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A bstract

The number of samples available for the statistical analysis of archaeological scientific 

data, specifically chemical compositional data, is typically small and determined by 

practical considerations. However the number of variables measured is often high. We 

investigate a number of sample size problems that can arise in the multivariate analysis 

of compositional data with limited sample sizes.

Initially current trends in published articles on the multivariate analysis of compo­

sitional data are reviewed. We report that analyses are typically undertaken on data 

with between 8 and 20 variables with sample sizes in the region of 30 to 100, and 

are commonly analysed using principal components analysis or cluster analysis. We 

investigate the claims that projection pursuit is a ‘sharper’ tool than principal compo­

nents analysis for the analysis of multivariate compositional data, but reject it on the 

grounds that a) limited sample size can result in the detection of spurious structure 

frequently, and b) the length of time required to fully examine results is excessive.

In trivariate lead-isotope ratio studies it is generally accepted that a minimum of 

20 observations is adequate to define a lead-isotope field. Using simulated and actual 

data with a greater number of observations than have previously been available, we 

question this assumption and demonstrate that 40 or more observations are required to 

demonstrate non-normality in some cases. Our approach to determining sample sizes 

in lead-isotope data comprises direct testing of normality and assessment of modality. 

Our method of assessing modality is to generate kernel density estimates of data and 

count modes, this also allows us to perform a comparison between different methods of 

kernel density estimation. This work suggests that adaptive kernel density estimates 

are better able to estimate the density of an unknown population. We use this insight 

to extend a formal test of modality using kernel density estimation that provides more 

interpretable results.
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Chapter 1 

Introduction

In scientific archaeology, or archaeometry, data are often collected on the chemical 

composition of artefacts. Such data may be used to investigate the relationship between 

the chemistry of an artefact and the site of its manufacture or of the raw materials used 

in the manufacturing process. This can, for example, be used to draw archaeological 

inferences about trade patterns if the origin, and hence distribution, of artefacts can 

be inferred from their chemistry.

Typically data are multivariate and are commonly analysed using multivariate sta­

tistical methods that result in graphical output designed to show structure (for example 

groups). Typically samples may be collected from a variety of sources and analysed 

statistically in the hope, and expectation, that they are chemically separable in multi­

variate space and that this can be demonstrated in a low number of dimensions. The 

techniques used include, but are not limited to, principal components analysis and 

cluster analysis which can be used to examine low dimensional views or projections of 

the data for structure. It is common that the sample size is determined by practical 

considerations, such as the cost of analysis or the availability of specimens, and as a 

consequence the number of samples available is often quite limited. Where structure is 

very obvious it is likely that relatively small sample sizes will be successful in displaying 

this. With less obvious structure larger samples may be needed.

The reliability of the conclusions that can be drawn from data, or the ability to 

detect patterns in the data having archaeological meaning, can be compromised by a 

small sample size. The presence of grouping in data (or its absence) is often a focus 

of interest, and for large enough samples this is often manifest through the presence of 

multi-modality of the data which can have archaeological meaning. This leads 011 to
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the question of ‘what sample size is needed?’

In a sense this is an impossible question to answer, since the answer depends on the 

precise, but unknown, form of the structure that the data are being used to investigate. 

Nevertheless our ultimate aim is to provide guidelines.

In chapter 2 we begin by taking an overview of current and previous trends in the 

analysis of multivariate archaeological data. This is provided by a review of published 

analyses making use of multivariate statistical techniques. The review is broken into 

several sections, which gives insight into the sample size typically used in analyses, 

the number of variables that are commonly used, and the techniques that are used to 

analyse the data.

Chapter 3 defines common notation used throughout the thesis and introduces some 

of the commonly used methods of multivariate analysis. We define the Kernel Density 

Estimate (KDE), which is a tool for estimating the density function of a population 

from which a set of data have been sampled. The density function gives an estimate 

of the distribution of a population which can be used to investigate the possibility of 

structure. The concept of exploratory data analysis is introduced, which encompasses 

the commonly used methods of multivariate data analysis.

Lead-isotope ratio studies in archaeology are a specific area of interest (Westwood, 

Baxter and Beardah, 1998; Baxter, Beardah and Westwood, 2000), where a sample 

of trivariate observations can be used to define a 3-dimensional lead isotope field. 

Previously there has been debate regarding the assumption of trivariate normality 

that is often made for some of the calculations performed for provenancing artefacts 

from an unknown origin. The consensus has been that 20 samples are sufficient to 

define a lead isotope field (Pollard and Heron, 1996), but we shall argue that this 

is only the case if it can be assumed that the field has a normal distribution. This 

is rarely tested in a satisfactory way and sample sizes are often too small to permit 

adequate testing. Stos-Gale et al. (1996) and Gale et al. (1997) published data with 

larger sample sizes than had previously been available, and this allows the normality 

assumption to be tested. In chapter 4 we make use of both simulated and real data to 

investigate the sample sizes that are required to detect structure in the data using both 

tests of normality and by counting modes in data directly. ‘Structure’ in this instance
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is interpreted as multi-modality showing a significant departure from normality. We 

demonstrate that a sample size of 20 is usually insufficient to detect what can be quite 

serious departures from normality.

One approach to investigating sample size requirements in lead-isotope ratio studies 

involves counting the number of modes in KDEs of the data, however we conclude that 

this approach raises a number of issues and that more formal methods of investigat­

ing modality should be investigated. Silverman (1981) proposed a test of univariate 

modality that makes use of KDEs which we investigate in chapter 5. Experiences 

gained during the mode counting work undertaken for lead-isotope data suggests that 

adaptive KDEs provide a more accurate estimate of distribution of the population that 

data are sampled from than non-adaptive KDEs. We propose an ‘adaptive’ version of 

the test of Silverman (1981) and investigate its performance in relation to the original 

test of Silverman (1981).

In chapter 2 we find that many of the analyses of artefact compositional data 

make use of principal components analysis to generate a graphical representation of 

multivariate data, which is hoped will show structure. Jones and Sibson (1987) de­

scribe principal components analysis as ‘something of a blunt instrument’ and make 

the suggestion that projection pursuit is a sharper tool for the analysis of data. With 

the sample sizes typically available, we investigate the possibility of using projection 

pursuit instead of principal components analysis as a tool to show structure in data. 

In chapter 6 we investigate the claims that projection pursuit is ‘a sharper tool’ for 

a number of multivariate applications. In particular, the work on lead-isotope ratio 

studies in chapter 4 makes use of a test of multivariate normality which seeks the most 

non-normal one-dimensional view of data. This can be viewed as a form of projection 

pursuit and is discussed in chapters 4 and 6.
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C hapter 2

A R eview  of th e use o f M ultivariate  
A nalysis for A rtefact 
C om positional D ata

2.1 Introduction

Prior to addressing any specific issues relating to sample size, we undertake a review of 

the current trends in the use of multivariate statistical methods in the field of Archae­

ology, and more specifically archaeometry. Our intention is to gain an understanding 

of the kinds of sample sizes and numbers of variables which are typically made avail­

able for statisticians to perform analyses on. The review also gives us opportunity to 

investigate trends in the use of multivariate statistics over time, as well the kinds of 

materials analysed and the methods of chemical analysis which are used.

The journal Archaeometry is the leading journal in the field of chemical analysis 

of archaeological data and contains a total of 69 articles between 1975 and the end of 

1999 that report on the use of multivariate statistics, which are used as the basis for 

this review. Details of the 69 articles are presented in Table 2.1. References for the 

69 articles used in the review are listed in the second half of the bibliography, sepa­

rately from other references. Although other journals contain articles on the statistical 

analysis of archaeometric data, Archaeometry provides the richest source of articles on 

the subject. Prior to 1975, very few accounts of the use of multivariate statistics are 

published in archaeological journals. The review spans a 25 year period, this enables 

us to investigate trends over five 5 year intervals.

Within the field of archaeometry, the extraction of samples and subsequent chemical

4
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Abbreviation Explanation
AAS Atomic Absorption Spectrometry (Pollard and Heron 

1996:26-31)
CA Cluster Analysis (section 3.3.3)
DA Discriminant Analysis (section 3.3.2)
EPMA Electron Probe Micro Analyzer
FES Flame Emission Spectrometry
ICP-OES /  ICP-AES Inductively Coupled Plasma Optical/Atomic Emission 

Spectrometry (Pollard and Hatcher 1986:31-36)
LIA Lead Isotope Analysis (chapter 4)
NAA Neutron Activation Analysis (Pollard and Heron 1996:54-61)
PIXE Proton-Induced X-Ray Emission (Pollard and Heron 

1996:53-54)
PCA Principal Components Analysis (section 3.3.1)
XRD X-Ray Diffraction
XRF X-Ray Fluorescence Spectrometry (Pollard and Heron 

1996:41-49)

Table 2.2: Key to abbreviations used in Table 2.1.

analysis of specimens can be problematic and often determines the number of samples 

available for statistical analysis. For example Pollard and Heron (1996:302) discuss 

some of the problems associated with extracting compositional data from metallic 

artefacts. Other factors which may influence the number of samples available include 

the cost of performing the chemical analysis and physical availability of samples.

This chapter is broken into several sections, initially the types of materials studied 

and any trends in the methods used to determine their chemical composition are re­

ported on. Later sections discuss trends in sample sizes, numbers of dimensions used 

and the statistical techniques that are used to analyse data.

2.2 M aterials and their chem ical analysis

The papers detailed in table 2.1 can be categorised as analyses on one of the following 

materials:

• ceramics and clays;

• glass;

• stone and rock;



1975-79 1980-84 1985-89 1990-94 1996-99 Total
NAA 4 2 5 6 7 24
ICP-OES /  ICP-AES 1 1 4 9 15
AAS 2 4 1 5 4 16
FES 3 2 5 .
XRF 3 2 5 4 6 20
Other 2 3 2 4 5 16
Total for Period 11 12 14 26 33 96

Table 2.3: Frequency of the use of methods of chemical analysis from papers reporting 
on the use of multivariate methods in the the journal Archaeometry between 1975 and 
1999.

• metals;

• miscellaneous analyses, for example analysis of bone, lacquers and geometric 

measurements (such as dimensions of artefacts).

Ceramics are the most frequently analysed material, accounting for 55% of papers 

within the review, the analysis of glass is discussed in 16% of articles, however the 

papers reporting on the analysis of glass commonly discuss several statistical analyses. 

The analysis of stone and rock, metals and miscellaneous materials are reported on in 

far fewer articles, stone and rock are discussed in 13% of papers and metals 9%.

Table 2.3 shows the frequency with which methods of chemical analysis are used 

within the papers within the review, the table is broken into five 5 year periods to 

allow trends over time to be investigated. It is not uncommon that a paper details 

the use of several methods of chemical analysis to generate data on the composition of 

specimens. Detailed descriptions of each of the chemical techniques can be found in 

Pollard and Heron (1996:20-80).

Neutron Activation Analysis (NAA, Pollard and Heron 1996:54-61) is used through­

out the review period, however in later years the proportion of articles using it decreases 

as other (cheaper) techniques become more commonly used. Prior to 1985, NAA was 

used for nearly one third of the reported chemical analyses, however in the 1990-94 pe­

riod, it is only used in 23% of papers. Despite the availability of other methods, NAA 

is still the most frequently used method over the same period. Pollard and Heron 

(1996, 54) suggest that NAA was the standard method for producing multi-chemical 

analyses until the advent of ICP and PIXE in the early 1990’s. X-Ray Fluorescence

9



Spectrometry (XRF, Pollard and Heron 1996:41-49) follows a similar trend in use to 

NAA and accounts for nearly as many analyses.

Inductively Coupled Plasma Optical/Atomic Emission Spectrometry (ICP-OES or 

ICP-AES, Pollard and Hatcher 1986:31-36) is rarely used prior to 1990, however the 

technique has since gained in popularity. Similarly, Flame Emission Spectrometry 

(FES) is not reported on prior to 1990. Atomic Absorption Spectrometry (AAS, Pollard 

and Heron 1996:26-31) appears to be used throughout the review period. Its use is more 

popular in later articles (after 1990) however proportionally it accounts for fewer of 

the total analyses.

The method of chemical analysis of ceramics follows similar trends to those discussed 

above. NAA is used more frequently than other techniques with ICP-OES and XRF 

being used more frequently in later years. There are far fewer published analyses on 

glass than ceramics, however ICP-OES and XRF are used more frequently, in part 

because very few articles report on the analysis until after 1985.

2.3 Sam ple sizes

Table 2.4 shows the average sample size (n), by year, reported on in papers within the 

review, this data is also presented graphically in figure 2.1. An analysis by Adriaens et 

al (1999) stands out immediately due to the n — 4500 samples used, we have removed 

this value of n from our analyses.

Of the remaining 198 samples, 86% of analyses are performed on fewer than 100 

samples and 15% are performed on fewer than 30 samples. The mean sample size is 63 

with a median of 4-4.

Figure 2.1 shows the reported sample sizes graphically. Figure 2.1a shows a box and 

whisker plot of sample sizes used by year, figure 2.1b shows the same information as 

a dotplot. Initial observation suggests that there are no obvious trends in sample size 

used over time. Pre 1986 there is a large degree of variation in sample sizes with fewer 

analyses than post 1986. Figure 2.1b shows that after 1986 the upper quartile range 

generally increases over time which suggests that, for some analyses, more samples are 

available. Despite this the mean sample size tends to vary considerably.

Figure 2.1c shows a box and whisker plot of sample sizes recorded in each of five

10



Year Average n Average d Average n/d Average d Measured No. Analyses
1976 81 19 4.2 19 3
1977 81 16 5 17.5 6
1978 63 10 6.3 10 2
1979 135 10 17.8 13 9
1980 47 6 9.2 11 12
1981 - - - - -

1982 181 3 60.3 4 1
1983 73 9 11.7 9 8
1984 - - - - -

1985 158 15 19.7 19 6
1986 14 16 1 19 8
1987 42 7 7 13 5
1988 41 16 2.7 15 9
1989 27 12 2.3 12 1
1990 45 10 4.7 12 4
1991 41 13 3.7 27 22
1992 35 18 3.9 18 12
1993 57 14 5.3 16 8
1994 47 10 4.8 19 18
1995 89 15 5.8 22 10
1996 67 17 6.1 22 22
1997 70 16 4.2 20 8
1998 74 16 4.7 18 17
1999 1 58 11 5.2 22 7
1 Adriaens et al. (1999) perform an analysis on n 

as an outlier.
4500 with d — 8. This value has been removed

Table 2.4: Average sample sizes (n), number of variables (d) and mean n/d  ratio used 
in multivariate statistical analyses reported on in the journal Archaeometry between 
1975 and 1999.
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(a) Box and Whisker plot of 11 by year (b) Dotplot of n by year

65-89

G roup

(c) Box and Whisker plot of n by 5 
year period

Figure 2.1: Plots showing the sample sizes reported in articles making use of multi­
variate statistical analyses in the journal Archaeometry between 1975 and 1999.



Year Average n 
for Ceramics

Average n 
for Glass

1975
1976 81
1977 113
1978 62
1979 249 19
1980 47
1981
1982
1983 50
1984
1985 30
1986 11 21
1987 44
1988 37
1989 27
1990 45
1991 49 37
1992 34
1993 29 58
1994 66
1995 70 117
1996 67
1997 88 14
1998 85
1999 76

Table 2.5: Average sample sizes (n) for analyses on ceramics and glass reported 011 in 
the journal Archaeometry between 1975 and 1999.

5 year periods. The intention is to assess if there are any general trends over a longer 

period of time than a year. Post 1985 there appears to be a slight upwards trend in 

the average sample size with the lower quartile range also increasing slightly which 

suggests more samples are available for more analyses. Pre 1985 the average sample 

size is greater than in later years. Generally the spread of n values used for statistical 

analyses tend to be fairly constant over 5 year periods.

For analyses of ceramics and glass, similar variation in sample sizes is evident (table 

2.5).

13



(a) Box and Whisker plot of d by year (b) Dotplot of d by year

Figure 2.2: Plots showing the number of variables (d) by year used in statistical analyses 
in the journal Archaeometry between 1975 and 1999.

2.4 N um bers of variables

Figure 2.2a shows a box and whisker plot detailing the number of variables, d} used in 

published statistical analyses. The box and whisker plot shows considerable variation 

in the number of variables used. The mean number of variables used is 13 with a 

median of 12. 50% of analyses use between 9 and 17 variables with an overall range of 

between 3 and 35 variables.

Figure 2.2b shows a dot plot of d against year and suggests a slight tendency to use 

more variables in analyses in later years. The plot also suggests that since 1990 the 

majority of analyses use a minimum of 8 variables, with it not being uncommon to see 

analyses on as many as 20 variables. In 1976 to 1978 there were relatively few analyses 

undertaken, however all that were published were performed on data with between 10 

and 20 variables.

As part of the analysis we have also looked at the number of variables used with 

different multivariate techniques. Although there are no particular trends over time, of 

interest is the fact that cluster analyses are commonly performed with the widest range 

of variables, 50% of analyses using between 8 and 20 variables with a mean of d = 14. 

Principal components analyses are carried out on a much smaller range of variables, 

with 50% of analyses using between d — 9 and d — 13 with a mean of d = 11.

In the majority of articles, all variables that are measured are used, at some point, 

in the statistical analysis. In some cases, the approach is to use all variables to gain



60 - j

50 -j  

40 -J 

30
■£

20

80 90 100 75.79 80-84 B5«9 3094  95-99
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(a) Dotplot of n /d  by year (b) g ox anc[ whisker plot of n /d  by 5
year period

Figure 2.3: Dotplot of n/d  by year and box and whisker plot showing n/d  values by 5 
year groups.

an initial understanding of the data and then remove variables which are unhelpful to 

the analysis, for example those that are deemed unreliable because they are close to 

detection limits. Some elements cannot be reliably measured in small quantities with 

certain methods of chemical analysis, and are said to be close to detection limits. A 

large proportion of analyses continue to use all variables throughout the analysis.

2.5 The sam ple size to  variables (n/d)  ratio

Some statistical methods cannot be used reliably on sparse data, for example to make 

use of Mahalanobis distance it is necessary to have more samples than variables and 

preferably n > 3d or 5d within groups for which Mahalanobis distance is calculated. A 

similar n/d  ratio is needed for reliable estimation of correlation coefficients for principal 

components analysis. As such, analyses undertaken where the sample size to variables 

ratio is small may be misleading

The mean n/d  ratio over the entire period of the review is 6.5, with a median of 

4. In total, 40% of articles have an n /d  ratio of less than or equal to 3, 50% with less 

than or equal to 4 and 60% with an n /d  ratio of 5 or lower.

Table 2.4 shows the average n /d  ratio by year and is presented graphically in figure 

2.3a as a dot plot. There is a slight suggestion that as time progresses, there is a 

tendency for more articles to report on the analyses of data with a smaller n/d  ratio, 

which suggests that for some cases the number of samples and variables used are not
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increasing at the same rate. However, the overall range of n/d  remains fairly constant 

throughout the review period. Prior to 1985 there is far more variability in the n/d  

ratio compared to later years, there are also fewer reported analyses.

Figure 2.3b shows a box and whisker plot grouped by 5 year periods. The median 

by period does not fall below 4 which suggests that even when more variables are used, 

more samples are also used in the statistical analysis. In some cases the lower quartile 

(i.e. 25% of observations falling below this value) raises concerns. In the 1985-89 period 

the lower quartile lies at 1.06 and it is 1.7 during the period 1990-94, analysis of data 

with such low n/d  ratios may be problematic with certain statistics, for example PCA. 

Of the analyses reported on in the review period, the lower quartile range for analyses 

using PCA is 2.5, this suggests that an acceptable number of samples and variables 

are used in the majority of articles.

2.6 Sum m ary o f m ethods

Table 2.6 shows the frequency with which each multivariate statistical method (cluster 

analysis, discriminant analysis and principal components analysis) are discussed in 

articles. Cluster analysis is used consistently throughout the review period and is in 

fact the most popular technique. The n /d  ratio for data undergoing a cluster analysis 

has steadily increased since about 1990 with a minimum value of 2.5, reaching 4 in 1996 

and 7 in 1998. Sample sizes have increased slightly since 1995, however the number of 

dimensions used in analyses has varied considerably.

Discriminant analysis is used less frequently, and usually in conjunction with other 

techniques, although Bimson, Laneice and Leese (1982) do make use of discriminant 

analysis without other statistical methods.

Principal components analysis becomes popular from 1979 onwards and grows in 

popularity from 1994 onwards. The average n /d  ratio is generally above 3 and does 

not drop below 2.

2.7 D iscussion

The published use of multivariate statistical analysis has become more common over 

the previous 25 years, no doubt due to the availability of accessible tools to perform
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Year Papers Cluster 
Analysis (CA)

Discriminant 
Analysis (DA)

Principal Components 
Analysis (PCA)

76 2 2
77 2 2 2
78 2 2
79 4 3 2 2
80 3 2 2
81
82 1 1
83 5 3 2 1
84
85 2 1 1
86 2 2
87 2 2 1
88 4 3 1
89 1 1
90 1 1 1
91 3 2 1 1
92 4 3 3 1
93 5 4 2 1
94 5 1 3 2
95 3 2 2 2
96 7 7 3
97 3 3 1 2
98 5 2 3 5
99 3 1 3

Table 2.6: Frequency with which the use of multivariate statistical methods are re­
ported on in the journal Archaeometry between 1975 and 1999.
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statistical analysis. Also, the advent of new methods of chemical analysis, such as 

ICP-OES, has meant that the number of variables measured, and used in multivariate 

statistical analysis, has increased during recent years, with the exception of the few 

published articles prior to 1978. Newer methods of chemical analysis have given op­

portunity to measure more variables. The nfd  ratio suggests that, in general, as the 

number of variables increases the number of samples has increased at a similar same 

rate.

The use of principal components analysis has grown in popularity since the mid 

1990’s, however Jones and Sibson (1987) have made a suggestion that projection pursuit 

is a ‘sharper tool’ for the investigation of structure in multivariate data. In chapter 6 we 

investigate the possibility of using projection pursuit, instead of principal components 

analysis, to detect structure in data with smaller sample sizes.

18



Chapter 3

Statistical and M athem atical 
Background

In this chapter notation and core mathematical and statistical techniques are intro­

duced. Initially, common notation is defined which is used throughout this thesis. 

Following this, Kernel Density Estimates (KDEs) are discussed.

In later sections, the mathematics of exploratory data analysis (EDA) are briefly 

introduced, specifically Principal Components Analysis (PCA), Cluster Analysis (CA) 

and Linear Discriminant Analysis (DA) are discussed.

3.1 N otation

Throughout, Ai, A2, . . . ,  X n denotes a univariate sample of n  observations sampled 

from a population with unknown density function / .  Also, X i, X 2, . . . ,  X n denotes a de­

valuate data set of n observations with an unknown density / ,  with X  ̂ =  {Xn,  X^2, . . . ,  

Xid}T used to denote the components of X*.

The multivariate normal probability density function (pdf) is defined as

(3.1)

where x e fj, is the mean and X is the covariance matrix of the distribution.

3.2 Kernel D ensity  E stim ates (K D Es)

3.2.1 E stim ation  o f an unknow n density

Kernel density estimates (KDEs), at their simplest, can be thought of as an alternative 

to a histogram for presentation of data. They typically provide a smoother represen-
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(b)

Figure 3.1: A KDE is formed by placing a ‘bump’ centred on each observation on the 
x-axis. The shape of the KDE is then given by summing the height of all bumps at 
each point on the x-axis.

tation of the data, which is more aesthetically pleasing, and their appearance does not 

depend on the choice of an origin. The use of KDEs allows presentation of multiple 

density estimates on a single plot which allows for easier comparison of data.

Given n observations, X x, X 2, , X n, placed 011 the x-axis, a univariate KDE can 

be constructed by placing a ‘bump’ centred 011 each Xi  and summing the height of 

the bumps at each point 011 the x-axis. The shape of each ‘bump’ is defined by a 

function, the kernel function K(x),  and the spread of the bumps is determined by a 

window-width or bandwidth parameter, h, which is analogous to the bin width used in 

construction of histograms and controls the overall smoothness of the KDE. Silverman 

(1986:43) suggests that the choice of kernel is less important than the choice of h, and 

in fact it is often desirable to choose K(x)  for computational considerations.

Consider a data set with n =  7 observations, {0 .1 ,3.2,4.0,4.8,5.4,7.5,20.0}. Figure 

3.1a shows a normal gaussian ‘bump’ centred 011 each Xi  with a spread of 4.5902 

(determined using the normal scale h selection method discussed below). It is then 

necessary to sum the height of all bumps to determine the height of the resulting 

KDE, shown in figure 3.1b. For computational ease, it is common to sum the height 

of the KDE at regular intervals 011 the x-axis.

Mathematically, a univariate KDE is given by

/> ;/* )  = ± ± K ( ^ i ) ,  (3.2)
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where K(x)  is a kernel function which satisfies the condition f  K(x)dx = 1 and h is 

the window-width or bandwidth, discussed in the following section. It is common to 

use a univariate normal pdf as a choice of K ( x ),

K(x) = (27r)~1/2exp(—̂ x 2). (3.3)

Equation 3 .2  can be generalised to a d-dimensional kernel density estimate (Scott, 

1992, 153)

=  - \ H \ - ^ Y j K ( E - 1,2{ ^ - y U ) )  (3.4)
^  • -i1 = 1

where K  is a kernel function that satisfies f  K(x)dx  — 1 and is often chosen to be the 

standard multivariate normal density function

K(x)  = (27r)“d//2 exp(—̂ x Tx) (3.5)

and H  is a d x d symmetric positive definite matrix which determines the “smoothness” 

of the KDE.

3.2 .2  C hoice o f sm ooth in g  param eter

For d — 1 the choice of h (sometimes known as the window-width) has been widely 

studied (Wand and Jones, 1995, 58-88).

A smoothing parameter is usually chosen to give a kernel density estimate which is 

in some way “optimal” , generally we want the kernel density estimate to be as ‘close’ 

as possible to the true underlying density, / .  The usual measure of closeness is mean 

integrated squared error (MISE, Silverman 1986, 35-6) which gives a measure of the 

global accuracy of /  as an estimate of / .  MISE is defined as

M I S E ( f )  = e J { f (x )  -  f ( x ) } 2dx. (3.6)

Wand and Jones (1995:19) point out that direct use of MISE expressions “depend 

on the bandwidth in a complex way. This makes it difficult to interpret the influence 

of bandwidth on the performance of the kernel density estimates”. They advocate the 

use of asymptotic mean integrated squared error (AMISE) which is a large sample 

approximation of MISE. AMISE expressions are easier to manipulate than those for
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MISE and AMISE “allows a deeper appreciation of the role of the bandwidth”. AMISE 

is defined as

A M I S B ( f )  = ^ R ( K )  (3.7)

where f "  denotes the second derivative of / ,

R(K)  =  I K ( x f d x  = - F  
J  xedi V?T

and

fi2{K) = f  x 2K(x)dx = 1
J x e $ l

for the normal kernel defined in equation 3.3.

The minimising value of equation 3.7 can be shown to be

h  A MI S E
R(K) 1/5

(3.8)
p 2( K f R U " ) n \

by differentiating 3.7 with respect to h and setting the derivative equal to 0 (Wand 

and Jones, 1995:22).

If the true density /  is normal with variance a2 and the normal kernel is used, 

equation 3.8 can be reduced to the Normal Scale Rule, Ii n s ,

Jins  = 1-0 6 n -1/5<j (3.9)

where a is an estimate of a. For non-normal, multi-modal densities this will over­

smooth the data, which can result in real structure being hidden by the estimate (as 

illustrated in figure 4.7 in section 4.2.2)

An alternative with good properties, that typically results in smaller h , is the ‘solve- 

the-equation’ (STE) selection procedure of Sheather and Jones (1991). The solve-the- 

equation estimate does not assume the true density is normal like instead it 

estimates R{f").  Wand and Jones (1995:74) discuss the method in detail, however 

essentially STE estimation of h is based on equation 3.8. Wand and Jones (1995) 

prefer to use the notation ips = f  f ^ ( x ) f ( x ) d x ,  where / ^  is the sth derivative of / ,  

as it is ‘more straightforward to generalise to the multivariate case’. R(f")  is replaced 

with a kernel density estimate, and h is calculated subject to the condition

1/5
Hi K )

h =
R{K)
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In practice, Wand and Jones provide the following procedure for calculating a two- 

stage solve-the-equation bandwidth estimator, H s t e -

1. Estimate ip6 and rising ipQS — — 1 5 / ( 167r1/2)/<r7) and = 105/(327r1/2) /d 9).

2. Estimate i/q and i/jq rising the kernel estimators ^ 4 (pi) and i/>e(p2) where

9l = { - 2 K ^ ^ ) / ( ^ { K ) ^ sn )Y I7

and

g2 = { - 2 l Y 6\ 0 ) / ( p 2( K ) ^ Sn)}1/9.

3. Estimate i/q rising the kernel density estimator ^ 4  (7 (h)) where
1/7

7(/i) =

and

- M g 2)R{K)
h 5/7  (3.10)

^ 4 (3 ) =  » 1 ^ ^ 4 ,
i=0
n n 1= «-2Xiy;i (̂4)(̂ rz4i).

t=o j= 0  ^ 9

4. The bandwidth is then the solution to

h
1/5

R{K)
j i 2(K) 2̂ ^ ( h ) ) n  

which can be calculated using numerical routines.

(3.11)

Theory is less well developed for choosing H  when d > 1. Wand and Jones (1993) 

have studied the case d =  2  and conclude that taking

H h{ 0  

0

is often adequate, but that the further simplification h\ — h2 is not. Separate esti­

mation of h\ and h2 using univariate methods is possible, however it is preferable to 

determine them simultaneously. In section 4.2 the (2-stage) bivariate direct plug-in 

(DPI2) method has been used, this is similar to the solve-the-equation method dis­

cussed above, however a less sophisticated method of estimating R ( f ' )  is used. Wand 

and Jones (1995:71-74) discuss direct plug-in methods in the univariate case with bi­

variate generalizations discussed by Wand and Jones (1995:105-108).
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3.2 .3  A dap tive K D E s

In the approaches described so far, the degree of smoothing applied is the same re­

gardless of how sparse or densely distributed the data are. In some applications it may 

be preferable to smooth more in regions of low density, and this can be done using 

adaptive KDEs.

