 

300pl glass vials 

Glass slides

H4 24 spot SELDI chips 

H50 8/16 spot SELDI chips 

384 MALDI target plate 

64 spot MALDI microscope slides

Company

TPP

Chromacol

Menzel GmBH

Ciphergen®

Ciphergen®

Shimadzu

Shimadzu

2.1.2.6 Hardware

Hardware

Ciyostore 

-80°C freezer

Microcentrifiige

Centrifuge

Vortex

Safety cabinet 

Incubators

Microscope and Camera 

Ciyostat

Model, Company

Cryo 200, Forma Scientific 

Ultima II, Revco

U570 Premium, New Brunswick Scientific

Microcentaur, MSE

Mikro 22R, Hettich Zentrifugen

Mistral 1000, MSE

Mistral 2000R, MSE

Falcon 6/300, MSE

Whirlimixer, Fisher Brand

Microflow biological safety cabinet, Walker

CO2 water jacketed incubator, Forma Scientific

Model PIM, World Precision Instruments

CM 1900, Leica
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Water bath 

Sonicators

Electrophoresis gel tank 

Power supply for electrophoresis 

Absorbance plate reader 

Mass Spectrometers

Robotic MALDI plate spotter

2.1.2.7 Software

Y14, Grant

Precision Ultrasonic Cleaning, Ultawave 

Ultrasonic Cleaner, VWR 

GeneFlow

Consort E l22, GeneFlow

Model 680, Biorad

PBS II analyser, Ciphergen®

Axima CFR+, Kratos

XCISE, Proteome Systems/Shimadzu

Software Product Company

Ciphergen® ProteinChip Software v3.2.0 Ciphergen®

Kompact Launchpad v2.4.1 Kratos Analytical Ltd

Statistica v6.1 StatSoft Inc

2.1.2.8 Company Addresses

Company

Acros

BD

BDH

Beckman Coulter

Bio Whittaker Europe

Biorad

Cambrex

Chromacol

Ciphergen®

Elkay

Fischer Scientific 

Forma Scientific (Thermo)

Address

Loughborough, UK 

Cowley, UK 

Leicester, UK

High Wycombe, Bucks, UK 

Wokingham, UK 

Hemel Hempstead, UK 

Nottingham, UK 

Welwyn Garden City, Herts, UK 

Guildford, Surrey, UK 

Basingstoke, UK 

Loughborough, UK 

Basingstoke, UK
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GeneFlow

Gibco

Greiner Bio-One 

Hettich Zentrifugen 

Kratos Analytical Ltd 

Laser Bio Labs 

Leica

Menzel GinBH 

MSE

New Brunswick Scientific 

Proteome Systems 

Revco 

Sarstedt

Scientific Laboratory Supplies (SLS)

Shimadzu

Sigma

StatSoft Inc

Stratec

TPP

Ultrawave

VWR

Walker

Ward Systems Group, Inc 

World Precision Instruments

Fradley, Staffs, UK 

Paisley, UK 

Gloucestershire, UK 

Tuttlingen, Germany 

Manchester, UK 

Cedex, France 

Milton Keynes, UK 

Braunschweig, Germany 

London, UK

Edison, New Jersey, USA

North Ryde, New South Wales, Australia

Asheville, North Carolina, USA

Leicester, Leicestershire, UIC

Nottingham, Notts, UK

Milton Keynes, UK

Gillingham, Surrey, UK

Bedford, UK

Birkenfeld, Germany

Switzerland

Cardiff, UK

Poole, Dorset, UK

Massachusetts, USA

Frederick, Maryland, USA

Stevenage, Herts, UK
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2.2 Methods

2.2.1 Sample Preparation

2.2.1.1 Melanoma cell lines

The cell lines used in this study and related information can be found in appendix I.

One vial of each cell line was thawed, washed and seeded into a T25 flask that had been 

incubated with 10ml of complete media for at least 1 hour. Once confluent the cells were 

seeded into 2 x T75 flasks and placed into an incubator which was maintained at 37°C in a 

humidified atmosphere of 5% CO2. Once the cells were 70% confluent, photographs were 

taken for entry into the ESTDAB database (http://www.ebi.ac.uk/ipd/estdab/) before the 

cells were scraped from the flasks and washed in PBS. An lOOpl of cell lysis buffer was 

added to the cell pellet, giving two lysates for each cell line; each lysate was then aliquoted 

into three vials and stored at -80°C for protein quantification and mass spectrometric 

analysis.

2.2.1.2 Melanoma Tissue

The tissue samples used and related information can be found appendix II.

Samples were snap frozen in liquid nitrogen within 30 minutes of surgical resection and 

stored at -80°C.

The tissues were then sectioned using a Leica 1900 cryostat to allow the percentage 

cellularity of the samples to be determined whilst conserving the melanoma tissues. The 

specimen holder was cooled down to -12°C and the cryochamber cooled down to -25°C 

prior to use. A piece of melanoma tissue was fixed directly onto the metal chuck using a 

small drop of freezing medium (OCT) and freezing spray. This was left for a few of 

minutes in the cryochamber to ensure the tissue was properly fixed and then the chuck was 

placed onto the specimen holder. The blade and the anti-roll plate were wiped with a small 

amount of acetone to prevent static and the specimen holder was set to cut 9pm sections. 

Twenty to thirty sections were cut from each piece of tissue and placed onto a glass slide. 

The sections were then scraped off using a blade before being placed into 50pl of lysis 

buffer where the samples were pipetted up and down to shear the membranes, releasing the 

proteins and allowing them to solubilise in the buffer.
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2.2.1.3 Breast Cancer Tissue preparation

The tissue used in this study along with the relevant clinical information can be found in 

appendix III.

The tissue samples were collected at Nottingham City Hospital and snap frozen in liquid 

nitrogen within 30 minutes of surgical resection prior to storage at -80°C.

The pieces of tissue were solubilised in 100pL of cell lysis buffer and macerated by 

pipetting up and down. 20pL of the protein lysate was aliquoted at stored at -80°C for 

SELDI analysis and the remaining 80pL was aliquoted and stored at -80°C for protein 

assay and 1 -D PAGE.

2.2.1.4 Serum preparation

The serum samples used in this study along with their relevant clinical information can be 

found in appendix IV.

The serum was collected and stored at DKFZ, Mannheim, Germany.

Serum samples were selected from a frozen collection of sera from patients with 

histologically confirmed melanoma. All patient’s gave informed consent and the study was 

approved by the IRB. The serum samples were processed using the following standardized 

protocol: blood was drawn from the patients’ cubital vein into gel coated serum tubes and 

allowed to clot at room temperature for at least 30 min, but no longer than 60 min. 

Thereafter, the tubes were centrifuged at 2500 g for 10 min. The serum phase was 

harvested and subsequently frozen without any additives in 1 ml aliquots at -20 °C and then 

transferred to -80 °C, and not thawed until immediately prior to analysis.

2.2.2 Protein Microassay

A Bio-Rad protein microassay was used to determine the protein concentration of all of the 

samples used in this study, aside from the serum samples. This assay proved to be the most 

appropriate to use as most other kits available were not compatible with the 9.5M urea 

present in the lysis buffer.

A BSA protein standard was made up to concentrations of 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20pg in water to a total volume of 800pl. Two eppendorf tubes were set up for every
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sample with 795pi of water and 5pi of sample, 5pi of cell lysis buffer and 795 pi of water 

was used as the negative control. 200pl of undiluted Bio-Rad protein assay dye concentrate 

was added to each eppendorf and left to incubate for 15 minutes at room temperature. 

lOOpl of sample from each eppendorf was then aliquoted into a 96 well plate and the 

absorbance determined using a spectrophotometer at 595nm.

2.2.3 1-Dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoresis (1-D SDS PAGE)

All of the samples, apart from the serum samples, were resolved by 12.5% 1-D SDS PAGE 

to determine the sample integrity prior to mass spectrometric analysis.

A 30 ml of a 12.5% resolving gel was made up by placing 12.5 ml of 30% Acrylamide 

stock, 7.8ml 1.5M Tris HC1 buffer (pH 8.8), 9.5 ml water, 150pl ammonium persulphate 

(lOOmg in 1ml water) and 15pi TEMED, this was enough for 4 gels. 6ml of this mix was 

then placed in each of the four protein gel casts and 100pi of butanol was placed on top to 

keep the gel even and to stop dehydration while it polymerised. Once polymerised, the 

butanol was removed using filter paper and the appropriate combs were put on top of the 

casts. A 4% stacking gel was made up by adding 2 ml of 30% Acrylamide, 2.6 ml of 0.5M 

Tris HC1 buffer (pH 6.8), 5.3 ml water, 70pl ammonium persulphate and 7pl TEMED and 

then 2ml of this mix was placed on top of the resolving gel in each cast. Once polymerised, 

the combs were removed and the gels and casts were placed in to a tank containing 1 x 

running buffer.

The samples were prepared by mixing 40pg of sample with approximately 5 pi of reducing 

sample buffer and denaturing the proteins for 5 minutes at 95°C.

The gels were completely covered in running buffer in the tanks and the samples were 

loaded into the wells in the gels, 5pi of a ProtoMetrics protein ladder was added to one well 

in each gel. Once loaded, the gels were run at 100V until the dye front reached the bottom 

of the stacking gel, approximately 30-40 minutes, the voltage was then increased to 150V 

until the dye front reached 1cm from the bottom of the gel, approximately 1 hour. The gels 

were stained with coomassie blue for 30-60 minutes and the excess stain was removed by 

placing the gels in destain (10% [v/v] acetic acid and 30% [v/v] methanol in HPLC grade 

water) over night.
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2.2.4 SELDI MS

All of the samples were subjected to SELDI MS analysis in order to obtain protein 

fingerprints.

The spots of a 16 spot reverse phase C(,-\2 coated H50 protein chip were wetted with 2pi of 

20% [v/v] ACN and incubated for 2 minutes at room temperature in a humidity chamber. 

The samples were then placed onto the spots and incubated for 15 minutes at room 

temperature in a humidity chamber to allow proteins to bind to the chip surface. The spots 

were washed 5 times with 2pl of HPLC grade water and 0.8pl of SPA (saturated solution in 

50% ACN + 0.5% TFA) was then added to each spot. The ProteinChip reader, a PBS II 

mass analyser from Ciphergen®, was calibrated using the singly and doubly charged peaks 

of known calibrants made up to O.Olnmol in lOOpl of SPA. 0.5pl of this was added to each 

spot and enabled manual calibration of the mass spectrometer.

The SELDI MS was run in the positive ion mode with the time lag focusing switched on. 

The high mass was set at 25,000 Da with an optimization range of 1500 to 20,000 Da.

The pulse voltage was set at 3000V with a pulse lag time of 773ns and the detector voltage 

was at 1850V. The laser was fired 7 times at each position within a spot starting at position 

20 and ending at position 80. The first two shots were warming shots, to ablate some of the 

matrix, and these were fired at a laser intensity of 155 and a detector sensitivity of 6, this 

data was not included in the final spectra. The final five shots were taken using a laser 

intensity of 270 and detector sensitivity of 6 and these shots were included into the spectra. 

The raw spectral data was exported as a .csv file and converted into a .xls file.

2.2.4.1 SELDI MS o f melanoma cell lines and melanoma and breast cancer tissue

The SELDI MS parameters used were as described above in section 2.2.4 but with the 

following changes.

The cell line and tissue lysates were diluted down to 1 pg/pl in cell lysis buffer 2pi of which 

was added to each spot on the chip. The calibrant used was a mix containing insulin B 

chain (3494.65 Da), bovine Cytochrome C (12362 Da), Apomyoglobin (16952.3) and 

Tiysinogen (23981.1). After calibration the mass accuracy was 0.06% in automated mode.
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2.2.4.2 SELDI MS o f melanoma serum samples

The SELDI MS parameters used were as described above in section 2.2.4 but with the 

following changes, lpl of neat serum was placed onto the spots of a 24 spot reverse phase 

Ci6 coated H4 chips (Ciphergen®). The SELDI instrument was calibrated with the singly 

and doubly charged peaks of bovine superoxide dismutase (SOD) (15591.4 Da) and bovine 

ubiquitin (8564.8 Da) made up at 0.01 nmol in lOOpl of SPA. After calibration the mass 

accuracy of the instrument was 0.05% in automated mode.

2.2.4.3 SELDI MS o f melanoma cell line samples analysed for the SELDI vs MALDI study

The method used for preparing the samples is as described in section 2.2.4.1 except that 24 

spot reverse phase Ci6 coated H4 chips (Ciphergen®) were used.

The reproducibility of the SELDI MS methods used is shown visually below where 18 

aliquots of normal serum were spotted onto the surface of a H4 chip. The coefficients of 

variation (CV’s) for the 5 most prominent peaks was calculated and shown in table 2-1. 

Reproducibility of SELDI MS using H50 chips is shown in appendix 5 where the CV’s for 

the peak location and peak intensity of 5 calibrant peaks from a calibrant mix which was 

bound to 12 spots is calculated.

6 0 0 0  7 0 0 0  8 0 0 0  9 0 0 0

7 7 9 9 . 7 + H
,6 6 5 8 .5 + H

6 4 6 8 . 9 + H£
u

1 7 4 .5 + H .8964.1 3 4 . 5 + H

9 0 0 06 0 0 0 7 0 0 0 8 0 0 0
m/z

1 5
1 0 6 6 6 8 . 6 + H

S 401 ]
L6 4 ,5

9 8CL 4 6 . 5 + H
0

6 0 0 0 7 0 0 0 8 0 0 0 9 00  0m/z

Figure 2-1 Representation of reproducible SELDI spectra obtained from the aliquots of normal serum.
The spectra represent the reproducibility, in the 5-10 kDa mass range, o f the SELDI technique, where the 
peak pattern remains consistent when a sample is spotted onto multiple spots on a H4 SELDI chip.
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2.2.5 MALDI MS

The cell line lysates were prepared by diluting to 1 pg/pl with 0.1 % trifluoroacetic acid 

(TFA) to give a total volume of 30pl and cleaned up using a ZipTip method prior to MS 

analysis.

2.2.5.1 ZipTip Meth od

The diluted cell line lysates were prepared by Ci8 ZipTip clean-up using a robotics machine 

(XCISE, Proteome Systems, Shimadzu) to ensure consistency of sample processing. The 

samples were bound to the ZipTip with 25 cycles of binding, followed by two washes in 

0.1% TFA, where the washes were discarded. The samples were eluted off of the ZipTip in 

4 pi of 80% ACN + 0.1% TFA. 1 pi of the sample was then spotted onto the MALDI 

target followed by 1 pi of SPA matrix (10 mg/ml) and allowed to air dry. The samples 

were randomly spotted in duplicate on the MALDI target and then analysed by MALDI- 

TOF MS.

2.2.5.2 Mass Spectrometric A nalysis

MALDI-TOF experiments were performed on an Axima CFR+ mass spectrometer 

(Shimadzu, Manchester, UK). Close external calibration, where every four spots were 

calibrated to 1 calibrant spot, was performed using protein calibration mix 2 (Laser Bio 

Labs). The protein calibrants were: Cytochrome C (horse heart) m/z 12361.12, Myoglobin, 

(horse) m/z 16181.06, Trypsinogen m/z 23981.98 and Insulin beta chain m/z 3494.65 (3 pi 

of 5mM). Mass spectral data from 1-25 kDa was collected in ‘raster mode’ using linear 

TOF-MS. The raw mass spectral data was then processed for bioinformatics analysis.

The reproducibility of the MALDI method used is shown visually below in figure 2-2, 

where 18 aliquots of normal serum ZipTipped using C l8 ZipTips and then analysed by 

MALDI MS. The coefficients of variation (CV’s) for the 5 most prominent peaks were 

calculated and are shown in table 2-1.
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Figure 2-2 Representation of reproducible MALDI spectra obtained from aliquots of normal serum. 
Aliquots of normal human sera were cleaned up using Cl 8 ZipTips and analysed using MALDI MS. Similar 
peak pattersn shown for two of the spots represent the reproducibility of this technique.
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Peak (m/z) 

(SELDI)
6468 6663 7805 8977 9339

Mass 0.13 0 .1 0 0 .1 0 0 .1 1 0.09

Intensity 

Normalised to m/z 7805
18.2 18.4 - 2 0 .6 14.5

Peak (m/z) 

(MALDI)
6433 6630 7765 8916 9421

Mass 0.09 0.09 0.07 0.07 0.07

Intensity 

Normalized to m/z 7765
29.3 25.7 - 47.7 42.5

Table 2-1 Table showing the coefficients of variation (%) for mass and intensities of most prominent 
peaks in normal serum analysed by SELDI and MALDI MS, n=18.

2.2.6 Bioinformatic analysis

Once all of the data was obtained by SELDI MS it was analysed by artificial neural 

networks (ANNs). The exported mass spectral data containing the mass and intensity 

information from 1-25 kDa for each sample was merged into 1 file in Excel. The intensity 

data was binned across the 1-25 kDa mass range where the median intensity value across a 

3 Da range was determined to represent the intensity of a given mass at that mass value. 

The MALDI data was exported from the mass spectrometer as ASCII text files and then 

merged into 1 file in Excel. The intensity data was binned across the 1-25 kDa mass range 

where the median intensity value across a 1 Da range was determined to represent the 

intensity of a given mass at that mass value. The SELDI MSdata was smoothed differently 

from the MALDI data due to the increased sensitivity and resolution of the MALDI 

instrument. Once the data had been merged and smoothed, the mass columns for every 

sample were deleted leaving the mass values in only the first column, before the samples 

were exported as a .txt file and imported into the Statistica software. The text file was 

transformed before being saved as a Statitstica spreadsheet file, .sta, where the sample 

names were down the first column and the first row contained the smoothed m/z values, all 

of the remaining cells contained the relevant intenstity values.
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Once in this format the data was analysed by ANNs in 2 different ways. The first approach 

used the full data set to train the ANNs and then parameterization to identify the most 

important ions and the second approach, a step-wise approach, used each ion individually 

to train the ANNs.

A three layer multi-layer perceptron (MLP) ANN was used with a feed forward back 

propogation algorithm and a conjugate gradient descent algorithm. The data was scaled 

between 0  and 1 using mimimums and maximums, where the raw values were scaled 

linearly so that the smallest value in the dataset is the mimimum and the largest value is the 

maximum. This scaling method was used to ensure that all of the potential relationships 

amongst the variables were kept identical, therefore not introducing any bias into the data. 

The inputs used to train the ANNs represented the binned m/z values between the 1-25 kDa 

mass range together with their corresponding intensity values. Two hidden nodes were used 

in the hidden layer and the output later consisted of a single node, where one group of 

samples were coded as “ 1”, and the other group of samples were coded as “2 ”.

2.2.6.1 ANN analysis with parameterisation

The inputs into the ANNs consisted of 8000 variables specifying the intensity at given 

binned m/z values for every sample analysed by SELDI MS and 23001 variables specifying 

the intensity at given binned m/z values for every sample analysed by MALDI. The 

samples were split into training, test and blind data sets. The ANNs were trained using the 

training set, and the network error with regards to predictive performance was monitored 

with the test set, which was unseen during training. Once this error failed to improve for a 

pre-determined number of training events (epochs), training was terminated, and the model 

validated on the blind data set. The following parameters were set for all of the analyses 

performed in this study unless stated otherwise in each results chapter: A linear regression 

output function was used to map the output variables, where the sum-squared error function 

was used. The training was performed using a back-propagation (BP) algorithm until the 

error no longer improved for 1 0 ,0 0 0  epochs, followed by a conjugate gradient descent 

(CGD) algorithm for 5000 epochs at a learning rate of 0.1 and a momentum of 0.3. As well 

as setting the maximum number of epochs used for training it was also decided to specify 

the minimum level of error improvement over a given number of epochs. The ‘window’ 

was set to 2 0 0 0  with the training and selection values left at 0 , this means that if the
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training or selection errors deteriorated over 2000 epochs then the training should stop. As 

the error fluctuates during training, sometimes increasing only to decrease soon afterwards, 

adjusting the ‘window’ variable can take this into account. This allows the training to stop 

when a clear trend of deterioration has set in and not stopping the training prematurely due 

an increase in error caused by random noise. Also weight decay regularisation was set so 

that overfitting could be avoided. Overfitting can occur when a network has a large number 

of weights in comparison to the number of training cases and achieves a low training error 

even though the underlying model in the data has not been found. An overfitted model has 

a high curvature as it tends to model noise as well as the underlying data. Regularisation 

penalises networks with a large curvature and so encourages the development of a smoother 

model. The models were trained using random sample cross validation, where the samples 

were randomly split into three groups for every model; 60% for the training set, 2 0 % for 

the test set and 20% for the validation set. This whole process was repeated 100 times; so 

that each sample was treated as truly blind a number of times, enabling confidence intervals 

to be calculated for the network predictions on the blind data. The predicted outputs of the 

blind data for each sample over the 1 0 0  models were averaged and these values were 

plotted on a bar chart, with samples given an actual output value of 1 coloured in blue and 

samples with an actual output of 2 coloured in red. This population classification graph 

then allows the actual output of the samples to be easily compared to the output predicted 

by the ANNs. After the predicted outputs were averaged for each sample, the percentage of 

samples correctly classified, that is given a predicted output of less than 1.5 if its actual 

output is 1 and given a predicted output of greater than 1.5 if its actual output is 2, was 

calculated. The sensitivity (percentage of samples with outputs of 1 that were given 

predicted output values of less than 1.5) and specificity (percentage of samples with outputs 

of 2 that were given predicted output values of greater than 1.5) were also calculated. 

Initially, all of the variables from the dataset were used as inputs in a network and trained 

over 100 randomly selected subsets. The network predictions and mean squared error 

values for these predictions were then calculated for each model with regards to the blind 

dataset set and an average prediction along with confidence intervals could be calculated 

over the 100 models trained to determine how well the ANNs could predict using the full 

dataset, this was illustrated in a population classification graph. After this, parameterisation 

was carried out, in the form of a sensitivity analysis, to identify the importance of inputs in
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order to reduce the number of input variables so that the predictions could be improved 

upon. The sensitivity analysis removes each of the ions, in turn, from each of the models 

trained to determine if the error of that model increases or decreases with its loss. A ratio is 

calculated where the error once a particular ion has been removed is divided by the error 

with all of the input variables in. Therefore if an ion has a ratio value of less than one, it 

must have a negative influence on the training, if an ion has a ratio of greater than one it 

must have a positive influence; that is its removal causes the error to increase. Once the 

sensitivity ratios were calculated for each model, they were averaged over the 1 0 0  models 

and the top 1000 performing ions were selected as the input variables and the ANNs were 

retrained as before. The final results then show the average predictions and the average 

sensitivity ratio after using the top 1000 ions as the input variables to train 100 ANN 

models.

This approach is much quicker than the stepwise method and allows the user to determine if 

there are any predictive patterns in the proteomic data.

2.2.6.2 Step Wise Approach

The inputs into the ANNs consisted of 8000 variables specifying the intensity at given 

bimied m/z values for every sample analysed by SELDI MS. The ANNs were trained with 

1 hidden layer and 2 hidden nodes at a learning rate of 0.1 and a momentum of 0.5. The 

models were trained using random sample cross validation, as described above, using the 

training set, and the network error with regards to predictive performance was monitored 

with the test set, which was unseen during training. Once this error failed to improve for a 

pre-determined number of training events, training was terminated, and the model validated 

on the blind data set. This process was repeated 50 times; so that each sample was treated 

as truly blind a number of times, enabling confidence intervals to be calculated for the 

network predictions on blind data.

Initially, each variable from the dataset was used as an individual input in a network, thus 

creating 8000 individual models. These 8000 models were then trained over 50 randomly 

selected subsets and the network predictions and mean squared error values for these 

predictions were calculated for each model with regards to the separate validation set. The 

inputs were ranked in ascending order based on the mean squared error values for test data 

and the model input which performed with the lowest error was selected for inclusion into
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the subsequent step. Thus, approximately 1 million models were trained and tested at each 

step of model development. Next, each of the remaining inputs were then sequentially 

added to the previous best input, creating n-1 models each containing two inputs. Training 

was repeated and performance evaluated. The model which showed the best capabilities to 

model the data was then selected and the process repeated, creating n-2 models each 

containing three inputs. This process was repeated until no significant improvement was 

gained from the addition of further inputs resulting in a final model containing the 

proteomic pattern which most accurately predicted between the two outcomes.

Although this approach is slower than using a sensitivity to select the best performing ions, 

it is possible to identify predictive patterns by using a small number of input variables, 

therefore allowing the user to suggest possible biomarker ions that could be used for 

diagnostic or prognostic purposes.
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Chapter 3 Proteome profiling and bioinformatic analysis of 

melanoma cell lines carrying specific genetic 

mutations

3.1 Introduction

3.1.1 Combined genetic and proteomic analyses to identify the next 

generation of melanoma-specific markers

As previously described, cancer is caused by a complex set of genetic alterations occurring 

within a cell that leads to neoplastic transformation. Cancer cells continuously undergo 

genetic changes that cause the prolonged multistep sequence from early right through to the 

late clinical stages of the disease. The identification of genes that are involved in the 

development and progression of different cancers has been the focus of the majority of 

cancer related research to date, using techniques such as PCR, SEREX, Southern blotting, 

Northern blotting and DNA hybridization. More recently, the development of microarrays 

has provided a high-throughput expression profiling analysis with the aim of discovering 

genes and their pathways. With global analysis of gene expression it may be possible to 

identify previously unknown subtypes of cutaneous melanoma and predict phenotypic 

characteristics that may be important in identifying disease progression (Bittner el al. 

2000). Molecular profiling of melanoma has lead to the identification of previously 

unknown candidate genes involved in melanoma progression, Wnt-5A and B-raf (Gray- 

Schopfer et al. 2005; Weeraratna 2005). A study comparing the gene expression profiles of 

melanocytes and melanomas has identified a number of novel genes and pathways that are 

up or down regulated in melanoma, including FGF13, a new autocrine factor, Twist, a 

clinically relevant prognostic marker and Necdin, a melanoma growth suppressor (Floek et 

a l  2004).

As well as knowing which genes are involved in the progression of a cancer, it is also 

important to understand cellular behaviour and its response to external signals which will 

influence signalling pathways within a cell. Expression profiling can be used for the 

functional classification of dysregulated genes and a particular gene’s involvement in a 

biological pathway can be determined. Understanding the biological pathways involved is
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important to the development of reliable diagnostic markers and treatments (Nambiar et al. 

2004).

The progression of melanoma can be associated with known genetic mutations which cause 

abnormal growth and dissemination of the cancer cells (Chin 2003). Genetic studies have 

revealed the existence of a number of subtypes of melanoma that differ in their clinical 

behaviour (Rodolfo et al. 2004). For example, acral lentiginous melanomas (ALM) show 

very early and multiple gene amplifications compared to superficial spreading melanomas 

(SSM) (Bastian et al. 2000). Cytogenetic changes in chromosomes 13q and 17p occur 

frequently in SSM and lentigo maligna (LM) and chromosomal imbalances such as gains in 

lq, 6 p and 8 q have been shown in mucosal melanomas (Bastian et al. 2003; van Dijk et al. 

2003). By combining both genomic and proteomic approaches, new and improved 

molecular diagnostics may be developed that are capable of classifying patients into 

subgroups based on the phenotype of the tumour or response of a patient to a particular type 

of treatment.

3.1.2 Melanoma-specific genetic mutations

The present study was undertaken to analyse cell line proteomes associated with the 

principal genetic characteristics (genes) associated with melanoma.

There are a number of genes that have been detected as having abnormal expression in 

melanoma including, tp53, braf, n-ras, ctnnbBl (/3-catenin), c-myc, ape, wnt5a, pten, 

p!6/ink4a, cdk4, p l4 /a r f and cdlcn2A. Almost all of the genes that have been associated 

with melanoma so far encode products that play a role in one of the three main cellular 

processes; cell cycle regulation, DNA repair and receptor-mediated signal transduction (de 

Snoo et al. 2005). Those genes specific to this particular study are described below.

3.1.2.1 BRAF

The BRAF gene encodes a serine/threonine kinase which activates the ERK signalling 

pathway and is regulated by binding with the RAS protein. The ERK signalling pathway is 

involved in the regulation of gene expression, cytoskeletal rearrangements and co

ordination of responses to extracellular signals affecting proliferation, differentiation, 

senescence and apoptosis (Garnett et al. 2004). This pathway has been found to be
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hyperactivated in approximately 30% of cancers (Hoshino et al. 1999) and Braf has been 

shown to be mutated in 7% of cancers. The V599E mutation of Braf lies within the kinase 

domain of the protein and mimics the phosphorylation of Braf inducing the activation of 

MEK and so causing the over activation of the RAS-ERK pathway (Mercer et al. 2003). 

The highest frequency of Braf mutations occurs in malignant melanoma where 70% of 

melanomas have an activating mutation in this gene. Over 40 different mis-sense mutations 

in the Braf gene have been identified across a number of different cancers, but one mutation 

in particular predominates. The substitution of a thymidine for an adenosine at nucleotide 

1796 causes the conversion of the amino-acid valine (V599) for glutamine and this serves 

as a molecular marker for approximately 50% of melanomas (Davies et al. 2002). Braf 

mutations can be detected in the radial growth phase of melanoma so are an early event in 

melanoma development. They have also been associated with melanoma progression as a 

high frequency of mutations have been detected in invasive melanoma and also an 

association between Braf mutations and metastatic melanoma has been detected Shinozaki 

et al. 2004. The frequency of Braf mutations in melanoma varies according to the 

histological subtype and location of the primary tumour, for example in mucosal 

melanomas, which include sinonasal, laryngeal and anogenital melanomas, Braf mutations 

only occur in 6 % of cases. In superficial spreading melanoma and nodular melanoma of 

the skin Braf mutations occur in 50% of cases, and in 11% of lentigo maligna melanoma 

cases (Sasaki et al. 2004). The overall frequency of Braf mutations in melanocytic nevi is 

similar to that in melanomas and also varies according to histological subtype, ranging from 

0% in Spitz nevi to 90% in intradennal nevi (Yazdi et al. 2003).

3.1.2.2 TP53

TP53 is found on chromosome 17pl3 and is known as a universal tumour suppressor gene 

that is regulated by pl4/arf. It has many functions within the cell including transcriptional 

and cell cycle control and has been shown to bind to the protein product of the Hdm-2 

human oncogene (Mdm-2 in mice) (Castellano & Parmiani 1999; Momand et al. 1992). 

The Hdm-2 oncogene has been shown to be amplified and overexpressed in some human 

sarcomas. Its protein product binds to the p53 protein and blocks its ability to act as a 

transcription factor (Oliner et al. 1992). HDM-2 has also been shown to be 

transcriptionally regulated by p53 forming an autoregulatory loop where increased p53
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activity increases HDM-2 levels which in turn decreases p53 activity resulting in declining 

HDM-2 levels (Picksley et al. 1993; Wu et al. 1993). This relationship can be disrupted in 

several ways; the tp53 gene can be mutated so that the cell does not make HDM-2 proteins 

(occurring in 50-55% of cancers); the Hdm-2 gene can be amplified so that it blocks p53 

functions (found in 30% of sarcomas); phosphorylation of p53 can occur on or near the 

p5 3-HDM-2 binding sites and disrupt their interaction; HDM-2 can be inactivated by the 

ARF protein or by the interaction with some ribosomal proteins (Lohrum et al. 2003; Unger 

et al. 1999).

P21/Waf-1/Cip-1 is another gene regulated by the p53 transcription factor (el-Deiry et al. 

1993). One function of the p21 protein is to bind to the cyclin E/cdk2 protein kinase that 

acts in the late G1 phase of the cell cycle and blocks its activity and is, therefore, one of the 

reasons why p53 activation can lead to arrest in the G1 phase of the cell cycle (Harper et al. 

1995). There are also a set of genes regulated by p53 that promote apoptosis by helping to 

activate the release of cytochrome c from the mitochondria and contributing to the 

activation of caspase 9 and 3. P53 can also activate the increase in levels of Fas ligand and 

the KILLER DR receptor which then activates caspase 8 and eventually leads to apoptosis. 

P53 also regulates some genes that are involved in DNA repair as well as those that can 

alter the extracellular matrix and so affects the regulation of cell division, metastasis and 

angiogenesis.

82% of somatic mutations in the tp53 gene are point mutations and the other 18% are made 

up of insertions, deletions or rearrangements. The most common point mutations have 

been localised in six hotspots within the tp53 gene at codons 175, 245, 248, 249, 273 and 

282 causing either the elimination of critical contacts with DNA or destabilisation of the 

protein structures required for DNA binding (Cho et al. 1994). Mutations in the tp53 gene 

have been found to be an early genetic event in the development of UV-induced skin 

cancers (Ziegler et al. 1994).

3.1.2.3 N-RAS

Ras proteins have been briefly described in section 1.1.2 and as a group are comprised of 

20-25 kDa proteins that are important in regulating growth and differentiation. The N-ras 

gene, along with H-ras and K-ras, is expressed in every tissue and cell type, however the 

type of organ and the stage of development denotes the variation in these gene’s expression
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patterns (Crespo et al. 2000). Ras gene products affect a number of downstream signalling 

pathways through a number of effectors that interact with Ras-GTP, these include Raf, 

PI3K and Ral-GDS (Campbell et al. 1998). Raf, as already described, stimulates the 

activation of MEK which then activates the ERK pathway. Phosphatidylinositol 3-kinase 

(PI3K) activates Akt/PKB and p70S6K which take part in transcriptional control. The 

activation of Akt also generates an anti-apoptotic signal (Bos 1998). Mutated ras genes can 

be found in up to 35% of human tumours, more specifically, mutated N-ras can be found in 

20% of melanoma lesions. N-ras mutations have also been found in naevi whereas K-ras 

and H-ras have been shown to be only occasionally involved in melanoma (Polsky et al. 

2003). Activating mutations in the N-ras gene cause the reduction of intrinsic GTPase 

activity and the resistance against molecules that induce GTPase activity.

3.1.2.4 CDKN2A (P16INK4A)

P I6  is a cyclin dependant kinase inhibitor (CDKI) that can bind to both cdk4 and cdk6  and 

inhibits the catalytic activity of the cdk4-6/cyclin D enzyme complex, which is required for 

the phosphorylation of Rb (Rocco et al. 2001). The suppression of the retinoblastoma 

protein caused by the inactivation of p l6 INK4A is an early event commonly seen in 

melanomas (Kamb et al. 1994b). By inhibiting the phosphorylation of Rb the formation of 

the Rb-E2F repressive transcriptional complex is promoted resulting in the prevention of 

E2F dependant transcription and so blocking the progression of the cell cycle at the Gl/S 

phase (Zhang et al. 1999). Many studies have identified a high frequency of p l6 1NK4A 

deletion in a number of human tumour cell lines including melanoma, oesophageal, lung, 

head and neck, breast and ovarian cancers (Kamb et al. 1994a; Nobori et al. 1994). Most 

tumour suppressor genes have been found to be inactivated by point mutations; however, 

small homozygous deletions are a major mechanism for the inactivation of p l6 INK4A. 

