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Summary

As a result of Coordinate Measuring Machines (CMMs) becoming widely used in 
industry, a need to link CAD and inspection together and program CMMs off-line has 
emerged. The work undertaken for this research involves the development of a software 
interface to link any CAD system with any CMM utilising standard data exchange 
interfaces. The IGES (Initial Graphics Exchange Specification) interface was used for a 
limited two way communication with any CAD system and the DMIS (Dimensional 
Measuring Interface Specification) interface was used for improved communication with 
the CMM. Although the CAD systems tested were AutoCad and Unigraphics, it is 
expected that other systems too could be used easily for the data transactions.

The system was developed using the C ++ language, to run on any PC with a VGA 
colour monitor. The different modules created and their functions are:
1. An IGES post processor to read 2V6D information from a CAD system.
2. A user interface to allow interaction with the extracted CAD data, to create the 
inspection model. This involves using the keyboard, mouse and monitor. In order to 
create the inspection model, the user has to select the features which are to be measured 
and apply the corresponding tolerances to them. Then the user has to define the 
measurement sequence and if needed generate a ’shorter’ measurement path. A limited 
error avoidance algorithm is incorporated.
3. A pre-processor to create DMIS and CMES output files, to drive the CMM to measure 
the created inspection tasks.
4. A simulation of the movements of the measuring probe on the screen, when the 
inspection programs are executed.
5. A post-processor to read DMIS output programs and get the measured values into the 
system. The measured features and their values will be displayed in different colours 
depending on whether they are within or outside the tolerances.
6. A pre-processor to write an IGES file and input the measured values into the CAD 
system.

The results of the IGES/DMIS inputs and outputs have been successfully tested for all the 
features provided by the system in 2V£D parts several times to ensure the application was 
working properly. The limitations of the system are presented.
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Chapter 1 : Introduction

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) are 

increasingly becoming popular in industry. Furthermore, increased complexity in 

part model design, tighter tolerances and higher functional specifications have 

resulted in the need for computer controlled coordinate measuring machines 

(CMM), which are widely used for efficient and accurate dimension verification.

CMMs are expensive equipment which spend most of their time -"learning" to do 

what they are supposed to do - being programmed on line. Approximately 80% 

of CMM users program their CMMs on-line, thus they tie-up the machines by 

programming in the "teach" mode rather than off-line [Mason 92].

However, there is a growing trend to link CAD and inspection together and to 

start off-line programming for CMMs. This can be done with the use of either a 

CAD system, or a dedicated software designed for CMM simulation and 

programming. Most expensive Computer Numerical Control (CNC) machine tools, 

like sophisticated machining and turning centres, are programmed either off-line, 

or at the machine control while a part program is running, to improve the 

productivity of the system. CMMs are only just beginning to be used in a similar 

manner.

Ideally, CMM users would like to generate complete CMM programs on their 

CAD terminals without manual intervention - i.e a complete automatic inspection. 

One of the drawbacks is that many present day commercial CAD systems were 

designed for easy documentation, draughting, design, and normally without 

automated inspection in mind. Thus they do not have all the necessary information 

to create the inspection program [Hahn 88]. In order to solve this problem the user 

has to interact with the program using a computer graphics system in which a 

model of the part can be displayed.
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1.1 Off-Line programming

The off-line programming of CMMs by linking CAD and inspection has various 

advantages:

• Reduces the labour required to create the part program. Instead of typing 

commands, a programmer might use the interactive graphics feature of a 

CAD/CAM system to select commands from a menu and indicate points 

to be measured.

• Forces engineers and designers to examine whether their designs can be 

inspected early in the design process. Too often designers specify 

tolerances which cannot be gauged or devise systems which cannot be 

tested.

• Is much less expensive than "teach programming" the CMM on line as 

the cost of a programming station is well below that of a major CMM.

• Part programming can begin at the programming station without a part 

physically available.

• Potential collisions during measurements can be spotted in simulation and 

avoidance steps taken before the task. Thus, saving a lot of grief and 

increasing productivity of the CMMs.

• The measured values can be read back into the program, (showing them 

on the screen) and also fed back into the CAD systems.

• Most importantly, a link between CAD systems and inspection machines 

enables engineers to analyze the data measured by the CMM to determine 

whether the parts have met specified tolerances, and the reasons for non
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conformity.

One of the reasons that more CMM programming is not done on off-line graphical 

programming systems (typical of CNC machine-tool programming) is that "the 

state of CMM programming is about where CNC programming was a decade ago" 

[Mason 92]. Some manufacturing firms have been linking CAD systems to 

coordinate-measuring machines for more than five years [Hahn 88]. However, 

early attempts were not very successful. Since then, new software developments 

have made CAD to CMM links more productive. Over the past couple of years, 

a few CAD software designers have begun to develop off-line programming 

facilities for CMMs. A software (preprocessor) is then necessary, for the 

integration of a CAD system and a CMM. Some CMM vendors have taken 

advantage of these developments and have provided post-processors for the 

different CMMs. Most CAD system vendors, however, are slow in supplying the 

link.

1.2 The aim and objectives of the project

The aim of this research was to create a link between any CAD system and any 

CMM. To do so, a standard input and a standard output must be used. The 

international standard IGES (Initial Graphics Exchange Specification) is used to 

extract data from the CAD system. Then, using the mouse and the keyboard the 

user interacts with the program. The required features to be inspected on the part 

are then selected with the mouse. Once the selection is finished, the manner of 

execution of the measurement has to be defined. This can be performed either 

following the order of selection or taking the computer solution. The output of the 

inspection program will be in the international standard DMIS (Dimensional 

Measuring Interface Specification) or in the CMES language (specific for LK 

machines). The reason of using CMES is because it is the programming language 

used by the CMM utilized in this research. The DMIS standard provides the 

vocabulary for the language that allows for 2 way communication between
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Dimensional Measuring Equipments (DMEs) and their ’host’ computers.

In this research, the results of the measurements are read from DMIS into the 

application and displayed in different colours (depending on whether the values 

are inside tolerances or not) on the screen. Thus the user can easily see if the part 

has met specified tolerances. The application also gives the option to create an 

IGES file to get the measured values back into the CAD system and to manipulate 

them.

The following diagram explains graphically the work done in this research:

Initial Graphics Exchange Specification

IGES
Outputinput

Output input

DMIS
PCBMROMENT 
Create ln*pocdon 
program (off Bne)

ANY CAD SYSTEM 
ANY ENVIROMENT 
Workstation, PC ... A N Y  CM M

Dimensional Measuring Interface Specification

Figure 1 : Linking CAD with CMM

This thesis is divided into three main areas. The first area presented in chapter 2 

is of general purpose. In this chapter an introduction to the tools used for this 

work, such as the languages IGES, DMIS, CMES and the CMM and an overview 

of current work to solve this problem, are presented. The second area which 

includes chapters 3,4 and 5 explains the work undertaken in this research. Chapter 

3 explains the process followed to get the information from the CAD system and
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to display it on the screen. Chapter 4 explains how to create the inspection model 

and the simulation. Chapter 5 explains how to create the inspection program in 

both inspection languages and how to get the information back into the system via 

DMIS and IGES.

Finally in the third area, which includes chapters 6, 7 and 8 conclusions, further 

work and the results obtained are presented.

In the appendices, extended information of IGES, DMIS and CMES, along with 

examples and a list of program files are presented.
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Chapter 2 : Background information

This chapter is divided into eight sections. In the first three sections, IGES and 

DMIS standards, and CMES language are explained in general. The fourth section 

describes a CMM and its functions and the fifth section briefly surveys the 

available commercial CAD systems and their functions and capabilities relevant 

to this area. Finally, the last three sections describe the different approaches taken 

in recent researches to create the inspection model, the inspection planning and the 

feedback. The aim of this chapter is to give the reader general information around 

the area of this research.

2.1 The IGES standard

2.1.1 Introduction

The Initial Graphics Exchange Specification (IGES) is a widely accepted neutral 

file format that establishes information structures to be used for the digital 

representation and communication of product definition data used by various 

CAD/CAM systems. Initiated in late 1979, IGES is a mature mechanism that 

provides a stable, standardized, vendor independent format to aid in the 

management and use of data for CAD/CAM systems [Dori 92], A detailed 

description of the IGES specification is given in Appendix 1.

2.1.2 Technical Overview

IGES was originally designed to avoid problems encountered during the 1970s 

with the proliferation of direct translators. IGES was developed in 1979 under the 

leadership of the National Bureau of Standards, whose goal was to facilitate the 

transfer of product definition data between different CAD systems [Bloor 91]. 

Version 1.0 was published as a part of the ANSI standard in 1981. Several
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versions have been released since the first one in 1979. The version at the time of 

writing this thesis was V5.1 and the next version (V6) is expected to be released 

in 1995. The advantage of neutral file transfer, compared with direct translators 

can be explained as follows:

Writing direct translators between 4 different systems requires 12 different 

translators called pre and post processors. Adding a fifth system adds 8 additional 

translators, and the number of translators continues to go up geometrically with 

the number of systems (see figure 2).

CAD 
System 5

Figure 2 : Direct Translators

IGES uses the neutral file concept. Thus when translation using a neutral file is 

carried out from one native format to the neutral file and then to another native 

format (see figure 3), four systems require eight translators. For each system added 

thereafter, only two more translators are required.

A side benefit of neutral files is that they can potentially be archived. Some 

companies in the aerospace industry, for example, need to keep CAD databases 

for 20 to 50 years. The IGES organization has a commitment for upward 

compatibility so that IGES files created earlier can be read by new CAD systems 

as they are developed.
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X( IGES C

Figure 3 : Neutral translator

IGES defines a file structure format, a language format, and the representation of 

geometric, topological, and non geometric product definition, in these formats 

[IGES 91]. Developers must write software to translate from their system to IGES 

format, or vice versa. The software that translates from a CAD system to an IGES 

file is called a pre-processor. The software that goes in the reverse way (translates 

from IGES to a CAD system) is called a post-processor (see figure 4). The 

combination of pre-processor and post-processor determines the success of an 

IGES translation.

SYSTEMSYSTEM Post-
IGESprocessor processor

Figure 4 : Neutral translator
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2.1.3 General Structure

IGES is defined in an ASCII, user readable format using 80-character records. 

These records are referred to as lines. To create smaller files (IGES file sizes are 

usually 5 to 10 times the size of CAD native databases), a binary format and a 

compressed ASCII format are also defined, but the majority of IGES processors 

still only support the original ASCII form.

The files are divided into six sections. They are, flag, start, global, directory entry, 

parameter data, and terminate sections (Appendix 1).

• The flag section (optional) indicates if the binary or compressed ASCII 

format is used, with letters B (for binary) and C (for compressed) in 

columns 73 of the first line.

♦ The start section is just readable text at the start of the file used for 

documentation.

♦ The global section is 24 parameters of a global nature, such as the name 

of the file, its author, date of creation, units of measurement, precision of 

the numbers, and so on.

* The directory entry (DE) section contains data that is common for each 

entity in the file, such as its type, colour, line style, layer, views it’s visible 

in, and a transformation matrix to position the entity. There are two lines 

in the DE section for each entity.

• The parameter data (PD) section contains specific entity information. 

There are one or more lines in the PD section for each entity.

♦ The terminate section, is a single line at the end of the file that contains 

the number of lines in each section.

Since IGES files typically contain lots of entities, the PD and DE sections 

normally form the major part of these files.
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2.1.4 Current Status

IGES is supported by most of the CAD vendors. It is a popular method attempted 

by developers trying to move CAD data from one system to another. However it 

has not lived up to expectations, although many of the expectations were 

unrealistic. The primary expectation was that a user can take any CAD file, 

translate it into IGES, read the IGES file into another CAD system, and have 100 

per cent of the data transferred, including resolution of system differences. In real 

life some transfers are 100 per cent, whereas some are still very minimal, and 

most lie somewhere in between [Mayer 87]. It is difficult to give an average 

figure, since the success rate depends on the IGES processors used and the types 

of entities in the files to be translated.

The quality of IGES processors varies widely. Some processors handle surfaces 

and complicated structures whereas others handle little more than lines, points and 

circles. Obviously success depends in part on the type of systems employed.

2.1.5 Problems with IGES

Many of the problems with IGES are caused by the manner of implementation. 

Each CAD developer implements his/her own IGES processors, and some are 

better than others. After all, the IGES organization is a voluntary one, and 

developers implement as much (or as little) of the specification as they see fit. 

Because of the large variety of data defined in IGES, no developer supports the 

complete specification; in fact, the majority probably support less than half [Vosn 

89]. To make matters worse, the problem is compounded by inevitable differences 

in interpretation and any bugs in software.

The fact that each vendor implements only those IGES entities that are perceived 

to be relevant to their system, hampers the communication between different 

systems, because each system supports a different set of entities and sometimes
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not all of them are in the IGES specification. Therefore only the common entities 

between the three of them will transferred successfully as shown in figure 5 [Bloor 

91]. Some existing specifications like VDA-IS and MDL-D-2800 (see section 

2.1.6), are trying to solve this problem using an application subset, which reduces 

this problem by presenting an enumerated list of entities that are to be used in a 

particular application.

System B

Information Exchanged

System A

IGES

Figure 5 : Data Exchanged

A further problem, is finding an agency to certify IGES processors. In USA, the 

National Bureu of Standards runs the IGES organization, but by its very nature, 

it is prohibited from taking actions which resemble certification. Also in the light 

of current legal issues, no standards organization wants to say that a company’s 

product does or does not meet a particular standard. Instead, the IGES organisation 

is working with the Society of Automotive Engineers (SAE) to develop a 

validation program. Under the program, the SAE will certify that an IGES 

processor works as well as the developer claims [Mayer 87]. Yet there are some 

organizations trying to bring order into the confusion surrounding IGES. They are 

the large CAD users who want IGES to succeed. These users have issued a simple 

ultimatum: support IGES or we will not buy [Smith 90].

In conclusion, it can be said that the IGES format is complex. However it is 

widely used because it is one of the few standards that is both available and
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supported; therefore, it will continue to be used, supported and expanded for the 

foreseeable future [King 92].

2.1.6 Alternatives

Even though the need for CAD data transfer is great, IGES has not been a perfect 

answer, and a number of alternatives, each with its own strengths and weaknesses, 

exist.

• Direct translators : A direct translator is a software that reads a specific 

CAD/CAM system data base format and converts it to another specific CAD/CAM 

system data base format. Direct translators have the advantage of being fast; they 

need to deal only with the entities that the two systems have in common. One 

disadvantage is the number of processors that need to be created (see section 

2.1.2). Another disadvantage is that they need to access the data base formats of 

each CAD/CAM system, which are not widely available and access is limited.

• VDA-FS (Verband des Automobilindustrie FlachenSchnittselle): This is a 

standard developed by the German Car Manufacturers Association that covers 

points and parametric polynomial curves and patches. It has been designed to keep 

the interface simple and handles essential elements only for surface transfer. It is 

used in Germany (as German national standard DIN 66301) [Smith 90] and in the 

UK mainly in the automotive industry. Although it is less complicated than IGES, 

it is limited to curves and surfaces.

• VDA-IS: This was published in 1987 and it defined five subsets for the IGES 

specification: three subsets for geometry and two for annotation and structure. For 

a processor to support any of the subsets, it has to translate all the entities within 

it. It tries to complement VDA-FS introducing some IGES entities.

• MIL-D-28000: This is the military specification for the US Department of
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Defence. The standard provides subsets for technical illustrations, engineering 

drawings, electrical and electronics applications, and geometry for CNC 

manufacturing by mandating that no entities other than those in the list shall 

appear in a file produced by a processor that claims conformance to the 

application subset; a common ’subset’ of entities may be used in the exchange.

♦ SET (Standard d’Echange et de Transfer): This was developed as a more 

compact data exchange form than IGES and has facilities for transferring geometry 

(including rational polynomial surfaces, annotation, and structure), but it is no 

more functionally complete than IGES and it is less popular, consequently no 

many CAD systems support it. It has become a French national standard (Z68300).

• Other formats : Several other formats are in use for data exchange that are not 

organized by standard bodies. These include DXF, which is a format used by 

AutoDESK, and the Integraph Standard Interchange Format (ISEF) as well as 

others used by various automotive manufacturers. Of these DXF is the most 

widely used, but is different from such standards as IGES, in that it is a 

proprietary product.

2.1.7 Future Development

Work currently undertaken by the International Standard Organization (ISO) for 

the Exchange of Product Data (STEP) project is to develop a three-layer model to 

represent the total information content of a product. This is achieved by creating 

a product model which contains all the information a product needs throughout its 

life time [King 92].

Formal methods are used in the development of models and as a result STEP 

avoids some of the problems that were encountered with IGES, such as 

ambiguities with respect to entity definitions.
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The tendency of present CAD systems is the move towards ’feature-based’ 

systems, the object orientated programming provides a powerful tool to create this 

kind of systems. The idea is to create the designs based not only in the geometry 

but also in the functionality of the features. This will provide more relevant 

information about the part to the subsequent processes (manufacturing, inspection 

...).

The ideal standard output for this type of CAD systems is the STEP specification. 

The problem is that this option is not commercially available and even when the 

tendency is towards a feature-based system, CAD systems do not support it yet.

2.2 The DMIS standard

2.2.1 Introduction

The objective of the Dimensional Measuring Interface Specification (DMIS) is to 

provide a standard for the bidirectional communication between computer systems 

and inspection equipment. The specification is a vocabulary of terms which 

establishes a neutral format for inspection programs and inspection results data. 

While primarily designed for communication between automated equipment, DMIS 

is designed to be both man-readable and man writable, allowing inspection 

programs to be written (and inspection results to be analyzed) without the use of 

computer aids. Appendix 2 gives a detailed description of DMIS.

Even before its approval as a national standard, DMIS was opening up a new 

industry, with DMIS products and DMIS supported equipment appearing regularly 

in the market. Vendors of measuring and CAD equipment see this as a boon to the 

industry, as these companies can now write a single interface to the standard 

[Anon 90].
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2.2.2 Technical Overview

The development of the DMIS specification was funded by the Quality Assurance 

Program under the Guidance of Computer Aided Manufacturing International Inc 

(CAM-I) group. The first version of DMIS was developed by ITT research under 

contract to CAM-I, and completed in 1986. The second version of the specification 

was developed by Pratt & Whitney, a division of United Technologies 

Corporation, yet again, under contract to CAM-I, and was completed in September 

1987.

DMIS version 2.1 (current one) is an update of DMIS 2.0 as developed by the 

Technical Advisory group in response to the ANSI Standard investigations and 

system improvement requests. DMIS version 2.0 was submitted to the American 

National Standard Institute (ANSI) as a quality interface and received a 75% 

acceptance. This was acceptable to ANSI for approval of the specification, but the 

Technical Advisory group wanted a higher acceptance rate, leading to the revision 

of DMIS 2.1 which was again submitted to the companies in the canvass and 

received 98% acceptance. The process for approval of DMIS specification as an 

American Standard was completed in March 1990 [Daniels 92].

DMIS like IGES is also based in the concept of neutral format (see section 2.1.2) 

as shown in the diagram of figure 6:

An equipment which interfaces to others through the DMIS vocabulary will have 

a pre-processor to convert its own internal data into the DMIS format, and a post

processor to convert the DMIS format into its own data structure.

The implementation of DMIS is dependant on individual users. Some may choose 

to link CAD systems directly to DME’s (Dimensional Measuring Equipment), and 

some may choose to use a host computer; some may choose a serial data link, 

some may choose parallel, and so forth. DMIS simply defines a vocabulary set to
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be transmitted by ASCII files. The method for the transmission, storage, and 

management of these files is user-dependant.

CMM2CMM 1

DMIS

CMM 3

Figure 6 : The DMIS standard 

2.2.3 General Structure

DMIS is a vocabulary of major and minor words. It is similar to the APT 

(Automatic Program Tool) numerical control language, with the major and minor 

word separated by a slash, and proceeded by a list of parameters.

There are two basic types of DMIS statements. These are:

♦ Process-oriented commands which consist of motion commands, 

machine parameter commands, and other commands which are unique to 

the inspection process itself.

• Geometry-oriented definitions that are used to describe geometry, 

tolerances, coordinate systems, and other types of data which may be 

included in a CAD database.

Presently part models do not include all of the data needed in the DMIS interface,
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so supplementary data must be added manually. The evolution of CAD systems, 

though, is in the direction of complete part models, and DMIS has been designed 

to be compatible with this growth path.

2.2.4 Current status

The CAM-I group have developed a test piece that combines various, but 

commonly encountered features for manufacturing to check vendors translators. 

Most CMM vendors usually produce their own test parts, so it is now becoming 

increasingly difficult to test the various DMIS functions that the CMM vendor can 

offer. By using a standard test piece (ANC101) and generating a DMIS off-line 

program, one can test the quality of the vendors translators, physically measure the 

part, and then return the results of the measurement programs back through DMIS. 

A comparison of vendor capabilities can then be made [Daniels 92].

The CMM/DMIS interface places programming efforts in the quality assurance 

office, where you can respond to engineering product releases and change orders 

with new and updated inspection data required to meet manufacturing needs.

Using the DMIS interface improves the productivity of the company, by 

eliminating manual labour intensive data entry techniques for the quality 

operations. This interface reduces the program preparation times, and increases 

machine availability to inspect parts.

The CAM-I group in Europe have had little response from the engineering and 

quality assurance market place with regards to this specification, and it seems that 

industry is not fully aware of the capabilities that CAD/CAM and DME vendors 

can offer to provide an integrated solution in a CIM (Computer Integrated 

Manufacturing) environment.
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2.2.5 Future Development

This version of DMIS incorporates the commands necessary to drive coordinate 

measuring machines and video inspection devices for dimensional inspection of 

discrete mechanical parts. The intention is to provide a standard of communication 

for all DME. Future versions will expand optical capabilities, incorporate other 

DMEs (Robotics, photogrammetry, theodolite, laser ...), and include other 

application areas (Surface analysis, composites inspection, electronic 

applications...).

2.3 CMES language

2.3.1 Introduction

The objective of the CMES (Coordinate MEasuring Software) language is to 

provide a communication language for the LK company’s machines. The language 

is a group of commands which establishes a communication between the machine 

and the user. The latest version at the time of writing this thesis was VI 1.1. 

Appendix 3 gives a detailed description of the CMES language.

2.3.2 General Structure

• Command codes

CMES responds to command codes, which normally comprise two characters 

sometimes with one or more parameters.

♦ Command parameters

In order to increase the capability of each command, most CMES commands are 

equipped with command parameters which are used to cause the command to
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function in a specific manner.

Parameters are always shown in italics (Appendix 3). The parameters not enclosed 

in brackets must be entered, and the parameters enclosed in brackets are optional. 

Where applicable, the command may assume default values or actions if no 

parameter is used.

Parameters are usually separated from the command and each other by a single 

comma (,). The only exception being the /± J  and /tol/ parameters. Where commas 

are required, they are shown in the command line.

• Probe compensation

Compensation for the probe stylus is achieved either by the CMES command 

performing the measurement or by the use of an optional probe compensation 

symbol; the latter is used when the probe error is radial.

Commands which perform radial probe compensation indicate this by using the /±/ 

parameter. This means that you can enter the "+" symbol to increase the 

dimension by the probe radius or use the symbol to reduce it. The symbol is 

entered after the command name.

♦ Multi-point measurement

The multi-point facility allows the user to increase the number of points that a 

particular command requires in order to measure a feature. The availability of the 

multi-point feature is indicated by the presence of the [.points] parameter in the 

command line. In practice, the parameter number should be replaced with a 

numeric value and separated from the previous parameter with a comma. If the 

parameter is not given, the default value is used.
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♦ Tolerancing

Certain commands allow the user to enter tolerance data with the command so that 

a full dimensional inspection report can be prepared. This is indicated by the 

command line containing the [tol] parameter, in practice the parameter is replaced 

with the appropriate tolerance symbol.

2.4 The Coordinate Measuring Machine (CMM)

2.4.1 Introduction

A sky-hook holding a probe, a computer with antennae - however one thinks of 

a CMM, it is more than just a sophisticated replacement for traditional measuring 

tools. It can reduce the time to inspect components dramatically. It can measure 

shapes that would be difficult or impossible to measure otherwise. It can provide 

the production shops with valuable feedback, and the time is ripe when it will be 

an integral part of CAD/CAM or CIM [Anon 91]. To understand how CAD 

systems and CMMs can work together, it is helpful to review how CMMs work.

2.4.2 What is a CMM ?

A CMM is a machine having a series of movable members, a sensing probe and 

a workpiece support member, which can be operated in such a way that the probe 

can be brought into a fixed and known relationship with points on the workpiece 

surface, and the coordinates of these points can be displayed or otherwise 

determined with respect to the origin of the coordinate system [BS6808 87].

CMMs can have contact ("touch probe") or non-contact sensor system. The "touch 

probe", is usually mounted on a mechanism that permits the probe to move along 

one or more perpendicular axes. The mechanism contains electronic sensors which 

provide a digital readout of the position of the probe. When the probe "touches"
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the surface of a part being measured, the location of the probe in space is recorded 

by the mechanism.

A variety of mechanisms are used to support CMM probes. Some machines mount 

the probe on a cantilevered arm. Others employ a gantry or bridge arrangement. 

Still others employ moving tables beneath a probe whose axis moves in one or 

two directions (see figure 7). The most popular one is the bridge design [Quinlan 

88].

or gantry Moving tableCantiSever

Figure 7 : Different types of CMMs

The motion of the CMM can be manually controlled, or can be controlled by 

servo-motors. The latter ones have more interest for CAD users. The motor driven 

machines are generally controlled by a small computer, similar to those found in 

numerical controlled machine tools. These machines can be programmed to follow 

a predefined path and to stop at various points along the path to measure the 

position of the part surface. The data gathered in this way can be stored and 

analyzed by other programs or presented as an ASCII file.
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2.4.3 Setting-up the CMM
O'

♦ Mechanical reference

The CMM has a mechanical reference artefact to undertake the verification and 

periodic verification of the CMM performance. The main characteristic of this 

device is its accuracy. Suppliers and users of CMMs have devised and developed 

a wide range of devices to create a number of well defined features, the 

measurement of whose spatial coordinates can be used checked day to day.

The first step undertaken when the CMM is going to be used is to determine the 

position of the mechanical reference (e.g, a sphere at the end of a bar). The X,Y,Z 

position is determined and stored by the computer for future use. This datum 

position is used for two functions:

♦ As an origin point for the set-up commands to determine the attitude of 

the component to that of the machine.

• As a means of probe qualification.

• Probe qualification

The probe is first qualified by using the mechanical reference. The probe will 

touch several points in the reference and the diameter of the probe stylus being 

used will be automatically calculated. The position and ^diameter" of the probe 

can be saved in a variable to be used later on.

If the probe position is altered accidentally during an inspection sequence then the 

user must set-up the new position and requalify the probe returning to the 

mechanical reference before any measurements are taken. This operation will 

effectively cancel the errors induced by the accident.
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♦ Setting the part coordinate system

Before a component can be inspected, the relationship of its axes to the machine 

axes must be established. If the user does not wish to use the set-up commands 

then the component must be set square to the machine axes by standard methods.

The usual method of proceeding with an inspection piece is to issue the commands 

in strict sequence, either by taking points on the component as required or by 

saving points established by previous indirect commands and releasing these for 

use by the set-up commands. There are different methods of setting-up the part 

coordinate system, depending on the CMM used.

2.4.4 Programming the CMM

A part program can be described as a program written in a specific application 

language containing all the necessary instructions for the automatic measurement 

of a given part. A part program includes instructions for:

• Positioning the probe in x,y and z coordinates.

• To pick-up a point, that is the approaching direction in x,y and the point 

to be scanned.

• Processing of geometrical elements, relation between geometrical 

elements and choice of result format.

A modern part-program language must also allow the execution of all the 

performances belonging to any type of advanced language; that is, it must be 

possible to define conditioning and iteration commands to repeat functions. The 

part program can be created by two different techniques. One is creating the part 

program teaching the machine and the other technique is to create the part 

program using an application language.



Chapter 2 Background Information 24

• Self-teaching

Self teaching is one of the most widely used part programming techniques [Ercole 

91]. It consists of creating a "master" by performing an inspection cycle on the 

first part in a batch by hand, with the CMM computer system memorising the 

routine to allow for automatic repetition on the subsequent parts.

While this is simple to enforce, its popularity is also based on the capability to set

up a CMM "in the field" - though it does have drawbacks: the necessity to set-up 

the part to be measured, plus the fact that the CMM is out of action in an 

inspection sense. Also not all the programs allow the simultaneous control of three 

coordinate measuring machines axis, nor can they generate point pick-up along 

vectors that are not parallel to x, y and z axis.

• Application languages

Application languages are used by the programmer to generate part-programs for 

automatic inspection cycles. And, while this calls for deep knowledge of the 

language, which is not uncommon, there is a problem because until recently no 

standard language existed. So, different machines may require different 

programming language, which can be confusing and restrictive. This can lead to 

possible errors if the same measurement task is required on different machines in 

the same company.

2.4.5 CMM Software

Measurement software has evolved from a laborious programming language into 

an application package of modular tools readily accessible by hierarchical menu 

or graphics-based operator interface systems. Some years ago, the software 

programmer could do just about anything he/she wanted. With today’s CMM 

packages shopfloor people can accomplish 80% or more of what the old
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programmer could do in a fraction of the time [Tackes 90],

The problem is that software programs for CMMs are not written by inspection 

staff; they are generally written by programmers who are lacking in sufficient 

experience of inspection requirements. As a result a software package eventually 

proves to be incomplete.

Consequently the software widely used by CMMs to process measurement data, 

particularly geometric form assessment software, is of very varied quality. Some 

packages, are user friendly; some are distinctly not. It is important to choose the 

right software as it determines the speed of inspection. Recognition of the failings 

of a significant proportion of such software has caused a loss of confidence among 

users. Some methods for the assessment and comparison of this software quality 

is being currently discussed. The UK Standards Committee, AMT/8, is already 

working on a standard to test the software [Peggs 91].

All these problems make the CMM software the single most important item in 

choosing a coordinate measuring machine [Cox 93].

2.5 CAD vendors approach

With the exception of big CAD system vendors, the majority have largely ignored 

the problem of linking design and test. This is probably because CAD users have 

not given design-test links a high priority compared to other issues. A few major 

CAD systems offer some capability in this area but are less than optimal for CMM 

programming and are not widely used for off-line programming [Mason 92]. The 

following firms have done significant work in developing products that link CAD 

to CMM systems:
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♦ Cimlinc

Cimlinc was an early entrant into the CMM programming game, thanks to its 

shopfloor orientation. The company’s product, called "CIM CMM" runs with the 

"CIM CAD" software, a three D design, draughting, and modelling program that 

runs on Sun Microsystems work stations.

The product lets a user drive a probe around a part model and take measurements 

at various points. The system is driven by typing DMIS commands or by selecting 

screen icons which invoke a series of DMIS commands. Commands to move the 

probe to a particular location may be invoked by selecting a point or other feature 

in the CIM CAD model. As the programmer works, probe motion is displayed 

graphically on the Cimlinc screen. The DMIS command files generated by CIM 

CMM can be processed to run in a variety of CMM using software from the 

CMM vendors. CIM CMM is also capable of receiving DMIS data from the CMM 

and displaying the measured values in the graphic screen.

♦ Computervision

Computervision’s CMM programming software, called "Automeasure", works with 

its popular CADDS 4X software. It allows engineers to interactively create CMM 

programs which inspect models created at the CADDstation.

Automeasure employs a command language which may be invoked by typing or 

by selecting on-screen icons with the mouse cursor. It developed its own neutral 

file output (Neutral Data File) as an alternative to DMIS, so it does not offer 

DMIS support. It attempts to address most of the requirements for a good off-line 

programming system [Schaffer 85].
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• Cadam

Cadam’s CMM programming facility, called "CADIMS" was originally developed 

by Lockheed’s Missiles and Space division using Cadam’s NC2 numerical control 

software as a base. The software runs on IBM’s System 370 family of mainframes 

and compatible models only. It requires NC2 and base Cadam as prerequisites.

CADIMS permits users to drive a model of a CMM probe around a Cadam model 

using Cadam’s interactive graphics commands and to automatically generate a 

CMM program. Output in the CMM language can be produced by direct post

processors or by DMIS.

♦ Calma

Calma’s "DDM/CMM" software provides off-line programming for specific 

CMMs manufacturers. It runs with Calma’s software which can be used to create 

the part model to be inspected. The software runs on Apollo or DEC Microvax 

computers. DDM/CMM does not employ DMIS, but relies on direct processing of 

DDM motion statements into the language of the target CMM.

• Valysis

Valysis has put together all the pieces to efficiently link CAD with inspection, 

without being married to any CAD vendor [Ercole 91]. To use Valysis software 

the designs and drawing models must be realized using the ANSI Y14.5 

"Geometric Dimensioning and Tolerancing". This software is currently handled by 

IBM.

♦ Unigraphics Interface

A generic CMM interface module, written in GRIP (McDonnell Douglas’s
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Graphics Interactive Programming Language), enables the user to interact with 

Unigraphics geometry for CMM programming. It also provides a DMIS output 

[Schaffer 86].

• PDGS

Provides an off-line programming system with a DMIS output. This system has 

been efficiently used by FORD companies. ALL CMM part programs are designed 

off-line in Ford proprietary DMIS-compatible FINS (Ford Inspection System) 

CMM programming module that resides within PDGS. This off-line graphical 

programming system adds tremendous productivity to Ford’s overall inspection 

operation because the CMMs are devoted to measurement, not program generation 

[Genest 91].

2.6 Representation of the product model

In the feature and solid model based design paradigm, a part is represented in 

terms of "features" which represent high-level concepts rather than the geometric 

primitives used in traditional CAD systems. There are a variety of ways of 

representing the part model, here the most common ones are explained:

2.6.1 Feature-based model

One of these models novel aspects is to represent dimensioning and tolerancing 

information within the part model using the feature paradigm. The representation 

of dimensions and tolerances conforms to the system called "geometric 

dimensioning and tolerancing" or GD&T. This system is a U.S. standard (ANSI 

Y14.5M) and is essentially the same as that specified in ISO standard 1101 

[Sprow 90], The part model consists of a collection of data structures representing 

all information about the part. In addition to form features information is stored 

on dimensions and tolerances, manufacturing and inspection specifications and
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process plans.

The design of the part model starts with a starting feature and then other features 

are attached to this one. Features can be positive, corresponding to addition of 

material to the already existing design, or negative corresponding to the removal 

of material. Associated with each form feature there is a set of alternative schemes 

for dimensioning and tolerancing the feature, both internally and with respect other 

features. This model is implemented in a variation of the Common LISP Object 

System (CLOS) and the Concept Modeller [Merat 92].

2.6.2 Solid-based model

Another way or representing the part model is using solid modelling (CSG) within 

a computer. In this scheme, an object is represented as the set-theoretic (union, 

difference and intersection )information of simpler objects (primitives). The set- 

theoretic operators are used to build the require shape from these primitives. The 

primitives used are half-spaces - surfaces that divide three-dimensional space into 

regions that represent either solid or air. Using these primitives, a set of bounded 

shapes, such as cylinders, cuboids and spheres can be represented, and using 

combinations of these and further half spaces a wide range of engineering 

components may be modelled. The technique to represent tolerances is to allow 

the user to attach tolerance attributes to features on the model as it is designed 

[Walker 92].

2.6.3 CSG and B-Rep models

Feature identification procedures may not be easy if the CSG tree does not contain 

a "particular feature" (of our specific interest) as one of its "nodes". Identification 

of that feature (which may be a shape as a part of a much larger model) becomes 

extremely difficult.
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On the other hand the B-Rep data base provides an "evaluated" form of the part 

and gives an explicit representation of the solid in terms of its lower level entities. 

Lower level feature based tolerance representation is comparatively easy in this 

case. Identification of the lower-level features is still difficult because B-Rep 

maintains all the geometrical and topological information of the entire object in 

1-level only, and manipulation of higher level features is difficult because the B- 

Rep does not record the creation history of the object.

Neither a strictly CSG nor a strictly B-Rep model is acceptable for the 

representation scheme in a solid model in a tolerancing point of view. The CSG 

method does not contain information regarding lower level features and its 

topology, whereas the B-Rep model suffers from the lack of information regarding 

the higher level features. Therefore, it is preferable to create a hybrid data 

structure exploiting the advantages of CSG and B-Rep models [Uptal 88].

2.6.4 The STEP model

STEP specifies the so called DPIM (Integrated Product Information Model). The 

IPEM is separated into partial models according to the classification of the 

information describing a manufactured product throughout its life cycle. The 

information units (entities) of each partial model are disjunctive to avoid redundant 

data storage [Evers 91]. The inspection planning application determines how a 

component should be inspected by analyzing the geometry and by reference to 

various rules and algorithms. The resulting inspection plan is then used to generate 

a machine specific part program to drive a CMM. The key activities in the process 

are inspection machine planning, inspection code generation and inspection 

machine control. The data required are dimensions and geometry from the design 

component and the tool data from the manufacturing information.

In order to make use of such product data the STEP/PDES organization uses the 

data modelling language EXPRESS [Corrigal 92].
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2.6.5 2 Y2D model

A 2V2D  model represents a component in which surfaces are either parallel or 

perpendicular to the cutter axis so they may be machined by a two-axis movement 

normal to the spindle. The shape of a 214.D component can be represented by 

profiles and associated heights. A high proportion of prismatic components are of 

this form, because they are relatively easy to design and manufacture. Thus, the 

data associated with 2 I/2D  components is essentially 3D. The 2 1A D  information can 

be extracted from the CAD model using IGES [Tao 92].

2.7 The inspection planning

The specific problem raised after the part model has been defined (explained in 

the previous paragraph) is how to use this information to guide the inspection 

planning process.

The basic strategy of the inspection planner is to generate inspection code 

fragments which represent the instructions required to inspect individual features. 

These are then pieced together to create a complete inspection plan.

To calculate the inspection path two basic aims must be followed:

2.7.1 Inspection sequence

There are different criteria to find the inspection sequence, the most common ones 

will be explained in the following paragraphs:

♦ Shortest path: To find the inspection sequence one of the criteria to follow can 

be try to find the shortest path possible. This is equivalent to the travelling 

salesman problem, which is computionally intractable. To solve this problem the 

path is calculated always moving the probe to the closest point from the last
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contact point taken [Walker 92], [Merat 92].

• Groups of similar geometry: Another solution can be to measure all the 

accessible features with similar geometric elements after a probe has been chosen. 

This is based upon efficient considerations for CMM operations. The next step is 

to find other features which belong to other geometric elements, from inspection 

point of view, and can be inspected by the current probe. This process is repeated 

until all accessible items which can be inspected by the present probe have been 

inspected. The next step is to choose another feature and find a suitable probe, 

then the same steps are followed [ElMar 87].

• Based on the tolerances: Another inspection sequence can be the traditional 

one; that is the measuring operations are related only to the tolerance of the 

components. The tolerances will be measured one by one, but this sequence may 

hide redundancy in measuring operations. To avoid this, the relationships between 

the measuring operations and tolerances are stored for calculating the tolerances 

later. In this way the features are measured once, stored and used to calculated all 

the tolerances applied to them according to the relationship between features and 

tolerances stored before [Tao 92].

2.7.2 Check possible collisions

As in the inspection sequence, here there are also different criteria to solve the 

probe collision; the most common ones will be explained in the following 

paragraphs:

• Lifting the probe: One algorithm to detect a free collision path is to find if the 

straight line the probe has to follow to reach the target point intersects with any 

of the geometric features in the way. If it does the probe will be lifted higher to 

a safe plane. This guarantees that the probe path will avoid any collision but large 

movements to and from the Z-safe plane may be generated [Walker 92], [Tao 92].



Chapter 2 Background Information 33

♦ Going around: Another solution is to try to go around the surface instead of 

lifting the probe. This solution gives two possible options. If any one of these 

options is collision free, a suitable option has been found; if not the process can 

be repeated for each sub-path. Usually, more than one path will be found, the 

shortest one can then be chosen. Difficulties arise from the need to deal with 

complicated probe geometries and to plan paths in three dimensions when the 

motions cannot all be in a single plane [Hopp 85].

2.8 Feedback

When the Coordinate Measuring Machine (CMM) was introduced in 1960s, it 

brought about a subtle, yet significant, change in the manufacturing practices of 

machined parts. The driving force of the development and introduction of the 

CMM was the machine centre.

When machine tools performed individual operations, the machine operator 

performed the measuring function and made adjustments accordingly. This was a 

closed loop situation. When the milling machine was made with additional degrees 

of freedom (multiple axis) and automatic tool changers were applied, the 

measurement task became beyond the capability of the machine tool operator.

This change created the market demand for 3-D flexible measuring capability. The 

complexity of the measuring task and the need for a clean, controlled environment 

resulted in the CMM being located in the gage room, or what has become the 

quality control laboratory. The feedback path was interrupted. The individual 

operator who had made the measurement himself to control the process was now 

operating automatic machine tools without the benefit of continuous measuring 

data [Bosch 92].

There have been several attempts to restore this feedback:
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2.8.1 CMM in the shopfloor

Inspection methods which employ indirect adjustments made manually will soon 

be obsolete. New production lines with completely automated material flows will 

soon be installed by many manufacturers; such systems only require flexible 

quality assurance which can keep abreast of the new level of system automation.

Workpieces will be manipulated in the future by special systems to support 

machine tools. Data relating to evaluation measurement and corrective action will 

be collected by a special measurement processor. The experimental incorporation 

of the CMM typifies the adaption of the measuring technique to the production 

system [Sostar 88]. The information obtained by the CMM can be linked to data 

processing units or micro-computers for data recording, statistical analysis and the 

supply of much more valuable information [Atkey 86], [Wright 86].

2.8.2 Specific software

An example of specific software is the C2C software which was developed at the 

University of Detroit in order to demonstrate the application of linking CMM and 

CAD systems. The program reads the coordinates of the points taken by the 

CMM. These data are received at the PC and recorded by C2C. IGES file entries 

are then created based on the geometric entity being measured [Kwok 91].

2.8.3 DMIS

Another attempt to link the CMM with the CAD system is the standard DMIS. It 

provides a way of transferring the information back into the CAD system (see 

section 2.2).

This background information will enable the reader to understand the work 

presented in this thesis which will be explained in the following chapters.
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Chapter 3 : Extracting Data from the CAD system and 

displaying onto the screen

3.1 Introduction

Normally free access to the internal data structures of commercial CAD systems 

is very difficult. Thus in order to extract data from CAD systems, it was decided 

to use a neutral interface that is available with most CAD systems, as the first step 

to extract the CAD data to enable a model to be created. The neutral interface 

chosen was IGES (V5.1).

GETTING DATA FROM THE CAD SYSTEM

1 u IGES
i---------- *

©
0 postprocessor r

IGES file
ANY CAD SYSTEM 
ANY ENV1ROMENT 
Woricstation, PC ...

PC ENV1ROMENT 
Create inspection 
program (off line)

IGES
1 ■ -  ............

preprocessor

Figure 8 : Extracting data

To extract the geometric information from the IGES file a postprocessor (the 

software which reads an IGES file) to read a 2ViD  drawing had to be created. This 

postprocessor will read the necessary information for inspection planning and store 

it in dynamic memory for faster and easier access for the downstream activities. 

To avoid memory problems when reading the IGES file, the information which is 

not of any use for this application is filtered at this stage. However, it could 

happen that the IGES file is too big to be processed completely because of
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memory limitations but this will not be the case for the kind of drawings this 

application deals with.

The IGES standard has many entities to support the options the existing CAD 

systems offer. The preprocessors (the programs that write IGES files) use different 

entities to define the part depending on the application. For example, when a 

prismatic part is designed using a CAD system, the different faces of the prismatic 

part are drawn sequentially. These faces are drawn using simple geometry (lines, 

arcs ...) and annotation. Thus, when the postprocessors create the IGES file they 

only translate these types of entities. Consequently, the entities to be identified are 

known, i.e those ones which define simple geometry and annotation. These entities 

are explicitly defined in the IGES file and can be easily identified.

3.2 Why IGES?

The standard chosen was IGES because it is a popular standard and consequently 

supported by most of the CAD/CAM vendors. IGES is a mature mechanism that 

provides a stable, standardized, vendor independent format to aid the management 

and use of data from CAD/CAM systems [Dori 92], [Smith 90]. IGES has gained 

worldwide acceptance as the most popular method of moving from one CAD 

system to another and it is generally the first method attempted by developers 

trying to move CAD data [Mayer 87].

In this particular case, there was the option of choosing IGES or DXF because it 

was possible to get a CAD drawing in both formats using Unigraphics or AutoCad 

(the CAD systems provided in the department) and both specification were well 

documented. The reason of using IGES instead of DXF was because IGES is a 

vendor independent format whereas DXF was created by Autodesk to transfer 

AutoCad data. Besides IGES is more popular than DXF and consequently more 

CAD systems provide it, which increases the number of CAD systems this 

application is valid for.
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3.3 Reading the IGES file into memory

The first step in the extraction of CAD data is to read the IGES file into memory 

to make the task of processing the entities faster and easier. The second step is to 

sequentially process the entities that are present in the IGES file.

During the period the IGES file is read into the computer memory, any 

information which is not of use for this specific application can be filtered. For 

example of the five sections that comprise the IGES file only the directory entry 

and parameter data sections are considered; the other three are discarded. Thus 

memory is only allocated for the necessary data of the directory entry and the 

parameter data sections present in the IGES file. This directory entry and the 

parameter data are handled as follows:

3.3.1 Directory Entry

From the twenty fixed fields (Appendix 1) defined in two lines for each entity in 

the directory entry only five of them are taken into account:

* Entity type number: This number identifies the different entities. It must 

agree with the entity type number in the corresponding Parameter Data 

record.

♦ Status number: This value contains four pieces of information which are 

concatenated into a single integer number. The values used in this 

application are the third and fourth digits. They allow geometric and non

geometric (annotation) entities to be differentiated.

• Sequence number: This value indicates in which line of the directory 

entry the information for a certain entity is located.
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• Form number: This value indicates an individual interpretation of the 

entity to be used when processing the parameter data for this entity.

• Parameter record count number: This number tell us how many lines 

are used in the Parameter Section to define this particular entity.

These fields are read into memory for each entity and the rest of them are 

discarded. All the necessary information from this section is processed and stored 

in a linked list. It is possible to process the information at this stage because the 

format is the same for all the entities.

3.3.2 Parameter Data

The parameter data varies with each type of entity. However it always begins with 

the entity type number, and has a pointer to the corresponding Directory Entry 

record in columns 66-72. The rest of the information is data such as coordinate 

values in free format. The information of the parameter section is stored in a 

linked list of arrays of characters. It cannot be processed at this stage because the 

format for each entity is different and it would not be possible to store the 

information in a single linked list. However a filtering process also takes place 

here because only the parameter data of the entities which are to be processed are 

read into memory.

The program steps for the above are as follows:

► Read the name of the IGES file

► Check whether or not there exists a file of that name.

► Go through the file until the first line of the directory entry is read. To

determine which section the read line belongs to, character 72 of the line is

checked.