The basic procedure used for a d-dimensional KDE is that described in Silverman 

(1986, 91). A univariate adaptive KDE can be generated using the following procedure. 

Given a pilot estimate of h, a KDE is obtained, f(x).  This allows local bandwidth 

factors, Xi, to be defined which determine by how much the density will vary at each 

point estimated

Ai =  {/(X ; )/<?}-“ (3.12)

where g is the geometric mean of the f (X { ):
n

log(g) =  n~l ^ l o g  }{Xi)  (3.13)
i~ 1

and a  is the sensitivity parameter, 0 < a  < 1. We use a — 1/d, as used by Breiman, 

Meisel and Purcell (1977) which ensures that the number of observations caught ‘by 

the scaled kernel’ will be approximately the same in all parts of the density.

The KDE can then be recalculated using different values of h at each data point

that depend on the sensitivity parameter
n

f (x )  = n -1 ' ^2{h \ i)~1K { ( h \ iy 1(x -  X;)}. (3.14)
£=1

Returning to the univariate example in section 3.2.1 with n = 7 observations. An 

adaptive KDE can be constructed by initially calculating a pilot estimate of h, here 

we have used the normal scale rule to select a pilot estimate of 4.5902 as before. The 

local bandwidth parameters, Aj, are calculated from 3.12 to give

A -  {1.0121,0.7449,0.7294,0.7317, 0.7452,0.8841,3.7722}

which define the spread of each of the 7 individual ‘bumps’ respectively. A bump is 

placed at each X* with spread Aih, as illustrated in figure 3.2a. Notice that the bump 

to the far right of the plot has far greater spread than in the previous example, the 

intention is to apply more smoothing to areas of low density so that sparse areas do
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Figure 3.2: An adaptive KDE is formed by placing a ‘bump’ centred on each observation 
on the x-axis, the spread of the bump is dependent on the distribution of data. The 
shape of the KDE is then given by summing the height of all bumps at each point on 
the x-axis.

not result in multiple modes. The height of the KDE is then found by summing the 

heights of the individual ‘bumps’ at points along the x-axis, as illustrated in figure 

3.2b.

3 .2 .4  Softw are to  im plem ent K D E s

Beardah and Baxter (1995) implement routines for the creation of KDEs in the MAT- 

LAB computer package. Their comprehensive suite of routines implements 1-, 2- and 

3-dimensional KDE generation and a range of bandwidth selection routines. Computer 

routines used in the following chapters are built on the core functionality provided by 

these routines. A download is available from

h t t p : / / s c i e n c e .n t u . a c .uk/msor /ccb/

A similar suite of routines has been made available by Bowman and Azzalini (1997) 

for the S-Plus (Venables and Ripley, 1999) package. Downloads for Windows and UNIX 

versions of S-Plus are available from

h t t p : //www. s t a t s . g l a . a c .uk /~adr ian /sm /
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3.3 Exploratory data analysis

Exploratory data analysis (EDA) allows investigation of structure in data, for example 

to investigate clustering or outliers, often through the use of graphical techniques. 

Typically EDA will begin with an informal graphical display of the data, such as a 

draftsman plot (bivariate plots of all combinations of variables) which gives a feel for 

initial relationships, potential outliers and may suggest approaches for more a detailed 

investigation of structure.

Although informative, and often giving valuable insight into potential structure 

within data, these informal graphical techniques are commonly used for initial inves­

tigation only. Frequently, techniques such as principal components analysis (PCA), 

linear discriminant analysis (DA) or cluster analysis (CA) are applied to the data fol­

lowing an initial graphical analysis. EDA techniques commonly attempt to display 

interesting structure in a limited number of dimensions to allow direct visual investiga­

tion into potential structure. These techniques are briefly introduced in the following 

sections. In all cases, it is common practice to transform the data in some way, so 

that one variable is 110 more dominant than any other. Commonly one of the following 

methods of transformation is used

1. Centring scales the mean of data to be zero;

2. Scaling removes size effects in measurements so that one variable is 110 more 

dominant than any other. One possible form of scaling is to subtract the mean,

i.e. Yi = Xi — x which results in unit variance. Another possible form of scaling 

is to divide by the maximum value, i.e. Yi = X i /  maxfr);

3. Standardisation is when data are scaled and centred

Yi =    3.15
s

for i =  1 ,2 , . . . ,  n where x is the mean and s2 is the estimated variance. Stan­

dardisation allows data to be compared to an N ( 0,1) normal distribution;

4. Logarithmic transformations, for example Yi — In p Q , are sometimes used to 

normalise data, this also has the effect of making the variances of data similar.
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First principal component

Figure 3.3: Plot of the first 2 principal components of the chemical compositional data 
of 130 oriental greenwares presented by Pollard and Hatcher (1986). 3 outliers were 
removed prior to computing the principal components.

3.3.1 P rincipal com ponents analysis

Principal components analysis (PCA) is one of the simplest EDA techniques. The 

intention is to transform d variables, X i, X 2 , .. ■, to d new variables Zi, Z2, . . . ,  Zd 

which are uncorrelated.

Specifically,
d

z i =  F A iX; (3'16)
3 = 1

for i — 1, 2, . . .  d\ ctji are scalars constrained such that An “  1 an(l selected such 

that the Z* are uncorrelated, with Z\ having maximum variance, Z2 having second 

maximum variance subject to being uncorrelated to Zi and so on.

The hope is that the first few variables will account for the majority of the variance



within the data and as such reveal the main structure present, however as will be 

discussed in later chapters this is not always the case. Results are commonly presented 

graphically by plotting the scores Z2 against Zi as illustrated in the example which 

follows. It is also common to work with scaled data, either standardised, which gives 

equal weighting to each X*, using or a logarithmic transformation which has the effect 

of making the standard deviation of variables more similar.

Pollard and Hatcher (1986) analyse the chemical composition of 133 oriental green­

wares which are suspected to have originated from several areas of manufacture. A 

total of 9 chemical concentrations are measured. Prior to the analysis, 3 clear outliers 

were removed. When the data are standardised and subjected to a principal compo­

nents analysis (figure 3.3), two clear clusters are visible within the first two principal 

components, with the possibility that the larger of the clusters could be separated into 

two further groups. Pollard and Hatcher relate these two main clusters to the date of 

manufacture of the greenwares.

3.3 .2  Linear d iscrim inant analysis

Discriminant analysis addresses the problem of maximising the difference between 

groups within data. Given a d-variate data set with g groups, a discriminant anal­

ysis can be used to define g — 1 functions of the original variables which maximise 

the difference between known or suspected groups. As with PCA, new variables are 

defined thus
d

F i = (3.17)
j - 1

for i =  1,2, • • • , g — 1. The values of the coefficients are the eigenvalues of

(T -  W )W -1

where T  is the total sample matrix of sums of squares and cross products and W  is 

the within-sample matrix of sums of squares and cross products (Manly, 1994:49). As 

with PCA, the hope is that the first few functions are sufficient to allow graphical rep­

resentation of the differences between groups. Unlike PCA, the results of discriminant 

analysis are not dependant on having standardised data.

Foy (1985) published chemical compositional data for 46 specimens of Medieval 

French glass found at three known sites. Concentrations of 9 elements are recorded.
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Figure 3.4: Plots of the first 2 principal components and linear discriminant functions 
for the French Medieval glass compositional data of Foy (1985). Point labels identify 
which of the three sites the glass originates from, detailed in Foy (1985).

Figure 3.4a shows the first two principal components of standardised data, which do 

not show any separation between specimens from the 3 sites. Figure 3.4b shows the 

first 2 discriminant functions and suggests one of the groups can be separated from the 

other two.

3.3 .3  C luster analysis

Cluster analysis is designed such that for a sample of size n with measurements on 

d variables, similar cases are grouped together. In the current context the intention 

is to group samples with similar chemical composition. There are a great number of 

methods which are categorised as cluster analysis, however the general process is two 

stage.

Initially a coefficient of (dis-)similarity is calculated. Typically Gfy is used to denote 

distance, however to avoid confusion with our notation for dimensionality we will adopt 

the notation m It is quite common for squared Euclidean distance, m?ik, or Euclidean 

distance, to be used where

d
m l  =

J=1
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however it is possible to use other measures of distance, such as Manhattan distance

d
WMk = | | .

3 = 1

Secondly some form of clustering algorithm is applied to the data, of which there 

are two general forms, hierarchical clustering and partitioning.

In hierarchical clustering, the process begins with n clusters consisting of one case 

each and combines cases using a measure of similarity. The resulting clusters are then 

linked using the same measure of similarity until only a single group remains. Common 

clustering algorithms include, but are not limited to:

1. Nearest neighbour or single linkage where the distance between two clusters is 

given by the distance between the two closest neighbours. At any time, the two 

most similar groups are combined.

2. Complete linkage, also known as furthest neighbour, measures the distance be­

tween two clusters as the maximum distance between observations in each of 2 

clusters. The two clusters are combined if the distance between them is found to 

be minimal.

3. Ward’s method, which attempts to minimise the sum of squares of any two clus­

ters. Specifically, if is the mean of the fc’th variable in a cluster then the 

variability of the cluster is defined as

d d
S  = ^ 2 J ^ ( X i k -(3.18)

i=1 k=1

S  is calculated and summed for all clusters to get total variability T. The two 

clusters are combined that produce the smallest increase in T.

Hierarchical clustering is often represented graphically in a tree-like structure called a 

dendrogram which displays the hierarchal similarity of objects.

Partitioning is a second method of clustering observations and begins with a known 

number of groups. It differs from hierarchal methods in that observations can be added 

to and removed from clusters, thus allowing constant refining of cluster membership. 

K-means clustering, one method of partitioning, will attempt to determine which of the
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k defined groups observations should belong to. Given that initially k arbitrary cluster 

centroids are defined, the technique attempts to minimise the variability in clusters 

by moving objects into more appropriate clusters. The process continues until group 

variability cannot be further minimised.

Results from K-means clustering are generally represented in tabular form detailing 

group membership and cluster centroids, with the performance of the technique is 

measured by the separation of group centroids. A drawback is that the technique’s 

performance can be affected by the initial choice of group centroids.

Figure 3.5 shows a dendrogram (clustering tree) for the oriental greenware data of 

Pollard and Hatcher (1986) as discussed in section 3.3.1. The dendrogram illustrated 

was created using the Euclidean distance measure and the complete linkage method. 

In order to assign the final group membership, the dendrogram is cut at some level of 

(dis-) similarity, the branches below the cut represent the clusters. In this particular 

case, Pollard and Hatcher (1986) cut the dendrogram at about 80 to give 2 clusters 

which relate to those discovered using principal components analysis in section 3.3.1. 

They then go on to further investigate the 2 clusters in isolation using both cluster 

analysis and discriminant analysis.
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Chapter 4 

Lead Isotope A nalysis

In this chapter, we investigate a specific sample size related problem which arises in 

Lead Isotope Analysis. We make use of one-, two- and three-dimensional techniques 

to investigate the problem, which could be applied to any low-dimensional problem.

4.1 Introduction

Since the 1930’s, instrumental methods for chemical analysis of metals have been 

utilised in an attempt to chemically “fingerprint” the origin of metals. Large pro­

grammes of analysis of prehistoric metal objects have been undertaken in this time, 

the intention being to determine the origin of the ore source which in turn will help 

reconstruct prehistoric economic trade patterns. The use of instrumental methods to 

analyse metallic objects is fraught with problems. Pollard and Heron (1996:302) note 

that “the relationship between the trace element composition of a metalliferous ore 

and that of the metal object derived from it is an extremely complicated one, which is 

influenced by a number of factors” . Aside from the practical difficulties of extracting 

samples for analysis from precious objects, Pollard and Heron discuss two less obvious 

problems. Firstly they note that the composition of an ancient mineral deposit may 

differ from the mineral composition of ore extracted from it. The second complication 

arises when the metal is extracted from the ore using some kind of furnace technol­

ogy. Pollard and Heron (1996:304) note that it may have been necessary to crush or 

wash the ore, which may influence its mineralogical composition. Additional minerals 

that may have been added to the ore during the furnace process further complicate 

the mineralogical composition of the metal. Pollard and Heron (1996, 305) conclude
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that the measured chemical composition of the metal artefact is a complex function 

incorporating many factors and go on to suggest that it is no wonder few archaeological 

chemists have faith in trace element fingerprinting.

Another approach is to utilise isotopic compositions of metals, Pollard and Heron 

(1996:302) note that most metallic elements exist naturally as different isotopes, that 

is atoms of the same element that have identical chemical characteristics but vary in 

atomic weight. For most metals there is little difference between the quantities of each 

isotope across the surface of the earth, however lead (Pb) is unique in that it has a 

large range of natural isotopic compositions, due to the fact that three of its four stable 

isotopes lie at the end of the major radioactive decay chains (Pollard and Heron, 1996, 

306-312). The four stable isotopes in lead are 206Pb, 207Pb, 208Pb and 204Pb, the latter 

being non-radiogenic in origin. Pollard and Heron (1996:306-312) detail the radioactive 

decay chain and determine that the decay chain of each isotope has a half-life in excess 

of 0.7 * 109 years. The ratios of the stable isotopes of lead vary measurably from metal 

deposit to metal deposit and the fact that they appear unaffected by furnace process, 

provides a major breakthrough in the scientific study of the origin of metal objects.

In geochemistry it is conventional to use the ratios 206P b /204Pb, 207P b /204Pb and 

208P b /204Pb since 204Pb is non-radiogenic and these ratios occur in the equations for 

the isotopic evolution of ore bodies (Pollard and Heron, 1996, 314-315). There is 

also a practical reason for using these ratios which relates to the method used to 

measure the isotopic ratios. Pollard and Heron (1996:312) discuss how modem mass 

spectrometrists use a method called thermal ionisation mass spectrometry (TIMS) to 

take high precision measurements, and one way of achieving the precision necessary is to 

measure the isotope compositions simultaneously as ratios, this minimises fluctuations 

in the measuring process.

Brill and Wampler (1967) pioneered the use of lead isotope analysis in archaeol­

ogy. For reasons that were ‘not explained’ (Pollard and Heron, 1996, 322), Brill and 

Wampler used the ratios 208Pb / 206Pb, 207Pb / 206Pb and 206Pb / 204Pb which have sub­

sequently been adopted as the convention within archaeological applications. These ra­

tios are measured directly using TIMS, Pollard and Heron (1996:326) note that TIMS 

is capable of making the measurements to an absolute 95% error of 0.05% in 207Pb
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Figure 4.1: 3-dimensional plot (point cloud) of the Lavrion field using data from Stos- 
Gale et al. (1996).

/206pb an(j o.l% for the other 2 ratios.

Reedy and Reedy (1992) make the suggestion that the three lead isotope ratios 

should be converted to measurements on each of the four isotope concentrations. Pol­

lard and Heron (1996:328) suggest that although this is statistically sensible, it is 

“unlikely to be helpful in light of the method used to produce the data (i.e. ratio 

measurements)” .

A specimen from an ore body is defined by measurements on all 3 ratios. Given 

a sample of n specimens, it is possible to estimate the lead isotope field for the data 

which may be represented as a three-dimensional (trivariate) point cloud as illustrated 

in figure 4.1. The field is commonly represented as bivariate plots of ratio pairs with 

confidence ellipsoids marking its estimated extent (e.g. Sayre et a l , 1992; Gale and 

Stos-Gale, 1992). The confidence ellipse is determined based on the assumption that 

the two variables are bivariate normal. Essentially an ellipse is plotted around the 

data with an orientation determined by the correlation of the variables. For each 

observation, a probability can be calculated which determines how likely it is lie within 

the ellipse. Commonly 90% or 95% confidence ellipses are used. Stos-Gale and Gale
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Figure 4.2: Bivariate plot of 208Pb / 206Pb against 207Pb / 206Pb for the Lavrion, Keos 
and Syros fields which shows how different ore fields can be distinguished. Data from 
Stos-Gale et al (1996) and Gale et al (1997).

(1994:112) make use of discriminant analysis to determine the relative probabilities of 

a sample coming from different fields.

Another approach is adopted by Sayre et al (1992, 1995). They determine the 

(Mahalanobis) distance of an artefact from an ore-body, and convert this to a proba­

bility which is used to assess if an ore body could be the source of the artefact. This 

probability calculation also requires the assumption of normality.

If fields for the ore-bodies are distinct in two-dimensional space, it follows that they 

are distinct in three-dimensional space. Given distinct fields, there is the possibility 

that the lead isotope signature for an artefact may be matched to a field which will allow 

investigation into its provenance. This is demonstrated in the bivariate plot shown in 

figure 4.2 where it can be seen that the Syros, Lavrion and Keos fields are separated 

from each other. Although lead isotope analysis is less problematic than other forms 

of metallurgic analysis, the amount of data available is still relatively small. As a 

consequence, the numbers of samples which are used to define the fields is usually
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minimal.

In the following sections the question of sample size in lead isotope analysis is 

addressed. We begin by looking at the univariate ratios in isolation and continue 

to extend this for bivariate pairs of ratios and finally examine the trivariate data 

directly. It has previously been the contention that 20 samples are sufficient to define 

a lead isotope field (Pollard and Heron, 1996). We will utilise some of the large data 

sets published by Stos-Gale et al. (1996) and Gale et al (1997) and apply various 

techniques to determine minimum sample sizes required to detect structure evident in 

the full data set. We demonstrate that, in some cases, 20 samples is inadequate and 

go on to question the assumption of normality.

4.1 .1  T he question  o f norm ality

Recently there has been much debate surrounding lead isotope analysis; Budd et al. 

(1993, 1995, 1996), Stos-Gale et al. (1997) and Baxter, Beardah and Westwood (2000) 

have questioned some of the commonly used methods of provenancing lead isotope data. 

Budd et al. (1993) raise concerns over the method used to construct the confidence 

ellipse, they suggest that it “creates a misleading impression of the separation of the 

source fields” . The same group have also questioned the assumption of trivariate 

normality (Scaife et a l , 1996) which is an essential assumption in order to construct 

the confidence ellipse. Our primary interest is in this question of trivariate normality, 

and in sample sizes which are required to demonstrate this.

Gale and Stos-Gale (1993) and Sayre et al (1992) assert that lead isotope data are 

(trivariate) normal. Gale and Stos-Gale (1993) use statistical tests of univariate nor­

mality of the three ratios (or marginals) considered in isolation. Univariate normality 

of the three individual ratios alone does not, however, mean that data are trivariate 

normal. The converse is however true, if there is a departure from univariate normality, 

there will also be a departure from trivariate normality. Sayre et al (1992) examine 

the principal component scores for the ratios. They note that they ‘often create his­

tograms of the distributions • • • for source group specimens along the characteristic 

vectors for the groups. If the specimens of a group are normally distributed along each 

of its characteristic vectors one can conclude that the group is normally distributed
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• • •. These histograms for our groups do approximate Gaussian curves.J This approach 

is limited by the inefficiency of the histogram as a method of assessing normality, par­

ticularly with small samples. In the following examples, it will be demonstrated that 

normality of the individual univariate marginals in isolation does not imply that the 

data are trivariate normal.

It is quite common for confidence ellipsoids to be used to define the individual lead 

isotope fields, it is also common for probability calculations to be performed to deter­

mine which field a sample belongs to (Gale and Stos-Gale, 1992; Sayre et al., 1992, 

2001). Both techniques require the assumption of normality and thus may be mislead­

ing. Baxter, Beardah and Westwood (2000) discuss the importance of the assumption 

of normality, they point out that the assumption is “rarely, if ever, exactly true but is 

often a sufficiently good approximation that the methodology is not compromised”.

Some statistical methods are “robust” to the assumption of normality, that is the 

output of the method is insensitive to departures from normality, however Baxter, 

Beardah and Westwood (2000) also stress that robustness of methods should not be 

assumed. Later in the paper it is illustrated how the assumption of normality can affect 

probability calculations, specifically they illustrate how the assumption of normality 

can result in misleading group memberships. Baxter and Gale (1998) discuss the 

robustness of discriminant analysis (advocated by Sayre et al. 1992) and conclude that 

it is robust to the assumption of normality.

Results on the univariate case reported on by Baxter, Beardah and Westwood 

(2000:975) are based on results from the univariate case presented in section 4.2. Also 

Westwood, Baxter and Beardah (1998) was jointly written and based on results pre­

sented in the following sections.

4.1 .2  T he sam ple size issue

In addition to specific issues related to the assumption of normality, discussed above, 

we argue that the lack of sufficient numbers of specimens is cause for concern, as 

acknowledged by Sayre et al. (1992). An obvious consequence of insufficient samples 

is the inability to detect structure in data, for example departures from normality.

Baxter, Beardah and Westwood (2000) discuss a specific example relating to the



Cyprus field. The field was originally defined by 43 specimens from several sources on 

the island and was defined using confidence ellipsoids (Stos-Gale et al., 1997). Until 

extensive new data was made available by Gale et al (1997) and Stos-Gale et al, (1997), 

there was much published debate (e.g. Budd et al, 1995) over the possibility of sub­

dividing the field. The availability of more extensive data confirmed that the field 

could in fact be sub-divided into different deposits. Baxter, Beardah and Westwood 

(2000:974) state “the important point here is that, because of an inadequate sample 

size, it could not be recognised that the Cyprus field was non-normal and extremely 

multimodal. Had larger sample sizes been available at an earlier date much argument 

could have been avoided”.

Although there appears to be little agreement on any area of lead isotope analysis, 

the general opinion appears to be that a sample size of n — 20 is an acceptable minimum 

(Pollard and Heron, 1996). Sayre et al. (1992, 97) state that ‘the spread of uncertainty 

about a source field steadily contracts as the number of specimens describing the source 

becomes large, tending to level off when one has something in the order of 20 such data 

points’. Pollard and Heron (1996:328) summarise by noting that 20 geologically well 

selected ore samples is an ‘agreeable minimum’.

Baxter, Beardah and Westwood (2000) suggest that a more “theoretical” justifica­

tion is provided by Harbottle (1976) for this choice. Harbottle (1976) suggests that for 

probability calculations that require stable estimation of the covariance matrix with 

d variables, n > bd is a desirable minimum. For d =  3, a value of n of less than 

20 emerges as a desirable minimum. This rule also assumes that data are normally 

distributed.

Sayre et al (1992) define fields with as few as 10 samples, however more recently 

Stos-Gale et al (1996) and Gale et al (1997) have made available large data sets, 

some with over 50 observations.

In the following section, we show that a sample size of 20, or even 40 in some 

cases, is not sufficient to expose the non-normal structure in certain data. If data are 

sampled from a normal distribution, 20 may well be an acceptable minimum, how­

ever if specimens are sampled from a non-normal distribution, 20 may be seriously 

inadequate.
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4.2 The one-dim ensional case

4.2 .1  T esting for departures from  norm ality

Bowman (1992) proposed a test of univariate normality based on the use of kernel 

density estimates. Given that . . . ,  X n is a univariate sample with n observa­

tions, the test simply measures the “distance” between a KDE for the data, and the 

expected density under the assumption of normality. The resultant integrated squared 

error (ISE) statistic is given by

J { N ( x ) 1 +  h2) — f (x \  h)}2dx. (4.1)

where f (x ;h)  is a kernel density estimate of x with window-width h (equation 3.2). 

N(x,  1 +  h2) is the normal density with mean 0 and variance 1 +  h2. Bowman (1992) 

notes that the comparison of the KDE is made against 1 +  h2 as this is the “expected 

value of f{x\h )  under the null hypothesis” (of normality). The univariate normal 

density function (pdf) is defined as

AT(W )  =  J = M ^ eXp ( - ^ ^ ) .  (4.2)

Data are initially standardised to have zero mean and unit variance, this allows direct

comparison against a normal density with zero mean and unit variance.

The statistic can be evaluated numerically or analytically using results given in 

Bowman (1992), who also provides critical values using

r 4 i 1 /5

* - { * /  (43)

which is in fact the normal scale rule (equation 3.9) with a = 1, which is AMISE-

optimal under the null hypothesis of normality.

A ssessing  perform ance of th e  ID  ISE sta tistic

Bowman (1992) produced power curves to demonstrate how the ISE statistic performed 

for a specific mixture of normal distributions of the form

0 .5  1) +  0 .5  iV (/i,  1)

for — 3 < (i < 3 and sample sizes of n =  20 and 50. These distributions are formed 

by sampling n/2 observations from N ( —/q 1) and n/2  from N ( f i ,  1). The resulting
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distributions are bimodal with 2 identical normal pdf’s separated by 2/i. Figure 4.3 

shows the mixture 0.57V(—/i, 1) +  0.57V(/i, 1) with \x — 2 (that is a separation of 4).

This original, limited, simulation study has been extended to determine how the 

ISE statistic performs for a wider range of univariate distributions.

Bowman’s (1992) mixture distribution can be generalised to generate a wider variety 

of bimodal distributions

(1 — p)iV(0,1) +  piV(^, (4.4)

N(fi, a2) is a general univariate normal pdf with mean p and variance a2. The value 

of p, the mixing parameter, determines the proportion of samples taken from each of 

the components, 0 < p < 1. Given that n is the number of samples in the simulated 

distribution, n( 1 — p) samples are taken from N(0,1)  and np from N(fi ,a2). The 

resulting distributions are typically bimodal and have a mode at 0. Depending on 

the value of a2 a second mode is present at p. The conditions for bimodality, which 

depends on fi and a2, are defined in equation (4.6).
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This model can be further generalised to simulate multi-modal distributions:
c

Y^PiN{fiU(?f) (4.5)
i = l

where XXu Pi —  ̂ an<̂  c is the number of components forming the distribution.

Using equation (4.4), the number of possible distributions which can be simulated 

is endless. The distributions range from those which appear unimodal, for example 

taking jjl — 0, to the obviously bimodal distributions which can be simulated with 

/i > 10. In order to limit the number of possible distributions to a manageable number, 

the simulation study is restricted to distributions with two components, as defined in 

equation (4.4). Also, fi is constrained to lie between 0 and 6. This gives a range of 

distributions from those which cannot be differentiated from unimodal (e.g. a2 — 1 

and fj, — 1) to a clearly bimodal distribution with ji =  6. It would be expected that 

further separation of the components would make little difference to the performance 

of the ISE statistic. Sample sizes of 20 <  n < 100 were used.

The extended simulation study which we undertake consisted of generating 1000 

samples of size n from each of 24 mixture distributions of the type defined in equation 

(4.4). Results are presented in table B .l in Appendix B and presented as cumulative 

frequency curves where appropriate. The curves show the separation of components 

plotted (fi) against the proportion of repetitions for which the hypothesis of normality 

is rejected (power).

Initially, the effect of varying sample size was examined and values of p = 0.5 and 

<j2 — 1 were used. Everitt and Hand (1981) state that univariate mixture distributions 

of the form

(1 -  p)N(fi1, a\) +  pN(/i2, o\)

have one unique mode if

1/H -  Pv\ < 2 min(cjf, erf). (4.6)

For the mixture distributions used here, p i =  0, p 2 =  — 1 and erf =  a 2. In the

present example (with a2 — 1), /i > 2 will result in a bimodal distribution. The power 

curve in figure 4.4 shows that for n > 2, the power of the statistic increases as n  does. 

Smaller sample sizes require that components be more separated for the hypothesis of 

normality to be rejected more frequently.
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Figure 4.4: Cumulative frequency curves showing the power of the ISE statistic for 
mixtures of the form 0.5iV(0,1) +  0.57V(/i, 1) for 1 < n < 6. The solid line represents 
power for n =  20, dashed for n = 30, dash-dot for n = 40, dotted for n =  50 and solid 
with ‘o’s for n — 100.
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Figure 4.5: Cumulative frequency curves showing the power of the ISE statistic for 
mixtures of the form 0.51V(0,1) +  0.5N(fi, a2) for 1 < p < 6. The solid line represents 
power for a2 = 1 (bimodal for p  > 2), dashed for a2 = 0.25 (bimodal for p > 2), 
dash-dot for o2 =  0.5 (bimodal for p > 2), dotted for a2 = 2 (bimodal for > 4) and 
solid with ‘o’s for a2 = 4 (bimodal for p > 8).

In general, varying p has little effect on the power of the statistic other than for 

p — 0 and 1 which results in a unimodal population. For smaller sample sizes, varying 

p does result in fractionally lower power, however for larger n virtually no difference is 

observed.

Simulating distributions with long tails is achieved by decreasing a2, this results 

in a much narrower mode. Increasing cr2 results in the second distribution becoming 

kurtotic, that is a lower flatter mode. For smaller sample sizes (e.g. 25), the power 

is low compared to larger n (e.g. 100) as illustrated in figure 4.5. The implication of 

this is that sample sizes of «  20, as commonly used in lead isotope analysis, are not 

sufficient to detect certain forms of structure directly using the ISE statistic, larger 

sample sizes are needed in some cases. In particular kurtotic distributions and those 

with very little separation between components require considerably more samples to 

be able to reproduce the structure present in the population.

4.2 .2  C ounting m odes

A more direct approach than testing for normality is simply to count the number of 

modes in a KDE, f (x).  For example, a cr2) distribution is unimodal as it contains 

a single component. If we count the number of modes in a KDE based upon a sample

44



from a distribution and find that more than 1 are present, we can assume a departure 

from normality.

The difficulty is in assessing whether or not what seems visually apparent reflects 

real population structure. Assessing the modality of a KDE can be achieved in a 

number of ways, for example one obvious approach is to locate the turning points of 

f (x )  by finding solutions to f ' (x)  = 0. We have used a more numerical approach, 

presented below, which we found to be far less computationally expensive.

Given a vector of KDE heights evaluated at regular intervals; let f k =  f ( s k) where 

sk defines the mesh of values at which the KDE height is calculated. Then a mode is 

detected when f k > / fc_x and f k > f k+1.

Experimentation has suggested that both forms of mode counting proposed above 

are extremely sensitive to outliers. Whereas visual examination of KDEs allows us to 

ignore what is deemed to be spurious structure, for example outliers, replicating this 

procedure mathematically is a more complex problem.

