
FOR REFERENCE ONLY

3 ~ NOV 2004•oV)2s*£
40 0750686 0

ProQuest Number: 10183440

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183440

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Integrative Monitoring and Control
Framework Based on Software

Distributed Shared Memory Non-
Locking Model

M oham ed A bdalla K halil

A thesis submitted in partial fulfilment of the
requirements of The Nottingham Trent

University for a degree of Doctor of Philosophy

July 2004

Abstract

Distributed shared memory (DSM) paradigm provides an illusion of one physical

shared memory in network of workstations where in reality shared data physically reside

on different machines and different address spaces. DSM algorithms facilitate accessing

the shared memory and exchanging data via normal read and write operations,

concealing the inter-process communication and remote memory accesses. Such

algorithms, and the environments they belong to, are used as processing platforms for

distributed and parallel applications. This thesis investigates new approaches and

algorithms for improving the performance of distributed shared memory systems. It

assumes that the reduction of data retrieval time from the point of view of distributed

applications is a major factor for measuring the performance of DSM systems.

The investigation introduces a framework that uses a non-locking approach and a

purposely designed memory consistency model in order to achieve the above mentioned

goal. This approach allows an application in a distributed environment to access the

shared memory in a nearby location in a relatively short time thus saving valuable time

for performing its native tasks. The framework is presented as a computing environment

for building hierarchical traffic telematics distributed systems. It develops further the

successful features of DIME DSM system (developed and designed at DOCM, NTU)

and at the same time avoids its shortcomings. The main feature of the architectural

design of the new framework is its flexibility, which allows the reconfiguration of the

communication paths or routes of the system at run-time, thus improving the overall

performance of the whole system.

To maintain consistent view of the distributed shared memory in the framework,

a variant definition of sequential consistency (SC) model has been developed. This

model has been designed specifically to support certain features in the urban traffic

control (UTC) system. It also incorporates the flavour of SC definition that is intuitively

favoured by distributed applications programmers. Also, to reliably manage the

dissemination of messages and data across the distributed system, the thesis presents a

novel proprietary communication protocol for the framework. This protocol sends

messages only to the applications that are involved in the operation rather than

broadcasting the messages to every application in the distributed system. The algorithm

of the protocol reduces the number of messages exchanged in the system, and therefore

saves the resources of the network. Furthermore, a new novel heuristic algorithm is

presented in this thesis, which allows system re-configurability at run-time and

optimization of the performance of DSM systems.

The research work discusses some important issues for designing and building

distributed systems. It also discusses new techniques that have been introduced in recent

research papers for improving the performance of DSM systems. The presented

implementation of the proposed framework demonstrates the applicability of the non­

locking approach and the consistency model for building DSM systems.

The copy o f this report has been supplied on the understanding that it is

copyright material, and that no quotation from the report may be published

without proper acknowledgment. The work described in this report is the

Author’s own, unless otherwise stated, and it is, as fa r as he is aware,

original.

I

Dedication

I would like to dedicate this work to my beloved mother, Soad,

for loving, raising, and guiding me in every single step of my life,

I
without her I might not be here writing these words.

I also dedicate my work to the souls of my father Abdal/a, my

brother Hisham, and to the one who will live in my heart and memory

forever, Mozamii

II

Acknowledgement

I would like to thank my first supervisor Dr. E Peytchev for guiding and

supporting me during my PhD project. Without his valuable advices and discussions I

would not be able to see an end to this long journey. I am also very grateful to my

second supervisor Prof. A. Bargiela for offering his guidance and constructive criticism

and ensuring that what I did was worthwhile.

Special thanks go to all my friends who offered an unlimited support, and

encouraging me to keep the posture throughout my study, thank you folks. When it

comes to my family, it would be unexplainable how it is difficult to tell how much I

appreciate their support and love that motivates me to graduate. Thank you my sisters,

Manasik, Manahil, Maysoun and Alsarour. Thank you Sarnia, Ali, Osman, Fawzya,

Siham, and of course, the youngsters, Omar, and Osman.

I would like to acknowledge the support and help that was given by my

colleagues in the Intelligent Simulation and Modelling research group, and also by the

technicians and the staff in the department.

And last, but not least, thank you Waleed and Ibrahim for being such good

friends.

Ill

Table of Contents

C hapter One: IN TR O D U C TIO N 1

1.1. Distributed Shared Memory Systems- General O verview 2

1.2. Distributed Shared Memory Systems - Optimization Strategy.......................... 3

1.3. Aims of the Project... 3

1.4. Overview of the T hesis .. 6

C hapter Two: DISTRIBUTED SHARED M EM ORY SYSTEM S....................... 9

2.1. Distributed Systems .. 9

2.2. Distributed Systems Main Characteristics.. 9

2.2.1. Openness.. .. 10

2.2.2. Concurrency.. 10

2.2.3. Transparency.. 11

2.2.4. Resource Sharing... 11

2.3 Distributed Shared Memory Paradigm.. 12

2.4 Issues in Designing DSM systems... 14

2.4.1. Structure and Granularity... 15

2.4.2. Scalability... 16

2.4.3. Heterogeneity... 17

2.4.4. Memory Consistency.. 17

2.4.4.1. Strict Consistency... 18

2.4.4.2. Sequential and Linearizability Consistency................................ 19

2.4.4.3. Causal Consistency... 20

2.4.4.4. FIFO Consistency... 21

2.4.4.5. Weak Consistency........................... 21

2.4.4.6. Release Consistency... 23

2.4.4.7. Lazy Release Consistency.. 24

2.5. Locking and Non-locking DSM Algorithms.. 25

2.6. Implementation Levels of DSM Algorithms.. 26

2.6.1. Software-oriented DSM Systems ... 26

2.6.2. Hardware-oriented DSM Systems... 27

2.6.3. Hybrid Level DSM Systems.. 28

IV

2.7. Software DSM Systems...

2.7.1. Software DSM System Examples...

2.7.1.1. IVY...

2.7.1.2. TreadMarks...

2.7.1.3. Broadcast Distributed Shared Memory System (BDSM).......

2.7.1.4. Brazos...

2.7.1.5. CLOUDS...

2.7.1.6. Orca..

2.7.2. Trends in Improving the Performance Software DSM Systems.............

2.7.2.1. Adaptive Protocols for Software DSM Systems.......................

2.1.22. Multi-Threaded Software DSM Systems...................................

2.7.2.3 Relaxing Consistency Definitions..

Chapter Three: DIME-II: NON-LOCKING APPROACH, CONSISTENCY
MODEL AND DATA EXCHANGE ALGORITHM - DESIGN &
EVALUATION..

3.1. DIME and Traffic Control Distributed System..

3.2. Types of Data in a Typical Traffic Control system..................

3.3. DIME-I Configuration...

3.4. The Limitations of DIME-I...

3.5. Design Issues...

3.6. Non-Locking Approach for DIME-II Computing Framework.........................

3.7. Memory Consistency Model for DIME-II...

3.7.1. Evaluation to the Consistency M odel...

3.8. DIME-II Data Transfer Protocol (DDTP)...

3.8.1. Structures of Command Packets Exchanged Between DIME-II-Server
& DIME-II-Clients................................ ...

3.8.1.1. Normal Data..

3.8.1.1.1. Initiate DSM ..

3.8.1.1.2. Create Area/Buffer...

3.8.1.1.3. Destroy Area/Buffer...

3.8.1.1.4. Write in Area/Buffer..

3.8.1.2. Acknowledgement...

3.8.1.3. Error Message...

29

30

30

32

35

37

40

43

45

46

48

49

51

51

53

54

56

60

62

66

73

73

75

75

76

76

77

78

78

79

V

3.8.1.4. Redirection Message... 79

3.8.1.5. Dummy Message... 80

3.8.2. Evaluation to the Communication Protocol DDTP.................................. 80

3.8.2.1 Formulating the Problem.. 81

3.8.2.2. Back-off Technique.. 82

3.8.2.3. Karn’s Algorithm.. 83

3.8.2.4.. Implementing Karn’s Algorithm in the Communication
Protocol...

3.8.2.5. Experimental Results... 84

3.9. An Implementation for DIME-II Framework... 85

3.9.1. DIME-II-server.. 86

3.9.2. DIME-II-client... 90

3.9.3. User’s Interface of DIME-II Softw are.. 91

3.10. Evaluating the Performance of DIME-II System In Comparison With
DIME-I Systems.. ^ 2

Js
3.10.1 Experiment B enchmark... 92

3.10.2. Evaluation and Results Summarization Scheme.................................... 93

3.10.3. Comparing the Performance in Terms of Data Retrieval Rates from
the Viewpoint of System Modules..

3.10.3.1. Summarizing and Evaluating the Results Using Confidence
Interval Method...

3.10.4. The Time (in Milliseconds) DIME Server Spent in Listening to
Messages from the Network..

3.10.5. The Time (in Milliseconds) an Application is Blocked While
Performing Read Operation on the Shared Memory.. gg $

3.10.6. Conclusions in Bullets... 104

Chapter Four: PERFORMANCE OPTIMIZATION IN DISTRIBUTED
SHARED MEMORY SYSTEMS - HEURISTIC ALGORITHM...................... 105

4.1. Related Research... 106

4.1.1 Load Sharing and Load B alancing Policies... 106

4.1.1.1. Load Sharing Algorithms... 106

4.1.1.2 Load Balancing Strategies.. 109

VI

1

4.1.2. Communication Minimization Strategies... 112 d
i

4.2. New Optimization Strategy - Round-Trip Time-based Adaptive Algorithm... 113 i:

4.2.1. Implementing the Strategy.. 116

4.2.1.1 Statically-initiated Intermediate Servers (SIS) - Start-up time
initiation ..

4.2.1.2 Dynamically-initiated Intermediate Servers (DIS) - Run-time
initiation... 2

4.3.2. Heuristic Algorithm for Optimized DSM systems................................... 127

Chapter Five: CONCLUSIONS AND FUTURE RESEARCH............................ 137 I
51. Conclusions... 137

5.2. Future Research.. 141

References... 143

VII

List of Figures

Figure 2.1: An illustration of Distributed System..

Figure 2.2: Distributed memory multiprocessors: The local memories are shared
by explicitly passing messages over the network...

Figure 2.3: Distributed Shared Memory abstraction (accessed via normal Read and
Write operations)...

Figure 2.4: The architecture of IVY software DSM system..

Figure 2.5: BDSM architectural design ...

Figure 3.1: DIME system and Traffic Control system...

Figure 3.2: DIME-I Configuration..

Figure 3.3: Two structures of a DSM system before and after reconfiguring the
communication paths...

Figure 3.4: DIME-I system (another perspective)..

Figure 3.5: Non-Locking Model with Data Replication- DIME-II Structural
Design...

Figure 3.6: The shared memory obeys the consistency model......................................

Figure 3.7: The view of the shared memory (i.e. data areas) will be inconsistent
with the definition of the presented consistency model if DIME-II-client directly
applies the received updates..

Figure 3.8: The sequence of operations in DIME-II system upon write in buffer
operation..

Figure 3.9: The sequence of operations in DIME-II system upon write in area
operation..

Figure 3.10: The sequence of operations in DIME-II system upon write in area
operation..

Figure 3.11: The current implementation of DIME-II..

Figure 3.12: DIME-II-server - General View...

Figure 3.13: The performances of DIME-II in comparison with DIME-I...................

Figure 3.14: The time (milliseconds) an application remains blocked while
performing read operation on data areas..

Figure 3.15: The time (milliseconds) an application remains blocked while
performing read on data buffers... ..

Figure 3.16: The time (in percentage) of data retrieval operations on data areas......

Figure 3.17: The time (in percentage) of data retrieval operations on data buffers....

Figure 4.1: DIME-II’s Level of Storage Space...

Figure 4.2: Level of Storage Space in DIME-II with Intermediate Servers...............

Figure 4.3: The performance of DIME-II system with and without Statically-
initiated Intermediates Servers...

Figure 4.4: DIME-II Architecture with Intermediate Servers......................................

Figure 4.5: The performances of DIME-II with and without dynamic intermediate
server (DIS)... ...

Figure 4.6: Some of the architectures of DIME-II produced during the experiments

Figure 4.7: Different Structures of DIME-II with Intermediate Servers (4
applications)..

Figure 4.8: Different Structures of DIME-II with Intermediate Servers (6
applications)..

Figure: 4.9: Different Structures of DIME-II with Intermediate Servers (7
applications)..

Figure 4.10: Different Structures of DIME-II with Intermediate Servers produced
by the adaptive algorithm (4 applications)...

Figure 4.11: Different Structures of DIME-II with Intermediate Servers produced
by the adaptive algorithm (5 applications)...

Figure: 4.12: Different Structures of DIME-II with Intermediate Servers produced
by the adaptive algorithm (6 applications)...

Figure: 4.13: Different Structures of DIME-II with Intermediate Servers produced
by the adaptive algorithm (10 applications)..

List of Tables

Table 3.1: The performance in DIME-I and DIME-II measured as data retrieval
rates (kilobytes/second)...

98Table 3.2.: The time DIME-II-server spent listening to messages from the network

Table 3.3: The time (milliseconds) an application remains blocked while
performing read operation on data areas...

Table 3.4: The time (milliseconds) an application remains blocked while
performing read on data buffers...

102Table 3.5: The time (in percentage) of data retrieval operations on data areas..........

Table 3.6: The time (in percentage) of data retrieval operations on data buffers......

Table 4.1: The performances of DIME-II with and without static intermediate
server (SIS) measured as data retrieval rates (kilobytes/second)................................. 4

Table 4.2: The performances of DIME-II with and without dynamic intermediate
server (DIS) measured as data retrieval rates (kilobytes/second)................................. §

X

*” &

Chapter One

INTRODUCTION

The last decade witnessed dramatic advancements in computer networking

technologies in terms of continually introducing new and powerful workstations capable

of providing high performance computing platforms. The relatively small cost of such

platforms compared to supercomputer clusters has shifted researcher’s interest to

networked workstations as a computing environment for parallel frameworks. These

platforms are used in various applications, such as distributed databases and distributed

web servers.

Although super machines are dedicated platforms characterised by their high

performance, the price and utilizations of networked platforms can bridge this

performance gap. Moreover, using network of workstations (NOW) as computing

platform has an advantage of building much more robust fault tolerant systems. In other

words, in the occurrence of machine failure, networked parallel system can continue

running with no disturbance and transfer the failed task to be executed on another

machine. Furthermore, parallel systems can employ more than one server avoiding

bottleneck.

The thesis introduces a distributed shared memory framework that uses a

partially-replicated non-locking approach to reduce data retrieval time. This method

allows an application in a distributed environment to perform read/write operations on

the shared memory in its proximity in a relatively short time allowing it more time for

performing its native tasks. The structure of the new framework is flexible in such a way

that the system can reconfigure its communication channels at run-time in order to

improve and optimize the performance of the system.

1.1 Distributed Shared Memory Systems- General Overview

Building parallel and distributed applications on network of workstation (NOW)

requires middleware of software that can efficiently manage exchanging messages and

data between different applications running on different machines. Traditionally there

are two paradigms in building such middleware in distributed systems - the message

passing (MP) paradigm and the distributed shared memory (DSM) paradigm. The

former was predominantly used for building distributed systems, in which the

programmers have to be conscious of where the data is and how the processes

communicate with each other, making it hard to construct distributed systems using this

paradigm.

Therefore, researchers decided to find more convenient approach for building

distributed systems which led to the introduction of the distributed shared memory

paradigm. DSM algorithm provides an illusion of one logical shared memory 011 NOW.

Unlike the MP paradigm, DSM algorithm facilitates accessing the shared memory and

exchanging data via normal read and write operations, making life easier for

programmers of parallel and distributed applications.

Research efforts in DSM paradigm have resulted in presenting number of

different algorithms applying the concept of DSM abstraction [Argile A. et. al 1997,

Amza C. et. al 1996, Li K. 1998]. The presented systems are built at different levels of

implementations: software, hardware, or hybrid of both. Many of distributed systems are

built as software DSM systems due to the fact that exchanging complex data structures

between different processes is supported [Protic J. et. al 1996]. One important

conclusion of the research in DSM algorithm is that building distributed systems on

network of workstations with DSM algorithm is a viable alternative to the traditional

message-passing paradigm. This thesis focuses on the DIME DSM system [Argile A. et.

al 1997] as a case study of the research and the new framework, presented in this thesis,

is a revised version of it, and it is called DIME-II system. DIME system was designed

and implemented in the Department of Computing and Mathematics- the Nottingham

Trent University.

2

1.2 Distributed Shared Memory Systems - Optimization Strategy

The increasing demands of distributed applications require sufficiently high-

performance DSM algorithms. Another direction of research has been dedicated to

investigating new approaches for improving the performance of distributed shared

memory systems in order to narrow the performance gap between message-passing

oriented systems and DSM systems, besides, satisfying the needs of distributed

applications. This trend is launched, alongside developing new DSM algorithms, to

investigate new techniques in improving and enhancing the performance of DSM

algorithms. Such techniques can be called complementary techniques as they are used in

conjunction with DSM algorithms. This direction of research has presented a wide

spectrum of techniques to optimize the performance of distributed and networked

systems at different levels of optimization.

Optimization levels range from client interface, through middleware and servers,

to the communication infrastructure. In these techniques a variety of criteria are

examined, including time, space and quality of service. Some research concentrated on

developing mechanisms for maintaining consistent view of different replicas of the data

throughout the networked system. This research reported that consistency models with

more relaxed constraints may improve the performance [Tanenbaum et. al 2002].

Another research report [Amza C. et. al 1999] has introduced DSM algorithms that

adopt more than one protocol that automatically adapt, at run-time, to the usage pattern

of the shared data in the system. On the other hand, some distributed systems tend to use

per-node multithreads to hide communication latencies [Mueller F. 1997]. Despite the

inherent software and communication overhead, most of the techniques and strategies

have exhibited significant success in scaling up and optimizing the performance of DSM

systems.

1.3 Aims of the Project

Many different approaches and performance factors have been introduced and

taken into account in past and recent research to measure the performance of DSM

systems. For instance, Munin [Carter JB 1995] adopts multiple relaxed consistency

3

protocols in order to achieve good performance through reducing the number of

messages exchanged in the network. On the other hand, TreadMarks [Amza C. et. al

1996] adopts the same means, but to speedup the distributed system as a whole. In our

research, the major factor of measuring the performance is the reduction of data retrieval

time from the perspective of user applications. The motive behind this factor is that the

user application can have more time for performing its native tasks, which is often

wasted in network communication.

The main objectives of this research are to:

> Investigate new means for building software DSM systems in which the

time of data retrieval by user applications is reduced to the extreme, and

> To have a flexible design for the system, allowing start-up and run-time

reconfiguration of the system connectivity when needed to optimize the

performance.

With DSM algorithms, distributed applications often waste valuable time when

retrieving data from the central shared memory, this time is spent by the middleware

system during exchanging data and messages between different parts of the system to

fetch the requested data. The framework presented in this thesis adopts a non-locking

model to achieve the required enhanced performance. The algorithm adopted by the

framework allows an application to retrieve the required data from a memory associated

with that particular' application. This intermediate memory contains copies of the data

required by that application (not a whole replica of the main memory) and accessed only

by that application.

The burden of making the intermediate memories consistent with the main

memory is entirely left to the middleware system. Therefore, an application can retrieve

the required data from its intermediate memory in a relatively short time. In other words,

user applications will always find the required data without any significant delay,

bearing in mind that the data is retrieved directly from the intermediate memory with no

competition with other applications within the system. Providing an application with the

requested data in a relatively short period of time is considered the one single most

4

important factor of measuring the performance of the system. The motive behind this

assumption is that the user application can have more time for performing its native

tasks, which time is very often wasted in network communication [Khalil M. et. al

2003b].

The utilization of this non-locking approach can allow distributed applications to

perform read operations locally, resulting in the reduction of the number of exchanged

messages in the system. This approach is expected to achieve the sought goal of

improving the performance via reducing the time of data retrieval for user applications.

This is based on the assumption that the speed of data processing is greater than the

speed of exchanging data and messages over the network.

A relaxed model of sequential consistency (SC) has been designed to guarantee

consistent view of the data in the framework. The reason behind choosing SC model

among the others is that it is intuitively expected by programmers of distributed systems

and the proposed for this research work requirements proved difficult or impossible to

satisfy within other consistency models. At the same time, a lot of changes have to be

defined in order to apply some improvement techniques such as multithreading and data

replication approach, as SC model does not support such techniques. Moreover, as the

DIME system is currently used as a computing platform for the Urban Traffic Control

(UTC) distributed system, this new model supports data area and buffer structures

which, naturally, exist in the UTC.

For reducing further the number of exchanged messages in the produced system,

a communication protocol has been designed and implemented. This protocol is a

middleware-level protocol which is used to exchange messages and commands within

DIME-II DSM system, allowing user applications to perform read and write operations

without being aware of the location of the data. This protocol is built on top of TCP/IP,

and relies on the natural sequencing of the underlying network (Ethernet). The merit of

this protocol is that it uses a multicast- based algorithm for propagating updates only to

the applications that have replicas of the modified shared items. Thereby, the messages

exchanged in the system are reduced and the network resources are saved.

On the other hand, optimizing the performance of DSM systems at run-time is

also considered. The inherent software and communication overhead may cause poor

performance in distributed shared memory system, in particular, when the demands of

the distributed applications increase. This research investigates on developing

algorithms that can scale up the performance of the system at run-time to adjust to the

demands of the applications and the current state of the network. This thesis presents a

strategy for optimizing the performance of DSM systems via the use of intermediate

level of control. It also proposes a novel heuristic algorithm capable of reconfiguring

DSM systems, at run-time, by adding up intermediate servers to support the main server

supplying the service to the currently running applications.

More specifically, the algorithm optimizes the performance of DSM systems by

improving the system connectivity via reconfiguring the communication paths of the

system while preserving its backbone. This reconfiguration is based on the current state

of the network which is evaluated by calcul+ating the round-trip times between different

components of the system. Therefore, this algorithm considers the organization of the

network in terms of its size, topology and the current workload, and accordingly changes

the network connectivity of the DSM system to improve the performance and increase

the data throughput. It has to be emphasised that, this algorithm aims, overall, at scaling

up the overall performance of the system via maximizing the data retrieval rate at

application level.

1.4 Overview of the Thesis

This thesis consists of six chapters as follows:

> Chapter one introduces the thesis by giving a brief introduction to the

distributed shared memory paradigm and its rival, message-passing

paradigm, and the trade-offs between them. Besides, it introduces the levels

of implementation to the DSM paradigm in building distributed systems. It

also sheds the light on one of the main challenges in prototyping DSM

systems, which is performance optimization. This chapter identifies the

main objectives of the research and the areas of research covered in this

investigation.

6

> Chapter two presents a comprehensive literature survey about different

issues in distributed shared memory systems. It starts by giving a general

introduction to distributed systems, and then an extensive comparison

between the traditional approaches of building middleware software for

distributed systems, message-passing and distributed shared memory

paradigms. It explores the design issues for building an efficient distributed

system and some improvement techniques used to enhance the

performance. Memory consistency design issue is thoroughly covered and a

wide range of models is described. The implementation levels of the DSM

paradigms in distributed systems are also elaborated in this chapter. The

main contribution of this chapter is categorizing distributed shared memory

systems into two big groups: locking and non-locking system according to

the employed consistency model.

Chapter two elaborates comprehensively software distributed shared

memory systems. It puts in plain words the reason of software DSM

paradigms being a field of intensive research more than its competitors,

hardware and hybrid levels of implementation. Some examples of DSM

systems built at software level of implementation are elaborated in this

chapter. The study describes the designing issues in each example, such as

structure and granularity, consistency models, heterogeneity and scalability.

The chapter wraps up the study by presenting some recent trends of the

research in software DSM systems.

> Chapter three presents new framework that uses non-locking software

DSM algorithm. It contains description for DIME system as a computing

platform for the urban traffic control distributed system, which is called

DIME-I in this thesis. A detailed description for DIME system as a user-

level software DSM system is provided as well as identifying its limitations

and justifies the need for improvement. Afterward, the new framework,

DIME-II, is presented as a revised architecture of DIME-I architecture.

7

J

%

A model that ensures consistent view of the shared memory throughout ^

the system is presented in the chapter. This model is designated to the new

framework and it supports particular features in the urban traffic system.

Also, it introduces a transmission protocol, called DIME-II Data Transfer

Protocol (DDTP), for maintaining the underlying communication of the

non-locking framework and its consistency model, and provides a complete

description for the implementation of the produced framework. Finally, this

chapter presents experiments on the new framework, discusses, and

concludes the results. j

> Chapter four takes us to the broad world of performance optimization by

presenting some common strategies and techniques aim at scaling up the

performance of DSM systems in the case of performance deterioration.

These strategies are load balancing, load sharing and communication

minimization. The main contribution of this chapter is the introduction of a

novel heuristic algorithm for enhancing the performance of DSM systems.

The strategy reconfigures the system at run-time by embedding intermediate

servers ready to be initiated and activated to reduce the load on the main

central server by redirecting some applications from the main server to take

the service from the intermediate servers. Experimental results are also

provided, discussed and concluded.

> Chapter five concludes the research and provides some directions to

further research in distributed shared memory systems.
!?
, ?

%

1

Chapter Two

DISTRIBUTED SHARED MEMORY SYSTEMS

2.1 Distributed Systems

Over the last decades Distributed System (DS) environments have attracted

significant research interest. The aim was to investigate the applicability of such systems

for building integrative frameworks. They enable computers to coordinate their activities

and to share the resources of the system- hardware, software, and data. Users of a well-

designed distributed system should perceive a single, integrated computing facility even

though it may be implemented on many computers in different locations. In figure (2.1)

distributed system software is represented as middleware service that links and

coordinates the distributed activities running on different machines of different

environments.

The development of distributed systems followed the emergence of high-speed

local area networks at the beginning of the 1970s. More recently, the availability of

high-performance personal computers, workstations and server computers has resulted

in a major shift towards distributed systems and away from centralised and multi-user

computers. Distributed system frameworks have been applied in a wide variety of

applications, for commercial and academic purposes. Such system is characterised in

[Tanenbaum A. et. al 2002] as we will see in the next section.

2.2 Distributed Systems Main Characteristics

There are several characteristics which determine the usefulness of the algorithm

of a distributed system, and distinguish between the performances of number of

9

algorithms. Among these characteristics are: openness, concurrency, transparency, and

resource sharing.

2.2.1 Openness

This characteristic means that distributed systems can be extended in various

ways in terms of peripherals, memory, communication interface, operating system

features, communication protocols and resource sharing services. Openness allows the

addition and the removal of different kind of components easily without disturbing the

whole running system.

Machine A Machine B Machine C

Local OS Local OS

Network

Figure 2.1; An Illustration of Distributed System

2.2.2 Concurrency

It is another influential feature of DS, as in such systems many processes can

simultaneously run their tasks supporting parallel execution. This feature arises naturally

in DS from the separate activities of applications, the independence of resources, and the

locations of processes in separate machines, enabling these processes to run in parallel

on different machines of different computing environments. Concurrent accesses and

10

lii

1
■'?