► While the line belongs to the directory entry:
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n Create a new link for the linked list which contains the information of 

the directory entry:

► Read from the two lines which form the directory entry for each 

entity the four fields which are considered for this application

► Allocate the necessary memory to store this information

► Add the new link to the list 

a Obtain a new line of the file

The directory entry information is read for all the entities that are defined in the 

IGES file. However for this application only certain types of entities are 

considered, therefore when the parameter data section is read, only the records to 

define these entities will be considered. This is achieved using a pointer to index 

through the directory entry list and taking into account the entity type and 

parameter count number in each link, selecting the lines to read and discarding the 

lines not needed from the parameter section. If there is any entity in the directory 

entry which is not to be processed, then the link will also be deleted from the 

directory entry list. The procedure is as follows:

► Index through directory list and for all the entities:

° Index through the parameter data list as many times as the number of 

lines are in the parameter data for this entity:

► If directory entry entity type is an entity to be processed:

a Create a new link for the linked list which contains the 

information of the parameter data. 

n Read the free format data into an array.

°  Allocate the necessary memory to keep this information, 

a Add the new link to the list.

► Obtain a line of the file

This procedure is required for two reasons:

The structure of the IGES data file is without a sequential order
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(pointers etc., appendix A). Thus it becomes necessary to organise 

the data in order for the information to be accessed easily at a later 

stage.

*** Also having the information in memory (a linked list of pointers) 

makes the task of searching much faster.

3.4 The procedure to process the entities

Once, the IGES file is read into memory, the data from each entity has to be 

processed. The polylines are read first because they are formed by different 

entities which are previously defined. This way one can avoid the entities which 

form the polyline being read twice, i.e, as part of the polyline and also as normal 

geometric entities.

The following steps are implemented in the program:

► Index through the directory entry list and if a polyline entity is found: 

a Allocate memory to read the information for a polyline. 

n Take the information which forms the polyline (explained in the next 

paragraph).

n Add the new polyline to the list of created polylines, 

n Knowing the number of lines in the parameter section index through the 

linked list of parameter data.

3.4.1 Processing a polyline (Entity 102, Composite Curve entity)

A composite curve (polyline) is a connected curve that results from the grouping 

of certain individual entities (El, E2, E3 ...) into a logical unit. It is defined as an 

ordered list of lines and circular arcs. The list of entities appears in the parameter 

data entry. Here, each entity that appears in the defining list is indicated by means
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of a pointer to the directory entry of that entity. The order within the defining list 

is derived from the order of the listing of these pointers.

E l

E4

E3

Figure 9 : Composite curve

The information for each element of the polyline can be determined, from the 

knowledge of the lines of the directory entry, where the entities which form the 

polyline are present and the number of lines in the parameter section for each 

entity. For processing a polyline, a pointer is used to index through each list 

(directory entry and parameter data) looking for the directory entry and parameter 

data information of the entities which form the polyline. Whenever an entity of the 

polyline is processed, the links to define it in the directory entry and in the 

parameter data lists are deleted, so that they can not be read again. Once all the 

information to create a polyline has been taken, the links for the polyline entity 

itself are also deleted from the directory entry and parameter data lists. The 

diagram of figure 10 illustrates the previous steps.

The procedure to get the information of all the entities which form the polyline 

is as follows:

► Link the information of the polyline in one line.

► Obtain the number of entities which compound the polyline.
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► For each entity which forms the polyline:

n Obtain the line number where the entity is defined in the directory entry, 

a Place a pointer in the link where the directory entry is defined for this 

entity.

° Place a pointer in the link where the first parameter data line is defined 

for this entity, 

a In case the entity is:

► An arc: get the information of the arc and add it to the polyline 

previously defined.

► A line: get the information of the line and add it to the polyline 

previously defined.

a Delete from the directory entry and parameter data the links used to 

defined this entity.

HeadJDE PointerPart of the polyline

110 100100 110 102
NULLNext NextNext Next Next

Data DataData DataData DataData
NULLNextNextNext Next Next NextNext

NULLNULL110 110 NULL
Next Next NULL

Data Data NULL
Next Next

Figure 10 : Reading a polyline

After the polylines have been read, the rest of the entities have to be processed. 

To do so, a pointer will index through each list to process the entity, getting the
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necessary information from the directory entry and parameter data for all the 

entities. Whenever an entity is read, the links to define this entity in the parameter 

data and directory entry lists are deleted.

The following procedure explains how this conversion occurs:

► Index through the directory list and for each link:

n Detect what type of entity it is and process the information (See 

following sections).

► Identifying the number of lines in the parameter section for each entity index 

through the parameter data list.

► Delete the links used in both lists to define the entity which has just being 

processed.

In the following paragraphs the steps to follow for each entity, depending on the 

type are explained.

3.4.2 Processing a line (Entity 110)

In order to process a line (entity 110), initially the coordinates (x, y, z) of the start 

point (PI) and end point (P2) of the line, described in the parameter data section 

(appendix 1) must be read into memory (figure 11).

A line can be a part of the geometry or a part of the annotation. This distinction 

is set in the directory entry with the status number (appendix 1). The following 

steps illustrate how the information is processed and read into memory:

► In case the entity is a line:

n Link in one line all the lines in the parameter data to define this entity. 

The sequence number and the pointer to the directory entry will be 

excluded.
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n Process the line (read the coordinates of the points). 

n Compare all the coordinates with the maximum and minimum x and y 

coordinates and update them in case it is necessary. 

n Add the new element to the corresponding list depending if it belongs 

to the geometry or the dimension.

Figure 11 : Entity line

3.4.3 Processing an arc (Entity 100)

In order to process the arc entity (figure 12), the information read are the 

coordinates (x, y) of the centre (PI) of the parent circle the start point (P2) and 

the end point (P3), which are defined in the parameter data section (see Appendix 

1). If the start point and the end point are the same, then the arc is a circle.

By considering the arc end points to be enumerated and listed in an ordered 

manner, i.e, start point first, followed by termination point, a direction for the arc 

can be defined. The ordering of the end points corresponds to that necessary to 

trace the arc in a counterclockwise manner as defined in the IGES specification. 

This convention serves to distinguish the desired circular arc from its 

complementary arc (i.e. clockwise). Another point to remember is that all the 

points of the arc must be positioned at the same height, i.e, the arc cannot lie in 

an inclined plane.
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CIRCLE p2 (x2,y2) 
^  \  P3 (x3,y3)

ARC

PI (xlJ PI (xl,yl)

Common Z

Figure 12 : Arc Entity

An arc can be part of the geometry and part of the annotation. This distinction is 

set in the directory entry with the status number (appendix 1).

The algorithm for processing an arc is as follows:

► In case the entity is an arc:

° Link in one line all the lines in the parameter data to define this entity. 

The sequence number and the pointer to the directory entry will be 

excluded.

n Allocate memory and process the arc information (z, xc, yc, x l, yl, zl, 

x2, y2, z2).

a Compare all the coordinates with the maximum and minimum x and y 

coordinates and update them in case it is necessary, 

n Add the new element to the corresponding list depending on whether it 

belongs to the geometry or dimension.
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3.4.4 Processing witness lines and hatch (Entity 106)

In order to process the witness lines and hatching lines, entity 106 is utilised. The 

witness lines are assigned form 40 and hatching lines are assigned form 31-38 in 

IGES. The form is defined in the directory entry of this entity. The information 

in the parameter data comes as a list of points (N) and a flag (IP) that defines how 

the points are to be described. If IP=1, then x, y coordinates with a common z are 

defined. If IP=2, then x, y, z coordinates are defined and if IP=3, then x,y,z 

coordinates and the vectors i,j,k are defined for each point.

♦ Witness Line entity (form 40): Coordinates (x, y) with a common z 

displacement (IP=1) are defined for each point and every set of two points (start 

point and end point) will form a line segment associated with draughting entities 

of various types. All the points will be collinear, and the number of points will be 

odd and at least three (figure 13). Within the Copious Data entity, there will be 

the location from which the witness line must be maintained. PI will be the point 

coincident with the geometry being dimensioned or equal to second point P2 when 

the location of the geometry is unknown.

P3
Visible segment 
witness line . P4

P2

P2
Witness gap

is not displayed

Figure 13 : Witness Line
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♦ Section entity (form 31-38): This is used by IGES to define hatching. Two 

methods for hatch definition are possible and can be described as follows:

1. First Method

Coordinates (x,y) with a common z displacement (IP=1) will be 

given for each of the N points. The display of the lines consists of 

solid line segments between the points (Xn,Yn,Z) and (Xn+1,

Yn+1, Z) where n=l,3,5,...,N-l. The form number describes 

different patterns for the section entity.

2, Second Method

The hatched area can also be defined the by using entity 230 which 

defines the enclosed area of hatching instead of defining the end 

points of each line.

P9 Pll

P12

PIO

PI

P6 P8P4P2

Figure 14 : Section entity

However, even when it is recommended by the IGES specification to use this 

entity (230), CAD systems still define the hatching by the first method. Since the 

intention in this program was not to create a CAD system, with the necessary 

algorithms to create the hatching, the first method was found to be quite useful, 

and so was employed in this project.
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Once the coordinates have been read, they have to be transformed into the 

different lines which will form the witness lines or the hatching, and stored in a 

list of auxiliary lines. As the Z coordinate of each point is not necessary to draw 

them in the screen, it is not stored in the dynamic memory.

The algorithm to process the copius data entity is as follows:

► In case it is a copius data, check the form number.

► Link in one line all the lines in the parameter data to define this entity. The 

sequence number and the pointer to the directory entry will be excluded.

► If a hatch is defined:

° As many times as lines exist:

► Allocate memory, process the information (get x,y coordinates of 

the start and end point), and add the new entity to the auxiliary 

lines list.

► If some auxiliary lines are defined:

D Allocate memory, get the coordinates of the first line and add the new 

element to the list of auxiliary lines. 

a As many times as the number of segments are defined:

► Allocate memory.

► Get the start coordinates of the line from the previous line 

created (because it is a coincident point).

► Get the end coordinates and add the new element to the list of 

auxiliary lines.

► Compare all the coordinates with the maximum and minimum x and y 

coordinates and update them in case it is necessary.

3.4.5 Processing a text (Entity 212)

For processing text, general note entity (212) is utilised. A general note entity 

(figure 15) consists of one or more text strings. Each text string contains text, a 

starting point, text size, and angle of rotation of the text. The type of font can also
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be defined (see Appendix 1).

PI (xl,yl)

Figure 15 : General note

Although quite a few parameters are defined for entity 212, only the coordinates 

of the starting point (Pn) of each text and the text itself will be stored. As the 

drawing is always scaled to fit on the screen, the text size will be always the 

same. The rest of the parameters are redundant because of the limitations of the 

available C functions to write a text on the screen.

The procedure for writing text is as follows:

► In case the entity is a string:

n Link in one line all the lines in the parameter data to define this entity. 

The sequence number and the pointer to the directory entry will be 

excluded.

° Process the information (x,y coordinates of the origin of the text and the 

text itself).

n Compare all the coordinates with the maximum and minimum x and y 

coordinates and update them in case it is necessary.

° Add the new element to the list of texts.

3.4.6 Processing an arrow (Entity 214)

In order to process a dimension from an IGES drawing, arrows have to be
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processed. Entity 214 is used for this purpose. In the case of arrows, the 

information given is the height, width, the coordinates (x,y) of the arrow head and 

the coordinates that will form one or more line segments (figure 16). The first 

segment begins with the x,y coordinates of the arrow head.

Given data

PI

Transformed data

Figure 16 : Arrow entity

The coordinates (PI, P2) of the segments (SI, S2) that form the arrow have to be 

calculated using the arrow head coordinates, to define the height and the width of 

the arrow. These two segments will form the actual drawing of the arrow head. 

The following segments (S3, S4,...) are also read and stored with the arrow head 

segments in the list of the auxiliary lines. It should be noted that since the 

segments are consecutive, they share one coordinate which is not duplicated in the 

IGES file. Thus the same point should be read twice.

The algorithm for processing an arrow is as follows:

► In case the entity is an arrow:

n Link in one line all the lines in the parameter data to define this entity. 

The sequence number and the pointer to the directory entry will be 

excluded.
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a  Process the entity (start and end coordinates of all the lines which 

represent the arrow).

n Compare all the coordinates with the maximum and minimum x and y 

coordinates and update them in case it is necessary. 

n Add the new lines to the auxiliary lines list.

3.5 Information taken

All the entities drawn in the CAD system relate to a base plane. So even when it 

is a two and a half (2V6D) drawing the height related to the base plane of the read 

entities is known. It is understood as 2 lA D  components, those ones whose surfaces 

are either parallel or perpendicular to the cutter axis so that they may be machined 

by a two axis movement normal to the spindle. The shape of a 2ViD  component 

can be represented by profiles and associated heights [Tao 92]. The figures 17 and 

18 illustrate the differences between the real part (from IGES) and the partial 

information extracted from the IGES file.

Figure 17 : Real Part
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Figure 18 : Information taken

3.6 How the entities are mapped

The information extracted from the IGES file will be translated and stored in six 

different types of linked lists which will be used later in the program. The list of 

auxiliary lines, auxiliary arcs and texts will be used to stored the annotation 

information and they will be always displayed in red on the screen. The list of 

geometry lines, geometry arcs and polylines will be used to stored the geometric 

information and they will be always displayed in white on the screen. The 

information kept in each of the six different types is different and is described as 

follows:

• Auxiliary lines: x,y screen coordinates of the start and end point.

• Auxiliary arcs: x,y screen coordinates of the end points and the centre 

of the parent circle.

• Geometry lines: x,y screen coordinates and x,y,z actual coordinates of 

the start and the end point.

• Geometry arcs: x, y screen coordinates and x,y,z actual coordinates of 

the end points and the centre of the parent circle.

• Texts: x,y screen coordinates of the starting point and the text.
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• Polylines: a list of geometry lines and a list of geometry arcs.

After completing processing of the necessary entities, the next step is to display 

all this information on the screen and interact with the user. To do so a graphical 

environment is required.

3.7 Creation of the environment

After creating the IGES post-processor to get the information from the CAD 

system a graphical environment (figure 19) needs to be created, for the part to be 

displayed on the computer screen (monitor) and to provide the user an 

environment to interact with the display. For this purpose, the screen is divided 

into 4 areas (figure 19) as follows:

Infonnation Windo î

Text window

Figure 19 : Environment
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• Menu system: The user makes a selection from this area, 

depending on the type of operation needed.

♦ Graphics window: The extracted IGES data is displayed here.

The user can use the mouse to select features etc. in this area.

• Text window: In this area the system inquiries (text) are 

displayed and the user’s replies from the keyboard are shown.

♦ Information window: This area is for displaying information 

only and is the only area on the screen that the user cannot directly 

interact.

All the information the program needs from the user will come from the mouse, 

the keyboard and the disk.

3.7.1 The menu system

This area consists of fixed menus where the options of the programs are offered. 

The user makes a menu selection using the mouse as the pointer.

There are two different types of menus:

♦ Program option menus: They are only highlighted when the mouse 

passes over them, or once they are clicked till the execution of the option 

is finished.

• Probe and workplane menus: There is always one of these highlighted, 

which indicates the current probe and the actual working plane. The 

highlighting will change only when a different menu is selected. This 

menus are highlighted in concordance because probe and working planes 

are related.
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3.7.2 The graphics area

The graphics window is where the part is redrawn and where all the graphical 

events occur.

3.7.3 The user interaction

There are two different ways for the user to interact with the system, using the 

mouse and using the keyboard.

All the functions that have been created to handle the environment (windows and 

mouse) have been done using C++ object oriented programming. Some of the 

salient functions are described below.

3.7.3.1 Using the mouse

All the menus displayed in the screen are selected using the mouse. Whenever the 

mouse passes over a menu it will be highlighted and if at that moment the mouse 

is clicked it will be selected. The menu will remain highlighted until all the 

information asked by the program is completed.

Depending on the menu that has been chosen the user can be asked to select one 

of the entities shown on the screen. For instance, if the menu to measure a hole 

has been selected the user will be asked to click on one of the displayed circles. 

Only the geometry entities (the white ones) can be clicked.

The procedure for handling the menu system, using the mouse is as follows:

► While the "Quit" menu is not clicked: 

a Get mouse event.

a If the he mouse is over one of the menus of the right hand side:

► Take the highlight of the previous menu off.
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► Highlight the new menu and check wether the left hand side 

button has been clicked.

° If the mouse is over one of the menus of the left hand side and the left 

button has been clicked:

► Highlight the clicked menu and its correspondent in the other set 

of menus.

► Take the highlight of the previous menu off.

n If the left hand side button has been pressed, detect which menu has

been clicked and execute its corresponding action. If the clicked menu is 

"Quit”, go out of the program.

3.7.3.2 Using the keyboard

Depending on the menu selected the user can be asked for further information. For 

instance, when the user clicks the menu that loads an IGES file, the user will be 

asked to type the name of the file. The option of deleting characters in case of 

error is also incorporated in the system.

The information is taken as a string of characters and converted later to reals,

integers or strings depending on the type of information required. The basic

function to read a string from the keyboard is:

► Get a character from the keyboard and while it is different to the carriage return:

°  If the key pressed is delete and there was any character written:

► Draw the written text in the background colour

► Delete from the text string the last character 

° otherwise:

► add the character to the text string 

°  Draw the text into the screen.

► return the text
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3.8 Calculating the screen coordinates

It should be noted that all the coordinates given by the IGES file are actual 

coordinates. Thus to make the drawing fit in the graphical window defined for the 

graphical environment, a scale factor is calculated considering the maximum and 

minimum value of the data in both axes read from the IGES file. So when reading 

the IGES file these values have to be computed and stored to be used the part is 

displayed on the screen.

The scale factor is calculated as follows:

► distx = xmax - xmin;

► disty = ymax - ymin;

► factl=distance in x of the graphical window/distx;

► fact2=distance in y of the graphical window/disty;

► fact=the lower of factl or fact2;

Once the scale factor has been calculated, another point to consider is that the 

screen coordinates are always positive, from 0 to 640 in x axis and from 0 to 480 

in y axis. Thus if the coordinates of the drawing are negative, the drawing has to 

be translated. Also consideration has to be given the fact that the graphical 

window created is smaller than the screen. Thus a bottom margin and a left 

margin are also computed.

The final screen coordinates are calculated as follows:

► if the minimum y coordinate is negative:

n y screen = bottom margin + (actual y minimum + y) * fact;

► otherwise:

a y screen = bottom margin + (y - yminimum) * fact);

A similar process is used to calculate the x screen coordinates.
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These coordinates are calculated at the same time as the drawing is displayed on 

the screen, and the values are saved in case the part has to be redrawn.

3.9 Problems found

3.9.1 Size of the file

One of the problems can be the size of the IGES file [Vosn 89]. Since the 

processed information is stored in dynamic memory to make the process of 

handling the information faster, when the amount of data to be stored is more than 

the available memory, the program would not be able to read the IGES file 

completely.

Despite this constraint of not being able to read very big files (more than 6000 

line drawings), it was decided to do it this way because usually, the IGES files of 

simple 2V£D drawing (face of a part) are not very big and the available memory 

is enough to store all the processed information.

A solution to this problem could be to store the processed information into the 

hard disk. The problem with this solution is that makes the task of handling the 

information much more slower because the program will have to access the disk 

whenever it is necessary to handle the information stored for each element which 

is quite often. This option was not adopted because the available memory is more 

than sufficient to handle the kind of drawings this application is intended for.

3.9.2 Entities chosen

Another problem was to choose the entities of the original system to be used, and 

into which entities they will be mapped. The task is made easier with a narrower 

application domain, as in this case, when there is a frame work (the inspection 

planning) defining expected entities and the intent of their use.
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The main reason behind choosing IGES entities for processing is to achieve a 

compromise between simplicity of part representation and excessive restrictions 

in the processor. Only two of all the areas covered by IGES are taken into 

account. These two areas are geometry and annotation:

♦ To get the geometry information only arcs, lines and polylines (a 

combination of the two former ones) entities were taken into account 

because they are enough to describe a simple 2V£D drawing.

♦ To get the annotation information only the basic entities are used. IGES 

offers more ways of representing annotation data but as it is only used to 

clarify the drawing displayed on the screen and all the information has to 

be converted into simple lines only basic information is taken from the 

annotation entities.

3.9.3 Tolerance information

Initially, an attempt was made to obtain tolerance information from the IGES file. 

The problem encountered was that in the IGES file, annotation entities were not 

related to the geometry, so to obtain tolerance information for the required entities 

user interaction is needed.

In theory, there is in IGES a special associativity form (dimension associativity) 

to be used in such cases [Nnaji 91][Vos 90]. However this is rarely implemented, 

so this potential piece of useful information is lost.

This limitation of the IGES file makes it necessary human intervention to get the 

tolerances required for each feature. Therefore the automatization of the process 

is then limited.
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Chapter 4 : Inspection model and simulation

4.1 Introduction

The second stage, after loading the IGES file and displaying the part on the screen 

as described in chapter 4 is to generate the inspection planning using the 

information obtained from the IGES file and through interaction with the user. In 

other words, to create a model in the computer memory of the features the user 

wants to measure, the sequence of measuring, the probe and workplane selected, 

and the coordinate system defined for each of the faces the inspection model is to 

be.

This is done by selecting the features the user wants to measure. Before starting 

the inspection planning, the coordinate part system, the work plane and the probe 

number have to be defined. These values are necessary when the set-up of the 

CMM to measure the part is carried out.

The different features the user can create within this application are the following 

ones: hole, cylinder, arc (inside and outside), block, slot, radial distance (inside 

and outside), perpendicular distance, and the distance and centre point between 

features. There is also the option of applying tolerances to any of these features.

4.2 Load the IGES file

To create the inspection planning, all the different faces of the part which are to 

be measured should be loaded into the system sequentially. Once a face is loaded 

into the system, the inspection planning for that particular face will be created. 

Other faces could be loaded until all of them have been measured. Before loading 

the IGES file, the program has to know if the face which is going to be loaded 

belongs to a new part or to the part the user has been working with previously.
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♦ If the inspection planning of a new part is to be created, the user has 

to click the menu "Begin Part", this action will release all the memory 

which was being used by the previous part. After the memory has been 

freed the user will click the menu "Load IGES" which will load the first 

face of the part that is going to be measured.

♦ If another face of the part is to be loaded, the user after finishing with 

the inspection planning of the previous face will click the menu "Load 

IGES". This will allocate additional memory for this face without deleting 

the inspection planning created for the previous ones.

4.3 Define work plane and select probe

The plane in which the loaded face lies has to be selected. It can lie in five 

different planes (XY+, ZY+, ZY-, ZX+, ZX-) and five different probes (pi, p2, 

p3, p4, p5), one for each plane, can be used. These planes are related to the 

coordinate system of the part that has also to be defined (see figure 20).

First the plane XY or YZ or ZX has to be selected and depending on the chosen 

probe the direction of the plane (positive or negative) will be determined, creating 

five different planes. The plane XY and the probe "pi" are selected by default.

All the planes except xy, have been assigned with two probes (The XY- negative 

is taken as the base on which the part rests). Depending on which probe has been 

selected the program decides on which of the two possible planes (positive or 

negative) the face is placed. The probes are assigned to the planes, as follows:

♦ "XY": This plane has only been assigned with one probe (pi), because 

the bottom face of the part is that on which the part lies. If the bottom face 

has to be measured, then the part has to be turned around and a new set-up
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♦ "YZ": This plane has been assigned with two probes (p2 and p4). "p4" 

will be used when the "x" axis is positive and "p2" when the "x" axis is 

negative.

♦ "XZ": This plane has been assigned with another two probes (p3 and p5). 

"p5" will be used when "y" axis is positive and "p3" when the "y" axis is 

negative.

The probes have to be numbered as shown in figure 20.

4, YZ+
5, XZ+

1,X Y +

Figure 20 : Probe Definition

The above is implemented in the next algorithm:

► Highlight by default plane "XY" and probe "pi".
\

► If any work plane menu has been clicked:

a Select the corresponding default probe for that plane. 

n Highlight the current plane and probe and return the old ones to the 

normal state.

When a work plane is selected only the appropriate probe can be selected. This 

is displayed in a menu during the execution of the program (See figure 21).
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P ro b e
p2 ii? p4x z x z

Figure 21 : Select work-plane and probe

4.4 Create the coordinate axes

Once, the part is displayed on the screen and the probe and working plane have 

been defined the coordinate system (the origin for the part) has to be defined. This 

can be done in two different ways:

• Intersection of two lines : this means that the origin is to be on one of the 

edges of a feature and the user will be asked to click on the lines that intersect on 

that edge. The program will not allow selection of two lines which do not intersect 

(see figure 22).

Z

-X

Center of arc or circle Intersection of two lines

Figure 22 : Create the coordinate system
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• Centre of are : this means that the origin is placed on one of the holes, 

cylinders or arc centres that are on that face. The user will be asked to click on 

one of the circles or arcs. The program will not allow selection of any other entity 

which is not an arc or a circle (see figure 22).

The coordinate system will be created when the inspection planning of a new part 

is initiated. When the first plane is loaded, the coordinate system has to be defined 

and this will set the zero (Master Datum) of the part. Whenever a new face is 

loaded the program will ask whether the Coordinate System is going to be 

translated, and if so the distance in X, Y, Z of the displacement. It should be noted 

that the Master Datum always has to lie in the plane in which the face to be 

inspected lies. Consequently, three faces at most could be measured without 

translating the Master Datum. This is illustrated in figure 23.

Figure 23 : Common coordinate system

4.5 Select the features to be measured

The next step is creating the features the user wants to measure like hole, cylinder, 

arc, slot (length inside), block (length outside), radial distance (wall thickness), 

perpendicular length (length true) and distance and centre point between features 

(see figure 24). All the information that is created in this way will be stored in

Z

- Face A£,C can be measured 
with Coordinate System 1.

- Face E,D can be measured 
with Coordinate System 2.
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internal memory, so that the program the program can used the information when 

different outputs are created.

3. Inside wall thickness2. Length. Inside1. Hole

5. Outside wall thickness4. Length Outside

6. Arc Inside 7. Arc Outside 8. Length true

Figure 24 : Types of features

Two different types of features can be created:

Features, where the output depends on a single measured feature. 

Features, where the output depends on more than one previously 

measured features (e.g : Distance between). The output of these measured 

features has to be a point and not a distance.

To calculate the coordinates of the new features, the following transformation is 

needed:

► X„feature = X_design - X_coor_sys;

► Y_feature = Y_design - Y_coor_sys;



Chapter 4 Inspection model and Simulation 66

This enables any changes in the axis system during inspection to be 

accommodated.

All the created features will be displayed on the screen in a different colour (light 

blue) to let the user know that is a measured feature and distinguish them from the 

geometry (white) and annotation (red) entities. These entities cannot be selected 

again, to avoid measuring the same feature twice, unless is to create a feature 

between previous measured features or to delete them.

4.5.1 Hole and cylinder

The command hole is used to determine the diameter and centre coordinates of a 

complete hole. The command cylinder is used to determine the diameter and 

centre coordinates of a complete boss or pin (see figure 24). The user in both 

cases will be asked to select a circle in the drawing. The user has to ensure that 

the chosen circle is a hole or cylinder, as the program has no means of discerning 

between them.

To select an entity the user has to click with the mouse on a point in the graphical 

window, close to the entity to be chosen (figure 25). The selected circle will be 

the one whose radial distance to the clicked point is the shortest one and it is less 

than a previously set minimum distance (3 pixels) (setup a define); this distance 

can easily be changed in the program. Since arcs and circles are stored in the same 

list, the algorithm will look for arcs or circles initially. If an entity found is an arc 

it will be disregarded. If more than two circles are found at the same distance the 

first one in the list will be selected. This option allows the user to select one or 

more circles to measure at the same time, or to skip without choosing any one.

For example in the case shown in figure 25, the distance from the clicked point 

to the three entities is less than the minimum distance. The smallest one is d2, the 

with dl is slightly larger than and smaller than d3. The closest entity is an arc and
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so it will be disregarded. The selected entity will be then the circle.

The algorithm works as follows:

► Index through the list of geometry arcs and only for the arcs which have not 

been previously selected:

n Calculate the radial distance to the point: calculating the distance from 

the point to the arc centre and subtracting from this distance the radius. 

n If the distance is less than the minimum distance, then this will be the 

new minimum distance.

► If the entity chosen is an arc, disregard it

► If a circle has been found, draw the circle in the selection colour,

► Otherwise: put an error message

The information stored for this feature consist of the actual coordinates of the 

centre point, diameter and depth of the hole related to the defined coordinate 

system. Also stored is a pointer to the circle which represents the measured hole 

in the drawing.

Select a circle Select an arc

X X *
/  \ /  X  43

i  ( p  )

/

d2 < dl < d3 < dist min d2 < d l < d3 < dist min

Figure 25 : Selecting a circle and an arc
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4.5.2 Arc (inside/outside)

The command "arc inside" is used to determine the diameter and centre 

coordinates of a partial hole. The command "arc outside" is used to determine the 

diameter and centre coordinates of a complete boss or pin (see figure 24). The 

user is asked to select an arc in the drawing but has to ensure that the probe will 

have enough room to go inside or outside the arc, depending on the case to take 

the points.

The selection algorithm is the same as the one used for the hole, but has an 

additional function to determine whether the point is actually within the limits of 

the arc, or somewhere else in the parent circle (figure 25). The algorithm is as 

follows:

► Calculate the start and end angle of the arc.

► Calculate the angle of the clicked point.

► In case any of the selected angles is negative, calculate the positive in phase 

angles (add 3602), making sure that the start angle is smaller than the end angle.

► if the angle of the point is between the start and end angle of the arc the point 

is valid.

For example in the case shown in figure 25, the three distances are smaller than 

the minimum distance, being d2 the smallest one. However this one is disregarded 

because it is a circle. The selected one is d l because it is the less than d3 and also 

less than the minimum distance.

The information stored for this feature is, the position of the centre point of the 

arc, the start point and end point, the radius, and a pointer to the arc which 

represents the measured feature in the drawing.
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4.5.3 Length (inside/outside)

The distance between 2 parallel planes are measured either using "length inside" 

(e.g :slot) or "length outside" (e.g: dog or lug) commands (see figure 24). In both 

cases the user will be asked to select the lines (representing walls) between which 

the perpendicular distance has to be calculated. He/She has to make sure there is 

an inside or an outside wall down these two lines. The program will not allow the 

user to select two lines which are not parallel. A perpendicular line between the 

chosen lines will be drawn to represent the feature (see figure 26). The line will 

go from the midpoint of the shorter of the two lines perpendicular to the other.

Select a line

d4

d2

/ f  6 3
d l

d l < d4 < d2 < dist tnin Representation o f a slot
d3 > dist trdrB or a block

Figure 26 : Selecting a line

The criteria to select a line is the same as that used to select an arc. The line 

selected will be the closest one to the point within a minimum distance. For 

example, in the case shown in figure 26, d3 is automatically disregarded because 

is bigger than the minimum distance. The selected one is d l because is smaller 

than the other two (d4 and d2) and smaller than the minimum distance.

The method of calculating the distance between a clicked point and a geometry 

line is as follows:
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► The parameters of the equation of the geometry line a, b, c, are calculated.

► The distance between the point and the line is then calculated:

c + a * x + b * y

\Ja2+ b2

► Calculate if the intersection point belongs to the segment:

° The offsets (cl, c2, e3) of the perpendicular lines that pass from the start

and end point of the segment and from the intersection point are

calculated.

► if the parameter "a" of the equation of the line is not zero:

c l  = y l * x l ' ,c 2 - y 2 - — * x2 ;c3 = y~ — *x; 
a  a  a

► otherwise: cl=xl; c2=x2; c3=x;

° If c3 between c l and c2 the point is valid

After two lines have been selected (the same one cannot be selected twice), it will 

be checked wether they are parallel or not. Checking is done by comparing the 

slopes of both lines. If they are equal the lines are parallel.

► if -bl/al == -b2/a2, the lines are parallel

The line that represents the feature on the screen has also to be calculated. The 

starting and end point of this line represents where the probe of the CMM is 

taking the contact points to measure this feature. The calculation is explained in 

the next algorithm:

► Calculate the length of both the chosen lines

► The start point of the new line is the coordinates of the "middle point of the

shortest chosen line.

► The coordinates of the end point of this line are calculated adding the
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perpendicular distance between the chosen lines to the start point.

4.5.4 Length True

This command is used to calculate the perpendicular distance between two points 

(see figure 24). The user will be asked to select points in different planes of the 

drawing. The program has to ask for the height of the points because when the 

user clicks one point on the screen it can only calculate the x and y actual 

coordinates from the screen coordinates. The process is just the inverse of the one 

used to calculate the screen coordinates (see section 4.7). They are calculated as 

follows:

► If the actual minimum x is smaller than zero:

o actual x = (screen x - left margin)/fact - actual value of x minimum;

► otherwise:

° actual x = (screen x - left margin)/fact + actual value of x minimum;

► Subtract to this value the x coordinate of the coordinate system;

A mark for each point and a line joining all the points will be drawn in blue to 

represent the measured feature. Whenever a point is selected it is linked to the list 

of points in the order of selection. The list of selected points is then re-arranged 

in increasing depth. The function to add a new point in order works as follows:

► If the list is empty add the point to the list

► otherwise:

n If the depth of the new point is smaller than the depth of the first point 

of the list add the point in front of the first point making it the head of the 

list.

a otherwise:

► Index through the list of points:

a If a point less deep than the new point is found, go out of
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the list

► If it has indexed through all the list, compare it with the last 

element and if it is smaller link it at the end of the list

► otherwise, link it in front of the found point which is smaller 

than the new point.

The information stored is the x and y coordinates, the depth of each point and a 

pointer to the points which represent this feature in the drawing.

4.5.5 Wall thickness (inside/outside)

The command wall thickness inside is used to determine the inside radial length 

between two points whereas the command wall thickness outside is to measure the 

outside radial length between two points (see figure 24). The user will be asked 

to select two arcs or circles from the drawing. The program will not allow the user 

to select two arcs which are not concentric. A radial line between the concentric 

arcs will be drawn in a different colour to represent the measured feature. The line 

will be drawn radially in the middle of the common area between both arcs (figure 

27).

y ---------- A2 = 60 - 420

 ̂ \  y ---- B2 -  75 “ 435

/ \ Y  V---- C -  B1 + (A2 - Bl)/2

1/20 , C -  370 + (420 - 370)/2

/ \ - B l  -  10 -  370
— Al= -30 -  330

Figure 27 : Radial length
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For example in the case shown in figure 27 firstly the angles of the common area 

are calculated. To do this the biggest starting angle and the smallest ending angle 

of both arcs (A, B) are taken. To decide this (as one of the angles is negative 

(Al=-30)), the in phase angles are calculated (Al=330, A2=420, B 1=370, 

B2=435). The starting angle of the common area is B1 and the ending angle A2. 

The last step is to calculate the bisector of this common area, that is C=B1+(A2- 

Bl)/2. If there is not common are the radial distance cannot be calculated.

The first step in the algorithm to calculate the coordinates of this line is to 

calculate the start and end angles of both arcs. To calculate the angle where the 

line is to be drawn, it is a requirement that all angles defining the arcs are positive 

in anticlockwise direction. Depending on the location of the arcs (if one of them 

is negative) complementary or in phase angles (as shown in the previously 

explained example) may sometimes need to be calculated. The algorithm works 

as follows: '

► Calculate the start and end angle of the first selected arc.

► Calculate the start and end angle of the second selected arc.

► Calculate the positive in phase angles in anticlockwise direction.

► The start and end angles of the common area is calculated, allowing the angle 

of the bisector to be calculated.

► Knowing the polar coordinates of the line (radius and angle of both points) the 

cartesian coordinates are calculated and the line is drawn in a different colour.

The information stored for this feature are the x, y, z coordinates for each point 

of the radial line between the arcs, and a pointer to the line which represents the 

measured feature in the drawing.

4.5.6 Pitch Circle Hole and Boss

The command Pitch Circle Hole is used to determine the diameter and centre
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coordinates of an imaginary circle created through a group of measured holes, 

whereas the command Pitch Circle Boss will be used for a group of measured 

bosses (see figure 28). The user is asked to choose a minimum number of four 

holes or cylinders and a circle through their centres will be drawn in the screen 

to represent the measured feature. If it is not possible to create this circle the 

program will disregard the chosen entities.

The first step in the algorithm to calculate the centre coordinates and radius of the 

drawn circle is to calculate the equation of the circle which passes through the 

centre of the first three chosen holes or cylinders. If the equation exists it will be 

checked whether the rest of the chosen circles satisfy the equation. The following 

algorithm explains this calculation:

► The first step is to calculate the equation of the circle that goes through the 

centres of the first three chosen circles.Thus, the values m (displacement in x), n 

(displacement in y) and r (radius), have to be calculated. To do so, the values of 

the centre points of each circle are substituted into the equation. From the resulting 

three equations the values m,n and r are calculated in relation to the centres of 

these three circles. The steps taken are:

► The equation of the circle is x 2+ y2 + m x+ ny= r2

► Substituting the three points, the values m,n and r are calculated:

0'2-y,)c4+Jf-*i2-y5-Cy3-yiX*j+y2-*i-yf)
m = -

2(y3 -*2) -2(y2 -yi)(*i ”*3)

A  * y \ ~ y l +2m(X[ -x 3) 2n =—— -— -— =  —— r=(x, ~m) +(y. - n )
2(y3-y,)
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► Index through the list of the remaining arcs and verify if they satisfy this 

equation, and if they do draw the arc which represents this feature. If there is not 

the chosen entities are disregarded.

To create the new feature, the selected features will be unlinked from the list of 

measured entities and will be defined as a part of the new entity created. The new 

feature will be linked at the end of the list, so when the program is created the 

holes or bosses will be measured just before the pitch circle is defined.

The information stored for this feature is a pointer to the measured holes, the 

coordinates x, y and diameter of the imaginary circle and a pointer to the circle 

in the drawing which represents the measured feature.

xc, y<

Pitch Circle Sc Boss Distance and centre between

Figure 28 : Pitch circle and Distance between

4.5.7 Distance between two features

This command will be used to determine the distance between two measured 

features. The user will be asked to select two measured arcs, holes or cylinders. 

The program will disregard any other feature. A line between the centre of the 

chosen entities will be drawn in a different colour to represent the measured 

feature (figure 28).
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To create the new feature as in the previous case, the features selected will be 

unlinked from the list of created features and will be defined as part of the new 

one created. This feature will be linked at the end of the list so when the program 

is created the features between which the distance is calculated will be measured 

just before the command is invoked.

The information stored is a pointer to the measured entities and a pointer to the 

line in the drawing which represents the measured feature.

4.5.8 Centre point between two features

This command will be used to determine the centre point between two measured 

features. The user will be asked to select two measured arcs, holes or cylinders. 

The program will disregard any other feature. A line between the centre of the 

chosen entities with a mark in the middle will be drawn to represent the measured 

feature (figure 28).

To create the new feature, the mid point between two features the same steps as 

for the previous feature are used. This is done as follows:

► First the distance between the two features is calculated.

► Knowing the distance and the x and y increment between features the sin and 

the cosine are calculated (figure 28).

► Calculating the distance to the middle point (dist/2) and knowing the sine and 

cosine of the angle, the coordinates of the middle point are then calculated (see 

figure 28).

xc = xl + x; yc = yl + y;

The information stored is a pointer to the measured entities and a pointer to the 

line in the drawing which represents the measured feature.
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4.5.9 Move probe

This command will be used when the user wants to change the path of the probe. 

To do so, the user will be asked to select the measured feature after which the 

movement of the probe takes place. Then, the user will have to pick two points 

which will describe the movement of the probe. These points will be transformed 

from screen coordinates into actual coordinates (reverse of how the actual 

coordinates were calculated see section 4.7). The probe after measuring the 

previous feature will follow the defined route to get to the next position. This 

command will then be treated as a feature in itself and the line representing it will 

be drawn on the screen.

The information stored for this feature is a pointer to the previous measured 

feature and the coordinates of the displacement.

4.5.10 Delete Feature

This command will be used when a created feature needs to be deleted. To do so, 

the program will ask the user to select any created feature from the ones which 

are displayed in a different colour in the screen. The selection criteria will be to 

select the closest one to the clicked point within a minimum distance. The feature 

will be drawn again in the background colour on the screen and it will be unlinked 

from the list of created features (see figure 29). The memory will not be released 

to give the user the option of undelete. Various algorithms are involved in this 

command and the steps are summarized as follows:

► The first step is to select a feature. To do this, the user clicks near to any of the 

lines, arcs or circles which represent the feature. A pointer will index through all 

the created features and in each of them the following actions take place: 

n Detect if the entity to represent this feature is an arc or a line. 

q If it is an arc calculate the distance between the arc and the clicked
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point.

° If it is a line, calculate the distance between the line and the point.

► Once a feature has been selected it will be unlinked of the list and the memory 

of the feature previously deleted will be released definitely.

n First it has to be determined which type of feature is the one to delete 

(the previous one).

a The memory allocated for that feature is then released.

° The feature selected will be unlinked from the list.

Hole2
next

next

Len. In
next

Len.Out
next

Head features

Head features

Last deleted

NULL

Figure 29 : Delete a feature 

4.5.11 Undelete

The program gives the option of undelete the last feature deleted. The feature will 

be redrawn again on the screen and will be linked to the list of features in the 

same position it was before the deletion. The algorithm follows the next steps:

► Link the feature in the same position it was when it was deleted. It must be 

considered if it is the first or last element of the list.

► Draw the feature on the screen in blue.
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4.6 Create tolerances

Dimension tolerances can be applied to all the features created. To do this, once 

the features have been created, the user will click the menu "tolerances" and will 

be asked to select a feature. The criteria used to select a feature is the same as in 

the previous option. The program will ask the user for different values depending 

on the selected feature. The user can decide the number of values for each entity 

selected.

► Select a feature.

► Detect how it is represented on the screen (with an arc or with a line)

The user will be asked for specific values since the feature is known. If the feature 

is represented with an arc, the horizontal and vertical tolerances of centre point of 

the arc and the diameter tolerances are required:

► Detect the corresponding axis for the horizontal and vertical tolerances and ask 

for the values

► Ask for the diameter tolerance

If the feature is represented by a line different cases can occur and for each one 

the required values will be different:

► If the selected feature is the distance between two points, the required value is 

the tolerance for this distance.

► If it is the length of a slot or a block, the required value will be the tolerance 

in the corresponding axis, which has to be calculated.

► If it is radial length, the required value will be the tolerance of the radial length.

► If it is the length in the depth axis, the required value is the tolerance in the 

depth axis, which has to be calculated.
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Figure 30 : Available Tolerances

Once, all the tolerance values for an entity have been collected, they have to be 

displayed on the screen. Only the defined values for each entity will be drawn and 

the representation will allow the user to identify the tolerances for each feature 

(figure 30).

4.7 Path planning of measurements

After the user has finished defining the inspection model, the order of measuring 

the features has to be defined. The user has two options:

4.7.1 Users solution

The features will be measured in the same order as they have been created. This 

sequence is already known as they were linked in order when they were created. 

Even when the order of measuring features has been decided by the user, the 

required points taken for each feature will follow the shortest path possible. In
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other words, the first point to be taken will be the one which is closest to the last 

probe position.

Figure 31 : Selected measurement order

4.7.2 Program’s solution

Finding a rule to minimize the total travel of the CMM would be desirable, but 

it is equivalent to the travelling salesman problem, which is computionally 

intractable [Walker 92], [Merat 92].

The criteria used to determine the path of the probe is to measure the closest 

feature to the last position of the probe. To decide which feature is the closest one, 

first the distance from the last position of the probe to all the contact points is 

calculated; then the shortest distance of all of them is calculated and therefore its 

respective feature is determined. This feature is then measured starting from that 

point. Once, all the points have been taken the rule is applied again from the last 

position of the probe until all the features are measured (see figure 32). This rule 

works for the limited features provided in the system.
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Select first feature to measure Select second entity to measure

Figure 32 : Measurement order

The steps followed to order the features following this criteria are the following 

ones:

► As many times as features have been created:

D Index through the list of created features:

► Calculate the distance from the last position to the feature:

D All the distances from the last position to all contact points to 

measure this feature will be calculated. The returned values are the 

shortest distance of all of them and the position the probe will end

up when this feature is measured. It should be noted that the

starting point will be the one whose distance to the previous 

position of the probe is the shortest one and from there following 

the measuring rules calculate the last position.

► Compare if the new distance is shortest than the last distance calculated.

If it is:

► Keep the coordinates of the last position of the probe, the distance to the

feature and a pointer to this feature;

n Unlink from the list of created features the selected one; 

n Link the feature at the end of the new list created;
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► Link the new list created to the link where the elements to create the inspection 

program for this specific face are defined (see figure 33).

rHead features

JZ
Head features

Leu. In LertOut
next next

Lea.Out
n

Head features

next ■►NULL

n
Head features

Len. In Len.Out Hole
next next next ►NULL

■►NULL

■Head of new list

Hole
next ■►NULL

JZ Head of new list

Hole Len. In
next next -NULL

Hole Len. In Len. Out
next next next ■NULL

Figure 33 : Programming method

4.8 Simulation of the inspection model

Once the inspection planning has been completed, a simulation of the path the 

probe will follow to measure all the selected features and a visualization of the X, 

Y, Z coordinates of the probe at every moment can be created. At the same time 

depending on the high (travelling) and low (contact) speed of the machine, the 

estimated time to execute the inspection planning will be calculated. The 

simulation can be invoked at any moment and it will show the development of the 

inspection model created up to that stage. Therefore, if the user is not satisfied 

with the evolution of the inspection model it can be modified before creating an 

output.
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4.8.1 Simulation of the path to follow

The probe will be represented by a small disc which will move along the drawing 

as the actual probe would do over the part. When the disc is moving in a plane 

parallel to the actual face it will be represented by a blue disc and when it is 

moving in a perpendicular axis to the face it will be represented by a green disc 

(see figure 33). The actual coordinates of the probe will be transformed into screen 

coordinates using the formula explained in section 4.7.

Figure 34 : Simulation of the path

When the probe is moving parallel to the workplane, the coordinates of the disc 

will be calculated incrementing the horizontal or vertical coordinate of the last 

position of the probe, depending on which is largest, until the target point is 

reached. The other coordinate will be calculated using the angle. Knowing the 

actual coordinates at every point they will be transformed into screen coordinates 

to represent the simulation. The portion of the screen where the disc is represented 

will be saved, and restored once the disc has passed that point. Depending on the 

movement of the probe (travelling or contact) the disc will be driven at a different
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speed. At the same moment the coordinates of the movement of the disc will be 

represented on the screen. The algorithm works as follows:

► While the target point has not been reached:

D If the movement is slow, the distance will be added to the total distance 

travelled at slow speed,

a otherwise: it will be added to the total distance travelled at fast speed.

° Delay some time, depending on if it is travelling at slow or high speed. 

n Save the screen, where the probe is to be drawn, 

a Draw the probe.

n Change the axis (vertical and horizontal).

When the probe is moving perpendicular to the workplane, the disc will not vary 

its position on the screen, but it will change the colour (green) and remain in that 

position until the simulation of the movement has finished. The probe always will 

be moved at the travelling speed and the simulation will be created according to 

that. The coordinate displayed at the top of the screen which represents the 

perpendicular movement of the probe will change reflecting the real movement of 

the probe.

► Add the distance to the total distance travelled at high speed.

► Save the screen.

► Draw the probe in green.

► While the target point is not reached:

a Delay the time set for high speed travelling. 

n Change the perpendicular axis.

► Reset the screen.

