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A bstract

This thesis begins with a review of the development and use of the 

control chart in the manufacturing industry. The review reveals scope 

for investigating the effects of im portant parameters of the produc­

tion environment on control chart design parameters and the penalty 

incurred when suboptimal parameter values are used. The design pa­

rameters are sample size (n), sampling interval (h), and control limit 

coefficient (k).

A subsequent review of the economic design of the 5-chart reveals 

tha t objective expected cost per time unit (ECPTU) functions can be 

minimised in order to determine optimum values of n, h and k. In 

this thesis we use a special case of Lorenzen and Vance’s [51] model 

to extend the previous literature by studying the limiting behaviour 

of a system of control which is based on the 5-chart; quantifying the 

response of 5-chart design parameters to changes in the production 

environment; and investigating the penalty for use of suboptimal pa­

rameter values.



ECPTU functions are minimised with respect to the 5-ch a rt’s design 

parameters. When compared with the heuristic design, the primary 

benefit of use of an economic design as presented in this thesis is the 

increased probability of detecting the OOC state. The study confirms 

the need to change the value of the design parameters in response to 

changes in the values of other process parameters such as the hourly 

cost of operating the process when it is out of control and the shift 

coefficient. Average values of the percentage changes are given.

Generally in the literature the time spent identifying and removing 

the assignable cause has not been regarded as a stochastic variable. In 

this thesis we generalise the model used to derive ECPTU functions to 

allow for a distribution of total time spent searching for and removing 

the assignable cause. Explicitly accounting for restoration time as a 

stochastic variate which is correlated with the period of surveillance 

by the 5-chart increases the optimum value of sampling interval. A 

reduction in the value of the penalty for use of suboptimal values is 

also observed.

The research also explores the practical issues related to production 

which must be addressed in order to facilitate successful implementa­

tion of the ECPTU function.
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O bjec tives

The main objectives of the research for this thesis:

— To use the history of control charts and their economic design as

a basis for continued improvement and optimisation of expected 

cost per time unit (ECPTU) functions for the a;-chart.

— To develop ECPTU functions based on different statistical dis­

tributions and assumptions about processes, thus making these 

mathematical formulations more robust.

— To determine which forms of the ECPTU functions provide most

suitable optimal control chart parameters.

— To develop applicable mathematical formulations which may be

used to quantify the effect of various factors on the cost-effectiveness 

of SPC techniques.
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C h a p te r  1 

T h e  C o n tro l C h a r t  - A  Tool 

for Q ua lity  M an ag e m en t

W. Edwards Deming, Walter Shewhart, Joseph Juran and Dr. Kaoru 

Ishikawa are statistical process control specialists who have contributed 

significantly to the development and use of control charts. This chap­

ter will highlight the contributions of these and other researchers to 

the development and use of control charts. In different sections of 

this chapter control charts will be defined; their basic uses and the 

different types will be outlined; and the benefits of use of statistical 

methods in the manufacturing process will be discussed. The rele­

vance of probability to the function of control charts as well as the 

recommended values of control chart parameters will be investigated. 

Finally, the basis for the study of the economic design of the x  chart 

will be discussed.
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1.1 W h a t is a  con tro l c h a rt?

A control chart is defined as a graph or chart with statistically calcu­

lated control limit lines. It is a statistical tool which can be used for 

process control and process analysis. [40] The chart gives indication of 

the existence of special causes of variation which influence the process. 

Several types of control charts exist. Each has rules for calculation of 

the control limits [25]. Each type of control chart has three control 

lines — the upper control limit (C/CL), the central line (CL), and the 

lower control limit (LCL) [40].

The British control chart is one variation of the Shewhart control 

chart and can have two pairs of control limits. These are the upper 

and lower action lines ( UAL and LAL) — similar to those found on 

the Shewhart control chart — and the upper and lower warning lines 

( UWL and LWL).  The warning lines are optional [7]. A cumulative 

sum control chart proposed in 1954 by E.S. Page, a British statisti­

cian, is used with a V-shaped mask which serves the purpose of the 

conventional control limit lines [10, 27].

A control chart enables the identification of the nature of changes 

in a process over a specified period of time. Consequently, the impact 

of such changes in the quality of output can be studied. The control 

limit lines indicate the standards for evaluation of the abnormality of 

the points plotted on the control chart. Each point on the graph must 

correctly indicate arbitrary divisions in the manufacturing process. 