Homozygous deletions of p l6 INK4A have been detected in a number of primary tumours 

including bladder, prostate and breast cancers as well as melanoma, sarcoma and glioma 

(Cairns et al. 1995; Ohta et al. 1994). As well as homozygous deletions and rare 

inactivating mutations of p l6 INK4A, inappropriate methylation of p l6 INK4A promoter region 

has also been recognized as a mechanism of silencing this gene. The methylation of the 5’ 

CpG island of p l6 INK4A has been associated with a complete transcriptional block of this 

gene in a number of cancers including head and neck, lung, brain, colon and bladder cancer
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(Gonzalez-Zulueta et al. 1995; Herman et al. 1995). The inactivation rate of p l6 INK4A in 

melanoma cell lines due to homozygous deletions, point mutations or promoter 

hypermethylation is high, at approximately 80%, whereas it is only at about 1 0 % in 

primary melanomas (Castellano et al. 1997). It has been suggested that the absence of 

p l6 INK4A gives a growth advantage as the loss of expression correlates with the progression 

of invasive melanoma (Reed et al. 1995).

It is now known that all melanoma cases that have a homozygous deletion at exon 1 p of 

pJ6JNK4A win aiso iose p l4 ARh\  as they share this exon. P14ARF has been shown to inhibit 

p53 degradation, therefore loss of the p l4 ARF tumour suppressor will result in the abnormal 

and uncontrolled degradation of p53 resulting in its inactivation (Pomerantz et al. 1998).

3.1.2.5 CDK4

It has been revealed that some of the molecules that are most often altered in cancer are 

those that are involved in the regulation of the Gl/S phase of the cell cycle. It is at this 

phase that cells become committed to a new round of cell division. Cyclin dependent 

kinase-4 (CDK-4) functions in the Gl/S phase of the cell cycle and it is driven by 3 D type 

cyclins: D l, D2 and D3. Together Cyclin D-CDK 4 targets pRb and its related proteins by 

phosphorylating them, causing their inactivation (Harbour et al. 1999). The inactivation of 

the Rb proteins allows the transcription of the 2F-controlled genes leading, eventually, to 

the initiation of the S phase (Bartek et al. 2001; Sherr 2000). The CDK-Cyclin 

D/INK4/pRb/E2F cascade has been found to be altered, by either mutations in the genes 

that encode these proteins or their upstream regulators, in more than 80% of human cancers 

(Ortega et al. 2002).

CDK 4/6-cyclin D also binds the Cip/Kip family of cell cycle inhibitors, preventing them 

from binding and inactivating CDK-2-cyclin E and thus allowing the further progression of 

G1 (Sherr et al. 1999). Cdk4 has been found to be amplified or overexpressed in a wide 

variety of tumours including gliomas, sarcomas and breast tumours (An et al. 1999; Perry 

et al. 1999; Wei et al. 1999). Point mutations in Cdk4 and Cdk6 prevent the binding of the 

INK4 cell cycle inhibitors but still allow the binding of cyclin Dl causing the CDK4/6 

kinase activity to remain ‘switched on’ at inappropriate times. In the absence of the 

negative regulation by INK4 of CDK 4/6, the phosphorylation of Rb proteins and the 

progression of the cell cycle through the Gl/S phase is allowed (Ranade et al. 1995). Cdk4
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has been recently identified as a melanoma susceptibility gene, although its overall role in 

familial melanoma is low (Soufir et al. 1998).

3.1.2.6 PTEN

Pten is a tumour suppressor gene that is located on chromosome 10q23 and encodes a 

phosphatase which can dephosphorylate proteins but primarily dephosphorylates the lipid 

phosphatidylinositol-3,4,5-tris-phosphate (PIP3) (Myers et al. 1998). PIP3 is undetectable in 

quiescent cells but increases in response to growth factors or extracellular matrix-dependant 

signalling, which recruit phosphatidylinositol-3-kinase (PI3K). PTEN negatively regulates 

the Akt/PI3K pathway which is important for cell growth, proliferation and survival. The 

indirect regulation of this pathway by PTEN occurs when PTEN dephosphorylates PIP3. 

PIP3 is, indirectly, a major activator of Akt and so by keeping levels of PIP3 low via its 

dephosphorylation, phosphoinositide-dependant kinase-1 (PDK-1) is not activated which in 

turn prevents the phosphorylation and subsequent activation of Akt. By inhibiting Akt, 

apoptosis is stimulated and the cell cycle is halted at the Gl/S phase (Wu et al. 1998). 

Genetic inactivation of Pten leads to the overactivation of Akt and results in the loss of 

proliferative and apoptotic control (Wu et al. 2003b).

Loss of homozygosity 011 regions of chromosome lOq have been observed in a number of 

cancer types including 30-50% of melanomas (Healy et al. 1995; Herbst et al. 1994). 

Studies have also shown mutations of Pten in 30-40% of melanoma cell lines and 

approximately 10% of primary melanomas (Guldberg et al. 1997; Tsao et al. 1998).

3.1.2.7 CTNNB1 (/3-catenin)

CTNNB1 encodes for the protein P-catenin which is the central and essential component in 

the Wnt pathway. This is one of the few pathways that interact to regulate proliferation, 

differentiation and cell-cell interactions (Brembeck et al. 2006). p-catenin has two 

functions, firstly in cell adhesion and secondly in transcriptional regulation and both of 

these functions are crucial for maintaining normal cellular function. The promotion of 

transcriptional regulation by P-catenin is caused by deregulation of normal cellular control 

leading to the deregulation in the phosphorylation of its tyrosine residues; this 

phosphorylation also causes p-catenin to lose its function in adhesion. This deregulation is
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seen in the development and progression of many malignancies. In the Wnt signalling 

pathway, p-catenin acts as a transcriptional activator in conjunction with LEF/TCF binding 

proteins (Behrens et al. 1996). In cell adhesion, p-catenin functions at the plasma 

membrane by linking E-cadherin to a-catenin. The E-cadherin -  p-catenin -  a-catenin 

complex at adherins junctions forms a dynamic link to the cytoskeleton (Drees et al. 2005; 

Yamada et al. 2005). The loss of cell-cell adhesion and increased cell motility is a feature 

of tumour progression. It occurs, in part, due to the loss in function of E-cadherin causing 

the dissociation of the E-cadherin -  P-catenin -  a-catenin complex from the membrane 

(Perl et al. 1998). The dissociation of adherins junctions can also be induced by the 

phosphorylation of any of the components of this complex, including p-catenin (Roura et 

al. 1999). Most P-catenin mutations occur in or around exon 3 of its gene affecting its 

phosphorylation site and so making it resistant to degradation (Morin et al. 1997; Polakis 

1999). Activating mutations in the p-catenin gene have been detected in approximately 

10% of colorectal cancers and 40% of hepatocellular carcinomas (Legoix et al. 1999; 

Samowitz etal. 1999).

All of these mutations are important in the development and progression of melanoma at 

the genetic level; it is difficult, however, to determine what is actually happening at the 

functional level. As mentioned previously, most studies have reported gene mutations in 

melanoma but differences in protein fingerprints in relation to these mutations has not been 

reported; therefore the aim of this aspect of my research was to assess proteomic 

differences in cell lines according to their known genetic mutations, specifically tp53, Braf 

or p!6 INK4A. Bioinformatics analysis was used to deconvolute the large amount of mass 

spectral data generated.

3.2 Methods

A more detailed account of the methods used for this study is given in Chapter 2 and a 

schematic representation, showing how the cell line samples were processed for mass 

spectrometry and ANN analysis, is shown in figure 3-1.

All of the cell lines processed by SELDI MS were analysed by Dr Guldberg and Dr Thor 

Straten for the presence of mutations of known melanoma associated genes, as part of the
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OISTER project. The method used for obtaining the gene mutation information from each 

of the cell lines is described below.

Exons 11 and 15 of Braf and exons 4-10 of tp53 were scanned for mutations by PCR in 

combination with DGGE, as previously described (Christensen et al. 2005; Guldberg et al. 

1997). Exons la , 2 and 3 of the cdlm2A genewere examined for deletions by PCR analysis 

and for mutations by single-stranded conformation polymorphism (SSCP) analysis, as 

previously described (Gronbaek et al. 2000). Abnormal DGGE and SSCP bands were 

excised from the gels, and the DNA was reamplified and sequenced using a 33P-end-labeled 

primer and the ThermoPrime Cycle Sequencing Kit (Amersham Life Science, Cleveland, 

OH). The methylation status of the cdlm2A promoter CpG island was examined by 

methylation-specific PCR, using previously described primers (Herman et al. 1996).
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85 Melanoma Cell Lines

i

SELDI MS

Quality control 
1D S D S PAGE

Bioinformatic analysis

Protein Quantitation 
Bio-Rad Protein Microassay

SELDI data exported a s csv files. Data binned to every 3  
Da = 8000 data points between 1-25 kDa

i
tp53 mutation analysis Braf mutation analysis pl6  mutation analysis

I
Artificial Neural Networks 

-  Stepwise analysis
ANNs with parameterisation 

(train 100 models with all 8000 ions)

Sensitivity analysis to select top 1000 ions

ANN analysis - (train 100 models with top 1000 ions)

Calculate classification of cell lines a s  average of predicted output over 100 models

Sensitivity analysis of top 1000 ions to determine the most important ions

Figure 3-1 A schematic representation showing the flow of sample preparation and analysis methods 
used in this study
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3.3 Results

3.3.1 Protein quantification and sample quality control.

Protein quantification was performed using the Bio-Rad protein microassay as described in 

section 2.2.2. A standard curve was determined by plotting the absorbance at 595nm 

versus the total amount of BSA protein (pg). An equation of the line was determined 

which is calculated by the least squares fit for a line represented by the following equation y  

-  mx+b, where m is the gradient of the line, b is the y-intercept, x is the absorbance value 

and y  is the amount of protein in pg. All of the protein lysates were assayed in duplicate 

with each reading taken in duplicate, giving four absorbance readings per sample. The 

average absorbance was calculated and subtracted from the absorbance value of the reagent 

blank, giving a final absorbance value which was then substituted into the equation 

allowing the amount of protein, in pg, in the assay tube to be determined. As the sample 

was made up to an 800pl volume, the amount of protein given in pg was divided by 0.8 to 

give the amount of protein in pg/ml. The amount of protein in pg/ml needs to be multiplied 

by the dilution factor which, if 5 pi of neat sample was used and made up to 800pl with 

water, would be 800^-5 = 160, giving the protein in pg/ml, which is then divided by 1000 to 

give the amount of protein in pg/pl; these units were used throughout the study. Figure 3-2 

shows an example of a standard curve calculated using BSA, an example of a calculation to 

determine the amount of protein in one of the cell line lysates and finally the protein 

concentrations of three cell line lysates. To determine whether any protein degradation had 

occurred during the production of the cell line lysates, the lysates were run through a 12.5% 

resolving gel to assess the banding pattern. The bands of three cell lines, MEWO, 

ESTDAB 005 and Ma Mel 39a, are shown in figure 3-3. The data shown in figures 3-2 and 

3-3 are representative of the results obtained for all of the cell line lysates generated in this 

study. An adequate amount of protein was extracted from the cell lines as shown by the 

protein assay. The gels shown in figure 3-3 show the same bands for all three of the cell 

lines indicating that the lysates were of similar quality. Any non-specific degradation of a 

sample would cause the most prominent bands to fade or disappear affecting the high 

abundant as well as the low abundant proteins.

Figure 3-4 shows the morphology of three of the cell lines in culture, at xlO and x20 

magnification, depicting the differences between established melanoma cell lines. It can be
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assumed that each cell line will generate a slightly different proteomie profile based on the 

fact that the morphology of the cell lines are different in culture. Their morphologies are 

either octagonal, for example cell lines ESTDAB 005 and Ma Mel 39a shown in figure 3-4, 

or epithelial-like as shown by cell line ME WO. Although the shapes of the cells are either 

one of two types, the size of the cell, size of the nucleus and the granularity of the cells 

contribute to the different morphologies seen across all 85 cell lines grown in culture.

Once the protein concentration was determined and the sample quality verified, the protein 

lysates were analysed by SELDI MS.
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Graph to show the absorbance of tight at 595nm of a protein standard, BSA, at different 
concentrations
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absorbance at 595 nm

b)
Calculation of the amount of protein in the ME WO cell line lysate.
Firstly the average of the 4 absorbance readings was calculated:

(0.4645 + 0.4426 + 0.4597 + 0.4503)/4 = 0.4543

Then the absorbance of the negative control was subtracted:

0.4543 -  0.2328 = 0.2215

This value was then put into the equation of the standard curve, as shown on the above graph: 

y  = 260.76* + 0.8605 

y  = (260.76 * 0.2215) + 0.8605 

y  = 58.62pg

The amount of protein in 1 ml was calculated:

58.62/0.8 = 73.28pg/ml

This was then multiplied by the dilution factor:

73.28 * 160 = 11724.20pg/ml 

The value was then shown in pg/pl:

11724.20 / 1000 = 11.72pg/pl

c)
Protein concentrations of three of the cell line lysates:
MEWO = 11.72pg/pl 
ESTDAB 005 = 10.43jig/pl 
MaMel 39a = 5.34pg/pl

Figure 3-2 Figure showing the process of protein estimation in all samples analysed.
A) shows the standard curve of the absorbance of light at 595nm of BSA standards at different concentrations,
b) shows how the concentration of cell line lysates is calculated using the equation of the standard curve and
c) shows the amount of protein estimatted in three cell line lysates, MEWO, ESTDAB 005 and Ma Mel 39a.
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Figure 3-3 1-D SDS PAGE of three cell line lysates, MEWO, ESTDAB 005 and Ma Mel 39a.
The gel presented above represents an example of the data obtained from all of the cell line lysates used in 
this study. 40pg of each lysate sample was resolved in a 12.5% resolving gels and stained with coomasie blue 
to determine if degradation of the proteins occurred during sample preparation.
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a

b

Figure 3-4 Photographs of three cell lines in culture.
This figure shows the morphology of three of the melanoma cell lines in culture at xlO and x20 magnification 
as a representation of the diverse morphology seen in all of the cell lines used in this study, a) shows 
ESTDAB 005 cell line, b) shows MEWO cell line and c) shows Ma Mel 39a cell line.

Ma Mel 39a xlO magnification Ma Mel 39a x20 magnification

ESTDAB 005 xlO magnification ESTDAB 005 x20 magnification

MEWO xlO magnification MEWO x20 magnification
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3.3.2 SELDI MS

The protocol used is described in section 2.2.4.1, but briefly the samples were bound to the 

hydrophobic surface on a H50 SELDI chip and analysed using a PBS II mass analyzer. 

Figure 3-5, shows 2 of the cell lines analysed in duplicate to represent the reproducibility of 

the SELDI MS method.

m/z
5000 10000 15000 20000

13842.4+H I

11340.2+H

5649.8+H

6279.1+H
1'|335.1+fl

(coup 800(2)]

15454.0+H

13846"8+H ” 1
11334.5+H

8844.9+H

1Q209.2+H

7.5 11355.3+H

« 2.5 10235.0+H

2000015000100005000 m/z

Figure 3-5 Figure showing 4 SELDI MS profiles in the 5000-20000 Da mass range representing the 
reproducibility of the SELDI MS technique.
This figure shows two cell line samples, COLO 800 and FM 93/2 spotted in duplicate on different SELDI 
chips to highlight the low chip-to-chip variation. The green boxes highlight the similarity of the profiles of 
COLO 800 cell line when run in duplicate and the blue boxes show the peak similarities in the duplicated FM 
93/2 cell line.
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This shows the reproducibility of the protein profiles when samples are spotted on different 

chips but analysed using the same automated protocols. This was also performed to check 

on variability between applying the sample onto different spots, chip to chip variability and 

to determine machine stability. The profile patterns are similar between the duplicates but 

the masses of the peaks and the peak intensities are visually different. The differences in 

the masses are due to the mass accuracy of the PBS II mass analyser and are taken into 

consideration when analysing the data. The variability in the intensities of the peaks is 

accounted for when the data is prepared for neural network analysis.

Figure 3.6 shows the SELDI MS profiles obtained from 4 cell lines, COLO 818, FM55 M2, 

GR-M and MEWO, containing mutations in their tp53 gene overlaid on a profiled of a cell 

line without a tp53 mutation, Mel SOE. The profiles show the 2000-10000 Da mass range, 

although data up to 30kDa was collected. The green boxes highlight peaks that are visibly 

similar in this mass range, whereas the blue boxes highlight where a peak is present in one 

of the profiles but not in the other. Table 3-1 shows all of the peaks that can be seen in all 

of the profiles shown in figure 3-6, with peaks that are similar between the cell lines 

containing a tp53 mutation and Mel SOE highlighted in red. There are no overall 

similarities between cell lines with or without tp53 mutations that can be observed visually 

except for one peak present in Mel SOE at 7450.6 Da that is not visible in any of the cell 

lines containing a tp53 mutation.
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Figure 3-6 SELDI MS profiles in the 2000-10000 Da range of cell lines with or without tp53 mutations.
The 4 profiles show Mel SOE as an example of a profile taken from a cell line without a tp53 mutation and 
this is overlaid with profiles taken from cell lines with a tp53 mutation; a) shows the cell line COLO 818, b) 
shows cell line FM55 M2, c) shows cell line GR-M and d) shows cell line MEWO. The green boxes show the 
similarities between the tp53 mutated cell lines and Mel SOE and the blue boxes show the differences 
between the tp53 mutated cell lines and Mel SOE.
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Mel SOE 
(wt tp53)

COLO 818 
(mut tp53)

FM 55M2 
(mut tp53)

GR-M 
(mut tp53)

MEWO 
(mut tp53)

3765.2 3770.5 - - -

4299.9 4311.1 - - 4303.0

- - 4364.8 - -

- - 4372.3 - -

- - - - 4669.9

- - - - 4868.9

5351.2 5356.8 5360.5 5379.8 5351.6

5642.5 5646.2 5650.1 5658.6 5645.1

- - - - 6110.5

6262.3 6266.2 - 6260.6 6260.5

- - 6349.4 - -

6530.3 6537.5 - - -

- - - 6560.3 -

- - 6594.9 - -

- 6639.0 - - -

6889.8 6888.2 - 6892.0

6987.7 6998.0 6972.6 7028.9 6992.6

7450.6 7422.3 - - 7430.0

7666.6 7667.6 - 7687.9 -

8074.2 8077.7 - 8098.2 8073.2

9258.2 _ _ 9363.3

Table 3-1 Values of the main peaks observed in the spectra shown in figure 3-6.
The table shows the main peaks (values given in Daltons) observed in the spectra obtained from a cell line 
with a tp53 mutation and cell lines without tp53 mutations, in the 2000-10000 Da mass range. Peaks that are 
similar between samples are shown in the same row, although the m/z values may be slightly different due to 
the mass accuracy of the instrument. Peaks that are observed in both the spectra of cell lines with wild-type 
tp53 and mutated tp53 are highlighted in red.
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Figure 3.7 shows the SELDI MS profiles obtained from 4 cell lines, COLO 794, ESTDAB 

005, WM 139 and WM 1205, containing Braf mutations overlaid on a profile of a cell line 

without a Braf mutation, where the green boxes highlight peaks that are similar between 

spectra and the blue boxes highlight the differences. Table 3-2 shows all of the peaks 

visible in the profiles shown in figure 3-7, with peaks that are similar between the cell lines 

containing a Braf mutation and FM-3 highlighted in red. There are no overall similarities 

between cell lines with or without Braf mutations that can be observed visually but there 

are two peaks present in FM-3 at 5129.1 and 5883.7 Da that are not visible in any of the 

cell lines containing a Braf mutation.

Figure 3.8 shows the SELDI MS profiles obtained from cell lines ESTDAB 107, Ma Mel 

39a, WM 852 and NW 145 which contain mutations in their p l6 1NK4A gene, overlaid on the 

cell line FM 79, which does not have any p l6 1NK4A mutations, where similarities and 

differences are highlighted by green and blue boxes, respectively. Peaks visible in the 

spectra shown in figure 3-8 are listed in table 3-3, where peaks of similar m/z values from 

both types of cell line shows are highlighted in red. The results show that there are five 

peaks present in FM79 at 2923.9, 3398.1, 3899.9, 4521.1 and 5923.5 Da that are not visible 

in any of the cell lines that contain a p l6 INK4A mutation.

Due to the large amount of data generated in this study, the complexity of the spectra 

obtained from SELDI MS profiling and a high sample number, it was difficult to 

distinguish between the protein profiles of a cell line that has a particular genetic mutation 

and hence which ions are important and are associated with the mutation. Also, visual 

differences between cell lines with or without known mutations do not necessarily mean 

that they will be important predictive markers. Therefore, the mass spectrometry data was 

mined using artificial neural networks to derive and recognise patterns that associate with a 

given genotypic characterisitic.
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Figure 3-7 SELDI MS profiles in the 2000-10000 Da range of cell lines with or without Braf mutations.
All 4 profiles show FM-3 as an example of a profile taken from a cell line without a Braf mutation and this is 
overlaid with profiles taken from cell lines with a Braf mutation; a) shows the cell line COLO 794, b) shows 
ESTDAB 005, c) shows cell line WM 139 and d) shows cell line WM 1205. The green boxes show the 
similarities between the cell lines containing the mutations and Mel SOE and the blue boxes show the 
differences between the cell lines containing the mutations and Mel SOE.
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FM-3 COLO 794 ESTDAB 005 WM 139 WM 1205
(wt braf) (mut braf) (mut braf) (mut braf) (mut braf)

- - 2173.4 - -

3812.6 3830.0 - - -

- - 4113.6 4117.2
4310.0 4306.4 4333.6 4302.9 4307.0

- - - 4497.3 -

- 4575.7 - - -

4671.6 4676.1 4675.6 - 4673.5
4880.0 4886.2 4885.2 4863.7 4900.5
5129.1 5091.6 - - -

5357.5 5350.9 5356.1 5354.5 5358.0
5652.4 5657.3 5648 5648.1 5649.3
5883.7 - - - -

6266.5 6271.6 6270.7 6265.1 6273.9
6536.6 - 6542.3 6537.1 6546.7

- 6646.4 6645.7 - 6644.2
6906.6 6895.4 6900.6 - 6914.5
6994.0 - 7000.9 6994.3 7003.1

- - - 7229.1 -

7432.9 7458.9 7438.4 - 7438.7
7711.3 7658.3 7687.9 7654.2 7662.3
7860.9 - - - 7875.5
8079.4 - 8085.0 8081.1 8093.8

- 8622.1 - - -

- - 8703.7 - -

- - - 8790.7 -

8830.4 8809.4 8820.6 - -

- 9160.7 - 9167.1 -

9266.0 - - - 9251.6
- - 9383.2 . 9397.9

Table 3-2 Values of the main peaks observed in the spectra shown in figure 3-7.
The table shows the main peaks (values given in Daltons) observed in the spectra obtained from a cell line 
with a braf mutation and cell lines without braf mutations, in the 2000-10000 Da mass range. Peaks that are 
similar between samples are shown in the same row, although the m/z values may be slightly different due to 
the mass accuracy of the instrument. Peaks that are observed in both the spectra of cell lines with wild-type 
braf and mutated braf are highlighted in red.
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Figure 3-8 SELDI MS profiles in the 2000-10000 Da range of cell lines with or without p l6 ,SK4A 
mutations.
All 4 profiles show FM 79 as an example of a profile taken from a cell line without a pI6lhK4A mutation and 
this is overlaid with profiles taken from cell lines with a p l6 ]hK4A mutation; a) shows ESTDAB 047, b) shows 
Ma Mel 39a, c) shows cell line WM 852 and d) shows cell line NW 145. The green boxes show the 
similarities between the cell lines containing the mutations and Mel SOE and the blue boxes show the 
differences between the cell lines containing the mutations and Mel SOE.
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FM-79 ESTDAB 047 Ma Mel 39a WM 852 NW 145
(wt p !6 INK4°)_______(mut p l6 INK4a) (mut p !6 INK4a) (mut p l6 ,NK4a) (mut p l6 INK4a)

- 2059.0 - - -

2495.4 2498.6 - - -

- 2799.8 - - -

2923.9 2887.1 - - -

- 3190.6 - - -

3398.1 3369.2 - - -

- 3756.9 - - -

3899.9 3843.2 - - -

4115.3 4140.1 4118.7 - -

4325.4 4326.6 4309.7 4299.9 4303.5
4521.1 - - - -

4862.8 4791.8 - - 4871.1
- 5045.3 4905.5 - -

5358.0 5368.6 5362.2 5372.6 5365.2
5643.4 5658.8 5648.8 5653.6 5663.3

- 5707.6 - - -

5923.5 - - - -

6127.5 - 6124.3 - -

6230.4 6282.6 6239.5 6252.5 6286.1
- - 6345.8 - -

6540.4 - 6550.7 6540.9 6535.4
- 6886.8 6896.0 6910.2 -

7002.7 7008.2 7005.7 6995.5 7003.7
7431.4 7448.2 7448.1 7442.5 7419.5
7670.9 - 7666.6 7659.6 7662.0
7869.2 - 7883.3 7885.6 -

8076.4 - 8093.4 8073.7 8081.8
8708.8 - 8720.2 8713.2 -

- - - 8777.2 -

8826.8 - 8845.2 - 8832.9
- - - - 9149.5
- - - 9257.0 -

9378.7 - 9385.2 - -

- 9754.5 - - -

Table 3-3 Values of the main peaks observed in the spectra shown in figure 3-8.
The table shows the main peaks (values given in Daltons) observed in the spectra obtained from a cell line 
with a p l6 lSK4a mutation and cell lines without p l6 ,kK4a mutations, in the 2000-10000 Da mass range. Peaks 
that are similar between samples are shown in the same row, although the m/z values may be slightly different 
due to the mass accuracy o f the instrument. Peaks that are observed in both the spectra o f cell lines with wild- 
type p l6 lSK4a and mutated p l6 ,Sk4a are highlighted in red.

3.3.3 Bioinformatic analysis

As genetic mutation information was made available for the cell lines, it was decided to use 

ANNs to data mine the SELDI spectral profiles to determine whether cell lines containing 

different known melanoma genetic mutations associated with a ‘protein fingerprint’ could 

be found. Eighty-five melanoma cell lines were analysed, and all had mutations in more
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than one melanoma specific genes. Analysis was performed for the presence or absence of 

a specific genetic mutation rather than the presence or absence of multiple mutations, due 

to the low sample number. The following summarises the number of cell lines containing a 

mutation in a specific gene, although these cell lines would have also had mutations in 

other genes:

Braf mutations -  68 with mutations and 27 without 

Nras mutations -  15 with mutations and 70 without 

tp53 mutations -  24 with mutations and 61 without 

cdk4 mutations -  8 with mutations and 77 without 

ctnnbl mutations -  4 with mutations and 81 without 

Pten mutations/deletions -  23 with and 62 without 

p l6 INK4A deletions -  45 with deletions and 26 without

Due to time constraints it was decided that the SELDI MS data obtained from the profiling 

of cell line lysates would be mined for presence or absence of mutation in only three genes, 

tp53, Braf and p i  6INK4A.

The SELDI MS data was exported into EXCEL as csv files and converted into .xls files.

The data was merged into one file and smoothed by taking the median intensity value at

every 3 Da, giving a total of 8000 ions between 1000-25000 Da. A multi-layer perceptron 

was trained with a back propogation algorithm and conjugate gradient descent, using 

Statistica software, on the smoothed mass/intensity data, using the ion intensity profile as 

the input variables. One hidden layer was used and the two groups were assigned either a 1 

or 2 as the output for classification. It was then deemed beneficial to remove any ions, 

using a sensitivity analysis, that were less important to the ANNs for prediction and then 

retrain the ANNs to determine if the % correct prediction in all 100 models can be 

increased. To improve upon the predictions as well as speed up the training process it was 

decided that the top 1000 ions would be used for further neural network training. The 

protocol used to analyse the data is described in more detail in section 2.2.6. The following 

sections discuss in detail the results obtained from each of the neural network analyses 

performed.
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3.3.3.1 Braf analysis

The m/z and intensity data from 1-25 kDa of 85 cell lines were used to train 100 ANN 

models using different training, test and blind data splits, where 60% of the cell lines were 

randomly selected for the training set, 20% were randomly selected for the test set and 20% 

were randomly selected for the blind data set for each model. For classification, the cell 

lines with a mutation in the Braf gene were assigned an output of 1 and the cell lines 

without a mutation in the Braf gene were assigned an output of 2. After the training had 

completed the predictions for the blind dataset of all 100 models were obtained, these were 

then averaged and the standard error of the mean calculated.

By training the ANNs with the top 1000 ions, correct classification of the cell lines as 

originating from either group 1 or group 2 was achieved for 100% of the samples in the 

training set and for 96.5% of the samples in the blind data set with a sensitivity of 98.3% 

and a specificity of 92.6%. The correct classification of the samples for the blind data set 

across the 100 models trained is illustrated in figure 3-9. For the ANNs to classify a cell 

line as one with or without a Braf mutation, it uses a cutoff of 1.5. If a cell line possesses a 

mutation in its Braf gene it should have an output of 1, therefore for the ANNs to correctly 

classify it, it must be assigned a value of below 1.5. Conversely if a cell line does not have 

a mutation in Braf then it should have an output of 2 and so for the ANNs to correctly 

classify this line, it should be assigned a value of greater than 1.5.

As can be seen for figure 3-9, 3 cell lines were misclassified; Ma Mel 39a and FM-3 were 

given values of 1.34 and 1.38 respectively when they should have had an output of 2, and 

FM 93_2 was given a value of 1.74 when it should have had an output of 1. A sensitivity 

analysis was performed on the top 1000 ions that were used to train the ANN models in 

order to determine the ions that were most important for the classification of the samples. 

The sensitivity ratios of the top 1000 ions were calculated for each of the 100 models 

trained, the average was determined and this is illustrated in figure 3-10.

Figure 3-10 shows that only 3 ions have ratio values that are significantly higher than the 

rest of the top 1000 ions for training the ANNs to classify between cell lines with or 

without Braf mutations. These ions are 6985, 13234 and 21187 with ratio values of 1.74, 

1.30 and 1.21 respectively.

115



Chapter 3

2.5

r
1

cell line with braf mutation 

cell line without braf mutation

M i
I

it

ggggggggggggggggsgggggcggggggsggsgggggggsggggggggggggggggcggggggggggggcgggggggggggggg

!gi l l i r i p  1 i 1 h U i f l f i  I fi i si iispflf s^i i i | i  II

Figure 3-9 Classification by ANN analysis of 85 cell lines with or without braf mutations.
The figure shows the classification o f 85 cell lines as predicted by ANN analysis, averaged over 100 models. 
The blue bars show the cell lines which have a Braf mutation and the red bars show the cell lines which do 
not have a Braf mutation. Cell lines with a predicted output o f less than 1.5 are classified by the ANNs as 
having the mutation and cells lines with a predicted output o f more than 1.5 are classified by the ANNs as not 
having the mutation. The error bars were determined by calculating the standard error o f the mean with 95% 
confidence intervals. The figure shows that 3 cell lines were misclassified; Ma Mel 39a and FM-3 were given 
values o f 1.34 and 1.38 respectively when they should have had an output o f 2, and FM 93 2 was given a 
value o f 1.74 when it should have had an output o f 1.
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Figure 3-10 Sensitivity analysis of the top 1000 ions used to classify cell lines with or without braf 
mutations.
A list of the top 1000 ions used to classify cell lines with or without braf mutations in each ANN model is 
obtained using a sensitivity analysis. The data presented shows the sensitivity ratios of the top 1000 ions 
averaged over the 100 models trained.

3.3.3.2 p l6 ,NK4A analysis

Only 71 cell lines were analysed for the presence or absence of mutations in the 

gene as the mutational analysis (described in section 3.2) had not been fully completed at 

the time of bioinformatics analysis. The m/z and intensity data from the 71 cell lines was 

performed in the same way as described for the Braf analysis in section 3.3.3.1. For 

classification, the cell lines that contained a mutation in the p l6 INK4A gene were assigned an 

output of 1 and cell lines without a mutation in the p l6 INK4A gene were assigned an output 

of 2.

After training 100 ANN models using the top 1000 ions it was possible to acheive correct 

classification of the cell lines with 100% of the samples in the training set and with 97.2% 

of the samples in the blind data set, with 100% sensitivity and 92.3% specificity, illustrated 

in figure 3-11. This figure shows that 2 cell lines were misclassified; FM 92 and WM 39 

were both given values of 1.38 when they should have had an output of 2.
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Figure 3-11 Classification by ANN analysis of 71 cell lines with or without pl6'^h4a mutations.
The figure shows the classification o f 71 cell lines as predicted by ANN analysis, averaged over 100 models. 
The blue bars show the cell lines which have a p l6 INK4A mutation and the red bars show the cell lines which 
do not have a p l6 INK4A mutation. Cell lines with a predicted output of less than 1.5 are classified by the ANNs 
as having the mutation and cells lines with a predicted output o f more than 1.5 are classified by the ANNs as 
not having the mutation. The error bars were determined by calculating the standard error o f the mean with 
95% confidence intervals. Two cell lines were misclassified; FM 92 and WM 39 were both given values of 
1.38 when they should have had an output o f 2.

Figure 3-12 shows the average sensitivity ratio of the top 1000 ions over the 100 models. 

Four ions have ratio values that are significantly higher than the rest of the top 1000 ions 

for training the ANNs to classify between cell lines with or without p l6 ,NK4A mutations. 

These ions are 1546, 7438, 8905 and 9013 with ratio values of 1.06, 1.05, 1.05 and 1.03 

respectively.
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Figure 3-12 Sensitivity analysis of the top 1000 ions used to classify cell lines with or without p l6  4a 
mutations.
A list of the top 1000 ions used to classify cell lines with or without p l6 1NK4a mutations in each ANN model is 
obtained using a sensitivity analysis. The data presented shows the sensitivity ratios of the top 1000 ions 
averaged over the 100 models trained.

3.3.3.3 Tp53 mutation analysis

The analysis of 85 cell lines for the presence or absence of tp53 mutations was performed 

in the same way as the Braf and p!6INK4A mutation analyses, section 3.3.3.1 and 3.3.3.2. 

The cell lines that contained a mutation in tp53 were assigned an output of 1 and cell lines 

without a mutation in tp53 were assigned an output of 2.

It was possible to correctly classify 100% of the cell lines in the training set and 98.8% of 

the cell lines in the blind data set, with 100% sensitivity and 98.4% specificity when 100 

ANN models were trained using the top 1000 ions; this is illustrated in figure 3-13. This 

figure shows that only 1 cell line was misclassified, FM92, as it was given a value of 1.38 

when it should have an output of 2.

A sensitivity analysis was performed on the top 1000 ions that were used to train the ANN 

models in order to determine the ions that are most important for classification of the 

samples and illustrated as an average over the 100 models trained in figure 3-14.
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Figure 3-13 Classification by ANN analysis of 85 cell lines with or without tp53 mutations.
The classification of 85 cell lines as predicted by ANN analysis, averaged over 100 models, is shown above. 
The blue bars show the cell lines which have a tp53 mutation and the red bars show the cell lines which do 
not have a tp53 mutation. Cell lines with a predicted output of less than 1.5 are classified by the ANNs as 
having a tp53 mutation and cells lines with a predicted output of more than 1.5 are classified by the ANNs as 
not having a tp53 mutation. The error bars were determined by calculating the standard error of the mean 
with 95% confidence intervals. Only 1 cell line was misclassified, FM92, it was given a value of 1.38 when it 
should have an output of 2.
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Figure 3-14 Sensitivity analysis of the top 1000 ions used to classify cell lines with or without tp53 
mutations.
A list of the top 1000 ions used to classify cell lines with or without tp53 mutations in each ANN model is 
obtained using a sensitivity analysis. The data presented shows the sensitivity ratios of the top 1000 ions 
averaged over the 100 models trained, where 6 ions in particular have much higher ratios that the rest, 
therefore being the most important for the classification of these cell lines.

