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A bstract
Traditionally, robotic assembly techniques have depended on simple sensing systems and the 

robot manufacturer’s programming language, which has severely restricted the extensive use 

of robots in complex manufacturing operations. The research reported in this thesis is related 

to the creation of self-adapting robots capable of learning manipulative skills on-line. This 

work involves the use of Artificial Neural Networks (ANNs) and contact force sensing to 

“teach” the robot how to behave in poorly structured environments.

An industrial PUMA 761 robot arm was provided for this research by Rolls Royce & As­

sociates, who are interested in autonomous robot operations. The investigation includes 

the design of a novel Neural Network Controller (NNC), which is based on the Adaptive 

Resonance Theory (ART) and a knowledge base, whose knowledge is generated by specific 

assembly operations.

The research used a force/torque sensor attached to the robot’s wrist. This was the only 

sensory information available to the NNC during assembly operations since the precise lo­

cation of the components was unknown. The communication with the robot controller was 

made through a PC master-slave architecture, which provided data acquisition and control 

in real-time.

The design of the NNC was founded on ART’s strength to learn incrementally in combination 

with a dynamic knowledge base. Initially, the robot was provided with a Primitive Knowledge 

Base (PKB), which contained a minimum set of primitive contact force conditions and the 

corresponding motions to reduce these forces. The knowledge is enhanced on-line, based 

on the success in predicting the motion that reduces the constraint forces. New knowledge 

information is only accepted in the PKB when it has contributed strongly towards the success 

of the assembly. The robot actually enhances its overall assembly performance which is 

measured by a reduction in assembly time. Additionally, mistakes made earlier do not recur, 

which demonstrates the new expertise acquired by the robot.

The results also demonstrate the generalisation capability of the NNC by learning the assem­

bly of different part geometries using the same PKB. The overall results show the effectiveness 

of the methodology and clearly define the requirements for implementing the skill acquisi­

tion onto other industrial manipulators, hence, providing an important contribution to the 

creation of new self-adapting robots with on-line incremental learning capability.
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C hapter 1

Introduction

The majority of industries have a requirement for assembly at some stage of their 

operations. Martin-Vega etal. [1] have identified in a survey of industrial com­

panies in the USA that 20% of unit production cost is attributed to assembly. 

One of the objectives of this research is to improve the fundamental understand­

ing and capability of robotic assembly. The research is intended to apply new 

knowledge in an effective way to enable robots to work and assemble components 

in poorly structured environments by using sensor data and pre-learnt manipula­

tive skills. The work will contribute to manufacturing industry by improving the 

capabilities of robot assembly systems through the application of novel learning 

and manipulative skills.

Traditionally, robotic assembly techniques have depended on simple sensing sys­

tems and the robot manufacturers programming language, which has severely 

restricted the application of robots to complex manufacturing operations. In this 

project Artificial Neural Network (ANN) techniques and force sensing are used 

to generate self-adapting robots.

The research is concerned with methods by which components and their inter­

action with other components during the assembly operation can be described. 

These descriptors can then be implemented in the learning environment which, 

combined with sensory information, enables the robot to recognise the interac­

tions between components. This provides the robot with the ability to auto­

matically compensate for typical assembly errors. In other words, the robot is
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“taught” to recognise the force patterns that occur during assembly employing 

Force/Torque sensors. In this manner, the robot is able to perform mechanical 

assembly by using force sensing information and compensate for misalignments 

between components which ocurr at the start of the operation.

Early work by V. Balendran [2] used ANN’s to assess motor vehicle components. 

This was adapted and extended by M. Howarth [3] to enable robot manipula­

tors to recognise 3D sensor data collected during mechanical assembly sequences. 

These techniques developed for inspection and machining by the Manufacturing 

Automation Research Group within the Department of Mechanical and Manufac­

turing Engineering have therefore been widened into the field of assembly using 

sensor data to embed robots with self-adapting behaviour.

The research presented in this thesis compares favourably with work by V. Gul- 

lapalli et al. [4] at the University of Massachusetts, who used an ANN to teach a 

robot peg-in-hole tasks, but where the target point had to be known in advance 

to enable the training phase to be completed. Similarly, the work published by

H. Asada [5] at Massachusetts Institute of Technology has shown the possibility 

of teaching a robot manipulative skills by the recording of manual operators’ ac­

tions. The investigation for this research differs from Asada’s approach by the 

use of contact conditions and on-line incremental learning to enable manipulative 

skills to be developed by the manipulator. In addition, the precise location of the 

assembly parts is unknown at all times.

In the following sections, an overview of force control in robotics is provided, high­

lighting the issues involved during assembly. Attributes of connectionist models 

that allow their implementation in the robotic system to perform the assembly 

are introduced. The scope of the research is established followed by the review of 

the aim and the author’s original contribution. Finally, the organisation of this 

thesis is described.
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1.1 A n Introduction  to  Force Control in R obotics

Most of the current research in robotic assembly is devoted to force and position 

control. There are many approaches, some of them based on classic control, 

adaptive control and more recently, neural control. The type of controller to be 

used depends greatly on the specific application. In certain circumstances only 

one parameter is important, for instance, position (e.g. motion in free space to 

reach the target point). In other circumstances force may be important (e.g. 

handling soft materials), but in most cases a combination of both, position and 

force control, is needed.

Traditional control methods based on classic control architectures have proved to 

work well in a range of processes. However, they are robot oriented techniques 

rather than task oriented, and programs written for a specific operation have 

to be modified if applied to a different robot. Algorithms also rely on a priori 

knowledge of parameters such as part geometry, robot arm stiffness, environment1 

stiffness, etc. However, in real-world systems these parameters change and other 

tools are needed to analyse and control non-linear behaviour.

In some industrial processes such as assembly and metal removal, an accurate 

force tracking control is essential to achieve a successful operation. In assembly, 

force tracking is important since it can prevent mating pairs from being jammed 

or broken and it can also be used for component alignment. Force control may 

also avoid any damage to the end-effector of the robot, i.e. gripper2. In other 

operations such as grinding, deburring and polishing, the normal contact force is 

related to the metal removal rate and wheel wear, hence a precise force must also 

be applied[6, 7].

There are different approaches to control the above processes and it can be 

said that force/position control falls into two categories, hybrid control and 

impedance control[8]. In hybrid control, a switched control structure between 

constrained and unconstrained motion should be considered. Gain parameters
Hn the robotics jargon, the term “environment” is widely used and refers to the objects the

robot make contact with, namely, assembly parts, tool changers, obstacles, etc.
2The terms end-effector and gripper will be employed indistinctly throughout this thesis.
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must be adjusted according to the type of movement and depending on whether 

the end-effector is acting on constrained motion (i.e., contacting the surface), or 

free-motion. Extensive work has been carried out on this area [9, 10]. On the 

other hand, impedance control does not treat force and position separately, but 

it takes the relationship between both, based on the sensed forces. In either con­

trol method, the strategy to correct a planned motion namely, compliant motion, 

has to be able to suppress any bouncing at the contact surface. This transient 

stage is difficult to control due to a lack of knowledge about the environmental 

stiffness and robot stiffness which varies according to each robot configuration 

and position in its working envelope. This unavoidable stage introduces noisy 

information to the system controller, therefore a careful design and study of this 

input information is a preliminary task. In both hybrid and impedance control, 

motion compliance is achieved by mapping force input values to motion/torque 

commands, which eliminates the non-linearity involved.

In the above techniques there is a trade-off between error in motion, error in 

contact and switching controllers. This non-linear mapping can be solved by 

discriminating and classifying contact points (i.e. contact force states) during as­

sembly. It is precisely in this stage where an ANN can be used due to its capability 

to associate and generalise all contact force states during the assembly process. 

These contact states can be grouped according to certain common characteristics 

to facilitate the decision stage, which ultimately selects the appropriate motion 

towards the end condition.

1.1.1 Force feedback control

The general case of robot feedback control is shown in Figure 1.1. Motion com­

mands are applied to the robot arm via the coordinates conversion stage and joint 

servos.

This conversion calculates the Inverse and Forward kinematics of the arm. The 

tool position (also called end-effector position), moves as directed by these com­

mands towards the desired position and modifies the contact forces with the 

environment. This change and any disturbance is then measured in the feedback
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Motion
Commands

Robot Arm Desired
Position Disturbances

Coordinates
Conversion

Joint
Servos

Tool
Position

Reaction Environmental
Stiffness

SensorStrategy

Figure 1.1: Force feedback structure

loop by the force sensor. The new contact forces and arm position are then used 

in the strategy algorithm to move the arm towards a desired position, so the 

previous motion command has to be altered accordingly. It is important to note 

that due to contact forces with the environment, a reaction force will appear on 

the arm joints. However, the force feedback algorithm will not consider these 

forces directly because the robot controller is limited to a built-in positional PID 

controller for each servo motor. Therefore, it is easier to control contact forces at 

the end-effector and to consider the arm working in a linear region rather than 

controlling the arm in joint-space. Controlling the arm in the joint-space would 

imply the implementation of a sensing system on each joint of the arm increasing 

the complexity of the control law.

More research has been conducted in the area of impedance controllers because 

this type of control is smoother than the hybrid method. S. Lee developed a 

model of a Generalised Impedance Controller (GIC) [8]. Its performance is based 

on a trade-off between motion and contact force error. S. Payandeh [11] consid­

ers the environment to be a spring-damper system and to support his theory of 

compliance on environmental compliance, he used a 2 DOF arm robot to demon­

strate that the system reduced the error under disturbances whilst maintaining 

a constant contact force. The disadvantage with this model is its need for a pri­

ori knowledge of the environmental stiffness. Seul Jung [12] used contact force 

information at the end-effector and formulated a relationship that also took into
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account the environmental stiffness.

Hybrid control considers a switching strategy between force and position control 

i.e., the arm is position controlled during motions in free-space or any other 

direction different from the main direction. During contact with the environment 

or during operations the arm is force controlled, therefore switching between both 

strategies is required.

1.2 Force Tracking and Com pliance

Force tracking on the end-effector is important in applications where motions in 

constrained space have to be maintained within a certain range during compli­

ance. The term compliance refers to manipulative tasks which involve continuous 

contact between the manipulator and the environment. There are two classi­

fications within compliant motion. Passive compliance (sometimes referred as 

natural compliance), in which contact configurations depends on mating pair ge­

ometries, and active compliance applied to aid mating, which is based on sensor 

readings and active control of the manipulator.

1.2.1 Peg-in-hole operation

The most studied operation for analysing compliant motion in insertion tasks is 

the peg-in-hole operation. In fact, this is the most common operation in assembly 

and has also been set by many roboticists as a canonical test operation. There 

have been many researchers who have studied contact forces acting during this 

operation [13, 14, 15, 3, 4, 16, 17]. The four stages during part mating in the 

peg-in-hole operation as identified by Daniel E. Whitney [18] are shown in Figure

1.2. The figure shows the peg approaching the hole, contacting the chamfer and 

when the peg contacts inside the hole in one and two points. Whitney also 

analyses these forces identifying failures during operation such as jamming and 

wedging and diverse relationships between contact states. Jamming is a condition 

in which the peg will not move because the forces and moments applied to it 

through the support are in the wrong proportions. It can occur during one or
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two contact points and is due to the resultant force being within the friction cone 

and increasing the applied force will not cause the peg to slide. To exit from this 

condition, a force in the opposite direction is needed. On the other hand, wedging 

is worse than jamming because it may involve deformation in one or both parts 

therefore, removal of the applied force may not remove the reaction forces.

a) approach b) chamfer crossing c) one-point contact d) two-point contact

Figure 1.2: Four stages during peg-in-hole operation 

1.2.2 Use of a passive compliance device

The Centre of Compliance is defined as a point located at the tip of the peg that 

will not be affected by rotation if a force that produces a pure translational motion 

is applied and vice versa. Hence, to facilitate compliant motion, a strategy such 

as tilting the peg can be used. From the analysis of the jamming, wedging and 

the definition of Centre of Compliance, a mechanical device named Remote Cen­

tre Compliance (RCC) was designed to overcome misalignments between mating 

pairs [18]. The RCC can be thought of as a mechanical spring that permits lateral 

motions in response to laterally directed contact forces without angular motion. 

Similarly, angular motions are permitted in response to applied torques but no 

lateral motion is developed. This device is depicted in Figure 1.3.

With the use of the RCC, positional errors can be eliminated, within a certain 

misalignment range and for specific part sizes. However, out of this range or 

working with longer mating pairs, either the RCC has to be changed or an alter­

native procedure sought. Research in RCC design has looked at these limitations 

and produced a variable RCC [19] that improves the performance of the fixed
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Figure 1.3: Rem ote centre compliance device

type RCC. In this device, the compliance centre can be m odulated via one or two 

actuators, or it can be modified manually. The main advantage of this device is 

th a t different length of parts  can be assembled w ithout changing the RCC.

The RCC is a passive device hence, force sensing and m onitoring capability are not 

present and therefore it cannot provide sensory inform ation needed in a learning 

assembly system. However, it is mentioned here due to its practical im portance 

for correcting passively the misalignm ent between parts.

1.3 Task-Level Program m ing and Fine M otion

Robot programm ing languages have to deal with external objects, which generate 

significant problems due to  their inconsistency. In non-robot oriented languages, 

variables are m anipulated within the same com puter therefore they are not af­

fected directly by external events. For these languages, control of the variables 

is easier than in robot oriented languages because they do not have to deal with 

uncertainties. Robot systems m ust deal w ith workspace uncertainties which come 

from a variety of sources such as accum ulated errors due to part tolerances, di­

mensions of parts, gear backlash, ageing of arm mechanisms, etc. Unpredicted 

errors such as the sliding of m ating pairs in the gripper and misalignm ents have 

also to be considered. Furtherm ore, robot programs are for a specific robot and 

cannot easily be transferred to other robots or workspace.

Motion planning involves gross m otion  and fine motion. The former deals with
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motions of the end-effector in free-space avoiding any collision with the envi­

ronment whereas the latter considers a quasi-static motion in contact with the 

environment. Fine motions are related to the aims of this research since they are 

necessary for insertion. Furthermore, fine motion makes manipulation safe in the 

presence of uncertainties.

There has been research in this area, especially to create strategies in compliant 

fine-motion such as those developed by Tomas Lozano-Perez, Mattew T. Mason 

and Russell H. Taylor [20]. The strategy LMT, named after the authors, syn­

thesised fine motion strategies which are based on the view that the structure of 

a fine motion strategy for a task is determined by the set of geometric interac­

tions that can occur during the execution of the task. Their strategy considers 

configuration space frames. These frames specify the motion at a point, for ex­

ample, in the compliance frame that can move with freedom during an insertion 

operation. Work done by J. De Schutter and H. Van Brussel [21] [22] extends 

the LMT work by showing other formalisms in specifying compliant motion that 

require hybrid approaches. It achieves a strict separation between control and 

programming, which is important for the integration of compliant motion to a 

robot programming language.

Control architectures have been used widely and with success in different appli­

cations. L. Liu et al. implemented a PID controller on a PUMA robot in grinding 

operations, demonstrating improved profiles of finished workpieces [7]. Jeoun and 

Tomizuka applied a feedforward compensator on a SCARA robot using a debur- 

ring tool [6]. S. N. Gottschlich and A. C. Kak, [17] applied compliant motion 

to insert a peg into a hole. For these operations, authors also have developed 

geometric models using passive compliance [13, 14].

The methods mentioned above are either robot or geometry based (henceforth, 

model-based solutions). In these models, there has not been a unified criteria 

to specify task-level programming independent of the robot or environment and 

parameters have to be measured or determined for each individual element in the 

model. Geometry of the mating pairs is known, and parameters such as environ­

ment stiffness are considered as known a priori. However, there is still a lack of
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such criteria to generalise task-level programming, to improve operations and to 

speed up programming. Research continues in this area looking for alternative 

approaches, such as those based on AI techniques and Artificial Neural Networks.

1.4 C onnectionist M odels and R obotics

Model-based methods do not offer a complete solution to the problem due to the 

complexity associated with mechanical assembly operations. In the particular 

situation of mating pairs for assembly, the number of contact states cannot easily 

be defined and therefore an alternative method is preferable. This alternative 

method should provide the right mapping function from contact states to arm 

motions. This non-linear function should also be able to generalise and associate. 

Generalise means that if a certain state is encountered within specified limits, it 

has to be clustered within the same group according to pre-defined features. The 

mapping must also be able to associate these clustered groups with a particular 

output, which will be a desired force or position. The above requirements for the 

mapping function compare favourably with the characteristics of connectionist 

methods.

The use of connectionist models in robot control to solve the non-linear problem 

has been demonstrated in a number of publications, either in simulations [23, 24, 

25] or, working with real robots [26, 27, 3].

It should be noted that the terminology connectionism owes its origin to brain 

modelling. These learning algorithms are only “approximations” to the model 

itself due to the complex parallel processing involved in a complete model. Some 

authors refer to these algorithms as Neural Networks, however, to avoid ambiguity 

with biological principles in this thesis, they will be referred to as Artificial Neural 

Networks (ANN’s), unless stated otherwise.

From reported work, ANN’s have shown positive attributes which can be ex­

ploited in robot control such as:

• Ability to learn on-line and improve system actions from experience.

• Ability to recognise, classify and associate patterns with pre-defined actions.
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• Stability and Adaptation, i.e., in the case of competitive learning, if new or 

novel patterns are encountered, the system self-adapt by classifying them 

without forgetting previous patterns, hence the system is also stable.

The above attributes can be used in robotic systems to reduce complexity due 

to uncertainty and to deal with the inherent non-linearity. The uncertainty in­

volved during operations is mostly due to pair mating misalignment. In this case, 

the controller has to develop a static global model by associating behaviour with 

a particular situation, which is only achieved through learning. A system that 

treats every distinct operating situation as novel is limited to adaptive operations, 

whereas a system that correlates past experiences with past situations, and that 

can recall and exploit those experiences, is capable of learning. Since a learning 

system must be capable of adjusting its memory to accommodate new experi­

ences, a learning system must, in some sense, incorporate an adaptive capability. 

ANN techniques have been used in robot control in the following areas:

• To solve the Inverse Kinematic Problem.

• Force/Torque control in joint space.

• Fine motion manipulation.

The first two areas are out of the scope of this investigation since the problem is 

not to learn a transformation from workspace co-ordinates to joint angles, or to 

control the robot to move along a given free-space trajectory. These abilities are 

already built-into real robots (within a certain dynamic range). This research is 

focused on how to react to real sensations of position and force to insert a peg 

into a hole, hence the aim is concentrated on learning fine motion manipulation.

1.5 R esearch Scope

The aim of this work is to develop autonomous robotic assembly operations. 

However, due to the complexity of the operations, the scope of the research 

must be clearly defined. The system to be designed forms part of an intelligent
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cell with different sensory capabilities currently being investigated within the 

Manufacturing Automation Research Group. These areas also include language 

understanding [28, 29] and object recognition [30, 31]. A robotic autonomous 

assembly operation can be divided into four stages as follows:

Stage 1 (Recognition): During this stage the aim is to identify the part to be 

grasped. This is achieved by first understanding human commands such as “pick 

the ball” or “move right”. By employing visual feedback the robot is able to move 

the end-effector close to the object in readiness for grasping.

Stage 2 (Grasping and trajectory planning): The part is grasped and the arm is 

moved in free-space towards the mating component, e.g. peg in close proximity 

to the hole. This stage is completed when the end-effector makes contact with 

the female component.

Stage 3 (Exploration): At this stage the arm moves in constrained motion search­

ing for the hole location by scanning the surface. After locating the hole, the arm 

aligns the peg to the insertion starting position.

Stage 4 (Insertion): During this stage the peg is inserted properly into the hole 

and the robot must be able to compensate for any misalignment occurring during 

the operation. The assembly terminates when a stop condition is reached, such 

as depth of insertion or a pre-defined force threshold.

The scope for the research described in this thesis is centred on 

the last stage. It is assumed that the manipulated part (peg) has 

already been recognised and is held by the gripper ready to start the 

insertion.

1.5.1 Aim

Model-based techniques have been employed by many authors as an alternative to 

solve the assembly problem. Representative work in this area has been reviewed 

in this Chapter and Chapter 2. The success of the model-based strategy is built 

upon the precise knowledge of the parameters of the system such as geometry, 

friction, stiffness, etc. In practice, it is difficult to quantify all these parameters,
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or at least with the required accuracy. Hence, errors are likely to occur during 

operations.

In addition, programs involving robot interaction, in comparison with stand alone 

computer programs, are very likely to experience errors because of its interaction 

with external variables in real world operations. Unfortunately, the uncertainties 

involved during assembly processes are difficult to quantify.

Some of these uncertainties come from different sources such as:

• Backlash. Present in the gears of the joints, due to ageing or poor manu­

facturing of the overall mechanisms.

• Arm deflection. Due to individual deflections in the robot links, which 

are proportional to the robot payload. Arm links can be made stiffer and 

therefore reduce its deflection, however there is a trade-off between the 

stiffness of the links, weight and payload.

• Noise. Force sensors used to feedback information into the control system 

exhibits noise due to thermal drift or cross-coupling errors. Noise can also 

be produced by a quantisation error that occurs during analogue to digital 

conversion.

• Implicit errors. These errors include the effect of random part sliding into 

the gripper mechanism during part mating.

•  Explicit errors. Any external force disturbance acting on the end-effector.

Connectionist-based solutions in comparison with model-based techniques are 

capable of learning and minimise the need for explicit knowledge of the environ­

ment. Connectionist models have a strong ability to generalise from examples 

and acquire new knowledge using on-line learning. The NNC does not need to 

know about particular parameters of the system, it only requires to be trained 

on particular force conditions and be provided with the corresponding output 

motions. With this information the NNC should be able to start the insertion 

and be directed solely by the contact forces as they develop during operations 

and continue until the end-condition is encountered.
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Considering the issues discussed above, the overall aim of this research is to de­

velop a NNC capable of performing assembly operations and learning the insertion 

on-line. This means, the design of a mechanisms into the NNC to learn all contact 

force states as they occur and if useful, absorb them in its current Knowledge 

Base. By doing so, the NNC will become more skillful as the learning progresses. 

The assembly speed is expected to be reduced and the alignment motions to be 

more efficient.

1.5.2 Original contribution

The working conditions under which the NNC performance will be evaluated are 

as follows:

• The locations of the mating components are unknown.

• Limited spatial orientation. This means, similar to a blindfold human op­

erator, the robot is provided with only a minimum generic Knowledge Base 

enough to start “recognising” and learning the actual contact force patterns.

• It is assumed the insertion direction to be in the vertical direction.

The assembly learning process for the NNC follows a strategy for insertion similar 

to that which a blindfold person would develop. The very first attempt will be 

erroneous due to the limited information that is given (i.e. insertion direction) 

and the uncertainty involved, since no information is given regarding the spatial 

location of the mating pair. At the second and subsequent insertions, the op­

eration will become faster and more accurate due to the increased information 

the human operator holds in their brain and is able to retrieve to accomplish the 

task. In a similar manner, the NNC is expected to operate and make effective use 

of past events stored in its knowledge base and to improve its performance over 

time. Continuing with the analogy with the human operator and considering him 

as a base line for an ideal operator, this human operator possesses two important 

features which are to be implemented in the NNC: error recovery and incremental 

learning.
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The NNC should be able to recover from motions which produce high forces and 

to stop learning when the insertion has been mastered. Similarly, it should be 

capable of further learning and be able to learn new skills and speed up this 

learning by using previous experience (learned tasks).

From the information described above and the requirements of the NNC, it makes 

sense to consider for its design, a connectionist network capable of incremental 

learning. Connectionist model algorithms that have shown favourable attributes 

to be implemented in the robotic system were considered. For reasons that will be 

explained, the connectionist model that completely fulfilled the requirements for 

the NNC was the Adaptive Resonance Theory (ART) created by Steve Grossberg 

and Gail Carpenter at Boston University. The basic ART-1 model [32] is a 

self-organising network with unsupervised category learning. The evolution of 

the theory has led to join two basic ART modules and produce networks with 

supervised learning capability, hence producing the so-called Predictive ART or 

ARTMAP network [33]. Fuzzy logic has also been combined with ART learning 

forming the Fuzzy ARTMAP network [34].

The NNC design is based on an enhanced version of the Fuzzy ARTMAP algo­

rithm that includes a dynamic Knowledge Base, whose knowledge is regulated by 

the assembly process. Previous to the start of the operation, a Primitive Knowl­

edge Base (PKB) is formed by teaching the robot generic examples of force contact 

in its six degrees of freedom. Basically, this information serves to bias and ini­

tialise the learning at the first insertion attempt. Later on, the Knowledge-Base 

may be modified with new information based on whether the force pattern-action 

pair has been good enough in reducing the constraint forces and if the motion 

has been made towards the end-condition.

In summary, the original contribution of this research to the field of robotic as­

sembly is the creation of self-adapting robots that overcome the limitations of cur­

rent techniques and enhance the capability of robot programming languages. The 

ART model is a truly adaptable network that meets many of the requirements for 

the NNC for an improved performance over the other algorithms. Furthermore, 

to the best knowledge of the author, the use of the Fuzzy ARTMAP network as
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a core for the design of the NNC is the first time this technique has been applied 

to robot manipulators, opening new research in the area of incremental learning 

for robotic assembly.

1.6 T hesis Structure

In this introduction, issues regarding force control techniques for assembly have 

been presented. Non-linear problems occurring during operations highlighted 

the requirement for alternative methods to facilitate assembly operations. These 

methods are currently being investigated in the Manufacturing Automation Re- 

search Group (MARG) within the Department of Mechanical and Manufacturing 

Engineering. Previous work by M. Howarth [35, 36, 3] has demonstrated the ap­

plicability of ANNs and force sensing for skill acquisition in a robot with 4 DOF. 

Based on this work, it was proposed to implement a testbed site to further inves­

tigate the learning of manipulative skills with a six Degrees Of Freedom (DOF) 

industrial robot. This investigation is basically centred in two general aspects:

•  Design and implementation of the testbed site, which includes the use of a 

PUMA 761 robot provided by the industrial collaborator.

• Design and implementation of a Neural Network Controller (NNC) and 

testing its performance in terms of on-line learning and assembly speed.

Both aspect are reported in this thesis following the structure outlined in the 

following paragraphs.

Chapter 1. Provides an insight into the area of robotics, force control and 

self-adapting robots for assembly. The scope of the research is established, the aim 

reviewed and the author’s contribution to field of robotics assembly highlighted. 

Chapter 2. Analyses in detail mechanical insertions underlying the importance 

of the peg-in-hole insertion and its characteristics. Current work in connectionist- 

based solutions is reviewed as well as its appropriateness to solve the assembly 

problem.
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Chapter 3. Issues regarding the design and implementation of the robotic learn­

ing environment, including its control and sensory systems are explained. These 

issues include: security inter-lock system, force sensing software, custom-based 

control unit using a host-slave computer system, hardware interfacing and com­

munication software.

Chapter 4. The accuracy and uncertainty of the robotic assembly system are 

evaluated in this Chapter. Two central aspects are studied: positional errors 

during incremental motions and errors produced by the force sensing system. 

Chapter 5. In this Chapter a number of experiments are presented that de­

scribe the nature of the forces involved during assembly. Based on this analysis 

two important stages in the NNC are identified: Adaptation and Decision. An 

initial structure of the NNC is proposed based on the results obtained during 

experiments.

Chapter 6. In this Chapter, the Adaptive Resonance Theory (ART) is formally 

introduced. The mechanics of the ART-1 and Fuzzy ARTMAP learning systems 

are explained.

Chapter 7. Initial investigations into the unsupervised ART-1 algorithm were 

carried out using information from assemblies and a binary encoding according 

to ART-1 requirements. Assessments were carried out in terms of learning speed 

and recognition.

Chapter 8. In this Chapter, it is described how a predictive ART network in 

conjunction with a dynamic Knowledge Base can provide on-line learning and 

predictive capability to the NNC.

Chapter 9. In this Chapter the assessment result of the NNC performance 

is presented. Several insertions were made using different working conditions, 

i.e. different part geometry and positional offset. Also the knowledge discovery 

capability of the NNC was verified by stopping/inhibiting its learning during 

operations.

Chapter 10. Provides the conclusion of the thesis. A review of the main contri­

bution of this research to the development of self-adaptive intelligent robots for 

mechanical assembly is given. Further developments of the system to enhance
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the autonomy of the assembly system are identified and indicated as future work. 

