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ABSTRACT

The development of proteomic and genomic applications for the research into different 

diseases has paved the way for the development of novel approaches for the way in which 

these systems can be investigated. This provides a novel insight into how proteins and 

genes are being regulated under different conditions. These approaches are self-limited by 

the volume of data which they produce, with the majority often being noisy and redundant. 

Therefore these technologies must be coupled with appropriate computational approaches 

that are capable of identifying components that are the most important in differentiating 

between disease states of interest. These must be robust enough to cope with data of this 

size and nature in order to provide an in depth understanding of these complex proteomic 

and genomic patterns. This in turn will lead to methods for prognosis and diagnosis of 

diseases such as cancer, by providing an insight into the proteins and genes which are 

being expressed differentially depending on the current status of the disease. The research 

contained within this thesis describes the development and validation of multi-layer 

perceptron Artificial Neural Network based methodologies for variable selection, 

biomarker identification and predictive modelling of mass spectrometry and genomic data. 

Many datasets were used from a range of different sources, such as the mass spectrometry 

analysis of bacterial pathogens, the mass spectrometry analysis of patients suffering from 

different grades of melanoma, and gene expression analysis of patients with breast cancer. 

Results showed that robust and reproducible predictive models could be generated, which 

predicted class to extremely high accuracies (greater than 95 %) for blind datasets. These 

approaches were enhanced further to allow for the interrogation of biomarkers identified 

during the course of the analyses with techniques such as response surface analysis and 

population structure analysis. Response surfaces showed the direction of response of a 

biomarker of interest, in relation to whether it was being up or down regulated in a given 

disease outcome under study. As an adjunct population profiling showed the potential for 

identifying sub-groups of patients which could subsequently be used to identify those at 

risk of disease spread based upon their genetic profiles. Finally methods for the derivation 

of gene regulatory networks have been proposed which allows interactions and pathways 

to be derived to show how the change in expression of one gene causes a resulting change 

in many others. As such the results from the experimental work performed in this thesis 

have resulted in novel contributions to the field of bioinformatics.
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Introduction 1

CHAPTER 1. INTRODUCTION

1.1. Aims

The research contained within this thesis describes the development and validation of 

Artificial Neural Network (ANN) methodologies aimed specifically towards the analysis of 

complex biological data, such as that generated by mass spectrometry based proteomic and 

microarray based genomic analysis. Here, computer science and biology have been 

combined to apply bioinformatic approaches to these types of datasets in order to generate 

models of the biological systems contained within. The main aims of this thesis are as 

follows:

• To use multi-layer perceptron artificial neural networks to develop and validate 

predictive and classification models from real biological datasets, where the gold 

standard for classification was the class that was originally assigned to the cases by 

the clinician.

• To determine the importance and relationships of individual variables with respect 

to a range of biological datasets within these models, thus deriving meaning from 

the ANN “black box”.

• To design, write and implement software tools for the automated identification and 

characterisation of key subsets of biomarkers, and the subsequent validation of 

these methods.

• To show how the models and biomarkers within,these can be interrogated further 

still, in order to characterise their behaviour with regards to the problem of interest, 

for example disease status.

• To investigate the potential for the use of ANN modelling in identifying 

interactions between biomarkers identified in these complex systems.

These aims are substantiated by the work contained within this thesis. This includes the 

design, writing and subsequent implementation of software and the results from the 

experimentation carried out, resulting in novel contributions to the field of bioinformatics.
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1.2. Introduction to disease biomarkers

As diseases are generally multi-factorial in nature, the use of biomarkers in detecting early 

onset of disease, predicting clinical outcome or even response to therapy is of paramount 

importance. There are two main categories that biomarkers generally belong to, and these 

can be grouped according to their clinical applications. The first are diagnostic markers 

that are used to initially define the disease, whilst the second are prognostic markers that 

can aid in the prediction of how the disease will develop (Xiao, et al., 2005). The term 

biomarker could be representative of almost any changes occurring in the cell, serum, or 

biological system. It is believed that the direct measurement of protein expression may be 

one of the most accurate methods in providing an insight into the development of disease 

(Xiao, et al., 2005). The discovery and validation of biomarkers with strong predictive 

power for a biological condition or response is extremely challenging. Extensive medical 

research programs have focused on developing techniques for the detection of novel 

markers which potentially have an application in a clinical setting for the detection and 

diagnosis of disease. The standard measurements of value to clinicians to assess the 

effectiveness of a given marker are sensitivity, specificity and accuracy. Sensitivity is the 

percentage, or probability, of the occurrence of correct diagnosis for a diseased patient. 

Specificity is the probability of correct diagnosis for a healthy patient, whilst accuracy 

gives an overall measure of correct diagnosis of both healthy and diseased combined.

By far the most active area of disease biomarker research is that in the field of cancer. 

Cancer remains a major health problem, with untold physical, psychological and economic 

costs to society. Elimination of cancer would reduce health care costs and enhance quality 

of life. Unfortunately the markers currently available are often inaccurate and unreliable. 

Serum is a particularly useful source for possible biomarker identification because it is 

easily obtained, has a high protein concentration and many of the protein and peptide 

constituents are shed from cells and tissues (Kennedy, 2002; Sasaki, et al., 2002). For 

these reasons specific serum markers are routinely used to identify disease states, for 

example the up-regulation of prostate specific antigen (PSA) is currently used as the best 

available marker for prostate cancer detection. Unfortunately PSA lacks specificity 

(Adam, et al., 2002; Djavan, et al., 1999). Cancer antigen 125 (CA125) is the most widely 

used biomarker in ovarian cancer. CA125 concentrations are abnormal in around 80 % of 

patients with advanced disease. However, CA125 is only increased in around 50 % of 

patients with Stage I disease, resulting in a positive predictive value of less than 10 %
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when used as a single marker (Petricoin, et a l, 2002). Other markers such as CA14.3, 

researched for its use in breast cancer detection, shows only 23 % and 69 % sensitivity and 

specificity respectively in detecting early stage disease (Li, et al., 2002). Melanoma is 

another important disease with a similar problem. It is increasing in incidence and in later 

stages is non-responsive to chemo- or radiotherapies. The diagnosis of malignant 

melanoma remains one of the most difficult to render in surgical pathology, partially 

because of its extreme histological variability. When diagnosed early, simple surgical 

treatment can be extremely effective but survival rate decreases to just 5% over 5 years for 

metastatic (Stage IV) melanoma. Serum LDH has been found to be a sensitive indicator of 

tumour load, but unfortunately is only of value in Stage IV disease (Deichmann, et al., 

1999; Franzke, et al., 1998). Limits in the sensitivity and/or specificity of the currently 

available melanocytic markers such as anti-SlOO, HMB45, and anti-MelanA further 

complicate this problem.

This all further highlights the requirements for developments in the identification of novel 

biomarkers for early disease diagnosis and detection, as well as to provide novel targets for 

drug discovery and therapeutic intervention. Because of the rapid increase in applications 

of proteomic and genomic technologies to disease, methods focused on applying 

computational algorithms in data mining either the mass spectra of proteins and peptide 

fragments, or the gene expression data from patients in blood and serum are becoming 

extremely popular and showing great potential (Hilario, et al., 2004; Li, et al., 2004; 

Paweletz, et al., 2000; Petricoin, et al., 2002; Petricoin and Liotta, 2002; Petricoin, et al., 

2002).
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1.3. Proteomic technologies

The proteome has been defined as the full complement of proteins expressed by a genome 

at any specific point in time (Wasinger, et al., 1995). So the field of proteomics lends itself 

to the development of methods which are capable of characterising these proteins in any 

given biological sample, or determining protein changes between different disease states. 

Proteomics uses a combination of laboratory techniques in concert with bioinformatics to 

quantify proteins, and then to identify disease associated protein biomarkers to assist in 

disease diagnosis or prognosis, or in selecting novel targets for drug therapy. Recently, 

proteomic analysis does not even rely upon knowing the identities of the proteins which 

are being detected in a sample, but rather the pattern of proteins present, which may then 

be used as a fingerprint to diagnose and predict disease.

Therefore in order to identify proteins of interest which may then serve as potential 

biomarkers, there must be fast and sensitive protein identification methods in place which 

are capable of generating meaningful information from complex samples. Thus there 

exists a need for the development of novel methods which are capable of aiding in the 

discovery of novel protein biomarkers that possess high predictive and prognostic 

characteristics which can then be transferred into clinical practice (Xiao, et al., 2005).

1.3.1. MALDI-TOF MS

One of the most common methods used in assessing the proteome of a given sample is 

mass spectrometry (MS). This is capable of determining the changes in protein abundance 

expressed in a cell, which leads to the potential for characterisation. A mass spectrometer 

consists of an ion source, a mass analyser to measure the mass/charge ratio (m/z) of the 

analytes which have been ionised (mass spectrometers do not measure mass directly, but 

rather the mass to charge ratio of ions formed), and finally a detector that records the 

number of ions at each m/z value, generating a “fingerprint” for the sample being analysed. 

An overview of the MS system can be seen in Figure 1.

One of the most common MS instruments used is the MALDI-TOF analyser (Matrix- 

assisted laser desorption/ionisation-time of flight). Here, the sample to be analysed is 

mixed together with a chemical matrix, for example sinapinic acid, which absorbs light at a 

specific wavelength. This mixture of sample and matrix is then spotted onto a plate and

-• V'-.' „ * !  i. . ‘e  - ‘W
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then allowed to evaporate in air to form a crystal lattice structure in which the sample is 

integrated. An ion source, or laser, is then fired at this target, ejecting the proteins or 

peptides in the sample from the target surface into the gas phase, in the form of ions 

(Liebler, 2002). Although multiply charged ions can be produced, only singly charged 

ions are usually observed in MALDI (Wysocki, et al., 2005), and therefore the m/z value of 

a given ion is equal to its molecular mass in Daltons (Da.). The MALDI-TOF system, as 

the name suggests, utilises a time-of-flight mass analyser. These accelerate the ions by 

applying a short voltage gradient and measuring the time taken for these ions to travel 

down a field free flight tube to the other side where they strike a detector (Wysocki, et al.,

2005). The speed with which the ions fly down the analyser tube is proportional to their 

m/z value, the greater the m/z the faster they fly (Liebler, 2002).

Since MS is capable of high throughput protein identification, high analytical sensitivity, 

and very good mass accuracy, it is fast becoming the method of choice in biomarker 

discovery (Aebersold and Mann, 2003). With this method, there lies the possibility of 

early disease detection through large-scale analyses, and more importantly, the non- 

invasive collection of biological samples (Hilario, et al., 2004). MALDI-TOF MS is one 

of the most popular forms of MS because of its robustness and ease of use (Colantonio and 

Chan, 2005), and is much used to identify proteins by peptide mapping, or peptide-mass 

fingerprinting (Aebersold and Mann, 2003). MALDI allows for the analysis of high 

molecular weight compounds with high sensitivity and little or no fragmentation (Dhingra, 

et al., 2005).

1.3.2. SELDI-TOF MS

A recent development in proteomics has been the introduction of Surface Enhanced Laser 

Desorption Ionisation (SELDI) MS. This system is currently implemented in the 

ProteinChip System by Ciphergen Biosystems Inc. (Fremont, CA, USA) and is a high- 

throughput array based technology which can be used in the analysis of complex mixtures. 

The key difference between SELDI and MALDI MS is that SELDI utilises metal surfaces 

to which the sample is immobilised, and the sample is washed to remove any compounds 

that do not bind. In this way a large number of proteins from small quantities of a complex 

sample can be analysed very rapidly. It produces spectra of complex mixtures based on the 

m/z ratio of the proteins and on their binding affinity to the chip surface, and therefore 

differentially expressed proteins may be determined from these protein profiles by
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comparing the patterns of peak intensities from samples representing different pathological 

states (Seibert, et al., 2004). These mass spectra are organised as an m (peaks) x n 

(samples) matrix, where the peak intensity corresponds to the relative abundance of the 

proteins at a specific molecular mass (White, et al., 2004).

This system produces a protein fingerprint of the masses, and this is the major advantage 

and at the same time, disadvantage of the technology. The advantage is that the system 

provides an alternative method for the differential display of biomarkers, and it provides 

information regarding the masses which are required to make a correct diagnosis. 

However, in order to identify potential therapeutic targets, the identification of these 

biomarkers needs to be known, along with their biological function, and it is this 

information that the SELDI system does not provide.

The basic procedure for analysing samples using the SELDI technology is said to be 

relatively straightforward (Seibert, et al., 2004), with it being possible to apply almost any 

type of solution to the ProteinChip Arrays. The chips themselves are usually 

chromatographic surfaces with specific characteristics which retain proteins with the 

required characteristics. Examples of the most popular chips used are hydrophobic, 

cationic, anionic, metal ion presenting or hydrophilic, and it is common to combine 

multiple chip types to retain proteins of different groups from the samples of interest 

(Seibert, et al., 2004).
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1.4. Genomic technologies: Gene expression profiling using microarrays

Just as it is important to identify which proteins in a biological system are differentially 

expressed during different disease states, it is also essential to study the expression patterns 

of genes within this system. If it is possible to monitor how different cellular states affect 

the expression of genes, then this will further our understanding of the various mechanisms 

that determine disease onset and progression. As proteomics is the study of the protein 

complement of a cell, the term genomics has been attributed to the study of the complete 

genetic makeup of an organism. DNA microarrays may be used here to measure the 

expression patterns of thousands of genes in parallel.

The most common application of microarrays is in the study of differential gene expression 

in disease. Diversion from normal physiology is frequently accompanied by a host of 

histological and biochemical changes, including changes in gene expression as a result of 

disease (Debouck and Goodfellow, 1999). A DNA microarray consists of a solid surface, 

onto which DNA molecules have been chemically bonded. The purpose of microarrays is 

to detect the presence and the abundance of labelled nucleic acids in a given biological 

sample, which will then hybridise to the DNA on the array, and become detectable via the 

label. The source of the labelled nucleic acids is the mRNA of the sample of interest, so 

therefore the purpose of a microarray is to measure gene expression. As there may be 

thousands of different DNA molecules bonded to an array, it is possible to measure the 

expression of many thousands of genes simultaneously, leading to the potential for 

extremely high throughput analysis.

There are several distinct steps in using a microarray in order to measure the gene 

expression of a sample of interest. These include (i) sample preparation and labelling, (ii) 

hybridisation, (iii) washing, and (iv) image acquisition (Stekel, 2003). Figure 2 shows a 

summary of the steps involved in the microarray process. To summarise, mRNA is 

extracted from the samples of interest, for example samples from healthy and diseased 

subjects. The total pool of mRNA from each cell population is used to prepare 

fiuorescently labelled cDNA. To allow for the direct comparison of the abundance of each 

gene in the two samples, the two samples are labelled with different dyes. The different 

dyes most commonly used are Cy3 and Cy5. Cy3 is excited by a green laser, whilst Cy5 is 

excited by a red laser. The next step is to mix the two fiuorescently labelled cDNAs and 

hybridise with a DNA microarray in which each gene is represented as a distinct spot of
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DNA. The cDNA sequences in the samples of interest then hybridise specifically with the 

corresponding gene sequence in the array. One may then determine the relative amount of 

gene expression for each gene on the array by the corresponding ratio of red to green 

fluorescence (Brown and Botstein, 1999; Duggan, et al., 1999).
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1.5. Computational applications to the analysis and modelling of genomic and 

proteomic data

The continual increase in the amount of information a proteomic and/or genomic 

experiment can provide enables further opportunities for the extraction of biologically 

relevant information. Computational techniques allow for the ability to identify patterns in 

complex data, where a human could not. Humans generally use heuristics when making a 

clinical decision, so when faced with difficult and complex scenarios bias and error may 

result. Computational methods however have the ability to consider every possible 

variable and its probability, and therefore humans and computers have complimentary 

strengths that may be combined to surpass the abilities of either alone. There is so much 

data currently available that clinicians and healthcare workers face the unenviable task of 

deciding what may or may not be of use in a clinical setting. Therefore one of the goals of 

bioinformatics is to identify relevant features within these datasets which may be translated 

and integrated into information which can be of use (Burnside, 2005).

The two key aims which researchers tend to be most interested in when analysing new 

datasets is to (i) determine the relationships and patterns between the variables (for 

example between proteins or genes) or groups of individuals within the population, and (ii) 

predict the classes to which samples belong to based on their profiles. These aims can be 

accomplished by various computational approaches to data-mining, pattern recognition, 

clustering and classification of the datasets (Cox, et al., 2005). Some of the more 

commonly used methods will be outlined in the next sections.

1.5.1. Finding relationships and patterns: Clustering and principal components 

analysis

Perhaps the two most popular methods of analysing the relationships between the variables 

in the data, or between the patients themselves are hierarchical clustering and principal 

components analysis (PCA).

Hierarchical clustering is routinely used as the method of choice when analysing gene 

expression data (Alon, et al., 1999; Pomeroy, et al., 2002; van 't Veer, et al., 2002; Welsh, 

et al., 2001), and functions by arranging the profiles of samples into a tree-like structure so 

that the most similar profiles lie close together, and profiles very different to one-another
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lie farther apart, allowing for the rapid visual assessment of patterns within the data. The 

methodology is based on the construction of a distance matrix which enables the two 

samples with the most similar profiles to be determined. These are then placed together in 

the tree to form a cluster, and the distance between this newly defined cluster and the 

remaining samples is calculated. A new cluster is then determined and this process is 

repeated until all of the samples have been placed in a cluster. There are various linkage 

methods used for calculating distance, such as single linkage, complete linkage and 

average linkage. Single linkage computes the distance as the distance between the two 

nearest points in the clusters being compared. Complete linkage computes the distance 

between the two farthest points, whilst average linkage averages all distances across all the 

points in the clusters being compared. Similarly, there are also several distance metrics 

which can be used to compute this value, such as Pearson correlation and Euclidean 

distance. Different linkage methods and methods of calculating distances often lead to 

very different dendrograms, so it is recommended that many methods are applied before 

drawing conclusions regarding the relationships in the data (Stekel, 2003). Clustering has 

been used in the medical field mainly for the analysis of gene expression data from cancer 

patients, van’t Veer and colleagues (van't Veer, et al., 2002) used hierarchical clustering 

to analyse primary breast tumours to identify a gene expression signature which was 

predictive of a ‘poor prognosis signature’, that is, a signature capable of predicting patients 

at risk of distant metastases. Here, they identified 70 genes from an initial 25,000 which 

could predict correctly disease outcome for 83 % of patients. Pomeroy and co-workers 

(Pomeroy, et al., 2002) used a similar approach when investigating tumours of the central 

nervous system, a group of tumours whose diagnosis is often difficult/ Using hierarchical 

clustering, they showed that tumours could be clearly separated according to the different 

tumour types. Welsh and associates (Welsh, et al., 2001) used oligonucleotide microarrays 

of approximately 6,000 genes to identify candidate markers of epithelial ovarian cancers. 

They found that normal tissues were easily separated from tumour tissues, and the tumours 

could be further divided into groups correlating with known histological and clinical 

observations. Alon and colleagues (Alon, et al., 1999) used a two way cluster analysis to 

cluster firstly the tissues based upon tumour and normal colon cancer tissue samples, and 

secondly the genes where families of genes grouped together. They revealed groups of 

genes whose expression was correlated across different tissue types, for example, the 

majority of EST’s homologous to ribosomal proteins clustered together. The one major 

problem concerning clustering is that it suffers from the curse of dimensionality when 

analysing complex datasets. In a high dimensional space, it is likely that for any given pair
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of points within a cluster, there will exist dimensions on which these points are far apart 

from one another. Therefore distance functions using all input features equally may not be 

truly effective (Domeniconi, et al., 2004). Furthermore, clustering methods will often fail 

to identify coherent clusters due to the presence of many irrelevant and redundant features 

(Greene and Cunningham, 2005).

PCA is one of the most widely used multivariate techniques for input dimensionality 

reduction in datasets where the number of inputs far exceeds the number of cases. PCA 

transforms the input space into a new space described by what are known as principal 

components, which are expressed as linear combinations of the original variables. These 

principal components lie orthogonal to one another and are ranked according to an 

eigenvalue. By selecting the vectors with the largest eignevalues, the vectors which map 

the largest variations in the input space are determined. So, the ultimate aim of PCA is to 

capture those vectors, or principal components which explain the most variation in the 

data, thus reducing the dimensionality of the data space (Haykin, 1999). The main 

limitation of using PCA for proteomic and gene expression data is the inability to verify 

the association of a principal component vector with the known experimental variables. 

This makes it extremely difficult to accurately identify the importance of the proteins or 

genes in the system. Marengo et al. (Marengo, et al., 2004) applied PCA analysis to 

proteomic data generated from neuroblastoma tumour samples and identified two groups 

of samples in the data set. By analysing the loadings of the principal components they 

could identify the discriminatory variables and by following this up with mass 

spectrometry they identified proteins responsible for the differences occurring between 

healthy and diseased samples. Liu and co-workers (Liu, et al., 2005) analysed gene 

expression data using PCA as a dimensionality reduction tool, followed by logistic 

regression for classification purposes. This approach was applied to five publicly available 

tumour based datasets, and was able to distinguish different classes with high accuracy. 

The authors showed this approach to be very comparable to SVMs and ANNs when 

classifying gene expression data.

The limitations of the current PCA approach include an inability to verify (or deny) 

association of a principal component vector to the known experimental conditions and then 

to accurately identify the critical genes.
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1.5.2. Predicting sample class

In addition to analysing relationships in the data, there are also numerous methods 

available which allow for the classification of samples, and are subsequently able to 

position new samples with unknown class membership into a particular group. Here, the 

ultimate aim is to identify genes or proteins (or subsets of these) which may be used either 

in the development of prognostic tests (to predict for example, response to therapy in a 

patient specific manner) or alternatively in the development of novel diagnostic tests. This 

is achieved by generating predictive models using the measurements across a number of 

variables (for example ion mass intensities or gene expression ratios) for samples whose 

class is known a priori. This is known as supervised learning. Artificial Neural Networks 

were used as the focal point during this thesis for generating predictive models enabling 

accurate sample classification, and these are explained in detail in chapter 2. Here, a 

summary of alternative methods will be discussed briefly, with examples of their 

application.

X.5.2.1. ^-Nearest Neighbours

^-Nearest Neighbours (£NN) is one of the simplest methods to perform when deciding 

which class an unknown sample belongs to. This method compares the profiles of an 

unknown sample with the profiles of samples with known group membership. The class of 

the unknown sample is then determined to be the same as the class of the known sample to 

which it is most similar to. There are two parameters to consider when using this method, 

k and /; where k is the number of nearest samples to look at, and I is the margin of victory 

required in order for a class decision to be made. If this margin is not met, then the sample 

is unclassified. So for example, if k = 3 and / = 3, then the unknown sample would be 

assigned to the same class as the nearest three samples, but only providing that all three of 

these belong to the same class, otherwise the sample would be unclassified (Stekel, 2003). 

Shen et al. (Shen, et al., 2005) showed that using a £NN approach for predicting 

membrane protein types resulted in high success rates. Here they compared several 

predictive algorithms and the KHN predictor outperformed the other predictors, resulting 

in between 86-96 % of samples being successfully predicted. i04N was also the method of 

choice for Barrier and colleagues (Barrier, et al., 2005) for creating a classifier from gene 

expression measurements of Stage II and Stage III colon cancer patients. They built two 

classifiers which successfully predicted between 78-83 % of patients into their respective
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groups. The main disadvantages of using this method are that in highly dimensional 

biological systems with many samples there are likely to be outliers present. As this -f 

approach is not particularly robust to outliers this may lead to incorrect classifications 

when such outliers are present in a given system. Additionally, this approach takes into 

consideration every attribute of every element when classifying a new sample. So if the 

target concept depends on only a few features in a highly dimensional data space the (i■a
samples that are truly most similar may well be placed a large distance apart (Mitchell, •§

1997; Mylonas, et al., 2004).

1.5.2.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) calculates the straight line (or hyperplane) between 

two classes that best separates them. It does so by taking into consideration sample to 

sample variation within classes, as to minimise within class variance, and maximise 

between class variance. The class of any unknown samples is then determined simply by 

the side of the hyperplane it lies. Because LDA takes into account the variation within the 

sample population, this method sometimes performs better than other linear based 

approaches at classifying unknown samples, however, this approach does not extend 

naturally to data that is not linearly separable, so should be avoided with such datasets 

(Stekel, 2003). This approach was used with success by Xu and colleagues (Xu, et al.,

2006) who aimed to detect serum proteomic patterns by using SELDI-TOF MS technology 

applied to the staging of colorectal cancer patients. They created several models and 

identified potential biomarker ions which could discriminate between disease stage with 

accuracies between 75-87 %. Gao and co-workers (Gao, et al., 2005) also utilised LDA 

where sera from patients with lung cancer and healthy controls were subjected to antibody

microarray analysis. Here, it was concluded that although LDA correctly classified 17/24
1

of cancer patients correctly, and 52/56 of the control samples correctly, it did not perform f 

any better than results obtained with other classifiers.

1.5.2.3. Support Vector Machines

Support Vector Machines (SVMs) function in a manner similar to LDA, in that they work 

by separating the data into two regions by constructing a straight line or hyperplane. The 

advantage SVMs have over other linear separators is that the data are first projected into a 

higher dimensional space (by a kernel function) before being separated by a linear method,
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which allows for discrimination of nonlinear regions of space, and therefore separation of 

nonlinear data. The class of the unknown sample is then determined by the side of the 

hyperplane on which it lies (Crisianini and Shawe-Taylor, 2000). SVMs are a popular 

classification tool within the machine learning community, and there uses are widely 

documented (Chu and Wang, 2005; Eszlinger, et al., 2006; Wagner, et al., 2004; Warnat, et 

al., 2005; Yu, et al., 2005). They have been used with success in the classification of a 

wide range of biological data, for example 13 peaks were identified from a four group 

classification problem involving mass spectrometry data derived from prostate cancer 

patients. These peaks allowed for the correct identification of 87 % of samples (Wagner, 

et al., 2004). Meanwhile, Warnat et al. (Warnat, et al., 2005) analysed sets of gene 

expression data from leukaemia patients, and found the SVM based classifiers could 

predict in excess of 85 % of samples based upon training and testing cases being randomly 

chosen by cross validation. Eszlinger et al. (Eszlinger, et ah, 2006) used a SVM based 

approach when analysing gene expression data derived from thyroid carcinoma tissue. 

They identified multiple gene markers which, when used as a classifier, produced high 

prediction accuracies. Similarly, Chu and Wang (Chu and Wang, 2005) applied SVMs for 

cancer classification of microarrays to subsets of genes identified by a t-test based gene 

selection approach. They successfully built classifiers capable of high classification 

accuracies with fewer genes than previously reported on the datasets used. Yu et al. (Yu, 

et al., 2005) developed strategies for pre-processing of SELDI-TOF MS datasets followed 

by SVM classification analysis. The models they generated led to sensitivities of 97 % and 

specificities of 93 %, again showing the potential for SVM in the analysis of this type of 

data. The major disadvantages associated with SVMs are that they are affected by speed 

and size, both in training and testing, and can be extremely slow when in the test phase 

(Burges, 1998). Furthermore from a practical point of view, for large scale tasks extensive 

memory is required due to the high complexity of the data (Burges, 1998; Osuna and
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1.6. Artificial Neural Networks 

1.6.1. Introduction to Artificial Neural Networks

An ANN is an adaptive, non linear form of artificial intelligence inspired by the way the 

human brain learns and processes information. The most important facet of this paradigm 

is the fact that it is built from a potentially large number of interconnected processing 

elements, which work together to solve specific problems. A popular form of ANN is the 

multi-layer perceptron (MLP) and is used to solve many types of problems such as pattern 

recognition and classification, function approximation, prediction and forecasting. They 

learn in a fashion that is analogous to the way learning in the human brain is carried out, 

that is, by example. In humans, learning involves minor adjustments being made to the 

synaptic connections between neurons, in ANNs, learning is achieved by updating the 

weights that exist between the processing elements that constitute the network topology.

1.6.2. Historical background

ANN modelling began with the work of McCulloch and Pitts in 1943 (McCulloch and 

Pitts, 1943) who in an effort to understand how the nervous system might be functioning, 

introduced computing elements which were based on the properties.of neurons and their 

connections. McCulloch and Pitts.listed several assumptions reflecting the operation of 

neurons, and these assumptions described what became to be known as the ‘McCulloch- 

Pitts’ neuron. The assumptions can be summarised as follows; Neurons are binary devices, 

so can only be one of two possible states, an “all-or-none” process. Each neuron has a 

fixed threshold, and the structure of the net does not change with time. The neuron can 

receive inputs from excitatory synapses, all of which have identical weights. It can also 

receive inputs from inhibitory synapses, which absolutely prevent excitation of the neuron 

at that time, so if an inhibitory synapse is active, the neuron cannot turn on. In summary, 

the neuron responds to the activity of its synapses, and if no inhibitory synapses are active, 

the neuron then sums its synaptic inputs to determine whether it meets or exceeds its 

threshold. If it does, the neuron can then become active, if not, the neuron is inactive. The 

results of this model were simple logic threshold functions, such as INCLUSIVE OR, 

where a neuron would become active only if a OR b OR BOTH a AND b are active.



Introduction 18

In 1958, Rosenblatt (Rosenblatt, 1958) then introduced the perceptron, which was the first 

computationally orientated neural network. He used a single layer of model neurons 

projecting to another layer of neurons by way of parallel connections. Learning was 

achieved by modifying the units or their connections in such a way that stimuli of a certain 

class would tend to encourage a stronger response in one unit from the others.

Widrow and Hoff (Widrow and Hoff, 1960) proposed an adaptive system related to the 

perceptron which could learn more quickly and accurately. This “adaptive neuron” 

calculated a weighted sum of activities on the inputs, multiplied by the synaptic weights. 