We have attempted to explore alternate approaches to mode counting, specifically 

we have investigated the possibility of using neural networks. A neural network can be 

thought of as a simplified model of the human brain which can be “trained” to detect 

patterns within data, the intention being to mimic the subjective ability to categorise 

patterns. Very simplistically a number of inputs are used to generate a number of 

outputs, and the network is “trained” by example. Our experimentation consisted of 

training a neural network to determine if a KDE has 1 or 2 modes. We input the 

height of a KDE at regular intervals and the network outputs a flag to indicate if the 

KDE is unimodal or bimodal. Our results with neural networks were unsatisfactory at 

times; although the network was able to successfully classify a proportion of samples, 

it had a tendency to incorrectly classify clearly bimodal data as unimodal and clearly 

unimodal data as bimodal.

In order to address the problem of outliers, most of which commonly appear in the 

tails of the estimated distribution, we have opted to ignore modes found below a pre­

determined height threshold (unless otherwise stated any mode whose height is below 

10% of the maximum height of the KDE is ignored). Figure 4.6a shows an example 

of a mode which falls below the threshold which is ignored, with figure 4.6b showing a

45



(a) Mode ignored (below 10% thresh- (b) Mode not ignored (above 10%
old) threshold)

Figure 4.6: Example illustrating how potential outliers are removed from bump hunt­
ing. A mode is ignored if it is lower than 10% of the maximum height of the KDE.

mode which is not ignored.

A ssessing perform ance o f ID  m ode counting

In order to assess the performance of the mode counting procedure (using the nu­

merical approach) discussed above, we use the same distributions used to assess the 

performance of the ISE statistic in section 4.2.1. Specifically we have constructed a 

family of distributions of the form

(1 -  p)N(0,1) +  pN(p, cr2) (4.7)

which range from those which cannot be distinguished from unimodal to clearly bimodal 

distributions. The samples generated for the ISE statistic were saved and have been 

re-used for mode counting, meaning 1000 repetitions are used for each distribution and 

sample size combination. Results are presented in tabular form in appendix B.

The mode counting results serve three purposes, initially to determine performance 

of the mode counting procedure; secondly to allow comparison between non-adaptive 

(section 3.2.1) and adaptive KDEs (section 3.2.3) and finally to compare performance 

of different algorithms for the selection of the smoothing parameter, h  (section 3.2.2). 

Results from each of the four methods of generating KDEs (non-adaptive and adaptive 

with h  selected via h ^ s  and I i s t e )  are presented in individual tables B.2 to B.5 in 

appendix B
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Silverman (1986; 102) observes that adaptive KDEs are insensitive to the pilot value 

of h used. Our experience tends to disagree with this observation and we argue that 

the pilot value of h forms an important choice in the construction of an adaptive KDE. 

For example, figure 4.7a and b show 2 adaptive kernel density estimates of the same 

sample of size n — 100 from the mixture of distributions

0.4iV(0,1) +  0.6iV(2/3,5/2).

Figure 4.7a has a pilot h value computed using the Normal Scale Rule and figure 4.7b 

has a pilot h value computed using the Sheather and Jones (1991) technique. The pilot 

estimate of Hste emphasises the mode to the left of the plot whereas the pilot estimate 

of Jins makes the mode appear far less prominent.

Generally the Sheather and Jones (1991) Solve-the-Equation (Jis t e ) algorithm 

tends to produce smaller h values than the normal scale method (h^s)- Non-adaptive 

KDEs with hsTE tend to be more ‘jagged’ due to the relative under-smoothing from 

the small value of h (figure 4.7d), whereas non-adaptive KDEs with Hns  (figure 4.7c) 

tend to be smoother in appearance. The window-widths generated by h^s  tend to be 

larger than those from Iiste- With the additional smoothing applied by the adaptive 

KDE, the pilot estimate of h^s  tends to over smooth compared to the non-adaptive 

KDE, whereas adaptive KDEs using a pilot estimate of Jiste appear smoother than 

the non-adaptive KDE with the same value window-width.

The general trend of our results is that, as sample size or component separation 

increases, the proportion of times which the correct number of modes are detected 

increases as would be expected. In general, for smaller sample sizes, the adaptive Iiste 

method tends to perform better than other methods, however for larger n there is less 

difference between adaptive and non-adaptive KDEs or h selection algorithms.

The effect of varying sample size is noticeable, particularly when the normal scale h 

selection method is used. In general, an adaptive KDE with a pilot estimate generated 

by hsTE produces better results, with over 50% of cases being detected as bimodal 

when /j, =  3, irrespective of sample size. Figure 4.8 shows cumulative frequency curves 

for adaptive Iiste and non-adaptive h^s  which show the proportion of replications for 

which bimodality is detected against the separation of components (/i). Samples are 

from the distribution 0.51^(0,1) +  0.5IV(0, ji) for 0 < fi < 6.
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(a) Adaptive KDE with pilot estimate (b) Adaptive KDE with pilot esti-
of hws — 0.6104 mate of hsrE  =  0.3443

S1 02

(c) Non-adaptive KDE with h ^ s  =  (d) Non-adaptive KDE with hgTE =
0.6104 0.3443

Figure 4.7: KDEs generated for 100 observations from the mixture 0.4iV(0,1) +  
0.677(2/3, 5/2).
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(a) Adaptive, I i s t e  (b) Non-adaptive, h ^ s

Figure 4.8: Performance of mode counting for adaptive KDEs with h selected via hsrE 
and non-adaptive KDEs with h via Iin s - Curves show proportion of replications for 
which bimodality is detected against separation of components. Solid line represents 
n = 20, dotted represents n — 50 and dashed represents n — 100. Samples are from 
the distribution 0.5iV(0,1) -I- 0.51V(0, p) for 0 <  p < 6.

Varying p has far more effect than it had on the ISE test of normality. For smaller 

sample sizes, p > 3.5 tends to result in approximately 50% of samples being detected 

as bimodal when p — 0.3. For sample sizes of 50, this increases to over 60% (when 

hsTE is used). There is generally little to choose between adaptive and non-adaptive 

KDE generation, however normal scale estimates of h tend to outperform Iiste when

p = 0.1.

4 .2 .3  O ther approaches to  m ode counting

The approach adopted for assessing the modality of data discussed above is primarily 

numerical, the intention of the approach was to quickly assess how many modes were 

present in the data. It was hoped that this would mimic the visual interpretation which 

we make, however this was not as successful as would have been hoped. We suspect 

that this is in part because of spurious structure, which is often visible in the tails of 

KDEs as small modes. Our attempts at ignoring these small modes, i.e. those which 

are less than 10% of the height of the highest point of the KDE, has not always been 

successful with some spurious structure not being ignored. More formal methods of 

mode counting have been proposed.

One of the most commonly used formal tests of modality is that of Silverman (1981)
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who proposes the use of KDEs. Modality is sequentially tested for 

H0 : The number of modes is k

Hi : The number of modes is greater than k

starting with k =  1 and increasing until we are satisfied that H0 is accepted. For 

each stage, a KDE is formed with k modes, then repeated bootstrap samples are taken 

from the data and again used to generate KDEs with the same window-width. The 

significance level of the test is given by the number of times bootstrap samples lead to 

A;-modal KDEs. This test is discussed more fully in chapter 5, along with suggestions 

for possible improvements. Efron and Tibshirani (1997) extend the original work of 

Silverman by incorporating Bayesian approaches.

Another approach is that of ‘excess mass’. In this approach, modes are ignored if 

they are deemed to be insignificant (as measured by the proportion of ‘mass’ of the 

estimated density which they occupy). Discussion of this approach can be found in 

Muller and Sawitzki (1991). Other tests include the DIP test of unimodality (Harti- 

gan and Hartigan, 1985), the RUNT test for multimodality (Hartigan and Mohanty, 

1992) and the MAP test (Rozal and Hartigan, 1994). Although theory for these tests

receives much discussion in statistical literature, few applications appear to have been

published. A possible extension of the work presented here would be a comparative 

study of these tests.

4.3 O ne-dim ensional applications

In this section we report on the application of the ISE statistic (discussed in section 

4.2.1) and the mode counting procedure (discussed in section 4.2.2) to the ID lead- 

isotope problem.

Several of the larger lead-isotope data sets in Stos-Gale et al. (1996) and Gale et 

al. (1997) that exhibit non-normality were used to assess the sample size required to 

detect the non-normality of the original data set. Sub-samples were taken (without 

replacement) from the Larnaca data (n =  63) (Gale et al., 1997). Figure 4.9 shows 

an adaptive KDE of the third ratio and it clearly appears to be multi-modal and 

non-normal.

Repeated sampling (1000 times) for n — 20 from the third ratio of the Larnaca data
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Figure 4.9: Adaptive KDE of the 206P b /204Pb ratio of the Larnaca axis, n = 63 (Gale 
et al., 1997). h selected via solve-the-equation.

resulted in the rejection of normality about 50% of the time using the ISE test; this 

rose to about 90% for n — 35. The value of the ISE statistic for all n — 63 observations 

is 0.0215 which is significant at the 1% level.

Figure 4.10 shows an adaptive KDE of the third ratio of the Lavrion data (n =  59) 

(Gale et al., 1996). For n = 20, normality was rejected just over 15% of the time, for 

such clearly bimodal data this is quite low; for n =  50 normality was rejected about 

80% of the time. A “mode counting” analysis on this data, using adaptive KDEs 

with Ji s t e  producing the pilot estimate, suggests that a sample size of 20 gives rise to 

bimodal KDEs about 40% of the time, which is about double the success rate for the 

normal testing approach. The ISE statistic for all 59 observations is 0.0116 which is 

also significant at the 1% level.

Although examining the margins of the three-dimensional data allows non-normality 

to be detected in these instances, this will not generally be the case. Although direct 

testing of trivariate normality is possible, an alternative approach can be to find a 

univariate ‘view’ of the data which is non-normal. If such a ‘view’ of the data can be
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Figure 4.10: Adaptive KDE of the 206P b /204Pb ratio of the Lavrion ore-held, n = 59 
(Stos-Gale et al., 1996). h selected via solve-the-equation.

found it follows that the hypothesis of trivariate normality cannot be accepted.

Figure 4.11 shows a KDE of a ‘projection’ of 2 of the 3 variables (0.18742O8P b /2O6Pb 

—0.98232O7P b /2O6Pb) from the Keos ore held (Stos-Gale et al., 1996) which consists of 

62 observations. This linear combination of variables was suggested by Malkovich and 

Ahh’s (1973) multivariate modification of the Shapiro-Wilk Statistic,

VF =  {XaiXi)2/E p Q  -  x f  (4.8)

where A2, . . . ,  X n are ordered samples of n observations, and the coefficients, ai} 

depend on the covariance matrix of the order statistics of a sample of standard nor­

mal random variables (Baxter, 1999). Malkovich and Ahh (1973) extend this to the 

multivariate case, specifically they calculate the minimum value of W  over all possible 

linear combinations of variables, which is a non-trivial calculation and solved by ‘brute 

force’ methods. This method, which scans high dimensional data to produce a low­

dimensional view which is ‘interesting’, is one form of projection pursuit methodology, 

a topic which is discussed more fully in chapter 6.

Sub-samples were taken (without replacement) from the projected data and tested
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Figure 4.11: Adaptive KDE for a linear combination of two lead isotope ratios from the 
Keos ore field, n  =  62 (Stos-Gale et a l , 1996), 0.1874208P b /206Pb-0.98 23207P b /206Pb. 
h selected via the I is te  procedure.

for departures from normality using the ISE statistic. A sample size of n = 20 results 

in the hypothesis of normality being rejected 28% of the time; for a sample size of 40 

this figure rises to 70%.

It is only very recently that sufficiently large data sets have been made available to 

investigate normality in this way. The analyses just cited, and the studies on simulated 

data in previous sections, suggest that 20 can be a seriously inadequate number of 

samples with which to define a lead isotope field. In some of the examples double the 

number of samples are necessary to detect the departures from normality. Since the 

assumption of normality is central in some approaches to statistically handling lead- 

isotope data (Sayre et al., 1992; Sayre et a l , 2001), this is an important finding. In 

some cases, sample sizes at least double those often recommended may be needed to 

detect problems with the assumptions used in statistical analyses.
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4.4 The tw o-dim ensional case

4.4.1 T esting for departures from  norm ality

Bowman and Foster (1993) extend the original work of Bowman (1992) on the ISE 

statistic and propose a multivariate form. Essentially the statistic remains unchanged,

J {iVd(x, (1 +  h2)Id) -  /(x , h2Id)}2dx (4.9)

where Ah(x, (1 +  h2)ld) denotes the normal pdf (equation 3.1) with covariance matrix 

(1 +  h2)Id evaluated at x and /(x , h2Id) is the multivariate kernel density estimate as 

defined in equation 3.4, created with the normal kernel. As in the univariate case, data 

are initially standardised.

Critical values are again provided for the statistic for a range of d and n at the 5% 

level using the AMISE-optimal value of

f 4 j V(^+4)

h=\TdTWn\ ■ (4-10)
A ssessing perform ance o f th e  2D ISE sta tistic

Bivariate mixture distributions can be created in much the same way as univariate

distributions. The multivariate normal distribution

d — 2 can be written as IV (/x, X2) where fi = Ah
h2

(as defined in equation 3.1) with 

is the mean of the distribution

and X2 = Oi  cncr2p 
cricr2p cr| 

can then be written as

is the covariance matrix. A bivariate mixture distribution

X2) + p2N ( f i 2> ^ 2 ) "I +  PcAf(/xc, X2)

where X)i=i Pi ~  1 are ^ie mixing proportions.

In the bivariate case, the number of distributions which could be created is enor­

mous. Wand and Jones (1993) work with a set of 12 bivariate mixtures which demon­

strate various forms of structure (detailed in appendix A). For the present purposes, 

these 12 distributions have been used. As with the univariate distributions, 1000 sub­

samples of varying size have been taken and we test using the ISE statistic Hq : The 

distribution of the population from which the sample is selected is normal against Hi : 

The distribution of the population from which the sample is selected is not normal.
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Sample Size 15 20 25 50 100
(A) Uncorrelated Normal 0.072 0.053 0.055 0.037 0.041
(B) Correlated Normal 0.050 0.059 0.066 0.040 0.036
(C) Skewed 0.222 0.244 0.339 0.504 0.816
(D) Kurtotic 0.176 0.235 0.265 0.436 0.846
(E) Bimodal I 0.053 0.072 0.097 0.159 0.519
(F) Bimodal II 0.475 0.931 1.0 1.0 1.0
(G) Bimodal III 0.302 0.572 0.842 1.0 1.0
(H) Bimodal IV 0.237 0.429 0.657 0.991 1.0
(I) Trimodal I 0.192 0.321 0.486 0.855 0.999
(J) Trimodal II 0.105 0.170 0.230 0.530 0.967
(K) Trimodal III 0.263 0.449 0.643 0.923 1.0
(L) Quadrimodal 0.104 0.204 0.371 0.738 0.991

Table 4.1: Proportion of 1000 replications for which the ISE statistic rejects the hy­
pothesis of normality (at the 5% level) for mixtures detailed by Wand and Jones (1993). 
Details of the 12 mixtures, A to L, can be found in appendix A.

Table 4.1 details the results of the simulation study. Distributions A and B, which 

are not mixtures, show power of approximately 5% irrespective of sample size, which is 

to be expected. For the other distributions, as n  increases, so does the power, although 

for the remaining 2 univariate distributions, C and D, power is low for n < 50.

Mixtures F, G, H and K, which show the greatest separation between components 

also have the highest powers for sample sizes of over 25. For larger sample sizes, 

detection of non-normality is almost certain.

In mixtures I and L the separation of two components is at least partially obscured 

by a third or fourth component. The power is moderately good for sample sizes of 50 

(though, for L, non-normality would not be detected about a quarter of the time).

For mixture J, with two distinct modes but considerable overlap between compo­

nents, a sample size of 100 is needed for good power, and power is poor for the smaller 

sample sizes. Mixture E is qualitatively similar to mixture J, but performance is even 

poorer, with a sample of size 100 not really adequate for detecting normality.

In general, it can be concluded that for mixtures which consist of components 

which are clearly separated by a region of low density, a sample size of 50 will often be 

sufficient to reject the hypothesis of normality a high proportion of the time. Smaller 

sample sizes, sometimes as low as 25, may be good enough to reject the hypothesis of 

normality a moderate proportion of the time.
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Where there is a clear overlap between components or in cases where two distinct 

components are linked by a third, larger sample sizes are needed to obtain high power.

4.4 .2  C ounting m odes

The univariate mode counting procedure discussed in section 4.2.2 can be directly 

extended to the bivariate case. In the bivariate case, each point defining the height of 

a KDE is surrounded by 8 neighbours in a 3 x 3 grid. A point can thus be defined as 

a mode if none of its 8 neighbours have a greater height. Again, spurious structure, 

commonly found in the tails, is ignored by means of a predetermined threshold value.

As well as simply counting the number of modes present, it is also possible to 

determine if modes are in approximately the correct location. For an m -mode mixture 

a KDE based on a simulated sample is considered to be ‘successful’ if the m  modes 

are detected in approximately the right positions (within a radius of /xc/2 where [jlc is 

the known mean of the component) regardless of the total number of modes detected. 

This gives us an opportunity to determine how accurately a KDE is able to reproduce 

the characteristics a known population from a limited sample.

A ssessing perform ance o f th e  2D  m ode counting procedure

The 12 bivariate mixtures used above to assess the performance of the ISE statistic 

are used as the basis for a study into the performance of the mode counting procedure 

detailed above. The 12 mixtures detailed in appendix A were repeatedly sampled from 

1000 times for varying sample sizes. Results are presented in tabular form in tables 

B.6 to B .ll in appendix B. Each table shows results for one of the six methods of 

generating the bivariate KDEs examined, i.e. non-adaptive and adaptive KDEs with 

the window-width calculated by Ii n s > hsrE and h o p n ■

In general, the probability of detecting the correct number of modes was relatively 

low. There was a tendency for performance not to increase with sample size; we 

suspect that spurious structure in regions of low density is partially to blame for this. 

Our attempt to automatically remove modes which are not important by ignoring any 

which are below a defined threshold was not as successful as in the univariate case. In 

some instances, the 2 stage direct plug-in window-width selection routine out-performed 

the univariate routines, however this was not evident in all cases.
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Modes were generally located in approximately the correct location, irrespective of 

which window-width selection routine was used. For the three bimodal mixtures with 

clearly separated components and modes (F, G, H) n = 100 gives a success rate of 

about 85-90%. With n = 50 the success rate is between about 65-80%, with the lowest 

value associated with the obviously separated mixture F.

For the overlapping bimodal, and tri- and quadrimodal distributions the success is 

somewhat lower being, at best, about 60% for n =  100 and very much lower in some 

cases, particularly for the quadrimodal mixture.

The bivariate mode counting procedure’s performance has not been satisfactory and 

highlights that the process discussed above needs further development to be of use. The 

results presented in tables B.6 to B .ll in appendix B suggest that the correct number 

of modes are rarely detected, with spurious modes causing considerable problems for 

our automatic mode counting. As such, some form of more intelligent outlier removal, 

or a more sophisticated mode counting process is required.

Currently a point (i.e. a location at which the height of a KDE is evaluated) is 

a mode if it has no higher neighbour and is above the threshold. This is perhaps an 

overly simplistic definition of a mode as it does not take into account anything other 

than directly neighbouring points. Complications arise because spurious structure 

does not always fall below the threshold. If the threshold is too high, there is a 

possibility that valid structure will be ignored, however if the threshold value is too 

low there is a possibility of spurious structure appearing in the tails of the KDE, 

sometimes appearing as several small modes which can generally be assumed to be 

unimportant. Figure 4.12 shows two examples of what might be considered spurious 

structure. These are presented as one-dimensional KDEs although similar can occur 

in any number of dimensions. Figure 4.12a shows a ‘bump’ at about x = 18; the mode 

counting procedure would count this as a valid mode, however it might be classed as 

unimportant when examined by a human. Figure 4.12b shows 2 modes in the right 

hand tail of the KDE which are close together, both would likely be ignored as spurious.

A slightly more sophisticated approach to mode counting than that used above 

would be to look at areas of the KDE, instead of just looking at a single point and 

its neighbours. The hope is by looking at a slightly larger area, small spurious modes
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(a) KDE showing a ‘bump’ which 
may be classified as spurious

(b) KDE showing spurious modes in 
the tails

Figure 4.12: One-dimensional KDEs showing examples of spurious structure.

can be ignored. For example, look at blocks of 2 or 3 points, for the bivariate case a 

grid of 2 x 2 or 3 x 3 points could be used. For each block of points, compare their 

average height to neighbouring blocks, if the average height is greater than all of the 

neighbouring blocks, a mode is present. This would help to remove some of the forms 

of spurious structure which were illustrated in figure 4.12.

In section 4.2.3, alternative methods to univariate mode counting were discussed. 

Not all of these techniques can be generalised to the bivariate case, however the concept 

of ‘excess mass’ could be extended to the bivariate case. A further alternative would 

be to apply the EMMIX technique (McLachlan et al., 1999). This technique can be 

used to determine the component normal pdf’s that form the population. This method 

would not necessarily determine the number of modes in the population however once 

the components are determined simulated versions of the population could be used to 

further investigate modality.

4.5 Tw o-dim ensional applications

In this section the techniques discussed above are applied to the bivariate case. For the 

larger data sets of Stos-Gale et al (1996) and Gale et al. (1997), the three bivariate 

pairs of ratios

208Pb / ^ p b  v207Pb / 206Pb,
2 0 S p b  / 2 0 6 p b  v  2 0 6 p b  / 2 0 4 p b )
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2 ° 7 p b  / 2 0 6 p b  v  2 0 6 p b  / 2 0 4 p b

are repeatedly sub-sampled 1000 times for varying sample size, n. Each bivariate sub­

sample is subsequently tested with the ISE statistic (section 4.4.1).

The 3 individual univariate ratios of the Keos field (Stos-Gale et al. 1996) do not 

suggest a departure from univariate normality, with ISE statistics for the 3 ratios being

0.003, 0.0024 and 0.0015 respectively, all of which are not significant. In section 4.3 

we demonstrated that using the Malkovich and Afifi (1973) extension to the Shaprio- 

Wilk statistic, it was possible to find a linear combination of the 208P b /206Pb and 

207P b /206Pb ratios which was clearly non-normal and bimodal (figure 4.11). This is 

sufficient to show that trivariate normality cannot be assumed.

Figure 4.13 shows a bivariate plot of the two ratios 208P b /206Pb v 207P b /206Pb which 

the Malkovich and Afifi (1973) statistic combined to create the non-normal univariate 

view. We have repeatedly sub-sampled without replacement from these ratios for 

varying sample sizes and tested for departures from normality with the ISE statistic. 

For n — 30 the hypothesis of normality is rejected about 35% of the time, increasing to 

84% for sample sizes of n =  50. For all n = 62 cases, the ISE statistic is 0.0078 which 

is significant at the the 5% and 1% levels.

For the other 2 pairs of ratios, the hypothesis of normality is accepted no more than 

10% of the time irrespective of sample size.

Although the non-normality of the Keos field has previously been established by 

finding the most non-normal linear combination of variables, this example illustrates 

that the non-normality of the field can also be established by examining bivariate pairs 

of ratios.

The univariate ratios of the Larnaca data (n =  73, Gale et a l , 1997) are clearly 

non-normal with values of the ISE statistic of 0.0189, 0.0345 and 0.0215 which are 

all significant. Figure 4.14 shows contour plots of the 208P b /206Pb v 207P b /206Pb and 

208P b /206Pb v 206P b /204Pb ratios of the Larnaca data and suggests both pairs of ratios 

are highly skewed and possibly bimodal.

Repeatedly sub-sampling 1000 times from the bivariate pair 208P b /206Pb v 207P b /206Pb 

for n — 25 results in rejection of the hypothesis of normality 70% of the time. For 

n — 35, the hypothesis of normality is rejected over 90% of the time. Similar results
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Figure 4.13: Bivariate scatter plot of 208P b /206Pb v 207P b /206Pb ratios of the Keos ore 
field, n ~  62 (Stos-Gale et al., 1996).

are evident when taking sub-samples from the 207Pb / 206Pb v 206Pb / 204Pb bivariate 

pair, with rejection of the hypothesis of normality in 90% of cases for n > 25.

Repeating this for the 208P b /206Pb v 206P b /204Pb bivariate pair suggests that for 

n — 25 the hypothesis of normality is not rejected in all but a handful of cases (less 

than 1%), however for n — 55 the hypothesis of normality is rejected 73% of the time.

The Solea axis has n — 50 observations (Gale et al., 1997). As with the Keos data 

discussed above, the individual univariate ratios suggest no apparent departures from 

normality with ISE statistics of 0.0016, 0.0051 and 0.0027, none of which are significant 

at the usual levels. As before, we took 1000 sub-samples from the 208P b /206Pb v 

207P b /206Pb pair of ratios. This resulted in the hypothesis of normality being rejected 

less than 40% of the time for n — 20 and over 75% of the time for n — 30. For 

sample sizes greater than 30, normality is rejected over 90% of the time. For the 

208P b /206Pb v 206p b /204Pb bivariate pair of ratios, 40 or more samples are required to 

detect departures from normality over 80% of the time.

The examples above have demonstrated that in some cases bivariate non-normality 

is very apparent, even with sample sizes of 20. In other cases, larger sample sizes,
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Figure 4.14: Contour and scatter plots of two of the bivariate pairs of ratios of the 
Larnaca field, n = 73 (Gale et al., 1997). In both cases h is calculated by the DPI2 
routine.

for example n > 35 are required to detect departures from normality a substantial 

proportion of the time. This further illustrates that 20 samples may be insufficient 

to correctly represent structure. We have also illustrated that, although lead isotope 

data may have three ratios that, marginally, do not appear to be non-normal, bivariate 

combinations of the ratios can highlight very apparent departures from normality.

4.6 The three-dim ensional case

The ISE statistic discussed in section 4.2.1 and 4.4.1 can be directly extended into 

higher dimensions, however as dimensionality increases, the computational complexity 

also increases. Given sufficient critical values, the analyses undertaken in section 4.3 

and 4.5 can be extended to the trivariate case.

The mode counting approach discussed in section 4.4.2 has not been extended to 

the trivariate case due to the issues previously detailed. Theoretically the technique 

can be extended to the trivariate case however the process would be extremely com­

putationally complex. For the bivariate case a 3 x 3 grid of heights surrounding a 

point are examined. For the trivariate case a 3 x 3 x 3 cube of points would be 

considered. Computationally this approach would be very demanding. At the time of 

writing, we are not aware of any direct measure of assessing the modality of trivariate 

data. The EMMIX technique (McLachlan et al., 1999) could be applied to trivariate
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data to assess the components which form the population, which may give insight into 

the modality of the data.

4.7 Three-dim ensional applications

Further confirmation of the results obtained in sections 4.3 and 4.5 comes from direct 

testing of three-dimensional normality. Baxter, Beardah and Westwood (2000) present 

3-dimensional KDEs which provide evidence that the Lavrion lead isotope data (Gale 

et al, 1996) is non-normal and bi-modal. A 3-dimensional KDE requires 4-dimensions 

to represent it, this method of data display is not easily appreciable on a 2-dimensional 

computer screen or printed page. Baxter, Beardah and Westwood (2000) display 3- 

dimensional KDEs with different percentage contour shells to show structure. Using the 

MATLAB routines of Beardah and Baxter (1995), the representation of a 3-dimensional 

KDE on a 2-dimensional computer screen can be enhanced, for example by rotating 

the percentage contour shells in 3-dimensional space, this gives an understanding of 

structure. Although it was not mentioned by Baxter, Beardah and Westwood (2000), 

it is possible to use animation to illustrate the extent of varying contour shells.

Baxter, Beardah and Westwood (2000) note that statistical tests of multivariate 

normality provide reassurance that the data are non-normal. Although specific results 

are not given, they cite Baxter and Gale (1998) and Baxter (1999) who discuss the sta­

tistical analysis of the data in detail. The work presented below serves to support that 

of Baxter, Beardah and Westwood (2000) by demonstrating departures from normality 

using direct testing of trivariate normality.

Considering initially the Lavrion (n — 59) field (Gale et al, 1996). In section 4.3 

we have demonstrated that direct testing of the univariate ratios suggested a clear 

departure from normality. Considering now the three-dimensional data as a whole, we 

have repeatedly sub-sampled (1000 times) for different sample sizes and used the ISE 

statistic to test for departures from normality. For sample sizes of n = 20, the null 

hypothesis of normality is rejected about 37% of the time rising to over 85% for sample 

sizes of 40 or larger.

The Keos (n — 62) field (Gale et al, 1996) has been used to demonstrate that linear 

combinations of variables can be used to demonstrate non-normality, although the
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individual ratios do show departures from normality. Again, taking 1000 sub-samples 

(without replacement), with a sample size of 20 the null hypothesis of normality is 

rejected approximately 20% of the time. For n = 50, this increases to nearly 70%.

For the Larnaca data, which is obviously non-normal on bivariate plots (Stos-Gale 

et al., 1997) much smaller samples suffice to detect departures from normality in a 

formal way. A sample size of n =  25 results in rejection of the hypothesis of normality 

nearly all the time.

These results confirm that a sample size of 20, widely quoted as appropriate for 

lead-isotope data, is inadequate to detect non-normality in some cases.

4.8 Conclusions

In the previous sections we have made use of some of the larger LIA (Lead Isotope 

Analysis) data sets of Stos-Gale et al. (1996) and Gale et al (1997) and simulated 

populations to investigate the normality of the lead isotope fields. It is commonly as­

sumed that lead isotope fields are trivariate normal (Scaife et al., 1996), an assumption 

required for calculation of confidence ellipsoids and probability calculations. As such 

many of the published conclusions depend on this assumption of trivariate normality.

We have demonstrated that the trivariate normality of LIA data cannot be as­

sumed. Of the data analysed, we have demonstrated that there are several examples 

which show clear departures from normality in the form of multimodality, in some 

cases non-normality is evident with around 20 observations. For small departures from 

normality, a larger sample size is needed. The history of the Cyprus field (summarised 

in section 4.1.2) shows that even with very obvious multimodality (evident from later 

data collection), even n > 40 is not always sufficient to show departures from normal­

ity and has led to a lot of controversy. Conclusions from most techniques should be 

robust to relatively small departures from normality, however for the examples cited 

above, conclusions based on techniques which assume trivariate normality should be 

questioned.