Finally, additional results obtained during the assessment of the NNC are included 

in AppendixA. The ART algorithms upon which the NNC was designed are 

provided in Appendix B. The work published by the author during this research 

is listed in Appendix C.



C hapter 2 

Force Control and C onnectionist 

M odels

This Chapter presents a review of current research in force control for robotic 

assembly and the main issues involved in non-linear control. The neural ap­

proaches reviewed include supervised and unsupervised connectionist controllers. 

The backpropagation network was used by H. Asada, reinforcement learning in 

conjunction with backpropagation was used by V. Gullapalli and M. Howarth, 

and Self Organising Maps (SOM) was used by E. Cervera. The analysis pro­

vided useful guidelines for the design of the neural controller which concludes the 

Chapter.

2.1 N on-linear M apping — H. A sada

Asada analysed the peg-in-hole operation using a supervised ANN [23]. He anal­

ysed the insertion of a peg in a chamferless hole taking into account the following 

considerations: a) point contact, b) negligible friction and c) small displacements. 

A representation of the contact point is illustrated in Figure 2.1.

The part shown is in contact with the environment at point Ci, where and 

rii are the position and normal vector of the ith contact point Ci respectively. 

The force and moment acting on the rigid body are collectively represented by a 

six-dimensional vector biSi, where:

19



Chapter 2 -  Force Control and Connectionist Models 20

n i n

C i

Figure 2.1: Contact point
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and the resultant force and moment, collectively represented by /  € 5ft6 is then 

given by

/  =  biSi +  • • • +  bmsm (2 .2)

where 6* > 0. It is assumed that the m  vectors are linearly independent. The 

contact at point Ci is detected by examining whether b{ > 0 or not. He demon­

strated that a necessary and sufficient condition for bi to be positive is given by 

}  > 0 where a* =  ( /  — Pi)si and P{ G R̂6x6 is the projection matrix of vector 

Si to the hyperplane spanned by vectors S i ,  • • • ,  S j _ i ,  s^+i, • • • ,  sm. Each contact 

point can then be detected separately by using the above linear inequality. He 

used a discriminatory function in a neural unit as shown in Figure 2.2.

The inputs to the unit are the six components involved in the force and moment 

vector / ,  and the weights are components of the coefficient vector a*. The acti­

vation function is a threshold function. The output indicates whether or not the 

contact at point Ci has been made. Therefore, this unit can also be considered as 

a discriminatory or clustering function in terms of contact points. Starting from 

this unit, he constructed a three layer unit as shown in Figure 2.3.

Physical interpretation of the network is as follows. The first layer comprises m  

neural units that detect contacts at the m  individual points and provide binary
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Figure 2.2: Neural unit for detecting contact point
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Figure 2.3: Three layer unit

outputs qi, •••, qm. These outputs described by a m-dimensional vector, determine 

the current contact state from which described velocities are directly derived. The 

second layer actually maps the m-dimensional vector to discrete contact states, 

7*1,' • -,rn. The third layer generates desired velocities in accordance with the 

individual contact states detected at the second layer.

A chamferless insertion of the structure shown above was simulated using a super­

vised backpropagation algorithm, where the weight of the mapping input-output 

was determined by the Widrow-Hoff procedure [37]. Results from the simulation 

showed that the network was able to determine three different contact states and 

that the output velocity vector was very close to the desired velocity.
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2.1.1 Stochastic reinforcement

value (SRV) — V. Gullapalli

ANN algorithms can be roughly divided between supervised and unsupervised 

methods. However, the Reinforcement Learning (RL) category has a fuzzy defi­

nition since it depends on the authors’ view point on how they define supervision. 

RL is frequently associated with unsupervised methods since it provides a good 

evaluation about how well or how badly the network is performing [26, 25, 4]. 

RL refers to improving performance through trial-and-error. Supervised methods 

use a teacher that tells the system how to map input information with the target 

output. The weights of the network are adjusted based on a list of errors de­

rived by comparing each output units’ actual activity with its target activity. In 

contrast, the training information used in RL is evaluative feedback, it tells the 

learner whether or not, and possibly by how much, its behaviour has improved or 

has got worse. The teacher is then no longer needed and it becomes a critic. One 

of the main advantages of RL is the fact that it does not know what the system’s 

output will be, as it only evaluates consequences and then it requires less infor­

mation than supervised methods. However, since RL works with feedback, this 

information can have either delays due to the nature of the action or immediate 

consequences. Hence, it has to solve what is termed the credit assignment prob­

lem [38, 39]. Under uncertainty other parameters have to help to decide which 

action to take, normally those assumptions are based on probability theory. The 

Stochastic Reinforcement Value (SRV) algorithm designed by Gullapalli deals 

with uncertainty and is based on this sort of statement.

The network controller developed by Gullapalli is based on backpropagation units, 

whose outputs are SRV reinforcement learning units. The activation at any time 

of the units depends on two parameters, the mean (p), and the standard devi­

ation (cr) used in the normal distribution, which in turn depend on the current 

input to the unit. Learning takes place by adjusting these two parameters, there­

fore increasing the probability of producing the optimal real value for each input 

pattern. The algorithm does this by maintaining the mean of its activation as an 

estimate of the optimal activation (the activation that has the maximum expec­
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tation of reinforcement from the environment), and using the standard deviation 

to control the amount of search around the current mean value of the activation. 

The basic idea for the algorithm is as follows [25]: the mean (p) of the distribution 

is made equal to a weighted sum of the inputs of the unit at time t:
n

MW =  S  Wi(t)xi(t) +  Wthres(t) (2.3)
i—l

The determination of o is more involved. The conditions stated above indicate 

that for a given input, the standard deviation should depend on how close the 

current expected output (i.e. the current value of the mean), is to the optimal 

output for that input. Since the reinforcement signal returned by the environment 

is a measure of this, the standard deviation used in computing the output should 

depend on the expected reinforcement. If the expected reinforcement is high, the 

unit is performing well for that input and o should be small. Conversely, if the 

expected reinforcement is low, o should be large so that the unit explores a wider 

interval in its output range. The expected reinforcement r is calculated by
n

r(t) =  ]jjT Vi(t)xi(t) +  vthres(t) (2.4)
i= z \

This expected reinforcement is used to compute the standard deviation as

u(t) = s(f(t)) (2.5)

where s(-) is a monotonic decreasing, non-negative function of r(t). Moreover,

s(1.0) = 0.0 , so that when the maximum reinforcement is expected, the standard

deviation is zero, s(-) is defined as

s(r(t)) =  max  ( ( ^ g  q ^ ’0'0) )  2̂'6^

Based on pit) and aft), the unit computes its activation aft), which is a normally 

distributed random variable:

aft) ~  W(/z(t),cr(i)) (2.7)

Finally, the activation aft) is transformed into the output of the unit y(t) using 

the output function /(•), so that

y ft) = f(a(t)) (2.8)



Chapter 2 -  Force Control and Connectionist Models 24

Equations 2.3 to 2.7 describe how the unit uses its inputs to compute its output 

at a given time step. Learning is achieved through modifying the unit’s weights 

as follows:

Wi(t +  1) =  Wi(t) +  a A w(t)xi(t) (2.9)

'W th r e s +  1) =  ^ thresi)0 4” CkAw (t̂ j (2.10)

where a  is the learning rate parameter and

A w(i) =  (r(*) -  m(a(' i ' (fji( t ) )  (2-11)

The fraction in equation 2.11 is seen as a normalised noise (or jitter) that has been 

added to the mean activation unit. If this noise has caused the unit to receive 

a reinforcement signal that is more than the expected reinforcement, then it is 

desirable for the unit to have an activation closer to the current activation a(t). It 

should therefore update its mean output value in the direction of the noise, i.e., 

if the noise is positive, the unit should upgrade its weights so that the mean value 

increases. Conversely, if the noise is negative, the weights should be updated so 

that the mean value decreases. On the other hand, if the reinforcement received 

is less than the expected reinforcement, then the unit should adjust its mean in 

the direction opposite to that of the noise. In terms of training, a supervised 

algorithm is used since each input vector has to be associated to a corresponding 

reinforcement value. This is done by using the LMS rule of Widrow and Hoff as 

shown in the following equations:

Vi(t +  1) =  Vi{t) +  pA v(t)xi(t) (2 .1 2 )

where ft is the learning rate parameter and

A„(t) =  r(t) -  r(t) (2.13)

To demonstrate the feasibility of the SRV algorithm, Gullapalli used a Zebra robot 

arm to accomplish a peg-in-hole operation. A F /T  sensor is placed between the 

gripper and the flange of the robot. The robot is commanded via desired motions 

which are the output of the neural controller placed in the feedback loop of the 

system. For the task, the peg is circular and 30 mm long and 6 mm in diameter,
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while the hole is chamferless and 6.35 mm in diameter, giving a clearance of

0.175 mm.

The controller is a backpropagation network with 11 inputs. These are the sensed 

positions and forces, (X, Y, Z , 0i, 02) and (Fx, Fy, Fz, Mx, My, Mz). The output of 

the network are the position commands (x, y, z, ©i, ©2). In terms of hardware, 

the position of the end-effector is computed from the sensed joint position of the 

arm by using the Forward Kinematics of the arm. For the output command, 

the arm uses a PD control law. The performance of the operation is evaluated 

by a parameter r, which measures the performance of the controller, r varies 

between 1 to 0 and is a function of the sensed peg position and the nominal hole 

location. Results show that the algorithm performs well despite uncertainty in 

the end-effector location (e.g. backlash).

2.1.2 Reinforcement learning using

a SCARA-type robot — M. Howarth

M. Howarth implemented a backpropagation algorithm in conjunction with rein­

forcement learning using a 4 DOF SCARA robot to carry out peg-in-hole opera­

tions [3]. In comparison with Gullapalli’s work, where the reinforcement learning 

values were stochastic, Howarth’s reinforcement value was based on two prin­

ciples: minimisation of force and torque values and continuation of movement 

in the assembly direction. This implies that whenever a force or torque value 

is above an acceptable threshold, an action (i.e., reorientation), should occur to 

minimise the force. Additionally, movement in the target assembly direction is 

favoured.

After completing the incremental move generated by the network, the inputs 

are read (sensor values), and these are propagated through the network and the 

output values calculated and scaled to provide the next incremental motion of the 

manipulator (£). The incremental motion is completed and new sensor values are 

taken at this new location. The effectiveness of the last action is evaluated and 

the error signal generated. This value is then propagated back to the network 

adapting the weights at each layer of the network. The reinforcement value (k )
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is associated with the backpropagation algorithm as follows:

£i — k f  (Si)

where Si is the error at the ith output neuron resulting from the forward pass

of the network. f'(Si)  is the derivative of the activation function (f( tanh (x ))),

which is given by

/ ( S i )  =  e 2 S i +  e - 2 S S  +  2

The value of k varies according to the stage. If the peg is moving in free space, 

then k is governed by:

k{ —

for all axes except Z  and i = x ,y , or 0 .

For the Z  axis:

kz =  -  1 (Sz +  1) fo r  -  1 < Sz < 0

kz — 0 fo r  8Z < — 1.0 

kz =  — 1.0 for  Sz > 0.0 

When the peg is in contact with the environment (female component):

ki — Fi Si

2.1.3 Identifying contact

states by SOM — E. Cervera

Cervera et al. [16] have also used ANN techniques to classify contact states in 

the peg-in-hole operation. In comparison with some other approaches, they use 

an unsupervised network to cluster the different states during the assembly. The 

contact states are classified by using Self Organising Maps (SOM). The network 

is able to classify the three contact states as made before by Asada [23] and 

three additional contacts as shown in Figure 2.4. After contact states have been 

identified, they are labelled to the corresponding state in order to differentiate 

them.
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r < -  -

Figure 2.4: Contact states

A SOM is a 2D representation of multidimensional input patterns. The cells 

are fully connected to the inputs and become tuned to different signal patterns. 

Those units which are best tuned to a given signal pattern become active and a 

response is concentrated in the area with the most active units in the network. 

The difference with other connectionist networks is the fact that after learning, 

SOM’s responses are topologically arranged in the map i.e., two similar input 

patterns which are near each other in the signal space, are correspondingly lo­

cated near each other in the map sheet. The ordering takes place automatically 

without external supervision, based only on the internal relation in the structure 

of the input signals themselves and, on the coordination of the unit activities 

through the lateral connections between the units. During training, units adapt 

their weights following the input values but each adaptation step involves not only 

a unit but a neighbourhood of units, providing the topology preservation proper­

ties. Through the self-organisation of the responsive areas in the map, the SOM 

algorithm creates an internal representation of the incoming signal structure. 

The output of the network and the corresponding contact states and symmetry 

are classified as shown schematically in Figure 2.5.

Here, p[ — p'6 are the symmetric contact states of pi — pQ. When more contact 

states were presented to the network, it could not resolve the difference, so addi­

tional information (orientation of the peg) had to be included in the training set. 

Insertions with different tolerances, (offset between the nominal insertion point
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Figure 2.5: Activation patterns

and the peg location) were made, so the output patterns of the network were as 

it is schematically shown in Figure 2.6.

Safe zone I I Dangerous
  n a m  zone

Figure 2.6: Regions for the insertion task

The degree of safety is shown in grey scale according to the level of tolerance. 

The higher the tolerance, the more dangerous the operation is. However, due to 

the nature of the mapping, some of the areas overlapped as shown in the areas 

marked +1, 0, -1 and E, B. When an unlabeled group was identified, the output of 

the network was defined as “unknown”. To overcome this, further enhancements 

were developed [24], in which additional parameters were taken into account such 

as hole clearance and friction coefficient. An additional parameter that helps 

the algorithm to discriminate between states is the introduction of a probability 

function that gives a measure of confidence over the network output.

In a more recent work, E. Cervera and A. P. del Pobil used Reinforcement Learn­
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ing to carry out the peg in hole insertion using cylindrical and cubic pegs [26]. 

Here the relationship between contact states and action is further improved by 

using a Q-learning algorithm [39], where a discrete number of actions are chosen,

i.e., different direction of motion. Each learning algorithm updates these values 

according to the reinforcement signal obtained when each action is executed in 

a given state. A simple action-penalty representation is used. The system is 

penalised with the same value for every action that it executes. The method 

converges to the value which minimises the accumulated penalisation (which cor­

responds to the minimum insertion time). Initially the system chooses actions 

randomly. After learning, the action with higher value for the current state is 

chosen.

2.1.4 Conclusions

H. Asada provided an important contribution towards non-linear mapping be­

tween force data and position(velocity) data. During simulations using back­

propagation he showed that this network topology could be used for clustering 

purposes. However, the network was able to discriminate only three contact 

states. Also, there was no indication that the network could easily be re-trained 

to cope with a larger number of contact states.

In the SRV algorithm, the learning depends on the peg geometry on which the 

network is trained and is specific to the location of the peg in the workspace 

because the absolute peg position is produced as an output. If the peg location 

were moved in the workspace, the learned operation would probably fail because 

it would be very difficult to accurately specify the relative transformation between 

the new location and the training location.

Another approach given by M. Howarth also used RL, but in comparison with 

Gullapalli’s work, the final location of the hole is unknown. He used a rein­

forcement value that rewarded motion in the main insertion axis ( -Z ) .  The 

reinforcement value was distinct depending on the relative motion in Z  axis and 

if the motion is made in free or constrained space. The implementation on the 

4 DOF SCARA-type robot limited the robustness of the algorithm since it con­
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sidered 4 axes of reorientation only and therefore reinforcement values were not 

related to the full 6 DOF.

The use of an unsupervised SOM approach demonstrated its capabilities as classi­

fier or clustering algorithm for the different contact states. When the dimension 

of the net increased (with more contact states), further parameters had to be 

used to discriminate between states. In this respect, reinforcement learning used 

in conjunction with a probability function were used to give a confidence to the 

network’s output. In comparison with the work by Gullapalli and Howarth, the 

approach used by Cervera considered only a finite number of contact states.

The revision of the work presented here has provided essential information re­

garding two important aspects for the design of the neural network controller:

• It has to be adaptable by allowing more contact states to be classified in 

order to work better under uncertainty with different shapes and assembly 

orientations.

• It has also to be able to recognise autonomously those clustered contact 

states and associate them with the corresponding motion output.



C hapter 3 

D esign  o f th e R obotic  

A ssem bly System

This Chapter is concerned with the design and implementation of the robotic 

learning environment, including its control and sensory systems.

The author was responsible for the specification, design and implementation of 

all issues related to the system. These included: security inter-lock system, force 

sensing software, custom-based control unit using a host-slave computer system, 

hardware interfacing and communication software.

3.1 R obot C ontrol System

The testbed was designed for the PUMA 761 robot arm provided by the industrial 

collaborator Roll Royce & Associates. The hardware design is centred on this 

arm, which is driven in real-time through continuous path modification using the 

a l t e r  mode described in section 3.4.2.

The control architecture is depicted in Figure 3.1. The plant is integrated by the 

robot arm and the insertion process itself in the open loop path (highlighted area 

1). A force f  is produced during manipulation. This force is measured at the wrist 

of the arm, which may include disturbance forces fast- The F /T  sensor is located 

in the feedback loop to provide moment and force signals to the Neural Network 

Controller (NNC). The NNC then associates and generalises this information from

31
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Figure 3.1: Control system

the sensor and from the force reference signal, f ref. This fref  varies according to the 

assembly stage, depending on the orientation of the end-effector during assembly. 

In practice, this force represented the gravitational force component due to the 

weight of the end-effector. The output of the NNC are actually incremental 

motions X '  that are added to the end-effector’s current location. This incremental 

motion is sent to the robot’s controller during continuous path modification. 

Looking at the feedback loop path (highlighted area 2), it can be observed that 

this section is critical from the design point of view since it provides the input 

information to the NNC. This information must be as reliable as possible to 

provide fast training to the NNC. Inaccurate input patterns at this stage may 

slow the learning algorithm or produce an unstable system.

The reliability of the control system and consequently the assembly relies then on 

these two subsystems, the robot arm and the sensory system, which are described 

in the following sections.

3.2 T he P U M A  761 System

The Programmable Universal Machine for Assembly (PUMA) is a member of 

the Unimation 700, 500 and 200 robot series designed by Vic Schienman at MIT 

in the mid-70’s. These 6 DOF robot arms are still widely used in industry and 

for research and teaching purposes in academia. The robot empktyed for this
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research is one of the biggest of the PUMA family, namely PUMA 761. The 

PUMA system is shown in Figure 3.2.

R O B O T ARM

I N T E R C O N N E C T  C A B L E S

C O N TR O LLER

VDT

AND DISK DRIVE

PER IPH ER A LS
TE AC H

PEN DA N T

Figure 3.2: PUMA system

The robot arm or manipulator is the main mechanical part of the system. Basi­

cally, it consists of servomechanisms for the motion of the six joints and optical 

encoders to pass the incremental motion information of each joint to the controller 

unit.

The other significant part of the system, the controller, houses the components 

that control and power the robot arm. The major components of the controller 

are the control module (computer and software), power component chamber, I/O  

boards, ventilation and cooling system, and peripherals. The peripheral include 

the Video Display Terminal (VDT)/disk drive unit, external printer, and a teach 

pendant also called hand-held control.

The operating system that controls the robot arm is termed VAL II or VAL
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for short. VAL II is stored in the computer memory of the control module. 

The controller also houses the operating controls for the robot system such as 

emergency stop, on/off power arm, teach mode, etc.

The controller’s master processor of the PUMA robot is the LSI-11/73. This 

processor interfaces with six 6503 microprocessor based boards as shown in Figure 

3.3.

6503

6503

6503

Joint 1

Joint 2

Joint 6

6503

6503

6503

Joint 3

Joint 5

Joint 4

LSI-11/73
Interface

board

Figure 3.3: Architecture of the PUMA system

Each board has a PID control law which computes the desired motion for each 

joint. The master processor also takes care of the high level interface with the 

operating system and calculates the inverse kinematic parameters. The PID 

controller can be switched off to diminish vibration effects at the end-effector. 

However, this would limit the ability of the controller to cope with positional 

errors in steady state, affecting the overall performance.

3.2.1 Safety regulations and Remote Teach M ode

Following safety regulations within the Department of Mechanical and Manu­

facturing Engineering, it was recommended to surround the robot by a metallic 

guard and to design a security interlock system. The main requirement for the 

security system was as follows:

It must prevent people entering the working envelope while the 

robot is in operation. This has to be achieved by using a key-lock
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system at the door’s guard, which must activate the emergency stop 

in the robot controller if the door is opened when the arm power is on.

However, during experiments and especially when teaching precise points to the 

robot, it is preferable to teach some of them inside the guard and work closely 

alongside the manipulator. The only way to achieve this is by using the robot in 

remote control mode, which disables all controls on the front panel of the robot 

controller (except power key and emergency stop), and enables remote control 

(including the teach pendant).

By combining both requirements the author designed a system that can be used 

in either local or remote mode safely. The user is able to teach points outside or 

inside the guard with full control on the manipulator. In remote mode the only 

person with control of the robot’s motion is the user via the teach pendant.

3.3 C ontrolling C ontact Force 

via D irected  M otion

Ordinary methods to program robots include the use of predefined workspace 

points stored in memory by the teach pendant. This method is suitable when 

environment conditions prevail during operations e.g. motion in free-space. How­

ever, during mechanical insertion and part manipulation the end-effector nec­

essarily contacts the environment making the operation difficult. To overcome 

these uncertainties either a model-based or a connectionist-based solution may be 

employed as pointed out in Chapter 1 and 2. The force control will be ultimately 

achieved by position control as it is explained in the following paragraphs, where 

related work with PUMA robots is reviewed.

Perhaps, one of the most comprehensive options in implementing the position/force 

control as far as the hardware is concerned, is the utilization of the TRC004 

PUMA interface card manufactured by Trident Robotics and Research, Inc. [40], 

The TRC004 was designed to replace the LSI-11 VAL computer and the servo 

cards in the Unimate PUMA controller to allow high-speed, direct access to joint 

motor torques and positions. This card is suited to interface the 500 series robot
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and some of the 200 and 700 series with Mark II type controllers. This card 

physically replaces the original CPU, RAM, EPROM, serial controller, interface 

cards and joint servos from the controller backplane. The TRC004 can handle 

joint encoder information from the arm and provide an analogue output to be 

connected to the power amplifiers for commanding motor torque.

This option is attractive considering that DEC announced in 1996 the “Retire­

ment of the PDP-11 Product Family” [41] from late 1997.1 However, Staubli 

Unimation has guaranteed the supply of parts for these controllers for some years 

more. The drawback of choosing this option is undoubtedly the fact that the user 

has to create his own power-on calibration, joint potentiometer calibration and 

joint position control. In other words, programming is needed to restore many of 

the functions of the original operating system, VAL II. Such changes were out of 

the scope, time and budget allocated for this research. However, this option is 

mentioned here since it offers a good alternative for creating robust controllers us­

ing PUMA architectures. Some other researchers have also modified the original 

architecture as can be seen in [42], however, they do not use a ready to implement 

commercial board, but a purpose specific design.

The PUMA architecture’s built-in PID control law for each joint and each control 

board is based on a microprocessor that modulates the power applied to each of 

the PWM2 amplifiers. The modification of the signal power to the servos could 

be made by using preshaping input signal as pointed out by J. M. Hyde and M. 

R. Cutkosky [9]. Nevertheless, altering this signal would modify the total force at 

the end-effector and also may change the arms behaviour when the end-effector 

and the environment make contact. But, such a modification would necessarily 

affect the control boards and as a result, the overall robot performance. 

Bukowski, et al. [43], used a novel approach to alter the arm position by using 

a Digital to Analogue Converter (DAC) in the host computer and an Analogue 

to Digital Converter (ADC) in the robot controller. This has the advantage 

of reducing the communication time in comparison to the required time during 

the continuous path modification with the robot. Obviously, a trade-off must
Ut is important to remember that the PUMA’s controller design was centred on this family.
2Pulse Width Modulation.
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be considered between accuracy in position and the communication overhead 

experienced by using the continuous path modification feature of the PUMA 

architecture. The reported positional uncertainty was equivalent to only three 

counts of the ADC resolution.

Having considered the options to control the force and the objectives of the re­

search, it was decided to control the force indirectly by controlling the end-effector 

position. In this manner, the built-in PID controller did not need to be modi­

fied. Furthermore, following this approach the implementation of the techniques 

developed here onto other industrial robots should be straightforward.

3.3.1 Servo sampling rate

There are two possibilities for moving the arm by using low-level control. It 

can be achieved either directly by writing motion programs using the VAL II  Z- 

Instruction Set, or by using the a l t e r  mode [44]. In the former, the instruction 

set allows the user to write LSI-11 machine code routines to run in VAL II con­

trollers improving the communication abilities of the robot. In the latter, ALTER 

mode is restricted to a fixed communication timing which should be considered 

as the bandwidth available in real-time for signal processing and control.

Using machine code and writing directly to the LSI-11/73 processor certainly 

gives great flexibility in terms of hardware. However, it also imposes a serious 

consideration on the natural frequency of the arm and its stability. Modifying 

updating times to the servo motors may excite some resonances on the structure of 

the arm. An analysis of this stability is very complex in a serial link manipulator 

since the mechanical structure and its description is dependent on configuration, 

which is infinitely variable.

With regard to these considerations, it was decided to use a l t e r  mode to com­

municate to the controller and to consider a bandwidth of 28 ms available for 

processing. This servo sampling rate (36 Hz) is considered “safe” due to the low 

resonance frequency of this type of robot manipulators, which is between 5 Hz 

and 25 Hz [45, 46]. Furthermore, since the arm is moved in quasi-static motion 

(which is the case in fine manipulation), then the communication overhead does
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not affect the system. From experimental data it was observed that a settling time 

longer than 28 ms was needed when the F /T  data was acquired. This situation 

is discussed further in sections 7.1 and 7.2.

3.3.2 Force sensing and system  architecture

Force sensing is not a standard function built into industrial robots, but is avail­

able as an option from a few manufacturers. Adept Technologies pioneered the 

implementation of force sensing capability in their controllers in 1989 and some 

others have also announced some form of integrated force sensing [47]. Follow­

ing the Adept-Staubli partnership, the new EX family robots from Staubli uses 

the Adept MV type of controllers [48], and consequently, force sensing is also 

offered as an option. The RX family and its programming language V + are the 

successors of the PUMA family and the VAL language respectively. Other man­

ufactures such as Integrated Motions, Inc. offers force sensing capability in the 

Zebra model, however this capability is limited due to the 1 kg maximum payload 

of the robot.

In the present design, centred on the PUMA system, a custom solution was 

implemented that included this sensing capability as well as an open architecture 

to control the arm motion. This architecture is illustrated in Figure 3.4.

The control and learning algorithms are implemented in the supervisory host 

computer. This supervisory host computer is based on a Pentium processor 

working at 100MHz. The Host communicates to the robot controller modifying 

the previous arm motion according to the force feedback signal. The original 

robot controller and the VAL language were not used to implement the algo­

rithms since the language does not allow the creation of complex programs nor to 

implement easily the force sensor interface. The robot controller is only used as a 

motion slave, which alters the current motion of the arm according to supervisory 

host computer commands. It can also be seen in Figure 3.4 that the supervisory 

computer communicates with the robot controller via two serial lines. The su­

pervisory line carries all commands to the controller and replaces the original 

VDT. The computing capabilities of the supervisory computer are better than
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Figure 3.4: System architecture

the original terminal. The second line is a dedicated serial line (a l t e r ), which 

sends the incremental motions to the controller and also carries information back 

to the supervisory computer on the current position of the end-effector. The use 

and design of both lines are explained in the next section.

3.4 C om m unicating w ith  the R obot Controller

The PUMA system has the capability to communicate with an external system 

(stand alone or networked computer) using a protocol that ensures the integrity 

of information transferred between the VAL II system and the external system. 

There are two levels of communication as mentioned in section 3.3, where the level 

dealing with commands to the controller is termed Supervisor mode, whereas the 

one carrying information about how much to modify the current arm position is 

referred to as a l t e r .

3.4.1 Supervisor mode

This is how VAL II can be interfaced to a supervisory computer via a EIA RS-423 

serial line operated at a maximum speed of 9600 bauds using a software communi­
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cation protocol DDCMP [49]. DDCMP stands for Digital Data Communication 

Message Protocol and it was created by DEC to interface all the PDP family 

processors including the LSI-11/73, the master processor in the controller unit. 