The probe will start at the zero of the part, where the coordinate system has been 

defined and will measure all the features the user has created. The order of 

measuring can be done in two different ways:
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*** following the order the user has created the features

^  following the order created by the program, if the user has clicked

previously the command "Path".

In both cases the probe, when it moves to measure the next feature, will go from

the last position to the nearest contact point of the feature.

4.8.2 Simulation of the coordinates *

The coordinates X, Y, Z of the probe are also represented on the screen and they 

change according to the movements of the probe along the part. They are 

displayed at the top right section of the screen.

Knowing what kind of movement is taking place at every moment, horizontal, 

vertical or perpendicular, and the actual workplane and probe used, the 

corresponding axis and signs (+ or -) for each movement can be determined.

4.8.3 Measuring time

Another option the system offers is to calculate the time it will take the CMM to 

measure that particular face. The system will ask the user for the travelling and 

contact speed and with this information and knowing the movements of the probe 

the travelling time at slow speed and high speed, and the total time will be 

calculated.

4.9 Simulation of an existing CMES file

Another option available is to simulate on the screen a CMES file which has been 

previously created. The movements described in the CMES program will be read 

and translated onto the screen coordinates using the previously defined formula.
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It has to be taken into account whether the movements are at high or low speed 

to simulate them at the correct velocity. The coordinate system also has to be 

defined according to how it was specified when the CMES program was created. 

The program works as follows:

► Obtain a line of the file until the command "ET" is found.

► If the command is "DM", change the coordinates of the master datum.

► if the command is "MA" or "PT":

n Calculate the screen axis to represent the movements of the probe, 

depending on the plane where the measurements have taken place. It must 

be considered that the movements must always be represented in horizontal 

and vertical axis on the screen.

° As many times as coordinates are defined:

► Obtain the number.

► Calculate the sign and position on the screen, depending on the 

axis defined.

n If the simulated movement on the screen represents that to take a point 

it will be represented by a slow speed whereas a travelling movement will 

be represented by a fast speed.

► If the command is "RM", reinstall the previous master datum.

It will also be calculated how much time is taken to execute that program and also 

displayed on the screen will be the coordinates of the probe while it is moving 

along the part. The algorithms followed to calculate this time and display the 

coordinates are the same as in the simulation of an inspection model.
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Chapter 5 : Creating the inspection program and the feed back

5.1 Introduction

This chapter explains how the probe (CMM) is to be driven along the part for 

inspection. In other words, how to measure all the different features with their 

tolerances, how to link the different faces in both programming languages DMIS 

(standard) and CMES (LK language), and how to create the prototype output. Also 

an explanation of how the algorithms to detect probe crashing and to move the 

probe were created, and how to measure a point in both languages.

preprocessor

PC ENV1ROMENT 
Create inspection 
program (off line)

A N Y C M M

Figure 35 : Creating the inspection program

There are three parameters that should be set in the program that will affect the 

movements of the probe. These parameters are:

• Approach distance: the distance from the point to be measured, from 

where the probe is to be driven at slow speed.

♦ Depth distance: the distance below the feature surface where the contact 

points are taken, in a direction perpendicular to the plane in which the
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feature lies.

♦ Probe Length: this is the distance between the centre of the tip and the 

centre of the mount. This parameter is important to move the probe from 

one face to another.

When driving the probe the working plane for which the inspection planning is 

being created has to be considered. The coordinates when the feature was created 

were stored as horizontal, vertical and perpendicular coordinates (i.e, this values 

will be replaced by their respective coordinates, X, Y or Z depending on the 

workplane) but when the program is created they have to be related to the plane 

where the measurements are taking place. This relation is different in CMES and 

DMIS.

♦ In CMES, before giving any coordinates values, the axis to which these 

coordinates refer have to be set.

♦ In DMIS, the three coordinates (x, y, z) have always to be defined. For 

instance, if a movement of the probe only in one axis direction is to take 

place, even when only one of the coordinates will change, the three 

coordinates of the target point must be given.

5.2 Crash detection

To move the probe from one point to another, the following two steps are taken:

♦ Initially the probe is moved from the last position to the horizontal and 

vertical positions of the target point. Therefore the probe is moving parallel 

to the plane.

♦ The second step is to move the probe perpendicular to the work plane.
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Finally, the probe will reach the target point.

Whenever the probe moves parallel to the workplane (step 1), an algorithm to 

detect if there is any collision is invoked. This algorithm will detect all the 

possible collisions when the probe is driven from one point to another and will 

solve the problem lifting the probe over the highest crashing point (see figure 36).

Target point

Start poi

Crash detection

Figure 36 : Crash detection

To detect the crashing points an imaginary line is drawn from the last point "ps" 

and the target point "pe" (see figure 37). The second stage is to calculate any 

possible intersection with all the geometric entities of the drawing. If any 

intersection occurs, the height of the last point will be compared with the height 

of all the intersecting points. If any of them is higher than the probe it will be 

moved up over the highest point.

The algorithm works as follows:

► d = height of the last point

► For each of the geometry lines:

n Calculate intersection point between geometry line and imaginary line
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(using the equations of the lines)

n If the intersection point is within both segments and the geometry line 

is higher than "d" then

d=height line + 5.00;

► For each geometry arc:

a Calculate the intersection point between the arc and the imaginary line 

(using the equation of the line and the arc)

° Check if the intersection point is within the imaginary line and if the 

height of the arc is higher than "d" then 

d= height of the arc + 5.00;

► If "d" is different from the last height then:

n Move probe perpendicularly to the working plane.

The intersection point between two lines is calculated as follows:

► Calculate the equations of both lines (al,bl,cl,a2,b2,c2).

► if (b2*al - a2*bl) * 0.0 y = a 2*c \~ c i * a i
b 2 * a r a 2 * b i

► if (cl*b2 - c2*bl) 56 0.0 ^  ci * V c2*foi
V « 2“ai*fc2

The intersection points between an arc and a line are calculated as follows:

► The equation of the line is y = mx + c, being
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► The equation of the circle is ( x - x c) 2+ (y -y c)2- r 2 - 0

► Substituting the equation of the line in the equation of the circle and organizing 

in the format Ax+By+C=0, the values of A, B,C are the following ones:

A=l+m2; B = xc~ m (c ~ y c)i C=*2+ ( c -y / - r 2;

then x  \ /B 2 - 4 A C , y  = m *x. +c; ad T  ̂ y  = m * x ,+ c;
1 2 A ’

► final depth =Ps depth;
► if final depth < PI depth

final depth = PI depth;
Ps PI /P 2 P3\Pe ► if final depth < P2 depth

v _ y
final depth = P2 depth;

S
▻ if final depth * Pe depth

Move probe up/down

Figure 37 : Crash solution

5.3 Move probe

The movements to drive the probe along the CMM are divided in two (parallel 

and perpendicular to the working plane), as explained in the previous paragraph.
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5.3.1 Move probe parallel to the working plane

To drive the CMM from the last point taken to the next one, the probe will try to 

move parallel to the working plane. The algorithm to detect any collision will 

move the probe at a higher plane in case it is necessary. The criteria followed to 

drive the CMM is the same in both languages but the commands are different so 

the steps followed in both languages are explained:

• DMIS :

To move the probe in DMIS the coordinates (x, y, z) of the target point are 

required. So knowing the horizontal, vertical and depth values of the point, the 

working plane and the probe used, the coordinates with the respective signs can 

be calculated. The command is:

GOTO/CART,x,y,z

• CMES :

To move the probe parallel to the plane, first the axes have to be defined. 

Knowing the working plane and the probe selected, the axes can be determined. 

Secondly, the horizontal and vertical values to move the probe must be given, as 

follows:

#MA, horizontal axis, vertical axis 

Horizontal value 

Vertical value

5.3.2 Move the probe perpendicular to the working plane

This movement will be controlled by the function which detects the crash 

collision. Perpendicular movements of the probe are made as small as possible and 

only when necessary to avoid a collision. When a collision is detected the probe 

will move 5 mm (safety distance) higher than the crashing point. The criteria 

followed is the same in both languages but the commands are different so the
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steps followed in both languages are explained:

• DMIS :

To move the probe perpendicularly the same steps as to move it parallel are 

followed. The coordinates of the target point must be calculated:

GOTO/CART,x, y, z

• CMES :

First, the perpendicular axis depending in the working plane has to be calculated 

and secondly the depth distance with its correspondent sign ( + or -) depending 

on the direction of the axis must be given, as follows 

#MA,vertical axis 

Depth distance

5.4 Take a point

To measure the features the probe of the CMM has to touch a certain number of 

points on them. The CMM has to be driven at slow speed when the contact takes 

place, so before calling the command to take a point the probe will be driven at 

high speed to the contact point minus the approaching distance. The commands 

to take a point are different in both programming languages and explained as 

follows:

• DMIS :

The coordinates x, y, z of the contact point have to be calculated taking into 

account the horizontal, vertical and depth values and the plane where the 

measurements are taking place.

' The vector (i, j, k) perpendicular to the face where the point lies has to be 

calculated as well. The command is:

PTME AS/C ART,x,y,z,i,j ,k
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• CMES :

As in the command to move a probe, the axes in which direction the probe is 

moving to take the point are defined. If the probe is moving parallel to the work 

plane the horizontal and vertical axes will be defined and if it is moving 

perpendicular to it the one which defines the depth will be set. These axis will 

vary depending on the working plane and the probe used. The commands can be:

1. #PT, horizontal axis, vertical axis

Horizontal coordinate of the point 

Vertical coordinate of the point

2. #PT, depth axis

Depth coordinate of the point

After measuring a point, as it is going to be used later on to measure a feature, the 

measured value has to be saved in a variable. The command to do this is:

SP, number

5.5 How to measure the features

The explanation of how each feature is measured is given here. To achieve this, 

the different points the sensor has to touch and where they are placed in the 

feature have to be determined. Also calculated are the points where the CMM will 

be driven at slow speed, searching for the contact points. These points are 

calculated by subtracting the (perpendicular) approaching distance from the contact 

point.

Even though when the machine movements are the same for DMIS and CMES to 

measure the different features, the commands to drive the machine are different 

in DMIS and CMES. So the final output will be completely different. It will be 

explained how to measure the different features in both programming languages.
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Also there are some features which depend on previously measured features so 

that there is no need to take any more points to measure them, but it is necessary 

to define in the program the features used to construct them.

5.5.1 Hole

To measure a hole the probe has to touch four different points inside it at the same 

depth. To do this, the probe will move from the last position to the closest point 

(minus the approaching distance) of these four points. Then, the probe will take 

four equidistant points in anticlockwise direction as shown in figure 38.

P7

IP6

P4

Figure 38 : Measuring a hole

The coordinates of the four contact points are calculated adding and subtracting 

the radius to the coordinates of the hole centre.

The depth at which the points are collected inside the hole will be calculated 

subtracting from the depth of the hole centre the previously set depth distance.

Once the sequence of the contact points has been calculated, the points where the 

CMM begins searching for the contact points can be determined by subtracting 

from them the previously defined parameter "approach distance".
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After the eight points have been calculated the commands to drive the CMM have 

to be written into a file in both programming languages.

Both programming languages have the option to measure a hole automatically, 

giving the coordinates of the centre hole and the diameter, i.e the CMM will drive 

the probe using its own algorithms. This option has not been used because it does 

not allow one to use the crash detection algorithm and also it is possible that there 

are some features inside the hole against which the probe could crash if automatic 

commands are used.

• DMIS :

The first step is to define the feature, with the coordinates of the centre point (xc, 

yc,zc), the vector perpendicular to the plane in which the hole lies (ic,jc,kc) and 

the diameter of the hole. After the definition of the feature a measurement 

command to measure a circle is invoked. The number of contact points and the 

name of the feature to measure are defined. If any tolerance has been created it 

will be defined after the feature definition (see section 6.6).

F(Hole 1 )=FEAT/CIRCLE,INNER,CART,xc,yc,zc,ic,jc,kc,diameter 

ME AS/CIRCLE,F(Holel),4

Move to the approach distance and take a point (four times)

ENDMES

OUTPUT/FA(Hole 1)

• CMES :

To measure a hole in CMES, the four contact points are taken and saved in four 

different variables (1,2,3,4). Before using the command to measure a hole (ID) 

the program needs to know which points are to be used. To do this the command 

UP is used. If any tolerance has been created it must then be defined (see section 

6.6).

UP, 1,2,3,4

ID, axis in which the hole lies
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5.5.2 Cylinder

To measure a cylinder the probe has to touch four different points outside the 

cylinder. To do this, the probe will move from the last position to the closest point 

of the four (plus the approaching distance). The probe will go down the depth 

distance and take the first point. Then, it will go up to the clearance point over the 

cylinder and go to the second point plus the approaching distance in the 

anticlockwise direction. This process will be followed to take the four points (see 

figure 39).

P4

P2

P8

JP7

Figure 39 : Measuring a cylinder

The coordinates of the four contact points are calculated by adding or subtracting 

the radius from the coordinates of the top cylinder centre. The depth in which the 

points are collected outside the cylinder will be calculated subtracting to the depth 

of the top cylinder centre the previously set depth distance.

Once the sequence of the contact points has been calculated, the points where the 

CMM has to start to search for the contact points can be determined by adding to 

them the previously defined parameter "approach distance". The perpendicular 

movements to avoid crashing the probe against the cylinder when it moves to take
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the next point will be controlled by the algorithm to detect probe collision.

The commands in both languages are:

• DMIS :

The first step is to define the feature, with the coordinates of the centre point (xc, 

yc,zc), the vector perpendicular to the plane in which the cylinder lies (ic,jc,kc) 

and the diameter of the cylinder. After the definition of the feature a measurement 

command to measure a circle is invoked. The number of contact points and the 

name of the feature to measure are defined, as follows:

F(Cylinderl)=FE AT/CIRCLE, OUTER, CART, xc,yc,zc,ic,jc,kc,diam 

MEAS/CIRCLE,F(Holel),4

Go up, move to the approaching distance go down and take a point (four times). 

ENDMES

OUTPUT/F A(Cylinder 1)

• CMES :

To measure a cylinder in CMES, the four contact points are taken and saved in 

four different variables (1,2,3,4). Before using the command to measure a hole 

(OD) the program needs to know which points are going to be used. To do so the 

command UP is used, as below:

UP,1,2,3,4

OD, axis in which the cylinder lies

5.5.3 Length Inside

To measure the perpendicular length of a slot, a point in each inside wall of it has 

to be taken. The points taken are: one in the middle of the shortest wall and the 

next one, moving perpendicularly to the opposite wall (see figure 40). The points 

where the CMM changes the speed will be calculated by subtracting the 

"approaching distance" from the contact points, and the depth the probe is going 

inside the slot will be calculated by subtracting from the height of the slot the

. ~    -  „ ,
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"depth distance".

P2

•  P5•  P3

P4 P6

Figure 40 : Measuring a slot

The probe will move from the last position to the closest point of these two minus 

the approaching distance. It will go down the depth distance, take the first point 

and move perpendicularly to the opposite wall to take the second point.

• DMIS :

To measure a slot a feature representing the line whose distance is being measured 

must be defined. The cartesian coordinates of the start and end line where both 

points have been taken are also defined as features in case the tolerancing 

commands are going to be used. After the definition of the points a command to 

take each point will be invoked. The line will be measured as a construction of 

both points, as follows:

F(LenIn 1 )=FEAT/LINE,BND,CART,x 1 ,y 1 ,zl ,x2,y2,z2 

F(Point 1 )=FE AT/POINT,CART,x 1 ,y 1 ,z 1 

MEAS/POINT, 1 

Take a point 

ENDMES

F(Point2)=FEAT/POINT,CART,x2,y2,z2
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MEAS/POINT,l 

Take point 

ENDMES

CONST/LINE, F(LenInl),BF,FA(Pointl),FA(Point2)

OUTPUT/FA(LenIn 1)

♦ CMES :

To measure a slot in CMES two contact points are taken and saved in two 

different variables. Before using the command to measure the slot the CMM needs 

to know the number of the variables where the points where saved. The commands 

are:

UP,1,2

LI, axis of the distance of the slot 

Distance

5.5.4 Length Outside

To measure the perpendicular length of a block a point on each outside wall of it 

has to be taken (see figure 41). The contact points will be calculated as in the 

previous case. The points where the CMM is driven to a different speed are 

calculated adding to the contact points, the value of "approach distance". The 

depth where the points are taken is calculated by subtracting from the height of 

the block the "depth distance".

The probe will move from the last position to the closest point of these two plus 

the approaching distance. The probe will go down the depth distance, take the first 

point, go up over the box height and move perpendicularly to the opposite wall 

to the next point plus the approaching distance, go down and take the second 

point. The crash detection algorithm will control how much the probe has to go 

up and will move the probe high enough to avoid crashing against the block itself.
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• DMIS :

The steps followed are the same as in the previous case.

-9— 
iP7

P5

Figure 41 : Measuring a block 

• CMES :

The steps followed are the same as in the previous case but using the "LO" 

command instead of the "LI" one.

5.5.5 Wall thickness Inside

To measure the inside radial length between two arcs or circles a point in each 

wall along the radius has to be taken. The points will be taken one in the middle 

of the shortest arc and the other one moving the probe along the radius until it 

touches the other wall (see figure 42). The points where the CMM is driven to 

different speed are calculated by subtracting from the contact points the 

"approaching distance". The depth where the points are taken is calculated by 

subtracting from the height of the hole or arc the "depth distance".

The probe will move from the last position to the closest point of these two minus 

the approaching distance. Then it will go down by the depth distance, take the first
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point and move along the radius until a position just before the second point where 

the speed of the CMM will be changed.

P2

Figure 42 : Inside radial distance 

• DMIS :

To measure an inside radial distance a feature representing the line whose distance 

is being measured must be defined. The cartesian coordinates of the start and end 

line where both points have been taken are also defined as features in case the 

tolerancing commands are going to be used. After the definition of the points a 

command to take each point will be invoked. The line will be measured as a 

construction of both points, as follows:

F(WallIn 1 )=FE AT/LINE,BND,CART,x 1 ,y 1 ,z I ,x2,y2,z2

F(Point I )=FE AT/POINT,C ART,x 1 ,y 1 ,zl

Move the probe

MEAS/POINT, 1

Take a point

ENDMES

Move the probe

F(Point2)=FEAT/POINT,CART,x2,y2,z2

MEAS/POINT,!
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Take point 

ENDMES

CONST/LINE,F(WallInl),BF,FA(Pointl),FA(Point2)

OUTPUT/FA(W allln 1)

♦ CMES :

To measure an inside radial distance in CMES two contact points are taken and 

saved in two different variables* Before using the command to measure the slot 

the CMM needs to know the number of the variables where the points were saved. 

The commands are:

UP, 1,2

WI, + (to compensate the probe radius), plane where the measurement is taken. 

Distance

5.5.6 Wall thickness Outside

To measure the outside radial length between two arcs or circles a point in each 

wall along the radius has to be taken (see figure 43). The contact points will be 

calculated as in the previous case. The points where the CMM has to change the 

speed will be calculating by adding to the contact points "the approaching 

distance".

The probe will move from the last position to the closest point of these two, plus 

the approaching distance. Then it will go down the depth distance, take the first 

point, and go up over the height of the wall and move along the radius until it 

reaches the second point plus the approaching distance where it goes down and 

touches the second point. The algorithm which detects the crash collision will 

determine how much the probe must go up to avoid crashing against the cylinder 

itself.
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Figure 43 : Radial length

• DMIS :

The steps followed are the same as in the previous case.

* CMES :

The steps followed are the same as in the previous case but negative compensation 

is used instead of positive.

5.5.7 Arc Inside

To measure the inside of a partial hole five points at an equidistant angle are taken 

(see figure 44). The coordinates of these points are calculated dividing the arc 

angle in six sectors and calculating the start and end point of each of them. The 

start point of the first sector and the end point of the last one are not taken into 

account because they are at the extremities of the arc.

The probe will move from the last position to the closest point between the first 

and the last contact point of the partial hole. Then it will go down the depth inside 

and take the rest of the points.
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Figure 44 : Partial hole

• DMIS :

The first step is to define the feature with the cartesian coordinates of the centre 

point, the vector perpendicular to the plane in which the arc lies (ic,jc,kc), the 

radius, the start angle and end angle which have to be calculated from the centre, 

and start and end coordinates of the arc. After the definition of the feature a 

measurement command to measure an arc is invoked. The number of contact 

points and the name of the feature to measure are defined. If any tolerance has 

been created it will be defined after the feature definition, as follows: 

F(ArcInl)=FE AT/ARC, INNER, CART, xc,yc,zc,ic,jc,kc,angl,ang2, rad 

MEAS/ARC,F(ArcInl),5

Move to the approaching distance and take a point (five times)

ENDMES 

OUTPUT/(ArcIn 1)

• CMES :

To measure an arc in CMES, the five contact points are taken and saved in four 

different variables (1,2,3,4,5). Before using the command to measure a partial 

hole (ID) the program needs to know which points are going to be used. To do 

this the command UP is used, as follows:
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UP, 1,2,3,4,5

ID, axis in which the arc lies

5.5.8 Arc Outside

To measure the inside of a partial cylinder five points at an equidistant angle are 

taken (see figure 45). The coordinates of these points are calculated as in the 

previous case. The difference is that the points where the CMM is driven at slow 

speed are calculated by adding, instead of subtracting, the "approaching distance".

Figure 45 : Partial cylinder

The probe will move from the last position to the closest point between the first 

and the last contact point of the cylinder. It will then go down the depth inside 

and take the first point, go back a security distance to take the next one, and 

repeat the same process until all the points are taken.

• DMIS :

The steps followed are the same as in the previous case, but the command OUTER 

is used instead of INNER in the feature declaration.
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• CMES :

The steps followed are the same ones as in the previous case, using the "LO" 

command instead of "LI" one.

5.5.9 Length true

To measure the perpendicular length all the selected points have to be measured. 

The points are taken starting from the deepest point to the highest point (see figure 

46). The coordinates of these points are calculated by converting screen 

coordinates into actual coordinates.

P5 P3 V
P6 P4 P2

Figure 46 : Measuring steps

The probe will move from the last position to the deepest point of all of them. 

Then it will go down the height of the point plus the depth distance, take the point 

and go up the height of the next point plus the security distance, move to the next 

point and follow the same process until all of them are taken.

• DMIS :

To measure the distance in height between two different planes a feature 

representing this line must be declared. If more than one distance has to be
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measured (like going up a stair) a feature for each of them must be declared. The 

coordinates of the starting and end point (x, y, z) must be given. These points are 

also defined as features in case tolerances are applied. The line will be measured 

as a construction of the defined points, as follows:

F(LenTru 1 )=FE AT/LINE,BND,CART,x 1 ,y 1 ,z 1 ,x2,y2,z2

F(Pointl)=FEAT/POINT,CART,x l,y 1 ,zl

Move the probe

MEAS/POINT, 1

Take a point

ENDMES

Move the probe

F(Point2)=FEAT/POINT,CART,x2,y2,z2 

MEAS/POINT, 1 

Take point 

ENDMES

CONST/LINE,F(LenTrul),BF,FA(Pointl),FA(Point2)

OUTPUT/FA(LenTru 1)

♦ CMES :

The first step is to measure all the points from the different planes in order of 

depth and save them in different number variables (1,2,3 in case three points are 

taken). The command UP, to know which points must be used will be defined 

before using the command to measure the distance in height (LT), as follows: 

UP,1,2

LT, axis for the height 

Distance in height 

UP,2,3

LT, axis for the height 

Distance in height
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5.5.10 Pitch circle

To measure a pitch circle the probe does not have to be moved because it depends 

on already measured holes or cylinders and it has already been explained how the 

CMM has to be driven to measure them but still has to be defined in the 

inspection program.

• DMIS :

First the imaginary circle whose diameter and centre coordinates are being 

measured is defined. Secondly, instead of invoking a measurement command, a 

construction command with the features whose centres form the pitch circles is 

defined, as follows:

FEAT(PcirHoll)/CIRCLE,INNER,CART,xc,yc,jc,ic,jc,kc,diam 

CONST/CIRCLE,F(PcirHoll),BF,FA(holel),FA(hole2),FA(hole3),FA(hole4)

• CMES :

When the features which form the pitch circle are measured the centre points must 

be saved in number variables. The starting number will be five, because numbers 

1 to 4 are used to save the points to measure a hole or a cylinder. Before calling 

the command "PC" the used points must be defined, as follows:

UP,4,5,6 ,7

PC, plane where the feature is located, number of features

5.5.11 Length and centre of measurement between two features

This feature, as in the previous case, depends on already measured features (partial 

or complete holes and cylinders), but it has to be defined in the part program.

• DMIS :

The line which represents the distance between two features must be defined. The 

start and end points of this line will be declared as features in case tolerances are
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applied. The measurement will be done as a construction of both features, as 

follows:

FEAT(Distl)/LINE,BND,CART,xl,yl,zl,x2,y2,z2 

CONST/LINE,F(Distl),BF,(Holel),(Hole2)

The centre point between two features will be represented as a point. The point 

will be measured as a construction between the two features, as follows: 

FEAT(MidPtl)/POINT,CART,i,j,k,x,y,z 

CONST/POINT,F(MidPtl),MIDPT,FA(Holel),FA(Hole2)

• CMES :

When the features between which the distance is calculated are measured the 

centre points must be saved in number variables because they are used later on. 

The number will start at least in five because the numbers 1 to 4 are used to 

measure the holes or cylinders, as follows:

UP,5,6

LT, axis in which the measurement is taken 

Distance between the points

To measure the centre point the number variables are also used.

UP,5,6

CM, horizontal and vertical axis .

Horizontal coordinate of the centre point 

Vertical coordinate of the centre point

5.6 Tolerances

Tolerances can also be defined in the part program in both languages. The 

definition is different in CMES and DMIS but the type of tolerance defined in this 

application can be described in both languages.
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5.6.1 Tolerances in DMIS

Tolerance definitions provide label names to be assigned to each one. The label 

names are used with the EVAL and OUTPUT statements to associate the tolerance 

to the feature.

• Position tolerance

Specifies the tolerance of the position of a point (x,y,z) in relation to the 

coordinate system. This tolerance is applied to the centre of a complete or partial 

hole or cylinder. The tolerances are defined as follows:

T(toll)=TOL/CORTOL,horizontal axis of the centre, lowtol, uptol 

T(toll)=TOL/CORTOL,vertical axis of the centre, lowtol, uptol 

EVAL/FA(Holel),TA(Toll) or OUTPUT/FA(Holel),TA(Toll)

• Diameter

Specifies the diameter tolerance of a feature. This tolerance is applied to a partial 

or a complete hole or cylinder, shown as follows:

T(DiaToll)=TOL/DIAM,lowtol, uptol

EVAL/FA(Holel),TA(DiaToll) or OUTPUT/FA(Holel),TA(DiaToll)

• Distance in one axis

Specifies the distance in one axis and the tolerance applied. This tolerance is 

applied to the distance of a slot or a block or to the distance in height between 

two different planes, as below:

T(DistToll)=TOL/DISTB,NOMINL,distance in that axis, axis 

EVAL/FA(Point 1 ),FA(Point2),TA(DistTol 1) or 

OUTPUT/FA(Pointl),FA(Point2),TA(DistToll)
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* Distance between two points

This tolerance is applied to the radial distances and to the distance between two 

features, as below:

T(DistToll)=TOL/DISTB,NOMINL,distance between two points, PT2PT 

EVAL/FA(Point 1 ),FA(Point2),TA(DistTol 1) or 

OUTPUT/FA(Pointl),FA(Point2),TA(DistToll)

5.6.2 Tolerances in CMES

The nominal and tolerance data may be entered with any of the measurement 

commands. The tolerance parameter is usually found at the end of a command line 

and its presence indicates that the command will accept an output nominal and 

tolerance data.

Two types of tolerances can be defined:

• Equal bi-lateral (represented by after the measurement command): 

same upper and lower tolerances with different sign , for example ~ > 

±0.05

• Unequal bi-lateral (represented by "//" after the measurement command):

+0 05different upper and lower tolerances, for example —> 3^03

The tolerances are defined after the measurement command, and the upper and 

lower tolerances will be defined after the definition of each value of the feature. 

If the tolerance defined is 7" only one value is required and if it is the lower 

and upper tolerance for each value will be required.

♦ Tolerances for ID and OD commands

The tolerances for the horizontal and vertical coordinates for the hole centre and
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the diameter must be given after the definition (one or two depending on the type 

of tolerance), only the parameters which have a tolerance will be defined, as 

follows:

ID,Z/

60..025

50.0.25

20.0.25

• Remaining commands

The remaining commands only have a value defined, so if the command is 

followed by the tolerance sign, the value must be given depending on the type of 

tolerance defined. For example:

LI,Y/ WI.+//

10..010 15,+0.25,-0.4

5.7 Move next face

After all the features of one face have been measured, the probe must be changed 

and the new one must move to the next face to start the measurements. Before 

selecting the sensor the probe will move up to avoid crashing into any feature and 

then it rotates to get the new position. The probe will then move from the last 

position to 10 mm above the new plane (see figure 47). It must be taken into 

account that the faces must be consecutive.

The algorithm to move the probe to the next face follows these steps:

► Calculate the coordinates x,y,z of the last position of the probe.

► The coordinates of the target point (10 mm above the plane) are calculated 

adding 10 mm to the height of the new plane. Depending on the plane it will be

OD,Z//

60,-.025,+.025 

50,-0.25,+0.25 

20,-.03,+.04
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x, y or z. It must also be considered whether the master datum is going to be 

translated or not.

► After calculating the coordinates of the target point, the horizontal, vertical and 

height coordinates are calculated and it must be checked if any collision is likely 

when moving the probe from the last position to the target point.

► The new sensor is selected.

► Finally, the probe moves to the next face.

Figure 47 : Move next face 

5.8 Prototype part program

The user has the option to create a prototype part program. This program will ask 

the operator in the CMM whether the next feature to measure is what it was 

supposed to be. For example, if the user had created a hole feature when the 

inspection model was created, the probe will be placed above this feature in the 

CMM and the operator will be asked whether it is a hole or not. If the operator 

answers negatively, the program will omit this measurement and will move to the 

next feature where the same procedure will be followed (see appendix 4).
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To create this prototype program three different macros or program sub-units had 

to be created for each feature:

♦ The first one is the question macro. The CMM programm asks the user 

if that specific feature is what was defined when the inspection model was 

created. Depending on the answer given the CMM program executes a 

different macro.

♦ Another macro defines the steps followed to measure the feature. This 

macro is used when the operator answers positively.

♦ The third macro defines what to do if the feature is not to be measured. 

Before the operator answers the question, the probe is placed in the first 

contact point of that feature, but at a safe height. The next movement is to 

move the probe to the last contact point of the feature also at a safe height. 

The crash detection algorithm will also be applied to this movement. The 

reason for this movement is to allow the program to follow the same steps 

even if the feature is not measured.

This prototype program was created to avoid errors in the CMM. The problem is 

that once the inspection program has been created the system does not have any 

control over what is happening in the CMM and if something non-expected occurs 

(the probe crashes against something, or it does not find a contact point where 

expected) the program would not be reliable any longer. Even when the CMM has 

the option to recover on error, the inspection program should stop and the error 

cause should be found out. The problem is that there are lots of reasons that could 

cause an error and it is impossible to take all of them into account when the 

program is being created (see section 7.10). Therefore, there is a limitation of the 

possible errors that can occur in the CMM that can be taken into account when 

creating the inspection program, because once it is created the interaction with the 

user is lost and the program cannot modify any more.
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5.9 Getting the information back into the CAD system

5.9.1 Introduction

The aim of this module is to read the measured values provided by the CMM back 

into the CAD system using the DMIS output file generated by the CMM, The first 

step is to load the IGES file and then read the CMM information back into the 

interface where the measured features are drawn in a different colour, depending 

on the tolerance attainment The measured actual values are also displayed (see 

figure 48).

DMIS
< C
postprocessor

DMIS file
PC ENVIROMENT 
Create Inspection 
program (off line)

DMIS

ANY CMM

Figure 48 : Getting A DMIS file back into the system

1 IGESc ----—i IGES
- r '" 1------------------------1©npostprocessor preprocessor r

ANY CAD SYSTEM 
ANY ENVIROMENT 
WortcstatJon, PC...

IGES file
PC ENVIROMENT 
Create Inspection 
program (off Ine)

Figure 49 : Getting the information back into the CAD system
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The user can then create an IGES output of the drawing displayed onto the screen 

with all the additional information and get the data obtained by the CMM back 

into the CAD system (see figure 49).

5.9.2 Reading DMIS output fde

The features defined with the measured values and their respective tolerances in 

the DMIS output file are read back into the system. Having checked the tolerances 

specified for the features, the within tolerance values (arc, circle or line) are drawn 

in green, and the out of tolerance values are drawn in red. If no tolerance has been 

defined for this particular feature, then it is drawn in blue. Different colours are 

used to discern measured features from defined ones, as the screen resolution is 

not high enough to distinguish between them.

In the case of an arc or a circle, where two values are measured (i.e. diameter and 

centre coordinates), an additional cross is drawn in the centre of the arc or circle 

in the corresponding colour. This represents whether the centre coordinates meet 

the specified tolerances (see figure 50). The actual values are also displayed in 

different colours next to the entity which represents the measured feature. The 

reason for displaying the values is to give the user a graphical picture of the actual 

values rather than giving an output file full of numbers. Figure 50 shows how this 

information is displayed on the screen.

5.9.2.1 How to read the DMIS file

The first step is to set the coordinate system in the same position as when the 

measurements were taken. Once it has been defined, the DMIS output file can be 

loaded into the system to process the information. The analyzed information 

consists of the measured features and evaluated tolerances. The actual values are 

read from the feature definition (FA) and whether they are within tolerance or not 

is described in the tolerance definition (TA) (see Appendix 2).
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The read values are linked in two different types of lists depending on whether the 

entity to represent the feature is an arc (partial or complete) or a line. In these 

linked lists it is also stored whether it is within tolerance or there is no tolerance 

defined for each single value. This information will be used later to decide what 

colour to use to display the feature on the screen. The procedure followed to read 

the DMIS file is as follows:

= - 104,956
H  H B :,Q l2 1
= 13,055

93,

Figure 50 : Displaying a DMIS file on the screen

► Obtain a statements in single line.

► If it is a measured feature (FA):

a If it is a line : Read the information for a line,

° If it is an arc : Read the information for an arc.
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n If it is a circle : Read the information for a circle.

► If it is an evaluated tolerance (TA) :

a If it is DIA : check whether is in or out tolerance and applied to the 

respective arc or circle.

n If it is DISTB : check whether it is in or out tolerance, read the actual 

value and applied it to the respective line.

n If it is CORTOL : check whether it is the vertical or horizontal axis and 

whether it is in or out tolerances and applied it to the respective arc or 

circle.

Once all the information has been read into memory, it is ready to display onto 

the screen with the respective colours. To calculate the screen coordinates from 

the actual coordinates the formula explained in section 4.7 is used.

5.9.3 Writing the IGES file

Once all the information has been read back into the system and displayed onto 

the screen, the user can create an IGES file to get the information back into the 

CAD system. A new IGES file which will have the geometry information and the 

measured values will be created. Therefore the same drawing shown on the system 

screen can be transferred into the CAD system. The only entities which will not 

be mapped into the IGES file will be the annotation entities which can be created 

again with the actual values once the information is back into the CAD system.

The user can identify at once which features meet the specified tolerances because 

they are displayed with different colours. He/She can then create the dimension 

entities for the important features and plot the new drawing. A graphical 

comparison can then be done (the measured features are displayed with their 

respective values in different colours) between the design values and the actual 

ones and whether they meet the specified tolerances.
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5.9.3.1 How the IGES file is written

The drawing displayed on the screen must be converted into an IGES file to 

transfer it back into the CAD system. All the geometry entities which represent 

the drawing and all the entities which represent the measured features must be 

defined in the IGES format.

The first step is to write the start and global section which will be the same for 

all the IGES outputs. Thus this information store in a fixed initialisation file is 

written into the new IGES file.

Once the start and global section are written, the directory entry for all the entities 

must be defined. Most of the twenty fields which comprise the directory entry are 

the same for all the entities; only the following parameters will vary:

• Entity type number : Three different entities will be defined, line (110), arc 

(100) and text (212 ).

• Parameter count number ; This parameter specifies how many lines are to be 

defined for a particular entity in the parameter data section. In case it is a line or 

an arc, only one line will be necessary to define all the parameters and if it is text 

two lines will be required.

• Pointer to the parameter section : This parameter defines in which line of the 

parameter data section is the information for this particular entity. This number 

will be calculated using a counter which will start with number one and will add 

one unit if the entity defined is a line or a circle and two units if it is text. The 

number of added units is the number of lines in the parameter section for that 

entity which is already known.

• Colour : The colour of each entity is defined with this parameter. All the entities
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have an assigned colour depending on whether they are part of the geometry 

(white) or they are within the tolerance limits (green) or out of tolerance (red), or 

if they are measured features but no tolerance has been defined for them (blue).

The procedure to write the directory entry is as follows:

► For all the geometry lines, add a directory entry ( 110, white)

► For all the geometry arcs, add a directory entry ( 100, white)

► For all the measured features represented with a line,

n Add a directory entry for the line ( 110,  colour);

° Add a directory entry for the text (212 , colour);

► For all the measured features represented with an arc, add a directory entry

► For all the measured features represented with an arc:

n Add a line to represent the vertical coordinate ( 110,  colour); 

u Add text to represent the measure value for this coordinate (2 1 2 , colour); 

n Add a line to represent the horizontal coordinate ( 110,  colour); 

n Add text to represent the measured value for this coordinate ( 212,  

colour);

n Add a circle to represent the diameter ( 100,  colour); 

n Add text to represent the measured value for the diameter ( 212,  colour);

Once the directory entry has been transcribed, the parameter data section must be 

written into the file. The procedure followed is the same as the previous one, but 

instead of typing directory entry information the parameter data for each entity is 

written into the file.

It must be remembered that in all the entries of the parameter data section a 

pointer indicating the position of the directory entry information for that particular 

entity must be defined. This number is calculated by initializing a counter to one 

and adding a unit every time a new entity is defined (two in case the defined 

entity is a text).
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The last section (i.e terminate section) is just a line defining how many lines 

occupy each section in the file including the terminate section. These numbers are 

calculated with pointers which are updated when each section is mapped into the 

file.
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Chapter 6 : Results

6.1 Introduction

In this chapter the results obtained testing the different parts of the program will 

be discussed. Also discussion of the problems found at the different stages of 

development and the attempts made to solve them.

6.2 Testing IGES

Initially the created IGES post-processor was tested. After several trials and 

consequent corrections everything seemed to work properly apart from the texts. 

There was a problem to locate them with the appropriate x, y coordinates on the 

screen. That was because the program was firstly created under "Quick C" 

(Microsoft C), which did not support any function to write a text in x, y pixels on 

the screen. It only possible to locate the text in rows (30) and columns (80), which 

is less than the 640/480 pixels of the screen, so the text seemed to be a little bit 

misplaced. This problem was solved when the program was transferred to turbo 

C++ (Borland) which supports a function to place the text in any of the 640/480 

pixels of the screen.

Most of the IGES files tested were created by AutoCad although some 

Unigraphics IGES files were also tried. The post-processor worked correctly for 

all those IGES files which were defined with the type of entities supported by the 

post-processor (see chapter 4). Some IGES files with different entities (that were 

not defined in this system, e.g. matrix, view ...) were also tested and the result was 

that all the unknown entities were disregarded and the known ones read. In the 

Appendix 4 there is an example of the IGES file of the drawing of the top face 

of the "capability block" (a standard test component) created by AutoCad and the 

drawing itself. In this particular case 100% of the information shown was
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transferred into the system. In other words, after checking AutoCad screen and the 

system screen, one could decide the same drawing was displayed. This drawing 

was defined in the IGES file with the type of entities defined in chapter 4 and 

others but the latter ones were not related to the geometry of the drawing and even 

when they were disregarded the output was not altered.

Drawings 

tested with 

errors

Drawings tested 

with no errors

% of success of 

information taken

% of success of 

drawing display

AutoCad 30 25 100% 95%

Unigraphics 10 15 100% 95%

Table 1 : Testing IGES files

Around 25 attempts to read different drawings created by AutoCad and around 10 

created by Unigraphics were necessary to correct all the programming errors. 

Once, the post-processor was working properly around 20 different AutoCad 

drawings were tested to check the reliability of the program. The post-processor 

worked properly for those entities that are defined in the system disregarded the 

unknown entities. Most of the drawings contain unknown entities like the 

transformation matrix but despite not considering them, the final output was 

successful, i.e the internal information read for each entity was necessary for this 

application and the drawing looked the same than in the CAD system where they 

were created. Further 15 drawings created by the Unigraphics pre-processor were 

tested obtaining 100% success. The table 1 shows the results for the IGES post

processor.

6.3 Creating the environment

The next step was the creation of the environment. Initially it was created under
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"Quick C" (microsoft C) and although the distribution of the menus was similar 

to the final one, the highlighting did not occur when the mouse was passing over 

them. When the program was transferred to turbo C++, the advantage offered by 

the C++-functions were used to handle all the menu system. All the highlighting 

of the menus could be then created. Besides these were created in such a way that 

if any changes or addition of menus could be done in an easy manner.

It must be taken into account that the "interface" created is not a CAD system. 

Thus, typical CAD system functions like transformation, scaling, mirroring, 

deleting or adding entities are not presented. All these activities should be carried 

out in the CAD system before creating the IGES output.

6.4 The inspection model

To create the inspection program itself, firstly the features the system was going 

to offer had to be decided. The CMES reference manual was taken as a guide of 

the features usually CMMs provide and the features and tolerances there described 

were supported. The inspection model could be created selecting different 

geometric entities from the screen depending on the case and stored in memory 

to eventually create the inspection program.

It was convenient to have the information of all the different features created in 

a single linked list as the measurement order (if the selection order is taken into 

account) was already established. The problem was that the information stored for 

each feature was different therefore the registers defined were of different types 

and they could not be linked in a single list. To solve this problem a union type 

of entity was created, which would point to a different register depending on the 

type of feature created. An identifier to discern the different features was also 

defined with the union type of entity. When the option to minimize the time of 

measuring was provided, the measurement order had to altered. The algorithms 

created would reorganize this list of features with this criteria (shortest path). The
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final outputs in simulation, CMES program and DMIS program, did not change 

because the data organization was the same in both cases.

Every time an IGES file of the same part was loaded into the program a new list 

of features was created without deleting the old one. One could think that memory 

shortage could be a problem. But the information stored for each feature (floats) 

is small and in all the tests done (some of them five different faces were loaded) 

there was still enough memory available. It has to be noted that not more than 5 

faces can be measured in a part with the same inspection program with this 

interface. Besides all the information which is not needed is deleted. So when a 

new face is loaded all the geometry information1" of the previous face is deleted. 

If the new face belongs to a new a part all the information related to the 

inspection model of the previous part would also be deleted, whereas if it belongs 

to the same part this information would be maintained to eventually create the 

inspection program.

One of the restrictions of the programs is that only one coordinate system, one 

probe and one plane can be created for each list of features or in other words for 

each face, auxiliary axes to measure features in inclined planes cannot be created. 

This is because each plane is assigned with one probe and all the features which 

lie on that plane can only be measured with that particular probe.

6.5 Testing the CMES inspection programs

The first of the inspection programs to be tested were the CMES programs 

because the DMIS translator was not still available. The first programs were 

checked in the old CMM with the fixed(star) probe mount. These probes were 

taken as a reference to define the probes in the system. To measure a part the set

up of the machine had to be done manually, although a program was created to 

do the set-up of the capability block automatically to make the task of testing 

easier. After several corrections in the program the whole capability block with
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different tolerances was measured successfully.

Different special measurements were made to check the crash detection algorithm. 

For instance, measuring features with intercepting features inside it (e.g, a hole 

with a cylinder higher than the hole inside it) or whenever the probe moves along 

the part to measure the next feature. This latter was tested every time the probe 

has to come out of (inside) a feature (hole, slot..) to measure the next one, in order 

to avoid crashing with the feature walls. This was also tested whenever a solid 

feature was measured (cylinder, block ...) because to move the probe from one 

point to another the probe has to go above the feature and move to the next point. 

This movement is also controlled by the crash detection algorithm. In summary, 

it can be said that all the parallel movements realized to measure the different 

features are controlled by this algorithm and it worked properly in all the tests 

realized (see section 6 .2).
ft

Further improvements could be done in this area of testing possible collisions not 

only with the probe but with the rest of the mechanism (mount, arm ...).

The CMES inspection programs were the first ones to be tested. Initially several 

simple programs were tested to check programming errors and around 30 complete 

programs with different features were tested successfully. Soon it was realized that 

a simulation of the machine movements to check and correct all the small 

modifications that were made during the development of the program was 

necessary. The simulation was made using the same algorithms created for the 

generation of CMES inspection program, so that if the simulation worked, the 

inspection program worked as well (see table 2 , pag 131).
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6.6 Testing the simulation

Once the inspection program was created a simulation of the movements the probe 

does to measure the different features was created. The same steps as in the 

previous case but changing the output commands were followed to create the 

screen simulation. In this case instead of giving CMES output commands to move 

the probe some functions were created to move a disc (which simulates the probe) 

over the part. The probe changes the colour when a perpendicular movement to 

the work-plane takes place. Also some changes in the coordinates had to be made 

because the coordinates of the screen are always x and y positive whereas the 

coordinates of the part can be positive, negative or a combination of both 

depending on the current work-plane. The inspection program could be then 

checked first on the screen and later on the CMM several times verifying that the 

simulation represented correctly the movements of the CMM.

Around 30 complete inspection programs with different combinations of features 

were tested to make sure that the machine movements correspond to the 

simulation. The simulation was very useful to check the crash detection and the 

"fast way" algorithm which were only tried in the machine once they were 

working in the simulation. These worked almost straight away without much 

modifications. These algorithms were tested hundreds of times in the simulation.

6.7 Testing DMIS inspection programs

After the simulation and the CMES output were debugged, the DMIS output was 

generated. It could not be tried though until the new CMM with the DMIS 

translator arrived. The steps followed were the same as in the CMES output, 

changing the commands and the manner of referring to the coordinates. The three 

coordinates values (x, y, z) must always be given. When the new CMM arrived 

the same programs which had been tested in CMES were executed, even though 

the outputs in CMES and DMIS were slightly different. In CMES there are
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commands to measure exactly all the defined features whereas in DMIS to get 

certain values (e.g, length of a slot or a block, radial distance ...) a tolerance had 

to be always defined. Otherwise not only the Coordinates of the points taken would 

be given. For example, to measure the radial distance in CMES there is a special 

command "WT" which gives that measurement, whereas in DMIS to get that value 

apart from the commands to take both points a tolerance for that length and the 

length itself must be defined within the same command. This is because these 

measurements are controlled by the tolerancing commands instead by the feature 

definitions. Another problem was that the DMIS translator in the LK machine did 

not support the command "EVAL" which was the one used in the DMIS programs 

to relate features and tolerances so this relation had to be done using the 

11 OUTPUT" command to be able to test the programs. The algorithm to detect 

crash collisions worked exactly the same as it did for the CMES programs (the 

movements are determined by the same algorithm in both languages).

Another deficiency of the DMIS post-processor was that it did not accept "IF" 

statements which are defined in the DMIS specification. The problem was that the 

prototype programs could not be tested because the programs could not be 

compiled.