I
f
4T.

updates in distributed system must be handled carefully in order to ensure that the

benefits of concurrency are not lost. For example, concurrency means several updates to

the same part of the shared memory can be issued at the same time, which means there

should be some kind of control over the memory to determine which update to take ;f

place first. Therefore, the coherence of the system is maintained while having concurrent

execution.

2.2.3 Transparency

Distributed systems are perceived as a whole rather than a set of independent

components. Thus, system transparency addresses the needs of users and programmers

to perceive a collection of networked computers as an integrated system, concealing the

distributed nature of the resources used to perform the users’ tasks. The separation of

components is an inherent property of distributed systems. Its consequences include the

need for communication and explicit system management and integration techniques.

Separation of components allows the truly parallel execution of programs, and enables

the containment of components faults and recovery from faults without disturbing the

whole system.

2.2.4 Resource Sharing

Users of centralised and distributed computers are so accustomed to the benefits

of resource sharing that they may easily overlook their significance. The term resource

contains a wide range of hardware and software components such as printers, files,

databases...etc. Sharing the hardware resources reduces the costs of buying new 4
hardware and, on the other hand, data sharing is an essential requirement for many

computer applications, such as commercial applications that enables users to share

single data object in a single active database with no need to have the original database

to be present on every machine where the manipulation may take place.

Sharing network resources can be obtained via message-passing or distributed

shared memory models as we will see in the next section. In,brief, it is the fundamental

11

characteristics in building distributed systems, and it strongly affects the software

architecture of them.

2.3 Distributed Shared Memory Paradigm

In distributed system environment (often called loosely coupled multi­

computers), processors in workstation clusters do not share global physical memory, and

so all inter-process communication between processors must be performed by sending

and receiving messages over the network. On the contrary, there is shared memory

systems in which a common physical memory is accessible to all processors in the

system. Such systems are called tightly coupled multiprocessors.

Formerly, Message-Passing paradigm was predominantly used for building

distributed systems, in which primitives such as Send and Receive are used for

maintaining communication between processes on different machines (figure 2.2).

I/OI/OI/O

I/OI/OI/O

MemoryMemory

Memory

Memory

MemoryMemory

CPU

CPU

CPU CPU

CPUCPU

Interconnection Network

Figure 2.2: Distributed Memory M ultiprocessors - The local memories are shared
bv explicitly passing messages over the network.

12

In such system, the inter-process communication is entirely programmers’

responsibility, and therefore one must have a complete knowledge of the data usage

pattern in the system which makes it hard to program using this model. Moreover,

sending complex data structure using message-passing model involves considerable

complexity in programming and substantial overhead in both space and time [Li. K

1988], which is the main drawback of this paradigm.

On the contrary, Distributed Shared Memory (DSM) paradigm logically

implements the shared memory model in a physically distributed memory system

(Figure 2.3). Thereby, applications can be written as if they were executing on a shared

memory multiprocessor, accessing shared memory with ordinary read and write

operations.

Figure 2.3; Distributed Shared Memory Abstraction
(accessed via normal Read and Write operations)

Although DSM systems tend to generate more communication and then tend to

be less efficient than message-passing systems, research has shown that DSM systems

13

are comparable with their analogous systems [Lu H. et. al 1995]; moreover, they can

sometimes outperform message-passing models [Auld P. 2001].

In [Lu H. et. al 1995] experiments assessing the differences in programmability

and performance between TreadMarks DSM [Amza C. et. al 1996] and PVM message-

passing systems have shown that more messages and more data are sent in TreadMarks.

This extra communication is due to the separation of synchronization and data transfer,

besides, extra messages are sent to request updates for data in TreadMarks, therefore are

responsible for lower performance of all the TreadMarks programs. However, in terms

of programmability, it has been concluded that it is easier to program using TreadMarks

DSM system. The ease of programmability was the major aim of such algorithms in the

first place.

Another experiment presented in [Auld P. 2001] (concerning the operation of

DSM systems and not the overall performance of the test programs) made a comparison

between Broadcast DSM system and MPI message-passing system using straightforward

parallel algorithms. The result has shown that for some applications the DSM paradigm

of Broadcast DSM system outperforms the MPI message passing system.

Hence, to recall, due to the explicit use of sendlreceive primitives in message-

passing paradigm, we find that programmers tend to use distributed shared memory

paradigm, as it hides the remote communication mechanism from the application writer,

so the ease of programming and the portability of the system are preserved [Protic J. et.

al 1996]. The ability to provide a transparent interface and a convenient programming

environment for distributed and parallel applications has made the DSM model the focus

of numerous research efforts. One of the main objectives of the current research efforts

in DSM systems is the development of new algorithms that reduces the overall delay of

the shared data retrieval, while maintaining memory consistency in the whole system.

2.4 Issues in Designing DSM systems.

Many of Distributed shared memory algorithms have been successfully

implemented in a wide range of experimental and commercial purposes. Building an

14

efficient, successful software DSM system depends enormously on the nature of

applications that implement the algorithm. However, there are number of requirements

or design issues that influence the performance and the efficiency of the system, as

enumerated in [Nitzberg B. et. al 1991]. The degree of satisfying these issues varies

from one application to another; therefore, considering the nature of an application in the

designing stage can effectively increase the performance of that application.

2.4.1 Structure and Granularity

The structure and granularity of DSM system are closely related. Structure refers

to the underlying representation of the shared data in the memory. This representation in

most cases is a linear array of words, while other systems represent shared data items as

object, language type, or even an associative memory (as in database systems).

Granularity refers to the size of the unit of sharing (byte, word, page or complex data

structure).

Some of DSM systems are implemented using the virtual memory hardware of

the underlying architecture. In Ivy [Li. K. 1988] the memory is structured as 1-Kbyte

pages. Mirage [Fleisch BD et. Al 1989] extended Ivy’s single shared-memory space to

support a paged segmentation mechanism. In this system, users share arbitrary-size

region of memory (segments) while the system maintains the shared space in pages. In

these implementation-determined systems, it is convenient to choose a multiple of the

hardware page size provided in the Memory Management Unit (MMU) as the unit of

sharing, in order to use its protection mechanism to detect inherent memory references

and trap them to the appropriate fault handlers where coherence strategy is used to keep

the memory coherent all the time.

DSM algorithms tend to provide each user application in the system with the

required data in its local memory space in order to reduce contention in the system

leading to better performance. With this locality of references, a process is likely to

access large region of its shared address space in small amount of time. Theoretically,

larger page sizes reduce paging overhead, but may ironically increase the likelihood of

contention in the system. In other words, building systems with large-sized pages

15

increases the possibility of having more than one process competing in accessing the

page. Sometimes two unrelated variables each used by different process are placed in

one page. This situation is called false sharing. False sharing may cause a page to be sent

back-and-forth between numbers of processes leading to network overhead. Using

smaller sizes of page reduces the possibility of false sharing. Another factor affecting the

choice of page size is the need to keep directory information about the pages in the

system, as the smaller the size the larger the directory. Therefore, special care has to be

taken into account when choosing the size of a page in order to reduce the likelihood of

contention and false sharing while preserving the resources of the network by sending

the minimal amount of messages.

On the other hand, the granularity of other DSM systems is determined by the

application itself. One method of structuring the shared memory is by data type. With

this method, shared memory is structured as objects in distributed object-oriented

systems, as in CLOUDS system; or it is structured as variables in the source language, as

in Munin [Carter JB 1995]. In such systems, granularity can vary to match the

requirements of the applications. However, if different parts of objects are accessed by

distinct processes, these systems can yet be liable to false sharing.

Another method is to structure the shared memory as database. In Linda

[Rzeczkowski W et. al 1980], the shared memory is accessed as an associative memory

called a tuple space. Although this model allows the separation of the location of data

from its value, it requires the use of special access functions to interact with the shared

memory. In most other systems, access to shared data is transparent.

2.4.2 Scalability

Theoretically, DSM systems scale better than tightly coupled shared memory

multiprocessors, since it can be extended horizontally to contain new hardware and

application software. However, the limits of scalability are reduced greatly by two

factors: central bottlenecks (e.g. the bus of a tightly coupled shared memory

multiprocessors) and a global common knowledge operations and storage (e.g. broadcast

messages or full directories whose sizes are proportional to the number of nodes).

16

Most of DSM systems are implemented on top of Ethernet, which in itself is

centralised bottleneck and can support only 100 nodes at a time. However, this limitation

is most likely a result of these systems being research tools rather than an indication of

any real design flaw.

2.4.3 Heterogeneity

Sharing memory between different environments can give a system more

portability, although it seems impossible. In fact, different machines may use different

underlying representations for basic data types (e.g. integer, floating-point numbers and

so on). Structuring shared memory as variables or data objects in the source language

makes the life much easier. Then a DSM compiler can add conversion routines to all

accesses to shared memory. In Mermaid [Zhou S. et. al 1990], the memory is shared in

pages, each contains only one type of data, and when a page is moved between two

architecturally different systems, a conversion procedure is used to convert the page data

to the appropriate format.

Although heterogeneous DSM systems allow more machines to participate in a

computation, the overhead of conversion can outweigh the benefits.

2.4.4 Memory Consistency

Many DSM algorithms adopt data replication approach to enhance the reliability

and improve the overall performance of distributed systems [Tanenbaum A. et. al 2002].

Enhancing the reliability can be obtained via the provision of several replicas of data.

Usually, when one replica crashes, the system can simply handle this problem by

switching to one of the other replicas. On the other hand, data replication for

performance is crucial when the distributed system needs to scale in numbers and

geographical area. In this case the performance can be improved by replicating the

server and subsequently dividing the work over several servers.

Having multiple replicas may lead to consistency problem. Informally, whenever

a replica is updated, that replica becomes different from the rest, and as a consequence,

the update must be carried out on all replicas to ensure consistent view of every replica

17

in the entire system. Therefore, special attention has been paid to ensure consistency in

such systems.

In general, a consistency model is essentially a contract between processes and

data store, in other words, it says that if processes agree to obey certain rules, the store

promises to work correctly. Normally, a process expects the last written value in return

of a read operation; however, in the absence of a global clock, it is difficult to define

precisely which write operation is the last one. Consequently, the need of alternative

definitions for the meaning of last or most recently written value arose, leading to

number of consistency models tackling this problem. Each consistency model provides

number of rules or constraints to be imposed to maintain consistency. These constraints

vary from a model to another in order to satisfy certain requirements, usually emerge

from the nature of the application. The next sections navigate through number of

definitions for consistency, viewing the gradual process of the development from most

strict to more relaxed models in order to maintain the ease of programming, which was

the major aim of DSM paradigm in the first place.

2.4.4.1 Strict Consistency

It is the most stringent consistency model, and can be defined by the following

condition [Tanenbaum A. et. al 2002]:

Any read on a data item returns a value corresponding to the result o f the most

recent write on x.

This definition is natural and intuitive, although it implicitly assumes the present

of global timing that justifies the term most recent. This definition has already been

applied in uniprocessor systems; therefore programmers of such systems are familial*

with this definition. But matters are more complicated in a system where data are spread

across multiple machines, and can be accessed by multiple processes at the same time.

Apparently, strict definition relies on an absolute global time, but in essence, it is

impossible in a distributed system to stamp each operation with a unique time

corresponds to actual global time. Hence, later research efforts have been dedicated for

investigation on the applicability of models with less strict constraints.

2.4.4.2 Sequential and Linearizability Consistency

Sequential consistency model [Lamport L. 1979] is slightly weaker than the strict

model, and its definition as presented by Lamport is:

The result o f any execution is the same as i f the (read and write) operations by

all processes on the data store were executed in some sequential order and the

operations o f each individual process appear in this sequence in the order

specified by its program.

This definition allows interleaving of read and write operations of concurrent

processes on different machines, but all processes see the same operations in the same

order. For example, if a process Pj changes the value of a shared item x to a, and after an

arbitrary amount of time another process P2 changes the value of x to b, however if the

update b appears to take place before a for another process P3, all other processes in the

system must see the updates in the same sequence in order to be sequentially consistent.

On the other hand, Linearizability model [Herlihy M. et. al 1991] is stronger than

the sequential counterpart, as it assumes to receive a timestamp using a globally

available clock. This clock can be implemented in a distributed system by assuming

processes use loosely synchronised clocks. Denoting tsop(x) as the timestamp assigned

to operation OP on shared item x, implementing linearizable consistent memory must

obey the condition:

The result o f any execution is the same as i f the (read and write) operations by

all processes on the data store were executed in some sequential order and the

operations o f each individual process appear in this sequence in the order

specified by its program. In addition, if tsOPl(x) < tsOP2(y), then operation

OPl(x) should precede OP2(y) in this sequence.

According to this definition, Linearizability is essentially sequential model with

an additional synchronised clock to stamp access operations to the shared space. This

feature makes implementing linearizable consistency much more expensive than

sequential model [Attiya H. et. al 1994].

Although sequential consistency is a programmer-friendly model, it has a

serious performance problem. Experimental result in [Lipton R. et. al 1988] proved that

any attempt, in a sequentially consistent distributed shared memory system, to change

the protocol improving read performance makes write performance worse, and vice

versa. As a result, researchers have investigated more relaxing or weaker models.

2.4.4.3 Causal Consistency

Causal consistency is a weak version of sequential model [Hutto P. et. al 1996].

However, this model distinguishes between events that are potentially causally related

and those that are not. In short, if event B is caused or influenced by an earlier event A,

causality requires other processes see the result of the operations performed by the event

A followed by the results of the operations of the event B. Formally, causality requires

the following condition:

Writes that are potentially causally related must he seen by all processes in the

same order. Concurrent writes may be seen in a different order on different

machines.

For instance, if process Pj writes a variable jc, then P2 reads x and writes y. In this

case reading x and writing y are causally related, because the computation of y may have

depended on the value of x, which read by P2 after written by Pj. On the other hand, if

two processes spontaneously and simultaneously write two different variables, these are

not causally related, and said to be concurrent. Thus, this model permits that two

processes may see concurrent operations in different orders, which might be seen as an

inconsistent behavior and unacceptable by certain applications.

20

2A.4.4 FIFO Consistency

In contrast to Causal model, FIFO consistency allows causally-related operations

to appear in different orders by processes in distributed environment, giving more

relaxation [Lipton R. et. al 1988]. Considering such relaxation, we have the condition:

Writes done by a single process are seen by all other processes in the order in

which they were issued, but writes from different processes may be seen in a

different order by different processes.

FIFO model guarantees that write operations issued from single process are

viewed by other processes within the system in the same order they were generated,

while no guarantee that writes from different processes are viewed throughout the

system in specific order. In contrast to the definition of causal model, if an event B is

causally-related to a previous event A, the results of the event A are not necessarily seen

everywhere before the results of the event B. Put in other words, with the definition of

FIFO model, a process Pj can see the results of A before the results of the event B, while

another process P2 may see them in the reverse order, which in not permitted in causal

model. On the other hand, if a variable jc is updated by a process Pj with a value a, and

subsequently another process P2 updates the same variable with a value b. Unlike

sequential model, the FIFO model allows a situation where a process P3 may see the

update a followed by b, while they may be visible to another process P4 as b and then a.

The key difference between FIFO and SC model is that with the SC, although the order

of operation execution is nondeterministic, at least all processes agree what it is. This

model is also called Pipelined RAM (PRAM), because writes by a single process can be

pipelined as the process does not have to halt waiting for each write to complete before

starting the next one.

2.4.4.5 Weak Consistency

Although many relaxed models have been presented, still there are a lot of

restrictive features that are not required in some applications. These restrictions can be

represented by the fact that the presented models require that all writes in a single

21

process be seen everywhere in some order. However, many applications do not need to

see all writes, let alone seeing them in order. Specifically, when a process inside a

critical region updating shared items, other processes are not allowed to even touch the

items until that process leaves the region. In this case the processes within the system

only see the last update made by that process, without being conscious of the likelihood

of other updates that might have happened before the available last one in the course of

critical section execution. However, before the introduction of synchronization

mechanisms, the system has no way of perceiving that there is a process in a critical

region, therefore number of updates are unnecessarily propagated within the system,

wasting valuable processor time and network communication in nothing.

Synchronization mechanisms provide alternative solutions through their

synchronization variables. A synchronization variable S can be associated with the

shared data. This variable can only be held by one process at a time. An exclusive access

for that variable guarantees that no other process can perform any kind of operations in

the course of the execution. Therefore, the system can only propagate the update after

the process leaves the critical region, reducing numerous overhead in the system in

terms of processor time, and communications. Weak model [Dubois M. et. al 1988] uses

such mechanism to maintain consistency in DSM environments. This model has the

following properties:

> Accesses to synchronization variables associated with a data store are

sequentially consistent.

> No operation on a synchronization variable is allowed to be performed

until all previous writes have completed eveiywhere.

> No read or write operation on data items are allowed to be performed

until all previous operations to synchronization variables have been

performed.

The first property says that all processes in the system observe all operations on

synchronization variables in the same order. Informally, if a process Pj requests

synchronised access to certain shared area and at the same time another process P2

22

makes the same request, all processes in the system see the request of Pi before of P2 , or

vice versa.

The second one guarantees that no read or write operation can be performed until

all previous writes have completed everywhere, and the updates are reflected in all local

replicas throughout the system.

The last point says that having an exclusive access over shared item means that

all previous write operations have been successfully performed and propagated. In other

words, an operation is performed inside a critical region only when all the results of

previous operations of the same region have been seen throughout the system. That is,

write or read operations always performed on the most recent value.

Since this model enforces consistency on a group of operations rather on

individuals reads and writes; unlike the previous models, it is most useful in applications

where isolated accesses to shared data are rare. Furthermore, this model could be seen

as sequential model where consistency is enforced between groups of operations instead

of between individual operations.

On the other hand, Weak consistency has a disadvantage of that the system can

not distinguish between entering a critical region and leaving it when an access to the

synchronization variable is requested. Upon requesting the variable the system performs

actions required in both cases. It ensures that all previous writes have been completed, as

well as gathering all updates from other processes to propagate them, putting an

additional burden on the system. Such deficiency has been overcome in later model

called Release consistency.

2.4.4.6 Release Consistency

Release model [Gharachorloo K. et. al 1990] makes distinction between entering

critical region and leaving it providing two kinds of variables: acquire and release.

Those two operations do not have to be applied to all shared data in the system; rather

they may guard only specific shared items, in which case only those items are kept

23

inconsistent [Tanenbaum A. et. al 2002]. In general, the following conditions apply this

model:

> Before a read or write operation on shared data is performed, all

previous acquires done by the process must have completed successfully.

> Before a release is allowed to be performed, all previous reads and

writes done by the process must have been completed.

> Accesses to synchronization variables are FIFO consistent (sequential

consistency is not required).

Enforcing these conditions guarantees that when a process does an acquire, all

local copies of the protected data are brought up to date. A process can not perform

acquire operation on a shared item unless all replicas of that item have been updated. On

the other hand, upon release operation, all protected data have been updated are

propagated out to other local copies within the system. However, there is no guarantee

that other non protected data are consistent. In the light of these facts, release model

does not affect non protected data.

It is also possible to use barriers instead of critical regions with release model. A

barrier is a synchronization mechanism that prevents any process from starting phase

n+1 of a program until all processes have accomplished phase n. Therefore, when a

process reaches a barrier it must wait until all other processes arrive at the same point, at

that time all shared data are synchronised and all processes are resumed. In other words,

departure from barrier is done 011 an acquire, whereas performing a release operation

indicates arrival of all processes at barrier. That is, all updates are propagated to all

processes that have replicas of the updated item only on an arrival event.

2.4.4.7 Lazy Release Consistency

With release consistency model, all updates are carried out to all processes that

have local replicas of the protected shared data upon release operation, even though not

all of the processes might need these updates. Therefore, to overcome such inefficiency

Lazy variant of release model pushes out the updates only when an acquire operation is

24

performed [Keleher P. et al 1995], In other words, when an acquire operation is executed

by a process, that process gets the most recent values of the data.

The difference in performance can appear if a critical region is located inside a

loop. With release model (sometime called eager release consistency to be distinguished

from lazy variant [Tanenbaum A. et. al 2002]), in every iteration a release is done, and

all the updates have to be carried out to all processes, resulting in wasting bandwidth and

needless delay. On the contrary, with lazy model, performing release operation does not

end up with propagating out any update done. Whereas, when acquire is performed, the

updates are brought only to the process that performs the acquisition. Consequently,

there is no network traffic is generated unless there is an execution of acquire operation.

To sum up, since it has been proved difficult to design an efficient distributed

system with sequential model, many research efforts have been dedicated to introduce

alternative models to maintain consistent view of the shared memory in accordance with

the nature of the distributed and parallel applications, as well as preserving the ease of

use and implementation. All these models differ in many aspects, such as degree of

restriction, ease of implementation and programming, and performance. However,

before the use of synchronization mechanisms, the introduced models were accompanied

with some consistency behaviors that are theoretically not acceptable to the majority of

distributed applications. Such behavior is represented by the fact that there is no

guarantee about when the updates made on the shared memory will be visible to all other

processes in the system. Therefore, further research papers have introduced consistency

models with an explicit use of synchronization mechanisms as in the last three models,

in which a process has to have an exclusive access to the shared memory before

performing any read or write operation. Although these models vary in when the updates

are propagated throughout the system, they allow programmers to pretend that a shared

memory is sequentially consistent, when in fact; it is not.

2.5 Locking and Non-locking DSM Algorithms

From the previous coverage of memory consistency models it can easily be

pointed out that some of the models explicitly use synchronization mechanisms to

25

maintain an exclusive access over the shared memory, while such mechanisms are not

employed in the rest. In the DSM algorithms that use the former models, a process

performs a special function to obtain an exclusive access to the shared memory prior to

any read or write operation, while another function is used to relinquish the memory

after accomplishing the current operation.

Therefore, and according to the employed consistency model, DSM algorithms

can be divided into two big categories. The first one is locking DSM algorithms that

explicitly use synchronization mechanisms such as Locks and Barriers, as in Weak,

Lazy Release, and Eager Release. On the other hand, models such as Sequential

consistency, Linearizability, and Causal consistency, do not use synchronization

mechanisms to control the shared memory; therefore, can be categorised as non-locking

DSM algorithm.

2.6 Implementation Levels of DSM Algorithms

Since the introduction of the DSM mechanism, several DSM algorithms have

been developed and implemented at different levels: software, hardware and hybrid

levels of implementation. The choice of implementation level usually depends on

price/performance trade-offs. Although typically superior in performance, hardware

implementations require additional complexity, allowable only in high performance

large-scale machines. On the other hand, low-end systems, such as networks of

workstations, yet do not allow cost of additional hardware for DSM, and are limited to

software implementation. For the class of mid-range systems, such as clusters of

workstations, low-cost additional hardware, typically used in hybrid solutions, seems to

be suitable [Protic J. et. al 1996]. This section concentrates on the hardware and hybrid

levels of implementation as the software level implementation is covered more

thoroughly later in this chapter.

2.6.1 Software-oriented DSM Systems

It started with the idea of hiding the explicit passing of messages within the

system and providing an abstraction of one single non-physical shared memory on

26

networked machines. Some of the software-oriented mechanisms rely on specific

runtime libraries that are to be linked to the applications that use the shared memory.

Other systems implement DSM abstraction on the level of programming language, since

the compiler can detect accesses to the shared memory and insert calls to the

synchronization and coherence routines into the executable code. On the other hand, the

DSM mechanism can be incorporated into the distributed operating system, inside or

outside the kernel. Operating system and run time library-oriented approaches often

integrate the DSM mechanism with an existing virtual memory management system.

However, some of the DSM systems usually combine elements of different software-

oriented approaches. Software-oriented mechanisms are used in building number of

DSM systems such as DIME [Argile A. et. al 1996], TreadMarks [Amza C. et. al 1996]

and Brazos [Speight E. et. al 1997]].

2.6.2 Hardware-oriented DSM Systems

Such systems utilize dedicated hardware devices responsible for locating,

copying shared data items, and keeping their coherence. The main objective is to

implement the abstraction of DSM and its concepts in hardware device, which can be

added to the system to provide distributed environment. They can be classified into three

groups according to their memory architecture:

> Cache Coherent Non-Uniform Memory Access (CC-NUMA) systems.

The address space is statically distributed across the local memory of

clusters, and can be accessed by the local processor and processors from

other clusters in the system with different access latencies. Memnet [Delp

G., 1988] and Dash [Lenoski D. et. al 1992] use this mechanism.

> Cache-Only Memory Architecture (COMA) systems. The data is

dynamically partitioned in the form of distributed memories, organised as

large second-level caches. In other words, local memories are used as huge

caches for data blocks from virtual memory address space, and data can be

replicated and migrated across local memories on demand. KSR1 [Frank S.

et. al 1993] is an example of such systems.

> Reflective Memory Systems (RMS). A hardware-implemented

mechanism is employed to propagate updates as they are performed to all

sharing sites using broadcast or multicast algorithm. Merlin [Wittie L. et. al

1989] is one example of these systems.

The prescribed mechanisms ensure automatic and transparent replication of

shared data in local memories and processor caches, and they efficiently support small,

fine-grain physical unit of replication. Further techniques have been introduced and

applied in order to increase the performance of hardware-oriented DSM systems, in

terms of reducing network latency, maintaining coherent cache and so on.

Maintaining finer granularity in these mechanisms minimizes negative effects of

false sharing and thrashing, which results in a significant reduction in the

communication overhead in DSM systems that use such mechanisms. Furthermore,

searching and directory functions implemented at hardware level are faster compared to

their software-oriented counter-parts. However, advanced techniques used for

maintaining memory coherence and reducing communication latency in hardware-

oriented DSM systems usually make the design complex and difficult to verify.

Therefore, we find that hardware DSM mechanisms are often used in high-end machines

where performance is more important than cost.

2.6.3 Hybrid Level DSM Systems

Since the evolution of the DSM abstract, numerous implementations at hardware

and software levels have been presented. However, even entirely hardware DSM

approaches use software-controlled features explicitly visible to the programmer for the

purpose of memory reference optimization. On the other hand, many purely software

solutions require some hardware support, such as virtual memory management hardware

and error correction code.

Therefore, since either approach has its disadvantages, some approaches have

been introduced as an attempt to combine software and hardware features in order to

balance the cost/performance trade-offs. A solution implemented in some industrial

28

computers provided a DSM-like paradigm in software executed by a microcontroller

located on a separate communication board [Protic J. et. al 1993].

Some solutions are typically to achieve replication and migration of data from a

shared virtual address space across the clusters in software, while their coherence is

managed at the hardware level, as in PLUS [Bisiani R. et. al 1990].

2.7 Software DSM Systems

As mentioned earlier, the DSM abstraction can be applied at different level of

implementations. This research chooses to use the software level of implementation in

building the integrative framework for number of reasons and based on previous

research reports.