Rather than using the usual values of 1 or 0, if this sum was greater than a certain 

threshold, the output was +1, and -1 otherwise. They described this adaptive system of 

consisting of a “worker” and a “boss”. The job of the worker was to predict, and the boss 

had the job of adjusting the worker. Essentially this adaptive system was able to form an 

error signal between the actual and computed outputs, and then was able to adjust the 

synaptic weights so that the error signal was zero. The system would learn something from 

each pattern and accordingly experience a design change, storing this “knowledge” in the 

values of the weights. Learning would continue until the search process converged and the 

error was exactly zero, with an output value of either +1 or -1, and not just a correct 

classification, where the sum of weights would merely have to be a value greater than the 

threshold. An important feature of this adaptive system was the existence of the worker 

and boss, which contained previous knowledge regarding the correct class the input pattern 

corresponded to. These algorithms are known as supervised, and presently back- 

propagation (BP) is the most commonly used supervised algorithm, and is basically an 

adaptation of the Widrow-Hoff rule.

In the late 1960’s, Minsky and Papert (Minsky and Papert, 1969) published a book in 

which they discussed the major limitations associated with perceptrons, and this led to a 

major setback in the use of neural networks in research. Some of these limitations were 

already known, but Minsky and Papert showed the importance and magnitude of these 

limits, such as the requirement for linear seperability of the data points. The most serious 

impact on future neural network research was the fact that the authors believed that the 

limitations that they had discussed would also be extended to variants of the perceptron, 

such as multilayered systems. To quote their statement, “...our intuitive judgement that 

the extension to multilayer systems is sterile”.
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When Rumelhart, Hinton, and Williams described the BP algorithm (Rumelhart, et al., 

1986) interest was renewed in the use of neural networks, and this was to become the most 

popular learning algorithm for research with multilayer networks. BP is an adaptation of 

the Widrow-Hoff rule of error connection (Widrow and Hoff, 1960) and involves running 

the synapses backwards, so that the internal (hidden) unit(s) knows how large the error is, 

and can then modify the weights according to the strengths of the inputs received. So 

briefly, the algorithm involves a forward pass through the layers of the network in order to 

estimate error, and then a backward pass allowing for the modification of the synapses so 

that the error is decreased.

1.6.3. Biological neural networks

The basic structure and function of the human neurone will now be briefly discussed in 

order to understand the analogy between this and the way in which ANNs function. 

Neurons are the cells with the ability to learn and process information, and are primarily 

located in the brain. Figure 3 shows a schematic of a biological neuron, and shows that the 

neuron is mainly composed of a cell body, known as the soma, dendrites and an axon. The 

cell nucleus has a cell body which contains the information regarding hereditary traits, and 

a plasma containing the molecular equipment for the production of materials needed by the 

neuron. Neurons receive signals from other neurons by way of dendrites, and transmit 

these along the axon. The axon branches into several strands, and at the end of these 

strands are the synapses, which is a place of contact between two neurons. This contact 

occurs between the axon strand of one neuron and a dendrite strand of another, and upon 

this contact, chemicals known as neurotransmitters are released (Jain, et al., 1996). These 

neurotransmitters diffuse into the dendrites of neighbouring neurons forcing them to 

generate a new electrical signal, which then passes through the second neuron. The 

amount of signal passing through a receiving neuron is dependent upon the intensity of 

signal originating from the feeding neuron, and these signals may either excite or inhibit 

the firing of the neuron (Basheer and Hajmeer, 2000). The effectiveness of a synapse can 

be adjusted by the signals passing through it so that they learn from the activities which 

they contribute to. It is this dependence on learning from previous activities which acts as 

a memory and the ability of the human brain to remember (Jain, et al., 1996). This 

mechanism of signal transfer constitutes the vital steps involved in early neurocomputing 

development, as they both learn by iteratively adjusting the magnitudes of the weights or 

synaptic strengths.
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1.6.4. Artificial neurons: Network structure and architecture

The simplest forms of ANNs contained two layers of neurons, or nodes. This constituted 

of an input layer connected to an output layer. The input layer of the network represents 

the variables in the data to be modelled, with an input node assigned to each variable. The 

output layer computes an output based upon the information it has received from the input 

layer.

MLP ANNs are most commonly composed of three layers. Firstly an input layer, which is 

connected to a hidden layer, that is in turn connected to output layer. The hidden nodes 

contained within the hidden layer represent the features from the input data, and these 

features are highlighted or subdued by the activities of the weights between the input and 

hidden units. The output unit and the output it computes is then dependant upon the 

information it receives from the weights between the hidden and output units.

1.6.5. The perceptron

Artificial neurons mimic biological neurons in that the connections between nodes 

represent the axons and dendrites, the connection weights represent the synapses, and the 

thresholds corresponds to the activity present in the soma (Jain, et al., 1996). The most 

primitive form of ANN was based on a unit known as a perceptron. (Figure 4). A 

perceptron functions by taking a vector of inputs, calculating a linear combination of these 

inputs, and then finally outputting a 1 if the result exceeds some threshold or a -1 if it does

not (Mitchell, 1997). Given inputs x\ through x„t the output o(Xj xn) computed by the

perceptron is:

+ 1 if WO + W l X l  + W 2 X 2 +  ... + W n X n  > 0 
-1  otherwise

Where each w, is a weight that determines the contribution of input X[ to the output, wo is a 

threshold that the weighted combination of inputs wiXi+...+w„xn must be greater than in 

order for the perceptron to output a 1.
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The perceptron can be viewed as representing a decision surface in an w-dimensional space 

of individual instances. The perceptron outputs a 1 for instances lying on one side of the 

hyperplane and outputs a -1 for instances lying on the other side. Figure 5a shows an 

examples of a linear decision surface, and those instances that can be separated by this 

hyperplane are called linearly separable sets of examples (Mitchell, 1997).

1.6.6. Advancing beyond simple neurons: The Multi-Layer Perceptron

As discussed earlier, single layer perceptrons are only capable of solving problems of a 

linear nature. However, because the weights of the interconnecting nodes are set in 

response to comparisons between the network and actual output, they are not adjustable 

during training. As such, perceptrons show an inability to model non- linear problems. 

Therefore in order to search a nonlinear hypothesis space, such as that shown in Figure 5b, 

a MLP is needed. Unlike the perceptron, this contains one or more hidden layers, each 

comprising of a number of hidden nodes. Figure 6 shows the structure of a MLP. A 

commonly used function used within these hidden nodes is the sigmoidal activation 

function, which computes a linear combination of its inputs, and then applies a threshold to 

the result. Thus the output unit is a nonlinear function of its inputs (Mitchell, 1997). The 

sigmoid unit computes its output o as:

1

This is often referred to as the sigmoid, or logistic function. In this function, the output 

ranges between 0 and 1, and is sometimes called a squashing function because of its 

capability of mapping a very large input set into a small output range. In addition to the 

sigmoid, other activation functions may be used. For example the hyperbolic tangent 

function (tanh) is similar to the logistic function, but the output range lies between -1 and 

+1. The output o for this function is defined by the following:
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1.6.7. Learning

1.6.7.1. Perceptron training

The learning goal in a single perceptron is to determine a weight vector that causes the 

perceptron to produce the correct +1,-1 output for each of the given training examples. In 

order to learn an acceptable weight vector the network may begin with random initial 

weights, then apply the perceptron to each training example, iteratively modifying these 

weights whenever an example is misclassified (Mitchell, 1997). This process is repeated, 

iterating through the training examples until all are correctly classified. Weights are 

modified at each step according to the perceptron learning rule, which updates the weight 

Wj associated with input Xj according to:

w t =  n ( t  o ) x t

Here t is the target output for the current training example, o the output generated by the 

perceptron, and n is a constant known as the learning rate (Mitchell, 1997). The weight 

change of a neuron is proportional to the influence an input had on the error during training 

and the learning rate is a constant which controls the size of these weight changes. Each 

time a pattern is presented to the network, the weights leading to an output node are 

modified slightly during learning in the direction required to result in a smaller error the 

next time the same pattern is presented. The larger the learning rate, the larger the weight 

changes, and the faster the learning will proceed. If the learning rate is too small, training 

will be slowed down, however, oscillation or non-convergence can occur if the learning 

rate is too large (Basheer and Hajmeer, 2000).

1.6.7.2. Gradient descent and the delta rule

The perceptron rule discussed above is designed to converge when the training examples 

are linearly separable, however it may fail if they are not. To overcome this, an alternative 

rule known as the delta rule may be used. This rule works'on the principle that if the 

training examples are not linearly separable the rule will converge towards a best-fit 

approximation of the target values. The main principle behind this rule is to use gradient 

descent to search a hypothesis space of possible weight vectors to find the weights that best
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fit the training examples (Mitchell, 1997), and will converge regardless of whether the 

training data are linearly separable. This rule is important because it forms the basis for 

the BP algorithm which will be discussed in the next section.

I.6.7.3. The Back-Propagation algorithm

The BP algorithm learns the weights for a network consisting of multiple layers, and 

utilises gradient descent to minimise the error between the network output, and the target 

output value. The goal of learning in BP is to use gradient descent to search a hypothesis 

space in order to find the optimal weight values for all inputs in the network which 

minimise the error. Unlike in single layered networks, with an error surface containing a 

single minimum, multilayer networks may face error surfaces containing multiple local 

minima. As such, these are only guaranteed to converge towards some local minimum 

error, which may not necessarily be the global minimum (Mitchell, 1997). The algorithm 

for a feedforward network, in which all units present in each layer are connected to all 

units in the next layer, can be summarised as follows:

1. Construct a network with the desired number of hidden and output units.

2. Initialise all network weights to small random numbers.

3. Propagate the input forward through the network.

4. Propagate the errors backward through the network.

5. The network is applied for each training example, and the error of each network output 

unit is calculated, together with the error of each hidden unit. The gradient with respect to 

the error for this example is computed, and the weights are updated according to:

6. Repeat this gradient descent step using the same training examples until the network 

performs to an acceptable level.

The weight update rule used is similar to the delta training rule. Each weight is updated in 

proportion to (i) the learning rate rj, (ii) the input value to which the weight is applied xJt, 

and (iii) the error in the output of the unit Sj. The difference between the two update rules 

is that the error term used in BP (Sf) is more complex than that used in the delta rule (t -  o)
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as it is multiplied by a factor which is the derivative of the sigmoid squashing function. In 

addition to the error being calculated for each output unit, the error term must also be 

calculated for each hidden unit. This is achieved by summing the error terms for each 

output unit 8k that is influenced by the hidden unit h, weighting each 8k by the weight Wkh> 

from hidden unit h to output unit k. This essentially defines the influence each hidden unit 

has on the output(s) it feeds into.

The algorithm updates weights in an iterative manner, following the presentation of each 

training example (Mitchell, 1997). Training is typically performed in an iterative fashion 

and is terminated with respect to a given condition, for example a pre-determined number 

of iterations, or once the error is below a pre-determined threshold for a separate validation 

set of training examples. During training, different cost functions may be used such as the 

sum of squared errors for regression problems, and entropy based methods for 

classification.

1.6.8. Advancing the Back Propagation algorithm

I.6.8.I. Escaping local minima with momentum

One of the most common variations of the BP algorithm is to make a slight alteration to the 

weight update rule by making the weight update on the nth iteration depend on the update 

that occurred during the (ft-l)th iteration. This is achieved by using a momentum term, 

and this can help in the prevention of the network from becoming trapped in local minima, 

or being stuck along flat regions in error space. The momentum term helps to speed up the 

time it takes for the network to reach convergence by gradually increasing the step size of 

the search in regions where the gradient is not changing. In addition to this, when all 

weight changes are in the same direction, the momentum term amplifies the effect of the 

learning rate, again leading to faster convergence. The weight update with momentum 

occurs as follows:

^Wji(n) -  nSyX /7 + aW ji(n  -  1)

Where Wjm is the weight update that is performed at the current («th) iteration in the 

algorithm, and a is the momentum term.
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I.6.8.2. Generalisation and avoiding the problem of overfitting

A common problem when training with ANNs is ensuring that they are capable of 

generalising to future cases, by providing an estimation as to their likely performance on 

new data. Given the fact that with nonlinear modelling one may not have prior information 

regarding the complexity of the data, it is essential to estimate the performance of these 

models on new data, in order to be confident that overfitting has been avoided. As briefly 

mentioned previously, the BP algorithm should stop training once the network has 

achieved an acceptable error. However, the question remains as to what is considered to 

be an acceptable level, and what can be done to ensure that the model will be capable of 

generalising to additional future cases. If training is terminated solely on the basis of a set 

number of iterations, then the model is at risk of overfitting, which is to all intent and 

purposes a memorisation of the training data.

The most universal approach to address this problem is resampling. Typically in 

resampling approaches, the dataset is split into different subsets, training and test. The 

neural network is trained and optimised using the training set, whilst the network error is 

monitored with respect to the test subset. Subsequently the trained weights which 

produced the lowest error over the test data split are used in the final model. The training 

is stopped once the error has not improved on this test subset for a predetermined number 

of iterations, known as early stopping. This helps to avoid over-training and therefore 

improves the ability of the model to generalise well to new data. This can be enhanced 

further by splitting the data into three subsets as opposed to just two; these are known as 

training, test and validation. Training performance is monitored as in the previous method, 

but here the network is further validated once the model has been trained using the 

validation data split, which gives an unbiased estimation of the networks likely 

performance on future cases.

A number of approaches to validation are commonly used, such as Monte Carlo 

resampling, bootstrapping, £-fold validation, and random sample cross validation (RSCV). 

Monte Carlo resampling is perhaps the simplest method, where a training, test and 

validation set are selected at random, with an equal number of cases in each subset. 

Alternatively the validation subset may be kept constant, with the training and test sets 

drawn at random, to enable comparison between models for validation data (Bishop, 

1995). Bootstrapping has been shown to be an effective measure of estimating the error of
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predictive values in neural network models, and therefore is a reliable approach in 

determining generalisation of the network (Tibshirani, 1996). In bootstrapping, 

subs'amples of the data are analysed, where many “pseudo-replicates” are created by 

resampling the original data. Here, cases are drawn at random from the data set, with 

equal probability, in order to replicate the process of sampling multiple datasets. &-fold 

validation is an effective approach when the number of samples is not efficient enough to 

split the data into three subsets. A widely used version of this is called leave one out cross 

validation (Braga-Neto and Dougherty, 2005; Hu, et al., 2005), where N  divisions are made 

(where N  is the total number of cases in the dataset) and in each division the network is 

trained on all of the samples except one, which is set aside for test purposes. This process 

is repeated so that all of the samples are used once for testing. Finally, in RSCV, the 

training, test and validation data splits are randomised a number of times, so that each 

sample is represented in the validation split on numerous occasions, enabling confidence to 

be determined for the predictions on blind (validation) data.

Other methods are also available to address the overfitting problem, one example being 

weight decay regularisation. Here, the error function includes a penalty term, for example 

the sum of squared weights multiplied by a decay constant. This approach focuses on 

penalising large weights, in order to keep weight values smaller than they naturally 

otherwise would converge at (Bishop, 1995). The rationale being that large weights can 

affect generalisation by causing excessive variance in the output, leading to output values 

far exceeding the range of the data (Geman, et al., 1992).

1.6.9. Advantages and disadvantages of Artificial Neural Networks

As ANNs are loosely based on the way a biological neuron is believed to organise and 

process information, they have many advantages in their ability to derive meaning from 

large complex datasets. Firstly they are essentially nonlinear so are able to process data 

containing complex interactions that are therefore usually difficult or too complex to 

interpret by conventional methods. Another advantage is that they are fault tolerant, i.e. 

they have the ability of handling noisy or fuzzy information, whilst also being able to 

tolerate data which is incomplete or contains missing values. In addition to this they are 

capable of generalisation, so they can interpret information which is different to that of the 

training data, thus representing a “real-world” solution to a given problem by their ability 

to predict future cases or trends based on what they have previously seen. Thus, trained
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ANNs can be used as stand alone executable systems used to predict the class of an 

unknown case of interest. Finally, the importance of individual variables in the trained 

ANN model can be easily recovered using various methods such as the analysis of 

interconnecting network weights and sensitivity analysis, which from a biological 

perspective is perhaps one of the most useful aspects of ANN modelling, and will be 

discussed in greater detail in later chapters.

Unfortunately, ANNs also have their limitations. Training of ANNs can potentially be 

time consuming depending on the complexity of the data being modelled, and as the 

number of hidden layers required to capture the features within the data increases, so does 

the time taken for training to complete. Additionally, training is not guaranteed to 

converge, and only partial solutions to the problem may be reached. This is usually due to 

the ANN being stuck in local minima along the error surface, which leads to a failure of 

the model to reach the global minima and failure of the model to generalise well. This 

problem of failing to generalise to new cases is also associated with overtraining, where 

the model essentially memorises the training data and any noise associated with it. Figure 

7 shows a hypothetical error surface, and the problem of being stuck in local minima and 

overtraining. ANNs also need to be trained on as large a dataset as possible because when 

predicting future cases they cannot extrapolate particularly well to those which are widely 

outside of the range of initial training. The one major barrier which researchers usually 

associate with ANNs is that the ability to interpret the contributions of input variables and 

how they reach a conclusion is often perceived to be difficult, and because of this they are 

sometimes referred to as “black boxes” ” (Duh, et al., 1998; Smith, et al., 2003; Tung, et 

al., 2004; W all,etal., 2003).

1.6.10. Artificial Neural Networks in medical practice

ANNs have enjoyed a rapid increase in popularity in the medical arena since the early 

1990’s, with the number of publications cited in PubMed showing an almost exponential 

rise. A similar trend is seen in the field of cancer. In 1990, no papers were published 

detailing the use of ANNs in cancer research, whilst in 2005, this had risen to 87, more 

than one per week. The largest area of research with ANNs appears to be focused towards 

breast cancer, which amasses approximately 25 % of all published papers concerning 

cancer research and neural networks each year, followed by prostate cancer with around 15 

%. Figure 8 shows the annual publications cited in PubMed by performing a search with

^ 5 _ . ! »  ' - i - . .  * »  \ z *•:• v '  & « »  .  , v  *  > *' .*>■ -  ■
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firstly the keyword terms “neural networks” and secondly, “neural networks” and 

“cancer”. Lisboa and Taktak (Lisboa and Taktak, 2006) conducted a review assessing 

where ANNs had been involved in an actual clinical setting in the field of cancer. The 

authors found that of all the studies using ANNs in cancer research, only 27 were involved 

in clinical trials or randomised controlled trials. Of these, 21 showed an increase in benefit 

to healthcare provision and the remaining 6 did not. Perhaps the most widely known 

application of neural networks in medicine is the PAPNET system used in the automated 

cytological screening of cervical smears (Boon, et al., 1994). This system aids in the 

assisted screening of Pap smears, which examine cells taken from the uterine cervix for 

signs of precancerous and cancerous changes. As it is extremely difficult to detect all 

cases of early cancer with the human eye, abnormal Pap smears were missed. The 

PAPNET system showed to be able to reduce the numbers of false-negative cases, as such 

increasing the efficiency of screening and detection of pre-cancerous and cancerous cells in 

the cervix. Examples of some recent applications of ANNs, not necessarily limited to 

cancer studies include; detecting coronary artery disease (Allison, et al., 2005), the 

diagnosis of lung disease (Abe, et al., 2004), developing diagnostic and prognostic models 

in various cancers from proteomic (Chen, et al., 2004; Guo, et al., 2005; Hu, et al., 2005; 

Hu, et al., 2005; Yu, et al., 2004; Yu, et al., 2005) and genomic (Ando, et al., 2003; Berrar, 

et al., 2003; Bicciato, et al., 2003; Narayanan, et al., 2004; O'Neill and Song, 2003) data, 

the detection of subclinical brain electrical activity changes in Huntington’s disease (de 

Tommaso, et al., 2003) and the discrimination of patients with Type 2 diabetes from 

healthy controls (Yang, et al., 2004).
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1.6.11 Other Artificial Neural Network architectures and algorithms

Adaptive Resonance Theory (ART) neural networks, first described by Carpenter and 

Grossberg (Carpenter and Grossberg, 1988), perform unsupervised learning. The structure 

of the ART model consists of an input processing field, a clustering field, and a reset 

subsystem. There are two sets of connections (each with its own weights) between each 

node in each layer. The connection weights between the layers can be modified according 

to different learning rules. The node in the clustering layer with the largest net input 

becomes the candidate to learn the input pattern. Whether this candidate will learn the 

input pattern is dependant upon the reset mechanism, which controls the degree of 

similarity between the patterns placed in the same node (Cao and Wu, 2002). During this 

learning method, learning is fast and is guaranteed to converge in 3 passes of any set of 

patterns (Palmer-Brown, et al., 2003).

Kohonen networks (Kohonen, 1989), also known as self organising feature maps, consist 

of just two layers, an input layer and an output layer. The output layer of these networks 

may be two-dimensional (Ultsch and Roske, 2002), so that these networks may be used to 

map a three-dimensional surface onto a two-dimensional map (Barlow, 1995). The training 

patterns are presented to the input layer, then propagated to the output layer and evaluated, 

with one output neuron being labelled as the “winner”. The network weights are adjusted 

during training and this process is repeated for all patterns for a pre-determined number of 

epochs, forming clusters within the data (Ward Systems Group, 1993). These networks are 

unique in that they autonomously self-organise themselves and converge into a stable 

structure representing the information that has been learnt (Nour and Madey, 1996).

Radial Basis Function (RBF) neural networks were first introduced by Moody and Darkin 

(Moody and Darkin, 1989). RBF networks are linear in their parameters, therefore once 

suitable basis function parameters have been chosen, they can be trained using a fast linear 

supervised training scheme. The most common nonlinear function used in RBF networks 

is the Gaussian function (Cowper, et al., 2002), and training in RBF networks is essentially 

a two stage process. In the first stage, the parameters governing the basis functions (hidden 

units) are determined using unsupervised methods. The second stage of training involves 

the determination of the weights of the final layer, which requires the solution of a linear 

problem, and is therefore a fast process (Bishop, 1995).
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The Hopfield neural network model was first described by Hopfield (Hopfield, 1982), and 

like all neural networks, comprises of a set of nodes and their connections. Hopfield 

networks have been described as “general content-addressable memories”, because they 

can be trained to recall a unique pre-determined state when they are presented with 

information associated with that state. This enables them to be trained to distinguish 

between two closely related states (Pritchard and Dufton, 2000). Hopfield networks in 

their original form, suffer from being a gradient descent technique incapable of escaping 

local minima, and are further limited by the fact that their penalty parameter approach for 

solving optimisation problems often results in poor quality solutions (Smith, et al., 2003).

A Recurrent Neural Network (RNN) is a neural network with feedback connections. From 

training examples, RNNs can learn to map input sequences to output sequences. In 

principle, they can implement almost arbitrary sequential behaviour. A recurrent network 

may respond to the same input pattern differently at different times, depending upon the 

patterns that have been presented as inputs just previously. Thus, the sequence of the 

patterns is as important as the input pattern itself. The patterns must always be presented in 

the same order, therefore random selection is not allowed. An extra slab is present in the 

input layer that is connected to the hidden layer just like the other input slab. This extra 

slab holds the contents of one of the layers as it existed when the previous pattern was 

trained. In this way the network sees previous knowledge it had about previous inputs. 

This extra slab is sometimes called the network’s “long-term” memory (Ward Systems 

Group, 1993).

1.6.12. Comparison of Artificial Neural Networks with other methods

There have been a number of studies comparing ANNs with other statistical and 

computational approaches to data analysis. Some of these will now be reviewed, outlining 

how ANNs have performed compared to other methods when applied to biological data. 

Song and co-workers (Song, et al., 2004) compared various machine learning techniques to 

more classical statistical approaches in the prediction of outcome in two datasets. They 

used ANNs (single and multi-layered), logistic regression, least squares linear separation 

and SVMs to determine the risk of death in a population of patients with cardiac problems. 

They found the multi layered ANN to be consistently better than the other approaches, 

suggesting that the ability of the ANN to model nonlinear data was providing additional 

infonnation regarding the datasets leading to higher predictive capabilities.
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(Chemushevich, et al., 2001). Dreiseitl et al. (Dreiseitl, et al., 2001) compared the ability 

of XNN, logistic regression, ANNs, decision trees, and SVMs in classification of skin 

lesion data. The authors found logistic regression, ANNs and SVMs to give almost 

identical results, with ^-nearest neighbours and decision trees performing the worst. 

Interestingly, even the worst of the five methods (decision trees) achieved sensitivity and 

specificity values comparable to human experts indicating these approaches may be of use 

to assist human decisions in the medical arena. On the contrary to this, Delen et a l (2005) 

found decision trees to be the best predictors when compared to ANNs and logistic 

regression when building classifiers to predict breast cancer survival. Decision trees 

predicted with 93.6 % accuracy, whilst ANNs and logistic regression performed with 

accuracies of 91.2 and 89.2 % respectively. Eftekhar and colleagues (Eftekhar, et al., 

2005) made a comparison between ANNs and logistic regression models to study patients 

with head injury trauma. They built 1000 models and compared them using receiver 

operating characteristic (ROC) curves and T-tests. It was reported that ANNs significantly 

outperformed the logistic models in discrimination and calibration (goodness of fit) in 77.8 

% of cases but underperformed in 68 % of cases when comparing model accuracies (using 

a 0.5 cut-off value). The authors concluded that further model validation was required 

with larger datasets to conclusively determine which approach out-performs the other. In 

2001, Sargent (Sargent, 2001) carried out a review on 28 cases comparing ANNs with 

other statistical approaches when applied to medium and large data sets with more than 

200 cases. ANNs outperformed regression in 36 % of the studies, and was outperformed 

in 14 % of the studies, with the results being similar in the remaining cases. The author 

stated that the results were inconclusive, and that both ANNs and regression should 

continue to be used and explored in a complementary manner. Thus, to summarise, it 

appears from the published literature that there does not seem to be any clear indication of 

which method is best when examining medical data, and that researchers should continue 

to experiment with whatever they are most knowledgeable about, or feel most confident 

about retrieving the maximum amount of information possible from the data of interest.
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CHAPTER 2. ARTIFICIAL NEURAL NETWORKS IN PREDICTIVE

MODELLING 

2.1. Development of ANN protocols for biological data analysis

The careful adjustment of the particular parameters to be used when developing an ANN 

model is a key issue in order to create models which are capable of generalisation. There 

are various parameters which need to be considered before training of the ANN begins. 

These will now be discussed in more detail and are as follows; (i) partitioning of data, (ii) 

initial values of interconnecting weights, (iii) learning rate, (iv) momentum value, (v) 

training convergence criteria and (vi) the hidden layer size. Prior to the main analyses 

conducted in this thesis, parameter optimisation was carried out on three datasets from 

three different sources all using different analysis procedures. These were firstly a SELDI- 

TOF MS dataset generated from bacterial pathogens, secondly a MALDI-TOF MS dataset 

generated from control patients and those suffering with Stage IV melanoma, and thirdly a 

microarray dataset derived from gene expression analysis of patients with breast cancer. 

Some of these results will also be discussed in this section.

2.1.1 Data Partitioning

The quality of the results obtained using ANN models is highly dependent on the quality 

(and to a certain extent the size) of the data set used in model building, and therefore data 

which is used in the training process should be large enough to be representative of any 

variation contained within the real problem as a whole. During the development of ANN 

models, it is generally accepted that the data be split into different subsets, usually 

consisting of a training set, a test set, and a validation set. The training data should 

constitute the majority of the data and should therefore be representative of the system as a 

whole as this data set is used during the learning process to update the weights in the 

network. During training, the ANN model is trained with the training data, and continually 

optimised against the test data set so that the network performance can be assessed by 

using the error from predicted values assigned to these test samples. The validation data 

set is used to assess the ANN model performance on unseen data once the model has been 

developed. Various data splits have been proposed by several groups. For example, 

Bourquin et al. (Bourquin, et al., 1998) used a data split of 68 samples for training, 12 for 

test purposes and 22 for validation, which is approximately a ratio of 70:20:10. Manel et
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al. (Manel, et al., 1999) used 80 % of the data for training and the remaining 20 % for test. 

Khan et al. (Khan, et al., 2001) and Jerez-Aragnes et al. (Jerez-Aragones, et al., 2003) 

preferred to split the data into 67 % for training and 33 % for validation. So it appears that 

some groups prefer two, whilst others use three different data splits. During this study 

partitioning the data into approximately 60 % training, 20 % test and 20 % validation 

appeared to be most effective in generating generalised models for new previously unseen 

data. In addition, if any new samples are introduced, these can be built into the model and 

used for second order validation purposes.