The DMIS output files by default are written to a file. This file contains all the 

measured values in DMIS output format.

Several small programs with few features were tested to check the errors in the 

DMIS statements. The coordinate values were correct because the algorithms to 

calculate them were the same as for the simulation, and for the generation of 

CMES programs which had been tested several times before. In spite of that 

around 30 complete DMIS inspection programs were created to verify the 

relationships between the simulation and the DMIS programs (see table 2).
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Simple pro

grams/with no 

success

Simple 

programs /with 

success

Complete 

programs 

/with no success

Complete 

programs 

/with success

CMES files 30 20 5 25

Simulation 100 400 50 300

DMIS files 30 20 5 25

Table 2 : Testing CMES, DMIS and the simulation

6.8 Inspection program restrictions

The inspection program was generated to take the minimum number of contact- 

points the CMM needs to calculate the actual feature values. But for some features 

(e.g, hole) more contact-points could be taken. The advantage of having more 

contact points is that the precision of the measured values is bigger, on the 

contrary it takes longer to complete the measurement. Furthermore, to calculate 

the measurement sequence would be more complicated because there are more 

points to consider.

One of the constraints is where the contact-points are taken in the feature. For the 

same type of feature the contact-point position is defined and cannot be altered 

(see section 6.5), but the CMM allows to take a point in any part of the feature. 

If this is achieved it could be applied to find the possible shortest-path. However 

a new problem would arise because the number of combinations would increase 

drastically as the number of possible points to consider would be enormous. In the 

solution proposed by the system as the contact-points are fixed, the number of 

combinations decreases, even then some assumptions have to be done to calculate 

the path, otherwise it would be impossible to find a solution (travelling salesman 

problem) (see section 5.7.2).
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One of the problems which can happen testing the inspection programs is that the 

contact points are taken when the probe is still in travelling mode, which will give 

an error. The problem is that the distance from the contact-point at which the 

probe changes the speed is very small (3mm) (although it can be changed within 

the program) to avoid wasting travelling time at slow speed. But if the real part 

is too wrong (i.e. the real dimensions are very different from the geometry ones) 

the contact-point would be taken at high speed and an error would be displayed 

stopping the measuring process. The solution then is changing the "approaching 

distance" in the program slowing down all the measuring process (see section 6.1). 

However this error is very rare because usually parts are not that far from the 

geometry (not more that 1 mm)

6.9 The PH9 and the new CMM

Another problem with the new CMM was that the PH9 could not position the 

probe in one of the five positions supported within the system (particularly probe 

3, see chapter 5). This meant that not more than four faces (the bottom one is 

where the part lies) could be measured in one program. This problem can always 

be solved using a star probe centre instead of the PH9.

Several programs to measure different features of the capability block were created 

and tested in both languages (CMES and DMIS) in the new machine. For the same 

inspection model both programs drive the CMM in the same manner, and the 

measurement outputs are the same.

The problematic points are two. One is changing measuring face which involves 

a rotation of the PH9 (to change the probe) and a movement to the next face. The 

other one is to change the coordinate system which means changing all the 

coordinates and refer them to a new system, were tried several times and the 

programs performed successfully in both CMES and DMIS.
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6.10 Testing the link CMM-CAD

The next step was to return the measured values into the system. To do that the 

DMIS output values which had been stored into a file are read into the system. A 

post-processor to read this values was created. This post-processor was tested with 

most of the DMIS output files created by the inspection programs which had been 

previously created within the system. Once the information was back into the 

system an IGES output could generated by an IGES pre-processor which is 

provided within the system. This pre-processor maps the geometry of the part, the 

measured values and the text to represent this values into an IGES file.

The IGES files created for the DMIS output files read into the system were 

transferred to AutoCad without any problems. After reading the information into 

AutoCad it was necessary to centre and scale the drawing on the screen because 

usually the coordinates of the drawing were not within the default limits of 

AutoCad. Dimensions were created for the measured features and whether they 

were the same as the values given by the CMM was checked, so that the link with 

the CAD system was correctly done.

Several simple inspection program,s outputs were tried to get back into the system 

until all the errors were corrected. Around 20 full inspection program’s output 

were read into the system and transferred to AutoCad via IGES successfully.

6.11 Testing summary

The program has been tested a number of times during its evolution. Whenever 

a new option was created it was tested until it worked properly. The figures shown 

in table 1 and 2 are just indicative to give the reader and idea of how reliable the 

program is.

The first module to be tested was the IGES translator, using several drawings from
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AutoCad and Unigraphics. The information transferred was completely successful,

i.e. the required data were always read. The drawing display was transferred 

almost completely; sometimes slight variations in the annotations could be seen. 

Once, the IGES translator was working module to create the inspection model was 

made and tested. To check whether the values stored for each feature were correct, 

they were printed on the screen because there was not yet any output program to 

check them. Afterwards the CMES inspection programs and the simulation were 

created and tested during their evolution in the CMM and in the screen. The 

DMIS programs were much easier to test because they rely on the algorithms 

created for the simulation and the CMES files, which had been tested several 

times before (as it has been discussed earlier), the DMIS output was created. 

Finally, the feedback into the CAD system was created using DMIS and IGES. To 

check, it most of the DMIS output files created when the DMIS inspection 

programs were tested were read and transferred back into the CAD system 

(AutoCad) via IGES.

6.12 Error handling

In the move towards full automation, error detection, error diagnosis, and error 

recovery are extremely essential. In this proposed system some form of error 

handling has been attempted in a very simple manner. These are briefly discussed 

below.

In order to avoid wasting time checking whether the programs work properly in 

the CMM, or causing any damage to the machine, some facilities to detect error 

are necessary. Two approaches have been provided in this research to check 

possible errors before they actually occur.

One of them is the simulation, which represents graphically on the screen the 

movements the probe is to perform in the CMM. This allows the user to correct 

possible errors before the inspection program is created. This means that the errors
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can still be corrected before the measurement takes place in the CMM (check error 

off-line) (see section 5.8).

The other approach is to create a "prototype" program (see section 6.8). This 

allows the user to check in the machine, if an error could happen. In this case, 

before measuring a feature, the program asks the operator whether to measure that 

feature or not, and states the type of measurement to take place. If the user wants 

to omit that measurement, the program will still move the probe to the position 

where the probe would have finished, if the measurement had taken place. Any 

possible probe crashing is also checked in this movement. The reason for this 

movement was to keep the algorithms simple and robust.

In general to program off-line, and to institute on-line error detection is complex. 

This is because when the program is being generated, it does not have an 

interaction with the user and it cannot act accordingly to his/her answers. For 

instance, in the prototype program the user could be asked instead of whether or 

not to measure the next feature - to measure a hole or a boss, and do the 

respective measurement. The problem is that the final probe position for measuring 

the hole or the boss is different, and at the time the program is created it is not 

possible to know the user’s answer, therefore automation functions like the crash 

detection or the generation of the inspection sequence would not be viable because 

of the lack of information. Thus the reason why in the prototype program the 

solution followed was always to finish in the last expected position in a 

measurement sequence even when the measurement does not take place.

In the LK CMM there is a way to create an inspection program with error 

detection because there is a command which detects any possible error. It will 

detect, if a point has not being taken when it was expected and if something 

touches the probe when it is realizing a travelling movement, and execute the 

corresponding actions. The problem with an inspection program created off-line, 

is that if an error of this kind occurs, even when the execution of the program
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could go on it would not be any longer reliable, because the movements of the 

probe are not any longer the ones expected.

Finally it could be said that error detection is important and necessary, but to 

create off-line, an on-line error detection is very complicated. The program cannot 

control all the different situations that can occur in the CMM because there is not 

enough information. In order to achieve this additional sensor information (e.g, 

vision) may be needed.
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Chapter 7 : Conclusions and Discussions

7.1 State of the art

Linking design and inspection is becoming increasingly popular as the use of 

CMMs within industry grows. However, the state of CMM programming is about 

where CNC programming was a decade ago.

A considerable number of CMMs are still programmed on-line in self-teaching 

mode, therefore the machine is constantly utilized creating part-programs instead 

of executing the part program itself. One must take into account that CMMs are 

expensive machines for their time to be wasted creating part programs which could 

be generated elsewhere. Another inconvenience is that the quality inspector needs 

to have knowledge about programming, which is not generally the case. Thus, 

there is an obvious need to create off-line programming software to free CMMs 

of any task which does not involve measuring, and also to provide an inexpensive 

environment (i.e, PCs, Workstations ...) within which to create the part program 

easily.

Another deficiency found in the use of CMMs was the lack of feedback of 

measured data to improve the manufacturing process. Initially machining tools 

performed individual operations and the machine operator carried out the 

measuring operation and made adjustments accordingly. When machine centres 

were made with more degrees of freedom and automated tool changers were 

incorporated, the measuring task was becoming more complicated and CMMs with 

faster output were introduced into the market. However a problem arose in that 

CMMs needed to be situated in a clean environment to work properly and 

therefore they could not operate on the shopfloor near the machine, so feedback 

between the two was reduced. A network system could not be created yet because 

CNCs were not prepared to understand the CMMs outputs.
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Major CAD vendors are now working on providing a two way link between CAD 

and CMM. Based on a 3D CAD model, and interacting with the user, they create 

a CMM part program which is either in a specific CMM language or in the 

standard DMIS. Most of them also provide the option of getting a DMIS output 

file with the actual values back into the system. Once the information is 

transferred back into the CAD system, features within and out of tolerance can be 

displayed in different colours and dimensions with the real values can be created. 

This drawing with the measured values can be plotted to give the operator a 

graphical impression of the state of the part. The major disadvantage is that the 

products CAD vendors develop are sometimes restricted to a specific CAD 

software and usually run on workstations, and not on personal computers. 

However recent trends seems to indicate a move towards powerful PC systems.

It is possible to define many engineering components using a 2V4D model. The 

shape of these components can generally be represented by profiles and associated 

heights and they are relatively easy to design and manufacture. They are usually 

designed on small CAD systems which run on PCs and which do not provide any 

inspection link.

Companies which use this type of CAD system to design their products have two 

options. One is to buy a bigger CAD system which provides a CMM programming 

module. The problem with this, however is that usually this type of CAD system 

and associated hardware can be very expensive, resulting a large investment for 

the company. The other option is to either create the part programs manually or 

to use the CMM in self-teaching mode with all the involved disadvantages as 

explained previously.

7.2 Work done

The work undertaken during this research was to provide both missing links 

between CAD and CMM by developing off-line programming software for this
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type of prismatic component, which is capable of running on a PC. The idea was 

to create a program independent of any particular CAD system or CMM, and thus 

widening the range of application. This was achieved by using standard interfaces 

to allow communication with both the CAD system and the CMM.

1. The standards: The standard selected to get information from and to the CAD 

system was IGES because it is the most widely used graphic standard and 

consequently most of the CAD systems support it. On the other hand the standard 

DMIS, which is the most important standard in inspection, was used to create the 

CMM program and to transfer the actual values back into the system.

2. Linking CAD with CMM: The software developed provides the user with an 

easy way of creating the part program. The need for an expert programmer is 

therefore not necessary and it is possible for a person with just inspection 

knowledge to decide and select the features to measure. The program calculates 

any possible collision between probe and workpiece automatically solving the 

problem if required, and it also provides the option of generating an automatic 

inspection sequence. Another useful option is the simulation which shows on 

screen the movements the probe will follow on the CMM and the user can take 

decisions accordingly. The output program can be written in DMIS or in CMES 

which is a specific application language for LK machines.

3. Linking CMM with CAD: Once the part has been measured in the CMM, the 

DMIS output file with the real values generated by the CMM can be read back 

into the system and the features with the real data will be displayed in different 

colours depending on whether they are within or out of tolerance. This gives the 

inspector a graphical impression which is always much easier to read than a file 

full of numbers. The user also has the option of retrieving this drawing into the 

CAD system via IGES in case the drawing requires manipulation or plotting.

This research can be considered as further advancing the work carried out to link
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CAD and inspection (CAD/CAI). However further work is still required to reach 

the level currently attained between CAD and CAM.

7.3 Discussions

One of the problems of using IGES for inspection planning is that the tolerance 

information cannot be processed (see section 4.8), therefore human intervention 

is needed to decide what features to measure. This lack of information makes it 

necessary the creation of an environment to interact with the user to create the 

inspection model, which was the solution proposed in this research. Besides the 

information taken is not feature-based so human intervention is also necessary to 

create the measurement features with their respective tolerances out of the 

geometry.

With the information taken from the IGES file and the human interaction an 

inspection model can be created. This inspection model is stored in memory and 

it is expanded every time a new feature is created. When a new IGES file (e.g, a 

new face) is loaded only the necessary information to eventually create the 

inspection program is stored, the rest (geometry information) is deleted and the 

memory released. This is done like that to avoid memory problems (see chapter 

7).

However, there is a restriction, features located in inclined planes cannot be 

measured. In this application only one coordinate system and one probe can be 

applied to each plane because there is not enough information about the part. The 

problem is that features located in inclined planes cannot be measured that way 

because auxiliary axes for the inclined plane must be created. This problem could 

be solved using a 3D model.

The next step is to create the inspection programs, which can be created in DMIS 

and CMES language. Both of them are created following the same steps and their
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performance in CMM is exactly the same. The simulation was also generated 

following the same steps than the DMIS and CMES programs so it represents 

exactly the same movements the CMM will do which was very useful to debug 

the program.

Finally, the link to connect CMM with CAD was created. The information was 

successfully transferred into the CAD system and further manipulation of the data 

could then be done (plotting, dimensions ...). See chapter 7 for more detailed 

information.

If more information about the shape of the part and about the tolerance 

information could be processed the degree of automatization would increase. The 

ultimate idea would be to create the inspection program automatically, without any 

human intervention.
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Chapter 8 : Further work

8.1 3D representation

In this work, all the information taken from the IGES file by the post-processor 

is defined as 2^D  information, i.e two and a half dimension (see section 3.1.5). 

However, 3D information can also be generated from the IGES specification. 

There are two ways of defining 3D information; surface definition and solid 

modelling, the latter is more suitable to describe prismatic parts.

The description of both B-Rep (Boundary REPresentation) and CSG (Constructive 

Solid Geometry) is the primary reason for the existence of version 5.1 of IGES. 

However, it is defined in the grey pages of the specification (in Appendix G), 

indicating that the technology has not been tested by actual implementation. 

Because of this, software vendors are reluctant to incorporate B-Rep and CSG 

support into their products until these entities are defined in the main body of the 

specification. Another version of IGES, V6, is planned for release in 1995 and one 

of the aims is to incorporate B-Rep and CSG in the main body of the IGES 

specification. Although B-Rep and CSG entities are only described in the 

Appendix of the IGES specification, it does give an idea of how IGES is 

developing [Puttre 93].

Most CAD systems use Boundary representation (B-rep) to describe solid models 

but the solid modelling representation (CSG) is more appropriate to describe 

prismatic parts. The problem is that CAD systems mainly use the B-Rep 

representation to define the solid model, therefore most of the 3D IGES output 

will use these kind of entities. However CSG representation is becoming 

increasingly popular (especially among researchers) for the representation of 

solids. Both representations have advantages and disadvantages, so a decision must 

be made on which one to use, or to use them both.
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Another advantage of having more information about the shape of the part is that 

the machine set-up could be done semi-automatically, but it would still be 

necessary to know the position of the part on the table. This problem could be 

solved, for example using a vision system attached to the CMM to provide 

information on the location of the part on the table.

Moreover with this information, more collision apart from the probe against the 

part could be detected. For instance, the whole probe system and the arm of the 

machine could be considered and the movements they realize could be controlled 

to avoid any crash.

Furthermore, auxiliary axis to measure special features could be created. For 

instance to measure features which are not located in any of the five planes of the 

part without the need of re-locating the part and avoiding the creation of a new 

set-up.

8.2 Tolerance representation

Once it has been decided what representation use, the next step is to read the 

information from the IGES file. The advantage of both these representations 

against the 214D model is that much more information of the geometry of the part 

can be taken from the IGES file but the problem of representing the tolerance 

information still exists and this is essential to create the inspection plan. Unless 

this information can be taken from the part model human intervention will be still 

required to create the inspection plan. Without the tolerance information no rule 

can be created to generate the inspection program automatically.

There is some relevant work trying to relate geometry to tolerance information 

such as GD&T (geometric dimension and tolerancing), which is an ANSI standard. 

If it is possible to obtain the geometry with its respective tolerance values, rules 

could be formulated and the inspection program created automatically.
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8.3 The STEP standard

Ultimately, the STEP standard could be used. The idea of this standard is to define 

all the information relating to a product throughout its entire life cycle, so all the 

data necessary for the creation of the inspection program will be available. 

However the standard is still under development and CAD systems do not 

currently support it. Thus, STEP is still in its early stages of development but is 

destined to be the standard of the future.

8.4 Feature-based CAD systems

The tendency of the CAD systems is towards feature-based systems. The idea is 

to create the designs based not only in the geometry but also in the functionality 

of the features. This will provide to the subsequent processes (manufacturing, 

inspection ...) with more relevant information about the part.

The ideal standard output for this type of CAD systems is the STEP specification. 

As have been mentioned earlier this option is not commercially available and even 

when the tendency is towards a feature-based system, CAD systems do not support 

it yet.

Finally, it could be said that the more information one can take from the design 

and manufacturing process about the part the less human intervention that would 

be needed to create the inspection program.
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Appendix 1 : IGES data format

1.1 General

An ASCII[ANSI68, ANSI77] form is defined in the IGES specification to represent data.

1.1.1 Defaults

A specific interpretation of an omitted item has been provided in some cases. 
Distinctions may be needed among empty fields, blank fields and zero fields.

• Empty field: Two consecutive field delimiters or a field delimiter and a record 
delimiter is an empty field. They are only possible in free formatted data.
• Blank field: It is a field containing only blanks.
• Zero field: It is a numeric field with only one digit, where that digit is zero.

1.2 ASCn fixed form

The ASCH fixed form has a fixed line length of 80 characters. The term column refers 
to the character position in each line. The file is divided into sections. The section 
identification character shall occupy Column 73 of each line. Every line in the file must 
have a sequence number, i.e., completely blank lines are not permitted. The remaining 
columns are assigned to fields as defined in the file section description. The term 
"record" refers to the set of parameters for one entity within one file section. A record 
consist of one or more lines.

1.2.1 Sequence number

A sequence number is a string of from one to seven digits and is the means of indexing 
lines within the various sections of the data file. The sequence number for each section 
begins with 1 (00000001) and continue sequentially without interruption to the value 
corresponding to the number of lines in the section. A sequence number may have either 
leading zeros or leading blanks and it is right justified in the line (Columns 74-80).

The sequence number is preceded in the line by a single letter code in Column 73 
identifying the section in which the line resides:

Section Code

Start S
Global G
Directory Entry D
Parameter Data P
Terminate T
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1.2.2 Constants

The specification defines six types of constants: integer(or fixed point), real (or floating 
point), string, pointer, language statement, and logical. The rules applied to them are the 
following ones:

• Blanks are only significant in string and language statement constants. A 
numeric field of all blanks is considered to denote the default value for that 
default value has been defined in the specification. No blanks are allowed 
between the beginning and end of a numeric constant.

• Numeric constants shall not contain embedded commas.

• The absolute magnitude of an integer constant may not exceed the value 2*(N- 
1), where N is the number of bits used to represent the integer value (Global 
Parameter 7).
Similarly, the absolute magnitude and precision of a real constant may not 
exceed that indicated by a Global Parameters 8-9-10-11.

• Only string and language statement constants may cross filed/line boundaries. 
When such a constant does cross a boundary, it is considered to extend to the 
last usable column in the current line and then to continue in with the first 
column of the succeeding line. The last usable column on lines in the Parameter 
Data Section is column 64; on lines in all other sections is column 73. A string 
constant may not be broken before the Hollerit delimiter (H).

• A numeric constant may be either signed or unsigned. If signed, the leading 
plus or minus determines the sense of the constant. If unsigned, the sense is 
assumed to be non-negative.

1.2.2.1 Integer Constants

An integer constant is always an exact representation of an integer value. It may assume 
a positive, negative, or zero value.

The form of an integer constant is an optional sign followed by a non-empty string of 
digits. The digit string is interpreted as a decimal number. The following are examples 
of valid integer constants:

0 150 2147456 +3245
1 -10 -2147456

1.2.2.2 Real Constants

A real constant is a processor approximation of the value of a real value. The following 
rules apply to real constants :

• It may be a basic real constant, a basic real constant followed by an exponent,
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or an integer constant followed by an exponent.

• The form of a real constant is in order, an optional sign, an integer part, and 
a fractional part. Both the integer part and the fractional part are strings of digits; 
either of these parts may be omitted but not both. A basic real constant is 
interpreted as a decimal number.

♦ The form of a real exponent is the letter E followed by an optionally signed 
integer constant. A real exponent denotes a decimal power of ten by which the 
preceding constant is multiplied.

The following are examples of valid real constants :

256.091 0. -0.58 +4.21
1.36E1 -1.26-02 0.1E-3 l.E+4

1.2.2.3 String constants

String constants are represented in the Hollerit form. A string constant is an arbitrary 
sequence of ASCII characters. Blanks, parameter delimiters, and record delimiters are 
treated simply as characters within the string. There is no limit on the length of a string 
constant.

The form of a string constant is non zero, unsigned integer constant (character count), 
followed by the letter H, followed by a string of characters consisting of the number of 
contiguous characters specified by the character count. The following examples are valid 
string constants:

3H123 10HABC.,.;ABCD
8H0.475E03 12H HELLO THERE

1.2.2.4 Pointer constants

A pointer constant is represented by a string of zero to seven characters. An empty field, 
a blank filed, and a zero value are all equivalent. However, such null pointers are valid 
only where the meaning of the null value for that pointer has been specifically provided. 
Furthermore, a negative integer in the field is valid only where the interpretation of a 
negative fields has been explained.

Pointer constants are used to identify a line in either the same or a different section of 
the data file. The magnitude of the pointer constant corresponds to the sequence number 
of the referenced line, and the referenced file section is determined by the context of the 
reference. Pointer constants are unsigned except where they are alternative parameters 
in a field. Pointer constants whose magnitude requires fewer than seven digits may use 
leading zeros or leading blanks in fixed format files.
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1.2.3 Rules for forming and interpreting free formatted data

The data in several sections of the file may be entered in free format. The free format 
will apply to the range of columns of successive lines as needed. This free format 
feature allows the specification of parameters in the prescribed order without restricting 
the placement of the parameter to a particular location on a line. When free format is 
permitted, the following rules apply:

• The parameter delimiter (Global parameter 1-defaulting to a comma) is used 
to separate parameters.

• The record delimiter (Global parameter 2-defaulting-to a semicolon) is used to 
terminate the record (i.e., to terminate a list of parameters).

• When two parameter delimiters, or a parameter and record delimiter, appear 
adjacent to each other, or are separated by only blanks, the delimited parameter 
is considered not to have been specified in the file and should be given its 
default value. Unless specifically noted, the default value for a numeric 
parameter is zero, and the default value for a string parameter is null. Pointer 
constants can be defaulted only when a specific definition of the meaning of the 
default field has been provided in the Specification. It is the responsibility of the 
processor to ensure that these default values are reasonable for the particular 
parameter in question.

• When a record delimiter appears before the list of parameters is complete, all 
remaining parameters should be given their default values. In the case of early 
termination of the Parameter Data record, either or both groups of the additional 
parameters need to be present. This is valid because the pointer count in the 
parameter preceding the unused pointers have been defaulted to zero. Thus, the 
unused pointers are not expected.

• The end of the data portion of the physical line (i.e., Column 72 in the Global 
Section, and Column 64 in the Parameter Data Section) is not to be constructed 
to act as either a parameter delimiter or a record delimiter.

• The parameter delimiter and record delimiter characters do not maintain their 
special significance when included within a string constant.

• A numeric constant, including its trading delimiter, cannot extend across a line 
boundary.

1.2.4 File structure

The file contains six different subsections which must appear in order as follows:
♦ a. Flag Section (Not always present)
♦ b. Start Section
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* c. Global Section
• d. Directory Entry Section
• e. Parameter Data Section
♦ f. Terminate Section

These sections are contiguous with no intervening blank lines.

1,2.4.1 Start Section

The start Section of the file is designed to provide a human readable prologue to the 
file. There must be at least one start record. All records in the record must have the 
letter S in Column 73 and a sequence number in Column 73 through 80. The 
information in Columns 1 through 72 need not be formatted in any special way except 
that the ASCII character set shall be used. The following is an example of an start 
section.

1 72 73 80

This section is a human readable prologue to the file. It can 
contain an arbitrary number of lines using ASCCI characters in 
column 1-72

50000001
50000002
50000003

1.2.4.2 Global Section

The Global Section of the file contains the information describing the preprocessor and 
the information needed by the postprocessor to handle the file. All records in the Global 
Section shall contain the letter G in Column 73 and a sequence number.

The parameters in the Global Section are the following ones:

1. String ► Parameter delimiter character (default is comma).
2. String ► Record delimiter character (default is semicolon).
3. String ► Product identification from sending system
4. String ► File name.
5. String ► System ID.
6. String ► Preprocessor version
7. Integer ► Number of binary bits for integer representation.
8. Integer ► Maximum power of ten representable in a double precision floating point 
number.
9. Integer ► Number of significant digits in a single precision floating point number 
on the sending system.
10. Integer ► Maximum power of ten representable in a double, precision floating point 
number on the sending system.
11. Integer ► Number of significant digits in a double precision floating point number 
in the sending system.
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12. String ► Product identification fro the receiving system.
13. Real ► Model space scale.
14. Integer ► Unit Flag.
15. String ► Units.
16. Integer ► Maximum number of line weight gradations (default=l).
17. Real ► Width of maximum line weight in units.
18. String ► Date & time of exchange time generation 13HYYMMDD.HHNNSS (year, 
month, day, hour, minutes and seconds).
19. Real ► Minimum user intended resolution of the granularity of the model 
expressed in units.
20. Real ► Approximate maximum coordinate occurred in the model expressed in 
units.
21. String ► Name of the author.
22. String ► Author’s organization.
23. Integer ► Integer value corresponding to the version of the Specification used to 
create this file.
24. Integer ► Drafting standard in compliance to which the data encoded in this file was 
generated.
25. String ► Date and time the model was created or last modified, whichever occurred 
last, 13HYYMMDD.HHNNSS.

1.2.4.3 Directory Entry Section

The Directory entry section has one directory entry for each entity in the file. The 
directory entry for each entity is fixed in size and contains twenty fields of eight 
characters each, spread accrues two consecutive eighty character lines. Data are right 
justified in each field. With the exception of the fields numbered 10, 16,17,18, and 20, 
entries in all the fields in this section will be either integer constants and pointer 
constants.

The purposes of the Directory Entry Section are to provide an index to the file and to 
contain attribute information for. The order of the directory entries within the Directory 
Entry Section is arbitrary with the exception that a definition entity must precede all of 
its instances.

Within the Directory Entry Section, a field consisting of whole of blanks is to be 
considered to have not been specified and should be given a default value where 
possible. Default values are not allowed in Fields 1,2,10,11,14 and 20. The actual values 
to be assigned as defaults will vary depending on the entity type.

Some of the fields in the directory entry can contain either an attribute value or pointer 
to en entity containing a set of such values. In these fields a positive value indicates an 
integer constant while for a negative value the absolute value should be taken and the 
result interpreted as a pointer constant.

Since valid fields have sequence numbers increasing from one, zero is a valid pointer



Appendix 1 IGES Specification 156

value only when a specific interpretation of a zero has been defined in the specification. 
In such cases an empty field or a blank field is equivalent to the zero field.

1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) (10)

Entity Para Line Trans Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
# =» #,=> #,=> #,=> o,=> 0,=> o,=> # D#

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
# # #,=> # # # D#+l

Nomenclature:
n - Field Number
# - Integer 
=> - Pointer
#,=> - Integer or pointer (pointer has negative sign)
0,=» - Zero or pointer

The previous figure gives an abbreviated listing of the fields making up the directory 
entry for each entity. This nomenclature is used to describe all the tables in the rest of 
the specification with the following additions an exceptions:

• If the field is blank, it is defaulted, and the postprocessor will interpreted as a 
zero. (Exception: Fields 16,17, which are undefined, and 18, 18 which is treated 
as an empty text string).

* Explicit values in fields are the only allowed values,e.g., the Entity type 
Number and the form Number.

• The symbol < n.a > is used to indicate that the field has no meaning for this 
entity. A preprocessor must set the field to either zero or blank. A postprocessor 
will ignore the value altogether.

* In the status Number field, the following symbols are used:
• The symbol (**) has the same meaning as < n.a >; a preprocessor must 
set this field to 00.
• The symbol (??) means that an appropriate value from the defined 
range for this field must be used for each instance of the entity.
• An explicit numeric value (e.g. 00 or 22) is the only value that may be 
used in the field. The value 00 will often be used in place of **.

• Footnotes are used to indicate that the values of some fields should be ignored
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under certain conditions.

The following is a descriptio of all the entries of the Directory Entry :

► Entity Type Number: Identifies the entity type.
► Parameter Data: Pointer to the first line of the parameter data record for the entity. 
The letter P is not included.
► Structure: Negated pointer to the directory entry of the definition entity that specifies 
this entity’s meaning. The letter D is not included. The integers values 0, 1, and 2 are 
permissible in this field but should be disregarded.
► Line Font Pattern: Line font pattern or negated pointer to the directory entry of a 
Line Font Definition Entity (Type 304).
► Level: Number of the level upon which the entities resides, or a negated pointer to 
the directory entry of Definition Levels Property Entity (Type 406, form 1) which 
contains a list of levels upon which the entity resides.
► View: Pointer to the directory entry of a View Entity (Type 410), or pointer to a 
views Visible Associativity Instance (Type 402, form 3 or 4), or integer zero (default).
► Transformation matrix: Pointer to the directory entry of a Transformation Matrix 
Entity (Type 124) used in defining this entity; zero (default) implies the identity 
transformation matrix and the zero translation vector will be used.
► Label Display Association: Pointer to the directory entry of a label Display 
Associativity (Type 402, Form 5). The value of zero indicates no label display 
associativity.
► Status Number: Provides four two-digit status values which are entered from left to 
right in the status number field in the order given below:

♦ 1-2 Blank Status
00 - Visible
01 - Blanked

• 3-4 Subordinate Entity Switch
00 Independent
01 Physically Dependant
02 Logically Dependant
03 Both (01) and (02)

♦ 5-6 Entity Use Flag
00 Geometry
01 Annotation
03 Other
04 Logical/Positional
05 2D Parametric

* 7-8 Hierarchy
00 Global top down
01 Global defer
02 Use hierarchy property

► Section Code and Sequence Number: Physical count of this line from the beginning 
of the Directory Entry Section, precede by the letter D (odd number).
► Entity Type Number: (Same as field 1).
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► Line Weight Number: System display thickness; given as a gradation value in the 
range of 0 to the maximum (Parameter 16 of the Global Section).
► Colour Number: Colour number or negated pointer to the directory entry of a Colour 
Definition Entity (Type 314).
► Parameter Line Count: Number of lines in the parameter data record for this entity.
► Reserved for future
► Reserved for future
► Entity Label: Up to eight alphanumerical characters (right justified).
► Entity Subscript Number: 1 to 8 digit unsigned number associated with the label.
► Section Code and Sequence Number: Same meaning as field 10 (even number).

1.2.4.4 Parameter Data Section
The Parameter Data Section of the file contains the parameter data associated with each 
entity. The following information is true for all the parameter data.

Parameter data are placed in free format with the first field always containing the entity 
type number. Therefore, the entity type number and a parameter delimiter (default is 
comma) precede parameter for each entity. The free format part of a parameter line ends 
in Column 64. Column 65 shall contain a blank. Columns 66 through 72 on all 
parameter lines contain the sequence number of the first line in the directory entry of 
the entity for which parameters data is being presented. Column 73 of all lines in the 
parameter section shall contain the letter P and Column 74 through 80 shall contain the 
sequence number.

1 64 66 72 73 80
Entity type number followed by parameter delimiter followed by 
parameters separated by parameter delimiters.

DE
Pointer P0000001

Parameters separeted by parameter delimiters followed by record 
delimiter

DE
Pointer P0000002

* *
•

1.2.4.5 Terminate Section
There is only one line in the Terminate Section of the file. It is divided into ten fields 
of eight columns each. The Terminate Section must be the last line of the file. It has a 
"T" in Column 73 and Columns 74 through 80 contain the sequence number with a 
value of one.

Each field in the Terminate record contains a section identifier, left-justified in the field, 
and the last sequence number in that section, right justified in the field. The fields are 
defined in the figure below:
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1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
s 2 G 3 D 500 P 261 Not used Not used Not used Not used Not used T 1

1,3 Entity Types

1.3.1 General

The Parameter Data record for each of the entities used in this application is described 
in this chapter. The fields for this record vary from entity to entity.
The meanings of the directory entry fields remain the same across all entities, those 
entities making used of the Field 15 (Form) in the directory entry are indicated and the 
various options are listed.

1.3.2 Line Entity (Type 110)

A line is a bounded, connected portion of a parent straight line which consist of more 
than one point. A line is defined by its end points. Each end point is specified relative 
to definition space by triple coordinates. A direction is associated with the line by 
considering the start point to be listed first and the terminate point second.

♦ Directory Entry

1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) GO)

Entity Para Line Trans- Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
110 ==> <n.a> #,=> #,=> 0,=> 0,=> 0,=> # D#

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
110 # #,=> # 0 # D#+l

• Parameter Data

Index Name Type Description
1 XI Real Start point PI
2 Y1 Real
3 Z1 Real
4 X2 Real End point P2
5 Y2 Real
6 Z2 Real
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1.3.3 Arc Entity (Type 100)

A circular arc is a connected portion of a parent circle which consists of more than one 
point. The definition space coordinate system is always chosen so that the circular arc 
lies in a plane either coincident with or parallel to the XT,YT plane.

• Directory Entry

1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) (10)

Entity Para Line Trans Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
100 => <n.a> #,=> #,=* 0,=> 0,=> 0,=» # D#

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
100 # #,=> # 0 # D#+l

• Parameter Data

Index Name Type Description
1 ZT Real Parallel ZT displacement of the arc
2 XI Real Arc centre abscissa
3 Y1 Real Arc centre ordinate
4 X2 Real Start point abscissa
5 Y2 Real Start point ordinate
6 X2 Real Terminate point abscissa
7 Y2 Real Terminate point ordinate

1.3.4 Copius Data Entity (Type 106)

This entity stores data points in the form of pairs, triples or sextuples. An interpretation 
flag value signifies which of this forms is being used. This value is one of the parameter 
data entries. The interpretation flag is abbreviated by the letters BP.

Fields 15 of the Directory Entry accommodates a Form Number:

♦ Form 31-39: represents the Section Entity.
♦ Form 40: represents witness line.
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• Directory Entry

1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) (10)

Entity Para Line Trans Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
106 => <n.a> #,=> #,=> 0,=> 0,=^ 0,=> # D#

(U ) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
106 # #,=> # 11-13,63 # D#+l

♦ Parameter Data

Index Name Type Description
1 IP Int Interpretation Flag:IP=l
2 N Int Number of data points: N is even
3 ZT Real Common Z displacement
4 XI Real First data point abscissa
5 Y1 Real First data point ordinate

3+2N YN Real Last data point ordinate

1.3.5 General Note Entity (Type 212)

A general note entity consist of one or more text strings. Each text string contains text, 
a starting point, a text size, an angle of rotation of the text. The font code (FC) is an 
integer specifying the desired characters set and its associated displayed characteristics. 
Positive values are predefined fonts. Negative values point to implementor-defined fonts 
or modifications to a predefined font, through the use of text definition font entity.

• Directory Entry

1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) (10)

Entity Para Line Trans Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
212 => <n.a> 1 #,=> o,=> o,=> o,=> # D#

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
212 # #,=> # 0 # D#+l
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• Parameter Data

Index Name Type Description
1 NS Int Number of text strings
2 NCI Int Number of chars of the first text
3 WT1 Real Box width
4 HT1 Real Box Height
5 FC1 Int,Pt Font Code (default=l)
6 SL1 Real Start ang of text in rads
7 A1 Real Rotation angle in radians
8 Ml Int Mirror flag
9 VH1 Int Text hor=0, Text ver=l
10 XS1 Real First text start point
11 YS1 Real
12 ZS1 Real Z depth
13 T1 Str First text string
14 NC2 Int Num. of chars in 2 str

• NCN Int Number of chars in last str

1 TNS Str Last String

1.3.6 Arrow Entity (Type 214)

A Leader Entity consist of one or more line segments. The first segment begins with an 
arrow head. Remaining segments successively link to a presumed text item. An 
individual segment is assumed to extend from the end point of its predecessor in the 
segment list to its defined point.

• Directory Entry

l 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) (10)

Entity Para Line Trans Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
214 => <n.a> #,=> #,=> o,=> 0,=> 0,=> # D#

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
214 # #,=» # 0 # D#+l

♦ Parameter Data
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Index Name Type Description
1 N Int Number of segments

3 AD2 Real Arrowhead width
4 ZT Real Z depth
5 XH Real ArrowHead coordinates
6 YH Real
7 XI Real First segment tail coordinate pair
8 Y1 Real

5+2*N XN Real Last segment tail coordinate pair
6+2*N YN Real

1.3.7 Composite Curve Entity (Type 102)

A composite curve is a continuous curve that results from the grouping of certain 
individual constituent entities into a logical unit.

A composite curve is defined as an ordered list of entities consisting of point,connect 
point, and parameterized curve entities. The list of entities appears in the parameter data 
entry. There, each entity to appear in the defining list is indicated by means of a pointer 
to the directory entry of that entity.

• Directory Entry

l 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80
(1) (2) (3) (3) (5) (6) (7) (8) (9) (10)

Entity Para Line Trans Label Status Sequen.
Type meter Structure Font Level View forma. Display Number Number

Number Data Pattern Matrix Assoc.
102 <n.a> #,=> #,=> 0,=> o,=> 0,=> # D#

(ID (12) (13) (14) (15) (16) (17) (18) (19) (20)
Entity Line Colour Parame Form Entity Subs Sequen.
Type Weight Number ter Line Number Reser Reser Label cript Number

Number Number Count ved ved Number
102 # #,=> # 0 # D#+l

• Parameter Data

Index Name Type Description
1 N Int Number of entities
2 DEI Ptr Ptr to DE of the first entity

1+N DEN Ptr Ptr the DE of the last entity
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Appendix 2 : DMIS specification

2.1 Syntaxis

The DMIS vocabulary consists of ASCII characters which are combined to form words, 
labels, parameters and variables. These are then combined to form definitions and 
commands. Definitions and commands are combined to form programm subunits, along 
with more commands and definitions, are combined to form entire DMIS programs.

2.1.1 Character

1. Only the ASCII printable characters, plus the carriage return and line feed are 
allowed in DMIS.
2. Upper and lower case alpha characters are considered to be the same. The exception 
to this rule is the text strings passed with TEXT and FILNAM commands.
3. Numerical data can be positive or negative.

2.1.2 Words, Labels, Parameters and Variables

Characters are combined to form vocabulary words, labels, parameters and variables. 
Vocabulary words are classified as either major words or minor words. Variables can 
be either real variables or string variables.

• Major words : consist of a minimum of two and a maximum of six alpha 
characters (list of major words).

• Minor words : consist of a minimum of two and maximum of six alpha
characters. A minor word is used to modify a major word or to describe certain
parameters in the command.

• Labels : consist of one to ten alphanumeric characters(except datum labels that 
are from one to two) enclosed in parentheses, and are assigned in the inspection 
program. They are used to name features, tolerances, coordinate systems, sensors, 
output data formats, datums, macro routines, text strings and program lines.

• Parameters : are numeric values (positive or negative).

• Real variables : they are either one alpha character, or an alpha character 
followed by an integer between 0 and 9. They are used to compared measured 
results against some values.

2.1.3 Commands and definitions

Words, parameters, labels and variables are combined to form commands and 
definitions:
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• Commands direct the DME or receiving system to perform some function. The 
basic structure of a command is as follows :

MAJOR_WORD/MINOR_WORD(S), PARAMETER(S)
• Definitions describe various things. The basic structure of a definition is as 
follows:

F(label)=MAJOR_WORD/MINOR_WORD(S),PARAMETER(S)

Often a command contains a pointer to a definition. In this case, the definition is used 
in the execution of the command.

2.1.4 Program Subunits

Commands and/or definitions can be combined to form program subunits. They are a 
logically grouped list of statements which perform some function. They are recognized 
by the first and last line in the subunit. There are four types of program subunits:

• Measurement sequence : Measurement sequences begin with MEAS and are 
terminated with the ENDMES command. Example:

ME AS/CIRCLE ,F(CIR 11),4 
PTMEAS/CART, -15.5,35.5,107.5,-1,0,0 
PTMEAS/CART,-25.5,35.5,107.5,1,0,0 
GOTO/-20.5,35.5,107.5 
PTMEAS/CART,-20.5,40.5,107.5,0,-1,0 
PTMEAS/CART,-20.5,30.5,107.5,0,1,0 
ENDMEAS

Depending on the MODE command the DME will perform different when 
MEAS is encountered. Only in the program mode the DME will follow the 
commands after the MEAS. In the automatic mode the DME uses its own 
internal algorithm to perform the measurement of the circle. In the manual mode 
the operator will take manually the four points.

• Motion Sequence : Motion sequences direct a series of non-measurement 
moves. They begin with GOTARG and are terminated with ENDGO. Example:

GOTARG/-20.5,35.5,107.5 
GOTO/20.5,35.5,120 
GOTO/-20.5,35.5,107.5 
ENDGO

If the program MODE is in AUTO, only the GOTARG command is executed. 
The DME calculates its own path to the end point. In the program mode the 
given moves are executed and in the manual mode the operator will move the 
probe to the end point.

• Conditional: Conditionals are used to compare a measurement result to some
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value and then branch the execution of the program based on the result. They 
begin with an IF and are terminated with ENDIF. Example:

IF X,GT,.125

ELSE

ENDIF

If a variable (X), which was previously assigned a value equal to a measurement 
result is tested to see if it is greater than .125.

• Macro routines : They are subroutines which can be executed with different 
values in the place of dummy parameters. They begin with a MACRO definition 
and are terminated with an ENDMAC. Example:

M(HOLPAT)=MACRO/Xl,Yl,R,DLAM,"LABELl",MLABEL2"

ENDMAC

If a dummy parameters is to be replaced by a real number or variable, it is 
defined without quotation marks (XI, Yl, R, DIAM in the example). If a dummy 
parameter is to be replaced with a label, it is listed with quotation marks 
(LABEL 1 and LABEL2 in the example).
To execute the MACRO, it has to be called with the real values.

CALL/M(HOLPAT),5, 7, 2.5, 5, (CSYS1), (CIRL2)

2.1.5 Programs and Output files

Programs and output files consist of a combination of commands, definitions and 
programs subunits. These files always have FILNAM as first line and ENDF1L as the 
last line.

DME DMIS output files are similar in syntaxis to the input files. Measurement results 
are passed in the form of actual feature and tolerance definitions that are similar in 
format to the output file (nominal) definitions. In addition, certain commands are passed 
through to the output file to indicate parameter settings at the time of measurement.

2.1.6 Delimiters

Slashes, commas, parentheses, apostrophes and quotation marks are used as delimiters 
in DMIS. Blank lines are insignificant and are ignored during translation. Spaces are not 
allowed within DMIS words, labels, parameters and variables.

2.1.6.1 Slash (/)

The slash character (ASCII 47) is used to separate major and minor words. A major
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word can either be a statement by itself, or can have some modifying minor words. 
When a major word is used by itself it has no slash character: MAJOR_WORD

When a major_word is used with a minor word, the slash follows the major word and 
precedes the minor word.

M A J OR„W ORD/MIN OR_W ORD

2.1.6.2 Commas (,)

Commas (ASCII 44) as used as general delimiters to separate minor words and 
parameters:

MAJOR_WORD/MINOR_WORD 1 ,MINOR_WORD2,PARAMl,PARAM2

2.1.6.3 Parentheses ’()’

Parentheses ’()’ (ASCII 40 and 41) are used to delimit labels. A label is precede with 
a left parentheses and followed by a right parenthesis. For example, if a circle has a 
label of CIRCLE_1, it is denoted by:

F(CIRCLE_1)
All labels have balanced parentheses. That is, a left parentheses is always followed by 
a right parentheses.

2.1.6.4 The apostrophe (’)

The apostrophe (’) (ASCII 39), is used to delimit the start and end of a text string. For 
example:

FILNAM/’456 test dated 9/04/93’

Use two apostrophes, one before the one required, when an apostrophe is required within 
a text string.

2.1.7 Line length and Terminator

A DMIS file consist of records with a variable line length(maximum 80 characters). 
Each line is terminated with a carriage return and line feed. A single dollar sign ($) acts 
as a line continuation.

2.1.8 Programming comments

Programming comments are lines of text insert into a DMIS inspection program to aid 
in program debugging and to document portions of the program. They are not to be 
interpreted by any automated system.

Programming comments are signified by two dollars signs ($$) as the first two 
characters in line.
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2.2 Data Structure

2.2.1 General Programming Considerations

Some general programming considerations should be kept in mind when generating an 
inspection program in the DMIS vocabulary. These refer to pointer structure, branching, 
modality and default settings.

♦ Pointers : Several commands in the DMIS vocabulary have pointers to 
definitions. For example, a measurement command has a pointer to the feature 
definition of the feature being measured. A definition MUST occur in the file 
prior to the command that points to it.

♦ Branching : Branching must always be forward in a program. A program 
cannot branch in the middle of a program subunit.

♦ Modality : Modal commands set some machine parameter or other condition 
which stays set until the command is reissued. Non-modal are in effect only for 
a single execution of the program.

♦ Default settings : Some commands have default settings. If the command is 
not issued in the program, it is equivalent to issuing it with the default values.

2.2.2 Features

Features are geometric elements which may or may not be on the part (point in the 
space). If the feature is on the part, it may be referred to in two ways :

♦ Nominal feature : is the feature definition that comes from the CAD model 
or part drawing. Gives the nominal size, location, and orientation of the feature. 
A label is assigned to the feature in the definition. Example :

F(CIRCLE1)=FEAT/CIRCLE, INNER,CART, 10,10,5,0,0,1,8

♦ Actual feature : is the measured feature. The actual feature definition gives 
the measured size, location and orientation of the feature. The label is the same
to the nominal one except than it is preceded by an FA.

FA(CIRCLE1)=FEAT/CIRCLE,INNER,CART,9.8,9.9,5,0,0,1,7.9

Features may either be measured by the DME or they may be constructed by the DME 
as a best fit through other features. When a feature is constructed, at least one of the 
features used in its construction must be a measured feature.

As illustrated in the two examples above, feature orientation consist of an x,y,z point 
and an i,j,k vector. The i,j,k is a unit vector and areal number between -1 and 1. The 
vector can be either normal or directional. Unless otherwise indicated, all normals point
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away from the part surface and all directional vectors point from the first point towards 
the second.

The current version of DMIS supports a set of feature definitions which are simple 
geometric elements:

- arc - gcurve(complex curve)
- circle - gsurf (complex surface)
- cone - line
- cube - plane
- cylinder - point
- ellipse - sphere

2.2.3 Tolerances

Tolerances are referred to in two ways:

• Nominal tolerances : are those ones found in the CAD model or part drawing.