Figure 3-14 shows that 6 ions are particularly important for training the ANNs to classify 

between cell lines with or without tp53 mutations, these are 1939, 1981, 8593, 8689, 20524 

and 21400 Da. The ratio values of these six ions are quite high, between 2 and 7, showing 

that their removal from the models causes the error to increase significantly.

A stepwise analysis was also performed using the tp53 mutation data to determine if a 

slightly different bioinformatic analysis on the same data set would give better predictive 

capability, and due to the nature of this analysis may also provide more accurate predictive 

biomarkers. The method used to perform this analysis is described fully in chapter 2, 

section 22 .62 .

Figure 3-15 illustrates the median accuracy and the mean squared error for the training, test 

and blind datasets as each input is added to the final model. The model that gave the best 

predictive performance contained 9 inputs, after this point the addition of further inputs did 

not result in any significant improvement in accuracies or error. This 9 input model was
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able to classify cell lines having a tp53 mutation and cell lines without a tp53 mutation with 

a 92% accuracy; table 3-1 summarises the predictive performance after the addition of each 

input.

e
H 50

-training performance 
-test performance 
-blind data performance 
-training error 
-test error 
-blind data error

3142 5995 3421 3259  16735 3688 8689  21481 7858 18352 7453  18847 20755 18856

in p u t  m /z

0 45

80

70 0.35

Figure 3-15 Graph showing the model performance with each input addition for the stepwise ANN 
analysis of the tp53 mutation data.
Stepwise analysis of the tp53 mutation data gave a 9 input model that could correctly classify the cell lines 
with 92% accuracy. The addition of further inputs did not significantly improve the error of the model. The 
pink line shows the median accuracy for the training data set, with the lower and upper quartile ranges 
represented as error bars. The dark blue line shows the median accuracy for the test data and the red line 
shows the median accuracy for the blind data. The green line shows the mean squared error for the 
predictions at each step with the error bars representing the 95% confidence intervals. The light blue line 
shows the mean squared error for the test and the purple line shows the mean squared error for the blind data.
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Input
number

m/z
value

Training
A ccuracy

(%)

T est
A ccuracy

(%)

Blind
A ccuracy

(%)
Training

Error
T est
Error

Blind
Error

1 3142 7 2 .4 8 0 .9 7 0 .9 0 .4 4 3 4 0 .3 8 2 5 0 .4 5 1 6
2 5995 7 9 .5 8 2 .4 7 6 .9 0 .3 9 7 7 0 .3 6 0 0 0 .4 2 1 2
3 3421 7 9 .5 8 8 .2 7 6 0 .3 7 6 6 0 .3 1 6 0 0 .4 1 7 0
4 3259 8 4 .7 8 8 .2 7 9 .2 0 .3 4 0 6 0 .2 8 8 0 0 .3 9 4 3
5 16735 9 0 .5 8 9 .3 84 0 .2 9 5 3 0 .2 6 6 3 0 .3 5 7 2
6 9886 9 3 .3 94.1 8 6 .4 0 .2 4 6 3 0 .2 1 4 7 0 .3 1 5 6
7 3688 9 7 .4 100 92 0 .1 8 3 3 0 .1 5 5 7 0 .2 6 6 8
8 8689 9 5 .5 100 9 2 0 .2071 0 .1 2 3 9 0 .2 6 7 4
9 21481 9 7 .5 100 92 0 .1 8 3 2 0 .1 1 8 4 0 .2581
10 7858 9 7 .6 100 9 1 .3 0 .1 7 0 2 0 .1 3 8 3 0 .2 8 8 4
11 18352 9 7 .6 94.1 9 0 .9 0 .1 7 4 5 0 .1 7 3 2 0 .2 5 3 5
12 7453 9 7 .4 9 5 .2 8 7 .5 0 .2 0 2 8 0 .1 7 8 5 0 .3 0 2 2
13 18847 9 5 .5 9 4 .7 8 6 .2 0 .2 0 2 4 0 .1 8 1 9 0 .3 1 9 6
14 20755 9 7 .6 9 4 .9 88 0 .1 7 8 7 0 .1 8 0 8 0 .3021
15 18856 9 5 .7 100 8 8 .5 0 .1 9 5 6 0 .1 4 4 2 0 .3 0 7 2

Table 3-4 Summary table of the data shown in figure 3-15
Table showing a summary of the median accuracies and the mean squared error for the training, test and blind 
data sets as each input is added to the model. The row highlighted in red shows at which point the accuracy 
and the error failed to improve with subsequent addition of inputs.

3.3.3.4 Mycoplasma Infection -  Validation o f results

A retrospective analysis of the cell line samples used in this study revealed that 17 of the 

cell lines tested positive for mycoplasma infection. It was necessary to reanalyse the ANN 

data to confirm that the patterns and top ions identified related to the presence or absence of 

certain genetic mutations and not to the presence or absence of mycoplasma infection. One 

way to validate the results was to take the top nine ions identified by the stepwise analysis 

of the tp53 mutation data to retrain the ANNs. The mycoplasma infected cell lines were 

removed from the data set, leaving 68 cell lines, and ions 3142, 3259, 3421, 3688, 5995, 

8689, 9866, 16735 and 21481 were the only ions used in the input layer. The following 

figure shows the classification of these 68 cell lines using only the top 9 ions to train the 

ANNs.

The correct classification of the cell lines as either orginiating from group 1, containing a 

tp53 mutation, or group 2, without a tp53 mutation, was achieved for 95.6% of the blind 

data set with a sensitivity of 89.5% and a specificity of 98% and this is illustrated in figure 

3-16. This figure shows that 3 cell lines were misclassifled; Ma Mel 74, ESTDAB 034 and
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interestingly FM 92, which was also misclassified in the original tp53 analysis containing 

all 85 cell lines, shown in figure 3-13.

2.3

I I Tp53 mutation
|  No tp53 mutation

0.7

0.5

i l l l l s l l  1Mlf i l l f l l i  |g? I 2 * Ef m
call lines

Figure 3-16 Classification of 68 cell lines with or without tp53 mutations after mycoplasma infected cell 
lines were removed from analysis.
Figure showing the averaged classification of 68 cell lines with or without a tp53 mutation as predicted by 
ANN analysis, using the top 9 ions, identified using the stepwise approach, to train 100 models. The blue 
bars show the cell lines which have a tp53 mutation and the red bars show the cell lines which do not have a 
tp53 mutation. Cell lines with a predicted output of less than 1.5 are classified by the ANNs as having a tp53 
mutation and cells lines with a predicted output of more than 1.5 are classified by the ANNs as not having a 
tp53 mutation. The error bars were determined by calculating the standard error of the mean with 95% 
confidence intervals. Three cell lines were misclassified; Ma Mel 74, ESTDAB 034 and FM 92 which was 
also misclassified in the original tp53 analysis described in section 3.3.3.3.
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3.4 Discussion

Melanoma progression can be associated with the presence of genetic mutations; however it 

would prove beneficial to strengthen these findings with additional information relating to 

protein expression. The aim of this aspect of the research was to determine whether the 

proteomic profiles of melanoma cell lines could predict or be associated with the presence 

or absence of known genetic mutations and therefore further our understanding of events at 

the functional level once mutations have occurred. The three mutations, tp53, Braf and 

p !61NK4A, investigated have been shown to be upregulated at different stages of melanoma 

progression (Lomuto et al. 2004; Omliolt et al. 2003).

All of the methods used in this study were optimized prior to sample preparation and 

analysis. When the cells were at 70% confluency, they were scraped into the media to 

avoid the effects of trypsin on cellular proteins, washed and then lysed using the lysis 

buffer. The buffer used for lysis had a high concentration of urea, 9.5M, to ensure the 

complete denaturation and solubilisation of the proteins, including membrane proteins, and 

also contained 2% Octyl-p-D-glucopyranoside (OGP) and 1% Dithiothreitol (DTT). OGP 

is a non-ionic gentle detergent that solubilises proteins whilst maintaining their native 

subunit structure; DTT is effective in sample buffers for reducing the protein disulphide 

bonds prior to SDS PAGE. The type of buffer used for lysis was optimized and it was 

decided that the use of protease inhibitors would be detrimental due to the fact that these 

enzymes could mask the biomarker profile of the cell lines generated by mass spectrometry. 

Since the aim of this study was to interrogate the proteome of melanoma cell lines via mass 

spectrometry, the addition of ‘foreign’ proteins could cause ion suppression upon mass 

spectrometry analyses. Protein quantification was performed using the Bio-Rad microassay 

to ensure that upon analysis, the amount of total protein added to the SELDI chip was 

similar for each sample. Although the proteomic methods used in this study are not 

quantitative, the aim was to identify differential intensities of peaks and establish patterns 

in the data; it was therefore necessary to ensure equal amounts of protein were analysed for 

each sample. Following quantification of protein within the samples, it was also important 

to determine sample quality using 1-D SDS PAGE. The samples were run through a 12.5% 

resolving gel with a molecular weight marker run alongside. The aim was to ensure a 

consistent banding pattern in all of the samples and to ensure that highly abundant proteins
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were not degraded, thereby concluding that the samples were of good enough quality for 

mass spectrometry analysis.

Figure 3-4 shows the morphology of three of the cell lines in culture that were used in this 

study and it is clearly visible that there are morphological differences between the cell 

lines, although these differences could not be related to mutational events or proteomic 

profiles. 74 of the cell lines showed an octagonal morphology and the remaining 11 cell 

lines all showed epithelial-like growth and each of the cell lines within these two groups 

differed further in their morphologies as they varied in size and granularity.

The SELDI ProteinChip method (Ciphergen®) relies entirely on establishing a protein 

fingerprint to make a correct classification and diagnosis; it is not necessary to know the 

identity of the masses for this purpose. The SELDI MS analysis used in this study utilized 

H50 SELDI chips which bind proteins through a hydrophobic chromatography and have 

binding characteristics similar to that of a C6 to C12 alkyl chromatographic resin resulting 

in the binding of hydrophobic proteins. An important property of these affinity arrays, 

aside from their chromatography, is their specific binding of hydrophobic proteins from a 

complex biological sample. This means that only biomolecules whose properties match the 

binding characteristics of the surface, in this case hydrophobic, are retained and all other 

proteins are washed away. Another advantage of these chips is that contaminants, such as 

salts or detergents that can interfere with MS analysis, can be removed prior to processing 

simply by washing with deionised water. Also, due to the specificity of the chip surfaces, 

certain characteristics of the proteins identified are known. By using different washing 

conditions, the basic physico-chemical characteristics of the proteins can be determined. 

One disadvantage is that not all of the bound proteins can be “visualized” equally well. 

Although proteins below the 30000 Da mass range can be resolved, sensitivity for higher 

molecular weight proteins is low resulting in fewer signals at this higher range. Another 

disadvantage is that this technique is restricted towards the investigation of differential 

expression of proteins rather than their identification, which is important to establish 

protein identity and potentially new diagnostic and/or therapeutic targets (Seibert et al.

2004). Data was analysed from the 1000 -  25000 Da range due to the contamination of 

matrix peaks at lower mass ranges and the reduced sensitivity and resolution at the higher 

masses, as previously mentioned.
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There has been much controversy recently concerning the use of SELDI MS, particularly 

the reproducibility of this method (Diamandis 2004b). There are a number of steps 

involved in SELDI MS analysis, including sample collection and preparation, protein chip 

selection and preparation, matrix selection and application, calibration, sample loading onto 

the chip, procedures for washing off unbound proteins, parameter setting of the mass 

spectrometer and data processing. This extensive and complex process can greatly reduce 

the reproducibility of SELDI MS and the introduction of chemical noise caused by matrix 

clusters can also be an important factor leading to variation of profiles. In quality control 

experiments it has been reported that the coefficients of variation (CV’s) for absolute 

intensities of peaks can be as much as 50-60% (Yasui et al. 2003); thus quality control 

procedures are important to ensure reproducibility. Coombes et al (2003) pooled samples 

of nipple aspirate fluid and applied this to 2 spots each on 3 IMAC SELDI chips on 4 

successive days. Using a basic ANOVA to analyse the data from 356 peaks it was revealed 

that spot-to-spot variation was larger than day-to-day varation which was in turn much 

larger than chip-to-chip variation (Coombes et al. 2003). Qu et al (2002) also investigated 

the reproducibility of SELDI MS by pooling serum from a healthy donor and spotting this 

onto 2 spots on each IMAC chip. By selecting 7 peaks from each spectra reproducibility 

was proven with the CV’s for peak location of 0.05% and CV’s of 15-20% for peak 

intensities quality controlled samples (Qu et al. 2002). Zhukov et al (2003) investigated 

the reproducibility of SELDI MS by the analysis of multiple samples of normal and tumour 

cells from one patient with squamous cell carcinoma of the lung. These samples were run 

on IMAC chips 5 times using identical protocols and the mean mass and standard deviation 

for the detected protein peaks were calculated; the CV’s ranged from 0.02 -  0.25% for peak 

location, showing acceptable reproducibility of protein detection (Coombes et al. 2003; 

Drake et al. 2004; Qu et al. 2002; Zhukov et al. 2003). More recently, Hong et al (2005) 

investigated the reproducibility of SELDI MS by examining 144 pooled plasma samples. 

These were randomly placed on the spots of 12 IMAC chips placed in each of six 

bioprocessor plates. The average intensity and standard deviation of 5 peaks present in all 

144 spectra was calculated and the CV’s were found to be less than 20% (Hong et al.

2005). All of the quality assurance experiments described above were performed using the 

IMAC chips whereas the chips used in the present study were hydrophobic chips, where the 

quality assurance experiments performed involved the rigorous generation of samples from
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all the melanoma cell lines used. The samples were cultured and lysates produced by a 

standard methodology. Protein quantification was performed using the Bio-Rad protein 

microassay and the sample quality determined by 1-D SDS PAGE using a 12.5% resolving 

gel. The buffer used in all experiments was from a single 500ml batch, frozen down in 1.5 

ml aliquots. All of the samples analysed were thawed and diluted in buffer on the day of 

SELDI MS analysis, and all of the solvents and matrix used were prepared fresh on the day 

of analysis. Before analysis the SELDI MS was calibrated using Ubiquitin, Cytochrome C 

and Thioredoxin, made up separately in large batches giving over 100 aliquots of each 

calibrant, these were then stored at -80°C. The calibrants were diluted in matrix on the day 

of analysis, and any unused calibrant was discarded. Once calibrated, calibrant was placed 

onto 1 spot of every chip used, and the reproducibility from chip-to-chip within each 

experiment was determined by calculating the CV’s for the peak location and peak 

intensities of 5 of the calibrant peaks. The CV’s for peak location was between 0.05 -  

0.12% and for the peak intensities the CV’s were between 30-70%, see appendix 5 for data 

and were the same as those published by Zhukov et al. (2003) and the CV’s for peak 

intensity were similar to those presented by Yasui et al. (2003), although the variation was 

greater. Within each experiment, every sample was spotted in duplicate on separate chips 

to give an indication of the reproducibility of the complex samples analysed. The profiles 

were assessed visually and the reproducibility of the protein patterns evaluated, (figure 3- 

5).

SELDI MS analysis was used to profile the protein expression of melanoma cell lines with 

different genetic mutations. Although visual differences were observed in the protein 

profiles, due to the dimensionality of the data and the number of samples analysed, a 

bioinformatics approach was used to mine the data using ANNs. The ANNs were able to 

correctly classify cell lines with or without particular mutations with over 96% accuracy for 

unseen data. The sensitivity analyses show that the majority of the top 1000 ions have 

sensitivity ratio, meaning that these ions have a positive influence on the neural network 

being able to classify between a cell line with or without a particular mutation. This shows 

that the presence of a genetic mutation not only affects the protein(s) transcribed from that 

gene but also proteins of other genes (figures 3-10, 3-12 and 3-14).
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The ANNs correctly classified cell lines with or without Braf mutations with 96.5% 

accuracy for unseen data (n=85) with 3 cell lines (Ma Mel 39a, FM-3 and FM 93/2) that 

were misclassified. The sensitivity analysis revealed three ions that had ratio values much 

higher than the rest with m/z values of 6985, 13234 and 21187. In addition, the ANNs 

correctly classified cell lines with or without p l6 1NK4A mutations with 97.2% accuracy for 

unseen data (n=71) with 2 cell lines (FM 92 and WM 39) that were misclassified. The 

sensitivity analysis revealed four ions that had ratio values much higher than the rest with 

m/z values of 1546, 7438, 8905 and 9013. These analyses can also reveal outliers (those 

samples misclassified) which could reveal a previously unknown disease subtype. The 

ANNs correctly classified cell lines with or without tp53 mutations with 98.8% accuracy 

for unseen data (n=85) with only one cell line (FM 92) misclassified. The sensitivity 

analysis revealed six ions that had ratio values higher than the rest that represent potentially 

important markers; these ions had m/z values of 1939, 1981, 8593, 8689, 20524 and 21400. 

The stepwise analysis is a much more accurate process for identifying potential biomarkers 

as each ion is modeled in turn and for cell lines with and without a tp53 mutation revealed a 

92% accuracy that could be achieved with only 9 ions. This demonstrates that the standard 

method of ANN analysis is only useful in determining whether the protein profiles reveal 

patterns that allow classification of unseen samples, whereas the stepwise analysis can also 

suggest important biomarker ions.

The presence of mycoplasma infection in some of the samples originally analysed led to the 

question of whether the correct classification of samples was due to patterns indicating 

presence of mycoplasma and not the presence of genetic mutations. The data from the 

infected samples was removed and the remaining data reanalysed using the ions identified 

as important for classifiying samples according to the presence or absence of tp53 

mutations as inputs. This is also a good way to validate the original findings and this 

validation revealed that samples could be correctly classified with 95.6% accuracy and so 

the patterns and important ions identified in the original analysis were as a result of the 

presence or absence of mutations and not mycoplasma infection. Due to time constraints, it 

was not possible to reanalyse all of the data but this validation gives confidence to the 

original results obtained.
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The high prediction rate of the tp53 mutation data in both of the ANN approaches used has 

shown that there are sufficient patterns within the data to predict with a high degree of 

accuracy whether a cell line carries a mutation. The two approaches did, however, reveal 

different important ions for classifying the samples with only 1 ion (8689 Da) that was 

identified using both methods. It is important to note, therefore, that in future studies the 

use of different bioinformatics approaches may reveal different accuracies in the 

classifications of samples as well identifying different important ions. This has been shown 

using a prostate cancer dataset with 197 prostate cancer (PCA) patients, 92 benign prostate 

hyperplasia (BPH) patients and 96 age-matched unaffected healthy men, which was mined 

using 3 different bioinformatics approaches. These 3 approaches randomly split the data 

into 85% for the training set and 15% for the independent test set. Adam et al (2002) used 

“area under the ROC curve” to reduce the number of inputs and then used this data to 

develop a decision tree classification algorithm that used 9 masses to correctly classify 96% 

of the samples with a sensitivity of 83% and a specificity of 97%. Qu et al (2002) used a 

boosting tree algorithm to develop a classifier for separating prostate cancer samples from 

non-cancer. The first classifier, AdaBoost, managed to separate the samples with 100% 

sensitivity and specificity. The second classifier, the Boosted Decision Stump Feature 

Selection classifier, was easier to interpret and managed to separate samples with 97% 

sensitivity and specificity. Yasui et al (2003) combined boosting with linear discriminant 

analysis to analyse the data and managed to correctly classify PCA/BPH from controls with 

98% sensitivity and 100% specificity.

The noisy and highly dimensional data obtained through proteomic analysis requires all 

aspects of data interrogation to be optimised including spectra pre-processing, quality 

control and dimensionality reduction. The biggest challenge comes from the development 

of algorithms that can generalise well enough for unseen data. There are many data mining 

methods that can be employed and, presently, no one method can provide the most accurate 

and reliable analysis.

The cell lines used in this study are mostly derived from metastases and these mutations are 

therefore associated with metastatic disease. It should be considered that changes in both 

the proteome and genome may have occurred during in vitro culture and hence there are 

likely to be differences between the original tissue and the cell line. However, due to the 

limited availability of tumour tissue, cell lines are important tools for many experimental
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studies and proof of concept. Genetic mutations will lead to a number of changes in gene 

and protein expression through downstream effects. It has been documented that the 

differences in Braf mutation frequency between various subtypes of melanoma and benign 

nevi make it difficult to determine the impact on prognosis (de Snoo & Hayward 2005). 

Some studies have reported that there is no difference between mutation frequency and 

disease free survival whereas others show it to be a major predictor of survival (Deichmann 

et al. 2004; Kumar et al. 2003; Shinozaki et al. 2004; Thomas et al. 2004). The 

investigation into the downstream effects of Braf mutations such as the up or down 

regulation of proteins may provide further understanding of the biological effect of this 

mutation which potentially may lead to the identification of a reliable prognostic marker 

which could predict survival.

Cell lines have been used in several studies in an attempt to identify diagnostic and 

prognostic markers. One study investigated etoposide resistance in human neuroblastoma 

cell lines as a first step towards the development of novel prognostic markers of 

neuroblastoma chemotherapy. The study reported the overexpression of a number of 

proteins in the etoposide resistant cell line, paving die way for future in vivo studies (Urbani 

et al. 2005). A recent study using melanoma cell lines revealed several proteins that were 

induced in response to interferon a, some of which had not been previously reported to be 

type I interferon responsive (Craven et al. 2004). A large scale study into the investigation 

of markers that could be used to distinguish between ovarian and colon carcinoma was 

performed using 60 human cancer cell lines, which were at the protein, DNA and mRNA 

levels and revealed 2 candidate biomarkers, villin and moesin, that improved upon the 

accuracy of discriminating between the two cancers. Using tissue microarrays to validate 

the findings obtained with the cell lines, it was revealed that the anti-moesin antibody did 

not stain colon cancer cells but did stain the surrounding stromal cells and hence may have 

not been recognised as a marker originally if  tumour tissue alone had been profiled 

(Nishizuka et al. 2003). These studies have revealed how cell lines systems can be used to 

provide useful information on the disease of interest, even at the protein level.

The present study provides an insight into protein markers identified by SELDI MS, that 

associate with important cancer-related gene mutations and has important implications for 

the discovery of proteins that are of potential diagnostic, prognostic and therapeutic benefit.
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Chapter 4 Proteome profiling and bioinformatics analysis of 

paired melanoma cell lines and tissues

4,1 Introduction

There are several clinical and pathological factors that influence the progression and 

behaviour of melanoma including tumour thickness, ulceration, site of the primary tumour, 

age, gender, level of invasion, mitotic rate, tumour infiltrating lymphocytes (TILs), 

histological regression, microscopic satellites, histological subtype, vascular invasion and 

tumour cell type. The thickness of the tumour, ulceration and site of primary tumour are 

factors that are used to predict survival in patients with stage I and II melanoma but most 

studies to date have shown that the depth of tumour invasion is the most powerful 

independent prognostic factor, although even this is not always accurate (Li et al. 2002b). 

Therefore additional objective prognostic markers are needed with improved specificity and 

predictive value for melanoma patients.

Tumour cells are embedded in a matrix of structural extracellular proteins that are 

surrounded by other cells including endothelial cells, fibroblasts, inflammatory cells and 

immune cells (Bissell et al. 2001). These cells make up the tumour tissue and continuously 

interact with their neighbours. Collectively, these cells generate signals that can determine 

the growth and survival of the tumour and the tumour can send signals that can remodel the 

stroma to suit its changing needs (Ruiter et al. 2002). Signalling molecules generated by 

the tumour cells include, among others, basic fibroblast growth factor (bFGF), members of 

the vascular endothelial growth factor (VEGF) family, platelet derived growth factor 

(PDGF), epidermal growth factor receptor (EGFR) ligands, interleukins, colony stimulating 

factors, transforming growth factor-f3 (TGF(3) among others. These factors can disrupt 

normal tissue homeostasis and can induce stromal reactions such as angiogenesis and the 

inflammatory response. These molecules also activate surrounding cells such as 

fibroblasts, smooth muscle cells and adipocytes causing the secretion of additional growth 

factors, promigratory extracellular matrix components as well as the upregulation of 

expression of serine proteases and matrix metalloproteinases that degrade and remodel the 

extracellular matrix. The induction of the inflammatory responses in the tumour stroma
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also results in the production of factors that promote tumour progression (Mueller et al. 

2004). A predominant stromal cell is the fibroblast which is responsible for the creation of 

most of the components of the comiective tissue such as the different collagens, proteolytic 

enzymes and their inhibitors as well as growth factors. Other functions of the fibroblast 

include the deposition of the extracellular matrix, the regulation of epithelial differentiation, 

regulation of inflammation and involvement in wound healing (Parsonage et al. 2005). As 

each tissue has specialised requirements, fibroblasts from different organs produce different 

variations of the above mentioned molecules. Also, the fibroblasts in the stroma change 

according to different physiological signals. Evidence from a number of studies has 

revealed that the fibroblasts at the site of a tumour may have a role in the initiation and 

progression of cancer (Tlsty 2001) and are known as “carcinoma associated fibroblasts” 

(CAF); they are spindle like mesenchymal cells that share characteristics with smooth 

muscle cells and normal fibroblasts. The presence of CAFs in tumour stroma has been seen 

in many cancer types including breast, prostate and skin cancer (Chauhan et al. 2003; 

Olumi et al. 1999; Skobe et al. 1998).

It is questionable if cell lines are representative of the general cancer cell population found 

in tumour tissue and whether they can be used in proteomic studies to identify key 

biomarkers that can discriminate between different disease states. Wistuba et al. 1998 have 

reported that a majority of non small cell lung cancer cell lines retained the properties of 

their parental tumours; it has also been shown that cell lines derived from primary tumours 

or bone marrow metastases retain many of the features of the primary tumour (Ross et al. 

2003). The RNA and protein signature of tumour cell lines can show similar patterns to 

those of the original tumour tissue (Myers et al. 1997; Ross et al. 2000; Scherf et al. 2000). 

An advantage of the use of cell lines in proteomic studies is that large numbers of cells are 

available for study. Clinical tumours contain endothelial cells, infiltrating lymphocytes, 

fibroblasts and other stromal cells as well as tumour cells, which may represent only a 

fraction of the overall tissue sample, and so the concentration of potential tumour specific 

proteins in the sample may be small. Nishizuka et al (2003) used genomic, transcriptomic 

and proteomic profiling of colon and ovarian cancer cell lines to identify two new 

biomarkers that were present in tissue sections, thus showing their utility as relevant 

biomarkers. One of the biggest challenges in cancer proteomics is the complexity of the

133



Chapter 4

tissue microenvironment. The protein networks within a cell are constantly changing and 

are dependent on the local microenvironment (Liotta et al. 2001a). One problem, therefore, 

in using cell lines is that the tumour microenvironment plays an important role in cancer 

and so the lack of cell heterogeneity in cell line studies could be a disadvantage.

The aim of this study was to compare the proteome of melanoma tissue and paired cell lines 

derived from 44 patients; SELDI MS profiles were derived and ANNs used to investigate 

the data.

4.2 Methods

Detailed methodology is given in Chapter 2 and the following scheme demonstrated how 

the cell line and tissue samples were processed for mass spectrometry and ANN analysis 

(figure 4-1). The clinical data obtained on the patients from which the cell lines and tissues 

were derived can be found in appendix 2.

134



Chapter 4

4 4  Melanoma Cell Lines 4 4  M elanoma T issu es

1 i 1 1

SELD I MS SELDI M S

Q uality  control 
1D SD S PAGE

Q uality control 
1D SD S PAGE

Protein  Q uantitation  
Bio-Rad Protein Microassay

Protein  Q uantitation  
Bio-Rad Protein Microassay

1 i
B ioinform atic analysis B ioinform atic analysis

I 1 1 i
S it e  o f  Tumour -  Skin vs  

Lymph node P atient Survival P atient Survival
S it e  o f  Tumour -  Skin vs 

Lymph node

1 i i
Artificial Neural Networks (Statistica Software) 

(train 100 m odels with all 8000 ions)
Artificial Neural Networks (Statistica Software) 

(train 100 m odels with all 8000  ions)

1 1 
1 1 

▼ T

i i 
i i 

▼ ▼

Sensitivity analysis to se lec t top 1000 ions Sensitivity analysis to se lec t top 1000 ions

i i 
1 1 

T  ▼

i i 
1 1 

T  ▼

Artificial Neural Networks (Statistica Software) 
(train 100 m odels with top 1000 ions)

Artificial Neural Networks (Statistica Software) 
(train 100 m odels with top 1000 ions)

i i > i 
i i ' i

T  T  ▼ T

Calculate classification o f cell lines a s  average of 
predicted output over 100 m odels

Calculate classification of cell lines a s  average of 
predicted output over 100 m odels

Sensitivity analysis of top 1000 ions to 
determine the m ost important ions

Sensitivity analysis o f top 1000 ions to 
determine the m ost important ions

C om pare data

Figure 4-1 A schematic demonstrating how the cell lines and tissues were processed and analysed for 
this study.
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4 ,3  R e s u l t s

4.3.1 Protein quantification and sample quality control.

Protein quantification was performed using the Bio-Rad protein microassay as described in 

section 2.2.2. A standard curve was determined by plotting the absorbance at 595nm 

versus BSA protein standard concentration (pg). The calculation of the protein 

concentrations is explained in more detail in section 3.2.1. On average, concentrations of 

between 3 - 7  pg/pl were obtained from the cell line lysates and concentrations of between 

7 - 1 1  pg/pl were obtained for the tissue lysates. The samples were then run through a 

12.5% resolving gel to determine if sample integrity had been maintained, examples of the 

gels run are shown in figure 4-2. This figure shows a representation of the banding pattern 

observed with all of the samples that were run through the gel. As all of the samples 

showed very similar bands it was concluded that the samples were of good quality for 

further analysis and none of the samples were rejected at this stage.

Key:

1 - MW ladder
2 - Ma Mel 68
3 - Ma Mel 71
4 - Ma Mel 73b
5 - Ma Mel 45b
6 - Ma Mel 60
7 - Ma Mel 24
8 - Tissue 542
9 - Tissue 561
10 -Tissue 715

15 kDa  ►

50 kDa ----►

35 kDa ----►

25 kDa ----►

Figure 4-2 1-D PAGE of cell line and tissue lysates representing sample quality of all samples analysed 
as part of the cell lines vs tissue study.
The gel presented above represents an example of the data obtained from all of the cell line and tissue lysates 
used in this study. 40 pg of each lysate sample was resolved in a 12.5% resolving gels and stained with 
coomasie blue to determine if degradation of the proteins occurred during sample preparation.
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4.3.2 SELDI MS

The protocol used is described in section 2.2.4.1, but briefly the samples were bound to the 

hydrophobic surface on a H50 SELDI chip and analysed using a PBS II mass analyzer. 

The following figures show some of the SELDI spectra obtained for this study. Figure 4-3 

highlights some of the observed differences, shown by the blue boxes, and similarities, 

shown by green boxes, between the cell lines and their paired tissues: Profile a) for cell 

line Ma Mel 28 overlaid on its paired tissue (284), b) for cell line Ma Mel 36 overlaid on its 

paired tissue (304) and c) for cell line Ma Mel 48a overlaid on its paired tissue (414). 

Table 4-1 shows peak values of the profiles shown in figure 4-3, with peaks that are similar 

between the cell lines and their paired tissues highlighted in red; peak values at around 

5650 and 6545 Da are seen in all of the spectra. Although cell line samples derived from 

the tissue samples show many similarities, the spectra obtained from the tissues is much 

more complex with a greater number of peaks observed in the 5000-15000 Da range. This 

may reflect protein ions derived from stromal as well as melanoma cells and the altered 

protein expression pattern of melanoma cells in situ compared with cultured cells.

The protein ions of melanoma cell lines derived from the skin or lymph node of different 

patients were compared (figure 4-4a and 4-4b). Similarly melanoma tissue samples taken 

from the skin of lymph node of different patients were profiled by SELDI MS in order to 

determine if melanoma tumours (and cell lines derived from those samples) present at 

different sites (skin or lymph node) display different protein spectra. Table 4-2 shows all of 

the peaks that can be seen in all of the profiles shown in figure 4-4, with peaks that are 

similar between the cell lines and their paired tissues highlighted in red.
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Figure 4-3 SELDI MS profiles in the 5000-15000 Da mass range showing the profiles obtained from a 
cell line are overlaid on the profile of the parent tissue.
This figure represents how the spectra of cell lines and their paired tissues compare with each other, a) shows 
cell line Ma Mel 28 overlaid on its paired tissue 284, b) shows cell line Ma Mel 36 overlaid on it paired tissue 
304 and c) shows cell line Ma Mel 48a overlaid on its paired tissue 414. The green boxes show the 
similarities between the cell lines and their paired tissue and the blue boxes show the differences.
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Pair 1 Pair 2 Pair 3
Ma Mel 28 284 Ma Mel 36 304 Ma Mel 48a
(cell line) (tissue) (cell line) (tissue) (cell line)

. 5040.7 5316.5 - - 5361.9

. 5202.1 - 5356.7 5652.9 5654.6
5359.1 5359 5649.8 5649.8 5862 5861

- 5499.4 6276.3 6274.8 - 6125
5648.3 5654.9 6544.5 6543.7 6276.7 -

- 5868.7 6900 6885.3 - 6367.9
6276.5 - - 6997.7 6552 6550

- 6329.1 7441.9 - 6882.8 6890.6
6543.8 6550.3 - 7666.5 - 7011.4

- 6724.1 7878.2 - - 7220.8
6886.8 - 8086.9 8087.7 - 7449.1
7003.7 - 8700.4 - - 7576.1

- 7102.6 8824 - 7877.3 7888.5
- 7370.6 9150.8 - 8095.6 8100.1
- 7474 9412.2 - - 8713.9
- 7717.5 - 10138.5 8765.2 -

7879.6 7888.9 10195.8 - 8832.9 8842.2
8091.8 8103.3 10617.5 - - 9628.5

- 8408.1 10836.3 10834.4 - 10100.5
- 8735.7 11287.5 11298.1 10839.5 10851.7
- 8853.8 12330.6 12330.6 11043.6 11083.4
. 9351.3 13768.2 13764.8 11298.5 11314.6

9409.3 - 13987 13990 - 12346.5
- 9704.5 13767.2 13785.2

10091.9 - 13986.7 14008.3
- 10219.9 14633.8 -

10836.4 10848.2
11298.7 11310

- 11656.3
12333.6 12342.1
13765.8 13780.5
13988.7 -

Table 4-1 Values of the main peaks observed in the spectra shown in figure 4-3.
The table shows the main peaks (values given in Daltons) observed in the spectra obtained obtained from 
paired cell lines and tissues in the 5000-15000 Da mass range. Peaks that are similar between each pair of 
samples are shown in the same row, although the m/z values may be slightly different due to the mass 
accuracy of the instrument. Peaks that are observed in both the spectra of cell lines and their paired tissue are 
highlighted in red.
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Figure 4-4 SELDI spectra showing the differences and similarities between melanoma cell lines and 
tissues obtained form skin or lymph node.
Spectra of samples originating from the skin are shown in black and spectra of samples originating from 
lymph nodes are shown in red. a) shows cell line Ma Mel 27 (black) overlaid on cell line Ma Mel 56 (red), b) 
shows cell line Ma Mel 5 (black) overlaid on Ma Mel 7 (red), c) shows tissue 252 (black) overlaid on tissue 
470 (red) and d) shows tissue 97 (black) overlaid on tissue 9 (red). The green boxes show the similarities 
between the paired spectra and the blue boxes show the differences.
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Cell lines Tissues
Ma Mel 27 Ma Mel 56 Ma Mel 5 Ma Mel 7 252 470 97 9

(from (from (from (from (from (from (from (from
skin) lymph

node)
skin) lymph

node)
skin) lymph

node)
skin) lymph

node)
5362.5 - 4121 - 5360.1 5040.3 - 5359.9
5652.9 5651 4309.1 - 5650.8 5157.2 5650.4 5653.1
5857.7 - 4777.9 4781.4 - 6119.5 6280.6 6281.3
6082.5 - 5654.4 5655.1 6180 - 6896.3 6898.3

- 6549 5861.4 - 6347.4 6343.8 7006.7 7011.1
6724.7 - 6283 - - 6573.5 - 7572.2
7457.1 7439.5 6551.1 6551.2 - 6713.1 7678.4 7651.5

- 7678.4 6896 - 6891.1 - - 7944.3
7882.6 - 7009.2 7010.1 7007.4 - - 8418.7
8093.6 - 7456.5 7452.1 - 7090.3 - 9695.2
8708.1 - - 7664.9 7567.5 7559 10093.9 -

8828.1 - 7892.2 7891 7671.8 7663.2 10844.6 10849.3
9151.4 - 8108.5 8095.5 7882.5 - 11307.4 11312.6
9368.7 - 10845.7 10856.1 - 7930 12343.6 12344.8
9614.8 - 11308.6 11310.7 8434.7 - 13782.2 13783.1
10838.4 - 11825.8 - 8708.6 - 13999.6 14006.8
11063.1 - 12355.1 12347.1 8837 8847.6
11335.1 11304.3 13787.3 13786.4 9624.9 -

11815 - 14009.6 14005.4 10842 10824.6
12338.1 - 11069.9 -

13769.9 13784.1 11313.6 -

13995.9 13996.6

12340.2

13779.9
13998.1

11488.5
12307.1

12674.2 
13137

Table 4-2 Values of main peaks observed in spectra shown in figure 4-4
Table showing the main peaks (in Daltons) observed in the spectra obtained from cell lines and tissues 
originating from either the skin or the lymph nodes, in the 5000-15000 Da mass range. Peaks that are similar 
between each pair of samples are shown in the same row, although the m/z values may be slightly different 
due to the mass accuracy of the instrument. The red values indicate peaks of similar masses between the skin 
and lymph node samples
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In figure 4-5 profiles a and b show the spectra, in black, of cell lines derived from patients 

that survived less than 8 months, overlaid on spectra, in red, of cell lines derived from 

patients that survived greater than 8 months. Profiles c and d show the spectra of 

melanoma tissue taken from patients that survived less than 8 months (black), overlaid on 

spectra of melanoma tissue taken from patients that survived longer than 8 months (red). 