2.1.2. Randomisation of initial network weights

The neural network BP training algorithm begins by initialising the weight values in the 

network, which is usually done by randomly assigning values to them. Therefore a 

suitable choice of ranges for these weight values is potentially important in allowing the 

network to train to produce an appropriate set of weights, and thus may lead to 

improvements in the quality of training. Initial weight values should be small so that the 

sigmoidal transfer functions are not driven into saturation regions where a flat error surface 

would result, however if these are too small the sigmoidal activation functions will be 

approximately linear (Bishop, 1995). Studies by Kim and Park (Kim and Park, 2001) 

reveal that for their data, model performance was constantly degraded with an increase in 

initial weight distribution, whilst Kang-Ning and Perez (Kang-Ning and Perez, 1996) 

claimed that the rate of model convergence is seriously affected by the initial weight 

parameter. Kuo (Kuo, 2001) proposed an interesting approach which involved using 

ANNs with initial weights generated and optimised by using a genetic algorithm based 

method. Prior to the studies in this thesis a range of initial weight values were tested on 

the three datasets described above. These weights were initialised to a random value, 

within a range whose minimum and maximum values were between 0 and 0.001, 

incremented upwards to between 0 and 10. It was found that the mean squared error 

(MSE) and classification performance of the models on the validation data sets were not 

significantly different between each initial weight value (Figure 9), therefore an arbitrary 

value, initialised to a uniformly distributed random value between 0 and 1 is generally
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2.1.3. Learning rate

As previously stated (see introduction) the weight change of a neuron is proportional to the 

influence an input had on the error during training and the learning rate is a constant which 

controls the size of these weight changes (Dayhoff, 1990). The amount of weight 

modification is the learning rate times the error. For example, if the learning rate is 0.5, 

the weight change is one half the error value. So, it is clear that the careful selection of this 

value is important in order for training to reach the most optimum solution to the problem 

being modelled. Maier and Dandy (Maier and Dandy, 1998) found that when a lower 

learning rate was used (0.005), the error decreased slowly until a local minimum in the 

error was reached, and here it remained. When a learning rate of 0.1 was used, better 

predictions were found with faster training, as the network is more likely to escape from 

areas of local minima, and find a more global solution to the problem. These findings are 

comparable to those found in these studies, where learning rates between 0,1 and 1.0 were 

trialled, with 0.1 producing the lowest predictive error. This is because the learning rate 

values above 0.1 were causing the model to take steps that were too large, thus skipping 

and oscillating over the global minima so that convergence could not occur.

2.1.4. Momentum

As mentioned, large learning rates may often lead to oscillation of weight changes which 

results in either the learning process never completing, or the model converging towards a 

non-optimal solution. Adding a momentum factor to the BP learning algorithm is one 

technique that may be applied for a faster convergence towards minimum error, whilst also 

smoothing out the oscillations that may occur with a high learning rate. This momentum 

factor speeds up the training process by adding a proportion of the previous weight 

changes to the current weight changes. A high momentum will reduce the risk of the 

network being stuck in local minima, but risks overshooting the solution, whilst a small 

momentum value leads to slower training (Basheer and Hajmeer, 2000). Generally a trial 

and error procedure is used when seeking out the best learning rate and momentum 

combinations for any particular data.
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Attoh-Okine (Attoh-Okine, 1999) found that a learning rate in the region of 0.2 to 0.5 with 

a momentum factor between 0.4 and 0.5 appeared to be the appropriate combination, 

whilst Maier and Dandy (Maier and Dandy, 1998) came to the conclusion that although 

altering the momentum factor had no significant affect on the error, the learning count was 

greatly reduced with a higher momentum of 0.9. Raimundo and Narayanaswamy 

(Raimundo jr and Narayanaswamy, 2003) found several combinations of learning rate and 

momentum to be efficient during their study. Varying the values of learning rates between 

0.05 and 0.4 and combining with a momentum value of either 0.3 or 0.5 produced the most 

effective models. In two separate studies, Mittal and Zhang (Mittal and Zhang, 2000; 

Mittal and Zhang, 2000) tested various combinations of learning rates and momentum 

factors and found that in one study a learning rate of 0.7 and a momentum of 0.5 achieved 

the best prediction results, whilst in another, setting both the learning rate and momentum 

factor to 0.7 was more effective. This showed that different values are appropriate for 

different data sets. In this study, in combination with varying learning rate values, 

momentum factors between 0.1 and 0.9 were trained and tested on the three datasets 

described previously. The results from these models can be seen in Figure 10 and it is 

evident that for the type of complex datasets used throughout this thesis, a learning rate of 

0.1 combined with a momentum factor between 0.5 and 0.9 resulted in the network 

converging to the most optimal solution.

2.1.5. Training to convergence

Training convergence can be determined by a number of factors, depending on whether the 

training or the test set is to be used as an indicator of when training should be stopped. 

Examples of different criteria (computed at the end of each epoch) which may be used are;

(i) average error below a pre-defmed level, (ii) epochs since the minimum average error 

exceeding a specified number, (iii) largest error below a predefined level and, (iv) learning 

epochs exceeding a predefined number. The error on training data generally decreases 

with increasing number of epochs, with an initial large drop in error which slows down as 

the network begins to learn the patterns representing the data set. However, if training is 

allowed to continue beyond the point at which the error reaches the global minima, 

overfitting (or overtraining) may arise, where memorisation of the training data occurs. 

Because of this overfitting, if a network performance is monitored by training data alone, 

the network will perform with little error on the training data but will not be able to 

generalise well for new data. For this reason, during this research model convergence was
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determined by a failure of the model to improve on the minimum MSE on the test data for 

a window of 20,000 epochs. This was enhanced further by using multiple resampling with 

RSCV to a large number of different training/test/validation data splits, thus creating 

several sub-models so that all data points are treated as unseen data a number of times, and 

the global data set is presented to the model in a number of different forms. This repetition 

allows confidence intervals to be determined for any given model, and results in robust 

generalised models.

2.1.6. Hidden layer size

The purpose of the hidden layer is to enable the ANN to classify input data with nonlinear 

characteristics. A network with too few hidden nodes in this layer will result in only a 

linear estimate of the solution to the problem due to fewer nonlinear components being 

present. Conversely, too many hidden nodes will result in over-training where the 

algorithm will model the noise in the data, resulting in poor generalisation (Basheer and 

Hajmeer, 2000) and increased training times. Generally a trial and error approach is used 

in order to find the optimum number of hidden nodes, where a low number of hidden 

nodes are used to begin with and this number is gradually increased until a minimum error 

is reached, as shown by Srecnik et al. (Srecnik, et al., 2002). Other heuristics have also 

been proposed for determining the number of hidden nodes, such as using the 2n +1 rule 

where n is the number of nodes in the input layer (Fletcher and Goss, 1993). One 

technique which may be used in order to optimise the number of hidden nodes by using a 

more intelligent means is correlated activity pruning (CAPing) (Roadknight, et al., 2001). 

This approach begins with a large number of hidden nodes, and removes units with 

constant outputs over all of the training patterns (as these are not contributing in the 

solution). Hidden nodes with identical or opposite (correlated) activation energies for all 

patterns can be combined, thus reducing the number of units until the optimum number is 

found. The process involves monitoring activation strengths at each hidden node and 

calculating the correlation coefficient for each pair of hidden nodes. The pair of nodes 

with the correlation coefficient nearest 1 (or -1) are replaced by one node and the weights 

are consequently changed. This process is then repeated, until generalisation is lost and 

therefore the minimum number of hidden nodes can be found whilst maintaining good 

generalisation.
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Using the three datasets used in this section, different numbers of nodes in the hidden layer 

were tested on each dataset, firstly using the CAPing approach (Figure 11), and secondly 

by testing between 1 and 50 hidden nodes, as can be seen in Figure 12. Both approaches 

showed that whilst 1 hidden node performed poorly for unseen data (due to it essentially 

providing a linear estimation of the problem), no significant increase in performance was 

gained by increasing this number beyond between 2 and 5 hidden nodes. Furthermore, as 

the number of nodes is increased, training times increase almost exponentially, adding 

support to the suggestion that the number of hidden nodes should be kept as small as 

possible.

2.1.7. Summary

Throughout this thesis for all data analyses conducted, a three-layer MLP ANN with a feed 

forward BP algorithm with a sigmoidal transfer function has been used. Prior to training, 

data were scaled linearly between 0 and 1 using minimums and maximums. Here, the raw 

values were scaled linearly, so that the smallest value for each variable in the dataset was 

scaled to the minimum value, and the largest value in the dataset was set to the maximum 

value. This scaling method ensures that all relationships amongst the data values are kept 

identical, therefore not introducing any potential bias into the data.

Based upon the findings in this section, the network parameters used for all analyses 

(unless otherwise stated) were as follows:

Learning rate of 0.1.

Momentum value of 0.5.

Hidden layer size of between 2 and 5 nodes.

Data randomly split into subsets of 60 % training, 20 % test, and 20 % validation.

Initial weights of the network randomised between 0 and 1.

Training terminated once the network fails to improve on the test error for 20,000 epochs.
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2.2. Basic parameterisation: Parameter reduction in microbial diagnostic models

2.2.1. Introduction

As mentioned previously data from proteomic and genomic sources is extremely complex. 

Therefore in studies aimed at analysing datasets containing large sample sizes and high 

dimensionality, advanced computer algorithms must be utilised to identify biomarkers 

capable of high classification accuracies by explaining the variation within the dataset, and 

determining any population characteristics. Here, a parameterisation approach was used 

based on the analysis of the weights of the trained ANN models in order to reduce 

dimensionality. The principle here is that the greater the absolute value of an inputs 

weighting to the hidden and output nodes, the more important this input was in the 

development of the model and sample classification (Garson, 1991). This approach was 

applied to a proteomic (SELDI-TOF MS) analysis of a host of bacterial pathogens, 

provided by the Health Protection Agency with the aim of generating predictive models in 

order to rapidly classify and identify samples based upon their proteomic profiles.

The current problem in the diagnosis of infectious diseases is that in some cases traditional 

microbiological tests (such as those outlined by Reddick (Reddick, 1975), D’Amato et al. 

(DAmato, et al., 1978), Craven et al. (Craven, et al., 1978), Robinson and Oberhofer 

(Robinson and Oberhofer, 1983), and Janda et al. (Janda, et al., 1984) have performed 

poorly in the classification of bacterial species and strains. For example it is often difficult 

to determine a correct classification of a field isolate based on tests created for reference 

strains (type strains), because in many instances the field isolates having counterpart 

reference strains have undergone evolutionary changes resulting in intermediaries within 

the population. This variation makes clinical diagnosis difficult and pathogens may be 

misidentified when diagnosis is based purely on traditional microbiological tests. If 

computer algorithms are capable of identifying phenotypes through expression profile 

analysis, and ultimately identifying candidate biomarkers which correlate strongly to a pre

determined observation, then this would provide the potential for the development of 

decision support tools which may be utilised to supplement human judgment and 

potentially reduce the turn-around time of identification or diagnosis compared with 

existing clinical and microbiological methods.
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Therefore because of the current limitations in strain identification the aim here was to 

determine if these parameterisation approaches using the weights of trained ANNs could 

be used to identify biomarkers which are capable of predicting class from such complex 

biological datasets. Members of the genus Neisseria and other closely related species were 

utilised with the ultimate aim being the reduction in complexity of the system in order to 

accurately discriminate the pathogen Neisseria meningitidis from other closely related 

species. This could potentially facilitate the development of novel rapid identification 

systems. The genus Neisseria contains a number of species and these may be both normal 

flora, and pathogens of humans and animals. Data used were generated from standard 

NCTC (National Collection of Type Culture) strains. Of these species, N  meningitidis and 

N. gonorrhoeae have been studied widely because of the severity of the infections they 

cause. N. meningitidis and N. gonorrhoeae exhibit over 90% homology between their 

genomes, however their respective site of infection, disease picture and antibiotic therapy 

vary markedly, highlighting the need for new, more accurate, rapid diagnostic tests to aid 

in the identification of these pathogens.

In molecular microbiology, hierarchical clustering is a method which is commonly used in 

order to study and determine the relationships between different bacterial strains, and is 

often used to place new strains into a particular taxon (Andrighetto, et al., 1998; Rebuffo, 

et al., 2006). However this approach is not always satisfactory when analysing highly 

dimensional datasets such as that seen in MS (Goodacre, et al., 1998). Bearing this in 

mind it still seemed appropriate that this study would incorporate hierarchical clustering 

into the analysis in order to study whether any possible outliers misclassified by the ANN 

within the two populations were more related to their original identification by traditional 

methods, or by their actual ANN classification. PCA was also used in a similar manner to 

provide a visual representation of how the samples related to one another.

2.2.2. Methods

For methods concerning bacterial culture preparation, and SELDI-TOF MS analysis, 

please refer to Lancashire et al. (Lancashire, et al., 2005).

Network parameters used were as detailed in section 2.1. The raw data obtained from the 

SELDI-TOF MS instrument consisted of individual m/z values with their corresponding 

relative abundance values. It is these relative abundance values for each m/z value that
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were used as inputs in the input layer. The network utilised a constrained approach to 

maximise the efficiency of the analysis whereby two hidden nodes were used in the hidden 

layer. Two hidden nodes were used in order to amplify the importance of key ions within 

the mass spectrometry data, while producing accurate predictions and maintaining model 

generalisation. This approach was adopted with success on earlier MS data (Ball, et al., 

2002; Mian, et al., 2003). Increasing the number of nodes in the hidden layer did not 

result in an increase in the ability of the model to predict strain (data not presented). The 

output layer consisted of a single node where strains known to be N. meningitidis were 

represented by 1 and other strains represented by 2.

Subsequent to proteomic analysis, the raw data from the SELDI instrument details the 

intensity of ions in the range of 0 to 98 kDa., giving a total of 33886 individual data points. 

Prior to ANNs model development and analysis, data points with m/z values below 3kDa. 

were removed, as anything below this was deemed to be noisy and unimportant due to the 

presence of matrix signatures. Due to the limitations in accurate mass resolution beyond 

30 kDa., everything above this mass value was also removed (as shown in the paper by 

Ball and colleagues (Ball, et al., 2002)), leaving a total of 12822 ions to be used as inputs.

206 samples were used to train, test and validate the model. The data utilised was evenly 

split with 103 as N. meningitidis and 103 as “other” strains to prevent the predictive 

performance being in favour of one output class. Of the “other” strains group, the majority 

belonged to the genus Neisseria, with the addition of a few other closely related taxa such 

as Kingella and Moraxella. An additional 188 samples (60 of which were N. meningitidis 

and 128 were “other” species) were kept completely separate and brought in at a later date 

in order to provide a second order of validation utilising blind data for the final optimal 

model.

An initial model was tested using all 12822 ions as inputs resulting in a classification 

accuracy of 76 % (results not shown). Whilst this is relatively high, this model is of very 

high dimensionality, resulting in long training times due to its high complexity. Therefore 

parameterisation steps ensued with the aim of identifying which ions were the most 

important within the data set, allowing the model complexity to be reduced and the 

predictive capabilities to be markedly increased.
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This was achieved by a “rolling input subset” approach which involved training the data 

containing inputs across a 3 kDa. mass range, and then shifting this along 1 kDa. at a time, 

in order to create a new data block. For example, the first block contained data within the 

3-6 kDa. mass range, the next block ranged from 4-7 kDa., the next from 5-8 kDa. and so 

on up to 30 kDa. Each model was then trained over 50 random training/test/validation sub

models and relative importance values for each individual input were recorded so that they 

could be ranked according to their influence upon correct sample assignment. Relative 

importance values were calculated for each input by:

(i) Multiplying the absolute weight values of the network from the input node to the first 

hidden node with the absolute weight values of the network between the first hidden layer 

node to the output node.

(ii) Calculating this same value using the weightings to the second hidden node.

(iii) These two values were then summed to give a relative importance value for the input.

(iv) This value was then scaled relative to the total number of inputs.

The process was repeated for all of the remaining inputs to give the relative importance of 

each input with respect to all of the other inputs over a number of sub-models.

Once this initial analysis was completed, ions with the greatest importance were selected 

from the data in order to reduce model complexity. This was accomplished by selecting 

the top 1,000 inputs with the greatest relative importance values and repeating the training 

process. Relative importance analysis was again used to determine the top 100 inputs from 

these 1,000. This was repeated again to deduce the top 30 inputs, at which point the 

process was stopped due to no further significant improvement in the model.

In addition to ANN analysis at each parameterisation step, a cluster analysis and PCA was 

performed. The purpose here was to firstly look at the relationships between the samples 

within the population and secondly, to provide additional information regarding samples 

which were misclassified by the ANN as a means of providing a possible explanation for 

these misclassifications. It is important to note that PCA and cluster analysis were not 

used as predictive tools, but purely as a means to understand and visualise the data 

structures being analysed. Figure 13 shows a summary of the methodology steps taken in 

the analysis.
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Figure 13. Flow diagram representing methodology overview of ANN analysis 

resulting in the identification of potential biomarkers. Parameterisation methods were 

conducted in order to deduce the top 30 molecular ions of greatest importance.

Begin with data in the 
3-6 kDa. Mass region

Train ANN model

Shift data along 1 
kDa. into next data 
block

Repeat for 50 
different RSCV 
events

Conduct weightings 
analysis and ID ions of 
most importance

Combine all data and 
develop new model 
using top 1000 ions of 
most importance

Train ANN model

Repeat for 50 
different RSCV 

events

Conduct weightings analysis 
and ID ions of most 
importance______________

Select top 100 ions and 
repeat training

Select top 30 ions and 
repeat training
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2.2.3. Results

2.2.3.I. ANN analysis

Ion mass intensity profiles generated from SELDI-TOF MS analysis were analysed in 3 

kDa. blocks in order to determine their relative importance in classifying the samples into 

their respective groups. This enabled a proteomic profile to be produced for the whole 

mass range that was being analysed. Figure 14 shows the mean relative importance profile 

generated from the 50 sub models trained from each 3 kDa. block over the whole mass 

range of the SELDI data available. In order to reduce the complexity of the model and 

determine which of these ions were the most significant in strain prediction, all ions were 

ranked in descending order of relative importance and an arbitrary value of the top 1,000 

ions of most importance were selected for further analysis. This reduction was necessary 

in order to determine any potential biomarkers whose intensities correspond with strain 

identification and which are capable of accurate discrimination between the two groups. 

Different randomly extracted training, test and validation sets were utilised to develop each 

sub-model. This repeated RSCV enables one to calculate the probability, or percentage 

chance, that a sample belongs to one group or another. The results from this 1,000 input 

model showed that for validation data, 203 out of the 206 samples were correctly 

classified, with 100 % sensitivity (percentage of N. meningitidis samples correctly 

classified) and 97 % specificity. It should be noted that an error threshold value of 0.5 was 

used to designate sample destination, i.e., the actual output for a N. meningitidis was 1, and 

an output of 2 would represent “other” species. So if a sample was predicted at anything 

between 1 and 1.5, then it was classed as N. meningitidis, and if it was predicted at 

between 1.5 and 2, then it was grouped into the “other” strain category. The magnitude of 

this error may be used to identify strains of a similar nature.

Although these results were based on data from the whole profile and showed high 

prediction rates, if the system is ultimately to be used as a rapid diagnostic aid then it 

would need to be much more parsimonious to facilitate ease of data gathering and
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minimise potential sources of error. Therefore, the relative importance values of these 

1,000 inputs were again ranked and the top 100 were selected for further training. Training 

was again repeated as with the 1,000 input model and results from this model showed that 

204 out of 206 samples were correctly classified, with 100 % sensitivity and 98 % 

specificity.

To deduce whether the number of inputs could be reduced further still, the top 30 inputs 

were chosen to be taken from these 100 and training was repeated. Predictive performance 

showed a further increase, correctly classifying 205 out of 206 samples, with 100 % 

sensitivity and 99 % specificity. Therefore it was evident that the parameterisation method 

applied here led to models which were increasingly more parsimonious whilst maintaining 

the high predictive accuracy. Figure 15 shows how the model performance changes with 

increasing dimensionality reduction. Further input number reductions beyond 30 inputs 

resulted in a drop in predictive performance, so these 30 inputs were deemed as the optimal 

set and the most important for predictive performance. This model had an area under the 

curve (AUC) value of 0.9994 when analysed using a ROC curve (Goodenough, et al., 

1974; Lusted, 1971; Metz, 1978). A ROC curve determines the number of true positives, 

true negatives, false positives and false negatives and produces a summary statistic for 

performance. It achieves this by plotting the true positive rate against the false positive 

rate at different possible cutpoints (in this case, prediction error thresholds). The AUC 

value measures discrimination, that is, the ability of the model to correctly classify the true 

positives and true negatives. A perfect ROC curve (and therefore a perfect test) would 

have an AUC value of 1, so the closer the curve follows the left hand border and then the 

top border of the ROC space, the more accurate the test. The errors associated with the 

individual sample predictions are shown in Figure 16. Additionally, the 30 ions identified, 

with their respective relative importance values are tabulated in Table 1 and it is interesting 

to note that the majority of these inputs appear to arise in clusters around specific m/z 

values.

Once these key ions were identified, they were then applied to an additional blind data set 

of 188 samples. Using this sample set the model correctly identified 184 out of 188 (97.9 

%) of the samples correctly, with a sensitivity of 100 % and specificity of 96.9 %. The 

ROC curve for this analysis is shown in Figure 17, achieving an AUC value of 0.986.
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Table 1. The 30 ions with the highest relative importance with regards to strain 

prediction. These were ranked according to their molecular mass. Ions were grouped by

colours if their masses clustered around specific mass ranges.

Input m/z value Relative importance Input m/z value Relative importance
4709 0.2 19060 0.019
5085 0.074 19062 0.008
8181 0.008 19065 0.013
10663 0.2 19067 0.004
10665 0.09 19070 0.014
11672 0.003 19072 0.019
11674 0.015 23302 0.017
11676 0.029 23305 0.017
11678 0.022 23322 0.014
12515 0.008 23325 0.027
12517 0.007 23328 0.032
14609 0.042 23330 0.012
14611 0.014 23333 0.002
19055 0.035 23336 0.018
19057 0.021 29000 0.015

2.2.3.2. Cluster analysis, principal components analysis and similarity analysis

A clustering algorithm (complete linkage with distances measured by Euclidean distances) 

was applied to the data in parallel to the ANNs in order to measure consistencies between 

the various approaches and to visualise any possible outliers in the two populations. This 

may in turn lead to some explanations regarding the few samples which were misclassified 

by the ANN models. The results from this cluster analysis can be seen in Figure 18a-d.

It is evident from Figure 18a-d that this clustering approach, although not used to predict 

class, was capable of grouping samples according to their known identification reasonably 

well. Results here were fairly reproducible as the dimensionality of the data was reduced, 

although notably with some overlap between the populations. It is interesting to recognise 

however that of the three samples which the ANN incorrectly identified using the top 1000 

ions (highlighted in Figure 18a by arrows), two of these are in clear clusters of the opposite 

group. For example, the sample on the extreme right of the incorrect classifications was 

identified using 16S rDNA methods as K. denitrificans, but clearly showed more 

similarities to the N. meningitidis samples than the “other” species. Furthermore, this trend 

continued, with the majority of the samples misclassified by the ANN being placed in 

clusters together with species more closely related to the ANN classification,
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and not the initial pre-determined group. This is shown even more clearly in Figure 18d, 

which represents the cluster analysis of the second validation set of samples. Of the four 

samples which the ANN misclassified as being N. meningitidis (which by 16S rDNA were 

identified as N. gonorrhoeae), the cluster analysis, like the ANN, placed these in the 

cluster containing the majority of the N. meningitidis indicating that according to the 

proteomic profiles, these isolates are more similar to N. meningitidis than N. gonorrhoea. 

Thus by using these clustering approaches in concert with ANNs one can visualise the data 

using cluster analysis, and predict class with the ANNs. Furthermore we can begin to 

understand the nature of samples which may be outliers, and therefore may show 

characteristics which are not archetypal of that particular species which it is initially 

believed to belong to, and begin to understand why the ANN models that we have 

developed, predict some species to be one class and not another. To provide additional 

support to this, PC A and similarity analysis was conducted on this validation data (Figures 

19 and 20).

This PCA matrix shows that all of the N. menin samples (represented in dark grey)

fall along one clear vector, and are all clustered closely together. Whilst it is evident that 

the other species belonging to the second population exhibit much more variation and fall 

along a vector far less clustered, it is interesting to see that the four samples which the 

ANN identified incorrectly as N. meningitidis are clearly placed along the same vector as

the N. meningitidis by the PCA, indicated by arrows, in black.

A similarity analysis was also performed to determine which samples were the most 

similar to the incorrectly classified ones with respect to their mass spectra. From the 25 

most similar samples to these four misclassified ones, 19 were N. meningitidis, and just 6 

were “other” closely related species. This again provides reasoning to why the ANN 

classified them as N. meningitidis, and that these samples appear to actually be more 

related to what the ANN predicted than to what they were initially identified as using 16S 

rDNA analysis.
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Figure 18a-d. Cluster analysis. Complete linkage using Euclidean distance measures 

for (a) Top 1000 ion model, (b) Top 100 ion model, (c) Top 30 ion model applied to 

original data set and (d) Top 30 ion model applied to second validation data set. The black 

blocks indicate samples which were N. meningitidis whilst the light grey blocks represent 

“other” species. The dark grey blocks show incorrectly classified samples (also 

highlighted with arrows).
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2.3. Advanced parameterisation

2.3.1. Introduction

The previous section highlighted methods in which ANNs could be used in order to 

generate predictive models by using the weights of the trained ANN models to reduce the 

dimensionality of the data and identify potentially important markers. Here, this is taken a 

stage further by describing a method which generates parsimonious models, and also gives 

an indication as to the importance of each input that is used in the model.

To recap, computational data mining techniques are becoming increasingly important in 

the analysis of complex biological data. The analysis of biomedical data by proteomic 

means such as MS is extremely promising and provides an insight into the relative 

abundance of ions in a given sample. If methodologies are developed to analyse this data 

there is potential to identify proteomic patterns representative of a given state, such as 

healthy and diseased tissues. However, the problem arises within the data sets themselves. 

In a typical mass spectrum generated for a single sample, in excess of 30,000 individual 

data points are produced. Additionally, in order to interpret this data, as many samples as 

possible need to be analysed in order to provide an accurate representation of the possible 

sample to sample variation. Therefore with 30,000 data points per sample, the amount of 

data points requiring analysis can rapidly rise into the millions. In order to identify 

biomarkers representative of proteomic patterns which are capable of classifying samples 

into their assigned groups, advanced computational algorithms must be employed. These 

classifiers must be able to cope with nonlinear data which is of high dimensionality. They 

must be robust and create generalised solutions which not only model the data that is 

currently available to a high accuracy, but must also be capable of predicting the outcomes 

of future cases. One appropriate solution to this problem is to use an ANN modelling 

approach. However, perhaps the biggest limitation of ANNs is that they have been 

labelled as “black boxes”. They are often looked upon in this way as even though their 

predictive capabilities may be good, they do not appear to give an explanation as to how 

they reach a solution. This is often undesirable if the inter-relationships between certain 

variables and their influence upon the outputs are being sought after.

Here we present a method which overcomes this problem by firstly simplifying the 

solution by reducing the complexity of the model. This is achieved by removing noisy
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inputs which have little or even a negative influence upon the system (that is, inputs whose 

removal causes minimal changes to the network error function). This leads to a more 

parsimonious model with increased predictive performance which generalises better to new 

data that was not involved in the building of the model. The resulting model is less 

computer intensive and also aids in the identification of potential biomarkers which are 

indicative of the output in question. The method is based upon input pruning, and several 

common methods of pruning will be outlined and assessed followed by a novel meta- 

pruning approach which has been developed to increase the model performance further 

still. The methods described were tested on two sets of real data generated by SELDI-TOF 

MS and validated using RSCV. It is shown that by utilising these methods, the internal 

workings of ANNs can be elucidated, providing a full understanding of how they reach a 

particular solution.

In ANNs, the interchangeable weights between the different layers contain all of the 

information regarding the solution to the problem. The importance of each input depends 

upon the direction and strength of this weight value. Negative connection weights 

represent inhibitory effects on neurons, and decrease the value of the prediction, whilst 

positive connection weights increase the value of the prediction.

In order to determine which inputs are contributing the most to a given outcome, the 

influence and importance of each needs to be evaluated. The most commonly used 

methods to achieve this are (i) sensitivity analysis, (ii) analysis of connection weights and

(iii) the analysis of absolute weight values, used in the previous section (e.g. Garson’s 

algorithm (Garson* 1991)). These will now be covered in more detail, leading to the new 

proposed meta-pruning approach.

2.3.1.1. Sensitivity analysis

Sensitivity analysis is often used as a form of input pruning and if a number of models are 

studied, one can ascertain which variables are consistently of a high (and low) sensitivity. 

The basic principle behind sensitivity analysis is to run the network on a set of test 

samples, and determine the overall error for the predictions on these test samples. The 

network is then run again using the same test samples, but this time the observed value of a 

particular input, i, is replaced as if it were unavailable (Hunter, et al., 2000), and again the 

error is calculated. It is expected that if any important information is being removed from
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the model there would be some deterioration in the error. The sensitivity ratio of input i is 

determined by the ratio of the error when the input was unavailable, to that of the original 

error. The importance of input i relative to all other inputs can then be calculated 

according to:

Ratio/ = S // (1 In)

Where S is the sensitivity of input i, and n is the number of inputs.

Therefore, the more influential an input is on the model, the greater the ratio. If the ratio is 

one or lower, then eliminating that variable either has no effect on the performance of the 

network, or even improves it. So any input with a ratio of one or less, can essentially be 

removed without any detrimental effects to the predictive capabilities of the model.

2.3.1.2. Analysis of connection weights

This method examines the raw values of the weights leading from each input to the hidden 

node, and from each hidden node to the output. It takes the product of each input to 

hidden, and each hidden to output connection weights. In this study the method by which 

inputs were retained was to calculate the mean overall connection weight over all inputs 

and calculate thresholds based on standard deviations similar to that discussed by 

Narayanan et al. (2004). Inputs whose overall connection weights exceeded ± 1 standard 

deviation from the mean were retained, and inputs within this range were discarded.

2.3.1.3. Analysis of absolute weights

This analysis was proposed by Garson (Garson, 1991) and partitions the neural network 

connection weights in order to determine the relative importance of each input variable in 

the ANN model. This algorithm takes the product of the absolute values of the 

interconnecting weights to produce a weight value that is attributable to each input. The 

inputs can then be ranked by this weighting and from this it possible to calculate the 

relative importance ratio (as with sensitivity analysis). All inputs with a relative 

importance ratio greater than 1 can then be retained in the model. As this is the absolute 

value, this method does not provide information regarding the directional influence a 

particular input may have.
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2.3.1.4. Meta-Pruning

Each of the different methods outlined above have their own advantages with regards to 

identifying the importance of input parameters in the ANN model. However, each 

approach consists of its own algorithm, and therefore has the potential to reach a different 

solution. This raises the question of which approach is identifying the most important 

input variables, and how can the user be confident that the inputs identified as the most 

important, actually are the most important?