♦ Actual tolerances : are the evaluated tolerances computed from measured 
features.

Tolerances are assigned the same labels in the nominal and actual definitions. Nominals 
are preceded by "T" and actuals are preceded by "TA". The syntaxis of the actual is 
very similar but not identical to the nominal.

The tolerances supported are the next ones :
- angle(size tolerance) - profile of surface
- diameter (size tolerance) - circular runout
- radius (size tolerance) - total runout
- circularity (roundness) - angularity
- cylindricity - parallelism
- flatness - perpendicularity
- straightness - concentricity
- profile of line - position (true position)

In addition two relationships have been added and included with the tolerances. While 
these are not strictly tolerances, they are relationships between two features or between 
a feature and a datum. These additions are angle between features (ANGB) and distance 
between features (DISTB).

2.2.4 Coordinate Systems

Part coordinate systems are set-up with datums, and are used to align the part with 
respect to the DME machine coordinate system as well as to establish a reference for 
feature and tolerance evaluations. This is done by establishing a part coordinate system 
with the DATSET command. DATSET specifies which features are to be used in
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establishing the datum reference frame and assigns labels to the datums.

Once a coordinate system has been established, it can be rotated or translated in order 
to establish a new one by reusing the DATSET statement. All coordinate systems are 
assigned labels. Translations and rotations of the part coordinate system can be defined 
by a specified amount or by an alignment with the feature.

The DATDEF statement provides a means to assign a datum label, dat is DAT (x), to 
a previously measured feature. This datum label can then be used with the DATSET 
statement to define the part coordinate system.

2.3 Feature Definitions

Feature definitions are used to describe the nominal size, location and orientation of 
features, and to assign labels to the features. They all have a label to identify them 
which is an alphanumeric name assigned to the feature, and is up to 10 characters in 
length.

2.3.1 FEAT/ARC

Function: Defines a nominal arc whose plane lies parallel to the workplane and
assigns it to a label.

Input Form: F(label)=FEAT/ARC,varl, var2,i,j,k,rad,angl,ang2
Output Form: FA(label)=FEAT/ARC,varl,var2,i,j,k,rad,angl,ang2 
Where: varl can be: INNER

OUTER 
var2 can be: CART,x,y,z 

ARC: signifies that the features is an arc.
INNER: signifies that the inside of an arc is going to be measured (i.e.,a fillet).
OUTER: signifies that the outside of an arc is going to be measured (i.e.,a round).
CART: signifies that the centre is given by cartesian coordinates.
x,y,z: are the cartesian coordinates of the centre point of the arc.
i,j,k: is the direction vector of the plane that the arc lies in.
rad: is the radius of the arc.
angl: is the start angle of the arc. Use the right hand rule for sign conventions.
ang2: is the positive include angle of the arc relative to angl.

2.3.2 FEAT/CIRCLE

Function: Defines a normal circle and assigns it a label.
Input Form: F(label)=FEAT/CIRCLE,varl,var2,i,j,k,diam
Output Form: FA(label)=FEAT/CIRCLE,varl,var2,i,j,k,diam 
Where: varl can be: INNER

OUTER 
var2 can be: CART,x,y,z 

CIRCLE: signifies that the feature is a circle.
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INNER: signifies that the inside of the circle is to be measured (i.e., a hole).
OUTER: signifies that the outside of a circle is to be measured (i.e., a boss).
CART: signifies that the centre is given by cartesian coordinates.
x,y,z: are the cartesian coordinates of the centre point of the circle.
i,j,k: is the direction vector of the plane that the circle lies in.
diam: is the diameter of the circle.

2.3.3 FEAT/LINE

Function: Defines a nominal line and assigns it to a label.
Input Form: F(label)=FEAT/LINE,varl,ni,nj,nk
Output Form: FA(label)=FEAT/LINE,varl,ni,nj,nk ‘
Where: varl can be: BND, var2

var2 can be: CART,elx,ely,elz,e2x,e2y,e2z 
LINE: signifies that the feature is a line.
BND: signifies that a bounded line is to be defined.
CART: signifies that the coordinates of the points in the line are given in

cartesian coordinates.
ni,nj,nk: is the normal vector of the plane in which the line lies, which can be

used for probe compensation. 
elx,ely,elz are the cartesian coordinates of the two end points of the line.
e2x,e2y,e2z

2.3.4 FEAT/POINT

Function: Defines a nominal point and assigns it to a feature label.
Input Form: F(label)=FEAT/POINT,varl,i,j,k
Output Form: FA(label)=FEAT/POINT,varl,i,j,k
Where: varl can be: CART,x,y,z
POINT: signifies that the feature is a point.
x,y,z: are the cartesian coordinates of the point itself.
i,j,k: is a vector, normal to and pointing away from, in which the point lies,

that can be used for probe compensation.

2.4 Tolerance Definition

Tolerance definitions are used to describe generic tolerances. They also provide for label 
names to be assigned to each tolerance. This label names are used with EYAL or 
OUTPUT statements to associate the tolerances to the features. The label is an 
alphanumeric name assigned to the tolerance, and is up to 10 characters in length.

2.4.1 TOL/DIAM

Function: Specifies a diameter tolerance and assigns it a label.
Input Form: T(label)=TOL/DIAM,lotol,uptol
Output Form: TA(label)=TOL/DIAM,dev,varl
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Where: varl can be: INTOL
OUTOL

DIAM: signifies that the tolerance is a diameter tolerance.
lotol: is the signed lower tolerance value applied to the diameter.
uptol: is the signed upper tolerance value applied to the diameter.
dev: is the deviation - the arithmetic difference between the actual value and

the nominal value.
INTOL: signifies the actual is within tolerance.
OUTOL: signifies the actual is out of tolerance.

2.4.2 TOL/WIDTH

Function: Specifies a linear size (width) tolerance and assigns to it a label.
Input Form: T(label)=TOL/WIDTH,lotol,uptol
Output Form: TA(label)=TOL/WIDTH,dev, varl
Where: varl can be: INTOL

OUTOL
WIDTH: signifies that the tolerance is a linear size (width) tolerance.
lotol: is the signed lower tolerance value applied to the linear size (width).
uptol: is the signed upper tolerance value applied to the linear size (width).
dev: is the deviation - the arithmetic difference between the actual value and

the nominal value.
INTOL: signifies the actual is within tolerance.
OUTOL: signifies the actual is out tolerance.

2.4.3 TOL/DISTB

Function: Specifies a distance and a tolerance and assigns a label to them.
Input Form: T(label)==TOL/DISTB,var2,var3
Output Form: TA(label)=TOL/DISTB,varl,var2,var3
Where: varl can be: INTOL

OUTOL
var2 can be: NOMINL,dist,lotol,uptol 
var3 can be: XAXIS 

YAXIS 
ZAXIS 
PT2PT

DISTB: the value and tolerances are applied to the distance between two features.
INTOL: signifies the actual is within tolerance.
OUTOL: signifies the actual is out of tolerance.
NOMINL: signifies a nominal distance with lower and upper tolerance,
dist: is the nominal or the actual measured value,
lotol: is the signed lower tolerance assigned to the nominal distance,
uptol: is the signed upper tolerance assigned to the nominal distance.
XAXIS: signifies that the distance between is along the X axis.
YAXIS: signifies that the distance between is along the Y axis.
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ZAXIS: signifies that the distance between is along the Z axis.
PT2PT: signifies that the distance between is point to point, or feature to feature.

2.4.4 TOL/CORTOL

Function: Specifies bidirectional positional tolerancing of features in Cartesian or
polar coordinates and assigns it to a label.

Input Form: T(label)=TOL/CORTOL,varl,lotol,uptol
Output Form: TA(label)=TOL/CORTOL,varl,dev,var2 
Where: varl can be: XAXIS

YAXIS
ZAXIS

var2 can be: INTOL 
OUTOL

CORTOL: signifies bidirectional positioning tolerancing
XAXIS: signifies that the rectangular coordinate method is to be used to tolerance

the position along the X axis.
YAXIS: signifies that the rectangular coordinate method is to be used to tolerance

the position along the Y axis.
ZAXIS: signifies that the rectangular coordinate method is to be used to tolerance

the position along the Z axis.
INTOL: signifies the actual is within tolerance.
OUTOL: signifies the actual is without tolerance,
lotol: is the signed lower tolerance value,
uptol: is the signed upper tolerance value,
dev: is the deviation from the nominal value.

2.5 Part Coordinate System

This section defines the statements used to manipulate the coordinate system.

2.5.1 TRANS

Function: Translates a part coordinate system along an axis, and assigns it to a
label.

Input Form: D(label)=TRANS/varl,var2
Output Form: DA(label)=varl,var2
Where: varl can be: XORIG

YORIG 
ZORIG 

var2 can be: value
XORIG: signifies that the coordinate system origin is to be translated on the X

axis if a value is given.
YORIG: signifies that the coordinate system origin is to be translated on the Y

axis if a value is given.
ZORIG: signifies that the coordinate system origin is to be translated on the Z
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axis if a value is given, 
value: is the distance the coordinate system origin is to be translated.

2.5.2 WKPLAN

Function: Used to explicitly declare or change a working plane.
Input Form: WKPLAN/varl
Output Form: None
Where: varl can be: XYPLAN

YZPLAN
ZXPLAN

XYPLAN: signifies that the XY plane of the current part coordinate system is the
working plane.

YZPLAN: signifies that the YZ plane of the current part coordinate system is the
working plane.

ZXPLAN: signifies that the ZX plane of the current part coordinate system is the
working plane.

2.5.3 SNSLCT

Function: Selects the sensor to be used for the measurement.
Input Form: SNSLCT/varl
Output Form: None.
Where: varl can be: S(label 1)
S(labell): is a previously defined sensor.

2.6 Motion and measurement statements

2.6.1 GOTO

Function: Executes a sensor move and defines the endpoint of the move.
Input Form: GOTO/x,y,z
Output Form: None
x,y,z: are the cartesian coordinates of the endpoint to which the sensor will

travel relative to the origin of the active coordinate system.

2.6.2 MEAS

Function: causes the DME to measure a feature.
Input Form: MEAS/varl,F(label),n
Output Form: None
Where: varl can be: ARC

CIRCLE
LINE
POINT

F(label): is the name of the previously defined feature to be measured.
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n: is the number of points to be taken in the measurement of the feature.

The MEAS statement is usually followed by a series of PTMEAS and GOTO 
statements. The MEAS statement is terminated with the ENDMES statement.

2.6.3 PTMEAS

Function: Signifies that an automatic point measurement is to be performed.
Input Form: PTME AS/C ART, x,y,z,i,j,k
Output Form: None.
x,y,z: are the nominal cartesian coordinates of the point to be measured.
i,j,k: is the direction vector pointing away from the surface of the feature used

in making the measurement.

2.7 Feature Construction

The CONST statement provides for the construction of features useful to the inspection 
process.

2.7.1 CONST

Input Form: CONST/varl,F(label),BF,FA(label2),FA(label3)
Output Form: None
Where: varl can be: CIRCLE

LINE
F(label): identifies the feature to be constructed.
BF: signifies that the constructed feature is a best fit through the features that

follow.
FA(label2): are actual measured features to be used for construction.
FA(label3)

2.7.2 CONST/POINT

Input Form:
Output Form: None. 
POINT:
F(label):
MIDPT:

CONST/POINT,F(label),MIDPT,FA(label2),FA(label3)

FA(label2):
FA(label3)

signifies that a point is to be constructed, 
is the previously defined nominal feature to be constructed, 
signifies that the feature to be constructed is to be the midpoint of the 
two previously defined features.
are the two previously defined features to be used for the construction.



Appendix 3 CMES Language 176

Appendix : 3 List of CMES commands 

3.1Workpiece datum commands

3.1.1 Datum Move (DM)

Format: DM[,axis a]...[,axis c]

The DM command allows the user to move the workpiece datum to a theoretical point 
from which all subsequent dimensions will be related.

Note: If the command is used twice, the shift will be relative to the datum’s current 
position, NOT the Master Datum.

[,axis a]...[,axis c]
These parameters are optional and may be used to specify in which axis or axes the 
datum is to be moved. If it is omitted then all Datums (X,Y and Z) are moved. The 
parameter is used to move one axis only (e.g, DM,Y) or group of axis (e.g, DM,X,Z).

Example: DM,Y
30

Signifies that the master datum is going to be moved 30 units in the Y axis.

3.1.2 Restore Master datum (RM)

Format: RMfaxis]

The RM command is used to restore the master datum as the current datum from which 
all subsequent dimensions will be related. It may be used to cancel datums created either 
by the SD (Sub Datum) or DM (Datum Move).

[,axis]
This parameter is optional and may be used to specify in which axis the master datum 
is to be restored (e.g, RM,Z). If it is omitted then the master datum is restored in all the 
axes (X,Y and Z).
Note: Only one axis may be entered with each use of the command.

3.1.3 Sub Datum

Format: SD[,axis a]...[,axis c]

The SD command may be used to create an additional datum that temporarily overrides 
the master datum.

A sub datum can be created by using the command immediately after the measurement
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of the feature to be datumed or by using co-ordinates recalled from the save point list.

There is no limit to the number of sub datums that can be created, however only one 
datum can be in force at a specific time.

[,axis a]...[,axis c]

These parameters are optional and may be used to specify which axes are to be 
datumed. If they are omitted then all axes will be datumed. The parameters are used to 
zero one axis only (e.g, SD,X) or groups of axes (e.g, SD X,Z).

3.2 Workpiece Measurement Commands

3.2.1 Inside Diameter (ID)

Format: ID,plane[,points] [tol]

The ID command is used to determine the diameter and centre coordinates of a complete 
or partial hole. The result is output either in RC or PO mode and is relative to the 
current axis system and datum.

, plane
This parameter is used to define the plane that the hole is located in and should be 
entered as either X,Y or Z,

[,points]
This parameter is used to define the number of points to be taken, the maximin being 
40. If the parameter is omitted the command defaults four.

[tol]
The [tol] parameter is optional, it may be used to allow the input of the nominal and 
tolerance data to the command so that the result may be output with actual, nominal, 
tolerance and error headings (refer to "tolerancing Commands").

Example:
ID,Z
30
40
10

This signifies that the location of the hole is in the Z plane at 30 
units in the X axis and 40 units in the Y axis from the master. 
The diameter of the hole is 10 units

3.2.2 Outside Diameter (OD)

Format: OD,plane[,points] [tol]

The OD command is used to determine the diameter and centre co-ordinates of a
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complete or partial boss or pin. The result is output either in RC or PO mode and is 
relative to the current datum and axis system.

, plane
This parameter is used to define the plane that the boss or pin is located in and should 
be entered as either X,Y or Z.

[, points]
This parameter is used to define the number of points to be taken, the maximin being 
40. If the parameter is omitted, the command defaults to four points.

[tol]
The [tol] parameter is optional, it may be used to allow the input of nominal and 
tolerance data to the command so that the result may be output with actual, nominal, 
tolerance and error headings, (refer to the "Tolerancing and Commands" section).

Example:
OD,Y 
20 
30 
10

3.2.3 Pitch Circle (PC)

Format: PC,plane[,points] [tol]

The PC command is used to determine the diameter and centre co-ordinates of a group 
of holes or bosses. The result is output in either PO or RC mode and is relative to the 
current axis system and datum.

To measure a PCD of holes/pins, use the ID or OD commands to determine the feature 
centres, save each centre using the SP (Save Point) command then use the UP (Use 
Point) or (UG Use Group) to supply the centres to the PC command.

, plane
This parameter is used to define the plane that the hole is located in and should be enter 
as either X,Y, or Z.

[, points]
This parameter is used to define the number of points to be taken, the maximin being 
40. If the parameter is omitted, the command defaults to four points.

[tol]
The [tol] parameter is optional, it may be used to allow the input of the nominal and 
tolerance data to the command so the result may be output with actual, nominal, 
tolerance and error headings (refer to "Tolerancing Commands").

This signifies that the location of the boss is in the Y plane at 20 
units in the X axis and 30 units in the Z axis from the master. 
The diameter of the hole is 10 units
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Example:
PC,X This signifies that the location of the pitch circle is in the X 

plane at 10 units in the X axis and 20 units in the Z axis from 
the master. The diameter of the hole is 50 units

10
20
50

3.2.4 Centre Measurement (CM)

Format: CM,axis[tol]

The CM command is used to determine the centre point between two measured points.

The command is primarily used to determine the dimension to the centre of a slot, but 
it may be also used to measure the centre point of various features such as 2 holes, a 
hole and a boss or a slot and a hole. The result is always in RC mode.

,axis
This is used to define in which axis the result is to be output and should be entered as 
X,Y or Z.

The tol parameter is optional, it may be used to allow the input of nominal and tolerance 
data to the command so that the result may be output with the actual, nominal, tolerance 
and error headings (refer to "Tolerancing Commands").

Example: CM,Y. This signifies that the center of measurement is going to be calculated 
in the Y axis.

3.2.5 Length Inside (LI)

Format: LI,axis[tol]

The LI command is used to determine the length of a slot by taking one point either side 
of the feature, compensation for the probe stylus is applied automatically. The output 
is always in RC mode.

,axis
This parameter is used to define the axis in which the measurement is to be taken, it 
should be entered as either X,Y or Z.

The tol parameter is optional, it may be used to allow the input of nominal and tolerance 
data to the command so that the result may be output with the actual, nominal, tolerance 
and error headings (refer to "Tolerancing Commands").

[tol]

[tol]

Example: li/x
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10 This signifies that calculation of the length is in the X axis,
being the nominal distance 10.

3.2.6 Length Outside (LO)

The LO command is used to determine the width of a lug or dog by taking one point 
on either side of the feature, compensation for the probe stylus is applied automatically. 
The result is always in RC mode.

,axis
This parameter is used to define the axis in which the measurement is to be taken, it 
should be entered as either X,Y or Z.

[tol]
The tol parameter is optional, it may be used to allow the input of nominal and tolerance 
data to the command so that the result may be output with the actual, nominal, tolerance 
and error headings (refer to "Tolerancing Commands").

Example:
LO/Y This signifies that calculation of the length is in the Y axis,
10 being the nominal distance 10.

3.2.7 Length True (LT)

Format: LT,axis[tol]

The LT command is used to determine the length between two points without the need 
of a sub-datum to be created. No probe compensation is applied to the result which is 
always in RC mode.

,axis
This parameter is used to define the axis in which the measurement is to be taken, it 
should be entered as either X,Y or Z.

[tol]
The tol parameter is optional, it may be used to allow the input of nominal and tolerance 
data to the command so that the result may be output with the actual, nominal, tolerance 
and error headings (refer to "Tolerancing Commands").

Example:
LT/Z This signifies that calculation of the length is in the Z axis,
10 being the nominal distance 10.

3.2.8 Wall Thickness (WT)

The WT command is used to determine the radial length between two points, for
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example an oil seal groove. The output is always in PO mode.

In order to determine a correct radius a sub-datum must be created at the origin point, 
the datum may be created either by the SD or DM commands.

This parameter is optional, it is used to compensate the measured point by one probe 
radius. If it is omitted, probe compensation will not be applied. As the result is in PO 
mode, the probe compensation will be a radial value, i.e. a + sign will increase the 
measured radius whilst a - sign will reduce it. This command allows to measure an 
internal or external radius between two points.

,axis
This parameter is used to define the axis in which the measurement is to be taken, it 
should be entered as either X,Y or Z.

The tol parameter is optional, it may be used to allow the input of nominal and tolerance 
data to the command so that the result may be output with the actual, nominal, tolerance 
and error headings (refer to "Tolerancing Commands").

3.3 Auto Inspection Commands

3.3.1 Move Absolute (#MA)

Format: #MA[,axis a]...[,axis c]

The #MA command causes the CMM to move to an absolute co-ordinate relative to the 
current axis system and datum. The target co-ordinate are input at the keyboard or via 
part program and may be input in rectangular or polar mode.

[,axis a]
This parameter is optional and may be used when in RC mode, to specify the axis (or 
axes) which are to move. If omitted, the command request target co-ordinates for all 
three axes.

[±]

[tol]

Example:
WT+/Z
10

This signifies that calculation of the length is along the raidus, 
being the nominal distance 10.

Example:
#MA,X,Y
20
30

This signifies that the probe is going to move to the point x=20, 
y=30 and previous z.
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3.3.2 Point (#PT)

Format: #PT[,axis a]...[,axis c]

The #PT command is used to automatically ’collect’ points from the part being 
inspected.
Note: If the probe fails to touch the part, the CMM will continue to traverse at the touch 
speed until overtravel limit is reached, when the CMM will stop and generate the 
message: ’No touch detected’.
If the probe successfully contacts the part, the co-ordinate should then be saved by the 
SP (Save Point) command after which it may be supplied to any command requiring 
measured data. The #PT command in combination with #MA and SP commands 
provides an effective method of automating all measurements.

Example:
#PT,X,Y 
20 
30

3.4 Data Manipulation

3.4.1 Save Point (SP)

Format: SP,store n[,line n]

The SP command is used after a measurement to store the X,Y and Z co-ordinates in 
a specific location. The co-ordinates will remain saved until the same location is used 
again.

Use of save points
The ability to save co-ordinates provides the CMM user with the ability to ’collect’ 
points and supply them to any command that requires measured data, any number of 
times. This will significantly reduce inspection times by removing the necessity for 
repeat probings for the same point.

,store n
This is used to define the save location in which the co-ordinates are to be stored, there 
are 250 locations available.

Example: SP,1

3.4.2 Use Point (UP)

Format: UP,store n...[,store n]

The UP command is used to recall co-ordinates that have previously been saved by the

This signifies that the probe is going to take the point located in 
the coordinates x=20, y=30 and previous z.
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SP (Save Point) command.

,store n
This parameter is used to define the point(s) that are to recalled. When the UP command 
is entered (before one of the commands listed above, that command will use the points 
defined by [,store n] instead of displaying the usual prompt $.

Example: UP, 1,2,3

3.4.3 Use Group (UG)

Format: UG,start point,points

The UG command is used to unsave groups of points. The points must have been saved 
previously.

,start point
This parameter is used to specify the save point location from which to start unsaving 
the group of points.

,points
This parameter is used to define the number of points to be unsaved.

Example: UG,5,6

3.5 Tolerancing Commands

3.5.1 Equal bi-lateral Tolerancing (/)

The / symbol allows nominal and tolerance data to be added to a measurement command 
where the tolerance value required is equal bi-lateral, that is, + or - the same value.

Example:
ID,Z/
-69,.25 
-106,.025
10,.015

3.5.2 Unequal bi-lateral Command

The // symbol allows nominal and tolerance data to be added to a measurement 
command where the tolerance value required is unequal bi-lateral, that is, + or - 
different values.

Example:
OD/Z
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-50,.025,-.025 
-53,.025,-.025
50,.02,-.03
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Appendix 4 : Examples of IGES, DMIS and CMES files

4.1 Drawing created in the CAD System

105

H oles D13

65 D50

118
130

8 H oles D'7

D80

65

130

Figure 1 : Imported drawing

After creating this drawing in any CAD system an IGES file is generated by the CAD 
system preprocessor. This IGES file is read into a system to get the geometry 
information from the CAD drawing. Once the geometry is processed an inspection 
model will be created.
In the following pages is shown the IGES file generated for the drawing above:
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4.2 IGES file input

IIGESOUT-3. 0 4 ,3 2 , .3 8 ,6 , , 9 9 , 1 5 , 15HA::\FACES\NFACEA,1.0,1,4HINCH ,3 2 7 6 7 ,  G0000002
>7D1, 13H 930525 .113851, 2 .9 7 8 5 5 8 7 5 0 7 8 3 6 D -7 , 2 . 9785587507836D2, lOHPhil MG0000003
23H Nottm T ren t  U n i v e r s i t y , 6 , 0 ; G0000004
110 1 1 1 OOOOOOOODOOOOOOl
110 1 D0000002
110 2 1 1 0 000 0 0 0 0 DO000003
110 1 D0000004
110 3 1 1 0 000 0 0 0 0 DO000005
110 1 D0000006
110 4 1 1 OOOOOOOODO000007
110 1 D0000008
100 5 1 1 0 OOOOOOOODO000009
100 1 D0000010
100 6 1 1 0 OOOOOOOODOOOOOll
100 1 D0000012
100 7 1 1 0 OOOOOOOODO000013
100 1 D0000014
100 8 1 1 0 OOOOOOOODO000015
100 1 D0000016
100 9 1 1 0 OOOOOOOODO000017
100 2 D0000018
100 11 1 1 0 OOOOOOOODO000019
100 2 D0000020
100 13 1 1 0 OOOOOOOODO000021
100 2 D0000022
100 15 1 1 0 OOOOOOOODO000023
100 2 D0000024
100 17 1 1 0 0000 0 0 0 0 DO000025
100 2 D0000026
100 19 1 1 0 OOOOOOOODO000027
100 2 D0000028
100 21 1 1 0 OOOOOOOODO000029
100 2 D0000030
100 23 1 1 0 OOOOOOOODO000031
100 2 D0000032
100 25 1 1 0 0 000 0 0 0 0 DO000033
100 1 D0000034
110 26 1 1 OOOOOOOODO000035
110 1 D0000036
110 27 1 1 OOOOOOOODO000037
110 1 D0000038
100 28 1 1 0 0 0 000000DO000039
100 1 D0000040
100 29 1 1 0 0000000000000041
100 1 D0000042
110 30 1 1 0 0 0 0 0 0 0 0 DO000043
110 1 D0000044
110 31 1 1 00000000D0000045
110 1 D0000046
110 32 1 1 OOOOOOOODO000047
110 1 D0000048
110 33 1 1 0 0 0 0 0 0 0 0 DO000049
110 1 D0000050
100 34 1 1 0 0000 0 0 0 0 DO000051
100 1 D0000052
100 35 1 1 0 00000 0 0 0 DO000053
100 1 D0000054
110 36 1 1 OOOOOOOODO000055
110 1 D0000056
110 37 1 1 00000 0 0 0 DO000057
110 1 D0000058
212 38 1 1 0 0 0 1 0 1 0 0 DO000059
212 256 2 D0000060
106 40 1 0 0 0 0 0 0 1 0 1 DO000061
106 2 21 D0000062
214 42 1 1 0 0 0 1 0 1 0 0 DO000063
214 256 3 3 D0000064
206 45 1 1 0 OOOOOIOIDO000065
206 1 D0000066
212 46 1 1 OOOIOIOODO000067
212 256 1 D0000068
106 47 1 0001 0 1 0 0 DO000069
106 256 1 40 D0000070

IGES f i l e  g e n e r a t e d  from an AutoCAD draw ing  by t h e  IGES S0000001 .k
t r a n s l a t o r  from A u todesk ,  I n c . ,  t r a n s l a t o r  v e r s i o n  IGESOUT-3. 0 4 .  S0000002

> * • * - , . , . A ^ ‘ -+• 1̂ ,]
» ■ v- - b ?  V.  : . v V h . : ■* wEi
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106
106
214
214
214
214
216
216
212
212
106
106
106
106
214
214
214
214
216
216
212
212
106
106
106
106
214
214
214
214
216
216
212
212
106
106
106
106
214
214
214
214
216
216
212
212
106
106
106
106
214
214
214
214
216
216
212
212
106
106
106
106
214
214
214
214
216
216
110
110
110
110
110
110110110
212
212
106
106

48

49

50

51

52

53

55

57

59

61

62

63

65

67

69

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

90

91

92

93

94 

96

1
2561
2561
2561

1
2561
256

1
2561
256

1
256

1
1

2561
256

1
256

1
2561
256

1
1

2561
256

1
256

1
2561
256

1
1

256
1

256
1

256
1

256
1

256
1
1

256
1

256
1

256
1

256
1

256
1

1
1
1
1

256
1

40

40

40

40

40

40

40

40

40

40

40

21

0 0 01 01 0 0DO000071  
D0000072 

00010100D0000073  
D0000074 

00010100D0000075  
D0000076  

OOOOOlOlDO000077  
D0000078  

00010100D0000079  
D0000080  

000 10 10 0 DO000081  
D0000082  

000 10 10 0 DO000083  
D0000084  

000 10 10 0 DO000085  
D0000086  

0 0 01 01 0 0DO000087  
D0000088  

00000101D0000089  
D0000090  

0 0 01 01 0 0DO000091  
D0000092  

0 0 01 01 0 0DO000093  
D0000094  

0 0 01 01 0 0DO000095  
D0000096  

OOOIOIOODO000097  
D0000098  

OOOIOIOODO000099  
D0000100  

00000101D0000101  
D0000102 

OOOIOIOODO000103  
D0000104 

OOOIOIOODO000105  
D0000106  

0 0 0 10 10 0 DO000107  
D0000108  

00010100D0000109  
D0000110 

00010100D0000111  
D0000112 

0 0 0 0 0 1 0 1D0000113 
D0000114 

OOOIOIOODO000115  
D0000116 

00010100D0000117  
D0000118 

OOOIOIOODO000119  
D0000120 

0 0 0 10 10 0 DO000121  
D0000122 

0 0 0 10 10 0 DO000123  
D0000124 

0 0 0 0 0101D0000125 
D0000126 

00010100D0000127  
D0000128 

OOOIOIOODO000129  
D0000130  

OOOIOIOODO000131  
D0000132 

OOOIOIOODO000133  
D0000134 

00010100D0000135  
D0000136 

00000101D0000137  
D0000138  

OOOOOOOODO000139  
D0000140  

0 0 0 00 00 0 DO000141  
D0000142 

0000 0 00 0 DO000143  
D0000144 

OOOOOOOODOOOOl45 
D0000146  

0 00 10 10 0 DO000147  
D0000148  

OOOOOlOlDO000149  
D0000150
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214 98 1 1
214 256 2 3
206 100 1 1
206 1
212 101 1 1
212 256 2
106 103 1
106 2 21
214 105 1 1
214 256 3 3
206 108 1 1
206 1
212 109 1 1
212 256 2
106 111 1
106 2 21
214 113 1 1
214 256 3 3
206 116 1 1
206 1
212 117 1 1
212 256 1
106 118 1
106 256 1 40
106 119 1
106 256 1 40
214 120 1 1
214 256 1 3
214 121 1 1
214 256 1 3
216 122 1 1
216 1
212 123 1 1
212 256 1
106 124 1
106 256 1 40
106 125 1
106 256 1 40
214 126 1 1
214 256 1 3
214 127 1 1
214 256 1 3
216 128 1 1
216 1

o
110.260.0.1.0D2,0.0,260.0,230.0,0.0;
110.260.0.230.0.0.0.1.3D2,230.0,0.0;110,1.3D2,230.0,0.0, 130.0, 100.0, 0.0;
110.130.0.100.0.0.0.260.0, 1.0D2, 0.0;
100.0.0.245.0.218.0.2.515D2,218.0,2.51502,218.0,•
100.0.0.155.0.218.0.1.615D2,218.0,1.615D2,218.0;100,-5.0,195.0,165.0,22 0.0,165.0,220.0,165.0;100.0.0.195.0.165.0.235.0.165.0.235.0.165.0 ;
100,-10.0,1.865883810341702,1.9639258935439D2,1.905883 8103417D2 
1.9639258935439D2,1.9058838103417D2,1.9639258935439D2;100,-10.0,1.66854174377D2,l.8125D2,1.70854174377D2,1.8125D2,1.70854174377D2,1.8125D2?
100,-10 .0, 1.6360741064561D2,1.5658838103417D2,1.6760741064561D2 1.5658838103417D2,1.6760741064561D2,1.5658838103417D2;
100, -10.0, 1.7875D2,1.3685417437701D2,1.8275D2,1.3685417437701D2 1.8275D2,1.3685417437701D2;
100,-10.0,2.0341161896583D2,l.3360741064561D2,2.0741161896583D2 
1.3360741064561D2,2.0741161896583D2,l.3360741064561D2;100,-10.0,2.23145825623D2,1.4875D2,2.27145825623D2,1.4875D2 2.27145825623D2,1.4875D2;
100,-10.0,2.263925893543902,1.7341161896583D2,2.3039258935439D2 
1-7341161896583D2,2.3039258935439D2,1.7341161896583D2;
100,-10.0,2.1125D2,1.9314582562302,2.1525D2,1.93145825623D2,2.1525D2,1.93145825623D2;
100, 0.0,176.0,112 .0,1.825D2,112.0,1.825D2,112.0;
110.130.0.1.7D2, 0.0,137.0,170.0,0.0 ;110.130.0.1.6D2,0.0,137.0,160.0,0.0;
100, 0.0, 1.37D2, 165.0, 1.37D2,160.0,1.37D2,170.0;
100.0.0.195.0.107.0.200.0.107.0.190.0.107.0,-
110.200.0.100.0.0.0.200.0.107.0.0.0;
110.190.0.100.0.0.0.190.0.107.0.0.0;110,2.0D2,230.0,0.0,2.0D2,223 .0,0.0 ;
110,1.9D2,230.0,0.0,1.9D2,223.0,0.0;100, 0.0,195.0,223.0, 190.0,223 .0,200.0,223 .0;100.0.0.2.53D2,165.0, 2.53D2, 170.0,2.53D2,160.0;
110.260.0.160.0.0.0.253.0.160.0.0.0;

000 10 10 0 DO000151  
D0000152 

OOOOOlOlDO000153  
D0000154 

OOOIOIOODO000155  
D0000156 

00000101D0000157  
D0000158  

OOOIOIOODO000159  
D0000160  

OOOOOlOlDO000161  
D0000162 

OOOIOIOODO000163  
D0000164 

00000101D0000165  
D0000166  

OOOIOIOODO000167  
D0000168  

OOOOOlOlDO000169  
D0000170  

OOOIOIOODO000171  
D0000172 

OOOIOIOODO000173  
D0000174 

OOOIOIOODO000175  
D0000176  

OOOIOIOODO000177  
D0000178  

OOOIOIOODO000179  
D0000180  

0 0 00 0101D0000181  
D0000182  

0 001 010 0DO000183  
D0000184  

0 001 01 0 0DO000185  
D0000186  

OOOIOIOODO000187  
D0000188 

OOOIOIOODO000189  
D0000190  

OOOIOIOODO000191  
D0000192 

000001Q1D0000193  
D0000194 

1P0000001  
3P0000002  
5P0000003  
7P0000004  
9P0000005  

11P0000006  
13P0000007  
15P0000008  
17P0000009  
17P0000010  
19P0000011  
19P0000012  
21P0000013  
21P0000014  
23P0000015  
23P0000016  
25P0000017  
25P0000018  
27P0000019  
27P0000020  
29P0000021  
29P0000022  
31P0000023  
31P0000024  
33P0000025  
35P0000026  
37P0000027  
39P0000028  
41P0000029  
43P0000030  
45P0000031  
47P0000032  
49P0000033  
51P0000034  
53P0000035  
55P0000036
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1 1 0 . 2 6 0 . 0 . 1 7 0 . 0 . 0 . 0 . 2 5 3 . 0 . 1 7 0 . 0 . 0 . 0 ;  57P0000037
2 1 2 , 1 , 1 0 , 2 . 7 5 D 1 , 3 . 0 , 1 , , 0 . 0 , 0 , 0 , 2 . 3 3 7 8 7 3 3 1 2 0 9 1 D 2 , 1 . 3 8993 280 632 D2, 59P0000038
0 . 0 , 10H8 H o l e s  D7; 59P0000039
1 0 6 . 1 . 4 . 0 . 0 . 2 . 2 3 0 5 5 8 2 5 6 2 3 D 2 , l . 4 8 75 D2 , 2 . 2 3 2 3 5 8 2 5 6 2 3 D 2 ,1 . 4 8 7 5 D 2 ,  61P0000040
2 . 2 3 1 4 5 8 2 5 6 2 3 D 2 , 1 . 4 8 6 6 D 2 , 2 . 2 3 1 4 5 8 2 5 6 2 3 D 2 , l . 4884 D2; 61P0000041
2 1 4 . 2 . 3 . 0 . 1 . 0 . 0 . 0 . 2 . 2 5 4 0 2 4 2 7 8 5 7 4 3 0 2 . 1 . 454473122528D2,  63P0000042
2 . 2 8 7 8 7 3 3 1 2 0 9 1 D 2 , 1 . 4 0 4 9 3 2 8 0 6 3 2 D 2 , 2 . 3 1 7 8 7 3 3 1 2 0 9 1 0 2 ,  63P0000043
1 . 4 0 4 9 3 2 8 0 6 3 2 D2; 63P0000044
2 0 6 . 5 9 . 6 3 . 0 . 2 . 2 3 1 4 5 8 2 5 6 2 3 D2, 1 . 4 8 7 5 0 2 ;  6 5PO000045
2 1 2 . 1 . 2 . 3 . 5 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 2 . 6 1 5D 2, 1 . 5 2 5 0 2 , 0 . 0 , 2H10; 67P0000046
1 0 6 . 1 . 3 . 0 . 0 . 2 6 0 . 0 . 1 7 0 . 0 . 2 . 6 0 0 6 2 5 D 2 , 1 7 0 . 0 , 2 . 7018D2, 1 7 0 . 0 ;  69P0000047
1 0 6 . 1 . 3 . 0 . 0 . 2 6 0 . 0 . 1 6 0 . 0 . 2 . 6 0 0 6 25 D2 , 1 6 0 . 0 , 2 . 7 01 8 D 2 , 1 6 0 . 0 ;  71P0000048
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 2 7 0 . 0 . 1 7 0 . 0 . 2 7 0 . 0 . 1 7 6 . 0 ;  73P0000049
2 1 4 . 2 . 3 . 0 . 1 . 0 . 0 . 0 . 2 7 0 . 0 . 1 6 0 . 0 . 2 7 0 . 0 . 1 5 4 . 0 . 2 6 7 . 0 . 1 5 4 . 0 ;  75P0000050
2 1 6 , 6 7 , 7 3 , 7 5 , 6 9 , 7 1 ;  77P0000051
2 1 2 . 1 . 2 . 4 . 0 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 2 . 5 0 5 D 2 , 2 , 3 7 6 5 4 3 7 4 1 9 2 8 1 D 2 , 0 . 0 , 2 H 1 5 ;  79P0000052
1 0 6 , 1 ,  3,  0 . 0 , 2 6 0 . 0 , 2 3 0 . 0 , 2 6 0 . 0 , 2 . 3 00 6 25 D2 , 2 6 0 . 0 ,  81P0000053
2 . 3 633 437 419 281 D2 ; 81P0000054
1 0 6 . 1 . 3 . 0 . 0 . 2 4 5 . 0 . 2 1 8 . 0 . 2 4 5 . 0 . 2 . 1 80 62 5 D2 , 2 4 5 . 0 ,  83P0000055
2 . 3 6 3 3 4 3 7 4 19281D2; 83P0000056
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 2 6 0 . 0 . 2 . 3 6 1 5 4 3 7 4 1 9 2 8 1 0 2 . 2 . 525D2, 85P0000057
2 . 3 6 1 5 4 3 7 4 1 9 2 8 1D2; 85P0000058
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 2 4 5 . 0 . 2 . 3 6 1 5 4 3 7 4 1 9 2 8 1D2, 2 .525D2,  87P0000059
2 . 3 6 1 5 4 3 7 4 19281D2; 87P0000060
2 1 6 , 7 9 , 8 5 , 8 7 , 8 1 , 8 3 ;  89P0000061
2 1 2 . 1 . 3 . 6 . 5 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 2 . 042 5 D2 , 2 . 4 417 88 42 9 04 1 3D2 , 0 . 0 , 3H105; 91P0000062
1 0 6 . 1 . 3 . 0 . 0 . 2 6 0 . 0 . 2 3 0 . 0 . 2 6 0 . 0 . 2 . 3 00 62 5 D2 , 2 6 0 . 0 ,  93P0000063
2 . 4285884290413D2;  93P0000064
1 0 6 . 1 . 3 . 0 . 0 . 1 5 5 . 0 . 2 1 8 . 0 . 1 5 5 . 0 . 2 . 1 80 62 5 D2 , 1 5 5 . 0 ,  95P0000065
2 . 4 2 8 5 8 8 4 2 9 0 4 1 3 D2; 95P0000066
214 ,  1 , 3 . 0 , 1 . 0 ,  0 . 0 ,  2 6 0 . 0 , 2 . 4 2 67 884 2 90 4 13 D2 , 2 . 075D2, 97P0000067
2 . 4 2 6 7 8 8 4 2 9 0 4 1 3 D2; 97P0000068
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 5 5 . 0 . 2 . 4 2 6 7 8 8 4 2 9 0 4 1 3 D 2 , 2 . 075D2, 99P0000069
2 . 42 6 78 8 42 9 04 1 3D2 ; 99P0000070
2 1 6 , 9 1 , 9 7 , 9 9 , 9 3 , 9 5 ;  101P0000071
2 1 2 . 1 . 2 . 5 . 0 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 1 . 1 7 5D 2, 1 9 6 . 0 , 0 . 0 , 2H65; 103P0000072
1 0 6 . 1 . 3 . 0 . 0 . 1 3 0 . 0 . 2 3 0 . 0 ,  1 . 2  99375D2, 2 3 0 . 0 , 1 . 1 9 8 2 D 2, 2 3 0 . 0 ;  105P0000073
1 0 6 . 1 . 3 . 0 . 0 . 1 9 5 . 0 . 1 6 5 . 0 . 1 . 949375D2, 1 6 5 . 0 , 1 . 1 9 8 2 D 2 , 1 6 5 . 0 ;  107P0000074
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 2 0 . 0 . 2 3 0 . 0 . 1 2 0 . 0 . 2 0 1 . 0 ;  109P0000075
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 2 0 . 0 . 1 6 5 . 0 . 1 2 0 . 0 . 1 9 4 . 0 ;  111P0000076
2 1 6 , 1 0 3 , 1 0 9 , 1 1 1 , 1 0 5 , 1 0 7 ;  113P0000077
2 1 2 . 1 . 3 . 6 . 0 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 1 0 7 . 0 . 1 . 695D2, 0 . 0 , 3H118; 115P0000078
1 0 6 . 1 . 3 . 0 . 0 . 1 3  0 . 0 , 2 3 0 . 0 , 1 . 2 9 9 3 7 5 D 2 , 2 3 0 . 0 , 1 . 0 9 8 2 D 2 , 2 3 0 . 0 ;  117P0000079
1 0 6 . 1 . 3 . 0 . 0 . 1 7 6 . 0 . 1 1 2 . 0 . 1 . 7 5 9 3 7 5 0 2 . 1 1 2 . 0 . 1 . 0 9 8 2 D 2 , 1 1 2 . 0 ;  119P0000080
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 1 0 . 0 . 2 3 0 . 0 . 1 1 0 . 0 . 1 . 74 5D2 ; 121P0000081
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 1 0 . 0 . 1 1 2 . 0 . 1 1 0 . 0 . 1 . 675D2; 123P0000082
2 1 6 , 1 1 5 , 1 2 1 , 1 2 3 , 1 1 7 , 1 1 9 ;  125P0000083
2 1 2 . 1 . 3 . 6 . 5 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 9 . 6 7 5 D 1 , 1 . 635D2, 0 . 0 , 3H130; 127P0000084
1 0 6 . 1 . 3 . 0 . 0 . 1 3 0 . 0 . 2 3 0 . 0 . 1 . 2 9 9 3 7 5 D 2 , 2 3 0 . 0 , 9 . 9 8 2 0 1 , 2 3 0 . 0 ;  129P0000085
1 0 6 . 1 . 3 . 0 . 0 . 1 3 0 . 0 . 1 0 0 . 0 . 1 . 2 9 9 3 7 5 D 2 , 1 0 0 . 0 , 9 . 9 8 2 0 1 , 1 0 0 . 0 ;  131P0000086
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 0 0 . 0 . 2 3 0 . 0 . 1 0 0 . 0 ,  1 .685D2;  133P0000087
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 0 0 . 0 . 1 0 0 . 0 . 1 0 0 . 0 . 1 .615D2;  135P0000088
2 1 6 , 1 2 7 , 1 3 3 , 1 3 5 , 1 2 9 , 1 3 1 ;  137P0000089
1 1 0 , 1 . 9 4 9 1 D 2 , 1 6 5 . 0 , 0 . 0 , 1 . 9 5 0 9 D 2 , 1 6 5 . 0 , 0 . 0 ;  139P0000090
1 1 0 . 1 9 5 . 0 . 1 . 6491D2, 0 . 0 , 1 9 5 . 0 , 1 . 6 5 0 9 D 2 , 0 . 0 ;  141P0000091
1 1 0 , 1 . 9 4 9 1 D 2 , 1 6 5 . 0 , 0 . 0 , 1 . 9 5 0 9 D 2 , 1 6 5 . 0 , 0 . 0 ;  143P0000092
1 1 0 . 1 9 5 . 0 . 1 . 6 4 91 D2 , 0 . 0 , 1 9 5 . 0 , 1 . 6 5 0 9 D2 , 0 . 0 ;  145P0000093
2 1 2 . 1 . 3 . 7 . 5 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 2 . 3 8 4 6 7 3 6 4 2 8 7 7 9 D 2 , l . 11978 694 057 93D2, 147P0000094
0 . 0 , 3HD80; 147P0000095
106,  1 , 4 , 0 . 0 , 1 . 9 4 9 1 D 2 , 1 . 6 5 D 2 , 1 . 9 5 0 9 D 2 , 1 . 6 5 D 2 , 1 . 95D2, 1 . 6491D2 , 149P0000096
1 . 9 5 D 2 , 1 . 6 5 0 9 D 2 ; 149P0000097
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 2 . 1 9 2 1 4 8 6 7 3 7 1 D2, 1 . 331 622 834 015 2D 2,  151P0000098
2 . 3 6 4 6 7 3 6 4 2 8 7 7 9D2, 1 . 1047 869 405 793 D2; 151P0000099
2 0 6 . 1 4 7 . 1 5 1 . 0 . 1 . 95D2, 1 . 65D2; 153P0000100
2 1 2 . 1 . 3 . 7 . 5 . 3 . 0 ,  1 , , 0 . 0 , 0 , 0 , 2 . 3 9 0 0 5 7 9 2 7 3 9 6 D 2 , 1 . 9511806342625D2, 155P0000101
0 . 0 , 3HD50; 155P0000102
1 0 6 . 1 . 4 . 0 . 0 . 1 . 9 4 9 1 D 2 , 1 . 6 5 D 2 , 1 . 9509D2, 1 . 65D2, 1 . 9 5 D 2 , 1 . 6 4 9 1 D 2 ,  157P0000103
1 . 9 5 D 2 , 1 . 6 5 0 9 D 2 ;  157P0000104
2 1 4 . 2 . 3 . 0 . 1 . 0 . 0 . 0 . 2 . 1 5 6 6 0 7 7 5 8 9 5 7 1 D 2 , 1 . 7 9 0 7 5 9 4 8 9 6 9 3 3 D2, 159P0000105
2 . 3 7 0 0 5 7 9 2 7 3 9 6 D 2 , 1 . 9 3 6 1 8 0 6 3 4 2 6 2 5 D 2 , 2 . 465057927396D2,  159P0000106
1 . 9 3 6 1 8 0 6 3 4 2 625D2; 159P0000107
2 0 6 . 1 5 5 . 1 5 9 . 0 . 1 . 9 5 D 2 , 1 . 6 5 D 2 ; * 161P0000108
2 1 2 . 1 . 1 1 . 2 . 9 5 0 1 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 2 . 5 73 7662688661D2, 163P0000109
2 . 0 64 124 5071853D2, 0 . 0 , 11H3 H o le s  D13; 163P0000110
1 0 6 . 1 . 4 . 0 . 0 . 2 . 4 49 1 D2 , 2 1 8 . 0 , 2 . 4 5 09 D2 , 2 1 8 . 0 , 2 4 5 . 0 , 2 . 1791D2, 2 4 5 . 0 ,  165P0000111
2 .1 809 D2;  165P0000112
2 1 4 . 2 . 3 . 0 . 1 . 0 . 0 . 0 . 2  . 4903 831 218 238 D2, 2 . 1290666762153D2, 167P0000113
2 . 5 5 3 7 6 6 2 6 8 8 6 6 1D2, 2 . 0 4 91 245071853D2, 2 . 8 6 8 7 6 6 2 6 8 8 6 6 1 0 2 ,  167P0000114
2 . 0 4 9 1 2 4 5 0 7 1 8 5 3 D2; 167P0000115
2 0 6 . 1 6 3 . 1 6 7 . 0 . 2 4 5 . 0 . 2 1 8 . 0 ;  169PO000116
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2 1 2 . 1 . 2 . 5 . 0 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 2 2 5 . 0 . 9 . 1 5 D 1 , 0 . 0 , 2H65; 171P0000117
1 0 6 . 1 . 3 . 0 . 0 . 2 6 0 . 0 . 1 0 0 . 0 . 2 6 0 . 0 . 9 . 9 93 75D1, 2 6 0 . 0 , 8 . 982D1; 173P0000118
1 0 6 . 1 . 3 . 0 . 0 . 1 9 5 . 0 . 1 6 5 . 0 . 1 9 5 . 0 . 1 . 6 4 9 3 7 5D 2, 1 9 5 . 0 , 8 . 982D1; 175P0000119
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 2 6 0 . 0 . 9 0 . 0 . 2 . 2 7 5 D 2 , 9 0 . 0 ;  177P0000120
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 9 5 . 0 . 9 0 . 0 . 2 -275D2, 9 0 . 0 ;  179P0000121
2 1 6 , 1 7 1 , 1 7 7 , 1 7 9 , 1 7 3 , 1 7 5 ;  181P0000122
2 1 2 . 1 . 3 . 6 . 5 . 3 . 0 . 1 . . 0 . 0 . 0 . 0 . 1 . 91 75 D2 , 8 . 1 5D1 , 0 . 0 , 3H130; 183P0000123
1 0 6 . 1 . 3 . 0 . 0 . 2 6 0 . 0 . 1 0 0 . 0 . 2 6 0 . 0 . 9 . 99 3 75 D1 , 2 6 0 . 0 , 7 . 9 8 2 Dl;  185P0000124
1 0 6 . 1 . 3 . 0 . 0 . 1 3 0 . 0 . 1 0 0 . 0 . 1 3  0 . 0 , 9 . 9 9 3 7 5 D1 , 1 3 0 . 0 , 7 . 982D1; 187P000012S
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 2 6 0 . 0 . 8 0 . 0 . 1 9 5 . 0 . 8 0 . 0 ;  189P0000126
2 1 4 . 1 . 3 . 0 . 1 . 0 . 0 . 0 . 1 3 0 . 0 . 8 0 . 0 . 1 9 5 . 0 . 8 0 . 0 ;  19 1P0000127
2 1 6 , 1 8 3 , 1 8 9 , 1 9 1 , 1 8 5 , 1 8 7 ;  193P0000128
S0000002G0000004D0000194P0000128 T0000001
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4.3 Creating the inspection model

105

H oles D13

65 D50

118
130

8 H oles Dv

D80

65

130

Figure 2 : Creating the inspection model

After the inspection model has been created, the inspection program to drive the CMM 
will be generated in two different languages. One of the languages is CMES, which is 
a specific language to drive LK machines; the other language is DMIS which is an 
ANSI standard.