In [Cox A. et. al 1994] experiments were conducted comparing the performance

of software implementation of DSM paradigm; TreadMarks, on a general-purpose

network of uniprocessor nodes to hardware-oriented DSM; SGI 4D/480, on a dedicated

interconnect multiprocessors. An important feature of this comparison was the similarity

between the two platforms in processor, cache, compiler, and parallel programming

interface, with only one difference of the level of DSM implementation. The results

showed that the two implementations perform comparably for the applications with

moderate synchronization and communication demands. When these demands increase,

the communication latency and the software overhead of TreadMarks causes it to fall off

in performance. On the other hand, since it provides a processor with a private path to

memory, networked workstations of software DSM implementation scales well with

applications of high memory bandwidth requirements.

Therefore, although in most cases it can not compete with hardware mechanism

in terms of performance, software mechanism has an advantage over hardware algorithm

in many aspects. Software DSM algorithm gives a viable solution for building a

computing environment for parallel and distributed applications on the commodity

workstations; which still do not tolerate cost of additional hardware. Also, software

support for DSM is generally more flexible and easy to program than hardware-oriented

29

counterparts, and enables better tailoring of the consistency mechanisms to the data

usage patterns and the application behaviour.

2.7.1 Software DSM System Examples

Since research and experiments of the DSM approach can extensively rely on the

available programming languages and operating systems on the networked workstations

[Protic J. et. al 1996], number of implementations of software DSM systems has been

introduced and some of them are discussed in the next subsections, featuring the

development stages of the approach over the years and some techniques that have been

developed and introduced to enhance the performance of the produced systems.

2.7.1.1 IVY

IVY [Li. K. 1988] is one of the first proposed software DSM solutions. It was

implemented as a set of user-level modules built on top of Aegis operating system on the

Apollo Domain workstations. However, some changes in the underlying operating

system were imposed in order to support remote operation and memory mapping

modules.

IVY system consists of 5 modules: remote operation, memory mapping, process

management, memory allocation, and initialization. The top three modules in figure 2.4

comprise the IVY client interface, each module consists of a set of primitives that can be

used by application programs.

The granularity of the system is 1-Kbyte page, which is consistent with the one

provided by the Memory Manager Unit (MMU). This consistency is important in such a

way that the protection mechanism of the MMU can be used to detect incoherent

memory references and trap them to the appropriate fault handler that keeps the memory

address space coherent all the time. To keep the shared memory address space consistent

an invalidation approach is used. That is, all read-only copies of a page are invalidated

before a processor writes to the page.

30

To maintain sequential consistent memory space in IVY system, three algorithms

were used: the improved centralised manager; the fixed distributed manager, and the

dynamic distributed manager. The centralised manager resides on a single processor and

keeps information of all ownership of the pages. When having a page fault, the manager

will be asked by the faulting processor for a copy of the page. The manager will then

request a copy of the page from the owner of the page to be forwarded to the calling

processor. To avoid the inherent bottleneck of the approach, a fixed distributed manager

algorithm was used. Each processor has a manager responsible for the predetermined set

of pages evenly given by the algorithm.

Client programs

Process Memory
Management Allocation Initialization

Remote Memory
Operation Mapping

OS low-level support

Figure 2,4: The, Architecture of IVY Software DSM System

When a page fault occurs the faulting processor asks the true owner of the page

for a copy, and after receiving the copy it proceeds in a centralised manner. The third

approach was the dynamic distributed algorithm that keeps track of the ownership of all

the pages in the system, using a field called probOwner (probable owner) in each page

entry. The value of this field can either be the true owner or the probable owner.

Initially, its value can be set to some default processor that can be considered the initial

31

owner of the page. As the system runs, each processor uses the probOwner field to keep

track of the last change of the ownership of a page. This field is updated whenever a

processor receives an invalidation request, relinquishes ownership of the page, or

forwards a page fault request.

On the other hand, for memory allocation, a first fit algorithm with one-level

centralised control was utilised. The processor that is contacted directly by the user is

appointed to be the centralised memory manager. To reduce the contention on the

memory, the memory allocator allocates each piece of memory to the boundary of a

page. IVY made use of some synchronization mechanism (i.e. lock) for allocating

memory page. At the beginning of each memory management primitive, a test-and-set

operation is performed on the lock. A failed process will be sent back into a queue and

will be awakened by an unlock operation on the lock which is done at every end of each

primitive.

Experimental results showed that parallel programs using such a not well-tuned,

user-mode system yields almost linear and occasionally super-linear speedups over a

uniprocessor. Hence, the important contribution presented by this system was its proof

of the viability of DSM models as an efficient alternative solution for parallel

applications on distributed environment via overcoming the drawbacks of message-

passing models.

2.7.1.2 TreadMarks

TreadMarks is a user-level software DSM system where messages and data

traffic are reduced by relaxing consistency semantics of the shared memory [Amza C. et.

al 1996]. TreadMarks implementation of the DSM abstraction relies on UNIX standard

libraries in order to accomplish remote process communication, and memory

management, therefore no need to make modifications in the operating system kernel. It

runs on SPARC, DECStation, DECAlpha, IBM RS-6000, and on Ethernet and ATM

networks. The intermachine communication is implemented using the Berkeley sockets

interface. TreadMarks uses either UDP/IP or AAL3/4 as the message transport protocol

32

depending on the underlying network hardware (e.g. Ethernet or ATM). By default, the

UDP/IP is used unless the machines are connected by an ATM LAN.

Since neither UDP/IP nor ALL3/4 guarantees reliable delivery, the system uses

light-weight, operation-specific, user-level protocols to ensure message arrival, and

every message sent is either a request message or a response message. Request messages

are sent by TreadMarks as a result of an explicit call to a TreadMarks library routines or

a page fault. Once a machine has sent a request, it blocks until a request message or the

expected response arrives. The original request is retransmitted after a certain timeout

without receiving response. To minimize latency in handling incoming requests, a

SIGIO signal handler is used, that is, when a request message arrives at any socket a

SIGIO signal is generated to interrupt the system in order to process the request

message. Afterward, the handler performs a select system call to determine which socket

holds the incoming request message. When a handler receives the request message, it

performs the specified operation, sends the response message, and returns to the

interrupted process.

TreadMarks provides shared memory as linear array of bytes (i.e. 4 Kbytes

each). It also provides facilities for creating, destructing, synchronizing processes, and

allocating shared memory. Tmk_malloc() function is used to create shared memory,

whereas allocating memory using malloc() function means that the memory is private to

the creating process. To maintain consistency in the shared memory, Lazy release

consistency model is applied. The system makes use of a multiple writer protocol to

reduce the amount of communication involved in implementing the shared memory

abstraction. The virtual memory hardware is used to detect accesses to shared memory.

TreadMarks provides primitives for applications for synchronization to avoid data races,

which occurs when two processes simultaneously access the same shared item and at

least one of them is writer. Data races often lead to bugs in the system, since the final

outcome of the execution is timing-dependent. Application processes synchronization

via two primitives: barriers and exclusive locks.

With this model of lazy release consistency, a process is allowed to buffer

multiple writes to shared data in its local memory until a synchronization point is

33

reached (i.e. barrier). Locks are used to control access to critical regions.

Tmk_lock_cicquire() function is modelled as an acquire, whereas Tmk_lock_release()

represents release operation. The procedure Tmk_barrier() pauses the calling process

until all processes in the system have arrived at the same barrier. In other words, it is

modelled as a release followed by an acquire, where each processor performs a release

at barrier arrival, and an acquire at barrier departure. To implement this consistency

protocol, the system call mprotect is used to control access to shared pages. Any attempt

to perform a restricted access on a shared page generates a SIGSEGV signal. The signal

handler examines local data structure to determine the page’s state, and examines the

exception stack to determine whether the reference is a read or a write. If the local page

is invalid, the handler executes a routine to obtain the essential updates to shared

memory from the minimal set of remote machines. If the reference is read, the page

protection is set to read-only. Whereas, for a write operation the handler allocates a page

from the pool of free pages and performs a bcopy to create a twin to the page. This twin

can be used later to determine the differences between the original page and its twin

where the update is done. The same action is taken in response to a fault resulting from a

write to a page in read-only mode, and the handler upgrades the access rights to the

original page and returns.

The use of multiple-writer protocol allows two or more processors to

simultaneously update their local copy of a shared page. Due to the use of lazy release

consistency, the propagation of these updates is delayed until the time of an acquire.

Furthermore, the releaser notifies the acquirer, of which pages have been modified,

causing the acquirer to invalidate its local copies of these pages. A processor incurs a

page fault on the first access to an invalidated page, and gets only the cliffs (the

differences between the main page and its twin) for that page from the previous

releasers. The major benefit of using dijfs is that they can be used to implement

multiple-writer protocols, thereby, reducing the effects of false sharing; additionally, the

overall bandwidth requirements can be reduced, since dijfs are typically much smaller

than a whole page. However, there is still a question of what happens if two processes

modify overlapping portions of a page without using synchronization. Unfortunately,

TreadMarks’ implementation does not check whether a page is modified locally when a

global update arrives.

In [Lu H. et al, 1995] experimental results have shown that the separation of

synchronization and data transfer and the request-response nature of data

communication are responsible for lower performance comparing with a PVM message-

passing model.

2.7.1.3 Broadcast Distributed Shared Memory System (BDSM)

This system is designed for common Ethemetworking environment. The use of

Ethernet allows the exploitation of hardware broadcast and having a controlled message

passing background [Auld P. 2001]. In this system, each user application is run solely on

a workstation, and has an associated DSM sub-system that manages the shared memory.

The shared memory in each workstation is a complete mirror of the shared memory on

each processor (figure 2.5). Writes to memory modify the local copy and arrange to

broadcast the updated values to all the other processes.

Workstation 1

bal Shared Memory
(Abstraction)
.

User Process

Workstation 2 Workstation 3

Memory
Manager

Ethernet

Figure 2.5: BDSM Architectural Design

35

The memory in BDSM system is maintained as a contiguous collection of

discrete locations, where reads and writes operate at this level of granularity. The size of

a location is defined by the programmer. The memory manager uses hardware broadcast

to propagate updates to all other processes. Updates may be buffered locally to reduce

the number of messages sent.

Since hardware broadcast on a single Ethernet segment is subject to message

loss, the Pipelined Broadcast Protocol (PBP) library [Auld P. 2001] is used as a

communication layer for the system to overcome the problem. The PBP ensures reliable

partially ordered delivery of broadcast UDP messages, which are delivered to all

receivers in the order sent by the broadcasting process. Incoming updates are applied

immediately to the local copy of memory. However, there is no order defined between

messages sent by different processes. In effect, a collection of FIFO pipelines is

established amongst processes. The PBP library handles group registration and low-level

communication. The ordering guarantees made by the PBP provide the basis for the

coherence model of the update-based BDSM system.

Therefore, BDSM can be defined as broadcast-based, fully replicated user-level

software distributed shared memory system. For maintaining consistency in the shared

memory, two forms of process synchronization are employed: global barriers and

individual locks. These two schemes of synchronization are implemented in the message

exchange protocols, rather than in the context of the system itself. Before any

synchronization message is sent, all buffered writes are sent. A barrier is an all-to-all

message exchange. Each barrier requires n broadcast messages - where n is the number

of local memories. In order for a process to cross a barrier it must receive a

corresponding barrier message from each of the other processes. This message is

received in FIFO order relative to other messages from the sending process. Once all n-1

corresponding barrier messages are received, the waiting process can cross the barrier.

The shared memory is coherent at this point as long as there were no data races in the

barrier interval. In order to make similar consistency guarantee about locks, a broadcast

lock is used. This type of lock requires a process to receive a message from each other

before acquiring the lock. Although the only coherence guarantee to programs that are

36

not properly synchronised is the FIFO ordering, this allows true multi-threaded

applications.

Obviously, this system uses consistency model which is somewhat similar to the

definition of the release consistency model, however, there is no guarantee that running

processes see the same view of the memory. In other words, modifications issued by

different processes are not ordered; hence, processes can see different views of the

shared memory. Therefore, even after a barrier, it is possible for two processes to have

different views of memory. More specifically, a program that allows unsynchronised

access to the same locations may not have consistent views of memory across its sub­

processes.

To evaluate the performance of the system in comparison with MPI system, an

experiment was set using parallel applications for numerical calculations, where pure

performance gains were desired. The concern of the experiment was the operations of

the DSM system and not the overall performance. For some applications, the BDSM

outperformed the common message-passing alternative, MPI. Also, the broadcast update

protocol showed effective performance for some situations, and can be viable alternative

to page-based DSM or message-passing systems.

2.7.1.4 Brazos

It is presented as a third generation of software DSM systems that use

multithreading and apply relaxed consistency models for the shared memory [Speight E.

et al, 1997]. It is designed to execute on x86 multiprocessor workstations running

Windows NT 4.0, mainly due to the fact that Windows NT has native multithreading

support built into the operating system. This operating system provides support for

multiple lightweight threads executing within the same process address space.

Additionally important, Windows NT implements TCP/IP through the WinSock user-

level library. The Win32 API provides a rich set of calls to address threading issues,

including support for thread priority manipulation, synchronization, thread context

manipulation, and thread suspension and resumption. Processes in Brazos use functions

in the WinSock Programming API to communicate with each others within the system.

37

The Brazos user-level library is statically linked with user application at compile­

time, and it provides the interface between user application code and DSM code. The

Brazos API includes synchronization primitives in the form of locks and barriers, which

can be used to provide synchronization between threads within the same process.

Besides, it provides routines for error reporting, statistics gathering, and data output.

Brazos includes service thread that listens for incoming DSM session requests,

authenticates encrypted passwords that users must have prior running a Brazos session.

The service thread manages current DSM sessions running on the local machine, and

provides a mechanism for the owner to remotely kill a runaway DSM application.

Brazos makes use of multithreading to overlap communication with computation

per node. The system utilizes multithreading at both the user level and the system level.

Multiple user-level threads allow applications to take advantage of symmetric

multiprocessor servers by using all available processors for computation. In the runtime

system there are two main threads. One thread is responsible for quickly responding to

asynchronous requests data from other processes and runs at the highest possible

priority. The other thread handles replies to requests previously sent by the process. This

multithreaded aspect of Brazos allows greater amount of computation to communication

overlap. The use of separate thread to handle incoming replies allows the system to

maintain multiple simultaneous outstanding network requests, which can significantly

improve performance. Additionally important, the exploitation of multithreaded DSM

algorithms proved significant in hiding the communication latencies [Muller F., 1997].

For maintaining the data consistency in the system, and ensuring that threads do

not access stale or out-of-date data that was written by a thread on another machine,

Brazos page-based DSM system uses Scope Consistency model [Iftode L. et. al 1996].

Scope model is a relaxed model aims at reducing the present of false-sharing in page-

based DSM systems. Recall, this situation occurs when two or more threads modify

different parts of the same page of data, while they do not share the same elements in the

page. False sharing leads to unnecessary network traffic, and can be a significant

problem for DSM systems due to the large granularity of sharing. Scope consistency

guarantees that only data modified within a single scope to be coherent at the end of the

scope.

However, Brazos implements a variant of the scope model. The variant is a

software-only implementation of scope consistency that requires no additional hardware

support. Brazos uses this variant in a conjunction with a distributed management

protocol. With a distributed management protocol, each process maintains dirty portions

of each shared page of data, requiring processes to communicate with all other processes

that have a modified portion in order to bring an invalid page up to date. In order to

reduce the inherent huge number of consistency-related messages, and to efficiently

implement scope model at software level, Brazos makes use of the multicast primitives

provided by the WinSock 2.0 library. In a time-multiplexed network environment such

as Ethernet, sending a multicast message is 110 more expensive than sending a point-to-

point message. Moreover, large reductions in both the number of messages sent and the

number of bytes transferred to maintain coherence can be achieved by specifying

multiple recipients for each message.

Adaptive performance tuning mechanisms can have a beneficial effect on

performance when used to tailor runtime management to observed behavior [Amza C.

et. al 1997], [Bennett, J et. al 1990]. Brazos employs four adaptive techniques: dynamic

copyset reduction, early updates, adaptive page management protocol, and a

performance history mechanism.

The system utilised multicast protocol for updating processors with the new data

written by another processor. However, multicasting diffs causes processors to be

interrupted even though these diffs are not to be used by the processor until the next

invalidation of the page, detracting that from user-code computation time. The dynamic

copyset reduction technique is used to ameliorate the effect of this problem by allowing

the processes to drop out of the copyset for a particular page, causing them to be

excluded from multicast messages providing diffs for the page. A process is placed in a

list of to-be-dropped processes, if the number of unused diffs reaches certain threshold,

and it is removed from the list when a page fault occurs. On the other hand, sending

indirect diffs of pages to processes that have other outstanding requests to other pages,

39

incurs undesired network overhead. Therefore, Brazos system allows processes to list all

these early updated pages to be sent to all other processes, which in turn send all diffs of

these early updated pages in a single bulk at the next barrier instead of multiple bulks.

This technique is called early update mechanism. Processes can return to the default

multicast invalidation protocol using the dynamic copyset reduction mechanism.

Another adaptive protocol used by Brazos is the page management. With this

protocol, a page is managed by either a home-based protocol [Carter JB 1993] or a

distributed page protocol according to the observed behavior of the system in order to

provide the appropriate management technique for each shared page [Keleher P. et. al

1992]. Also, Brazos incorporates a history mechanism that allows the runtime system to

adapt more quickly to the program behavior. Information regarding the performance of

the various adaptive protocols is kept in files to be referred to for each application.

Brazos system incorporated number of techniques and mechanism in order to

achieve efficient performance. Experimental results showed that Brazos system

outperformed TreadMarks system in all the applications that were used in the

comparison, which proved the significance of utilizing the discussed techniques in the

performance of DSM systems.

2.7.1.5 CLOUDS

So far, the given examples have been software DSM system implemented as

user-level routines. However, many other DSM models have been implemented as

operating systems via incorporating the DSM mechanism inside or outside the kernel.

CLOUDS [Ramachandran U. et. al 1989] is a distributed operating system that

incorporates software-based DSM management, and implements a set of primitives in

the context of an object-based operating system as well as on top of UNIX. It was

implemented on SUN-3 workstations and connected via Ethernet. The resources in the

system are viewed as shared objects. The objects are composed of segments. A segment

is a logical entity with attributes such as read-only and read-write. Each segment is

owned by its creating node, which is responsible for the consistency of the segment.

CLOUDS system manages these segments by a distributed shared memory controller

40

(DSMC). The DSMC manages the segments via two operations: get and discard. The

get operation is used to fetch a segment from its owner, whereas discard is used to return

a segment to its owner. On the other hand, synchronization primitives are provided as

separate operations (P and V semaphore operations), or as combined access and lock

operation using get and discard.

A segment is acquired by the get operation in one of four modes: read-only, read-

write, weak-read or none. Read-only means non-exclusive access to a segment, that is,

the segment will not change until it is discarded by the holding node. Read-writes mode

allows exclusive access to the requesting node with a guarantee that the segment will not

be thrown away until it is explicitly discarded. When a get primitive is issued with mode

read-only or read-write, the local DSMC sends a request to the owner DSMC and

suspends the requesting process until the reception of the segment. The segment is kept

at the requesting node until it is explicitly discarded. A segment can be read by multiple

processes at the same time, but only one process is allowed to perform write operation.

On the other hand, weak-read gives non-exclusive access to a segment without

guaranteeing that the segment to remain unchanged; therefore, the owner node

immediately sends the segment for weak-read access mode. Clearly, having this mode of

access, results in inconsistent shared memory. Finally, none mode signifies exclusive

access to a segment without guaranteeing that the segment will not be thrown away. If

the owner node receives a request for a segment which is currently held by another node

for none mode access, the holder is instructed by the owner to forward the segment to

the requesting node instantly without performing discard operation (i.e. by the holder).

Objects and threads are the basic building blocks of CLOUDS. Objects are

passive entities, and they specify a distinct and disjoint piece of global virtual address

space that spans the entire network. An object is an encapsulation of the code and data

needed to implement the entry points in the object. On the other hand, threads are the

only active entity in the system. When it is created, a thread starts executing an object by

entering it through an entry point (i.e. code or data). At run-time, a thread can execute

other objects while executing another object. After executing an object, it returns to the

41

caller object. Therefore, in the course of its execution, a thread traverses the virtual

address spaces of the object it invokes.

Ra kernel was designed to run alongside the CLOUDS system. It defines and

manages three primitive abstractions: segment, virtual spaces, and isiba. A segment

serves as container of data and may be viewed as un-interpreted sequences of bytes, and

its contents may only be accessed when the segment is attached to a range of virtual

addresses. Collections of segments comprise the Ra virtual spaces where each is

associated with a set of windows called descriptor. Each window is a data structure that

maps a contiguous piece of the virtual space to a segment. On the other hand, Ra isibas

are light-weight processes, and may be used as daemons within the kernel or associated

with a Ra virtual space to implement a user process.

The virtual space provided by the Ra kernel is different from the one provided by

the architecture of the machine itself. The latter is assumed to be composed of three

distinct regions: object, kernel and process. The Ra kernel is mapped in the kernel space

of the hosting machine, while a process consists of an isiba and a Ra virtual space that

does not contain any code. On the other hand, an object is a Ra virtual space that

consists of code and data segments. The code segment of an object has entry points that

can be invoked by user processes. The object being executed by a process is mapped

into the object space of the machine. On the other hand, the system objects are mapped

into the machine’s kernel space, and can be installed and removed dynamically. These

objects encapsulate necessary and/or useful system resources and resource managers that

have direct access to the Ra kernel; however they are outside the kernel. Moreover, they

serve as intermediaries between the user objects and the kernel, and they provide system

services to user objects. Such objects include resource managers, user-level object

support, device drivers, and partitions.

One of the implementations of CLOUDS system was on Ra kernel. In this

implementation the DSMC co-operates with remote DSMCs to implement the

distributed shared memory primitives. The distributed shared memory (DSM) partition

is a Ra partition that provides the kernel with number of operations, such as

create/destroy and activate/deactivate segments. The algorithms of DSMC use a simple

42

transmission protocol for exchanging request/response message reliably. This protocol

was called the Ra transaction support protocol TAL/RaTP.

CLOUDS was implemented on top of UNIX; in terms of the DSMC and the

DSM partition; for three reasons. The UNIX environment makes it easy to test and

verify the DSMC and TAL/RaTP protocols. Besides, the UNIX file system is available

for use as permanent store for segments, and Ra can execute on diskless workstation

with backing store provided by UNIX machines. Furthermore, bearing in mind that the

strength of UNIX is the rich program development environment that is provided, and the

strength of CLOUDS is the transparent management of distributed data and

computation; therefore, the inter-operability between UNIX and CLOUDS provided by

Ra kernel produces the required performance. TAL/RaTP runs a user process that uses

SUN’s network interface tap (NIT) to receive packets from the network and to route

them among a set of clients and servers. The DSMC code is linked-in with the server

code that uses the Unix file system to store segments and service requests from Ra DSM

partitions, whereas the DSM code is linked-in with client code that uses the system.

2.7.1.6 Orca.

Distributed shared memory mechanism can also be implemented at the level of

programming language, since the compiler can detect shared accesses and inserts calls to

synchronization and coherence routines into the executable code as in Orca. Orca

programming language introduced a new conceptual shared memory model, called the

shared data-object model [Bal H et. al 1991]. An object encapsulates data and predefined

set of functions. The data in an object can only be accessed by the encapsulated

functions.

With orca, objects are distributed in the computing environment upon the

creation of a new process. In other words, when a process spawns a child process, it can

pass down any of its objects as shared parameters to the child, and that child can pass the

objects to its descendants and so on. Therefore, all these processes can share the objects

and perform the predefined operations. The compiler distinguishes between two

different kinds of operations: read and write. Read does not change the value of a shared

43

object and is performed locally if a copy exist, whereas, write operation may read or

write on the object and effect all the copies all over the system. All writing operations

are directed to the primary replica, and then the update is propagated to the secondary

replicas. A processor that most frequently changes the object can be assigned as the host

of the primary replica, and that assignment is done according to statistics made by the

run-time system. The execution time of obtaining the statistics is negligible comparing

to the time needed for remote references.

Updates to any object are visible to all processes; therefore a shared data-object

is a communication channel between processes. Unlike regular shared variables, access

to shared data-object is only through its functions, which are considered as indivisible

operations. In short, accesses to the shared objects are automatically synchronised, since

simultaneous operation invocations to the same data object can be seen as they were

executed one by one, called serialization. Such serialization is enforced by appointing

one replica as primary copy. On the other hand, having replicas of shared objects

introduces consistency problem. In orca, a 2-phase update protocol is used to have

consistent view of all shared objects all over the system. During the first phase, the

primary copy is updated and locked, and subsequently, an update message is sent to all

processors containing a secondary copy. Before being updated, a secondary copy is

locked. A user process that tries to read a locked copy blocks until the lock is released

during the second phase, which begins after acknowledging all update messages. At the

end of the second phase, the primary copy is unlocked and a message is sent to all

processors containing a secondary copy, instructing them to unlock their copies.

To implement this protocol, every processor is associated with one manager

process, with the assumption that the manager process and user processes on the same

machine can share part of their address space, wherein objects or their replicas are

stored. All writes are directed to the manager of the primary object, while reads are

performed locally. Each manager process contains multiple threads of control. One

thread communicates with remote managers, and the remaining threads are created

dynamically to handle write operations. Therefore, multiple writes to different objects

can be performed simultaneously, while writes to the same object are serialised. The 2-

44

phase update protocol guarantees that no process uses the new values of an object while

other processes are still using the old value. Processes are allowed to use the new value

after the second phase, which is concluded by the completion of updating all replica

copies. Concurrent write operations on the same object are serialised by locking the

primary copy. However, the next write can only be operated before all secondary copies

are unlocked. New requests to update-and-lock a secondary copy are not serviced unless

the unlock message generated by the previous write has been handled by its manager

and acknowledged. Orca uses multi-threaded managers to prevent deadlock. That is,

write-lock operation on a primary copy may block one thread of a manager, but not an

entire manager process. Locking a secondary copy always succeeds within a finite

amount of time, given that all read operations terminate properly.

Orca is a simple, general purpose programming language based 011 data-objects

intended predominantly for application programming rather than system programming.

Parallelism is based on dynamic creation of sequential processes that communicate

indirectly through shared data objects. Objects are shared via passing them as shared

parameters to a newly created process.

2.7.2 Trends in Improving the Performance of Software DSM Systems.

Building distributed systems on network of workstations with DSM algorithm

has been proved as a viable alternative to the traditional message-passing paradigm. The

increasing demands of distributed applications require sufficiently high-performance

DSM algorithms. Therefore, another research direction has been launched, alongside the

developing of new DSM algorithms, to investigate new techniques in improving the

performance of DSM algorithms. Among these techniques are: adaptive protocols that

adjust to the memory access patterns in distributed applications [Amza C. et. al 1999];

multithreaded DSM algorithms [Mueller F. 1997]; and relaxing consistency definitions

to match the needs of distributed and parallel applications.