Here we propose a novel “meta-pruning” approach. This combines these three input 

pruning methods in order to provide a consensus approach aimed at understanding the 

variable influences in ANNs, and identifying important inputs with a high degree of 

confidence.

With this approach, results from sensitivity analysis, analysis of connection weights and 

the analysis of absolute weights are obtained. All inputs with a ratio greater than one from 

the sensitivity analysis are retained. Likewise from the analysis of the absolute weights, all 

inputs with a ratio greater than one are kept. From the analysis of connection weights, 

inputs whose overall connection weights exceed ± 1 standard deviation from the mean are 

retained.

The resulting inputs can then be compared against one another and only those inputs which 

occur as highly important, i.e., have been retained in all three approaches are subjected to 

further training. This method ensures that each input which remains in the model is 

consistently highly influential across various approaches, thus increasing the confidence in 

the model derived from these inputs, and further reducing the complexity of the solution.

2.3.1.5. Datasets used for analysis

Two separate datasets extremely different in their origins were utilised in this study as a 

basis for comparing the various methods. Both datasets were generated by SELDI-TOF- 

MS and as such raw data files were imported into the ANNs for analysis. The first data set 

consisted of 209 samples of the bacterium Neisseria gonorrhoea, the etiological agent of 

the sexually transmitted disease Gonorrhoea. This data consisted of two populations of N. 

gonorrhoea; the first population containing 81 samples was from one specific outbreak, 

and the second population consisted of 128 samples originating from another outbreak 

which occurred at a different location to the first. The aim here was to determine whether
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ANNs could be combined with SELDI-TOF MS in order to potentially identify specific 

outbreak isolates, which would form the basis of using ANNs to pinpoint the origins of 

outbreaks of pathogenic organisms. This would also determine whether ANNs have the 

potential to be used in such a way that would aid in the understanding of the inter- and 

intra-population characteristics of organisms. This may in turn lead to an explanation of 

how pathogens change and adapt through time, by for example the development of 

antibiotic resistance in response to environmental stress.

The second data set contained 206 samples, 101 of which were diagnosed as Stage I 

melanoma, and the remaining were identified as Stage IV. The aim was to utilise ANNs to 

determine biomarker patterns which would have the potential to aid in the classification of 

tumour staging.

In order to compare the effectiveness of the different pruning methods, each method was 

tested in turn to compare the accuracy of the models developed. ANN architecture, 

parameters and training were as detailed in section 2.1. The inputs consisted of the raw 

data from the SELDI-TOF MS spanning the 3-30 kDa. mass range, therefore each input 

represented an m/z value along with its relative intensity.

Models were trained by randomly splitting the data up into separate training/test/validation 

data splits. This was repeated 50 times and models were trained for each data split 

ensuring that each sample is treated as validation (unseen) data a number of times

2.3.2. Results

The initial model for each dataset consisted of training with all inputs from the SELDI- 

TOF MS analysis within the 3-30 kDa. mass range. These models consisted of 

approximately 12,000 inputs per model, which is clearly a highly complex system. 

Performance results for the validation data using the melanoma data set were 51 %, and for 

the N. gonorrhoea data set was 77 %.

Input influences on the models were then calculated using the three methods outlined 

above. Sensitivity analysis identified 7093 inputs which were having a positive influence 

on the N. gonorrhoea model, and 7009 inputs in the melanoma data set. These were 

selected for comparison and the remaining inputs were discarded.
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Weightings analysis using absolute weight values identified 5446 inputs of high 

importance within the N. gonorrhoea dataset and 5455 inputs within the melanoma data. 

Again, these were selected for comparison.

Finally, the analysis of the raw connection weights identified 4094 inputs which were 

having an important role in the correct classification of samples from the N. gonorrhoea 

data, and 4093 inputs of importance from the melanoma data sets. As before, these were 

selected for comparison.

The inputs identified as important using the various pruning methods were then compared 

to determine which of these were present across the three methods. These could then be 

used in a model to assess whether the proposed meta-pruning approach would result in a 

more parsimonious and powerful model, by only identifying inputs which were 

consistently of a high importance across a variety of methods. This would increase the 

confidence in inputs identified as potential biomarkers indicative of class, in this case, 

origin of bacterial isolate, or tumour stage. The method led to the reduction of the data 

further still, with 940 inputs remaining in the N. gonorrhoea dataset, and 964 inputs 

remaining in the melanoma dataset.

2.3.2.I. Neisseria gonorrhoeae data

Each model was trained as described earlier using RSCV over 50 random data splits. 

Using the inputs derived from sensitivity analysis, the model predicted 82 % of the 

validation set correctly. The inputs identified as important using weightings analysis based 

upon the absolute weight values predicted to an accuracy of 84 % and using the inputs 

from the overall connection weights method, 91 % of the samples were correctly 

identified. The model containing the inputs from the meta-pruning approach correctly 

classified 95 % of the samples correctly, a significant improvement over the other 

methods. Next, to determine if a smaller subset of inputs could be identified whilst 

retaining the model performance, this meta-pruning process was repeated using these 940 

inputs. This led to the identification of 218 inputs which correctly classified 98 % of the 

samples correctly, improving further still on the previous model. Figure 21 shows these 

results from the validation data sets across the different methods, and Figure 22 details the 

performance results for the different methods for the training, test and validation data 

splits.
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2.3.2.2. Melanoma data

As with the N. gonorrhoea data, each model was trained using RSCV. Inputs selected by 

sensitivity analysis resulted in a performance accuracy of 51 % for validation data. 

Weightings analysis by absolute values selected inputs which correctly identified 70 % of 

the samples, whilst using the actual connection weights identified inputs which predicted 

77 % of the samples correctly. As with the bacterial data set, the meta-pruning approach 

significantly out-performed the conventional pruning methods, predicting 81 % of the 

samples into their respective groups. Once again, meta-pruning was repeated for a second 

step to determine if a smaller subset of inputs could be identified which would predict the 

samples into their respective groups even more accurately. This led to the identification of 

237 inputs which now correctly classified 93 % of the sample correctly, showing a further 

improvement on the previous model. Figure 23 illustrates the prediction results for 

validation data, whilst Figure 24 shows the performance of the different pruning methods 

for trainings test and validation data splits.
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2.4. Summary and discussion

It is important to be able to reduce the complexity of datasets in order to identify 

components of importance which may then be used as biomarkers indicative of a specific 

class for identification, prognosis and diagnostic purposes. This chapter has assessed 

various methods in which to achieve this using ANNs. This was achieved firstly by 

examining the initial network parameter settings of the ANN architecture, and then by 

assessing whether the absolute weights of trained ANN models could be used for 

parameterisation purposes to identify subsets of ions whos phenotypic “fingerprints” 

correlated strongly to a particular class. Finally a comparison of several input pruning 

approaches leading to the assessment of a proposed “meta-pruning” approach to identify 

biomarkers which are consistently of a high importance across a number of methods.

2.4.1. Parameter reduction

The initial parameterisation methodology using weightings analysis was applied to a 

relatively large proteomic dataset derived from bacterial data, containing N. meningitidis 

and other closely related species. The ability to consistently and rapidly identify closely 

related bacterial species, such as those from the genus Neisseria, could pave the way for 

new technologies becoming more accessible to aid human judgment as an on-site 

laboratory based decision tool. This model parameterisation allows for the identification 

of molecular ions which are important in classifying the population into their respective 

groups. Thus, by determining which ions are contributing most in the classification, 

unimportant and noisy ions may be removed. Using the “rolling input subset” approach 

described earlier, the number of ions used as inputs in the ANN model were reduced from 

an initial set of approximately 13,000 (between 3 and 30 kDa.) to just the top 1,000 which 

could accurately predict species type. For a system to have practical application in a 

diagnostic laboratory where there is a high throughput of samples and a demand for rapid 

analysis, a simple application tool is required, therefore, it was decided that the number of 

ions needed to be reduced to the smallest number possible which could discriminate 

between the two species. In order to achieve this, the top 1,000 ions were ranked in order 

of importance in predicting a bacterial strain identity, and the top 100 were selected for 

further training. This resulted in a model which out-performed the previous. This process 

was repeated until the models ceased to improve in predictive capabilities resulting in a 

model containing just 30 molecular ions which could predict with a sensitivity of 100 %
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and specificity greater than 96 % on a second order validation data set, which had not been 

used in any way in the training or development of the model. Therefore this approach of 

analysing the interconnecting weights of the trained network can be used as a rapid and 

efficient means to greatly reduce the number of inputs in a model in order to decrease 

complexity, whilst increasing predictive capabilities as a result of removing noisy inputs, 

which may be causing a conflict in the model and reducing predictive performance.

Prior to analysis, the ANN does not assume any prior relationships between any inputs 

used in the model, thus it was interesting that the ANN did not appear to identify single 

peaks around given mass values, but found clusters of ions around masses which were 

important in the classification. Because of the mass accuracy of the instrument (around 0.2 

%) and data averaging, these clusters are highly likely to represent the same molecular 

species. However this could only be confirmed with further research. The scope of this 

study was then expanded to investigate why the ANN incorrectly classified the few 

samples that it did. This was done mainly by cluster analysis, but also incorporated PCA 

and a similarity analysis, in which samples were examined with regards to their raw mass 

spectra in order to identify which other samples closely matched these. From the 

clustering approach it was clear that the majority of the samples that the ANN 

misclassified in the various models were actually in fact grouped together with samples 

from their ANN predicted class and not their true class which 16S rDNA methods 

identified them as. This was supported further by conducting a PCA analysis on the 

validation data set, which again showed similar findings. The N. meningitidis samples 

were all found to lie along a clear vector, together with the non-A. meningitidis samples 

that the ANN misclassified. A similarity analysis also resulted in the same, with only 6 of 

the 25 most similar samples belonging to the “other” species group, whilst 19 of the 25 

were A meningitidis. This supports the assumption that the samples are actually more 

closely related to the ANN predicted class, than the class they were initially placed in, 

providing valuable information about the nature of the two populations and the outliers 

which are found to be exhibiting characteristics typical of both species. This advocates the 

proposition that there may exist a continuum between the two species, and serves to 

highlight the need for rapid, highly robust methods, which are capable of generalisation 

and can prove to be a reliable decision support tool for identification purposes.

It has been shown that parameterising ANNs based upon their trained weights can be 

successfully used as a system in which to develop predictive models by identifying
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molecular biomarkers whose proteomic profiles correlate strongly to a particular class. 30 

ions were identified which were capable of identifying 184 out of 188 samples from a 

separate validation data set correctly. Furthermore, it was shown using cluster analysis and 

principal components analysis that these few misclassified samples may actually show 

more resemblance to their ANN predicted class than to their actual class. Of these 30 ions 

identified, the majority of these appeared in clusters around certain mass values. As such 

there is a high probability that these belong to the same molecular species, suggesting that 

of these 30 ions identified, there may only be around 10 individual species present. All 

models were validated using a RSCV approach so that each sample was treated as blind a 

number of times. This was enhanced further by applying the models to an additional data 

set consisting of 188 samples that had not previously been used in the training of the model 

in any way. The high classification accuracies for this data set (greater than 96 %) 

reinforce the assumptions that a generalised, robust model has been created. This part of 

the study has therefore shown that this paramaterisation approach is powerful enough to 

model and classify for complex datasets and identify potential markers representative of 

different output classes.

2.4.2. Advanced parameterisation

Next, to build upon the findings outlined above, this section has compared this type of 

absolute weightings analysis to two of the most popular methods used for input pruning in 

ANNs. Here, all of these methods were shown to reduce the complexity of the models by 

eliminating unimportant inputs and reducing the dimensionality of the data space, whilst 

maintaining or even improving the overall predictive capabilities of the ANN. In addition 

to this, a novel meta-pruning approach has been proposed by which only inputs which are 

consistently important, i.e. only those which are classed as important across all methods 

are retained in the model, thus reducing the dimensionality of the model even further, and 

producing robust models which show a significant improvement in predictive performance 

over two very differing data sets derived from proteomic analysis.

In both datasets, using all of the initial inputs in the model resulted in the worst predictive 

performance, highlighting the vast complexity of the system and the need for data and 

noise reduction. This was followed by sensitivity analysis, then weightings analysis by 

absolute values. Weightings analysis using the actual connection weights values produced 

the more accurate models from the three methods compared, which concurs with findings

 •" - '—V.~ T; . — ’:?t r'- 111 1  ■■ • ■ ' • - . i u >  * U i  'ss t*  .%• i-V. -h v i fC f! ,. :  .i>,W



Artificial Neural Networks In Predictive Modelling 80

by Olden et al. (Olden, et al., 2004) who also concluded that the connection weights 

method to be the most accurate of the methods they compared. However, our meta- 

pruning approach significantly out performed the traditional methods in both datasets. It is 

interesting to note that out of the 940 inputs identified from the N. gonorrhoea dataset, a 

students t-test demonstrated that 55 % of these inputs showed a significant (p < 0.05) 

difference in their raw mass intensity profiles between the two classes. Similarly, within 

the melanoma dataset, 58 % of the 964 inputs identified as key predictors with the meta- 

pruning approach also showed statistically significant differences between groups. 

Moreover, this was extended to a second order meta-pruning analysis, where the inputs 

identified initially were subjected again to this parameterisation to further reduce the 

number of inputs, leading to an increase in model performance with fewer inputs. 57 % 

and 53 % of these for the N. gonorrhoea and melanoma datasets respectively showed 

statistically significant differences in their intensities between groups. These inputs may 

represent ions or proteins present in the system which are showing a true up- or down- 

regulation with regards to sample class, and may form the basis for future studies.

This study leads to the conclusion that ANNs are indeed not black boxes, and valuable 

information regarding variable importance is readily accessible by utilising the methods 

discussed. This also leads into the ability to understand the relationships between variables 

and how they contribute to the output. The usefulness of the meta-pruning approach 

developed here is apparent by the significant gain in predictive performance over the other 

methods described. This approach also leads to a more robust and parsimonious system 

which represents a solution applicable to new unseen data sets. The inputs selected in the 

model as the most effective predictors were derived from a consensus approach where they 

were classed as important across several methods therefore increasing the confidence that 

these inputs may represent key potential biomarkers whose proteomic profile which 

correlates to and is strongly representative of a particular class. Using this meta-pruning 

approach, a more parsimonious solution is found which also results in improved predictive 

performances for blind data. Additionally, false detection pitfalls are also avoided. Here, 

only inputs that are consistently important over a number of sub-models, over a number of 

methods are considered for further training. Therefore the likelihood of an input being 

considered as important when it truly is not is lower using this approach than when using 

just one method. In addition to this new development, ANNs in conjunction with mass 

spectrometry show their potential use in microbiology for the rapid analysis of bacterial
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strains to locate the origin of pathogenic organisms from specific outbreaks, which has 

previously not been shown.
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CHAPTER 3. BIOMARKER IDENTIFICATION

82

3.1 Introduction

Proteomic and genomic technologies have revolutionised the way in which biological 

research is carried out, having the potential to simultaneously map and analyse tens of 

thousands of genes or proteins in any given system. Computational analysis of such data 

may aid in the identification of genes, proteins or gene/protein signatures which 

correspond to prognostic outcome in patients with diseases such as cancer (Adib, et al., 

2004; Beer, et ah, 2002; Bhattacharjee, et al., 2001; Jiang, et al., 2002; Lee, et al., 2004; 

Masters and Lakhani, 2000; Michiels, et al., 2005; Porkka, et al., 2002; Rosenwald, et al., 

2002; van 't Veer, et al., 2002; West, et al., 2001). Genotypic, and subsequently 

phenotypic traits, determine cell behaviour and, in the case of cancer, govern the cells’ 

susceptibility to treatment. Since tumour cells are genetically unstable, it is likely that sub

populations of cells arise that assume a more aggressive phenotype, capable of satisfying 

the requirements necessary for invasion and metastasis (Fidler, 2003). Thus the detection 

of biomarkers indicative of tumour aggression should be apparent, and consequently their 

identification is considered of paramount importance for early disease diagnosis, prognosis 

and response to therapy.

However, there are problems associated with the computational analysis of such extreme 

volumes of data, known as the curse of dimensionality. This refers to the exponential 

growth of data as a function of its dimensionality. This curse of dimensionality often leads 

to an input space with many irrelevant or noisy inputs, subsequently causing predictive 

algorithms to behave badly as a result of them modelling extraneous portions of the space. 

Therefore ultimately, if computational power permitted, analysis based upon assessing all 

potential input combinations to determine an optimal subset of predictive biomarkers 

would potentially provide further understanding of biological systems in the disease or 

condition of interest.

Unfortunately this type of analysis is currently unfeasible in these datasets due to the 

processing time that would be required in analysing each potential input combination that 

exists in such a large input space. For example, a gene microarray dataset routinely 

contains in excess of 20,000 variables per sample and would therefore require assessment 

of over IQ6000 possible input combinations to determine the optimum expression signature.
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Given the limitations but obvious predictive advantages of this approach an alternative 

method was developed for determining the optimal genomic/proteomic signature within a 

realistic time period that does not require excessive amounts of time or processing power. 

This approach utilises ANNs and involves sequentially selecting and adding input neurons 

to the network (where each input neuron is equivalent to a single gene/ion from the 

experiment together with its expression value or intensity) to identify an optimum 

biomarker subset based on predictive performance and error. Three datasets were used to 

test and validate this approach. The first interrogates human serum samples with varying 

stages of melanoma. The samples were analysed by MALDI-TOF MS by colleagues at 

Nottingham Trent University from samples collected by collaborators at the German 

Cancer Research Centre. The remaining two were publicly available datasets which both 

originated from gene expression data derived from breast cancer patients.

The first dataset was produced by MALDI-TOF MS analysis of protein and peptide data 

derived from clinically defined melanoma serum samples. The aims here were to firstly 

compare healthy control patients with those suffering from melanoma at the four different 

clinical Stages, I, II, III and IV, in order to identify biomarker ions indicative of stage. 

Secondly, adjacent stages were to be analysed comparatively with in the aim of identifying 

potential biomarkers representative of disease progression.

The second dataset, published by van’t Veer et al. (van 't Veer, et al., 2002), used 

microarray technology to analyse primary breast tumour tissue in relation to development 

of metastasis. The authors generated data by gene expression analysis in a cohort of 78 

breast cancer patients, 34 of which developed distant metastases within five years, and 44 

which remained disease free after at least five years. Each patient had 24,482 

corresponding variables specifying the expression ratio of a single known gene or 

expressed sequence tag (EST).

The third dataset publish by West et al. (West, et al., 2001) used microarray technology to 

firstly analyse primary breast tumours in relation to oestrogen receptor (ER) status and 

secondly to assess whether the tumour had spread to the axillary lymph node (LN), 

providing information regarding metastatic state. This dataset consisted of 13 ER+/LN+ 

tumours, 12 ER-/LN+ tumours, 12 ER+/LN- tumours, and 12 ER-/LN- tumours. Each 

sample had 7,129 corresponding gene expression values. The approach described here was 

then validated using a second dataset (Huang, et al., 2003) which was made available by



Biomarker Identification 84

the same group as the. first, and contained a different population of patients, ran on a 

different microarray chip.



Biomarker Identification 85

3.2 Stepwise approach methodology 

3.2.1. ANN architecture

As previous, the ANN modelling used a supervised learning approach, MLP architecture 

with a sigmoidal transfer function, where weights were updated by a BP algorithm. 

Learning rate and momentum were set at 0.1 and 0.5 respectively, as previously defined. 

Prior to training, the data were scaled linearly between 0 and 1 using minimums and 

maximums. This architecture utilised two hidden nodes in a single hidden layer and initial 

weights were randomised between 0 and 1.

3.2.2. ANN model development

The same approach was applied across all datasets, with the only differences being the 

number of samples and input variables. Here, as an example the methodology as applied 

to the van’t Veer dataset will be described. Data from the microarray experiments was 

taken in its raw form. This consisted of 78 samples each with 24,482 corresponding 

variables specifying the expression ratio of each single gene. Prior to training each model 

the data was randomly divided into three subsets; 60 % for training, 20% for testing, and 

20 % for validation, so that RSCV could be carried out.

Initially, each gene from the microarray dataset was used as an individual input in a 

network, thus creating n (24,482) individual models. These n models were then trained 

over 50 randomly selected subsets and network predictions together with MSE values for 

these predictions were calculated for each model with regards to the separate validation set. 

The inputs were ranked in ascending order based on the mean squared error values for the 

test data and the model which performed with the lowest error was selected for further 

training. Thus 1,224,100 models were trained and tested at each step of model 

development.

Next, each of the remaining inputs were then sequentially added to the previous best input, 

creating n-\ models each containing two inputs. Training was repeated and performance 

evaluated. The model which showed the best capabilities to model the data was then 

selected and the process repeated, creating n-2 models each containing three inputs. This 

process was repeated until no significant improvement was gained from the addition of
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further inputs resulting in a final model containing the gene expression signature which 

most accurately modelled the data. The biomarkers identified at each step are ordinal to 

one other within the data space so that the continual addition of inputs explains variation 

within the data that was not explained by the previous step.

This process requires the training and testing of potentially millions of models. To 

facilitate this, software to automate the procedure was been created using Microsoft Visual 

Basic. Here, the inputs are added automatically, selecting the best contender biomarkers at 

each step. Figure 25a-g shows the software design detailing the various options available 

for ANN design and analysis. The full source code can be found in the Appendix, and the 

entire process for running the algorithm can be summarised in Figure 26 and below:

1. Identify input and output variables

2. Start with input 1 as the first input to the model, inputi

3. Train the ANN using RSCV

4. Record network performance for inputi

5. Repeat steps 3 and 4 using all inputs; input2...input3...input4...inputn as sole inputs 

in the ANN model

6. Rank inputs in ascending order based on the error on the test data split to determine 

the best performing input at this step, inputi

7. Repeat from step 2, using each input sequentially with input; in an ANN model

8. Determine the best performing input combination for this step

9. Repeat this whole process from step 2, continually adding inputs until no 

improvement is gained from the addition of further inputs
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(a) 

Figure 25a-g. Stepwise ANN modelling software. Each diagram represents a different option screen available within the software for 

model building and analysis. 
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3.3. Results

95

3.3.1 Analysis of melanoma dataset

3.3.1.1. Analysis of control and Stage IV disease samples: Protein and peptide data

Because there are no confirmatory blood markers for metastatic melanoma, in conjunction 

with colleagues at Nottingham Trent University we sought to develop a validated, robust 

and reproducible MALDI MS methodology using the same stepwise ANN approach to 

profile serum protein and tryptically digested peptides. This was applied to data derived 

from MALDI MS analysis representing (i) protein and (ii) digested peptide data from the 

control and diseased samples. The MALDI MS data in its raw format was binned over a 1 

Da. range, so that each input used in subsequent modelling represented the intensity of an 

ion spanning a single mass unit range. Various analyses were carried out on these datasets 

in order to identify biomarker ions indicative of the classes shown in Table 2.

Table 2. Summary of analyses conducted.

Analysis Class 1 Class 2
Protein ion analysis 1 Healthy Control Stage IV melanoma
Tryptic peptide ion analysis 1 Healthy Control Stage IV melanoma

Biomarker patterns containing 9 ions from the protein data and 6 ions from the digested 

peptides were identified, which when used in combination correctly discriminated between 

control and Stage IV samples for protein and peptide data to median accuracies of 92.3 % 

(inter-quartile range 89.4 -  94.8 %) and 100 % (inter-quartile range 96.7 -  100 %) 

respectively. Table 3a-b shows the performance for the models at each step of the analysis 

for the protein and peptide data. This shows that with the continual addition of key ions, 

an overall improvement was seen for both the error associated with the predictive 

capabilities of the model for blind data, and also the median accuracies for samples 

correctly classified. Nine biomarker ions was determined to be the most effective subset of 

biomarker ions producing the best model performance for the protein data as no significant 

improvement was seen in predictive performance with the addition of further ions. No 

further steps were conducted beyond step 6 for the peptide data because after this step no 

significant improvement in performance could be achieved. Therefore these models were 

considered to contain a subset of ions representing either the proteins or digested peptides 

which most accurately modelled the data. Figure 27 shows the error and performance
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progression for the peptide data when using the stepwise approach for biomarker 

identification.

Table 3a. Summary of Stage IV vs control protein ions identified at each step of the 

analysis. Ions belonging to the optimal biomarker subset are highlighted in red.

Step Ion Added Median 
Accuracy (%)

Inter-Quartile
Range

1 12000 64.1 58.7-69.2
2 14847 73.2 69.8-75.8
3 1649 80.4 77.4-83.3
4 15477 80 77.9-84
5 13255 82.7 79.1-85.2
6 3031 83.8 79.8-86.1
7 4791 87 83.9-90.4
8 9913 86.6 83.2-89.8
9 4835 92.3 89.4-94.8
10 15269 90.4 87.2-92.6
11 2730 90.3 87.1-92.2
12 9919 90.4 87.3-92.5
13 9971 91.9 88.3-94
14 11735 90.4 87.1-92.5

Table 3b. Summary of Stage IV vs control digested peptide ions identified at each

step of the analysis.

Step Ion Added Median Accuracy
(%)

Inter-Quartile 
Range (%)

1 1753 77.8 74.4-83.2
2 1161 93.3 90.2-96.4
3 1505 93.7 92.4-96.7
4 854 96.7 95.8-100
5 1444 100 96.5-100
6 1093 100 96.7-100

3.3.I.2. Analysis of digested peptide data: Diseased Stages I, II, III and control 

samples

Next, because the analysis of the peptide data provides the potential for subsequent protein 

identification, it was decided that these peptide MALDI-TOF MS profiles would be 

analysed in the search for differential biomarker ions which would be representative of 

firstly disease stage (by analysing the individual stages against control populations) and 

secondly disease progression (by generating predictive models classifying between 

adjacent disease stages). The analyses conducted in this part of the study are summarised 

in Table 4.
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Initially, in order to identify ions which were representative of disease stage, the stepwise 

approach was applied to identify subsets of biomarker ions which could predict between 

disease stage and control samples. This would therefore provide valuable information 

concerning which peptide ions were showing differential intensities that were specific to 

the disease stage of interest. Table 5 shows the biomarker subsets identified in each 

model, and their median performance when predicting validation subsets of data over 50 

RSCV resampling events. Figure 28 shows the stepwise analysis summary across all of 

the models for each step of analysis. As expected, the models predicted Stage I v control 

with the least accuracy (80 %), suggesting that because early stage disease is a non

penetrating skin surface legion, changes occurring in the serum at the protein level are less 

significant than at advanced stages of disease. Nonetheless, to be able to predict Stage I 

melanoma to accuracies of 80 % using serum would be viewed as clinically significant. It 

was interesting to note that of the biomarker ions identified by this approach, in several 

instances the same ions were occurring across different models. Ions 1299 and 3430 

(3432) were found to differentiate between both Stage I and Stage II disease vs control 

samples. Ions 1251 and 1283 (1285) were found to differentiate between Stage II and 

Stage III disease vs control, whilst ion 1753 (1754) was identified in both the Stage III and 

Stage IV diseased vs controlled models. Considering that 3500 individual ions are trained 

and tested at each step of analysis over 50 RSCV resampling events, it seems unlikely that 

their consistent identification as the most important ions at a given step would be a 

consequence of chance, providing confidence that these ions are representing proteins 

which are showing a true change in intensity in patients with disease at differing stages.

Table 4. Summary of analyses conducted.

Analysis Class 1 Class 2
Tryptic peptide ion analysis 2 Healthy Control Stage I melanoma
Tryptic peptide ion analysis 3 Healthy Control Stage II melanoma
Tryptic peptide ion analysis 4 Healthy Control Stage III melanoma
Tryptic peptide ion analysis 5 Stage I melanoma Stage II melanoma
Tryptic peptide ion analysis 6 Stage II melanoma Stage III melanoma
Tryptic peptide ion analysis 7 Stage III melanoma Stage IV melanoma
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Table 5. Summary of overall results from digested peptide analysis: Stages I,II,III, 

and IV vs Control. Peptide ions highlighted in red represent ions corresponding to 

multiple groups.

Dataset Modelled Ions identified Median Performance for 
Validation data (%)

Stage I v Control 864,933,980, 
1299, 2309, 
2886, 2966, 
3220, 3430, 
3489

80

Stage II v Control 1251, 1283, 
1299, 1968, 
2244,2411, 
3432, 3443

96.5

Stage III v Control 1251, 1285, 
1312,1371, 
1754, 2624, 
2715,2999, 
3161,3326

91.7

Stage IV v Control 854, 1093, 1161, 
1444, 1505,
1753

100

3.3.I.3. Analysis of adjacent diseased groups

Once biomarker ions representative of individual disease stage had been determined, it was 

decided important to analyse adjacent group stages of disease, which would potentially 

identify biomarker ions which would represent those responding differently as disease 

progressed, and would be predictive and indicative of disease stage. Table 6 shows the 

biomarker subsets identified in each model, and their median performance when predicting 

validation subsets of data over 50 RSCV resampling events. It was interesting to find that 

subsets of ions could be identified which were able to predict between stages to extremely 

high accuracies; 98 % for Stage I v Stage II and 100 % for Stage II v Stage III and Stage 

III v Stage IV. Furthermore, only two peptide biomarker ions were required in order to 

perfectly discriminate between Stage II and Stage III, with one of these ions, 903, also 

being important in the classification of Stage III v Stage IV, suggesting that this ion is 

potentially of importance in disease progression to advanced stages, and appears to be 

downregulated as melanoma stage advances from Stage II to IV, which could only be 

confirmed by further studies.
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Table 6. Summary of overall results from digested peptide analysis: Adjacent stage 

analysis. Peptide ions highlighted in red represent ions corresponding to multiple groups.