DDCMP resides at a level above the communication medium (i.e., the physical 

transmission of bits over the communication channel). It is concerned with the 

transmission of data organised into physical groups as data messages and it uses 

a coding scheme within every message to identify the type of communication. 

This scheme is implemented by considering the system as being subdivided into 

separate subunits, referred to as “logical units” . Each type of communication is 

then associated with a particular unit [50].

Despite the advantages of using a well structured synchronous protocol such as 

the DDCMP, it was decided not to use this protocol since it would increase the 

time overhead in the serial communication. Other alternatives reduce time, imple­

mentation effort and cost, so it was decided to communicate directly through the 

serial line via a dummy terminal program to interface the supervisory computer 

to the serial VDT port at the robot controller. A 4C’ program was written and 

tested by directly connecting the RS-232 of the supervisory computer to the J10 

terminal at the robot’s controller, so that the original VDT and keyboard are no 

longer used and all the commands to the robot were issued from the supervisory 

host computer.

3.4.2 Continuous path modification — a l t e r  mode

A reliable communication was established to the robot controller to issue com­

mands from the supervisory computer, which were originally available only from 

the controller’s terminal. However, if the robot is to be interfaced with sensors as 

this is the case, then a supervisory communication is not enough, since another 

channel is needed to convey such sensory information to the VAL II system. With 

a force sensor attached to the wrist of the robot, the sensor information will serve 

to modify the current arm motion in real-time by using the ALTER mode.

The a l t e r  mode can be achieved in two ways. Internally, by using an auxiliary 

program that executes in parallel with the robot-control program that contin­
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uously monitors the motion of the arm and acts accordingly. Externally, using 

the information sent by the supervisory computer. The information contained 

in the data stream includes, among other parameters, the type of coordinates 

to be used (world or tool coordinates), the type of motion e.g. incremental or 

absolute, and the incremental motion for each axis. Software implementation of 

the a l t e r  mode was not supported by Staubli, hence the author developed the 

serial communication software for continuous path modification.

When in a l t e r  mode, the operating system sends messages to the supervisory 

computer about 36 times per second (every 28 ms) requesting path control in­

formation. The computer must respond by sending data that determines how 

the nominal robot tool trajectory is to be modified. This sequence continues 

until VAL terminates ALTER mode for some reason, or the supervisory computer 

signals an exception condition.

The details of a l t e r  mode are specified in a user program with an a l t e r  pro­

gram instruction. When this instruction is executed, VAL immediately sends an 

“a l t e r  starting” message to the supervisory computer and waits for the start up 

acknowledgement. If the computer does not respond, the VAL program termi­

nates with an error. If the computer does respond, VAL enters the a l t e r  mode 

at the start of the next robot motion.

VAL remains in a l t e r  mode until n o  a l t e r  instruction is executed, or the robot 

program stops executing for any reason. The latter includes unexpected termina­

tion of program execution due to an error, such as attempting a joint-interpolated 

motion (since in this mode only straight line motions are allowed).

Details about the structure of a l t e r  messages are found in [44]. However, the 

general structure of the messages will be given here to understand how the pro­

tocol handles information between the controller and the supervisory computer. 

The communication is bi-directional between the controller and the computer. 

It starts with an a l t e r  instruction in a user program as mentioned previously, 

then after executing this instruction, the controller sends a starting message to 

the computer indicating its readiness to start communicating. The computer 

has to acknowledge this message and start sending information. VAL imposes
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strict timing between messages and there is no error checking on messages after 

starting the a l t e r  mode. If the supervisory computer message is delayed by 

more than 28 ms, the controller request the information again and if the delay 

persist, then the controller interrupts the communication. VAL identifies which 

error has occurred and indicates the type of error. However, it cannot recover 

from it and the communication terminates. During software development many 

attempts were made before a stable communication could actually be achieved.

M essage packet

The complete format of every transmission to and from the serial communication 

port of the controller and the supervisory computer is as follows:

D E L D LE  S T X  < data > D LE E T X  < check >

where,

D E L : Byte containing 255 (FFh)

D L E : Byte containing 144 (90h)

S T X :  Byte containing 130 (82h)

< Data field > Sequence of any number of 8-bit bytes 

DLE: Byte containing 144 (90h)

E T X :  Byte containing 131 (83h)

< check > Single-byte checksum containing the two’s complement of the sum of 

all the bytes in the Data field.

All messages either from the supervisory computer or VAL system follow this 

format (except when starting communication). All information and control bytes 

are transmitted in the Data field. The reader is referred to [44] for a more detailed 

description of all data within this field.

A ‘C’ program was written to establish this data packet and to communicate with 

the controller, tests were carried out with first, motion in one axis at a time and 

then all axes in full motion.
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Physical link

The serial interface between the robot controller and the supervisory computer 

was agreed to be made using the RS-232 standard. Therefore, the RS-422 original 

standard in the DVL11-J asynchronous serial line board had to be modified. The 

change was simple since only a number of resistors were removed from the board 

to allow single-ended voltage input. There were no changes at the supervisory 

computer end since its port were already using the RS-232 standard.

3.5 Im proving Hardware D esign

Initial experiments with the proposed architecture were carried out. A program 

was written in Borland ‘C’ to control the incremental motion of the robot. The 

scheme proved to work well when in ALTER mode, however under different con­

ditions the ALTER mode was aborted since the communication time exceeded 

the 28 ms limit. The ALTER mode is very strict and once it has started, the in­

terchange of data between the robot controller and supervisory computer must 

continue. If the data communication time is exceeded, the controller requests 

the information again and if the supervisory computer does not respond then the 

communication link is broken.

The above can be better understood using Figure 3.5 which shows the host and 

robot controller.

The main program in the host computer is in charge of:

• F /T  data acquisition and processing.

• Communicating with the controller using the a l t e r  mode.

• Neural network training.

• Terminal emulator.

At the start of the communication, the host computer request the initiation of 

the a l t e r  mode b y  the terminal emulator via the serial port COM2. The robot 

controller starts communicating at a 28 ms rate via the COM l port and expects
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Figure 3.5: Host-Controller architecture

the host computer to respond giving an incremental motion request within that 

time. However, the host computer should also allocate resources to read from the 

F /T  sensor in order to determine the next incremental motion. At this point the 

a l t e r  mode sometimes failed, since the communication overhead exceeded the 

allowed time.

To solve the problem, two possible solutions were considered. One solution would 

be creating an interrupt-driven program and allocate time for each of the processes 

mentioned above. In this manner, the host computer is only interrupted when 

the motion information is requested by the controller in a l t e r  mode otherwise it 

can continue with the current process. The disadvantages of this approach is that 

the F /T  reading or neural network training may be interrupted asynchronously. 

Hence, the process had to be reinitiated after servicing the interrupt. As a result, 

the remaining time slice to continue both processes may not be enough and most 

probably another a l t e r  interrupt could occur before actually reading the F /T  

pattern or training the network. If that happens, the system can be trapped and 

become unstable. Additionally, with this approach the F /T  data cannot be read 

in real-time as the contact forces develop during operations. In the ideal case, it 

is always desirable to monitor the forces as they occur and to react accordingly. 

From the discussion above, it is clear that parallel processing is an ideal solution
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to  serv ice  a ll p ro cesses , b u t m a in ly  to  re lease  th e  h o st co m p u ter  from  th e  a l t e r  

m o d e  d a ta  tran sfer  g iv in g  it  m ore p ro cessin g  t im e  ca p a b ility .

Adding parallel processing capability to the supervisory computer can be achieved 

in different ways. However, a very simple solution was found: a slave computer 

was placed between the supervisory computer and the robot controller. This new 

slave computer would be solely in charge of the incremental motion during the 

ALTER mode.

3.5.1 Host-slave architecture

A 486-based computer was used as the slave in the architecture shown in Figure 

3.6.

I ---------------------------—--------- --------- ---------—. — — — — —  j

SLAVE

Com 2

Com1

Com2

ex ALTER

F/T sensor

ALTER
Processing

486PC

Robot
Controller

F/T reading

Terminal
emulator

Training

HOST
P100

Figure 3.6: Host-slave architecture 

In the host computer three algorithms are implemented:

1. F /T  processing. The processing includes the following features: F /T  data 

acquisition, force data scaling, offset removal and rotation/translation of the sen­

sor coordinate frame.

2. Neural Network train ing/testing. Includes all the necessary settings 

for the network training and testing, and the control of the continuous path 

modification in a l t e r  mode.
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3. Terminal emulator. The emulator resembles the use of the former con­

troller’s terminal. Commands and instruction to VAL can be issued from the 

host computer as if it were the terminal. Full functionality is provided so that 

the terminal is not longer used, which provides more flexibility since the overall 

control is in the host.

With this architecture a typical interchange of information between slave-host is 

as follows:

The host computer reads the F /T  data and the neural network is 

tested with this new information. As a result, the neural network’s 

output produces the desired incremental motion for the end-effector.

At this time the host computer transmits the incremental motion 

value to the slave and immediately after, the slave computer signals 

the robot controller to initiate the a l t e r  mode. The host computer is 

released at this point and the slave computer is in charge of encoding 

the information as required by the robot controller in ALTER mode.

The host can then monitor the F /T  force traces as they occur in 

real-time or perform any other task.

3.5.2 Software design

The software for handling data during a l t e r  mode was implemented in Bor­

land ‘C’ in the slave computer working under the DOS operating system. This 

program basically gets the direction, speed and mode of the motion (world or 

tool coordinates) from the host and sends it, in compatible format, to the robot 

controller in a l t e r  mode as explained in section 3.4.2.

The NNC is implemented in the host computer, this main program is in charge 

of handling required information for the processes mentioned above by the slave 

computer. The programming in the host was developed in Visual C + +  version

5.0.
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Manual m otion

The Windows-based program in the host computer facilitated the robot operation. 

For instance, the arm can be positioned manually using the dialogue control 

shown in Figure 3.7.

Direction ^peed jl0 -j-j
_ ° L _ I

1 Motion -X 
jM otionY

Cancel j

r M ode ---------- --—— -s p Coordinates |

Incremental Non*incremental ] | C  World & iTooj

MOVE j

Figure 3.7: Manual motion dialogue

The direction can be selected as translation or rotation and it can be either pos­

itive or negative. The speed can be selected between 0 and 50, which represents 

a percentage of the nominal speed value. For example, a selected value of 10 will 

imply a 10% speed of the nominal arm speed given by the SPEED command in 

VAL language. This speed was limited to 50 due to the high acceleration that 

appeared at the end-effector above this value.

The type of motion can be selected in the Mode option. It can be incremental, 

which means that the value will be added to current arm’s position. In the non- 

incremental option, the new value will be added to the arm’s starting location, 

so that incremental motions are relative to this initial position. The arm can be 

positioned either in World or Tool coordinates, with origin at the robot’s base or 

flange edge of the robot arm, respectively.

3.6 Force Sensing Im plem entation

Figure 3.6, showed a feedback line connected from the sensor to the supervisory 

computer carrying information about the current state of the end-effector. This
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data contains information about force and torque related to the sensor frame in 

the workspace. In this section, a brief description of the F /T  sensor is given 

and parameters for the selection, calibration and software implementation are 

explained.

3.6.1 Force/Torque sensing and selection

The selected sensing element is a wrist Force/Torque sensor which is placed be­

tween the flange edge of the arm and the adaptor plate of the robot. The force 

and torque are resolved into a six degrees of freedom force-torque vector with 

respect to the sensor coordinate frame.

The sensing principle is based on strain gauges, which are mounted on beams con­

nected to the shaft of the sensor case. The strain gauges can be made from metal 

foil or silicon. Generally speaking, silicon-based sensors are temperature depen­

dent but when compensated they offer good accuracy. Metal foil strain gauges 

are less accurate when used at low pressures, however they are more robust when 

used at higher forces. The mechanical placement of the gauges, coupled with the 

mechanical location of the beam, determines the combination of forces in a bridge 

output signal. The number of beams is three or four depending on the manufac­

turer. According to Assurance Technology Inc. [51], using three beams instead 

of four performs better since with four beams, an eight-component strain vector 

requires an eight-by-six calibration matrix compared to the six-by-six required 

with three beams. This reduces sensor costs and increases reliability and speed 

because the available computational power can be dedicated to fewer control 

algorithms.

Information was gathered from different sources and suppliers to compare differ­

ent sensors readily available in the market. Table 3.1 shows the features for each 

of the sensor reviewed.

It can be observed from the table that the JR3 sensor specifications are superior to 

the others, this sensor was chosen. Its sampling rate is the highest available, the 

built-in software capabilities are varied and provide more flexibility for software 

design. Additionally, another advantage is that this sensor only needs a receiver
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F E A T U R E S
S E N S O R S

M IN IF O R C E J R 3 ATI
M o d e ls S C T -0 5 -1 1 0 0 M 4 0 9 1 0 5 G a m m a 2 (1 3 0 N /1  ONm )

M e a s u r in g  r a n g e 1 0 0  N (fy) 8 0 0 N  (fz) 2 6 0  N (fz)
T e c h n o lo g y m e ta l foil m e ta l  foil S ilico n
S a m p l in g  r a te 5  kH z 8  kH z 5 7 2 H z (s e r ia l )1 .2 k H z (p a ra l le l)
C o m m u n ic a t io n R S -4 8 5 R S -4 8 5 R S -2 3 2 /  L S T T L
P r o c e s s o r  (c lo c k  fre q .) D S P  (1 6  M H z) D S P  A D S P -2 1 0 5 D S P
R e s o lu t io n 0 .2  N 0 .0 1  lb  (x .y ); 0 .0 2  lb (z) 0 .1 0  N (1 0  C /N )
S e n s itiv ity 1 m V /V
N o n lin e a r ity 0 .1 0 %
H y s te r e s is 0 .1 0 %
R e p e a ta b i l i ty 0 .1 0 %
C r o s s  s e n s it iv ity 1 %  ( c o r r e c te d )
E x c ita tio n 5  V D C /A C P ro v id e d  b y  th e  B u s
W e ig h t (kg) 0 .6 5 0 .1 8 1
F /T  r e f e r e n c e  p o in t Y e s Y e s
D igital f il te rs  (H z) 2 0  to  1 0 0 0 0 .5  to  5 0 0  @ 8  kH z 2 3 5
P r o c e s s in g S y n c /A s y n c
D a ta  fo rm a t N, N m , B in a ry lb. N
T o o l tr a n s fo rm a tio n Y e s Y e s
B ia s in g Y e s Y e s Y e s
D e c o u p lin g Y e s
M ax/M in  p e a k  c a p tu r e Y e s
V e c to r  m a g n i tu d e  c a lc . Y e s
T h re s h o ld  c a lc u la tio n Y e s Y e s
R a te  c a lc u la tio n Y e s
P r ic e  (£) 3 7 0 0 6 0 0 0 5 6 2 6

Table 3.1: Comparison of F /T  sensors

card plugged into the PC slot to process the serial data from the sensor unit. The 

sensor unit houses all the conditioning electronics, amplifiers and converters so no 

additional cards are needed, as would have been the case with the other options. 

The sensor unit is shown in Figure 3.8. For additional comparisons, the reader 

may refer to the report written by R. Voyles at Carnegie Mellon University [52].

Figure 3.8: JR3 sensor unit
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Sensor adaptor plate and gripper

A sensor adaptor plate was designed to attach the gripper to the JR3 F /T  sensor. 

The sensor is located between the flange edge of the arm and the sensor adaptor 

plate as illustrated in Figure 3.9.

Flange Edge 

F/T sensor 

Adaptor Plate

Gripper

Figure 3.9: Sensor-Plate-Gripper

Additionally, dowels and grooves were included in the design of the sensor plate 

to provide a perfect fit of the sensor and gripper. The gripper is pneumatically 

powered and controlled from the supervisor computer or via a VAL program.

JR3 memory mapping

The JR3 receiver board is based on a Digital Signal Processor (DSP), that con­

tains a shared dual-ported RAM that both the user and the DSP can read and 

write. This memory area consists of 16k 2-byte words. The first 8kb of this 

space is RAM, while the remaining 8kb consists of status registers and other fea­

tures. The majority of the user activity takes place in the first 256 words of the 

shared space. In these locations, many operations are available to the user such 

as offset removal, data decoupling, saturation detection, digital low-pass filtering, 

force and moment vector magnitude calculation, peak detection, rate calculation, 

threshold monitoring, coordinate translation and coordinate rotation.
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3.6.2 Force representation

The sensor was mounted according to manufacturer’s specifications, who also 

provided a core code example to access the DSP memory locations. It was thought 

that a graphical representation of force and moment on the computer screen 

would facilitate the analysis of contact forces, so a Graphical Interface Program 

was written for this purpose.

The sampling rate for data acquisition is 8 kHz although the refresh on the com­

puter’s screen is slower due to the time used for reading and writing to the DSP 

and displaying. A typical F /T  trace on the screen computer is shown in Figure 

3.10. There are two graphs, the upper graph represents Fx, Fy and Fz signals 

while the values of Mx, My and Mz are represented in the lower graph. Some 

other features include selection of signal gain (Y axis), time scale (X axis), time 

delay interval (for updating screen values) and storing and loading signals from 

and to a file.

540

«  ISM A 02

my

48D
fy

360 -»£<• r>40 lvi^>4

Figure 3.10: Force and Moment signals
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3.6.3 F /T  sensor features 

R otation and translation

The JR3 sensor has many useful features that facilitate data manipulation and 

analysis, some of these were included within the NNC. Coordinate transformation 

is possible via the dialogue shown in Figure 3.11.

Rotation & Translation

Rotation (degrees) Translation (inch/10)

r  txr  ^

Tz Cancel

Figure 3.11: Rotation/Translation dialogue

The sensor coordinate frame can be rotated and/or translated. During experi­

ments these transformations were very useful since the Tool, World and Sensor 

frames were superimposed, so that only one common reference frame was used. 

This facilitated easier motion interpretation and data analysis.

Force/Torque reading and pattern acquisition

The force/torque patterns needed during network training can be acquired through 

the dialogue box shown in Figure 3.12.

Force and moment values are displayed in the appropriate boxes. The tare or 

offset in the signal can be eliminated by clicking the “Reset offsets” button. 

There is also a boundary limit for the force. In the figure, it is shown as a value 

of 101b and -101b for the upper and lower limit respectively. By setting these 

limits the NNC will stop the operation whenever any of these values are reached 

and the user prompted to take an action. This prevents potential damage to the 

parts, end-effector or sensor. The button labelled “Acquire” is used only when 

training the network the first time. The current F /T  pattern can be acquired



Chapter 3 -  Design of the Robotic Assembly System 53

H M H m a m * ]
/

-20 b  max 20 lb max %

Force — 1— — Reset Offsets
i  \ 1.. t t .....— — Fx 6.22
: r— -— -— — ~ Fy (-0.86 OK |

) p~—— — —~* Fz |8.09
Cancel |

j Torque — —
-------------------

m * , N J i v
J ^  My |-0.05 r-v -j
1  ̂  ̂ r

Mz j-1.67 w 1

Require j

Start Reading| Stop Reading J
Upper limit (lbs

--------------
,1 0

!ff? ! i  A ' '  C fe ' Lower limit (lbs) JflO

Figure 3.12: Settings and pattern acquisition

using this button and in a subsequent Window the user will be prompted to 

selected the motion corresponding to this pattern. This is to create the initial 

learning or knowledge base for the network, which will be described in Chapter 

8 .

Sampling rate, signal filtering and F /T  data acquisition

The JR3 sensor can provide either unfiltered decoupled data or data passed 

through cascade low-pass filters. This is particularly useful to diminish unwanted 

noise signals. The cut-off filter frequency is 1/16 of the sample rate of the sen­

sor. Each succeeding filter has a cut-off frequency of 1/4 of the preceding filter. 

During experiments, the sampling rate was maintained at the nominal value of 

8 kHz. Hence, the cut-off frequencies for the digital filters were 500 Hz, 125 Hz, 

31.25 Hz, 7.81 Hz, 1.95 Hz and 0.48 Hz. The transient stage and the processing 

time for the NNC have to be considered during the reading of the F /T  data. The 

initial F /T  reading was carried out as shown in Figure 3.13.

The start and end positions are marked as A and B respectively. Between these 

points there is a transient stage due to constrained motion or arm impact. After 

an appropriate delay, the F /T  vector is sampled and the NNC processes the in-
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Figure 3.13: Delay for force reading

formation producing a motion command at time C. After this point a new cycle 

may be initiated. The delay is necessary to ensure that the F /T  reading has 

reached a steady state. Theoretically, this delay should be at least the magnitude 

of the servoing time (28 ms). However, during experiments a longer delay was 

found to be necessary as will be seen in Chapter 7 where additional time con­

siderations are explained. A delay of two seconds was found to be appropriate 

during the implementation of the F /T  sensing and during early experiments with 

the manipulator.

3.7 Sum m ary

The testbed design included relevant issues ranging from safety regulations, robot 

controller modification and force sensing implementation.

The implementation of a reliable communication with the controller in ALTER 

mode was essential, a l t e r  mode was created by the manufacturer to provide 

control in real-time. The exchange of data between the supervisory computer 

and the robot controller is very strict and there are no ways to recover from 

data errors or to stop the communication. The robot controller simply sends a 

timeout message and terminates the exchange of data if no reply is received from 

the supervisory computer during the allocated time. With the other serial line 

in supervisor mode the original terminal is no longer needed since its functions
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were transferred to the supervisory computer.

With the improved master-slave architecture, the communication tasks in a l t e r  

mode were delegated to the slave, hence leaving more processing power and time 

to the supervisory computer. With this architecture, it is also possible to monitor 

the force continuously, although this will not be made due to the quasi-static in­

cremental motions required during assembly operations. However, this capability 

can be used if required.



C hapter 4

Q uantifying System  

A ccuracy /U n certa in ty

Success in robotic assembly is directly linked to the accuracy of the overall system. 

However, robots and associated systems are not accurate by definition and an 

estimate of the uncertainty is desired to compensate for these errors. In order 

to identify the absolute accuracy of the manipulator several factor should be 

considered first such as arm configuration, payload, arm deflection, etc. The 

absolute accuracy of the manipulator varies according to these factors and this is 

the reason why manufacturers do not normally give this parameters in their data 

sheets, but only provide the repeatability. In this Chapter, the associated errors in 

positioning the end-effector are determined. The manipulator was driven with the 

same type of data that the NNC uses during automated assembly operations. As 

these tests only relate to local incremental motions, it is necessary to clarify that 

the assessment of the accuracy is only related to local uncertainty within the work 

space. Therefore, it should not be considered as an exhaustive analysis of absolute 

accuracy for the PUMA 761. The following sections briefly review:resolution, 

accuracy and repeatability.

4.0.1 Resolution

The spatial resolution is the minimum distance that the tool centre can be guar­

anteed to move. In other words, the smallest increment of movement into which

56
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the robot can divide its work volume.

Factors that influence the spatial resolution are basically the resolution in the 

feedback measuring system to move the arm and the mechanical inaccuracies in 

the robot’s links and joints. Errors in the feedback system are associated to the 

ability of the encoders to resolve for the minimum increment and the computer 

to process this information. The mechanical inaccuracies basically come from the 

deflection of the links and gear backlash. The contribution of these errors will 

determine the actual spatial resolution.

4.0.2 Accuracy

The accuracy can be thought of as the difference between the actual and the 

commanded location. The accuracy of a robot can be defined in terms of spatial 

resolution because the ability to achieve a given target point depends on how 

closely the robot can define the control increments for each of its joint motions. 

In the worst case, the desired point would lie in the middle between two adjacent 

control increments[53].

In fact, the mechanical inaccuracies would affect the ability to reach the target 

position as shown in the statistical distribution in Figure 4.1.

Distribution
of mechanical 
inaccuracies

Target
point

One axisAccuracy

Spatial resolution

Figure 4.1: Statistical distribution of accuracy and spatial resolution.

As it is shown, the accuracy will depend on the mechanical inaccuracies, which on 

their own are affected by the robot configuration, work volume, payload, stretch 

of the links, etc.
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4.0.3 Repeatability

The repeatability refers to the variation of the actual location when the manip­

ulator repeatedly moves the tool centre point to the same commanded location. 

Most robot manufacturers provide a numerical value for the repeatability rather 

than the accuracy of their robots. The reason is that the accuracy depends 

upon the particular load that the gripper carries. A heavier weight causes larger 

deflections of the robot links and larger load on the joints, which degrades the 

accuracy. The repeatability value, however, is almost independent of the gripper 

load and therefore can be specified for any robot arm [54].

4.1 U ncertainties in th e  robot system

The main source of uncertainty is the robot interaction with the environment. In 

real-world applications the arm may contact the environment in multiple robot 

configurations, hence the number of possible contacts are innumerable. Added to 

this complexity is the uncertainty in sensory systems and motion/control mecha­

nisms. From this reasoning, three types of uncertainties can clearly be identified:

• Sensing uncertainty

• Control uncertainty

• Model uncertainty

Sensing uncertainty. Typically, in force sensors, noise is added to the force 

signal. Temperature plays an important role in silicon-based force sensors. These 

types of sensors are temperature dependent and their output is directly affected 

unless a scheme compensation is added to the signal conditioning circuitry. Gen­

erally speaking, the transfer function of silicon-based sensors suffer a change in 

both, gain voltage and DC offset. There are analogue and digital techniques to 

compensate for these errors, however the latter methods have proved to outper­

form analogue techniques[55].

Control uncertainty. This is due to the limitations of manipulators to accu­

rately sense the feedback information from the position encoders. Quantization
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errors are likely to occur due to the analogue to digital conversion. On the 

other hand, uncertainty is also associated with the accurate positioning of the 

end-effector since errors are present in the mechanisms as discussed before. 

M odel uncertainty. It would be impossible to accomplish an exact model of 

the robotic system, since it depends on robot configuration and relative position 

of the sensor, adaptor plate, gripper, assembly and fixed part. Static and sliding 

friction is also present in the model and it is difficult to quantify accurately. 

Robotic assembly operations are accomplished under extreme uncertainty for all 

the reasons explained above. Some researchers have included system uncertainties 

in their models to overcome this situation. Lozano-Perez et al. [20], included the 

uncertainty in the geometric model task in configuration space, this method was 

enhanced by Michael Erdmann [56], where the task is modelled as geometrical 

goal. For the method to succeed, the velocity must lie within a pre-determined 

uncertainty cone, this availability is a strong assumption in real world-systems. 

Only a few researchers actually quantify the errors in their systems as a baseline 

to objectively assess their control scheme performance. V. Gullapalli compared 

favourably his stochastic reinforcement learning method based on the actual un­

certainty involved in the system [57, 27].

Undoubtedly, because of the complexity of the robot system it would be impos­

sible to determine all parameters. However, an analysis of the accuracy of the 

control and sensory system will be important to assess the performance of the 

Neural Network Controller. In the following sections, an analysis of the accuracy 

of the PUMA robot and the sensor system is therefore presented.

4.1.1 Positional uncertainty

Positional uncertainty is mainly due to gear backlash and friction in the manipu­

lator mechanisms. Backlash is a well known problem in gear design. Friction is a 

very complex problem when considering sliding and static friction. Popovic and 

Goldenberg [58] demonstrated that friction is position and velocity dependent 

using the joint 1 mechanism of a PUMA 560 robot. In their model using spectral 

analysis, they developed a method to determine the contribution of individual
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parts to the friction model, which included static and sliding friction.

For practical purposes in this research it is sufficient to determine the positional 

error and to have an idea of the involved uncertainty. The positional accuracy of 

the arm was therefore measured and compared with the manufacture’s specifica­

tions.

The rig used for measuring linear and angular displacement is shown in Figure 

4.2.

Figure 4.2: Test rig to measure linear and angular displacements

The sensing elements are six 10 kQ “Sakae” linear potentiometers with a specified 

linearity of 0.5%. The potentiometers were placed as illustrated in the Figure. A 

voltage supply was connected to each potentiometer and the voltage measured at 

each output.

Before using the potentiometers, they were calibrated separately. This was ac­

complished by applying incremental displacements of 0.5 mm and measuring the 

corresponding voltage. The resultant calibration curve is shown in Figure 4.3. 