Profile a) shows cell line Ma Mel 57 derived from a patient surviving less than 8 months 

overlaid on cell line Ma Mel 39a, profile b) shows cell line Ma Mel 62 derived from a 

patient surviving less than 8 months overlaid on cell line Ma Mel 48a, profile c) shows 

tissue 476 overlaid on tissue 9 and profile d) shows tissue 374 overlaid on tissue 567 taken 

from a melanoma tumour in the lymph node. Table 4-3 shows all peaks that are similar 

between the cell lines and their paired tissues, highlighted in red.

It should also be noted that peak values at approximately 5650 Da, 10840 Da, 13780 Da 

and 14000 Da are present in all of the samples shown in figures 4-3, 4-4 and 4-5 regardless 

of the sample type or origin.

The similarities and differences highlighted in figures 4-3, 4-4 and 4-5 and tables 4-1, 4-2 

and 4-3 represent only those cell lines shown, and may not be the same for other cell lines. 

The identification of these peaks was performed visually and therefore does not reflect the 

complexity of the cell line or tissue proteome. Further analysis was performed using ANNs 

in order to interrogate the entire spectra of all the cell lines and tissues available.
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Figure 4-5 SELDI spectra showing the differences and similarities of cell lines and tissues taken from 
patients with a survival, after sample collection, of less than or more than 8 months.
All four spectra show a profile of a sample taken from a patient with a survival time of less than 8 months (in 
black) and a profile of a sample taken from a patient with a survival of more than 8 months (in red). The 
green boxes show the similarities between the samples and the blue boxes show the differences.
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Cell lines Tissues
Ma Mel 57 Ma Mel Ma Mel 62 Ma Mel 476 9 374 567

(<8m 39a (<8m 48a (<8m (>8m (<8m (>8m
survival) (>8m

survival)
survival) (>8m

survival)
survival) survival) survival) survival)

- 5362.3 5364.2 5359.9 5358.8 5359.9 5317.2 -

5651.4 5653.8 5653.6 5652.9 5649.3 5653.1 - 5357.3
5849.6 - - 5862 6270.5 6281.3 - 5626.7

- 6277 6085 - 6539.6 - 5649.8 -

6545.3 6548.1 6255.8 6276.7 6886.4 6898.3 6248.6 -

- 6893.6 6548.4 6552 7001.2 7011.1 - 6715.4
7004.5 - 6893.3 6882.8 7437.3 - 6894.3 -

- 7034 7873.7 7877.3 - 7572.2 7006.6 -

7446.7 - 8096 8095.6 7660.6 - - 7095.6
- 7447.8 8412.6 - 7929.4 7944.3 7448.9 -

- 7886.2 8708.9 8705.2 - 8418.7 - 7566.3
8101.9 8094.5 8835.7 - - 9695.2 7668.8 -

- 8704.9 9041.7 - 10085 - 7887.7 -

- 8832.1 - 9153 10202.5 - - 7935.2
- 9158.3 9525.6 - 10447 - 8407.7 8408.6
- 10093 10842.4 10839.5 10607.9 - 8621.8 -

- 10204.8 - 11043.6 10828.8 - - 8768.3
- 10624.9 11316 11298.5 - 10849.3 8839.3 -

- 10842.5 12281.9 - 11289.7 11312.6 - 9348.9
11326.7 11302.8 13430.2 - 11628.1 - 9705.7 9694.8

- 11824.8 13783.8 13767.2 11804.8 - 10096.4 -

12302.5 - 14005.1 13986.7 12328.8 12344.8 10211.4 10235.3
- 12342.9 - 14633.8 13761.1 13783.1 10843.2 -

12471.8 13991.4 14006.8 - 10916.8
13821.1 13774.7 - 11066.5
14032.9 14000.3 11309.5 -

14416.1

12284.8

13780.9 
13997.7

11501
11720.3

12319.2
13771.3

Table 4-3 Values of the main peaks observed in the spectra shown in figure 4-5
The table shows the main peaks (in Daltons) observed in the spectra obtained from cell lines and tissues 
originating from patients that either survived less than or more than 8 months, in the 5000-15000 Da mass 
range. Peaks that are similar between each pair of samples are shown in the same row, although the m/z 
values may be slightly different due to the mass accuracy of the instrument. The red values indicate peaks of 
similar masses between the samples taken from patients that survived less than or more than 8 months.

4.3.3 Bioinformatic analysis

Anonymised clinical data of patients from which the cell line and tissue samples were 

obtained was received from Dr Selma Ugurel, DKFZ, Germany, as part of the OISTER 

programme. In order to determine if cell lines are suitable tools to use to identify clinically 

relevant biomarkers, 2 parameters were chosen with which to mine the SELDI MS data.
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The first parameter used was the site from where the tissue sample was taken; the second 

parameter was the survival of the patients after tissue extraction. A list of all the cell line 

and paired tissue samples received, along with clinical information, that were analysed by 

SELDI MS can be found in Appendix 2. Table 4-4 below lists the paired cell lines and 

tissues used in this aspect of the study; only patients with relevant clinical information were 

included in the bioinformatics analysis.

Tissue Cell line Tissue Cell line
97 Ma-Mel-05 466 Ma-Mel-55
147 Ma-Mel-06 470 Ma-Mel-56
9 Ma-Mel-07 492 Ma-Mel-57

379 Ma-Mel-08b 476 Ma-Mel-59a
159 Ma-Mel-13 510 Ma-Mel-60
169 Ma-Mel-15 598 Ma-Mel-61c
208 Ma-Mel-19 525 Ma-Mel-62
171 Ma-Mel-20 548 Ma-Mel-65
285 Ma-Mel-26a 546 Ma-Mel-66a
293 Ma-Mel-26b 547 Ma-Mel-66b
252 Ma-Mel-27 561 Ma-Mel-71
284 Ma-Mel-28 568 Ma-Mel-74
288 Ma-Mel-33 620 Ma-Mel-81
304 Ma-Mel-36 657 Ma-Mel-8 2
313 Ma-Mel-37b 658 Ma-Mel-8 5
414 Ma-Mel-48a 656 Ma-Mel-90
449 Ma-Mel-51 628 Ma-Mel-91
395 Ma-Mel-52 652 Ma-Mel-93
453 Ma-Mel-54a 692 Ma-Mel-96

Table 4-4 Table showing the paired cell lines and tissues used for the bioinformatics part of this study.

The SELDI MS data was exported into EXCEL as csv files and converted into xls files 

before being merged into one file and smoothed to 3 Da, giving a total of 8000 ions 

between 1000-25000 Da. An ANN model using a multi-layer perceptron was trained 

(Statistica), on the smoothed mass/intensity data. Detail of the ANN method used can be 

found in section 2.2.6.1.
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4.3.3.1 Prediction o f the site o f  growth o f the tumour for both cell lines and tissues (Sldn 

v.s" Lymph Node)

The first analysis was to compare the predictive capability of the ANNs to discriminate 

between skin and lymph node as the site of tumour growth by analysing the SELDI MS 

profiles (H50 chips) of paired cell lines and tissues. A back propagation algorithm 

followed by a conjugate gradient descent algorithm was used and 22 samples were 

randomly selected for training, 8 for the test set and 8 for the blind dataset for each model, 

with 100 models run. The ANNs were first trained using the cell line data and then with 

the tissue data; the results were then compared to determine how well clinical parameters 

could be predicted using information from cell lines. Cell lines and tissues originating from 

the skin were assigned an output of 1 and cell lines and tissues originating from the lymph 

nodes were assigned an output of 2.

Cell lines
The ANNs correctly classified the cell lines originating from either the skin or the lymph 

nodes with an accuracy of 81.6% ± 0.4, a sensitivity of 100% and a specificity of 58.8% 

using the top 1000 ions from the cell line data as identified by sensitivity analysis. Figure 

4-6 shows the population distribution of the predicted outputs for all 38 samples and shows 

that 7 of the cell lines were misclassified; Ma Mel 26b, Ma Mel 6, Ma Mel 62, Ma Mel 74, 

Ma Mel 57, Ma Mel 37b and Ma Mel 7 were classified incorrectly as originating from the 

skin but were in fact cell lines originating from melanomas taken from the lymph node.
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Figure 4-6 Classification by ANN analysis of 38 cell lines as either originating from skin or from lymph 
node.
The figure shows the classification of 38 cell lines as predicted by ANN analysis as either originating from 
skin or from lymph node. The predicted output shown is the average over 100 models; the error bars show the 
standard error of the mean with 95% confidence. The blue columns represent cell lines originating from skin, 
and therefore should have an output of 1, and the red columns represent cell lines originating from lymph 
nodes, and therefore should have an output of 2. Cell lines Ma Mel 26b, Ma Mel 6, Ma Mel 62, Ma Mel 74, 
Ma Mel 57, Ma Mel 37b and Ma Mel 7 were misclassified as originating from the skin when they had 
originated from melanomas taken from the lynph nodes.

Figure 4-7 shows the sensitivity analysis of the top 1000 ions from the training dataset, 

these 1000 ions were used to train the ANNs for all 100 models and enabled the ANNs to 

predict the site of tumour sample with 81.6% accuracy. The sensitivity analysis shows ratio 

values very close to 1 for all of the top 1000 ions, thus indicating that the removal of any of 

these ions does not greatly affect the classification error. There were 51 ions, however, 

with ratio values less than 1, suggesting that they are likely to have a negative influence on 

the analysis and that by removing these ions and retraining the ANNs, it may be possible to 

improve upon the predictive capability as well as possibly highlighting ions important in 

classifying the samples.
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14218 Da 24550 Da

Figure 4-7 Sensitivity analysis of the top 1000 ions used to classify cell lines that originated from 
melanomas taken from either the skin of lymph nodes.
A list o f the top 1000 ions used to classify melanoma cell lines according to their tissue of origin is obtained 
using a sensitivity analysis. The data presented shows the sensitivity ratios of the top 1000 ions averaged over 
the 100 models trained.

Tissues
Correct classification of tissues samples originating from either the skin or the lymph nodes 

was achieved with an accuracy of 86.8% ± 0.3 and a sensitivity and specificity of 95.2% 

and 76.5%, respectively, using the top 1000 ions as identified by sensitivity analysis. This 

is illustrated in figure 4-8 and shows that five of the tissues were misclassified; tissues 285, 

453, 293 and 598 derived from lymph nodes were classified as originating from the skin 

and tissue 620 was misclassified as originating from the lymph node.

Figure 4-9 shows the sensitivity analysis of the top 1000 ions and shows several ions that 

have a greater influence on error for classifying the samples and so are the most important 

ions for classification. There were, however, 200 ions with ratio values of less than 1 that 

would have a negative influence on the analysis and their removal should result in an 

improved classification.
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Figure 4-8 Classification by ANN analysis of 38 melanoma tissues as either originating from skin or 
lymph nodes.
The figure shows the classification of 38 tissues as predicted by ANN analysis as either originating from skin 
or from lymph node. The predicted output shown is the average over 100 models; the error bars show the 
standard error of the mean with 95% confidence. The blue columns represent cell lines originating from skin, 
and therefore should have an output of 1, and the red columns represent cell lines originating from lymph 
nodes, and therefore should have an output of 2. Tissues 285, 453, 293, 598 and 620 were misclassified.
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Figure 4-9 Sensitivity analysis of the top 1000 ioins used to classify melanoma tissues that originated 
from either the skin or the lymph nodes.
The graph shows the sensitivity ratios of the top 1000 ions averaged over the 100 models trained.

Only 1 misclassified tissue (293) also had its paired cell line (Ma Mel 26b) misclassified. 

The performance of the cell line and tissue analyses revealed that although the accuracy of 

predicting the site of the tumour was similar using spectra obtained from cell lines and 

tissues, the specificities were different with the analysis using the cell line spectra giving a 

specificity of 58.8% and the analysis using the tissue spectra giving a specificity of 76.5%.

4.3.3.2 Prediction ofpatient survival fo r  both cell lines and tissues

Cell lines and tissues were also analysed to predict patient survival, with 43 of the paired 

cell line and tissue profiles being included in the analysis. It was decided, at first, to use 

survival as a continuous variable; i.e to predict the survival time of each patient in months. 

The suivival of the 43 patients varied from 0.23 - 51 months. Unfortunately, using this 

approach, the ANNs could not correctly predict patient survival with either the cell line 

data or the tissue data, probably due to a low sample number but a broad range in survival 

time. It was therefore decided to use survival as a categorical variable and set 8 months as 

a cut off time for survival and determine if the ANNs could correctly assign patients as
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surviving less or more than 8 months after the sample was collected. Patients that survived 

less than 8 months were assigned an output of 1 and patients that survived more than 8 

months were assigned an output of 2.

Cell line analysis

The ANNs correctly classified cell lines originating from patients that survived less than or 

greater than 8 months with an accuracy of 79.1% ± 0.4 a sensitivity of 96.4% and a 

specificity of 46.7% using the top 1000 ions. The predicted outputs of the cell lines are 

shown in figure 4-10 and shows that 9 of the cell lines from patients surviving longer than 8 

months were incorrectly classified by the ANNs; Ma Mel 74, Ma Mel 93, Ma Mel 7, Ma 

Mel 24, Ma Mel 61, Ma Mel 91, Ma Mel 22 and Ma Mel 65; Ma Mel 26b was 

misclassified as originating from a patient surviving longer than 8 months.

2 .1  *i---------

n  Survival < 8 months 
| |  Survival >8 months19---

0.9

0.7

0.5

0.3

Figure 4-10 Classification by ANN analysis of 43 melanoma cell lines originating from patients with a 
survival, after sample collection, of less than or more than 8 months.
The figure shows the classification of 43 cell lines as predicted by ANN analysis originating from patients 
that survived less than or more than 8 months after tissue extraction. The predicted output shown is the 
average over 100 models; the error bars show the standard error of the mean with 95% confidence. The blue 
columns represent cell lines originating from patients with less than 8 month survival, and therefore should 
have an output of 1, and the red columns represent cell lines originating from patients that survived longer 
than 8 months, and therefore should have an output of 2. Cell lines Ma Mel 74, Ma Mel 93, Ma Mel 7, Ma 
Mel 24, Ma Mel 61, Ma Mel 91, Ma Mel 22 and Ma Mel 65 were misclassified as originating from a patient 
with a survival time of less than 8 months; Ma Mel 26b was misclassified as originating from a patient 
surviving longer than 8 months.
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Figure 4-11 Sensitivity analysis of the top 1000 ions used to classify cell lines originating from patients 
with a survival, after sample collection, of less than or more than 8 months.
A list of the top 1000 ions used to classify the cell lines in each ANN model is generated using a sensitivity 
analysis. The data presented shows the sensitivity ratios of the top 1000 ions averaged over the 100 models 
trained.

The sensitivity analysis of the top 1000 ions, shown in fugure 4-11, demonstrated large 

clusters of ions that were important for classifying the samples and only 4 of the top 1000 

ions had a ratio value of less than 1.

Tissues

After training the ANNs with the top 1000 ions, correct classification of the tissue samples 

originating from patients that survived less than or greater than 8 months was achieved with 

an accuracy of 79.1% ± 0.384 and a sensitivity and specificity of 100% and 40%, 

respectively. Figure 4-12 shows the population distribution of the predicted outputs for all 

43 samples and reveals nine tissue samples that were incorrectly classified by the ANNs; 

samples 652, 313, 414, 288, 466, 598, 159, 192 and 568 were classified as originating from 

patients surviving less than 8 months when they originated from patients surviving longer 

than this time.

The sensitivity analysis of the top 1000 ions is shown in figure 4-13 and reveals that a few 

of the top 1000 ions are important for classifying the samples although the ratio values

12256 Da

20392 Da

152



Chapter 4

overall are still very low; the most important ion still only had a ratio value of 1.017. Forty 

of the top 1000 ions were found to have sensitivity ratio values of less than 1 and so their 

removal from the training set may help towards improving the predictions.

□  Survival < 8 months 
^  Survival > 8 months

1.6

1.4

1.2

0.8

tissue samples

Figure 4-12 Classsification by ANN analysis of 43 tissues originating from patients that survived less 
than or more than 8 months after tissue extraction.
The figure shows the classification of 43 tissues as predicted by ANN analysis originating from patients that 
survived less than or more than 8 months after tissue extraction. The predicted output shown is the average 
over 100 models; the error bars show the standard error of the mean with 95% confidence. The blue columns 
represent cell lines originating from patients with less than 8 month survival, and therefore should have an 
output of 1, and the red columns represent cell lines originating from patients that survived longer than 8 
months, and therefore should have an output of 2. Tissues 652, 313, 414, 288, 466, 598, 159, 192 and 568 
were misclassified as originating from patients surviving less than 8 months.

153



Chapter 4

1.02

1.018

1.016

1.014

0  1-012

1
1.01

m/z values

Figure 4-13 Sensitivity analysis of the top 1000 ions used to classify tissue samples that originated from 
patients that survived less than or more than 8 months after tissue extraction.
The figure shows the sensitivity ratios of the top 1000 ions averaged over the 100 models trained. The ratio 
values are all veiy low showing that there is not a small subset of ions that is of particularl importance for the 
classification of these samples.

Four of the misclassified tissues and also had their paired cell lines misclassified; tissue 

293/cell line Ma Mel 93, 598/Ma Mel 61c, 568/Ma Mel 74 and tissue 192/cell line Ma Mel 

22. These four samples originated from patients that survived longer than 8 months after 

the sample was extracted. The following table (table 4-5) shows the survival time of the 

patients as obtained from the patient database, samples that were misclassified by ANN 

analysis are highlighted in red.

None of the top ions from the sensitivity analysis of the training set of the tissue data were 

the same as those from the cell line data, even when taking the mass accuracy of the SELDI 

instrument (found to be 0.05%) into consideration.
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Histo-
number

Cell Line 
Code

Survival 
since tissue 
extraction

Histo-
number

Cell Line 
Code

Survival 
since tissue 
extraction

208 Ma-Mel-19 0.23 284 Ma-Mel-28 4.59
147 Ma-Mel-06 0.33 692 Ma-Mel-96 6.23
395 Ma-Mel-52 0.53 374 Ma-Mel-47 6.25
470 Ma-Mel-56 0.66 285 Ma-Mel-26a 6.30
546 Ma-Mel-66a 0.79 510 Ma-Mel-60 7.40
547 Ma-Mel-66b 0.79 252 Ma-Mel-27 7.56
169 Ma-Mel-15 1.02 466 Ma-Mel-5 5 8.09
171 Ma-Mel-20 1.25 652 Ma-Mel-93 9.28
379 Ma-Mel-08b 1.38 657 Ma-Mel-82 9.73
97 Ma-Mel-05 1.97 628 Ma-Mel-91 10.20

449 Ma-Mel-51 2.07 185 Ma-Mel-24 11.18
620 Ma-Mel-81 2.13 288 Ma-Mel-3 3 11.21
476 Ma-Mel-59a 2.66 9 Ma-Mel-07 11.84
658 Ma-Mel-85 3.31 319 Ma-Mel-39a 12.64
293 Ma-Mel-26b 3.61 598 Ma-Mel-61 c 13.76
453 Ma-Mel-54a 3.78 414 Ma-Mel-48a 13.84
492 Ma-Mel-5 7 3.88 568 Ma-Mel-74 14.45
304 Ma-Mel-36 4.03 548 Ma-Mel-65 17.93
561 Ma-Mel-71 4.04 159 Ma-Mel-13 37.72
525 Ma-Mel-62 4.21 192 Ma-Mel-22 42.75
383 Ma-Mel-45a 4.37 313 Ma-Mel-37b 51.00
656 Ma-Mel-90 4.49

Table 4-5 Survival data (in months) of the patients from which the cell lines and tissues analysed in this 
study were taken.
The table shows the survival time (in months) of the patients from which the cell lines and tissues analysed 
originated, as obtained from the clinical database made available by Dr Selma Ugurel as part of the OISTER 
project. Samples that were misclassified by ANN analysis are highlighted in red.
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4.4 Discussion

The aim of this study was to determine whether cell lines could be used as a suitable model 

to investigate protein profiles that could indicate progression of the disease and identify 

clinically relevant biomarkers. Forty-four melanoma tissue samples were taken from 

patients with a known clinical history and with at least 5 years follow-up. Cell lines were 

also derived from the samples and a comparison between the cell lines and their original 

tumour of origin was performed via SELDI MS and ANN analysis.

The SELDI spectra (figures 4-4 and 4-5) show peaks at approximately 5650 Da, 10840 Da, 

13780 Da and 14000 Da in all of the samples regardless of sample type and origin. It can 

be assumed that these peaks are likely to represent high abundant and/or house keeping 

proteins. If so then in future studies sample integrity could also be determined by the 

presence or absence of these peaks: samples not having these peak ions would not be 

included in the analysis.

The anonymised clinical information of patients was made available through OISTER. The 

SELDI MS data obtained from the cell lines was mined to determine if the site of tumour 

could be predicted from a protein profile and this was then repeated for the tissue samples, 

thus revealing whether the protein profiles obtained from cell lines hold clinically relevant 

information. The data showed, using this limited series of samples, that both the cell line 

profiles and the tissue profiles contained sufficient information to classify between a 

melanoma sample taken from the skin and sample taken from the lymph node; this was 

achieved with an 81.6% accuracy in the cell lines and 86.8% accuracy in the tissues. The 

fact that samples could be classified according to tumour site shows that the proteins 

(protein ions) present in cells originating from these locations must be significantly 

different. The influence of other factors, aside from the genome of differentiated cells, 

such as the skin and lymph nodes, allows for tissue specificity and this is evidence when 

cells are isolated in culture as they lose most functional differentiation (Bissell 1981). If 

cancers arose exclusively as a result of genetic mutations, then it could be expected that 

every organ could become cancerous. As this is not the case, then the presence of other 

molecules, including ECM, diffusible growth factors, cytokines, endothelial cells, 

lymphocytes, macrophages and fibroblasts, must also play key roles in cellular decision 

making and homestasis (Bhowmick et al. 2004; Bissell et al. 2005). As a result of this,
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predicting the site of a tumour within the tissue sample proteomes would be expected due 

to the molecules within the microenvironment (present within the samples) allowing for 

tissue specificity. This is also reflected in the specificity of prediction using tissues being 

higher (76.5%) than the specificity of prediction using the cell lines (58.8%). However, the 

fact that the site of tumour could also be predicted using the cell line samples must also 

mean that the cancer cells themselves must be affected by the tumour from which they 

originated. The predicted ions were also different between the cell lines and tissues, 

suggesting that the cell lines may have diversified in an ‘artificial’ in vitro 

microenvironment. However, given the fact that the cell lines and tissues originate from 

the same biopsy, it is not suprising that the predictability with regard to the site of tumour, 

is similar.

To further investigate whether cell lines could be used to identify clinically relevant 

biomarkers, SELDI profiles were mined according to patient survival. The survival of 

patients is the most important prognostic factor and accurate for the identification of 

patients at risk so would influence the selection of chemotherapeutic treatments. The 

survival of patients of less than or more than one year is an important parameter but due to 

a low number of patients surviving past 1 year in the sample group available, an 8 month 

cut off was used to provide approximately equal number of samples in the two groups. The 

data showed that both the cell line and tissue profiles contained relevant biomarkers that 

enabled the ANNs to classify a melanoma sample as originating from patients that survived 

less or more than 8 months. This was achieved with a 79.1% accuracy for both the cell line 

and tissue data. Misclassification of patients that survived more than 8 months was shown 

for 8 cell lines and 9 tissue samples. Only 43 samples were analysed in this study, 15 of 

which had a broad range of survival, from 8-51 months. The specificity of predicting 

survival using either cell lines (46.7%) or tissues (40%) was low and this is probably due to 

a number of factors; firstly the number of samples included in the analysis was low, 

especially in the second group which also had a broad range of survival; secondly, survival 

in a patient is affected by a number of factors including the symptoms of the cancer 

cachexia syndrome and quality of life, rather than just the size of the tumour, tumor grade 

and extent of the disease (Glare 2005), therefore the death of the patients included in this 

study could have been due to a number of different factors. To look at patient survival in 

this way, a larger cohort of samples would be required to allow for a more generalised
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predictive pattern to be identified. One significant finding from this study has shown that 

the profiles from the cell lines allowed for classification of blind data with the same 

accuracy as the tissue data, again showing that it may be possible to use cell lines to study 

the biological differences between samples obtained from patients with different clinical 

outcomes. However, as the sensitivity analyses showed that the most important ions for 

classifying samples were different for the cell lines and tissues analysed, it is not possible in 

this instance to use cell lines to identify clinically relevant biomarkers. This is not 

unexpected as both the cell line lysates and tissue lysates would contain different 

concentrations and possibly different types of proteins due to the heterogenous nature of the 

tissue sample and genetic and phenotypic diversity that would have resulted from in vitro 

culture of the melanoma cells. Even though different ions were identified as important, 

these may represent fragments of the same protein or different proteins either with the same 

biological function or originating from the same family. It will, therefore, be important to 

identify the proteins associated with the key ions in order to understand their importance 

with regard to disease status and biology.

This study provides a “proof of principle” that clinically relevant parameters can be 

predicted through an integrated use of mass spectrometry and bioinformatics. In support of 

the study, Voss et al (2001) undertook expression profiling at the protein level using 2-D 

PAGE on 24 patients with B-cell chronic lymphocytic leukaemia (B-CLL). The analysis 

allowed the identification of proteins that clearly discriminated between patient survival 

(Voss et al. 2001). Another study also used 2D PAGE and MALDI-TOF combined with 

cluster analysis to analyse 85 glioma tissue samples in conjunction with survival. 

Clustering of proteins significantly correlated with patient survival and discriminant 

analysis extracted a set of proteins that were differentially expressed between histological 

grades and identified novel biomarkers for survival prediction (Iwadate et al. 2004). 

Schwartz et al (2005) obtained protein profiles from 108 human gliomas of various grades 

via direct tissue profiling using MALDI-TOF. By applying statistical algorithms to the 

profiles, protein patterns were identified that correlated with tumour histology and patient 

suivival and also identified 2 patient populations, short-term and long term survivors 

(Schwartz et al. 2005). These studies demonstrate that it is possible to correlate SELDI MS 

profiles with patient survival.
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As discussed, the tumour microenvironment may have an important role in tumour 

progression, caused by reciprocal signalling between the tumour cells and stromal cells 

such as endothelial, inflammatory, immune cells and CAFs. Thus, the tumour 

mocroenvironment may affect the progression of a tumour and the biomarker profile 

(Mueller & Fusenig 2004). Cell lines are homogeneous and express biomarkers that are 

tumour related. However, the selective pressure on melanoma cells in situ and in vitro is 

quite different and it would be expected that differences would occur at the protein levels. 

A comparison between microdissected tumour cells and cultured cells from the same tissue 

would go some way to highlighting differences and similarities, although there are obvious 

disadvantages.

Laser capture microdissection (LCM) is a microscope based dissection technique that relies 

on previous fixing and staining of tissue sections to identify areas of interest and as such 

there is a risk of artefacts arising from this procedure (Craven et al. 2002). LCM has been 

used as a tool for obtaining specific cell types from tissues for gene expression and 

proteomic based studies. A study by Kurose et al (2001) used microdissected breast tissue 

to analyse LOH in both malignant breast epithelial cells of intra-ductal carcinoma and the 

surrounding stromal cells. The results showed frequent LOH in both the epithelial and 

stromal compartments, suggesting that genetic alterations in both the tumour and its 

microenvironment may be required for breast cancer progression (Kurose et al. 2001). 

Studies using microdissected tissue for SELDI MS analysis have also been reported. 

Potential biomarkers associating with prostate cancer were found that discriminated 

between benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN) and 

prostate cancer (PCA). BPH, PIN and PCA cell populations were obtained from 9 

prostatectomy specimens using LCM. The lysates from these cell populations were 

analysed by SELDI MS revealing differences in the protein profiles that discriminated 

between the different disease states. Also, differentially expressed proteins could be used 

as potential markers for screening for the early development of prostate cancer (Cazares et 

al. 2002). A study analysing tissue extracted from 10 hepatocellular carcinoma patients by 

SELDI MS revealed that differentiation between central tumour regions, peripheral tumour 

regions and normal tissue could only be detected in microdissected tissue (Melle et al.

2004). By using LCM to provide homogenous tissue samples, the potential problem of
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‘diluting out’ of important biomarkers due to the heterogeneity of whole tissue lysates 

could be avoided.
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Chapter 5 Breast cancer tissue proteome profiles associating 

with a basal phenotype and p53 expression

5.7 I n tr o d u c t io n

Breast cancer is the most common malignant disease in Western women and metastases to 

distant sites are the main cause of death in patients. Abnormalities in BRCA1 and BRCA2 

account for approximately 90-95% of familial breast cancers and the loss of heterozygosity 

(LOH) in the 17q21 region of BRCA1 account for over 50% of sporadic breast and ovarian 

cancers (Peto 2002). The biology of breast cancer and the treatment options currently 

available have been discussed (see section 1.3). Although combinations of these treatments 

can induce tumour response in 80-90% of breast cancer patients, the statistical survival of 

patients with metastatic disease is estimated in months not years, despite the fact that 

prolonged disease remission is seen in a few patients. Adjuvant therapy, which can include 

chemotherapy and hormone therapy, can help eradicate tumour cells that may have already 

spread to distant sites when the patient is first diagnosed. Chemotherapy has a wide range 

of short and long-term side effects that can affect a patient’s quality of life. Although only 

40% of patients relapse and ultimately die of metastatic breast cancer, 80% of patients 

receive adjuvant therapy as it is currently not possible to accurately predict a patient’s risk 

of developing metastases. The problem then arises in women who receive chemotherapy 

unnecessarily when they could be cured of disease by local treatment such as surgery and 

radiotherapy; and as a result needlessly suffers the side effects of chemotherapy. 

Traditional prognostic markers for breast cancer include tumour size, lymph node 

involvement, histological grade and erb-b2 amplification and protein expression. These 

markers can identify approximately 30% of patients that are likely to have a favourable or 

poor clinical outcome but of the remaining 70% of patients, another 30% will still develop 

metastases. Therefore the discovery of new prognostic markers to identify these high risk 

patients is needed (Weigelt et al. 2005).
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5.1.1 Gene expression profiling of Breast Cancer

DNA microarray studies revealed that primary breast tumours that develop metastases 

could be distinguished from those that remained localised by their gene expression profile 

(Weigelt et al. 2005). Recent gene expression studies have also shown that one type of 

breast cancer, invasive ductal breast carcinoma, can be divided into many subgroups which 

are not apparent with conventional histopathologic examination. These subgroups are 

known as luminal A, luminal B, normal breast-like, HER2-overexpressing and basal-like, 

each of which are associated with different clinical outcomes (Livasy et al. 2006). One of 

the most interesting phenotypes is the basal epithelial-like phenotype which can be 

identified as being ER negative, progesterone receptor negative and HER2 negative (triple 

negative) (Bryan et al. 2006). This phenotype can also be characterised by the positive 

staining for antibodies raised against cytokeratins such as cytokeratin 5/6, cytokeratin 8/18 

and cytokeratin 14, which are known to be restricted to basal cells within the breast, as well 

as vimentin and EGFR (Livasy et al. 2006). The basal-like phenotype has been frequently 

found in BRCA1 associated breast cancers and these tumours are shown to be aggressive 

and have a tendency to metastasise to the viscera. They have also been associated with 

poor prognosis in patients that did not receive adjuvant therapy (Rodriguez-Pinilla et al. 

2006). Elevated levels of cyclin E and p53 and low levels of KIP 1 are also associated with 

this subtype (Arnes et al. 2005).

These gene expression studies have shown that a global approach to biomarker discovery 

studies can reveal previously unknown facets of the biology of different cancers, including 

breast cancer. Without these studies the different subtypes of breast cancer may not have 

been discovered, for example basal-like breast cancer is one subtype that has a poor clinical 

outcome and a high risk of developing metastases. As proteins are the functional elements 

of the cell it can be assumed that protein expression studies could also reveal biomarkers of 

clinical relevance.

5.1.2 Proteomic profiling of Breast Cancer

The majority of proteomic studies to date, involving breast cancer, have utilized cell lines 

tumour tissue, serum, plasma and nipple aspirates as the source of material for analysis. 

These studies have focused on the identification of differentially expressed proteins that can
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define the molecular and biochemical pathways that cause normal cells to become 

cancerous. They have also identified potential biomarkers and therapeutic targets which 

could be used for the treatment of this disease. These studies have analysed the breast 

cancer proteome using 2D-DIGE (2-D differential in-gel electrophoresis) and confirming 

their findings using immunohistochemistry (Somiari et al. 2005). For example, Annexin V, 

L-plastin, and the 78 kDa glucose regulated protein (GRP78) were found to be 

differentially expressed between breast carcinoma (DCIS and IDCA) and normal breast 

tissue (Somiari et al. 2003; Wulfkuhle et al. 2001).