Dataset Modelled Ions identified Median Performance for 
Validation data (%)

Stage I v Stage II 1251, 1731, 
1825, 1978, 
2053

98

Stage II v Stage III 861, 903 100
Stage III v Stage IV 877,903, 1625, 

2064, 2754
100

The overall summaries for the stepwise analysis conducted here can be seen in Figure 29. 

For visualisation of the feature space that these samples are occupying, and to understand 

the decision surface that these models are generating, PCA was conducted using the subset 

of ions identified by the ANN stepwise approach. Figure 30a-c shows the PCA for the 

Stage I v Stage II, Stage II v Stage III and Stage III v Stage IV models respectively. It is 

evident that when using the biomarker ions identified by ANNs the samples can be 

separated into distinct clusters using PCA, with the clearest separation being with the Stage 

II v Stage III model. It is interesting to draw attention to the samples highlighted by 

arrows and circles in the Stage I v Stage II model (Figure 30a). The first of these samples 

was identified as a Stage I sample, but according to its profile PCA has placed it more 

indicative of Stage II.

Interestingly, the ANN model also predicted this sample as a Stage II sample, suggesting it 

has strong features corresponding more to a Stage II sample than a Stage I sample which it 

was categorised as by the clinicians. Similarly, the region of samples highlighted on 

Figure 30b which appear to be lying on the border of the decision surface were also 

predicted closely to the 0.5 decision threshold by the ANNs, again suggesting that these 

samples are showing characteristics of both classes according to their proteomic profiles. 

The relative closeness in feature space of the Stage III and Stage IV samples according to 

Figure 30c suggests that the proteomic profiles of these samples are similar, and cannot be 

as clearly separated using the PCA as they are when using the ANN modelling, therefore 

requiring a nonlinear decision surface to correctly classify this cohort of samples which are 

at a more advanced diseased stage. Furthermore, the mean group intensities of these ions 

has been analysed, with the summary being shown in Figure 31. This shows how the 

biomarker ions identified as most important in the discrimination of sample groups has
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changed during the different stages of disease. It is clear from this that not all of these 

biomarker ions are being up regulated as disease progresses. All five of the ions identified 

in the Stage I v Stage II analysis show statistically significant (p= <0.05) increases in 

intensity. In the Stage II v Stage III model, both biomarker ions appear to be down 

regulated when disease is more advanced, with ion 861 significantly so. In the Stage III v 

Stage IV model, all ions (except for ion 2754) showed a significant increase or decrease in 

intensity as disease progressed, with ion 1625 showing a huge increase in intensity as 

disease progressed to Stage IV. A scatterplot was produced of the two ions (m/z 861 and 

903) identified in the Stage II vs Stage III model, this can be seen in Figure 32. A clear 

separation of Stage II and Stage III samples is evident, with the Stage III samples clearly 

showing lesser levels of ion 861. This enables one to derive a hypothetical decision 

boundary between the two classes.

3.3.I.4. Model validation

To study the question about stability of this procedure over multiple experiments 

(Baggerly, et al., 2004), and to assess batch to batch reproducibility of the mass 

spectrometry analysis, both the proteins and peptides from the Stage IV and control 

samples were run by the group on two separate occasions and the results of the second 

experiment were used to validate the stepwise methodology. This dataset was obtained by 

a different operator and on a different date. The second sample set was then passed 

through the developed ANN models to blindly classify them as a second order of blind 

data for class assignment. For the protein data, the model correctly classified 85 % of 

these blind samples correctly. This consisted of 43/49 of the control samples and 40/49 of 

the cancerous samples being correctly identified, with sensitivity and specificity values of 

82 and 88 % respectively, with an AUC value of 0.9 when evaluated with a ROC curve.
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For peptides, the model correctly classified 43/47 samples originating from control 

patients, and 43/43 samples from cancerous patients. This gave an overall model accuracy 

of 95.6 %, with sensitivity and specificity values of 100 and 91.5 % respectively, and an 

AUC value of 0.98. This suggests that the peptide data was more reproducible than the 

protein data for this second batch of mass spectrometry analysis. The predictive peptide 

ions were subsequently sequenced and identified by colleagues using a variety of mass 

spectrometric techniques leading to the identification of two proteins; Alpha 1-acid 

glycoprotein (AGP) precursor Vz and complement C3 component.

3.3.2. Analysis of van’t Veer et al. breast cancer dataset

The aim of the analysis here was to utilise this novel stepwise ANN modelling approach in 

order to identify a gene expression signature which would accurately predict whether a 

patient would develop distant metastases within a five year time period, and thus 

identifying potential markers and giving an insight into disease aetiology. Following the 

rule of parsimony which suggests that the simplest model fitting the data should be used, 

an initial analysis was carried out using logistic regression (Subasi and Ercelebi, 2005). 

This method led to poor predictive performances with a median accuracy of just 53 % 

(inter-quartile range 47-61 %), suggesting that this dataset is not linearly separable.

The application of the stepwise approach resulted in the identification of a gene expression 

signature consisting of twenty genes which predicted patient prognosis to a median 

accuracy of 100 % (inter-quartile range 100-100%, mean squared error of 0.085), where 

samples were treated as blind data over 50 models with RSCV. The overall screening 

process assessed over ten million individual models. When evaluated with a ROC curve 

the model had an AUC value of 0.971 with sensitivity and specificity values of 98 % and 

94 % respectively. Figure 33 shows the performance for the models at each step of the 

analysis. It is evident that the continual addition of key genes leads to an overall 

improvement in the predictive capabilities of the model. The model showed a decrease in 

performance at steps 10 and 11 which may be due to a possible interaction between the 

genes present at these steps with one or more of the other genes in the model. After this 

point the model improved further still until step twenty, so this was considered to contain 

the genes which most accurately modelled the data. Further steps were not conducted 

because no significant improvement in performance could be achieved. A summary of the.
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performances of the models at each step, together with the identity of the genes (where 

known) can be seen in Table 7.

To further validate the model, an additional set of 19 samples were selected, as in the 

original manuscript (van 't Veer, et al., 2002). This set consisted of 7 patients who 

remained metastasis free, and 12 who developed metastases within five years. The 20 gene 

expression signature identified here correctly diagnosed all 19 samples, further 

emphasising the models predictive power.

Table 7. Summary of twenty genes used in the gene expression signature at each step 

of model development.

Step Gene Name Gene Description Median
Accuracy
(%)

Inter
Quartile
Range
(%)

Mean
Squared
Error

1 CA9 Carbonic anhydrase 
IX

70 66.7-77 0.438

2 EST 80.5 77.7-
87.7

0.383

3 EST 83 76.1-
85.9

0.377

4 FLJ13409 EST 87 79.6-
88.7

0.351

5 LCHN LCHN protein 80 73.9-
84.7

0.397

6 TMEFF2 Transmembrane 
protein with EGF- 
like and two 
follistatin-like 
domains 2

94.7 89.4-
95.3

0.233

7 HEC Highly expressed in 
cancer, rich in 
leucine heptad 
repeats

94.8 89.3-
96.7

0.217

8 HSPC333 Homo sapiens 
HSPC337 mRNA, 
partial cds

96 95-100 0.171

9 EST 98.1 94.6-100 0.154
10 EST 95 90.9-

95.9
0.23

11 HUGT1 UDP-
glucose: glycoprotein 
glucosyltransferase 
1

78.2 71.3-
83.5

0.393

12 LOC56899 putative 47 kDa. 85.1 80-91.8 0.322
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protein
13 DJ462023.2 Hypothetical protein 

dJ462023.2
96.1 94.3-100 0.16

14 HSU93243 Ubc6p homolog 96.1 95.2-100 0.155
15 NRG2 Neuregulin 2 95.8 94-100 0.174
16 EST 95.9 90.5-100 0.17
17 EST 100 95.4-100 0.168
18 ESTs 96.1 92.5-100 0.176
19 NPHP1 Nephronophthisis 1 

(juvenile)
95.8 92-100 0.165

20 QDPR Quinoid
dihydropteridine
reductase

100 100-100 0.085

Median accuracy, lower and upper inter-quartile ranges, gene names (where known) and 

descriptions are shown.

3.3.3. Analysis of West et al. breast cancer dataset

The aims here were to (i) identify a gene expression signature that would accurately predict 

ER status, and (ii) determine whether it was possible to generate a robust model containing 

genes which would discriminate between patients based upon LN status. As before, an 

initial analysis was carried out using logistic regression which again led to poor predictive 

performances with a median accuracy of 78 % (inter-quartile range 67-88 %) for the ER 

data, and just 56 % (inter-quartile range 44-67 %) for the LN dataset, which is comparable 

to the predictions one would gain from using a random classifier.

Here, using the stepwise methodology, two gene expression signatures were identified. 

The first discriminated 100 % of the cases correctly with regards to whether (hey were 

positive or negative for ER, and the second predicted whether metastasis of the tumour to 

the axillary lymph node had occurred, again to an accuracy of 100 %. Again, the 

accuracies reported are from separate validation data splits, with samples treated as blind 

data over 50 models with RSCV. The overall screening process assessed over five million 

individual models. When evaluated with a ROC curve the model had an area under the 

curve value of 1.0 with sensitivity and specificity values of 100 % and 100 % respectively 

for both ER and LN status.
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Figure 34a-b shows the performance for the models at each step of the analysis. It is 

evident that the continual addition of key genes leads to an overall improvement in the 

error associated with the predictive capabilities of the model for blind data. After steps 8 

and 7 for the ER and LN data respectively, no further steps were conducted because no 

significant improvement in performance could be achieved, therefore these models were 

considered to contain the genes which most accurately modelled the data. A summary of 

the performances of the models at each step, together with the identity of these are given in 

Table 8a-b.

The models developed using the gene subsets identified by the approach described were 

applied to an additional 88 samples from Huang and colleagues (Huang, et al., 2003). This 

was generated on a different microarray chip than the original, with the genes overlapping 

across both chips. There were many differences in this data to the original, for instance it 

was generated with an Asian based cohort of patients, as opposed to the original data 

where women of US origin were used. Further, the women taking part in this second set 

were generally younger with smaller tumours at surgery. This sample set was therefore 

thought to provide a stern challenge for the stepwise methodology, and were subjected to 

classification based upon ER and LN status as with the first dataset. 88.6 % of the samples 

could be classified correctly based on ER status, with a sensitivity and specificity of 90.4 

and 80 % respectively. 83 % of samples were correctly classified based upon their LN 

status, with a sensitivity of 86.7 % and specificity of 80 %. The AUC values by result of 

ROC curve analysis were 0.874 and 0.812 for the ER and LN gene subset models 

respectively. It was expected that the predictive accuracies would be reduced when the 

models were applied to this additional dataset, but the accuracies reported here remain 

extremely encouraging because of the larger sample size, the differences in sample 

characteristics and microarray analysis described above. The ability to predict ER status at 

a higher rate than that of LN status suggests that there is a greater level of variation in the 

gene expression profiles with respect to LN status compared to that of ER.
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Table 8a-b. Summary genes used in the gene expression signature at each step of 

model development for (a) ER status and (b) LN status.

(a)
Step Gene

Accession
Number

Gene Description Median
Accuracy
(%)

Inter
Quartile
Range
(%)

Mean
Squared
Error

1 X58072-at Human hGATA3 
mRNA

91.7 84.6-
93.3

0.291

2 Z29083-at H. sapiens 5T4 
gene for 5T4 
Oncofetal antigen

93.3 91.1-
100

0.214

3 M81758-
at

SkMl mRNA 100 92.4-
100

0.138

4 M60748-
at

Human histone 
HI (H1F4) gene

100 100-100 0.087

5 M74093-
at

Human cyclin 
mRNA

100 100-100 0.038

6 1122029-f
at

Human
cytochrome P450 
mRNA

100 100-100 0.034

7 U96131-at Homo sapiens 
HPV16E1

100 100-100 0.028

8 M96982-
at

Homo sapiens U2 
snRNP auxiliary 
factor small 
subunit

100 100-100 0.017

Median accuracy, lower and upper inter-quartile ranges, gene accession numbers, gene 

descriptions are shown.
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(b)
Step Gene

Accession
Number

Gene Description Median
Accuracy
(%)

Inter
Quartile
Range
(%)

Mean
Squared
Error

1 AFFX-
CreX-3-st

Bacteriophage PI 
ere recombinase

80 75-86.4 0.384

2 M83221-
at

Homo sapiens I- 
Rel mRNA

88.2 83.7-
93.2

0.301

3 S79862-s-
at

PSMD5 92.9 87.5-
94.4

0.252

4 U39817-
at

Human Bloom 
syndrome protein 
(BLM) mRNA

94 92.3-
100

0.172

5 U63139-
at

Human Rad50 
mRNA

100 100-
100

0.085

6 M83652-
s-at

Homo sapiens 
complement 
component 
properdin mRNA

100 100-
100

0.062

7 U30894-
at

Human N- 
sulphoglucosamine 
sulphohydrolase 
(SGSH) mRNA

100 100-
100

0.05

Median accuracy, lower and upper inter-quartile ranges, gene accession numbers, gene 

descriptions are shown.
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3.4. Summary and discussion

In this chapter novel stepwise ANN approaches to data mining of biomarker ions 

representative of disease status have been applied to different datasets. This ANN based 

stepwise approach to data mining offers the potential for identification of a defined subset 

of biomarkers with prognostic and diagnostic potential. These biomarkers are ordinal to 

each other within the data space and further markers may be identified by examination of 

the performance of models for biomarkers at each step of the development process. In 

order to assess the potential of this methodology in biomarker discovery, three datasets 

were analysed. These were all from different platforms which generate large amounts of 

data, namely mass spectrometry and gene expression microarray data.

3.4.1. Mass spectrometry data

Firstly a dataset generated by colleagues here at Nottingham Trent University was 

analysed. Currently there are no clinically validated markers for metastatic melanoma and 

researchers based at Nottingham Trent University have been developing MS based 

proteomic protocols for protein and tryptically digested peptides in order to generate 

proteomic profiles of human serum samples from patients with melanoma at various stages 

of disease. Using the stepwise ANN approaches developed in the course of this thesis, 9 

protein ions were identified that distinguished Stage IV melanoma patients from healthy 

controls with an accuracy of 92 %. Using the same approach to analyse the proteomic 

profiles of digested peptides 6 ions were identified which predicted validation subsets of 

samples to an accuracy of 100 %. The groups of ions identified here distinguish Stage IV 

metastatic melanoma from healthy controls with high sensitivity and specificity. This is 

extremely promising when considering that conventional S-100 ELISA can result in a 

reported 20% ‘false negative’ rate in patients with detectable metastases by routine clinical 

and radiographic studies. Furthermore, it was shown that these ANN based analysis 

procedures could identify subsets of biomarkers which could accurately classify blind 

groups of samples to high accuracies for control samples v Stage I (80 %), Stage II (96.5 

%), and Stage III (91.7 %), as well as discovering groups of biomarker ions which could 

identify small groups of biomarker ions with a potential role in disease progression. The 

ions identified here predicted with extremely high accuracies for Stage I v Stage II (98 %), 

Stage II v Stage III (100 %), and Stage III v Stage IV (100 %). In addition to this, the 

same ions were appearing as important predictors across multiple problems in both the
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control v diseased, and the inter-stage analyses, further highlighting the confidence that the 

changes in intensities of these ions is not a random artifact caused by the high 

dimensionality of the system, but are true biomarkers which are potentially playing a 

critical role in disease status and are of high diagnostic value.

In previous studies using MALDI or SELDI-based technologies, little attention has been 

focused upon the mass accuracies and intensities of the spectral peaks and has raised 

questions as to whether MALDI-MS data of proteins can achieve standards of 

reproducibility that are expected of clinical tests (Diamandis and van der Merwe, 2005; 

Mian, et al., 2005). Pre-analytical conditions of blood collections do influence 

protein/peptide pattern outcomes and it has been argued that many of the reported 

discriminatory protein profiles have been based largely on experimental artifacts rather 

than on true biological differences (Sorace and Zhan, 2003). Because of these concerns, 

the models developed for the Stage IV disease and control samples were validated on a 

further cohort of samples, which were run on the MALDI mass spectrometer by a different 

operator on a different date. The models were found to be highly reproducible and robust.

Potential serum protein melanoma biomarker ions by MS using SELDI chips have been 

reported recently (Mian, et al., 2005), where a mass region around 11,700 Da provided a 

highly statistically significantly difference in intensity between Stage I and Stage IV 

melanoma samples. This also addressed some of the inherent problems of resolution, 

reproducibility and validation of SELDI as a technique for establishing protein fingerprints 

for use as a clinical aid in diagnosis and prognosis. The MALDI MS method used to 

generate the data analysed here provides a more rapid data analysis with higher resolution. 

These data were subsequently subjected to stepwise ANN analysis and nine ions were 

identified that discriminated between melanoma Stage IV and healthy control sera. This 

analysis by ANNs of serum proteins resulted in a median accuracy of 92% (inter-quartile 

range 89.4 -  94.8%) in discriminating between sera from Stage IV melanoma and control 

patients. The top ion at m/z 12000 was able to discriminate between classes with a median 

predictive accuracy of 64 % (inter-quartile range 58.7-69.2 %). This ion is similar in mass 

to the biomarker ion of m/z 11700 reported using the SELDI technology, also for Stage IV 

metastatic cancer (Mian, et al., 2005). The difference may be attributed to the fact that this 

ion was found to be significant when used in discriminating between Stage I melanoma 

versus Stage IV patients whereas here the ion reported at m/z 12000 was identified when 

classifying between IV melanoma and unaffected healthy control individuals. Further, in
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the manuscript by Mian and colleagues (Mian, et al., 2005) predictive performance was 

based primarily on spectra obtained from Ciphergen SELDI chip platform which are 

associated with inherent low resolution read-outs using low resolution MS equipment 

,whereas here protein biomarker detection was carried out using a higher resolution 

MALDI-MS analyser, so the m/z value of 11700 may have some variation associated with 

it. Although both studies used ANNs the approaches applied were different; here novel 

stepwise analysis approaches were used which allow for the identification of individual 

mass ions with high predictive performance, whereas the SELDI analysis (Mian, et al., 

2005) used larger mass ranges to identify regions of the profile which were important in 

discriminating between groups. Therefore it is important to consider different data mining 

techniques may elicit different markers with differing importance.

A recent report (Baggerly et al., 2000) has documented the inherent problems that can be 

associated with the mining of MALDI-TOF MS data for biologic signatures. These will 

have to be taken into account if a systematically reproducible approach is to be found using 

biomarker expression patterns as predictive indicators. Several reports on detection of 

potential melanoma serum biomarkers have used SELDI or MALDI-MS, mostly without 

bioinformatic analysis (Ferrari, et al., 2000; Mian, et ah, 2005; Ragazzi, et al., 2003; 

Seraglia, et ah, 2005). Two studies reported the importance of protein ions between m/z 

10000 -  30000 but, in particular ions between m/z 2500-3000 showed significant 

variations, increasing from Stage I to Stage II melanoma but absent in controls (Ferrari, et 

al., 2000; Ragazzi, et al., 2003). In agreement with this, this study showed that ions could 

be identified in this low molecular weight peptide region which could discriminate 

between Stage I and Stage II melanoma to high accuracies, and were different from those 

which classified Stage I and Stage II from control patients. Due to small sample numbers 

(n = 17) used by Ferrari et ah, (2000) no statistical analysis was performed. Recently 

(Seraglia, et al., 2005) reported the analysis of low molecular weight, m/z 800-5000, native 

peptides in serum and plasma in patients with Stage III melanoma versus healthy 

volunteers. A small number of ions were found to be present only in the melanoma 

samples, however, corresponding peptide sequences were not identified and the study 

concluded no data mining was carried out due to the small sample numbers investigated. 

Conversely in this thesis enough samples were made available to allow for robust ANN 

analysis leading to eventual protein identification. There was no overlap with the m/z 

values reported in other studies and those presented here; differences in sample 

preparations, MS and bioinformatic analysis plays a critical role in data evaluation.
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Therefore it was not surprising that the studies detailed failed to identify common 

biomarkers.

Sequence analysis of the six predictive peptides identified two peptide ions belonging to 

AGP which when used together in a predictive model could account for 95 % (47/50) of 

the metastatic melanoma patients. Additionally, another of the peptide ions was identified 

and confirmed to be associated with complement C3 component. Both proteins have been 

previously associated with metastatic disease in other types of cancers (Djukanovic, et al., 

2000). The tryptic ion at m/z 1753 was found to be derived from AGP precursor 1/2. 

Interestingly, the same AGP tryptic peptide that was identified at m/z 1753 was identified 

by Koomen et al. (Koomen, et al., 2005) in plasma from pancreatic cancer patients using 

MS in conjunction with MASCOT database searching. Other studies have also shown that 

increased levels of AGP are found in cancer (Bleasby, et al., 1985; Duche, et al., 2000; 

Kremmer, et al., 2004). MALDI-TOF MS has shown the up-regulation of AGP in breast 

cancer patients by analysis of proteins from nipple aspirate fluid (Alexander, et al., 2004). 

Furthermore, both Duche et al. (Duche, et al., 2000), and Bleasby et al. (Bleasby, et al., 

1985) demonstrated that AGP is up-regulated in plasma samples from breast, ovarian and 

lung cancer patients. The significance of the apparent up-regulation of AGP in melanoma 

Stage IV serum samples warrants further investigation. AGP, a highly heterogeneous 

glycoprotein, is an acute-phase protein produced mainly in the liver. However, its 

physiological significance is not fully understood. The tryptic peptide identified as 

important by this stepwise approach at m/z 1093 was subsequently identified Complement 

C3 protein precursor 1, an abundant serum protein produced within the kidney. This may 

be an important mediator of local inflammatory and immunological injury (Djukanovic, et 

al., 2000).

3.4.2. Gene expression data

To assess whether this approach could also be carried over to the analysis of gene 

expression data, two publicly available datasets were analysed in an identical stepwise 

fashion as with the melanoma MALDI-TOF MS dataset. Both of these datasets are 

associated with breast cancer.

The first was a dataset published by van’t Veer and co-workers (van't Veer, et al., 2002) 

and the aims here were to identify subsets of genes which could accurately discriminate
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between patients who developed distant metastases within five years and those who did 

not. The initial analysis by van’t Veer and colleagues (van 't Veer, et al., 2002) used a 

form of unsupervised clustering and supervised classification whereby genes were selected 

by the correlation coefficient of expression with disease outcome. This approach led to the 

identification of a 70 gene classifier which predicted correctly disease outcome to an 

accuracy of 83 %. The ANN stepwise approach applied here resulted in the identification 

of twenty genes which accurately predicted patient prognosis to a median accuracy of 100 

% for blind data over a number of RSCV resampling events. Furthermore, an additional 

cohort of 19 samples were used as a second order validation to the model, resulting in all 

19 of these being correctly classified using the gene expression signature identified by the 

stepwise approach. Some of the genes which constitute this expression signature have 

previously been associated with cancer outcome. For example the first gene identified by 

this approach was CA9, and was capable of predicting 70 % of the samples correctly by 

itself. Carbonic Anhydrase IX (CA IX) has been suggested to be functionally involved in 

pathogenesis due to its increased expression and abnormal localisation in colorectal 

tumours (Saarnio, et al., 1998). CA IX has also been suggested for use as a diagnostic 

biomarker due to its expression being related to cervical cell carcinomas (Liao, et al., 

1994). Chia et al. (Chia, et al., 2001) concluded in their study that CA IX expression was 

associated with a higher relapse rate and worse overall survival in breast cancer patients. 

Another gene involved in this expression signature is known as TMEFF2, and encodes for 

a transmembrane protein. Gery et al. (Gery, et al., 2002) showed that TMEFF2 could 

suppress growth of prostate cancer cells, and later showed (Gery and Koeffler, 2003) that 

TMEFF2 suppression may contribute to the oncogenic properties of c-Myc, a proto

oncogene involved in cell proliferation, differentiation, apoptosis and also chromosomal 

abnormalities with roles in tumourigenesis. A third gene identified as important in our 

genetic profile is NRG2, otherwise known as Neuregulin-2. Meiners and colleagues 

(Meiners, et al., 1998) reported in their investigations that expression of neuregulin 

promoted metastases. Similarly, Tsai and co-workers (Tsai, et al., 2003) remarked how 

breast cancer tumourigenicity and metastasis can be suppressed by blocking neuregulin 

expression, leading to a reduction in tumour formation and tumour size in vivo. Seven of 

the twenty genes identified as important represent EST’s and the associated gene is 

therefore of unknown function. However, given their predictive capability with regards to 

survival, further analysis is justified.
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The final dataset was published by West et al. (West, et al., 2001) and the ANN stepwise 

approach was applied to this dataset in order to identify groups of genes would accurately 

predict the ER status and LN status of the patient. The initial analysis by West and 

colleagues used regression models in order to calculate classification probabilities for the 

various outcomes. In their study, when analysing ER status, a 100 gene classifier was 

identified which predicted 34 of the 38 samples used in the training set accurately and with 

confidence, and which performed well during cross-validation. Using the same approach, 

the authors identified a 100 gene classifier which could classify a training set of samples 

according to lymph node status for the samples used in the training set. However, this 

approach was less successful in predicting LN status during cross-validation, where all of 

the LN+ cases had estimated probabilities of approximately 0.5, indicating these 

predictions contained a great deal of uncertainty, possible due to high levels in variation in 

the expression profiles of these samples. Here, using the stepwise methodology, two gene 

expression signatures were identified. The first discriminated 100 % of the cases correctly 

with regards to whether they were positive or negative for ER, and the second predicted 

whether the tumour had spread to the axillary lymph node, again to an accuracy of 100 %. 

The accuracies reported here are from multiple separate validation data splits, with samples 

treated as blind data over 50 models with RSCV.

If technologies such as these are to be developed to support clinical decision making in the 

medical arena, and to improve the care and management of patients on an individual basis 

(a term coined “personalised medicine”), then it is fundamental that they are robust enough 

to be able to cope with the inherent heterogeneity, complexity and variation which is 

notorious within diseases such as cancer. To assess whether the gene expression signatures 

identified here could be applied to a different cohort of patients the models developed 

using our approach were applied to a follow up dataset generated by the same group as the 

original (Huang, et al., 2003). This dataset contained many differences to the original 

dataset used in developing our model. It was generated using an Asian based cohort of 

patients, whereas the original was derived from women based in the US. In addition to the 

racial differences, the US women were generally older and had larger tumours at surgery. 

Moreover this second dataset was obtained using a U95av2 Affymetrix microarray 

representing 12625 genes, whilsfthe initial dataset used to develop the models and identify 

important genes was obtained using an earlier HU6800 array representing 7129 genes, 

which overlap onto the newer microarray. Because of all of the above discrepancies, and 

the fact that such sample to sample inconsistencies would likely be commonplace in a
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clinical setting, this dataset was thought to provide a robust benchmark for the testing of 

the methods and subsequent gene signatures described in this chapter. With the models 

applied to this separate dataset, 88.6 % of the samples were classified correctly based on 

ER status, whilst 83 % of samples were correctly classified with regards to LN status. 

Further encouragement was gained from the observation that seven out of the eight genes 

used in our ER classifier, and three from the seven used in our LN classifier were also 

present in the patterns of metagenes described in Huang et al. (Huang, et al., 2003), further 

highlighting their potential biological relevance.

As with the previous analysis, some of the genes identified as important here have also 

been previously reported to be associated with cancer. For example the first gene 

identified by the stepwise approach in relation to ER status was GATA3, and was capable 

of predicting almost 90 % of the samples correctly by itself. GATA3 is a transcription 

factor which has been shown to be highly expressed in human breast tumours (van't Veer, 

et al., 2002; West, et al., 2001), and although the role of this gene remains largely 

unknown, its expression is strongly and positively correlated to that of the oestrogen 

receptor alpha gene (Lacroix and Leclercq, 2004), which has also been demonstrated by 

others analysing similar gene expression data (Sotiriou, et al., 2003). Another gene in the 

ER expression signature identified here is that which encodes for Oncofetal Antigen, 5T4, 

a glycoprotein expressed during foetal development and re-expressed as a surface antigen 

by tumour cells. It has been shown to be detectable in all types of tumours, and 

undetectable in normal cells (Rohrer, et al., 1999). 5T4 expression is correlated with poor 

prognosis and metastatic spread, and is potentially linked to tumour cell invasion processes 

(Carsberg, et al., 1995). Starzynska and colleagues (Starzynska, et al., 1992) reported a 

highly significant association between 5T4 expression and metastatic spread in colorectal 

and gastric carcinoma, concluding that “the appearance of 5T4 molecules in cancer cells 

reflects a change which may contribute to the development of metastatic potential.”

Here it has been shown that gene expression profiles can be used as a basis for determining 

the most significant genes capable of discriminating patients of different status in breast 

cancer. In agreement with van’t Veer et al. (van't Veer, et al., 2002; West, et al., 2001) we 

have shown that whilst single genes are capable of discriminating between different 

disease states, multiple genes in combination enhance the predictive power- of these 

models. In addition to this, the results provide further evidence that ER+ and ER- tumours 

display gene expression patterns which are significantly different, and can even be
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discriminated between without the ER gene itself. This suggests that these phenotypes are 

not only explained by the ER gene, but a combination of other genes not necessarily 

primarily involved in the response of ER, but which may be interacting with, and 

modulating ER expression in some unknown fashion.