An example of the DMIS and CMES files (prototype and not prototype) for this 
particular inspection model will be shown in the following pages.
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4.4 CMES file output (not prototype)

UR,1,PH 
#MA,1,2 
-101.500 
-12.000 
#MA,3 

--3.000 
#PT,1,2 
-98.500 
-12.000 
SP,1
#MA,1,2
-105.000
-8.500
#PT,1,2
-105.000
-5.500
SP,2
#MA,1,2
-108.500
-12.000
#PT,1,2
-111.500
-12.000
SP,3
#MA,1,2
-105.000
-15.500
#PT,1,2
-105.000
-18.500
SP,4
UP, 1,2,3,4 
ID,3 
SP,5 
#MA,3 
5.000 
#MA,1,2 
-18.500 
-12.000 
#MA,3 
-3.000 
#PT,1,2 
-21.500 
-12.000 
SP,1
#MA,1,2
-15.000
-15.500
#PT,1,2
-15.000

-18.500
SP,2
#MA,1,2
-11.500
-12.000
#PT,1,2
-8.500
-12.000
SP,3
#MA,1,2
-15.000
-8.500
#PT,1,2
-15.000
-5.500
SP,4
UP,1,2,3,4 
ID,3 
SP,6 
UP,5,6 
T T 1 2//
90.00.0.50,-0.40 
#MA,3
5.000
#MA,1,2
-126.500
-63.000
#MA,3
-3.000
#PT,1,2
-126.500
-60.000
SP,1
#MA,1,2
-126.500
-67.000
#PT,1,2
-126.500
-70.000
SP,2
UP,1,2
LI,2//
10.00.0.20,-0.10 
#MA,1,2 
-122.000 
-66.732 
#MA,3 
-3.000 
#PT,1,2 
-120.500

-69.330
SP,1
#MA,1,2
-122.000
-66.732
#MA,1,2
-121.268
-66.000
#PT,1,2
-118.670
-67.500
SP,1
#MA,1,2
-121.268
-66.000
#MA,1,2
-121.000
-65.000
#PT,1,2
-118.000
-65.000
SP,1
#MA,1,2
-121.000
-65.000
#MA,1,2
-121.268
-64.000
#PT,1,2
-118.670
-62.500
SP,1
#MA,1,2
-121.268
-64.000
#MA,1,2
-122.000
-63.268
#PT,1,2
-120.500
-60.670
SP,1
#MA,1,2 
-122.000 
-63.268 
UP,1,2,3,4 
ID,3//
-123.00,0.60,-0.30
-65.00,0.00,0.00
10.00,0.40,-0.30
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#MA,3
5.000
#MA,1,2
-97.393
-73.412
#MA,3
-13.000
#PT,1,2
-100.393
-73.412
SP,1
#MA,1,2
-96.393
-74.412
#PT,1,2
-96.393
-77.412
SP,2
#MA,1,2
-95.393
-73.412
#PT,1,2
-92.393
-73.412
SP,3
#MA,1,2
-96.393
-72.412
#PT,1,2
-96.393
-69.412
SP,4
UP,1,2,3,4 
ID,3 
SP,5 
#MA,3 
0.000 
#MA,1,2 
-57.588 
-96.393 
#MA,3 
-13.000 
#PT,1,2 
-60.588 
-96.393 
SP,1
#MA,1,2
-56.588
-97.393
#PT,1,2
-56.588
-100.393
SP,2
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#MA,1,2
-55.588
-96.393
#PT,1,2
-52.588
-96.393
SP,3
#MA,1,2
-56.588
-95.393
#PT,1,2
-56.588
-92.393
SP,4
UP,1,2,3,4 
ID,3 
SP,6 
#MA,3 
0.000 
#MA,1,2 
-33.607 
-57.588 
#MA,3 
-13.000 
#PT,1,2 
-33.607 
-60.588 
SP,1
#MA,1,2
-32.607
-56.588
#PT,1,2
-29.607
-56.588
SP,2
#MA,1,2
-33.607
-55.588
#PT,1,2
-33.607
-52.588
SP,3
#MA,1,2
-34.607
-56.588
#PT,1,2
-37.607
-56.588
SP,4
UP,1,2,3,4 
ID,3 
SP,7 
#MA,3

0,000
#MA,1,2
-72.412
-33.607
#MA,3
-13.000
#PT,1,2
-69.412
-33.607
SP,1
#MA,1,2
-73.412
-32.607
#PT,1,2
-73.412
-29.607
SP,2
#MA,1,2
-74.412
-33.607
#PT,1,2
-77.412
-33.607
SP,3
#MA,1,2
-73.412
-34.607
#PT,1,2
-73.412
-37.607
SP,4
UP,1,2,3,4 
ID,3 
SP,8
UP,5,6,7,8 
PC,3,4//
-65.00,0.60,-0.50
-65.00,0.00,0.00
65.00,0.50,-0.40
#MA,3
-5.000
#MA,1,2
-65.000
-37.000
#MA,3
-8.000
#PT,1,2
-65.000
-40.000
SP,1
#MA,3
0.000
#MA,1,2

1
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-93.000
-65.000
#MA,3
-8.000
#PT,1,2
-90.000
-65.000
SP,2
#MA,3
0.000
#MA,1,2
-65.000
-93.000
#MA,3
-8.000
#PT,1,2
-65.000
-90.000
SP,3
#MA,3
0.000
#MA,1,2
-37.000
-65.000
#MA,3
-8.000
#PT,1»2
-40.000
-65.000
SP,4
UP,1,2,3,4 
OD,3//
-65.00,0.40,-0.30
-65.00,0.50,-0.40
50.00,0.30,-0.50
#MA,3
10.000
ET
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4.5 CMES file output (prototype)

UR,1,PH

:MOVE_NEXT_l
#MA,1,2
-11.500
-12.000
; ASK_1
IP,’Is this a hole?’,FI
IF,Fl,ASK_l,NO_MEAS_l,
MEAS_1
:MEAS_1
#MA,3
-3.000
#PT,1,2
-8.500
-12.000
SP,1
#MA,1,2
-15.000
-8.500
#PT,1,2
-15.000
-5.500
SP,2
#MA,1,2
-18.500
-12.000
#PT,1,2
-21.500
-12.000
SP,3
#MA,1,2
-15.000
-15.500
#PT,1,2
-15.000
-18.500
SP,4
UP,1,2,3,4 
ID,3
GO,MOVE_NEXT_2
:NO_MEAS_l
#MA,1,2
-15.000
-15.500
SP,5
:MOVE_NEXT_2
#MA,3
5.000
#MA,1,2

-101.500
-12.000
:ASK_2
IP,’Is this a hole?’,FI
IF,F 1, ASK_2,NO_ME AS_2,
MEAS_2
:MEAS_2
#MA,3
-3.000
#PT,1,2
-98.500
-12.000
SP,1
#MA,1,2
-105.000
-8.500
#PT,1,2
-105.000
-5.500
SP,2
#MA,1,2
-108.500
-12.000
#PT,1,2
-111.500
-12.000
SP,3
#MA,1,2
-105.000
-15.500
#PT,1,2
-105.000
-18.500
SP,4
UP, 1,2,3,4 
ID,3
GO,ASK_3
:NO_MEAS_32
#MA,1,2
-105.000
-15.500
:ASK_3
IP,’distance between two 
features?’,FI
IF,F 1, AS K_3 ,MOVE_NEX
T_4,MEAS_3
:MEAS_3
SP,6
UP,5,6
LT,1,2

:MOVE_NEXT_4
#MA,3
5.000
#MA,1,2
-126.500
-63.000
:ASK_4
IP,’Is this a slot?’,Fl 
IF,F 1, AS K_4,NO_ME AS_4, 
MEAS_4 
:MEAS_4 
#MA,3 
-3.000 
#PT,1,2 
-126.500 
-60.000 
SP,1
#MA,1,2
-126.500
-67.000
#PT,1,2
-126.500
-70.000
SP,2
UP,1,2
LI,2
GO ,MO VE_NEXT_5
:NO_MEAS_4
#MA,1,2
-126.500
-67.000
:MOVE_NEXT_5
#MA,1,2
-122.000
-66.732
:ASK_5
IP,’Is this a partial hole?’,FI
IF,F 1, AS K_5 ,NO_ME AS_5,
MEAS_5
:MEAS_5
#MA,3
-3.000
#PT,1,2
-120.500
-69.330
SP,1
#MA,1,2
-122.000
-66.732
#MA,1,2
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-121.268
-66.000
#PT,1,2
-118.670
-67.500
SP,1
#MA,1,2
-121.268
-66.000
#MA,1,2
-121.000
-65.000
#PT,1,2
-118.000
-65.000
SP,1
#MA,1,2
-121.000
-65.000
#MA,1,2
-121.268
-64.000
#PT,1,2
-118.670
-62.500
SP,1
#MA,1,2
-121.268
-64.000
#MA,1,2
-122.000
-63.268
#PT,1,2
-120.500
-60.670
SP,1
#MA,1,2 
-122.000 
-63.268 
UP,1,2,3,4 
ID,3
GO,MOVE_NEXT_6
:NOJMOEAS_5
#MA,1,2
-122.000
-63.268
:MOVE_NEXT_6
#MA,3
5.000
#MA,1,2
-97.393
-73.412
:ASK_6

IP,’Is tliis a hole?’,FI
IF,FI, ASK_6,NO_ME AS_6,
MEAS_6
:MEAS_6
#MA,3
-13.000
#PT,1,2
-100.393
-73.412
SP,1
#MA,1,2
-96.393
-74.412
#PT,1,2
-96.393
-77.412
SP,2
#MA,1,2
-95.393
-73.412
#PT,1,2
-92.393
-73.412
SP,3
#MA,1,2
-96.393
-72.412
#PT,1,2
-96.393
-69.412
SP,4
UP,1,2,3,4 
ID,3
GO ,MO VE_NEXT_7
:NO_MEAS_6
#MA,1,2
-96.393
-72.412
SP,5
:MOVE_NEXT_7
#MA,3
0.000
#MA,1,2
-57.588
-96.393
:ASK_7
IP,’Is this a hole?’,FI
IF,F 1, ASK_7,NO_ME AS_7,
MEASJ7
:MEAS_7
#MA,3
-13.000
#PT,1,2

-60.588
-96.393
SP,1
#MA,1,2
-56.588
-97.393
#PT,1,2
-56.588
-100.393
SP,2
#MA,1,2
-55.588
-96.393
#PT,1,2
-52.588
-96.393
SP,3
#MA,1,2
-56.588
-95.393
#PT,1,2
-56.588
-92.393
SP,4
UP, 1,2,3,4 
ID,3
GO,MOVE_NEXT_8
:NO_MEAS_7
#MA,1,2
-56.588
-95.393
SP,6
:MOVE_NEXT_8
#MA,3
0.000
#MA,1,2
-33.607
-57.588
:ASK_8
IP,’Is this a hole?’,FI
IF,F1,ASK_8,N0_MEAS_8,
MEAS_8
:MEAS„8
#MA,3
-13.000
#PT,1,2
-33.607
-60.588
SP,1
#MA,1,2
-32.607
-56.588
#PT,1,2
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-29.607 -77.412 #MA,3
-56.588 -33.607 0.000
SP,2 SP,3 #MA,1,2
#MA,1,2 #MA,1,2 -65.000
-33.607 -73.412 -93.000
-55.588 -34.607 #MA,3
#PT,1,2 #PT,1,2 -8.000
-33.607 -73.412 #PT,1,2
-52.588 -37.607 -65.000
SP,3 SP,4 -90.000
#MA,1,2 UP,1,2,3,4 SP,3
-34.607 ID,3 #MA,3
-56.588 GO,ASK_10 0.000
#PT,1,2 :NO_MEAS_9 #MA,1,2
-37.607 #MA,1,2 -37.000
-56.588 -73.412 -65.000
SP,4 -34.607 #MA,3
UP,1,2,3,4 SP,8 -8.000
ID,3 :ASK_10 #PT,1,2
GO,MOVE_NEXT_9 IP,’Pitch Circle?’,FI -40.000
:NO_MEAS_8 IF,F 1 ,ASK_10,MO VE_NEX -65.000
#MA,1,2 T_11,MEAS_10 SP,4
-34.607 :MEAS_10 UP,1,2,3,4
-56.588 UP,5,6,7,8 OD,3
SP,7 PC,3,4 :NO_MEAS_l 1
: MO VE_NEXT_9 :MOVE_NEXT_l 1 #MA,1,2
#MA,3 #MA,3 -37.000
0.000 -5.000 -65.000
#MA,1,2 #MA,1,2 :END
-72.412 -65.000 ET
-33.607 -37.000
:ASK_9 :ASK_11
IP,’Is this a hole?’,FI IP,’Is this a cylinder?’,FI
IF,F 1, ASK_9 ,NO_ME AS_9, IF,F1,ASK_11,END,ME AS
MEAS_9 _11
:MEAS_9 :MEAS_11
#MA,3 #MA,3
-13.000 -8.000
#PT,1,2 #PT,1,2
-69.412 -65.000
-33.607 -40.000
SP,1 SP,1
#MA,1,2 #MA,3
-73.412 0.000
-32.607 #MA,1,2
#PT,1,2 -93.000
-73.412 -65.000
-29.607 #MA,3
SP,2 -8.000
#MA,1,2 #PT,1,2
-74.412 -90.000
-33.607 -65.000
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4.6 DMIS file output (not prototype)

SNSLCT/S (PROBE 1)
WKPLAN/XYPLAN

F(Holel)=FEAT/CIRCLE,INNER,CART,-105.000,-12.000,0.000,0,0,1,13.000
MEAS/CIRCLE,F(Holel),4
GOTO/-101.500,-12.000,10.000
GOTO/-101.500,-12.000,-3.000
PTMEAS/CART,-98.500,-12.000,-3.000,-1,0,0
GOTO/-105.000,-8.500,-3.000
PTMEAS/CART,-105.000,-5.500,-3.000,0,-1,0
GOTO/-108.500, -12.000,-3.000
PTMEAS/CART,-111.500,-12.000,-3.000,1,0,0
GOTO/-105.000,-15.500,-3.000
PTMEAS/CART,-105.000,-18.500,-3.000,0,1,0
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Holel *****’
OUTPUT/FA(Holel)

F(Hole2)=FEAT/CIRCLE,INNER,CART,-15.000,-12.000,0.000,0,0,1,13.000
ME AS/CIRCLE JF(Hole2),4
GOTO/-105.000,-15.500,5.000
GOTO/-18.500,-12.000,5.000
GOTO/-18.500,-12.000,-3.000
PTMEAS/CART,-21.500,-12.000,-3.000,1,0,0
GOTO/-15.000,-15.500,-3.000
PTMEAS/CART,-15.000,-18.500,-3.000,0,1,0
GOTO/-11.500,-12.000,-3.000
PTMEAS/CART,-8.500, -12.000,-3.000, -1,0,0
GOTO/-15.000,-8.500,-3.000
PTMEAS/CART,-15.000,-5.500,-3.000,0,-1,0
ENDMES

TEXT/OUTFIL, ’ ’
TEXT/OUTFIL,’****** Measured HoIe2 ******
OUTPUT/FA(Hole2)

F(Dist2Fl)=FEAT/LINE,BND,CART,-105.000,-12.000,0.000,-15.000,-12.000,0.000,0,0,1

CONST/LINE,F(Dist2Fl),BF,FA(Holel)JPA(Hole2)
TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Dist2Fl *****’
OUTPUT/FA(Dist2F 1)

T(ToIDist2Fl)=TOL/DISTBJSfOMINL,90.000,-0.400,0.500,PT2PT 
E V AL/FA(Holel),FA(Hole2),TA(ToIDist2F 1)
OUTPUT/T A(ToID ist2F 1)

F(LenInl)=FEAT/LINE,BND,CART,-126.500,-60.000,0.000,-126.500,-70.000,0.000,0,0,1
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GOTO/-15.000,-8.500,5.000 
GOTO/-126.500,-63.000,5.000 
GOTO/-126.500,-63.000,-3.000
F(Pointl)=FEAT/POINT, CART,-126.500, -60.000,-3.000,0, -1,0
MEAS/POINT,F(Pointl),l
PTMEAS/CART,-126.500,-60.000,-3.000,0,-1,0
ENDMES

GOTO/-126.500,-67.000,-3.000 
GOTO/-126.500,-67.000,-3.000
F(Point2)=FEAT/POINT, CART,-126.500, -70.000,-3.000,0,1,0 
ME AS/POINT,F(Point2), 1 
PTMEAS/CART,-126.500,-70.000,-3.000,0,1,0 
ENDMES

CONST/LINE,F(LenIn 1) ,BF,F A(Point 1),F A(Point2)
TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Lenlnl ******
OUTPUT/FA(LenIn 1)

T(TolLenInl)=TOL/DISTB,NOM3NL,10.000,-0.100,0.200,YAXIS 
EVAL/FA(Pointl)JFA(Point2),TA(TolLenInl)
OUTPUT/TA(TolLenInl)

F(ArcIntl)=FEAT/ARC,INNER,CART,-123.000,-65.000,0.000,0,0,1,5.000,-1.571,1.571
MEAS/ARC,F(ArcIntl),5
GOTO/-122.000,-66.732,-3.000
GOTO/-122.000,-66.732,-3.000
PTMEAS/CART,-120.500,-69.330,-3.000,-1,-1,0
GOTO/-122.000, -66.732,-3.000
GOTO/-121.268,-66.000,-3.000
PTMEAS/CART,-118.670,-67.500,-3.000,-1,-1,0
GOTO/-121.268,-66.000,-3.000
GOTO/-12LOOO,-65.000,-3.000
PTMEAS/CART,-118.000,-65.000,-3.000,-1,-1,0
GOTO/-12LOOO,-65.000,-3.000
GOTO/-121.268,-64.000,-3.000
PTMEAS/CART,-118.670,-62.500,-3.000,-1,-1,0
GOTO/-121.268,-64.000,-3.000
GOTO/-122.000,-63.268,-3.000
PTMEAS/CART,-120.500,-60.670,-3.000,-1,-1,0
GOTO/-122.000,-63.268,-3.000
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Arclntl *****’
OUTPUT/FA(ArcIntl)

T(TxArcIntl)=TOL/CORTOL,X AXIS,-0.300,0.600 
OUTPUT/FA(ArcIntl),TA(TxArcIntl)
T(TdArcIntl)=TOL/DIAM,-0.300,0.400 
OUTPUT/FA( Arclntl),'T A(TdArcInt 1)
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F(Hole3)=FEAT/CIRCLE,INNER,CART,-96.393,-73.412,-10.000,0,0,1,8.000
ME AS/CIRCLE JF(Hole3) ,4
GOTO/-122.000,-63.268,5.000
GOTO/-97.393 ,-73.412,5.000
GOTO/-97.393,-73.412,-13.000
PTMEAS/CART,-100.393,-73.412,-13.000,1,0,0
GOTO/-96.393,-74.412,-13.000
PTMEAS/CART,-96.393,-77.412,-13.000,0,1,0
GOTO/-95.393,-73.412,-13.000
PTMEAS/CART,-92.393,-73.412,-13.000,-1,0,0
GOTO/-96.393,-72.412,-13.000
PTMEAS/CART,-96.393 ,-69.412,-13.000,0,-1,0
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole3 ******
OUTPUT/FA(Hole3)

F(Hole4)=FEAT/CIRCLE, INNER, CART,-56.588,-96.393,-10.000,0,0,1,8.000
MEAS/CIRCLE,F(Hole4),4
GOTO/-96.393,-72.412,0.000
GOTO/-57.588,-96.393,0.000
GOTO/-57.588,-96.393,-13.000
PTMEAS/CART,-60.588,-96.393,-13.000,1,0,0
GOTO/-56.588,-97.393,-13.000
PTMEAS/CART,-56.588,-100.393,-13.000,0,1,0
GOTO/-55.588,-96.393,-13.000
PTMEAS/CART,-52.588,-96.393,-13.000,-1,0,0
GOTO/-56.588,-95.393,-13.000
PTMEAS/CART,-56.588,-92.393, -13.000,0,-1,0
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole4 
OUTPUT/FA(Hole4)

F(Hole5)=FEAT/CIRCLE,INNER,CART,-33.607,-56.588,-10.000,0,0,1,8.000
MEAS/CIRCLEJF(Hole5),4
GOTO/-56.588,-95.393,0.000
GOTO/-33.607,-57.588,0.000
GOTO/-33.607,-57.588,-13.000
PTMEAS/CART,-33.607,-60.588,-13.000,0,1,0
GOTO/-32.607,-56.588,-13.000
PTMEAS/CART,-29.607,-56.588,-13.000,-1,0,0
GOTO/-33.607,-55.588,-13.000
PTMEAS/CART,-33.607,-52.588,-13.000,0,-1,0
GOTO/-34.607,-56.588,-13.000
PTMEAS/CART,-37.607,-56.588,-13.000,1,0,0
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured HoIe5 *****’
OUTPUT/FA(Hole5)
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F(Hole6)=FEAT/CIRCLE, INNER, CART,-73.412,-33.607,-10.000,0,0,1,8.000
MEAS/CIRCLEJF(Hole6),4
GOTO/-34.607,-56.588,0.000
GOTO/-72.412,-33.607,0.000
GOTO/-72.412,-33.607,-13.000
PTMEAS/CART,-69.412,-33.607,-13.000,-1,0,0
GOTO/-73.412,-32.607,-13.000
PTMEAS/CART,-73.412,-29.607,-13.000,0,-1,0
GOTO/-74.412,-33.607,-13.000
PTMEAS/CART,-77.412,-33.607,-13.000,1,0,0
GOTO/-73.412,-34.607,-13.000
PTMEAS/CART,-73.412,-37.607,-13.000,0,1,0
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole6 *****’
OUTPUT/FA(Hole6)

F(PCirHoll)=FEAT/CIRCLE,INNER,CART,-65.000,-65.000,-10.000,0,0,1,65.000 
CONST/CIRCLEJF(PCirHoll),BFvFA(Hole3),FA(Hoie4)JFA(HoIe5)pA(Hole6)

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured PCirHoll *****’
OUTPUT/FA(PCirHoll)

T(TxPCirHoll)=TOL/CORTOL,XAXIS,-0.500,0.600 
OUTPUT/FA(PCirHoll),TA(TxPCirHoll)
T(TdPCirHoll)=TOL/DIAM,-0.400,0.500 
OUTPUT/FA(PCirHoll),TA(TdPCirHoll)

F(Cyll)=FEAT/CIRCLE,OUTER,CART,-65.000,-65.000,-5.000,0,0,1,50.000
ME AS/CIRCLE,F(Cyll) ,4
GOTO/-73.412,-34.607,-5.000
GOTO/-65.000,-37.000,-5.000
GOTO/-65.000,-37.000,-8.000
PTMEAS/CART,-65.000,40.000,-8.000,0,1,0
GOTO/-65.000,-37.000,0.000
GOTO/-93.000,-65.000,0.000
GOTO/-93.000,-65.000,-8.000
PTMEAS/CART,-90.000,-65.000,-8.000,-1,0,0
GOTO/-93.000,-65.000,0.000
GOTO/-65.000,-93.000,0.000
GOTO/-65.000,-93.000,-8.000
PTMEAS/CART,-65.000,-90.000,-8.000,0,-1,0
GOTO/-65.000,-93.000,0.000
GOTO/-37.000,-65.000,0.000
GOTO/-37.000,-65.000,-8.000
PTMEAS/CART,-40.000,-65.000,-8.000,1,0,0
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Cyll *****’
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OUTPUT/FA(Cyll)

T(TxCyll)=TOL/CORTOL,XAXIS,-0.300,0.400 
OUTPUT/FA(Cyll),TA(TxCyll) 
T(TyCyll)=TOL/CORTOL,YAXIS,-0.400,0.500 
OUTPUT/F A(Cyll),TA(TyCyI 1) 
T(TdCyll)=TOL/DIAM,-0.500,0.300 
OUTPUT/F A(Cyll),TA(TdCyl 1)

GOTO/-37.000,-65.000,10.000 
ENDFIL
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4.7 DMIS file output (Prototype)

DECL/CHAR,ans 
DECL/INTGRJF1 
SNSLCT/S (PROBE 1)

MACRO(check)/answer
Fl=-1
IF ((ans .EQ. ’N ’) .OR. (ans .EQ. ’n’))
F1=0
IF ((ans .EQ. ’Y*) .OR. (ans .EQ. ’y ’))
F l= l
ENDMAC
WKPLAN/XYPLAN

F(Holel)=FEAT/CIRCLE, INNER, CART, -15.000, -12.000,0.000,0,0,1,13.000
MEAS/CIRCLE,F(HoIel),4
(MOVE_NEXT_l)
GOTO/-11.500,-12.000,10.000 
(ASK_1)
TEXT/QUERY,(R),l,A,L,’Is this a hole?’
READ/1,ans 
CALL/M(check) ,ans
DF,Fl,(ASK_l),(NO_MEAS_l),(MEAS_l)
(MEAS_1)
GOTO/-11.500,-12.000,-3.000 
PTMEAS/CART,-8.500,-12.000,-3.000,-1,0,0 
GOTO/-15.000,-8.500,-3.000 
PTMEAS/CART,-15.000,-5.500,-3.000,0,-1,0 
GOTO/-18.500,-12.000,-3.000 
PTMEAS/CART,-21.500,-12.000,-3.000,1,0,0 
GOTO/-15.000,-15.500,-3.000 
PTMEAS/CART,-15.000,-18.500,-3.000,0,1,0 
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Holel ******
OUTPUT/FA(Holel)

JUMPTO,(MOVE_NEXT_2)
(NO_MEAS_l)
GOTO/-15.000,-15.500,10.000
F(HoIe2)=FEAT/CIRCLE,INNER,CART,-105.000,-12.000,0.000,0,0,1,13.000
ME AS/CIRCLE JF(Hole2) ,4
(MOVE_NEXT_2)
GOTO/-15.000,-15.500,5.000 
GOTO/-101.500,-12.000,5.000 
(ASK_2)
TEXT/QUERY,(R),l,A,L,’Is this a hole?’
READ/1,ans 
CALL/M(check),ans
IF,F1,(ASK_2),(N0_MEAS_2),(MEAS_2)
(MEAS_2)
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GOTO/-101.500, -12.000,-3.000 
PTMEAS/CART,-98.500,-12.000,-3.000,-1,0,0 
GOTO/-105.000,-8.500,-3.000 
PTMEAS/CART,-105.000,-5.500,-3.000,0,-1,0 
GOTO/-108.500,-12.000,-3.000 
PTMEAS/CART,-111.500,-12.000,-3.000,1,0,0 
GOTO/-105.000,-15.500,-3.000 
PTMEAS/CART,-105.000,-18.500,-3.000,0,1,0 
ENDMES

TEXT/OUTFIL, ’ ’
TEXT/OUTFIL,’****** Measured Hole2 *****’
OUTPUT/FA(Hole2)

JUMPTO,(ASK_3)
(NO_MEAS_2)
GOTO/-105.000,-15.500,5.000 
(ASK_3)
TEXT/QUERY,A,L,’distance between two features?’
READ/1,ans 
CALL/M(check),ans
IF,F 1 ,(ASK_3) ,(MO VE_NEXT_4),(ME AS_3)
(MEAS_3)
F(Dist2Fl)=FEAT/LINE,BND,CART,-15.000,-12.000,0.000,-105.000,-12.000,0.000,0,0,1

CONST/LINE,F(Dist2Fl),BF,FA(Holel)JFA(Hole2)
TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Dist2Fl *****’
OUTPUT/F A(Dist2F 1)

F(LenInl)=FE AT/LINE,BND, CART, -126.500,-60.000,0.000,-126.500,-70.000,0.000,0,0,1 
(MOVE_NEXT_4)
GOTO/-105.000,-15.500,5.000 
GOTO/-126.500,-63.000,5.000 
(ASK_4)
TEXT/QUERY,(R),l,A,L,’Is this a block?’
READ/1, ans 
C ALL/M(check) ,ans
IF,F 1,(ASK_4) ,(NO_ME AS_4),(ME AS_4)
(MEAS_4)
GOTO/-126.500,-63.000,-3.000
F(Pointl)=FEAT/POINT,CART,-126.500,-60.000,-3.000,0,-1,0 
ME AS/POINT,F(Pointl),l 
PTMEAS/CART,-126.500,-60.000,-3.000,0,-1,0 
ENDMES

GOTO/-126.500,-67.000,-3.000 
GOTO/-126.500,-67.000,-3.000
F(Point2)=FEAT/POINT, CART, -126.500, -70.000,-3.000,0,1,0 
ME AS/POINT,F(Point2), 1 
PTMEAS/CART,-126.500,-70.000,-3.000,0,1,0 
ENDMES
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CONST/LINE,F(LenInl),BF,FA(Pointl),FA(Point2)
TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Lenlnl *****’
OUTPUT/FA(LenIn 1)

JUMPTO,(MOVE_NEXT_5)
(NO_MEAS_4)
GOTO/-126.500, -67.000,5.000
F(Hole3)=FEAT/CIRCLE, INNER, CART,-96.393,-73.412, -10.000,0,0,1,8.000
MEAS/CIRCLE,F(Hole3),4
(MOVE_NEXT_5)
GOTO/-126.500,-67.000,5.000 
GOTO/-97.393,-73.412,5.000 
(ASK_5)
TEXT/QUERY,(R),l,A,L,’Is this a hole?’
READ/1,ans 
CALL/M(check),ans
IF,F1,(ASK_5),(NO_MEAS_5),(MEAS_5)
(MEAS_5)
GOTO/-97.393,-73.412,-13.000 
PTMEAS/CART,-100.393,-73.412,-13.000,1,0,0 
GOTO/-96.393,-74.412,-13.000 
PTMEAS/CART,-96.393, -77.412, -13.000,0,1,0 
GOTO/-95.393,-73.412,-13.000 
PTMEAS/CART,-92.393,-73.412,-13.000,-1,0,0 
GOTO/-96.393,-72.412,-13.000 
PTMEAS/CART,-96.393,-69.412,-13.000,0,-1,0 
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole3 ******
OUTPUT/FA(Hole3)

JUMPTO,(MOVE_NEXT_6)
(NO_MEAS_5)
GOTO/-96.393,-72.412,5.000
F(HoIe4)=FEAT/CIRCLE,INNER,CART,-56.588,-96.393,-10.000,0,0,1,8,000
ME AS/CIRCLE,F(Hole4) ,4
(MOVE_NEXT_6)
GOTO/-96.393,-72.412,0.000 
GOTO/-57.588,-96.393,0.000 
(ASK_6)
TEXT/QUERY,(R),l,A,L,’Is this a hole?’
RE AD/1,ans 
CALL/M(check),ans
IF,FI ,(ASK_6),(NO_MEAS_6),(MEAS_6)
(MEAS_6)
GOTO/-57.588,-96.393,-13.000 
PTMEAS/CART,-60.588,-96.393,-13.000,1,0,0 
GOTO/-56.588,-97.393,-13.000 
PTMEAS/CART,-56.588,-100.393,-13.000,0,1,0 
GOTO/-55.588,-96.393,-13.000
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PTMEAS/CART,-52.588,-96.393,-13.000,-1,0,0 
GOTO/-56.588,-95.393,-13.000 
PTMEAS/CART,-56.588,-92.393,-13.000,0,-1,0 
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole4 *****’
OUTPUT/FA(Hole4)

JUMPTO,(MOVE_NEXT_7)
(NO_MEAS_6)
GOTO/-56.588,-95.393,0.000
F(Hole5)=FEAT/CIRCLE,INNER,CART,-33.607,-56.588,-10.000,0,0,1,8.000
MEAS/CIRCLE,F(Hole5),4
(MOVE_NEXT_7)
GOTO/-56.588,-95.393,0.000 
GOTO/-33.607,-57.588,0.000 
(ASK_7)
TEXT/QUERY,(R),l,A,L,’Is this a hole?’
READ/1,ans 
CALL/M(check),ans
IF,F1,(ASK_7),(N0_MEAS_7),(MEAS_7)
(MEAS_7)
GOTO/-33.607,-57.588,-13.000 
PTMEAS/CART,-33.607,-60.588,-13.000,0,1,0 
GOTO/-32.607,-56.588, -13.000 
PTMEAS/CART,-29.607,-56.588,-13.000,-1,0,0 
GOTO/-33.607,-55.588,-13.000 
PTMEAS/CART,-33.607,-52.588,-13.000,0,-1,0 
GOTO/-34.607,-56.588,-13.000 
PTMEAS/CART,-37.607,-56.588,-13.000,1,0,0 
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole5 *****’
OUTPUT/F A(Hole5)

JUMPTO,(MOVE_NEXT_8)
(NO_MEAS_7)
GOTO/-34.607,-56.588,0.000
F(Hole6)=FEAT/CIRCLE,INNER,CART,-73.412,-33.607,-10.000,0,0,1,8.000
MEAS/CIRCLEJF(Hole6),4
(MOVE_NEXT_8)
GOTO/-34.607,-56.588,0.000 
GOTO/-72.412,-33.607,0.000 
(ASK_8)
TEXT/QUERY,(R),l,A,L,’Is this a hole?’
READ/1,ans 
C ALL/M(check) ,ans
IF,F1,(ASK_8),(N0_MEAS_8),(MEAS_8)
(MEAS_8)
GOTO/-72.412,-33.607,-13.000 
PTMEAS/CART,-69.412,-33.607,-13.000,-1,0,0
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GOTO/-73.412,-32.607,-13.000 
PTMEAS/CART,-73.412,-29.607,-13.000,0,-1,0 
GOTO/-74.412,-33.607,-13.000 
PTMEAS/CART,-77.412,-33.607,-13.000,1,0,0 
GOTO/-73.412,-34.607,-13.000 
PTMEAS/CART,-73.412,-37.607,-13.000,0,1,0 
ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Hole6 ******
OUTPUT/F A(Hole6)

JUMPTO,(ASK_9)
(NO_MEAS_8)
GOTO/-73.412,-34.607,0.000 
(ASK_9)
TEXT/QUERY,A,L,’Pitch Circle?’
READ/1,ans 
CALL/M(check),ans
IF,F 1 ,(ASK_9),(MOVE_NEXT_10),(ME AS_9)
(MEAS_9)
F(PCirHoll)=FEAT/CIRCLE,INNER,CART,-65.000,-65.000,-10.000,0,0,1,65.000 
CONST/CIRCLE JP(PCirHoll),BFJ7A(Hole3),FA(Hole4)JFA(Hole5)JFA(Hole6)

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured PCirHoll ******
OUTPUT/FA(PCirHoll)

F(Cyll)=FEAT/CIRCLE,OUTER, CART,-65.000,-65.000,-5.000,0,0,1,50.000
MEAS/CIRCLEJP(Cyll),4
(MOVE_NEXT_10)
GOTO/-73.412,-34.607,-5.000 
GOTO/-65.000,-37.000,-5.000 
(ASK_10)
TEXT/QUERY,(R),l,A,L,’Is this a cyUnder?’
READ/1, ans
CALL/M(check),ans
IF,F1,(ASK_10),(END),(MEAS„10)
(MEAS_10)
GOTO/-65.000,-37.000,-8.000 
PTMEAS/CART,-65.000,-40.000,-8.000,0,1,0 
GOTO/-65.000,-37.000,0.000 
GOTO/-93.000,-65.000,0.000 
GOTO/-93.000,-65.000,-8.000 
PTMEAS/CART,-90.000,-65.000,-8.000,-1,0,0 
GOTO/-93.000,-65.000,0.000 
GOTO/-65.000,-93.000,0.000 
GOTO/-65.000,-93.000,-8.000 
PTMEAS/CART,-65.000, -90.000,-8.000,0, -1,0 
GOTO/-65.000,-93.000,0.000 
GOTO/-37.000,-65.000,0.000 
GOTO/-37.000, -65.000, -8.000 
PTMEAS/CART,-40.000,-65.000,-8.000,1,0,0
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ENDMES

TEXT/OUTFIL,’ ’
TEXT/OUTFIL,’****** Measured Cyll ****** 
OUTPUT/F A(Cyll)

(NO_MEAS_10) 
GOTO/-37.000,-65.000,-5.000 
GOTO/-37.000,-65.000,10.000 
(END)
ENDFIL
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4.8 Feed back

= -1 0 4 ,9 5 6  
= - IG.Ogl 
= 1 3 .0 5 5

93,

Figure 3 : Reading a DMIS file

The CMM generates a DMIS file with all the measured values and the tolerance 
information. This DMIS file can be read back into the system and a graphical displayed 
of the measured values can be shown as in the above drawing. If the user wants to get 
this information back into the CAD system an IGES output can be generated, this file 
will contain the information to display the drawing as in the drawing above.