45

2.7.2.1 Adaptive Protocols for Software DSM Systems

Many different protocols have been proposed for implementing a software

shared memory abstraction on distributed memory hardware environment. The relative

performance of these protocols is application-dependent in such a way that the memory

access patterns of a distributed application determine which protocols exhibit good

performance. Therefore, building distributed systems with different protocols may boost

the performance in the sense that the system can choose at run-time the right protocol

based on the observed access patterns.

In [Amza C. et. al 1999] experiments were conducted to demonstrate the benefits

of having protocols that automatically adapt at run-time to the memory access patterns

observed in the applications on the assumption that shared memory access patterns are

detected using virtual memory protection scheme in the hosting machine. These

protocols implemented the lazy release consistency model, and employed in TreadMarks

software distributed system. Particularly, the investigation was mainly in:

> Adaptation between single- and multiple-writer protocols.

> Dynamic aggregation of pages into larger transfer units.

> Adaptation between invalidate and update protocols.

The adaptations are triggered automatically. The run-time system detects certain

access patterns and switches between protocols accordingly. Unlike mutli-protocol

software implementations [Carter JB 1995], it removes the need of user annotation to

select the appropriate protocol in order to improve usability. The choice between the

single- and multiple-writer protocols is based on the presence of write-write false

sharing and on write granularity. Put in other words, having more than one processor

attempting to write on the same page causes write-write false sharing situation that can

be avoided by the use of multiple-writer protocol, allowing more than one processor to

write on a page simultaneously. While, single-writer protocol is advantageous if a

processor writes on large part of a page rather than small part of it, that is, the cost of

diffing and twining imposed by the multiple-writer protocol is avoided without much

increase in the communication.

46

Dynamic aggregation is also used to investigate its impact in improving the

performance mainly via the reduction the number of update messages exchanged in the

system. Dynamic aggregation uses records of earlier accesses by a processor to coalesce

page into page groups, in the expectation that those pages will be accessed again by the

processor. On the other hand, the choice between invalidate and update protocols is

based on whether the destination is to access the modified data before it is overwritten or

not. Update protocols send substantially more data, including data that the processor

may never access or that may be overwritten by newer data before the processor

accesses that data originally sent. Whereas, invalidate protocols only retrieve the data for

the pages the processor accesses, but they pay the penalty of the access miss faulty and

the round-trip latency to get the modifications. Therefore, a prior knowledge of whether

the updated and to-be-transferred data will be overwritten before being read by the

processor is crucial in selecting the appropriate protocol.

The experiments indicated that:

> Adaptation between single- and multiple-writer and dynamic aggregation

performs well, and in some cases shows substantial performance

improvement, and never decreases the performance.

> Adaptation between invalidate and update is less successful, with

performance improvements that match dynamic aggregation in some cases

and substantial performance losses in others.

The experimental reports concluded that adapting protocols at run-time

according to access patterns of the shared memory, can effectively improve the

performance only with respect to the nature and the behavior of the distributed

applications, as it degrades the performance of others.

Another example of having adaptive protocols to improve the performance of

software DSM system is the merit adaptation presented earlier in Brazos system. As a

conclusion, adaptation is a promising technique for improving software DSM algorithms

especially it adjusts to the current situation of the system with no intervention from the

user.

47

2.7.2.2 Multi-threaded Software DSM Systems

In the last decade number of researches have been investigating the applicability

of multithreaded algorithms in building distributed systems in order to exploit the

potential of multithreading as in Brazos and DSM-Threads [Mueller F. 1997]. In

multithreading approach several threads can run under the umbrella of one process,

where they share the same resources allocated by the operating system to the process,

and therefore saving system resources. Also, using multithreaded algorithms can hide

the long communication latencies typically associated with software DSM systems.

DSM-Threads is a software DSM system built to provide a convenient means for

a programmer to migrate from concurrent programming model with shared memory

(PThreads) to a distributed model with minimal modifications to the application code.

The DSM runtime system, per node, consists of a communication server and worker

threads. The communication server is a separate thread of control with the highest

priority of all threads within the same process. The task of the communication server is

to open a communication channel and wait for incoming messages. When a message is

received, and according to the type of the message, the communication server may

process the request or delegate the message to a worker thread to process it. Worker

threads can also be activated via the DSM runtime system to function as user threads or

when a page fault occurs. The page fault handler activates a worker thread to perform

the task of fetching a page. The worker thread may then send a request to the

communication server in the hosting node. The communication server may delegate a

worker thread to respond to the request. After fetching the page the worker thread on the

requesting host reactivates the user thread.

Having n worker threads delegated to process n pages faults, may cause deadlock

situation if a new request arrives to the communication server. DSM-Threads system

avoids this situation by assigning messages of the same type to only one worker thread,

which requires that the size of the worker threads pool to be at least the number of

delegated message types. Moreover, a worker thread is only assigned to a message if

there is no worker is yet engaged in processing message of the same type, or if the

48

number of idle workers exceeds the number of currently unhandled message types. A

distributed thread is created by a primitive dsm_thread_create that allows the

programmer to optionally specify a destination node for the thread. If no destination

node is specified, the system has a choice of selecting such a node using a history of

load information and CPU throughput. For repeated executions of an application, trace

data and thread group information may be used to distribute threads upon creation. More

specifically, a small number of threads of a group may be placed on the same node if

very frequent page faults occurred for a distributed configuration, i.e. if the overhead of

page faults for a distributed execution is likely to exceed the overhead of executing

multiple threads on one node. Therefore, repeated traces under different configuration

can be used to improve the overall performance gradually by finding better thread

distribution. Experiments showed that these method of thread distribution reduced false

sharing while improving the overall throughput.

As a conclusion, research reports in multi-threaded DSM systems have proved

that it is beneficial to have multiple threads in the system as they can be assigned to

different tasks to run at the same time. DSM systems with multithreading algorithms

exhibit improved performance in terms of saving system resources, and hiding

communication latencies by overlapping communication with computations. However,

special care has to be taken to manage and control the overlapping behavior of

programming with multiple threads, to avoid the likelihood of memory inconsistency

and data races.

2.7.2.3 Relaxing Consistency Definitions

Due to the inherent complexity of implementing consistency models that impose

strict constraints which results in poor performance in many cases, new consistency

definitions tend to be more relaxed to enhance the performance of DSM systems. For

example, although it is programmer-friendly model, the sequential consistency was

proved as a source of a serious performance problem [Lipton R. et. al 1988],

Specifically, if the read time is r, and the write time is w, and the minimal packet

transfer time between nodes is t, then it is always true that r + w > t. In other words, for

49

any sequentially consistent store, changing the protocol to improve read performance

makes write performance worse, and vice versa.

As it has been discussed earlier in this chapter, newer definitions of consistency

models present weaker restrictions than their predecessors. With relaxed definitions of

memory consistency in DSM systems, the number of exchanged messages between

different processes is greatly reduced resulting in less communication overhead. For

example, in lazy release model, updates are sent only to the process that executes the

acquire command, rather than propagating the updates to all processes in the system as

in sequential model.

A common approach for weakening consistency models is to use synchronization

mechanism, as in lazy release and weak consistency. That is, when a process performs

an operation on an ordinary shared data item, no guarantees are given about when this

update will be visible to other processes in the system. Models apply such approach

vary in when an update is made visible to other processes in the system, however in all

cases a process can perform multiple reads and writes in a critical regions without

invoking any data transport routine. When a process leaves a critical section, updates are

either sent to other processes (i.e. as in release model), or made ready for transfer to any

process shows interest in this piece of shared data. However, such relaxation should be

at a sensible degree to guarantee the ease of programming, which was the major

intention of DSM systems in the first place. The degree of relaxation is greatly

influenced by data access patterns, and the puipose on which this data are used. In other

words, the significance of implementing a synchronised model in the performance of a

distributed shared memory system depends on the nature of the applications that use the

system. Nevertheless, implementing relaxed models is often much easier than more

restricted models [Tanenbaum A. et. al 2002].

The last two improvement techniques are used in designing and prototyping the

new framework, which is presented in the next chapter. As we will see later, these

techniques have a significant impact in the performance of the produced system in terms

of speeding up the whole system and reducing data retrieval rates.

Chapter Three

DIME-II: NON-LOCKING APPROACH, CONSISTENCY

MODEL AND DATA EXCHANGE ALGORITHM -

DESIGN & EVALUATION

Building a successful distributed shared memory system depends enormously on

the degree of consideration of the design issues at the designing stage. Sometimes this

degree varies according to the nature of the distributed application itself, since

supporting some features in the application can significantly improve the performance.

Also, there are pre-existing requirements that need to be taken into account. For

example, our new framework inherits an important feature from DIME software DSM

system, which is to support two different data types. These data types naturally exist in

Urban Traffic Information and Control system, which is the system that will be used as a

case study for the whole project. Other inherited properties from the DIME system are

the granularity and the non-locking approach. This thesis refers to the current

implementation of DIME as DIME-I, and the new improved framework as DIME-II, and

when talking about common features will be using the term DIME.

3.1 DIME and Traffic Control Distributed System

The potential for the enhancement of the performance of current traffic control

systems, through supervisory control making use of in-vehicle route guidance, has

created the need for a flexible computing environment in which various new

applications can be integrated with existing traffic control systems without adversely

affecting their performance.

51

Using network of workstations (NOW) as computing platform for distributed

systems has distinctive advantage when building a fault tolerant system. In other words,

in the occurrence of machine failure, networked parallel system can continue running

with no disturbance and transfer the failed task to be executed on another machine.

Moreover, parallel systems can employ more than one server in order to avoid

bottleneck. Building parallel and distributed applications on NOW requires a

middleware of software that can efficiently manage exchanging messages and data

between different applications running on different machines. Traditionally, there are

two paradigms in building such middleware in distributed systems: the message passing

(MP) paradigm and the distributed shared memory (DSM) paradigm.

Distributed shared memory (DSM) paradigm provides an illusion of one non­

physical shared memory in network of workstations where shared data reside in different

address spaces. DSM algorithms facilitate accessing the shared memory and exchanging

data and messages via normal read and write operations, concealing the interprocess

communication and remote memory accesses. Unlike MP paradigm, exchanging

complex data between processes in different locations is supported [Protic J. et al 1996].

The Distributed Memory Environment (DIME) system provides an interface

between software modules that execute on networked workstations. As first introduced

by Argile et al in 1996, DIME is a flexible computing environment that provides a

communication harness for the execution of software modules of urban traffic control

systems, and allows all these modules to be effortlessly integrated. DIME system has

been designed specifically to support vast range of transport telematics applications and

it offers a convenient interface to the applications programmer. As it was built as a user-

level software DSM system, DIME provides an easy to use communication interface that

simply and reliably delivers data and messages to all nodes in the system. This interface

was built on top of Transmission Control Protocol/Internet Protocol (TCP/IP). The

implementation of the communication interface supports a variety of platforms such as

DOS, Windows, UNIX and EPOC (operating system for palm-top computers PSION)

[Peytchev E. et. al 1998],

52

As shown in figure 3.1, DIME system has a role of managing and controlling the

shared memory in urban traffic system. It receives access requests to the shared memory

from the different modules, and replies appropriately. Typically, SCOOT (Split, Cycle

and Offset Optimisation Technique system) module gathers real-time data collected

from the traffic network and sends it to DIME, which in turn stores them in the shared

memory. These stored data are processed and manipulated by telematics applications

(PADSIM, ATTAIN...etc) in order to perform their monitoring and control tasks. The

applications communicate with each other through DIME system by saving their outputs

in the shared memory, where they are readily available to any requesting application. In

brief, all interprocess communication and data exchanges between different modules of

the traffic system are delegated to the communication interface of DIME system.

3.2 Types of Data in a Typical Traffic Control System

Building a successful DSM system requires a detailed knowledge of the data

transactions in the system; therefore a special consideration of data flows in a traffic

control system was taken in the design stage of DIME-I [Peytchev E. 1999]. In a traffic

control system there are two kinds of data that can be recognised:

> Dynamic data: It is collected by the real-time traffic control system. It

contains all information about traffic counts and local controls as they occur

in the traffic network. It is characterised by its high volume - in excess of

120 Mbytes per day per one specific type of message. Besides, this kind of

data is updated in a high frequency rate (per second basis).

> Static data: This kind of data is updated in a much longer period of time

and its purpose (in general) is to make the results from traffic modules

available for reading by the other functional modules in the system.

53

. . . ;

Shared Memory

DIME

mrsiM

Figure 3.1: DIME System and Traffic Control System

Roulc Travel
Time Prediction and

Mobile livers Messacc
Delivery Module

SCOOT Client
(purl of DIME)

Traffic
M arr»siui ulalion

ATTAIN

M anagem ent

DiMI’IS

Supervisory L ayer
o f C ontrol for the T raffic

Network

3.3 DIME-I Configuration

DIME system is a user-level software DSM prototype. As in TreadMarks, this

system provides user-level runtime library routines. But, unlike IVY, these routines

require no modifications on the underlying operating system as they can be used and run

on different kind of environments and platforms. This system is designed to work with

two functionally different read operations and two functionally different write

operations, supporting the two different types of complex data structures [Peytchev E.

54

1999]. The attributes of a shared element of any data type is user-defined, thus, this

system can also be categorised as object-based DSM system. Moreover, DIME is

designed to work in a heterogeneous computing environment, however, because it does

not facilitate data transactions between different platforms all applications that use

DIME system should perform data conversion upon exchanging data between different

platforms. Furthermore, new modules can be added to the system at runtime with 110

disruption to the running modules.

DIME-I system adopts a sequential consistency model and a centralised

architecture of the memory manager. In a centralised algorithm all accesses to a shared

memory are directed to a central server that controls the whole shared memory. Thereby,

DIME-I does not require any hardware routines to detect accesses to pages of shared

memory; therefore it can be ported to both UNIX and DOS (01* any other similar

operating platform) based systems with no modifications to the kernel of the hosting

operating system.

In DIME-I system, each user application (module) has an additional component

linked to it at compile time, which provides the communication interface via DIME-I

APIs with the shared memory system (figure 3.2).

The requests for reading/writing data from/to the shared memory are transferred

by the DIME-I libraries over the network to the memory manager task, where they are

processed and, subsequently, appropriate replies are sent back. DIME-I system consists

of two components: a) The shared memory manager that owns the shared memory (i.e.

DIME-I server), and b) the DIME-I communication libraries, which are linked to user

applications and the DIME-I server in order to interface to the network [Peytchev E. et.

al 1998].

55

Read/
Write DIM E-I

Network

X)

DIME-I API DIME-I API

Memory
Manager

Local data
Storage

Socket communication

User Application code 1 User Application code N

Socket communication
interface

Shared Memory Manager
Interface

Socket communication
interface

Figure 3.2: DIM E-I Configuration

The shared memory manager (SMM) operates on a closed loop basis, continually

listening to requests for accessing or maintaining the shared memory. Such requests are

issued by the modules by performing appropriate API routines. Concurrent accesses to

the shared memory are implicitly synchronised in the operation of the memory manager

task, due to the natural sequencing in the underlying network (Ethernet) protocol

(TCP/IP). SMM executes the received operations in the order of their arrival, therefore,

unlike TreadMarks; it does not require the provision of separate functions for

synchronization.

3.4 The Limitations of DIME-I

DIME-I system adopts Sequential consistency (SC) model [Lamport L. 1997],

which is the most commonly assumed model by the programmers due to its intuitively

expected throughput [Weiwu H. et. al 1998, Hill M. 1998]. However, recall, SC

definition is very strict and usually has a problem of poor performance. As shown in

56

[Lipton R. et. al 1988] experiments proved that any attempt, in a sequentially consistent

distributed shared memory system, to change the protocol in order to improve reading

operations performance makes writing operations performance worse, and vice versa.

Equally important, many performance enhancement techniques, such are prefetching,

multiple-issue, and write buffer, are not allowed in a sequentially consistent machine

[Tanenbaum A. et. al 2002]. In brief, with the definition of the sequential consistency

model, a DSM system will not provide a high-quality performance, and moreover, any

attempt to improve the performance using improvement techniques may not be

successful or may not even be possible to implement. Therefore, subsequent definitions

have been introduced to provide a consistent memory in DSM systems with relaxed or

weak constraints in accordance with the nature of the required computing environment,

while maintaining the usability and the programmability of the consistency model.

To overcome the poor performance associated with the sequential model, another

model has to be used in DIME system that can allow the use of improvement strategies,

which in turn can satisfy the demands of the system. Conclusively, the use of a relaxed

model capable of supporting the natural existence of two data structures in a typical

traffic system; represented by the static and dynamic data; can provide an efficient

satisfactory performance. Although many relaxed consistency models have been

introduced and implemented in several past and recent DSM systems, they do not

provide an explicit support for the two types of data in the traffic system. Considering

the nature of the distributed applications, in particular the data usage patterns, can

effectively offer the required performance. Therefore, section 3.7 of this chapter presents

a consistency model that provides an explicit support for the presence of dynamic and

static data structures in the traffic system.

This consistency model has been designed specifically for the traffic system. In

this model we have avoided the explicit use of any synchronization mechanism, such as

locks and barriers primitives, to avoid the likelihood of slowing down the entire system

caused by the competition between different applications and processes to acquire an

exclusive access to the shared memory. Excluding the explicit utilization of

synchronization mechanisms allows the system to maintain a steady performance. This

purposely designed consistency model relies on the natural sequencing of commands

occurring in a TCP/IP-networked environment. In other words, read/write commands in

this model are performed in the order they are received, not the order they were sent, and

they are processed indivisibly and without interleaving. In accordance with the

definition of the sequential consistency model, the processing of read/write operations,

atomically, gives the flavor of sequentially consistent shared memory. Such feature

makes the new model easy to understand and to use as the programmers of distributed

and parallel systems are so accustomed to the semantics of the sequential consistency

model. Furthermore, this model is categorised as a non-locking model, and therefore the

new framework of DIME system is categorised as a non-locking DSM system.

Another drawback in DIME-I system is that the shared memory is controlled by

only one central manager that is responsible for servicing read/write requests from/into

the shared memory from all the applications in the system. This central mechanism used

by the memory manager is liable to bottleneck problem, because all requests are directed

to only one server. Moreover, such mechanism is unreliable, particularly if the server

crashes, in which case the distributed modules of the system will lose communication

with each other, leading to the failure of the entire system. This problem can be avoided

by replicating the shared memory in order to maintain continuity in the process of the

distributed system. Additionally important, data replication can reduce the competition

between the applications and speed up the entire system.

Data replication can be achieved by replicating the server itself (i.e. mirroring the

server) and distributing the workload among several servers. This scheme has

disadvantages in two aspects. First, the fact of having several servers of the same task of

providing the service to many applications means that the system will have several

server workloads and overheads instead of one, which increases the amount of software

overhead. Secondly, upon any update made to one shared memory replica, a message-

broadcasting process must be performed to update all the existing mirrors of the shared

memory in order to make the view of the memory consistent throughout the system and

to allow all the applications to have the same versions of data. Undoubtedly, this process

58

incurs another kind of overhead to the system in terms of flooding the network with

messages that contains updates which might not even be needed by all applications.

Some DSM systems provide a replica of the whole shared memory in each

machine where an application is running, as in BDSM system [Auld P. 2001]. In this

system, each machine runs a subsystem to control a complete mirror of the shared

memory. In other words, the same shared memory is replicated in every single machine

in the system. Similar to the previous data replication scheme, this kind of systems also

suffers from high communication overhead due to the need of broadcasting updates as

they occur on the shared memory. BDSM system, in particular, employs a data

transmission protocol that uses a fully-replicated broadcast-based algorithm to

disseminate messages and updates to all parts of the system. Again, the scheme of fully-

replicated broadcast-based algorithm leads to performance degradation as the demands

of the applications and messages exchanging increases.

As it will be introduced and described in later sections, the new framework of

DIME system also uses a data replication scheme. However, it provides each application

only with the data required to perform its native task. The aim is to reduce the time spent

by an application to retrieve data from the shared memory. In this framework, the data is

kept in the proximity of the application. Unlike the previously described schemes of data

replication, this framework provides an application with a copy of the data needed to

accomplish that application’s task, and therefore, when an update operation is performed

on the shared memory, the system propagates the update only to the copies of the shared

memory that keep a replica of that particular item. Thus, there is no need to broadcast

updates to all data replicas throughout the entire system as some of these replicas may

not hold a copy of the updated item, hence, broadcasting updates in this system will be

unjustified. Unlike BDSM system, a partially-replicated multicast-based algorithm is

needed in the new framework to disseminate messages to update only the shared

memory replicas of the applications that process the updated items. It can be foreseen

that, this sort of data replication, along with the proposed protocol, saves the network

resources and reduces the communication overhead by the reduction of the number of

exchanged messages and data.

59

On the other hand, providing an application with the required data on its machine

eliminates the likelihood of having applications competing over the shared memory. In

this framework, each application can perform read/write operations on its own replica of

the shared memory, and the burden of keeping the shared memory replicas consistent is

entirely left to the middleware system. This scheme of data replication allows an

application to retrieve the required data from a local repository and with no competition

with other applications in the system. Thereby, there is no need for synchronization

mechanisms to access the local memory as each application has an exclusive access to

its local replica.

In a nutshell, a non-locking partially-replicated DSM algorithm with a relaxed

variant of the sequential consistency model is expected to overcome the limitations of

the old architecture of DIME system. Furthermore, it is expected to improve the

performance of the system by the reduction of the time taken by an application to

retrieve data from the shared memory while saving the network resources by exchanging

the minimum amount of messages and data. The rest of this chapter presents a new

framework for DIME system, which is called DIME-II system. This framework employs

a non-locking partially-replicated DSM algorithm

3.5. Design Issues

As mentioned earlier, the aim of the project is to build a DSM framework in

which data retrieval rates are reduced in order to save more time for the user application

to perform the native tasks. Besides, the new framework is ought to be flexible allowing

system re-configurability at start-up time/run-time in order to improve the performance

of the system. As we will see in the following sections, this is achieved via the use of a

non-locking and partially-replicated algorithm that permits such re-configurability

without changing the backbone of the system. Figure (3.3a) illustrates a general view of

DSM system as one main server and several applications, whereas; figure (3.3b) depicts

one possible architecture of a reconfigured DSM system, which can be structured by

redirecting the communication paths of certain applications to take the service from

60

sources other than the main server (i.e. intermediate servers that are embedded in user

applications codes).

In the designing stage of building DIME-II system, number of design issues has

been considered in order to provide a structural design capable of delivering an efficient

satisfactory performance. As it has been discussed earlier, in the traffic system there are

two types of data structures: dynamic and static data [Peytchev E., 1999]. The data

representing the dynamic data type is in fact a constant flow of uniform messages issued

from the traffic system. To accommodate this type of data, the system needs a formation

capable of accepting a number of uniform structures at a time, and at the same time

keeping the most recent data only. The implementation of DIME-I utilised circular

buffer for this type of data, where each element of the buffer is a user defined message

structure and its size depends on the size of the urban traffic network.

Main
Server

Main
Server

Application
No 4

Figure: 3.3a: A general
Structure o f a DSM System

Figure 3.3b A DSM system after
reconfiguring the communication

paths

Figure 3.3; Two Structures of a DSM System before and after
Reconfiguring the Communication Paths

Application
No 2

A pplication
No 4

Application
No 1

Application
No 3

Application
No 1

Application
No 3

Internal
Server

Application
No 2

Internal
Server

61

On the other hand, the relatively static data in the traffic system usually reflects

the value of some internal variables in the traffic modules. The volume and the format of

this data is usually module dependent since each module has its own internal

representation of the traffic. Therefore, DIME-I utilised an array of bytes of user’s

defined size for static data, as it is the most suitable choice [Peytchev E., 1999]. The

implementation of DIME-II system continues using this granularity, since it is suitable

and convenient for representing the two types of data of traffic control systems.

Moreover, DIME-II is designed to run on different platforms, and therefore, it

can run on a heterogeneous environment. However, DIME-II employs communication

protocol that internally exchanges data and messages as arrays of bytes; therefore,

software modules have to make their own internal simple conversions. DIME-II is

designed with the capability of extension to contain later addition of software modules

3.6 Non-Locking Approach for DIME-II Computing Framework.

To overcome the previously detailed limitations of the current implementation of

DIME-I system and in order to improve the performance of the system, DIME-I

architecture has to be modified to support the implementation of the non-locking

approach, data replication algorithm and per-node multithreading. This framework aims

at improving the performance of DIME-I software DSM system mainly by minimizing

the time of data retrieval from the viewpoint of user application and to have a flexible

reconfigurable design to adjust the system connectivity to the current workload of the

network to achieve an optimised performance. With DSM algorithms, distributed

applications often waste valuable time while retrieving data from the shared memory,

this time is spent by the middleware system during exchanging data and messages

between different parts of the system to fetch the requested data. However, with the

algorithm presented in this chapter, an application retrieves the required data from a

memory associated with that particular application. This intermediate memory contains

copies of the data required by that application (not a whole replica of the main memory)

and accessed only by that application.

The burden of making the memory consistent all around the system is entirely

left to the middleware system and applications can retrieve the data from their associated

memories with no competition with each others. Furthermore, the system can provide

each application with the required data, which are not necessarily the most recent ones,

but these data will be available at anytime they are requested. Thus, user applications

will always find the required data without significant delay, bearing in mind that the data

is retrieved directly from the intermediate memory. Providing an application with the

requested data in a relatively short period of time is considered the one single most

important factor of measuring the performance of the system. The motive behind this

assumption is that user applications can have more time for performing their native

tasks, which time is very often wasted in network communication [Khalil M. et. al

2003b].

Many other different approaches and measurement factors have been introduced

and taken into account in past and recent research to measure the performance of DSM

systems. For example, Munin [Bennett, J et. al 1990] adopts multiple relaxed

consistency protocols in order to achieve good performance through reducing the

number of messages exchanged in the network. On the other hand, TreadMarks [Amza

C. et. al 1996] adopts the same means, but to speed up the distributed system as a whole.

Having its architecture in figure 3.2, DIME-I can be viewed as a system of three

component (figure 3.4), which are: DIME-I-server (the shared memory manager),

DIME-I-client (DIME-I APIs), and user applications, wherein all shared data are

resident in one machine controlled by one central memory manager. In DIME-I, DIME-

I-client acts as an inactive process which is activated by a user application upon

performing read/write operations on the central shared memory. Typically, a user

application performs reads/writes on the shared memory via calling DIME-I-client

routines that contact DIME-I-server to execute the prescribed operation, and then

returning to its previous inactive state along with the result of the operation.

63

DIME-I-server

Network

DIME-
I-client

DIME-
I-client

User Application NUser Application 1 User Application 2

Figure 3.4; DIME-I System (another perspective)

As illustrated in figure 3.5, the process of DIME-I-client is placed in a separate

layer along with an intermediate memory holding copies of part of the whole shared

memory in terms of data areas and buffers; this new process is called DIME-II-client.

The intermediate shared memory contains the data required by the user application that

uses the services of DIME-II system through its DIME-II-client. In the architecture, the

shared memory consists of two types of data structures: data buffers that represent

dynamic data, and data areas representing static data.