Sayre et al. (1992) conclude that lead isotope fields are trivariate normal by testing 

the univariate normality of each of the three individual ratios in isolation. We have 

demonstrated, for the Keos field for example, that although the individual ratios may
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be normally distributed, bivariate pairs of ratios and direct testing of trivariate nor­

mality using the ISE statistic shows clear departures from normality. We have also 

demonstrated that linear combinations of the individual ratios can be found which 

again show clear departures from normality. This approach can be considered as a 

form of projection pursuit which is discussed further in chapter 6.

The analyses undertaken are based on larger sample sizes than are usually avail­

able, Pollard and Heron (1996) suggest that 20 samples is an acceptable minimum. 

The analyses above suggest that a sample size of 20 is not always sufficient to detect 

departures from normality and that in some cases 40 or more samples are required to 

highlight non-normality.

4.9 Further work

Our approach to mode counting has raised a number of issues. Some suggested modifi­

cations to the current technique were discussed in section 4.4.2, however the numerical 

approach used to recognise relevant structure automatically has proven more complex 

than was originally anticipated. Alternative approaches may provide more satisfactory 

results, for example neural networks can be trained to recognise patterns in data. The 

intention is that neural networks are able to mimic simple human pattern matching 

which is far more subjective than using simple mode counting methods. Attempts at 

this have, however, raised many issues. It is felt that a more reliable approach may lie 

with the use of formal mode counting approaches, such as those discussed in section 

4.2.3 and in the following chapter. An investigative study of these techniques would 

clearly be useful as much of the published literature is theoretical in nature.

The work on the bivariate case is limited and a fuller investigation would give deeper 

insight into sample size requirements for various forms of structure.

Our mode counting methodology for univariate and bivariate data involves iden­

tifying all modes and attempting to use some automated process to ignore spurious 

structure. An outcome of the work was an insight into the performance of different 

window-width selection routines, as well as the use of adaptive density estimates. Our, 

simplistic, approach to mode counting has however raised a number of issues which are 

discussed above. Better methods of mode counting could be explored, for example the
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theory of excess mass could be extended to the 2-dimensional case. Extension beyond 

this would require dealing with non-visible dimensions.



Chapter 5

M ode C ounting w ith  K ernel 
D ensity  E stim ates

5.1 Introduction

The mode counting work discussed in section 4.2.2 suggested that adaptive KDEs out­

perform non-adaptive KDEs in that they “better” display the underlying structure of 

the population from a given sample.

In section 4.2.3 a number of methods of mode counting were discussed as alterna­

tives to our numerical approach used in sections 4.2.2 and 4.4.2. One alternative is 

that of Silverman (1981) who makes use of kernel density estimates to estimate the true 

number of modes in a univariate population. Izenman and Sommer (1988) propose that 

Silverman’s original test be extended to make use of adaptive density estimates which 

they also suggest are better able to display the underlying structure of a population. 

They do not however discuss implementation.

This chapter begins by exploring the original test of Silverman (1981) applied to a 

number of archaeometric applications and goes on to propose an adaptive version. The 

chapter concludes with a comparison of the two versions of the test. This is used to 

gauge whether our adaptive test is easier to interpret than the original test of Silverman 

(1981) and if it is of use for relatively small sample sizes.

5.2 Silverm an’s test o f m odality

Given a univariate sample, X i, X 2, . . . ,  X ni it is possible to estimate the modality of the 

underlying population by sequentially testing for 1—, 2—, . . .  modes by fitting KDEs
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to the data.

For the general case of /c-moclality we test H0: The number of modes is k against 

H\: The number of modes is greater than k. Silverman’s (1981) approach, which we 

adopt, is to sequentially test for k — 1,2, . . .  modality. He begins by defining the 

/c-critical window width hkrit as

hkcrit = inf{h : / ( r c ,  h) has at most k modes}

which is the smallest possible value of h giving just k modes. Silverman uses a simple 

binary search procedure to find hkcrit. He notes that in practice, an interval of (hiQ) hhi) 

in which hkrit is known to lie can be halved in length by checking whether the value of 

\{hi0 + hhi) leads to £;+! modes. Silverman’s original work does not discuss how modes 

are counted, we use our numerical method of mode counting as discussed in section

4.2.2. The mode counting is performed with no threshold value as we are interested in 

a KDE with just k modes.

The sample variance, b2, should be estimated, thus :

1. Take a bootstrap sample from X 1; X2, . .. , Xn, i.e. sample n  observations with 

replacement, and label the sample Yi ,Y2, . . .  ,Yn.

2. Smooth the bootstrap sample, using

X* =  (1 +  / t y / c r 2) - 1''2^  -  jte0 (5.1)

where is a random variable from the standard 7Y(0,1) pdf. This ensures that 

samples are independent.

3. For the sample of X {, X J , . . . ,  X*, find the window-width h such that a non- 

adaptive KDE (equation 3.2) has just k modes. Silverman (1981) notes that a 

computational shortcut is to construct a KDE of the smoothed bootstrap sample 

using hkcrit and determine if this has more than k modes.

This process is repeated a large number of times; Silverman (1981) used 100 repe­

titions however Efron and Tibshirani (1993) suggest that 500 times is reasonable. We 

have experimented with the number of repetitions and believe that 500 provides ac­

ceptable results. A summary of our results comparing the number of repetitions are
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presented in the following section. The significance of the test (or p value) is then the 

proportion of repetitions for which h^rit > h (or for which the number of modes of a 

KDE based upon . . . ,  X* using h^rit is found to be more than k ).

If the test is carried out sequentially by computing p^ (the significance level) for 

k = 1,2, . . .  until a sufficiently large p value is reached, it is possible to estimate the 

number of modes within the population. What is meant by ‘large’ is not clear. Izenman 

and Sommer (1988) suggest that a p value of 0.4 is reasonable (but should be used with 

caution). More commonly in statistics, a significance level of 5 or 10% level is used to 

support a hypothesis. Our experience has suggested that the p value is dependent on 

the structure of the data, in many cases a stopping rule of p — 0.4 does not support the 

hypothesis expected and a stopping rule of p =  0.1 appears to provide a conservative 

test, that is under-estimating the number of modes.

5.3 Exam ples

Very few published applications of Silverman’s test of modality can be readily located. 

Silverman originally demonstrated the test on n = 20 observations made on chondrite 

meteors (Good and Gaskins, 1980). Izenman and Sommer (1988) extensively investi­

gate n ~  485 observations on philatelic data and Efron and Tibshirani (1993) reproduce 

a similar analysis, reaching slightly different conclusions.

We begin by replicating the analysis of Izenman and Sommer (1988) which illus­

trates a number of important points that arise in using the test. We then go on to 

apply the test to a number of lead isotope data sets and finish with an example based 

on the chemical composition of glass fragments.

5.3.1 P osta l stam ps data

Figure 5.1 shows two non-adaptive KDEs of the thickness of n = 485 postal stamps 

from the 1872 Hidalgo stamp issue of Mexico, as used by Izenman and Sommer (1988). 

The data used are univariate and consist of a measurement of the stamp thickness in 

millimetres. The aim of the analysis undertaken by Izenman and Sommer was to assess 

how many printings had occurred for this particular issue of stamps. Figure 5.1a uses 

an h value of 0.0046, calculated using the Normal Scale rule, and suggests the presence



(a) Normal Scale (b) Solve-the-Equation

Figure 5.1: KDEs showing thickness measurements on 485 stamps generated using (a) 
Iins — 0.0046 and (b) Hste — 0.0012.

k h ̂  •c n t Pie for 100 reps Pk for 500 reps Pk for 1000 reps
1 0.0068 0.000 0.004- 0.001
2 0.0032 0.200 0.300 0.288
3 0.0030 0.040 0.044 0.057
4 0.0028 0.000 0.006 0.008
5 0.0026 0.000 0.002 0.003
6 0.0024 0.000 0.002 0.000
7 0.0015 0.410 0.514 0.492
8 0.0014 0.300 0.266 0.266
9 0.0011 0.580 0.560 0.539
10 0.0010 0.430 0.336 0.307

Table 5.1: Critical window widths and significance levels for the 1872 Hidalgo stamp 
thickness data.

of 2 modes, figure 5.1b uses an h value of 0.00123 calculated by the Solve-the-Equation 

method and clearly contains 9 modes with the 2 smaller modes to the left.

Silverman’s test for modality was applied to 100, 500 and 1000 bootstrap samples 

of size 485, the resulting p values from sequentially testing for the presence of k = 

1 ,2,3, . . . ,10 modes are presented in table 5.1. The p value does not vary a great deal 

with a change in the number of repetitions, therefore we follow the example of Efron 

and Tibshirani (1993) and base our analysis on 500 repetitions.

The values in table 5.1 for 500 repetitions are similar to those printed in Izenman 

and Sommer (1988) and in section 16.5 of Efron and Tibshirani (1993) (although our 

value for k — 9, and that of Izenman and Sommer (1988), varies from that printed by 

Efron and Tibshirani by a considerable degree, we believe it may be due to a different

69



Thickness (mm)

(a) k =  1 (b) k = 2

!

Thickness (mm)

(c) k = 5 (d) k = 7

Figure 5.2: KDEs of the 1872 Hidalgo stamp thickness data with n  — 485 constructed 
with hkcrit for k — 1,2, 5 and 7 where h ^ it is the smallest possible value of the bandwidth 
resulting in a KDE with k modes.

h?crit value). If a ‘stopping rule’ (i.e. the point at which the hypothesis is accepted) of 

p > 0.4 is used based on the suggestion of Izenman and Sommer (1988), the results 

suggest the presence of 7 modes. Based on this, the hypothesis of 9 modes (pg =  0.56) 

would be rejected as k = 7 has already been accepted. Although figure 5.1a clearly 

suggests the presence of just two modes, the P2 value of 0.3 is inconclusive (however 

Efron and Tibshirani (1993, 231-2) do not reject the hypothesis of bimodality, but 

suggest that 7 or even 9 modes could be considered as an alternate hypothesis).

Izenman and Sommer (1988) use p > 0.4 as a stopping rule. This suggests that they 

are willing to accept an incorrect null hypothesis 40% of the time. A more traditional 

approach is to investigate significance at the 5% or 10% level. Using this approach, 

k — 2 is the preferred hypothesis with a p2 value of 0.3, which agrees with the KDE
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in figure 5.1b. Silverman (1981) notes that the test provides a conservative estimate 

of modality, as such the hypothesis of k =  2 should be considered as a conservative 

estimate of modality. We can consider the hypothesis of k = 7 if we are willing to 

accept a 40% chance of being wrong.

Izenman and Sommer (1988) suggest it is helpful to examine the KDE at the critical 

window-width, hhp it, to help in determining an appropriate stopping rule. The KDEs 

for h^rit for the hypothesis of k =  1,2,5 and 7 are shown in figure 5.2. Considering 

figure 5.2a, this KDE suggests 1 mode, however there is also suggestion of an additional 

mode (or “bump”), the same can be seen in figure 5.2b and c. However, for 5.2d there 

are clearly 7 defined modes, as opposed to small bumps, which supports the hypothesis 

reached from the p values. For KDEs constructed from h^rit other than k — 7, there 

are always small, less defined modes. As such this method of assessing significance 

appears to be more useful than p values alone in this example.

5.3 .2  Lead iso top e d ata

In section 4.3, it was observed that a number of the lead isotope data sets from Stos- 

Gale et al. (1996) and Gale et al. (1997) exhibited signs of non-normality when their 

one-dimensional marginals were examined in isolation. Of the data sets examined, the 

208Pb/206Pb ratio of the Lavrion field (n — 59) appears clearly bimodal when adaptive 

KDEs are used. Figure 5.3 shows non-adaptive KDEs which appear bimodal when 

hNs is used, more clearly so for hSTE- There is a suggestion of trimodality with the 

possibility of a small mode to the left of the plot, however bimodality is the preferred 

interpretation. The 208Pb/206Pb ratio of the Larnaca field (n =  73) appears trimodal 

when adaptive KDEs are used (figure 4.9). On the other hand this also appears clearly 

bimodal when non-adaptive KDEs are used, as shown in figure 5.4.

Tables 5.2 and 5.3 show p values and critical window widths for the hypothesis of 

k — 1 , . . . ,  4 modes in the case of the Lavrion 208p b /2mPb and the Larnaca 208Pb/206Pb 

ratio respectively. The p values generated for testing the 208Pb/206Pb Lavrion ratio 

suggest that there are 2 modes (p2 =  0.588) which agrees with the visual interpretation 

of the KDE. A conservative estimate of k — 1 is significant at the 10% level with a p\ 

value of 0.264.
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Figure 5.3: KDEs showing the 208P 5 /206pfr ratio of the Lavrion field generated using 
h*NS — 0.0173 and Ii s t e  = 0.0101 (Stos-Gale et a l . , 1996).

1Tn

Ratio

(a) Normal Scale (b) Solve-the-Equation

Figure 5.4: KDEs showing the 208P 5 /206P5 ratio of the Larnaca field generated using 
H n s  =  0.0400 and I i s t e  ~  0.0243 (Gale et al., 1997).

For the 208p f r /206P 5  ratio of the Larnaca field, a p2 value of 0.494 also supports a 

hypothesis of k  = 2 modes, which agrees with the non-adaptive KDEs in figure 5.4. The 

adaptive KDE shown in figure 4.9 hints towards trimodality, however the non-adaptive 

KDEs appear to ‘hide’ this extra mode, which may be spurious structure.

Unlike the analysis of the stamp thickness data discussed in the previous section, in 

these examples it was found that KDEs of the data at the critical window widths were 

uninformative. Whereas with the stamps data, the KDE with h 7crit had more defined 

modes than for other k ,  which helped accept the hypothesis of k  = 7, the KDEs for 

the two data sets examined in this section did not follow this pattern.
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k ^crit Pk
1 0.0010 0.264
2 5.8003e-4 0.588
3 5.3762e-4 0.268
4 4.3003e-4 0.186

Table 5.2: Critical window widths and significance levels for the 59 observations from 
the 20&p b /20QPb ratio of the Lavrion field based on 500 repetitions.

k h k .Iljcrit Pk
1 0.0458 0.032
2 0.0206 0.494
3 0.0201 0.108
4 0.0139 0.356

Table 5.3: Critical window widths and significance levels for the 73 observations from 
the 208Pb/ 206Pb ratio of the Larnaca field based on 500 repetitions.

5.3.3 Iron to  m anganese ratios in glass from  Saxon Southam p­
ton

Figure 5.5 shows KDEs of 225 iron (Fe) manganese (Mn) ratios that were taken from 

glass samples excavated from Saxon Southampton (Hamwic), from Hunter and Hey- 

worth (1998). Of the 225 samples, 163 are light blue in colour and the remaining 62 

are light green. This structure is evident in figure 5.5 by the two main modes to the 

left of the KDEs. When 1iS t e  is used, there also appears to be a number of outlying 

modes to the right. As previously, the 225 samples were subjected to sequential testing 

for m  — 1 , . . . ,  10 modes, the results for which are presented in table 5.4.

Examining the p-values generated by the test is inconclusive using Izenman and 

Sommer’s (1988) suggested stopping rule as there is no obvious point at which the 

p-values exceed 0.4. However the p-value for k — 4 modes is 0.342, and for 9 modes is 

0.392, which are the highest values of p. This does not provide conclusive evidence to 

support k = 4 or k =  7, so neither hypothesis could be accepted. The p-value for k — 1 

is 0.192, the null hypothesis should not be rejected if we use a conservative stopping 

rule of p > 0.1.

Figure 5.6 shows KDEs for hkcrit for selected k. Figure 5.6d shows the KDE with 

a critical window-width giving just 4 modes, which are not clearly defined, thus the 

hypothesis of k = 4 should be not be accepted. By similar reasoning, the hypothesis of 

k = 9 modes cannot be accepted (figure 5.6e). The hypothesis of k — 3 seems unlikely

73



Fe/Mn RalioFa/Mn Ralio

(a) Normal Scale (b) Solve-the-Equation

Figure 5.5: KDEs showing the iron to manganese ratio of glass from Saxon Southamp­
ton suggesting 4 and 7 modes (constructed with h^s  — 0.2404 and Iiste = 0.104 
respectively).

k h^ .ilcmt Pk
1 0.4634 0.192
2 0.3538 0.01
3 0.2807 0.02
4 0.1749 0.342
5 0.1575 0.112
6 0.1200 0.212
7 0.1057 0.172
8 0.1035 0.034
9 0.0706 0.392
10 0.0673 0.282

Table 5.4: Critical window widths and estimated achieved significance for the Saxon 
Southampton glass data based on 500 repetitions.

given that p3 — 0.02, however the KDE for h2crit appears smooth, which is in line with 

earlier conclusions.

For this particular data set it is difficult to use this measure of modality to say with 

any certainty how many modes exist within the population. We know for certain that 

there are 2 groups, and would expect a bimodal KDE, however the p values do not 

support this hypothesis. A more conservative estimate of k =  1 seems more likely if 

we are unwilling to accept such a high probability of being wrong.
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Figure 5.6: Non-adaptive KDEs showing the iron to manganese ratios in glass from 
Saxon Southampton data constructed using h^rit for k = 1,2, 3,4 and 9 for n — 285 
observations.
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5.4 D iscussion of results

It has been demonstrated that interpretation of Silverman’s (1981) test is subjective 

and often more difficult than might be anticipated. Although it has been shown that 

sensible conclusions can be drawn by accepting a hypothesis when a ‘large’ p value is 

reached, it has also been shown that interpretation based on p alone can be misleading. 

The ‘large’ values of p which are used to accept a hypothesis carry a high probability of 

being wrong. Using a stopping rule of p = 0.1 (10%) results in a conservative estimate 

of modality.

KDEs for h^rit prove useful in some cases, but in others can be misleading. Also, 

although Izenman and Sommer (1988) rely on this to reach their conclusions, there is 

no statistical justification, and interpretation is once again subjective.

Using a ‘large’ value of p, it is often the case that results are inconclusive and it is 

not possible to accept or reject a specific hypothesis, however for smaller values of p, the 

results seem conservative when compared to a visual inspection of the KDE. This may 

be related to the ‘less than optimal’ ability of non-adaptive KDEs to correctly produce 

accurate density estimates. In the following section, the possibility of extending the 

original test to make use of adaptive KDEs is discussed. As previous work has suggested 

that adaptive KDEs tend to reproduce more accurate density estimates than non- 

adaptive KDEs, the hope is that such a test will perform more satisfactorily and results 

will be more readily interpretable.

5.5 A daptive version o f Silverm an’s test

Izenman and Sommer (1988) suggest extending the work of Silverman (1981) to utilise 

adaptive kernel density estimates which, as illustrated in section 4.2.2, tend to produce 

more accurate estimates of the population’s density from which the sample originates. 

Izenman and Sommer suggest using a vector of h values and smoothing bootstrap 

samples using some measure of average smoothness, but do not go into further detail. 

Below we present our suggestion for an adaptive version of Silverman’s test of modality 

which has evolved from the original suggestion of Izenman and Sommer (1988).

Our adaptive test is very similar to that of Silverman (1981), discussed in section
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5.2. Given a sample X i,X 2 , . . .  , Xn, estimate the sample variance, a2.

Assuming the population is being tested for fc-modality, construct an adaptive KDE

using a pilot bandwidth of h and vector A of local bandwidth factors given by

A i = { f ( X i ) / 9} - a i =

as defined in section 3.2.3. In practice the pilot estimate of h can be any convenient 

estimate as the value will be scaled.

It is then necessary to find a vector of local bandwidth factors, A which results 

in a KDE with just k modes, analogous to finding h X t in Silverman’s version of the 

test. Our approach to this is to scale A by a scalar, s, which can be used to affect 

the modality of /(x ), leaving the pilot estimate of h constant throughout. Begin with 

As where s =  1, generate an adaptive KDE based upon Xi, X2, . . . ,  X n and count the 

number of modes. If the number of modes is greater than h, multiply s by some value 

> 1 and create a new estimate of f (x).  If the number of modes is less than k , divide 

s by a value > 1 .

We use the following algorithm to ‘home’ in on a value of As to give just k modes 

which is a relatively quick way to find an appropriate value of s:

• Find a value of s such that an adaptive KDE, ,f(x), created with local bandwidth 

factors As, has less than k modes.

• Decrease s by small amounts until the number of modes changes from less than 

k to k .

We have found that scaling by small values initially can be very computationally ex­

pensive so prefer to begin by scaling s by larger values and continually decreasing the 

value by which s is scaled until the change needed in k to increase from k — 1 modes 

to k modes is suitably small. Now define

hcrit =  hXs‘ (5-2)

The actual test of modality can then be carried out by



1. Taking a bootstrap sample of size n from a vector 1,2, . . . ,  n, that is sampled with 

replacement and label this vector v. Now use v to create a bootstrap sample of 

X i , X 2 , • • • , X n. That is define V — Xv(q. Also, define hy(z) — h*.ft(v(z)), that 

is use the v ( i ) ih value of hcrit to smooth Yi. We take bootstrap samples from 

1 , 2 , . . .  , n as it is necessary to select hy to apply the same amount of relative 

smoothing to each point throughout.

2. Smooth y using

Y ;  =  (1  +  ( h  K(i)) 7 ^ r 1/2W  +  h y (i)e i) (5 .3 )

for i — 1 . . .  n where e* is a random variable from the standard JV(0 , 1 ) normal 

pdf. This has the effect of scaling the sample so it has similar mean and variance 

to X l , X 2 , . . . , X n, and ensures that samples are independent.

3. Now construct an adaptive KDE based on Y*, YJ, • • • > Y£- We use h r̂it as a pilot 

estimate of h and define a new set of local bandwidth parameters, A. We then 

scale the new local bandwidth parameters, hX, such that hX = h^rit. This results 

in a KDE with the same average smoothness as that used to calculate h^rit.

This process is repeated, we use 500 repetitions. The effects of varying the number 

of repetitions has been investigated and 500 emerges as sufficient, with little difference 

to results obtained with 1000 repetitions. The estimated achieved significance level (or 

p value) is then the proportion of repetitions for which the number of modes in the 

adaptive KDE based Y*, 1^*,..., Y* on is found to be more than k.

As with the original test proposed by Silverman, the value of p at which the sequen­

tial testing of modality should cease is unclear. Our experiences, which are discussed in 

the following section, have been that the value is dependent on the data being tested.

The procedure described above has evolved with experimentation. Variations ex­

plored include using an average measure of smoothness instead of a scaled vector of 

local bandwidth parameters, as per the original suggestion of Izenman and Sommer 

(1988). A further variation investigated involved applying the same relative smoothing 

to each point in the creation of the KDE based on , Y2*, . . .  ,Y*. The method dis­

cussed above was selected for preference as it uses an adaptive procedure for estimating 

the modality of a sample.
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5.6 Com parison

The following section discusses a comparison of the original test of Silverman (1981) 

and the adaptive version of the test proposed in section 5.5. Each version of the test 

is used to investigate the modality of a number of simulated populations with known 

structure, and thus known modality.

Populations are generated using the same technique detailed in section 4.2.1. Bi­

modal populations are of the form

0.57V(0,1) +  0.5 N(p,  1) (5.4)

for 2  < p <  4 in increments of 0.5. Trimodal populations are generated using

1 ^ 1 , 1 ) +  liV (0 ,l) +  IjV O u.l) (5.5)

For p i and /x2 values between —4 < p\ < — 2  and 2 < p2 < 4. We have selected a set 

of 15 simulated populations with varying degrees of bimodality and trimodality.

Each of the 15 mixture distributions are used to create 100 samples of size n — 40, 

60, 80 and 100. Each sample is then subjected to both Silverman’s test and the adaptive 

test using 500 repetitions. Selected results are presented graphically within the text as 

cumulative frequency curves showing the number of replications for which p is greater 

than 0 .1 , 0 .2 , . . . ,  1 . A complete set of results is included in appendix C in the form of 

cumulative frequency tables.

As has been discussed in section 4.2.1 and in Everitt and Hand (1981), mixtures 

of the form defined in 5.4 with p — 2 are formed by mixing 2 populations but are 

unimodal in appearance. Table C.l shows the resulting p values when Silverman’s test 

and our adaptive test are applied to simulated data with this structure. The results 

show that Silverman’s test results in the rejection of the correct hypothesis of k — 1 

35% of the time for samples of size 40 using a stopping rule of p > 0.4. The adaptive 

test results in rejection of the hypothesis of k — 1 52% of the time, which suggests that 

the original test of Silverman is more successful at determining the correct modality. 

For larger n, the frequency with which the correct hypothesis of k =  1 is rejected 

increases (i.e. values of p are smaller) for both versions of the test.

For populations with just separated components, for example p = 2.5, results are 

shown in C . 2  and are presented graphically as cumulative frequency curves in figure
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Figure 5.7: Cumulative frequency curves for a bimodal population with n =  2.5. p 
values resulting from Silverman’s (1981) test of modality (solid line) and our adaptive 
test (dashed line) of modality (section 5.5). The curves shows the cumulative frequency 
with which p = 0, < 0.1, < 0.2, . . . ,  < 1.0 for the hypothesis of H0 : k =  1 against 
Hi : k > 1 and H0 : m  =  2 against Hi : m > 2.
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5.7. The incorrect hypothesis of k — 1 is rejected more frequently when using the 

adaptive test; for n — 40, k = 1 is rejected 75% of the time with p > 0.4 used as a 

stopping rule and 61% of the time when using Silverman’s test. However, the correct 

hypothesis of k = 2 is rejected 44% of the time by the adaptive test and only 34% of 

the time by Silverman’s test. Although the p values for the hypothesis of k  — 1 are 

smaller from the adaptive version of the test, they are also smaller for the hypothesis 

k  — 2 which results in more frequent rejection of the correct hypothesis. Figure 5.7 

does suggest that the difference between p values for the hypotheses of k — 1 and k — 2  

are slightly greater for the adaptive test. As sample size increases, the frequency with 

which the hypotheses are rejected becomes similar for both versions of the test.

For populations with greater separation of components, i.e. p > 3, the adaptive 

test generally results in rejection of k = 1 more frequently that Silverman’s test. As 

sample size increases, the frequency with which k  = 1 is rejected increases for both 

tests, however for the hypothesis of k = 2  there is no obvious pattern.

Populations of the form detailed in equation (5.5) are trimodal if \pi\ and |/i2| are 

greater than 2. If |/ii| =  2  and |/̂ 2 1 > 2 , the population is bimodal. Table C.18 

shows results for =  —2.5 and /i2 =  2.5, a trimodal population with small separation 

between components. Figure 5.8 shows cumulative frequency curves of p values for 

this population. For n = 40 Silverman’s test rejects the hypothesis of k — 1 54% 

of the time with the adaptive test rejecting k = 1 65% of the time, using p > 0.4 

used as a stopping rule. For the hypothesis of k = 2, the adaptive test rejects this 

hypothesis 52% of the time, Silverman’s test rejects this 53% of the time. For the 

correct hypothesis of trimodality the adaptive test would reject 44% of the time and 

Silverman’s 49%. Thus the adaptive test is less likely to reject the hypothesis of k — 3 

however Silverman’s test is more likely to reject the incorrect hypothesis of k — 1 or 2. 

For other populations with small separation of components (i.e. \p\ < 3) there is very 

little difference between the performance of the tests with both resulting in similar p 

values. The adaptive test is generally less likely to reject the correct hypothesis of 

k — 3 however it is also slightly less likely to reject the incorrect hypotheses of k — 1 

or 2 .

For trimodal populations with \p,\ > 3 there is little difference between results from
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Figure 5.8: Cumulative frequency curves for a trimodal population with /it =  —2.5 
and — 2.5. p values resulting from Silverman’s (1981) test of modality (solid line) 
and our adaptive test (dashed line) of modality (section 5.5). The curves shows the 
cumulative frequency with which p — 0 , < 0 .1 , < 0 .2 , . . . ,  < 1 . 0  for the hypothesis of 
H0 : k =  2  against H\ : k > 2 and Hq : m  = 3 against Hi : m > 3.
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Figure 5.9: Cumulative frequency curves for a trimodal population with pi — —3.5 
and [i2 =  4. p values resulting from Silverman’s (1981) test of modality (solid line) 
and our adaptive test (dashed line) of modality (section 5.5). The curves shows the 
cumulative frequency with which p — 0 , < 0 .1 , <  0 .2 , . . . ,  < 1 . 0  for the hypothesis of 
H0 : k — 2  against Hi : k > 2  and Hq : m  = 3 against H\ : m > 3.

either version of the test. Figure 5.9 shows a set of the cumulative frequency curves 

which is representative of all populations in this class.

5.7 Sum m ary

Generally, it would appear that the adaptive version of the test provides p values that 

are easier to interpret than those arising from the original test proposed by Silverman.

For the bimodal populations considered, the adaptive test generally produces a 

lower p value associated with the incorrect hypothesis however it also results in a 

lower p value for the correct hypothesis which would result in the correct hypothesis
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being rejected. There is a greater difference between p values for the correct and 

incorrect hypothesis for the adaptive test compared to Silverman’s original test. This 

is of particular interest as a greater difference between p values for the correct and 

incorrect hypothesis means the chance of accepting the correct hypothesis increases. 

This can also give insight into selection of an appropriate stopping rule for particular 

forms of structure, however this value will be dependent on the, often unknown, form 

of structure within the data.

Both versions of the test fail to provide conclusive evidence to support any hy­

pothesis for “intermediate” cases. Populations which are trimodal with component 

separation of less than 3 or bimodal with separation of less than 2.5 result in “poor” 

performance by both versions of the test. In some cases, larger sample sizes result 

in a clearer difference between p values for the correct and incorrect hypotheses. For 

trimodal populations with greater separation between components, the adaptive test 

tends reject the correct hypothesis less frequently that Silverman’s original test, how­

ever there is little to choose between either version of the test.