The DMIS file generated by the CMM for this particular inspection program and the 
IGES file generated by the system are shoen in the following pages.
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4.9 DM IS file input

FELNAM/’Test’
$$ LK-DMIS Version 1.3, Mon Apr 26 18:19:36 1993 
UNITS/MM, ANGDMS ,TEMPF 
D(mcs)=DATSET/MCS 
PRCOMP/ON
DATDEF/FA(top_face),DAT(A)
DATDEF/FA(line),DAT(B)
DATDEF/FA(line),DAT(B)
DATDEF/FA(point),DAT(C)
D(part)=DATSET/DAT(A),ZDIR,ZORIG,DAT(B),XDIR,YORIG,DAT(C),YDIR,XORIG
RECALL/D(part)

TEXT/OUTFIL,’****** Measured Holel ******
OUTPUT/FA(Holel)
FA(Holel)=FEAT/CIRCLE,INNER,CART,-14.959,-12.019,0,0,0,1,13.054

TEXT/OUTFIL,’****** Measured Hole2 ******
OUTPUT/FA(Hole2)
FA(Hole2)=FEAT/CERCLE,INNER,CART,-104.956,-12.021,0,0,0,1,13.055

TEXT/OUTFIL,’****** Measured Dist2Fl ******
OUTPUT/FA(Dist2Fl)
FA(Dist2Fl)=FEAT/LINE,BND,CART,-15.000,-12.000,0.000,-105.000,-12.000,0.000,0,0,1 

OUTPUT/T A(TolDist2Fl)
TA(TolDist2Fl)=TOL/DISTB,INTOLJ40MINL,90.002,-0.100,0.500JPT2PT

TEXT/OUTFIL,’****** Measured Lenlnl ******
OUTPUT/FA(LenIn 1)

FA(LenInl)=FEAT/LINE,BND,CART,-126.500,-60.000,0.000,-126.500,-70.000,0.000,0,0,1 
FA(Pointl)=FEAT/POINT, CART, -126.500,-60.000, -3.000,0,-1,0 
FA(Point2)=FEAT/POINT, CART, -126.500, -70.000,-3.000,0,1,0

OUTPUT/T A(ToILenIn 1)
TA(TolLenInl)=TOL/DISTB,NOMINL,OUTOL,9.995,-0.200,0.100,YAXIS

TEXT/OUTFIL,******* Measured Arclntl ******
OUTPUT/F A(ArcIntl)
FA(ArcIntl)=FEAT/ARC,INNER,CART,-123.000,-65.000,0.000,0,0,1,5.000,-1.571,1.571

OUTPUT/F A( Arclntl),TA(TxArcIntl)
TA(TxArcIntl)=TOL/CORTOL,XAXIS,0.300,INTOL 
OUTPUT/F A(ArcIntl),TA(TdArcIntl)
TA(TdArcIntl)=TOL/DIAM,0.400,INTOL

TEXT/OUTFIL,’****** Measured Hole3 ******
OUTPUT/FA(HoIe3)
FA(Hole3)=FEAT/CIRCLE, INNER, CART,-93.054,-48.812,-10,0,0,1,6.999 
TA(xaxis)=TOL/CORTOL,XAXIS,0.300,INTOL 
TA(yaxis)=TOL/CORTOL,YAXIS,0.300,INTOL
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TA(DIA)=TOL/DIAM,0.400,INTOL

TEXT/OUTFIL,’****** Measured Hole4 ******
OUTPUT/FA(HoIe4)
FA(Hole4)=FEAT/CIRCLE, INNER, CART,-81.172,-93.153,-10,0,0,1,6.997 
T A(xaxis)=TOL/CORTOL,XAXIS ,0.300,OUTOL 
TA(yaxis)=TOL/CORTOL,YAXIS,0.300,OUTOL 
TA(DIA)=TOL/DIAM,0.400,OUTOL

TEXT/OUTFIL,’****** Measured Hole5 ******
OUTPUT/F A(Hole5)
FA(Hole5)=FEAT/CIRCLE,INNER,CART,-36.802,-81.265,-10,0,0,1,6.997 
TA(xaxis)=TOL/CORTOL,XAXIS,0.300,INTOL 
TA(yaxis)=TOL/CORTOL,YAXIS,0.300,OUTOL 
TA(DIA)=TOL/DIAM,0.400,OUTOL

TEXT/OUTFEL,******* Measured Hole6 ******
OUTPUT/FA(Hole6)
FA(Hole6)=FEAT/CIRCLE,INNER,CART,-48.705,-36.926,-10,0,0,1,6.999 
TA(xaxis)=TOL/CORTOL,XAXIS,0.300,OUTOL 
TA(yaxis)=TOL/CORTOL,YAXIS,0.300,OUTOL 
TA(DIA)=TOL/DIAM,0.400,INTOL

TEXT/OUTFIL,’****** Measured PCirHoll ******
OUTPUT/FA(PCirHoll)
FA(PCirHoll)=FEAT/CIRCLE,INNER,CART,-64.931,-65.044,-10,0,0,1,64.935

TA(TxPCirHoll)=TOL/CORTOL,XAXIS,0.300,OUTOL 
OUTPUT/FA(PCirHoll),TA(TxPCirHoll)
TA(TdPCirHoll)=TOL/DIAM,0.300,INTOL 
OUTPUT/F A(PCirHoll),TA(TdPCirHoll)

TEXT/OUTFIL,’****** Measured Cyll ******
OUTPUT/F A(Cyll)
FA(Cyll)=FEAT/CIRCLE,OUTER,CART,-64.951,-65.025,-5,0,0,1,49.946 
TA(TxCyll)=TOL/CORTOL,XAXIS,0.100,INTOL 
OUTPUT/FA(Cyll),TA(TxCyll)
TA(TyCyll)=TOL/CORTOL,YAXIS,0.300,OUTOL 
OUTPUT/FA(Cyll),TA(TyCyll)
TA(TdCyll)=TOL/DIAM,0.400, OUTOL 
OUTPUT/F A(Cyll),TA(TdCyll)
ENDFIL
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4.10 IGES file output

IGES f i l e  g e n e r a t e d  from a DMIS o u t p u t  from LK CMM by t h e  IGES S0000001
t r a n s l a t o r  from Ane CAD-INSPECTON program,  v e r s i o n  IGES 1 . 1  S0000002
i l 5H5’Â EA'18HB:\FACES\FACEA.IGS,13HAutoCAD-10 c2,11HIGESOUT-2. 0 , 1 6 , 3 8 , 6 , G0000001  
^9 ; ^ A ^ ^ ^ i h M . ' . i HINCH' ? 2 7 6 7 , 3 . 2 7 6 7 D l , 1 3 H 9 3 0 2 1 8 .  091532,  1 . 0 D - 8 ,  G0000002
2 . 857041 077 696 6D2, 6HThroop, 14HAutodeslc,  Inc

110 1 0 0 0
110 0 8 1 0
110 2 0 0 0
110 0 8 1 0
110 3 0 0 0
110 0 8 1 0
110 4 0 0 0
110 0 8 1 0
110 5 0 0 0
110 0 8 1 0
110 6 0 0 0
110 0 8 1 0
110 7 0 0 0
110 0 8 1 0
110 8 0 0 0
110 0 8 1 0
110 9 0 0 0
110 0 8 1 0
110 10 0 0 0
110 0 8 1 0
110 11 0 0 0
110 0 8 1 0
110 12 0 0 0
110 0 8 1 0
110 13 0 0 0
110 0 8 1 0
110 14 0 0 0
110 0 8 1 0
110 15 0 0 0
110 0 8 1 0
110 16 0 0 0
110 0 8 1 0
100 17 0 0 0
100 0 8 1 0
100 18 0 0 0
100 0 8 1 0
100 19 0 0 0
100 0 8 1 0
100 20 0 0 0
100 0 8 1 0
100 21 0 0 0
100 0 8 1 0
100 22 0 0 0
100 0 8 1 0
100 23 0 0 0
100 0 8 1 0
100 24 0 0 0
100 0 8 1 0
100 25 0 0 0
100 0 8 1 0
100 26 0 0 0
100 0 8 1 0
100 27 0 0 0
100 0 8 1 0
100 28 0 0 0
100 0 8 1 0
100 29 0 0 0
100 0 8 1 0
100 30 0 0 0
100 0 8 1 0
100 31 0 0 0
100 0 8 1 0
100 32 0 0 0
100 0 8 1 0
100 33 0 0 0
100 0 8 1 0
110 34 0 0 0
110 0 3 1 0
212 35 0 0 0
212 0 3 2 0
110 37 0 0 0
110 0 2 1 0

^4 , 0;  G0000003
0 0 OOOOOOOOODOOOOOOl

LABEL OD0000002
0 0 OOOOOOOOODO000003

LABEL 000000004
0 0 OOOOOOOOODO000005

LABEL 0D0000006
0 0 OOOOOOOOODO000007

LABEL 0D0000008
0 0 0 000 0 00 0 0DO000009

LABEL 0D0000010
0 0 OOOOOOOOODOOOOOll

LABEL 0D0000012
0 0 0000 000 00DO000013

LABEL 0D0000014
0 0 OOOOOOOOODO000015

LABEL 0D0000016
0 0 OOOOOOOOODO000017

LABEL 000000018
0 0 0 00 000 000 DO000019

LABEL OD0000020
0 0 0 0000000000000021

LABEL 0D0000022
0 0 OOOOOOOOODO000023

LABEL 0D0000O24
0 0 OOOOOOOOODO000025

LABEL 0D0000026
0 0 0 000 000 00DO000027

LABEL ODOOO0O28
0 0 00000000000000029

LABEL 0D0000030
0 0 00000000000000031

LABEL 0D0000032
0 0 OOOOOOOOODO000033

LABEL 0D0000034
0 0 OOOOOOOOODO000035

LABEL OD0000036
0 0 000 000 000 DO000037

LABEL 0D0000038
0 0 0 000 0 00 0 0DO000039

LABEL 0D0000040
0 0 OOOOOOOOODO000041

LABEL OD0000042
0 0 OOOOOOOOODOOOOO43

LABEL 0D0000044
0 0 000 00 0 00 0 DO000045

LABEL OD0000046
0 0 OOOOOOOOODO000047

LABEL OD0000048
0 0 00 00 00 0 00 DO000049

LABEL OD0000050
0 0 00000000000000051

LABEL 0D0000052
0 0 OOOOOOOOODO000053

LABEL OD0000054
0 0 0 00 000 000 DO000055

LABEL 000000056
0 0 0 00 000 000 DO000057

LABEL 0D0000058
0 0 OOOOOOOOODO000059

LABEL 0D0000060
0 0 OOOOOOOOODOOOOOOl

LABEL 0D0000062
0 0 OOOOOOOOODO000063

LABEL 000000064
0 0 OOOOOOOOODO000065

LABEL 0D0000066
0 0 OOOOOOOOODO000067

LABEL 0D0000068
0 0 00 000 0 00 0 DO000069

LABEL 0D0000070
0 0 0 0 000 000 0DO000071

LABEL 0D0000072
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212 38 0 0 0
212 0 2 2 0
110 40 0 0 0
110 0 4 1 0
212 41 0 0 0
212 0 4 2 0
110 43 0 0 0
110 0 4 1 0
212 44 0 0 0
212 0 4 2 0
100 46 0 0 0
100 0 4 1 0
212 47 0 0 0
212 0 4 2 0
110 49 0 0 0
110 0 4 1 0
212 50 0 0 0
212 0 4 2 0
110 52 0 0 0
110 0 4 1 0
212 53 0 0 0
212 0 4 2 0
100 55 0 0 0
100 0 4 1 0
212 56 0 0 0
212 0 4 2 0
110 58 0 0 0
110 0 3 1 0
212 59 0 0 0
212 0 3 2 0
110 61 0 0 0
110 0 4 1 0
212 62 0 0 0
212 0 4 2 0
100 64 0 0 0
100 0 3 1 0
212 65 0 0 0
212 0 3 2 0
110 67 0 0 0
110 0 3 1 0
212 68 0 0 0
212 0 3 2 0
110 70 0 0 0
110 0 3 1 0
212 71 0 0 0
212 0 3 2 0
100 73 0 0 0
100 0 3 1 0
212 74 0 0 0
212 0 3 2 0
110 76 0 0 0
110 0 2 1 0
212 77 0 0 0
212 0 2 2 0
110 79 0 0 0
110 0 2 1 0
212 80 0 0 0
212 0 2 2 0
100 82 0 0 0
100 0 2 1 0
212 83 0 0 0
212 0 2 2 0
110 85 0 0 0
110 0 3 1 0
212 86 0 0 0
212 0 3 2 0
110 88 0 0 0
110 0 2 1 0
212 89 0 0 0
212 0 2 2 0
100 91 0 0 0
100 0 2 1 0
212 92 0 0 0
212 0 2 2 0
110 94 0 0 0
110 0 2 1 0
212 95 0 0 0
212 0 2 2 0
110 97 0 0 0
110 0 2 1 0

0 0 OOOOOOOOODO000073
LABEL 0D0000074

0 0 0 0 0 0 0 00 00 DO000075

0
LABEL OD0000076

0 OOOOOOOOODO000077

0
LABEL 0D0000078

0 0 0 0 0 0 00 00 DO000079
LABEL 0D0000080

0 0 OOOOOOOOODO000081
LABEL 0D0000082

0 0 OOOOOOOOODO000083
LABEL OD0000084

0 0 OOOOOOOOODO000085
LABEL ODOOOOO86

0 0 OOOOOOOOODO000087
LABEL 0D0000088

0 0 0 0 0 0 00 00 0 DO000089
LABEL 0D0000090

0 0 OOOOOOOOODO000091
LABEL 0D0000092

0 0 OOOOOOOOODO000093
LABEL 0D0000094

0 0 OOOOOOOOODO000095
LABEL 0D0000096

0 0 OOOOOOOOODO000097
LABEL 000000098

0 0 OOOOOOOOODO000099
LABEL ODOOOOIOO

0 0 OOOOOOOOODOOOOlOl
LABEL OD0000102

0 0 0 00 00 0 00 0 DO000103
LABEL 0D0000104

0 0 0 00 00 0 00 0 DO000105
LABEL OD0000106

0 0 0 0 0 0 0 0 000D0000107
LABEL 0D0000108

0 0 OOOOOOOOODO000109
LABEL 0D0000110

0 0 OOOOOOOOODOOOOlll
LABEL 0D0000112

0 0 0 0 0 0 0 0 0 OODOOOO113
LABEL 0D0000114

0 0 OOOOOOOOODO000115
LABEL 0D0000116

0 0 OOOOOOOOODOOOOH7
LABEL 0D0000118

0 0 OOOOOOOOODO000119
LABEL OD0000120

0 0 0 00 00 0 00 0 DO000121
LABEL OD0000122

0 0 0 0 0 0 0 00 00 DO000123
LABEL 0D0000124

0 0 0 0 0 0 0 00 00 DO000125
LABEL 0D0000126

0 0 0 0 0 0 0 00 00 DO000127
LABEL 0D0000128

0 0 0 0 0 0 0 00 00 DO000129
LABEL 0D0000130

0 0 OOOOOOOOODO000131
LABEL ODOOOO132

0 0 0000000 000 000 013 3
LABEL 0D0000134

0 0 OOOOOOOOODO000135
LABEL 0D0000136

0 0 OOOOOOOOODO000137
LABEL 0D0000138

0 0 0 0 0 0 0 00 00 DO000139
LABEL OD0000140

0 0 0 0 0 0 0 00 00 DO000141
LABEL 0D0000142

0 0 0 00 0 00 0 00 DO000143
LABEL 0D0000144

0 0 0 00 00 0 00 0 DO000145
LABEL OD0000146

0 0 0 0 0 0 0 00 00 DO000147
LABEL OD0000148

0 0 0 0 0 0 0 00 00 DO000149
LABEL OD0000150

0 0 0 00 0 0 0 0 0 0 DO000151
LABEL OD0000152
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212
212
100
100
212
212
110
110
212
212
110
110
212
212
100
100
212
212
110
110
212
212
110
110
212
212
100
100
212
212

1 1 0 , 2 6 0 . 0 0 0
1 1 0 , 2 6 0 . 0 0 0
1 1 0 . 1 3 0 . 0 0 0
1 1 0 . 1 3 0 . 0 0 0
1 1 0 . 1 3 0 . 0 0 0
1 1 0 . 1 3 0 . 0 0 0
1 1 0.2 0 0 . 0 0 0
1 1 0 . 1 9 0 . 0 0 0
1 1 0.2 0 0 . 0 0 0
1 1 0 . 1 9 0 . 0 0 0
1 1 0 . 2 6 0 . 0 0 0  
1 1 0 , 2 6 0 . 0 0 0
1 1 0 . 1 9 4 . 9 1 0
1 1 0 . 1 9 5 . 0 0 0
1 1 0 . 1 9 4 . 9 1 0
1 1 0 . 1 9 5 . 0 0 0
1 0 0 . 0  . 0 , 2 4 5
1 0 0 . 0 . 0 . 1 5 5
1 0 0 . 0 . 0 . 1 9 5
1 0 0 . 0 . 0 . 1 9 5
1 0 0 . 0 . 0 . 1 8 6  
1 0 0 , 0 . 0 , 1 6 6
1 0 0 . 0 . 0 . 1 6 3
1 0 0 . 0 . 0 . 1 7 8
1 0 0 . 0 . 0 . 2 0 3
1 0 0 . 0 . 0 . 2 2 3
1 0 0 . 0 . 0 . 2 2 6  
1 0 0 , 0 . 0 , 2 1 1
1 0 0 . 0 . 0 . 1 7 6
1 0 0 . 0 . 0 . 1 3 7
1 0 0 . 0 . 0 . 1 9 5
1 0 0 . 0 . 0 . 1 9 5
1 0 0 . 0 . 0 . 2 5 3
1 1 0 . 2 4 5 . 0 0 0
2 1 2 . 1 . 8 . 2 4 .  
8HL=90. 002;  
1 1 0 , 1 3 3  .500  
2 1 2 , 1 , 7 , 2 1 .  
7HL=9.995;
1 1 0 . 2 5 0 . 0 4 1
2 1 2 . 1 . 9 . 2 7 .  
9HH=-14 .959
1 1 0 . 2 4 5 . 0 4 1
2 1 2 . 1 . 9 . 2 7 .  
9HV=-12.019
1 0 0 . 0 . 0 . 2 4 5
2 1 2 . 1 . 8 . 2 4 .  
8HD=13. 054;  
1 1 0 , 1 6 0 . 0 4 4  
2 1 2 , 1 , 1 0 , 3 0

98
0

100
0

101
0

103 
0

104 
0

106
0

107
0

109 
0

110 
0

112
0

113
0

115 
0

116 
0

118
0

119
0

, 1 0 0 . 0 0 0  
, 2 3 0 . 0 0 0  
, 2 3 0 . 0 0 0  
, 1 0 0 . 0 0 0  
, 1 7 0 . 0 0 0  
, 1 6 0 . 0 0 0  
, 1 0 0 . 0 0 0  
, 1 0 0 . 0 0 0  
, 2 3 0 . 0 0 0  
, 2 3 0 . 0 0 0  
, 1 6 0 . 0 0 0  
, 1 7 0 . 0 0 0  
, 1 6 5 . 0 0 0  
, 1 6 4 . 9 1 0  
, 1 6 5 . 0 0 0  
, 1 6 4 . 9 1 0  
. 0 0 0 , 2 1 8  
. 0 0 0 , 2 1 8  
. 0 0 0 , 1 6 5  
. 0 0 0 , 1 6 5  
. 5 8 8 , 1 9 6  
. 8 5 4 , 1 8 1  
. 6 0 7 , 1 5 6  
. 7 5 0 , 1 3 6  
. 4 1 2 , 1 3 3  
. 1 4 6 , 1 4 8  
. 3 9 3 , 1 7 3  
. 2 5 0 , 1 9 3  
. 0 0 0 , 1 1 2  
. 0 0 0 , 1 6 5  
. 0 0 0 , 1 0 7  
. 0 0 0 , 2 2 3  
. 0 0 0 , 1 6 5  
, 2 1 8 . 0 0 0  
0 , 3 . 0 , 1 ,

, 1 7 0 . 0 0 0 ,  
0 , 3 . 0 , 1 , ,

, 2 1 7 . 9 8 1  
0 , 3 . 0 , 1 ,

, '222.981  
0 , 3 . 0 , 1 ,

' 04 1 , 2 17  
0 , 3 . 0 , 1 ,

, 2 1 7 . 9 7 9  
. 0 , 3 . 0 , 1

, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
, 0 . 0
. 0 0 0
. 0 0 0
. 0 0 0
. 0 0 0
.393
.250
.588
.854
.607
.750
.412
.146
. 0 0 0
. 0 0 0
. 0 0 0
. 0 0 0
. 0 0 0
, 0 . 0
, 0 . 0

0 . 0
0 . 0

, 0 . 0
, 0 . 0

, 0 . 0
, 0 . 0

. 981
, 0 . 0

260
130
130
260
137
137
200
190
2 00
190
253
253
195
195
195
195
251
161
2 20
235
190
170
167
182
207
227
230
215
182
137
200
190
253
155
0 , 0

0
2
0
1
0
201
0
2
0
1
0
2
0
1
0
2
0
1
0
2
0
1
0
2
0
1
0
2

. 0 0 0 , 2 3 0 .

. 0 0 0 , 2 3 0 .

. 0 0 0 , 1 0 0 .

. 0 0 0 , 1 0 0 .

. 0 0 0 , 1 7 0 .

. 0 0 0 , 1 6 0 .

. 0 0 0 , 1 0 7 .

. 0 0 0 , 1 0 7 .

. 0 0 0 , 2 2 3 .

. 0 0 0 , 2 2 3 .

. 0 0 0 , 1 6 0 .

. 0 0 0 , 1 7 0 .

. 0 9 0 , 1 6 5 .

. 0 0 0 , 1 6 5 .

. 0 9 0 , 1 6 5 .

. 0 0 0 , 1 6 5 .

. 5 0 0 , 2 1 8 .

. 5 0 0 , 2 1 8 .

. 0 0 0 , 1 6 5 .

. 0 0 0 , 1 6 5 .

. 5 8 8 , 1 9 6 .

. 8 5 4 , 1 8 1 .

. 6 0 7 , 1 5 6 .

. 7 5 0 , 1 3 6 .

. 4 1 2 , 1 3 3 .

. 1 4 6 , 1 4 8 .

. 3 9 3 , 1 7 3  .

. 2 5 0 , 1 9 3  .

. 5 0 0 , 1 1 2 .

. 0 0 0 , 1 6 0 .

. 0 0 0 , 1 0 7 .

. 0 0 0 , 2 2 3 .

. 0 0 0 , 1 7 0 .

. 0 0 0 , 2 1 8 .
, 1 9 8 . 5 0 0 ,

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 ; 
0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 ; 
0 0 0 , 0 . 0 ; 
0 0 0 , 0 . 0 ; 
0 0 0 , 0 . 0 , 
0 0 0 , 0 . 0 ; 
0 0 0 , 0 . 0 ;
0 9 0 . 0 . 0 ;  
0 0 0 , 0 . 0 ;
0 9 0 . 0 . 0 ;  
0 0 0 , 2 5 1 ,  
0 0 0 , 1 6 1 ,  
0 0 0 , 2 2 0 . 
0 0 0 , 2 3 5 .  
3 9 3 , 1 9 0 .  
2 5 0 , 1 7 0 .  
5 8 8 , 1 6 7 .  
8 5 4 , 1 8 2 .  
6 0 7 , 2 0 7 .  
7 5 0 , 2 2 7 .  
4 1 2 , 2 3 0 .  
1 4 6 , 2 1 5 .  
0 0 0 , 1 8 2 .  
0 0 0 , 1 3 7 .  
0 0 0 , 1 9 0 .  
0 0 0 , 2 0 0 . 
0 0 0 , 2 5 3 .  
0 0 0 , 0 . 0 ; 
2 1 9 . 5 0 0 ,

1 3 3 . 5 0 0 . 1 6 0 . 0 0 0 . 0 . 0 ;  
0 , 0 , 1 3 6 . 5 0 0 , 1 6 3 . 5 0 0 , 0 . 0 0 0 ,

2 4 0 . 0 4 1 . 2 1 7 . 9 8 1 . 0 . 0 ;
0 , 0 , 2 4 8 . 0 4 1 , 2 2 0 . 9 8 1 , 0 . 0 0 0 ,

2 4 5 . 0 4 1 . 2 1 2 . 9 8 1 . 0 . 0 ;
0 , 0 , 2 4 8 . 0 4 1 , 2 1 6 . 4 8 1 , 0 . 0 0 0 ,

2 5 1 . 5 6 8 , 2 1 7 . 9 8 1 , 2 5 1 . 5 6 8 , 2 1 7 ,
0 , 0 , 2 4 8 . 0 4 1 , 2 1 1 . 9 8 1 , 0 . 0 0 0 ,

, 0 . 0 , 1 5 0 . 0 4 4 , 2 1 7 . 9 7 9 , 0 . 0 ;
, , 0 . 0 , 0 , 0 , 1 5 8 . 0 4 4 , 2 2 0 . 9 7 9 , 0 . 0 0 0 ,

0 0 OOOOOOOOODO000153
LABEL OD0000154

0 0 00 000 0 00 0 DO000155
LABEL 0D0000156

0 0 0 000 00 0 00 DO000157
LABEL 0D0000158

0 0 OOOOOOOOODO000159
LABEL OD0000160

0 0 0 00 0 00 0 00 DO000161
LABEL OD0000162

0 0 OOOOOOOOODO000163
LABEL 0D0000164

0 0 OOOOOOOOODO000165
LABEL 0D0000166

0 0 OOOOOOOOODO000167
LABEL 0D0000168

0 0 OOOOOOOOODO000169
LABEL 0D0000170

0 0 OOOOOOOOODO000171
LABEL 0D0000172

0 0 000000000DO000173
LABEL OD0000174

0 0 0 0 00 0 00 0 0DO000175
LABEL OD00001760 0 000000000DO000177
LABEL 0D0000178

0 0 000000000DO000179
LABEL OD0000180

0 0 0 0 00 0 00 0 0DO000181
LABEL 0D0000182

1P0000001  
3P0000002  
5P0000003  
7P0000004  
9P0000005  

11P0000006  
13P0000007  
15P0000008  
17P0000009  
19P0000010  
21P0000011  
23P0000012  
25P0000013  
27P0000014  
29P0000015  
31P0000016  

000;  33P0000017
000;  35P0000018
000;  37P0000019
000;  39P0000020
393;  41P0000021
250;  43P0000022
588;  45P0000023
854;  47P0000024
607;  49P0000025
750;  51P0000026
412;  53 P0000027
146;  55P0000028
000;  57P0000029
000;  59P0000030
000;  61P0000031
000;  63P0000032
000? 65P0000033

67P0000034  
69P0000035  
69P0000036  
71P0000037  
73P0000038  
73P0000039  
75P0000040  
77 P00 000 41 
77P0000042  
79P0000043  
81P0000044  
81P0000045  

981;  83P0000046
85P0000047  
85P0000048  
87P0000049  
89P0000050

5 0 0 . 2 1 8
5 0 0 . 2 1 8  
0 0 0 , 16 5 .  
0 00 , 16 5 ,  
5 88 , 1 9 6 ,  
8 5 4 , 18 1 .  
6 0 7 , 15 6 ,  
7 50 , 1 3 6 .  
4 1 2 , 13 3  
1 46 , 14 8 .  
3 93 , 1 7 3 .  
2 50 , 1 9 3 ,  
5 00 , 1 1 2 ,  
0 00 , 17 0 .  
0 0 0 , 10 7 ,  
0 00 , 22 3  
0 0 0 , 16 0 ,

0.000,



Appendix 4 Examples of IGES,DMIS and CMES files 215

10HH=-104. 9 56 ;  
1 1 0 , 1 5 5 . 0 4 4 , 2 2 2 . 9 7 9
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-12. 0 2 1 ;
1 0 0 . 0 . 0 . 1 5 5 . 0 4 4 . 2 1 7
2 1 2 . 1 . 8 . 2 4 . 0 . 3 . 0 . 1 ,  
8HD=13. 05 5;
1 1 0 . 1 4 2 . 0 0 0 . 1 6 5 . 0 0 0
2 1 2 . 1 . 1 0 . 3 0 . 0 . 3 . 0 . 1  
10HH=-123. 00 0 ;
1 1 0 . 1 3 7 . 0 0 0 . 1 7 0 . 0 0 0
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-65. 0 00;
1 0 0 . 0 . 0 . 1 3 7 . 0 0 0 . 1 6 5
2 1 2 . 1 . 8 . 2 4 . 0 . 3 . 0 . 1 ,  
8HD=10. 0 0 0 ;
1 1 0 . 1 7 1 . 9 4 6 . 1 8 1 . 1 8 8
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HH=-93. 0 5 4 ;
1 1 0 . 1 6 6 . 9 4 6 . 1 8 6 . 1 8 8
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-48. 8 1 2 ;
1 0 0 . 0 . 0 . 1 6 6 . 9 4 6 . 1 8 1
2 1 2 . 1 . 7 . 2 1 . 0 . 3 . 0 . 1 ,  
7HD=6. 999;
1 1 0 . 1 8 3 . 8 2 8 . 1 3 6 . 8 4 7
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HH=-81. 17 2 ;
1 1 0 . 1 7 8 . 8 2 8 . 1 4 1 . 8 4 7
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-93. 1 5 3 ;
1 0 0 . 0 . 0 . 1 7 8 . 8 2 8 . 1 3 6
2 1 2 . 1 . 7 . 2 1 . 0 . 3 . 0 . 1 ,  
7HD=6. 997 ;
1 1 0 . 2 2 8 . 1 9 8 . 1 4 8 . 7 3 5
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HH=-36. 802 ;
1 1 0 . 2 2 3 . 1 9 8 . 1 5 3 . 7 3 5
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-81. 265 ;
1 0 0 . 0 . 0 . 2 2 3 . 1 9 8 . 1 4 8
2 1 2 . 1 . 7 . 2 1 . 0 . 3 . 0 . 1 ,  
7HD=6. 99 7;
1 1 0 . 2 1 6 . 2 9 5 . 1 9 3 . 0 7 4
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HH=-48 . 70 5;
1 1 0 . 2 1 1 . 2 9 5 . 1 9 8 . 0 7 4
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-36. 926 ;
1 0 0 . 0 . 0 . 2 1 1 . 2 9 5 . 1 9 3
2 1 2 . 1 . 7 . 2 1 . 0 . 3 . 0 . 1 ,  
7HD=6. 999 ;
1 1 0 . 2 0 0 . 0 6 9 . 1 6 4 . 9 5 6
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HH=-64. 931 ;
1 1 0 . 1 9 5 . 0 6 9 . 1 6 9 . 9 5 6
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-65. 044 ;
1 0 0 . 0 . 0 . 1 9 5 . 0 6 9 . 1 6 4
2 1 2 . 1 . 8 . 2 4 . 0 . 3 . 0 . 1 ,  
8HD=64. 93 5;
1 1 0 . 2 0 0 . 0 4 9 . 1 6 4 . 9 7 5
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HH=-64.951;
1 1 0 . 1 9 5 . 0 4 9 . 1 6 9 . 9 7 5
2 1 2 . 1 . 9 . 2 7 . 0 . 3 . 0 . 1 ,  
9HV=-65. 025 ;
1 0 0 . 0 . 0 . 1 9 5 . 0 4 9 . 1 6 4 ,
2 1 2 . 1 . 8 . 2 4 . 0 . 3 . 0 . 1 . ,  
8HD=49. 94 6;
S 2G 3D

0 . 0
0 . 0

979
0 . 0

0 . 0
, 0 .

0 . 0
0 . 0

000
0 . 0

0 . 0
0 . 0

0 . 0
0 . 0

188
0 . 0

0 . 0
0 . 0

0 . 0
0 . 0

847
0 . 0

0.0
0 . 0

0.0
0.0
735
0 . 0

0.0
0.0
0.0
0.0
074
0.0
0.0
0.0
0.0
0.0
956
0.0
0.0
0.0
0.0
0.0
975
0.0

1 5 5 . 0 4 4 . 2 1 2 . 9 7 9 . 0 . 0 ;
0 , 0 , 1 5 8 . 0 4 4 , 2 1 6 . 4 7 9 , 0 . 0 0 0 ,

1 6 1 . 5 7 2 , 2 1 7 . 9 7 9 , 1 6 1 . 5 7 2 , 2 1 7 . 9 7 9 ;  
0 , 0 , 1 5 8 . 0 4 4 , 2 1 1 . 9 7 9 , 0 . 0 0 0 ,

1 3 2 . 0 0 0 . 1 6 5 . 0 0 0 . 0 . 0 ;
1 . 0 . 0 . 1 4 0 . 0 0 0 . 1 6 8 . 0 0 0 . 0 . 0 0 0 ,

1 3 7 . 0 0 0 . 1 6 0 . 0 0 0 . 0 . 0 ;
0 , 0 , 1 4 0 . 0 0 0 , 1 6 3 . 5 0 0 , 0 . 0 0 0 ,

1 3 6 . 9 9 9 . 1 6 0 . 0 0 0 . 1 3 6  . 9 9 9 , 1 7 0 . 0 0 0 ;  
0 , 0 , 1 4 0 . 0 0 0 , 1 5 9 . 0 0 0 , 0 . 0 0 0 ,

1 6 1 . 9 4 6 . 1 8 1 . 1 8 8 . 0 . 0 ;  
0 , 0 , 1 6 9 . 9 4 6 , 1 8 4 . 1 8 8 , 0 . 0 0 0 ,

1 6 6 . 9 4 6 . 1 7 6 . 1 8 8 . 0 . 0 ;
0 , 0 , 1 6 9 . 9 4 6 , 1 7 9 . 6 8 8 , 0 . 0 0 0 ,

1 7 0 . 4 4 5 , 1 8 1 . 1 8 8 , 1 7 0 . 4 4 5 , 1 8 1 . 1 8 8 ;  
0 , 0 , 1 6 9 . 9 4 6 , 1 7 5 . 1 8 8 , 0 . 0 0 0 ,

1 7 3 . 8 2 8 . 1 3 6 . 8 4 7 . 0 . 0 ;
0 , 0 , 1 8 1 . 8 2 8 , 1 3 9 . 8 4 7 , 0 . 0 0 0 ,

1 7 8 . 8 2 8 . 1 3 1 . 8 4 7 . 0 . 0 ;
0 , 0 , 1 8 1 . 8 2 8 , 1 3 5 . 3 4 7 , 0 . 0 0 0 ,

1 8 2 . 3 2 7 , 1 3 6 . 8 4 7 , 1 8 2 . 3 2 7 , 1 3  6 . 8 4 7 ;  
0 , 0 , 1 8 1 . 8 2 8 , 1 3 0 . 8 4 7 , 0 . 0 0 0 ,

2 1 8 . 1 9 8 . 1 4 8 . 7 3 5 . 0 . 0 ;
0 , 0 , 2 2 6 . 1 9 8 , 1 5 1 . 7 3 5 , 0 . 0 0 0 ,

2 2 3 . 1 9 8 . 1 4 3 . 7 3 5 . 0 . 0 ;
0 , 0 , 2 2 6  . 1 9 8 , 1 4 7  . 2 3 5 ,  0 . 00 0,

2 2 6 . 6 9 7 , 1 4 8 . 7 3 5 , 2 2 6 . 6 9 7 , 1 4 8 . 7 3 5 ;  
0 , 0 , 2 2 6 . 1 9 8 , 1 4 2 . 7 3 5 , 0 . 0 0 0 ,

2 0 6 . 2 9 5 . 1 9 3 . 0 7 4 . 0 . 0 ;  
0 , 0 , 2 1 4 . 2 9 5 , 1 9 6 . 0 7 4 , 0 . 0 0 0 ,

2 1 1 . 2 9 5 . 1 8 8 . 0 7 4 . 0 . 0 ;
0 , 0 , 2 1 4 . 2 9 5 , 1 9 1 . 5 7 4 , 0 . 0 0 0 ,

2 1 4 . 7 9 4 , 1 9 3 . 0 7 4 , 2 1 4 . 7 9 4 , 1 9 3 . 0 7 4 ;  
0 , 0 , 2 1 4 , 2 9 5 , 1 8 7 . 0 7 4 , 0 . 0 0 0 ,

1 9 0 . 0 6 9 . 1 6 4 . 9 5 6 . 0 . 0 ;
0 , 0 , 1 9 8 . 0 6 9 , 1 6 7 . 9 5 6 , 0 . 0 0 0 ,

1 9 5 . 0 6 9 . 1 5 9 . 9 5 6 . 0 . 0 ;
0 , 0 ,  1 9 8 . 0 6 9 , 1 6 3  . 4 5 6 , 0 . 0 0 0 ,

2 2 7 . 5 3  6 , 1 6 4 . 9 5 6 , 2 2 7 . 5 3 6 , 1 6 4 . 9 5 6 ;  
0 , 0 , 1 9 8 . 0 6 9 , 1 5 8 . 9 5 6 , 0 . 0 0 0 ,

1 9 0 . 0 4 9 . 1 6 4 . 9 7 5 . 0 . 0 ;
0 , 0 , 1 9 8 . 0 4 9 , 1 6 7 . 9 7 5 , 0 . 0 0 0 ,

1 9 5 . 0 4 9 . 1 5 9 . 9 7 5 . 0 . 0 ;
0 , 0 ,  1 9 8 . 0 4 9 ,  163 . 4 7 5 , 0 . 0 0 0 ,

22 0 . 0 2 2 , 1 6 4 . 9 7 5 , 2 2 0 . 0 2 2 , 1 6 4 . 9 7 5 ;  
0 , 0 , 1 9 8 . 0 4 9 , 1 5 8 . 9 7 5 , 0 . 0 0 0 ,

182P 120

89P0000051  
91P0000052  
93P0000053  
93P0000054  
95P0000055  
97P0000056  
97P0000057  
99P0000058  

101P0000059  
101P0000060  
103P0000061  
105P0000062  
105P0000063  
107P0000064  
109P0000065  
109P0000066  
111P0000067  
113P0000068  
113P0000069  
115P0000070  
117P0000071  
117P0000072  
119P0000073  
121P0000074  
1 2 1P0000075  
123P0000076  
125P0000077  
125P0000078  
127P0000079  
129P0000080  
129P0000081  
1 3 1P0000082  
133P0000083  
133P0000084  
135P0000085  
137P0000086  
137P0000087  
139P0000088  
141P0000089  
141P0000090  
143P0000091  
145P0000092  
145P0000093  
147P0000094  
149P0000095  
149P0000096  
151P0000097  
153P0000098  
153P0000099  
155P0000100  
157P0000101  
157P0000102  
159P0000103  
161P0000104  
161P0000105  
163P0000106  
165P0000107  
165P0000108  
167P0000109  
169P0000110  
169P0000111  
171P0000112  
173P0000113  
173P0000114  
175P0000115  
177P0000116  
177P0000117  
179P0000118  
181P0000119  
181P0000120  

T0000001
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Appendix 5 : List of files

Data Structure

#defme MY_NEW(a) ma!loc(sizeof(*a)) 
#define pi 3.1415927

typedef enum {xy, yz, xz] wp; 
typedef enum {pi, p2, p3, p4, p5} probe;

typedef struct line 
(
float
float
float
float
float
float
float
float
float
float
int
struct line 

}*pointer_line;

typedef struct scr_line 
{

float
float
float
float
struct scrjine 

}*pointer_scrL;

typedef struct arc 
{

float
float
float
float
float
float
float
float
float
float
float
float
float
float
int
struct arc 

}*pointer_arc;

typedef struct scr_arc 
{

float
float
float
float

xl;
yi;
x2;
y2;
xrl;
yrl;
zrl;
xr2;
yr2;
zr2;
select;
♦next;

xl;
yi;
x2;
y2;
♦next;

z;
xc;
yc;
xl;
yi;
x2;
y2;
xrc;
yrc;
xrl;
yrl;
xr2;
yr2;
rad;
select;
♦next;

xc;
yc;
xl;
yi;

float
float
struct scr_arc 

}*pointerjscrA;

typedef struct selarc 
{
pointer_scrA 
struct selarc 

} *pointer_Sel Arc;

typedef struct PD 
{

char
struct PD 

}*pointer_PD;

typedef struct 
{

char
char
char
char

]state_type;

typedef struct DE 
(
int
int
int
state_type
int
int
int
struct DE 

) ♦pointerJDE;

typedef struct pline 
(

pointer_line
pointer_arc
int
struct pline 

)*pointer_pline;

typedef struct ent_sel 
{

pointer_line
pointerjarc
pointer_pline
int
int
int
struct ent_sel 

} ♦pointer_ent_selec;

typedef struct string

x2;
y2;
♦next;

arc;
♦next;

line[100];
♦next;

see[4];
sub[4J;
use[4J;
hie[4];

type;
punt_PD;
n_line;
state;
color,
lines_PD;
fonn;
♦next;

line;
arc;
select;
♦next;

line;
arc;
pline;
is_line;
is_arc;
is_pline;
♦next;
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{

float xl;
float yl;
char text[80];
struct string *next;

}*pointer_string;

typedef struct tolarc 
{
float UpH;
float LowH;
float UpV;
float LowV;
float UpD;
float LowD;
int equal;
int NumCas;
int h;
int v;

}*pointer_Tol;

typedef struct fea arc
I

int ext;
float
float
float
float
float
float
float
float
pointer_scrA 
pointer_Tol 
struct fea_arc 

} *pointer_feat_arc;

typedef struct fea_cir 
{

float
float
float
float
int ext;
pointer_scrA
pointer_Tol
struct fea_cir *next;

} *pointer_feat_ci r;

typedef struct feajenin 
{

float
float
float
float
float
float
pointer_scrL 
pointer_Tol 

} *pointer_feat_len;

typedef struct fea_wTh
I

float

he;
vc;
hi;
vl;
h2;
v2;
dep;
rad;
arc;
Tol;
*next;

hor,
ver,
dep;
dia;

circle;
Tol;

hac;
dist_h;
vac;
dist_v;
dep;
inside;
line;
Tol;

hi;

float vl;
float h2;
float v2;
float he;
float vc;
float ang;
float depl;
float dep2;
float inside;
pointer_scrL line;
pointer_Tol Tol;

) *pointer_feat_wTh;

typedef struct point 
{

float h;
float v;
float dep;
struct point *next;

} *pointer_point;

typedef struct fea_lentru 
{

pointer_point point;
pointer_scrL line;
pointer_Tol Tol;

} *pointer_feat_lentru;

typedef struct PCir 
{

pointer_feat_cir list_circle;
pointer_scrA pc_cir;
float he;
float vc;
float dia;
pointer_Tol Tol;
int num;

} *pointer_feat_PCir,

typedef struct cirarc 
{

pointer_feat_arc Arc;
pointer_feat_cir Cir,
struct cirarc *next;

} * poi nter_2fea_sel;

typedef struct Twofea 
{
int cm;
int len;
pointer_2fea_sel CirArc;
pointer_scrL line;
pointer_Tol Tol;
pointerjpoint HeadPt;

} *pointer_feat_2fea;

typedef struct MoveProbe 
{

float h
float v
float d

} *pointer_MovePr,

typedef union fea
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float v2;
pointer_feat_cir circle; float he;
pointer_feat_arc arc; float vc;
pointer_feat_len len; float dia;
pointer_feat_lentru lentru; int TolD;
pointer_feat_wTh wTh; int TolH;
pointer_feat_PCir PCir, int TolV;
pointer_feat_2fea Twofea; struct real_cir ♦next;
pointer_MovePr MovePr, } *pointer_res_ci r,

typedef enum {cir, arc_ext, arc_int, cilynder, lenin, lenout, 
lentru,

wTliIn, wThOut, PCirHol, PCirBos, L2fea, 
MPr}type_feat;

typedef struct feat_sel 
{

dif_feat 
type_feat 
struct feat_sel 
struct feat_sel 

} ♦pointer_feat_sel;

typedef struct selFS 
(

pointer_feat_sel 
struct selFS 

] ♦pointer_sel_FS;

typedef struct measjfeat 
{

probe
wp
float
float
float
float
float
float
pointer_feat_sel 
pointer_feat_sel 
pointer_line 
pointer_arc 
struct measjfeat 
struct meas_feat 

} ♦pointer_meas_feat;

typedef struct real_line 
(

float
float
float
float
int
float
struct real_line 

} ♦pointer_res_line;

typedef struct real_cir 
(

float
float
float

point_feat;
feat;
♦previous;
♦next;

FeatSel;
♦next;

sensor,
work_pl;
or_ha;
or_va;
or_dep;
IncX;
IncY;
IncZ;
HeadFS;
TailFS;
line;
arc;
♦previous;
♦next;

hi;
vl;
h2;
v2;
Tol;
length;
♦next;

hi;
vl;
h2;
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The functions created for this program are defined in the following pages. Due to the length of the program only the header functions 
and some example functions will be displayed.

4.2 R ead JG E S

The functions defined in this file were created to read IGES.

/*************************** MAIN 
void main 0 
{

LastPr=pl; LastWp=xy; 
draw_enviroment O', 
initGloVar 0;
DelResCir (&HeadResCir);
DelResLine (&HeadResLine);

}
pjL ********************************* f

This function reads an IGES file.

void readjRl (FILE *figes)
(

char caracter;
pointer_DE linkDE;
int count;

/* The directory entry is read */

fgets (TipoL, 82, figes);
TipoL[80]=’M)’; 
caracter = TipoL[72]; 
while (caracter 1= ’D1) { 

fgets (TipoL, 82, figes);
TipoL[80]=MT; 
caracter = TipoL[72];

)
while (caracter =  ’D’) { 

if (caracter =  ’D’) 
make_de_element (figes); 

fgets (TipoL,82,figes);
TipoL[80]=’M)’; 
caracter = TipoL[72];

}
/* The parameter data is read */

for (linkDE=head_DE; linkDE != NULL; linkDE=linkDE->next){ 
for (count=0; count < link_DE->cont_PD; count++) { 

if (TypeToProcess (linkDE->type)) 
add_pd_list 0; 

fgets (TipoL, 82, figes);
TipoL[80]=’W ;

}
}

)
y********************** CREATE STRUCTURE *************************/ 
void create_structure 0
Tliis function reads into the created structure what was defined by IGES.

CREATE PLINES ***********************+**/
void create_plines 0  
This function reads polylines.

y********************* TAKE DATA PLINE
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void take_data_pline (pointer_PD actual_PD, int numlines, pointer_pline p_pline)
Takes the infomiation of the polyline.

y************************ MAKE DRAWING
void make_drawing 0
Draws the read information on the screen.

y********************** MAKE_DE_ELEMENT **************************/

void make_de_element (FILE *figes)
Read DE information.

y********************** WRITE_PARAM1 DE ELEMENT ******************/
void write_paraml_de_element (int type, int puntJPD, state_type state, int n_line, pointer_DE element_DE)
Reads PD information.

y********************** WRITE PARAM2 DE ELEMENT ******************/ 
void write_param2_de_element (int color, int cont_PD, int form, pointer_DE element_DE)
Reads PD information.

ADD pD LIST *************************y
void add_pd_Iist 0 
Adds a PD link into the list.

y*************************** ADD DE LIST *************************/ 
void add_de_list (pointer_DE element_DE)
Adds a DE link into the list.

y********************* INITIALIZE DE FIELDS 
void initialize_de_fields (pointer_DE element_DE)
Initialize DE fields.

I********************* INITIALIZE PD FIELDS 
void initialize_pd_fields (pointer_PD element_PD)
Initialize PD fileds.

TAKE_DATA1_PARAM_DE ***********************/ 
void take_datal_param_de (int ’•‘type, int *punt_PD, statejtype *state, int *n_line)
Reads DE infomiation.

I********************* TAKE DATA2 PARAM DE 
void take_data2_param_de (int * color, int *cont_PD, in t1,1 form)
Reads DE information.

y************************* TAKE DATA LINE ************************/ 
void take_data_line (pointer_PD actual_PD, int numlines, pointer_line *L)
Reads the information of a line.

y************************** TAKE DATA ARC ************************/ 
void take_data_arc (pointer_PD actual_PD, int numlines, pointer_arc *A)
Reads the information of an arc.

y************************** TAKE PARAMETER 
void take_parameter (int number)
Reads a parameter of PD.

y************************** LINK LINES 
void link_lines (pointer_PD elementJPD, int numlines)
Links PD lines.

y******************** t a k e _ r e a l  PARAMETER ************************/
void take_real_parameter (int i, float *number)
Reads a PD real parameter.
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y********************* ta k e  INT PARAMETER ************************/ 
void take_int_parameter (int i, int *number)
Reads an integer parameter.

y******************* TAKE_STRING PARAMETER ***********************/ 
void take_string_parameter (int num_char, char *name)
Reads a string of PD.

y************************** DRAW LINES ***************************/ 
void draw_lines (pointer_line list_lines, int color)
Draws a list of lines.

y*************************** DRAW ARCS 
void draw_arcs (pointer_arc list_arcs, int color)
Draws a list of arcs.

y*********************** DRAW PLINES 
void draw_plines (pointer_pline list_plines, int color)
Draws a list of polylines.

y************************* DRAW STRINGS **************************f 
void draw_strings (pointer_string list_strings, int color)
Draws a list of strings.

y********************** INITIALIZE LISTS 
void initialize_lists 0 
Initialize the auxiliar lists.

y********************* TAKE DATA AUX LINE 
void take_data_aux_line (pointer_PD actual_PD, int numlines)
Reads the information of an auxiliar line.

y************************ TAKE DATA ARROW 
void take_data_arrow (pointer_PD actual_PD, int numlines)
Reads the information of an arrow.

y************************ t a k e  DATA STRING ***********************f 
void take_data_string (pointer_PD actual_PD, int numlines)
Reads the information of a string.

y************************ TAKE DATA HATCH ************************y 
void take_data_hatch (pointer_PD actual_PD, int numlines)
Reads the information of a hatch definition.

y********************* in iti MAIN STRUCT 
void initi_main_struct (pointerjine line, pointer_arc arc)
Initializes the main linked lists.

y********************** INITI AUX STRUCT *************************/ 
void initi_aux_struct 0  
Initializes the auxiliar linked lists.

INITI LIST LINES ************************/ 
void initi_list_lines (pointer_line *list_lines)
Initializes the list of lines.

y*********************** INITI LIST ARCS 
void initi_list_arcs (pointer_arc *list_arcs)
Initializes the list of arcs.

******************** XTOXSCR *********>tt,t‘,ti,tt’t!*****|i‘,tt******y 
float XtoXscr (float x)
Converts tlie X real into X screen.



Appendix 5 List of program files 222

^*************************** lin k l a u x  *********** ******* **********^
void linkLaux (pointer_line NewL)
Links a line into the list.

^*************************** l i n k a a u x  **************************** I
void linkAaux (pointer_arc NewA)
Links an arc into the list.

y*************************** COPYAUX *****************************/ 
void CopyAux 0
Copies the axiliar information into other lists.

/*************************** INILISAUX ***************************/ 
void IniLisAux 0 
Initializes the auxiliar lists.

4.3 Enviroment

The functions defined in this file were created to do create the enviroment

^************************* £)gp BOX FUNC **************************/
/*---------------------- constructor BOX----------------------- */
box::box(int y, int x, int w, int h, int st, int th, int ce, int ci)

/*---------------------- constractor BOX----------------------- */
void box::ini (int y, int x, int w, int h, int st, int th, int ce, int ci)

/*------------------------public DRAWBOX---------------------- */
void box::drawbox(void)

/************************ pgp  jyipNU CLASS *************************/
/*----------------------- constractor MENU--------------------- */
menu::menu(int y, int x, int wide, int hi, int Mfont, int ex_col, 

int int_col, int txt_col, char *t) : 
box(y^c, wide, hi, SOLID_LINE, 1, ex_col, int_col)

/*------------------ public_virtual PROCESS_EVENT--------------- */
int menu::process_event 0
Process the menu depending on the mouse information.

/*--------------------public_virtual PUTSTR ------------ */
void menu::putstr(int col)

/*-------------------- public_virtual-MODIFY------------------- */
void menunmodify (int hi)

/*********************** pjgp LADDER CLASS ************************/
/* constractor LADDER------------------- */
ladder::ladder(int Lfont, int Lcoltx, int Lcoltxtit, int Lcoltxin, 

int Bcol_ext, int Bcol_int, int List, int LIth) : 
box(0,0,0,0, List, LIth, Bcol_ext, Bcoljnt)

/*----------------------public CREATE_LADDER------------------*/ ‘
void ladder::create_ladder(int x, int y, int wid, char **p)

/*-------------------- public_virtual-MODIFY------------------- */
void ladder::modify(int hi)

/*--------------------- public DRAW_LADDER---------------------- */
void ladder: :draw_ladderO

/*---------------- publicvirtual PROCESS_EVENT--------------- */
int ladder::process_eventO
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/*-------------------- publicjvirtual PUTSTR------------------- */
void ladder::putstr(int x, int y, int col, char *str)

y************************* d r a w  ENVIROMENT ***********************/ 
void draw_enviroment 0 
Controls the menu system.

^************************* d e fin e  BOXES *************************/
void define_boxes 0

y**************************** d EF LADDER *************************/ 
void def_ladder 0

d EF MENU***************************/
void def_menu 0

+ + + + DETECT PRESS **************************/
int detect_press (int Id, int nmg, int mnl, int mnlSel,int mn2, int mn2Sel)
Detects what menu the mose has pressed.

/*********************** pil e  MANAGEMENT *************************/ 
void filejmanagement (int rung)
Manages the files menu system.

!>i:************************* proBEVALID ***************************/ 
int ProbeValid (int plane, int probe)

4.4 Create_Feature

The functions defined in this file were written to create the inspection model.

/************************ CREATE FEA ARC *************************/ 
void create_fea_arc (int ext)
Creates an arc feature.

/*********************** CREATE FEA CIRC *************************/ 
void create_fea_circ 0

/*********************** CREATE FEA PCIR *************************/ 
void create_fea_PCir (int hole)

/*********************** CREATE FEA 2FEA *************************/ 
void create_fea_2fea (int cm, int len)
Creates a feature between two features.