Typically, DIME-II-client tasks can be detailed as follows:

> Establishing a persistent connection with DIME-II-server.

> Saving updates in the intermediate memory as they are received from

DIME-II-server.

> Sending updates to the server as they are received from its user

application.

> Sending data to the user application when requested.

64

> DIME-II-client is responsible for requests retransmission when no

acknowledgement has been received as a response from the server in a

predefined timeout; moreover, it decides when to stop dealing with the

server as it is supposed to be dead.

DIME-II

Network

Network

Data
Areas

Buffers

User
Application N

User
Application 1

Data
Areas

Intermediate Storage
DIME-II-client N

Buffers

Intermediate Storage

DIME-II-client 1

Data
Areas

Original Storage
DIME-II-server

Buffers

Figure 3.5; Non-Locking Model with Data Replication- DIME-II
Structural Design

Thereby, a user application can perform any read or write operation on the

intermediate memory rather than dealing directly with the main server, saving valuable

time that can be used to perform its native tasks. In this framework, user applications;

which are traffic control system modules; perform any operation on the local shared

memory leaving the time delay burden of contacting the server to DIME-II-client for

making the intermediate memory up to date, and reflecting updates on the original

memory.

65

On the other hand, DIME-II-server takes control over the original shared

memory system, and has the role of monitoring any modifications on the central

memory in order to keep all intermediate memories throughout the system consistent

with the updates - more details about how the whole system works is provided in section

3.9.

Unlike DIME-I, the shared memory is split over the network, and controlled by

at least one memory manager. This support of the existence of several data replicas

needs a special care to be taken into account to avoid data inconsistency in such

architecture, which is described in the next section. One important feature inherited from

the DIME-I, is that each read/write command is considered as a single atomic operation,

therefore no resources locking takes place and the system relies on the natural

sequencing of the commands occurring in TCP/IP-networked environment. In regard

with this feature, and because there is no need for any explicit synchronization for an

application to have an exclusive access on the shared memory, the improved architecture

of DIME (i.e. DIME-II) is categorised as non-locking algorithm.

3.7 Memory Consistency Model for DIME-II.

According to their definitions, we have found that existing consistency models

are not applicable to this architecture, particularly because they do not effectively

support the nature of the two different types of data structures existing in urban traffic

system. Therefore, a relaxed definition of sequential consistency (SC) [Lamport L.

1979] model has been designed to suit the new architecture, as the definition of SC is

mostly expected by programmers. This section thoroughly prescribes the relaxed

consistency model, and provides figures explaining and proving the semantics of the

model.

As presented in [Khalil M. et. al 2003a], to maintain system-wide consistent

views of the memory in terms of data area and buffer structures, the constraints below

are imposed:

66

> Accesses to data store controlled by the server (DIME-II-server) are

sequentially consistent, and each read/write is performed as a single atomic

operation.

> For data buffer; updates to a buffer are first sent to the server before

being reflected to the applications that have replica o f the updated buffer.

> For data area; an intermediate data area can be modified by its user

application, locally, and then sends that update to the sender, which in turn

multicasts the update to the concerned applications

The first constraint says that DIME-II-clients can access the original storage,

controlled by DIME-II-server, in a sequentially consistent manner. In other words, the

result of any execution is the same as if the read/write operations by all DIME-II-client

011 data store were executed in some sequential order and the operations of each

individual DIME-II-client appear in the order specified by their program. Therefore, no

resource locking takes place and the system will rely on the natural sequencing of the

commands occurring in TCP/IP-based network environment (Figure 3.6). Moreover, as

the system uses java language for implementation, the unpredicted behavior of threads in

the Java Virtual Machine (JVM) has another impact on the sequencing of the

commands. As it will be explained more thoroughly in a later section, each application is

serviced at the main server by a separate thread which listens on a socket to commands

from its application. When a thread has its turn to execute on the processor, it implicitly

gains an exclusive access to insert a write operation command to be performed by the

main server. This mutual exclusion is done implicitly by the JVM.

This constraint gives an exact and clear idea of how user applications view the

shared memory of DIME-II system as a sequentially consistent memory. This direction

of having the sense of sequential definition in the system has been followed by most

relaxed and weak consistency models that have been presented to produce improved

performance in the distributed shared memory prototypes, such as weak and lazy release

models.

67

Application A: W(s)x
Application B : W(s)y
Application C: R(s)y R(s)x
Application D : R(s)y R(s)x

------------------------------------►
Time

Where:
W(s)x = Write the value x in the shared item 5 .
R(s)x = Read the value y from the shared item s.

And,
W(s)y is seen by all applications in the system before W(s)x.

Figure 3.6: The Shared Memory obevs the Consistency Model

According to the second constraint, any update is first sent by a DIME-II-client

to the DIME-II-server, which in turn performs it in the original memory and reflects that

update to all user applications involved in that modification (i.e. the applications that

have replica of the updated piece of memory) (Figure 3.8). This guarantees that updates

of a buffer are viewed in the same sequence by all the applications that have copies of

that particular buffer. For example, if two applications A and B send updates of values x

and y to the same buffer, respectively, and occurs that the server receives the update y

then x, subsequently all the applications in the system will see the value y first, followed

by x (Figure 3.6). Thereby, data buffers are seen in the same order throughout the

system, which is consistent with the first constraint.

With the third constraint, a user application can perform write operation directly

in the intermediate data area and with no competition with other applications. After

updating the local replica, the associated DIME-II-client program sends the update to the

server which in turn multicasts it to be reflected in other intermediate memories that

contain replica of the updated area (Figure 3.9). For instance, a value x is written in

certain data area by an application A, followed by another update y in the same area but

issued by another application B. Thereby, since DIME-II-server performs operations in

the order they are received (not necessarily the order they were sent), all applications

68

will see the updates in the same order they are issued from the server. In other words, if

y is received before x then applications will see y before x as well (Figure 3.6). However,

a critical situation has to be considered at the application that issues the update, as this

application will, undesirably, receive updates to this particular area in the same manner.

More specifically, the application that has issued the update x will receive y executing it,

and then executing x again, which means without considering this situation the

application would see x, y and then x again leading to unacceptable inconsistency

behavior (Figure 3.7).

To avoid this situation, DIME-II-server attaches to each write update on data

area an ID; this ID is already known and saved by the application that originated the

update. Each time it receives an update, the originating application compares the

received ID with the existing one (if any). If they are not equal it discards the update as

it is definitely older than the current one, which is still to be multicast by the server.

Otherwise, it removes the current ID, and starts receiving further newer updates. If there

is no saved ID, an application applies any received update with no delay (Figure 3.10).

Application A: W(s)x R(s)x R(s)y_________ R(s)x
Application B\ W(s)y R(s)y R(s)x
Application C: R(s)y R(s)x
Application D : R(s)y R(s)x

Time .w

Where:
W(s)x = Write the value x in the shared item 5.
R(s)x = Read the value y from the shared item s.

Figure 3.7; The view of the shared memory (i.e. data areas) will be
inconsistent with the definition of the presented consistency model if

DIME-II-client directly applies the received updates

On the other hand, since each application has its own intermediate memory, read

operations from either data area or buffer can be performed straightaway on the

intermediate storage. That is, an application sends read requests to its DIME-II-client

69

that accordingly looks up in the memory and responds with the required data if it is

available.

User Application r. DIME-II-Client i: DIME-II-Server: Other DIME- I
II-Clients: 1

i Send buffer update i
Receive buffer

i.
'1

update.
Send buffer s

update.
H>-4 .

Receive buffer 3CD
update.
Perform update in
the original
buffer.
Multicast buffer
update.

Receive buffer
update. Receive buffer
Update the local update.
buffer replica. Update the local

buffer replica. r

Ficure 3.8: The Seauence of Operations in DIME-II ..System unon |

Write in Buffer Oneration ■ 1

1

-I
i

' i

i

i

St

'1

70 ;
i
i

■S

User Application i

Send area update.

DIME-II-Client i DIME-II-Server

Receive area
update.
Perform update
locally in the area
replica.
Send area update.

Receive area
update.
Perform the update
in the original area.
Multicast area
update.

Receive area
update.
Update the local
area replica.

Other DIME-II-
Clients

Receive area
update.
Update the local
area replica.

Figure 3.9; The Sequence of Operations in DIME-II System upon
Write in Area Operation

DIME-II-Client ;1: DIME-II-Server:

Receive update; for area x
Perform the update locally in the replica
of X.

Create ID; for jr.
Send update; of x.

Send updatej for area x.

Receive updatej for area x.
Compare the ID of updatej with the
saved one (i.e. ID;).
Discard updatej.

Receive update; for area x.
Perform the update in the original
area.
Multicast update;.

H
a

Receive update; for area x.
Compare the ID of update; with the
saved one (i.e. ID;).
Delete ID;.

Receive updatek for area x
Perform the update in the original
area.
Multicast updatek.

pCD

Receive updatek for area x
Check the ID (there is no saved ID).
Perform the update locally in the replica
of X

r

Where:
i ^ j ^ k.
ID;= unique identifier of the update number i.

Figure 3.10: The Seauence of Operations in DIME-II Svstem unon
Write in Area Operation

72

3.7.1 Evaluation to the Consistency Model

With the consistency model described in the previous section, it is clear that

replicas can temporarily be out of date, which is the expense we always pay for such

relaxed models; however, this model can guarantee consistent view of the shared

memory all around the system at a point of time, preserving the concept of a distributed

memory that is shared as a single non-physical memory. Furthermore, the system can

provide each application with the required data, which are not necessarily the most

recent ones- i.e. almost certainly can be on the way, but these data will be available at

anytime they are requested. Therefore, user applications will always find the required

data without significant delay, bearing in mind that they are retrieved directly from the

intermediate memory. Providing an application with the requested data in a relatively

short period of time allows more time for performing its main task.

This definition differs from the definition of sequential model in its support to

data replication and its use of multiple writing mechanisms. These two approaches have

been proved as a source for improved performance in distributed shared memory

systems. On the other hand, it differs from other relaxed definitions; particularly weak,

release and lazy release model; in such a way that it does not require an application to

use synchronization mechanisms to have an exclusive access upon performing

operations on the shared memory. One important feature in this model is it supports the

presence of two different types of data structures of the traffic system, which makes it an

application-driven model.

3.8 DIME-II Data Transfer Protocol (DDTP)

Implementing the non-locking approach with the consistency model requires an

appropriate communication protocol in order to produce an efficient less complicated

distributed middleware. This section presents a proprietary communication protocol

designed specifically for DIME-II system. It is a sufficiently simple yet efficient

protocol that allows correct implementation to the framework. As the algorithm

disseminates updates only to the applications that have replica of the updated shared

73

data, this protocol ensures correct propagation for the updates to the specified

applications.

DDTP protocol is a middleware-level protocol which is used to exchange

messages and commands within DIME-II DSM system, allowing user applications to

make read and write operations without being aware of the location of the data. DDTP

employs positive acknowledgment policy, which means if the destination has not

acknowledged the receipt of a packet (command packet) in certain amount of time

(timeout); the protocol will re-send the packet for fixed number of times before

declaring the destination is dead or offline. The necessity of having positive

acknowledgement is explained when the protocol is evaluated later. This protocol

encapsulates normal commands (write, read, delete ...etc.), acknowledgements, error

and dummy messages, each in a separate unit called command packet, which is

represented by array of bytes.

When an update for data area is sent, an identity (ID) is attached with the

command packet. This ID allows applications to distinguish between their own updates

on one hand, and between others’, on the other hand. An ID consists of two parts: the

name of the application, to make an update different from other updates of other

applications. The second part is the serial number of the command packet itself, to make

distinctive updates for the same area within one application. For example, an application

sends an update for area and waits for it to be sent back as a confirmation for that

update. In the mean time, if it receives any update for the same area, it simply discards it

as it is certainly older than the current one (i.e. if it was newer than the expected one, the

expected update should have already been received by that time and the ID should have

been deleted). After receiving the confiimation it can apply any further updates for the

same area. Therefore, this ID helps ensuring consistent view of data area replicas within

the system.

DDTP is built on top of TCP/IP, requires no modifications in the underlying

communication primitives, and it relies on the natural sequencing of the underlying

network. Therefore, DIME-II-server executes write operations in the order they are

received. This protocol differs from the protocol used in BDSM system in its use of a

74

multicast mechanism for propagating updates rather than broadcasting them, saving the

resources of the network.

3.8.1 Structures of Command Packets Exchanged between DIME-II-server
& DIME-II-clients

Command packets are classified into normal data, acknowledgement, error,

redirection, and dummy messages. Each packet contains a control character to make it

distinctive among other types of packets. In this section a complete definitions of all

classes of command packets and their formats are provided.

3.8.1.1 Normal Data

This packet is sent for performing initiation, creation, destroying, and writing

operations on the shared memory. The control character is ND.

The structure of the header:

H ’ ’P ’ serial conti ol char length_len Length command char

Fields explanations:

HP: the start of the header.

serial: contains the serial number of the packet. This serial number

ranges between 1 and 127, which is the range of positive numbers of byte

type in Java language. When the protocol reaches 127, it starts from 1

again.

control char, specifies the nature of a packet (normal, acknowledgement,

error, redirection, or dummy massage), which is ND in this case.

Length_len\ the length field in the header of the packet is represented by

String object. The field Length_len is simply the length of that object.

length: the length of the packet excluding the length of the header.

command char: specifies the nature of the command itself (creating,

writing, removing ...etc).

75

3.8.1.1.1 Initiate DSM

command char: ’ID ’.

Header name_len application name

Description: DIME-II-client sends this packet to DIME-II-server requesting

permit for initializing an intermediate shared memory. In other words, it is used

to request permission to use the resources of DIME-II system. The command

contains the name of the application.

As a response, if the user application is permitted to use the shared

memory, DIME-II-server registers the name of the application in the list of the

currently connected applications, and sends command packet of the same nature

to DIME-II-client accompanied with the permission table (will be defined later)

of the requesting user application, otherwise an error message will be sent.

Header permission table

permission table: is an array of bytes as follow:

SM_n_l
1

SM_namei permj SM_n_l2 SM_name2 perni2 SM_n_lnSM_namenpermn

SM_n_l,*: is the length of the shared memory name (SM_name;).

SM_name;: is a name of shared memory item in the DSM.

perm;: is a permission access code for certain shared item.

3.8.1.1.2 Create Area/Buffer

command char : ’CA’ or ’CB’, respectively.

Header App_name_J,en App_jiame SM_name_Un SM_name rec._h mgth no of recs.

Description: DIME-II-client sends this packet to DIME-II-server for creating

new data area/buffer. This command is performed by DIME-II-client only if the

application is permitted to use this particular area/buffer. DIME-II-client

76

examines the privilege of the application against the to-be-created item from the

permission table received earlier with the permission to use the system. The

command includes the name of the application, the name of the shared memory

to be created, the length of the record, and the number of records if the created

item is a buffer.

As a response, DIME-II-server registers this application in the list of

applications that have replica of this particular item (i.e. this list is used by the

DDTP’s multicast algorithm when propagating update to certain shared item). If

the area/buffer contains value, it sends a command packet of write operation to

DIME-II-client along with the available data as initial value. Otherwise nothing

is sent. This response includes the name of the shared memory, the number of the

records in the packet, and the actual data.

header SM_name_len SMjname no of recs. The actual data

3.8.1.1.3 Destroy Area/Buffer

command char: ’DA’ or ’DB’, respectively.

header App_name_len App_name SM_name_len SM__name

Description: DIME-II-client sends this packet to DIME-II-server to destroy an

existing data area/buffer (i.e. the to-be-destroyed shared item has to be in the

intermediate memory already). This command may result only in deleting the

application name from the list of the applications that have replica of that part of

the DSM if there is at least another application in the list. But if the application is

the last one in the list, the list will be destroyed as well as deleting the shared

item from the DSM permanently, as it is not longer needed by the current

applications. This command includes the name of the shared memory to be

deleted.

No reply from DIME-II-server will be sent in response to this command.

77

3.8.1.1.4 Write in Area/Buffer

command char : ’W A ’ or ’W B \ respectively.

header App_name_len App_name SM_name_len SMjname no_oj jrec The update

Description: After examining that the application is permitted to perform the

operation from the permission table, DIME-II-client sends this packet to DIME-

II-server to update an existing area/buffer. In accordance to the consistency

model presented earlier, the update will first be executed locally (i.e. writing in

area).

As a response DIME-II-server sends command packet of the same nature

only to the DIME-II-clients associated with the user applications involved in the

update. This packet carries update to area/buffer in order to bring the local

replicas up to date. This command includes the ID of the update to distinguish

between different updates if the updated item is in the area space.

header SM_name_len SM_name no_of_ recs. ID_ len updatelD The actual data

3.8.1.2 Acknowledgement

Control char: ’A C ’.

W r serial control :har Lenjlength length serial number o f the
acknowledged packet

Description: this packet is sent by DIME-II-server and DIME-II-client upon

receiving packet message. This acknowledgement is used as a confirmation for

receiving a packet from the other side of the communication channel in order to

make the sending side to stop resending it, which complies with the definition of

the positive acknowledgement scheme. The serial number of the acknowledged

packet is included in the packet to be used by the recipient to recognize which

packet is acknowledged.

3.8.1.3 Error Message

control char: ’E R \

H ’ ’P’ serial contr ?/ char LengthJLen Length error code explanation explanation
_length

Description: this packet is sent by DIME-II-server to DIME-II-client

when an error occurs.

An error message contains a code number to explain the nature of the

error. There are three different codes. Code 0, means that the application

attempting to register in the system is not permitted to use the shared memory,

whereas, code 1, means the application is already registered and is using the

distributed shared memory (i.e. an attempt to register an application twice).

Finally, when an error message sent with a code number of 2 that means there is

an error in creating a new area/buffer. DIME-II system sends this message when

an application attempts to register in the list of an existing item giving either

incorrect record length or incorrect buffer length. Beside the error code,

sometimes this message contains more explanation for the error. For instance,

when there is an error in creating a shared item, the server sends the name of the

item to the creator as an explanation.

3.8.1.4 Redirection Message

control char : ’R C ’.

W ’P ’ serial conti ol char Length_ Length No_of_servers DIS servers_addresses
len

Description: This message is used by the DIME-II-server to reconfigure the

system using the reconfiguration algorithm (to be explained later in chapter

four). The message contains the number of available servers and their addresses

(IP addresses and port numbers).

Apart from the acknowledgment message the DIME client does not send

any further message. However, when the new server starts to provide the service

79

to the redirected application it sends its name (the name of the new server) to the

server to be used for later purpose (refer to chapter four).

H ’ F ’ serial ‘A’ ‘M ’ Length_len Length Serve rna?ne_length DIS servers_name

3.8.1.5 Dummy Message

control char: ’D M ’.

'H' -p- serial contri)l char

Description: this packet is exchanged by DIME-II-clients within the system for

the puipose of calculating the round-trip time between each pair (will be

explained further in chapter four).

3.8.2 Evaluation to the Communication Protocol DDTP

DDTP protocol is built on top of the transmission protocol TCP/IP. TCP/IP and

most communication protocols rely on some algorithms to estimate the round-trip time,

in order to handle the problem of messages loss, which partly make a protocol reliable.

However, research has shown that the common approaches to estimating round-trip

times for the TCP/IP are inaccurate if datagrams are lost or round-trip times are highly

variable [Jain R., 1986], [Zhang L., 1986]. Therefore, it can be concluded that there is a

possibility of message loss with TCP/IP. This kind of behavior is not tolerated in the

traffic system and, certainly, most distributed systems do not permit that, as it is

certainly crucial that every module in the system receives all the updates. For this

reason, the DDTP employs positive acknowledgement mechanism to make sure that

even if the TCP/IP fails to transfer a message, this problem is handled by resending the

message until it is acknowledged by the other side of the communication channel. It is

predictable that the cost of calculating the round-trip time in the DDTP is negligible, at

least if compared with the cost of losing a message.

However, to avoid this problem, the common approaches have to be used once

again to measure the round-trip time in order to estimate the appropriate timeout. After

implementing DDTP in DIME-II, it has been noticed that there is a large number of

unnecessary retransmissions of data and messages in DIME-II system. In the next

80

subsections this problem is explained and solved using some relatively new approach

called karn’s algorithm [Kara P. et. al 1991].

3.8.2.1 Formulating the Problem

The DDTP protocol uses TCP algorithm to predict the next round-trip time by

sampling the behaviour of messages sent and averaging those samples into a smoothed

round-trip time estimate, SRTT. The new SRTT is computed by the formula:

SRTTj+i = (a x SRTTO + (1 - a) x sj [1]

Where:

SRTTi = The current estimate of the round-trip time.

SRTTi+i = The new computed value of the round-trip time.

sj= Sample of round-trip time.

a = Constant between 0 and 1 that controls how rabidly the SRTT adapts to

change.

The retransmission time-out, RTO, is the amount of time the sender will wait for

a given message to be acknowledged, and is computed from SRTTi using the formula

below:

RTO; = |3 x SRTTi [2]

Where:

P = Constant greater than 1, chosen such that there is an acceptably small

probability that the round-trip time for the datagram will exceed RTOj .

A crucial decision for computing adequate RTO is an accurate measurement of

the true network round-trip times. In other words, using an appropriate sampling method

for the round-trip time gives accurate RTO. There are different sampling techniques for

measuring the RTT each has its advantages and disadvantages. DDTP used a sampling

technique that computes the RTT from the most recent transmission of a message. Put in

81

other words, when an application sends a message the time of sending this message is

recorded by the DDTP, and it waits for an acknowledgement from the other side of the

communication. Whenever an acknowledgement is received, DDTP records this time

and uses it with the first recorded time to compute the new sample, and the SRTT is then

computed. Finally, the RTO is computed to predict the time slot where the next message

is expected to be acknowledged. However, if an acknowledgement arrives after the RTO

has elapsed and a retransmission has been sent, the new sample will be incorrect, as

according to the method, it will be computed using the time of sending the second

transmission of the message with the time of receiving the acknowledgement of the first

transmission, which is incorrect.

The implicit assumption in this method is that the RTO is accurate; if a datagram

has to be retransmitted then previous transmissions have almost certainly lost. This

assumption is often false. If the RTO is smaller than the true round-trip time,

acknowledgment for previous transmissions may arrive after a retransmission [Karn P.

et. al 1991]. In other words, if an acknowledgement has not arrived by the expiration of

the RTO, it is highly likely to come very shortly afterwards. This method gives bad

samples of round-trip time if the delay of the acknowledgement is due to network delay

rather than datagram loss. Therefore, SRTT drops leading to inaccurate RTO resulting in

numerous unnecessary retransmissions and the network bandwidth is wasted. Therefore,

using only this method by the DDTP caused the large number of unnecessary

retransmissions of messages in DIME-II system.

3.8.2.2 Back-off Technique

Every TCP implementation increases the RTO by some factor before

retransmitting the unacknowledged data. Some implementations simply double the RTO

for each consecutive attempt. If the larger RTO expires before the retransmitted data is

acknowledged, the RTO is increased further. This technique is known as back-off. This

technique is essential in keeping the network stable when sudden overloads cause

messages to be dropped [Jacobson V., 1988]. Whenever the overload condition

82

disappears, datagram loss stops and the TCPs reduce their RTO to their normal SRTT-

based value.

3.8.2.3 Kara’s Agorithm

It is another sampling method based 011 avoiding any sample that is contaminated

by retransmission ambiguity. It ignores any round-trip time sample for messages that

have been retransmitted. The rule of the algorithm is:

When an acknowledgement arrives fo r a datagram that has been sent more than

once (i.e. retransmitted at least once), ignore any round-trip measurement based

on this datagram, thus avoiding the retransmission ambiguity problem. In

addition, the backed-off RTO fo r this datagram is kept fo r the next datagram.

Only when it (or a succeeding datagram) is acknowledged without an

intervening retransmission will the RTO be recalculated from SRTT.

This algorithm guarantees measuring SRTT from only good samples of round-

trip time and, at the same time; it uses the back-off technique to adapt to the current state

of the network. Kam’s algorithm ensures that the new accurate round-trip measurement

will be taken and fed into the SRTT estimate regardless of any sudden increase of round-

trip delay.

Kam’s algorithm has been heavily used in TCP implementations and achieved

good results on perhaps the worst medium ever used to pass IP datagrams: amateur

packet radio [Karn P. et. al 1985].

3.5.2.4 Implementing Kara’s Algorithm in the Communication Protocol

To avoid the large amount of unnecessary retransmissions of messages in DIME-

II system, karn’s algorithm has been used in the communication protocol DDTP. How

quickly the SRTT converges to the new round-trip time depends on the back-off

algorithm and the SRTT smoothing algorithm. The communication protocol implements

the algorithm with the suggested algorithms and values in formula 1. It uses the formula

number (1) for calculating SRTT, and back-off algorithm with factor of 2. It uses typical

values of a = 0.875 and J3 = 2 in the SRTT smoothing algorithm.

3.8.2.S Experimental Results

To evaluate the impact of karn’s algorithm on the number of exchanged

messages in DIME-II, several experiments were launched. The experiments used two

kinds of simple codes to evaluate the performance of the communication protocol. The

first code, writer, continuously performs write operations on the shared memory,

whereas, the second code, reader, keeps reading from the shared memory. As it can be

perceived, such codes make a significant overhead on the network by making it busy all

the time, which is due to the fact that the read/write operations require a persistent

communication and data exchanging between DIME-II-server and its DIME-II-clients.

The duration of the experiment was 24 hours. In the experiment, DIME-II system was

considered as two sides of communication: DIME-II-client and DIME-II-server, each

side executes send and receive operations.

These experiments were conducted on the university LAN during a working day

(i.e. including peak and off-peak times). The DIME-II-server was placed on UNIX-

based machine, and the applications were executed on three Windows2000-based

machines. The machine where the server runs was linked to the rest of the machines by

five switches. The evaluation was based on different workloads; each workload executes

only one writer and different number of readers.

The first experiment intended to count frequencies of message retransmissions in

DIME-II. The results showed that the maximum number of data retransmissions at

DIME-II-client was only about 0.5% of the total number of messages sent from DIME-

II-client. At DIME-II-server, the maximum number of data retransmissions was only

about 0.15% of the total messages sent by DIME-II-server. Therefore, in the whole

system a maximum of 0.28% of the total of messages exchanged in 24 hour experiment

was retransmissions of data, which is trivial.

84

Another experiment was for specifying when the number of data retransmission

reaches its maximum level. It showed that in the set of time (2.00pm - 6.00pm) the

number of message retransmission reached its maximum levels due to network overload

(i.e. the peak time in the university network).

Therefore, it can be concluded that the communication protocol of DIME-II,

using karn’s algorithm, exchanges the least number of messages and data. Therefore, the

network bandwidth is saved by this algorithm in DIME-II system.