Proteomic analysis of whole tissue lysates of normal and DCIS tissue and microdissected 

normal and DCIS epithelial cells revealed proteins that were differentially expressed in 

DCIS compared to the normal samples. The study was performed using 2-D PAGE and 

sequencing via mass spectrometry and identified proteins that were not previously 

connected with breast cancer (Wulfkuhle et al. 2002). Another 2-D PAGE based approach 

has revealed a number of proteins that are differentially expressed between breast 

infiltrating ductal carcinoma and matched normal tissue (Somiari et al. 2003). The same 

group have also identified proteins that are differentially expressed between infiltrating 

ductal and infiltrating lobular carcinomas and their associated lymph nodes (Somiari et al.

2005). Various proteomic studies analysing breast cancer cell lines have been undertaken 

including the effects of doxorubicin on chemosensitive and chemoresistant MCF-7 cell 

lines on the proteome (Chen et al. 2002; Mian et al. 2003). These studies revealed that the 

effects of therapeutic treatment could be identified by the protein expression profiles 

generated by 2-D PAGE and SELDI MS. Tissue microarrays (TMAs) have also been 

widely used to study the expression patterns in breast cancer. One such study revealed the 

differential expression of hormone receptors, p53, erb-b2, cell cycle regulators, apoptosis 

markers and basal markers between BRCA1 and BRCA2 tumours (Palacios et al. 2005) and 

have been used to confirm gene expression studies that identified different subtypes of 

breast cancer. Two studies have confirmed the known subtypes and a third study has 

identified luminal and basal tumour clusters (Callagy et al. 2003; Korsching et al. 2002; Li 

et al. 2002a; Zhang et al. 2003). SELDI MS has been used to investigate serum, plasma, 

nipple aspirate fluid and tumour tissue for the presence of diagnostic biomarkers and to 

predict the clinical outcome or response to treatment of patients. Many of these studies 

have shown that biomarkers are present within serum and plasma that can be used to
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differentiate between breast cancer and benign/healthy patient samples. Li et al (2002a) 

screened 169 serum samples where 103 were from breast cancer patients, 41 were control 

samples and 25 were from patients with benign breast disease. By analysing the samples 

using SELDI MS and the software package ProPeak, 3 biomarkers were identified that 

could discriminate between cancer and non-cancer samples with a sensitivity and 

specificity of 93% and 91%, respectively. One study analysed serum samples taken from 

45 breast cancer patients, 42 patients with benign breast disease and 47 normal volunteers 

using SELDI MS and classification trees. The classification of cancer versus normal 

samples was achieved with 80% sensitivity and 79% specificity and between cancer and 

benign disease, the sensitivity and specificity was 78% and 83% (Vlahou et al. 2003). Hu 

et al (2005) analysed serum obtained from 49 breast cancer patients, 51 with benign breast 

disease and 33 healthy women using SELDI MS, ANNs and discrimnant analysis. The 

data showed that discrimination between cancer and benign breast disease could be 

achieved with 81.6% sensitivity and 78.4% specificity. Also, discrimination between 

cancer and non-cancer samples was achieved with a sensitivity and specificity of 79.6% 

and 77.4% (Hu et al. 2005).

The aim of this aspect of the study was to use SELDI MS and ANNs to identify proteomic 

patterns from 155 breast cancer tissues that correlate to clinical and TMA information 

associated with these samples, (details given in appendix 3). Due to time constraints two 

parameters were taken for ANN analysis, the identification of a basal phenotype within the 

samples and the presence of p53 expression.

5 .2  M e th o d s

All of the tissue samples processed by SELDI MS were processed as part of a larger study, 

Biopattem (a 6th framework EU funded programme), by tissue microarray. Tissue 

microarray and anonymised clinical data of patients from which the breast cancer samples 

were obtained was received from Prof Ian Ellis, City Hospital, Nottingham. The 165 

samples analysed came from a study based on a consecutive series of 1944 cases of 

invasive breast carcinomas presenting between 1986 and 1998 that were entered into the 

Nottingham Tenovus Primary Breast Carcinoma Series. This is a well-characterised series 

of patients under the age of 70 presenting with primary operable breast carcinoma. The
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patients were treated in a conventional uniform manner and the series has been used 

previously to study a wide range of proteins (Abd El-Rehim et al. 2004; Abd El-Rehim et 

al. 2005; Rakha et al. 2005). The patient’s clinical history and tumour characteristics were 

obtained from the pathology database and the median follow-up period was 58 months 

(range 1-192 months). The tissue microarrays were prepared as described (Kononen et al. 

1998) with each case sampled twice, from the centre and the periphery of the tmnour, to 

form an array of 100 cases per block. Imimmohistochemical staining of basal cytokeratins 

(CK5/6 and CICl 4) was performed (Abd El-Rehim et al. 2004; Abd El-Rehim et al. 2005) 

using the standard strepavidin-biotin complex method and TMA technology and where 

only staining of the malignant cells within the tissue cores was considered. 

Immunohistochemical scoring was performed using the modified Histo-score (H-score) that 

includes a semi-quantitative assessment of both the intensity of staining and the percentage 

of positive cells giving the range of possible scores as 0-300. Positivity was defined as the 

detection of 10% or more of invasive malignant cells positive for CK5/6, CK14, SMA, and 

p53 staining (Rakha et al. 2006).

A more detailed explanation of the methods used for is given in Chapter 2; a schematic 

flowchart showing how the tissue lysates were processed for mass spectrometiy and ANN 

analysis is given below (figure 5-1). The bioinformatics analysis was performed as 

described in section 2.2.6.1 but with some parameters adjusted slightly in order to improve 

upon the predictions; only a BP algorithm was used for training 10,000 epochs, not CGD, 

the momentum was set to 0.5 instead of 0.3 and the ‘window’ set to 3000.
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Figure 5-1 A schematic showing the methods for sample processing and analysis used in this study.
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5 ,3  R e s u l t s

5.3.1 Protein quantification and sample quality control.

Protein quantification was performed using the Bio-Rad protein microassay as described in 

section 2.2.2. A standard curve was determined by plotting the absorbance at 595nm 

versus BSA protein standard concentration (pg). The calculation of the protein 

concentrations is explained in detail in section 3.2.1. On average, concentrations of 

between 3 and 9 pg/pl were obtained from the breast cancer tissue lysates. The samples 

were then run through a 12.5% resolving gel to determine sample integrity; an example is 

shown in figure 5-2. This figure shows consistent bands in all of the samples run through 

this 12.5% resolving gel. Prominent bands can be seen at approximately 70 kDa, 50 kDa, 

45 kDa, 40 kDa, 35 kDa, 25 kDa and 11 kDa in all of the samples, concluding that no 

protein degradation has occurred during the sample preparation.

225kDa ►
150kDa ►
100kDa ►
75kDa ►

50kDa

35kDa

25kDa

15kDa ►

10kDa ►

KEY
1 =2290
2 = 2293
3 = 2294
4 = 2297
5 = 2302
6 = 2304
7 = 2305
8 = 2308
9 = 2309

Figure 5-2 1-D PAGE of breast cancer tissue lysates representing sample quality of all samples 
analysed as part of the breast cancer study.
This figure represents an example of the data obtained from all of the breast cancer tissue lysates used in this 
study. 40pg of each lysate sample was resolved in a 12.5% resolving gels and stained with coomasie blue to 
determine if degradation of the proteins occurred during sample preparation. The figure shows that band 
integrity is maintained between these samples and was observed in all of the lysates.
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5.3.2 SELDI MS

The protocol used is described in section 2.2.4.1, but briefly 155 breast cancer tissue lysates 

were bound to the hydrophobic surface of a H50 SELDI chip and analysed using a PBS II 

mass analyzer. The following figures show some of the SELDI spectra obtained for this 

study. Figure 5-3 shows some differences, shown by the blue boxes, and some similarities, 

shown by the green boxes, that were noted by subjective visual assessment in the protein 

profiles of breast cancer samples with or without a basal-like phenotype. Sample 2123, a 

sample without a basal phenotype (shown in red) was overlaid with samples with a basal 

phenotype (shown in black); 2113 (a), 2080 (b), 2233 (c) and 2236 (d). Table 5-1 shows all 

of the peaks that can be seen in these profiles, showing peaks that are similar between the 

tissues with or without a basal-phenotype highlighted in red. Peaks at 7007.6 and 8463.4 

Da can be found in the sample that does not have the basal phenotype but not in the 

samples that have a basal-like phenotype. Peak values at approximately 3100 and 3361 Da 

can be seen in all of the samples shown.

Figure 5-4 shows some of the differences, shown by the blue boxes, and some of the 

similarities, shown by the green boxes, of the protein profiles of breast cancer samples 

either expressing or not expressing p53. Profiles a-d are derived from samples that express 

p53, shown in black, overlaid on a profile of a sample not expressing p53, shown in red. 

Sample 2162 was overlaid with 2107 (a), 2202 (b), 2063 (c) and 2211 (d); the details are 

shown in table 5-2, with peaks that are similar between the tissues with or without p53 

expression highlighted in red. Figure 5-3 and table 5-2 show that peak values at 5210.4, 

6149.9 and 8498.6 Da can be found in the sample that does not express p53 but not in the 

samples that do express p53 and that peaks with approximate values at 5365 and 8640 Da 

can be seen in all of the samples shown here. These results do not however depict the 

complexity of the data, therefore a detailed analysis was performed using ANNs.
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Figure 5-3 SELDI spectra obtained from breast cancer tissue lysates highlighting the differences and 
similarities between samples with different basal phenotypes, in the 2500 -  10000 Da range.
The four spectra show a sample with a basal-like phenotype (in black) overlaid on sample 2123 which is an 
example of a sample without a basal-like phenotype (in red). The green boxes show the similarities between 
the samples and the blue boxes show the differences.
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2123 2113 2080 2233 2236
(basal-like (no basal-like (no basal-like (no basal-like (no basal-like
phenotype) phenotype) phenotype) phenotype) phenotype)

- - 2571.8 - 2571.8
- - - 2679.1 -

- - 2741.2 - 2747
- - 2855.9 - 2856.2

2945.4 2941.5 2945.4 2945.2 -

3104.7 3098.8 3103.6 3103.1 3103
- - 3248.5

3365.6 3361.9 3365.2 3366.8 3366.3
3586.5 3582.4 3587 3552.7 3587.5
3711.8 3706.6 - 3711 -

- - 3748.6 - 3736.1
3914.1 3908.9 3912.6 3911.9 -

- - - - 3962.2
- - 4115.2 - 4114.5

4244.8 4237.9 4247.8 4241.8 4251.1
- - 4404.2 - 4402.7

4448.8 4442.9 - - -

4513.3 4525.6 - - -

- - - - 4607.2
4646.3 4639.8 4643.9 4643.7 -

4800.2 4797.2 4800.9 4798.5 -

- - 4863.5 - -

4913.3 4906 - 4911.6 -

5372 5366.8 5372.8 - 5374.1
5491 5483.1 - 5492.5 -

- - 5590.5 - -

- 5808 - - -

- - 5871.4 - 5870.7
- - - 5963.6 -

- - - - 6018.2
- - - 6137.1 -

- 6397.9 - - -

- 6670.3 - - -

7007.6 - - - -

- - - 7406.9 -

- - - 7508 -

- 7962.6 - - -

8463.4 - - - -

- 8517.8 - - -

8655.7 - - 8654.7 -

- 8795 - - -

- - - 9103.3 -

- 9369.4 - - -

- 9858.3 - - -

9874 - - 9882 .

Table 5-1 Values of the main peaks observed in the spectra presented in figure 5-3.
The table shows the main peaks (in Daltons) observed in the spectra obtained from breast cancer tissues with 
or without a basal-like phenotype, in the 2500 - 10000 Da mass range. Peaks that are similar between 
samples are shown in the same row, although the m/z values may be slightly different due to the mass 
accuracy o f the instrument. Peaks that are observed in both the spectra o f a lysate with a basal-like phenotype 
and sample 2123 (without a basal-like phenotype) are highlighted in red.
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Figure 5-4 SELDI spectra obtained from breast cancer tissue lysates highlighting differences and 
similarities between samples that do or do not express p53, in the 5000-15000 Da mass range.

The four spectra show samples expressing p53 (in black) overlaid on sample 2162, a lysate that does not 
express p53 (in red) representing the differences, highlighted by blue boxes, and similarities, highlighted by 
green boxes between the two types of samples.
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2162 
(no p53 

expression)

2107 2202 2063 2211
(p53 expression) (p53 expression) (p53 expression) (p53 expression)

5210.4

5367.8
5486.5

5960.1

6149.9
6289.9

6985.7

7398.4

8038.9

8498.6

8641.4

9158.9

9875.7 

11001

13904

5373.6
5493.9

5960.8

6770.3

7534.7

8028.2

8534.5 
8663 
8809

8994.5

9402.2

9859.7
10266.6
11000.1

13910.4

5269.6

5587

5854.8

6001.6

6322.9 
6480.6

7036

8011.9

8634.7

9389.4 
9774.6

10262.1
11016.4 
11389.3

14015.5

5364.4 
5491.2

5634.4

5963.9

6268.8

6574.5

6993.7

7389.7

7880.8

8655.6

9179
9399.9

9862.1

10994.9

5363
5486.7

5633.2

5962.3

6296.8

6656.2

6815.2
6989.3

7502.4
7899.9

8099.4

8642.2

9166.7

9872.2
10265.7
11009.2

12418.5
13900.8

Table 5-2 Values of the main peaks observed in the spectra presented in figure 5-4.
The table shows the main peaks (in Daltons) observed in the spectra obtained from breast cancer tissues with 
or without p53 expression, in the 5000-15000 Da mass range. Peaks that are similar between the samples are 
shown in the same row, although the m/z values may be slightly different due to the mass accuracy o f the 
instrument. Peaks that are observed in both the spectra o f samples with p53 expression samples without p53 
expression are highlighted in red.
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5.3.3 Bioinformatics Analysis

In order to determine whether SELDI MS and ANNs could be used to identify protein 

expression patterns in breast cancer samples relevant to diagnostic and/or prognostic 

outcomes, 2 parameters were chosen with which to mine the SELDI MS data. The first 

analysis was to determine if protein expression correlated to the basal-like phenotype. The 

second analysis was to examine whether there were patterns correlating with the presence 

of p53 expression. SELDI MS data in the 1-20 kDa mass range was exported into EXCEL 

as csv files and converted into xls files before being merged into one file and smoothed to 

3Da for every sample analysed. A multi-layer perception, was trained, using Statistica 

software, on the smoothed mass/intensity data, where only one hidden layer was used. A 

more detailed explanation of the ANN method used can be found in section 2.2.6.

5.3.3.1 Basal Phenotype

The first analysis was to compare the predictive capability of the ANNs to discriminate 

between breast cancer samples with a basal-like phenotype and those without by analysing 

the SELDI MS profiles obtained from H50 chips. Out of the 155 samples analysed, 140 

SELDI spectra were included in this analysis due to the lack of TMA data available for the 

remaining samples.

A back propagation algorithm was used and 84 samples were randomly selected for 

training, 28 for the test set and 28 for the blind dataset for each model, with 100 models 

run. Samples that were not shown to have a basal-like phenotype by TMA were assigned 

an output of 1 and samples that did have this phenotype were assigned an output of 2.
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f I No basal-1 ike phenotype 
| |  Basal-like phenotype

breast cancer tissue samples

Figure 5-5 Classification by ANN analysis of 140 breast cancer tissues displaying a basal-like or non- 
basal-like phenotype.
The figure shows the average predicted outputs of 140 breast cancer samples as calculated by ANN analysis 
over 100 models. Samples that did not have a basal-like phenotype were assigned an output of 1, blue 
columns, and samples that were shown to have a basal-like phenotype were assigned an output of 2, red 
columns. The error bars show the 95% confidence intervals. Samples 2157, 2219, 2204, 2311 and 2218 were 
misclassified as not displaying a basal-like phenotype and tissue 2100 was misclassified as displaying a basl- 
like phenotype when TMA analysis revealed that it did not.

The ANNs correctly classified the tissues samples as having a basal-like phenotype or not 

with an accuracy of 95.7% ± 0.029 and a sensitivity and specificity of 98.9% and 90.2%, 

respectively, using the top 1000 ions from the tissue data as identified by sensitivity 

analysis. Figure 5-5 shows the population distribution of the predicted outputs for all 140 

samples with the samples that should have been classified as not having a basal-like 

phenotype, and therefore having a predicted output of less than 1.5, highlighted in blue. 

The samples that should have been classified as having a basal-like phenotype and 

therefore having a predicted output of greater than 1.5 are highlighted in red. The figure 

shows that six of the tissues were misclassified; tissues 2157, 2219, 2204, 2311 and 2218 

were classified as not having a basal-like phenotype when TMA analysis showed that they
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did. Tissue 2100 was classified as having a basal-like phenotype when it did not with a 

predicted output of 1.999.

1.45

12970 Da

Figure 5-6 Graph showing the results of a sensitivity analysis of the top 1000 ions used to classify 
samples as those with or those without a basal-like phenotype.
A list o f the top 1000 ions used to classify the breast cancer samples into either those with or those without a 
basal-like phenotype in each model is obtained using a sensitivity analysis. The above figure shows the 
sensitivity analysis of the top 1000 ions averaged over the 100 models trained. The analysis reveals two ions 
in particular that are very important for classifying the samples, these ions have masses of 1081 Da and 1108 
Da.

Figure 5-6 shows the sensitivity analysis of the top 1000 ions. These 1000 ions were used 

to train the ANNs for all 100 models and enabled the ANNs to predict the phenotype of the 

tissue samples with 95.7% accuracy, using the data obtained from the tissue samples. The 

sensitivity analysis shows that the ions that have the greatest influence on error for 

classifying the samples are in the lower end of the mass range. There were 10 ions that had 

sensitivity ratios of less than 1 and their removal from analysis may improve the accuracy 

of classification even further.
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5.3.3.2 P53 expression

The second analysis was to compare the predictive capability of the ANNs to discriminate 

between breast cancer samples that did or did not express p53 by analysing the SELDI MS 

profiles obtained from H50 chips. Out of the 155 samples analysed, 135 SELDI spectra 

were included in this analysis, the remaining 20 samples did not have relevant TMA data 

available.

A back propagation algorithm was used with 81 samples randomly selected for training, 27 

for the test set and 27 for the blind dataset for each model, with 100 models run. During 

TMA analysis of these samples, they were assigned a value of between 0 and 300 according 

to the observed fluorescence which correlated with p53 expression. Samples that had a 

fluorescence value of 0 (did not express p53) were assigned an output of 1 for ANN 

analysis. Samples that had a fluorescence value of greater than 0 (expressed varying 

amounts of p53) were assigned an output value of 2 for ANN analysis.

2 2

2

1.8

3
f0
1 16u
1
CL

1.4

1.2

Figure 5-7 Classification by ANN analysis of 135 breast cancer tissue samples according to whether or 
not they express p53.
The figure shows the average predicted outputs of 135 breast cancer samples as calculated by ANN analysis 
over 100 models. Samples that did not express p53 were assigned an output of 1, blue columns, and samples 
that did express p53 were assigned an output of 2, red columns. The error bars show the 95% confidence 
intervals. Samples 2099, 2196, 2202, 2221, 2265, 2290 and 2339 were misclassified as not expressing p53 
and sample 2153 was misclassified as expressing p53 when it did not.

□  No TP53 expression 
^  TP53 expression

breast cancer samples
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Correct classification of tissues samples as expressing or not expressing p53 was achieved 

with an accuracy of 94.1% ± 0.041 and a sensitivity and specificity of 98.9% and 84.4%, 

respectively, after training the ANNs using the top 1000 ions. Figure 5-7 shows the 

population distribution of the predicted outputs for all 135 samples and reveals that seven 

of the tissues expressing p53 were misclassified; tissues 2099, 2196, 2202, 2221, 2265, 

2290 and 2339; tissue 2153 was classified as expressing p53 when TMA analysis showed 

that it did not.

1.08

9571 Da
1.07

1.06
15370 Da1324 Da

1.05

13168 Da
1.04

14863 Da3961 Da
1.03

9538 Da
1.02

1.01

m/z values

Figure 5-8 Sensitivity analysis of the top 1000 ions used by ANNs to classify breast cancer samples 
according to whether or not they express p53.
The above figure shows the sensitivity analysis of the top 1000 ions, from the tissue data, used to train the 
ANN models. The graph shows sensitivity ratio as an average over the 100 models trained. The graph 
reveals a few ions that stand out above the rest but the ratio values are all veiy close to 1 revealing that there 
are not any ions particularly important for classification of the samples, that all of the top 1000 ions are as 
important as each other.

Figure 5-8 shows the sensitivity analysis of the top 1000 ions and identifies that 10-15 of 

the ions have a greater influence on error for classification; 130 ions which had sensitivity 

ratios of less than 1, may influence the accuracy of classification and which could improve 

if they were removed.
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5 .4  D is c u s s io n

The study of the molecular changes that occur in breast cancer has revealed some of the 

pathways involved in breast carcinogenesis as well as identifying some of the key genes 

that are involved including erb-b2, tp53, ccndl, BRCA1 and BRCA2. High-throughput 

approaches that enable the profiling of large numbers of samples has allowed the 

complexity of this disease to be investigated. It is widely thought that a combination of 

markers is likely to be more sensitive and specific for patient diagnosis and predicting their 

prognosis and response to treatment than a single biomarker (Bertucci et al. 2006).

The aim of this study was to determine if predictive patterns in the SELDI MS data from 

155 breast cancer tissues could be derived using ANN analysis. The samples were run in 

duplicate on H50 chips, although the duplicates were run randomly on different chips.

In this study 1-D PAGE was performed to determine sample quality and as long as 

consistent banding patterns were seen for the major bands present in every sample, the 

sample was deemed as being of good enough quality for SELDI MS analysis. Peaks at 

3100 and 3361 Da were present in every sample and their presence could be considered 

indicative of sample quality and their suitability for MS and bioinformatics analysis. A 

number of differences and similarities are shown in figure 5-3 between samples with or 

without a basal-like phenotype and in figure 5-4 between samples that do or do not express 

p53. Certain peaks, seen visually in these two figures, are listed in table 5-1 and 5-2 

together with peaks that are similar between the two sample types (highlighted in red). It is 

difficult to draw conclusions from this analysis and therefore ANN analysis was performed 

in order to interrogate in detail the complete protein profiles generated by SELDI MS. 

SELDI MS data obtained from the tissue samples was analysed to determine if a basal-like 

phenotype could be predicted from protein profiles. This analysis utilised a cohort of 140 

breast cancer tissue samples and could successfully predict samples that did or did not have 

this phenotype with a 95.7% accuracy. If time had allowed cluster analysis could have 

been performed to determine if the six misclassified samples belonged to a subset within 

the basal-like phenotype group to explain their misclassification. It would also be 

important to perform a TMA analysis on those six samples in case an error occurred when 

recording the phenotype data. The presence of a basal-like phenotype has been the subject 

of other studies in breast cancer. Lakhani et al (2005) analysed the histopathological
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material obtained from breast cancer tumours in 182 BRCA1 mutation carriers, 63 BRCA2 

carriers and 109 controls. The study was performed to investigate the proportion of BRCA1 

and BRCA2 mutated tumours expressing basal markers to determine whether a predictive 

test could be developed to identify high-risk patients. The study found that positive 

staining for basal markers cytokeratin 14, cytokeratin 5/6, EGFR and cell morphology 

provided a more accurate predictor of BRCA1 mutation than previously available and could 

be used for selecting patients for BRCA1 mutation testing (Lakhani et al. 2005). The basal- 

like phenotype has been shown to be aggressive and is associated with poor prognosis in 

patients (see section 5.1.1). It has also been shown, in retrospective studies, that standard 

adjuvant therapy seems to be less effective in these tumours (Banerjee et al. 2006). By 

identifying those patients with this particular phenotype, the selection of patients for 

adjuvant treatment would be more successful and possibly lead to a better prognosis.

One concern of the study presented here, is that the sensitivity analysis revealed that the 

majority of the most important ions were found to be less than 1500 Da which is in the area 

where matrix peaks can be found. It is therefore possible that some of these ‘important’ 

ions may have been matrix peaks, although it is difficult to distinguish noise from real 

peaks of low intensity. The data from 1 kDa upwards was analysed to minimise the effects 

of noise in the ANN analysis but the fact that several ions of high importance were found in 

the 1-1.5 kDa range should be viewed cautiously. It is also important to note that although 

the mass accuracy was calculated to be approximately 0.6%, at the low mass end this could 

affect the actual m/z value of important peaks more than at higher mass values which could 

influence attempts to identify these particular ions.

The tp53 oncogene encodes a 53 kDa protein, p53, which is involved in several critical 

pathways including cell cycle arrest, apoptosis, DNA repair, and cellular senescence, which 

are essential for normal cellular homeostasis and maintaining genome integrity. Mutations 

in the tp53 gene have been found to occur in over 50% of human tumours and the alteration 

of this gene or the posttranslational modification in the p53 protein can alter its response to 

cellular stress (Hussain et al. 2006). P53 and MDM2 are linked through an autoregulatory 

negative feedback loop that maintains low p53 protein levels in the absence of stress (Moll 

et al. 2003). This feedback loop is disrupted, however, in many tumours that contain 

mutations of tp53. Loss of p53 function is indicated by tp53 mutation or by the nuclear
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accumulation of functionally impaired p53 protein and is observed in 20-40% of all breast 

cancers depending on the stage of the disease (Thor et al. 1992). Most tp53 alterations 

found in breast carcinomas are point mutations that lead to the synthesis of a stable, 

malfunctional and non-degradable protein that accumulates in tumour cells and so can be 

detected by iimnunohistochemistiy (IHC) or tissue microarrays. Wild-type p53 protein 

does not normally accumulate within cells and has a half-life of 20 minutes, therefore it is 

not normally detected by IHC (Callahan 1992).

The study presented here shows that it is possible to identify patients that have a p53- 

positive breast tumour with a 94.1% accuracy. This study provides “proof-of-principle” 

that it is possible to identify p53-positive breast cancer patients using SELDI MS and 

ANNs. Additional studies could be undertaken to correlate the expression of more than 1 

protein to SELDI MS profiles in order to develop a prognostic test for disease progression, 

patient survival or response to therapy. For example, a study assessing the TMA data of 

breast cancer tissues demonstrated that AR, c-erbB2, cytokeratin 18, MUC1, cytokeratin 

5/6, p53, nuclear BRCA1, ER and E-cadherin were the key markers for the identification of 

different clusters of breast cancer samples (Abd El-Rehim et al. 2005). It has been shown 

that p53 positive breast tumours and tumours with a basal positive phenotype are both 

associated with aggressive behaviour of the cancer and poor patient outcome (Abd El- 

Rehim et al. 2004; Sorlie et al. 2001; Yamashita et al. 2004). By developing a test to 

identify patients with both of these indicators, it may be possible to provide a more accurate 

prognosis for breast cancer patients.

Tissue based proteomie studies are useful for identifying biomarlcers directly related to 

disease and tissue type. One problem of using fresh or frozen tissue samples is that they 

can be difficult to obtain through routine clinical practice and can be expensive to store in a 

stable form. There are a number of alternative approaches that could be considered, 

including the use of cell lines, the use of formalin fixed tissue or the application of methods 

that allows the use of small amounts of protein for analysis; all of these have their pros and 

cons. Formalin fixation and paraffin embedding of tissue is the standard method used for 

processing tissue in pathology laboratories and results in a highly stable form of tissue that 

can be kept at room temperature. However, this type of processing is associated with a 

high degree of covalently cross-linked proteins as well as the effects of formalin fixation 

and storage on the samples and so IHC is currently the only published method that can
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provide proteomic information form these tissues; although this method lacks sensitivity 

and quantitation. Hood et al (2005) have developed a method of protein extraction from 

formalin fixed prostate samples that can then be used for proteomic analysis. 10pm 

sections of a formalin fixed paraffin embedded (FFPE) prostate tissue were placed on 

slides, the paraffin removed by solvent treatment followed by tissue rehydration. 

Approximately 200,000 cells from different cellular regions including prostate cancer 

(PCa), benign prostatic hyperplasia (BPH) and stromal regions were microdissected using a 

novel tissue microdissection technique developed specifically for FFPE tissue, termed 

ExCellerator™. The proteins were extracted and trypsinised before protein microarray and 

NanoRPLC-MS/MS analysis. This analysis resulted in the identification of thousands of 

unique proteins in various histological regions of the tissue, although it is unclear whether 

low abundant proteins could be extracted from these samples (Hood et al. 2005).

The data presented here has shown that it is possible to extract proteins from snap-frozen 

breast cancer tissue and analyse these samples using SELDI MS and ANNs to identify 

differential protein expression patterns in breast tumours. Further studies could reveal the 

identity of proteins that may allow new biomarkers to be identified or the biological 

pathways involved in the disease to be further understood.
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Chapter 6 SELDI MS and Bioinformatic approaches for the 

evaluation of serum biomarkers in stage I-IV melanoma

6 .1  I n tr o d u c t io n

Melanoma is the most aggressive form of skin cancer and the incidences of this disease is 

still continuing to rise. The five year survival in patients whose melanoma is localised at 

the site of the tumour (AJCC Stage I) is over 90% whereas it is only 5% in patients whose 

melanoma has spread and metastasised (AJCC Stage IV). In Stage III patients, 50% will 

survive longer than 5 years and as such stage III patients are the focus of adjuvant treatment 

trials. With no decline in death rates and no progression into its treatment, diagnosing 

patients with early disease, where the invasion of the tumour is much shallower, will result 

in much better prognosis and the possibility of complete cure with surgical excision of the 

tumour. There are currently no clinical assays that can accurately predict a patient’s 

response to adjuvant therapy or if their disease will progress to stage IV and as such have a 

greatly decreased chance of survival. Therefore, patients that are identified as potentially 

being at risk of non-response to adjuvant treatment might then be considered for an 

alternative aggressive treatment (Wascher et al. 2003).

As has already been discussed, the construction of new models that will incorporate more 

than one validated biomarker is an important step towards obtaining accurate diagnosis and 

prognosis of patients in the clinic. Given the fact that metastatic melanoma is a clinically 

heterogenous disease would it be possible to develop a multiple biomarker model for the 

most aggressive subsets and how would we go about investigating this (Linette et al.

2005)? The previous chapters have highlighted the potential of SELDI MS and ANNs to 

identify patterns correlating to gene expression and certain clinical phenotypes obtained 

from cell lines and tissues, both of which provide suitable sample material for analysis. 

However, tumour tissue has to be obtained using an invasive procedure whereas bodyfluids 

such as serum, plasma and mine are more easily obtainable and have been shown to 

provide a rich source of biomarkers for the detection of cancer. A diseased organ can 

modify the blood proteome as a result of over-expression or abnormal shedding of proteins, 

the removal of proteins due to abnormal activation of proteolytic degradation or by the 

modification of proteins. Body fluids that circulate through the diseased tissues will
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acquire proteins that are produced by the tumour and the microenvironment (Petricoin et al. 

2002c).

6.1.1 Human blood proteome based studies

Both plasma and serum (a product of plasma coagulation) are widely available body fluids 

that contain active proteins that could provide information regarding disease status. Blood 

plasma is a complex body fluid, which contains a large diversity of proteins ranging in 

concentrations by at least 15 orders of magnitude. This pool contains intact as well as 

partially degraded proteins or protein fragments that circulate in the blood; as well as salts, 

lipids, amino acids, vitamins, and carbohydrates. The core plasma protein is albumin, 

which represents approximately 50% of the total plasma protein content, being present at 

high concentration (in the order of 30 g/L). The other main plasma proteins include 

immunoglobulins (Igs), fibrinogen, transferrin, haptoglobin, and lipoproteins. The 

remaining 1% of proteins are made up of approximately 10,000 lower abundance proteins, 

which are usually proteins of clinical interest (Adkins et al. 2002; Veenstra et al. 2005). 

Although the removal of these high abundant proteins may theoretically allow for lower 

abundant proteins to be detected, in practice this may result in the removal of information 

of clinical importance. Albumin is a carrier and transporter of proteins within the blood 

and has been shown to bind molecules such as hormones, cytokines and lipoproteins. One 

study isolated albumin, immunoglobumins, apolipoprotein and transferrins from the serum 

and showed that 209 unique proteins bound to these earners; 12 of these proteins were 

clinical biomarkers currently in use such as PSA and meningioma-expressed antigen (Zhou 

et al. 2004). Serum is the product of blood clotting, where prothrombin is cleaved to 

thrombin, fibrinogen is removed to form the clot and a number of other protein changes 

occur including proteolytic cleavages (Anderson et al. 2002). The profiling of plasma, 

therefore, would provide a tine snapshot of undegraded proteins present within the blood. 

A study by Villanueva et al (2006) analysed low molecular weight (<20 kDa) serum 

biomarkers that could discriminate between breast, colon and prostate cancer. It was 

concluded that these biomarkers were not expressed directly by the diseased tissue but were 

in fact generated ex vivo by proteinase-mediated enzymatic cleavage as part of the 

coagulation process. It was suggested that fragments of endogenous blood proteins 

generated ex vivo served as a substrate pool for disease-specific proteinases that are
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generated either from the tumour microenvironment or by the tumour itself. It was also 

suggested that the specific substrates cleaved by proteinases were themselves degradation 

products of the clotting cascade and so it was hypothesized that cancer specific protein 

profiles were an indirect snapshot of the enzymatic activity of tumor cells (Villanueva et al.

2006). If the detection and classification of certain types of cancer is a result of surrogate 

markers generated ex vivo, then these markers camiot be classified as tumour derived 

(Liotta et al. 2006).

6.1.2 Serum-based studies using SELDI MS

The best known cancer biomarker used in clinical practice to detect early stage disease is 

prostate-specific antigen (PSA). The screening of patient serum for PSA has been widely 

used for identifying prostate cancer for more than a decade and has increased the early 

detection rate for this disease, although presence of prostate cancer is still confirmed by 

biopsy (Barry 2001). Cancer antigen 125 (CA125) is another serum marker that is used to 

detect ovarian cancer in post-menopausal women and is the best available clinical marker 

for this group of patients, but a poor diagnostic marker for early stage ovarian cancer (Liede 

et al. 2002). It is hoped that the analysis of the serum proteome, biomarkers will be 

discovered that can be used to diagnose early stage disease, predict susceptibility and 

monitor disease progression (Xiao et al. 2005).

Attempts to analyse the serum proteome identified albumin and gamma-globulin peaks due 

to their relatively high concentration. The use of 2-D gel studies identified lower 

abundance proteins such as apolipoproteins, clotting factors and members of the 

complement system. Along with albumin and globulin, these proteins make up 98% of all 

serum proteins. 2-D gel analysis and western blotting have been performed in breast 

cancer, hepatocellular carcinoma and lung cancer patients in the search for serum 

biomarkers. These studies used autoantibodies against tumour cell proteins and revealed a 

novel circulating antigen, RS/DJ-1, in breast cancer, a repertoire of heptocellular carcinoma 

specific autoantibodies and a protein that induces a humoral response in lung cancer, all of 

which have potential clinical use in the screening and diagnosis of patients (Brichory et al. 

2001; Le Naour et al. 2001; Le Naour et al. 2002). Immunoassays have been used to 

quantify commonly used cancer serum markers at concentrations below lng/ml, (below the 

detection limit of 2-D gels). Advances in MS technology allows the display of hundreds of
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low abundant proteins in a single spectra obtained from microlitre quantities of serum and 

provides clues as to the health status of a patient and whether the serum “peptidome” can 

reveal biomarkers that correspond to specific stages of diseases (Robbins et al. 2005). 