The graph shows a very similar characteristic for all potentiometers, except for the 

fifth potentiometer, which resulted in different calibration. The area enclosed by 

the broken line is the region where the potentiometers were used during the actual 

displacement measurements. The least-squares regression method [59] was used
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Figure 4.3: Calibration Curve of Potentiometers

Potentiometer Voltage/Displacement (V/mm)

1 1.20

2 1.19

3 1.20

4 1.21

5 1.55

6 1.19

Table 4.1: Voltage-displacement characteristics

to fit the best equation for each curve. The Voltage/displacement characteristic 

found for each potentiometer is indicated in Table 4.1:

During measurements a 31/2 digit voltmeter and a voltage range from 10 V to 

25 V were used. It implied that the voltage resolution within the measuring 

region was 0.01 V. Considering this voltage and the values given in the Table

4.1, it is simple to determine the resolution of the measuring system. It was 

approximately 8 pm  for pots 1-4,6 and 6 pm  for pot5. This value is clearly lower 

than the robot’s repeatability (± 200 pm), hence the measuring system using the 

rig and the potentiometers was considered satisfactory.

The total linear displacement can be measured with any set of three orthogonally
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placed potentiometers. The displacement can be measured in any axis as well as 

the corresponding error termed Orthogonal Displacement Error (ODE), which is 

the displacement that occurs in the orthogonal axes where the linear motion is 

not applied. This error is mostly due to gear backslash.

For measuring angular displacement three potentiometers were needed, two for 

the actual rotation and potentiometer five for measuring the displacement error 

in the vertical axis. Despite of the need of three potentiometers only, the readings 

were taken from all the potentiometers to quantify the Orthogonal Angular Error 

(OAE). Similarly to the ODE, the OAE is an undesired error appearing in the 

complementary rotational directions.

The graphs for linear displacement are shown in Figures 4.4 to 4.6, whereas the 

graphs for rotational displacement are shown in Figure 4.7. In these graphs, the 

associated error can be seen near to the horizontal. In the ideal case, the linear 

and angular displacement should occur only about the corresponding axis where 

the displacement is desired. In any of the other axes the displacement should be 

zero.
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Figure 4.4: Accuracy in X direction
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The graphs in Figure 4.4 to 4.6 show the displacement value of the end-effector 

in the X, Y and Z directions at speeds 1, 3 and 5. These values were recorded 

during 10 motion steps. The actual size of the step was the equivalent to one 

communication cycle in a l t e r  mode in the same manner as the NNC would 

command the robot moves. It can be observed that at speed 1, the system 

presented a high ODE, sometimes more than 100% compared to the motion in 

the complementary orthogonal axes. This means that the arm moved in the 

wrong direction more than it was expected to, in the desired direction. At speeds 

3 and 5 it can be seen that this error was significantly reduced compared with 

the actual move in which the linear displacement was commanded. Higher speeds 

were tested, however the end-effector presented abrupt jerky motions since the 

robot controller accelerated and stopped in a very short time. From the graphs, 

it can be concluded that speeds 3 and 5 are appropriate for moving the arm. 

However, later during an independent test, it was found that moving the arm 

during direct impact at speed 5 resulted in a force increment in the range of 

101b to 181b. Bearing in mind that forces during manipulations are about 101b1, 

the total forces then may well surpass the 25 lb limit of the sensor and therefore 

damage was likely to occur. Although the ODE was higher at speed 3 than at 

speed 5, speed 3 was selected to move the arm during constrained motion so as 

to prevent any damage to the sensor if direct impact occurred.

To determine the optimal rotational movement at the end-effector, different in­

crements were tested at the corresponding speed in free and constraint motion. 

It was found that a value of speed 30 was appropriate. The corresponding graphs 

are shown in Figure 4.7. The OAE can be observed at the lower part of each 

graph.

The results of the experiments above are summarised in Table 4.2. This Table 

shows the positional accuracy of the PUMA robot relative to the work space in 

which the arm will be operated during NNC performance tests.

Table 4.2 is divided in two major parts. The first section is related to the resolu­

tion of the arm and the second refers to the cross-coupling maximum error (ODE 
xThis value was observed experimentally.
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Resolution
Cross-coupled 

maximum error
Motion

Direction
Value (%)

Error
Direction

X 0.3940 ± 0.064mm 28 Z

Y 0.3760 ± 0.084mm 64 Z

Z 0.415 ± 0.055mm 16 X

Rx 0.168 ±0.037 0 116 Z

Ry 0.211 ±0.016 0 37 Z

Rz 0.218 ±0.012 0 31 Rx

Table 4.2: PUMA 761 positional accuracy

and OAE).

In the first and second column, the applied motion direction and their corre­

sponding value are given. In the third column, the percentage of the maximum 

error is given whereas the axis in which this occurred is indicated in the fourth 

column. These resolution values were determined averaging the result values from 

ten incremental motions at every particular direction.

4.1.2 Sensor uncertainty

The sensing system is of utmost importance since control actions are taken ac­

cording to the interaction of the arm with the environment. Hence, a reliable 

sensing system will improve the control accuracy. The more accurate the sensing 

the better the decision making within the force-action mapping in the NNC will 

be.

Due to its complexity, an exhaustive analysis of the sensor error is out of the 

scope in the present study. However, main errors such as cross-coupling, thermal 

drift and linearity that most affect the readings are analysed.

Cross-Coupling error

This error refers to the erroneous measurement at a particular axis as a result 

of an applied force in an orthogonal axis. For instance, a pure moment applied
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around X-axis should not produce any moment around Y or Z axis.

Similar to Voyles’ approach [52], a constant force was applied to produce different 

moment values around a particular axis. This was achieved by attaching a metal 

rod to the end-effector and producing different torques by using a constant force. 

This is illustrated in Figure 4.8.
  _ ——■——mam—■

Figure 4.8: Cross-Coupling measurement

The rod was positioned in such a manner to produce only the required moment 

component. A mass of 1 lb was hung from the rod and moved along it at incre­

ments of 1 in. The output from the sensor was recorded for both Mx and My, 

the actual plot is shown in Figure 4.9. It is important to mention that the F /T  

sensor factory units are imperial and its output could not be changed to the SI 

equivalent by software but by hardware. It was decided then to continue using 

the imperial system.

In both cases the response was satisfactory and the cross-coupling error minimal 

for practical purposes.

Signal drift

An experiment was set to determine the stability of the force signal due to varia­

tion in temperature. The temperature increase was primarily due to the electronic 

circuitry in the sensor. The results are shown in Figure 4.10.
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Figure 4.10: Force and moment drift due to temperature increase

The force and moment signal were measured at intervals of 1 hour for five hours 

and then at 24 h and 48 h. The maximum change was detected at 24 h where 

the force signal increased to 0.51b, after this time this value started to decrease. 

With regard to the drift in moment signals, their absolute value increased. From 

both plots, it is concluded that this signal drift is important and a dynamic 

compensation should be considered for the NNC design.



Chapter 4 -  Quantifying System Accuracy/Uncertainty 72

Linearity

This test was carried out by positioning the arm at a certain angle to produce a 

force component in all axes. The resultant force was plotted against the applied 

force as shown in Figure 4.11.
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Figure 4.11: F /T  sensor linearity

The sensor response to the applied force was found to be virtually linear since 

the discrepancies with the measured value were very small.

4.2 C onclusions

The local accuracy of the robot system was analysed and the main errors iden­

tified. In terms of positional accuracy, the most important parameters were the 

cross-coupling errors identified during linear and rotational displacements. Re­

garding force sensing, errors such as cross-coupling and thermal drift were also 

quantified.

The accuracy analysis of the manipulator was very important to specify appro­

priate incremental motions for the arm under a l t e r  mode. Results revealed the 

extreme uncertainty under which the incremental motions develop. The overall 

uncertainty was mostly due to the contribution of the ODE, OAE and thermal 

drift in the F /T  signal. The NNC design should address this uncertainty by 

providing a self-adaptive behaviour to the robot and compensating for the above 

errors.
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Forces D uring A ssem bly and  

N N C  R equirem ents

A number of experiments are carried out to analyse the nature of the forces 

involved during assembly. Based on this analysis two important stages in the 

NNC are identified: Adaptation and Decision. An initial structure of the NNC 

is proposed based on the results obtained during experiments.

5.1 Investigating th e  Forces

A cting  D uring M echanical A ssem bly

Having set up the robotic system, the next stage was to design the NNC. Regard­

ing its design, the logical step in a bottom-up approach is to study the nature of 

the force traces during assembly. From the analysis of these forces, the require­

ments for the NNC were identified. This analysis included several peg-in-hole 

operations carried out using a VAL program and different pegs at different ori­

entations.

The Figure 5.1 illustrates the implementation of the testbed site and the assembly 

fixtures used for the assembly.

All assembly components were made from aluminium. To measure insertion forces 

at different geometry and orientation, a master block was made in which inter-

73
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Master block

Peg base holder

Figure 5.1: Testbed site and assembly components

changeable female blocks were placed at a variety of orientations (180°, 90° and 

45°). The peg base holder was used to place the pegs while not in use. The clear­

ance between female and male components was set from 0.075 mm to 0.1 mm 

and the chamfer set to 45° in the female components. Sets of three different pegs 

were used with shapes matching the female blocks (square, radiused-square, and 

circular). These components are illustrated in Figure 5.2.

Figure 5.2: Male components (pegs) used for assembly

As it can be seen, the pegs were manufactured with “wings” to avoid rotation 

within the gripper. The fingers were also especially manufactured to grasp these 

pegs and to guarantee the best grasp. This was particularly important for the 

assembly of the square and radiused-square pegs.
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Forces acting during the assembly of the square peg are shown in Figure 5.3 and 

Figure 5.4. The plots show forces and moments occurring during the operation. 

For this experiment the female block was orientated at 45° on the master block. 

The sensor was set to its maximum sampling rate (8 kHz) and its reference frame 

was aligned with the robot’s tool coordinate frame. The complete operation 

was carried out in approximately one minute including grasping the part, gripper 

alignment, insertion, withdrawal and returning the component to the base holder. 

Constrained motion, as can be seen in the plots, is divided into gripper alignment, 

insertion and rest stages. The stages during the operation can be described as 

follows:

Stage 1 (pick), is the period when the peg is picked up and stage 7 (leave) when 

the peg is returned to the base holder. It can be seen that there is no symmetry 

between these stages however, the magnitude of the force signals does follow a 

similar pattern, which was not the case for the corresponding moment forces.
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Figure 5.3: Forces acting in the square peg assembly

Stage 2 is a free-motion movement parallel to the X -Y  plane, which means that 

the arm end-effector is moving towards the insertion block with no rotation in X
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or Y  axis, i.e. only translation is occurring. Within this period it can be seen 

that vibration appears during the motion. A free-constrained transition starts 

(stage 3), when the gripper is aligned perpendicular to the contact surface (45°) 

in readiness to insert the peg into the hole. Even though this stage is strictly 

not constrained since no contact is being made onto the surface, rotation occurs 

and gravity force component gx increases, which contributes to an increase in My. 

The orthogonal relationship between force and moment in the X  and Y  axis can 

be observed clearly.
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Figure 5.4: Moment signals in the square peg assembly

Since neither the centres of mass nor velocity vectors were aligned to the line 

defined by the common normal of the contacting surfaces in stage 4, an oblique 

eccentric [17] impact force was observed. This was useful in terms of looking 

at sliding motions and small misalignments which were corrected by the hole’s 

chamfer while inserting the peg. This fourth stage is the most critical, which 

started with a high spike due to the arm inertia. During this stage, oscillations 

appeared due to either a high electrical noise in the current supplied to the 

motor or an underdamped response on the strain gauges in the sensor. The



Chapter 5 -  Forces During Assembly and NNC Requirements 77

end-condition was set when the peg was fully inserted without contacting the 

bottom of the hole, thereafter a time delay of about 2 seconds was used to observe 

the response. During this rest period, moment signals were more stable and lasted 

longer especially in Mz. Once again, while extracting the peg, a high spike and 

oscillations appeared until the peg was withdrawn from the hole. Prom there and 

up to leaving the peg in its base holder, the patterns were very similar to those 

before insertion.

5.2 A nalysis o f C ontact Force Inform ation

Similar experiments to those given above were carried out by placing the female 

chamfered blocks at different angles on the master block. The block for the 

circular peg was placed at 90° and for the radiused-square peg at 180°. The plots 

for these insertions are shown in Figure 5.5 and 5.6.

For the radiused-square peg insertion (Figure 5.6) only the withdrawal of the peg 

from the base holder to the assembly is shown. It can be observed that since the 

arm was moved only vertically and parallel to the X- Y  plane there was no change 

in force during gripper alignment. On the other hand, with the cylindrical peg 

inserted at 90°, forces during gripper alignment were higher (Figure 5.5), due to 

the increment of the gravity component vector in Z  axis, gy.
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radiused-square peg assembly
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Figure 5.6: Radiused-square peg assembly
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In terms of arm motions during gripper alignment the orientation of the female 

block on the master block is of minor importance. Even if the movement is not 

parallel to the X -Y  plane, it is always possible to adjust the sensor output to 

a zero value by software and discard any force component not associated to the 

assembly. In other words, deducting the weight of the peg, gripper and sensor 

itself from the output reading. However, the orientation information would be 

lost, which can help to recognise the assembly stage, if needed.

Looking at finer details during assembly (insertion and extraction), the orthogonal 

relationship that exist between forces acting in X  and Y  axes in tool coordinates 

(frame origin at the tool plate) can be observed. Three representative graphs are 

shown in Figure 5.7.
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Figure 5.7: (a)square, (b)circular, (c)radiused-square

It should be noted that magnitudes in the force and moment signals were scaled to 

interpret properly their similarities. Signals corresponding to the Z  axis (insertion 

direction) are not shown since they varied completely between each sample. The 

relationship between the signals in Figure 5.7 can be mathematically represented 

by the following expressions:

Square peg assembly,

(Mx oc Fy) ~  (My oc - F x) (5.1)
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Circular peg assembly,

( MX OC My)  ~  (Fy o c  - F x) 

and Radiused-square peg assembly,

( Mx o c  Fy) ±  ( Mv o c  - F x)

(5.2)

(5.3)

It can also be observed that signals in Figure 5.7a and 5.7b corresponding to 

pegs with symmetric cross-section (square and circular) followed a similar pat­

tern, while for the non-symmetric radiused-square peg insertion (Figure 5.7c), 

the patterns were totally different. This occurred because the distribution of the 

contact forces on the pegs were also dissimilar due to the non-symetric shape of 

the peg. Therefore, it can be said that the type of pattern depends on the magni­

tude of the force applied during assembly and the shape of the peg. However, it is 

important to mention that this assumption is only valid when both mating pairs 

are aligned, i.e. the peg has been aligned perpendicular to the female component. 

The magnitude and type of proportionality given by expressions 5.1 to 5.3 changes 

according to the offset location of the peg within the X- Y  plane quadrants. This 

is exemplified by the cylindrical peg insertion in Figure 5.8.

VV

Top View

Chamfered insertion Chamferless insertion

Figure 5.8: Symmetry and contact forces

The peg and the female block are shown in plan view. The chamfer and female 

component have been enlarged to clarify the placement of the peg within the 

quadrants. The level of cross-correlation between force and moment patterns
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depends on the placement of the peg within these quadrants. An important 

observation is that the correlation was related to the cross-section symmetry of 

the mating pairs. Circular and square pegs showed higher correlation (infinite 

symmetry) compared to the radiused-square peg.

Another important consideration from the analysis above is the fact that the NNC 

must be robust and also be able to cope with the inertia spikes produced during 

contacts between the peg and the female component (see Figures 5.3, 5.4, 5.6 

and 5.5). The inertia spikes may either cause a false triggering due to the force 

threshold limits or produce a malfunction on the F /T  sensor due to its transient 

response.

5.3 R equirem ents o f th e N N C

From section 5.2, the complexity of the system becomes evident especially if the 

infinite number of patterns that can be generated through the assembly process 

are considered. To deal with this complexity the NNC has to classify and recognise 

these patterns first and then allocate appropriate actions for every contact force 

pattern.

An approach to solve this situation is to take into account all parameters involved 

and associate them with the “experience” of the system. Such experience may be 

acquired, for example by perturbing the system with random initial movements 

at the end-effector and determining the appropriate action in each of the major 

axes. This provides certain expectancy of success which may be combined with 

part geometry information boosting the decision. However, a method based on 

measurable parameters rather than a “trial and error” approach is preferable. 

The author analysed different contact force patterns during experiments described 

in section 5.1 which led to specify the requirements for the NNC. Basically, it 

should consider two stages:

1. Adaptation: The NNC should be capable of recognition and classification 

of the different contact states as they occur during assembly. In other words, the 

controller should have an autonomous operation with the capability to recognise
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new and novel contact states from those stored previously.

2. Decision: In the same manner, it also has to allocate those “recognised” 

contact states with the corresponding actions ‘on the fly5. That is, using on-line 

learning. The NNC should be able, based on past experiences, to predict or 

decide which action will correspond to a completely new contact state.

To improve the performance of the NNC and overcome some of the limitations of 

current ANN approaches, it is desirable to use an ANN able to learn in real-time 

and to adapt to changing environments (as occurring during insertion operations). 

In other words, a network capable of fast learning and adaptation. Prominent 

research in this area has been reviewed in Chapter 2.

Different connectionist networks have been tested in real robotic operations. The 

reinforcement algorithm implemented by V. Gullapalli demonstrated to be able to 

learn circular and square peg insertions. The network showed a good performance 

after 150 trials with insertion time lower than 100 time steps [57]. Although the 

learning capability showed during experiments improved over time the network 

was unable to generalise over different geometries. Insertion was reported with 

both, circular and square geometries, however, when inserting the square peg, 

its rotation around the vertical axis was restricted otherwise the insertion would 

not have been possible. M. Howarth [3], followed a similar approach using back- 

propagation in combination with reinforcement learning. During simulation it 

was demonstrated that 300 learning cycles were needed to achieve a minimum 

error level with his best network topology during circular peg insertions. A cycle 

meaning an actual motion that diminished the forces acting on the peg. For the 

square peg, the number of cycles increased dramatically to 3750 cycles. These 

figures are high and this is important, especially when fast learning is desired 

during assembly. On the other hand, E. Cervera using SOM networks and a Ze­

bra robot (same type used by Gullapalli), developed similar insertions. Cervera 

in comparison with Gullapalli, improved the autonomy of the system by elimi­

nating the need to use the knowledge of the part location and using only relative 

motions. However, the trade-off with this approach was the increased number of 

trials to achieve the insertion [26], the best insertions were achieved after 1000
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trials. During Cervera’s experiments the network considered 75 contact states 

and only 8 motion directions were allowed. For square peg insertions, 4000 trials 

were needed to reach 66% success of insertion and that did not improved any 

further. According to Cervera’s statement: “We suspect that the architecture is 

suitable, but the system lacks the necessary information for solving the task” . 

The situation clearly recognises the necessity to embed new information in the 

control system as it is needed, which is likely to be obtained with an architecture 

based on ART. Additionally, independent studies report ART, to be to 533% 

faster than SOM when compared with the same database [60].

5.3.1 Structure of the NNC — adaptation and decision

The proposed structure for the NNC is illustrated in Figure 5.9.
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Figure 5.9: Structure of the NNC

The structure is divided into two stages. The first stage (Adaptation), has an 

initial section where the m-dimensional F /T  value vector is pre-processed to 

provide an adequate representation of the contact forces. This pre-processing 

section may include some function in order to normalise the vector components
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or to eliminate redundant contact forces, hence producing a n-dimension input 

vector.

The recognition/classification and category sections are in charge of recognising 

contact states and classifying them. In case new force patterns arrive, the adap­

tation stage will allocate space for these new patterns into the current categories. 

The system still preserves the previous categories, hence providing the required 

flexibility for the Knowledge Base.

During the decision stage, the corresponding category contains a group of contact 

state prototypes with similar pattern features. However, due to the geometry 

of the mating pairs there might not be an unique motion direction, hence this 

information has to be associated through the experience section in order to make 

a decision about the optimum motion.

Finally, the output X ' is an incremental motion relative to the previous position 

of the arm, that produces a reduction in contact forces as well as a motion towards 

the end condition.

5.4 Sum m ary and C onclusions

Force and moment patterns for peg-in~hole operation were analysed using different 

components and assembly orientations. A direct relationship between the applied 

force and the shape of the peg was found. Also, the cross-sectional symmetry of 

the peg and its offset location at the start of the insertion with respect to the 

hole’s centre contributed to the resulting type of pattern.

The information extracted from these patterns was important to determine the 

design parameters for the NNC. The NNC has to recognise a wide range of pat­

terns and to accommodate this information into an ‘experience’ stage, where 

information can be retrieved. The NNC must be adaptable and able to use effec­

tively its experience in future insertions.

Other important parameter is the learning time since the operations and learning 

should be made on-line. One of the requirements is also that the NNC should be 

able to insert non-symmetrical pegs. A reduced learning time can be achieved by
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selecting a neural network such as ART with fast learning. Some of the aspects 

for choosing this ANN are described in Chapter 6.



C hapter 6

A daptive R esonance T heory  

(AR T)

In this Chapter, the Adaptive Resonance Theory (ART) is formally introduced. 

The mechanics of the ART models upon which the NNC was built namely, ART-1, 

Fuzzy ART and Fuzzy ARTMAP are included.

6.1 Introduction

The Adaptive Resonance Theory (ART) is a well established neural network the­

ory developed by Gail Carpenter and Stephen Grossberg at the Center for Adap­

tive Systems at Boston University. The theory was first introduced by Grossberg 

as a theory of human cognitive processing [61], although the core principles re­

garding how Short Term Memory (STM) and Long Term Memory (LTM) interact 

during network processes of activation, associative learning and recall were earlier 

published in the scientific literature back in the 60’s [62, 63, 64]. The theory has 

evolved in a series of real-time architectures for unsupervised learning, the ART-1 

algorithm for binary input patterns [32], ART 2-A for analogue and binary input 

patterns [65], and ART 3 based on chemical transmitters. Supervised learning is 

also possible through ARTMAP [33] that uses two ART-1 modules that can be 

trained to learn the correspondence between input patterns and desired output 

classes.

87
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The ART-1 unsupervised network was later enhanced by incorporating Puzzy 

set theory concepts into the learning and recognition mechanisms. This re­

sulted in a generalised unsupervised network called Fuzzy ART. Similarly to the 

ARTMAP case, is that the connectivity of two Fuzzy ART networks resulted in 

the Fuzzy ARTMAP network [34]. Continual development of ART systems have 

produced other models for supervised learning such as Gaussian ARTMAP [66], 

ART-EMAP [67], and many other variants adapted for specific applications [68]. 

In terms of hardware implementation, perhaps the most prominent work in this 

area has been made by T. Serrano and B. Linares at the National Microelectronics 

Centre, Spain. They have developed a VLSI design of an ART-1 chip. The 

chip was fabricated using a 1.6ju CMOS process and contains an ART-1 system. 

Results have encouraged further investigations at the Johns Hopkins University, 

where a chip design that can be configured as ART1, Fuzzy ART, ARTMAP and 

Fuzzy ARTMAP is being investigated [69].

6.1.1 Learning and forgetting

—  The stability-plasticity dilemma

Learning in natural cognitive systems, including our own, follows a sequential 

process as it is demonstrated in our daily life. Events are learnt incrementally, 

for instance, during childhood when we start making new friends, we also learn 

more faces and this process continues through life. This learning is also stable 

because the learning of new faces does not disrupt our previous knowledge. -  We 

do not come home after having learn new faces at school and forget our parent’s 

face. These premises are the core for the development of Connectionist Models 

(CMs) of the human brain and are supported by Psychology, Biology and Com­

puter Sciences. Psychology studies suggest the sequential learning of events at 

different stages or “storage levels” termed as Sensory Memory (SM), Short Term 

Memory (STM) and Long Term Memory (LTM). [70]1 The SM refers to the ini­

tial, momentary storage of information, lasting only an instant and it is recorded
1 Although there are some other memory divisions that have been identified during studies 

such as Phonological and Visuospatial Short-Term Memory [71].
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by the person’s sensory system as a raw nonmeaninful stimulus. Examples of 

these stimuli are the momentary flash of lightning or the sting of a pinprick. This 

type of information is like a snapshot that is replaced by a new one. Unless this 

information is transferred to other storage levels of memory, it is lost. The STM 

— also referred to as the working memory— is the storage where psychologists 

believe the information is transferred immediately after a person makes sense of 

the information. Returning to our example of memorising familiar faces, an ex­

ample of STM information can be placed in our daily journey to work. We see 

many faces while travelling on the morning bus and that information is retained 

may be seconds or minutes, but, as soon as we get off the bus this information 

may have already been erased. But, how short is that STM?. Psychology stud­

ies suggest that information is retained in the STM for about 15 to 25 seconds 

before passed to a permanent storage, known as the LTM [70]. The time that 

information can be retained in the LTM can be of a life-long duration, e.g. our 

parents’ faces.

The connectionist model of memory within ART networks has been inspired by 

the above thoughts. Memory is sequential and allows variability — plastic, ac­

cording to ART vocabulary—. That is, knowledge can always be accommodated 

within the LTM storage. For instance, as we grow older we can recall best friends’ 

faces during primary school, high school, university, work and so on. Forgetting 

if present is gradual rather than a plummeted process, therefore stable — We may 

gradually forget classmates’ faces after a long time, but not immediately after the 

school term has ended —. This forgetting problem is readily recognised within the 

scientific community and referred to as “catastrophic forgetting.” Connectionist 

models such as the standard Backpropagation can suffer from this catastrophic 

forgetting, as studied by McCloskey and Cohen [72]. They showed in a set of 

experiments the learning of “one’s addition facts” (i.e. the 17 sums 1+1 through 

9+1 and 1+2 through 1+9). Then the network learned the 17 “two’s addition 

facts” (i.e. 2+1 through 2+9 and 1+2 through 9+2). Recall fall abruptly as soon 

the network began the learning of the two’s addition facts. Within 1-5 two’s 

learning trials, the number of the correct responses on the one’s fact had dropped 

from 100% to 20%. In five more learning trials, the one’s learning was only 1%
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and by trial 15, no correct answers from the previous one’s learning could be 

produced. Architectures that rely on the separability of the previously learn rep­

resentation from those that are currently being learned have been suggested to 

solve this paradigm [73, 74].

Grossberg resumed the above situations in what he called the stability-plasticity 

dilemma suggesting that connectionist models should be able to adaptively switch 

between its plastic and stable modes. That is, a system should exhibit plastic­

ity to accommodate new information regarding unfamiliar events. But also, it 

should remain in a stable condition if familiar or irrelevant information is being 

presented. He identified the problem as due to basic properties of associative 

learning and lateral inhibition. An analysis of this instability, together with data 

of categorisation, conditioning, and attention led to the introduction of the ART 

model that stabilises the memory of self-organising feature maps in response to 

an arbitrary stream of input patterns [61].

6.2 A R T M echanism

The ART-1 architecture consists of two parts: attentional subsystem and orient­

ing subsystem as illustrated in Figure 6.1:

ATTENTIONAL ORIENTING
SUBSYSTEM SUBSYSTEM

STM
Gain control

LTM
+ STM 
preset wave

LTM

STM
Gain control

INPUT PATTERN

Figure 6.1: ART architecture

The attentional subsystem is made up of two STM layers of nodes (Fi and F2).
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In an ART network, information reverberates back and forth between both STM 

layers. If a stable resonance takes place, then learning or adaptation can occur. 

On the other hand the orienting subsystem is in charge of resetting the attentional 

subsystem when an unfamiliar event occurs so that a new node can be tested.

A resonant state can be attained in one of two ways. If the network has learned 

previously to recognise an input vector, then a resonant state will be achieved 

quickly when that input vector is presented. During resonance, the adaptation 

process will reinforce the memory of the stored pattern. If the input vector is 

not immediately recognised, the network will rapidly search through its stored 

patterns looking for a match. If no match is found, the network will enter a 

resonant state whereupon the new pattern will be stored for the first time. Thus, 

the network responds quickly to previously learned data, yet remains able to 

learn when novel data is presented, hence solving the stability-plasticity dilemma. 

The activity of a node in the jF\ or F2 layer is the activity of the STM whereas 

the adaptive weights are LTM traces or simply weights according to the ANN’s 

jargon. Gain controls handle the discrete presentation of the input signals.