3.9 An Implementation for DIME-II Framework

The first decision has to be taken at this stage is where to locate the process of

DIME-II-client in the framework, as the general structural design of the DIME-II has not

identified its location. The implementation presented here chooses to place DIME-II-

client process at the same machine as its associated user application, in order to achieve

the sought goals in terms of reducing the data retrieval time from the viewpoint of the

user applications. Therefore, slight modification to the framework in figure 3.5 has to be

made as illustrated in figure 3.11.

For implementing this framework, two separate executables have been coded for

DIME-II-server and DIME-II-client [Khalil M. et. al 2003c]. Both make use of the Java

programming language. Java’s multithreaded support is essential for the successful

programming of the DIME-II software. The presented implementation exploits the

potential of multithreading as it has shown improved performance in DSM systems by

hiding the long communication latencies typically associated with software DSM

systems [Speight E. et. al, 1997] [Mueller F., 1997].

The DIME-II software reflects the new architecture with the new consistency

model and the DDTP communication protocol. The produced software is described

comprehensively in the following subsections in terms of DIME-II-server and DIME-II-

client.

85

DIME-II-Server

Original Storage

Data
Areas

Buffers

 — — -

DIME-II-client i

Intermediate Storage

Data
Areas

Buffers

User
Application i

DIME-II

Network

DIME-II-client n

Intermediate Storage

Data
Areas

Buffers

User
Application n

Figure 3.11: The Current Implementation of DIME-II System

3.9.1 DIME-II-server

DIME-II -server executes command packets in the order they are received (not

necessarily in the order they were sent). In accordance with the atomicity of DIME-II

system, each command is performed as an indivisible operation. In other words, there is

no interleaving when DIME-II-server is performing a command.

DIME-II-server keeps a list of applications that are permitted by the

administrator of the system to use DIME-II system. This list is used when a request for

using and initiating the shared memory is received. If the application name is in the list

then the permit is sent along with the permission table that contains the privileges of the

application to use the shared memory. Otherwise, an error message is sent. Also, DIME-

86

II-server keeps a list for each shared item available in the shared memory, which

contains names of user applications that currently have replica of it. When it receives a

request for creating shared item, DIME-II-server allocates space for the item in the DSM

only if it has not been created yet, and the name of the requesting application is added to

the list of the applications that have the replica of that shared item. In the case of write

operations, it sends updates only to the applications that have replica of the updated

value using the relative list of applications. In other words, unlike BDSM [Auld P.

2001], DIME-II system employs a multicast-based algorithm to disseminate updates to

the application that are involved in the write operation. On the other hand, when it

receives a request for the deletion of a shared item, DIME-II-server deletes the name of

the application from the list of that item. The item is removed permanently only if the

requesting application is the last one in the list.

In order to improve the performance of DIME-II-server, and to make benefit of

overlapping communication with computation, numbers of threads are used. Each

application is serviced by separate thread that listens to its requests and inserts them in a

queue of command packets waiting for process. This thread is called ClientService and

is created when DIME-II-server receives request from a user application to use the

shared memory, along with an empty queue to be used later for saving commands that

that are to be sent to the user application. This thread keeps checking this queue of

command packets and sends any available command to the user application.

ClientService thread contains another thread, called ListenToPacket, which continuously

listens to command packets sent from its user application and inserts them in a queue to

be processed later. This queue is processed by another thread called Sequencer.

The sequencer is the only thread that can read from that queue and perform

operations on the shared memory in DIME-II-server, and it is called so because the

sequence of its reading and execution of commands will be the order of updates

appearance to all applications in the system. After processing an operation, the

sequencer passes an appropriate command packet to certain clientServices through their

command packet lists, which in turn send the command to their applications. Commands

are executed by the sequencer in the order they are received. This order depends on two

factors: the natural sequencing of messages occurring in the underlying TCP/IP-based

network, and the unpredicted behavior of threads in the java virtual machine (JVM).

Recall, each application is serviced at DIME-II-Server by a thread called ClientSennce.

When a ClientService thread has its turn to execute on the processor, it gains an

exclusive access to the queue of commands, processed by the sequencer, before it inserts

a command in that queue. This mutual exclusion is done implicitly by java language as

there is no need to perform any special command to have an exclusive access to the

queue.

Employing several threads allows dividing the task of the DIME-II-server into a

number of sub-tasks to be executed at the same time, enhancing the functionality of the

DIME-II -server. The speed of the sequencer performing commands in the shared

memory (read & write) is much higher than the speed of the underlying network and

therefore this is not a cause for bottleneck problem. Figure 3.12 illustrates a general

view of DIME-II-server.

As mentioned earlier, in addition to the main task of controlling the shared

memory, DIME-II-server holds number of permission tables. These tables prescribe

levels of access that each user application has on the shared memory. The level of access

is either no access, read only or read/write. DIME-II-server disseminates certain

permission table to a DIME-II-client upon initiating a process of traffic module. This

permission table is used by DIME-II-client upon performing any operation on the shared

memory to examine the privileges of the application beforehand.

Original

I n s e r t

Cmnd _pckt3; Cmnd_pckt
Cmnd _pck tl2 Cmnd_pcktm.i

Cmnd_pckt,„_2Cmnd _pckt4j

Sequencer

Cm nd_pck3m.j Cmnd _pckt2
Cmnd _pckt2 Cmnd _pcktj

ClientServiceClientService C lie n tS e r v ic e

LtslenToPocket | I SciulPdtke ListenToPuckct 1 | ScntlPacke

istenToPacketi I Send Pac ket

Figure 3.12; DIME-II-server - General View.

89

3.9.2 DIME-II-client

DIME-II-client keeps a copy of the permission table of its user application. It

checks the privilege of its user application upon performing any operation on the

intermediate memory. An operation on the shared memory is processed only if the

application is permitted to do so, otherwise an error message is sent back. For write

operation, DIME-II-client applies the update locally in the case of area writing, and then

the update is sent to the DIME-II-server.

At DIME-II-client side, there is a thread that continually listens to messages from

DIME-II-server and acknowledges them. The main task of this thread is to receive new

updates from the DIME-II-server and then update the intermediate memory accordingly.

Thereby, DIME-II-client can guarantee the consistency of the local replicas of the shared

memory. On the other hand, any read operation can be performed directly on the

available local memory with no need to contact the main shared memory controlled by

the DIME-II-server over the network. This locality of reference is advantageous in

saving network bandwidth, and reducing time of data retrieval for user application.

Therefore, this implementation of the framework can improve the performance

of the whole system in many aspects: saving network resources; reducing data retrieval

from user application viewpoint; performing number of tasks per-node simultaneously;

and at the same time maintaining consistency by a simple straightforward model. Unlike

TreadMarks system, this implementation of DIME-II does not require any

synchronization mechanism for a user application to have an exclusive access to the

shared memory, since each user application is associated with an intermediate memory

where all its operations are performed via its DIME-II-client. Similar to this

implementation, in BDSM system each user process has an associated DSM subsystem

that manages the shared memory, however, each user process in BDSM has a complete

copy of the shared memory where it processes all reads and writes locally. Also, unlike

our system, in DIME-II all writes to memory modify the local copy and arrange to

broadcast the updated values to all the other processes. Another major difference with

90

the presented implementation is that, BDSM allows only one user process to be executed

on a workstation [Auld P. 2001].

3.9.3. User’s Interface of DIME-II Software

The produced system provides number of functions to be used by distributed

system programmers for performing different essential operations on the distributed

computers shared memory. These functions are:

> Initializing intermediate shared memory. User application calls this

function to get permission for initializing the shared memory and start using

the DSM. If the application has a permission to use the system, a permit

will be sent along with a permission table. This permission table contains

names of shared items the application is permitted to use, and the access

privileges for each item.

> Creating data area/buffer. This function is called to create a new shared

memory item. A shared memory item is created only if the creating user

application is permitted to use it.

> Writing in area/buffer. A user application invokes this function to update

an existing shared item. This operation is performed only if the user

application has enough permission to update that item.

> Reading from area/buffer. The required data are sent to the requesting

application along with the number of the sent values. Zero is sent if the

requested item is empty. This operation is performed locally.

> Destroying area/buffer. Performing such operation results in removing

certain shared item from the intermediate memory of the requesting

application.

91

3.10 Evaluating the Performance of DIME-II System in Comparison

with DIME-I System

Experiments were launched to quantify the performance of DIME-II system in

comparison with the old system DIME-I. Both systems employ a non-locking algorithm

and no synchronization mechanisms are needed in both systems for having exclusive

access to the shared memory, but unlike DIME-I, the non-locking approach allows

applications in DIME-II system to have replicas of the shared memory locally. This

approach is expected to speed up data retrieval rates in DIME-II system. Therefore, in

these experiments the data retrieval time from the viewpoint of the applications is

considered as a major measurement factor for the performance. The motive behind this

consideration is that the user application can have more time for performing its native

tasks, which time is very often wasted in network communication.

3.10.1 Experiment Benchmark

The experiments used two kinds of simple codes to compare the performance of

the two systems. The first code, writer, continuously makes write operations on the

shared memory, whereas, the second code, reader, keeps reading from it. As it can be

perceived, such codes make a significant overhead on the system, and make the network

busy all the time, as the read/write operations require a persistent communication and

data exchanging between DIME-II-server and its DIME-II-clients. Additionally, it can

provide a good idea about how the system performs with highly demanding applications.

The codes were executed on three Windows2000-based machines, while the

server was based on a UNIX-based machine. The experiments were conducted on the

university LAN at different times of the day (i.e. included peak and off-peak time). The

evaluation was based on different workloads; each workload executes only one writer

and different number of readers. Workload 1 means one reader and one writer, and

workload 2 means two readers and one writer, and so on.

92

3.10.2 Evaluation and Results Sunnnarization Scheme

To evaluate the performance of the DIME-II system with DIME-I, a method of

confidence interval is used [Weisong S. et. al 1998]. The basic idea behind the use of

this method is that a definite statement can not be made about the characteristics of all

DSM systems, but a probabilistic statement about the range in which the characteristics

of most systems would drop can be made. The variety of applications determines that it

is not possible for one system to be better than others in all cases [Adve S. et.al 1996].

To explain the basics of the method, assume that there are two bounds cj and C2, wherein

a mean of population of observations, p, drops by a high probability, 1 - a. It can be said

that the population mean is in the interval (ci, C2):

Probability {ci < p< C2 } = 1 - a

The interval (ci, C2) is called the confidence interval for the population mean, a is

called the significance level, and 100 (1 - a) is called the confidence level.

The confidence interval method uses the central limit theorem. This theorem

states that the sum of large number of independent observations from any distribution

tends to have a normal distribution. The 100(l-a)% confidence interval for an

experiment of less than 30 samples (i.e. observations) is given by the formula:

(x - t [i _ a/2; n - 1] s /Vn, x + t [i _ a/2; n - 1] s / Vn)

where:

x = is the sample mean,

s = the sample standard deviation,

n = the sample size.

t [1 - a/2; n - 1] = ^ie (1 ~ a/2)-quantile of a t-variate with n-1 degree of

freedom.

93

The interval is based on the fact that for samples from a normal population N (jli,
2 — I 2 2

c), (x - p) / (a - vn) has a N (0, 1) distribution and (n - 1) s / a has a chi-square

distribution with n - 1 degrees of freedom, and therefore, (x - p) / V(s2/n) has a t

distribution with n - 1 degrees of freedom.

There are two types of confidence interval methods: paired, and unpaired. The

former is used for evaluation when there is one-to-one correspondence between the tests

made on the compared systems; otherwise, the unpaired scheme is used. Our evaluation

uses the paired confidence interval method, as the two systems employ the same

paradigm of user-level software distributed shared memory, with the difference only in

the framework. Furthermore, the same benchmarks are used in the executions of the two

systems.

3.10.3 Comparing the Performance in Terms of Data Retrieval Rates from
the Viewpoint of System Modules

The separate executions of the two systems with the codes on different

workloads yield the results shown in table 3.1. The results have shown that with DIME-

II system, an application can retrieve more data from the shared memory comparing to

the old implementation of DIME-I. With DIME-II, data retrieval rate ranges between 5.3

Kilo Byte/ second and 26.3 Kilo Byte/ second, whereas, with DIME-I, it has a range of

1.7-2.7 KB/second. However, the performance chart of DIME-II (figure 3.13) shows

that the performance of the system deteriorates sharply as the number of the running

applications increases. Therefore, the next experiment is to find out the reason of such

undesirable scalability (section 3.10.4).

94

3.10.3.1 Summarizing and Evaluating the Results using Confidence Interval
Method

In this evaluation, the steps of the paired confidence interval method are literally

followed.

> The differences between the two systems are:

23.6 20.8 19.2 13.9 10.7 10.6 3.6

> Sample mean = 14.6

> Sample variance = 49.2

> Sample standard deviation = 7.0

> The 0.95-quantile of a t-variate with 6 degrees of freedom is 1.9.

> 90% Confidence interval for difference = 14.6±W(49.2/7)= 14.6± 2.65 x

1.94 = (9.459,19.74)

95

Workload DIME-I DIME-II

Workload 1 2.7 26.3

Workload2 2.5 23.4

Workload3 2.4 21.6

Workload4 2.3 16.3

Workload5 2.3 12.9

Workload6 2.0 12.6

Workload7 1.7 5.3

Table 3.1; The Performance in DIME-I and DIME-II Measured as Data Retrieval
_____________________ Rates (kilobvtes/second)_____________________

DIME-I
DIME-II

Workload

Figure 3.13; The Performances of DIME-II in Comparison with
DIME-I

96

According the paired confidence level method we can draw the conclusion that

with 90% confidence level DIME-II is better than DIME-I considering that the

performance is measured as data retrieval rates from the viewpoint of the system

modules. However, the results show that, unlike DIME-II, there is no great variation in

the rates using DIME-I system as the number of applications increases. Therefore,

DIME-I scales better than DIME-II.

3.10.4 The Time (in milliseconds) DIME-II Server spent in listening to
Messages from the Network

In order to find out the reason of the high variation in data retrieval rates in

DIME-II system, and based on the fact that the time of computation is far less than the

time of communication, the time that DIME-II-server spent on the socket listening and

waiting for messages from the network is roughly measured (table 3.2).

This experiment shows that DIME-II-server approximately spends 72%-94%

from the execution time listening to the network-depending on the state of the network,

which means it has few time to execute commands on the shared memory. Put in other

words, as the number of applications in the system increases the rates of data retrieval

decrease due to the fact that DIME-II-server always has the same few amount of time to

share out between the increased numbers of applications. In general, implicit waiting is

one of the factors that degrade the performance of parallel-processing systems [Lai A. et.

Workload Time (millisecond) Time%

Workload 1 238747 79.6%

Workload2 269753 89.9%

Workload3 282269 94.1%

Workload4 217572 72.5%

Workload5 243709 81.2%

Workloadb 274755 91.6%

Workload7 234964 78.3%

Table 3.2.: The Time DIME-II-server Spent Listening to Messages from the
Network

Although multithreading is used essentially to hide the latency of

communications in DIME-II DSM system, this experiment shows that as the size of the

system (i.e. the number of connected and running applications) increases, the increased

number of spawned threads leads to the appearance of the latency again and

consequently the undesirable scalability. Recall, in DIME-II system, DIME-II-server

spawns two threads upon registering an application to use the system; these two threads

are dedicated to respond to the requests of that application. Unfortunately, creating two

threads for every application in the system is inevitable in order to provide applications

with recent updates as they occurred on the server (i.e. to maintain consistency all over

the system), which makes the network overloaded with messages that carry updates. In

java-multithreaded systems, the behavior and throughput of threads can not be predicted,

even though we can arguably say that the workload of the threads that respond to

different applications in the system is the same. Though, as the size of the system

becomes large the likelihood of performance deterioration in DIME-II system becomes

unavoidable. Therefore, in order to improve the performance of DIME-II, another

98

technique is needed to reduce the negative effects of multithreading and boost the

scalability of the system. An enhancement technique that works alongside other

approaches and algorithms used in this system is presented in chapter four.

3.10.5 The Time (in milliseconds) an Application is blocked while performing
Read Operation on the Shared Memory

These experiments are for measuring the time that an application remains

blocked while performing read operation on the shared memory in terms of data areas

and buffers. In particular, read operation time is namely measured to verify whether the

new framework with the adoption of a non-locking model realizes the sought goal of

minimizing the time of data retrieval from the viewpoint of the applications in the

system.

The results showed that DIME-II provides data from the shared memory in a

time far less- and even negligible (less than a millisecond) - than its analogous DIME-I

(tables 3.3 & 3.4). Although DIME-I scales better than DIME-II, due to the locality of

reference in DIME-II and the data are retrieved from a local storage, DIME-II system

still provides data in less than a millisecond allowing applications to perform more read

operations on the shared space and to retrieve more data. Moreover, in DIME-II,

retrieving data from the shared memory takes less than 40% out of the total execution

time, whereas DIME-I data retrieval operations take about less than 80% from the

execution time (tables 3.5 & 3.6). Therefore, using DIME-II systems, an application is

allowed more time to perform its native tasks realizing the main objective of the new

framework.

99

Workload DIME-I DIME-II

Time Number o f

Commands

Time /

Command

Time Number o f

Commands

Time /

Command

Workloadl 143177 710 201.66 104191 6825596 0.02

Workload2 140791 672 209.51 107947 7024775 0.02

Workload3 139187 677 205.59 66391 3996488 0.02

Workload4 141740 701 202.34 47032 1810092 0.03

Workload5 134709 635 212.01 35840 1534828 0.02

Workload6 129535 592 218.93 29720 1228711 0.02

Workload7 119940 513 234.03 15150 376023 0.04

Table 3.3: The Time (milliseconds) an Application Remains Blocked while
Performing Read Operation on Data Areas

DIME-I Time/com

DIME-II
Time/com

Workload

Figure 3.14; The Time (milliseconds) an Application Remains Blocked

while Performing Read Operation on Data Areas

Workload DIME-I DIME-II

Time Number o f

Commands

Time /

Command

Time Number o f

Commands

Time /

Command

Workload 1 143119 710 201.58 2070 116181 0.02

Workload2 140418 672 208.95 1685 10379 0.16

Workload3 128808 642 200.53 1882 9599 0.20

Workload4 116730 624 186.99 1654 7221 0.23

Workload5 119638 608 196.64 1442 5742 0.25

Workload6 109724 543 202.01 1623 5561 0.29

Workload7 98175 467 210.14 918 2324 0.40

Table 3.4; The Time (milliseconds) an Application Remains Blocked while
Performing Read on Data Buffers.

-♦— DIME-I Time/com

■*— DIME-II Time/com

Workload

Figure 3.15; The Time (milliseconds) an Application Remains Blocked while
Performing Read on Data Buffers.

101

Workload DIME-I DIME-II

Workload 1 47.7% 34.7%

Workload2 46.9% 36.0%

Workload3 46.4% 22.1%

Workload4 47.2% 15.7%

Workload5 44.9% 11.9%

Workload6 43.2% 9.9%

Workload7 40.0% 5.1%

Table 3.5; The Time (in percentage) of Data retrieval Operations on Data Areas

60.00%
50.00%
40.00%

Time(%) 30.00%
DIM E-I

DIM E

Workload

Figure 3.16: The Time (in percentage) of Data Retrieval Operations on
Data Areas

102

Workload DIME-I DIME-II

Workload 1 47.7% 0.7%

Workload2 46.8% 0.6%

Workload3 42.9% 0.6%

Workload4 38.9% 0.6%

Workload5 39.9% 0.5%

Workload6 36.6% 0.5%

Workload7 32.7% 0.3%

Table 3.6; The Time (in percentage) of Data Retrieval Operations on Data Buffers

_ 60.00% -
£ 50.00% -
1 40.00% -
H 30.00% -
| 20.00% -
2 10.00% -

^ 0.00% -

y

Figure 3.17; The Time (in percentage) of Data Retrieval
Operations on Data Buffers

........... ■, .

!> J r v«^ y y y y\ J > v t> v jN v j>/ v > v / v / T v v
® A®

DIME-I
DIME-II

Workload

103

3.10.6 Conclusions in Bullets

1. The framework of DIME-II with the non-locking approach, locality of references,

and the relaxed consistency model minimizes the time of data retrieval from the

viewpoint of the application in the system.

2. In DIME-II, an application can have more time to execute its native tasks.

3. DIME-I scales better than DIME-II in the sense that its performance in terms of data

retrieval time does not change significantly.

4. DIME-II has less scalability due to the fact that DIME-II-server has to maintain

replicas of the data required by the applications and with increased number of

applications the server must maintain increased number of replicas which lead to the

great variation in the data retrieval rates in the system.

104

Chapter Four

PERFORMANCE OPTIMIZATION IN DISTRIBUTED

SHARED MEMORY SYSTEMS - HEURISTIC

ALGORITHM

Building distributed systems on network of workstations with DSM paradigm

has been proved as a viable alternative to the traditional message-passing paradigm. The

increasing demands of distributed applications require sufficiently high-performance

DSM algorithms. As mentioned in an earlier chapter, another research direction has been

launched, alongside developing new DSM algorithms, to investigate new techniques in

improving and enhancing the performance of DSM algorithms. Such techniques can be

called complementary techniques as they are used in conjunction with DSM algorithms.

This direction of research has presented a wide spectrum of techniques to optimize the

performance of distributed and networked systems at different levels of optimization.

Optimization levels range from client interface, through middleware and servers,

to the communication infrastructure. In these techniques a variety of criteria are

examined, including time, space and quality of service. Among these techniques are:

adaptive protocols that adjust to the memory access patterns in distributed applications

[Amza C. et. al 1999]; per-node multithreading [Mueller F. 1997]; relaxing consistency

definitions to match the needs of the distributed applications; load balancing...etc.

This chapter takes us to the broad world of performance optimization by

presenting some common strategies and techniques, besides, introducing a novel

heuristic algorithm for enhancing the performance of DSM systems. Generally speaking,

this algorithm reconfigures the system at start-up or run-time by adding up intermediate

servers to support the main server supplying the service to the currently connected

105

applications. More specifically, the algorithm optimizes the performance of DSM

systems by improving the system connectivity via reconfiguring the construction of the

system while preserving its backbone (i.e. the DSM algorithm and the consistency

model). This reconfiguration is based on the current state of the network which is

evaluated by calculating the round-trip times between different components of the

system. Therefore, with this algorithm, the organization of the network; in terms of its

size, topology and the current workload; has a great influence in the new improved

reconstruction of the network connectivity of DSM systems. It has to be mentioned that,

this algorithm aims, overall, at scaling up the overall performance of the system via

maximizing the data retrieval rate at application level.

4.1 Related Research

4.1.1 Load Sharing and Load Balancing Policies

In distributed systems, number of processors is utilised where preferably no

processor should remain idle while others are overloaded. To efficiently utilize the

power of computation provided by the computing environment in distributed systems,

many approaches and algorithms have been introduced to uniformly distribute the

workload over all processors. These approaches are generally categorised into two: load

sharing and load balancing. The purpose of load balancing, in general, is to divide the

work evenly among the processors; whereas, the purpose of load sharing is to ensure that

no processor remains idle when there are other heavily loaded processors in the system

[Karatza H et. al 2001].

4.1.1.1 Load Sharing Algorithms

To redistribute tasks between processors in order to ensure that no processor

remains idle, the load distribution activity is initiated in two different ways. With sender-

initiated algorithms, the activity is initiated when an over-loaded node (sender) attempts

to send task to another under-loaded node (receiver). On the other hand, receiver-

initiated algorithms trigger the activity when an under-loaded node (receiver) requests a

task from an over-loaded node (sender).

106

For load sharing, there are policies that use information about the average

behavior of the system and ignore the current state. Such policies are called static

policies. Policies that react to the system state are called adaptive or dynamic. The

function of dynamic policy is important in distributed systems as it is designed to

distribute the workload among processors and improve the overall performance at run­

time with the consideration of the current state of the system. Static policy is

characterised by its simplicity as it does not require the maintenance and the processing

of system state information. On the other hand, dynamic policies tend to be more

complex as they require information of the system’s current state when making transfer

decisions. Although they are associated with complexity, dynamic policy gives better

overall performance than the achievable by static policies [Karatza H et. al 2001].

Karatza H et. al 2002 studied the effect of different models of load sharing in the

performance of heterogeneous distributed systems. In heterogeneous distributed

systems, normally, processors operate at different speeds, therefore; jobs are expected to

be executed at different times. This particular study aimed at exhibiting the effect of

various models on the job performance of distributed systems where half of the total

number of the processors has double the speed of the others. Part of the jobs is dedicated

to fast processors, whereas the rest are generic and can be individually assigned to any

processor.

The models used in the experiment are: probabilistic, shortest queue, least

expected response time, and the migratory version of each one. With the probabilistic

model, dedicated jobs are dispatched randomly to fast processors, whereas generic jobs

are sent to slow processors all with equal probability. Jobs are dispatched in a First

Come First Served manner. For this model, the scheduler creates only a small amount of

overhead when generating random numbers. In the model probabilistic with migration,

the original probabilistic model was modified to include job migration. In this model,

when a fast processor becomes idle and generic jobs are waiting in the queues of slow

processors, a job migrates from the most heavily loaded slow processor to the idle fast

processor. This model employs receiver-initiated algorithm for activating load

distribution.

107

Shortest queue model assigns dedicated and generic tasks to the shortest queue of

fast and slow processors, respectively, This method requires knowledge regarding half

of the queues on job arrival. The modified version of this method, which is called

shortest queue with generic job migration, behaves the same way as the original one

with one difference of migrating generic jobs. The modified model migrates generic jobs

the same way as the model of probabilistic with generic job migration. On the other

hand, in least expected response time model, dedicated jobs join the shortest queue of

fast processors, while generic jobs are assigned to the slow/fast processor that offers the

least expected response time. This policy requires information about the queue lengths

of the processors as well as additional knowledge about the time dedicated jobs have

been waiting in a queue. Finally, the last model used in the comparative study was the

migratory version of the least expected response time model.

In these experiments, all migratory versions generated a non-trivial amount of

overhead as the scheduler requires additional load information to decide when a fast

processor becomes idle after a job departure. Additionally important, migratory versions

employ non-preemptive algorithm. That is, migratory models transfer only queued jobs,

as the jobs being executed are complex to migrate. The complexity of transferring

executing jobs is due to the fact that the transfer will involve the memory associated

with the migrated job. That does not ignore the fact that migration in itself is a complex

process, but migrating active process is much greater than migrating non-active process.

The experimental results showed that the migratory versions of each strategy

improved the performance of the generic jobs, due to the fact that when generic jobs

migrate they are served by fast processors and therefore, having shorter response time.

On the other hand, the delay time of dedicated jobs increases when they arrive at a fast

processor that is serving a generic job. The shortest queue strategy and its migratory

version exhibited better overall performance, in terms of mean response time of all jobs,

than all other models. Moreover, the advantage of the two policies becomes more

significant at high loads. Finally, the results proved that the shortest queue with generic

jobs migration is the best model when the performance and fairness of individual job

class are essential.