Petricoin et al (2002b) were the first group to investigate the serum proteome using SELDI 

MS and bioinfonnatics and reported unique “fingerprints” that correlated with the presence 

or absence of ovarian carcinoma. This study claimed that a diagnostic pattern in serum 

could correctly classify 50/50 ovarian cancer samples, including 18 stage I patients, and 

63/66 unaffected women or women with non-malignant disorders. Correct classification of 

control and ovarian cancer samples was achieved with 100% sensitivity and 95% 

specificity. Following publication, a plethora of studies were reported where SELDI MS 

and bioinfonnatics were used for the investigation of the serum proteome. In another 

ovarian cancer study, three panels of biomarkers were revealed that could distinguish 

between benign and ovarian cancer with sensitivities and specificities greater than 80% 

(Kozak et al. 2003). Ye at al (2003) identified haptoglobin-alpha subunit as an independent 

ovarian cancer biomarker, via SELDI MS, showing a sensitivity of 64% and a specificity of 

90%. When used in conjunction with an already known ovarian cancer biomarker, CA125, 

the sensitivity and specificity for identifying ovarian cancer patients increased to 91% and 

95%, respectively (Ye et al. 2003). Another study also identified three candidate 

biomarkers for the detection of early stage ovarian cancer and when these were used in 

conjunction with CA125 early stage patients were distinguished from controls with a 

sensitivity of 83% and a specificity of 94% (Zhang et al. 2004b). The sensitivity of CA125 

for detecting early stage ovarian cancer is 50-60%; thus combining CA125 with SELDI MS 

analysis has improved upon the current screening methods for ovarian cancer (Menon et al. 

2000). Serum based studies using SELDI MS have also been reported in prostate cancer 

where protein patterns have been identified that distinguish between prostate cancer and 

benign disease. One study showed that 36/38 (95%) prostate cancer patients and 177/228 

(78%) of patients with benign conditions were classified correctly (Petricoin et al. 2002d).

6.1.3 Current problems associated with serum proteome analysis

The use of SELDI MS for serum based studies is popular due to the ease of obtaining 

serum from patients and the high-throughput nature of the SELDI MS method. However,
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there has been criticism of this method, regarding the reproducibility of the protein profiles 

obtained and whether proposed biomarkers are cancer-associated or are ‘epiphenomena5, 

produced by other organs in response to the presence of the cancer or due to the generalised 

condition of the patient, for example malnutrition, infection or acute-phase reaction. These 

critics have highlighted the need for validation and reproducibility in multiple sample sets 

and multiple centres as well as the need for the identification of these proposed biomarkers 

(Baggerly et al. 2005; Diamandis et al. 2005). The results in prostate cancer, published in 4 

papers and generated by 3 research groups, have shown that the discriminatory biomarkers 

identified using SELDI MS are very different in each study. This suggests that the SELDI 

MS technique may not be reproducible and that the suggested discriminatory markers are 

not consistent for the same cancer in multiple centres analysed using the same technology: 

these studies reported different values for the sensitivity and specificity of the prostate 

cancer diagnosis (Diamandis 2003a). Given the complexity of the data generated by 

SELDI MS, differences in serum collection, storage and experimental hadling could 

account for the different results. Thus, sample collection, pre-processing and storage 

should be standardised in order to eliminate experimental artifacts (Sorace et al. 2003). 

Other differences between samples could also occur as a result of patient differences, for 

example, gender, sex, ethnic background, menopausal status, nutritional status, drug use, 

and so on (Diamandis 2004b). In Petricoin et al. 2002a published in The Lancet, there was 

a 10 year difference in the mean age of the control and the ovarian cancer group so that 

differences observed in the proteome profiles could be due to the age or menopausal status 

of the patients rather than the presence or absence of the cancer.

6.1.4 Current serum biomarkers in melanoma

S-100 is an acidic calcium-binding protein identified in serum from melanoma patients and 

is used as a immunohistochemical marker for the diagnosis of melanoma. The serum 

concentration of this protein has been shown to be elevated in patients with stage III and IV 

melanoma compared with controls and can be used to detect advanced disease in melanoma 

patients with 82% sensitivity and 91% specificity. By combining the serum concentration 

of this protein with the Breslow thickness of the tumour, the sensitivity and specificity of 

identifying the metastatic spread was improved to 91% and 95%, respectively (Abraha et
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al. 1997). This serum marker cannot be used for the primary diagnosis of melanoma as 

only 9% of patients with stage I and II disease have serum concentrations significantly 

higher than controls. The S-100 protein has also been found at high concentrations in 

normal tissues as well as in other benign and malignant tumours and cannot therefore be 

considered as melanoma specific (Kligman et al. 1988; Molina et al. 2002). Lactate 

dehydrogenase (LDH) is an independent prognostic indicator of stage IV melanoma. 

Elevated serum levels of this marker indicate poor survival in melanoma patients when 

used in combination with other indicators as levels of LDH can be elevated due to 

haemolysis and other factors unrelated to melanoma (Balch et al. 2004). Elevated serum 

levels of 5-S-Cysteinyldopa (5-SCD) have been reported as a marker for predicting 

response to systemic therapy. Elevated levels were found in all patients with metastatic 

disease with a 50-fold increase in levels in patients with advanced metastatic disease. 

During chemotherapy, levels of 5-SCD decreased in responders, where survival times were 

higher, but not in non-responders (Wimmer et al. 1997). All of these serum markers have 

shown promise for the diagnosis and prognosis of melanoma patients but the levels of these 

markers are affected by other factors aside from melanoma and there is a need to develop 

more accurate diagnostic and prognostic tests.

The aim of this study was to attempt to interrogate the serum proteome of melanoma 

patients and to identify patterns indicative of early and late stage disease and disease 

progression.

6.2 Methods

The following scheme (figure 6-1) was used for the analysis of serum samples collected 

from patients with melanoma, as described in section 2.1.2.3. The methods used are 

described in sections 2.2.4.2 and 2.2.6, however the parameters set for the bioinformatics 

analysis were adjusted slightly from those described in section 2.2.6, in order to improve 

upon the predictions: no CGD algorithm was used, the learning rate was set to 0.01 instead 

of 0.1 and the ‘window’ was set to 3000 instead of 2000. Two questions were addressed: 

firstly a comparison of biomarkers associating with stage I versus stage IV melanoma and 

secondly biomarkers associating with stage III patients with regard to disease progression.
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Figure 6-1 Scheme showing the methods used in this study for the analysis of melanoma serum samples.
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6 .3  R e s u l t s

6.3.1 SELDI MS analysis

Figure 6-2 shows the protein profiles, obtained by SELDI MS, of sera from stage I 

melanoma patients overlaid on a profile of a serum sample taken from a stage IV melanoma 

patient; all three spectra show the 5000-10000 Da mass range. Table 6-1 gives the values 

of the peaks observed in the profiles shown in figure 6-2, with peaks that are similar 

between the stage I and stage IV sera highlighted in red. Peaks at 6449, 6646, 7775, 8152 

and 8945 Da are present in all of the serum samples, however an ion of approximately 8630 

Da is present only in stage IV samples, conversely a peak of approximately 9165 Da is 

present in all of the stage I but not the stage IV sera.

Figure 6-3 shows the protein profiles, obtained by SELDI MS, of sera taken from stage III 

melanoma patients. Spectra a) shows a sample taken from a patient whose disease 

progressed to stage IV overlaid on a profile of a serum sample taken from a patient whose 

melanoma did not progress. The spectra of the two further progressor samples overlaid with 

the same non-progressor sample are also given (figure 6-3 b and c). All three of the spectra 

show the 5000-10000 Da mass range. As in figure 6-2, differences between the profiles of 

progressing and non-progressing patient sera are observed, and although the profile patterns 

are similar, the intensities of the peaks are slightly different. Table 6-2 shows the major 

peaks that are similar between stage I and stage IV sera (highlighted in red). Whereas 

prominent protein peaks at masses of approximately 6470, 7810, 8180 and 8980 Da are 

observed in all of the spectra shown in figure 6-3, peaks at 5930 and 9330 Da are only 

present in stage III non-progressor samples.
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Figure 6-2 SELDI spectra of serum samples highlighting the differences and similarities between 
samples taken from patients with either stage I or stage IV melanoma.
The figure showss the SELDI spectra of three sera, 33, 58 and 97, taken from stage I melanoma patients (in 
black) overlaid on a spectra of a serum sample, 198, taken from a stage IV patient (in red), in the 5000-10000 
Da mass range. Similarities in peaks between the spectra are highlighted by green boxes and peak differences 
are highlighted by blue boxes.
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198 33 58 97
(stage IV sample)_________ (stage I sample)__________(stage I sample)__________(stage I sample)

5915.1 - - 5911.1

6448.1 6449.4 6448.7 6451.4

6647.4 6647.2 6644.9 6646.4

6856.9 6853.2 6851.2

7785 7775.9 7773 7777.6

7938.4 - 7941.4

7980.8 - 7976.6

8152.9 8161.3 8151.5 8155.2

8630.3

8943.5 8955.4 8944 8949.3

9166.1 - 9199.3 9160.9

9307.2 9308.1 9317.7

9482.8

Table 6-1 Values of the main peaks observed in the spectra shown in figure 6-2.
The table shows the main peaks (in Daltons) observed in the spectra obtained from stage I and stage IV 
melanoma serum, as shown in figure 6-2, in the 5000-10000 Da mass range. Peaks that are similar between 
the samples are shown in the same row, although the m/z values may be different due to the mass accuracy of 
the instrument. Peaks that are observed in both the spectra of stage I and stage IV melanoma serum samples 
are highlighted in red.
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Figure 6-3 SELDI spectra of sera taken from stage III melanoma patients comparing the peak patterns 
of spectra generated from patients that progress to stage IV melanoma and patients that do not.
The figure shows the SELDI spectra of three sera 283, 291 and 303 taken from patients whose melanoma 
progressed to stage IV (in black) overlaid on a spectra of a serum sample, 314, taken from a patient whose 
melanoma did not progress to stage IV (in red).
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314 283 291 303
non-progressor________ Stage III progressor______ Stage III progressor______ Stage III progressor

5929.5
6471.7 6486.3 6476 6471.7
6668.2 - 6674.4 6665.8

6882.6 - 6884.7
7801.8 7824 7812.3 7805.2
8178.1 8191.2 8185.6 8187.2
8975.6 8996.7 8984.8 8984.2
9333.3

Table 6-2 Values of the main peaks observed in the spectra of serum samples taken from stage III 
progressing or non-pogressing melanoma patients.
The table shows the main peaks (in Daltons) observed in the spectra obtained from stage III melanoma 
patients that did or did not progress to stage IV melanoma. Peaks that are similar are shown in the same row, 
although the m/z values may be different due to the mass accuracy of the instrument. Peaks that are observed 
in both the spectra of progressing and non-progressing patients are highlighted in red.

The data from all of the serum profiles was exported and analysed by ANNs to determine if 

ions could be identified that could be used to indicate either stage I or stage IV disease, or 

identify patients that progress their disease from stage III to stage IV melanoma.
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6.3.2 Bioinformatics Analysis

The anonymised clinical data for patients was obtained from Dr Selma Ugurel and provided 

as part of the OISTER project. In order to determine if SELDI MS and ANNs could be 

used to identify protein expression patterns in melanoma serum samples 2 parameters were 

chosen for mining the SELDI MS data. The first analysis was to determine if the analysis 

could discriminate between early or late stage disease and secondly to attempt to discover 

patterns correlating with progression of disease in patients with stage III melanoma.

The data presented here was generated from 205 serum samples, 101 stage I and 104 stage 

IV, via SELDI MS using reverse phase protein chips for sample capture. This data was 

originally analysed in a previous study in order to determine protein patterns that could be 

discriminate between stage I and stage IV serum samples and between stage III patients that 

do or do not progress to stage IV melanoma (Mian et al. 2005); the methods used and the 

results obtained are decribed in detail in this publication. The published data was analysed 

by ANNs in mass ranges of 2000-5000 Da, 10000-15000 Da and 15000-20000 Da, and was 

restricted due to the limitations of the Neuroshell software package used. Exploratory 

analysis of the data in the 2000-30000 Da mass range revealed a peak at 11700 Da that was 

present at higher intensities in the stage IV serum samples compared to the stage I samples. 

For ANN analysis, the samples were divided so that 25 stage I and 25 stage IV samples 

were randomly selected as the independent validation set, and the remaining 155 samples 

were split into 94 samples for training, 15 for testing and 46 as additional blind samples. 

ANN analysis revealed that the best predictive capability was obtained from the 2000-5000 

Da mass range. After training 50 models, the best performing model predicted the class 

assignment for 96 blind stage I and stage IV melanoma samples with an 88% accuracy and 

a sensitivity and specificity of 84% and 92%, respectively. With the stage III progressor 

and non-progressor samples, correct class assignement was obtained for 80% of the 

samples using the 2000-5000 Da mass range to train 51 models.

The same data set was analysed in this present study using Statistica software, enabling the 

full data range from 2000-30000 Da to be utilised for the training the ANNs, to 

discriminate between stage of disease and progressing and non-progressing patients. 

SELDI MS data in the 1000-30000 Da mass range was exported into EXCEL as csv files 

and converted into .xls files before being merged into one file and smoothed to 3 Da for
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every sample analysed. A multi-layer perceptron was trained, using Statistica software, on 

the smoothed mass/intensity data, where only one hidden layer was used. A more detailed 

explanation of the ANN method is given in section 2.2.6.

6.3.2.1 Stage I  vs Stage IV  serum analysis

The first analysis was to compare the predictive capability of the ANNs to discriminate 

between 205 serum samples obtained from patients with either stage I or stage IV 

melanoma by analysing their SELDI MS profiles (H50 chips).

A back propagation algorithm was used to identify patterns in the data and 123 samples 

were randomly selected for training, 41 for the test set and 41 for the blind dataset for each 

model, with 100 models run. The serum samples originating from patients with stage I 

melanoma were assigned an output of 1 and the serum samples originating from patients 

with stage IV melanoma were assigned an output of 2.

The ANNs correctly classified the serum samples originating from either stage I or stage IV 

melanoma patients with an accuracy of 98.5% ± 0.007 and a sensitivity and specificity of 

98% and 99%, respectively, using the top 1000 ions from the serum data as identified by 

sensitivity analysis. Figure 6-4 shows the population distribution of the predicted outputs 

for all 205 samples. Samples originating from stage I patients are highlighted in blue and 

samples stage IV patients are highlighted in red. The figure shows that 3 of the serum 

samples were misclassified; sample 118 (stage IV patient) was classified as originating 

from a stage I patient with an output of 1.002 whilst samples 95 and 76 (stage I patients) 

which were given predicted outputs of 1.737 and 1.998, respectively.
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Figure 6-5 Sensitivity analysis of the top 1000 ions used to classify samples as stage I or stage IV 
melanoma serum samples.
The above figure shows the sensitivity analysis of the top 1000 ions, front the stage I vs stage IV serum data, 
used to train the ANN models. The graph shows the sensitivity ratio as an average over the 100 models 
trained. Aprroximately 20 ions are shown as being the most important of the top 1000 for classifying the 
serum samples according to their stage.

Figure 6-5 shows the sensitivity analysis of the top 1000 ions. These 1000 ions were used 

to train the ANNs for all 100 models and enabled the ANNs to predict stage of disease with 

98.5% accuracy for stage I and IV serum samples. The sensitivity analysis shows that a 

few of the top 1000 ions stand out as being more important than the rest for classifying the 

samples, although the ratio values overall are still not very high; the most important ion has 

a ratio value of 1.35. It is also important to note that the most important ions, as identified 

by the sensitivity analysis, are all within the low molecular weight range. 185 of the top 

1000 ions were found to have sensitivity ratio values of less than 1 and so their removal 

from the training set may help towards improving the predictions.

6.3.2.2 Stage IIIprogressors vs non-progressors

The second analysis was to compare the predictive capability of the ANNs to discriminate 

between serum samples obtained from 56 stage III melanoma patients where 28 of the

3115 Da

25486 Da
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patients progressed to stage IV within the first year of follow-up and the remaining 28 

patients did not.

A back propagation algorithm was used to identify patterns in the data and 34 samples were 

randomly selected for training, 11 for the test set and 11 for the blind dataset for each 

model, with 100 models run. The serum samples originating from progressing patients 

were assigned an output of 1 and the serum samples originating from patients who did not 

progress to a further stage of melanoma were assigned an output of 2.

Serum samples were correctly classified as originating from either stage III progressing or 

non-progressing melanoma patients with an accuracy of 94.6% ± 0.091 and a sensitivity 

and specificity of 96.4% and 92.9%, respectively. Figure 6-6 shows the population 

distribution of the predicted outputs for all 56 samples with samples from stage III patients 

who progressed to stage IV highlighted in blue and samples from stage III patients who did 

not progress to stage IV highlighted in red. The figure shows that 3 of the serum samples 

were misclassified; samples 306 and 319 (non-progressing patients) and sample 299 (a 

progressing patient).

Stage III progressors
gfj) Stage III non-progressors

1.4

1.2

0 8

0.6

0.4

0.2

Figure 6-6 Classification by ANN analysis of 56 stage III patients according to whether the patients 
progressed to stage IV melanoma or not.

The figure shows the average predicted outputs of 56 stage III melanoma serum samples samples as 
calculated by ANN analysis over 100 models. Samples that were taken from patients who progressed to stage 
IV were assigned an output of 1, blue columns, and samples that were taken from patients that did not 
progress to stage IV were assigned an output of 2, red columns. The error bars show the 95% confidence 
intervals. Samples 306 and 319 (highlighted in red) and sample 299 (highlighted in blue) were misclassified.
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Figure 6-7 Sensitivity analysis of the top 1000 ions used to classify stage III sera taken from progressing 
or non-progressing melanoma patients.
The above figure shows the sensitivity analysis o f the top 1000 ions, from the stage III serum data, used to 
train the ANN models. The graph shows sensitivity ratio as an average over the 100 models trained.

The sensitivity analysis, illustrated in figure 6-7, shows that many of the top 1000 ions have 

high a sensitivity ratio showing that those particular ions are important for the identification 

of stage III patients that will or will not progress to stage IV melanoma. All of the top 1000 

ions were found to have sensitivity ratio values of greater than 1.
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6A  D is c u s s io n

The initial study (Mian et al. 2005) revealed that different potential biomarkers could be 

identified using ANN analysis, with the most correct predictions obtained from the 2000- 

5000 Da dataset and not the 10000-15000 Da dataset. When testing the equality of 

variances between stage I and stage IV samples, the F score revealed that a peak at 11700 

Da was significant.

The same data was re-analysed using a different software package, Statistica, where the full 

data set from 1000-30000 Da could be included. Interestingly, this analysis revealed that 

diagnostic patterns between stage I and IV melanoma serum can be identified with a 98.5% 

accuracy, which is greater than what was previously reported. The best performing ions, as 

revealed by the sensitivity analysis were seen at the low molecular weight range and this 

correlates with the analysis performed by NeuroShell, where the best predictive capability 

came from the 2000-5000 Da mass range. Ferrari et al (2000) obtained sera from 17 

melanoma patients at different stages of the disease and, following ultrafiltration using 

spin-columns, analysed them by MALDI MS. They reported that protein ions in the mass 

range of 2.5-3.5 kDa were completely absent in control sera compared to sera taken from 

stage I melanoma patients and that the abundance of these low molecular weight proteins 

increased in sera taken from stage II melanoma patients (Ferrari et al. 2000). However, 

another study evaluated sera from 27 melanoma patients with differing stages of the disease 

compared with sera taken from 10 healthy subjects using ultrafiltration, MALDI MS and 

cluster analysis and revealed that proteins in the 10000-15000 Da mass range were 

particularly useful for identifying patients with malignant melanoma (Ragazzi et al. 2003). 

Ferrari et al compared the relative abundances of peaks observed by eye while Ragazzi et 

al used cluster analysis for their data in order to determine which proteins discriminated 

between different patient groups.

In the present study, the analysis of the stage III sera revealed that discriminatory patterns 

were present that could be used to identify patients that progressed to stage IV melanoma. 

This was achieved with a 94.6% accuracy using 56 serum samples; the sensitivity analysis 

revealed that some ions had very high ratios, indicative of their importance for determining 

progressing or non-progressing patients within 1 year of follow. What would have been 

interesting to see is if the two misclassified non-progressing samples were from patients

200



Chapter 6

that actually progressed to stage IV melanoma soon after the 1 year follow-up and therefore 

should have originally been classed as progressors. Unfortunately data on these patients 

after 1 year follow up is unavailable and so this is not possible to determine.

As stated in section 6.1.1, some of the discriminating ions at low molecular weights may be 

degradation products or fragments of larger proteins and further interrogation of these 

would be required to confirm their true identity. Although the identity of a marker is not 

necessary for its clinical use in identifying high-risk patients, information on its identity 

would increase confidence in the biological basis of the discriminatory pattern (Jacobs et al. 

2004). It is important to note that these biomarker ions may not all be cancer related. A 

study identified 3 biomarkers that could be used for detecting ovarian cancer with high 

sensitivity and specificity, one of which was identified as transthyretin (Zhang et al. 

2004b). It was revealed that transthyretin is a protein that is synthesised in the liver in 

response to nutritional supply and the levels of this protein are affected by acute and 

chronic diseases inducing an acute phase response (Schweigert et al. 2005). Schweigert et 

al highlighted the fact that effects caused by nutritional status, inflammatory processes and 

possible hepatic diseases should be taken into consideration when selecting control groups 

in such studies. It has been suggested that using serum protein profiling and bioinformatics 

analysis would identify only high-abundance proteins that are not released by the tumour 

which are instead representative of non-specific epiphenomena caused by the presence of 

the cancer (Diamandis 2004a). Many of the “serum profiling” studies published so far have 

failed to identify the discriminatory peaks and in studies that have identified the 

discriminatory peaks, these biomarkers are acute-phase reactants produced by the liver in 

high concentrations in response to inflammation (Diamandis & van der Merwe 2005). One 

study identified haptoglobin as a potential biomarker for pancreatic cancer but further 

investigation using a biochemical test to identify haptoglobin, failed to show differences 

between patients and controls (Koomen et al. 2005). It is important, therefore, to identify 

discriminating ions that are truly disease related.

The melanoma data presented here has been analysed by ANNs but with additional 

software packages and different processing parameters. The first analysis, performed by S 

Mian (2005), used Neuroshell, whilst the current analysis was performed using Statistica. 

These two different approaches used ANNs to analyse the same dataset but in different 

ways, with the approach presented here classifying samples with greater accuracy. Thus,
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classification of blind data can be improved by different data mining procedures and 

optimisation and standardisation of the statistical approach is important and essential. 

Following Petricoin’s publication in the Lancet in 2002, additional studies concluded that 

sophisticated learning algorithms could be used to correctly identify complex serum 

patterns from patients with or without breast cancer, prostate cancer and ovarian cancer 

with sensitivities and specificities of greater than 85%, giving a higher diagnostic accuracy 

than could be achieved with conventional serum biomarkers. However, Baggerley et al 

(2004) highlighted their concern with regard to reproducibility when they analysed the 

Petricoin data (original datasets were freely available on the internet). They found 

inconsistencies in the way the SELDI MS experiments were performed, particularly in 

relation to the baseline correction of the spectra and mass calibration; they also found that 

multiple spectra obtained from the same sample could not be overlaid. The author’s 

concluded that the high accuracy of identifying patients with or without ovarian cancer was 

probably due to artefacts from sample processing and shifts in the mass accuracy of the 

spectra. This paper re-inforced the need for standard procedures to be implemented for this 

approach to be widely accepted as a diagnostic technique for clinical use. Specifically, 

preanalytical sample preparation, parameters used for obtaining MS spectra, the use of 

baseline correction and peak extraction as well as the type of bioinformatic programme 

used are all important areas for consideration in order to standardise and validate this 

approach.
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Chapter 7 Comparison of mass spectrometry platforms for 

protein biomarker identification in melanoma cell lines 

carrying specific genetic mutations

7.1 I n tr o d u c t io n

As has already been discussed in previous chapters the field of proteomics has grown 

rapidly over the past few years, especially in the area of proteomic profiling and biomarker 

identification using mass spectrometry. One pioneering study was published by Petricoin 

et al (2002b) and claimed that patterns in the mass spectral data generated by SELDI MS 

from patient serum could be used to identify and diagnose patients with ovarian cancer. 

This ‘breakthrough’ paved the way for several of studies utilising SELDI MS spectra in 

order to identify discriminatory patterns in a number of diseases, including cancer, with the 

hope that clinically relevant diagnostic and prognostic biomarkers could be identified.

When analysing complex mixtures by MALDI MS, there is a competition between the 

different proteins and salts for ionisation and as a result a phenomenon known as ion 

suppression occurs, this can lower the number of ions detected as well as reduce the 

sensitivity of detection and as such most proteins that are detected in complex mixtures 

such as plasma have concentrations of >1 pmol/L (Annesley 2003). This limit of detection 

can be increased if the sample is pre-fractionated before MALDI MS analysis and this can 

be employed using a number of common approaches such as solid-phase extraction, 

dilution, chromatography, fractionation or capture on magnetic particles (Gilar et al. 2001; 

Hortin 2006; Jin et al. 2005). This is where SELDI MS has the advantage over MALDI as 

although the MS analysis is MALDI, the sample clean up is via the use of a target surface 

(chip) with different retentate chromatographies. This chromatography is modified to 

contain ion-exchange, hydrophobic, hydrophilic or metal-chelate groups allowing for the 

fractionation of a complex sample according to the properties of the proteins. Once 

unbound proteins and salts have been washed away, the chip can then be inserted directly 

into the MS instrument and analysed. This ease of sample clean up and the fact that only a 

small amount of sample is required has made this technology extremely popular, especially 

for serum based studies (Simpkins et al. 2005; Tang et al. 2004). SELDI MS is a variant of
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MALDI-TOF and both techniques have provided the most sensitive detection of low 

molecular mass proteins whereas traditional methods such as 2-D PAGE and liquid 

chromatography have an increased or equivalent sensitivity for detecting large proteins. 

The advantages and disadvantages of using SELDI MS or MALDI MS are detailed in table 

7-1.

Technology Principle Advantages Disadvantages

MALDI MS Application of a protein 
sample onto a target plate; 
desorption of proteins from 
the plate by a laser and 
measurement of the protein 
masses and their peak 
intensities by time-of-flight; 
comparison of peak 
intensities between multiple 
samples

SELDI MS Variant of MALDI-TOF
MS in which certain 
proteins from a complex 
sample are bound to a 
specific chromatographic 
surface and the rest washed 
away

High throughput (up to 
1536 samples per 
plate); post 
translational 
modifications can be 
determined

High throughput (up to 
96 samples if a 
Bioprocessor is used); 
direct application of 
neat sample onto target 
(fast on-chip sample 
cleanup); post 
translational 
modifications can be 
determined; only small 
amount of starting 
material needed

Need for (offline) sample 
fractionation of 
complex samples; more 
starting material 
needed for offline 
sample fractionation; 
unsuitable for high 
molecular weight 
proteins (<100 kDa)

Unsuitable for high 
molecular weight 
proteins (<100 kDa); 
only proteins bound to 
the chip surface are 
detected; lower 
resolution and 
mass accuracy than, for 
example,
MALDI-TOF

Table 7-1 Table comparing MALDI MS and SELDI MS technologies, adapted from Engwegen et al. 
2006.

In the last few years there has been much debate regarding SELDI MS reproducibility 

which has caused conern over some published studies. One of the main reasons it has been 

difficult to compare studies from different groups is that the datasets that are compared and 

are generated using different assay procedures (Baggerly et al. 2004). To date only a few 

studies have identified proteins belonging to ions which were detected using SELDI MS; 

one of the reasons being that this instrument does not have the capacity for PSD function
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however, with the advent of hybrid systems that are able to house SELDI MS sample 

platforms identification has been possible. Reproducibility studies (shown in chapter 2) 

have shown that the chip surfaces were very reproducible with a CV of 14-21% after 

normalisation which is comparable with MALDI MS studies. The difference in the 2 

technologies however, is the sensitivity and resolution in instrumentation; SELDI MS leads 

to more coalesced peaks and maybe to loss of resolution of closely related m/z peaks 

(Koomen et al. 2005) whereas recent improvements in MALDI machines has lead to 

greater resolution of closely related proteins/peptides.

The use of MALDI MS with other sample fractionation methods may prove to be more 

beneficial to biomarker discovery studies if these methods can be shown to be reproducible 

as well as high-throughput. A relatively new technique using C8-functionalised magnetic 

beads for enriching a specific subset of proteins within plasma and serum before MALDI 

MS is a promising development (Zhang et al. 2004a). Zhang et al have shown that by 

using these magnetic beads to emich plasma samples taken from 12 patients with asthma 

and 12 controls, significant differences could be seen between the two groups and the co

efficients of variation for intraday reproducibility was 18% and the interday reproducibility 

was 26%. Another study analysed 56 serum samples, 34 of which were from glioma 

patients and 22 from healthy volunteers (Villanueva et al. 2004). The samples were 

subjected to magnetic bead based sample processing using automated liquid handling robot 

followed by MALDI-TOF MS. The use of the liquid handling robot allowed for high 

throughput and reproducibility of sample processing and although only a small set of serum 

samples were used, patterns were identified within the MALDI spectra that could be used 

to distinguish between the control and glioma patients with 96.4% accuracy (53 out of 55 

were correctly classified). The use of magnetic beads holds promise as a sample clean up 

technique but it has yet to be shown to be high throughput and reproducible for biomarker 

discovery studies that would require the processing of large numbers of samples. Another 

method that can be employed to reduce the complexity of samples for MALDI MS analysis 

is solid phase extraction using ZipTips. This approach has been in used for the clean up of 

tryptically digested spots extracted from 2-D gels before MS analysis (Zhang et al. 2006b). 

Bronchoalveloar lavage fluid samples were investgated, 75 of which were from patients 

with bronchiolitis obliterans syndrome (BOS) and 49 samples were from healthy 

volunteers. The samples were subjected to ZipTip clean up followed by MALDI MS
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analysis and analysis revealed protein profile changes that were indicative of a high chance 

of developing BOS. This analysis provided a rapid and inexpensive method to identify 

many new proteins that are linked to chronic lung transplant rejection which is currently 

being validated in a large prospective study.

The aim for this study was to compare SELDI MS with MALDI MS instrumentation whilst 

using the same bioinformatics analysis to determine if the 2 technologies would provide 

comparative biomarker profiles ions. The sample clean-up methods used in this study were 

different due to the available chromatographies. However, we chose similar

chromatographies using C6-C12 chips for SELDI MS and C l8 ZipTips for MALDI

analysis. The fact that the resolution of the MALDI instrument compared to the SELDI 

instrument is better would mean that important ions identified by ANN analysis would have 

mass values that are more reliable. Also with the increased sensitivity of the MALDI

instrument it is thought that more peaks would be detected.

7.2 M e th o d s

72 of the cell line lysates analysed in chapter 3 were used for this SELDI vs MALDI study 

as these were available in a large enough quantity for analysis in duplicate. One spectra 

from the duplicate analysis of each cell line was then randomly chosen for bioinfonnatic 

interrogation in order to identify patterns relating to the presence or absence of mutations in 

the tp53, braf orp !6 INK4A genes.

The following scheme (figure 7-1) was used for the analysis of the cell lines with the 

methods described in section 2.2.4.3 for the SELDI MS analysis, section 2.2.5 for the 

MALDI analysis and for the bioinfonnatics method, section 2.2.6. The SELDI MS data 

was analysed from 1000-25000 Da but the MALDI data was only analysed from the 1000- 

15000 Da mass range as no peaks were seen above this range. The SELDI MS and MALDI 

MS data was analysed by ANNs using exactly the same parameters: back propogation 

algorithm for 10000 epochs followed by conjugate gradient descent algorithm for 5000 

epochs, window set at 2000, with a learning rate of 0.01 and a momentum of 0.3 and 

weight decay regularisation. Random resampling was used with 100 models trained where 

samples were randomly selected so that 60% were used in the training, 20% were used in
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the test and 20% were used in the blind datasets for each model. A stepwise approach was 

also performed to show how the SELDI MS and MALDI MS approaches compare when 

using a different type of analysis; this was achieved as decribed in section 2.2.6.2. For all 

of the studies, cell lines possessing a mutation were assigned an output of 1 and cell lines 

not containing a mutation were assigned an output of 2.

7 2  M e la n o m a  C e ll L in e s

S E L D I M S M A L D I  M S

SELDI data exported a s  csv  
files. Data binned to every 3 

Da betw een 1-25 kDa

MALDI data exported a s  txt 
files. Data binned to every 1 

Da between 1-15 kDa

B i o i n f o r m a t i c  a n a l y s i s

T P 5 3  m u t a t i o n  a n a l y s i s BRAFm u t a t i o n  a n a l y s i s P 1 6  m u t a t i o n  a n a l y s i s

1 1 1 1
Artificial Neural Networks -  
Stepw ise analysis

Artificial Neural Networks (Statistica Software) 
(train 100 m odels with all 8000 ions)

Sensitivity analysis to se lect top 1000 ions

Artificial Neural Networks (Statistica Software) - (train 100 m odels with top 1000 ions)

Calculate classification of cell lines a s  average of predicted output over 100 m odels

Sensitivity analysis of top 1000 ions to determine the m ost important ions

Figure 7-1 Figure showing a flow diagram of the method followed in order to compare SELDI MS and 
MALDI MS technologies.
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7 3  R e s u l t s

7.3.1 Mass spectrometry

Cell line lysates were analysed by both SELDI MS using H4 SELDI chips (C l6 

chromatography) and by MALDI MS using C l8 ZipTips for sample clean up. Figures 7-2 

shows the spectra obtained from cell line FM 93/2 using both methods and figure 7-3 

shows the spectra obtained from cell line ESTDAB 027 using both methods.

m/z
4 0 0 0  6 0 0 0  8000a

8 6 0 9 .8+H
6 9 5 5 .8+H

4 3 0 7 .3+H 6 2 3 9 .:
8 8 2 6 .9 + H10 3 7 7 1 .2+H 5647.1

0

8 0 0 04 0 0 0 6 0 0 0
m/z

2874.5
100

2877.5

r8.8
3905.2

3551.0 5207.3

17.2 6169.1

9300 55X 7000 7900 8000 890080003000 40002500

Figure 7-2 SELDI and MALDI spectra generated from melanoma cell line FM 93/2.
The figure shows cell line FM 93/2 analysed by SELDI MS in the top spectra (a), and analysed by MALDI 
MS in the bottom spectra (b), in the 2500 -  10000 Da mass range.
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Figure 7-3 SELDI and MALDI spectra generated from analysis of melanoma cell line ESTDAB 027.
The figure shows cell line ESTDAB 027 analysed by SELDI MS in the top spectra (a), and analysed by 
MALDI MS in the bottom spectra (b), in the 2500 -  10000 Da mass range.

The figures show a large difference in resolution between the two MS techniques with 

SELDI profiles being lower in resoloution compared with the MALDI generated spectra. 

However, visual inspection of the spectra shows that there are more peaks generated at the 

higher mass range using SELDI MS compared to MALDI MS. It is not possible to 

determine visually if any peaks detected in the SELDI spectra are the same as those 

detected by MALDI analysis.
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7.3.2 Bioinformatic analysis

Bioinformatic analysis was used to compare SELDI MS data (C l6 coated H4 chips) with 

MALDI data (C l8 ZipTips) in order to determine how different profiling methods affect 

the ability of ANNs to identify discriminatory patterns within the spectra. The cell line data 

with genetic mutation information was analysed for the presence or absence of the Braf 
p l6 ]NK4A an(j tp 5 3  genes as before.