Computationally, the adaptive test is far more “expensive” than the original pro­

posed by Silverman. For example, the CPU time to calculate the p values for the 

hypothesis of k =  1 to 10 for the postal stamps data discussed in section 5.3.1 is ap­

proximately 40 seconds for Silverman’s version of the test. For the adaptive version 

of the test, running under identical conditions, the CPU time is approximately 620 

seconds. For our adaptive version of the test, the most computationally demanding 

exercise is fixing the smallest window-width vector to give just k modes.
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Chapter 6 

P rojection  Pursuit

6.1 Introduction

In previous chapters the emphasis has been on investigating structure in low dimen­

sional data which can be directly visualised, specifically 1- to 3-dimensions. It is, 

however, more common to see analyses of artefact compositional data on an n x d  data 

matrix, x. In chapter 2, trends in the number of dimensions measured and used in 

statistical analyses were discussed. One of the findings was that d is typically in excess 

of 8 . Clearly the techniques discussed in previous chapters cannot be directly applied 

to such data without first being transformed to a more manageable number of dimen­

sions, then the previously discussed techniques can be applied. Dimension reduction 

techniques work on the assumption that much of the data are redundant and often 

attempt to display interesting structure in some graphical format. Multivariate tech­

niques do exist which allow limited direct exploration of structure in high dimensional 

data, for example the ISE statistic of Bowman and Foster (1993) can be used to mea­

sure departures from normality in any number of dimensions, however the subjective 

manner in which structure is explored within plots is lost. Although direct measures 

of multivariate structure may give us, for example, an indication as to how non-normal 

data are, they do not replicate the human ability to visually interpret patterns within 

the high-dimensional data.

Of the dimension reduction methods available, cluster analysis and principal com­

ponents analysis (PCA) are among the most widely used within artefact composition 

analyses. PCA is used to find d new variables, the principal components, which are 

uncorrelated linear combinations of the original variables. The first component has
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maximal variance, subject to a normalising constraint on the coefficients, the second 

component has second greatest variance and so on. Often the first 5 principal compo­

nents account for most of the variance within the data. Results are often presented in 

the form of bivariate plots based on the first few principal components in the hope of 

revealing interesting structure within the data.

It has been claimed that PCA is ‘something of a blunt instrument’ for detecting in­

teresting structure since, for its success, it requires that large variation be interestingly 

structured (Jones and Sibson 1987, 2 ), an assumption which does not always hold in 

practice. Jones and Sibson (1987) go on to suggest that projection pursuit (PP) is a 

‘sharper tool’ for the exploratory analysis of multivariate data. Whereas PCA seeks 

linear combinations of variables with maximal variance, PP seeks linear combinations 

of variables with maximal interestingness, as defined by an index of interestingness.

6.2 Background literature

The topic of projection pursuit has received much discussion in the literature over the 

last 15 years. Methodological discussions of PP have been available since Friedman and 

Tukey (1974). Further mathematical discussions are given in Huber (1985), Friedman 

(1987), Jones and Sibson (1987), Hall (1989), Cook et al. (1993), Sun (1991, 1993), 

Li and Cheng (1993), Eslava and Marriott (1994), Posse (1995a,b) and Nason (1995), 

with a useful overview being provided by Ripley (1996, 296-303).

Despite claims that applications of PP have ‘flourished’ (Posse, 1995a, 84) and have 

been ‘promoted extensively in the literature and in implementation’ (Nason, 1995, 413), 

published practical applications, as opposed to theoretical papers, are quite hard to 

find. Flenley and Olbricht (1993) and Wilhelm et al. (1999) are the only applications 

to archaeological data that that we are aware of, both of whom investigate the Oronsay 

particle data of Timmins (1981). Both make use of PP to investigate the possibility 

of a seaward shift of the beach-dune interface, with the latter making a comparison of 

high dimensional data display techniques. This data has undergone somewhat rigorous 

investigation in previous literature to determine if such a shift occurred.

Applications to data from other subject areas can be found in Friedman (1987), 

Jones and Sibson (1987), Nason (1995), Ripley (1996), Clements and Jones (1991),



Glover and Hopke (1992, 1994), Leiidzionowski et al. (1990) and Walden (1994), which 

meet with varying degrees of success.

6.3 Im plem enting P rojection  Pursuit

A number of computer packages are freely available to implement projection pursuit, 

one of the most comprehensive is XGobi (Swayne et al., 1991). XGobi implements 

2 -dimensional projection pursuit along with an array of other high dimensional visual­

isation tools and integrates with the S-Plus package (Venables and Ripley, 1999). We 

have used XGobi for the 2 -dimensional examples presented in the following sections. 

XGobi can be obtained from

h t t p : //www.re se a rc h . a t t . co m /a reas /s ta t/x g o b i/

Westwood and Baxter (1999) list alternative software to implement projection pur­

suit and some newer packages more recently available include the following:

• FORTRAN software for Friedman’s (1987) two-dimensional projection pursuit 

can be found at

h t t p :/ / l i b . s t a t . emu.ed u /g en era l/p ro jp u rs

• A three-dimensional projection pursuit implementation from Nason (1995) can 

be found at

h t t p : / /w w w .stats.b r i s . a c .uk/~guy/Research/PP/PP.html

• FORTRAN code for two-dimensional PP from Jones and Sibson (1987) can be 

found at

h t t p : / /www.s t a t s .b r i s . a c .uk /pub/softw are/pp 2 /m cj„pp. s h a r .gz

• The GGobi application has been developed as an updated version of XGobi and 

can be found here

h t t p : //www.ggob i. o rg /
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• IPP is a suite of S-Plus routines to implement projection pursuit

h t t p :/ / s u n . cwru. e d u / ~ j i a y a n g / n s f / i p p .html

• Commercial implementations of projection pursuit can be found in InforTEX’s 

DataExplorer

h t t p : //www. i t x .p i /

6.4 Theory

The aim of projection pursuit is to find k linear functions (projections) of the original 

variables which show interesting structure when plotted. Typically k =  1 or k = 2  

functions are sought which are easily visualised, although Nason (1995) discusses the 

case for k =  3. Many approaches begin by defining uninteresting structure as being 

normally distributed and aim to find projections which are as non-normal as possible, 

as measured by an index of interestingness, 1(a), where a  is a projection of the data 

in the direction a  =  au, « 2 , • • • 5 &d-

We have found that there are no ‘hard and fast’ rules as to which measure of inter­

estingness to use, and often find it most useful to repeat analyses using several different 

measures of interestingness. Each of the indices are designed to find projections of data 

which exhibit certain forms of structure, for example central mass or small interpoint 

distances. We have also found that under certain conditions, some indices tend to find 

projections of data with unique properties which are discussed below.

Our discussion below is limited to the case where a  is a scalar, specifically 1 - 

dimensional projection pursuit.

6.4.1 M easuring in terestingn ess  

T he Friedm an-Tukey Index

The Friedman-Tukey index (Friedman and Tukey, 1974) is composed of two parts

I f t ( a) =  s(a)d(a) (6 .1 )

s(ci') here is a ‘spread’ term, for example variance of the projection, and d(a) “captures” 

the density of the projection. Jones and Sibson (1987) note that the spread term is

http://sun.cwru.edu/~jiayang/nsf/ipp.html
http://www.itx.pi/


used to “partially normalise the index against scale effects” which they accomplish by

sphering data (section 6.4.2). In our examples in the following sections, we also sphere

data prior to undertaking a projection pursuit analysis. Specifically we take principal

components of scaled data and perform projection pursuit on this data, which has

similar variances for each variable.

Jones and Sibson (1987) expanded the term d as a kernel density estimate
1 _n _n /  y  _  y . \

=  (6-2)i—1 j=1 x '

which is an estimate of

If t (v) = [  fy(y)dy = E ( f y(y)) (6.3)

where E(c) is the mean of c and y is the univariate projected data.

IFT(y) is minimised if y is spherical, by the parabolic density. Visually this appears 

similar to the normal density with smaller tails, thus departure from a parabolic den­

sity is also a departure from the standard normal density. The index was originally 

designed for use in a particle physics problem where they found that researchers pre­

ferred projections with very small interpoint distances while maintaining overall spread

of the data. Our experience with the index is that it is quite effective at finding pro­

jections containing clusters, however it is one of the slowest indices to calculate, even 

with efficient approximations to kernel estimates (Ripley, 1996:298).

This index can easily be generalised to the multivariate case with the use of a 

multivariate kernel density estimate.

T he E ntropy Index

Huber (1985) used the fact that negative entropy is minimised by the multivariate 

normal distribution to develop the entropy index, which is defined as

I e {v ) =  f  f v{y)\°g{fy{y))dy = E((6.4)
Ju

Again, this can be approximated using kernel density estimates

i = 1 \  j — 1 x '  /

As with the Friedman-Tukey index, the entropy index is relatively slow to compute 

compared to the other indices.



T he Legendre Index

Friedman (1987) developed the Legendre index in order to maximise the possibility 

of finding clusters in data. The index is motivated by first transforming normality to 

uniform [—1 , 1 ] using

z =  2 <%) -  1 

where G>(y) is the standard normal cdf

&(y) — (l/V S br)  f e~l/2t2dt
J  —CO

such that z is uniformly distributed if y is normally distributed. The Legendre index 

is then defined as

h{y) = J  (fv(y) - 0 .5 ) 2dy. (6.6)

This is then expanded using orthonormal series expansion, based upon Legendre poly­

nomials. Cook et al. (1993) re-write the expanded Legendre index as

h ( y )  =  J u v(y)-  ( 6 ' 7 )

where 4>{y) is the standard normal density, previously defined as the distribution which

is un-interesting. This form of the index shows that the differences in the tails of the

distribution are given more weight than differences in the centre of the distribution.

The Legendre index has a tendency to find skewed projections dominated by out­

liers. Ripley (1996:298) notes that the Legendre index “has the unfortunate effect of 

giving large weight to furcations in the density of /  in its tails (where <fi is small) and 

so will display sensitivity to outliers and the precise scaling used for the density” .

Cook et al. (1993) note that the following indices are of a similar form to the 

Legendre index, specifically

I (y) =  J  (f ( y ) -  <P{y))2w(y) dy (6-8)

where w(y) is a weight function which varies between the indices.

T he H erm ite Index

Hall (1989) was concerned about the Legendre index’s tendency to find skewed pro­

jections so developed the Hermite index. Using Hermite polynomial series expansions,

90



the index approximates to

IH(y) = (  (f y(y) -  4>{y))2dy. (6.9)
JlR

T he N atural H erm ite Index

Cook et al. (1993) develop the Natural Hermite index,

In h (v) = [  (f y(y) -  <f>(y))2&(y)dy. (6 .1 0 )

Cook et al. (1993) constructed this new index to alleviate some of, what they de­

scribe as, the problems with the Legendre and Hermite indices. Their index returns to

Friedman’s original idea of giving more weight to the differences in the centre of the 

distribution. This has the effect of making the index less sensitive to outliers in the 

tails of the projection.

O ther Indices

Simonoff (1996, 17) notes that it is in fact possible to use any reasonable test of 

normality as an index of interestingness for projection pursuit. Doing so results in the 

most non-normal projection being found, structure could be in the form of clusters, 

skewness or any other form of non-normality. As projection pursuit has developed, 

proposals have been made for numerous indices of interestingness which are designed 

to seek specific forms of structure.

6.4.2 Sphering

In PCA, data are typically standardised to eliminate scale effects which occur when 

variables are measured in different units or have widely differing variances. Similar 

effects are apparent in PP if the variance is not the same in all directions. Scale effects 

can be minimised by computing principal components and rescaling to zero mean and 

unit variance. As principal components are uncorrelated, the data are sphered.

Jones and Sibson (1987), Cook et al. (1993), Eslava and Marriott (1994) and Na­

son (1995) provide similar arguments for sphering data prior to performing projection 

pursuit. Eslava and Marriott (1994, 14) note that in addition to removing scale ef­

fects, sphering also results in projections fitting in roughly the same circle (with the
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exception of outliers). This is convenient for graphical presentation as all projections 

can be shown on the same axis with no variable dominating any projection, as can 

sometimes happen with unsealed data. Reservations over sphering are given by Gower 

(discussion of Jones and Sibson 1987; 20). Equal variance in all directions implies that 

if there is symmetry about the centre, the result of sphering is a cloud of data points 

with spherical symmetry. However, it is also the case that structure will be distorted 

and will not have spherical symmetry (Eslava and Marriott 1994, 14).

In the examples in the following sections, data have been sphered (using the above 

procedure) prior to undertaking a projection pursuit analysis. Some analyses in ar­

chaeological applications routinely work with logarithmically transformed but unstan­

dardised variables (for example Glascock, 1992). It would be equally possible to sphere 

such data, however this approach has not been adopted here.

6.5 Exam ples

The examples in the following section were originally written up by the author for 

inclusion in the published journal article Westwood and Baxter (2000). Technical 

aspects of the paper were written by Dr Baxter. The examples have been extended for 

inclusion in this thesis.

6.5.1 E xam ple 1 - Lead iso top e data

The following example, based on Baxter (1999), will be discussed in summary form 

only. Westwood and Baxter (2000) note that the technique discussed below has been 

presented routinely in the past, but not previously within the context of projection 

pursuit. In chapter 4 lead-isotope studies were discussed, in particular the assumption 

of normality (Sayre et a i , 1992) and the sample sizes which are required to demonstrate 

departures from normality were investigated. In section 4.3 we made use of the results 

to be presented below.

As discussed in chapter 4, lead isotope ratio data are three-dimensional and in their 

analysis it has sometimes been assumed that data from an ore source can be treated 

as a sample from a multivariate normal distribution (Sayre et al., 1992). Recent work 

undertaken by Baxter and Gale (1998), Baxter (1999) and that discussed in chapter 4

92



4500

4000

3500

3000

E 2500

c  2000

1500

1000

500

-0.3878 -0.3876
h  n  n n - i  206d i_/204d .

-0.3874 -0.3872-0.3888 -0.3886 -0.3884 -0.3882
n o-7 q 2 0 8 d . ;206Dh

Figure 6.1: An adaptive kernel density estimate of the most 11011-normal linear combi­
nation of three-dimensional lead isotope ratio data for the Keos field (Stos-Gale et al 
(1996). Window-width selected with Ji s t e )-

has called into question the general validity of this assumption. The work presented 

in this thesis has extended that of Baxter and Gale (1998) and Baxter (1999). I11 par­

ticular, Baxter (1999) used a variety of tests of multivariate normality to demonstrate 

that many of the data sets in Stos-Gale et al. (1996) could not reasonably be regarded 

as samples from normally distributed data.

One test used was the multivariate extension of the Shapiro-Wilk test statistic for 

normality (Malkovich and Afifi, 1973). Malkovich and Afifi calculate the univariate 

Shapiro-Wilk statistic,

W = ( Z a i X i f / S i X i  (6.11)

for all possible univariate linear combinations of d variables, unlike projection pursuit 

they do not use an optimisation method and instead use ‘brute force’ methods. The 

most non-normal ‘view’ of the data is given by the linear combination of variables 

which results in the minimal value of W.  This can be viewed as a form of projection 

pursuit with the Shapiro-Wilk statistic used as the index of interestingness, in the 

vein of the suggestion by Simonoff (1996) to use any test of normality as a measure of
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interestingness. The result of applying this procedure to data is a global minimum of

W.

In chapter 4 we used the above procedure to find a non-normal view of the Keos 

field (Stos-Gale et al., 1996) which shows a clear departure from normality (figure 4.11), 

the procedure suggested the combination 0.1874208Pb / 206Pb —0.9823207Pb / 206Pb. A 

further example is shown in figure 6.1. Figure 6.1 shows a kernel density estimate of the 

most non-normal linear combination of all three ratios of the Keos field, 0.27889208Pb 

/ 2°6pb —0.9960292O7Pb / 206Pb -0.00876206Pb / 204Pb.

Formal tests of normality suggest that this projection of the data is non-normal 

and this particular application of PP methodology suggests that the data are strongly 

multi-modal. Further illustrations of this kind of use can be found in Baxter and Gale 

(1998) and Baxter (1999).

6.5 .2  E xam ple 2 - B lu e soda glass from  York

Cox and Gillies (1986) published analyses of blue soda glass from the windows of York 

Minster and archaeological excavations. These specimens have been used elsewhere to 

illustrate a variety of methodologies (Baxter, 1989; Baxter and Buck, 1999; Bell and 

Croson, 1998). There are 27 specimens, measured with respect to the concentration 

of 12 oxides and elements. Most analyses clearly show three main groups in the data, 

with some analyses suggesting possible sub-groups or outliers.

Figure 6.2 shows four analyses of the data. The PC A analysis (of standardised 

data) in figure 6.2a shows three clusters, two of the groups are very tightly defined 

with the third (towards the top of the figure) more dispersed relative to the other two. 

This structure is readily found using projection pursuit, we used the Friedman-Tukey 

index to find the projection in figure 6.2b. The view found by projection pursuit shows 

the same three clusters with the third cluster being less dispersed in this plot.

The view illustrated in figure 6.2c, in which the structure is ‘circular’, occurs quite 

commonly in our experience with similar data sets, and has no useful practical inter­

pretation. Similar examples can be found in Cook et al. (1993, 248) and Ripley (1996, 

302). Figure 6.2d shows a further example of a problem encountered with projection 

pursuit, in this example the plot is dominated by outliers towards the top of the plot.
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First Principal C om ponent

(a) PCA of standardised data (b) PP using Priedman-Tulcey index

(c) Circular PP  view found using the (d) PP using Natural Hermite index
Natural Hermite index

Figure 6.2: Bivariate plots of York Minster data of Cox and Gillies (1986). Plots 
show the first two principal components of standardised data (a) and ‘views’ of the 
multivariate data suggested by projection pursuit (b-d).
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Figure 6.3: Plots showing the analyses of the waste glass compositions from Mancetter 
and Leicester (Jackson, 1992). Labelling is by site with “+ ” cases from Mancetter and 
“o” cases from Leicester.

Both of these views were suggested by the Natural Hermite index.

For this data set the structure is fairly obvious and found almost ‘instantaneously’ 

by projection pursuit. Other useful views (suggesting any other form of structure) were 

not found in the course of exploration using PP, although a number similar to those 

in figure 6.2c and d were found. Although the PP view in figure 6.2b is ‘sharper’ than 

the PCA view, it tells essentially the same story.

6.5 .3  E xam ple 3 - W aste glass from  L eicester and M ancetter

The data used in this example consist of 105 specimens of waste glass found on furnace 

sites at Leicester and Mancetter and measured with respect to the concentration of 11 

major and minor oxides. It is of interest to see if there are distinct chemical groups in 

the data, and if these correspond to the furnace sites. The data were collected and pub­

lished by Jackson (1992) and are reproduced in Baxter (1994) where extensive analysis 

was undertaken using a variety of multivariate methods. These analyses suggest three 

concentrations in the data with some correspondence -  by no means exact -  to the 

furnace groups.

This is shown in the PCA plot in figure 6.3a, where labelling is by site. Without 

a knowledge of the sites it is possible, visually or with the aid of techniques such as
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kernel density estimation (Baxter et al., 1997) to detect three main concentrations in 

the data. There are no obviously distinct clusters. The densest concentration to the 

right consists mainly of glass from Leicester; the other two concentrations contain most 

of the Mancetter specimens, with 11 to 14 Leicester specimens mixed in (depending on 

how boundaries of concentrations are visualised).

The PP view in figure 6.3b quite clearly isolates a cluster of cases in the bottom 

half of the plot consisting, with one exception, of Leicester specimens. The remaining 

dispersed group, possibly sub-dividing into two, contains the Mancetter specimens with 

the same number of Leicester specimens mixed in as in the PCA. The cluster towards 

the bottom of figure 6.3b has observations with higher concentrations of Na, Mn and P 

than other samples, this is the chemical relationship PP has used to find this particular 

projection.

Arguably the PCA and PP analyses lead to similar conclusions, but the separation 

between material from the two sites, and the fact that it is less than perfect, is clearer in 

the latter analysis because of the clearer clustering revealed. We remark that we can be 

confident that PP is not revealing spurious structure in this case because information 

not used in the PP, concerning site of origin, allows us to interpret the revealed structure 

in a useful archaeological manner.

6.5 .4  E xam ple 4 - O riental G reenw ares

This example is based on a 133 x 9 data set published by Pollard and Hatcher (1986) 

showing the chemical composition of 133 oriental greenwares which are suspected to 

have originated from several areas of manufacture. We follow them in omitting three 

clear outliers and one variable, S i 0 2, in our analysis.

There are two very obvious chemical groups in the data, as the PCA in figure 6.4a 

shows. The group to the left is associated with Northern Zhejiang Yue wares and that 

to the right with Longquan celadons. It is easy to get the same separation using PP 

and one such view, found with the Friedman-Tukey index, is shown in figure 6.4b. This 

additionally suggests a small group at the bottom of the plot that is a subset of the 

earlier wares, but we have been unable to interpret this as archaeologically distinct in 

any way.
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Figure 6.4: Plots of the oriental greenware compositions of Pollard and Hatcher (1986) 
showing (a) the first two principal components and (b) view of the data suggested by 
projection pursuit.

Pollard and Hatcher (1986) applied cluster analysis to the 53 specimens in the earlier 

group and concluded there were three subgroups. After applying stepwise discriminant 

analysis to these, five outliers were removed and a discriminant analysis plot for the 

remaining 48 cases was shown on page 268 of their paper. A similar analysis is shown 

in figure 6.5a, the only difference being our use of all eight variables rather than the 

five selected in the original publication. Interpretation of the groups is not absolutely 

clear-cut, but they can be associated with regional differences in composition. Given a 

knowledge of this classification we have been unable to obtain a PP view that separates 

out the groups as well as the discriminant analysis. In figure 6.5b one PP view for the 

48 cases is shown which separates out the smaller group but not the two larger ones. 

It may be noted that a PCA analysis of this subset (figure 6.5c) did as well as the PP 

in separating the groups.

Our PP analysis of this data set cannot be regarded as especially successful. Al­

though the PP for the full data set did suggest structure additional to that revealed 

by PCA we were unable to interpret the results in an archaeologically useful fashion, 

so have no real way of determining whether the structure is spurious or not.

Similar remarks apply to PP analyses of the other subset to that used in figure 6.5 

that are not shown here. For the subsets of data examined, projection pursuit was
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First Linear Discriminant

(a) Discriminant analysis plot for the (b) PP using Legendre index for the
smaller group from figure 6.4(a) smaller group from figure 6.4(a)
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(c) PCA of standardised data for the 
smaller group from figure 6.4(a)

Figure 6.5: Plots based on analyses of the oriental greenware compositions. Figures 
use data from the left-hand group showing in figure 6.4a, after omitting five outliers, 
labelled according to the groups determined by Pollard and Hatcher (1986).
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able to produce similar clusters to those suggested by principal components analysis, 

however neither was able to suggest the structure Pollard and Hatcher (1986) found 

using cluster analysis and discriminant analysis.

6.6 D iscussion

For the specialised problems discussed in example 1, the application of one-dimensional 

projection pursuit, as illustrated, has a potentially useful role to play. In section 4.3 

the use of 1D-PP was combined with tests of normality and mode counting to form a 

powerful tool to investigate structure in data.

The examples cited above show that two-dimensional PP can produce a sharper 

view of structure in data than that provided by PCA, however it was also the case 

that PP did not lead to an interpretation different from that achieved with PCA. We 

have used additional data to compare the views of data found by both methods, for 

example we make use of information relating to the known origin of a sample or the 

date of manufacture. If we can relate this archaeological knowledge to clusters in the 

projection, and make sense of this, we view the projection as a successful one.

In example 4 the PP analysis did not lead to any new insights into the data; although 

some additional structure was suggested, there is no obvious way of determining if this 

has an archaeological meaning or whether it is spurious. There is a tendency for some 

‘optimal’ projections to be dominated by outliers, as shown in figure 6.2d. These types 

of projection generally have no obvious meaning and the outlying observations are not 

suggested by other multivariate techniques. We have also seen that PP can mislead 

if the sample sizes are small, as suggested by the circular plots in figure 6.2c. This is 

discussed further below.

Our original motivation for investigating PP was the suggestion of Jones and Sibson

(1987) that PP is possibly a sharper method of identifying structure than the commonly 

used PCA. We had hoped that if PP had been ‘sharper’ it might be better able to 

identify structure with smaller sample sizes (compared to PCA), however it turned out 

that this was not the case. We have seen that PP is very good at detecting spurious 

structure in multivariate data (as have Cook et al. 1993:248 and Ripley, 1996:302) 

however we have not seen examples of PP providing anything beyond that which can

100



be found by examining the first few principal components.

In the wider literature there undoubtedly exist examples where PP does produce 

informative views of the data that PCA does not reveal. This sometimes occurs when 

the structure in the data is ‘unusual’ (see, for example, the structures used in Posse’s 

(1995a, 91) simulation study), and of a kind that we suspect would often be regarded 

as uninterpretable in the context of the type of data used here. The model, often 

implicit, in studies that produce data similar to those used in examples 2, 3 and 4 is 

that the data may be viewed as a sample from a mixture of distributions which, in those 

studies that make statistical assumptions, are multivariate normal. In d-dimensional 

space the expectation is either that there will be distinct point clouds, or that there 

will be overlapping point clouds with distinct high-density regions. We suspect that 

methods such as PCA or cluster analysis will often be adequate to detect this, and that 

a PP view showing a marked departure from the underlying model might be difficult 

to interpret (we also recognise that this is not a good argument for not using PP).

Where PP has been contrasted with PCA and judged to be superior (e.g. Glover 

and Hopke, 1992) the judgement is sometimes a fine one. It is also the case that in 

order to select a PP view and judge that it is superior to PCA it may be necessary to 

use additional information (e.g. a prior classification of the data) to confirm that the 

PP view is a useful one. Given the ease with which PP can suggest spurious structure 

with ‘small’ data sets we have found it very difficult to interpret results where such 

prior knowledge has not been available. The superiority of PP compared with PCA has 

sometimes been exaggerated. Posse (1995a, 83-84) analyses data on five measurements 

for 200 Australian crabs, most belonging to four groups. He claims that PP is able to 

reveal a ‘clustered projection’ that was ‘not found by principal component analysis’. In 

fact the first component has an obvious size interpretation, and any of several standard 

approaches to PCA that aim to remove size effects (including a plot of the second and 

third components) will reveal a clustered projection similar to that found by PP.

Our experiences suggest that the use of PP as a tool for the routine analysis of 

data of the kind discussed in examples 2-4 is not always practical. In addition to the 

reasons discussed so far, there are two pragmatic reasons that give rise to this concern. 

The first concerns the size of the data sets typically available. Most examples of two-
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dimensional PP that we have seen use d < 10; our examples used d — 8, 11 and 12; 

as has been seen in the review of archaeometric analyses in chapter 2, it is now quite 

common to see analyses based on data sets for which d > 20. There has not been a 

commensurate increase in the number of samples typically collected, so that n < 100 

is quite usual. In the context of a technique that can easily suggest spurious structure 

in small data sets, and where 100 x 5 is considered to be small (Cook et al., 1993), 

many archaeometric data sets are small and subject to the problems that this entails.

The second reason concerns the time required to carry out PP. A large number 

of local optima arise in analysis, and the views they are associated with need to be 

inspected to see if they are ‘interesting’ and have a useful archaeological interpretation.

In XGobi the plots produced in the course of pursuit can be viewed in real time and 

visually ‘interesting’ projections, including some used here, do not necessarily even' 

correspond to local optima. These also need to be assessed and this is very demanding 

of time and has not, in the many analyses that we have undertaken, led to much extra 

insight into the data being gained, beyond that provided by PCA and cluster analysis 

-  the tools most usually deployed in the literature.

The time required to undertake a projection pursuit is extended because of the 

need to undertake pursuits with a number of indices. Although each index was de­

signed to detect a particular form of structure, for example the Friedman-Tukey index 

was designed to detect projections with very small inter-point distances where as the 

Legendre index was designed to maximise the possibility of finding clusters, we do not 

know in advance which index will provide the most useful results. For the examples 

cited above, the Friedman-Tukey index has tended to find projections which show the 

most archaeologically interesting view of data, however we have applied each index to 

each data set as each index has its own merits.

Our experience with the indices is that optimal projections suggested by the Friedman- 

Tukey index tend to find clusters in the data (be they meaningful or not) relatively 

quickly. Although it has been noted that the Legendre index has a tendency to find 

projections dominated by outliers or skewness (Ripley, 1996), we have not found this 

to be a major drawback of the index, although it is very slow to seek optimal projec­

tions. The entropy index is also very slow to calculate, we have found the other indices
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are able to find similar projections to those found by Entropy. The Natural Hermite 

index was developed by Cook et al. (1993) to, as they describe, alleviate some of the 

problems with the Legendre index. Our experience of this index is that it tends to be 

more dominated by outliers than any of the others. Given that each index was de­

signed to be optimal under slightly different circumstances, we have found it advisable 

to undertake a projection pursuit with at least two of the indices, we prefer to make 

use of the Friedman-Tukey and Legendre indices.

Given the reasons discussed above, we do not view PP, in its current state of 

development, as a tool we would recommend for routine archaeometric data analysis. 

We have have shown that PP is at least able to produce results comparable to PCA, 

however we have not seen an example in which PP shows something ‘new’.
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Chapter 7 

Conclusions

The thesis investigates a number of sample size related issues which arise in the use 

of multivariate statistics applied to compositional data. Our ultimate goal was to 

give some form of guidance 011 the types of sample size which should be used for 

multivariate analysis, however this depends on the unknown structure of the population 

from which a sample originates. As such our conclusions are based on specific areas of 

archaeometry.

In chapter 2, a review was undertaken of the typical sample sizes currently used 

in published articles in the journal Archaeometry between 1975 and 1999. The advent 

of new methods of chemical analysis, such as ICP-OES, have increased the number 

of variables available for statistical analysis. Sample sizes available have generally 

increased at a similar level, as suggested by the n /d  ratio throughout the 25 year 

period. The review highlighted the fact that it is uncommon to see an analysis of 

less than 8 variables, however as many as 20 variables have been used in statistical 

analyses in published articles, with sample sizes typically between 30 and 100. It is 

apparent that the use of multivariate statistical analysis has increased in popularity. 

We suspect this is due to the availability of larger sample sizes and the increased 

number of variables accessible through the use of newer methods of chemical analysis. 

The increased availability of accessible tools to perform multivariate statistical analysis 

has also aided the popularity of multivariate statistical analysis.

The assumption of normality of trivariate lead-isotope fields, and the sample sizes 

required to detect departures from normality are addressed in chapter 4. Our approach 

was to examine the univariate, bivariate and trivariate cases in isolation and determine 

sample size requirements to detect structure in both simulated and real data using
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direct testing of normality and mode counting techniques. The commonly accepted 

minimum number of samples to define a lead-isotope field, n — 20 (Pollard and Heron, 

1996), is questioned. We demonstrate that this is inadequate to detect departures from 

normality and that in some cases a minimum of 40 samples is required to detect quite 

clear departures from normality. We also suggest that the normality of lead-isotope 

fields cannot be assumed, as is required for the construction of confidence ellipsoids 

and in probability calculations which are sometimes used in lead-isotope ratio studies.