The STM layers and the LTM adaptive weights were first introduced in the 

literature as a set of nonlinear equations. The STM equations described the 

instantaneous activation of the neurons as a function of the externally applied 

inputs and the connecting weights. The LTM equation described the evolution 

of the adaptive connecting weights. If the input patterns are held long enough 

to allow the system to reach its steady state then both equations resumes to 

their algebraic form2. This form is also employed when ART systems are used 

in their fast learning mode. When ARTMAP, Fuzzy ART, Fuzzy ARTMAP and 

Gaussian ARTMAP were reported, those algorithms were presented in their fast 

learning mode[33, 76, 34, 66]. The term of fast learning is given due to the fact 

that learning can be done in one shot that is in one input pattern presentation.
2The reader is referred to [32, 75] for the mathematical foundation of these equations.
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6.3 ART Processing

The dynamics of the ART processing are represented in Figure 6.2 as follows:

Y =  0010

F2
1

G

E
l t  X = 0 l 10101'

1 =  0 1 1 0 1 0 1  

(a)

V = 110000

X* 0100001

I -  0110101

(0)

Y  = 0010

V= 110000

X* 0100001

1 =  0 1 1 0 1 0 1

(b)

Y = 1000

G
3

X 0110101 -►o

1= 0110101 

(d)

Figure 6.2: ART mechanics

6.3.1 F2 choice — hypothesis

An input vector /  registers itself as a pattern X  of activity across level F\ (Figure 

6.2(a)). The same input pattern excites the orienting subsystem A, and the gain 

control G. The pattern X  of STM activated across F\ therefore elicits a pattern 

S  of output signals from F±. This transmission event multiplies the vector S  by 

a matrix of adaptive weights or LTM traces to generate a net input vector T  to 

level F2. The transformation from S  to T  is an adaptive filter.

The output pattern 5, results in an inhibitory signal that is also sent to A  can­

celling the excitatory effect of I , so that A  is inactive. Note that G also supplies 

an excitatory signal to each node on F\ (non-specific signal).

The internal competitive dynamics of F2 vector T  results in the F2 activity vector 

Y . The competition is sharply tuned to select only the F2 nodes that receive the
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maximum Fi —» F2 input, leaving just one positive component of Y . Such a 

category represents all the Fi inputs I  that send maximum input to the corre­

sponding F2 node. In other words the selected F2 node or ‘winning’ is deemed as 

making a hypothesis about which category the input I  belongs to.

6.3.2 H ypothesis test, resonance or category reset

The pattern of activity Y  results in an output pattern U from F2 (see Figure 

6.2(b)). This pattern is sent as an inhibitory signal to the gain control which 

ceases activity as designed. After output vector U undergoes multiplication by 

the adaptive weight matrix of the top-down filter, net vector V  becomes the input 

to F\. Vector V  plays the role of a learned top-down expectation.

The network matches the “expected prototype” V  of the category against the 

active input pattern / .  Nodes in Fi that were activated by I  are now suppressed 

if they do not correspond to large LTM traces in the prototype pattern V. Thus 

jF\ features that are not “expected” by V  are suppressed. The resultant matched 

pattern is X* which develops on F\.

Since the new output pattern S* is different from the original pattern (S),  if the 

mismatch is severe, A  can no longer be prevented from releasing a non-specific 

arousal wave to F2l which resets the active node at F2 (Figure 6.2(c)). There is 

a vigilance parameter (p) that determines how much mismatch is tolerated.

After the F2 node is inhibited, its top-down expectation is eliminated and X  can 

be reinstated at F± (Figure 6.2(d)), and then the cycle begins again. X  then 

again generates input pattern T  to F2, but a different node is activated. The 

previously chosen F2 node remains inhibited until the gain control of the F2 layer 

is disengaged by removal of the input pattern.

The attentive matching process combines three different types of inputs at level 

F\. Bottom-up inputs, top-down expectations and attentional gain control sig­

nals. Attentive matching obeys a 2/3 rule that permits an F\ node to reach its 

output threshold only if 2 of 3 input sources that converge on it are high. At this 

point, the system is said to be in resonance.
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6.4 P red iction  in ART system s

The supervised version of ART is made by the connection of two ART modules 

and referred to as Predictive ART or more commonly, ARTMAP. This type of 

architectures can learn to predict a prescribed ra-dimensional output vector b 

given a prescribed n-dimensional input vector a. The term ARTMAP is used 

because the transformation from vectors in to vectors in defines a map. 

The main elements of an ARTMAP system are shown in Figure 6.3

M ap-field gain  
control

b  (training)

M ap-field orienting  
sy s te m

M atch
Trackinga (input)

ART

ART

MAP-FIELD

Figure 6.3: ARTMAP system

There are two modules ARTa and ARTh and an inter-ART module “map field” 

that controls the learning of an associative map from ARTa recognition categories 

to ARTb recognition categories. The map field module also controls the match 

tracking of ARTa vigilance parameter. A mismatch between Map field and ARTa 

category activated by input a and ARTb category activated by input b increases 

ARTa vigilance by the minimum amount needed for the system to search for, and 

if necessary, learn a new ARTa whose prediction matches the ARTb category. The 

search initiated by the inter-ART reset can shift attention to a novel cluster of 

features that can be incorporated through learning into a new ARTa recognition 

category, which can then be linked to a new ART prediction via associative 

learning at the Map field. The Gain control is in charge of the discrete inputs a 

and b. Inhibitory paths are denoted by a minus sign, other paths are excitatory. 

In the case of Fuzzy ART and Fuzzy ARTMAP, both can handle analogue or 

binary data. The algorithm uses a preprocessing step, called complement coding



Chapter 6 -  Adaptive Resonance Theory (ART) 95

which is designed to avoid category proliferation. The internal operations are 

similar to those in ARTMAP for the category choice, matching criterion and the 

update of weights. The difference between them is the interchange of the logical 

AND intersection (n) by the AND operator (V) of fuzzy logic (see Appendix B 

for details).

6.5 Im plem entation  in the R obotic System

The implementation of the ART systems into the robotic assembly was accom­

plished in two stages. The ART-1 was implemented first followed by the Fuzzy 

ARTMAP. Both algorithms were implemented using Visual C + +  5.0. ART-1 was 

implemented and tested using data retrieved from experimental insertions. The 

objective was to test off-line the learning speed and clustering capability of the 

network. The procedure is detailed in Chapter 7. Having verified the suitabil­

ity of the algorithm for real-time operation, then the Fuzzy ARTMAP algorithm 

was implemented into the NNC in combination with a dynamic knowledge base, 

whose knowledge is regulated by the assembly task. Simulations to verify the 

prediction capability of the algorithm were carried out first using data retrieved 

from different contact states. After simulations, the learning was tested on-line 

using the manipulator. Results on these tests as well as the network parameters 

used during experiments are given in Chapter 9, where the NNC performance 

is assessed. The corresponding algorithms are given in Appendix B for further 

reference and completeness of this Chapter.
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Towards th e  Im plem entation  o f  

th e  N N C :

Investigations into ART-1

Broadly speaking, the capability of developing insertions in real-time is bounded 

by the mechanical response of the manipulator and the NNC processing time. 

Issues regarding the robotic system design were addressed in Chapter 3 and 4. In 

this Chapter, factors that affect the data availability to the NNC are described 

followed by result simulations using the ART-1 algorithm. These initial results in­

vestigate the classification and learning speed of the network using data retrieved 

from peg-in-hole insertions.

7.1 T im ing C onsiderations

How quickly the robot can respond to changing patterns will depend on many 

factors. However, with a good approximation it can be said that it primarily 

depends upon the neural network processing time and the mechanical response 

of the arm during fine motions. The ability of the NNC to effectively respond to 

the changing force conditions during manipulation is bounded by the following 

factors:

96
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Tim e for network processing (learning and testing). This is a paramount 

requirement for the NNC. The learning should be achieved as fast as possible and 

with a small number of learning epochs.

Servoing the arm motors ( a l t e r  m ode). As explained in Chapter 3 during 

normal ALTER mode, the robot controller expects information about incremental 

motions every 28 ms otherwise a time-out occurs1. By using the Host-slave ar­

chitecture (also described in Chapter 3) this no longer applies since the ALTER 

mode can be switched o n / o f f  at any time, which gives more time for process­

ing if required. However, the 28 ms still needs to be considered as the minimum 

allowed time between arm motions.

F /T  D ata Acquisition (sampling rate). The JR3 sensor is able to provide 

decoupled F /T  data at 8 kHz per channel. There are 16 channels to be trans­

mitted, however only six corresponding to the F /T  values are utilised. At 8 kHz 

in the worst case the whole F /T  decoupled data is available every 2 ms. When 

using the digital filters, additional considerations apply as indicated below. 

Signal delay during filtering. During operations, noise on the F /T  readings 

were present. In addition to this intrinsic noise, when the arm power was ON, 

the end-effector had a chattering effect which amplified the noise. This effect was 

even worse when the arm was in a stretched pose (joint 3 at an obtuse angle). 

From this behaviour the importance of filtering out high frequencies using the 

built-in low-pass filters of the JR3 sensor was clear. The cut-off frequencies ( /0//)  

available for the filters at 8 kHz are 500 Hz, 125 Hz, 31.25 Hz, 7.81 Hz, 1.95 Hz, 

and 0.48 Hz.

The use of a low-pass filter also involves a signal delay which has to be taken into 

account for processing. This delay is approximately 1 / f 0f f  [77]. Using a very 

low /o//, say foff  — 0.488 Hz would represent a delay of 6foff =  2.04 s which is 

considerable if a fast response is desired. Through observation and considering 

the signal delay, it was found that a value of / c/ /  =  31.5 Hz (8/off — 32 ms) was
1In reality, the exact time depends on how long does the robot controller take for sending 

the information to the host computer (up to 27.1 ms depending on the amount of data). Hence, 

the 28 ms have been computed in the worst case and the communication handshaking respects 

this timing.
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the best frequency choice with a smooth signal response.

7.2 D ata  A vailability for the N N C

Ideally, force data should be available to the NNC as soon as it requires it. 

However, there are elements such as those described above and the transient 

response of the arm that have to be considered to provide reliable data to the 

NNC. To understand better these elements let us refer to the plot in Figure 7.1.

force ( lb) Inertia spike

Motion request /
Sensor noise

I 17.2
I

Communication [Process-

time (ms)

300 approx.28 (ALTER cycle)

Figure 7.1: Time diagram

The diagram typically represents a complete incremental motion cycle. It starts at 

time t = 0 when the incremental motion is requested via ALTER mode. The com­

munication with the robot controller is completed approximately at t — 17.2 ms. 

Immediately after the robot controller processes the kinematics for the arm. The 

duration for this stage depends on the requested motion and the amount of data 

provided to VAL. The arm will actually start moving when the data process­

ing is finished. Therefore, the motion can start at any time during the interval

17.2 ms < t < 28 ms. Both extreme posibilities are represented by the dotted 

and continuous curve in the plot. During constrained motions, including direct 

impact, there were observed spikes that lasted in the worst case about 0.3 s. Im­

mediately after the spike, an underdamped response was observed. The reason for
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this behaviour is the combination of inertia, friction and the combined stiffness 

of the end-effector, gripper and sensor.

From the discussed so far, it is clear that the NNC has to bypass the sensor 

transient state in order to acquire reliable F /T  information in steady state. In 

addition to the transient stage it is also important to consider the ALTER cy­

cle, the delay produced by signal filtering and the worst case for the F /T  sensor 

in providing the data. Roughly, these times result in 300, 28, 32 and 2 ms re­

spectively which indicates that the NNC should consider a delay in requesting 

information, during constrained motion, of at least 362 ms. After this time, the 

NNC can either start learning the new pattern or predict the action from the 

mapping previously stored in memory.

How fast the insertion can be made is clearly restricted by this data request time 

and the NNC processing time. The data request time must be respected and 

cannot be changed since it depends on the physical system and operations. This 

fact leaves the NNC processing as the only modifiable factor to speed up assembly 

operations. Having defined the time needed to acquire the F /T  information, the 

next step is to assess the learning time for the ART network, which is described 

in the next sections.

7.3 Tem poral and Spatial Patterns R ecognition

The neural controller explained in section 5.3.1 consists of two sections, adapta­

tion and decision. The first section includes a pre-processing stage. For this stage 

temporal patterns, like those presented in Figures 5.3, 5.4 and 5.7, must be first 

converted to static or spatial patterns to be processed by the network. Although 

the patterns occurring during operations are continuous, they need to be input 

to the network in a discret manner to allow time for processing as highlighted by 

Nigrin [68].

Temporal patterns extracted from experimental insertion data were decomposed 

into spatial patterns by taking the final value of the corresponding signal (force 

or moment) after each incremental motion. This was important to assess the
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recognition section of the NNC. Reading the values in this manner eliminated 

any transient response in the input data due to arm inertia or noise. An example 

of moment values during insertion is shown in Figure 7.2.

401

30 f

ch
c<D
Eo
£

Mx

Mz

•20

-30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

steps

Figure 7.2: Temporal and spatial patterns

This graph corresponded to moment values during chamfered insertion of the 

circular peg at an angle of 180° and with a clearance of 0.1 mm. It is important 

to mention that although the graph is shown for moment values only, the analysis 

for the force signals will be similar. The insertion was made moving the arm step 

by step using the teach pendant. The insertion lasted 34 time steps (i.e., 34 spatial 

patterns) before reaching the depth end-condition. After 20 alignment steps, the 

peg had already passed the chamfer and accommodated well into the hole, so 

the alignment ceased and only motions in the vertical direction were needed to 

reach the end-condition. For clustering and recognition purposes only these 20 

alignment motions were considered in the analysis. The patterns were presented 

to the network one after the other.

It can be observed that there are positive and negative slope values for each 

spatial pattern and the encoding of all patterns would be very large. A number 

of simplifications were made to facilitate the encoding of this information as
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follows:

1. Type of slope. Three slopes were considered: slope positive (/), negative 

(\) or flat (—).

2. Slope location. That is, if the slope was placed above or below zero level. 

Note: A slope was considered flat if its value was lower than five degrees. 

Ambiguous situations in terms of slope location were solved by considering the 

slope as being placed in both halves of the graph. This situation occurred for 

instance with Mz, whose value remained approximately zero during the whole 

insertion (see Figure 7.2).

Following the above simplifications, the binary encoding for the graph in Figure

7.2 is given in Table 7.1.

STEP
MOMENT VALUE > 0 MOMENT VALUE < 0

Xp Xn X Yp Yn Y Zp Zn z Xp Xn X Yp Yn Y Zp Zn Z
1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
2 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
3 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0  1
4 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0  1
5 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0  1
6 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0  1
7 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0  1
8 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0  1
9 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
10 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
11 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
12 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
13 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
14 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
15 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
16 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
17 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
18 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
19 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
20 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Table 7.1: Binary encoding

where,

Xp, Yp, Zp represent the positive slope values in their respective axis.

Xn,Yn,Zn are the negative slope values.

X, Y, Z represent flat slopes.

The first three set of values for X, Y and Z corresponded to signals above zero 

level, whereas the last ones corresponded to signals below zero.
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7.3.1 Pattern recognition and classification

The ART-1 algorithm was implemented in a ‘CJ program for fast learning [32]. 

The above binary pattern was presented twice to the network and the output 

results are given in Figure 7.3. The rows represent the patterns presented to the 

network. The set of 20 patterns were presented twice, i.e. two epochs. Groups or 

category nodes are formed during learning. For instance, when the first pattern is 

presented there are no groups then the pattern has to create its own group. Any 

subsequent pattern if similar to the previously recognised patterns (at this time 

only pattern 1), will be allocated in the same group then at this point the system 

is said to be in resonance. When the second pattern arrives, this is classified into 

group 1 due to its similarities and the network’s vigilance.
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The mechanics of recognition and classification for the 20 patterns is as follows:

Pattern 1 This new pattern is classified into group 1.

Pattern 2: It is recognised by previous category node (1); it resonates. 

Pattern 3: This new pattern is classified into group 2.

Pattern 4: It is recognised by previous category node (1); it resonates. 

Pattern 5: It is recognised by previous category node (2); it resonates. 

Pattern 6: This new pattern is classified into group 3.

Pattern 7: It is recognised by previous category node (3); it resonates. 

Pattern 8: This new pattern is classified into group 4.

Pattern 9: This new pattern is classified into group 5.

Pattern  10: This new pattern is classified into group 6.

Pattern 11: It is recognised by previous category node (3); it resonates.

Pattern 12: It is recognised by previous category node (6); it resonates.

Pattern 13: It is recognised by previous category node (5); it resonates.

Pattern 14: It is recognised by previous category node (6); it resonates.

Pattern 15: This new pattern is classified into group 7.

Pattern 16: This new pattern is classified into group 8.

Pattern 17: It is recognised by previous category node (3); it resonates.

Pattern 18: It is recognised by previous category node (6); it resonates.

Pattern 19: It is recognised by previous category node (6); it resonates.

Pattern 20: It is recognised by previous category node (3); it resonates.

It can be seen from the clustered patterns that the network learnt these patterns at 

the second time they were presented to the network (direct access to the clustered 

groups). The vigilance parameter p 2 was 0.7 and with this level of vigilance the 

contact states were classified into eight groups as shown in the Table 7.2. 

Different values of p were used. It was noted that for 0.5 < p < 1.0 the network 

behaved in a consistent manner, the number of clustered groups were the same. 

With p < 0.5 the network was able to classify only two groups. These results
2p is a non-dimensional value within the interval 0 < p < 1 that regulates how much

mismatch is tolerated between current inputs and prototypes previously stored.
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Groups Contacts states

(a) 1,2,4

(b) 3,5

(c) 6,7,11,17,20

(d) 8

(e) 9,13

(f) 10,12,14,18,19

(g) 15

(h) 16

Table 7.2: Formed groups with 0.5 < p < 1.0

corroborate the fine/coarse control of the vigilance parameter. At high values 

the network is more selective, forming more groups whereas with low values its 

discriminatory ability is reduced, classifying patterns in fewer groups.

7.3.2 Learning time

The number of patterns were increased gradually up to 200 to train further the 

network and verify its learning time. The simulation was implemented on a 

Pentium PC running at 120 MHz. The graph illustrating these results is shown 

in Figure 7.4.

The significance of having trained the network with more patterns was that the 

network took more epochs to converge, typically two. However, with a higher 

vigilance (p > 0.9) the network classified again all patterns at the first epoch. 

At the second epoch the access was direct since the patterns were already learnt. 

The effect of order was also tested by presenting the patterns randomly. In all 

cases, the learning times were very similar with a disparity of ±0.1 s.

From Figure 7.4, it can also be seen that the curve tends to follow an exponential 

form, hence a small number of patterns will always be preferred. To achieve 

faster insertions, the network should also utilise the information as efficiently as 

possible avoiding redundant information. The network is expected to acquire 

knowledge as required by the insertion and increment this when new contact
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Figure 7.4: Learning time measurement for the ART-1 network

states are involved leading may be to new actions. This will certainly increase 

the learning times, but once the information is learnt, the required time is only 

needed to retrieve the action mapping pair.

The network took 7.52 s to learn the 200 different patterns and accessed them 

directly at the second time they were presented to the network. The fast learn­

ing showed by the ART1 network clearly outperforms the simulation results by 

M. Howarth using backpropagation when there were used 300 learning cycles3 to 

achieve a minimum error level for the circular peg insertion and 3750 cycles for 

the square peg insertion [3].

The above results shows the incremental learning capability and stability of ART. 

The number of contact force patterns that can be handled by the network is only 

limited by the memory capacity of the supervisory computer. The knowledge base 

can increase dynamically along with the “expertise” of the robot. This brings the 

possibility of developing effectively an insertion in real-time. If the processing 

time of 7.52 s considers the time to learn 200 patterns and access each of them 

individually, then is likely that the total insertion times are also low. However, 

this can only be confirmed when testing the performance of the NNC in real 

operations.
3 A cycle meant to be an actual arm motion.
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7.4 C onclusions

Features such as adaptation and decision were identified as requirements for the 

NNC design in previous Chapter. The adaptation process, consisting of classi­

fying the different contact state forces, was solved by using the ART1 algorithm 

during simulations. If the state was previously “known” , its group was accessed 

directly otherwise a new group was created and dynamically incorporated into 

the knowledge base. During the simulations, the algorithm showed the incremen­

tal learning capability and stability necessary to be implemented in the NNC. 

Learning times were found to be short since the learning was achieved in only 

one epoch.

From the gained experience during experiments and simulations, it was decided 

to continue and extend the capabilities of the ART1 algorithm to implement the 

decision stage. It was then decided to implement this by using the supervised 

ARTMAP algorithm in conjunction with a dynamic knowledge base. A complete 

description of the final NNC implementation is given in Chapter 8.



C hapter 8

O n-line Learning  

via P red ictive ART

Initial investigations into Adaptive Resonance Theory (ART), regarding learn­

ing speed and classification were presented in Chapter 7. Results showed the 

feasibility of using ART in the NNC learning mechanism.

In this Chapter, it is described how a predictive ART network1 in conjunction with 

a dynamic knowledge base can provide on-line learning and predictive capability 

to the NNC.

8.1 Introduction

Let us consider a generic cognitive system associated to a certain control process 

as shown in Figure 8.1. The cognitive system consists basically of three sub­

systems, the p r o c e s s  to be controlled, the k n o w l e d g e  about the process and 

the DECISION subsystem. The p r o c e s s  subsystem needs to be controlled based 

on its interaction with the DECISION and k n o w l e d g e  subsystems. In simple 

terms, an effective strategy to control the process is twofold. It should be based 

on monitoring reliably its operational parameters as well as accurately modifying 

them.

Information from the PROCESS is stored in a knowledge base. The knowledge can
1Also known as ARTMAP systems.

108



Chapter 8 -  On-line Learning via Predictive AR T 109

DecisionProcess

Knowledge

Figure 8.1: Cognitive Architecture

either be built by hand or empirically as suggested by Towell and Shavlik [78]. 

Empirical knowledge can be thought of as giving examples on how to react to 

certain stimuli without any explanation. On the other hand, hand-built knowledge 

is acquired by only giving explanations but without examples. For instance, if a 

large number of objects and their corresponding names are shown to a person, 

e.g. stapler, mug, pencil, etc. After the training process has finished, this person 

should, based on the example-based knowledge, be able to recognise a randomly 

presented object. On the other hand, a person who has only received explanations 

on how to recognise a particular object should also be able, without examples, to 

recognise the object.

The third element in the cognitive system is the d e c is io n  subsystem. Here, based 

on the current state of the process and the information stored in the knowledge 

base, the final assumption is made regarding the modification of the parameters 

in the p r o c e s s .

The above description is a generic architecture for an intelligent system, which 

can be applied to the automation of the robotic assembly process. Issues regard­

ing an assembly operation were considered in Chapter 5 in terms of monitoring 

the contact forces during the assembly. In this Chapter, issues regarding the 

knowledge acquisition and prediction are addressed.

8.1.1 Building the knowledge

The first situation to address for the NNC is the knowledge acquisition. From 

the explanation above, two approaches can be distinguished clearly. The first
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approach would be to give the robot plenty of examples in the form of training 

sets. That is, building its knowledge empirically. The second approach would be 

to hard code a rule-based system into a robot program (hand-built knowledge). 

In the particular case of part assembly, the use of a training set can be useful to 

teach the robot how to react to constraint forces during similar insertions. How­

ever, when the geometry of the components or working conditions are significantly 

different, the experience already held in the knowledge base may not be suitable 

for the operation and leading potentially, to wrong motions. On the other hand, 

building the knowledge by using rules and implementing it into a robot program 

would only be a problem-specific solution. The knowledge will also require to be 

adapted by the user if the geometry or the location of the mating pairs change. 

In both approaches above, the importance of having an adaptable system to 

build the knowledge into the robot is clear. From the experience gained during 

experimentation, it was determined that a suitable strategy should include a 

combination of both methods2.

The strategy to build the knowledge base consists in initially showing the robot 

how to recognise different assembly stages. Later on, the learning will be rein­

forced by many examples related to particular assemblies. The idea is to develop 

a generic knowledge base that can be enhanced further for every particular inser­

tion, therefore providing a skill acquisition capability to the robot.

The framework for building up this information can be better understood by 

using Figure 8.2 as suggested by Shavlik [79].

In this scheme, the learner first inserts symbolic information into the ANN. Once 

the knowledge is in neural representation3, then by using training examples the 

initial knowledge can be refined. The resulting ANN can then be used, if required, 

for extracting symbolic information. In this manner the use of ANN can improve 

the performance of rule-based systems.4
2Furthermore, this idea is supported by psychologic evidence that suggests that theory and

examples interact closely during human learning [78].
3Sometimes this is referred to as numeric or subsymbolic representation.
4These systems are also known as ruled-based expert systems, or simply expert systems.



Chapter 8 -  On-line Learning via Predictive ART 111

Initial
Symbolic

Information

Final
Symbolic

Information

Examples

Initial
Neural

Network

Final
Neural

Network
INSERT

EXTRACTINSERT

Figure 8.2: Framework for combining symbolic and neural learning

8.1.2 Prediction and decision making in the NNC

The cognitive architecture proposed in this thesis results in a novel NNC that 

combines both an empirical and a hand-built knowledge base. The idea is to 

enhance the capability of the ART network by providing an initial Knowledge 

Base. This is basically the development of ART as a Knowledge Base Artificial 

Neural Network (KBANN)5. In KBANNs, the knowledge is inserted into the 

network and subsequently refined by ANN training. Furthermore, research has 

demonstrated that the refinement of knowledge in KBANN is better than using 

purely symbolic systems [80].

Also, in the KBANN literature, the knowledge is embedded into the network 

by means of using an inferring symbolic system.6 However, the core idea here 

is to form a Primitive Knowledge Base (PKB) by the manipulator itself under 

constraint motion therefore, the information will be numerical.

The purpose of using a dynamic knowledge base is to provide the robot with the 

capability of recognising primitive forces7 during early stages of assembly, so that
5Although most current research in KBANN is based on symbolic representation to present 

and embed knowledge into the ANN, for the purpose of this thesis the network will still be 

considered as KBANN following the KBANN’s language description by Towell and Shavlik 

[78].
6The term symbolic refers to the use of if-then rules which are used in rule-based systems. In

counterpart the so-called subsymbolic system is related to the ANN representation of knowledge

and associated to its weights.
7forces corresponding to the 6 DOF of the manipulator.
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initial conditions can be started. During knowledge refinement, and by giving 

more examples, this knowledge is expected to be enhanced and improved.

An overview of the assembly system based on the NNC is shown in Figure 8.3. 

The Fuzzy ARTMAP (FAM) is the heart of the NNC. The controller includes 

three additional modules. The Knowledge Base, the Pattern-Motion Selection 

and the Automated Motion module.

NNC

Fuzzy ARTMAP X ' Automated
Motion

Inputs
S W t /  '  S fV , /  ' Learning

Knowledge B ase Pattern-Motion
Selection

Robotic
System

F/T sen sor

Figure 8.3: System Structure

The Knowledge Base stores the initial or PKB information about the environ­

ment. This information is used only during the first stage of training. In this 

stage the switch SW \ will be open and the switch SW 2 closed since the initial 

training is made only using the PKB. After passing this initial state, the FAM 

network will predict the next motion based on the current input from the sensor 

(SW i closed and SW 2 open). Later if appropriate, the PKB will be enhanced 

by patterns that favoured the assembly and whose inclusion is regulated by the 

Pattern-Motion module. This module keeps track of the F /T  patterns and verifies 

whether the action was good enough to allow the FAM network to be re-trained. 

If this is the case, the switch SW 2 is closed and the corresponding pattern-action 

provided to the FAM for on-line retraining. Future predictions will be based on 

this newly trained FAM network. The Automated Motion module is basically 

in charge of sending the incremental motion request to the robot controller and
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handling the communication between the slave computer and the FAM network 

output. External components to the NNC in the Robotic System are the robot 

controller, the manipulator itself and the F /T  sensor that provides the pattern 

information.

The strategy for the formation of the PKB is to gather the minimum information 

necessary for the NNC to start learning the assembly. The information is acquired 

by using the 6 DOF of the robot and moving the manipulator against a surface 

in such a way to generate the corresponding signals, namely fx, fy, fz, mx, my 

and mz. The training scheme is explained in detail in section 8.2.2.