^********************** CREATE FEA LEN ***************************/ 
void create_fea_len (int inside)

^******************** CREATE FEA LENTRU **************************/ 
void create_fea_lentm 0

/********************* ADD_POINT_ORDER **************************/ 
void AddPointOrder (pointer_point *head_point, pointer_point point)
Orders the points selected to measure lentru.

/********************* CREATE WALL THICK *************************/ 
void create_wall_thick (int inside)
{

char textl[50];
pointer_ent_selec sel_l=NULL, sel_2=NULL;
int found=0, go_out=0;
pointer_arc arcl, arc2;
pointer_scrL new_line;
float ang;
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msm_showcursor (); 
do { 

e = eq.getO; 
if (e.isO == mouse) { 

strcpy (textl, "Select first arc or circle =>"); 
select_arc_cir (textl, &sel_l, &found); 
if (found) {

arcl ss sel_l->arc;
strcpy (textl, "Select second arc or circle=>"); 
select_arc_cir (textl, &sel_2, &found);

}
if (found) {

arc2 = sel_2->arc;
if ((arcl->xrc =  arc2->xrc) && (arcl->yrc =  arc2->yrc)) { 

newjine = (pointer_scrL) MY_NEW (newjine); 
new_line->next = NULL; 
ang=DrawBetwArc (arcl, arc2, newjine); 
fill_fea_wt (arcl, arc2, newjine, ang, inside);

1
else put_error (10);

}
if (e.value 0  =  MOUSE_rightup) go_out=l; 
if (sel_l != NULL) DeffintSel (&sel_l); 
if (sel_2 != NULL) DelEntSel (&sel_2);

}
] while (!go_out); 
setcolor(15); 
puttext_window (" ");

)
y************************* MOVEPROBE ***************************** f 

void MoveProbe 0

FILL FEA CIR
void filljea_circle (pointer_ent_selec cir_selec, pointer_feat_cir *feat_circle, int OthFea, int ext) 
Fills the information of a hole and cylinder structure.

/* * * * * * * * * * * * * * * * * * * * * * * *  fit  j  PC IR

void fill Jea_PCir (pointerJeat_cir FeatCir, pointer_scrA arc, int cont, int hole)

/************************* f i l l  FEA LEN **************************/
void fill_feaJen (pointerJine linel, pointerJine line2, pointer_scrL new_line, int inside)

y*********************** FILL FEA LENTRU *************************/ 
void filljeajentru (pointer_point head_point)

fil l  FEA ARC ***************************/
void filljea_arc (pointer_ent_selec cir, int ext) 

y**>*********************** f il l  FEA WT
void filljea_wt (pointer_arc arcl, pointer_arc arc2, pointer_scrL line, float ang, int inside)

/************************* f il l  FEA 2FEA *************************/
void filljea_2fea (pointer_sel_FS HeadFS, pointer_scrL line, pointer_point HeadPt, int cm, int len)

change ***************************/
void change_wp (int wp_sel)

CHANGE PROBE **************************/ 
void change jtrobe (int prob_sel)

c sY S  INT LINES ***********************/
void csysjntjines ()
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Creates the coordinate system beween two lines.

y************************** c sy s  CEN CIR *************************y 
void csys_cen_cir 0
Creates the coordinat system in the centre of a circle.

y************************ CREA GLO VAR ***************************y 
void creaGIoVar 0
Allocates memry and initialize global variables.

y************************ INIT GLO VAR ***************************y 
void initGloVar 0

y************************ link_fea tu r e  ***************************/
void link_feature (pointer_feat_sel new_feat)

y************************ LINK_MEAS FEAT *************************y 
void Iink_meas_feat (pointer_meas_feat new_meas_feat)

y************************ m ea su r e_fe a t u r e s  ***********************/
void measure_features (int rung)
Depending on the menu clicked calls to a different function.

y***************************** XSCR XR ***************************y 
float Xscr_Xr (float scr_x, float orH)
Converts screen coordinates into real coordinates.

y**************************** DRj\\ycoOR ***************************y 
void DrawCoor (float h, float v)
Draws the coordinate system.

The functions defined in this file were written to create the simulation of the inspection model and of an existent CMES file.

y*************************** SIMULATION **************************/ 
void simul(int inside)
{

ActFM=TailFM; 
sim_gen_in 0;
FastSpeed=read_real ("High Speed of the probe (mm/sec) =>", 15); 
SlowSpeed=read_real ("Slow Speed of the probe (mm/sec) =>", 15); 
sprintf (text, "Fast Speed = %.lf; Slow Speed = %,lf", FastSpeed, SlowSpeed); 
puttext_window (text);
DistFast=0.0, DistSlow=0.0;

if (inside) {
for (FS=ActFM->HeadFS; FS != NULL; FS=FS->next)

SimOneFea (FS); 
move_probeDep (lastH, lastV, 10.0);

)
else LoadCmesFiie 0;
timel = div (round(DistFast/FastSpeed), 60); 
time2 = div (round(DistSlow/SlowSpeed), 60); 
timeT.quot=time 1 ,quot+time2.quot; 
timeT.rem = timel. rem + time2.rem; 
if ((timeT.rem - 60.0) >= 0.0){ 

timeT.quot += 1; 
timeT.rem -= 60.0;

4.5 Simulation

pointer_feat_sel FS;
timel, time2, timeT; 
FastSpeed=10.0, SlowSpeed=3.0; 
text[100];

div_t
float
char
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}
sprintf (text, "Time : Fast = %d min %d sec; Slow = %d mill %d sec;", 

timel.quot, timel.rem, time2.quot, time2.rem); 
puttext_window (text);
sprintf (text, "Total = %d min %d sec; ", timeT.quot, timeT.rem);
setcolor (15);
outtextxy (146, 457, text);

)
y**************************** SIMONEFEA **************************/ 
void SimOneFea (pointer_feat_sel FS)
Calls to the respective function to simulate that feature.

y**************************** SIM GEN IN *************************/ 
void sim_gen_in 0  
Initialize general information.

y************************* CIRCLE ***************************/ 
void sim_circle (pointer_feat_cir cir)
Simulates a hole.

y*************************** SIMPTCER
void SimPtCir (float h, float v, float d, int ord, int hole)
Calculates what point to measure next.

y************************** MOVENEXT *****************************/ 
void MoveNext (float h, float v, float d)
Move next feature.

yi**************************** siM  CILYN 
void sim_cilyn (pointer_feat_cir cilyn)

SIM LENIN ***************************/ 
void sim_lenin (pointer_feat_len len)

SIM LENOUT **************************/ 
void sim_lenout (jpointer_feat_len LO)

y*************************** siM ARC *****************************/ 
void sim_arc (pointer_feat_arc arc, int ext)
{

float angl, ang2, alfa, h, v, hf, vf, ang;
int i, change;

angl = (float)atan2 ((double)(arc->vl-arc->vc), (double)(arc->hl-arc->hc)); 
ang2 ss (float)atan2 ((double)(arc->v2-arc->vc), (double)(arc->h2-arc->hc)); 
if (angl < 0) angl = (2*pi) + angl; 
if (ang2 < 0) ang2 = (2*pi) + ang2; 
if (ang2 <= angl) ang2 = ang2 + (2*pi); 
alfa as (ang2 - angl)/6;
change=FirstArcPt (arc->hl, arc->vl, arc->h2, arc->v2); 
for (i—1; i<6; i++) ( 

if (change) ang=ang2-alfa*i; 
else ang=angl+alfa*i;
v = arc->rad * (float)sin((double)ang) + arc->vc; 
h = arc->rad * (float)cos((double)ang) + arc->hc; 
if (ext){

hf = (arc->rad+deptli)*(float)cos((double)ang) + arc->hc; 
vf = (arc->rad+depth)*(float)sin((double)ang) + arc->vc;

}
else{

hf = (arc->rad-depth)*(float)cos((double)ang) + arc->hc; 
vf = (arc->rad-depth)*(float)sin((double)ang) + arc->vc;
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if (i— 1) MoveNext (hf, vf, arc->dep~depth); 
else move_probe (hf, vf, 1); 
move probe (la, v, 1);

}
move_probe (hf, vf, 1);

}
y************************** §jm l e n t r u  ***************************/ 
void sim_lentru (pointer_feat_lentru lentm)

y*************************** SIM WTHIN ***************************/ 
void sim_wThIn (pointer_feat_wTh wThln)

/*************************** $IM WTHOUT 
void sim_wThOut (pointer_feat_wTh wThOut)

SIM PCIRHOL ***+*+*+******+***********/ 
void sim_PCirHol (pointer_feat_PCir PCir)

$IM PCIRBOS **************************/ 
void sim_PCirBos (pointer_feat_PCir PCir)

y************************** SIM 2FEA ****************************/ 
void sim_2fea (pointer_feat_2fea TwoFea)

y*************************** sim  MOVEPR **************************/ 
void sim_MovePr (pointer_MovePr MPr)

MOVE PROBE 
void move_probe (float hor, float ver, int slow)
Moves the ball which simulates the CMM probe.

MOVE PROBEDEP 
void move_probeDep (float hor, float ver, float dep) 
Simulates the probe in a perpendicular plane.

y**************************** sa v e  SCREEN ************************/ 
void *save_screen (float hi, float v l, float h2, float v2)

y**************************** r e s t  SCREEN 
void rest_screen (float horl, float verl, void *screen)

y**************************** d r a w  PROBE ************************/ 
void draw_probe (float hor, float ver, int color)

y*************************** CHANGE AXEH *************************/ 
void change„axeH (float hor)
Calculates the horizontal coordinate of the probe and change its value on tire screen. 
y*j************************** CHANGE AXEV *************************/ 
void change_axeV (float ver)

y*************************** CHANGE AXED 
void change_axeD (float dep)

yitc*************************** DETCRASH 
void DetCrash (float h2, float v2, int simul)
{

pointer_line L, line;
h i, vl, h, v, dl, orH, orV;float

int
pointer_arc

inter=0; 
A, arc;

orH=ActFM->or_ha;

_______ i . * ,
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orV=ActFM->or_va; 
hl=lastH; vl=lastV; dl=lastD; 
line=ActFM->line; 
arc=ActFM->arc;
for (L=line; L != NULL; L=L->next) { 

inter=Inter2Lines (111, v l, h2, v2, L->xrl-orH, L->yrl-orV,
L->xr2-orH, L->yr2-orV, &h, &v); 

if (inter) inten=PtInSeg (hi, vl, h2, v2, h, v); 
if (inter) inter=PtInSeg (L->xrl-orH, L->yrl-orV, L->xr2-orH,

L->yr2-orV, h, v);
if (inter) ( 

if (dl < (L->zrl+5)) dl=L->zrl+5;
)

}
for (A=arc; A != NULL; A=A->next) { 

inter=InterLineArc (hi, v l, h2, v2, A); 
if (inter) { 

if (dl < (A->z+5)) dl=A->z+5;
)

)
if (dl 1= lastD) { 

switch (simul) { 
case 0 : MoPrD (dl); 

break;
case 1 : move_probeDep (lastH, lastV, dl);

break; 
case 2 ; GotoD (dl); 

break;
)

)
}
y************************** LOADCMESFILE *************************/ 
void LoadCmesFile 0

y************************* READCMESFILE **************************/ 
void ReadCmesFile (FILE *CmesIn)

y**************************** GET AXIS ****************************/ 
void GetAxis (char ax, int *ax_ord)

y**>************%***%***** CHECKEXTENSION *************************/ 
int CheckExtension (char *text, char *ext)

4.6 Operations

The functions defined here are auxiliary functions.

y*************************** g e t  SIGN 
int get_sign (float number)

y************************* ABSOLUT IQUAL *************************/ 
int absolut_iqual (float a, float b, float epsi)

y************************* NOR LINE COEF *************************/ 
int nor_Iine_coef (float *a, float *b, float *c)

y************************ LINE POINT POINT ***********************/ 
void line_point_point (float x l, float y l, float x2, float y2, float *a, float *b, float *c)

y*******t******************  PO L A R  TO  C A R T  * * * * * * * * * * * * * * * * * * * * * * * * * /  

void pol_to_cart (float xpolar, float ypolar, float poI_rad, float ang, float *x, float *y)
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EXIST ’•‘’t'***************************/
int exist (char *fil_name)

/*********************** PUTTEXT WINDOW **************************/ 
int puttext_window (char *text)

PUT ERROR ******+********************/
void put_error (int num)

B E E P  >

void beep (int times)

/A=*************************** ♦
void wait (int seconds)

DRAW ARC ****************************/ 
void draw_arc (float xc, float yc, float x l, float y l, float x2, float y2)

/*+***************+*****★*** DRAW LINE 
void draw_Iine (float x l, float y l, float x2, float y2)

yl*** ************ *********** J)RAW POINT 
void draw_point (float h, float v)

^*********************** d r a w l i n e  BETW ***************************/
void drawline_betw (pointer_line LI, pointerjine L2, pointer_scrL L)
Draws a line between two lines.

P)EAW PCIR *****************************/ 
int DrawPCir (pointer_feat_cir FeatCir, pointer_scrA *arc)

y**************************** gQR ********************************̂
float sqr (float num)

BETW ARC ****************************/ 
float DrawBetwArc (pointer_arc Al, pointer_arc A2, pointer_scrL line)

y************************** r e a d  STRING **************************/ 
char *read_string (int x, int y, int color)
{

char ch, text[20];
int i;

ch=getchO; 
text[0]=ND’; 
for (i=0;ch!=V’;i++) ( 

if ( c h ^ ’Nb’H 
if (i > 0) {

setcolor(l); outtextxy (x, y, text); 
i=i-2; text[i+l]=A0’;

}else i--;
)
else{

text[i]=ch;
text[i+l]=N3’;

}
setcolor (color);
if (text[0] != ’NO’) outtextxy (x, y, text); 
ch-getchO;

)
return text;

)
/*************************** r e a d  REAL ***************************/
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float read_real (char *message, int color)

SAME ARC 
int same_arc (pointer_arc arcl, pointer_scrA arc2)

y************************** l i n e t h r a r c  ***************************i

void LineThrArc (pointer_SelArc HeadArc, pointer_scrL *HeadLine, int cm, int len)

/* * * * * * * * * * * * * * * * * * * * * * * * * * * *  m i d p o i n t  * * * * * * * * * * * * * * * * * * * * * * * * * * * i

void MidPoint (pointer_scrL HeadLine, pointer_point *HcadPt)

/**************************** INTER2LINES *************************/
int Inter2Lines (float x l, float y l, float x2, float y2, float x3, float y3, float x4, float y4, float *x, float *y)

/************************** INTERLINEARC *************************/ 
int InterLineArc (float xl, float y l, float x2, float y2, pointer_arc arc)

/************************** deleNTSEL ****************************/
void DelEntSel (pointer_ent_selec *ESel)

y**************************** PTINSEG ****************************/ 
int PtlnSeg (float Lxl, float Lyl, float Lx2, float Ly2, float x l, float yl)

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  R O U N D  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y 

int round (float num)

y * * * * * * * * * * * * * * * * * * * * * * * * * * * *  CLEARSCREEN ************************/ 
void QearScreen 0

y *************************** POINTINARC **************************/ 
int PointlnArc (float xl, float y l, pointer_arc arc)

y * * * * * * * * * * * * * * * * * * * * * * * * * * *  FIRSTCIRPT **************************y 
int FirstCirPt (pointer_feat_cir cir)

y*************************** firs'tCIRPT **************************/
float DistTwoPt (float hi, float vl, float h2, float v2)

y*************************** FIRSTLENPT **************************/ 
int FirstLenPt (float *hl, float *vl, float *h2, float *v2)

y*************************** FIRSTARCPT +*************************/ 
int FirstArcPt (float hi, float v l, float h2, float v2)

4.7 Selection

The function defined here were written to select the different entities.

y * * * * * * * * * * * * * * * * * * * * * * * *  SELECT ONE ENTITY **********************/ 
void select_one_entity (float xl, float y l, pointer_ent_selec *EntSel)

y************************ SELECT_ONE LINE ************************/ 
void select_one_line (char *text, pointer_ent_selec *EntSel, int *found)

y***j********************** SELECT_ONE ARC ************************/ 
void select_one_arc (char *text, pointer_ent_selec *EntSel,int *found)

y************************* SELECT ARC CIR ************************/ 
void select_arc_cir (char *16x1, pointer_ent_selec *EntSel,int *found)

I*********************** SELECT ONE CIRCLE * * * * * * * * * * * * * * * * * * * * * * * 1  

void select_one_circle (char *text, pointer_ent„selec *EntSel,int *found)



Appendix 5 List of program files 231

y * * * * * * * * * * * * * * * * * * * * * * * *  LOOK FOR LINE
void look_for_line (float x l, float y l, pointer_line list_lines, pointer_ent_selec EntSel, int *found, float *dist_min)

y * * * * * * * * * * * * * * * * * * * * * * * *  DIST LINE POINT
float dist_line__point (float xl, float y l, pointerjine fine,int *valid)

y * * * * * * * * * * * * * * * * * * * * * * * *  LOOK FOR ARC ***************************/
void look_for_arc (float xl, float y l, pointer_arc list_arcs, pointer_ent_selec EntSel, int *found, float *dist_min)

y * * * * * * * * * * * * * * * * * * * * * * * *  DIST ARC POINT *************************/ 
float dist_arc_point (float x l, float y l, pointer_arc arc)

y************************ LOOK FOR PLINE *************************/
void look_for_pline (float x l, float y l, pointer_ent_selec EntSel, int *found, float *dist_min)

y************************ SELECT ENTITY **************************/ 
void select_entity (pointer ent_selec *head_ent_selec)
{

int xl, yl, go_out=0;
float x2, y2;
pointer_ent_selec EntSel=NULL;

msm_showcursor (); 
do { 

e = eq.getO; 
if (e.isO =  mouse)( 

if (e.value 0 =  MOUSE_leftup) ( 
xl=e.x0; yl=e.y0;
x2 = (float) xl; 
y l  = (float) yl;
select_one_entity (x2, y l, &EntSel); 
if (EntSel != NULL) { 

if (*head_ent_selec =  NULL)
*head_ent_selec = EntSel; 

else {
EntSel->next = *head_ent_selec;
*head_ent_selec = EntSel;

)
)

}if (e.value 0 =  MOUSE_rightup) go_out=l;
}

}while (!go_out); 
msmjiidecursor ();

}
y * * * * * * * * * * * * * * * * * * * * * * *  SELECT_ONE POINT ************************/ 
void select_one_point (float *h, float *v, int *end)

y * * * * * * * * * * * * * * * * * * * * * *  LOOK FOR FEATURE *************************/ 
pointer_feat_sel look_for_feature (float h, float v, int *go_out, int col, int OnArc)

y * * * * * * * * * * * * * * * * * * * * * * * *  l o o k  LINE FEA
int look_line_fea (float h, float v, pointer_scrL scrjine, int col)

y*********************** LOOK ARCFEA *****************************/ 
int look_arc_fea (float h, float v, pointer_scrA scr_arc, int col)

y*************************** d e l  A FEA 
void del_a_fea (pointer_feat_sel *FeatSel)

y * * * * * * * * * * * * * * * * * * * * * * * * * * * *  UNDELETE ***************************/ 
void undelete ()

y************************** DELLENTRU ****************************/
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void DelLentra (pointer_feat_lentru lentru)

******** DELLISTL **************************/ 
void DelListL (pointerjscrL *HeadL)

c*************************** DELLISTPT *************************/ 
void DelListPt (pointer_pobt *HeadPt, int draw)

I*************************** DELCIRLIST**************************/ 
void DelCirList (pointer_feat_cir FCir)

y************************* UNLINK FEATURE ************************/ 
void unlink_feature (pointer_feat_sel FeatSel)

^************************* DELETE FEATURE ************************/ 
void delete_feature Q

/*************************** SELANYFEA ***************************/ 
int SelAnyFea (pointer_feat_sel *FeatSel, int col, int *hi, int *vi)

/************************* s e l e c t  ARC FEA ************************/ 
pointer_feat_sel select_arc_fea (pointer_scrA *arc)

/**************************** REDRAW *****************************/ 
void redraw 0

/**************************** d e t t y p e  ****************************/
int DetType (type_feat type)

^************************** DETARCLINE ***************************/ 
void DetArcLine (pointer_feat_sel FS, pointer_scrA *A, pointer_scrL *L, pointer_point *P)

/*>ik*************************** qe'ptoL ******************+*********/ 
void DetTol (pointer_feat_sel FS, pointer_Tol *Tol)

4.8 CMES_Out

The functions written here were created to write CMES programs.

/************************** PRINT LK OUT *************************/ 
void print_lk_out 0 
(

char *fil_name, text[60];
int x, type;
float x 1=0.0, yl=0.0, zl=0.0;

strcpy (text, "Introduce the name of the LK file =>");
x=puttext_window (text);
strcpy (fil_name, read_string (x, 445, 15));
lk_fil = fopen (fil_name, "w");
strcpy (text, "Prototype program (Y/N) =>");
prot=ControlYcs (text);
SelLkSensor (HeadFM->sensor);
for (ActFM=HeadFM; ActFM != NULL; ActFM=ActFM->next) { 

pr_genjn (xl, y l, zl);
for (FS=ActFM->HeadFS; FS != NULL; FS=FS->next)

PrOneFea 0; 
if (ActFM->next != NULL)

MoveNextFace (&xl, &yl, &zl,0);
)
fprintf (lk.fil, "%sV, ":END"); 
fprintf (lk_fil, "%s\n", "ET"); 
fclose (lk_fil);
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puttext_window (" ");
}
^*** * * * * * * * * * * * * * * * * * * * * + * * *  p r o N E F E A  * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  

void PrOneFea 0 

y*************************** pĵ  qrn [f»j ***************************/
void pr_gen_in (float x, float y, float z)

/************************* ggL l r  SENSOR *************************/ 
void SelLkSensor (probe sensor)

/*************************** p r  a  HOLE ***************************/ 
void pr_a_hole (pointer_feat_cir circle)

/**************************** NOMEAS *****************************/ 
void NoMeas ()

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * *  m e a s  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

void Meas (float h, float v, float d)

/************************** pR gyl *****************************/ 
void pr_a_cyl (pointer_feat_cir cilyn)

Z************************** pR ARC ****************************/ 
void pr_an_arc (pointer_feat_arc arc, int ext)

/*************************** MOVE AXES ***************************/ 
void move_ax.es (int hor_ax, int ver_ax, int dep_ax)

y**************************** pR̂ POINT ***************************/ 
void pr_point (float hor_ax, float ver_ax, int num_pt)

/**************************** P R  LENIN ***************************/ 
void pr_lenin (pointer_feat_len lenin)

pR LENOUT ***************************/ 
void pr_lenout (pointer_feat_len lenout)

/* * * * * * * * * * * * * * * * * * * * * * * * * * *  pR l e n t r u  * * * * * * * * * * * * * * * * * * * * * * * * * * * /

void pr_lentm (pointer_feat_lentru lentru)

/**************************** pR WTHIN I***************************/
void pr_w!liln (pointer_feat_wTh wThln)

y*************************** PR WTPIOUT ***************************/
void pr_wThOut (pointer_feat_wTh wThOut)

y*************************** pj^ ^  PCHOL **************************/ 
void prA_PCHol (pointer_feat_cir circle, int num_pt)

/***************************** pR pGJR
void pr_PCir (pointer_feat_PCir PCir, int hole)
{

pointer_feat_cir FCir;
int cont=4;
char line[20], str[5];

for (FCir=PCir->list_circle; FCir != NULL; FCir=FCir->next){ 
cont++;
if (FCir->next =  NULL) last=l; 
if (hole) prA_PCHoi (FCir, cont); 
else prA_PCBos (FCir, cont);

}
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last=0; 
if (prot) {
fprintf {TJk_fil, ":ASK_%chn", FeaNum); 
fprintf (lk.fil, "%sV, "IP,'Pitch Circle?’,FI"); 
if (FS->next==NULL) 

fprintf (lk_fil, "IF,Fl,ASK_%d,END,MEAS_%chn", FeaNum,FeaNum); 
else

fprintf (Ik_fil, "IF,Fl,ASK_%d,MOVE_NEXT_%d,MEAS_%dSn", FeaNum,FeaNum+1,FeaNum); 
fprintf (lk_fil, ":MEAS_%cFn", FeaNum);
FeaNum++;
}
strcpy (line, "UP");
for (cont=5; cont<(PCir->num+5); cont++){ 

sprintf (str, ",%chb", cont); 
strcat (line, str);

)
fprintf (lk_fil, "%s\n", line);
sprintf (line, "PC,%d,%d", dep, PCir->num);
AddTol (PCir->Tol, line); 
if (PCir->Tol 1= NULL)

PrToLArc (PCir->hc, PCir->vc, PCir->dia, PCir->Tol);
}

^**************************** PCBOS **************************/
void prA_PCBos (pointer_feat_cir cilyn, int num_pt)

^**************************** 2FEA ****************************/ 
void pr_2fea (pointer_feat_2fea TwoFea)

/*************************** MOVEPR ***************************/
void pr_MovePr (pointer„MovePr MPr)

y**************************** pj^ COOR ****************************/ 
void PrCoor (float num)

/* * * * * * * * * * * * * * * * * * * * * * * * * * * *  m o p r o b h v  * * * * * * * * * * * * * * * * * * * * * * * * * * * /

void MoPrHV (float h, float v)

^**************************** {vioPROBD ****************************/ 
void MoPrD (float d)

^****** ************** ********* SAVEPT *************************** *y 
void SavePt (int pt)

y*************************** PRTOLARC ****************************/ 
void PrTolArc (float hor, float ver, float dia, pointer_Tol Tol)

/* * * * * * * * * * * * * * * * * * * * * * * * * *  p r t O L L IN E  * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  

void PrTolLine (float hor, float ver, pointer_Tol Tol)

/* * * * * * * * * * * * * * * * * * * * * * * * * * *  p r x O L O N E  * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  

void PrTolOne (float num, float Up, float Low, int equal)

/*************************** DetDHDV *****************************/
void DetDHDV (pointer_2fea_sel CirArcl, pointer_2fea_sel CirArc2, float *h, float *v, float *hc, float *vc)

/*************************** ^DD t o l  *****************************/
void AddTol (pointer_Tol Tol, char *line)

4.9 Tolerances

The functions defined here were written to create the tolerances.
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y*************************** TOLERANCES **************************/ 
void tolerances 0

msm_showcursor (); 
do { 

e -  eq.getO; 
if (e.isO =  mouse){ 

found=SelAnyFea (&FeatSel, MAGENTA, &h, &v); 
if (found) {

type=DetType(FeatSel->feat);
DetArcLine (FeatSel, &A, &line, &pt); 
if (A != NULL) {

Tol (&FeatSel, h, v, 1); 
setcolor (LIGHTCYAN);
draw_arc (A->xc, A->yc, A->xl, A->yl, A->x2, A->y2);

}
if (line 1= NULL) (

TolOne (&FeatSel, h, v, type); 
setcolor (LIGHTCYAN); 
for (L=line; L 1= NULL; L=L->next) 
draw_line (L~>xl, L->yl, L->x2, L->y2);

}
)
if (e.value 0  “  MOUSE_rightup) go_out=l;

)
) while (!go_out); 
puttext_window (" ");

}

y******************************* TOL *****************************/ 
void Tol (pointer_feat_sel *FeatSel, int h, int v, int arc)

y*************************** CONTROLYES 
int ControlYes (char *str)

|***************************** DETHOR ************************ **** / 
char DetHor 0

y*************************** INITOLARC ***************************y 
void IniTol (pointer_Tol *PTol)

y***************************** DRAWTOL ***************************y 
void DrawTol (int col, pointer_Tol PTol)

y************************** DRAWFRAME ****************************y 
void DrawFrame (int h, int v, int num)

y * * * * * * * * * * * * * * * * * * * * * * * * * *  d r a w o n e t o l  * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

void DrawOneTol (int h, int v, float Low, float Up, char *tol)

/**************************** DELTOLARC **************************y 
void DelTol (pointer_Tol *Tol)

^***************************** ASIGNTOL**************************y 
void AsignTol (pointer_feat_sel *FeatSel, pointer_Tol PTol)

y**************************** TOLONE *****************************y 
void TolOne (pointer_feat_sel * FeatSel, int h, int v, int type)

int
pointer_feat_sel

found, go_out=0, h, v, type; 
FeatSel=NULL; 
line=NULL, L;
A=NULL;
pt=NULL;

pointer_scrL
pointerjscrA
pointer_point
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4.10 FastW ay

The functions defined here were written to calculate the measurement sequence.

y**************************** PASTWAY ****************************/ 
void FastWay 0 
{

float dist, ShortDist, FeaLastX, FeaLastY, x, y;
pointer_feat_sel FS, SelFS, FirstFS=NULL, LastFS=NULL;
int NumFea=0, i;

LastX = Xr_Xscr (0.0); LastY = Yr_Yscr (0.0);
for (FS=TailFM->HeadFS; FS != NULL; FS=FS->next)

NumFea ++; 
for (i=0; i < NumFea; i++) {

FS=TailFM->HeadFS;
ShortDist=DistFea (FS, &FeaLastX, &FeaLastY);
SelFS=FS;
x=FeaLastX; y=FeaLastY; 
for (FS=FS->next; FS != NULL; FS=FS->next){ 

dist=DistFea (FS, &FeaLastX, &FeaLastY); 
if (dist < ShortDist) {

ShortDist=dist;
SelFS=FS;
x=FeaLastX; y=FeaLastY;

)

)
unlink_feature (SelFS);
SelFS->nexfc=NULL;
SelFS->previous = NULL; 
if (FirstFS —  NULL) {

FirstFS = SelFS;
LastFS = SelFS;

}
else {

LastFS->next = SelFS;
SelFS->previous = LastFS;
LastFS = SelFS;

)
LastX=x; LastY=y;

)
TailFM->HeadFS = FirstFS;
TailFM->TailFS = LastFS;

)

y * * * * * * * * * * * * * * * * * * * * * * * * * * * *  DISTFEA ****************************/ 
float DistFea (pointer_feat_sel FS, float *x, float *y)

y*************************** DISTCIRCLE **************************y 
float DistCircle (pointer_scrA cir, float *x, float *y)

y* * * * * * * * * * * * * * * * * * * * * * * * * * * * *  DISTARC ***************************y  

float DistArc (pointer_scrA arc, float *x, float *y)

y**************************** DJSTLINE ***************************y 
float DistLine (pointer_scrL line, float *x, float *y)

y**************************** d ist pc ir  ***********
float DistPCir (pointer_feat_PCir PCir, float *x, float *y)

y * * * * * * * * * * * * * * * * * * * * * * * * * * * *  DISTTWOFEA *************************y 
float DistTwoFea (pointer_feat_2fea TwoFea, float *x, float *y)
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4.11 DMIS_Output

The functions defined here were written to create the DMIS inspection programs.

I************************ PRINT DMIS OUT *************************/ 
void PrDmis 0 
{

pointer_meas_feat NowFM;
char fil_naine[l5], text[105];
int x;
float xl=O.0, yl=0.0, zl=0.0;
FILE ♦set;

lent=0; Dist2F=0; Mid2F=0; hole=0; cyl=0; ArcE=0, Arcl=0; WI=0;
WO=0; PCirH=0; PCirB=0; Lenl=0; LenO=0; Poinfc=0, FeaNum=l, last=0;

strcpy (text, "Introduce the name of the DMIS file =>");
x=puttext_window (text);
strcpy (fil_name, read_string (x, 445, 15));

dmis = fopen (fil_name, "w");
strcpy (text, "Prototype program (Y/N) =>");
prot=ControlYes (text);

set = fopen ("dmis.set", "r"); 
do [

fgets (text, 100, set); 
fputs(text,dmis);

) while (!feof(set)); 
fclose(set); 
if (prot) (

fprintf (dmis, "%sW, "DECL/CHAR,ans"); 
fprintf (dmis, "%sV\ "DECL/INTGR,F1");

}
lastH=0.0; lastV=0.0; lastD=0.0;
SelectSensor(HeadFM->sensor);
MacroO;
for (ActFM=HeadFM; ActFM != NULL; ActFM=ActFM->next) {

PrDmisGen (xl, y l, zl);
for (FS=ActFM->HeadFS; FS != NULL; FS=FS->next)

PrDmisOneFea 0; 
if (ActFM->next != NULL)

MoveNextFace (&xl, &yl, &zl,l); 
else GotoD (10.0);

)
fprintf (dmis, "%sW, "(END)"); 
fprintf (dmis, "%sV, "ENDFIL"); 
fclose (dmis); 
puttext_window (" ");

}
prdmisONEFEA * * * * * * * * * * * * * * * * * * * * * * * * * /

void PrDmisOneFea 0

y * * ! P R D M I S G E N  ***************************/ 
void PrDmisGen (float x, float y, float z)

/************************ XRANS COOR SYS *************************/ 
void TransCoorSys (float x, float y, float z)
(

char line[100], txt[50];

if (ActFM != HeadFM){ 
if ((ActFM->IncX != 0.0) II (ActFM->IncY != 0.0) II (ActFM->IncZ != 0.0))
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fprintf (dmis, "%s\n", "RECALL/D(part)"); 
if (ActFM->IncX != 0.0) { 

sprintf (line, "D(NEW_DAT)=TRANS/XORIG,%.3f', ActFM->IncX); 
x-x-ActFM->IncX;
if ((ActFM->IncY != 0.0) II (ActFM->IncZ != 0.0)) strcat (line,”,");

}
if (ActFM->IncY != 0.0) { 

sprintf (txt, "YORIG,%.3f', ActFM->IncY); 
strcat (line, txt); 
y=y-ActFM->IncX;
if (ActFM->IncZ != 0.0) strcat (line,",");

)

if (ActFM->IncZ != 0.0) { 
sprintf (txt, "ZORIG,%.3f”, ActFM->IncZ); 
strcat (line, txt); 
z=z-ActFM->IncX;

)
fprintf (dmis, "%s\n", line);

}
AssignHVD (x, y, z, &lastH, &lastV, &lastD);

)
/************************* SELECT SENSOR *************************/ 
void SelectSensor (probe sensor)

MOVENEXTFACE *************************/ 
void MoveNextFace (float *x, float *y, float *z, int DM)
(

float h, v, d;

AsignAxes (lastH, lastV, lastD, x, y, z);

if (ActFM->next->work_pl =  xy)
*z = ActFM->next->IncZ + 10; 

if (ActFM->next->work_pl =  yz)( 
if (ActFM->next->sensor =  p2)

*x = ActFM->next->IncX - 10; 
else

*x = ActFM->next->IncX + 10;
)
if (ActFM->next->work_pl == xz) { 

if (ActFM->next->sensor =  p3)
*y = ActFM->next->IncY - 10; 

else
*y = ActFM->next->IncY + 10;

}
AssignHVD (*x, *y, *z, &h, &v, &d); 
if (DM) {

DetCrash (h, v, 2);
SelectSensor (ActFM->next->sensor);
GotoHV (h, v);

}
else {

DetCrash (h, v, 0);
SelLkSensor (ActFM->next->sensor);
MoPrHV (h, v);

}

)
/*************************** PRDMISHOLE **************************/ 
void PrDmisHole (pointer_feat_cir cir)

/************************** p r d m is c y l  *************************♦**/
void PrDmisCyl (pointer_feat„cir cylin)
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*̂************************* prdJvUSARC ****************************/
void PrDmisArc (pointer feat_arc arc, int ext)
{

char line[100], str[10], label[12];
float angl, ang2, ang, h, v, hf, alfa, vf, x, y, z;
int i, hi=0, vi=0, change;

angl = (float) atan2 ((double)(arc->vl-arc->vc), (double)(arc->hl-arc->hc)); 
ang2 = (float) atan2 ((double)(arc->v2-arc->vc), (double)(arc->h2-arc->hc)); 
if (ang2 <= angl) ang2 = ang2 + (2*pi); 
if (ext) { 

strcpy (str, "OUTER");
ArcE++;
sprintf (label, "ArcExt%d", ArcE);

)
else {

strcpy (str, "INNER");
Arcl++;
sprintf (label, "Arclnt%d", Arcl);

1
AsignAxes (arc->hc, arc->vc, arc->dep, &x, &y, &z);
sprintf (line, "F(%s)=FEAT/ARC,%s,CART,%.3f,%.3f,%.3f,%d,%d,%d,%.3f,%.3f,%.3f", 

label, str, x, y, z, vec[0], vec(l], vec[2], 
arc->rad, angl, ang2); 

fprintf (dmis, "%s\n", line); 
sprintf (line, "MEAS/ARC,F(%s),5", label); 
fprintf (dmis, "%sV, line);

alfa = (ang2 - angl)/6;
change=FirstArcPt (arc->hl, arc->vl, arc->h2, arc->v2); 
for (i=l; i<6; i++) { 

if (change) ang=ang2-alfa*i; 
else ang=angl+alfa*i;
v = arc->rad * (float)sin((double)ang) + arc->vc; 
h = arc->rad * (float)cos((double)ang) + arc->hc; 
if (ext){

hf = (arc-> rad+apr) * (float) cos ((double)ang) + arc->hc; 
vf = (arc->rad+apr)*(float)sin((double)ang) + arc->vc;

}
else(

hf = (arc->rad-apr)*(float)cos((double)ang) + arc->hc; 
vf = (arc->rad-apr)*(float)sin((double)ang) + arc->vc;

}
if (i =  1) {

if (prot) fprintf (dmis, "(MOVE_NEXT_%d)\n", FeaNum);
DetCrash (hf, vf, 2);
GotoHV (lif, vf);
MoPrHV (hf, vf); 
if (prot) (

fprintf (dmis, "(ASK_%d)V, FeaNum);
if (ext) fprintf (dmis, "%s\n", "TEXT/QUERY,(R),A,L,’Is this a partial cylinder?’"); 
else fprintf (dmis, "%s'«", "TEXT/QUERY,(R),A,L,’Is this a partial hole?’"); 
fprintf (dmis, "%s\n", "READ/1,ans"); 
fprintf (dmis, "%sV, "CALL/M(check),ans");
DmMeas(h,v,lastD);

}
if (lastD > arc->dep-depth) GotoD (arc->dep-depth);
GotoD (arc->dep-depth);

)
else GotoHV (hf, vf);
hi = 0; vi=0;
hi = (h < 0.0) ? -1:1;
vi = (v < 0.0) ? -1:1;
PtMeas (0, h, v, lastD, hi, vi, 0);
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GotoHV (hf, vf);
}
fputs("ENDMES\i", dmis); 
fputs(" Vi", dmis);
OutputFea (label); 
if (arc->Tol != NULL) {

EvalTolHV (arc->Tol, arc->hc, arc->vc, label);
EvalTolD (arc->Tol, label); 
fputs(" Vi", dmis);

)
if (prot) DmNoMeas();

)
/**************************** PRDMISLENIN ************************/ 
void PrDmisLenin (pointer_feat_len lenin)

/****************<************ PRDMISLENOUT ******************1'*****/ 
void PrDmisLenout (pointer_feat_len lenout)

/************************ TAKE POINT LEN *************************/
void TakePtLen (float h, float v, float d, float hf, float vf, float df, int hi, int vi, int di, int slot)

y************************** PRDMISLENTRU *************************/ 
void PrDmisLentru (pointer_feat_lentru lentra)

pRDMISWIN 
void PrDmisWIn (pointer_feat_wTh wTiiln)

y+******************+****+* prdivRSWOUT ***************************/ 
void PrDmisWOut (pointer_feat_wTh wThOut)

/************************** PRDMISPCIR ***************************/ 
void PrDmisPCir (pointer_feat_PCir PCir, int hoi)

/I************************* PRDMIS2FEA ****************************/ 
void PrDmis2Fea (pointer_feat_2fea TwoFea)

y**************************** PRQJRARC ***************************I 
void PrCirArc (pointer_2fea_sel CirArc, float *h, float *v, float *d, char *name)

/************************** PRDMISMOVEPR ************************1'*/ 
void PrDmisMovePr (pointer_MovePr MPr)

^***************************** GOTOHV ****************************/ 
void GotoHV (float h, float v)

/it**************************** GOTOD *****************************/ 
void GotoD (float d)

/***************************** PTMEAS ***+************************/ 
void PtMeas (int def, float ha, float va, float da, int h, int v , int d)

/*************************** ASIGNAXES ***************************/ 
void AsignAxes (float h, float v, float d, float *x, float *y, float *z)

I**************************** EVALTOLD ***************************/ 
void EvalTolD (pointer_Tol Tol, char *fea)

/*************************** EVALTOLHV ***************************/ 
void EvalTolHV (pointer_Tol Tol, float h, float v, char ♦fea)

/************************* EVALTOLDEP ****************************/ 
void EvalTolDep (pointer_Tol Tol, float dist, char *fca)
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/************ ************* EVALTOLDIST ***************************/ 
void EvalToIDist (pointer_Tol Tol, float dist, int DistH, char *Name)

/*********************** EVAL_TOL_DIST_2PT ***********************/ 
void EvalTolDist2Pt (pointer_Tol Tol, float dist, char *str, char *labell, char *label2) 
[

char line[100];

sprintf (line, "TCTol%s)=TOL/DISTB,NOMINL,%.3f,%.3f,%.3f,PT2Pr', str, 
dist, Tol->LowH, Tol->UpH); 

fprintf (dmis, "%sV, line);
sprintf (line, "EVAL/FA(%s),FA(%s),TA(Tol%s)", labell, labe!2, str);
fprintf (dmis, "%sW, line);
sprintf ( l i n e ,  "OUTPUTATA(Tol%s)", str);
fprintf (dmis, "%s\n", line);

}

/ft************************* ASSIGNHVD ****************************/ 
void AssignHVD (float x, float y, float z, float *h, float *v, float *d)

^************************** pj^ f e a  LINE **************************/ 
void PrFeaLine (char *label, float x l, float y l, float zl, float x2, float y2, float z2)

I************************* pj^ CONST LINE **************************/ 
void PrConstLine (char *label, char *labell, char *label2)

/************************** OUTPUT FEA ***************************/ 
void OutputFea (char *label)

/***************************** MEAS ******************************/ 
void DmMeas (float h, float v, float d)

/************************** DMNOMEAS *****************************/ 
void DmNoMeas ()

/I***************************** MACRO *****************************/ 
void Macro 0

4.12 DMIS Output

The functions defined here were written to read a DMIS output file.

/************************** LOADDMISFILE *************************/ 
void LoadDmisFile 0

I* * ,* * * * * * * * * * * * * * * * * * * * * * *  REAM)\fl$FiL,E * * * * * * * * * * * * * * * * * * * * * * * * * * /

void ReadDmisFile (FILE *DmisIn)

/************************* ANALIZEFEATURE ************************/ 
void AnalizeFeature 0

I*************************** TAKE FEA ***************************/ 
void TakeFea (char *name)

/************************ ANALIZETOLERANCE ***********************/ 
void AnalizeTolerance ()

/ * * * * * * * * * * * * TAKE STRING **************************/ 
void TakeString (char *name)

/**.****************+***** READRESULTLINE *************************/ 
void ReadResultLine 0
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y************************* READRESULTOR *************************/ 
void ReadResultCir 0

y************************* READRESULTARC *************************y 
void ReadResultArc 0

y * * * * * * * * * * * * * * * * * * * * * * * * * *  READTOLDIST **************************/ 
void ReadToIDist 0

y************************** READTOLCOR ***************************/ 
void ReadToICorO

y * * * *********************** READTOLDIA *************************** j 
void ReadTolDia ()

y * * * * * * * * * * * * * * * * * * * * * * * *  CHANGEVALUES ***************************/ 
void ChangeValues (float x, float y, float z, float *h, float *v)

y * * * * * * * * * * * * * * * * * * * * * * * *  LINK RES LINE **************************/ 
void LinkResLine (pointer_res_line L)

y * * * * * * * * * I * * * * * * * * * * * * * * *  l in k  RES CIR * * * * * * * * * * * * * * * * * * * * * * * * * * * /  

void LinkResCir (pointer_res_cir circle)

y* * * * * * * * * * * * * * * * * * * * * * * * * *  SETFEACOL ****************************/ 
void SetFeaCol (int state)

^*************************** DELRESLINE **************************/ 
void DelResLine (pointer_res_line *HeadResLine)

y*************************** DELRESCIR **************************/ 
void DelResCir (pointer_res_cir *HeadResCir)

y*************************** DRAWRESLINE **************************/ 
void DrawResLine (pointer_res_line Rline)

y************************** DRAWRESCIR ***************************/ 
void DrawResCir (pointer_res_cir cir)

y * * * * * * ********************** TEXTXY *****************************f 
void TextXY (pointer_res_line line, float *xc, float *yc)

4.13 IGES_Output

The functions defined here were written to create an IGES file.

y**************************** JQESOUT ****************************/ 
void IgesOut 0 
{

int x;
char fil_name[50],record[20];

dnum=0;
pnum=0;
x=puttext_window ("Introduce the name of the IGES file =>"); 
strcpy (fil_name, read_string (x, 445, 15)); 
igesout= fopen (filename, "w");
WriteHeader 0;
GoThrough (1);
pnum=l;
dnum=I;
GoThrough (0);
WriteTerminate 0; 
fclose (igesout);
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settextjustify(LEFT_TEXT, TOP_TEXT);
}

y * * * * * * * * * ****************** ADDINTDE ***************************/ 
void AddlntDE (int param)

y***+* ********************** ADDINTPD ***************************/ 
void AddlntPD (int param)
y*** * * * * * * * * * * * * * * * * * * * * * * * *  a d d r e a l p d  * * * * * * * * * * * * * * * * * * * * * * * * * * * ^

void AddRealPD (float param)

y***************************** IXOSK *****************************/ 
void itosk (int n, char *line, int k)

y*********************** COMPLETLINB *****************************/ 
void CompleteLine (int n,char section)
{

int ij;

for (i=0;TipoL[i] != XT; i++); J
for (j=i;j<80;j++) { 

if 0= 72) TipoL[72]=section; 
else TipoL[j]=’

}
i=79;
do{
TipoL[i--]=n %10 + ’O’;
) while ((n/=10) > 0);
for 0=i; j>72;j—) TipoL[j]=’0’;
TipoL[80]=X)’;

}

y** ********** ********** ADDPOINTDEINPD ***************************y 
void AddPointDEinPD (int num)
{

int ij;
char chain[30];

for (i=0; TipoL[i] != X)’; i++);
TipoL [i-l]=Y;
for 0=ij<64j++) TipoL[j]= ’
TipoL[j]=X)’; 
chain[0]=X)’; 
itosk (num,chain,8); 
strcat (TipoL,chain);

}

y * * * * * * * * * * * * * * * * * * * * * * * * * *  s e t i g e s c o l  * * * * * * * * * * * * * * * * * * * * * * * * * * * /

int SetlgesCol (int state)

*****%%***%*%*>((***$%%%***% ADDDE **************** 
void AddDE (int type, int color)

y************************* WRITEHEADER ***************************/ 
void WriteHeader 0

y*************************** g o t h r o g h  * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

void GoTlirough (int DE_Sect)

y * * *  * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

void AddPDLine (float xl, float y l, float x2, float y2)

y************************** ADDPDARC ****************************y 
void AddPDArc (float xc, float yc, float xl, float yl, float x2, float y2)
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y************************** ^DDPDTEXT ****************************/ 
void AddPDText (float x, float y, char *text)

y*************************** WRj'j’E'TERMINATE **********************/
void WriteTerminate ()

y*************************** FINISHPDLINE ************************/ 
void FinishPDLine Q