The method adopted for mode counting in chapter 4 was extremely sensitive to 

spurious structure. In section 4.2.2 we discuss possible modifications to the process we 

use. An alternative approach, investigated in chapter 5, is to use more formal methods 

of mode counting. Silverman (1981) proposed a test of univariate modality based on 

the use of non-adaptive kernel density estimates. We make use of this test to assess the 

modality of a number of data sets including lead-isotope data. Izenman and Sommer

(1988) suggest that Silverman’s test should be extended to make use of adaptive KDEs. 

Our work on univariate lead-isotope ratios confirmed that adaptive KDEs provide more 

accurate density estimates than non-adaptive KDEs. As such we proposed a version of 

the test making use of adaptive KDEs and investigated its performance in relation to 

the original test of Silverman (1981). Results suggest that the adaptive version of the 

test shows a greater difference between results for a correct and incorrect hypothesis 

which should allow for easier interpretation of results.

Techniques such as principal components analysis allow multivariate data to be 

reduced to lower dimensional views (typically 1-, 2- or 3-dimensional views) which allow 

for direct investigation into structure present in data, often using graphical methods 

such as plots of the first few principal components. It is possible for the techniques 

discussed in chapters 4 and 5 to be applied to multivariate data which have been 

projected to a lower number of dimensions using such techniques.

Jones and Sibson (1987) describe principal components analysis as ‘something of 

a blunt instrument’ for the analysis of structure in multivariate data, they make the 

suggestion that projection pursuit is a ‘sharper’ tool. In chapter 6 we investigated this 

claim and the possibility of using projection pursuit to find low dimensional views of 

data given the relatively small sample sizes available. We note that projection pursuit
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is good at locating spurious structure with the number of samples typically available. 

We conclude that the routine use of projection pursuit in the analysis of archaeometric 

data is not advisable due to the amount of time taken to review ‘interesting’ views of 

the data found by projection pursuit, and the frequency with which spurious structure 

is identified.

7.1 Further Work

An obvious extension to the work presented is discussed in section 4.2.3. Our approach 

to mode counting has raised a number of issues and has lead to the conclusion that 

formal methods of testing of modality should be investigated. A number of tests 

have been identified, including that of Silverman (1981) which we discuss and extend 

in chapter 5. Others include Excess Mass methods and the DIP, RUNT and MAP 

tests. Mixture modelling approaches may also be of use. These work by determining 

components which can be used to simulate a population with similar structure.

Despite the number of tests proposed in the literature, there are few published 

applications of their use. A comparative study of these techniques could be undertaken. 

This could be in the form of extending the work on lead-isotope data in chapter 4. For 

example investigating the performance of tests when applied to simulated data with a 

known structure and subsequently applied to real data.

The work to date has focused primarily on working with low dimensional data, 

this is either through working directly with univariate, bivariate or trivariate data or 

by using principal components analysis or projection pursuit to project the data into 

a lower number of dimensions. An obvious drawback of projecting data into a lower 

number of dimensions is the possibility of losing, or hiding, structure present in other 

dimensions. As such, working with the multivariate data directly is of interest.

The ISE statistic (Bowman and Foster, 1993) discussed in 4.4.1 can be directly 

applied to multivariate data to test for multivariate normality, as can the extension of 

the Shapiro-Wilk statistic of Malkovich and Afifi (1973). Further measures of multi­

variate structure are presented by Huffer and Park (2000) and could form the basis for 

a simulation study of higher dimensional data and a review of measures of multivariate 

structure. The review of published analyses presented in chapter 2 could form an initial
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point from which to research varying forms of structure present in compositional data 

and be used to investigate sample size requirements. In a sense, building a catalogue 

of the forms of structure commonly found in archaeometry.
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A ppendix A  

Bivariate M ixtures

The following table details the 12 bivariate mixture distributions suggested by Wand 

and Jones (1993). The distributions are selected to show a sub-set of possible forms 

of bivariate structure. We use these distributions in chapter 4 to investigate sample 

size requirements necessary to detect varying forms of structure. The distributions 

are defined using the form H2 -> of, <j\,p) as done so by Wand and Jones (1993).
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(a) Uncorrelated normal

(c) Skewed

(e) Bimodal I

(b) Correlated normal

(d) Kurtotic

(f) Bimodal II
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(h) Bimodal IV(g) Bimodal III

(i) Trimodal I (j) Trimodal II

(k) Trimodal I I I (1) Quadimodal

Figure A.l: Contour plots of the 12 mixtures used in chapter 4 to investigate sample 
size requirements for varying forms of bivariate structure. Modes are indicated with a
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A ppendix B  

R esults from Sim ulation Studies 
U ndertaken in C hapter 4

The tables below detail results from the simulation studies undertaken in chapter 

4. Table B.l shows the performance of the ISE statistic (section 4.2.1). The table 

shows the proportion of 1000 replications for which a departure from normality was 

detected at the 5% level for samples from 14 univariate populations of the form 

(1 — p)N (0,1) +  pN{fJLt a2) for varying sample sizes.

Tables B.2 to B.5 show results from the univariate mode counting undertaken in 

section 4.2.2. The table details the number of 1000 replications for which 1, 2 or 

more than 2 modes are detected in 14 simulated univariate distributions of the form 

(1 — p)N (0,1) +pN(p> a2) for varying sample sizes. The four tables detail results 

for mode counting for non-adaptive KDEs with h selected by h/vs, adaptive KDEs 

with h selected by /ijvs, non-adaptive KDEs with h selected by Ji s t e  and adaptive 

KDEs with h selected by Hs t e -

Tables B.6 to B.l 1 detail results from the bivariate mode counting procedure under­

taken in section 4.4.2. The tables detail the number of 1000 replications for which 

1, 2, 3, 4, 5 or more modes were detected in KDEs of samples taken from the 12 

bivariate mixture distributions, discussed in appendix A, for varying sample sizes. 

The KDEs are both non-adaptive and adaptive with window width selected by the 

univariate h^s  and hsrE procedures and also using the bivariate window-width 

selection routine, hopi2 -
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p G2 n Proportion of replications which are significant at the 5% level 
( i = 0 n — 1 ( i = 2 (i =  3 (i = 4 (i = 5 (i = 6

0.5 1 20 0.0520 0.0630 0.0500 0.1090 0.3780 0.7480 0.9560
0.5 1 30 0.0530 0.0590 0.0660 0.2650 0.6950 0.9700 1.0
0.5 1 40 0.0530 0.0590 0.0660 0.2650 0.6950 0.9700 1.0
0.5 1 50 0.0620 0.0450 0.1060 0.4690 0.9530 1.0 1.0
0.5 1 100 0.0450 0.0580 0.1510 0.8560 0.9990 1.0 1.0
0.1 1 50 0.0580 0.0400 0.0980 0.5050 0.8650 0.9560 0.9790
0.2 1 50 0.0590 0.0520 0.1590 0.6530 0.9760 1.0 1.0
0.3 1 50 0.0510 0.0680 0.1530 0.6270 0.9710 1.0 1.0
0.4 1 50 0.0360 0.0420 0.0940 0.5190 0.9620 1.0 1.0
0.5 1 50 0.0520 0.0450 0.0910 0.5130 0.9550 1.0 1.0
0.1 1 25 0.0600 0.0500 0.1100 0.3420 0.6110 0.8530 0.9020
0.2 1 25 0.0480 0.0560 0.1190 0.3840 0.7680 0.9620 0.9880
0.3 1 25 0.0440 0.0620 0.1000 0.3210 0.7370 0.9530 0.9970
0.4 1 25 0.0470 0.0520 0.0600 0.2520 0.6590 0.9350 0.9940
0.5 1 25 0.0560 0.0470 0.0520 0.2120 0.5710 0.9270 0.9960
0.1 1 100 0.0610 0.0470 0.1980 0.7690 0.9860 0.9980 1.0
0.2 1 100 0.0510 0.0500 0.2750 0.9430 1.0 1.0 1.0
0.3 1 100 0.0560 0.0570 0.2780 0.9280 1.0 1.0 1.0
0.4 1 100 0.0680 0.0620 0.2110 0.8750 1.0 1.0 1.0
0.5 1 100 0.0600 0.0480 0.1540 0.8610 0.9990 1.0 1.0
0.5 0.25 50 0.8450 0.9730 0.9940 1.0 1.0 1.0 1.0
0.5 0.5 50 0.2060 0.5560 0.8260 0.9870 1.0 1.0 1.0
0.5 1 50 0.0400 0.0580 0.0890 0.4920 0.9460 1.0 1.0
0.5 2 50 0.2100 0.3200 0.5610 0.7000 0.8250 0.9350 0.9860
0.5 4 50 0.8240 0.8700 0.9080 0.9580 0.9730 0.9830 0.9950
0.5 0.25 25 0.5220 0.7960 0.8380 0.9110 0.9800 0.9990 1.0
0.5 0.5 25 0.1490 0.3270 0.4600 0.7510 0.9380 0.9980 1.0
0.5 1 25 0.0600 0.0610 0.0600 0.2180 0.5990 0.9240 0.9960
0.5 2 25 0.1420 0.1910 0.3230 0.4040 0.4510 0.5520 0.7210
0.5 4 25 0.5460 0.5840 0.6460 0.7160 0.8000 0.8220 0.8250
0.5 0.25 100 0.9910 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.5 100 0.2890 0.8410 0.9890 1.0 1.0 1.0 1.0
0.5 1 100 0.0540 0.0620 0.1790 0.8790 1.0 1.0 1.0
0.5 2 100 0.3430 0.5430 0.8560 0.9500 0.9950 0.9990 1.0
0.5 4 100 0.9930 0.9900 0.9990 0.9980 1.0 1.0 1.0
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p a2 n Proportion of replications which are significant at the 5% level
p, — 0 pi— 1 pi = 2 /i =  3 pi — 4 pi — 5 p = 6

0.1 0.25 50 0.0890 0.0980 0.1220 0.5190 0.8910 0.9650 0.9900
0.1 0.5 50 0.0660 0.0660 0.0750 0.4850 0.8800 0.9670 0.9900
0.1 1 50 0.0520 0.0480 0.1340 0.5090 0.8410 0.9610 0.9830
0.1 2 50 0.1220 0.2140 0.4090 0.6480 0.8470 0.9320 0.9780
0.1 4 50 0.6850 0.6840 0.7480 0.8340 0.8940 0.9250 0.9580
0.3 0.25 50 0.3920 0.6410 0.6720 0.9420 1.0 1.0 1.0
0.3 0.5 50 0.1210 0.2380 0.3130 0.8120 0.9990 1.0 1.0
0.3 1 50 0.0500 0.0500 0.1440 0.6370 0.9780 1.0 1.0
0.3 2 50 0.2460 0.3710 0.6930 0.9090 0.9840 1.0 1.0
0.3 4 50 0.9260 0.9480 0.9740 0.9920 0.9980 0.9990 1.0

Table B.l: Results from the power study undertaken 011 univariate mixture distribu­
tions of the form (1 — p )N (0,1) + pN (f i , a2) for varying values of /i, a2, p and sample 
size. The table details the proportion of 1000 replications for which the ISE statistic is 
significant at the 5% level for a sample of size n from the mixture distribution.
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Mixture n m  = 1 m  = 2 m  = 3 m — 4 m  — 5 m  > 5
A 15 227 431 255 68 14 5
A 20 151 373 286 133 39 18
A 25 135 330 282 152 69 32
A 50 269 368 225 96 21 21
A 100 404 410 148 33 4 1
B 15 277 526 160 29 7 1
B 20 204 525 190 59 17 5
B 25 161 463 259 85 21 11
B 50 391 443 142 22 2 0
B 100 494 411 87 8 0 0
C 15 131 393 332 105 31 8
C 20 74 307 356 168 62 33
C 25 61 199 306 216 132 86
C 50 212 393 237 88 45 25
C 100 259 438 211 83 9 0
D 15 117 34-5 309 149 58 22
D 20 58 189 258 224 147 124
D 25 35 137 192 201 179 256
D 50 93 244 260 193 126 84
D 100 69 218 291 224 135 63
E 15 172 496 276 44 11 1
E 20 155 456 277 86 19 7
E 25 102 383 321 132 47 15
E 50 123 410 312 122 30 3
E 100 88 465 361 79 7 0
F 15 0 435 465 85 13 2
F 20 0 367 461 129 37 6
F 25 0 333 465 133 51 18
F 50 0 533 394 66 6 1
F 100 0 665 298 36 1 0
G 15 1 851 138 10 0 0
G 20 0 877 110 10 2 1
G 25 1 878 111 7 3 0
G 50 0 968 32 0 0 0
G 100 0 986 14 0 0 0
H 15 11 874 106 8 1 0
H 20 6 891 91 11 0 1
H 25 3 905 84 6 2 0
H 50 0 978 22 0 0 0
H 100 0 989 11 0 0 0
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Mixture n m  — 1 m  = 2 m  — 3 m  = 4 m = 5 m  > 5
I 15 91 865 38 3 3 0
I 20 57 891 49 2 0 1
I 25 33 893 72 2 0 0
I 50 7 877 115 0 1 0
I 100 1 782 217 0 0 0
J 15 154 447 324 68 6 1
J 20 90 383 390 108 24 5
J 25 78 334 350 162 67 9
J 50 86 347 372 164 28 3
J 100 92 414 373 107 13 1
K 15 104 497 349 45 5 0
K 20 151 373 286 133 39 18
K 25 41 402 439 89 23 6
K 50 37 397 509 52 4 1
K 100 8 278 642 70 2 0
L 15 108 617 24-7 25 3 0
L 20 74 588 302 33 2 1
L 25 40 583 324 46 5 2
L 50 22 587 343 44 4 0
L 100 4 531 385 77 3 0

Table B.6: Results from the simulation study undertaken on bivariate mixture distri­
butions detailed in appendix A. The table details the number of 1000 replications for 
which the the bivariate mode counting process detected 1, 2, 3, 4, 5 or more modes sam­
ple of size n from the mixture distribution. KDEs are lion-adaptive with window-width 
selected by hjvs-
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Mixture n m — 1 771 =  2 771 =  3 m = 4 m — 5 m  > 5
A 15 4-68 442 82 6 2 0
A 20 378 465 139 17 1 0
A 25 287 469 209 32 0 3
A . 50 310 471 196 21 2 0
A 100 218 453 277 49 3 0
B 15 521 458 20 1 0 0
B 20 413 531 54 2 0 0
B 25 334 569 89 8 0 0
B 50 390 532 76 2 0 0
B 100 342 563 91 4 0 0
C 15 541 393 64 2 0 0
C 20 451 440 101 8 0 0
C 25 351 445 173 29 0 2
C 50 438 427 120 14 1 0
C 100 384 458 141 16 1 0
D 15 556 367 73 3 1 0
D 20 385 451 139 20 5 0
D 25 295 432 215 51 6 1
D 50 320 439 191 43 6 1
D 100 232 435 248 79 6 0
E 15 324 516 152 7 1 0
E 20 252 545 180 22 1 0
E 25 157 560 257 22 4 0
E 50 101 526 329 44 0 0
E 100 30 404 438 114 14 0
F 15 10 776 204 10 0 0
F 20 2 735 243 18 2 0
F 25 3 661 313 21 2 0
F 50 0 726 262 12 0 0
F 100 0 712 260 28 0 0
G 15 11 960 29 0 0 0
G 20 4 960 34 2 0 0
G 25 2 963 33 2 0 0
G 50 0 982 17 1 0 0
G 100 0 982 18 0 0 0
H 15 34 940 25 1 0 0
H 20 9 967 23 1 0 0
H 25 3 973 22 2 0 0
H 50 0 982 18 0 0 0
H 100 0 986 14 0 0 0
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Mixture n m  = 1 m  = 2 m = 3 II£ m  — 5 m > 5
I 15 160 825 15 0 0 0
I 20 92 873 35 0 0 0
I 25 57 894 48 1 0 0
I 50 7 865 128 0 0 0
I 100 0 747 253 0 0 0
J 15 347 517 136 0 0 0
J 20 240 538 199 22 0 1
J 25 165 535 253 44 3 0
J 50 89 513 334 61 3 0
J 100 31 415 426 117 10 1
K 15 213 619 162 6 0 0
K 20 378 465 139 17 1 0
K 25 77 632 263 27 1 0
K 50 38 613 328 20 1 0
K 100 3 484 446 64 3 0
L 15 177 708 111 4 0 0
L 20 115 717 162 6 0 0
L 25 58 743 190 9 0 0
L 50 18 685 279 17 1 0
L 100 0 622 326 45 7 0

Table B.7: Results from the simulation study undertaken on bivariate mixture distri­
butions detailed in appendix A. The table details the number of 1000 replications for 
which the the bivariate mode counting process detected 1, 2, 3, 4, 5 or more modes 
sample of size n from the mixture distribution. KDEs are adaptive with window-width 
selected by h^s-
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Mixture n m  =  1 771 =  2 m  =  3 m  =  4 m  — 5 m  > 5
A 15 158 209 220 184 115 114
A 20 153 191 222 170 95 169
A 25 151 197 189 165 119 179
A 50 221 221 185 128 86 159
A 100 338 310 177 91 48 36
B 15 196 319 228 146 68 43
B 20 169 309 214 160 80 68
B 25 155 291 220 149 93 92
B 50 314 294 223 83 43 43
B 100 412 351 163 51 13 10
C 15 78 208 247 211 127 129
C 20 55 170 211 219 130 215
C 25 47 131 187 181 162 292
C 50 138 184 173 144 107 254
C 100 146 287 246 166 78 77
D 15 61 114 166 204 183 272
D 20 47 67 126 162 146 452
D 25 26 62 92 112 134 574
D 50 18 55 92 86 132 617
D 100 6 20 63 135 191 585
E 15 106 241 242 176 111 124
E 20 107 214 236 173 119 151
E 25 70 195 224 179 129 203
E 50 76 174 198 214 127 211
E 100 54 232 288 194 110 122
F 15 0 256 293 209 138 104
F 20 0 227 272 199 149 153
F 25 0 216 281 187 133 183
F 50 0 204 255 209 143 189
F 100 0 326 341 174 84 75
G 15 1 463 336 136 50 14
G 20 0 486 300 129 61 24
G 25 0 470 314 140 49 27
G 50 0 590 268 89 42 11
G 100 0 .683 250 53 13 1
H 15 14 505 283 137 47 14
H 20 9 520 288 126 34 23
H 25 5 530 256 134 53 22
H 50 0 603 257 91 31 18
H 100 0 698 232 50 19 1
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Mixture n 771 — 1 771 =  2 777 =  3 777 =  4 777 =  5 777 > 5
I 15 73 521 302 75 25 4
I 20 49 573 274 75 16 13
I 25 37 518 310 97 27 11
I 50 4 433 464 79 15 5
I 100 1 225 662 97 11 4
J 15 123 230 253 217 114 63
J 20 97 217 258 190 127 111
J 25 84 207 249 166 141 153
J 50 96 237 250 196 95 126
J 100 99 315 315 164 66 41
K 15 56 249 326 194 108 67
K 20 153 191 222 170 95 169
K 25 30 187 295 230 127 131
K 50 27 148 325 255 126 119
K 100 3 125 415 282 113 62
L 15 72 258 269 202 112 87
L 20 45 230 276 208 139 102
L 25 37 231 252 224 135 121
L 50 11 189 225 227 153 195
L 100 4 124 230 250 196 196

Table B.8: Results from the simulation study undertaken on bivariate mixture distri­
butions detailed in appendix A. The table details the number of 1000 replications for 
which the the bivariate mode counting process detected 1, 2, 3, 4, 5 or more modes sam­
ple of size n  from the mixture distribution. KDEs are lion-adaptive with window-width 
selected by hsrE-
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Mixture n m  =  1 2 II to 771 =  3 II£ m = 5 m > 5
A 15 308 333 172 90 48 49
A 20 286 331 214 99 34 36
A 25 254 324 241 111 41 29
A 50 257 358 237 90 43 15
A 100 196 358 279 109 44 14
B 15 344 448 150 33 10 15
B 20 275 472 186 47 11 9
B 25 278 420 208 64 20 10
B 50 339 433 169 46 11 2
B 100 301 513 147 33 6 0
C 15 310 371 175 67 36 41
C 20 266 382 207 89 26 30
C 25 238 352 248 91 51 20
C 50 240 401 218 93 33 15
C 100 199 415 228 118 32 8
D 15 277 345 175 89 47 67
D 20 212 346 261 107 41 33
D 25 139 294 281 170 70 46
D 50 97 257 296 192 97 61
D 100 40 159 277 275 158 91
E 15 172 369 239 111 68 41
E 20 167 347 276 128 47 35
E 25 97 365 282 166 58 32
E 50 66 273 336 196 74 55
E 100 21 184 321 265 133 76
F 15 3 497 284 134 56 26
F 20 2 455 300 167 48 28
F 25 1 415 327 163 70 24
F 50 0 368 328 190 81 33
F 100 0 245 400 232 83 40
G 15 6 781 189 22 2 0
G 20 2 779 190 26 2 1
G 25 2 769 189 39 1 0
G 50 0 769 213 18 0 0
G 100 0 680 281 37 2 0
H 15 24 774 160 35 5 2
H 20 8 775 194 21 2 0
H 25 5 798 168 26 3 0
H 50 0 776 200 21 2 1
H 100 0 689 268 40 3 0
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Mixture n m — 1 m  — 2 m  — 3 m = 4 m  =  5 m > 5
I 15 1 1 1 716 163 9 1 0

I 2 0 60 730 199 9 2 0

I 25 43 664 265 24 3 1

I 50 2 497 470 30 1 0

I 1 0 0 0 198 695 103 4 0

J 15 230 359 251 1 0 0 42 18
J 2 0 182 370 278 116 37 17
J 25 161 351 266 153 51 18
J 50 89 366 322 160 50 13
J 1 0 0 51 319 371 185 54 2 0

K 15 105 465 288 89 27 26
K 2 0 286 331 214 99 34 36
K 25 54 408 334 151 41 1 2

K 50 23 342 397 175 44 19
K 1 0 0 1 2 0 0 422 277 79 2 1

L 15 99 444 272 114 4 4 27
L 2 0 63 410 309 146 57 15
L 25 43 397 309 170 63 18
L 50 9 294 315 219 117 46
L 1 0 0 0 152 265 267 182 134

Table B.9: Results from the simulation study undertaken 011 bivariate mixture distri­
butions detailed in appendix A. The table details the number of 1000 replications for 
which the the bivariate mode counting process detected 1, 2, 3, 4, 5 or more modes 
sample of size n from the mixture distribution. KDEs are adaptive with window-width 
selected by Us t e -
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Mixture n m —  1 771 — 2 coII£ m = 4 m — 5 m  > 5
A 15 56 312 399 198 32 3
A 20 97 338 362 178 23 2
A 25 154 380 321 118 25 2
A 50 571 336 81 11 0 1
A 100 849 138 13 0 0 0
B 15 71 431 397 90 11 0
B 20 98 478 330 83 11 0
B 25 130 479 317 65 6 3
B 50 437 439 115 9 0 0
B 100 646 317 33 4 0 0
C 15 35 276 440 206 38 5
C 20 51 286 407 201 48 7
C 25 61 303 404 182 42 8
C 50 445 426 113 13 3 0
C 100 638 312 48 2 0 0
D 15 29 239 452 214 58 8
D 20 29 235 399 254 69 14
D 25 49 234 378 222 97 20
D 50 302 432 222 41 3 0
D 100 478 394 111 14 3 0
E 15 51 252 464 205 28 0
E 20 91 340 411 135 21 2
E 25 86 384 371 134 24 1
E 50 259 468 229 40 4 0
E 100 287 624 82 7 0 0
F 15 0 371 445 175 7 2
F 20 0 418 436 137 9 0
F 25 0 485 399 105 11 0
F 50 0 800 184 14 2 0
F 100 0 940 56 4 0 0
G 15 0 540 400 55 5 0
G 20 0 601 350 44 5 0
G 25 0 634 310 54 2 0
G 50 0 875 121 4 0 0
G 100 0 957 42 1 0 0
H 15 1 565 369 58 7 0
H 20 1 646 315 35 3 0
H 25 1 716 247 35 1 0
H 50 0 920 79 1 0 0
H 100 0 973 26 1 0 0
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Mixture n TO — 1 TO =  2 TO =  3 iti — 4 TO =  5 TO > 5
I 15 9 689 270 29 3 0
I 20 4 719 261 14 2 0
I 25 8 709 260 23 0 0
I 50 2 717 278 2 1 0
I 100 0 613 385 2 0 0
J 15 29 210 462 255 42 2
J 20 33 268 425 231 38 5
J 25 51 286 384 224 52 3
J 50 126 413 344 101 16 0
J 100 192 548 226 32 2 0
K 15 20 251 515 195 18 1
K 20 97 338 362 178 23 2
K 25 22 275 500 174 26 3
K 50 34 369 519 73 5 0
K 100 19 335 598 47 0 1
L 15 16 310 472 179 23 0
L 20 27 323 450 184 13 3
L 25 15 379 436 151 19 0
L 50 26 533 372 65 2 2
L 100 11 631 318 39 1 0

Table B.10: Results from the simulation study undertaken on bivariate mixture distri­
butions detailed in appendix A. The table details the number of 1000 replications for 
which the the bivariate mode counting process detected 1, 2, 3, 4, 5 or more modes sam­
ple of size n from the mixture distribution. KDEs are non-adaptive with window-width 
selected by hppi2.
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Mixture n m  — 1 in — 2 m — 3 m = 4 m  — 5 m > 5
A 15 271 487 218 23 1 0
A 20 337 480 162 21 0 0
A 25 383 452 159 6 0 0
A 50 530 396 73 1 0 0
A 100 629 328 42 1 0 0
B 15 279 610 109 2 0 0
B 20 291 585 117 7 0 0
B 25 323 573 103 1 0 0
B 50 438 502 58 2 0 0
B 100 483 480 36 1 0 0
C 15 401 440 147 11 1 0
C 20 448 431 114 7 0 0
C 25 505 415 74 6 0 0
C 50 694 285 19 2 0 0
C 100 779 211 8 2 0 0
D 15 420 427 141 12 0 0
D 20 481 405 106 7 1 0
D 25 521 391 80 8 0 0
D 50 662 299 39 0 0 0
D 100 749 225 26 0 0 0
E 15 145 492 330 32 1 0
E 20 178 531 260 29 2 0
E 25 158 565 243 34 0 0
E 50 176 616 199 8 1 0
E 100 131 692 166 11 0 0
F 15 8 695 269 28 0 0
F 20 5 763 213 19 0 0
F 25 5 791 194 10 0 0
F 50 0 891 107 2 0 0
F 100 0 952 45 3 0 0
G 15 7 814 173 6 0 0
G 20 5 858 131 6 0 0
G 25 3 862 129 6 0 0
G 50 0 927 69 4 0 0
G 100 0 944 54 1 1 0
H 15 15 825 155 5 0 0
H 20 4 882 111 3 0 0
H 25 4 917 78 1 0 0
H 50 0 947 53 0 0 0
H 100 0 959 41 0 0 0
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Mixture n m — 1 m  — 2 m = 3 m = 4 m  — 5 m  > 5
I 15 33 815 148 4 0 0
I 20 23 809 166 2 0 0
I 25 10 790 198 2 0 0
I 50 1 729 270 0 0 0
I 100 0 598 400 2 0 0
J 15 127 497 320 55 1 0
J 20 128 483 330 58 1 0
J 25 141 499 310 50 0 0
J 50 134 538 280 48 0 0
J 100 96 624 235 42 3 0
I< 15 88 556 337 19 0 0
K 20 337 480 162 21 0 0
K 25 49 572 347 32 0 0
K 50 37 588 353 21 1 0
K 100 12 546 396 46 0 0
L 15 55 573 329 40 3 0
L 20 47 586 324 42 1 0
L 25 31 600 331 37 1 0
L 50 20 651 307 21 1 0
L 100 5 706 267 22 0 0

Table B .ll: Results from the simulation study undertaken 011 bivariate mixture distri­
butions detailed in appendix A. The table details the number of 1000 replications for 
which the the bivariate mode counting process detected 1, 2, 3, 4, 5 or more modes 
sample of size n from the mixture distribution. KDEs are adaptive with window-width 
selected by hop 1 2 -
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A ppendix C 

R esults from C hapter 5

The following tables show results from the comparison of Silverman’s (1981) test of 

modality with our adaptive modification to the original test (section 5.5). Results 

are presented as cumulative frequency tables which show the cumulative frequency 

of the resulting value of the test being p — 0, < 0.1, < 0.2, - - - < 1.0 for the hypoth­

esis of k — 1 and k — 2 when the data are simulated from a bimodal population and 

k = 1, k = 2 and k = 3 when the data are simulated from a trimodal population.
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4a â -̂ a -sa -4a 4e 
o  o  o  o  o  otq tq tq tq tq tq

■H
CO

H

CO

§aH
P

TP

-H H  -H

& ct
T3 X) D

zn zn zn <  <t <;

H  r-H 4 _ 5 - p
9  9 !  Q h P h P ho  tp c r  c r  XCo CO cO

. _  7 p  ^  ^  ^zn zn zn <  <; <j

r* P  -t-3 h3 -t-3
b ri b i  P h  P h  P h
| >  K  CD K  t o2 ;  2  T 3  r^-J

.,-H .rH .rH H  H  Hco zn zn <q <t <q

cc cc cc
p  p  p
p  p  p
a  a  a

D P P  > > >
, , H  H  H
© © o 9* 9* aS  >  >  P  P  P.-p cp & -O xl xico zn zn <! <! <

o  gH
rH PP  N
.2 CO
P  <H P  o  o  ^
Cp COrP a>
U  H2 a
S  §^  p
05 CO
>  P-H *•-*
CO 4-3

H  pp 
P  p  
h  H
p 2© a

T3 'h
P  ^  
P
>N aH  P

• r—j

3  &T l -r-H

2 ^  a ^
H h 2
o  P  

H  PCO rH  
CD r  

H

§

p  p
cn  s
p °P  P h
2  ^

U P  r P

bJO P  
P  r P

CO . s  P  H  
H  CO L O

P -£j CÔ
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introduction

In this research note, a brief account is given of some recent 
work, investigating sample size requirements for some 
specific archaeometric problems.