These divisions in the data produce the sub-groups or samples [40].

5



1.2 A h is to ry  o f its  use

The control chart has been effectively used to monitor variation in the 

state of processes and production in industry. Deming, as cited by 

Juran [48], states tha t the control chart is the tool for obtaining the 

most economical manufacturing methods. The main aim of correct use 

of the control chart is the achievement and maintenance of statistical 

control. According to Deming [25] a process is in a state of statistical 

control when there is no indication of special causes of variation so 

tha t the limits of variation are predictable. As a result, the process’s 

behaviour in the near future is predictable. Juran in [25] states tha t 

process improvement can be effectively done when statistical control 

is achieved.

In the middle of the 1920s the United States of America saw the 

first significant application of statistical quality control (SQC) to mass 

production. In 1926 a team from the Bell Telephone Laboratories 

proposed the application of certain tools of statistical methodology to 

the control of the quality of manufactured telephone products. These 

tools included the new Shewhart control chart. Unfortunately, the 

use of this tool was not widely accepted during the 1920s. Work 

with the statistical techniques primarily involved the use of sampling 

inspection. [48]

There was a second surge of interest in SQC in the USA during 

the second world war. Again, the American economy failed to bene­

fit as did the Japanese economy from the applications of SQC. This 

difference may be linked to the failure of the production sector in the

6



USA to make effective use of the control chart to monitor the pro­

cess. Instead there was emphasis on the use of sampling inspection of 

output. [48]

Control charts were introduced to the Japanese manufacturing sec­

tor during the period prior to World War Two. From as early as 1931 

to 1933 Yasushi Ishida had already started to use control charts to 

improve the quality of light-bulbs. Ishida also worked to introduce 

statistical methods to military production during the war. It was not 

until after the war, however, tha t there was in Japan the greatest 

development of the application of statistical methods to mass produc­

tion.

Lectures by Deming during 1950 gave the Japanese knowledge of 

how to use SQC too make the cheapest, most consistent, and best 

quality products. The first six of the eight-day lecture series were 

spent teaching the Japanese how to draw control charts. The period 

from the mid-1950s to the 1960s saw rapid growth in the effectiveness 

of quality control in Japan as well as in the Japanese economy. During 

this period the Japanese industry also changed from sole emphasis on 

SQC to emphasis on managing for quality and company-wide quality 

control. [48]

The 3-sigma control charts developed by Dr. W.A. Shewhart are 

most convenient for checking unusual behaviour of a process. The 

success of the Japanese manufacturing sector is due, in part, to its 

wide use of this tool for statistical control. The most frequently used 

charts in Japan are the mean and range (x — R) control chart, median



and range (x — R)  control chart,the x  control chart, p control chart, pn 

control chart, c control chart, and u control chart. Although their use 

has been very beneficial to Japan, Ishikawa states th a t these control 

charts can still be improved. [41]

1.3 T ypes an d  fu n c tio n s  o f con tro l ch a rts

Two basic types of control charts exist: one deals with variables, and 

the other with attributes. Charts for variables are generally used 

in pairs. Examples of charts for variables are the mean and range 

(x — R) chart; the median and range (5 — R)  chart; and the mean 

and standard deviation (x — s ) chart. [7] The mean or median charts 

monitor the process setting or location of the distribution. The range 

and standard deviation charts monitor variability in process output. 

The data handled by such charts are continuous. Examples of such 

data are measurements (~ m m ) ,  volume (cc), product weight (g) and 

power consumption (kwh). [40]

Abnormalities will appear in the akchart in response to changes in 

the mean of the production process as well as changes in the dispersion. 

The points on this type of control chart react appreciably even to very 

slight changes in the process mean. When there is a change in the 

dispersion the points on the chart will show a greater spread and may 

go beyond the control limits. [40]

For some processes it is not feasible to collect measured data. How­

ever, it may be possible to collect qualitative information about prod­

uct or process features. Under such circumstance the operation of the



process may be monitored using attributes charts. The four principal 

types of attributes charts are the p chart, the np chart, the c chart 

and the u chart. The p chart monitors the proportion of defective 

units in a sample. The np chart monitors the number of defectives in 

a sample. The c chart monitors the number of defects in a specified 

area of time or space. The u chart monitors the proportion of defects 

in a specified area of time or space. [7]