8.2 R obotic A ssem bly Controller

The Robotic Assembly Controller (RAC) software, which is the integration of 

the NNC with the sensing system and the robot arm, was developed using Visual 

C + +  5.0 for PC Windows environment. This program is resident in the host 

computer and their main components are the knowledge formation and the NNC 

processing. The flowchart for this program is given in Figure 8.4 and the following 

sections explain each stage in detail.

8.2.1 Settings

During this first stage the user selects the appropriate parameters in terms of 

rotation and translation of the sensor coordinate frame as it was explained in 

section 3.6.3. The origin of the coordinate frame needs to transferred from the 

default location at the centre on the sensor unit to an appropriate location de­

pending on the physical dimensions of the gripper. In the case of the PUMA 

761 robot, the World, Tool and Sensor coordinate frames were all superimposed 

during the insertion operation. In this manner, using only one reference frame, 

the analysis and interpretation of the data is simplified greatly.

The acquisition of the PKB is required for the first assembly operation to bias 

the initial motions of the arm. After the first insertion is completed, the user has 

the choice to either use the same PKB or acquire a new PKB. The same PKB
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Figure 8.4: Flowchart of the assembly task

can be used if the parts geometry for the next assembly operation are the same 

or similar. On the other hand, if the parts geometry change another PKB will be 

required. E.g. PKB for chamferless and chamfered parts.

8.2.2 PK B Formation and robot training

The assembly information available to a blindfolded human operator are the 

contact forces experienced while attempting to insert the workpiece. In addition, 

there would be an associated knowledge on how to react to primitive constraint 

forces. In other words, the intrinsic attitude of moving a workpiece opposite to 

the constraint forces that impede its insertion. Similarly, these ideas are put into 

practice with the robot in order to form its PKB. The idea is to provide the 

primitive contact forces and the corresponding reaction motion for all the main
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directions with a 6 DOF manipulator.

Basically, the formation of the PKB is to teach the robot how to react to every 

component of the F /T  signal vector. The influence of each vector component 

requires a motion opposite to the direction of the applied force to diminish its 

effect. The procedure is illustrated in Figure 8.5. For simplicity, only the lower 

arm of the manipulator has been shown.

(a) (b) (c)

— ^  Rx- Rx+   —  Ry- Ry+ —

(d) (e) (f)

Figure 8.5: Training Procedure

Every motion of this type is referred to as a Primitive Motion (PM) and the idea 

is to teach the robot where to move when single F /T  components, i.e. fx, fy, 

fz, mx, my, or mz are applied to the workpiece. Figure 8.5(a), 8.5(b) and 8.5(c) 

illustrate the PM needed to diminish the corresponding constraint force in the 

X, Y or Z axis. Note that in Figure 8.5(c), when the arm is in free-space the 

PM will be in -Z direction since this is the condition (minimum constraint forces) 

to proceed downwards during this assembly operation. Generally speaking, the 

training consists of moving the workpiece against a rigid object to produce the 

appropriate component force and consequently determine the corresponding PM. 

The magnitude of the constraint forces applied to the workpiece is bounded by 

the force limit selected in the Robotic Assembly Controller Program. The PM 

corresponding to the rotation in X and Y axis (Figure 8.5(d) and 8.5(e) ) were 

assigned after rotating the arm in free-space at an angle so that a single mx or my
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component was produced. The PM, Rz, was given to the network using a square 

peg into a square hole producing a moment around the Z axis as illustrated in 

Figure 8.5(f).

Once the arm is in constrained motion, the user is able to select the appropriate 

motion as indicated in Figure 8.6

I n t r i n s i c  L e a r n i n g  G j

A sso c ia te
with:

Figure 8.6: Motion Selection Dialogue

At this time, the F /T  pattern will be acquired in the knowledge base and asso­

ciated with the selected motion. The storage of the F /T  vector and the PM will 

form the PKB that is required to start the assembly for the very first time. Once 

the first insertion has been completed, the robot may possibly have increased its 

knowledge. If so, the PKB is enhanced and an enhanced Knowledge Base (EKB) 

version will be used during the following insertion.

8.3 N N C  processing

The mechanics of the NNC processing is explained below with the aid of Figure 

8.7 as follows:

At the start of the operation the PKB is formed as it was explained in section 

8.2.2. This is illustrated in Figure 8.7(a). In this stage, the robot is moved via 

the Automated Motion module and the force-action mappings are inputted into 

the PKB.

The next stage is to train the FAM with this knowledge as shown in Figure 

8.7(b), so that the internal representation and initial categorical representation 

of the PKB mapping can be made. Note that both inputs Ia and Ii are fed into 

the FAM network during off-line training.

Motion X

...» I
Motion -X
Motion V
Motion -Y
Motion Z
Motion -Z

! OK j

Cancel
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Figure 8.7: NNC Mechanics

During testing only, the Ia that represents the current F /T  pattern is presented 

to the FAM network. This is shown in Figure 8.7(c). The first prediction is made 

at this time and the incremental motion is executed via the Automated Motion 

module. If the incremental motion was successful and reduced the constraint 

forces significantly then this pattern is added to the PKB. This enhanced knowl­

edge will hold information associated to the specific geometry and henceforth be 

referred to as EKB.

If a new pattern in the EKB has just been added, the FAM network will be 

re-trained using this knowledge as shown in Figure 8.7(d) in order to modify its 

categorical representation.

If no new knowledge has been added to the knowledge base, then step 8.7(c) will 

be repeated until the end-condition is satisfied. Otherwise, both steps 8.7(c) and 

8.7(d) will repeated. At the end of the insertion the EKB will actually contain 

information related to the assembly geometry, e.g. circular, square, etc.
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8.3.1 NNC dynamics

The NNC processing, as explained in the above section, involves the use of a 

Knowledge Base that modifies its structure depending on the particular assembly 

geometry. The internal representation of this knowledge is also modified within 

the FAM network since it is re-trained on-line according to the dynamics of the 

NNC. In the following sections, the NNC processing is explained describing the 

functionality of the knowledge allocation mechanisms. The NNC processing is 

illustrated in the flowchart shown in Figure 8.8.

8.3.2 NNC settings

At the beginning of the operations the following settings are provided:

• Information about the type of coordinate system. This information is re­

quired by the Automated Motion module in order to move the arm either 

in World or Tool coordinates.

• End-condition. In this field, the number of incremental motions during a 

successful insertion are given. It should be mentioned that only incremental 

motions developed in the insertion direction are counted.

• FAM parameters. Information regarding learning rate, size of the input 

vectors (Ia and A), vigilance parameters, number of epochs, etc. are given 

at this time. A complete description of the ART and FAM algorithms and 

parameters are given in Appendix B.
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Figure 8.8: Flowchart of the NNC processing
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8.3.3 FAM train &; test using the PKB

Learning is initiated in the NNC by training the FAM using the PKB. This is 

illustrated in Figure 8.9

PKB

Map-Field

(a)

match
tracking

F/T signal

Automated MotionMap-Field

(b)

Figure 8.9: FAM train & test using the PKB

Initially, both inputs Ia and I& are presented to the network as shown in Figure 

8.9(a)8. Input Ia represents the normalised F /T  information whereas lb provides 

the corresponding motion direction. Categorical representations (or nodes) are 

created in modules ARTa and ARTb and the learning of the mapping occurs 

in the “Map-held” via its weight connections with the ARTa module. As can 

be seen in Figure 8.9(a), the maximum number of nodes in both modules will 

be twelve which corresponds to the possible number of motions/forces using a 6 

DOF robot.
8Both inputs also contain their corresponding complement coding values. See Appendix B 

for details.
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Immediately after training, the network is tested in order make a ‘prediction’ 

about the next incremental motion. The input information this time is solely 

provided by the F /T  sensor. This is illustrated in Figure 8.9(b). The categorical 

representation of the input vector is compared with the previously learnt categor­

ical representation of the output vector in the Map-field. If a mismatch occurs 

between these two categorical representations then the Match tracking system 

becomes active and modifies the vigilance parameter (pa) in module ARTa so 

that another category can be tested until the system’s vigilance parameter (pmap) 

is met. The output prediction is read directly at the Map-field and sent to the 

Automated Motion module to command the motion.

At this initial stage, the arm will most probably be in free-space and consequently 

a prediction in the Z direction is expected. However, the prediction can also be 

made in constraint motion in any direction.

8.3.4 Autom ated motion

The main function of this module is to move the robot arm incrementally. The 

communication is achieved at two levels as explained in Chapter 3. Higher level 

communication is achieved by sending a command to the robot controller to 

initialise the a l t e r  mode. The communication is then established in low level 

(ALTER mode) via the Automated motion module and the slave computer.

In this module, the magnitude of the F /T  vector is evaluated using the following 

equation:

F  =  \ j f x 1 +  f y 2 +  f z 2 H- m x2 +  m y2 +  m z2 (8.1)

The magnitude before and after the incremental motion (F&e/ore and Fief ore) are 

sent to the Pattern-Motion Selection module for assessing the incremental force 

change.
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8.3.5 Pattern-M otion selection and knowledge 

enhancement

There are potential problems associated with the learning mechanism which are 

solved by the Pattern-Motion Selection module. The robot should continue mov­

ing in the insertion direction if, and only if, a minimum force value has been 

reached. This situation should trigger the learning mechanism in order to allow 

the acquisition and learning of the pattern-action pair that produced such a sit­

uation. In the event of continual learning after having reached this point, the 

performance of the NNC might decay. This situation is similar to what is known 

as overtraining, overfitting or overlearning in ANNs. At this point the learning 

should be stopped because if the robot learns other patterns under the above 

circumstances, eventually the minimum force value will be different leading to 

wrong motions. The same applies to the condition when the end-effector meets a 

force higher than the force limit. There should not be any further learning during 

this situation since learning a higher force would probably damage the sensor. 

The above situations can be resumed in three fundamental questions:

1. W hat is a good motion?

2. How to recover from errors?

3. Which motions should or should not be learned?

Having an assembly system which is solely guided by contact force states, the 

criterion to decide whether the motion was good enough to be learnt is based on 

the following expression:

^ a f t e r  <  0.1 * F b e f o r e  ( 8 .2 )

Faf ter and Fbefore &re computed using Equation 8.1. Expression 8.2 means that 

if the total force after the incremental motion is significantly reduced then that 

pattern-action will be considered good to be included in the knowledge base.
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Experiments showed that if this threshold value is set higher the network become 

very sensitive and eventually showing overtraining behaviour.

Forces that are higher than the value given by 0.1 * F(,e/ ore and lower than the 

Fumit are still good values. However, the corresponding pattern-action pair will 

only be used during network recall. This situation is illustrated in Figure 8.10 

that shows three possible situations: learning, recall and error recovery.

Learning Recall Error recovery
--------  -y-----------------------^ ----------------------- y -------------/"'v-------

0 ° - 1F before F before F umit Constraint force

Figure 8.10: Learning, Recall and Error Recovery

The third area is a situation where F  > Fnmit. In this situation the user is alerted 

and asked to reposition the arm.

There will be ambiguous situations in which learning should not be permitted. 

This applies to patterns in the insertion direction (usually Z direction). Consider 

downward movements in the Z- direction. At the time the peg makes contact 

with the female block, there may well be a motion prediction in the Z+ direction. 

This recovery action will certainly diminish the contact forces and will satisfy 

the condition given by the expression 8.2 in order to learn the force-action pair. 

However, this situation is redundant since it was given when the PKB was formed 

and it is likely that it will corrupt the PKB. Similarly, learning should not be 

allowed when the arm is in free-space. In this situation, Faf ter and F&e/ ore will 

be very similar and again learning another pattern in the Z- direction will be 

redundant. Both situations were tested experimentally by the author and revealed 

that an unstable situation may appear if further learning is allowed in the insertion 

direction.

The situations discussed here regarding the Pattern-Motion Selection were im­

plemented in the NNC processing as it is shown in lower part of the flowchart in 

Figure 8.8. After the pattern-action has satisfied expression 8.2 and the predic­

tion direction is not in the Z direction, the pattern is allowed to be included in the
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new “expertise” of the robot, the EKB. Patterns that do not satisfy expression

8.2 and whose values are lower than the Fumit will only be used to recall previous 

knowledge.

The knowledge refinement process will continue in the NNC until the end-condition 

is satisfied. If this is the case, the NNC processing will be terminated and another 

insertion can be initiated as indicated in the lower part of the flowchart given in 

Figure 8.4.

8.4 Sum m ary and Conclusion

Throughout the development of this project two essential requirements for the 

NNC were identified: on-line learning and knowledge enhancement. A novel 

NNC architecture was proposed in this Chapter to fulfil these requirements. The 

architecture includes the use of Primitive Knowledge Base (PKB) which is inte­

grated in the NNC by using the manipulator under constrained motions. After 

having formed this PKB, the knowledge can then be enhanced during assembly 

operations. The criteria for allowing new information into the knowledge base is 

basically centred on how much the force-action mapping favoured the insertion. 

Results that corroborate the author’s approach are given in the following Chapter 

where the NNC performance is assessed under different working conditions.



C hapter 9 

Perform ance A ssessm ent o f th e  

N N C  and D iscussions

In this Chapter the assessment result of the NNC performance is presented. Sev­

eral insertions were made using different working conditions, i.e. different part ge­

ometry and positional offset. Also the knowledge discovery capability of the NNC 

was verified by stopping/inhibiting its learning during operations. The graphs 

resulting from the tests are presented in this Chapter as well as in Appendix A 

where appropriate.

9.1 Prior Settings

The objective of this research, as established earlier, was the creation of a NNC 

to enable the PUMA 761 robot arm to be autonomous and self-adaptive. The 

autonomy of the arm consists in having its motions solely directed by the NNC 

without having to write a specific program for different assembly tasks. The arm 

is able to be self-adapting since the system is designed to recognise particular 

geometry features, discover knowledge associated to the assembly and, based on 

this knowledge, enhance its current behaviour.

In order to assess the performance of the NNC a series of tests were carried 

out. Broadly speaking, these tests looked at aspects such as assembly speed, 

generalisation power and knowledge discovery. The tests were performed using

125
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different part geometry and positional offset. In the following sections system 

parameters such as part geometry, clearances, learning rate, etc. are described. 

The PKB employed during operations is described and finally, the presentation 

of results explained.

9.1.1 System  Parameters

The assembly operations were carried out using the following assembly parame­

ters:

1. M ating pairs. The male and female components are shown in Figure 9.1. 

The components were manufactured from aluminium using three different 

geometrical shapes. Two of them were symmetrical: Circular and Square, 

while the third one was asymmetric and referred to as Radiused-Square. 

The term Radiused-Square was used because it was basically a square com­

ponent with one corner rounded to a 12.5 mm radius.

2. Insertion Direction. The direction of insertion in all operations was 

downwards in the vertical direction (Z-).

3. End-Condition. This is the termination condition for the assembly and 

it was established to be 3/4 of the insertion depth of the peg into the hole. 

Since the body of the peg is 15 mm long, the insertion was stopped approxi­

mately when 12 mm of its body was inside the hole. In terms of incremental 

motions, this represented 50 motion steps in the assembly direction.

4. Clearance. The total clearance between the peg and the hole for each type 

of insertion was as shown in the following Table:

Type
Peg-H ole clearance (mm)

Circular Square R adiused-Square

Cham fered 0.1 0.1 0.1

C ham ferless 0 .09 0.1 0 .09

Table 9.1: Peg-Hole clearance
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Radiused-Square Circular Square

U nits  in m m Chamfered female blocks

Chamferless female blocks

Figure 9.1: Assembly components

5. Chamfer. The chamfer was present on the female blocks only and set to 

45°.

6. Offset. The offset of the peg was measured with respect to the centre of the 

hole and given in the X and Y directions. In the square and radiused-square 

peg insertions angular misalignments about the Z axis were also given.

7. Force threshold lim it. A force limit value of 151b was established to 

prevent any damage to the F /T  sensor. When a higher force value was 

generated, the arm was stopped immediately.

8. Servoing tim e delay. This is the time that the robot was halted between 

incremental motions. A time delay of 1 second was used. This time can be 

further reduced and is only limited by the communication overhead between
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the robot’s controller and host PC.

9. N N C  P a ram e te rs . The Fuzzy ARTMAP network parameters were set 

for fast learning (learning rate =  1) and the following vigilance:

fa = 0.2 (base vigilance)

Pm ap —  0 . T

Pb = 0.9

The inputs were first pre-processed using their complement code value1 and 

presented twice (i.e. two epochs) to the FAM network.

9.1.2 Knowledge of the environment

-Prim itive Knowledge Base (PKB)

The robot requires a basic knowledge of the environment, that is, an associated 

knowledge about how to react to primitive constraint forces. The procedure was 

straightforward since it only required “touching” a block using the 6 DOF robot’s 

motion. This was accomplished as described in Section 8.2.2. Figure 9.2 shows 

the PKB.

The F /T  data from the sensor was scaled to the range [0,1], where the extreme 

values 0 and 1 corresponded to a force of 151b and -151b respectively. Negative 

values were assigned to the interval [0,0.5) and positive values were assigned to 

the interval (0.5,1]. Every column of data below the graph corresponds to the 

input vector Ia to the network. An incremental motion was assigned to each 

input vector as it is shown at the top of the graph forming in this manner the 

output vector A of the network during the training phase. It should be noted 

that the origin in the graph is set to 0.5, where positive and negative values are 

represented in the upper and lower halves of the graph respectively.

The above knowledge base was used to bias the learning at the start of the 

operation and it was common to all three geometrical shapes during chamfered

type insertions.
1see Appendix B for details.
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PRIMITIVE KNOWLEDGE BASE (PKB)

X+ X- Y+ Y- Z+ Z- Rx+ Rx- Ry+ Ry- Rz+ Rz-

0.6

55

0.5

.45

0.4

I, l̂ l'l Jk L• p j

1 r f|
1 2 3 4 5 6 7 8 9 10 11 12

Efx 0.589803 0.424642 0.508016 0.492106 0.501139 0.499959 0.504395 0.492961 0.462484 0.532959 0.498494 0.496338

■ fy 0.483763 0.508844 0.559802 0.408893 0.503276 0.500187 0.527374 0.460459 0.504633 0.493215 0.524145 0.523724

□ fz 0.494501 0.494708 0.503735 0504358 0.621399 0.498444 0.509235 0.516083 0.517847 0.511932 0.508508 0.507159

::mx 0.497693 0.49989 0.537244 0.467041 0.51593 0.49989 046792 0.545703 0.494946 0.508679 0.511206 0.521313

■  my 0.44604 0.52808 0.501886 0.496647 0.475797 0.499895 0.505868 0.491094 0.458194 0.538872 0.501676 0.50482

Kmz 0.502075 0.497579 0.498098 0.498184 0.500692 0.499741 0.500259 0.499395 0.501038 0.500259 0.5952 0 408086

PATTERNS

Figure 9.2: PKB

9.1.3 Presentation of Results

The history of every insertion was tabulated as shown below:

Offset ( 5x,8y,5R z) New Alignment Total Process.
Comments FigureInsertion Learning

Patterns time (s)(mm,mm, °) Motions Motions

Figure 9.3: Presentation of results

where:

• Insertion. This is the record of complete insertion operations in chronolog­

ical order.

• Offset. This corresponds to the offset with respect to the centre of the 

hole. Please note that two linear increments were used in X and Y axes 

and one angular increment around Z axis. Both angular and linear offsets 

had negative or positive values.

• Learning. In this field, the status of the learning is indicated. An ON or 

START state meant that the network was allowed to learn new information
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from the assembly. Conversely, an OFF state indicated that new patterns 

were not allowed to be learnt. In most of the insertions the learning switch 

was kept ON to allow the progressive acquisition of knowledge. When the 

learning was inhibited (OFF state) only the PKB was used. In certain 

circumstances a STOP state was used to prevent the knowledge from in­

creasing any further.

•  New Patterns. In this field, the number of learned patterns during the 

insertion is reported.

•  Alignment Motions. These are the corrective motions used by the arm to 

reach the end-condition. Any type of motion could be included here except 

a motion in Z-, which was the insertion direction.

•  Total Motions. The total number of motions to reach the end-condition.

• Processing Time. This is the total processing time during the full inser­

tion that includes, data acquisition and training/testing of the NNC, but 

excludes the elapsed time during the serial communication with the robot 

controller and the delay between motions. Roughly speaking, the insertion 

time is the servoing time delay plus the communications overhead multiplied 

by the number of arm motions.

• Comments. Important notes for each insertion are included here.

•  Figure. Indicates the corresponding Figure number either within this Chap­

ter or in the Appendix A.

The analysis of the retrieved data during operations has been divided into two 

sections. The first section corresponds to chamfered insertions while the second 

corresponds to the chamferless insertions. Selected graphs are included in the 

present Chapter while the remaining figures can be consulted in Appendix A.
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9.2 Cham fered Peg-in-hole Insertion

9.2.1 Circular chamfered peg insertion

The signal patterns during the first insertion using the PKB are shown in Figure 

9.4.

The offset was set to X =  -0.8 mm and Y =  -0.4mm with respect to the centre 

of the hole. The upper graph represents the force traces during the insertion 

whereas the middle graph represents the moment signal. The motion directions 

commanded by the NNC at every time step are given in the lower graph.

In the Motion Direction graph, the horizontal axis was selected to correspond 

with the Z- direction. By using this convention, bars above the horizontal axis 

represent linear alignments and bars below the horizontal axis represent angular 

alignments during the insertion. It can be observed from Figure 9.4 that the arm 

moved down until step 20, before the first alignment motion occurred as indicated 

by the bar at step 21 in the X+ direction. Subsequent alignment motions were 

developed as shown until step 58, where the end-condition was reached. A total 

of 8 alignment motions were required to complete the insertion. Note that the 

insertion direction Z- is not considered an alignment motion.

By the end of this first insertion, the network had autonomously learned three 

new patterns within the chamfer hole: X+, X- and Y-. This additional informa­

tion represented the force-action mapping within the chamfer and the knowledge 

discovery was related to the circular geometry. It is worth mentioning that as 

soon as one pattern was acquired into the knowledge base, the next time the 

training took place this pattern was accounted for. Therefore, the internal rep­

resentation of the force-action map within the NNC was modified enhancing the 

expertise of the robot. After learning new patterns, the PKB became the new 

Enhanced Knowledge Base (EKB).



M
ot

io
n 

D
ir

ec
tio

n 
m

om
en

t 
(lb

»i
n)

 
fo

rc
e 

(l
b)

Chapter 9 -  Performance Assessment of the NNC and Discussions 132

Circular Cham fered Peg Insertion
Offset(mm): X = -0.8, Y = -0.4

2.5

1.5

0.5

-0.5

-1.5

-2.5

1 11 21 31 41 51

fx

fy
fz

1.5

0.5

-0.5

-1.5

-2.5

1 11 21 31 41 51

mx
my
mz

Figure 9.4: First Circular Chamfered Peg Insertion
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In subsequent insertions, the EKB was used and additional patterns were learnt 

as illustrated in Table 9.2

Circular Chamfered Peg Insertion

Insertion
Offset ( Sx,8y,6Rz) 

(mm,mm, °)
Learning

New
Patterns

Alignment
Motions

Total
Motions

Process, 
time (s)

Comments Figure

1 (-0.8, -0.4, 0.0) ON 3 8 58 5.17 OK X+.X-.V- 9.4
2 • 2 8 58 5.23 OK X+,Y- A.1
3 • 0 4 54 4.70 OK A.2
4 11 1 4 54 5.00 OK X+ A.3
5 11 1 6 56 4.94 OK X+ A.4
6 11 2 6 56 5.18 OK X+, Y- A.5
7 " 1 6 58 4.93 OK X+ A.6
8 " 1 6 56 5.09 OK X+ A.7
9 11 " 1 6 56 4.84 OK X+ A.8
10 (-2.5, -2.5, 0.0) ON 1 14 64 5.47 Incl.Rx- Y+ A.9
11 " 11 0 13 63 5.44 OK A.10
12 “ " 0 16 66 5.60 OK A.11
13 “ 11 0 14 64 5.42 OK A.12
14 " 11 0 13 63 5.49 OK A.13
15 " OFF 0 25 85 7.35 Z+(14) Ry-{3) 9.5
16 " 11 0 24 84 7.27 Z+(15) Rv-(3) 9.6

Table 9.2: Circular Chamfered Peg Insertion

During the insertions the offset from the centre of the hole was as indicated and 

given towards X- and Y- direction. During the first insertion the network learned 

3 new patterns and this operation required 58 incremental motions and only 8 

alignment motions. The learned patterns were X+, X- and Y- as indicated in 

the comments field. The processing time for the whole insertion was 5.17s. This 

time considered only the processing of the patterns, training and testing of the 

network. The actual insertion time was longer since a delay of I s  was added 

to avoid the transient stage after every incremental motion. Considering this 

delay, the first assembly was accomplished in approximately 63.17 s. Subsequent 

assemblies were carried out at the same offset and the number of learned patterns 

decreased to only one. The processing time showed only small fluctuations. 

Table 9.2 also shows the “expertise” acquired by the robot during the operations. 

After nine insertions the NNC had learnt 12 additional patterns. This implied 

that only 12 patterns were good enough to be learned. This new knowledge 

reinforced the prediction capability of the network since the new patterns were 

actually generated by the particular geometry of the parts, i.e. circular. The type 

of learned pattern at every insertion is indicated in the comments field.
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A second set of insertions were carried out using a larger offset (insertions 10 to 

14). The results are shown in the lower part of the Table 9.2. W hat is remark­

able about the performance of the NNC is that it only learned one additional 

pattern indicating that the network had already acquired the necessary knowl­

edge about the chamfer and used this information effectively. As the starting 

point was further from the end-condition, the time to complete the insertion was 

proportionally longer.' This is reflected in both the number of alignment motions 

and the total number of actions. Another interesting result is that the NNC also 

predicted rotation about the X axis, which indicates that information from the 

original PKB was still used if appropriate, as occurred in this situation.

Expertise test

A further test was conducted using the EKB and the incremental learning capa­

bility inhibited. The performance of the NNC during this situation can be seen in 

the last two rows of Table 9.2 where the learning was switched OFF. Despite that 

the offset was the same as in insertions 10-14, the number of alignment motions 

and insertion time were higher. The corresponding graphs are given in Figures 

9.5 and 9.6.

The robot was not allowed to learn contact states within the chamfer hence the 

NNC generated motions based only on its initial PKB. This resulted in motions 

that produced an excessive fz. As a result, the NNC predicted a series of com­

pensatory movements in Z+ and Ry- to recover from these situations. The robot 

was ultimately able to insert the workpiece successfully, however the performance 

was poorer in terms of alignment and consequently speed.

It can clearly be observed that the same operation with the same offset can be 

achieved more efficiently and faster if the robot uses the EKB. In other words, 

the robot has demonstrated its dexterity when it is allowed to use its expertise.
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Circular Chamfered Peg Insertion 
Offset(mm): X = -2.5 , Y = -2.5 

LEARNING INHIBITED
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Figure 9.5: First insertion with learning inhibited
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Circular C ham fered Peg Insertion 
Offset(mm): X = -2.5 , Y = -2.5 
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Figure 9.6: Second insertion with learning inhibited
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9.2.2 Square chamfered peg insertion

The procedure to assess the performance of the NNC for the chamfered square 

peg insertion was similar to the circular insertion. At the start of the operation 

the knowledge base for the network was the same PKB and several offset values 

were given to the peg with respect to the centre of the hole. The results are 

summarised in Table 9.32.

Square Chamfered Peg Insertion

Insertion
Offset ( 8x,8y,8Rz) 

(mm,mm, °)
Learning

New

Patterns
Alignment

Motions

Total

Motions

Process, 

time (s)
Comments Figure

1 (-2.5, -2.5,0.0) START 1 39 89 7.76 OK, X+ 9.7
2 " ON 12 41 91 8.17 OK, Y+,Y-,X+,X- 9,8
3 it ON 6 15 65 5.66 OK, X+(1),Y+(3),Y-(2) 9.9
4 (-0.37, -0.25,0.0} OFF 0 45 105 n/a Oscillation A.14
5 (-0.37, -0.25, -7.96) OFF 0 81 191 n/a Oscillation A.15
6 it START 0 8 24 n/a resumed from insertion 3 A.16
7 II ON 0 4 22 n/a High Forces A.17
8 (0.0,0.0, -12.9) ON 2 4 18 n/a High Forces A.18
9 II ON 0 3 16 n/a High Forces A,19

Table 9.3: Square Chamfered Peg Insertion

During the first insertion the NNC learnt only one new pattern and it was assigned 

to the XT direction. When comparing the results in the second insertion, it can 

be seen that the number of learned patterns and processing time were much 

higher.