The original motivation for this work arose in the context of 
an investigation into the normality, or otherwise, of lead 
isotope ratio fields (Baxter, 1998). A specimen from an ore- 
body can be characterised by measurements of three lead 
isotope ratios, and n such specimens can be used, to estimate 
the lead isotope field for the ore-body. This is a three- 
dimensional construct. In using the data on such fields, in 
provenancing studies for example, it is sometimes assumed 
that fields have a trivariate, normal distribution (Sayre, et ah, 
1992).

The analyses in Baxter (1998), suggested that normality was 
the exception rather than the rule. This may not previously 
have been recognised, because the sample sizes typically 
available, in conjunction with the methods of statistical 
analysis used, were too small to detect departures from 
normality. It is thus of interest, to ask how large sample sizes 
need to be to detect non-normality. This is particularly so, 
since there seems to be widespread acceptance, that a well 
selected sample of size 20, from an ore-body, is an 
‘agreeable minimum’ (Pollard and Heron, 1996). We shall 
argue that this is only so, if the lead isotope field is normally 
distributed; if it is not, somewhat larger samples are needed 
to detect the non-normality.

The issue of sample size is of concern in a more general 
setting. In practice, sample sizes are often determined by 
practical considerations, such as cost of analysis or 
availability of specimens. This is so, in the study of artefact 
compositional data where, for example, the reported use of 
samples greater titan 100 is uncommon. Often, data are 
analysed using multivariate statistical methods such as 
cluster or principal component analysis (PCA), that result in 
graphical output, designed to show structure (e.g. groups) in 
the data, or its absence. Where structure is very obvious, it is 
likely that relatively small samples will be successful in 
displaying this (and also the case, that multivariate 
methodology may be unnecessary). With less obvious 
structure, larger samples may be needed, and the question, 
‘how large?’, is then of interest.

In a sense this is an impossible question to answer, since the 
answer depends on the precise, but unknown, form of the 
structure, that the data are designed to investigate. 
Nevertheless, it may be possible to suggest guidelines, and in 
the remainder of this paper, we outline some possible 
approaches, that we have explored.

Sample sizes for lead isotope data

The statistical tests used in Baxter (1998), for several of the 
larger data sets, published by Stos-Gale et al. (1996), 
suggested that the data were non-normaJ. Given that this is 
established, kernel density estimates (KDEs) provide a useful 
tool for displaying the form of non-normality. KDEs can be 
thought of, as smoothed histograms and are discussed, in an 
archaeological context, in Baxter, et al. (1997). In Figure 1, a 
KDB is shown for one of the univariate ratios for the Lavrion 
field, based on 59 observations; more generally, such a KDE 
might be based on a linear combination of the ratios. The 
KDE looks non-normal and is bi-modal.

In asking what sample sizes are needed to detect structure in 
multivariate data sets, the term ‘structure’ needs to be 
defined. One model, for lack of structure, is that the data 
have a (multivariate) normal distribution. Here, we shall 
define structure to be a departure from normality, that 
manifests itself as multi-modality. This is possibly 
restrictive, but many published analyses of compositional 
data are primarily interested in this kind of structure (as 
shown in PC.A or discriminant analysis plots, for example).

The problem then is, given a sample from a population with a 
multi-modal distribution, what sample size is needed to 
detect the multi-modality? The answer clearly depends on the 
form of the multi-modality, and we have approached this in 
two ways.

(a) Non-normal, multi-modal distributions have been 
simulated, using mixtures of normal distributions. The 
‘populations’ generated in the simulation are repeatedly sub­
sampled, for some fixed sample size, and the number of 
occasions, on which multi-modality is detected, is 
determined. This exercise is repeated for different sample 
sizes, to find at what point the detection of non-normality 
becomes reasonably certain.
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(b) Real data sets, in which multi-modality is evident, are 
sub-sampled in a similar way, to determine at which sample 
size there is a failure to detect multi-modality.

It is necessary to establish a methodology, for determining 
whether or not a specific sample exhibits multi-modality, and 
two approaches have been used. In the first approach, tests of 
normality have been used, and the power - the proportion of 
times that the test correctly rejects the null hypothesis of 
normality - for different sample sizes, and kinds of multi­
modality investigated. A test of normality based on a KDE 
estimate, developed by Bowman (1992), for the univariate 
case, and extended to the multivariate case, by Bowman ancl 
Foster (1994), has been used. In the second approach, a KDE 
of a sample is obtained and the number of modes counted. 
This latter approach has presented a number of difficulties, 
that are discussed in section 3.

Repeatedly, taking sub-samples, of size 20 from data on the 
univariate ratio shown in Figure 1, suggested that the power 
of the test of normality was about 20%. To achieve a power 
of 70%, a sample size of around 45 was needed. This result is 
consistent with those, arising from the experiments 
conducted on simulated mixtures, where a sample size of 20 
was inadequate for detecting non-normality, in the presence 
of significant overlap between the components of a mixture.

Gale et al. (1997), published data from the Lamaca axis in 
Cyprus, for 73 specimens, and discussed this in Stos-Gale, et 
al. (1997). The specimens came from nine different deposits, 
and bivariate plots of the ratios showed a clearly non-normal, 
multi-modal structure, associated with the different deposits. 
Conducting a similar exercise, to that described in the 
previous paragraph, shows that for 70% power, a sample size 
of over 30 is needed.

The importance of these results, is that they suggest that 
sample sizes recommended in the literature, may be too 
small. If the data for a field are normal, then a sample size of 
20 may be adequate, to delineate the field, but if data are 
non-normal, then much larger samples may be needed, to 
detect and display this.

Mode counting

In the analyses just discussed, the sampled populations were 
multi-modal, and tests for normality were used to detect this. 
It is possible that samples from the population will be 
detected as non-normal, but will not necessarily exhibit the 
multi-modality of the population. In practice, an assessment 
of structure would often be made more directly, on the basis 
of visual inspection of the data, in the form of a histogram, 
KDE or bivariate plot. In other words, after the creation of 
some visual display, modes are counted. It is of some interest 
to ask if this approach, as opposed to formally testing 
normality, gives rise to similar conclusions.

In principle, it should be possible to repeatedly sub-sample 
data, from a population known to be multi-modal, count the 
number of modes in a sample, and, estimate the sample size 
needed to ‘capture’ the true modality, some fixed proportion 
of the time. Putting tins idea into practice is a non-trivial 
problem. To begin with, there is no uniquely ‘correct’ way of 
determining the number of modes in a sample. Our approach

has been to fit an adaptive kernel density estimate 0; 
(Silverman, 1986), using a pilot smoothing parameter, |  
determined by a method described in Wand and Jones (1995, J 
74). 4

For a single sample, visual inspection is usually sufficient to t 
establish the number of modes, though there are sometimes f 
borderline cases, where the decision is not straightforward, s- 
For the kinds of structure we are interested in, small modes at ; 
the periphery of a plot, corresponding to a small group of 1 
outliers for example, would be discounted in assessing the 
main structure in a data set. Devising methods of ( 
automatically counting modes - given a KDE estimate - is 
not straighforward, because of the difficulty of establishing 
rules, mimicking human decision making in a consistent i 
way. Some automatic procedure is necessary, if thousands of i  
simulated data sets are to be inspected. •

We have experimented with a number of methods, including s 
the use of neural networks, and this work is still at an early A 
stage. First impressions are that mode counting gives similar, * 
or possibly better, results, compared with testing for \ 
normality, in the sense that similar or smaller samples may i  
suffice to detect structure. This may, however, be a ; 
consequence of the particular test of normality used, and ij 
further investigation is needed. i
M ultivariate problems

Section 2, and other work not described here, has J 
concentrated on the univariate case. The real challenge is to 
extend the ideas developed there to the multivariate case, and 
in this section, some possible approaches are outlined.

The problem is that, of determining what sample sizes are i 
needed to detect muldmodality in p-dimensional data sets, 
where p  may be large (> 20 is increasingly common). A * 
direct attack on this problem is unlikely to succeed, because 4 
of the ‘curse of dimensionality’, so that some form of initial v 
data reduction is almost certainly essential. The main 7 
approach investigated, so far, has been to perform a PCA, t 
and then to extend the methods used, for the univariate case, 
to the bivariate PCA plot.

Figure 2 shows a plot of the first two components, in a PCA ; 
analysis of about 230 specimens of archaeological glass, i 
using 11 elements. Heyworth (1991) classified the glasses by 7 
colour. There are two main concentrations of points on the ? 
plot; the dense central concentration consists mainly of light- ■ 
blue glass, while the less dense cloud, to the left, consists 
mainly of light-green glass.

The data set, used here, is much larger than many used in f 
practice. For example, of five multivariate analyses reported 
in four papers in Archaeometry 38 (I), four use a sample size • 
of less than 40, three of which are less than 20. Repeatedly, 
sub-sampling from the component scores, shown in Figure 2, 
and testing for bivariate normality using the statistic e 
developed by Bowman and Foster (1994), suggests that a 
sample of size 25, gives a power of about 60%, whereas a 
sampie of size 50, gives a power close to 100%. These s 
sample sizes were used, because Bowman and Foster (1994) 
provide critical values for them; their results are being
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extended, so that intermediate sample sizes can be 
investigated.

Investigations of simulated data, where the possibilities are 
much richer, than in the univariate case, and mode counting, 
have still to be undertaken, as have studies, based on other 
real and structured data sets.

An alternative to the use of PCA, that is also under
investigation, is the use of projection pursuit (PP)
methodology, of which PCA is a special case. PP methods
have been around for some time (Jones and Sibson, 1987) 
but, with the exception noted below, do not seem to have 
been applied to archaeometric problems. The basic idea is 
simple. Whereas in PCA, linear combinations of the data are 
chosen to maximise variance, in PP methods they are chosen 
to optimise some index of ‘interestingness’. As Simonoff 
(1996, 117) notes, normality may be regarded as
uninteresting, so any statistic suitable for testing for
normality might be used as an index. The idea is illustrated in 
Baxter (1998), albeit without using the term ‘projection 
pursuit’. The univariate, Shapiro-Wilk statistic is widely 
regarded as one of the best omnibus tests of normality. The 
multivariate extension of Malkovich and Afifi (1973) seeks 
the linear combination of p  variables, that minimises the 
univariate statistic. Baxter (1998) uses the statistic, along 
with others, to test for trivariate normality, in three- 
dimensional data sets. The minimising combination identifies 
a particular view of the data, that can be displayed using a 
univariate KDE, to visualise the form of non-normality.

In the context of sample size problems, PP potentially 
provides a ‘sharper’ view of the data than PCA. If, 
empirically, this can be shown to be the case, it suggests that 
smaller sample sizes may be needed, to identify structure, 
than if PCA is the chosen method of analysis.

Summary

In this paper, we have reported on work - still very much in 
progress - that is attempting to grapple with the problem of 
sample size requirements in archaeometric study. Our 
approach has been based on a mixture of simulation and case 
studies of real data, and has mainly looked at univariate 
problems, so far. Results suggest that in one specific area of 
application - lead isotope ratio analysis - sample size 
recommendations, commonly given in the literature, may be 
much too small. The controversy surrounding the 
interpretation of Cypriot lead isotope data (e.g. Stos-Gale et 
al., 1997), is at least partially attributable to the inadequacy 
of the sample size, 43, on which (until recently) 
interpretations were based. That 43 was inadequate, given the 
true complexity of the Cypriot field(s), has only become 
readily apparent with much more data collection.
The work described here is being extended to the more 
difficult multivariate case, and a number of possible avenues 
of enquiry have been identified in the paper.
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1 In trod u ction

Principal component analysis (PCA) is widely 
used in quantitative archaeological studies for in­
vestigating structure in multivariate data. It can 
be viewed as a particular application of projec­
tion pursuit (PP) methodology. The focus of this 
paper is on whether more general PP  methods 
have much to offer in comparison to PCA for an­
alyzing artefact compositional data  in archaeo­
metric studies.

Applications of multivariate methodology to 
chemical compositional data for artefacts, in the 
form of an n  x p data matrix, X, are among the 
most common uses of multivariate statistics in 
archaeology (Baxter 1994). Cluster analysis and 
PCA are the most widely used methods. The 
principal components, of which there are p , are 
uncorrelated linear combinations of the original 
variables. The first component has maximum 
variance, subject to a normalizing constraint on 
the coefficients; the second component has the 
second highest variance, and so on.

Results are often presented as plots based on the 
first few components, in the hope of revealing in­
teresting structure in the data. Projection pur­
suit, as used here, might be similarly described, 
except that linear combinations of variables are 
sought which optimise an index other than  vari­
ance and attem pt, more directly, to measure ‘in­
teresting’ structure in the data. It has been 
claimed that PCA is ‘something of a blunt instru­
ment’ for detecting interesting structure because 
large variation need not be interestingly struc­
tured variation (Jones and Sibson 1987, 2).

Accessible methodological discussions of P P  have 
been available in the British statistical literature 
since Jones and Sibson (1987), and in the Amer­

ican literature for somewhat longer (Friedman 
and Tukey 1974). Despite claims th a t applica­
tions of PP  have ‘flourished’ (Posse 1995a, 84) 
and been ‘promoted extensively in the literature 
and in implementation’ (Nason 1995, 413), pub­
lished practical applications—as opposed to the­
oretical papers—are quite hard to find. Flenley 
and Olbricht (1993) and Wilhelm et al. (1999) 
are the only applications to archaeological data 
that we know of, other than our own noted in the 
first example. Applications to data from other 
subject areas can be found in Friedman (1987), 
Jones and Sibson (1987), Nason (1995), Ripley 
(1996), Clements and Jones (1991), Glover and 
Hopke (1992, 1994), Lendzionowski et a l (1990) 
and Walden (1994). Several of these papers were 
written to explore the potential of PP  in partic­
ular application areas, and this is the spirit in 
which this paper has been written.

Some of the theory of PP  is discussed in the next 
section, along with practicalities of application. 
The heart of the paper is the third section, where 
a variety of applications are discussed. Our cur­
rent thoughts on the usefulness of P P  for archaeo­
metric data analysis are presented in the final 
section.

2 P ro jec tio n  pursu it

2.1 T heory

Mathematical discussions are given in Huber 
(1985), Jones and Sibson (1987), Friedman 
(1987), Hall (1989), Cook et al (1993), Sun 
(1991; 1993), Li and Cheng (1993), Eslava and 
M arriott (1994), Posse (1995a; 1995b) and Nason
(1995), with a useful overview being provided by 
Ripley (1996, 296-303).
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The central idea is to find k linear functions (pro­
jections) of the original variables that, when plot­
ted, show interesting structure in the data. Usu­
ally A; =  1 or k =  2 functions are sought, though 
k — 3 is possible (Nason 1995; Glover and Hopke 
1992; 1994). Many approaches begin by equating 
uninteresting structure with the normal distribu­
tion and seek projections that are as non-normal 
as possible. For ease of exposition k — 1 is as­
sumed in what follows.

Let f ( x )  be the probability density of a random 
variable, X , with 4>{x) the ‘null’ density when 
f ( x )  has a normal distribution. A measure of 
weighted distance between f ( x )  and the normal 
distribution is

1 = J ( f ( x )  -  (p(x))2w (x)d x  (1)

where w(x) is a weight function. Equation 1 can 
be used as the basis for a variety of indices of 
interestingness; Cook et al. (1993) discuss indices 
for which w(x) — <fi(x)a for a =  —1 (Friedman 
1987), 0 (Hall 1989) and 1. Other forms of index 
are discussed in the references given above. Some 
of the indices that have been proposed for PP 
can be used as omnibus tests of normality (for 
example M ardia 1987) and Simonoff (1996, 117) 
has noted th a t any reasonable test statistic for 
normality is a candidate index.

For practical purposes f ( x )  must be estimated. 
Using orthogonal series estimates of f ( x )  and ex­
pansions of 4>(x) Ripley (1996) notes that the in­
dex in equation 1 can be estimated as

OO

I  — ^2wi(ai -  bi)2 (2)
i=0

where at are the coefficients in the orthogonal se­
ries estimator; bi are constants arising from the 
expansion for a normal distribution; and Wi de­
pends on the weight function being used. For 
practical use the series in equation 2 must be 
truncated. Cook et al. (1993) call indices of the 
form given in equation 2 the Legendre (a =  -1), 
Hermite (a =  0) and Natural Hermite (a =  1) in­
dices after the orthogonal series expansions used 
to obtain the coefficients. Generalization to two- 
dimensional PP, of indices of the above type, is 
discussed in Cook et al. (1993) and Posse (1995a).

In the examples to follow we have used the 
two-dimensional Legendre, Natural Hermite and 
Friedman-Tukey indices, the last of which can 
be viewed as an estimate of the index f  f ( x ) 2 dx 
based on kernel density estimates (Jones and Sib­
son 1987, 5).

2.2 P ractica lities

To implement two-dimensional projection pur­
suit the XGobi program (Swayne et al. 1991), 
which is freely available and can be run under 
X-Windows or from within the S-Plus package 
(Venables and Ripley 1997), has been used. The 
source of this, and other, software is discussed in 
the Appendix.

Many practitioners (for example Jones and Sib­
son 1987; Cook et al. 1993; Nason 1995) rec­
ommend ‘sphering’ the data before applying PP. 
This involves transforming the data to new vari­
ables th a t are uncorrelated and have the same 
variance. For most of our applications the data 
have been standardized to have zero mean and 
unit variance; principal components have been 
extracted; and the resultant principal component 
scores have been renormalized to have unit vari­
ance for each component. This results in a set 
of uncorrelated variables (essentially the princi­
pal components of standardized data) with equal 
variance. Some approaches to data analysis in ar­
chaeometry work routinely with logarithmically 
transformed but unstandardized data (for exam­
ple Glascock 1992). It would be equally possible 
to sphere by finding the principal components of 
such data, and then renormalizing, though we 
have not used this approach below.

Typically p is in the range 8-30, but multi- 
collinearity among the variables means th a t the 
effective dimensionality of the data is often much 
less than p. Typically more than 90% of the vari­
ation in the data will be accounted for by fewer 
than 10 principal components. The leading com­
ponents, rather than  the original variables, may 
be used in the PP.

A limitation of some approaches to P P  is the 
sensitivity to outliers in the data, or to the tails 
rather than centre of the data. The moment in­
dex of Jones and Sibson (1987) has been criticised 
for the former reason (Ripley 1996, 300), and the 
Legendre index of Friedman (1987) for the lat­
ter reason (Cook et al. 1993, 228). It is possible 
to use P P  as an informal method of multivari­
ate outlier detection; if this is not of interest it is 
sensible to remove obvious outliers before anal­
ysis by PP, as they will often be the dominant 
feature of ‘interesting’ projections.

Sample size may also be a practical problem. 
Cook et al. (1993, 244-5) provide examples to 
show th a t for sparse, high-dimensional data PP  
can suggest spurious structure in random data. 
One of their cautionary examples shows appar­
ent structure in a 100 x 5 data  set, generated
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randomly from a normal distribution. Many ar­
chaeometric data sets have smaller n and larger 
p, so th a t particular heed should be paid to their 
warning th a t ‘exploratory projection pursuit will 
always find structure, albeit weak, but care must 
be taken when emphasizing the significance of 
that structure’. In similar vein Ripley (1996, 301) 
suggests that, with large p  P P  ‘may be used for 
hypothesis formation, but we will need indepen­
dent evidence of the validity of the structure sug­
gested by the plots’.

In the indices that have been discussed z, in the 
one-dimensional case, is a linear combination of 
p  variables. The coefficients of this linear com­
bination must be estimated and this leads to a 
non-linear optimisation problem in p dimensions 
which must be solved numerically. For higher di­
mensions the problem is obviously compounded. 
In XGobi the optimisation can be tracked, and 
numerous local optima will be found th a t may 
correspond to interesting views of the data. This 
will be illustrated in our second example. The 
ability of PP  to produce multiple views of the 
data is widely seen as an attraction of the method 
as will be discussed in the final section, but is also 
time consuming.

Ripley (1996) observes th a t there is no unanimity 
in practice about which indices to use and advises 
th a t several should be tried. This has been done 
here, and the examples that follow represent only 
a small selection of the analyses th a t have been 
undertaken.

3 E xam ples

3.1 E xam ple 1 - Lead iso top e  data

The following example, based on Baxter (1999), 
will be discussed in summary form only. We have 
used the method to be presented routinely in past 
work, but have not previously noted its inter­
pretation as a PP  method. Lead isotope ratio 
data  are three-dimensional and in their analysis 
it has sometimes been assumed th a t data from 
an ore source can be treated as a sample from 
a multivariate normal distribution (Sayre et al.
1992). Recent work by Baxter and Gale (1998) 
and Baxter (1999) has called into question the 
general validity of this assumption. In particu­
lar, Baxter (1999) used a variety of tests of mul­
tivariate normality to demonstrate th a t many of 
the data sets in Stos-Gale et al. (1996) could not 
reasonably be regarded as samples from normally 
distributed data.

One test used was the multivariate extension of 
the univariate Shapiro-Wilk test statistic for nor­
mality (Malkovich and Afifi 1973). In this test 
the linear combination of the three lead isotope 
ratios is sought th a t minimizes the univariate 
statistic. This can be viewed as a PP  method 
th a t results in a linear function, k = 1, th a t best 
displays the non-normality of the data. Figure 1 
shows a kernel density estimate of the most non­
normal linear combination for the Kea field, with 
n — 62. Formal tests of normality suggest that 
the data are non-normal and this particular ap­
plication of P P  methodology suggests that the 
data are strongly multi-modal. Further illustra­
tions of this kind of use can be found in Baxter 
and Gale (1998) and Baxter (1999).

3.2 E xam ple 2 - B lue soda glass 
from  York

Cox and Gillies (1986) published analyses of blue 
soda glass from the windows of York Minster and 
archaeological excavations that has been used 
elsewhere to illustrate a variety of methodologies 
(Baxter 1989; Baxter and Buck 2000; Bell and 
Croson 1998). There are 27 specimens, measured 
with respect to the concentration of 12 oxides and 
elements. Most analyses clearly show three main 
groups in the data, with some analyses suggest­
ing possible sub-groups or outliers.

Figure 2 shows four analyses of the data. The 
PCA analysis (of standardized data) in Fig­
ure 2(a) shows the three groups, one of which 
is dispersed relative to the other two. This struc­
ture is readily found using PP, and an example 
is given in Figure 2(b), where the structure is 
even more apparent. The view illustrated in Fig­
ure 2(c), in which the structure is ‘circular’, oc­
curs quite commonly in our experience with simi­
lar data sets, and has no useful practical interpre­
tation. Similar examples can be found in Cook 
et al. (1993, 248) and Ripley (1996, 302). Fig­
ure 2(d) shows a view in which outliers are the 
predominant feature.

We may remark th a t for this data set the struc­
ture is fairly obvious and found almost ‘instan­
taneously’ by PCA. Other useful views were not 
found in the course of exploration using PP. The 
PP  view in Figure 2(b) is ‘sharper’ than the PCA 
view, but tells essentially the same story.
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Figure 1: A kernel density estimate of the most non-normal linear combination of three-dimensional 
lead isotope ratio data for the Kea field.

3.3 E xam ple 3 - W aste glass from  
L eicester and M an cetter

The data used in this example consist of 105 
specimens of waste glass found on furnace sites 
at Leicester and M ancetter and measured with 
respect to the concentration of 11 major and 
minor oxides. It is of interest to see if there 
are distinct chemical groups in the data, and if 
these correspond to the furnace sites. The data 
were collected and published by Jackson (1992) 
and are reproduced in Baxter (1994) where ex­
tensive analysis was undertaken using a variety 
of multivariate methods. These analyses sug­
gest three concentrations in the data with some 
correspondence—by no means exact—to the fur­
nace groups.

This is shown in the PCA plot in Figure 3(a), 
where labelling is by site. W ithout a knowledge 
of the sites it is possible, visually or with the aid 
of techniques such as kernel density estimation 
(Baxter et al. 1997) to detect three main con­
centrations in the data. There are no obviously 
distinct clusters. The densest concentration to 
the right consists mainly of glass from Leices­
ter; the other two concentrations contain most 
of the M ancetter specimens, with 11 to 14 Le­
icester specimens mixed in (depending on how 
boundaries of concentrations are visualised).

The PP  view in Figure 3(b) quite clearly isolates 
a cluster of cases in the bottom  half of the plot 
consisting, with one exception, of Leicester spec­
imens. The remaining dispersed group, possi­

bly sub-dividing into two, contains the M ancetter 
specimens with the same number of Leicester 
specimens mixed in as in the PCA.

Arguably the PCA and P P  analyses lead to  sim­
ilar conclusions, but the separation between ma­
terial from the two sites, and the fact th a t it is 
less than perfect, is clearer in the latter analy­
sis because of the clearer clustering revealed. We 
remark th a t we can be confident th a t P P  is not 
revealing spurious structure in this case because 
information not used in the PP, concerning site of 
origin, allows us to interpret the revealed struc­
ture in a useful archaeological manner.

3.4 E xam ple 4 - O riental G reen­
wares

This example is based on a 133 x 9 data  set pub­
lished by Pollard and Hatcher (1986) showing the 
chemical composition of 133 oriental greenwares 
which are suspected to have originated from sev­
eral areas of manufacture. We follow them in 
omitting three clear outliers and one variable, 
S i0 2 , in our analysis.

There are two very obvious chemical groups in 
the data, as the PCA in Figure 4(a) shows. The 
group to the left is associated with Northern 
Zhejiang Yue wares and th a t to the right with 
Longquan celadons. It is easy to get the same 
separation using PP  and one such view is shown 
in the Figure 4(b). This additionally suggests a 
small group at the bottom  of the plot th a t is a



First Principal C om ponent

(a) PC A  of standard ised  d a ta

X

(b) P P  using Friedm an-Tukey index

(e) P P  using N atu ral H erm ite index (d) P P  using N atu ral H erm ite index

Figure 2: Plots of York Minster data.
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Figure 3: Plots based on analyses of the waste glass compositions from M ancetter and Leicester. 
Labelling is by site with ‘4-’ cases from M ancetter and ‘o’ cases from Leicester.

subset of the earlier wares, but we have been un­
able to interpret this as archaeologically distinct 
in any way.

Pollard and Hatcher (1986) applied cluster anal­
ysis to the 53 specimens in the earlier group 
and concluded there were three subgroups. Af­
ter applying stepwise discriminant analysis to 
these, five outliers were removed and a discrimi­
nant analysis plot for the remaining 48 cases was 
shown on page 268 of their paper. A similar anal­
ysis is shown in Figure 4(c), the only difference 
being our use of all eight variables rather than the 
five selected in the original publication. Interpre­
tation of the groups is not absolutely clear-cut, 
but they can be associated with regional differ­
ences in composition. Given a knowledge of this 
classification we have been unable to obtain a 
PP  view that separates out the groups as well as 
the discriminant analysis. In Figure 4(d) one PP  
view for the 48 cases is shown which separates out 
the smaller group but not the two larger ones. It 
may be noted that a PCA analysis of this subset 
(not shown) did as well as the PP  in separating 
the groups.

Our PP  analysis of this data set cannot be re­
garded as especially successful. Although the PP 
for the full data set did suggest structure addi­
tional to that revealed by PCA we were unable 
to interpret the results in an archaeologically use­
ful fashion, so have no real way of determining 
whether the structure is spurious or not. Similar 
remarks apply to other PP  analyses of the subset

used in Figure 4 th a t are not shown here.

4 D iscu ssion

For the specialized problem of Example 1 there is 
no doubt th a t one-dimensional PP, as illustrated 
there, has a useful role to play. Our current prac­
tice is to use P P  in conjunction with tests of nor­
mality to explore the nature of the non-normality 
when it occurs. Unpublished work in progress 
suggests th a t the use of P P  in isolation can mis­
lead if the sample sizes are small.

Examples 2 and 3, particularly the latter, show 
th a t two-dimensional P P  can produce a sharper 
view of structure in the data  than that provided 
by PCA, but it was also the case th a t P P  did 
not lead to an interpretation different from th a t 
achieved with PCA. In example 4 the P P  anal­
ysis did not lead to any new insights into the 
data. Although some additional structure was 
suggested there is no obvious way of determin­
ing whether it is spurious or not. Our experience 
with these data sets is representative of others we 
have worked with.

In the wider literature there undoubtedly ex­
ist examples where PP  does produce informative 
views of the data  th a t PCA does not reveal. This 
sometimes occurs when the structure in the data 
is ‘unusual’ (see, for example, the structures used 
in Posse’s (1995a, 91) simulation study), and of a 
kind th a t we suspect would often be regarded as
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Label in Appendix URL for software Accessed
1 h ttp : /  /  ww w. resear ch. a t t . com / ~  andreas/xgobi/ 21/ 02/00
2 http: /  /  www.stats.ox.ac.uk/ pub /  S Win /  xgobi.zip 21/ 02/00
3 http: / /lib .stat .cmu.edu/general /  pro jpurs 21/ 02/00
4 http://w w w .stats.bris.ac.ulc/~guy/R esearch/PP/PP.htm l 21/ 02/00
5 http: /  /  www.stats.bris.ac.uk/pub/softw are/pp2/mcj_pp.shar.gz 21/ 02/00

Table 1: Freely available projection pursuit software

uninterpretable in the context of the type of data 
used here. The model, often implicit, in studies 
that produce data similar to those used in exam­
ples 2, 3 and 4 is th a t the data  may be viewed as a 
sample from a mixture of distributions which, in 
those studies that make statistical assumptions, 
are multivariate normal. In p-dimensional space 
the expectation is either th a t there will be dis­
tinct point clouds, or that there will be overlap­
ping point clouds with distinct high-density re­
gions. We suspect that methods such as PCA 
or cluster analysis will often be adequate to de­
tect this, and th a t a P P  view showing a marked 
departure from the underlying model might be 
difficult to interpret (we also recognise th a t this 
is not a good argument for not using PP).