Unlike some analysis methods, this method takes each and every variable into account for 

analysis, and does not use various cut-off values to determine significant differences 

between them. This overcomes data analysis limitations outlined by Ioannidis (Ioannidis, 

2005), and at the same time overcomes many associated problems with high dimensional 

systems. These models can then form a foundation for future studies using these 

biomarker subsets to develop simpler prognostic tests, or as candidate therapeutic targets 

for the development of novel therapies. The proof of concept of this methodology is 

evident, and was further validated on separate cohorts of patients using the biomarker 

signatures identified. Given the relevance of the biomarkers identified by this method 

across different datasets and platforms, and the applicability of these to wider populations, 

it is felt that this approach is a valid way of identifying subsets of biomarkers associated 

with disease characteristics. Confidence in the identified markers is increased further still 

in that many of these have known associations with cancer and some were also included in 

the sets of metagenes identified by Huang et al. (Huang, et al., 2003).
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CHAPTER 4. EXTENDING AND VALIDATING THE STEPWISE APPROACH

4.1. Identification of multiple biomarker subsets

4.1.1. Introduction

The stepwise methodology described in the previous chapter facilitates the identification of 

subsets of biomarkers which can accurately model and predict sample class for a given 

complex dataset. In order to facilitate a more rapid biomarker subset analysis, the stepwise 

approach adds only the best performing biomarker at each step of the analysis. Although 

this appears to be an extremely robust method of biomarker identification, the question 

remains as to whether there are additional subsets of biomarkers existing within the 

dataset, which are also capable of predicting class to high accuracies. If this is true, then 

this would lead to a further understanding of the system being modelled. Further, if 

multiple biomarkers were to appear in more than one marker subset, then this would 

further validate their identification, and enhance their potential use in disease diagnosis and 

prognosis, warranting further investigation.

To achieve these aims, the same West dataset was used as previous (West, et al., 2001). 

As can be seen from Table 9a-b, in addition to the number one ranked biomarker at step 

one (which was subsequently used as the basis for the gene biomarker signature described 

in the previous chapter), there are several other potential candidate biomarkers which by 

themselves are able to classify a significant proportion of the sample population into their 

respective classes. Therefore an individual stepwise analysis was conducted on each of the 

remaining top ten genes identified in step one of the analysis, for both ER and LN status to 

determine if multiple biomarker subsets existed within the dataset.

This chapter concludes by using different methods in order to validate the stepwise 

approaches developed in this research. This is done in order to provide confidence that the 

biomarker subsets identified using these methodologies are not random artifacts due to the 

complexity of the dataset. This ensures that the biomarkers are of biological relevance in 

the disease of interest.
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4.1.2. Results

Figure 35a-b shows the network performance at each step of analysis for all of these genes 

for (a) ER and (b) LN status. It is evident that all of these subsets have the ability to 

predict for blind subsets of samples to extremely high accuracies of greater than 90 %, with 

no significant differences between individual models. This suggests that there may be 

multiple genes acting in response to disease status, subsequently altering various pathways 

and altering the expression levels of many other genes. It is worthwhile to note that some 

of these genes were identified in many of the models (Table 10), for example an EST 

appeared in seven out of ten models, further highlighting its potential importance in LN 

status. This shows that there is not necessarily just one set of biomarkers which are 

correlates of a particular disease status of interest, but there may be many, and when one 

particular subset of biomarkers are affected in such a way that is indicative of disease 

status, then this may consequently have a cascade effect on many other biomarkers, 

altering their expression in a similar fashion.
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Table 9a-b. Summary of step 1 analysis for (a) ER and (b) LN status. Table shows the 

gene identification and respective predictive performances of the top 10 ranked genes

identified at step 1 of the analysis, 

(a)
Rank Gene ID Blind Performance (%) !
1 GATA3 89.8
2 ESR1 87.6
3 SLC39A6 85.5
4 EST 85.3
5 HSD17B4 83.3
6 EST 84.2
7 AR 83.0
8 LAD1 84.0
9 SCNN1A 84.2
10 MAPT 80.2

(b)
Rank Gene ID Blind Performance (%)
1 EST 80.4
2 GYPA/B 70.9
3 BLM 71.2
4 ACVR1B 70.4
5 EST 64.3
6 WNT5A 66.7
7 RELB 61.3
8 GK 64.1
9 PDE4B 64.3
10 TLE1 64.7
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Table 10. Summary of genes identified in multiple stepwise modelling which occur in

more than one model in (a) ER and (b) LN status, 

(a)
Gene ID Actual Gene Name Number of Occurrences 

(In 10 Models)
CYP2B6 Cytochrome p450 

polypeptide 6
3

CTSC Cathepsin c 3
GATA3 Gata binding protein 3 2
EST EST 2
CYP2A7 Cytochrome p450 

polypeptide 7
2

LRRC17 Leucine rich repeat 2
NFKBIE Nuclear factor of kappa 2
COX6C Cytochrome c oxidase 2
HLF Hepatic leukemia factor 2
IGLC Immunoglobulin lambda 2
ZBTB16 Zinc finger 2
RTN1 Reticulon 1 2

(b)
Gene ID Actual Gene Name Number of Occurrences 

(In 10 Models)
EST EST 7
BLM Bloom syndrome 6
ACVR1B Activin a receptor 4
GYPA/GYPB Glycophorin a/b 3
AXIN1 Axin 1 3
RELB V-rel reticuloendotheliosis 

viral oncogene homolog b
2

PSMD5 Proteasome (prosome, 
macropain)

2

SGSH N-sulfoglucosamine
sulfohydrolase
(sulfamidase)

2

CTSH Cathepsin h 2
NUP88 Nucleoporin 88 kDa. 2
ENG Endoglin 2
SYBL1 Synaptobrevin-like 1 2
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4.2. Stepwise analysis validation

To provide further evidence and confidence that the biomarker subsets identified in all of 

the above analyses by the stepwise approach were not random as a consequence of the high 

dimensionality of the datasets, two validation exercises were conducted. Firstly, ten inputs 

were randomly selected from the datasets and trained over 50 RSCV events in an ANN 

model identically as for the stepwise method. This process was repeated 1,000 times, and 

the summary results are presented in Table 11.

It is clear from Table 11 that the variation amongst models generated with these random 

input subsets is small, suggesting that a randomly generated model is able to predict 

sample class to accuracies in the region of 64 % for blind data. These models will very 

rarely predict significantly higher than this value, which is highlighted in Figure 36 which 

details the distribution of the model performance across the various models. The data 

follows a normal distribution, and therefore it is unlikely that a random model would 

generate a subset of inputs capable of very high classification accuracies, indicating that 

the stepwise ANN approach to modelling described here is selecting inputs which are 

discriminating between the groups of interest in a biologically relevant manner.

Table 11. Summary results of random input selection.

Summary Statistic Validation data accuracy Validation data error
Average 64% 0.495
Standard Deviation 0.024 0.014
Standard Error 2.45 x 10'' 1.41 xlO”3
95 % confidence interval 4.89x1 O’5 2.82 xlO"5
Median 64% 0.495
Inter Quartile Range 62-66 % 0.485-0.504
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Figure 37a-c highlights the significance between the performance of the randomly 

generated models and those developed with the stepwise approach for the van’t Veer and 

West gene expression datasets (van't Veer, et al., 2002; West, et al., 2001).

These results show that a random classifier would indeed, as expected, lead to 

classification accuracies close to random, and therefore it can be said that the stepwise 

approach truly identifies subsets of inputs which predict well on unseen data.

Now it was necessary to investigate whether this stepwise approach would identify the 

same inputs if the analysis was run several different occasions, starting over each time with 

the same dataset. If not, it would be necessary to determine how many RSCV resampling 

events would be necessary to generate models which are both generalised to new Unseen 

data, and that are reproducible so that confidence can be gained in the inputs identified as 

important. To achieve this, the stepwise analysis was run and trained on the van’t Veer 

dataset with samples randomly split by RSCV into training, test, and validation subsets 10, 

20, 50 and 100 times and subsequently trained. This whole process was repeated five 

times to calculate how consistent the ranking of the individual inputs was with regards to 

model performance. This consistency was calculated for the top fifty most important 

inputs, and was the ratio of actual ranking (based upon the average error of the model), to 

the average ranking over the multiple runs. These are summarised in Table 12.

There was a significant increase in consistency amongst the performance of inputs when 

increasing from 10 to 20 (p=0.000), and 20 to 50 RSCV datasplits (p=0.000), but not from 

50 to 100 (p=0.2213). Interestingly, for all analyses, the same two inputs were ranked as 

first and second every time, with the majority of the variation in rankings appearing 

towards the bottom of the top 50 list, which accounts for the 14 and 12 % variability in the 

50 and 100 RSCV event models respectively. This showed step 1 to be extremely 

consistent in identifying the same inputs as important across multiple analyses.
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Table 12. Summary of the consistency of inputs identified as important using varying 

random sample cross validation data splits in step 1 of the analysis.

Number of RSCV 
datasplits

Mean Group Consistency 95 % confidence 
intervals

10 0.547 0.009
20 0.708 0.009
50 0.859 0.010
100 0.880 0.013

The same procedure was then carried out for step 2, with the input identified as the most 

important across all the models in step 1 used to form the basis of this second step. Table 

13 shows the average consistency ratios for step 2. It is clear from this that consistency 

across multiple repeats of the analysis showed a dramatic decline, with only the 100 RSCV 

model retaining its consistency in input identification, and the improvement in consistent 

input performance was statistically significant (p=0.000) at each increment. Again, the 

models using 50 and 100 RSCV resampling events both identified the same input ranked as 

number one and number two. It therefore appears that a minimum of 50 RSCV datasplits is 

required to ensure that the same inputs are consistently identified as important multiple 

times in 80-90 % of analyses.

Table 13. Summary of the consistency of inputs identified as important using varying 

random sample cross validation data splits in step 2 of the analysis.

Number of RSCV 
datasplits

Mean Group Consistency 95 % confidence 
intervals

10 0.140 0.004
20 0.487 0.011
50 0.657 0.009
100 0.811 0.009
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4.3. Summary and discussion

It is important to recognise that in biological problems it is unlikely that there lies only one 

solution to a particular problem, and there are potentially many biomarker subsets which 

have the ability to predict class to high accuracies. This has been shown in this chapter 

where multiple genes were taken as a starting point for subsequent stepwise analysis. All 

of these gene subsets were capable of predicting disease status to high accuracies. 

Interestingly, many of the genes identified appeared in several models, further validating 

and highlighting the potential importance of their role in disease. Again, various studies 

have shown some of these genes to be> associated with cancer. For example cytochrome 

p450 (CYP2B6) was shown to be an ER responsive gene in human breast cancer by Bieche 

and colleagues. (Bieche, et al., 2004). The BLM (Bloom syndrome) gene was found to 

occur in six of the ten gene signatures identified as important in the classification of LN 

status. Mutations in the BLM gene result in a genomic instability that causes Bloom's 

syndrome, a rare autosomal recessive genetic disorder characterised by sun sensitivity, 

stunted growth infertility and immunodeficiency (Kaneko, et al., 1996). Bloom's 

syndrome patients have been documented to be highly predisposed to cancers (Calin, et al., 

1998; German, 1997; Kaneko, et al., 1996; Watt and Hickson, 1996), and its clear high 

importance in the gene subsets identified here suggest the expression of this gene is a high 

correlate of disease. RELB was another gene associated with LN status across multiple 

gene subsets. This has previously been shown to be implicated in carcinogenesis 

(Demicco, et al., 2005). Also extremely interesting were cathepsins C and H, identified to 

be important across multiple models discriminating in both ER and LN status respectively. 

Cathepsins have been observed in several types of human cancers, including breast, and 

have been particularly associated with aggressive cancer cells. Cancers appear to recruit 

various cathepsins to progress malignant disease and as such these have been shown to be 

useful in the prognosis of disease and cancer progression (Nomura and Katunuma, 2005).

To further show that the analysis approach proposed here is not identifying random input 

subsets as a consequence of the high dimensionality and complexity of the datasets, subsets 

of inputs were selected at random one thousand times and trained using RSCV. This 

showed that a random subset of input variables would predict class to approximately 60 %. 

Furthermore, to measure consistency, it was shown that if a minimum of 50 RSCV 

resampling events is conducted during model development, the same inputs are identified
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as the most important variables in class prediction over multiple repeats of the experiment. 

In summary, this validation exercise has shown that the inputs being identified are not 

random or artifacts and confidence in their importance in differentiating between the 

classes of interest can be high.

One drawback of traditional linear based stepwise models is that they often cannot 

generalise well to problems and therefore may only be applicable to the dataset they are 

originally applied to. Simulation experiments have shown that stepwise logistic regression 

has limited power in selecting important variables in small data sets, and therefore risks 

overfitting (Steyerberg, et al., 1999). Additionally the automatic selection procedure is 

non- subjective and ignores logical constraints. It was shown here that the neural network 

stepwise approach described does not suffer from these limitations because the models 

have been shown to be applicable to separate datasets used for validation. As such the 

stepwise approach has generated models that are capable of generalisation to new data so is 

less likely to suffer from overfitting, which has not been observed in the analyses 

conducted here.

To conclude, the last two chapters have shown that using these novel ANN methodologies, 

a powerful tool has been developed for the identification of biomarker subsets that predict 

disease status in a variety of analyses. The potential of this approach is apparent by the 

high predictive accuracies as a result of using the biomarker subsets identified here. These 

biomarker subsets were then shown to be capable of high classification accuracies when 

used to predict for additional validation datasets, and were even capable of being applied to 

predict the ER and LN status of a dataset very different in origin from the one used in the 

identification of the important gene subsets. This in combination with the various 

validation exercises that have been conducted suggests that these biomarkers have 

biological relevance and their selection is not arbitrary or an artifact of the high 

dimensionality of the system as they were shown to be robust to cope with sampling 

variability and reproducible across different sample studies.
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CHAPTER 5. MODEL INTERROGATION

5.1. Introduction

Once a parsimonious set of biomarkers have been identified and models have been 

developed from these relating to clinical groups of interest, it is possible to interrogate 

these further. Here, in addition to having a prognostic or diagnostic model capable of the 

accurate prediction and classification of samples on the basis of their disease class, one can 

begin to elucidate biological meaning from the data, providing further insight into the 

disease of interest. This chapter discusses methods aimed at interrogating these key sets of 

biomarkers. This incorporates methods which show how the class of an individual sample 

case can be related to the expression or intensity of an individual biomarker, accomplished 

by monitoring the response of these markers in relation to the network classification. It is 

shown how these responses may be positive, negative, discriminatory and co-factorial. 

Secondly it is shown how a population of case samples can be investigated to identify how 

characteristic a sample is of the class they were assigned to. This is achieved by 

monitoring and interpreting the network predictions in a continuous manner, enabling sub

populations of cases within a disease group to be identified. Additionally, new individuals 

may be positioned within a defined population allowing for risk analysis with reference to 

a specific disease or condition. Finally a proposed method with a view to understanding 

relationships and interactions between biomarkers to derive gene regulatory networks is 

introduced. This is of particular interest from a clinical perspective because the ability to 

define new pathways would possibly lead to the identification of novel therapeutic targets. 

This chapter illustrates these methods using the van’t Veer and West gene expression 

breast cancer datasets (described in previous chapters).
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5.2. Determining the response effect of biomarkers

It is possible to monitor the ANN output in order to determine the effect the individual 

biomarkers have on the classes of interest. This enables one to understand how these 

biomarkers are governing sample classification and begin to derive rules for molecular 

classification by assessing the strength of response and whether it is discriminatory or 

cofactorial. This is achieved by using the trained ANN model, and adjusting an input 

variable of interest in order to monitor what affect this adjustment has on the output 

variable. The output with respect to the changing input value can then be plotted to 

produce a response graph. This can be extremely useful in proteomic and genomic studies, 

where it becomes possible for one to gain an insight into how disease picture changes with 

respect to the expression or relative abundance of genes and proteins of interest.

5.2.1. Methods

The biomarker subsets identified using the stepwise approach to biomarker identification 

for the van’t Veer (refer to chapter 3.3.2, and Table 7) and West (refer to chapter 3.3.3, and 

Table 8a-b) gene expression datasets were used to generate response graphs.

As previously mentioned, each model was trained and tested over 50 RSCV resampling 

events. To investigate the response of these biomarkers, the value of each input variable 

was sequentially adjusted whilst all other input variables remained fixed over these 50 

RSCV events. This adjustment was a value slowly incremented through the minimum and 

maximum range of that variable across all sample cases. The output change with respect to 

this changing input value was then recorded for all of the 50 sub-models. These were then 

averaged and the subsequent response graphs were plotted with the changing input variable 

plotted on the x-axis of the graph.

5.2.2. Results

5.2.2.1. Response graph analysis of the gene expression signature identified in the 

van’t Veer data analysis

The response graphs of the twenty genes identified with the stepwise approach when 

applied to the van’t Veer dataset were generated. Results showed that seventeen of the
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twenty response curves had strong discriminatory responses between output classes. The 

direction of this response enables one to determine whether these genes were being 

induced or repressed with regards to the development of distant metastases, and therefore 

calculate how the probability of metastases changes with increased expression of a 

particular gene. Table 14 illustrates the level of expression of the individual genes or 

EST’s that correlate with the probability of metastases.

Many genes, for example LCHN show an increased likelihood of metastases, whilst others, 

for example HSU93243 identified at step 14, showed weak responses that associated with 

distant tumour metastasis. Eight of the genes showed that with increased expression, the 

probability of developing distant metastases increased, so these may have a possible role in 

disease pathogenesis. Nine other genes showed that with increased expression, the 

likelihood of metastases development decreased, suggesting that these genes may play a 

role in tumour suppression. The final three genes, showed a weak response, i.e. the 

probability of metastases developing was approximately 0.5 irrespective of expression. 

This suggests that these gene may play a secondary role, interacting with other gene 

responses in an additive fashion modulating the overall expression pattern. Example 

curves for genes CA9, TMEFF2 and NRG2 are shown in Figure 38a-c.

Since some of the genes identified with the stepwise ANN analysis had previously been 

associated with cancer, they were examined further to establish if this correlated with the 

response curves. This would provide valuable insight into the molecular nature of the 

development of distant metastases within a five year time frame. Firstly, the gene 

identified at step one of the analysis was CA9, which as described in the previous chapter, 

has been shown to be involved in tumour pathogenesis and labelled as a potential candidate 

for use as a diagnostic marker. The response curve from our study shows that as CA9 

expression increases, the probability of developing distant metastases also increases 

(Figure 38a), which is comparable to what others have found in their laboratory studies 

(Saarnio, et al., 1998) (Liao, et al., 1994) (Chia, et al., 2001). Another gene identified as 

an important predictor in this gene expression signature is known as TMEFF2, encoding 

for a transmembrane protein. It is evident from the response curve in Figure 38b that 

increased expression of this gene leads to a higher probability of a patient remaining 

metastases free in the five year time frame under investigation here. This suggests that 

TMEFF2 expression may inhibit tumour growth, which was also shown in other published 

studies (Gery and Koeffler, 2003; Gery, et al., 2002). NRG, or Neuregulin-2, has also been
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shown to be associated with cancer, and a promoter of metastases (Meiners, et al., 1998; 

Tsai, et al., 2003). Figure 38c shows that with increased expression of this gene, the 

probability of metastases development also increased, which again appears to be in 

agreement to what was previously shown by the other groups.

Table 14. Response curve summary for genes identified as the most important

discriminators from the van’t Veer dataset.

Gene Description Response
Carbonic anhydrase IX *
EST’s t
ESTs, Weakly similar to RL17 HUMAN 60S RIBOSOMAL 
PROTEIN LI 7 [H.sapiens]

t

ESTs, Weakly similar to the KIAA0191 gene is expressed 
ubiquitously [H.sapiens]
LCHN protein *
Transmembrane protein with EGF-like and two follistatin-like 
domains 2

t

Highly expressed in cancer, rich in leucine heptad repeats *
Homo sapiens HSPC337 mRNA, partial cds 1
EST’s
Homo sapiens cDNA: FLJ22044 fis, clone HEP09141 *
UDP-glucose: glycoprotein glucosyltransferase 1 *
putative 47 kDa. protein t
Hypothetical protein dJ462023.2 t
Ubc6p homolog t
Neuregulin 2 *
EST’s t
EST’s *
EST’s t
Nephronophthisis 1 (juvenile) t

The description of the response is summarised with regards to the probability of whether a 
patient will or will not develop distant metastases within a five year period.
* Increased gene expression leads to increased probability of developing distant metastases 
f  Probability of no metastases increases with expression of this gene, possible tumour 
suppressor
X Weak response, possibly interacting to modify response of other genes
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5.2.22. Response graph analysis of the gene expression signature identified from the 

West data analysis

The response curves of the genes identified in the initial West analysis were then evaluated 

as with the previous dataset. As before, the majority of these genes had strong 

discriminatory responses indicating whether they appeared to be induced or repressed with 

regards to ER or LN status. Table 15a-b describes how the level of expression of the 

individual genes correlates with these different groups of patients for ER and LN status 

respectively. Some genes, for example RELB showed that with increased expression the 

probability of the patient being LN+ increases, suggesting that this gene may be involved 

in tumour metastasis and pathogenesis. The same pattern was seen for GAT A3 mRNA as 

with an increased expression of this gene, the profile of the patient was more representative 

of an ER positive case. Other genes, for example BLM showed that with increased 

expression, the likelihood of the tumour having spread to the lymph node decreased, 

appearing to have a possible role in tumour suppression. Genes such as the Human 

cytochrome P450 gene showed weak responses indicating more intermediary roles in 

classification. Examples response curves for several genes are shown in Figure 39a-d.

Some of these genes had also been previously reported to be associated with cancer. 

Therefore it was worthwhile to review the response curves for these genes to determine 

whether the direction of this response appeared to concur with what was reported in the 

literature. As mentioned, the first gene identified by our model in the classification of ER 

status was GATA3, which has been shown on numerous occasions to be highly expressed 

in breast cancer tumours (van't Veer, et al., 2002; West, et al., 2001). The response curve 

from our study for this gene (Figure 39b) agrees with these previous findings in that as 

GATA3 expression increases, so does the likelihood of the sample originating from an 

ER+ patient, further validating the correlation between these two genes. Another gene, 

5T4, which encodes for Oncofetal Antigen has shown to be present in tumours but not in 

normal cells and as such has been associated with poor prognosis (Rohrer, et al., 1999). 

This was examined for its response with regards to ER status. Results showed that with 

increased expression of this gene, the probability of a patient being ER+ decreased. 

Therefore a sample that is over-expressing this gene was more characteristic of an ER- 

phenotype, and poorer prognosis. The ANN response for the 5T4 gene (Figure 39c) 

therefore correlates well with the literature since ER- breast cancer patients generally have 

a poorer prognosis than their ER+ counterparts.
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Table 15a-b. Response curve summary for genes identified as the most important

discriminators for (a) ER and (b) LN status from the West dataset, 

(a)
Gene Description Response
Human hGATA3 mRNA *
H.sapiens 5T4 gene for 5T4 Oncofetal 
antigen

f

SkMl mRNA t

Human histone HI (H1F4) gene t
Human cyclin mRNA t

Human cytochrome P450 mRNA t
Homo sapiens HPV16 El t
Homo sapiens U2 snRNP auxiliary factor 
small subunit

t

The description of the response is summarised with regards to the probability of whether a 
patient is or is not ER positive.
* Increased gene expression leads to increased probability of ER+ status, 
f  Increased gene expression leads to increased probability of ER- status.
% Weak response, possibly interacting to modify response of other genes.

(b)
Gene Description Response
Bacteriophage PI ere recombinase t
Homo sapiens I-Rel mRNA (RELB) *
PSMD5 t
BLM t
Human Rad50 mRNA t
Homo sapiens complement component 
properdin mRNA

t

Human N-sulphoglucosamine 
sulphohydrolase (SGSH) mRNA

t

The description of the response is summarised with regards to the probability of whether a 
patient is or is not LN positive.
* Increased gene expression leads to increased probability of LN+ status, 
f  Increased gene expression leads to increased probability of LN- status.
X Weak response, possibly interacting to modify response of other genes.
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5.3. Population analysis

Breast cancer is a morphologically and clinically heterogeneous disease (Garcia-Closas, et 

al., 2006; Jeffrey, et al., 2005; Murphy, et al., 2005), and therefore includes several 

different subgroups (Martin, 2006). With this in mind, it was of interest to determine the 

structure of the population under analysis in order to identify these sub-groups, or sub

populations of samples associated with disease. This can be accomplished by monitoring 

the network predictions in a continuous manner, which offers the potential for diseases to 

be monitored in a patient specific manner with the ability for new individuals to be 

positioned within this population structure. Furthermore this allows for risk analysis to be 

carried out by determining the location of a new individual within the population.

5.3.1. Methods

The actual ANN model predictions were assessed for each individual sample over 50 sub

models generated from random resampling. These values were taken from the predictions 

where the sample was treated as validation data and the average prediction from this series 

of sub-models was calculated. These were then ranked in ascending order, and the position 

of every sample case within the disease population was determined. This enabled varying 

subgroups of patients to be identified.

5.3.2. Results

The population analysis for the West data (LN status) and the van’t Veer data can be seen 

in Figures 40 and 41 respectively. These population structures can be viewed as to contain 

several sub-populations. There are those which are classified as clear negatives (with a 

predicted value between 1.0 and 1.5). Next there are those showing strong characteristics 

of, and are therefore showing profiles very similar to a patient case belonging to the 

positive group (with a predicted value of 1.5 to 2.0). Then there are those who are close to 

the classification threshold value of 1.5. These cases are potentially at risk of metastases, 

and have been identified as a further sub-population of patients warranting further analysis. 

It is evident that the population in Figure 40 detailing LN status was more clearly defined 

than that in Figure 41 regarding distant metastases. This is to be expected, as it seems 

reasonable to suggest that distant metastases is a more difficult phenomenon to predict than 

LN metastasis, as with distant metastases, the disease may have spread anywhere in the
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body, and not locally defined to the lymph node. Figure 41 shows a clear sample 

progression between the predicted values of 1 and 2, suggesting that a continuum exists 

between patients that do and do not show signs of disease spread. If new cases were to be 

placed on this continuum, it would be feasible to imply that the further up this population 

profile they are situated, the more at risk they are of developing distant metastases if they 

have not already done so.
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5.4. Discovering gene interaction networks

5.4.1. Introduction

In addition to biomarker identification, there is now a growing interest in a more systems 

biology approach to bioinformatics, where the focus is on how molecules and pathways 

interrelate (Guffanti, 2002), so that all of the components in a biological system can be 

modelled and examined. However, the inference of gene regulatory networks from 

experimental data still remains one of the main unsolved problems in the post-genomic era. 

A gene regulatory network is a model representing dependencies between genes using a 

directed graph. Here, each node is a gene (or component) of the system of interest and 

each edge represents a regulatory impact from one component to another (Spieth, et al., 

2005), for example the up or down regulation of the dependent gene.

With the identification of multiple subsets of biomarkers which all appear to be important 

in the classification of disease status, it was of interest to determine whether ANNs could 

be used as a method for elucidating potential interactions between these biomarkers and 

whether certain markers are altering the expression of others in a positive or negative 

manner. The stepwise approach to biomarker identification has been shown in the 

previous chapter to be successful in the discovery of multiple subsets of biomarkers from 

complex datasets that have the ability to classify disease status to high accuracies for blind 

data. Experiments on the multiple subsets of genes identified using this approach within 

the West et al. dataset show the potential of this proposed approach for discovering gene 

network interactions representing ER and LN status in a population of breast cancer 

patients.

The aim of this approach therefore is to identify the strength of the interactions between 

genes, and whether these connections are excitatory or inhibitory. A draft gene regulatory 

network can then be produced showing whether one gene influences either the increased or 

decreased expression of another gene with regards to disease status within the context of 

the biomarkers identified. This is achieved by analysing the strength of the interconnecting 

weights in an ANN model. This ANN model consists of a subset of genes identified using 

the stepwise approach and looks at how well these genes are able to model the expression 

values of another gene. That is, each gene is sequentially used as an output in the model 

whilst the remaining genes in the subset are used as the inputs. When the strength of the
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weighting between gene* and genej is outside a normally distributed range, the connection 

is considered to be a regulatory one.

5.4.2. Methods

The algorithm works in the following manner, and is summarised in Figure 42. For each 

gene subset identified using the stepwise approach:

1. Start with gene 1 as the output gene, genej

2. Use the remaining genes as inputs (gene i ... gene2... gene3... genen)

3. Train the ANN until the input genes classify the output of genej to a pre-determined 

stopping criterion.

4. Determine the weights between each input genej and output genej.

5. Those inputs whose weight values are +/- 2 standard deviations outside of the mean 

weight value for all inputs are considered to regulate genej in either a positive or 

negative manner.

6. Repeat from step 1, with gene 2,3,4.. .n as the output gene, genej

Once a matrix of weights for each input gene to the output gene had been derived, it was 

then possible to generate an interaction network for the genes in the dataset. The gene 

subsets may then be amalgamated together at points where the same gene is shared across 

multiple models. This then provides an overall representation of how important gene 

subsets constitute their own motifs, and also shows how these motifs possibly link together 

in relation to the gene of interest.

5.4.3. Results

5.4.3.1. Predicting the expression values of genes

The different subsets of biomarkers identified using the stepwise approach when analysing 

the West dataset were used to develop the interaction models. This consisted of 10 gene 

subsets predicting ER status, and 10 predicting LN status. Each gene subset contained 

between 7 and 11 genes. The ANN was run as described above in the methods, with each 

gene being sequentially used as the output to the model, with the remaining being treated 

as inputs. Results from ANN training showed that the expression of all genes could be
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predicted successfully with low errors. Figure 43a-b shows example observed v predicted 

plots for the first genes identified in predicting ER and LN status.

5.4.3.2. Derivation of the interaction network

The weight matrix for the series of models developed in the interaction process was 

imported into a visualisation program called Cytoscape. This is an open source 

bioinformatics software platform for visualising molecular interaction networks and 

integrating these interactions with gene expression profiles (http://www.cvtoscape.org). 