7.3.2.1 Braf analysis

The m/z/intensity SELDI MS data from 1000-25000 Da of 72 cell lines were used to train 

100 ANN models, where 44 cell lines were randomly selected for the training set, 14 were 

randomly selected for the test set and 14 were randomly selected for the blind data set for 

each model, i.e. every sample will appear in the training, test and blind dataset at least once 

over the 100 models. After the training had completed the predictions for the blind dataset 

of all 100 models were averaged and the standard error of the mean calculated. With the 

top 1000 ions the ANNs correctly classified cell lines with or without Braf mutations in the 

blind data set with 94.4% accuracy and a sensitivity of 98% and a specificity of 85.7%. 

The classification of the cell lines as predicted by the ANNs is illustrated in figure 7-4a. 

This figure shows that 4 cell lines were misclassified; Ma Mel 39a, FM 3.26, FM 79 and 

WM 451. The sensitivity ratio was calculated for all of the top 1000 ions used to train the 

100 models and the average ratio for each ion across the 100 models is illustrated in figure 

7-4b.

Five ions at 4192, 12703, 12931, 24925 and 24997 Da have ratio values significantly 

higher than the other ions.
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a I I Braf mutation 
B  No Braf mutation
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4192 Da

12931 Da

12703 Da

24997 Da

24925 Da

Figure 7-4 Classification by ANN analysis and sensitivity analysis of SELDI data generated from cell 
lines with or without a braf mutation.
The above figure shows results o f ANN analysis of SELDI MS data generated from cell lines with or without 
a Braf mutation. Figure a) shows the classification of 72 cell lines as predicted by ANN analysis, averaged 
over 100 models. The blue bars show the cell lines which have a Braf mutation and the red bars show the cell 
lines which do not have a Braf mutation. The error bars were determined by calculating the standard error of 
the mean with 95% confidence intervals. Figure b) shows a graph of the average sensitivity ratio for the top 
1000 ions over the 100 models trained.
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Figure 7-5 Classification by ANN analysis and sensitivity analysis of MALDI data generated from cell 
lines with or without a braf mutation.
The above figure shows results o f ANN analysis o f MALDI data generated from cell lines or without a Braf 
mutation. Figure a) shows the classification of 69 cell lines as predicted by ANN analysis, averaged over 100 
models. The blue bars show the cell lines which have a Braf mutation and the red bars show the cell lines 
which do not have a Braf mutation. The error bars were determined by calculating the standard error of the 
mean with 95% confidence intervals. Figure b) shows a graph of the average sensitivity ratio for the top 1000 
ions over the 100 models trained.
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Data from three of the cell line samples had to be excluded from analysis due to poor 

sample spotting onto the MALDI target plate, therefore the m/z intensity MALDI data from 

1-15 kDa of 69 cell lines were used to train 100 ANN models, where 41 cell lines were 

used for training, 14 for testing and 14 for validation (blind). After the analysis had 

completed the predictions for the blind dataset the models were averaged; this is illustrated 

in figure 7~5a where the error bars show the standard error of the mean. Using the top 1000 

ions, the ANNs correctly classified cell lines with or without Braf mutations in the blind 

data set with 97.7% accuracy, with a sensitivity of 98% and a specificity of 89.5%. Figure 

7-5a shows that 3 cell lines were misclassified; Ma Mel 39a, FM-79 and ESTDAB 005. 

The average sensitivity ratio for all of the top 1000 ions is shown in figure 7~5b, with ions 

at 8695, 8715, 11722, 13876 and 13964 Da with ratio values significantly higher than the 

rest.

73.2.2 P16INK4A analysis

Mutational analysis data of the p l6 INK4A gene was only available for 68 of the 72 cells lines 

analysed by SELDI MS therefore these 68 cell lines were used to train 100 models (40 cell 

lines for the training set, 14 for the test set and 14 for the blind data set for each model). 

After training, the predictions for the blind dataset of all 100 models were averaged and the 

standard error of the mean calculated, as illustrated in figure 7-6a. The ANNs correctly 

classified the cell lines with 91.2% accuracy, a sensitivity of 93.2% and a specificity of 

87.5%. As can be seen in figure 7-6a, 6 cell lines were misclassified; Ma Mel 28, Mel 

SOE, Ma Mel 15, Ma Mel 48a, Ma Mel 27 and MZ Mel 5. The sensitivity ratio was 

calculated for all of the top 1000 ions for each model, the average was determined and 

illustrated in figure 7-6b. This graph shows that an ion at 22189 Da has a ratio much larger 

than the rest of the top 1000 showing that it must be extremely important for prediction.

Poor spotting of three of the cell line samples onto the MALDI plate left as well as 

incomplete mutational analysis data left MALDI data for only 65 of the 72 cell lines. 

Figure 7-7a shows the average predicted output for each cell line after training the 100 

models with the error bars representing the standard error of the mean after analysis of the 

MALDI data from 65 cell lines. To train 100 ANN models, 39 cell lines were randomly
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selected for the training set, 13 were randomly selected for the test set and 13 were 

randomly selected for the blind data set for each model. The ANNs correctly classified the 

cell lines with an accuracy of 90.5%, a sensitivity of 96% and a specificity of 74%. The 

figure shows that 5 cell lines were misclassified; WM 75, M21, ESTDAB 005, WM 793 

and Ma Mel 55. Figure 7-7b shows the average sensitivity ratio of the top 1000 ions where 

a number of ions have ratios significantly higher than the rest of the population.
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Figure 7-6 Classification by ANN analysis and sensitivity analysis of SELDI data generated from cell 
lines with or without a p l6 r 4a mutation.
The above figure shows results of ANN analysis of SELDI MS data generated from cell lines with or without 
a p l6 ,NK4A mutation. Figure a) shows the classification of 68 cell lines as predicted by ANN analysis, 
averaged over 100 models. The blue bars show the cell lines which have a p!6l K4A mutation and the red bars 
show the cell lines which do not have a p l6 INK4A mutation. The error bars were determined by calculating the 
standard error of the mean with 95% confidence intervals. Figure b) shows a graph of the average sensitivity 
ratio for the top 1000 ions over the 100 models trained.
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□  P16mK4A mutation 
M  No p!6INK4A mutation-INK4A

14533 Da

12315 Da

Figure 7-7 Classification bv ANN analysis and sensitivity analysis of MALDI data generated from cell 
lines with or without a p i 6 4a mutation.
The above figure shows results of ANN analysis of MALDI data generated from cell lines or without a 
p l6 ,NK4A mutation. Figure a) shows the classification of 65 cell lines as predicted by ANN analysis, averaged 
over 100 models. The blue bars show the cell lines which have a p l6 INK4A mutation and the red bars show the 
cell lines which do not have a p l6 INK4A mutation. The error bars were determined by calculating the standard 
error of the mean with 95% confidence intervals. Figure b) shows a graph of the average sensitivity ratio for 
the top 1000 ions over the 100 models trained.
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73.23  Tp53 analysis

Seventy-two cell lines of which 19 expressed a tp53 mutation were used to train the ANN 

model using the SELDI MS data. After training using the top 1000 ions, the ANNs 

correctly classified the cell lines with 98.1% accuracy and a sensitivity and specificity of 

92.9% and 100%, respectively. The population classification is shown in figure 7-8a, and it 

shows that cell lines ESTDAB 107, FM 93-2 and WM 451 were misclassified. The 

sensitivity ratio for the top 1000 ions is shown in figure 7-8b and reveals 2 ions with ratio 

values much higher than the rest, 10510 and 21529 Da.

Due to poor spotting of three cell line samples onto the MALDI plate, the MALDI data 

constituted spectra from 69 cell lines, of which 19 contained a tp53 mutation, to train 100 

ANN models. Forty-one of the cell lines were randomly seleceted for the training set, 14 

for the test set and 14 for the blind data set for each model. The predictions for the blind 

dataset of all 100 models were averaged and the standard error of the mean calculated. The 

ANNs correctly classified the cell lines in the blind dataset with an accuracy of 92.8%, a 

sensitivity of 78.9% and a specificity of 98%, this is illustrated in figure 7-9a. The 

sensitivity ratio was calculated for all of the top 1000 ions for each model, the average was 

determined and illustrated in figure 7-9b.
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Figure 7-8 Classification by ANN analysis and sensitivity analysis of SELDI data generated from cell 
lines with or without a tp53 mutation.
The above figure shows results of ANN analysis of SELDI MS data generated from cell lines with or without 
a tp53 mutation. Figure a) shows the classification of 72 cell lines as predicted by ANN analysis, averaged 
over 100 models. The blue bars show the cell lines which have a tp53 mutation and the red bars show the cell 
lines which do not have a tp53 mutation. The error bars were determined by calculating the standard error of 
the mean with 95% confidence intervals. Figure b) shows a graph of the average sensitivity ratio for the top 
1000 ions over the 100 models trained.
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Figure 7-9 Classification by ANN analysis and sensitivity analysis of MALDI data generated from cell 
lines with or without a tpS3 mutation.
The above figure shows results o f ANN analysis o f MALDI data generated from cell lines or without a tp53 
mutation. Figure a) shows the classification of 69 cell lines as predicted by ANN analysis, averaged over 100 
models. The blue bars show the cell lines which have a tp53 mutation and the red bars show the cell lines 
which do not have a tp53 mutation. The error bars were determined by calculating the standard error of the 
mean with 95% confidence intervals. Figure b) shows a graph of the average sensitivity ratio for the top 1000 
ions over the 100 models trained.
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A stepwise analysis was also performed on the SELDI MS and MALDI MS data 

comparing the tp53 mutated or non-mutated cell lines in order to compare the two 

platforms using another bioinfoimatics approach. Ions were sequentially added to the 

training set until the error for the test data no longer improved. The stepwise analysis using 

the cell line spectra generated by SELDI MS showed that no improvement upon the test 

error occurred after using 21 ions for training. The accuracy of classifying cell lines with 

or without tp53 mutations when only using these 21 ions for training was 93.2% and 89.7% 

for the blind dataset. Table 7-2 shows how the performance and error changed for the 

training, test and blind datasets after the addition of each ion into the ANN models. Figure 

7-10 illustrates how the median accuracy for prediction increases (with upper and lower 

quartiles shown as error bars) and how the sum of squared errors decreases (with the 95% 

confidence intervals shown as error bars) as more ions are added to the model.

input
num

m/z
value

Train
Perf.

Test
Perf.

Blind
Perf.

Train
Error

Test
Error

Blind
Error

1 55 3 6 0 .7 1 7 0 .7 6 4 0 .6 8 2 0 .4 3 2 0 .3 8 3 0 .4 5 3
2 1 3 3 9 3 0 .7 9 2 0 .8 5 7 0 .7 5 0 0 .3 8 6 0 .3 3 5 0 .4 2 2
3 9 7 7 5 0 .8 3 3 0 .8 6 6 0 .7 6 0 0 .3 3 9 0 .3 1 2 0 .4 2 7
4 32 0 8 0 .8 4 5 0 .8 8 0 0 .7 7 7 0 .3 4 8 0.291 0 .4 0 2
5 12490 0 .8 5 5 0 .8 8 3 0 .7 7 2 0 .331 0 .2 8 6 0 .4 1 0
6 3 8 9 8 0 .8 3 7 0 .8 7 6 0 .7 5 5 0 .3 4 8 0 .2 8 6 0 .4 3 6
7 1 8046 0 .8 5 0 0 .8 9 3 0 .7 4 7 0 .3 4 4 0 .2 9 2 0 .4 4 9
8 2 9 0 2 0 .8 7 2 0 .8 8 4 0 .7 6 4 0 .3 1 9 0 .2 8 6 0 .4 1 8
9 9 7 0 9 0 .8 5 6 0 .8 9 0 0 .7 6 5 0 .3 2 6 0 .2 8 6 0 .4 1 3
10 15 1 2 4 0 .8 5 7 0 .8 7 3 0 .7 9 3 0 .3 2 0 0 .2 9 8 0 .4 0 3
11 10 9 8 7 0 .8 8 4 0 .8 5 7 0 .7 7 2 0 .3 0 8 0 .3 0 2 0 .4 1 4
12 17449 0 .8 9 9 0 .8 7 6 0 .7 5 6 0 .2 6 8 0 .2 8 4 0 .4 2 8
13 2 1 9 4 0 0 .901 0 .9 1 3 0 .7 6 8 0 .2 6 4 0 .2 4 5 0 .4 2 0
14 18868 0 .9 1 4 0 .9 1 0 0 .8 2 2 0 .2 4 8 0 .2 5 2 0 .3 7 2
15 9 7 7 8 0 .9 1 2 0 .9 2 6 0 .8 3 3 0 .2 5 2 0 .2 2 8 0 .3 6 6
16 15 0 8 8 0 .9 1 7 0 .9 1 6 0.851 0 .2 5 7 0 .2 2 6 0 .3 4 0
17 2101 0 .9 3 4 0 .9 2 6 0.841 0.221 0 .2 1 2 0 .3 5 2
18 2 2 5 7 3 0 .9 4 2 0 .9 3 3 0 .8 5 0 0 .2 1 7 0 .2 1 0 0.331
19 1 8 1 0 3 0 .9 3 7 0 .9 3 4 0 .8 6 7 0 .2 1 8 0.181 0 .3 0 3
20 1 3 9 4 2 0 .9 3 6 0 .9 3 7 0.901 0 .2 1 4 0 .1 8 6 0.271
21 1 5 0 8 5 0 .9 3 2 0 .9 4 7 0 .8 9 7 0 .2 2 7 0 .1 7 4 0 .2 8 0
22 17378 0.935 0.940 0.881 0.220 0.182 0.276

T able 7-2 Stepw ise analysis o f SELD I data generated from  cell lines w ith or w ithout tp53 m utations.
The table represents the data obtained from the stepwise analysis o f SELDI MS data generated from cell lines 
with or without tp53 mutations. The table shows a summary o f the median accuracies and the mean squared 
error for the training, test and blind data sets as each input is added to the model. The row highlighted in red 
shows at which point the accuracy and the error failed to improve with subsequent addition of inputs.
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Figure 7-10 Stepwise model performance after addition of each input during the analysis of tp53 
mutation data generated by SELDI MS.
The figure shows the model performance with each input addition for the stepwise analysis of the tp53 
mutation data. The pink line shows the median accuracy for the training data set, with the lower and upper 
quartile ranges represented as error bars. The dark blue line shows the median accuracy for the test data and 
the red line shows the median accuracy for the blind data. The green line shows the sum of squared errors for 
the predictions at each step with the error bars representing the 95% confidence intervals. The light blue line 
shows the mean squared error for the test and the purple line shows the mean squared error for the blind data.

The stepwise analysis using the cell line spectra generated by MALDI MS showed that no 

improvement upon the test error occurred after using 23 ions for training. The accuracy of 

classifying cell lines as those with or without tp53 mutations only using these 23 ions for 

training was 99.1% and 97.7% for the blind dataset. Table 7-3 shows how the performance 

and error changed for the training, test and blind datasets after the addition of each ion into 

the ANN models. Figure 7-11 illustrates how the median accuracy for prediction increases 

(with upper and lower quartiles shown as error bars) and how the sum of squared errors 

decreases (with the 95% confidence intervals shown as error bars) as more ions are added 

to the model.
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input
num

m/z
value

Train
Perf.

Test
Perf.

Blind
Perf.

Train
Error

Test
Error

Blind
Error

1 1 2106 0 .7 4 0 0 .7 8 4 0 .6 8 8 0 .4 2 5 0 .3 8 6 0 .4 6 0
2 1 3 2 8 5 0 .7 8 9 0.811 0 .7 2 8 0 .391 0 .3 5 8 0 .4 3 2
3 1 4396 0 .8 3 6 0 .8 6 0 0 .7 7 8 0 .3 6 0 0 .3 1 4 0 .4 0 3
4 1 3 3 4 9 0 .8 3 7 0 .8 8 9 0 .7 9 9 0 .3 4 9 0 .2 7 7 0 .3 9 9
5 3 1 2 9 0 .8 8 0 0 .8 9 6 0 .8 3 3 0 .3 1 5 0 .2 7 2 0 .3 6 0
6 1 3 3 0 5 0 .9 0 3 0 .9 3 4 0 .8 3 8 0 .2 9 2 0 .2 1 5 0 .3 6 4
7 1 2 9 5 5 0 .9 1 3 0 .9 3 0 0 .8 4 9 0 .2 4 9 0 .2 1 9 0 .3 3 9
8 1 2 3 9 3 0 .9 1 9 0.941 0 .8 7 0 0 .2 3 3 0 .1 7 8 0 .2 9 4
9 6 9 1 9 0 .9 4 3 0 .9 4 0 0 .8 7 7 0 .1 9 3 0 .1 7 3 0 .3 0 7
10 36 7 8 0 .9 4 2 0.951 0.871 0.211 0 .1 6 8 0 .3 0 6
11 1 0648 0 .9 5 0 0 .9 3 6 0 .8 5 3 0 .2 0 9 0 .2 0 9 0 .3 2 2
12 39 9 6 0 .9 4 2 0 .9 3 9 0 .8 7 4 0 .1 9 8 0 .1 8 9 0 .2 9 7
13 1 1346 0 .9 5 7 0 .9 3 4 0 .8 6 7 0 .1 8 0 0 .1 7 9 0.301
14 6 2 5 3 0 .9 4 2 0 .9 4 4 0 .8 3 7 0 .2 0 9 0 .1 7 3 0 .3 5 8
15 5201 0 .9 5 6 0 .9 5 9 0.921 0 .1 7 9 0 .1 4 6 0 .241
16 13 6 0 8 0 .9 6 8 0 .9 6 9 0 .8 9 7 0 .1 4 4 0 .1 1 5 0.241
17 11 1 9 0 0 .9 7 4 0 .9 7 9 0 .9 4 8 0 .1 3 6 0.091 0.181
18 5 5 9 8 0 .9 7 6 0 .9 7 4 0 .9 3 5 0 .1 2 7 0.101 0 .1 9 0
19 11030 0 .9 9 3 0.981 0.931 0 .0 4 8 0 .0 8 8 0 .1 8 2
20 10 7 5 9 0 .9 8 4 0 .9 8 9 0 .9 6 9 0 .0 6 5 0 .0 5 9 0 .1 1 6
21 1 2 3 1 3 0 .9 8 2 0 .9 8 9 0 .9 6 5 0 .0 7 7 0 .0 5 8 0.131
22 92 8 8 0 .9 8 9 0 .9 9 0 0 .9 6 7 0 .0 5 2 0 .0 4 8 0 .1 3 0
23 14383 0.991 0.991 0.977 0.049 0.053 0 .1 0 0
2 4 6 9 6 6 0 .9 8 8 0 .9 8 7 0 .9 6 9 0 .0 5 3 0.051 0 .1 0 5
25 13566 0 .8 6 5 0 .881 0.781 0.331 0 .2 8 9 0 .411

T able 7-3 Stepw ise analysis o f M A L D I data generated  from  cell lines w ith or w ithout tp53 m utations.
The table represents the data obtained from the stepwise analysis o f MALDI data generated from cell lines 
with or without tp53 mutations. The table shows a summary o f the median accuracies and the mean squared 
eiror for the training, test and blind data sets as each input is added to the model. The row highlighted in red 
shows at which point the accuracy and the error failed to improve with subsequent addition o f inputs.
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Figure 7-11 Stepwise model performance after addition of each input during the analysis of tp53 
mutation data generated using MALDI MS.
The figure shows the model performance with each input addition for the stepwise analysis of the tp53 
mutation data. The pink line shows the median accuracy for the training data set, with the lower and upper 
quartile ranges represented as error bars. The dark blue line shows the median accuracy for the test data and 
the red line shows the median accuracy for the blind data. The green line shows the mean squared error for 
the predictions at each step with the error bars representing the 95% confidence intervals. The light blue line 
shows the mean squared error for the test and the purple line shows the mean squared error for the blind data.

7.4 D is c u s s io n

The use of SELDI MS and ANN to distinguish between patients with a specific disease 

state compared with control patients has been proven in many different diseases in the 

literature. The main criticism that has come from using this approach is the lack of 

validation studies that look at the reproducibility and accuracies of the mass and intensity of 

peaks as well as sensitivity of the SELDI MS and MALDI MS instrument. This study 

begins to address these issues by comparing the SELDI and MALDI approach, looking at 

the mass accuracies and intensities of peaks and predictive capability of the ANNs to 

determine regions of the profile that change when the same samples are processed using 

both instruments. Petricoin et al (2002b) have shown that when analysing ovarian cancer 

serum using H4 SELDI chips, the coefficients of variation (CV’s) for eight selected peaks 

within a run was 10% and <10% between runs, showing that there is little variation day to
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day with the chips and instrument. De Noo et al (2005) have shown that by using C8 

magnetic beads for clean up of 16 normal serum samples prior to analysis by MALDI-TOF 

the CV’s were between 20-30% for both the peptides and proteins. The CV’s for both the 

SELDI MS and MALDI MS techniques used in this study are shown in chapter 2, where 

aliquots of a normal serum sample were spotted on a H4 SELDI chip and analysed, and 

also subjected to C l8 ZipTip clean up before MALDI MS analysis. The CV for peak 

location of the five most prominent peaks in the SELDI MS method was 0.09 -  0.13% and 

0.07 -  0.09% for the MALDI method. The CV for peak intensity for SELDI MS was 

between 14.5 -  20.6% and between 25.7 -  47.7% for the MALDI method. One reason why 

the CV’s between the SELDI and MALDI shown here and those of de Noo/Petricoin’s 

study are different is due to the sample preparation methods used. In the SELDI MS 

method used here and in Petricoin’s paper (Petricoin et al. 2002b), the samples were 

processed by binding to the protein chip and unbound samples were washed off. The 

MALDI method used here utilised ZipTips for sample cleanup, where the samples were 

bound to a C l8 ZipTip, unbound proteins were washed through and the proteins of interest 

were then eluted and spotted onto the MALDI target, loss of sample could have occurred 

due to the sample not binding to or eluting from the ZipTip efficiently. In de Noo’s paper 

(De Noo et al. 2005), the samples were subjected to C8 magnetic bead prefractionation 

which also could lead to reproducibility problems as samples are bound to beads, washed 

three times, and then eluted by incubating the beads and sample for 1 minute in 50% 

acetonitrile.

The aim of this study was to compare ZipTip sample clean up and MALDI analysis with a 

commonly used analytical platform, SELDI MS, in order to determine if the limitations of 

the SELDI MS technique can be overcome and therefore improve upon biomarker studies 

already being performed. Tables 7-4, 7-5 and 7-6 show the accuracy of the ANNs for 

classifying cell lines with or without specific genetic mutations by using data collected 

from the same sets of samples but analysed using different techniques. As the same sample 

set was also used in chapter 3 using a C<$ -  C\2 hydrophobic H50 chip, this data has also 

been used for comparison. The data shows that there is no difference between which of the 

platforms is used to generate the data in order for the ANNs to classify the samples, 

although each platform produces slightly different spectra for the same sample. Also, only 

Ma Mel 39a was consistently misclassified in the comparison of cell lines with or without
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braf mutations across all three techniques. There were no other similarities seen in the 

other misclassified cell lines. Due to the low resolution and sensitivity of the SELDI 

spectra compared to the high resolution of the MALDI spectra it is difficult to determine if 

some of the protein peaks seen by MALDI are similar to those seen by SELDI MS. 

Different spectra are seen using the different platforms because each sample prepapration 

technique binds slightly different proteins due to the differing hydrophobic capacity of the 

sample clean-up procedures used. This could mean that a large number of proteins are 

affected as a result of a specific mutation and although not all of the same protein peaks are 

seen in each type of analysis there are sufficient numbers seen within the spectra for the 

ANNs to make accurate classifications. This is also reflected by the fact that the most 

important ions identified as a result of sensitivity analysis or stepwise analysis are different 

within each genetic mutation analysis. Another explanation for the different spectra could 

be that these different peaks are either fragments of the same protein, members of the same 

protein family or members of the same signalling pathway that only bind to one of the 

sample surfaces used in these studies. Also, because they are related and so are similarly 

affected by the genetic mutations they will allow the ANNs to correctly classify the 

samples with similar accuracies. Unfortunately, without identification of these protein 

peaks, this is only speculation.

SELDI H50 SELDI H4 MALDI
Misclassified cell lines Ma Mel 39a 

FM-3 
FM 93/2

Accurcy of classification 96.5

98.3
92.6

Sensitivity (%) 
Specificity (%)

Ma Mel 39a 
FM 3.26 
FM 79 
WM 451
97.7

98
85.7

Ma Mel 39a 
FM 79
ESTDAB 005

97.7

98
89.5

Table 7-4 ANN data generated by the analysis of SELDI and MALDI spectra of cell lines with or 
without braf mutations.
This table compares ANN data generated by SELDI analysis, using H50 and H4 SELDI chips, and MALDI 
analysis of cell lines with or without braf mutations. The accuracy of classification and the sensitivities and 
specificities are similar across all the three sampling techniques used. Only 1 cell line was misclassified in all 
three analyses, Ma Mel 39a.
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SELDI H50 SELDI H4 MALDI
Misclassified cell lines FM 92 Ma Mel 28 WM 75

WM 39 Mel SOE M21
Ma Mel 15 ESTDAB 005
Ma Mel 48 a WM 793
Ma Mel 27 Ma Mel 55
MZ Mel 5

Accurcy of classification 97.2 91.2 90.5
(%)
Sensitivity (%) 100 93.2 96
Specificity (%) 92.3 87.5 74

Table 7-5 ANN data generated by the analysis of SELDI and MALDI spectra of cell lines with or 
without p l6 INK4a mutations.
This table compares ANN data generated by SELDI analysis, using H50 and H4 SELDI chips, and MALDI 
analysis of cell lines with or without p l6 INK4a mutations. The data shows that ANN analysis of SELDI spectra 
generated using H50 chips classify the cell lines with greater accuracy than the other two methods. The 
misclassification of cell lines is different across the three techniques.

SELDI H50 SELDI H4 MALDI
Misclassified cell lines FM 92 ESTDAB 107 

FM 93/2 
WM 451

WM 902B 
GR-M 
COLO 800 
FM 78
ESTDAB 034

Accurcy of classification 
(%)

98.8 98.1 92.8

Sensitivity (%) 100 92.9 78.9
Specificity (%) 98.4 100 98

Table 7-6ANN data generated by the analysis of SELDI and MALDI spectra of cell lines with or 
without tp53 mutations.
This table compares ANN data generated by SELDI analysis, using H50 and H4 SELDI chips, and MALDI 
analysis of cell lines with or without /p53mutations. The data shows that ANN analysis of SELDI spectra 
generated using H50 and H4 chips classify the cell lines with greater accuracy than data generated using 
MALDI MS. The misclassification of cell lines is different across the three techniques.

ZipTips are a reverse-phase capturing technique that exist as a manual, microtip format and 

are used in this study as an alternative to the SELDI chips. However, this technique has 

proved to be largely impractical due to viscosity problems and poor reproducibility of 

packing the tips. Other sample preparation methods could have been used in this study for 

comparison such as the C8-coated magnetic beads, as discussed earlier, which have shown 

promise for reducing the complexity of samples prior to MALDI MS analysis. The
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advantage of using beads is that they have large accessible surface areas on a per. weight 

basis, allow elution in small volumes without centrifugation or a microcolumn style 

operation and have minimal losses during washes and sample transfers which are favorable 

attributes for automation (Villanueva et al. 2004).

The main reason that SELDI MS has and still is proving popular for biomarker discovery 

studies is that the on-chip sample clean up is quick and high throughput, but most MALDI 

instruments have much better resolution and sensitivity than SELDI MS making the 

identification of biomarkers more accurate. Qiagen have recently released mass 

spectrometry focus desalting chips that are compatible with the Shimadzu/Kratos MALDI. 

They bind hydrophobic proteins onto their surface allowing hydrophilic proteins and salts 

to be washed away, thereby providing a sample clean up method which can also be used to 

reduce the sample complexity. The use of these chips could then combine the easy and 

high-throughput sample preparation methods with a much improved MALDI MS 

instrument.
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Chapter 8 Conclusions and Further Study

Proteomics has proven to be a useful tool in a number of medical areas including infectious 

diseases, cardiovascular diseases and neurological diseases. As cancer is a disease caused 

by mutational defects in the DNA and therefore causes changes in protein expression, 

cancer proteomics could lead to the discovery of biomarkers of potential significance for 

diagnosis, to define a patient’s prognosis and determine a suitable treatment regimen, 

(Ludwig & Weinstein 2005).

The research presented in this thesis has introduced the use of MS and bioinformatics in the 

analysis of the cancer proteome, in particular melanoma and breast cancer. Cell lines, 

tissue and serum samples were used in these studies demonstrating the type of proteomic 

information that can be obtained from different types of samples and an ANN approach was 

used for the analysis of these complex datasets.

8 .1  T h e  p o te n t ia l  u s e  o f  c a n c e r  c e l l  l in e s  in  p r o te o m ic  a n a ly s is

Proteomic approaches in biomedical research are influenced by ethics, the availability of 

adequate samples and privacy concerns. The use of biological specimens is expected to 

increase knowledge of human diseases, however there is concern that the use of genetic or 

proteomics information found in these specimens, as well as the use of related clinical data, 

may infringe upon the privacy of the patient if misused. Since there is no amplification 

technique available in proteomics, and that some proteomic based approaches require large 

amounts of sample, the demand for human tissues and/or body fluids is expected to 

increase (Nestler et al. 2004). Cell lines may prove to be a suitable alternative for genetic 

and proteomic studies to minimise the usage of precious patient material and the impact 

that would have on patient privacy. Thus, large amounts of material can be acquired from 

cultured cell lines for the optimisation of methods and potentially offer a continuous and 

extensive source of material for biological studies. A number of proteomic studies have 

been published where the authors have used cell lines to identify proteins of possible 

clinical significance. For example, a study which profiled oral keratinocytes and oral 

squamous cell carcinoma cell lines by 2-D differential in-gel electrophoresis (2-D DIGE) 

revealed 22 proteins that were differentially expressed between the two sample types that
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could have relevance as diagnostic/prognostic markers (Koike et al. 2005). Another study 

compared the protein profiles of human non-small cell lung cancer cell lines, a normal 

bronchial epithelial cell line and prhnary human bronchial epithelial cells and revealed the 

differential expression of 12 proteins between the cancer and the normal cells, already 

known to be upregulated in lung cancer (Liu et al. 2004). A study by Mian et al. (2003) 

identified proteomic patterns that could be used to correctly distinguish between a drug 

treated and a control breast cancer cell line and between chemosensitive and chemoresistant 

cells (Mian et al. 2003). A study on the effect of etoposide on neuroblastoma cell lines 

revealed the overexpression of a number of proteins that could prove useful in predicting 

the prognosis of patients with neuroblastoma after chemotherapy (Urbani et al. 2005). 

Furthermore, it is generally accepted that patients receiving chemotherapy may respond at 

first but subsequently develop resistance to the treatment, however it is not clear which 

pathways are involved in developing chemoresistance. Studies using cell lines may 

uncover the biological pathways involved, providing further insight into the mechanisms 

involved and allowing for the development of more successful treatments. One advantage 

of using cancer cell lines for biomarker discovery is that they are less heterogenous (free of 

stromal components) and so analysis of these samples could reveal biomarkers that would 

be tumour cell-specific. Is is well known that tumour cells diversify in culture and so they 

may not be an exact representation of the original population, however, if they retain the 

essential genetic mutations then this is likely to be reflected in all of the cells as a ‘protein 

fingerprint’.

The cell line studies presented in this thesis have revealed proteomic profiles that can be 

used to identify the presence of a certain genetic mutation. To the best of my knowledge 

this is the first study to combine genetic and proteomic information, demonstrating a high 

degree of association as it was possible to classify cell lines with or without a mutated Braf 

gene, p l6 INK4A gene or tp53 gene with over 90% accuracy. Braf p l6 1NK4A and tp53 are all 

important genes involved in the initiation and progression of melanoma and so a study such 

as this could provide a further insight into the biological mechanisms of the cancer as the 

presence of a number of protein peaks, not just one specific protein, allowed the 

discrimination of the cell lines. The proteome is likely to be the result of downstream 

protein changes/events and so the identities of the discriminatory protein peaks could 

possible be indicative of pathways affected by the mutations.
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8 .2  A n a ly s i s  o f  th e  C a n c e r  T is s u e  P r o te o m e

Cell lines do not provide an exact model of a tumour, as the tumour microenvironment 

invokes changes upon the tumour genome and protoeme and the molecules it expresses and 

secretes. Tissue based studies are therefore still of prime importance. The studies 

presented here show that proteins extracted from tumour tissue provide information on the 

clinical nature of the disease, for example proteomic patterns indicating the site of the 

primary tumour and survival of the patient could be demonstrated within melanoma tissue. 

In breast cancer tissue, patterns indicating the basal phenotype and the expression of p53 

were revealed. These studies provide a proof-of-principle for using SELDI MS to extract 

clinically relevant information from tumour tissue. Future studies would necessitate the use 

of larger cohorts of samples and multiple centres in order to elucidate additionally clinically 

relevant proteomic patterns, for example, an important finding would be to identify the 

proteome predicting patient response to therapy.

The method of tissue analysis used in this study involved the extraction and processing of 

proteins which did not allow for the spatial localisation of proteins within the tissue to be 

determined. The localization of unique proteins identified by MALDI mass spectrometry 

could provide additional information on the function of the protein as well as a better 

insight into the biology of the disease. Immunohistochemistry may be used to determine 

the spatial localization of proteins but requires prior knowledge of the protein as well as the 

production of labeled antibodies specifically reactive with the protein in situ. Tissue 

profiling by MALDI mass spectrometry can be performed on intact tissue sections that are 

either transferred directly onto a cold MALDI target plate after cryostat sectioning or 

transferred after laser capture microdissection (LCM). In the latter method, tissue sections 

are laid onto a heat sensitive thermoplastic film allowing areas of interest to be cut from the 

section. The area (bound to the film) can then be transferred to the MALDI target using 

double sided conductive tape (Caldwell et al. 2005). Direct tissue profiling by mass 

spectrometry was first introduced in 1999 where the analysis of murine tissue sections 

revealed unique signals from different parts of the same organ (Chaurand et al. 1999b). 

Since then there have been many direct tissue profiling studies; a study by Zheng et al. 

(2003) used LCM to isolate cancerous and non-cancerous human prostate cancer cells and
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revealed the over-expression of a protein in the cancerous cells but not in non-cancer cells 

that could be used as a prostate cancer marker (Zheng et al. 2003). A new method involves 

imaging mass spectrometry (IMS) whereby molecular weight specific maps or images of 

tissue sections can be obtained rapidly at high resolution and sensitivity. This method is 

still in the early stages of development and improvements in sample preparation, 

instrumentation and data analysis are still ongoing (Caldwell & Caprioli 2005). So far this 

method has been applied to the profiling of glioblastoma, prostate and colon cancers, 

resulting in the discovery of numerous disease specific biomarkers and their spatial 

localisation within the tumours being determined (Stoeckli et al. 2001).