The rules for action when the previously described control charts are 

used to monitor a process are generally based on the last few samples 

taken before the out of control — OOC — state is detected. The 

cumulative sum or cusum control chart adopts a rule for action tha t 

is based on all of the data. This control chart can be used to maintain 

current control of a process or to carry out historical analysis of a 

process. Particularly if the changes are small, it picks up sudden and 

persistent changes in the process average more rapidly than do the 

conventional Shewhart charts [27]. Each point plotted on a cusum 

chart is a cumulative sum of deviations of the sample statistic from 

the target value for the process. The cusum chart indicates changes 

in the process through changes in the slope of the points plotted. A 

positive, negative or zero slope indicates that the mean of the data is 

above, below or equal to the target value, respectively. [10]

A statistical control chart will detect the existence of a cause of 

variation that lies outside the process. This cause is referred to as a 

special cause of variation. The control chart can be used to confirm 

the capability of a process. It finds its basic uses as judgement and 

as an ongoing operation. In its function as a judgement the control
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chart is observed to determine whether the process is in statistical 

control. As an ongoing operation the control chart is used to attain 

and maintain statistical control during production [25]. The signals 

provided by control chart tell the operator when to take action to 

improve the uniformity of the product [24].

1.4 B enefits  of A pp ly ing  S ta tis tic a l M e th ­

ods to  M ass P ro d u c tio n

Statistical methods are very useful and helpful in quality control. The 

application of the control chart and other statistical methods to indus­

try produced modern quality control in the United States during the 

1930s [42]. Deming as cited by Juran [48] states tha t statistical meth­

ods are resources for a poor nation without natural resources to use in 

pursuit of international markets. Ishikawa [41] also states tha t Japan’s 

advance in productivity is strongly linked to the use of statistical meth­

ods. Wherever these methods are used there is increased quality and 

reliability of products as well as reduced production costs [41]. The 

application of statistical methods to mass production creates the envi­

ronment for the most efficient use of raw materials and manufacturing 

processes, for economies of production, and for the highest economic 

standards of quality for manufactured goods. [68]

Statistical techniques can be applied to a process in order to measure 

and analyse its variation or to measure and improve the quality of a 

process. The former application is known as statistical process control 

and the latter as statistical quality control. Control charts constitute

10



a statistical technique commonly used to measure and analyse process 

variation. As a result, a state of statistical control is attained and the 

process can be improved. [47] Tangible economic benefits result when 

this state of statistical control is achieved. These include the increased 

predictability of the process’s performance and of the costs associated 

with production. This is because the application of statistical meth­

ods minimises variability in process output. Regularity of output as 

seen in the just-in-time system of delivery is a natural consequence 

of a system in statistical control. In addition, productivity is max­

imised. A further advantage of statistical control, is tha t the effects 

of assignable causes of variation can be more quickly and accurately 

measured. [25]

Shewhart [67] also cites the advantages of securing a state of control 

through the application of statistical methods to mass production. He 

points out tha t the cost of inspecting output is reduced if the process 

is controlled. The comparative stability in the quality of output from 

a process which is in statistical control leads to reduced cost of inspec­

tion as there is less need for it. When the application of statistical 

methods yields controlled quality of the input for a process there is 

reduced rejection of output and money is saved.

A system is in a state of statistical control when all the assignable 

or special causes of variability have been removed. The manufacturer 

can then attain uniformity in the quality of output. Attainment of 

statistical control also yields a reduction in the tolerance limits for 

tha t particular quality even though measurement of these limits is 

indirect. [67]

11



An objective state of statistical control can be achieved. The use 

of statistical machinery by an engineer who makes the right kind of 

hypotheses will enable the establishment of criteria which indicate 

when the state of control has been reached. [67]

1.5 R elevance  of p ro b ab ility  th e o ry  to  th e  

fu n c tio n  of con tro l c h a rts

Deming [25] states tha t some knowledge of the theory behind use 

of the control chart is a necessary requirement for its successful use. 

Probability theory is the foundation on which use of the control chart 

is based. According to Ishikawa [41], the output from all processes will 

have a statistical distribution. He therefore suggests tha t we must be 

guided by the concept of a statistical distribution when searching for 

unusual behaviour. Probability theory will also impinge on our use of 

statistical distributions.

The theory of probability forms the basis for the calculations which 

give the location of control limits on the control chart [25]. The state­

ments which follow indicate how Shewhart [67] has used probability 

theory as the basis for the establishment of control limits.