108

In [Karatza H et. al 2001] a new epoch load sharing strategy was presented. With

this policy, workload is uniformly distributed among workstations using job migration,

which takes place only at the end of predefined intervals called epochs. The scheduler

starts collecting information at the end of the epoch. The scheduler collects the

information about the status of all workstation queues, evaluates the mean of all queue

lengths and places processor queue length into increasing order in a table. After

collecting the information, jobs are transferred from the most heavily loaded processors

to the lightly loaded ones. This process continues until either all processors have queue

lengths equal to the mean or some of them differ at most by one job.

The aim of this model is to reduce the number of times that global system

information is needed to make allocation decision while obtaining good overall

performance. This strategy was expected to exhibit less overhead in terms of

information collection. The epoch algorithm, with different epoch sizes, was compared

with some of the previously described models, such as the migratory probabilistic and

shortest queue models. The comparison concluded that for all level of migration

overhead with different workloads, epoch model with different epoch sizes involved

much less overhead, in terms of collecting global system information, than the shortest

queue policy and the migratory probabilistic method. Also, the performance of epoch

strategy with small epoch sizes performed comparably to the performance of shortest

queue method.

4.1.1.2 Load Balancing Strategy

As mentioned earlier, this strategy keeps the workload on the processors in a

distributed system environment evenly distributed in order to utilize the available

computing power in the best possible way. The balancing problem arises from the fact

that in distributed shared memory environment there are processors with different speeds

that perform tasks to completion in different execution times. Therefore, some

processors can be under-loaded or even idle, while the rest of processors are flooded

with tasks, leading to imbalanced system execution.

109

A load balancing strategy is either centralised or distributed. Unlike distributed

strategies, centralised strategies suffer from bottleneck, and they are usually less reliable.

On the other hand, although they distribute the load among processors, distributed

algorithms may consume the network bandwidth by exchanging huge amount of

messages. The selection of the class of the algorithm depends on the underlying

architecture and the topology of the systems, as well as the inherent behavior of the

parallel applications. Also, there are algorithms that divide the load appropriately to each

processor according to prior information about the application. Such algorithms are

called static. However, the performance of static algorithm is not guaranteed, especially,

when computations are varying unpredictably from time to time. On the contrary,

dynamic algorithms assume no prior information, but instead they adapt to the current

state of the system. Dynamic algorithms outperform the static ones when fluctuations in

execution of applications are modest. But, no dynamic algorithm can effectively offer

fast response to frequent variation, due to the inherent overhead of information

collection.

The problem of load imbalance became more observable after the introduction of

multithreading programming, as load imbalance is a natural inherent from multithreaded

processes. In multithreaded system, a number of threads, each of which is designated to

perform a piece of computation of a parallel program, will usually be assigned to every

processor. Although multithreading aims at providing efficient performance, thread

assignment to processors can provoke load imbalance when computation is not

decomposed appropriately and accurately [Lai A. et. al 1992]. In other words,

multithreaded programming suffers from load imbalance, which happens during

execution when there is a difficulty in distributing the balance statically or dynamically.

Lai et. al 1992 presented a method that it is dedicated to multi threaded DSM systems for

tackling this problem. The method called Dependence-Driven Load Balancing (DDLB).

This algorithm adopts distributed and dynamic methods. The motive behind designing

this method is to increase the processor utilization of a system by redistributing the load

among processors, besides, optimizing the average response time of a system.

110

DDLB was implemented in a DSM system called cohesion [Shieh K et. al 1995].

The system uses release consistency model with barriers for achieving consistency in the

system. The model was embedded in the thread control system of cohesion. The thread

control system is responsible of scheduling and managing the threads in cohesion

system. DDLB model considers three common policies: transfer policy, location policy

and selection policy. The first one is to decide the best instant during the execution

course to initiate a load balancing activity. DDLB initiates the activity when the

processor becomes idle, specifically, when all threads on the same node have arrived at

the barrier before those on other processors.

The second policy, location policy, decides the destination of a thread. In DDLB,

the under-loaded processor polls the overloaded ones. For instance, when a processor

becomes idle, it contacts the overloaded processors, and a thread is migrated from the

first one that responds. The polling phase stops when the load within each phase is

balanced and the states of all processors in the system become under-loaded. On the

other hand, selection policy is used to select the appropriate thread to migrate.

In DDLB, the dependency between threads is considered in the selection stage.

The policy considers the relationships (i.e. threads that share the same piece of

information) between pairs of threads in the same nodes, which is called intra­

dependency, and different nodes, called inter-dependency. The importance of this

consideration is that false sharing can be reduced to the extreme level if the migrated

thread has low degree of inter-dependency and high degree of intra-dependency. In other

words, if the migrated thread has high intra-dependency, it becomes inter-dependency

after migration and then causes false sharing. As it can be predicted from the previous

discussion, a thread can migrate from one node to another continuously and therefore,

the system is liable to thrashing situation. To overcome the problem, DDLB limits the

number of migrations of a thread. If a thread exceeds this number, the system does not

allow it to be migrated any more, even though the system is out of balance. However,

other threads can be selected for load balancing. Experimental results on the DDLB

policy concluded that the inclusion of threads dependence in the selection policy is

significant and necessary.

I l l

4.1.2 Communication Minimization Strategies

As mentioned in the previous sections, load sharing and balancing can be

performed via thread migration from one node to another to achieve the sought

improvement in DSM systems. For example, if threads on certain processors share data

on a specific page, sharing traffic can only be eliminated by placing these threads on the

same node. However, to recall, migrating thread to another node may adversely

deteriorate the performance of DSM system if the thread has high inra-dependency.

Therefore, attention has to be paid in remapping threads at run-time. Creating good

mapping of threads to nodes requires several distinct steps [Thitikamol K. et. al 1999].

First, load distribution of a given mapping must be evaluated, which generally requires a

way of estimating threads’ computational capacities. This distribution must take into

account both parallelism and load balance of the system. On the other hand, the

communication cost of thread mapping has to be evaluated in order to reduce the

likelihood of incorrect mapping that result in an increasing communication in the

system.

The authors believed that, in general, parallelism maximization and

communication minimization should be considered together. For instance, a system of

four threads; Pi, P2, P3 and P4 ; that are distributed across the network every two threads

011 one node (Pi and P2 on one node, P3 and P4 on another). Seemingly, if each thread

has the same amount of work, this system is balanced. However, if each thread

communicates with the neighbors (i.e. Pi communicates with P3, and P2 communicates

with P4), the communication is clearly not optimal. In other words, the system is

balanced at the expense of high communication overhead. For better performance,

threads can be remapped by placing Pi and P3 on one node, and P2 and P4 on the other.

Therefore, the performance can be improved by reducing the communication without

affecting the load balance.

An approach presented in that paper aimed at maximizing parallelism,

minimizing load imbalance and also minimizing communication. To achieve this

complicated objective, three distinct tasks were considered in the designing stage. The

112

first one was to determine the number of nodes that will result in the greatest speedup,

which can be done by the help of an initial guess provided by the user at startup time.

Throughout the execution, processor efficiencies are measured by calculating the

proportion of time spent waiting on communication and synchronization. These

efficiencies are compared with two certain thresholds. According to the chosen

thresholds a decision can be made to run the application on fewer nodes or more. The

second task was to minimize load imbalance by adjusting the number of threads per

node. The last task was to minimize communication by taking sharing into account when

mapping threads to node.

Although addressing all these tasks simultaneously can make the complexity of

the required algorithm unmanageable, they all had to be considered because they are all

interrelated. Since the amount of communication can affect an application’s efficiency,

the mapping of threads to nodes could affect the number of nodes of which the best

performance is achieved. The approach uses the number of pages shared across node

boundaries as a predictor of the amount of communication that a mapping of threads to

nodes will produce. And the correlation of a pair of threads was defined as the total of

number of pages shared between the threads. Also, the cost of a given mapping of

threads to nodes is defined as the sum total of all threads-pair correlations for which the

component threads are on distinct nodes. The overall evaluation is that the approach

exhibited promising results toward achieving minimised communication while obtaining

good overall performance with thread migration.

4.2 New Optimization Strategy - Round-Trip Time-based Adaptive

Algorithm

DIME-II distributed shared memory system, presented in the previous chapter,

adopts a framework of two levels of storage space (figure 4.1). The higher level of

storage, called the original memory, contains the original copies of the shared memory

of the system and controlled by the DIME-II-server. The lower level of storage space,

called the intermediate memory, keeps copies of part of the original memory needed by

the creating application. This intermediate memory resides on the machine where that

113

the creating application is running and controlled by a DIME-II-client. DIME-II-client

acts as a server at this level of control as it keeps the intermediate memory consistent

with the original memory, and at the same time it provides services to its application.

Reading and writing operations are performed on the shared memory in DIME-II system

according to the sequential consistency variant model purposely designed for this

framework (refer to section 3.7).

Furthermore, in this system, each application communicates with the system via

its DIME-II-client, and the DIME-II-client takes the burden of sending/receiving updates

to/from the main DIME-II-server. It can be concluded that the structure of the DIME-II

system is flexible in the sense that DIME-II-clients can take the service from other

servers resides in between DIME-II-clients and the main server, as long as these

intermediate servers maintain tunnels for communication with the main server. Such

flexibility is an important feature to implement the idea of the strategy.

DIME-II -server

Original Memory

DIME-II-client mDIME-II-client 1 DIME-II-client 2
In term edia te M emory,In term edia te M em ory 2In term edia te M em oryt

Figure 4.1: DIME-IPs Levels of Storage Space

The experiments in chapter three (section 3.10) have proven that, with this

framework, DIME-II system outperforms DIME-I DSM system, as it allows user

applications to retrieve more data from the system. However, DIME-II does not scale

quite well - without reconfiguration - as the number of applications increases. An

114

experiment in section 3.10.4, have shown that as the number of applications increases,

the load on the main server of DIME-II system increases leading to significant

performance deterioration.

The round-trip time-based algorithm scales up the performance of the system by

adjusting to the demands of the applications and to the current state of the network. This

algorithm aims at optimizing the performance of DSM systems by reconfiguring the

system connectivity (i.e. the communication paths connecting different parts of the

system) to adjust to the current state of the network while preserving the main structure

of the system. This reconfiguration can be achieved by initiating another level of service

that can supply the running applications with the service, rather than having these

applications take the service directly from the main server, which alleviates the load on

the main DIME-II-server. In the presence of intermediate level of control, the

communication paths of applications can be diverted from the main server and

connected to nearby intermediate servers. The location of an intermediate server can be

identified according to round-trip times between different parts of the system allowing

the system to adjust to the current state of the system. Having several levels of control

also allows more applications to be added to the system while maintaining good

performance (i.e. good scalability) [Khalil M et al, 2004].

The rest of this chapter presents different implementations for the strategy:

> Statically-initiated Intermediate Servers (SIS), which implements the

strategy at start-up time.

> Dynamically-initiated Intermediate Servers (DIS), which implements the

strategy at run-time when there are certain number of applications (i.e. three

applications) are connected to the main server.

> Heuristic algorithm that implements the strategy at run-time by

reconfiguring the system connectivity regardless of the number of

connected applications.

115

4.2.1 Implementing the Strategy

The extra level of control or service consists of number of intermediate servers

and memories. Each intermediate server supplies the service to some of the applications

that are connected to the system, and therefore, the memory associated with it will

contain only the data needed by these applications. Therefore, as it is the case at the

level of DIME-II-client, even this lower level of the structure of the shared memory of

DIME-II system will contain only part of the original memory.

When it receives a connection request an intermediate server registers the name

of the new application in the list of currently connected applications (i.e. acts the same

as the DIME-II-server upon accepting connection requests). If the request is the first

one, the intermediate server sends a message to register its name in the DIME-II-server

as an active server. Each intermediate server has a unique distinct name. This name is

needed to be registered in the main server to ensure that the intermediate server gets the

updates as they occur in the main server.

When an item is created for the first time in an intermediate server, it sends a

creation command to the DIME-II-server, which in turn registers the name of the

intermediate server in the list of the applications that have replica of the that particular

item. The DIME-II-server registers the name of intermediate server as a copy holder for

the shared item instead of the application that actually issued the command in the first

place. In fact, at the higher level of control, DIME-II-server does not consider the

applications at the lower level, but their intermediate server instead. DIME-II-server

deals with active intermediate servers as normal applications, thus, when DIME-II-

server receives, for instance, an update for a shared item in the shared memory, it

disseminates that update to the intermediate servers that have replica of the updated

item.

Intermediate servers respond to operation requests on the shared memory and

keep the intermediate storage consistent with the main storage. Intermediate servers

respond to requests the same way as DIME-II-clients, only with minor differences. More

specifically, when an intermediate server receives a write command it forwards it to the

116

main server without performing it on the intermediate memory, regardless of the type of

the written item (i.e. data area or buffer). However, it performs updates received from

the main server only. Therefore, although several intermediate servers may take place in

the system, the main server (i.e. DIME-II server) still operates as the only sequencer for

all write operations in the system, complying with first constraint of the employed

consistency model. This decision is very important in implementing this strategy, as it

avoids the likelihood of inconsistency in the presence of intermediate servers within the

system. Intermediate servers have a major difference from DIME-II-clients in providing

services to more than one application simultaneously.

The location of intermediate servers lies between DIME-II-server and DIME-II-

clients (figure 4.2). That gives three levels of memory structure in DIME-II of multi­

level storage spaces. 1. The main (original) memory, which is controlled by DIME-II-

server. 2. Intermediate memories (level 1) controlled by intermediate servers. 3.

Intermediate memories (level 2), which are under the control of DIME-II-clients.

DIME-II-server

Original Memory

Intermediate serverl Intermediate server n
Intermediate Memory lj

Level (1)
j Intermediate Memory 11

Level (1)

DIME-II-client 1 DIME-II-client i DIME-II-client mDIME-II-client i+1
In term edia te M emory]

Level (2)
In term edia te M emory,

Level (2)
In term edia te M em ory

Level (2)
Intermediate Memory i

Level (2)

Figure 4.2; Levels of Storage Space in DIME-
II with Intermediate Servers

117

As previously mentioned, to implement this strategy, another crucial decision has

to be taken carefully of when to initiate this level and where to place the new

intermediate server and memory,

4.3.1 Statically-initiated Intermediate Servers (SIS) - Start-up Time
Initiation

As the aim is the improvement of the performance of distributed shared memory

systems by reducing the overload at the main server, an intermediate server and an

associated memory can be placed in a location nearby specific applications. For

instance, if the main server resides in a far-off location, remote applications can have

intermediate server, which is connected to the main server, in their LAN. Remote

applications can get the service of DIME-II DSM system via an intermediate server

associated with a storage space. The intermediate server communicates with the main

server (i.e. DIME-II server) on behalf of the remote applications. Therefore, DIME-II-

server will give the service to only one application (i.e. the intermediate server) instead

of several distant applications. These distant applications are represented in the DIME-

II-server by the intermediate server, and therefore DIME-II-server will have less

overhead. Such servers are called statically-initiated intermediate servers (SIS), because

they are initiated at setup time rather than run time.

To examine the impact of having intermediate level of control on the

performance of DIME-II system, experiments have been launched to compare the

performance of the system with and without statically-initiated intermediate servers.

Again, applications that read and write continuously on the DIME-II system are used.

Those applications are placed on the same LAN with the intermediate server, whereas

DIME-II server is located on a machine that was connected with the applications’ LAN

by five switches. The user applications are executed on Windows2000-based machines,

while the servers are executed on Unix-based machines. The experiments have been

executed with different workloads (Table 4.1). Each workload executes only one writer

and different number of readers. Here, workload 1 means one reader and one writer, and

workload 2 means two readers and one writer, and so on.

118

The results show that, having a static intermediate server does not improve the

performance when there are only two applications in the system (Table 4.1). However,

the impact of the presence of the intermediate control level becomes observable as the

number of application increases (Figure 4.3). Therefore, statically-initiated intermediate

servers can significantly improve the performance of DSM system even when the

number of applications is not large. Such static servers can be used more effectively

when having, for instance, DSM system that is distributed in a very wide area (i.e.

different cities or may be countries) (figure 4.4).

Workload Data retrieval

rates without

SIS in KB/sec

Data retrieval

rates with SIS

in KB/sec

Workload 1 134 124

Workload2 112 121

Workload3 80 118

Workload4 71 102

Worldoad5 58 89

Table 4.1: TJle Performances of DIME-II with and without Static Intermediate
Server (SIS) Measured as Data Retrieval Rates (kilobvtes/second)

119

160

□ Without SIS
■ With SIS

Workloadl Workload2 Workload3 Workload4 Workload5

Workload

Figure 4.3; The Performance of DIME-II System with and without

Statically-initiated Intermediates Servers

120

DIME-IIDIME-II-Server
Original Storage

Data
Areas

Buffers

Network

_D lM £ .-U * U ej)U _
Intennediate Storage

_ D tM £ = U .-d k a tJ _
Intennediate Storage

User
Application i

User
Application 1

DIME-IIIntennediate DIME-II-Serverl

Intermediate Storage

Data
Areas

Buffers

W AN

Network

-RJWEJteiiem L _DiM>il-£'isaU+J_
lii lrnn -ttiiilf Smrai'r.

DIME-IIIntennediate DIME-II-Server

Intermediate Storage

Data
Areas

Buffers

Network

_DJNJE-ll<J.i<yiin _
liilijiiaaliuitainniec . ,

. dimp-il-c.1 is of i+J _

Application j+ 1

Figure 4.4; DIMiE-II Architecture with Intermediate Servers

121

4.3.1 Dynamically-initiated Intermediate Servers (DIS) - Run-time Initiation

Although the previous implementation of the algorithm has achieved a

satisfactory improvement in the performance DIME-II DSM system, this

implementation is not capable of adjusting the system to the current state of the network

due to it is applicability only at set-up time (i.e. before the execution of the remote

applications). Another important factor to consider is that, to achieve the required

performance improvement in DSM systems with the static scheme, the administrator of

the system must have a prior knowledge of the location of the remote applications in

order to determine the location of the intermediate server.

Nevertheless, the encouraging results from the implementation of SIS within

DIME-II system persuaded us to take the idea one step further - to examine the benefits

of initiating intermediate servers at run time and without user’s intervention. The user

intervention in the SIS implementation is represented by the identification of the

location of intermediate servers by the administrator prior executing remote applications.

In this section we present an algorithm that can initiate intermediate servers dynamically

and when the system has three applications, as we have noticed that the DIME-II system

starts to give an undesirable performance with more than three applications (chapter

three, section 3.10.3).

In DIS implementation, when the DIME-II-server is supplying the service to

three applications, it can direct any further connection requests from new applications to

get the service from the nearest intermediate server in order to reduce the load on the

main server. In this algorithm, each DIME-II-client in the system has an embedded

intermediate server that is ready to provide the service to the requesting applications.

DIME-II-server keeps records of the available intermediate servers; it gets the IP address

and the port number where an embedded server is listening when it receives a

connection request. Hence, in the absence of any static intermediate servers, there will

be intermediate servers of number equals to the number of the applications that are

currently connected to the system.

122

When it receives a connection request from an application, DIME-II-server sends

message to that application to get the service from an available intermediate server. This

message contains IP addresses and port numbers of all intermediate servers in the

system. The application, via its DIME-II-client, sends dummy messages to the

intermediate servers to calculate the round-trip time (RTT) between the application and

each of the servers. Assuming that the server of the shortest RTT is the nearest one, the

application can take the service from the intermediate server of the shortest RTT. This is

based on the results of the evaluation of SIS servers, that the performance is much better

when an application gets the service from a nearby intermediate server. Such servers are

called dynamically-intermediate servers (DIS) as they are initiated at run time.

To examine the effectiveness of the algorithm, the same benchmark of the

previous experiments is used. This time workload 1 contains 4 applications, five

applications in workload 2, and so on (Table 4.2). The results have shown that the

algorithm performs very well regardless of the workload. Therefore, initiating

intermediate servers that are embedded within DIME-II-client code is a practical means

to produce an improved performance in DIME-II DSM system (figure 4.5), especially

when the main server is overloaded with applications requests (i.e. the overhead in this

evaluation is measured by the number of applications where DIME-II system

performance degrades). Furthermore, it has been proved that round trip times can be

used to identify the location of the intermediate server, where an application is preferred

to get the service from. Figure 4.6 shows some of the architectures of DIME-II system

produced by the algorithm during the experiments, two are without DIS (figure 4.6a,

4.6b), and the rest are with DISs.

123

Workload Data retrieval

rates without DIS

in KB/sec

Data retrieval

rates with DIS in

KB/sec

Workload 1 87 104

Workload2 70 99

Workload3 57 85

Workload4 50 74

Table 4.2; The Performances of DIME-II with and without Dynamic Intermediate
Servers (DIS) Measured as Data Retrieval Rates (kilohvtes/second)

□ Without DIS
■ With DIS

Workload 1 Workload2 Workload3 WorkIoad4

Workload

Figure 4.5: The Performances of DIME-II with and without
Dynamic Intermediate Servers (DIS)

124

This section has proved that having dynamically-initiated servers can provide the

distributed system with a better performance; however, the DIS strategy is limited to

redirecting only newly connected applications. Besides, it still has a user intervention of

specifying the maximum number of applications that are allowed to get a direct service

from the main server. On the light of that, this strategy can be extended once more, to

allow the system to reconfigure its own structural design by adding number of

intermediate servers and redirecting the connected applications to get the service from

the available servers. Thus, the system is allowed to decide, solely, how many

applications are permitted to get the service from the main server. Again, this decision

depends on the current state of the network and the system connectivity.

It is always difficult to reconfigure DSM systems at run time to scale up the

system, as it usually involves high software and communication overhead. However,

having such algorithm is always an attractive solution, as the system can be monitored

all the time and reconfigured when certain overhead is reached. Thus, it provides the

using system a better scalability and, of course, an optimised performance. It has to be

emphasised that, algorithm is ought to be simple yet efficient to avoid the inherent

overhead, which is likely to adversely degrade the performance.

125

DIME-II
Server

DIME-II
Server

Application
No 1

Application
No 5

Application
No 1

Application
No 4

Figure 4.6a: Data Retrieval
Rate o f 87 Kbvtes/sec

Figure 4.6b: Data Retrieval
Rate o f 70 Kbvtes/sec

DIME-II
Server

Application
No I

Application No 2

« d i s ;
DIME-II
Server

Application
No 1

Application No 2
s'* "■ \

I DIS .

Figure 4.6c: Data Retrieval
Rate o f 104 Kbvtes/sec

Application
No 3

Application
No 4

Application
No 4

Application
No 3

Application
No 5

Figure 4.6d: Data Retrieval
Rate o f 99 Kbvtes/sec

Figure 4.6: Some af the Architectures of DIME-II
Producedduriiig the Experiments

126

"tr

I

4

,1

4.3.2. Heuristic Algorithm for Optimised DSM Systems

Having potential servers readily available for supplying services to user

applications on demand, can be exploited to reconfigure the system at run time. When

DIME-II-server reaches certain overhead, it can create an intermediate level of control to

scale up the system and maintain the desired performance. Before designing the

algorithm, number of experiments has been carried out to examine the performance of

different architectures of the DIME-II system with several intennediate servers. Figures

4.7, 4.8 and 4.9 present different architectures of DIME-II system with intermediate

servers, which their locations are identified at the set up time of the experiments (not

dynamically). It can be seen that, regardless of the architecture, DIME-II system has

better performance with intermediate servers. In terms of data retrieval rate, the

performance of DIME-II system can be increased by approximately 20%, as in 4.7d, and

by about 43%, as in 4.8d, and by 87%, as in 4.9c. Bear in mind that, the architectures

used in the experiments are only few instances from the possible wide range of

architectures.

Therefore, having an algorithm capable of adjusting DSM systems to the current

state of the network at run time by adding up intermediate level of control and

reconfiguring the system connectivity can effectively improve the performance.

However, such algorithm should be simple, as much as possible, to avoid high software

and communication overhead, which is likely to adversely degrade the performance.

This requirement has been satisfied in the adaptive algorithm as we will see from the

experiments later in this section. The rest of the chapter gives a detailed description of

the algorithm and evaluates it.

127

DIME-II
Server

DIS

Appl

DIS

Figure 4.7a: Data Retrieval
Rate of 72 Kbvtes/sec

DIME-II
Server

DISDIS

App4

DISDIS

Figure 4.7c: Data Retrieval
Rate of 80 Kbvtes/sec

DISDIS

Appl

DIS

DIS

Figure 4.7b: Data Retrieval
Rate of 72 Kbvtes/sec

Appl

DIS

DIS

App4

DIS

Figure 4.7d: Data Retrieval
Rate of 87 Kbvtes/sec

Figure 4.7; Different Structures of DIME-II with
Intermediate Servers (4 applications)

128

DIME-II
Server

DIME-II
Server

A ppl
Appl App6

DIS
DIS DIS

Figure 4.8a: Data Retrieval
Rate of 60 Kbvtes/sec

App6

DIS DIS

Figure 4.8b: Data Retrieval
Rate of 81 Kbvtes/sec

DIME-II
Server

App2
A ppl

DISDIS

A|ip4 AppS

Figure 4.8c: Data Retrieval
Rate of 79 Kbvtes/sec

App2Appl

DISDIS

App4

Figure 4.8d: Data Retrieval
Rate of 86 Kbvtes/sec

App3App2A ppl

DISDISDIS
DIME-II

Server

App3App2Appl

DIS
DIS DIS

Figure 4.8e: Data Retrieval
Rate of 75 Kbvtes/sec AppsApp4

Figure 4.8f: Data Retrieval
Rate of 76 Kbvtes/sec

Figure 4,8: Different Structures of DIME-II
with Intermediate Servers (6 applications)

129

DIME-II
Server

A ppl
A ppl App7

DIS
DIS DIS

Figure 4.9a: Data Retrieval
Rate of 47 Kbvles/sec

App2 App7

DIS DIS

Figure 4.9b: Data Retrieval
Rate of 77 Kbvtes/sec

DIME-II
Server

DISDIS

DIME-II
Server

Figure 4.9c: Data Retrieval
Rate of 88 Kbvtes/sec

App2Appl

DISDIS

Aj>I>4Apjrt

DIME-II
Server

Figure 4.9d: Data Retrieval
Rate of 83 Kbvtes/secApp3App2

DISDIS DIS

App2Appl

DISDIS DIS

Figure 4.9e: Data Retrieval
Rate of 70 Kbvtes/sec

Figure 4.9f: Data Retrieval
Rate of 75 Kbvtes/sec

Figure 4.9: Different Structures of DIME-II
with Intermediate Servers (7 applications)

130

To reconfigure the system at run time, DIME-II-server starts contacting the

running applications one after another for reconfiguration by issuing reconfiguration

messages. This message contains the IP addresses and the port numbers of the potential

intermediate servers in the system. When an application receives this message, it

identifies the location of the nearest intermediate server using RTTs as previously

descried. Afterward, the application and its embedded intermediate server redirect their

communication channel to take the service from the identified server. DIME-II-server

does not issue another reconfiguration message until it is acknowledged that the

application has redirected to another server. This acknowledgement is sent by the

intermediate server chosen by the redirected application for service provision. When it is

acknowledged, the name of the redirected application and its intermediate server will be

removed from the list of applications sand servers in DIME-II-server, as they will not be

available at this level of control any more. And therefore, the address of the redirected

server will not be included in further reconfiguration messages. Furthermore, the

application associated with DIME-II-client where the intermediate is running, will be

redirected to take the service from the local intermediate server instead of the DIME-II-

server, and therefore, its name will also be removed from the list of DIME-II-server as

there is no need to send message to it to reconfigure.