Where PP  has been contrasted with PCA and 
judged to be superior (for example Glover and 
Hopke 1992) the judgement is sometimes a fine 
one. It is also the case th a t in order to se­
lect a PP  view and judge th a t it is superior to 
PCA it may be necessary to use additional in­
formation (for example a prior classification of 
the data) to confirm that the P P  view is a useful 
one. Given the ease with which PP  can suggest 
spurious structure with ‘small’ data sets we have 
found it very difficult to interpret results where 
such prior knowledge has not been available. The 
superiority of PP  compared with PCA has some­
times been exaggerated. Posse (1995a, 83-84) 
analyses data on five measurements for 200 Aus­
tralian crabs, most belonging to four groups. He 
claims that PP  is able to reveal a ‘clustered pro­
jection’ that was ‘not found by principal compo­
nent analysis’. In fact the first component has 
an obvious size interpretation, and any of several 
standard approaches to PCA that aim to remove 
size effects (including a plot of the second and 
third components) will reveal a clustered projec­
tion similar to th a t found by PP.

Thus, while not disputing the theoretical inter­
est of PP  or its potential for revealing unusual 
and unexpected structure in large data  sets, we 
remain agnostic about its value as a tool for the 
routine analysis of data  of the kind discussed in

examples 2—4. In addition to the reasons dis­
cussed so far, there are two pragmatic reasons 
th a t give rise to this agnosticism. The first con­
cerns the size of the data sets typically available. 
Most examples of two-dimensional PP  th a t we 
have seen use p  <  10; our examples used p — 8, 
11 and 12; it is now quite common to see analy­
ses based on data sets for which p > 20. There 
has not been a commensurate increase in the size 
of samples typically collected, so th a t n  <  100 
is quite usual. In the context of a technique 
th a t can easily suggest spurious structure in small 
data  sets, and where 100 x 5 is considered to 
be small (Cook et al. 1993), many archaeometric 
data  sets are small and subject to the problems 
th a t this entails.

Our second reason concerns the time required to 
carry out PP. A large number of local optima 
arise in analysis, and the views they are asso­
ciated with need to be inspected to see if they 
are ‘interesting’ and have a useful archaeological 
interpretation. In XGobi the plots produced in 
the course of pursuit can be viewed in real time 
and visually ‘interesting’ projections, including 
some used here, do not necessarily even corre­
spond to local optima. These also need to be 
assessed and this is very demanding of time and 
has not, in the many analyses th a t we have un­
dertaken, led to much extra insight into the data 
being gained, beyond that provided by PCA and 
cluster analysis—the tools most usually deployed 
in the literature. For these and other reasons we 
do not view PP, in its current state of develop­
ment, as a tool we would recommend for routine 
archaeometric data analysis.

A p p en d ix  - Softw are availabil­
ity

Freely available projection pursuit software is 
listed in Table 1. The software used in this pa­
per was obtained from the first of the listed sites. 
Other sources of PP  software are also listed, but 
we should stress th a t we have no experience in

http://www.stats.ox.ac.uk/
http://www.stats.bris.ac.ulc/~guy/Research/PP/PP.html
http://www.stats.bris.ac.uk/pub/software/pp2/mcj_pp.shar.gz


using these.

The XGobi software we used, running under X- 
Windows, is freely available and may be obtained 
from source 1 in Table 1. A Microsoft Win­
dows version can be found a t 2. FORTRAN soft­
ware for two-dimensional P P  (Friedman, 1987) 
can be found a t 3 and 4 where software for Na­
son’s (1995) three-dimensional PP  is also avail­
able. FORTRAN code for two-dimensional PP  
from Jones and Sibson (1987) can be found at 5.

A ck now ledgem ents

We are grateful to Nick Fieller for drawing our 
attention to some previous archaeological appli­
cations of projection pursuit.
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The statistical analysis of lead isotope ratio data in archaeology has attracted considerable controversy, but one area 
of consensus seems to be that a minimum sample size of 20 is adequate for the satisfactory characterisation of a lead 
isotope field. The argument in the present paper is that this is too small. Twenty would be satisfactory if the 
assumption of normality sometimes used in analysing lead isotope was correct, but it is inadequate for checking this 
assumption or detecting non-normal structures within a field. Evidence based on both real and simulated data 
suggests that 40 may be a more realistic minimum, and even this is not always adequate. The consequences of 
incorrectly assuming normality, and alternative methods of analysis that do not involve this assumption, are 
investigated. £9 2000 Academic Press
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Introduction

T he subject of the statistical treatment and 
interpretation of lead isotope data in ai'chaeol- 
ogy has occasioned considerable debate. The 

positions of many of the protagonists are summarised 
in the discussion following Budd et al. (1995), and 
later contributions include Scaife et al. (1996); Tite 
(1996) and Stos-Gale et al. (1997). A recent review of 
many aspects of this debate is provided by Scaife 
(1998).

In a subject where there has been little consensus, 
one area of agreement seems to be the belief that 20 
is the minimum sample size necessary for the satisfac­
tory statistical treatment of lead isotope data (Pollard 
& Heron, 1996: 328). The main purposes of this 
paper are to question this belief; to suggest alterna­
tive guidelines; and to examine some of the conse­
quences for data analysis. This last issue is related to 
the fact that 20 may be adequate i f  data are normally 
distributed, but not otherwise. The issue of normality 
and the consequences of non-normality for sample 
size requirements are discussed in the next two 
sections.

If data are non-normal, then alternatives to the 
normal-based methods favoured by some (e.g. Sayre 
et a!., 1992, 1995) are needed. Alternatives, based 
on the use of kernel density estimates (KDEs), are 
reviewed but are demanding of data in their own 
right. A discussion of the issues raised concludes the 
paper.

The Normal Distribution of Lead Isotope 
Data
Lead isotope data
A specimen from an ore-body may be characterised by 
measurements on three lead isotope ratios, 208Pb/206Pb, 
207Pb/206Pb and 206Pb/204Pb, that define a point in 
three-dimensional space. A sample of N  specimens 
defines a three-dimensional (trivariate) cloud of points 
that is a sample from the lead isotope field of the 
ore-body. The sample may be used to estimate the lead 
isotope field of the ore-body, often presented in the 
form of bivariate plots of ratios with confidence 
ellipsoids delimiting the estimated extent of the field 
(e.g. Gale & Stos-Gale, 1992; Sayre et al., 1992). The 
construction of these ellipsoids requires the assumption 
that the data are sampled from a trivariate normal 
distribution.

If fields for ore-bodies are distinct, the possibility 
exists that the lead isotope signatures of metal artefacts 
can be matched with fields, and identify possible 
sources. Opinion is divided on whether simple graphi­
cal methods suffice for such matching, or whether there 
are benefits to be gained in using methods of multivari­
ate statistical analysis. Proponents of the latter view 
(Sayre et a!., 1992, 1995) determine the (Mahalanobis) 
distance of an artefact from an ore-body, and convert 
this to a probability that is used to assess whether the 
ore body could be the source of the artefact. The 
probability calculations also require the assumption of 
trivariate normality of the field.
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The normality assumption
111 those publications that assume normality, the 
assumption has not usually been rigorously tested. 
Sayre et al. (1992) note that they “often create histo­
grams of the distributions . . .  for source group speci­
mens along the characteristic vectors for the groups. If 
the specimens of a group are normally distributed 
along each of its characteristic vectors one can con­
clude that the group is normally distributed .. . These 
histograms for our groups do approximate Gaussian 
curves.” Limitations of this approach are the small 
sample sizes often used and the inefficiency of the 
histogram as a method of assessing normality. The 
assertion that normality of the characteristic vectors 
implies multivariate normality is also wrong.

The statement of Gale & Stos-Gale (1993: 256) that 
examination of many ore data sets “shows that bivari­
ate normality is in most cases well satisfied” is based on 
testing the normality of univariate ratios. Unfortu­
nately, as is clear from examples in Baxter & Gale 
(1998), univariate normality of the ratios does not 
establish multivariate normality.

In contrast to this confidence that normality is the 
rule, Scaife et al. (1996) assert that “some of the larger 
fields are clearly non-normal in their distributions”, 
and provide an example based on univariate tests of 
ratios for the Cyprus field, as then defined, to support 
their claim.

A problem with some analyses on which these state­
ments are based, explicitly acknowledged by Sayre 
et al. (1992: 97), is the need to work with “less than 
optimum amounts of data” . Analysis of some of the 
larger data sets published in Stos-Gale et al. (1996), 
using univariate tests of normality adapted to multi­
variate data, suggested that they were, in fact, non­
normal (Baxter & Gale, 1998). This was confirmed 
using a battery of truly multivariate tests in Baxter
(1998), which additionally produced evidence that 
several smaller data sets (N>  15) also exhibited signs of 
non-normality. It was concluded in that paper that 
non-normality was possibly the rule rather than the 
exception, and independent work by Scaife (1998) on 
other data sets is consistent with this conclusion.

Does normality matter?
The assumption of normality is a common one in 
applications of statistical methodology. It is rarely, if 
ever, exactly true but is often a sufficiently good 
approximation that the methodology is not compro­
mised. There are also circumstances when the normal­
ity assumption is manifestly untrue, but the output of a 
statistical analysis is insensitive to this. In such circum­
stances the methodology is said to be “robust” to the 
assumption. Robustness, like normality, should not be 
assumed in applications.

This may be seen by examining the way in which 
lead isotope fields for Cyprus have been defined and 
used. At one stage a single field for Cyprus (the “old”

Cyprus field), based on 43 specimens from several 
sources on the island, was defined and delineated using 
confidence ellipsoids (Stos-Gale et al., 1997). The defi­
nition of this field, whether or not it could be sub­
divided, and its use for provenancing artefacts such as 
oxhide ingots, has led to extensive published debate 
(e.g. Budd et al., 1995). Gale & Stos-Gale (1992) 
suggested that fields for different ore-bodies within 
Cyprus might be distinct, but the data available at that 
time did not allow this to be checked in a rigorous way. 
Subsequent publication and analysis of extensive new 
data (Gale et al., 1997; Stos-Gale et al., 1997) has 
confirmed this thesis and rendered much previous 
publication and argument redundant. The important 
point here is that, because of an inadequate sample 
size, it could not be recognised that Cyprus field was 
non-normal and extremely multimodal. Had larger 
sample sizes been available at an earlier data much 
argument could have been avoided.

The foregoing discussion is concerned with the way 
confidence ellipsoids, calculated using the normality 
assumption, can mislead if the sampled field is non­
normal. Arguments may also be adduced to show that 
probability calculations based on the assumption of 
normality may mislead, and these will be raised later.

Sample Size Considerations
On the belief that 20 is an adequate sample size
The idea that 20 is an acceptable sample size for 
delineating fields and using them in statistical analysis 
seems to be generally accepted. Sayre et al. (1992: 97) 
state that “the spread of uncertainty about a source 
field steadily contracts as the number of specimens 
describing the source becomes larger, tending to level 
off when one has something of the order of 20 such 
data points”. Gale & Sios-Gale (1992: 312), Leese 
(1992: 318) and Reedy & Reedy (1992: 327) concur 
with the suggestion that a sample size of 20 is desirable, 
and Pollard & Heron (1996: 328) summarise the con­
sensus by noting that, in characterising source fields, 20 
geologically well selected ore samples define “an agree­
able minimum level” .

The case of the Cyprus field suggests that 20 (and 
even 40) can be seriously inadequate. It is thus of 
interest to ask how a value of 20 has come to be 
accepted as a reasonable minimum. It would appear to 
be based on practical experience; in the case of Sayre 
et al. (1992), explicitly in the context of statistical 
analyses that assume normality.

A more “theoretical” justification might also be 
advanced. Construction of confidence intervals and 
probability calculations require estimation of the co- 
variance matrix of the data. For stable estimation, with 
k  variables, Harbottle (1976) suggests that N>5k is 
desirable, so for k — 3 a value of N  close to 20 emerges 
as a desirable minimum. This rule also envisages that 
the data are normally distributed.
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Figure i. A univariate KDE for the Lavrion field based on a linear 
combination of the .v,= 2()XPb/2(>6Pb and .v2= 206Pb/204Pb ratios, of the 
form 0-9995x1+0 0314,y2. The Sheather-Jones (1991) estimate of 
li=0-0006651 has been used.

To summarise, if the data are sampled from a 
normal distribution then 20 may be an acceptable 
minimum sample size for analysis. If the data are 
sampled from a non-normal distribution 20 may be 
seriously inadequate, as is now argued.

Sample size requirements
The appropriate sample size depends both on the 
purpose of sampling and on the structure of the 
sampled population. The latter is unknown in advance 
of sampling so a simple answer to questions of sample 
size is impossible if the possibility of non-normality is 
admitted. It seems reasonable to suggest that sample 
sizes larger than 20 will be needed where there is a 
non-trivial departure from normality.

A possible alternative model to that of normality is 
that the population is multimodal, suggested by the 
results of Baxter (1998) using several of the data sets in 
Stos-Gale et al. (1996). For example, Figure 1 shows a 
kernel density estimate (KDE—see the Appendix for 
technical details) for the most non-normal linear com­
bination (or projection) of two of the ratios for the 
Lavrion field, as identified by Malkovich & Afifi’s 
(1973) multivariate extension of the Shapiro-Wilk 
statistic. This suggests that the field is bimodal, as 
does a more direct three-dimensional representation 
explored in the next section (Figure 4),

Distributions such as that in Figure 1 can be 
modelled as a two-component mixture of univariate 
normals:

f(x)=pN(\xu cf) + (l -p )N (p 2, erf)

where p is the mixing proportion (0<p<  1) and NQif, 
of) is the normal distribution with mean p; and vari­
ance of. One way of getting a feel for sample size 
requirements needed to detect non-normality is to 
simulate data from a normal mixture; repeatedly draw

Table 1. The table showing the power, in %, o f the ISE test for 
two-component mixtures o f normals with p =0-5

n

iFi - g 2l

3 4 5

20 11 38 75
30 27 70 97
40 39 89 99
50 47 95 100

100 86 100 100

random samples of a fixed size from it; and estimate 
the power of a formal test of normality (the proportion 
of times that the hypothesis of normality is rejected).

The results of such an exercise depend on the values 
of p, p(-, of and the test used, and a detailed account of 
our work on this is not provided here. It is, however, 
clear that a sample size of 20 will often be inadequate 
for detecting obvious bimodality in the population. 
For example, for p -  0-5 and assuming equal variances 
(which without loss of generality can be modelled as 
Oi=o2= l; Titteringlon et al., 1985: 161), the popu­
lation is bimodal if Ig! —|42j>2. Table 1 shows the 
estimated power, based on 1000 simulated samples, 
for p= 0-5 and different values of N  and |pj -  p2| using 
the integrated squared error (ISE) test developed by 
Bowman (1992).

The results show that even for quite clear separation 
of the components (e.g. |p, - p 2j=4 a sample size of 
N= 20 is generally inadequate to detect the departure 
from normality. For this degree of separation 
sample sizes of the order of 40-50 are needed to 
achieve reasonable power. Essentially similar results 
are obtained on varying the mixing proportion, p, 
provided the variances do not differ by too much.

A more direct way of assessing sample size require­
ments is to take data sets that exhibit non-noi*mality; 
subsample from these; and estimate the proportion of 
times that the non-normality is detected. Using the ISE 
test of multivariate normality of Bowman & Foster
(1993) that generalises Bowman’s (1992) univariate 
test, and other tests, the results of Baxter (1998) 
provide strong evidence for the non-normaiity of the 
Lavrion (77=59) and Kea (77=62) fields (data in 
Stos-Gale et al., 1996). Using KDEs for selected pro­
jections, as in Figure 1, provides good evidence that the 
non-normality takes the form of multimodality.

If 1000 subsamples of size 20 are selected from 
the data sets for each field, and tested for trivariate 
normality using the ISE test, the hypothesis of nor­
mality is rejected 37% of the time for Lavrion, and 20% 
of the time for Kea. In other words a sample size of 20 
is wholly inadequate to detect the non-normality 
manifest in the full data sets. For Lavrion and sub­
samples of size 40 the normality hypothesis was 
rejected 86% of the time; for Kea and subsamples of 
size 50 the normality hypothesis was rejected 68% of
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the time. It is possible for projections of the data based 
on subsets of the variables to be more revealing of 
non-normality than use of the full data set (Baxter & 
Gale. 1998). This was investigated, but essentially the 
same results were obtained.

The results reported above are specific to two par­
ticular data sets but show clearly that much larger 
sample sizes than those commonly recommended are 
necessary to delect quite evident departures from nor­
mality. An implication of this is that the use of 
confidence ellipsoids to represent the extent and struc­
ture of fields can be seriously misleading. The history 
of the Cyprus field is additional evidence for this, and 
Scaife (1998) has independently reached similar conclu­
sions. What is needed is a way of representing fields 
that respect their structure, without imposing assump­
tions such as that of normality. This is investigated in 
the next section, followed by a brief exploration of the 
effects of non-normality on Mahalanobis distance and 
probability calculations.

Data Presentation using KDEs
The construction of confidence ellipsoids for fields 
requires the assumption of normality. This is a para­
metric statistical procedure; if the assumption is correct 
an efficient representation of the data is achieved, but if 
it is wrong the outcome can be misleading. Non- 
parametric methods of data display avoid assumptions 
such as normality, and allows the data to “speak for 
itself’. Kernel density estimates (KDEs) are a non- 
parametric alternative to confidence ellipsoids, and 
their application to two- and three-dimensional data is 
discussed in turn.

Bivariate KDEs
The use of two-dimensional KDEs for archaeological 
data presentation is discussed in Beardah & Baxter 
(1996) and Baxter et al. (1997), and has been applied to 
lead isotope data independently by Beardah (1999) 
and Scaife (1998). Technical details are given in the 
Appendix. The appearance of a univariate KDE, 
such as in Figure I, is controlled by a smoothing 
parameter, /;,. For the bivariate case two smoothing 
parameters, /;, and are needed that control the 
smoothing in two orthogonal directions. A third 
parameter, /?3, determines the orientation of these 
directions.

There is less theory to guide the choice of these 
parameters than for the univariate case, though Wand 
& Jones (1993) suggest that the simplification /*3=0 
may often be acceptable, but not h \= h 2- For lead 
isotope data the //3 = 0 simplification is generally 
unsatisfactory. Figure 2 shows a plot of the Kea 
data for the sosp^/zoep^ ancj 207p /̂206p  ̂ ratios with a 
90% confidence ellipsoid superimposed. The left-hand 
side of Figure 3 shows a contour plot of a KDE, 
calculated assuming h 3= 0. The contours are approxi-
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Figure 2. A plot of the 20BPb/206Pb and 207Pb/206Pb lead isotope 
ratios for the Kea field with a 90% confidence ellipsoid.

mately elliptical, and suggest a unimodal distribution 
consistent with the presentation in Figure 2.

However, inspection of Figure 2 reveals that the data 
have a “natural” orientation (at about 45° to the axes) 
and that the pattern of points is possibly striated. A 
bivariate KDE that ignores this may produce mislead­
ing results. Recognising this, Scaife (1998) adopted the 
ad hoc solution of transforming to principal com­
ponents; fitting a bivariate KDE with h3~ 0; and trans­
forming back. Beardah (1999) uses a non-zero h2 which 
is, in principle, more satisfactory but in practice, as he 
notes, also ad hoc in that little guidance exists on the 
choice of h3 and some experimentation is necessary. 
The right-hand diagram shows a contoured KDE for 
the Kea data using non-zero h3 and suggests that the 
data are both non-normal and multimodal.

This example begs questions, both about which is 
the best representation of the data in Figure 3, and 
what sample sizes are necessary for the use of bivariate 
KDEs to be effective. Beardah (1999) addresses the 
former issue via a series of simulation experiments, 
using mixtures of bivariate normal distributions. He 
concludes that the KDE should reflect the natural 
orientation of the data, and that the right-hand, non­
normal representation presents the truer picture. The 
sample size question is more difficult to address; once 
again, the problem is that what constitutes an adequate 
sample depends on the underlying structure of the 
data. For the data used in Beardah (1999) the sample 
size, 62, is probably adequate but may be close to the 
limit of what is satisfactory. Scaife (1998) constructs a 
more complex, very multimodal, example where even 
77=100 appears inadequate to reflect all the structures 
in the data.

Trivariate KDEs
Several authors (e.g. Reedy & Reedy, 1992; Scaife 
et a I., 1996) have noted that lead isotope data, being 
naturally trivariate, are well suited to exploration using
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Figure 3. Two bivariate KDEs for the 20xPb/'06Pb and 2" Pb/’“6Pb ratios for the Kea data. The graph on the left has the orientation parameter 
/?■,=(); and on the right has h^ — l  x 10 x; /;, =0 0006415 and /i2 = 0*0001261 in both cases.
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statistical graphics that allow the continuous rotation 
and labelling of three-dimensional point clouds. Given 
the use of bivariate KDEs reported in the previous 
subsection, it is natural to ask if trivariate KDEs might 
also be used for data visualisation. A Ar-variate KDE is 
a (k+ 1) dimensional construct (see the Appendix); for 
example, in Figure 1 the univariate KDE is displayed 
in two dimensions. The bivariate KDEs used in the 
previous section were reduced to two-dimensional 
displays through the use of contouring.

For trivariate KDEs a direct four-dimensional 
representation is not possible, but three-dimensional 
contour shells that enclose some percentage of the 
most dense points of an estimated KDE can be used. 
Figure 4 illustrates the idea, using the Lavrion data 
(N= 59). The 50% shell isolates two separate clouds of 
points suggesting non-normality in the form of bi­
modality. This is consistent with uni- and bivariate 
analyses, and the 70% inclusion shell in Figure 4 
confirms the impression. Since tests of normality pro­
vide reassurance that the data are non-normal, displays

such as those in Figure 4 provide a convenient way of 
exploring the form of non-normality.

The use of trivariate KDEs in isolation for investi­
gating field structure is possible but may be limited by 
sample size considerations. Some limited simulation 
results, reported in Beardah & Baxter (1999), based on 
simulating samples of size 60 from a mixture of trivari­
ate normals (to mimic the structure of the Lavrion 
data), suggest that non-normality is clear about 85% of 
the time. This suggests that larger samples than are 
commonly available may be needed to detect even this 
relatively simple kind of departure from normality with 
a high degree of confidence, using purely graphical 
methods.

Effects o f non-normality on probability calculations 
As well as giving rise to misleading graphical 
presentations, an incorrect assumption of normality 
can give rise to misleading probability calculations. 
Scaife et al. (1996) argue that lead isotope fields have
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Figure 4. Two contour shells based upon a trivariate KDE for the full Lavrion data set showing 50% (left) and 70% (right) contour shells, 
/r, =0-0011. A,=0-0002, /i, = 00173.

sharp boundaries, so that any case lying outside the 
boundaries (once measurement error is allowed for) 
cannot belong to that field (i.e. has zero probability of 
membership), however close it appears to be visually, 
and whatever normal-based calculations suggest. In 
other words, any probability calculation is dependent 
on the model on which it is based.

Even if the specific model proposed by Scaife et al.
(1996) is rejected, the more general point about the 
dependency of probabilities on specific models remains 
valid. Figure 1 suggested that the Lavrion was bi­
modal. Figure 5 show's a bivariate plot of the 208/206 
and 207/206 ratios, labelled according to which of two

o
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Figure 5. A plot of the ’"'Pb/;!‘x'Pb and 2""Pb/20hPb ratios for the 
Lavrion field, labelled (1 or 2) according to which of two concen­
trations cases seem to belong to (in three dimensions). An artificial 
data point has been created and is labelled 0.

1 1

1 "1
'1 1

nl 2
1 1

1 1

main concentrations a case appears to belong to (sug­
gested by Figure 4). A new data point (2-0630, 0-8313, 
18-90) has been constructed, and is shown on the plot 
close to the smaller of the two groups.

Assuming normality of all the data the estimated 
probability that the new case could come from the field 
is 0-137, leading to the conclusion that the new case 
could comfortably belong to the field. If, however, we 
treat the field as a two-component mixture of normals, 
and argue that calculations should be based on the 
component nearest to the new case, a probability of 
0-048 is obtained, leaving one in doubt about the field 
as a possible provenance. If the larger, more distant, 
component is used as the basis for calculation the 
probability of membership is estimated as 0-001. It 
must be emphasised that the force of this argument 
does not depend on the precise truth of the assump­
tions made; it simply demonstrates that results can 
depend in a non-trivial way on assumptions, whatever 
these might be. To some this conclusion may seem 
obvious; it does show that normal-based procedures 
cannot be assumed to be robust to the normality 
assumption.

Discussion
The results of Baxter & Gale (1998) and Baxter (1998) 
suggested that non-normality of lead isotope fields was 
the rule rather than the exception. That this had not 
always been previously accepted or demonstrated may 
be attributed to the small sample sizes with which 
researchers have had to operate. That 20 is, ideally, a 
minimum sample size requirement seems to have been 
w idely accepted.
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The argument in this paper has been that this may be 
acceptable if lead isotope fields have a normal distri­
bution, but may be seriously inadequate otherwise. 
This latter contention is supported by a variety of 
examples. If normality is assumed and the sample size 
is not large enough to investigate this assumption (and 
20 will usually be inadequate) the use of confidence 
ellipsoids to estimate the extent of fields, and prob­
ability calculations to investigate likely provenances, 
may be misleading.

It is impossible to make any precise statement about 
what is an adequate size in any specific case, as this 
depends on the (unknown) model appropriate for 
describing a field. For two of the cases studied here, 
Lavrion and Kea, sample sizes in excess of 40 and 50 
would appear to be necessary to identify non­
normality with reasonable confidence, and simulation 
results confirm that samples of this size will be needed 
to detect non-normality even when this is quite obvious 
in the population. It is important to emphasise that the 
departures from normality being discussed are not 
trivial ones that have little effect on normal-based 
procedures. The case of the old Cypriot field provides a 
salutary instance, where even a sample in excess of 
40 was inadequate for revealing some quite clear 
differences between the ore sources that comprised it.

Bivariate KDEs have been explored as a non- 
parametric alternative to confidence ellipsoids that do 
not impose inappropriate structure on the data. Our 
work, and that of Scaife (1998), shows that the effective 
use of KDEs requires quite demanding sample sizes (in 
the context of lead isotope analysis), quite apart from 
technical problems concerning the choice of smoothing 
and orientation parameters. Once again, the sample 
sizes needed depend on the data structure; our exam­
ples appear to need about N=60, and Scaife (1998) 
presents an example where 7^=100 is not really 
adequate. The possibility of using trivariate KDEs has 
been noted, but these are even more demanding of 
data.

In summary, given the possibility of non-normality, 
it has to be concluded that the widely recommended 
minimum sample size of 20 may often be seriously 
inadequate, if the normality assumption is to be 
checked and/or if methods not based on the normality 
assumption are to be used.

For small sample sizes (say N<20) normality cannot 
easily be checked and it may be best to avoid multi­
variate methods that assume them, as they possibly 
impart a spurious sense of authority to the results 
obtained. The use of simple graphical inspection has 
been advocated, both for assessing the distinctiveness 
of fields and for assessing possible provenance (Scaife 
et al., 1996). Although decision-making in such cases 
may, on occasion, be subjective and uncertain, the 
uncertainty is unlikely to be any greater than that 
associated with more “objective” inferential statistical 
procedures where the underlying assumptions are 
incorrect.

For larger sample sizes (say iV>40) formal testing of 
normality is possible. If such tests do not reject the 
hypothesis of normality, normal-based procedures can 
be considered as an option. (Note that for the old 
Cyprus field, tests were indicative of non-normality: 
Scaife et al., 1996.) Where non-normality is evident 
KDEs provide an alternative method of data presenta­
tion, but should not be used in isolation and may need 
sample sizes somewhat greater than 40 to be fully 
effective.

For intermediate sample sizes, 20</V<40, precise 
and positive guidelines are difficult to lay down. Test­
ing normality is certainly possible but the tests may 
have low power against even quite non-normal alter­
native models. Normal-based procedures can be mis­
leading in the presence of undetected non-normality, 
but non-parametric KDEs may also be difficult to 
interpret.
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Appendix
Lei v be a /c-dimensional variable whose Ah realisation 
will be denoted as Xh where Xj=Xj, {xh y,)T or (xf, t,-, 
z,)1 for k -  1,2,3, respectively, and 1 is the vector or 
matrix transpose. A /o-variate kernel density estimate 
(KDE) may be written in the general form

( 1)

where H is a symmetric positive definite k  x k  matrix 
with Ah diagonal hj and hf>0; K(-), the kernel function, 
is the standard /c-variale normal probability density 
function; and N is the sample size.

For the univariate case, k - 1, there is a single 
smoothing parameter hx that determines the precise 
appearance of the KDE; Figure 1 provides an example. 
Other kernels than the normal are possible, but the 
appearance of the KDE is relatively insensitive to this 
choice. The choice of the smoothing parameter is more 
important and the selection method proposed by 
Sheather & Jones (1991), which works well in practice, 
has been used.

For the general bivariate case, k = 2, H has off- 
diagonal elements h3 that control the orientation of the 
KDE. The right-hand side of Figure 3 provides an 
example and may be contrasted with the left-hand side 
where h3 = 0 is assumed. In this latter case the KDE 
takes a simpler form that generalises, for the trivariate 
case, to

f{x,y,z) — 1
I *Nhlh2h3 ;=i \  ht h

x -X i y - y t z - z ;
(2)

and it is this form that is used to define the contour 
shells shown in Figure 4.

In the univariate case the plot is based on pairs of 
points of the form (x, J(x)), so that a two-dimensional 
plot is obtained. The estimated density, X x)> is 
the “height” at * on the plot. For the bivariate case, 
triplets of points, (x,>>/(x,;0), can be represented in 
two-dimensions by contouring the resultant three- 
dimensional construct at equally spaced heights or 
densities. The trivariate case gives rise to a four­
dimensional construct based on (x,y,zj(x,y,z)) that can 
be represented in three-dimensions by selecting some 
specified percentage of the data, q% say; determining 
the density estimate that defines the most dense q% of 
the data; and representing this as a three-dimensional 
contour shell or envelope. It is advisable to look at this 
for several choices of q, as in Figure 4.

The KDEs presented in this paper were obtained 
using routines written by the second author for the 
MATLAB package. Earlier versions of some of these 
can be downloaded from the online paper Beardah & 
Baxter (1996); updated versions can be obtained by 
e-mailing christian.beardah@ntu.ac.uk. A library of 
S-Plus functions for obtaining KDEs, written to 
accompany the book by Bowman & Azzalini (1997), 
can be obtained from World Wide Web sites listed in 
that book.
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