Figure 44a-b shows the interaction network for both ER and LN models. Red connections 

indicate positive excitatory weightings thus showing genes which appear to cause the 

increased expression of other genes. Blue connections indicate negative inhibitory 

weights, showing genes that when expressed in a certain fashion cause the subsequent 

decrease in expression of other genes. The thickness of this connection indicates the 

strength of interaction between two genes. It is clear from Figure 44a that the ER 

interaction network appears less complex than the LN network. There appears to be fewer 

genes in the ER network linking the different gene subsets together, and as such these 

individual motifs appear to be more segregated in this system. The LN interaction network 

appears to be more complex, with several gene subsets overlapping with many genes. 

Interestingly there appears to be a small cluster of genes in the centre of both networks 

which are the focal point of the network, having strong interactions with and appearing to 

regulate a whole host of other genes.

Once derived, this gene interaction network may then be interrogated further. The purpose 

here is to define potential pathways that were previously unknown. From a clinical 

perspective this may be fundamental in the identification of novel biomarkers to target in 

order to prevent the spread of disease. An example of this pathway interrogation can be 

seen in Figures 45 and 46. Here, one of the biomarker subsets has been examined in more 

detail and combined with a response curve analysis to determine how the effect of one 

gene on other genes governs their expression and outcome response. This enables a 

possible pathway of events contributing to an outcome of interest to be determined. Figure 

45 focuses in on a region of interest from the interaction network shown in Figure 44a.

http://www.cvtoscape.org
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The response curves for each of these genes are also shown. This shows how the up or 

down-regulation of a particular gene is influenced by another, and how this relates to the 

response of this gene with respect to the class of interest. From this it appears that the up- 

regulation of HLF causes the subsequent increased expression of GAT A3. This has a 

cascade effect, causing the change in expression of various other genes, for example 

GALNT3 and CXCL12. The change in expression of these genes then in turn leads to the 

up or down regulation of others. Figure 46 summarises this theoretical pathway, showing 

the potential for deriving pathways from this type of interrogation.
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Figure 44a-b. Gene interaction network for (a) ER and (b) LN status. Red

connections indicate positive weightings between two genes, whilst blue connections show 

negative connections. The weight of the line indicates the level of interaction between two

genes.

(a)

HG371 lT 08ST<
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(b)
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5.5. Discussion

Analysis of the response curves for the individual biomarkers showed how the output of 

the ANN changed when the input value of a particular input variable was varied over a 

given range. This allowed for the biomarkers to be characterised by determining how an 

increase or decrease in their expression governs a disease outcome of interest. The 

response graphs showed that the response of these biomarkers , could be positive, negative, 

discriminatory and co-factorial. The one limitation of this approach is that whilst one input 

is varied, all others remain fixed. This would not be the case in vivo where a change in 

expression of one gene would affect the downstream expression of others. However, the 

resulting directions of these responses appear to concur with what has been previously 

reported in the literature, which provides further support to the proposed roles these 

biomarkers may have in cancer progression, and that the information that these response 

curves are providing appears to be a true reflection on the biological nature of these genes. 

Additionally this method potentially enables rules to be extracted from the ANN model by 

establishing the biomarker threshold at which the prediction changes from one class to 

another. Simple IF AND THEN rules may then be extracted; for example:

IF gene x  expression is > i AND 

gene y  expression is < j  THEN 

ANN output = 1

This would have a potential use in a clinical setting for molecular classification of tumours, 

and in turn helps to shed light on the often described ANN “black box”. This shows that 

they are indeed not black boxes, as rules and even formulae can be easily extracted from 

trained ANN models, which can then be applied to future cases in a rapid and simple 

manner.

Analysis of the population structure within a dataset allows for the positioning of 

individual samples based upon their similarity with regards to the ANN model predictions 

over a number of RSCV sub-models. Using this method it becomes possible to be able to 

not only classify new cases into a particular group, but to pinpoint exactly where they lie 

within the population. Here there is the possibility of identifying new sub-groups within 

diseases of interest and potentially extending traditional clinical diagnosis of diseases such 

as cancer, whilst at the same time identifying sample outliers within the population. This
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type of analysis can then be combined with that conducted in previous chapters using 

visualisation techniques such as PCA and cluster analysis in order to determine whether 

the population structures identified using a variety of methods show correlations with one 

another. This allows for the potential to identify cases that are diagnosed as negative but 

are also showing characteristics (based on their profiles) belonging to the positive 

population. These individuals may be then defined as a “higher risk” sub-population. This 

approach could be fundamental in the development of novel prognostic and diagnostic 

markers and a broadening of clinical classifications, not only reducing the risk of false 

positive diagnoses, but also identifying risk of disease development and progression in a 

patient specific manner.

An approach aimed towards the identification of potential interaction networks from 

identified gene subsets was then described. This provides information about the 

components involved in the system of interest, and how they might regulate this system by 

interacting with one another. This method was shown to be successful in accurately 

modelling the data on which it was trained, that is using gene expression values to model 

the expression values of other genes identified in the same gene subset. The method shows 

how genes appear to regulate one another, causing the up- or down-regulation of others, 

and how gene subsets are potentially linked together by individual genes. Additionally, the 

strength of these interactions can also be determined, and these strength thresholds may be 

varied according to the level of interaction one is interested in. For example the network 

may be altered to only include those interactions which are extremely strong. The one 

disadvantage here is that there are currently no known interaction networks for these 

systems for the network derived here to be validated against. However, the approach 

provides valuable information on how subsets of important biomarkers may link together, 

and how each motif appearing in the network may represent an individual pathway. The 

expression of genes within these pathways may be important to disease status, and 

potentially disease progression. Genes which appear to be the focal points of these 

networks may be potential targets since they appear to be at the root of the problem. For 

example those genes found to be important in lymph node metastasis may be targeted in an 

effort to prevent this disease spread. When the network is interrogated further, one is able 

to focus in on particular regions of interest, and derive potential pathways from this 

information. This was shown in this chapter, where a section of a gene network was 

investigated to generate a pathway of events. It was shown how the expression of one 

gene appears to affect the expression of others, which subsequently causes a cascade effect
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of increased or decreased expression of many other genes. Interestingly, many of the 

genes examined here have been previously linked to breast cancer, further validating their 

identification here. For example, several ER positive human cancer cell lines have been 

shown to express the HSD17B4 gene (de Launoit and Adamski, 1999). Lacroix and 

colleagues (Lacroix, et al., 2004) described the GALNT3 gene to be inversely correlated to 

ER expression in tumours. Sreerama and Sladek (Sreerama and Sladek, 1997) showed that 

ALDH1 levels varied over a wide range in primary and malignant breast malignancies, and 

they proposed that measuring the level of this in normal breast tissue would be of high 

predictive potential with regards to treatment. Moreover, it has been shown how target 

organs for breast metastases are enriched in the chemokine CXCL12, which is 

overexpressed in the metastatic process of breast tumours (Ben-Baruch, 2003). Finally, 

TNF-alpha, involved in the inflammatory response (Azmy, et al., 2004), has been shown to 

be tumourigenic both in vitro (Komori, et al., 1993) and in vivo (Fujiki, et al., 1994; 

Suganuma, et al., 1999). Furthermore high plasma levels of TNF in cancer patients has 

been associated with poor prognosis (Nakashima, et al., 1998).

Various other methods for deriving gene regulatory networks have been proposed in the 

literature, which include rule based formalisms and Boolean networks (de Jong, 2002) 

although most applications appear to favour the use genetic algorithms to construct the 

network (Huang, et al., 2005). However genetic algorithms have been shown to perform 

particularly poorly on this type of complex data (Spieth, et al., 2005). Bar-Joseph (Bar- 

Joseph, 2004) discussed that current methods for deriving regulatory networks from gene 

expression data from DNA microarrays were limited due to the large numbers of genes 

involved, and as such only small networks have been inferred be computational means. 

This thesis introduced a method which overcomes this problem by initially identifying the 

optimal topology of the network using the stepwise approach described in the previous 

chapters. This then reduced the number of parameters to be used for creating the gene 

regulatory network to just the most important gene subsets capable of classification of the 

data. It is then these gene subsets which are used for the derivation of the gene interaction 

network, which considers all components together in a single network. Although it is 

accepted that these are preliminary models of the system which need validation by further 

research, the potential is evident for the development of these methodologies towards an 

integrated modelling, biomarker identification and systems biology approach to biological 

data analysis.
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CHAPTER 6. OVERALL SUMMARY AND DISCUSSION

This study has focused on the development and validation of ANN based methodologies 

geared towards analysis of biological systems in order to gain an insight into diseases of 

interest. ANNs were chosen to be the main focus of these studies due to their many 

advantages within the context of the aims of this thesis. For example their ability to model 

complex nonlinear data is essential as this type of dataset is becoming commonplace in 

biological research. Their proven ability to be able to generalise well to new cases is 

crucial when developing models for diagnostic and prognosis purposes. Furthermore the 

way in which ANNs are accessible for interrogation was perhaps one of the most important 

reasons they were chosen here as this enables variable importance to be determined, and 

biomarkers to be identified and characterised. These may then be examined further to 

deduce the possible function of these markers relative to a disease of interest. It is well 

established that disease processes can be highly complex, and this research is aimed at 

developing methods which identify biomarkers that have prognostic and diagnostic 

potential. Furthermore, methods focused at interrogating these biomarkers have been 

described, leading to further understanding of how these may be changing in response to 

their role in disease and how they may interact with one another.

The main aims of this research were as follows:

• To use ANNs to develop and validate predictive models from real biological 

datasets.

• To determine the importance of individual variables within these models, thus 

deriving meaning from the ANN “black box”.

• To design, write and implement software tools for the automated identification and 

characterisation of key subsets of biomarkers, and the subsequent validation of 

these methods.

• To show how the biomarkers identified can be interrogated further still, in order to 

characterise their behaviour with regards to the disease of interest.

• To investigate the potential use of ANN modelling in identifying gene networks 

and interactions between biomarkers identified in these complex systems.
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6.1. ANNs in the development and validation of predictive models

Network parameter settings of the ANN architecture were trialled and tested to determine a 

set of parameters which were appropriate for the type of complex data used throughout this 

study. Based upon these findings, the basic ANN parameters used for the analysis carried 

out were:

Learning rate of 0.1.

Momentum value of 0.5.

Hidden layer size of between 2 and 5 nodes.

Data randomly split into subsets of 60 % training, 20 % test, and 20 % validation.

Initial weights of the network randomised between 0 and 1.

Training terminated once network fails to improve on the test error for 20,000 epochs.

Once these had been determined, predictive models were developed using absolute 

weightings analysis to parameterise input variables in order to reduce the complexity of the 

model whilst maintaining predictive performance. This was shown to be a successful 

approach in generating predictive models from MS analysis of bacterial pathogens. The 

models developed were shown to be extremely robust when validated against a further set 

of samples, classifying 98 % of these samples correctly. Additionally PCA and clustering 

approaches were utilised in order to gain further understanding of the data structure, 

Interestingly, the samples misclassified by the ANNs were shown by PCA and clustering 

to be more closely related to their ANN predicted class than their actual assigned class 

suggesting a population continuum existing between the different species. However, there 

are limitations to this approach caused by the dimensionality of the data generated with this 

type of analysis. With this type of parameterisation although one can obtain a measure of 

importance of each input variable used, the difference in the importance value from one 

input to another is often extremely small due to the magnitude and dimensionality of the 

data. Therefore the decision concerning which inputs to retain and which should be 

removed remains somewhat arbitrary when this high dimensionality is considered. The 

meta-pruning approach summarised in the next section was designed to address these 

problems by only retaining input variables which were consistently identified as important 

in classification over a number of methods, increasing the confidence that a given input is 

of true value to the model.
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6.2. Determining the importance of input variables within the system of interest

A comparison of several input pruning approaches was conducted to assess how inputs 

identified as important in different approaches performed in the classification of different 

datasets. Here, weightings analysis using the actual values of the interconnecting weights 

produced the more accurate models when compared with absolute weightings analysis and 

sensitivity analysis. This in turn led to the assessment of a proposed “meta-pruning” 

approach. Here only those inputs of importance in all of the methods tested are selected, 

and are then combined together for further training. This identified candidate biomarkers 

which were consistently influential in the predictive performance of the model. This meta- 

pruning approach significantly out performed the traditional methods in both of the 

datasets used here for validation. This chapter of the study showed how information 

relating to input importance is readily accessible from the trained ANN models, and by 

using this information, complex datasets may be parameterised to generate simpler and 

more robust predictive models. Although this approach overcomes the limitations 

described in the previous section, it is still often difficult to determine how one balances 

model simplicity against model performance. This often makes it difficult to decide at 

which point to stop removing inputs which appear to be of less importance in the model, 

resulting in the final biomarker subset. Therefore the stepwise approach to biomarker 

identification summarised in the next section was designed to overcome these issues by 

identifying biomarker subsets whose inclusion in the model results in an increase in 

classification for blind data.

6.3. The design and implementation of software tools for the automated identification 

of key subsets of biomarkers

Novel stepwise ANN approaches to data mining of complex highly dimensional datasets 

have been developed to allow for the identification of a defined subset of biomarkers with 

prognostic and diagnostic potential. Software tools were created for the automation of 

identifying biomarkers that result in high classification accuracies. This approach was then 

applied to different datasets to validate its potential application. Here, subsets of 

biomarkers were identified which were capable of predicting disease status to very high 

accuracies (>95 %) in a variety of analyses on different types of dataset which were 

focused toward the diagnosis and prognosis of different stages of melanoma and breast 

cancer. Further investigation of these biomarkers showed that many of these had
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previously been associated with cancer. With the stepwise approach, biomarkers identified 

subsequently to the marker identified at step 1 are ordinal to one another, explaining 

different aspects of the variation in the data space. Therefore although they may have less 

overall influence on classification than the first marker, they are explaining variation not 

previously described. Inputs may be ranked at step 1 to give a relative importance value 

similar to that achieved when using the parameterisation methods described previously. 

Furthermore, the order in which these inputs appear when they are ranked according to 

their performance was shown to be consistent when validated by repeating the same 

analyses multiple times. The method was also validated using separate additional 

validation datasets, as a second order validation of the approach. Once again, high 

classification accuracies were seen adding further evidence that the markers identified are 

of true relevance to the system being modelled.

Additionally, it was shown that there is not a single solution to a particular problem, and 

many biomarker subsets exist within these systems which have the ability to predict the 

class of interest to high accuracies. Many of the genes identified here appeared in several 

biomarker signatures, further validating and highlighting the potential importance of their 

role in disease. Stepwise approaches in ANN modelling have been previously described 

(Addison, et al., 2004; Cottrell, et al., 1995), however these studies showed their use more 

specifically in dimensionality reduction by identification of the importance of variables 

within a system. The stepwise approach described in this research is aimed more 

specifically towards biomarker identification, and was designed to help overcome some of 

the limitations associated with approaches focused on the parameterisation of datasets. 

The stepwise approach is not affected by these limitations since it takes each input variable 

into consideration and monitors how its independent addition to the model affects network 

performance, and as such is not adversely affected by the inherent noise commonly 

associated with these highly dimensional datasets. It was also shown that this approach 

was capable of generalisation to new data not originally included in the model 

development process, and even to new datasets where the patients originated from a very 

different background to the original. This shows that these models are not merely 

overfitting the data, and limitations associated with linear based stepwise models discussed 

in Steyerberg et al. (Steyerberg, et al., 1999) are not applicable here.

Another limitation is the false detection of input variables of importance, so it was 

essential to show that the proposed stepwise approach developed here was not falsely
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identifying random input subsets as a consequence of the highly dimensional datasets used. 

To achieve this, various validation exercises were conducted which showed that the 

biomarkers identified using these methodologies were not a random selection of input 

variables, but were consistently identified as important over multiple analyses. This, 

together with previous reports in the literature of the associations of these biomarkers with 

the disease of interest, showed that the biomarkers identified with this approach do indeed 

have biological relevance and confidence in their importance in differentiating between the 

classes of interest can be high, thus warranting their further investigation.

6.4. Interrogation and characterisation of biomarkers

Once a subset of biomarkers has been identified using the approaches described, it was of 

interest to investigate them further to understand how their increased or decreased 

expression affects the classification by the ANN. This was achieved by monitoring the 

change in ANN output when the input value of a particular biomarker of interest is altered. 

These responses could be positive, negative, discriminatory and co-factorial. Furthermore, 

it was highlighted that rules may be extracted from these response curves in order to 

generate simplistic models which have a potential use in a clinical setting for molecular 

classification of disease, as such illuminating the alleged ANN “black-box”. The main 

limitation in the response curve analysis is that all input values remain fixed whilst one is 

varied. This would be untrue in a biological system where changes in the abundance and 

expression of proteins and genes would result in a change of many others. However many 

biomarkers identified from the cancer datasets were shown to have previous associations 

with cancer, and results from the analysis of the response curves were shown to coincide 

with findings in the literature regarding the changes in expression patterns of these 

markers. Therefore it was concluded that the information gained from the response curve 

analysis appears to be a true reflection on the biological role of these biomarkers.

It was also shown how the ANN predictions, could be used to derive the population 

structure of the samples that were modelled. Here it was shown how various sub-groups of 

cases appeared within the data, which could subsequently be used to identify patients 

which were at risk of disease spread based upon their genetic profiles. A similar method 

was shown by West et al. (West, et al., 2001) where the authors looked at the probabilities 

from their classification model to identify samples that were identified as lymph node 

negative and whose disease may be poised to metastasise.
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6.5. Identifying interactions between biomarkers in complex systems

It was proposed that ANNs could be used to derive potential interaction motifs from the 

subsets of biomarkers identified as important in the classification of disease. Here, each 

biomarker was in turn used as an output in an ANN model, with the remaining biomarkers 

used as inputs and trained to predict the expression level of the output gene. Once the 

model had trained sufficiently to predict this expression to high accuracies, the strength of 

the weightings between the input and output genes was monitored in order to determine if 

there were any regulatory interactions between genes, and if so, the strength of this 

interaction. This method showed that the data could be modelled in this way very 

precisely. When the weight matrices were used to derive an interaction network, several 

motifs appeared to be interacting with one another by clearly defined focal genes within 

the system. These focal genes look as if they are strongly involved in determining the 

disease status of an individual, and their expression could be crucial to providing a further 

understanding of the diseases of interest. Although this interaction work is in its infancy, 

and requires extensive validation from a biological perspective, these gene networks offer 

the potential for deriving pathways that show how the change in expression of one gene 

causes a resulting change in many others. This could be fundamental from a clinical 

perspective.

6.6. Future directions

Future research will continue to develop the methods described in this thesis, in order to 

gain more information from these complex disease processes. Some of the markers that 

were identified as important in the breast cancer and melanoma studies are currently being 

assessed for their value as diagnostic and prognostic indicators. For example CAIX and 

AGP are being validated by colleagues on new samples in order to determine their role in a 

true biological context. Methods are being developed to further interrogate the patient 

populations within these diseases and methods for extending traditional prognostic 

methods are underway, with a view to improving current methods in diagnosing diseases 

such as cancer. To improve the stepwise approach to identifying biomarkers, methods are 

currently being developed to distribute this processing over multiple machines, so that tens, 

or even hundreds of computers will simultaneously analyse the datasets, substantially 

shortening down the processing time required.
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6.7. Summary

The development of proteomic and genomic applications for the research into different 

diseases has paved the way for the development of novel approaches for the way in which 

these systems can be investigated. As these technologies are relatively cheap and reliable, 

proteomic and gene expression profiles can be generated allowing for these diseases to be 

looked into from a whole new perspective. This provides new insight into how proteins 

and genes are being regulated with regards to different conditions. The limitation of these 

approaches is the sheer volume of data which they produce, with the majority of this data 

often noisy and redundant. Therefore these technologies must be coupled with appropriate 

computational approaches which would then enhance this research further by identifying 

components of these proteomic and genomic profiles that are the most important in 

differentiating between disease states of interest. The challenge here is to develop 

intelligent computational methods which are robust enough to be able to cope with data of 

this size-and nature in order to provide further understanding of these complex proteomic 

and genomic patterns. This will in turn lead to methods for prognosis and diagnosis of 

diseases such as cancer, by providing an insight into the proteins and genes which are 

being expressed differently depending on the current status of the disease.

This thesis has described methods developed using ANNs which allow for the 

classification of cases based upon an outcome of interest. It was shown how complex 

datasets can be parameterised in order to identify components of importance between the 

classes of interest. These approaches were enhanced further with the development of a 

stepwise approach to analysis, whereby groups of biomarkers are identified which are 

capable of the accurate prediction of disease class. Models may then be interrogated to 

investigate how these biomarkers are being differentially expressed with regards to disease 

status. It was then shown that there are potentially many different subsets of biomarkers 

capable of the accurate classification of disease status, and that there is not only one 

solution to a problem of this complexity. These different subsets of biomarkers may then 

be used in determining gene networks through the accurate modelling of gene expression 

data. This was achieved by using the weights of these trained models to understand 

interactions between individual biomarkers and derive pathways based upon these 

interactions. Furthermore, it was shown how these motifs possibly link together by 

individual biomarkers which are strongly influential in the prediction of disease class. As 

with any system the analyses conducted during the course of this research are not without
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limitations. These have been discussed and all of the methodological developments within 

this research have attempted to overcome these problems. Efforts have been taken to 

ensure that the models are extensively cross validated during development, so as to be 

generalised to new unseen data which can then be applied back to the model when it is 

made available. This has led to the training, testing and cross validation of millions of 

individual models. This enables confidence to be gained that the subsets of biomarkers 

identified are of relevance to the biological system being modelled and are not an artifact 

of the high dimensionality of the data itself.

To summarise, this research encompasses the design and implementation of a number of 

novel approaches combined together to gain a further understanding of disease systems 

using proteomic and genomic data, providing solutions for problems facing biologists with 

regards to handling these masses of data being produced. Therefore, the aims set out at the 

beginning of this research are substantiated by the work contained within this thesis. 

These aims have all been achieved. This includes the design, writing and subsequent 

implementation of software for use in the analysis of biological data and the identification 

of biomarker subsets which correlate strongly to disease status. This analysis has shown 

how ANNs can be used successfully to identify biomarkers which can then be interrogated 

further to gain an understanding of the system being modelled with respect to how these 

biomarkers are responding to a particular disease status, and how their change can be 

monitored for disease prognosis and diagnosis. As such the results from the 

experimentation carried out in this work have resulted in novel contributions to the field of 

bioinformatics.
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APPENDIX

'This function compares i to input list 

' if i is already selected, go to next i

Function FindString(ListOfChars As String, Char As String) As Boolean

Dim LengthOfList As Integer 

Dim ToCompare As String 

Dim TempChar As String

ToCompare =""

For i = 1 To Len(ListOfChars)

TempChar = Mid(ListOfChars, i, 1)

If TempChar <> Then

ToCompare = ToCompare + TempChar 

Else

If ToCompare = Char Then 

FindString = True 

Exit Function 

End If

ToCompare =

End If 

Next i

FindString = False 

End Function

Private Sub Checkl_Click()

If Check 1. Value -  1 Then 

lblterm2.Visible = True



Appendix 201

TxtTerm.Visible = True 

End If

If Check 1. Value = 0 Then 

lbltenn2.Visible = False 

TxtTerm.Visible = False 

End If

End Sub 

'exit program

Private Sub CmdExit_Click() 

End

End Sub

Private Sub CommandlClickQ

'Create directories to save analysis files into 

MkDir (TxtPath.Text)

MkDir (TxtPath.Text + "\Bootstrapping_Results\") 

MkDir (TxtPath.Text + "\Predictions\")

MkDir (TxtPath.Text + "\Sensitivity_Analysis\") 

MkDir (TxtPath.Text + "\Overall_Summary\") 

MkDir (TxtPath.Text + "\Overall_Averages\") 

MkDir (TxtPath.Text + "\Network_Models\")

Dim inputlist As String 

Dim z As Integer 

Dim Additions As Integer 

Dim Bootstraps As Integer 

Dim Improvement As Integer
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Improvement = 0

Additions = Clnt(txtAdditive.Text)

'This creates an inputlist which is empty to begin with 

If z <= 1 Then

inputlist = V  & txtaddinputs.Text &

End If

For z = 1 To Additions

Application.Option.Output.MaxOutputDocs = 10000000

Dim AO As AnalysisOutput 

Dim AWB As Workbook

'set amount of bootstraps to equal combobox

Bootstraps = CInt(txtBoot.Text)

'declare variables

Dim f  As Integer 

Dim g As Integer 

Dim h As Integer 

Dim 1 As Integer 

Dim m As Integer 

Dim n As Integer 

Dim p As Integer 

Dim q As Integer 

Dim r As Integer 

Dim s As Integer

'columns for mean analysis

'rows to copy for mean analysis, = no. bootstraps ie 20 

'row to copy mean values

'row ID for mean analysis to copy to averages sheet 

'row ID to copy results averages to averages sheet 

'row ID to paste from means analysis to averages sheet 

'row ID to paste input ID 

'row ID to paste sensitivity 

'column"" ""

'end row to paste sensitivity
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Dim HiddenLayers As Integer 

Dim Inputs As Integer 

Dim i As Integer

g = l

h = Bootstraps + 1 

1 - 1

m = 1 + Bootstraps

n - 1

p = l

q =  1

r = 1 

s = l

'number of hidden layers in analysis 

'will equal amount set in text box

HiddenLayers = txtHidden.Text

'INPUT SELECTION

'number of inputs is specified in text box

'number of additions is specified also

Inputs = txtlnputs.Text 

For i = 1 To Inputs

'Create spreadsheets for analysis

Dim Results As New Spreadsheet 

Dim Averages As New Spreadsheet 

Dim Sensitivity As New Spreadsheet 

Dim Summary As New Spreadsheet 

Dim character As String
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Dim tempsens As New Spreadsheet 

Dim TempSpread As New Spreadsheet

character =

Dim SourceData As Spreadsheet

'INSERT PATH OF SPREADSHEET TO ANALYSE

Set SourceData = Spreadsheets.Open(lblSelected.Caption)

'this code declares the number of samples to analyse as the number 

'of cases in the spreadsheet file

'this code also specifies the % split of training/test and validation

Dim Ncases As Long 

Dim Samples As Integer 

Dim Training As Integer 

Dim Validation As Integer 

Dim test As Integer

Ncases = SourceData.NumberOfCases 

Samples = Ncases

Training = Samples * (txtTraining.Text / 100)

Validation = Samples * (lblValidation_Percentage.Caption / 100) / 2 

test = Validation

'this code refers back to original function 

'in order to determine if an input is already 

'predent in the input list to analyse

Dim InputLoop2 As Boolean 

InputLoop2 = True
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Do While InputLoop2 

If i > CInt(Inputs) Then 

InputLoop2 = False 

Else

'Searching string for inputs already being used 

If FindString(inputlist, CStr(i)) = False Then 

InputLoop2 = False 

Else 

i = i + 1 

End If

End If

Loop

'this code creates spreadsheet to use for analysis, to speed up loading times

Dim Totallnputs As Integer 

Dim DataArray As Double 

Dim inputlist3 As String 

Dim templnput As String

Totallnputs = 1

inputlist3 =""

inputlist3 = i & inputlist 'inputlist to read from for pasting variables to be used

Dim OutputColumn As Integer 

Dim CurrentColumn As Integer 

Dim InputNumber As Integer 

Dim ToCompare As String 

Dim TempChar As String 

Dim count As Integer
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InputLoop3 = True 

InputNumber = 0

OutputColumn = txtOutput.Text 'identifies column countaining output variable

CurrentColumn -  1

T empSpread, Activate

Temp Spread. AddVariables Temp Spread.NumberOfV ariables, 500

If z = 1 Then 

If I = 1 Then

TempSpread.AddCases 10, SourceData.NumberOfCases - 10 

End If 

End If

ToCompare = ""

If inputlist = Then

S ourceData. Activate

Set Cells = SourceData.CellsRange(l, i, SourceData.NumberOfCases, i)

Cells. Activate

SourceData.CopyWithHeaders

'Paste the contents of the column into the new speadsheet 

TempSpread.Activate

Set Cells = TempSpread.CellsRange(l, Clnt(CurrentColumn), 

SourceData.NumberOfCases, Clnt(CurrentColumn))

Cells.Select 

TempSpread.Paste 

TempSpread. AutoFitVariables 

Totallnputs = Totallnputs + 1

CurrentColumn = CurrentColumn + 1
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'loop around until the end of inputlist 

For count = 1 To Len(inputlist3)

TempChar = Mid(inputlist3, count, 1)

If TempChar <> Then

ToCompare = ToCompare + TempChar 

Else

'Found a comma, use this column

'Copy the cells from the opened spreadsheet in this column 

SourceData. Activate

Set Cells = SourceData.CellsRange(l, Clnt(ToCompare), 

SourceData.NumberOfCases, CInt(ToCompare))

Cells.Activate

S ourceData. C opy W ithHeaders

'Paste the contents of the column into the new speadsheet 

T emp Spread. Activate

Set Cells = TempSpread.CellsRange(l, Clnt(CurrentColumn),

SourceData.NumberOfCases, Clnt(CurrentColumn))

Cells. Select 

T empSpread.Paste 

T empSpread. AutoFitV ariables 

Totallnputs = Totallnputs + 1

CurrentColumn = CurrentColumn + 1 'Advance the column number of the new 

speadsheet

InputNumber = InputNumber + 1 'Advance the input number

ToCompare = "" 'reset the comparison

End If 

Next count

'copy output column
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' Paste the output column from the old to new spreadsheet 

SourceData.Activate

Set Cells = SourceData.CellsRange(l, OutputColumn, SourceData.NumberOfCases, 

OutputColumn)

Cells. Activate

SourceData.CopyWithHeaders

TempSpread. Activate 

TempSpread. Visible = True

Set Cells = TempSpread.CellsRange(l, CurrentColumn, 1, CurrentColumn)