During the execution of the algorithm, the system can continue running without

any disruption to the executing applications allowing the overlapping of the

reconfiguration process and the ongoing computations. Therefore, the impact of the

reconfiguration process is reduced to its minimal. With the usual benchmark used

throughout the thesis, DIME-II system has been examined with and without the

algorithm with different sizes (i.e. the number of applications) as illustrated by figures

4.10, 4.11, 4.12, and 4.13. The architectures appeared in the mentioned figures represent

the different structures for DIME-II DSM system produced by the algorithm at run-time.

Although the algorithm has produced a limited number of architectures during

the course of the experiments, the round-trip time-based adaptive algorithm has shown a

significant success in reconfiguring the system connectivity at run time and achieving

better performance every time the system is executed, that is regardless of the produced

131

architecture. I have to mention that, the variation of the produced data retrieval rates; for

example, with 4 applications the rate is 134 Kbytes/sec in figure 4.10, whereas in figure

4.7 the rate is 72Kbytes/sec; is due to execution of the experiments at different times of

different network loads during the day.

Although it may not produce the architecture in which the system can have the

optimal performance; for example, when there are 6 applications in the system, with

intermediate servers the performance can be improved by about 43% (figure 4.8),

whereas with the algorithm the performance is improved by only 13%; the algorithm

still gives an optimised performance without disturbing the execution of the system.

Furthermore, due to the simplicity and the non-disruptive behavior of the algorithm, the

duration of the reconfiguration process has not exceeded 50 seconds in the worse case

(i.e. when having 10 applications). The duration of the process varies due to the state of

the network and the unpredicted behavior of threads in java programming language.

Another reason behind the success of the algorithm is the overlapping of reconfiguration

process and the ongoing computations.

132

DIME-II
Server

r >, r n
Appl App4

+ " \
(d is ; v d is ;

Figure 4 .10a: Data Retrieval
Rate of 135 Kbvtes/sec

App2

DIS

DIME-II
Server

DIS '

U

DIME-II
Server

Figure 4.10b: Data Retrieval
Rate of 168 Kbvtes/sec

...
r ' i

A ppl App3

{ DIS ' (D is ;

r / \ V
. V T J

App4

DIS)

Figure 4.10c: Data Retrieval
Rate of 156 Kbvtes/sec

Figure 4.10; Different Structures of DIME-II with Intermediate
Servers Produced bv the Adaptive Algorithm (4 applications)

133

Appl

1' ' \
DIS ?

AppS
- N

(d is ;

Figure 4.1 la: Data Retrieval
Rate of 88 Kbvtes/sec

A ppl

DIS

App3 App4

DIME-II
Server

Appl

App2

DIS *
v -■— ' y

AppS

DIS)

Figure 4.1 lb: Data Retrieval
Rate of 137 Kbytes/sec

App2

(d is ;

AppS

Figure 4.1 lc: Data Retrieval
Rate of 124 Kbvtes/sec

Figure 4,11: Different Structures of DIME-II with Intermediate
Servers Produced by the Adaptive Algorithm (5 applications)

134

DIME-II
Server

A ppl

DIS

App6

DIS

Figure 4.12a: Data Retrieval
Rale of 90 Kbvtes/sec

App6

DIS

App2

DIS

Appl

DIS

Figure 4 .12b: Data Retrieval
Rate of 102 Kbvtes/sec

App5

App2

DIS

Appl

DIS

Figure 4 .12c: Data Retrieval
Rate of 97 Kbvtes/sec

Figure; 4.12: Different Structures of DIME-II with Intermediate
Servers Produced bv the Adaptive Algorithm (6 applications)

DIM E-II
Server

DIME-II
Server

Figure 4.13a: Data Retrieval
Rate of 44 Kbvtes/sec

ApplO

/ ' ' '
(d i s ;

Figure 4 .13b: Data Retrieval
Rate of 59 Kbvtes/sec

DIME-II
Server

App3Appl

DISDISDISDIS

ApplOAppSApp6 Appl

Figure 4.13c: Data Retrieval Rate
of 58 Kbvtes/sec

Figure: 4.13: Different Structures of DIME-II with Intermediate
Servers Produced by the Adaptive Algorithm (10 applications)

136

Chapter Five

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

Distributed shared memory (DSM) paradigm provides an illusion of one non­

physical shared memory on a network of workstations where shared data exist in

different address spaces. In this thesis, we have provided an extensive study for the

concept of DSM paradigm, its design issues, levels of implementation, and we have also

identified some improvement techniques that are used to bridge the performance gap

between DSM systems and message-passing systems. The study has focused on

software-oriented DSM systems as they provide a viable solution for building fast

computing environments for parallel applications on the commodity workstations

without incurring the cost of additional hardware. Also, software support for DSM is

generally more flexible and easy to program than hardware-oriented counterparts, and it

enables better tailoring of the consistency mechanisms according to the data usage

patterns and the application’s behaviour. We have also concluded that the degree of

considering the design issues of DSM systems varies from one implementation to

another according to the nature of the distributed application, and can significantly affect

the performance of the produced framework.

In this thesis we have achieved the two main objective of the project. First, we

have designed, developed and implemented a distributed shared memory framework that

employs a partially-replicated non-locking DSM approach to minimize data retrieval

rates from the viewpoint of the distributed applications that use the framework. This

method allows an application in a distributed environment to perform read/write

operations on the shared memory in its proximity in a relatively short time allowing it

more time for performing its native tasks. Secondly, we have developed a flexible

architecture for the framework to allow the system to reconfigure its communication

paths in order to improve and optimize the performance of the system.

137

In the process of building the framework we have accomplished the following:

> Categorizing DSM systems into locking and non-locking classes.

> Developing a partially-replicated non-locking algorithm for prototyping

the new framework.

> Developing a relaxed variant of the sequential consistency model

designed specifically for maintaining consistent memory view in the

framework.

> Designing and implementing a middleware-level, multicast-based

algorithm for data and messages exchange to reliably disseminate updates

to different copies of the shared memory throughout the system.

One of the main contributions of this study is the categorization of distributed

shared memory systems into two groups: locking and non-locking DSM systems. This

categorization is based on the fact that some of the consistency models -used by

distributed systems to ensure consistent view of the shared memory- explicitly use

synchronization mechanisms such as Barriers and Locks, whereas the rest are not

characterised by this feature. In non-locking algorithms, operations are considered as

atomic processes, and performed indivisibly. We have concluded that, the use of

synchronization mechanisms can result in poor performance, which encourages us to

avoid explicit use of such mechanisms in our system, and therefore the developed

framework is categorised as a non-locking DSM prototype.

On the basis of these findings, we have developed a system that employs a non­

locking approach as well as other well-known techniques such as multithreading and

data replication to provide an optimised performance. This system is called DIME-II as

it is a revised version of DIME DSM system. DIME-II system is implemented at user

level which does not require any changes in the lower levels of the system of the

machine (compiler and operating system). We have integrated number of improvement

techniques in the framework aiming at allowing the applications to have more time to

perform their native tasks via minimizing the data retrieval rates within the system. User

applications’ execution time is very often wasted in network communication. We have

138

assumed that the speed of data processing is greater than the speed of exchanging data

and messages over the network.

To maintain consistency in the physically distributed shared memory of the

framework, we have defined a consistency model. This model is designed specifically to

support the two types of data structures that comprise the shared memory in the traffic

system, and it has a flavor of sequential model as it is the most intuitive definition for

programmers. Unlike sequential consistency, the presented consistency definition is

advantageous in such a way that it supports the concepts of locality of references and

multi-reading/multi-writing, which are used in the framework.

In the course of building the framework, we have developed a communication

protocol to allow data and messages exchange between different parts of the system.

This protocol, called DIME-II Data Transfer Protocol (DDTP), is a middleware-level

protocol that disseminates updates only to the applications that have replicas of the

updated shared data, reducing the number of messages exchanged in the system and

therefore saving network resources. The main feature of this proprietary protocol is that

it is built on top of the TCP/IP requiring no modifications in the underlying

communication primitives.

We have exploited the potential of per-node multithreading when implementing

the framework in order to enhance the functionality of the produced system by hiding

the communication latencies by overlapping processes of the system. To evaluate and

analyze the performance of the DIME-II DSM system in comparison with the old

DIME-I system, we have used experimental studies. Experimental results have shown

significant improvement in the DIME-II system in terms of minimizing the time of data

retrieval, from the viewpoint of the applications of the system. However, the new

framework does not scale quite well due to the high overhead at the server side of the

system. However, the flexible architecture of the framework of DIME-II allows system

reconfiguration to improve the scalability of the system and optimize the performance.

To overcome the undesirable scalability of the DIME-II system, we have

developed a novel heuristic algorithm. This strategy optimizes the performance of DSM

139

systems via reconfiguring the system connectivity while preserving its backbone and

without disturbing the execution of the running applications. The state of the network is

evaluated by calculating round-trip times between different components of the system.

This non-disruptive algorithm reconfigures the communication paths of the system at

run-time by inserting an intermediate level of control and redirects applications that are

connected to the main server to get the service from this level of control in order to

alleviate the overhead on the main server. In this heuristic algorithm, applications are,

individually, allowed to identify the location of the nearest intermediate server to take

service from. This location identification is accomplished by calculating the round-trip

times (RTT) between each application and all available intermediate servers, and the

server with the shortest RTT is chosen to supply that application with the service.

Therefore, the structure of the system produced by the algorithm depends on the current

state of the system networking.

Apparently, the reconfiguration process adds an extra software and

communication overheads to the system, in terms of exchanging dummy messages

between different extremes of the system for measuring the round-trip times in order to

evaluate the network overhead, and also the process of calculating the round-trip times

and deciding which intermediate server is close to an application to take the service

from. However, the experiments have shown that the improvement of the performance

of the system outweighs this overhead, especially, the whole process of the algorithm

overlaps with the operations and the ongoing computations of the system. Finally, the

evaluation of the algorithm has confirmed that by using calculated round-trip times

between different extremes of the system; the performance can be optimised as the

execution of the system progresses via changing the communication configuration of

DSM systems adjusting to the current state of the system networking.

140

5.2 Future Research

The framework presented in this thesis has shown effective impact on the

performance of distributed shared memory systems. However, all the experiments have

been conducted on LANs and extended LANs. Considering the effect of network

latencies in the performance of DSM systems, it would be interesting to see the impact

of the framework on DSM systems run on WANs; especially the framework has taken

this issue into account mainly via the utilization of per-node multi threading technique

and multiple levels of control and memory management.

Also, the adaptive algorithm has exhibited significant enhancement in the

performance of the distributed system via reconfiguring the construction of the system.

Nevertheless, there is still a room for improvement. This technique can be improved in

three possible ways.

> During the course of evaluating the adaptive algorithm, it has been shown

that, when there are 10 applications connected to the system, the

reconfiguration process of the system takes up to 42 seconds to produce

new architecture that can provide an optimised performance. That means it

takes less than 5 seconds for an application to get connected to an

intermediate server for the service. Let’s assume that it is required to spend

only 5% of the time between successive reconfiguration processes

(reconfiguration interval) in performing the optimization process.

Therefore, if there are 10 applications connected to the main server before

the reconfiguration takes place, the interval time of the process will be 1000

seconds. This percentage could be included as a parameter to decide the

exact time of triggering the process (i.e. the process intervals). However,

this parameter, alone, is not enough for this crucial decision, as the system

may arrive at the interval without having overhead that can justify

performing the process of reconfiguration. But still, this parameter can be

decisive as it is not always wise to spend a lot of time of the system

execution in too many reconfiguration processes.

141

> Also, including the execution time of an application could be vital in

reducing the overhead of the reconfiguration procedure. On the assumption

that an application may not live for long time, excluding this particular

application from being reconfigured with other applications might be

worthwhile in reducing the time of the reconfiguration process to the

minimum. However, in the absence of a prior knowledge of the lifetime of

an application, the elapsed time of the application could be used instead.

The elapsed time can only be used if we assume that, for instance, an

application of elapsed time less than quarter of the average of elapsed

execution times of other applications, is considered as a short-life

application, and then can be excluded from the process. Of course that does

not mean removing the application from the system, but it could still reduce

the time of the reconfiguration procedure and therefore reducing its

overhead.

> Furthermore, as it is shown in chapter four, there is a wide range of

architectures of DIME-II DSM system with intermediate servers that can

give performances better than the ones produced by the adaptive algorithm.

It is an interesting research issue to investigate new analytical solutions or

approaches that are capable of producing the best possible architecture with

the best possible performance.

Finally, the evaluation of the heuristic strategy presented in this work, has been

given to at most 10 distributed applications. It might be more practical to have an

algorithm capable of predicting the behavior of the strategy prior to its implementation,

especially in critical applications or distributed systems with large number of

applications.

142

Reference

[Adve S. et. al 1996]

S. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony and W. Zwaenepoel, A
comparison o f entry consistency and lazy release consistency implementations,
Proceedings of the 2nd High Performance Computer Architecture Conference,
Pages 26-37, February 1996.

[Amza C. et. al 1999]

C. Amza, A.L. Cox, S. Dwarkadas, J. Li-Jie, K. Rajamani and W. Zwaenepoel,
Adaptive Protocols fo r Software Distributed Shared Memory, Proceedings of the
IEEE, Special Issue on Distributed Shared Memory, Vol.87, No.3, Pages 467-
475, March 1999.

[Amza C. et. al 1997]

C. Amza, A. Cox, S. Dwarkadas and W. Zwaenepoel, Software DSM Protocols
that Adapt between Single Writer and Multiple Writer, The Third International
Symposium On High-Performance Computer Architecture, San Antonio, TX,
Pages 261-271, February 1997.

[Amza C. et. al 1996]

C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu., R. Rajamony, W. Yu and
W. Zwaenepoel, TreadMarks: shared memory computing on networks o f
workstations, IEEE Computer, Vol. 29, No.2, Pages 18-28, February 1996.

[Argile A. et. al 1996]

A. Argile, E. Peytchev, A. Bargiela and I. Kosonen, DIME: A Shared Memory
Environment fo r Distributed Simulation, Monitoring and Control o f Urban
Traffic, Proceedings of European Simulation Symposium ESS^6, Genoa, ISBN
1-565555-099-4, V ol.l, Pages 152-156, October 1996.

[AttiyaH. et. al 1994]

H. Attiya and J. Welch, Sequential Consistency versus Linearizability, ACM
Transactions on Computer Systems, Vol. 12, No. 2, Pages 91-122, May 1994.

[Auld P. 2001]

P. Auld, Broadcast Distributed Shared Memory, PhD Thesis, Department of
Computer Science, The college of William and Mary, USA, 2001.

143

[BalH. et. al 1991]

H. Bal and A. Tanenbaum, Distributed Programming with Shared Data,
Computer Languages Journal, Vol. 16, No. 2, Pages 129-146, 1991.

[Bennett J et. al 1990]

J. K. Bennett, J. B. Carter and W. Zwaenepoel, Munin: Distributed Shared
Memory Based on Type-Specific Memory Coherence”, Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (PPOPP), Seattle,
Washington, USA, Pages 168-176, March 1990.

[Bisiani R. et. al 1990]

R. Bisiani and M. Ravishankar, PLUS: A Distributed Shared-Memory System,
Proceedings of the 17th Annual International Symposium on Computer
Architecture, Pages 115-124, June 1990.

[Carter JB 1993]

J. B. Carter, Efficient Distributed Shared Memory Based on Multi-Protocol
Release Consistency, PhD thesis, Rice University, Houston, Texas, September
1993.

[Carter JB 1995]

J.B. Carter, J.K. Bennett and W. Zwaenepoel, Techniques fo r Reducing
Consistency-Related Information in Distributed Shared Memory Systems, ACM
Transactions on Computer Systems, Vol. 13, No. 3, Pages 205-243, August
1995.

[Carter JB 1995]

J. B. Carter, Design o f the Munin distributed shared memory system , Journal of
Parallel & Distributed Computing, Vol.29, No.2, USA, Pages 219-27, September
1995

[Cox A. et. al 1994]

A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony and W. Zwaenepoel,
Software Versus Hardware Shared-Memory Implementation: A Case Study,
Proceedings of the 21st Annual International Symposium on Computer
Architecture, Pages 106-117, April 1994.

144

[Delp G., 1988]

G. Delp, The Architecture and implementation o f Memnet: A High-Speed Shared
Memory Computer Communication Network, PhD thesis, University of
Delaware, 1988.

[Dubois M. et. al 1988]

M. Dubois, C. Scheurich and F. Briggs, Synchronization, Coherence, and Event
Ordering in Multiprocessors, IEEE Computer Journal, Vol. 21, No. 2, Pages 9-
21, February 1988.

[Fleisch BD et. Al 1989]

B. D. Fleisch and G. J. Popek, Mirage: a Coherent Distributed Shared Memoiy
Design, Operating Systems Review, Vol.23, No.5, Pages 211-223, 1989.

[Frank S. et. al 1993]

S. Frank, J. Rothnie and H. Burkhardt, The KSR1: Bridging The Gap between
Shared Memoiy and MPPs, Proceedings of Computer Conference, San
Francisco, CA, USA, Pages 285-294, February 1993.

[Gharachorloo K. et. al 1990]

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta and J. Hennessy,
Memory Consistency and Event Ordering in Scalable Shared-Memoiy
Multiprocessors, Proceedings of the 17th Annual International Symposium on
Computer Architecture, Seattle, Washington, USA, Pages 15-26, June 1990.

[Herlihy M. et. al 1991]

M. Herlihy and J. Wing, Linearizability: A Correctness Condition for
Concurrent Objects, ACM Transactions in Programming Languages and System,
Vol. 12, No. 3, Pages 463-492, July 1991.

[Hill M., 1998]

M. Hill, Multiprocessors Should Support Simple Memoiy Consistency Models,
IEEE Computer Journal, Vol.31, No.8, Publisher: IEEE Computer Society, USA,
Pages 28-34, August 1998.

[Hutto P. et. al 1996]

P. Hutto and M. Ahmad, Slow Memory: Weakening Consistency to Enhance
Concurrency in Distributed Shared Memories, Proceedings of the 10th

145

International Conference on Distributed Computing Systems, IEEE Computer
Society Press, Pages 302-311, June 1996.

[Iftode L. et. al 1996]

L. Iftode, J. P. Singh and K. Li, Scope Consistency: A Bridge between Release
Consistency and Entry Consistency, Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures, Pages 277-287, June
1996.

[Jacobson V., 1988]

V. Jacobson, Congestion Avoidance and Control, Proceedings of the ACM
SIGCOMM 88, Stanford, CA, Pages 314-329, August 1988.

[Jain R., 1986]

R. Jain, Divergence o f Timeout Algorithms fo r Packet Retransmissions,
Proceedings of the Fifth Annual International Phoenix Conference on Computers
and Communications, Scottsdale, Ariz, Pages 174-179, March 1986.

[Karatza H et. al 2001]

H. Karatza and R.C. Hilzer, Epoch Load Sharing in a Network o f Workstations,
Proceedings of the 34th Annual Simulation Symposium, IEEE Computer Society
Press, SCS, Seattle, Washington, Pages 36-42, April 2001.

[Karatza H et. al 2002]

H.D. Karatza and R.C. Hilzer, Load Sharing in Heterogeneous Distributed
Systems, Proceedings of the Winter Simulation Conference, ACM, IEEE, SCS,
San Diego, California, Pages 489-496, December 2002.

[Karn P. et. al 1985]

P. R. Karn, H. E. Price and R. J. Diersing, Packet Radio in the Amateur Seiwice,
IEEE Journal of Selected Areas in Communications, Vol. SAC-3, No. 3, Pages
431-439, May 1985.

[Karn P. et. al 1991]

P. Karn and C. Partridge, Improving Round-Trip Time Estimates in Reliable
Transport Protocols, ACM Transactions on Computer Systems, Vol. 9, No. 4,
Pages 364-373, November 1991.

146

[Keleher P. et. al 1992]

P. Keleher, A. Cox and W. Zwaenepoel, Lazy Release Consistency fo r Software
Distributed Shared Memory, Computer Architecture News, Vol.20, No.2, Pages
13-21, May 1992.

[Khalil M. et. al 2003a]

M. Khalil and E. Peytchev, Traffic Telematics Computing Framework Based on
Non-Locking and Housekeeping Distributed Shared Memoiy Algorithm , Sixth
United Kingdom Simulation Society Conference (UKSIM2003), Emmanuel’s
college, Cambridge, UK, Pages 201-206, April 2003.

[Khalil M et. al 2003b]

M. Khalil and E. Peytchev, An Approach fo r Improving the Performance o f
Software Distributed Shared Memory Systems, PREP2003, Exeter, Pages 135-
136, April 2003.

[Khalil M et. al 2003c]

M. Khalil and E. Peytchev, DIME-II: A Computing Framework fo r Traffic
Systems, 17th European Simulation Multiconferenc (ESM2003), Nottingham,
Pages 595-600, June 2003.

[Khalil M et. al 2004]

M. Khalil and E. Peytchev, A Strategy For Tuning The Performance Of
Distributed Shared Memory Systems, Seventh United Kingdom Simulation
Society Conference (UKSIM2004), St Catherine’s College, Oxford, UK, Pages
118-123, March 2004,

[Lamport L. 1979]

L. Lamport, How to make a Multiprocessor Computer that correctly executes
Multiprocessor Programs”, IEEE Transactions on Computer, Vol. C-29, No. 9,
Pages 690-691, September 1979.

[Lai A. et. al 1992]

A. C. Lai, C. K. Shieh and Y. T. Kok, Load Balancing in Distributed Shared
Memory Systems, The 1997 IEEE International Performance, Computing, and
Communications Conference, Pages 152-158, February 1997.

147

[Lenoski D. et. al 1992]

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M.
Horowitz and M. Lam, The Stanford Dash Multiprocessor, IEEE Computer
Journal, Vol. 5, No 3, Pages 63-79, March 1992.

[Li K. 1988]

K. Li, IVY: A Shared Memoiy Virtual Memoiy System fo r Parallel Computing,
Proceedings of the 1988 International Conference on Parallel Processing, Pages
11-94-11-101, 1988.

[Lipton R. et. al 1988]

R. Lipton and J. Sandberg, PRAM: a Scalable Shared Memory, Technical Report
CS-TR, Princeton University, Pages 180-188, September 1988.

[Lu H. et. al 1995]

H. Lu, S. Dwarkadas, A.L. Cox and W. Zwaenepoel, Message Passing versus
Distributed Shared Memoiy on Networks o f Workstations, Proceedings of the
1995 ACM/IEEE Supercomputing Conference (IEEE Cat. No. 95CB35990).
ACM Part, New York, NY, USA, V ol.l, Pages 865-906, 1995.

[Mueller F. 1997]

F. Mueller, Distributed Shared-Memoiy Threads: DSM-Threads: Description o f
Work in Progress, Proceedings of the Workshop on R un-Tim e Systems for
Parallel Programming, Pages 31-40, April 1997.

[Nitzberg B. et. al 1991]

B. Nitzberg and V. Lo, Distributed shared memory: A sui~vey o f issues and
algorithms, IEEE Computer, Vol. 24, Pages 52-60, August 1991.

[Peytchev E. et. al 1998]

E. Peytchev and A. Bargiela, Traffic Telematics Software Environment,
Simulation Technology: Science and Art 10th European Simulation Symposium
ESS98, San Diego, CA, USA, Pages378-82, 1998.

[Peytchev E. 1999]

E. Peytchev, Integrative Framework fo r Discrete Systems Simulation and
Monitoring, Ph.D. thesis, Department of Computing, The Nottingham Trent
University, Nottingham, England, February 1999.

148

[Protic J. et. al 1993]

J. Protic and M. Aleksic, An example o f Efficient Message Protocol fo r Industrial
LAN, Microprocessing and Microprogramming, Vol. 37, Pages 45-48, January
1993.

[Protic J. et. al 1996]

J. Protic, M. Tomasevic and V. Milutinovic, Distributed Shared Memoiy:
Concepts and Systems”, IEEE, USA, 1996.

[Ramachandran U. et. al 1989]

U. Ramachandran and M. Khalidi, An Implementation o f Distributed Shared
Memory, Distributed and Multiprocessor Systems Workshop, Pages 21-38, 1989.

[Rzeczkowski W et. al 1980]

W. Rzeczkowski and K. Subieta, LINDA-a data base management system II,
Informatyka, Poland ,Vol. 15, No. 12, Pages 8-10, December 1980.

[Shieh K et. al 1995]

C. K. Shieh, A. C. Lai, J. C. Ueng, T. Y. Liang, T. C. Chang and S. C. Mac,
Cohesion: An Efficient Distributed Shared Memory System Supporting Multiple
Memoiy Consistency Models, Aizu International Symposium on Parallel
Algorithms/Architecture Synthesis, Pages 146-152, February 1995.

[Speight E. et. al 1997]

E. Speight, J. Bennett, Brazos: A Third Generation DSM System, Proceedings of
the 1st USENIX Windows NT Symposium, Pages 95-106, August 1997.

[Tanenbaum A. et. al 2002]

A. Tanenbaum, M. Steen, Distributed Systems: Principles and Paradigm, New
Jersey, Prentice Hall, 2002.

[Thitikamol K. et. al 1999]

K. Thitikamol and P. Keleher, Thread Migration and Communication
Minimization in DSM Systems, Proceedings of the IEEE, Special Issue on
Distributed Shared Memory, Pages 487-497, March 1999.

149

[Weisong S. et. al 1998]

S. Weisong, H. Weiwu, T. Zhimin, Using confidence Interval to Summerize the
Evaluating Results o f DSM Systems, Technical Report, Center of High
Performance Computing, Institute of Computing Technology, Chinese Academy
of Sciences, September 1998.

[Weiwu H. et. al 1998]

H. Weiwu, S. Weisong, T. Zhimin, A Framework o f Memoiy Consistency
Models, Journal of Computer Science & Technology, Publisher: Science Press,
China, Vol. 13, No.2, Pages 110-124, March 1998.

[Wittie L. et. al 1989]

L. Wittie and C. Maples, MERLIN: Massively Parallel Heterogeneous
Computing, International Conference on Parallel Processing, Vol. I:
Architecture, Pages 142-150, 1989.

[Zhang L., 1986]

L. Zhang, Why TCP timers don’t work well, Proceedings of ACM SIGCOMM
’86, Pages 397-405, August 1986.

[Zhou S. et. al 1990]

S. Zhou, M. Stumm, T. Mclnerney, Extending Distributed Shared Memory to
Heterogeneous Environments, Proceedings of the 10th International Conference
on Distributed Computing Systems, IEEE, Pages 30-37, 1990.

150