Graphs during insertion 1 and 2 are shown in Figures 9.7 and 9.8 respectively. 

Compare the number of motions in the ZT direction in both insertions. This 

direction was predicted by the NNC in response to the high forces developed in 

the chamfer and which were not part of the knowledge. The number of motions 

in the ZT direction diminished in the second insertion due to the learning of the 

patterns corresponding to the XT direction. This behaviour clearly indicated 

that the robot’s compliance for the task had improved.

During the third insertion shown in Figure 9.9, the performance improvement 

was noticeable. Note that after learning 13 patterns, no alignment motions in 

the ZT direction occurred. This implied that the chosen trajectory was optimal.
2In the processing time field, n /a stands for not applicable.
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The contact forces also decreased from approximately 51b during the first and 

second insertion to 1.51b approximately during the third insertion.

Another important observation is that the number of rotations about the Y axis 

during the first insertion also diminished and in the third insertion no rotation 

occurred at all. This situation clearly illustrates that at the beginning of the 

operation the NNC, having no contact information on the chamfer, commanded 

rotational motions about Y axis. The rotation about Y reduced the constraint 

forces, however this action was not good enough to be learnt by the NNC. As the 

expertise of the robot increased, as is seen in the graphs corresponding to the third 

insertion, the NNC commanded 15 alignment motions from which 11 motions 

perfectly compensate for the offset. That is, 5 motions in X+ direction and 6 

motions in Y+ direction. It should be mentioned that during this alignment, the 

peg entered into the hole and the remaining alignments were made inside the 

hole.

Learning inhibition and insertion failure

Learning was inhibited during the 4th insertion (learning state OFF), therefore 

the PKB was used. Despite the fact that the offset was small, the NNC could not 

cope with this situation and the system became unstable. This situation is shown 

in Figure A. 14. The values of fz+ were high and needed to be compensated for 

with a Z+ motion. This compensation effectively reduced the force to 21b ap­

proximately. However the NNC, with its learning inhibited, repeatedly predicted 

another motion in Z- direction, which consequently produced a high fz+ making 

the system unstable.

During the fifth insertion, an angular misalignment was added to observe the 

robot’s behaviour. Keeping the learning inhibited, the robot again failed to make 

the insertion. Insertions 6 to 9 were carried out with angular offset only and with 

the learning capability enabled. The robot still failed to perform the insertion 

due to high forces appearing in the Z direction, eventually, the insertion had to 

be stopped (see Appendix A for details on these insertions).
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Square Chamfered Peg Insertion 
Offset(mm): X = -2.5, Y = -2.5
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Figure 9.7: First square chamfered peg insertion
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Square Chamfered Peg Insertion 
Offset(mm): X = -2.5, Y = -2.5
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Figure 9.8: Second square chamfered peg insertion
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Square Chamfered Peg Insertion
Offset(mm): X = -2.5, Y = -2.5
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Figure 9.9: Third square chamfered peg insertion
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Results also revealed that when the insertion had to be stopped because of the 

development of high forces, sometimes the followed trajectory indicated the cor­

rectness of the motion prediction. Prom Figures A. 16, A. 17 and Table 9.3 it can 

be seen that the peg moved correctly. During insertion A. 18 the NNC learnt 2 

patterns. The square geometry of the chamfer produced abrupt changes in force 

that reached the force limit. These results suggest that finer motions are required. 

It is believed that the robot’s positional error may have led to this situation and 

that additional information within this area may improve the pattern selectivity 

mechanism in the NNC.

One important conclusion can be drawn from the above results: That is the robot 

can only make the insertion having its learning capability enabled and using only 

linear offsets and no angular misalignments. The situation suggests that more 

information is needed at the start of the operation. Further tests were conducted 

to investigate this situation and which will be discussed later in Section 9.4.

9.2.3 Radiused-square chamfered peg insertion

The knowledge base for the radiused-square peg insertion was the original PKB 

used in the previous insertion. Different offset were used as shown in Table 9.4

Radiused-Square Chamfered Peg Insertion

Insertion
Offset { 8x,8y,5Rz) 

(mm,mm, °)
Learning

New

Patterns

Alignment

Motions

Total

Motions

Process, 

time (s)
Comments Figure

1 (2.44,0.19,0) ON 3 14 64 5.56 OK, Learnt: X-, Y- 9.10
2 (2.44, 0.19,0) ON 5 17 67 5.95 OK, Learnt:X-, Y-, X+ 9.11
3 (-1.56,2.38, 0) ON 2 22 72 6.17 OK, Learnt: Y+ 9.12
4 (0, 0, -6.34) ON 1 18 46 n/a Osc. Learnt: X+ 9.13

Table 9.4: Radiused-Square Chamfered Peg Insertion

The offset used during the first and the second insertion was the same. The 

corresponding graphs are shown in Figure 9.10 and 9.11, respectively. Although 

the number of total motions were higher in the second insertion with respect to 

the first one, the followed trajectory was better. Note that the first alignment 

motion during the first insertion was a rotation Ry-|- when no rotational offset 

was given about this direction. Luckily, this alignment motion ultimately speed
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up the insertion. However, based on the given information, the arm should not 

have moved in that direction since the offset was given only in the linear direction 

and along X and Y axes. During the second insertion, no rotation occurred and 

there were only observed motion alignments to compensate the corresponding 

offset in the X and Y axes.

After completing both insertions, the NNC have already learnt motions in the 

X+, X-, and Y- directions. With this new information the NNC is expected to 

perform better even when different and higher offsets are used. A third insertion 

was tested to validate this assumption, for which the corresponding graphs are 

given in Figure 9.12.

During this third insertion the robot performance was satisfactory and the NNC 

learnt patterns in the Y+ direction.
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Radiused-Square Cham fered Peg Insertion  
Offset(m m ): X = 2.44, Y = 0.19

3
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1 11 21 31 6141 51
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 fx
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 fz

------mx
------my
------mz

STEPS

Figure 9.10: First radiused-square chamfered peg insertion
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Radiused-Square Chamfered Peg Insertion 
Offset(mm): X = 2.44, Y = 0.19
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Figure 9.11: Second radiused-square chamfered peg insertion
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Radiused-Square Cham fered Peg Insertion 
Offset(mm): X = -1.56, Y = 2.38
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0 - U.

1 11 21 31 41 51 61 71

1 11 21 31 41 51 61 71

STEPS

Figure 9.12: Third radiused-square chamfered peg insertion
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Insertion failure

Insertion number four looked at compensatory movements for angular misalign­

ment. A rotation of —6.3° about the Z axis was given and the performance 

observed. The corresponding graphs can be seen in Figure 9.13.

Similar to the case during the square peg insertion, this time the NNC was unable 

to insert the workpiece since the system entered into an unstable stage produced 

by Z~f~ and Z- motions.

One pattern was learnt. The knowledge was identified as a pattern correspond­

ing to the X- motion. However, this knowledge was irrelevant since what it was 

expected was a rotation about Z. This again identifies clearly the lack of informa­

tion at the time of contact during angular misalignment and suggests that more 

information is needed to aid the NNC to identify this state while the corners of 

the peg contact the chamfer.
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Radiused-Square Cham fered Peg Insertion 
Offset: Rz = -6.3 °
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Figure 9.13: Fourth radiused-square chamfered peg insertion
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9.3 Cham ferless Peg-in-hole Insertion

The use of the chamfer as an aid for assembly resulted very effective in generating 

the required information for the NNC. In this section, the NNC performance is 

assessed through the assembly of chamferless parts.

The experience from the previous insertions suggested that eliminating the cham­

fer in the female component could affect the learning and therefore additional 

information on the environment would be needed. New information was supplied 

to the NNC consisting in additional patterns about the rim area of the female 

components. This is depicted in Figure 9.14(a)

The chamferless circular insertion has been used to illustrate the procedure. How­

ever, the same approach was employed for the square and radiused-square geome­

tries.

V (a) (b) (c) (d)

Figure 9.14: Patterns for chamferless insertion

The peg is shown when contacting the rim of the hole. This contact produces a 

moment with respect to the centre of the peg and about the X axis as indicated. 

This is a contact state that typically occurs when there is a misalignment at the 

start of the insertion and for which the NNC should compensate. As it can be 

seen from the figure, the optimal action to alleviate the contact forces and to 

move the peg towards the centre of the hole would ideally be a motion in the Y- 

direction.

The same assumption can be extended to the situation when the peg contacts the 

rim of the hole in the other three regions producing the mx-, my+ and my- values. 

This can be seen in Figures 9.14(b), 9.14(c) and 9.14(d). The compensatory
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motions are given by the arrow as indicated in each case.

Three data bases were built for each geometry that included the original PKB 

plus 4 additional patterns that were obtained as explained above.

9.3.1 Circular Chamferless Peg Insertion

The performance during the circular peg insertion was tested with an offset in 

the X and Y axis as shown in Table 9.5.

Circular Chamferless Peg Insertion

Insertion Offset ( 5x,5y,SRz) 
(mm,mm, °)

Learning
New

Patterns
Alignment

Motions
Total

Motions
Process, 
time (s)

Comments Figure

1 (•1.12, -0.13,0) ON 6 20 70 6.42 OK Y-(2), X+(4) 9.15
2 (-1.12,-0.13,0) ON 1 13 63 5.71 OK Y- 9.16
3 (-1.12,-0.13,0) OFF 0 11 23 n/a High Forces 9.17

Table 9.5: Circular Chamferless Peg Insertion

The first and second insertion were successful and the number of learned patterns 

decreased from 6 to only 1. The processing time was also lower during the second 

insertion. The type of learned patterns were as indicated in the comments field. 

The graphs for these two insertions are shown in Figure 9.15 and 9.16. Note that 

the trajectory followed during the second insertion was more efficient in terms of 

the number of alignments.
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Circular Cham ferless Peg Insertion  
Offset(m m ): X = -1.12, Y = -0.13
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Ry+
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411 11 21 31 51 61
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Figure 9.15: First circular chamferless peg insertion
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Circular Cham ferless Peg Insertion 
Offset(m m ): X = -1.12, Y = -0.13
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Figure 9.16: Second circular chamferless peg insertion
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Please note step motions 8 and 9 in both graphs when the peg first contacts the 

rim of the hole. At the time of impact, the peg is moved towards X- direction 

to compensate for the combination of high values in fz+ and the my- and mx+ 

values. The NNC predicted after this motion Ry-f that made the peg to slid into 

the hole. The following alignments were all developed inside the hole.

These first set of motions are important to observe since the first expected motion 

was towards X+ rather than the X- direction. This situation reveals that the peg 

was not perfectly aligned with the vertical axis and it was slightly tilted. The NNC 

ultimately coped well with the situation by predicting a motion in X- followed 

by a rotation Ry+. Further alignment continued inside the hole as expected in 

the X+ direction. The continued alignment in the Y- direction is attributed to 

the contribution of the rotation about the Y axis at the start of the operation 

more than the small offset given in Y (0.13 mm). This offset was very small and 

approximately 10 times lower than the offset given in the X axis.

A third insertion was carried out using the same offset but this time with the 

learning capability inhibited. The corresponding graphs are shown in Figure 9.17. 

The learning state was OFF, therefore the PKB was used. This condition resulted 

in the insertion being stopped due to high forces during insertion. Once again 

this fact corroborates the ability of the robot to insert the peg when it is allowed 

to use its acquired skill.
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Circular Cham ferless Peg Insertion 
Offset(m m ): X = -1.12, Y = -0.13

25

20

-5
1 6 11 16 21

 fx
 fy
 fz

-8

X+
X-
Y+
Y-
Z+
Z-

Rx+
Rx-
Ry+
Ry-
Rz+
Rz-

11 16 21

6  11 16  21 
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 mx
 my
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Figure 9.17: Third circular chamferless peg insertion
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9.3.2 Square chamferless peg insertion

A specific PKB was used for the square peg insertion that also included informa­

tion about the edge of the hole in the female component. Four operations were 

conducted using different offsets, the results are summarised in the Table 9.6.

Square Chamferless Peg Insertion

Insertion
Offset ( 6x,8y,8Rz) 

(mm,mm, °)
Learning

New

Patterns

Alignment

Motions

Total

Motions

Process, 

time (s)
Comments Figure

1 (-0.75,0.0,0) ON 0 7 57 5.37 OK 9.18
2 (-0.25, -0.68,0) ON 0 6 56 5.22 OK 9.19
3 (0.94,1.25,0) ON 0 18 68 6.17 OK 9.20
4 (-1.44,0.75,3.9) ON 0 8 18 n/a High Forces 9.22

Table 9.6: Square Chamferless Peg Insertion

The learning was enabled during the four insertions however no patterns were 

learnt as can be seen form the results. This suggests that the information provided 

to the NNC using the PKB was good enough to predict the following motions so 

that high forces were not developed. It also indicates that the overall forces were 

not low enough for a given contact state to be learnt within the knowledge base. 

Details about insertion 1 to 3 can be seen in Figures 9.18, 9.19 and 9.20.
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Square Cham ferless Peg Insertion  
Offset(m m ): X = -0.75
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Figure 9.18: First square chamferless peg insertion
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Square Cham ferless Peg Insertion 
Offset(mm): X = -0.25 , Y = -0.68
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Figure 9.19: Second square chamferless peg insertion
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Square Cham ferless Peg Insertion 
Offset(m m ): X = 0.94 , Y = 1.25
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Figure 9.20: Third square chamferless peg insertion
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Failure due to rotational offset

An additional insertion was attempted by giving a small linear and angular mis­

alignment, so that one of the corners of the peg lied inside the hole. This is 

illustrated in Figure 9.21, where a top view of both components is given.

x

Figure 9.21: Linear and angular misalignment

Results from this operation are given in Figure 9.22. Considering the offset 

given to the peg, it is reasonable to think about motion in X+, Y-, and Rz- 

as appropriate motions towards the centre of the hole. It can be observed that 

the arm moved eight times before the insertion was stopped due to the reach 

of the force limit. However, the trajectory followed by the peg shows that the 

arm moved effectively towards the centre of the hole as expected. One out of 8 

movements was in the X+ direction and 1 in the Y- direction.



M
oti

on
 

D
ir

ec
tio

n

Chapter 9 -  Performance Assessment of the NNC and Discussions 160
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Square Cham ferless Peg Insertion 
Offset(mm): X = -1.44 , Y = 0.75, Rz = 3.9
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Figure 9.22: Fourth square chamferless peg insertion
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9.3.3 Radiused-Square Chamferless Insertion

The NNC performance during the insertion of the radiused-square peg was as­

sessed using a variety of offsets as shown in Table 9.7.

Radiused-Square Chamferless Peg Insertion

Insertion Offset ( 5x,§y,8Rz) 
(mm.mm, °)

Learning New
Patterns

Alignment
Motions

Total
Motions

Process, 
time (s)

Comments Figure

1 (1.25,0.0,0) ON 0 9 59 5.08 OK 9.23
2 (-1.38,0.0,0) ON 0 11 61 5.50 OK 9.24
3 (-0.94,0.56,0) ON 0 50 94 n/a High Force at end 9.25
4 (-0.94,-1.44,0) ON 1 39 89 8.07 OK, Learnt: Y+ 9.26
5 (0.0,-5.0,0) ON 0 5 5 n/a High Force 9.27

Table 9.7: Radiused-Square Chamferless Peg Insertion

Only one pattern was learnt during the operations. An especial case was observed 

during insertion five, which will be addressed later in this section.

Graphs corresponding to insertions 1 to 4 are given in Figures 9.23, 9.24, 9.25 

and 9.26.

The time when the peg fell into the hole is indicated in the Motion Direction 

graph in each insertion. After this time, all alignments were executed inside the 

hole. Note that in most of the insertions (except insertion 2), rotational alignment 

occurred within the hole. Also it is important to note the pick value of the forces 

at the moment of impact. This value is shown in the respective force graphs.
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Radiused-Square Cham ferless Peg Insertion  
Offset: X = 1.25mm
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Figure 9.23: First radiused-square chamferless peg insertion
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Radiused-Square Chamferless Peg Insertion 
Offset: X = -1.38mm
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Figure 9.24: Second radiused-square chamferless peg insertion
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Radiused-Square Cham ferless Peg Insertion 
Offset(mm): X = -0.94, Y = 0.56
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Figure 9.25: Third radiused-square chamferless peg insertion
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R ad iused -S quare  C ham ferless Peg Insertion 
Offset(m m ): X = -0.94, Y = -1.44
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Figure 9.26: Fourth radiused-square chamferless peg insertion
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Ambiguous situation

An ambiguous situation occurred during insertion number four. The NNC learnt 

one pattern and this pattern was identified as a pattern corresponding to the Y+  

direction. The pattern was learnt when the peg fell into the hole and it was a 

peculiar situation. The learning of this pattern did not affected further behaviour 

since this was very similar to a the pattern previously stored in the PKB, so that 

it did not altered the robot’s behaviour.

Handling higher offsets

The offset given to the peg at the start of the operation has been about ten times 

the value of the clearance. That is, 1 mm offset for a clearance of 0.1 mm. Several 

combinations have been used about that range and the overall behaviour resulted 

to be satisfactory.

An additional insertion with a higher offset was tested. The offset was given only 

towards the Y axis with a magnitude of 5 mm. The corresponding graphs are 

shown in Figure 9.27.
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Offset: Y = -5 mm
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Figure 9.27: Fifth radiused-square chamferless peg insertion
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The insertion had to be stopped due to the high swing in force that appeared in 

the Z direction and reached the force limit. Several issues can be addressed in 

regard of this result.

First of all, it is evident that the farther the offset from the centre of rotation, 

the higher the fz component vector and vice versa. This is illustrated in Figure 

9.28.

mx

O ffset

Figure 9.28: fz and offset relationship

With a higher offset the value mx is proportionally lower and therefore is less 

likely that the NNC predicts a motion in Y-. The NNC may predict a motion in 

the ZT direction to reduce fz. With the current working parameters the system 

is able to cope with offsets of approximately 1.5 mm.

It is worth remembering that the current development is expected to be inte­

grated into an intelligent cell with vision ability. The general idea is to use visual 

feedback to deal with gross misalignments to approach and align the peg to the 

hole. Once the peg is vertical and aimed at the hole, it will only be required force 

feedback for fine motion alignment.

9.4 Further Tests

Results demonstrated the ability of the NNC to compensate for linear positional 

errors. Results also showed that the manipulator failed to insert the square 

and radiused-square pegs when an angular misalignment was given. These facts 

suggested that for the manipulator to compensate for these errors additional



Chapter 9 -  Performance Assessment o f the NNC and Discussions 169

information should be included in the PKB, i.e. information within the chamfer. 

Eight patterns were added to the PKB to cope with the above situation. This is 

illustrated in Figure 9.29 showing a top view of the peg making contact at eight 

different points within the chamfer.

Rz- Rz- Rz+ Rz+

(e) (f) (g) (h)

Figure 9.29: Teaching additional information

Note that the female component has been enlarged to highlight the point of 

contact. The compensatory actions are angular actions in the case of Figure 

9.29(a) to 9.29(d) and linear motion for contacts represented in Figures 9.29(e) 

to 9.29(h). The sign of the rotation was assigned following the right hand rule 

respect to the reference coordinate frame. The linear motion sign was given using 

the same coordinate frame.

This knowledge about the chamfer was given explicitly to the NNC. The eight 

patterns were added on top of the previous PKB. For this reason this new knowl­

edge base will henceforth be named as PKB’.

A series of insertions were conducted with the PKB’ with the purpose of observing 

the rotational capability and learning of the NNC. A summary of the results is 

given in Table 9.8. It was decided to test both the radiused-square and square 

peg insertion using the same PKB’ and test the NNC generalisation properties. 

Particular details for each insertion can be consulted in the corresponding Figure 

in the Appendix A as indicated in the Table.
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R a d i u s e d - S q u a r e  C h a m f e r e d  P e g  In s e r t io n

insertion O ffset ( 5x ,5y ,6R z) Learning New Alignm ent Total Process.
Com m ents

(m m ,m m . ° ) Patterns Motions Motions time (s)
1 (0 .0, 0 ,0  -1 .0 ) S TA R T 2 30 80 7 .4 9 O K, X +, Y - A .20
2 " O N 2 21 71 6.51 O K, X +(2 ) A .21
3 " O N 2 35 85 7 .93 O K, R z+, Y - A .22
4 " O N 0 2 4 74 7.01 O K, A .23
5 ■ O N 2 25 75 7.11 O K, Y + , Rz+ A .24
6 " O N 0 25 75 7 .20 O K, A .25
7 " O N 1 15 65 5 .93 O K, X + A.26
8 “ O N 0 2 7 77 7 .04 O K, A .27
9 " O N 0 24 74 7 .0 0 O K, A .28

10 (-1 .06, 0 .0 , -1 .0) O N 1 32 82 7.81 O K, Rz+ A.2 9
11 “ O N 0 33 83 7 .37 OK, A .30

i 12 " O N 1 51 101 9.17 OK, Rz+ A.31
13 ■ S TA R T 2 42 92 8 .43 O K, X + , Y - A .32
14 O N 2 4 9 99 8.77 O K. X + , Y - A .33

S q u a r e  C h a m f e r e d  P e g  I n s e r t io n

15 “ O N 4 44 94 8.91 O K, X + (2 ), Y -(2 ) A .34
16 * O N 0 40 90 7 .97 O K, A .35
17 ■ O N 1 44 94 8 .63 O K, Rz+ A .36
18 " O N 0 40 90 8.38 O K, A .37
19 " O N 0 34 84 7 .93 O K, A .38
20 (-1 .06 , 0 .0 , -1 .0) S T A R T 3 24 74 7 .26 O K, X +, Y -(2 ) A .39
21 “ O N 2 38 88 8.84 O K, Y -, R z+ A.4 0
22 (1 .1 , 0 .0 , -3 .4) O N 2 55 105 10.61 OK, X + , X - A.41

| 23 " S TA R T 4 46 96 10.12 O K, X + (3 ), X - A .42
2 4 “ O N 2 55 105 12.91 O K, X -, R z+ A.4 3
25 " O N 2 54 104 10.71 O K, Y -, R z+ A .44

Table 9.8: Rotational offset results 

Insertions 1-9 — Angular misalignment

A small misalignment of —1° was given to the peg and the insertion was successful. 

It can be seen from the Table 9.8 that the trend in the number of the learned 

patterns during insertions diminished and eventually they were zero at insertions 

8 and 9.

In terms of processing time, it can be concluded that this time is directly related 

to the chosen trajectory during insertion. Note that the best insertion was made 

with only 15 alignment motions and corresponded to the 7th insertion.

An analysis of the motion types for all these insertions revealed that a brief 

oscillation occurred along the insertion path, mostly in the YT and Y- directions. 

That is, the arm moved back and forth between these two directions. These 

oscillations delayed the movement towards the end-condition and consequently 

the insertion times were longer. Note the oscillatory behaviour did not appear 

during the 7th insertion. It is clear from these observations that the NNC was 

gaining more information about the geometry and it ultimately predicted the 

right motion. The slight change in the force traces during repeated contacts 

made the NNC to pick the right motion direction exiting the oscillatory period. 

Also note that during the first insertion, the contact forces were high and in the
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rest of the insertions the forces were substantially reduced, which demonstrates 

the dexterity acquired by the robot.

Insertions 10-12 —  Angular and linear misalignment

An additional offset was given in the X direction and the same angular misalign­

ment applied. The robot’s behaviour was acceptable and the number of alignment 

motions increased as expected. Two patterns corresponding to the RzT direction 

were learnt.

Insertions 13 &; 14 —  Restarting the learning

The learning was started again so that the acquired knowledge during the previous 

insertions was discarded in order to observe the robot’s behaviour. The PKB’ was 

used and the same offset applied. This time, as expected, the NNC learnt more 

patterns as it did in the insertions 10-12 however it learnt patterns corresponding 

to the XT and Y- directions instead in the RzY direction. Note that these type 

of patterns (XT, Y-) were also learnt at the very first insertion. Also note that 

the forces during the first stages of insertion in these two operations were much 

higher, which demonstrates the dexterity which the robot had acquired from 

previous operations before restarting the learning.

Insertions 15-19 —  Same EKB different geometry

The operations were carried out using the square mating pair. From the Table 9.8 

it can be seen that four patterns were learnt during insertion 15 and this figure 

reduced to zero at insertion 18 and 19. This implies that the NNC acquired most 

of the required knowledge for the square geometry during the first insertion. The 

overall performance was satisfactory.

Insertions 20 & 21 —  Restarting the learning

The learning was restarted by using the PKB’ and letting the NNC form its own 

knowledge about the square geometry.
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Insertions 22-25 —  Increasing the angular misalignment

The offset was changed from (-1.06, 0, -1) to (1.1, 0, -3.4) and the results were 

acceptable. The learning was also restarted at insertion 23. After this, the 

increase in the number of patterns was repeated again and the assemblies were 

carried out successfully.

9.4.1 Comments on these results

Important conclusions can be drawn from the above experiments.

• The NNC can operate under small angular misalignment during chamfered 

insertions provided that the PKB contains information about the chamfer 

area.

•  The robot enhances its dexterity most during operations in the early stages 

of learning.

9.5 D iscussions

9.5.1 Density of data and knowledge acquisition

The capability of generalisation and knowledge acquisition of the NNC has been 

demonstrated. Patterns that reduce significantly the contact forces during ma­

nipulations were acquired into the knowledge base and learnt. A representative 

learning example was shown in Section 9.2.1 with the circular chamfered insertion. 

In this example, the network was initially trained with the PKB containing the 12 

possible patterns associated with the robot’s 6 DOF. This information biased the 

initial learning by creating 12 categories to allocate every possible motion direc­

tion. From these results, it was verified that subsequent patterns corresponding 

to contact states within the chamfer were effectively allocated into these cate­

gories. However, the pattern population within certain categories produced high 

density of data within regions in the feature space.
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During the chamfered circular peg insertion only four patterns were learnt. These 

patterns corresponded to the X+, X-, Y+ and Y- (see Table 9.2). The new 

patterns were valuable to speed up the insertion and to improve the insertion 

trajectory as it was shown during the test. However, these patterns were present 

within the data more than once and a total of 13 patterns were acquired after 14 

insertions which implied that certain categories were more populated. This can 

be appreciated in Table 9.30 that shows the nature of learned patterns.

ENHANCED KNOWLEDGE BASE (EKB)

X+ X+ X+ X+ X+ X+ X+ X+
0.6

Y+

0.55
Uio=>
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0.45
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Figure 9.30: Learned patterns during the circular chamfered insertion

As it can be seen, patterns belonging to the same category were very similar. 

The patterns corresponding to the X+ direction were allowed to be learnt 8 

times. This implied that the contact forces were significantly reduced in eight 

occasions. This high number of patterns populated more the feature space in 

that area. In the feature space this is represented in Figure 9.31 as follows:

For simplicity, only four major areas of action (X+, X-, Y+ and Y-) are repre­

sented. Initially, the main groups are formed, this is represented by the big black 

dots as illustrated at the beginning of the operation using what has been termed 

PKB. The smaller dots represent additional patterns that have been clustered 

within the same major region. As it is observed, the region belonging to the X+ 

direction was more populated than in the others. The high density of data only 

implies that there are more data in the region and the cost is memory space.
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Figure 9.31: Data density

However, since the criteria to learn new patterns was the condition given by the 

expression Faf ter < 0.1 * iTe/ore in Chapter 8, then as the learning progresses, a 

reduction in contact forces is expected, as it was demonstrated during the exper­

iments, since the robot became more skillful. Being this statement true, it is also 

true that the knowledge acquisition becomes more strict. This obeys to the fact 

that forces are smaller as the robot is more skillful and from the above expression 

forces have also to be smaller to be accepted into the EKB.

Also, as the robot’s dexterity improved, the trend in the number of patterns 

that were accepted into the EKB decreased as it was shown in the corresponding 

Tables. The above expression for allowing the patterns to be learnt resulted to 

be a criterion to stop automatically the learning.