Cells.Select 

TempSpread.Paste 

T emp Spread. AutoF itV ariables 

SourceData.SelectCaseNamesOnly 

SourceData. Copy

TempSpread. SelectCaseNamesOnly 

TempSpread.Paste

TempSpread.DeleteVariables CurrentColumn + 1, TempSpread.NumberOfVariables 

Set Cells = TempSpread.CellsRange(l, 1, 1, 1)

Cells. Select

'main analysis code

Dim ANNanalysis As Analysis

Set ANNanalysis = Analysis(scNeuralNetworks, TempSpread)

ANNanalysis.NeverShowDialog = True 

ANNanalysis.Visible -  False 

ANNanalysis.AnalysisOption.ShowWarnings = False

If i <= Clnt(Inputs) Then

'input selection
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If CurrentColumn = 2 Then

With ANNanalysis.Dialog 

VariablesAndTypes = "1 | 2”

.Variables = "2 | 1"

.TypeOfAnalysis = scSNNCustomNetworkDesigner 

.IssueMissingDataWarning = False 

.ApplyMemoryLimit = False

End With

Else

With ANNanalysis.Dialog

.VariablesAndTypes = "1-" & (CurrentColumn - 1) & " | " & CuiTentColumn 

.Variables = CurrentColumn & " | 1-M & (CurrentColumn - 1)

.TypeOfAnalysis = scSNNCustomNetworkDesigner 

.IssueMissingDataWarning = False 

.ApplyMemoryLimit = False

End With 

End If

ANNanalysis.Run

With ANNanalysis.Dialog 

.MLPNetwork = True 

.MLPNoHiddenLayers = 1 

.MLPNoHiddenUnitsLayerl = HiddenLayers 

.MLPErrFnClassificationSOS = True 

' .MLPRegressionOutputFnLogistic = True 

1 .MLPRegressionOutputFnLogisticRange = 0.9 

.RBFNormalize = False

'classification

'regression

'regression
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.RBFNoHiddenUnits = 9 

.RBFClassificationErrFnEntropy = True 

.PNNNormalize = False 

.PNNIncludeLossMatrix = False 

.GRNNNormalize = False 

.GRNNNoHiddenUnits = 16 

.SOFMNormalize = False 

.SOFMWidth = 7 

.SOFMHeight -  2 

.PCNNoPrincipalComponents = 1 

.CNNormalize = False 

.CNNoHiddenUnits = 9 

.MakeTimeSeriesNetwork = False

End With

ANNanalysis .Run

With ANNanalysis.Dialog

.MLPTrainingPhaseOne = True 

.MLPTrainingPhaseOneAlgorithm = 0 

.MLPTrainingPhaseOneEpoehs = 3000 

.MLPTrainingPhaseOneLearningRate = txtLeaming.Text 

.MLPTrainingPhaseTwo = False 

.MLPTrainingReinitializeBeforeTraining = True 

.MLPTrainingUniformReinitialize = True 

.MLPTrainingMinimumMean = 0 

.MLPTrainingMaximumSD = 1 

.MLPTrainingTrackBestNetwork = True 

.MLPTrainingTrainingErrorStop = 0 

.MLPTrainingSelectionErrorStop = 0 

.MLPTrainingTrainingErrorlmprove = 0 

.MLPTrainingSelectionErrorlmprove = 0 

.MLPTraininglmprove Window = 1000 

.MLPTrainingPrunelnputsAndHiddenUnits = False 

.MLPTrainingPrunelnputsWithLowSensitivity = False
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.MLPTrainingClassificationSpecified = True 

.MLPTrainingClassificationAcceptRatio = 0.5 

.MLPTrainingClassificationRejectRatio = 0.5 

'.MLPTrainingClassificationMinLoss = True 

'.MLPTrainingClassificationMiuLossValue = 1

'classification

'classification

' .MLPTrainingAssignToHighestConfidence = True regression

.MLPTrainingApplyWeightDecayPhaseOne = False 

.MLPTrainingUselnteractiveDisplay = False 

.MLPTrainingBPlAdjustLRAndMomentum = False 

.MLPTrainingBPlLRInitValue = 0.1 

.MLPTrainingBPlMomentumlnitValue = txtMomentum.Text 

.MLPTrainingBPlShuffleCaseOrder = True 

.MLPTrainingBPl AddGaussianNoise = False 

.MLPTrainingBP2AdjustLRAndMomentuni = False 

.MLPTrainingBP2LRInit Value = 0.01 

.MLPTrainingBP2MomentumInitValue = 0.3 

.MLPTrainingBP2ShuffleCaseOrder = True 

.MLPTrainingBP2AddGaussianNoise = False 

.MLPTrainingDBD 1 InitialLR = 0.01 

.MLPTrainingDBDlLRIncrement = 0.01 

.MLPTrainingDBD 1 Decay = 0.8 

.MLPTrainingDBD 1 Smoothing = 0.5 

.MLPTrainingDBD 1 AddGaussianNoise = False 

.MLPTrainingDBD2InitialLR = 0.01 

.MLPTrainingDBD2LRIncrement = 0.01 

.MLPTrainingDBD2Decay = 0.8 

.MLPTrainingDBD2Smoothing = 0.5 

.MLPTrainingDBD2AddGaussianNoise = False 

.MLPTrainingQPlLR = 0.01 

.MLPTrainingQPl Acceleration = 2 

.MLPTrainingQPl AddGaussianNoise = False 

.MLPTrainingQP2LR = 0.01 

.MLPTrainingQP2 Acceleration = 2 

.MLPTrainingQP2AddGaussianNoise = False
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Set optionsdialog -  ANNanalysis.Dialog.GetUserCaseSelection 

With optionsdialog

.SelectSpecifiedCases = True 

.UserSpecifiedCases = "1-" & Samples 

End With

ANNanalysis.Dialog.SetUserCaseSelection optionsdialog 

Set optionsdialog = Nothing

Set optionsdialog = ANNanalysis.Dialog.GetSampling 

With optionsdialog

.SamplingMethodUseRandomSamplingAdvanced = True 

.NoSamplesValueAdvanced = Bootstraps 

.UseFromEnsembleAdvanced -  False 

.TrainingSubsetSizeCrossValidation = 96 

.SelectionSubsetSizeCross Validation = 48 

.TrainingSubsetSizeBoot = 112 

.TrainingSubsetSizeBootstrap = 56 

.ResampleSelectionOfSubsetsRandom = True 

.AssignmentOfSubsetsOnceRandom = True 

.TrainingSubsetSizeRandom = Training 

.SelectionSubsetSizeRandom = test 

.TestSubsetSizeRandom = Validation 

.CasewiseDeletionOfMD = True 

End With

ANNanalysis.Dialog.SetSampling optionsdialog 

Set optionsdialog = Nothing

ANNanaly sis .Run

With ANNanalysis.Dialog
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'this specifies whether the user has selected 

'either training/test or validation for analysis

If OpTrain. Value -  True Then 

.UseTrainingSubset = True 

Else

' .UseTrainingSubset = False 

' End If

If OpTest.Value = True Then 

.UseTestSubset = True 

Else

' .UseTestSubset = False 

' End If

If OpVal.Value = True Then 

.UseSelectionSubset = True 

' Else

' .UseSelectionSubset -  False 

End If 

End If 

End If

.GenerateSummaryStatistics = True

.GenerateConfusionMatrix = True 'classification

.ShowPredictions = True

.ShowConfidenceLevels = False 'classification

.IncludeObservedlnPredictionsSpreadsheet = True 

.IncludelndependentsInPredictions Spreadsheet = False 

.IncludeSubsetVariablelnPredictionsSpreadsheet = False 

.IncludeUserVariablesInPredictionsSpreadsheet = False 

.ShowRawResiduals = True 

.ShowResidualsSquared = False 

.ShowAbsoluteResiduals = False 

. ShowS tandardResiduals = False 

.IncludePredictionsInResidualsSpreadsheet = True 

.IncludeObservedlnResidualsSpreadsheet = False
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.IncludelndependentsInResidualsSpreadsheet = False 

.IncludeSubsetVariablelnResidualsSpreadsheet = False 

.IncludeUserVariablesInResidualsSpreadsheet = False 

.ShowRatioAndRankingSensitivityMetrics = True 

.SelectXaxisVariable = 1 

.SelectYaxisVariable = 0 

.CasewiseDeletionOfMD = True 

End With

Set optionsdialog = ANNanalysis.Dialog.GetUserCaseSelection 

With optionsdialog

.SelectSpecifiedCases = True 

.UserSpecifiedCases = "1-" & Samples 

End With

ANNanalysis.Dialog.SetUserCaseSelection optionsdialog 

Set optionsdialog = Nothing

Set optionsdialog = ANNanalysis.Dialog.GetMultipleModelSelection 

With optionsdialog

.ShowOnlyStandaloneNetworks = True 

.SelectTheEnsembleltself = True 

.SelectedModels = "1-" & Bootstraps 

End With

ANNanalysis.Dialog.SetMultipleModelSelection optionsdialog 

Set optionsdialog = Nothing

'Summary Spreadsheet

Dim SI As Spreadsheet

Set SI = ANNanalysis.Dialog.PrintModelSummarySpreadsheet(l)

SI. Visible = True

'S1 .Activate
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Set Cells = Sl.CellsRange(l, 1, Bootstraps, 12)

Cells.Select 

S1 .CopyWithHeaders

SI.Close

Results.Activate

Set Cells = Results.CellsRange(l, 1, 1, 1)

Cells. Select

Results.Paste

Results. Value(l, 1) = SourceData.VariableName(i) 

If i = 1 Then

Results.AddCases Bootstraps, 20 

End If

'Calculating MEAN

Dim columns As Integer 

columns = 7

For f  = 2 To columns

Results.Value(h, f) = 1 - 1

g = h - Bootstraps

Dim Bstraps As Integer 

Bstraps = g + Bootstraps - 1
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For g = g To Bstraps

Results.Value(h, f) = Results.Value(h, f) + Results.Value(g, f)

Next g

Results .Value(h, f) = Results. Value(h, f) / Bootstraps 'divide by number of

bootstraps

Next f

Results.Activate 'copying mean results into new

spreadsheet

Set Cells = Results.CellsRange(l, 1,1, 1)

Cells. Select 

Results.Copy

Averages. Activate

Set Cells = Averages.CellsRange(l, 1,1, 1)

Cells. Select 

Averages.Paste

1 =  1 +  1

Results .Activate

Set Cells = Results.CellsRange(m, 2, m, 7)

Cells, Select 

Results.Copy

Averages. Activate

Set Cells = Averages.CellsRange(n, 2, n, 7)

Cells. Select
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Averages.Paste 

n = n + 1

Averages.VariableName(l) = "m/z value" 'label variable names accordingly

Averages.VariableName(2) = "Train Perf."

Averages.VariableName(3) = "Select Perf."

Averages.VariableName(4) = "Test Perf"

Averages. VariableName(5) = "Train Error"

Averages. VariableName(6) = "Select Error"

Averages. VariableName(7) = "Test Error"

Averages. VariableName(8) = "Input Number"

Averages.Value(p, 8) = i 'change variable name width

Dim AveragesWidth As Integer 

AveragesWidth = 8

For Averages Variable Width = 1 To AveragesWidth 

Averages.VariableWidth(AveragesVariableWidth) = 1 

Next AveragesVariableWidth 

If i = 1 Then

Averages.AddCases 10, Inputs 

End If

p = p + i

If i <= Clnt(Inputs) Then

If ChkBoot.Value = 1 Then
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Dim Path_Results As String

Path_Results = TxtPath.Text + "\Bootstrapping_Results\"

'Path_Results = "C:\Additive_Approach\Results\"

Path_Results = PathResults + CStr(z) + "InputModels," + CStr(i) + ".sta"

Results. Save As PathResults, True 

End If

Dim HowManyVariables As Integer 

HowMany Variables = Results. Value(l, 10)

Re suits. S elect All

Results.EntireRange.Clear 'save results and clear for next z

'MERGING AND SAVING PREDICTION FILES 

If ChkSens. Value = 1 Then

Dim MergedPred As Spreadsheet 

Dim TempPred As Spreadsheet

Dim MergeLoop As Integer 

MergeLoop = 1

Set TempPred = ANNanalysis.Dialog.PrintPredictionsSpreadsheet(MergeLoop)

Set MergedPred = TempPred 

MergeLoop = MergeLoop + 1

For MergeLoop = MergeLoop To Bootstraps

Set TempPred = ANNanalysis.Dialog.PrintPredictionsSpreadsheet(MergeLoop)

On Error Resume Next 

'ANNanalysis.NeverShowDialog = True

TempPred. Save As txtTempPred.Text, True
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MergedPred.MergeCases (txtTempPred.Text)

TempPred. Close

Next MergeLoop

MergedPred.SortData 0, 0, 1

Dim PathPred As String 

Path_Pred = TxtPath.Text + "\Predictions\M 

'Path_Pred = "C:\Additive_Approach\Predictions\"

PathJPred = Path_Pred + CStr(z) + "InputModel," + CStr(i) + ".sta" 

MergedPred. Save As Path_Pred, True

End If

'sensitivity analysis

If ChkSens.Value = 1 Then

Dim Sens As Spreadsheet

Set Sens = ANNanalysis.Dialog.PrintSensitivityAnalysisSpreadsheet(l)

Dim Sens Average As New Spreadsheet 

Dim SensSTDev As New Spreadsheet 

Dim Median As New Spreadsheet

Sens.AddCases Bootstraps * 2, 5

'The below code calculates the average ratio for each input
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Dim RatioCases As Integer 

Dim VariableNumber As Integer 

Dim NumberOfVariables As Integer

VariableNumber — HowMany Variables 

SensSTDev. Activate

If VariableNumber > 10 Then

SensSTDev.AddVariables "New", 10, VariableNumber -10 

Median.AddVariables "New", 10, VariableNumber - 10 

End If

For NumberOfVariables = 1 To VariableNumber

Dim TotalCases As Integer 

Dim NumberOfCases As Integer

TotalCases = Bootstraps * 2

Sens.Value(TotalCases + 1, NumberOfVariables) = "0"

For NumberOfCases = 1 To TotalCases 

Sens.CaseName(TotalCases + 1) = "Ratio Averages"

Sens.Value(TotalCases + 1, NumberOfVariables) = Sens.Value(TotalCases + 1, 

NumberOfVariables) + Sens.Value(NumberOfCases, NumberOfVariables)

NumberOfCases = NumberOfCases + 1 

Next NumberOfCases

Sens.Value(TotalCases + 1, NumberOfVariables) = Sens.Value(TotalCases + 1, 

NumberOfV ariables) / Bootstraps
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'the following will compute STDev for ratios 

'Sens.Visible = True

'SensSTDev.Visible = False 

SensSTDev. AddCases 10, 100

Dim SDevTotalVar As Integer 

Dim SDevVar As Integer

Dim SDevCase As Integer 

Dim SDevTotalCases As Integer 

Dim AverageCase As Integer

SDevCase = 1

SDevTotalCases = TotalCases

For AverageCase = 1 To SDevTotalCases

'Sum and square averages from actual values

SensSTDev. Value(SDevCase, NumberOfVariables) = (Sens.Value(AverageCase, 

NumberOfVariables) - Sens.Value(TotalCases + 1, NumberOfVariables))

SDevCase = SDevCase + 1 

AverageCase = AverageCase + 1 

Next AverageCase

'sum squared averages

Dim TotalSquared As Integer 

Dim Squared As Integer 

Dim cases 1 As Integer
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Dim cases2 As Integer 

Dim cases3 As Integer 

Dim cases4 As Integer 

Dim cases5 As Integer 

Dim cases6 As Integer 

Dim cases7 As Integer

cases 1 = Bootstraps + 1 

cases2 = Bootstraps + 2 

cases3 = Bootstraps + 3 

cases4 = TotalCases + 1 

casesS = TotalCases + 2 

cases6 = TotalCases + 3 

cases7 = TotalCases + 4

SensSTDev.Value(casesl, NumberOfVariables) = "0"

Totals quared = Bootstraps 

For Squared = 1 To TotalSquared

SensSTDev.Value(casesl, NumberOfVariables) == SensSTDev. Value(cases 1, 

NumberOfVariables) + SensSTDev.Value(Squared, NumberOfVariables)A 2

Next Squared

'Squared value over N cases

SensSTDev .Value(cases2, NumberOfVariables) = SensSTDev.Value(casesl, 

NumberOfV ariables) / Bootstraps

'SQRT sqaured value over N to equal Standard Deviation
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SensSTDev. Value(cases3, NumberOfVariables) = Sqr(SensSTDev.Value(cases2, 

NumberOfV ariables))

SensSTDev.Activate 

'Copy into original spreadsheet

Sens.Value(cases5, NumberOfVariables) = SensSTDev. Value(cases3,

NumberOfV ariables)

Sens.CaseName(cases5) = "Ratio ST Dev"

'calculate standard error

Sens.Value(cases6, NumberOfVariables) = Sqr((Sens.Value(cases5, NumberOfVariables) 

A 2 / Bootstraps))

Sens.CaseName(cases6) = "Standard error mean"

'calculate 95% ci

Sens.Value(cases7, NumberOfVariables) = Sens.Value(cases6, NumberOfVariables) * 

1.96

Sens.CaseName(cases7) = "95% ci"

'Calculating the median value from the ranks

Median.Activate 

Median. AddCases 10, 15

Dim MedTotalCases As Integer 

Dim MedCases As Integer 

Dim CasePaste As Integer

MedTotalCases = Bootstraps * 2



Appendix 224

Dim cases 8 As Integer 

cases8 = MedTotalCases + 5

CasePaste = 1

For MedCases = 2 To MedTotalCases

Median. Value(CasePaste, NumberOfVariables) = Sens.Value(MedCases, 

NumberOfV ariables)

CasePaste = CasePaste + 1

MedCases = MedCases + 1 

Next MedCases

Median.SortData NumberOfVariables, 0, 0

'Determining whether number is divisible by 2,

'to in turn determine whether it is even or odd 

'so that correct median value can be calculated

Dim MyNum As Integer 

Dim EvenNumber As Boolean

MyNum = Clnt(txtBoot.Text)

If MyNum Mod 2 Then 

EvenNumber = False 

Else

EvenNumber = True 

End If

If EvenNumber = True Then
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Sens.Value(cases8, NumberOfVariables) = (Median. Value((Bootstraps / 2), 

NumberOfVariables) + Median. Value((Bootstraps / 2) + 1, NumberOfV ariables)) / 2 

Sens.CaseName(cases8) = "Median Rank"

Sens.CaseNameWidth = 1.5

Else

Sens.Value(cases8, NumberOfVariables) = (Median. Value((Bootstraps / 2), 

NumberOfV ariables))

Sens.CaseName(cases8) = "Median Rank"

Sens.CaseNameWidth = 1.5 

End If

Next NumberOfV ariables

SensSTDev.EntireRange.Clear

Median.EntireRange.Clear

End If 

End If 

End If

If ChkSens. Value = 1 Then

Dim Path_Sens As String 

Path_Sens = TxtPath.Text + "\Sensitivity_Analysis\"

'Path_Sens = "C:\Additive_Approach\Sens\"

PathjSens = Path_Sens + CStr(z) + "InputModels," + CStr(i) + ".sta" 

Sens.SaveAs PathJSens, True

MergedPred.EntireRange.Clear 

End If

Results.EntireRange. Clear
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Dim Path_Averages As String

Path_Averages = TxtPath.Text + "\Overall_Averages\"

'Path_Averages = "C:\Additive_Approach\Averages\'1 

Path_Averages = Path_Averages + CStr(z) + ".sta"

Averages. Save As Path_Averages, True

Next i

If z = 1 Then

Averages.DeleteVariables 9, 10 'delete unneccessary columns

End If

'sort data by selected training/test or validation results

If OpTrain. Value = True Then 

Averages.SortData 5, 0, 0 

End If

If OpTest.Value = True Then 

Averages.SortData 7, 0, 0 

End If

If OpVal. Value = True Then 

Averages.SortData 6, 0, 0 

End If

'Averages.Visible = True

Averages.Cells(l, l).EntireRow.Select 

Averages.Copy

Summary.Activate
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Summary.Cells(z, l).EntireRow.Select 

Summary.Paste

If z = 1 Then

Summary. AddCases 10, 100 + Inputs 

End If

If z = 1 Then

Dim Summary Width As Integer 

Summary Width = 8

For Summary Variable Width = 1 To SummaryWidth

Summary .Variable Width(SummaryV ariable Width) =

Next Summary Variable Width

Summary .VariableName(l) = "m/z value" 

accordingly

Summary.VariableName(2) = "Train Perf." * 

Summary. VariableName(3) — "Select Perf." 

Summary .VariableName(4) = "Test Perf."

Summary. VariableName(5) = "Train Error" 

Summary. VariableName(6) = "Select Error" 

Summary .VariableName(7) = "Test Error"

Summary .VariableName(8) = "Input Number"

Summary.DeleteCases 9, 10 

End If

'change variable name width

1

'label variable names

'SAVING DATA
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Dim Path_Summary As String

Path_Summary = TxtPath.Text + "\Overall_Summary\" 

'Path_Summary = "C:\Additive_Approach\Summary\" 

Path_Summary = Path_Summary + " Summary, sta" 

Summary. Save As PathJSummary, True

Path_Averages -  TxtPath.Text + "\Overall_Averages\" 

'Path_Averages = "C:\Additive_Approach\Averages\" 

Path_Averages = Path_Averages + CStr(z) + ".sta" 

Averages.SaveAs Path_Averages, True

If inputlist= "„" Then 

inputlist =

End If

inputlist = inputlist + CStr(Averages.Cells(l, 8))

inputlist = inputlist + ","

'Correlation MATRIX

If ChkSens.Value = 1 Then

Dim Corr As New Spreadsheet 

Dim CaseName As Integer 

CaseName = 1

Dim VarNameOrig As Integer 

'corr. Visible = True 

'Sens. Visible = True 

Averages. Visible = True

If z < -  1 Then

Corr.AddCases 10, SourceData.NumberOfVariables
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Corr.AddVariables 10, CInt(Additions)

For VarNameOrig = 1 To SourceData.NnmberOfVariables 

Corr.CaseName(CaseName) = SourceData.VariableName(VarNameOrig) 

CaseName = CaseName + 1 

Next VarNameOrig 

C'orr.CaseNameWidth = 1 

End If

tempsens .Activate 

Dim CorrVar As Integer 

Dim Tempz As Integer 

Tempz = 1

Dim corrpath As New Spreadsheet

'this opens up the spreadsheet from the best input in the previous addition

Set corrpath = Spreadsheets.Open(TxtPath.Text + "\Sensitivity_Analysis\" + CStr(z) +

"InputModels," + CStr(Averages.Value(l, 8)) + ".sta")

corrpath.Activate

'corrpath. Visible = True

'tempsens.Visible = True

tempsens. Value(z, 1) = Averages. Value(l, 8) 'this creates list of best inputs at each 

addition

tempsens.SortData 1, 0, 0

'writing sens ratios to correlation matrix 

For CorrVar = 1 To z

Corr.Value(tempsens.Value(Tempz, 1), z) = corrpath.Value(Bootstraps * 2 + 1 ,  

CorrVar)

Tempz = Tempz + 1 

Next CorrVar

Dim Matrix As Spreadsheet
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Set Matrix = Corr

'assign blue to variable importance if it declines 

'assign red if variable importance increases

Dim fontcase As Integer 

Dim fontvar As Integer

For fontvar = 2 To Matrix.NumberOfVariables

For fontcase = 1 To Matrix.NumberOfCases

If Matrix. Value(fontcase, fontvar - 1) > 0 Then 

If Matrix. Value(fontcase, fontvar) > 0 Then

If Matrix. Value(fontcase, fontvar) < Matrix. Value(fontcase, fontvar - 1) Then 

Matrix.Cells(fontcase, fontvar).Font.Background = RGB(0, 0, 255) 

Matrix.Cells(fontcase, fontvar).Font.Color = RGB(255, 255, 255)

End If

If Matrix. Value(fontcase, fontvar) > Matrix. Value(fontcase, fontvar - 1) Then 

Matrix.Cells(fontcase, fontvar).Font.Background = RGB(255, 0, 0)

End If 

End If 

End If

Next fontcase 

Next fontvar

Matrix.EntireRange.Font.Bold = True

Corr.SaveAs TxtPath.Text + "\correlation_matrix.sta", True
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Averages.EntireRange.Clear

'this code will check for model imporvements, and terminate 

'analysis if model shows no improvement for x amount of input additions

If Check 1. Value = 1 Then

Dim Best As New Spreadsheet 

Best. Activate 

Best.Visible = True

If z > 1 Then

If z = 2 Then 

Best.Value(l, 1) = Summary. Value(l, 6)

End If

If Summary.Value(z, 6) > Best.Value(l, 1) Then 

Improvement = Improvement + 1 

End If

If Summary.Value(z, 6) < Best.Value(l, 1) Then 

Best.Value(l, 1) = Summary. Value(z, 6)

Improvement = 0 

End If

End If

If Improvement = Clnt(TxtTerm.Text) Then 

GoTo MSGBOXEND 

End If 

End If

Next z %
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MSGBOXEND:

'this code creates a graph or MSE and percentage of samples 

'predicted correctly against number of inputs in the model

Summary .Activate

Set Summary = ActiveDataSet

Dim Graph As Analysis

Set Graph = Analysis(sc2dLinePlots, Summary)

With Graph.Dialog

If OpTrain. Value = True Then 

.Variables = "2 5"

End If

If OpTest. Value = True Then 

.Variables = "4 7"

End If

If OpVal.Value = True Then 

.Variables = "36"

End If

.GraphType = scLineMultiplePlot 

.FitType = scFitOff 

.AggregateSpan = 5 

.AggregateValueRangeBar = True 

.DisplayPoint = scLine2DPointStyleAuto 

.IgnoreMissingData = False 

.IgnoreOutOfFramePoints = True 

.GraphStyle = "Normal Graph"

.DocumentStyle = "Normal Document Size"

End With
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With Graph.Dialog.CategoryOne 

.EnableCategory = False 

End With

With Graph.Dialog.CategoryTwo 

.EnableCategory = False 

End With

With Graph.Dialog.Options 

.DisplayDefaultTitle = False 

.TitlePosition = scTitleTop

If OpTrain. Value = True Then

.Title = "Training Error and Training % Correct" 

End If

If OpTest. Value = True Then

.Title = "Test Error and Test % Correct"

End If

If OpVal. Value = True Then

.Title = "Validation Error and Validation % Correct" 

End If

.DisplayDefaultFootnote = False 

.Footnote =""

.DisplayCaseLabels = scCaseLabelOff 

.CaseLabels Variable = "1"

.DisplayTextValues As Axis Values = True 

.CoordinateSystem = scCoordinateStandard 

.XYAxisPosition = scAxisStandard 

.DisplayFitExpressionlnTitle = scFitOptionlnTitle 

.PolynomialOrder = scQuadraticOrder
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.LogBase = scLogOptionTenBase 

.DisplayProgressBar = True 

.RandomSampling = False 

.RandomSamplingMethod = scByNumberOfCase 

.RandomSamplingSubsetSize = 1 

.AxisType(scX) = scLinearScale 

.AxisType(scY) = scLinearScale 

.AxisType(scZ) = scLinearScale 

.AxisType(scV) = scLinearScale 

End With

Set AO = Graph.RouteOutput(Graph.Dialog.Graphs)

'AO. Visible = True 

If AO.HasWorkbook Then 

Set AWB = AO.Workbook 

Else

Set AWB = Nothing 

End If

AO. Workbook. Save As TxtPath.Text + "\SummaryGraph.stw", True 

'At end of analysis, display message box to user 

'ANNanalysis.NeverShowDialog = False

MsgBox "Analysis Complete. Results saved to desired folders"

'ANNanalysis .Run

'With ANNanalysis.Dialog 

' . VariablesAndTypes = txtconcat.Text 

'.Variables = txtOutput.Text & " | " & InputList & i
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' .TypeOfAnalysis = 8 

' .NetworkListView = " 1 "

' .IssueMissingDataWarning = False 

' .ApplyMemoryLimit = False

'End With

'Dim Path_Network As String

' Path_Network = TxtPath.Text + "\Network_Models\"

' PathJNfetwork = Path_Network + CStr(z) + "InputModel," + CStr(i) + ".snn" 

' ANNanalysis.Dialog.SaveNetworkFile Path_Network, True

End Sub

Private Sub Form_Load()

Form 1. Visible = False 

Form2.Show

Command 1. Visible = False 

lblterm2.Visible = False 

TxtTerm. Visible = False 

LblTemp.Visible = False 

txtTempPred. Visible = False

End Sub

Private Sub Image l_Click()

CD1.Filter = "Statistica Spreadsheet Files (*.sta)|*.sta|All files 

CDl.ShowOpen

lblSelected.Caption = CDl.FileName 

Dim Autofill As Spreadsheet

Set Autofill = Spreadsheets.Open(lblSelected.Caption) 

txtlnputs.Text = Autofill.NumberOfVariables - 1
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txtAdditive.Text = txtlnputs.Text

txtconcat.Text = "1-" & txtlnputs.Text & " | " & txtlnputs.Text + 1 

txtOutput.Text = txtlnputs.Text + 1

End Sub

Private Sub chksens_click()

If ChkSens. Value = 1 Then 

LblTemp.Visible -  True 

txtTempPred. Visible = True 

End If

If ChkSens. Value — 0 Then 

LblTemp. Visible = False 

txtTempPred. Visible = False 

End If

End Sub

Private Sub Image2_Click()

lblValidation_Percentage.Caption = 100 - txtTraining.Text 

Command 1. Visible = True

End Sub

Private Sub lblSens_Click()

End Sub

Private Sub lblAverages_Click()

End Sub