8 .3  T h e  C a n c e r  S e r u m  P r o te o m e

Tissue material is limited and can be difficult to obtain from a patient without the use of 

invasive surgery. Alternatively, serum is a much easier sample type to obtain and can be 

acquired in fairly large quantities and as a result, serum-based proteomic studies are 

widespread. One main disadvantage with serum analyses is the amount of albumin and IgG 

present, which can affect MS studies; ion suppression can occur due to the presence of 

these high abundant molecules and so low abundant proteins associated with cancer may be 

missed. The removal of high-abundant proteins in serum sample preparation strategies is 

becoming increasingly widespread, providing higher sensitivity for achieving broader 

proteome coverage, particularly of low-abundance proteins that are normally present in the 

concentration range of ng/mL and lower (Anderson & Anderson 2002). The removal of 

these high abundant proteins, however, also poses a problem since important (low 

abundant) proteins may also be removed due to the fact that these high abundant proteins 

act as earner proteins. Antibody-based immunoaffinity subtraction is highly efficient and 

is used for the removal of high abundant proteins (Liu et al. 2006).

There have been several reports where MS analysis of serum has identified cancer from 

non-cancer but have been unable to classify tumours further or predict the tumour 

behaviour (Yanagisawa et al. 2003). The present study, using MS and ANN analysis 

resulted in the correct classification of melanoma stage and correctly classified a high 

proportion of patients that would progress from stage III to stage IV melanoma, revealing 

important prognostic information. This study cohort was small and studies involving larger
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numbers of patients from different centres would determine whether MALDI/SELDI 

methodologies and ANN analyses can be used routinely in clinical practice.

8 .4  B io in fo r m  a tic  s tu d ie s

The evaluation of multidimensional datasets, such as mass spectra, has lead to the 

development of several new statistical methods over the past decade (Lisboa et al. 2006). 

These include clustering, where clustering algorithms are used to find similarities between 

features in the dataset; support vector machines, where the classification is based upon 

decision planes and has proven very popular for the analysis of high dimensional problems; 

principal components analysis, where the aim is to derive a small number features that can 

be used to explain the whole dataset; and ANNs that can be used to leam and to adapt to the 

dataset and apply the model to unseen data, allowing for generalization across a population 

(Lisboa & Taktak 2006). There are two ways in which mass spectra are used for analysis 

using computer algorithms in order to identify m/z values of importance; either a list of 

peaks found across all spectra are taken or the entire spectra is used as inputs, in the present 

study the whole spectra is used. The process used for the identification of key ions as 

potential biomarkers must be sensitive whilst limiting false-discovery and should guarantee 

that those key ions are biologically meaningful allowing for further analysis and validation 

(Carlson et al. 2005). An element of data pre-processing is also incorporated into the 

bioinformatics analysis in order to improve peak detection and can include baseline 

subtraction, scaling and normalisation. The quality of the data pre-processing will, 

therefore, directly impact the downstream learning algorithm and so improvement in the 

peak detection will improve the power of biomarker discovery (Carlson et al. 2005).

The application of ANNs to identify patterns correlating with clinical parameters allows us 

to gain further understanding of the biological diversity of different cancers. The two 

cancers studied here, melanoma and breast cancer, are recognised as heterogenous diseases 

whose biology is still not fully understood. The emergence of subtypes of disease also 

makes it difficult to detennine the prognosis of patients and decide upon the most 

appropriate treatment. Classifying tumours into distinct groups according to their protein 

profiles may provide additional information of diagnostic and prognostic benefit to the
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patient. ANN analysis also identified sample outliers that could represent new subtypes of 

the cancers. The stepwise analytical approaches used for the studies presented here has 

resulted in the identification of multiple markers associated with, for example, the stage of 

the disease. This highlights the fact that using a simplistic, single marker approach to 

describe very complex and heterogenous diseases is unrealistic and that the use of multi

marker models will allow much more accurate conclusions to be drawn. Also, it has been 

revealed that predictive patterns can be identified to classify a high proportion of samples 

using different bioinformatics approaches. However, these approaches identify different 

groups of ions that could be used for prediction and so biomarker identification using these 

types of approaches is dependent upon which method is used for the analysis of the data. 

This present study has shown that ANNs can be used to determine predictive markers in 

melanoma and breast cancer, but it has also been used in studies involving prostate cancer. 

These studies have compared data analysis using ANNs with conventional multivariate 

logistic regression (LR) analysis and univariate analysis and showed that ANNs gave 

higher accuracies for predicting prostate cancer than LR and that both ANNs and LR gave 

higher accuracies than univariate analysis (Zhu et al. 2006). Three studies showed 

specificities of 33%, 67% and 68% at a sensitivity of 95% when using ANNs compared 

with 24%, 60% and 54% for LR and 19%, 40% and 33.5% for univariate analysis (Djavan 

et al. 2002; Finne et al. 2000; Remzi et al. 2003).

There have been a large number of papers published involving the use of ANNs in cancer 

studies but as yet few of these results have led to the improvement of healthcare for patients 

(Lisboa & Taktak 2006). There are a number of reasons for this including overoptimistic 

assessment of predictive performance, poor selection of the model when many variables are 

involved and poor evaluation, that is quoting the best performing model and so introducing 

bias (Schwarzer et al. 2000). Addressing these issues before embarking on future ANN- 

based studies would enable more confidence in the data generated and may then lead to 

their routine use in the clinic.

233



Chapter 8

8 .5  I d e n t i f i c a t io n  o f  c a n c e r  b io m a r k e r s  u s in g  p r o te o m ic  p r o f i l in g :  A  

q u e s t io n  o f  r e p r o d u c ib il i ty  a n d  v a lid ity

Recently, there have been a number of published studies where specific cancer biomarkers 

revealed by SELDI MS analysis have been identified; these cover a wide range of cancer 

types and are summarised in table 8-1. Many of the biomarkers currently identified via 

proteome profiling experiments are inflammatory molecules and are not specific to a 

particular disease type. For example, Serum Amyloid A-l has been identified as a 

biomarker in prostate cancer (Le et al. 2005), nasopharyngeal cancer (Cho et al. 2004), 

ovarian cancer (Moshkovskii et al. 2005), monitoring pnemnonia (Yip et al. 2005) and lung 

cancer (Howard et al. 2003). It has been suggested by Diamandis (2004a) that the 

discriminatory peaks identified in serum are most likely representative of high abundance 

molecules. It is proposed that these discriminatory peaks may in fact represent acute phase 

reactants, as shown in table 8-1, or other proteins or protein fragments that are released by 

organs such as the liver in response to the presence of the tumour or cancer epiphenomena 

such as infection, inflammation or malnutrition (Diamandis 2002; Diamandis 2003b). It is 

also possible that some of these discriminatory peaks represent artifacts of sample 

collection, storage, pre-treatment or patient selection. It is possible, however, that high 

abundance proteins such as those shown in table 8-1 may still have a place as clinical 

biomarkers of disease. Cancer cells may produce proteases and other enzymes that are 

tumour specific, causing fragmentation and cleavage of common, abundant proteins, 

therefore the presence of these proteins could still be an amplified signal of a disease 

process that may have otherwise been undetected at an early stage. The concern is that the 

presence of a highly abundant protein could not be classed as a biomarker for a specific 

cancer, for example with Serum Amyloid A, but instead become part of a panel of multiple 

markers, each with their own clinical relevance to the disease, that could be used for 

diagnosis or prognosis (Robbins et al. 2005; Villanueva et al. 2006; Zhang et al. 2004).
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Biomarker Sample type Biology of marker Reference

Ovarian cancer
Haptoglobin-a fragment Serum Acute phase protein, haemoglobin 

binding

Ye et al. 2003

Apolipoprotein A-I Serum Acute phase protein, lipid 

metabolism

Zhang et al. 2004b

N-terminal truncated Serum Thyroid hormone binding protein

transthyretin

ITIH4 fragment Serum Involved in acute phase reactions?

Breast Cancer

Heamoglobin-P chain Nipple aspirate 

fluid

Oxygen transport Sauter et al. 2005

High molecular weight 
kininogen
ApolipoA-II isofonn

Serum

Serum

Blood coagulation, release o f
bradykinin
Lipid metabolism

Heilce et al. 2005

Prostate Cancer
ApolipoA-II isoform Serum Lipid metabolism Malik et al. 2005

Serum amyloid A -l Serum Acute phase protein Le et al. 2005

Colorectal Cancer
Prothymosin-a Cell lines Immune function mediator Shiwa et al. 2003

a-Defensin

Nasopharyngeal Cancer

Tissue, Serum Antibiotic, fungicidal and antiviral 
activities, concentration-dependent 
mediation of tumour lysis

Albrethsen et al. 
2005; Melle et al. 
2005

Serum amyloid A -l Serum Acute phase protein Cho et al. 2004

Head and Neck Cancer

Annexin V Tissue Anticoagulant protein, tumour 
proliferation and metastases?

Melle et al. 2003

Table 8-1 Some of the identified biomarker proteins discovered using SELDI MS, adapted from 
Engwegen et al. 2006

The majority of biomarkers associating with diseases other than cancer have been identified 

in body fluids, using a number of different techniques. One interesting study by Novikova 

et al (2006) describes how SELDI MS analysis of dorsolateral prefrontal cortex samples 

revealed biomarker peaks that were used for diagnosis and differentiation of schizophrenia, 

bipolar disorder and normal controls. The biomarker peaks from 24 proteins were 

identified after bands of the correct molecular weights were cut from 1-D gels, trypsinised 

and analysed by MALDI-TOF-PSD MS analysis. Thus, the combination of techniques was
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able to identify the proteins of potential importance from the peak values obtained by MS 

(Novikova et a l  2006).

Using proteomics for the identification of new biomarkers has proven popular over recent 

years but standardisation of the sample handling, processing and data analysis has become a 

major concern and questions have been raised regarding reproducibility and reliability of 

data that has already been published (Check 2004; Diamandis 2004b; Garber 2004). 

Sample handling and processing, instrument noise and data analysis all contribute to the 

challenges of reproducibility in any proteomics experiment (White et al. 2004). Variability 

in sample handling and the mass spectrometer causes a baseline across the spectra as well 

as ‘noise’ and variability in the amount of protein bound onto the target also causes a 

fluctuation in the intensity scale of the spectra. Variability in the spectra has the largest 

effect on small peaks as the baseline and instrument noise can be as large as the peak itself, 

yet it is possible that these small peaks contain much of the biological information; hence 

the standardisation of sample and data processing procedures should be of utmost 

importance when embarking upon biomarker discovery studies (Rodland 2004).

The question of reproducibility can be addressed in a single study setting, where a separate 

set of samples can be analysed under exactly the same conditions in order to establish that 

the findings are true and not the result of overfitting or chance (Ransohoff 2005b). In the 

present study the question of chance has been addressed by the splitting of the data into 

training and blind datasets prior to ANN analysis, showing that the models generated using 

the training data can then be applied to blind or unseen data. Bias is another problem that 

can occur when the samples and/or data being compared are handled differently causing the 

introduction of an extra signal into only one of the groups. This bias can come from 

differences in the collection of the two sets of samples, including the types of tubes used 

and time to storage; the number of freeze/thaw cycles; and the analysis on the MS, for 

example if one set of samples is run on a different day to the other set. Therefore the 

methods used, from selecting patients, obtaining samples, storage and processing, must be 

rigorously standardised in order to avoid bias in the findings (Ransohoff 2005a). In this 

present study all the samples were collected in the same way, the cell culture and protein 

extraction methods were optimised and standardised before the studies were undertaken. 

The samples were randomised prior to SELDI/MALDI MS analysis to avoid bias caused by
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sample processing and all of the mass spectral data was handled in the same way before 

analysis by ANNs.

Once reproducibility and reliability of the data has been addressed and biomarkers have 

been identified it is important that appropriate validation of the results are obtained 

(Anderson & Anderson 2002), for example, the analysis should be repeated using 

additional ‘blind’ samples from other sets of patients obtained at different centres, to 

determine that the biomarker is present across the general population. Determining the 

timing of the appearance of a biomarker has been shown to be important in assessing at 

which point a biomarker has prognostic value, and so this would have to be considered 

when validating new biomarkers. During the validation process, the specificity of the 

biomarker should also be determined. In the case of cancer tissues, this is further 

complicated by the heterogeneity of the tumour and its microenviroment, and for serum by 

the presence of other ‘normal’ proteins. The use of tumor tissues or needle biopsies is 

problematic due to the fact that multiple tissue sampling is not always an option from 

tumors in situ and protein profiling can vary between different areas of the tumor mass. 

Using serum or urine is an alternative, where re-analysis of different samples is possible, 

although reports to date have mainly used very small numbers of samples with limited 

validation (Alaoui-Jamali et al. 2006).

8 .6  C a n c e r  d ia g n o s is  a n d  t r e a tm e n t  -  p e r s o n a l i s e d  m e d ic in e

The clinical and pathological biomarkers that are currently used poorly predict early disease 

development and response to treatment. The aim of this study and others is to attempt to 

identify biomarkers that can improve upon markers currently in use.

Only a small number of the biomarkers generated by SELDI MS have been identified and 

these studies have mainly concentrated on biomarkers present in serum and appear to be 

isoforms of ubiquitous proteins that occur as a result of secondary tumour effects, for 

example altered enzymatic activity, and so the specificity of these isoforms requires further 

investigation (Engwegen et al. 2006). Like normal cells, most cancer cells use multiple 

intracellular signaling pathways to ensure the maintenance of functions that are critical to 

their survival. Thus, cellular pathways that are integral to cell function, survival, 

proliferation, and receptor expression are potential targets for therapeutic intervention but
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are not necessarily tumour cell specific, one example being the epidermal growth factor 

receptor signaling pathway. Molecules that mediate the production of angiogenic and 

invasion factors that allows tumor growth and metastasis, such as the vascular endothelial 

growth factor and downstream events that result in cellular apoptosis, represent additional 

potential targeting pathways (Ajani et al. 2005).

Standard diagnostic methods, including tissue histopathology are being replaced or 

complimented by the use of molecular diagnosis, which can identify proteins and their 

posttranslational modifications that occur in disease conditions, and hence greatly 

accelerate progress toward novel diagnostic and predictive tools to track early disease and 

tailor treatments to specific patients (personalised medicine) (Alaoui-Jamali & Xu 2006). 

In the clinic, new patients could be tested (either using serum or by isolating protein from a 

biopsy) by SELDI MS or MALDI MS analysis to generate protein or peptide fingerprints. 

The profiles of patients could then be compared to control or ‘baseline’ profiles from 

normal subjects in order to determine the diagnosis, or prognosis or to predict response to a 

particular treatment. Continued investigations may result in the development of proteomic 

profiling databases through which a patient could be matched with protein profiles relevant 

to the disease and potential benefits of treatment. In this way, clinicians would be able to 

recommend combinations of molecularly targeted agents and therapies on the basis of an 

individual patient's proteomic profile (Ajani & Allgood 2005). Samples compared to 

profiles in an existing database would have to be applicable to the general population, 

taking into consideration factors such as age, sex, ethnicity and nutritional status. The 

proteins identified to date in SELDI MS based proteomic studies have revealed that patient 

populations can be determined by the up or down regulation of inflammatory proteins and 

so the diagnosis of a patient could be determined by the presence of molecules that are not 

tumour cell specific.

The SELDI MS approach utilised in the present research has the potential to be used as a 

clinical tool in the future for the diagnosis and prognosis of patients. However, further 

developmental work is required before this can become a reality, including the type of 

samples that could be used analysed, the bioinformatics approach used to analyse the data 

as well as the method used to generate the spectra. The work presented has shown that

238



Chapter 8

different types of samples can be used to derive clinically relevant information from a 

proteomic profile. Different types of bioinformatics approaches can be used to analyse the 

data and to classify samples with the same accuracy; this is likely to be achieved using a 

panel of ions/biomarkers. It has also been shown that different sample preparation methods 

can be utilised, each generating a different set of prominent ions; despite this, however, the 

patterns within these spectra allow the classification of samples with a similar degree of 

accuracy. Further work should determine the best method to use for sample preparation, 

proteome profiling and bioinformatics analysis, using the same sample set derived from a 

large cohort of samples initially from a single centre, but extending to multiple centres. To 

date proteome profiling and analysis of samples to establish reproducibility in several 

centres has not been carried out.

The study presented here, as well as those published by other groups, shows the potential of 

proteomic profiling and bioinformatics analysis for the diagnosis, prognosis and therapeutic 

outcome in cancer and other diseases. Through the further development of both mass 

spectrometry and bioinformatics approaches, the profiling of tissue and/or body fluids from 

individual patients could potentially have a huge impact on personalised medicine and 

thereby improve upon the quality of life as well as mortality rates of patients with cancer 

and other diseases.
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Communications resulting from study

Publications:

Serum proteomic fingerprinting discriminates between clinical stages and predicts disease 

progression in melanoma patients. Shahid Mian, Selma Ugurel, Erika Parkinson, Iris 

Schlenzka, Ian Dryden, Lee Lancashire, Graham Ball, Colin Creaser, Robert Rees and Dirk 

Schadendorf. J Clin Oncol. 2005 Aug l;23(22):5088-93

Abstracts:

The interplay of proteomics, genomics and bioinformatics approaches and their potential 

for cancer diagnosis and prognosis. Erika Parkinson, Balwir Matharoo-Ball, Graham Ball, 

Colin S. Creaser and Robert Rees. American Association of Cancer Research (AACR) 

conference 2006

Application of proteomics, genomics and bioinformatics to identify predictive markers in 

melanoma. East Midlands Proteomics Workshop 2005, Nottingham, UK. Delivered 20 

minute short talk.

Application of proteomics and bioinformatics to identify discriminatory patterns in 

melanoma. British Mass Spectrometry Society (BMSS) Conference 2005, York, UK. 

Delivered a 20 minute short talk

Application of proteomics and bioinformatics to identify discriminatory patterns between 

preparation of tissue samples using modified protocols. House of Commons SET for 

Europe 2005 as part of National Science Week. Poster

Application of proteomics and bioinformatics to identify discriminatory patterns between 

preparation of tissue samples using modified protocols. East Midlands Proteomics 

Workshop 2004, Nottingham, UK. Delivered 20 minute short talk.
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Appendix II

Appendix II

Clinical information used for the cell line vs tissue analysis, discussed in chapter 4.

Tissue
number Patient Number

Cell Line 
Code Tissue origin

Survival 
since tissue 
extraction

97 MA 0 0 0 3 3 2 M a-M el-05 C /SQ 1.97
147 MA 0 0 0 3 3 4 M a-M e!-06 LK 0 .3 3
9 MA 000341 M a-M el-07 LK 11 .8 4
379 - M a-M el-08b C /SQ 1.38
143 MA 0 0 0 3 4 0 M a-M el-10
168 MA 0 0 0 3 4 6 M a-M el-11
95 MA 0 0 0 3 3 9 M a-M el-12 C /SQ 5 .6 2
159 MA 0 0 0 1 4 2 M a-M el-13 C /SQ 3 7 .7 2
169 - M a-M el-15 LK 1.02
20 8 MA 0 0 0 3 4 5 M a-M el-19 C /SQ 0 .2 3
171 MA 0 0 0 3 3 0 M a-M el-20 C /SQ 1 .25
180 MA 0 0 0 3 3 5 M a-M el-21
192 MA 0 0 0 3 3 8 M a-M el-22 kidney 4 2 .7 5
149 MA 000331 M a-M el-23
185 MA 0 0 0 3 3 3 M a-M el-24 1 1 .1 8
285 MA 0 0 0 2 6 3 M a-M el-26a LK 6 .3 0
29 3 MA 0 0 0 2 6 3 M a-M el-26b LK 3.61
25 2 MA 0 0 0 3 4 7 M a-M el-27 C /SQ 7 .5 6
28 4 MA 0 0 0 3 3 6 M a-M el-28 C /SQ 4 .5 9
287 - M a-M el-30 C /SQ 13 .66
28 8 - M a-M el-33 C /SQ 11.21
304 MA 0 0 0 1 9 0 M a-M el-36 C /SQ 4 .0 3
3 1 3 - M a-M el-37b LK 5 1 .0 0
319 MA 0 0 0 3 5 0 M a-M el-39a 1 2 .6 4
3 8 3 MA 0 0 0 3 2 7 M a-M el-45a brain 4 .3 7
38 4 - M a-M eI-45b brain 4 .3 7
37 4 MA 0 00271 M a-M el-47 6 .2 5
4 1 4 MA 0 0 0 2 5 6 M a-M el-48a C /SQ 1 3 .8 4
449 MA 0 0 0 3 3 7 M a-M el-51 LK 2 .0 7
395 MA 0 0 0 3 4 8 M a-M el-52 C /SQ 0 .5 3
380 MA 0 0 0 2 9 8 M a-M el-53 C /SQ 3 3 .7 4
4 5 3 MA 0 0 0 3 4 3 M a-M el-54a LK 3.7 8
4 6 6 MA 000351 M a-M el-55 LK 8 .0 9
470 MA 0 0 0 3 4 4 M a-M el-56 LK 0 .6 6
4 9 2 MA 0 0 0 3 0 5 M a-M el-57 LK 3 .8 8
4 7 6 MA 0 0 0 2 5 8 M a-M el-59a LK 2 .6 6
510 MA 0 0 0 3 4 2 M a-M e!-60 C /SQ 7 .4 0
598 - M a-M el-61c LK 13 .7 6
52 5 - M a-M el-62 LK 4.21
548 - M a-M eI-65 LK 1 7 .9 3
546 - M a-M el-66a C /SQ 0 .7 9
54 7 - M a-M el-66b C /SQ 0 .7 9
550 - M a-M el-67 LK 1 7 .7 4
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Appendix II

Tissue
number Patient Number

Cell Line 
Code Tissue origin

Survival 
since tissue 
extraction

542 - M a-M el-68 LK 6 .0 5
561 - M a-M el-71 C /SQ 4 .0 4
566 - M a-M el-73a LK 7 .5 7
567 - M a-M el-73b LK 7 .5 7
56 8 - M a-M el-74 LK 14 .4 5
587 - M a-M e!-75 LK 12 .00
601 - M a-M el-76 LK 5.67
637 _ M a-M el-79 C /SQ 13 .57
6 1 9 - M a-M el-80b LK 9.31
620 - M a-M el-81 C /SQ 2 .1 3
6 5 7 - M a-M el-82 LK 9 .7 3
61 7 - M a-M el-83 LK 7 .0 8
65 8 - M a-M el-85 C /SQ 3.31
656 - M a-M el-90 C /SQ 4 .4 9
62 8 - M a-M el-91 C /SQ 10 .20
652 - M a-M el-93 C /SQ 9 .2 8
69 6 - M a-M el-94 LK 3 .9 7
6 9 2 - M a-M el-96 C /SQ 6 .2 3
7 1 5 - M a-M el-97 LK 4 .9 3

Key:
LK -  lymph node
C/SQ -  squamous cell (skin)
Survival is in months
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Appendix III

Appendix III
Clinical information of breast cancer patients with at least a five year follow-up and TMA 
data relevant to the data presented in chapter 5.

sample
num p53 exp basalphenotype survivS dead5 dfi5 recurr5
2072 124 0 124 0
2074 0 132 0 132 0
2075 0 1 68 1 10 1
2076 135 0 135 0
2077 10 0 137 0 137 0
2078 20 0 124 0 124 0
2079 85 1 22 1
2080 0 1 122 0 122 0
2081 132 0 72 1
2082 0 0 27 1 24 1
2083 255 0 133 0 133 0
2084 155 1 130 0 130 0
2086 300 1 128 0 3 1
2087 0 0 140 0 11 1
2091 16 1 14 1
2093 45 1 45 0
2094 0 1 157 0 157 0
2095 0 0 154 0 30 1
2096 0 0 129 0 129 0
2097 76 1 53 1
2098 132 0 132 0
2099 160 0 26 1 26 0
2100 0 0 28 2 28 0
2101 210 0 78 1 78 0
2104 0 1 136 0 70 1
2105 0 0 63 1 60 1
2107 100 0 132 0 132 0
2108 0 0 98 1 98 0
2109 0 133 0 133 0
2111 40 1 135 0 67 1
2113 0 1 97 2 97 0
2114 0 0 128 0 128 0
2118 10 0 130 0 8 1
2120 133 0 133 0
2123 0 0 130 0 130 0
2124 0 0 50 2 36 1
2125 215 0 69 1 48 1
2127 0 129 0 129 0
2131 0 0 119 0 15 1
2133 0 0 127 0 127 0
2134 0 0 125 0 125 0
2136 133 0 133 0
2138 105 0 35 1 18 1
2145 275 1 17 1 11 1
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sample
nuin p53 exp basalplienotype surviv5 dead5 dfi5 recurr5
2146 133 0 57 1
2149 0 0 85 1 18 1
2152 260 0 28 2 28 0
2153 0 1 130 0 130 0
2154 0 1 32 1 32 0
2155 215 0 134 0 134 0
2156 0 0 131 0 131 0
2157 15 1 95 1 95 0
2158 0 0 124 0 124 0
2159 0 0 123 0 123 0
2160 0 0 41 1 13 1
2162 0 1 132 0 132 0
2163 0 0 132 0 132 0
2166 132 0 132 0
2167 0 0 87 1 70 1
2171 0 0 25 1 21 1
2172 0 0 132 0 130 1
2174 0 0 125 0 125 0
2176 155 0 123 0 123 0
2177 0 0 120 0 120 0
2179 0 0 46 1 22 1
2180 40 0 131 0 131 0
2181 0 0 64 1 64 0
2183 0 1 41 1 11 1
2184 0 0 121 0 121 0
2185 0 1 128 0 25 1
2186 0 1 129 0 129 0
2187 0 131 0 33 1
2191 0 0 121 0 121 0
2193 0 0 128 0 128 0
2195 0 0 131 0 121 1
2196 300 1 120 0 120 0
2197 0 0 131 0 131 0
2198 0 0 123 0 123 0
2199 0 0 127 0 127 0
2200 0 1 77 1 36 1
2201 0 1 127 0 127 0
2202 225 1 120 0 120 0
2203 0 0 119 0 119 0
2204 30 1 126 0 126 0
2206 100 0 106 1 96 1
2207 0 0 113 0 113 0
2209 150 0 131 0 131 0
2210 40 0 86 1 74 1
2211 70 0 28 1 6 1
2214 15 1 130 0 74 1
2217 10 0 83 2 83 0
2218 0 1 28 1 25 1
2219 140 1 21 1 21 0
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sample
num p53 exp basalphenotype surviv5 dead5 dfi5 recurr5
2220 0 0 126 0 126 0
2221 205 1 92 2 92 0
2222 95 130 0 130 0
2223 0 1 125 0 125 0
2225 0 127 0 127 0
2227 250 1 17 1 7 1
2228 0 124 0 124 0
2229 0 1 122 0 122 0
2230 0 72 1 72 0
2231 200 1 130 0 130 0
2233 0 1 110 2 110 0
2236 0 1 128 0 128 0
2237 0 1 122 0 122 0
2239 285 1 121 0 121 0
2241 0 1 60 1 52 1
2242 0 121 0 121 0
2246 155 1 117 0 117 0
2250 90 1 115 0 115 0
2251 150 1 127 0 127 0
2252 0 1 128 0 79 1
2254 0 126 0 126 0
2264 0 1 73 2 73 0
2265 70 1 83 1 14 1
2268 0 1 126 0 126 0
2270 0 123 0 123 0
2280 185 1 42 1 23 1
2281 155 0 116 0 116 0
2282 0 0 124 0 124 0
2286 0 0 116 0 116 0
2287 116 0 116 0
2289 0 1 123 0 123 0
2290 170 0 117 0 117 0
2293 0 0 17 1 9 1
2294 0 1 37 2 23 1
2297 0 0 112 0 112 0
2302 0 1 124 0 124 0
2304 0 0 122 0 122 0
2305 0 0 90 2 63 1
2308 0 0 118 0 118 0
2309 250 1 114 0 114 0
2310 100 0 7 1 7 1
2311 0 1 120 0 120 0
2312 0 0 116 0 116 0
2313 0 0 122 0 122 0
2317 0 0 110 0 110 0
2323 0 0 119 0 119 0
2324 0 0 126 0 126 0
2325 95 0 111 0 111 0
2327 10 1 107 0 107 0
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sample
num p53 exp basalphenotype surviv5 deadS dfi5 recurr5
2333 119 0 119 0
2334 0 0 94 1 94 0
2337 0 1 96 1 73 1
2339 250 1 121 0 121 0
2341 0 0 117 0 117 0
2342 0 0 107 0 107 0
2345 0 0 111 0 111 0
2347 0 0 118 0 118 0
2348 0 1 112 2 112 0
2349 89 0 89 0
2350 0 0 108 0 108 0
2351 0 0 123 0 67 1
2353 0 0 117 0 117 0

Key:
P53 expression is measured semi-quantitatively where both the assessment of the intensity 

of p53 staining as well as the number of positive cells gave scores in the range of 0- 
300.

Basal phenotype -  1 = positive score as determined by detection of 10% or more of
invasive malignant cells positive for CK5/6, CK14, SMA and p53 staining. 0 — 
negative score.

Surviv5 -  The time, in months, from the date of the primary surgery to the time of breast 
cancer related death or last follow-up.

Dead5 -  0 = patient alive at last follow-up, 1 -  breast cancer related death, 2 = non-breast 
cancer related death

Dfi5 -  The interval (in months) from the date of the primary surgery to the first loco- 
regional recurrence or distant metastasis

Recurr5 -  Follow-up of patients where those whose disease recurred were given a value of 
1. No recurrence of disease = 0.
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Appendix IV
Melanoma serum samples analysed and discussed in chapter 6.

Sample Number Melanoma Stage Patient Initials Gender
1 AJCCI RD m
2 AJCCI KD f
3 AJCCI WB m
4 AJCCI AB m
5 AJCCI CD f
6 AJCCI BB f
7 AJCCI EB f
8 AJCCI UB f
9 AJCCI I-IB f
10 AJCCI RB m
11 AJCCI MB f
12 AJCCI KB f
13 AJCCI HA m
14 AJCCI MA m
15 AJCCI -A m
16 AJCCI EA f
17 AJCCI NA f
18 AJCCI RA f
19 AJCCI PB m
20 AJCCI SB f
21 AJCCI IB f
22 AJCCI WB m
23 AJCCI SD f
24 AJCCI HD m
25 AJCCI ED f
26 AJCCI BB f
27 AJCCI HE m
28 AJCCI ME m
29 AJCCI I-IF f
30 AJCCI RF f
31 AJCCI HF f
32 AJCCI WB m
33 AJCCI GB m
34 AJCCI GB f
35 AJCCI MB f
36 AJCCI MF f
37 AJCCI NF m
38 AJCCI HP m
39 AJCCI MF f
40 AJCCI VF f
41 AJCCI HF ill
42 AJCCI H-JF m
43 AJCCI IG f
44 AJCCI BG f
45 AJCCI KG f
46 AJCCI RG m
47 AJCCI AG f
48 AJCCI TG m
49 AJCCI LG f
50 AJCCI -G m
51 AJCCI FG m
52 AJCCI GH m
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Sample Number Melanoma Stage Patient Initials Gender
53 AJCCI GH f
54 AJCCI DH m
55 AJCCI RH m
56 AJCCI HH f
57 AJCCI BH m
58 AJCCI -H f
59 AJCCI HH m
60 AJCCI AH m
61 AJCCI RJ m
62 AJCCI RJ f
63 AJCCI HJ m
64 AJCCI IJ f
65 AJCCI NJ m
66 AJCCI FJ m
67 AJCCI HK in
68 AJCCI UK f
69 AJCCI HK f
70 AJCCI RK f
71 AJCCI HK m
72 AJCCI KK m
73 AJCCI HK m
74 AJCCI -N-K m
75 AJCCI WK m
76 AJCCI HK f
77 AJCCI CK f
78 AJCCI AK f
79 AJCCI RM f
80 AJCCI KM m
81 AJCCI KM f
82 AJCCI EM m
83 AJCCI HL m
84 AJCCI HL f
85 AJCCI HL f
86 AJCCI ML f
87 AJCCI EM f
88 AJCCI WM in
89 AJCCI EM f
90 AJCCI CM f
91 AJCCI FM m
92 AJCCI NM f
93 AJCCI AN f
94 AJCCI LN m
95 AJCCI AN f
96 AJCCI -O f
97 AJCCI IP f
98 AJCCI RP m
99 AJCCI GR m
100 AJCCI KR f
101 AJCCI K-HR m
102 AJCCIV -A m
103 AJCC IV LA m
104 AJCCIV HA m
105 AJCC IV HA m
106 AJCC IV EB m
107 AJCC IV KvB f
108 AJCCIV -R-B f
109 AJCC IV HB m
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Sample Number Melanoma Stage Patient Initials Gender
110 AJCC IV KB f
111 AJCCIV DB f
112 AJCCIV HB f
113 AJCC IV HB f
114 AJCC IV -U-B f
115 AJCCIV HB m
116 AJCC IV AC m
117 AJCCIV GD f
118 AJCCIV FD m
119 AJCC IV BD m
120 AJCC IV EE f
121 AJCCIV SE f
122 AJCC IV DE f
123 AJCC IV KE m
124 AJCC IV KE f
125 AJCCIV WF m
126 AJCC IV AF m
127 AJCC IV JF m
128 AJCCIV GF m
129 AJCCIV GF f
130 AJCC IV IG f
131 AJCC IV NG m
132 AJCC IV IG f
133 AJCCIV JG m
134 AJCC IV RG f
135 AJCC IV PG m
136 AJCCIV -G f
137 AJCCIV HH m
138 AJCC IV KH m
139 AJCC IV KH m
140 AJCC IV EH f
141 AJCC IV GH m
142 AJCCIV HH m
143 AJCC IV AGK f
144 AJCC IV EK f
145 AJCCIV DK f
146 AJCCIV RK f
147 AJCC IV FK m
148 AJCC IV KK m
149 AJCC IV HL m
150 AJCCIV KL f
151 AJCC IV AM f
152 AJCC IV RM m
153 AJCCIV SM f
154 AJCC IV SM f
155 AJCC IV BM m
156 AJCC IV IM f
157 AJCC IV AM f
158 AJCC IV SM m
159 AJCC IV GN f
160 AJCC IV WO m
161 AJCCIV HP m
162 AJCC IV TR in
163 AJCC IV SR m
164 AJCC IV KR f
165 AJCC IV GR f
166 AJCC IV NR f
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Sample Number Melanoma Stage Patient Initials Gender
' 1 6 7  " AJCCIV DS m

168 AJCCIV SS m
169 AJCCIV RP m
170 AJCCIV ws m
171 AJCCIV BS m
172 AJCC IV MS f
173 AJCCIV ES f
174 AJCC IV IS f
175 AJCCIV IS f
176 AJCC IV GS-F f
177 AJCCIV HS m
178 AJCCIV AS f
179 AJCC IV ES f
180 AJCC IV AS f
181 AJCC IV VS m
182 AJCC IV WS m
183 AJCC IV HS m
184 AJCCIV KS m
185 AJCCIV KS m
186 AJCCIV ES m
187 AJCCIV FT m
188 AJCC IV HV m
189 AJCCIV MW f
190 AJCCIV KB f
191 AJCC IV RW m
192 AJCC IV HW m
193 AJCCIV ww m
194 AJCCIV wc m
195 AJCC IV HH f
196 AJCC IV MB m
197 AJCC IV GF f
198 AJCC IV JU m
199 AJCCIV EG m
200 AJCC IV -HT f
201 AJCCIV GR f
202 AJCCIV AW f
203 AJCC IV WF f
204 AJCC IV HB f
205 AJCC IV BM f
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