With this reasoning in mind, it can be demonstrated that the density does not 

corrupt the selectivity of the NNC, but only affects the memory resources to 

allocate the learned patterns.

9.6 C onclusions

The results presented in this Chapter demonstrate the acquisition of assembly 

skills by the robot. The expertise was demonstrated in a number of situations 

under different working conditions. The robot’s behaviour has shown its dexterity 

by assembling parts faster using the acquired new knowledge, namely, the EKB. If
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the robot’s learning capability is inhibited then the same task is still accomplished 

however, the time the robot takes to complete it is longer as more alignment 

motions are required.

The generalisation capability of the NNC is demonstrated by allowing the robot 

to assemble parts with different cross-sectional geometry.

Assembly failures were also identified. To compensate for these failures the PKB 

was increased with appropriate information about the chamfer of the female com­

ponent.

The findings clearly define the capability of the assembly system and its limi­

tations. To overcome such limitations additional sensory information is needed. 

Current research is being undertaken in the areas of object recognition and lan­

guage understanding with potential use in the intelligent assembly cell.
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C onclusions

The aim of this research was to provide robots with self-adapting capability so 

that assembly operations could be performed in poorly structured environments, 

i.e. under extreme uncertainty. It should be noted however that real-world oper­

ations have an innumerable range of contact conditions. To deal effectively with 

this variety of conditions, a requirement for learning was identified. This require­

ment provided the inspiration for this research and the desire to create intelligent 

robots for autonomous assembly using on-line incremental learning.

With regard to the above, it is suggested that the research has been largely 

successful, as it was demonstrated by the implementation of the assembly strategy 

into the robotic system. The results which report the performance of the Neural 

Network Controller (NNC) and validate the approach were presented in Chapter 

9.

Many issues had to be addressed before an on-line learning capability could ul­

timately be demonstrated by the robot. The design methodology followed a 

bottom-up approach which consisted of two fundamental aspects:

The first was an accurate control of the manipulator as well as an effective eval­

uation of its actions. This stage involved the design of a host-slave computer 

system for real-time control and the implementation of the force sensing system. 

The second aspect was embedding the necessary intelligence into the robotic sys­

tem so that the robot could cope with extreme uncertainty, learn from experience 

and improve its assembly dexterity.

176
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10.1 W hat was achieved  

Robot force control

The inclusion of the slave computer in the control system enhanced the overall 

performance by separating the low level communication task from the host com­

puter. This strategy provided more time to the host computer for data processing 

and avoided the necessity of interrupting its processing by the robot controller 

for data requests during the robot’s a l t e r  mode. The communication task was 

delegated completely to the slave computer. Additionally, with this host-slave 

architecture, force can be monitored continuously during arm motions. It should 

be mentioned however, that the force during incremental motions was monitored 

only after the motion was completed. This facilitated the assessment of its con­

tribution to the assembly. The capability was not fully exploited since the force 

information was evaluated after completing the compensatory motion. However, 

the architecture can also be used effectively in other industrial applications, for 

instance, in metal removal processes.

Learning and skill acquisition

The dexterity of the manipulator and its capability to acquire assembly skills 

was demonstrated in a number of situations. The overall approach consisted of 

the design of a novel Neural Network Controller (NNC) based on the Adaptive 

Resonance Theory (ART) and in combination with a dynamic knowledge base, 

whose knowledge was regulated by the assembly tasks.

The capability of ART networks to learn incrementally was assessed early during 

the research using the ART-1 network, which demonstrated that the new con­

tact conditions occurring in an assembly could effectively be learnt without any 

degradation of previous knowledge. Furthermore, the learning was achieved in a 

single epoch, i.e. data presented once to the network. These findings suggested 

the appropriateness of the algorithm to be implemented in the NNC.

The NNC was enhanced by the use of the Fuzzy ARTMAP network and a Primi­

tive Knowledge Base (PKB). The PKB was obtained by commanding the manip­
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ulator against a rigid body utilizing the robot’s 6 DOF. The information retrieval 

was straightforward. The information was necessary at the start of the operations 

to bias the initial learning in the manipulator.

The expertise of the manipulator was demonstrated in a number of assembly 

situations. This was demonstrated by inhibiting the use of its acquired expertise 

in the Enhanced Knowledge Base (EKB) (See Table 9.2). The same operation was 

tested using the starting conditions with both, the PKB and the EKB. In both 

situations the insertion was achieved. However, the number of alignment motions 

and consequently, time using the PKB was higher compared with the expertise 

embedded into the EKB. The robot’s dexterity deteriorates since the constraint 

forces were much higher using the PKB. In general, whilst the learning progresses 

and the robot learns more patterns, the magnitude of forces also diminishes. On 

average, the time that the robot took to learn a new insertion was 1 minute 

approximately.

The generalisation capability of the NNC was also tested using symmetric and 

non-symmetric parts. The robot learned to assemble parts in chamfered female 

blocks using the same PKB and created an EKB for every part geometry. Every 

particular EKB contained new information from each geometry. In the case of 

chamferless insertion, different PKBs were needed for each part geometry.

The robot also demonstrated dexterity by avoiding any jamming or wedging con­

ditions. Results showed that the manipulator continued to align the peg when 

inside the female block, effectively preventing this condition.

In addition, failures were detected during rotational alignment that clearly recog­

nised the need to embed more information into the PKB. Further insertions were 

tested providing additional information about the chamfer. This solved the ambi­

guity and more importantly, revealed the areas that can improve the performance 

of the NNC. The improvements are highlighted in the next section.
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10.2 D irections for Future Work

Further work has been envisaged to allow the robot to react autonomously and 

build its own PKB. This step is feasible and the design would involve contact 

localisation related to the parts to be assembled and based on their geometry. 

This relationship would generate the corresponding vector motion to diminish 

the constraint forces. These reflexes are needed only at the beginning of a new 

operation. The primitive motion conditions will be generated in a similar way the 

PKB was created. Once these reflexes have been used, they will not be necessary 

unless the robot is required to learn a completely new operation.

This idea is similar to building a “primitive reflex system” analogous to the 

reflexes in a human being. Human reflexes are involuntary responses that occur 

automatically in the presence of certain stimuli. Many of these reflexes are critical 

for survival, and, they unfold naturally as a part of the infant’s development. For 

instance, the rooting reflex that causes newborn babies to turn their heads toward 

things that touch their cheeks or; the Babinski reflex, which is the faning out the 

baby’s toes that happens when the outer edge of the sole of the foot is stroked. 

These primitive reflexes are lost after few months of life since new knowledge 

is being acquired during development which allows babies to develop complex 

motions. In a similar manner, a step forward in the robotic assembly system 

should look at developing the PKB based on these primitive reflexes.

Currently, the PKB has been formed by the user and embedded into the NNC. 

The order of the categorical representation during learning has implicitly been 

given by the PKB training order. That is, by initialising the learning in this 

way the categorical representation were formed by fx followed by fy, then fz and 

so on until 12 categories were formed. Having the automatic inclusion of this 

knowledge by the manipulator itself raises other issues in terms of providing a 

“teacher” to show the robot which action to take.

The automatic generation of the PKB will involve the use of richer sensory infor­

mation from the environment. Tactile sensing for further exploration around the 

hole in conjunction with a vision system will be necessary. Information regarding 

the part geometry will be required to tell the robot how to automatically relate
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sensation with actions.

Further understanding of the knowledge discovery has also been envisaged. This 

would involve knowledge extraction from the learned experience in a form of rules. 

In this manner, this information can later be implemented in the NNC. By using 

these rules, it is suggested that it is possible to implement a reasoning capability 

in the robot’s controller.

Finally, it is important to mention that the work developed during this research 

is intended to be implemented into an intelligent robotic cell that comprises the 

areas of object recognition and language understanding. These areas are cur­

rently being investigated in the Manufacturing Automation Research Group in 

the Nottingham Trent University. In this direction, the research presented in this 

thesis provides a solid foundation towards the development of autonomous robots 

for industrial applications.
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C ircular C h am fered  P eg  Insertion  
O ffset(m m ): X = -0 .8 , Y = -0 .4
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Figure A.l: Second Circular Chamfered Peg Insertion
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C ircular C h am fered  P e g  Insertion
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Figure A.2: Third Circular Chamfered Peg Insertion
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C ircular C h am fered  P eg  Insertion  
O ffset(m m ): x = -0 .8 , y = -0 .4
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Figure A.3: Fourth Circular Chamfered Peg Insertion
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C ircular C h am fered  P eg  Insertion  
O ffset(m m ): x = -0 .8 , y  = -0 .4
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Figure A.4: Fifth Circular Chamfered Peg Insertion
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C ircular C h am fered  P eg  In sertion  
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Figure A.5: Sixth Circular Chamfered Peg Insertion
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C ircular C h am fered  P e g  Insertion  
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Figure A.6: Seventh Circular Chamfered Peg Insertion
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C ircular C h am fered  P eg  Insertion  
O ffset(m m ): x = -0 .8 , y  = -0 .4

11

I

21 31

S T E P S

41

2 .5

1 .5

0 .5

-0 .5

-1 .5
1 11 21 31 41 51

fx
fy
fz

1 .5

0 .5

-0 .5

-1 .5
1 11 21 31 41 51

m x
m y
m z

I

51

Figure A.7: Eighth Circular Chamfered Peg Insertion
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C ircular C h am fered  P e g  Insertion  
O ffset(m m ): x = -0 .8 , y  = -0 .4
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Figure A.8: Nineth Circular Chamfered Peg Insertion



M
oti

on
 

Di
re

cti
on

 
m

om
en

t 
(lb

»i
n)

Appendix A -  Results 199

C ircular C h am fered  P eg  Insertion  
O ffset(m m ): x = -2 .5 , y = -2 .5
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Figure A.9: 10th Circular Chamfered Peg Insertion
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C ircular C h am fered  P e g  Insertion  
O ffset(m m ): x = -2 .5 , y = -2 .5
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Figure A.10: 11th Circular Chamfered Peg Insertion
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C ircu lar C h a m fered  P e g  In sertion  
O ffse t(m m ): x = -2 .5 , y = -2 .5
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Figure A .ll: 12th Circular Chamfered Peg Insertion
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C ircular C h am fered  P e g  Insertion  
O ffset(m m ): x = -2 .5 , y  = -2 .5
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Figure A.12: 13rd Circular Chamfered Peg Insertion
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C ircular C h am fered  P eg  Insertion  
O ffset(m m ): x = -2 .5 , y = -2 .5

Figure A. 13: 14th Circular Chamfered Peg Insertion
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Squared Cham fered Peg Insertion  
Offset(m m ): X = -0.37, Y = -0.25

14

12

10

a>o
o

-4

1 11 21 31 41 51 61 71 81 91 101

-2

-3

-4

 fx
 fy
 fz

 mx
 my
 m z

i ■»111. i • 111' ■ i * i , * • 111' i * * ' i ■ i ■ i■ * * 111! i' i, i1 • i11.1 • i n11, •' i',1111! • < 111111 > , i1 * i <I * >11•11 !i ii • " 'i
i 11 ii i , i! h  i! 'i  'i 1 'i ii 'j ii 'i !, J !i

»i ii i i i i ' ii '• n u ) t i  5
L' tt N I > L < i t  J \ • I I ( 1 I

x+
X-
Y+
Y-
Z+
z-

Rx+
Rx-
Ry+
Ry-
Rz+
Rz-

I II I I I I I I I I I I I I I I I I I I II I I I I I I I I I II I II I I I I II

11 21 31 41 51 61 71 81 91 101

STEPS

Figure A. 14: Fourth Square Chamfered Peg Insertion
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Figure A. 15: Fifth Square Chamfered Peg Insertion
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Squared Cham fered Peg Insertion 
Offset(m m ): X = -0.37, Y = -0.25, Rz = -7.96
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Figure A. 16: Sixth Square Chamfered Peg Insertion
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Figure A. 17: Seventh Square Chamfered Peg Insertion
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S q u are  C ham fered Peg Insertion 
O ffset (mm): Rz = -12.9 °
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Figure A. 18: Eighth Square Chamfered Peg Insertion



M
oti

on
 

Di
re

cti
on

 
m

om
en

t 
(lb

»i
n)

Appendix A -  Results 209

Square Cham fered Peg Insertion 
Offset (mm): Rz = -12.9 °
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Figure A. 19: Nineth Square Chamfered Peg Insertion
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Figure A.20: 1st Angular misalignment
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Radiused-Square Cham fered Peg Insertion 
Offset: Rz = -1 °
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Figure A.21: 2nd Angular misalignment
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Radiused-Square Cham fered Peg Insertion 
Offset: Rz = -1 °
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Figure A.22: 3rd Angular misalignment
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Radiused-Square Chamfered Peg Insertion 
Offset: Rz = -1 °
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Figure A.23: 4th Angular misalignment



M
oti

on
 

D
ir

ec
tio

n

Appendix A -  Results 214

Radiused-Square Chamfered Peg Insertion 
Offset: Rz = -1 °
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Figure A.24: 5th Angular misalignment
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Radiused-Square Chamfered Peg Insertion 
Offset: Rz = -1 °
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Figure A.25: 6th Angular misalignment
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Radiused-Square Chamfered Peg Insertion 
Offset: Rz = -1 °
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Figure A.26: 7th Angular misalignment
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Radiused-Square Chamfered Peg Insertion 
Offset: Rz = -1 °

6

5

4

3

 fx
 fy

2

1

0
1

2

-3

1 11 21 31 41 51 61 71 81

3

2

1

0
 my
 m z■1

■2

■3

•4
1 11 21 31 41 51 61 71 81

X+
X-
Y+

Z+

Rx+
Rx-
Ry+
Ry-
Rz+
Rz-

1 11 21 31 41 51 61 71

STEPS

Figure A.27: 8th Angular misalignment
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Radiused-Square Chamfered Peg Insertion 
Offset: Rz = -1 °
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Figure A.28: 9th Angular misalignment
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Radiused-Square Chamfered Peg Insertion 
Offset: X = -1 mm Rz = -1 °

5

Figure A.29: 1st Angular and linear misalignment
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Radiused-Square Cham fered Peg Insertion  
Offset: X = -1m m, Rz = -1 °
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Figure A.30: 2nd Angular and linear misalignment
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Radiused-Square Cham fered Peg Insertion  
Offset: X = -1 mm, Rz = -1 °

7

6

5

4

3

2

1

0

1

2

■3

4
1 11 21 31 41 51 91 10161 71 81

6

5

4

3

2

1

0

1

■2

3

■4

5
1 11 21 31 41 51 61 71 81 91 101

1 11 21 31 41 51 61 71 81 91 101

STEPS

Figure A.31: 3rd Angular and linear misalignment
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Radiused-Square Cham fered Peg Insertion 
Offset: X = -1 mm, Rz = -1 °
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Figure A.32: 1st insertion, Restarting the learning
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Radiused-Square Chamfered Peg Insertion 
Offset: X = -1 mm, Rz = -1 °
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Figure A.33: 2nd insertion, Restarting the learning
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Square Cham fered Peg Insertion 
Offset: X = -1 mm, Rz = -1 °
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Figure A.34: Same EKB different geometry
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Square Chamfered Peg Insertion 
Offset: X = -1 mm, Rz = -1 °
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Figure A.35: Same EKB different geometry
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Square Cham fered Peg Insertion  
Offset: X = -1 mm, Rz = -1 °
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Figure A.36: Same EKB different geometry
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Square Cham fered Peg Insertion  
Offset: X = -1 mm, Rz = -1 °
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Figure A.37: Same EKB different geometry
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S q u are  C ham fered Peg Insertion 
Offset: X = -1 mm, Rz = -1 °
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Figure A.38: Same EKB different geometry
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Square Chamfered Peg Insertion 
Offset: X = -1 mm, Rz = -1 °
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Figure A.39: Restarting the learning
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Square Cham fered Peg Insertion  
Offset: X = -1 mm, Rz = -1 °
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Figure A.40: Restarting the learning
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Square Cham fered Peg Insertion 
Offset: X = 1.1, Rz = -3.4 °
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Figure A.41: Increasing the angular misalignment
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Square Cham fered Peg Insertion  
Offset: X = 1.1, Rz = -3.4 °
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Figure A.42: Increasing the angular misalignment
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Square Cham fered Peg Insertion  
Offset: X = 1.1, Rz = -3.4 °
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Figure A.43: Increasing the angular misalignment
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Square Cham fered Peg Insertion  
Offset: X = 1.1, Rz = -3.4 °
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Figure A.44: Increasing the angular misalignment



A ppendix  B  

A daptive R esonance T heory  

A lgorithm s

The algorithms that describe the dynamics of the ART models and upon which 

the NNC was built are included in this appendix, e.g. ART-1, Fuzzy ART and 

Fuzzy ARTMAR

A RT-1

Figure B.l illustrates the main components of an ART-1 module. It consists 

of two layers of neurons or nodes. F\ with output vector X  =  (# i, ..., Xm )> 

registers the Fq —> F\ input vector I  =  ( A, . . . ,  IM). Each neuron in the layer 

Fi is connected to every neuron in the F2 layer through the bottom-up synaptic 

adaptative weights Zij. The index i indicates that the connection goes from the 

ith neuron in F\ to the j th neuron in the F2 layer.

235
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Figure B.l: ART- 1  Architecture

F2 Choice

Let Tj denote the total input from F\ to the j th F2 node given by,

M
Ti = Y ,X iZ ij, j  = (B.l)

2 = 1

If some Tj > 0, then the F2 choice index J  is:

Vi

T j — max{Tj = (B.2)

J  is uniquely defined so that the output of the F2 layer is ‘zero’ except for the 

node with maximum activation. In this manner, y — (yl5. . . ,  yN) has an output

1 if j  -  J  

0  i f j ^ J

Resonance or reset

Each node of F2 is connected to all F\ nodes through the top-down connections 

of strength Zji, which contain binary values. Thus, the ith F\ node input from 

the F2 layer is

N
Vi =  z3iVp (B.3)

3=1
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There is a vigilance subsystem formed by the comparator in Figure B.l, which 

controls how much mismatch is tolerated between the bottom-up activity and the 

top-down learned expectations. In other words it compares the norm of vector 

X  to the norm of vector p I, where p € [0,1] is the vigilance parameter.

The norm of a vector a — ( a i , . . . ,  aM) can be obtained by:

M

I a 1=  L  I I (B'4)
i= 1

vector X  is defined as:

xt = ViIi or X ~ V n I  = z j n I  (B.5)

Depending on the result of this comparison the vigilance subsystem may reset 

the actual active F2 category and search for another category or update the LTM 

traces (weights).

L earn ing

Learning then ensues if the vigilance parameter is met for the chosen category J. 

That is, if

HI > (13.6)

The connections in the bottom-up and top-down weights are updated as follows:

z nem =  f n  z ald ( g  ^

t ~new
rynew    J  (t>  o \

-  z - T + T ~ * r  i

The above equations are for fast learning that use an algebraic form of the non­

linear differential equations for the LTM x. Note that only two parameters are 

needed for the implementation of ART-1, p and L. L  can take a value larger 

than 1. The above steps are summarised in the flowchart of the algorithm given 

in Figure B.2 .

1The reader is referred to [32] for a mathematical proof.
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ART-1

Initialize weights

Z t. Z , .L -  1 + N

Compute activation for each F 
node that is not reset

M

T ,-  S

Compete — find winning node

T. = max (Ty: j  — 1 . . .  N }

R eset unit J■No

Yes

Update weights

Figure B.2: Flowchart of the ART1 algorithm



Appendix B -  Adaptive Resonance Theory Algorithms 239

Fuzzy ART (FA)

The FAM system incorporates two FA modules, ARTa and ARTb and it makes 

sense to describe first the key elements in the FA system, which are given in this 

section.

Each fuzzy ART subsystem includes a field, Fq, of nodes that represent a current 

input vector; a field, Fi, that receives both bottom-up input from F0 and top- 

down input from a field; F2, that represents the active code, or category. The F0 

activity vector is denoted I =  (A, .../m), with each component R in the interval 

[0,l](i=l,...,M). The F\ activity vector is denoted x  =  (a?i,...,X m ) ,  and the F2 

activity vector is denoted y  =  (yl t 2/jv)- The number of nodes in each field is 

arbitrary.

W eight Vector: Associated with each F2 category node j(j— 1,..., N) is a vec­

tor wj =  (vjji, ..., Wjm) of adaptive weights, or LTM (long-term memory) traces. 

Initially, when each category is said to be uncommitted

After a category is selected for coding it becomes committed. Each LTM trace 

wji is monotonically nonincreasing through time and hence converges to a limit. 

The fuzzy ART weight vector wj formally represents both the bottom-up and 

top-down weight vectors of ART 1.

Parameters: Fuzzy ART dynamics are determined by a choice parameter a  > 0 

a learning rate parameter j3 € [0,1 ] and a vigilance parameter p £ [0,1]. 

Category Choice: For each input I and F2 node j, the choice function Tj is 

defined by

(B.9)

(B.10)

where the fuzzy AND, or intersection, operator(A) is defined by

(B .ll)

and where the norm |.| is defined by
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|p| =  ^fii\Pi\ (B.12)

for any M-dimensional vectors p and q. For notational simplicity, Tj (I) is written 

as Tj when the input I is fixed.

The system is said to make a category choice when at most one F2 node can 

become active at a given time. The category choice is indexed by J, where

Tj — m ax{T j : j  = 1...N} (B.13)

If more than one Tj is maximal, the category j  with the smallest index is chosen.

In particular, nodes become committed in order j  =  1,2,3,...When the Jth category

is chosen, yj — 1 and yj = 0 for j  ^  J. In a choice system, the F\ activity vector 

x  is characterized by the equation

I if F2 is inactive 
x = { (B.14)

IA  wj if the Jth F2 node is active.

Resonance or Reset: Resonance occurs if the match function |I A w j|/|I | of 

the chosen category J  meets the vigilance criterion

|I A W j |
> P (B.15)

ill
That is, when the Jth  category is chosen, resonance occurs if

|x| =  |I A wj| > p | I |  (B.16)

Learning them ensues, as defined below. Mismatch reset occurs if

|I A wjl
< p (B.17)

That is, when

|x| =  |I A w j| < p|I| (B.18)

the value of the choice function Tj is set to zero for the duration of the input 

presentation to prevent the pesistent selection of the same category during search.
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A new index J  is then chosen by eqn. B.13. The search process continues until 

the chosen J satisfies eqn.B. 15.

Learning: Once search ends, the weight vector w j is updated according to the 

equation

W (new) _  A  w (oW)j +  ^  (B.19)

Fast learning corresponds to setting — 1.0

Com plement Coding: This is a preprocessing step that uses on-cell and off-cell 

responses to prevent category proliferation. Complement coding normalizes input 

vectors while preserving the amplitudes of individual feature activations, (see [76] 

for a detailed discussion). The preprocessed input vector I  that is output from 

F0 is twice the size of the raw input a, where

I  =  (a, ac)

and ac is the complement of a (i.e. {1 — a i , . . . , l  — czm})- Thus if the M~ 

dimensional vector

a =  {0 , 1 , 1 }

then ac =  {(1 - 0), (1 - 1), (1 - 1)} and thus the 2M-dimensional vector I is as 

follows:

1 =  {0, 1, 1, 1, 0, 0}
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Fuzzy A R T M A P  (FAM )

In the FAM system, ARTa and ART ,& are linked via an inter-ART module, F ab, 

called a map-held. This is illustrated in Figure B.3. The explanation of the 

dynamics of the architecture is given in the following paragraphs.

ARTMAP ARCHITECTURE

Figure B.3: Fuzzy ARTMAP architecture
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ARTa and ARTb: Inputs to ARTa and ARTb are in the complement code for: 

For ARTa, input I =  A =  (a, ac); and for ARTb, input I  — B  = (b, b°). Variables 

in ARTa or ARTb are designated by superscripts a or b.

For ARTa> x a =  x2Ma) denotes the F f  output vector; y a = (y f, ...,

denotes the F 2 output vector; and w j  =  (w j ,n  1 —w j,2Ma) denotes the j t h  ARTa 

weight vector. For ARTb, x 6 =  (xb, denotes the F b output vector; y b =

( y bu - y bN b ) denotes the F% output vector; and w bk =  ( w bk>1, . . . , w bk ^ M b) denotes 

the kth ARTb weight vector. For the map field, x ab ~  (x“b, ) denotes the

F ab output vector and w f  =  (w“i, •••, denotes the weight vector from the 

yth F2 node to F ab. Components of vectors x°, y°, and x ab are reset to zero 

between input presentations. Initially, each weight is set equal to one. Note, that 

| A |  — Ma and | B |  =  Mb for all input vectors a and b.

Map Field Activation: Map field F ab is activated when one of the ARTa or 

ARTb categories becomes active. When the Jth F2 node is chosen, F2 — > F ab 

input is proportional to the weight vector w |6. When the Kth  F 2 node is chosen, 

the F ab node K  is activated by one-to-one pathways between F 2 and F ab. If both 

ARTa and ARTb are active, as in supervised learning, then F ab activity reflects 

the degree to which a correct prediction has been made. With fast learning, F ab 

remains active only if ARTa predicts the same category as ARTb, via the weight 

vector w j b, or if chosen ARTa category J  has not yet learned an ARTb prediction. 

In summary, the F ab output vector x ab obeys

'Eab — ^
Wj
Vb

0

ab

ybAwjb if the Jth F2 node is active and F2 is active 

if the Jth F£ node is active and F2 is inactive 

if F2 is inactive and F26 is active 

if Fo is inactive and F$ is inactive.

(B.20)

If the prediction Wjb is disconfirmed by y b, this mismatch event triggers an ARTa 

search for a new category, as follows.

M atch Tracking: At the start of each input presentation the ARTa vigilance 

parameter pa equals a baseline vigilance, pa. The map field vigilance parameter 

is pah- Match tracking is triggered by a mismatch at the map field F a&, that is, if
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Ix04! < Pab\yb\ (B.21)

then pa is increased until it is slightly larger than the ARTa match value, | AAwG| | A| 

where A is the input to F f  and J  is the index of the active F$ node. After match 

tracking, therefore

|xa| =  |AAw “| < pa|A[ (B.22)

When this occurs, ARTa search leads either to ARTMAP resonance, where a 

newly chosen F2 node J  satisfies both the ARTa matching criterion

|xG| =  |AAw“| > pa|A| (B.23)

and the map field matching criterion

|x“*| =  |y6A w f I > (B.24)

or, if no such F% node exists, to the shutdown of F£ for the remainder of the 

input presentation. Since wfj(0) =  u $ ( 0 ) =  1 and 0 <  pa, pab < 1, ARTMAP

resonance always occurs if J  is an uncommitted node.

M ap F ield  Learning: A learning rule determines how the map field weights 

wfy change through time, as follows. Weights Wjk in F% — » F ab paths initially 

satisfy

< ( 0 )  =  1 (B.25)

During resonance with the ARTa category J  active, w f  approaches the map field 

vector x ab. With fast learning, once J  learns to predict an ARTb category K , that 

association is permanent; ie., w fK = 1 and w fk =  0 (k 7  ̂K ) for all time.

The algorithmic process for the FAM learning is given in Figure B.4. During 

learning both inputs Ia and R  are required in their complement code form. The

base vigilance pa is reset to the base vigilance value pa. The activation is made for

every uncommited or non-reset F2 node in both modules. Competition then start 

in a winner- take-all fashion until the maximum activation is found. The top-down 

expectation is compared with the input to satisfy the respective vigilance level. If
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the vigilance is satisfied then the vector activity X ab is computed. Learning then 

ensues when the map vigilance value is satisfied. If it is not, then the current 

selected node or category in ARTa is reset and another category is selected. The 

learning cycle then continues if appropriate.

C

Yes

FAM

I" = (a,a c) Input I a, lh Ib = (b,bu)

Reset base vigilance
p. =F,

Compute activation 
(Tp for each F 2 node 

that is not reset

Compete -- find winning node
T j = max { T . : j  = 1 ... /V")

Compute activation 
(Tp for each F 2 node 

that is not reset

Compete — find winning node 
Tk = max {Tt: k  -  1 ... N b)

Reset

/S~<

Reset
node J \  llb! k V —No*

node K

Compute map-field activation 
Xab = YbAWab

Reset node J and 
raise vigilance 

]Ia AwJ ----------- t_ + e
[I”l

Update LTM weights 
for ARTa, ARTb & Map-field

Another input?

Figure B.4: FAM learning cycle
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