The integral P  gives the probability tha t the statistic 9 lies within 

the limits 9i and 92. #i and 92  can be chosen such th a t P  = 1. fo(9, n) 

is the probability function for the statistic 9 obtained from a sample 

sized n. Therefore,

P  =
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9  outside the limits is a positive indication tha t the standard of 

quality is not what it should be. However, the occurrence of the ob­

served 9 within the range 9\ and 6 2  is not sufficient proof tha t the 

system has not changed. Consequently, the limits on a particular 

statistic must be chosen so tha t the associated probability P  makes 

economic a search for trouble when any of the chosen statistics fall 

outside their limits. There is some economic value P  and a pair of 

limits 6 1  and 92  for each quality characteristic. The economic value of 

P  for one quality characteristic will not be the same for others. The 

values used in practice will be approximations. It is more econom­

ical to adopt a value which will be acceptable for nearly all quality 

characteristics. [67]

Equation 1.1 gives the symmetrical range for the statistic which, for 

each control chart, is characterised by the following limits.

9 is the expected value of 9 and is its standard deviation. Tcheby- 

cheff’s theorem has been used to show that, so long as the quality 

standard is maintained, the probability P  tha t the observed value of 

9 lies within these limits satisfies the inequality in Equation 1.2.

t could vary. However, experience has shown tha t t = 3 is an accept­

able economic value. [67] For this reason the value 3 has been used as 

control limit coefficient for control charts.

The lines for the British variables control charts are based on proba­

bilities given by the normal distribution. The upper and lower warning

9 ±  t(jQ (1 .1 )

(1 .2 )
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lines ( UWL and LWL ) are at (j,±1.9Qa/^/n.  The upper and lower ac­

tions lines (UAL and LAL)  are at n  ±  3.0§a/^fn.  The position of 

these lines indicates that there is a 1 in 40 chance of a value occur­

ring above the U W L  and the same probability below the L W L .  The 

probability tha t a value falls outside each of the action lines is 1 in 

1000. For British attributes control charts the lines are also based on 

the probabilities of 1 in 40 and 1 in 1000. The location of the control 

lines is determined using the binomial or Poisson distributions. [7]

The conversion factors — d2,d^ — used to calculate limits for the 

Average Chart and the Range Chart were derived from the normal dis­

tribution. However, work done by Burr(1967) as cited by Wheeler [78] 

indicates tha t their values are not very sensitive to normality and may 

be used without concern for the normality or non-normality of the 

data.

Although the position of the control limits have their foundation in 

the theory of probability, Deming [25] states tha t it is wrong to give a 

figure for the probability tha t a statistical signal for the detection of 

a special cause is wrong. He further states tha t it would be incorrect 

to attach a figure to the probability that the chart could fail to send 

a signal when a special cause exists.

Neave [58] has stated tha t Deming used 3 as the value of control 

limit coefficient without concern for the mathematical justification for 

its use. Deming also used data which were not normally distributed 

to plot points on the control chart and often computed control limits 

using just a few points. This was done even though the high degree of
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correlation between the points and the limits would affect probabili­

ties. Deming [25] has indicated that teaching control charts using the 

normal distribution assumption can be misleading and derail effective 

study and use of control charts.

Work done by Wheeler, Deming and Neave indicate tha t the value 

and practicality of the control chart is not dependent on probability 

or the normal distribution assumption. The main purpose of these 

charts is to provide guidance “when special causes are troublesome 

enough to warrant action [58]”. Nevertheless, the normal distribution 

assumption is used in the current research to facilitate the calculation 

of costs associated with the operation of the control chart.

1.6 R eco m m en d ed  design  p a ra m e te rs  for 

th e  co n tro l c h a rt

This study is concerned with optimising the use of the x  chart with 

respect to its design parameters. The design parameters are sample 

size (n), the sampling interval (/i), and the control limit coefficient(k). 

This section will review the recommendations of other researchers con­

cerning the values of these parameters.

Based on Shewhart’s initial work in 1925 it is established that the 

recommended value of the control limit coefficient is 3 [25]. This value 

works well in practice even though its use is not firmly rooted in prob­

ability theory [7]. (See Section 1.5.) As indicated in Section 1.5, the 

British control charts for variables have their control limit coefficients
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set at 3.09 standard deviation units for the action limits and 1.96 for 

the warning limits. On British control charts for attributes the values 

for the control limits are also based on the 1 in 40 and 1 in 1000 chance 

of a point falling outside either control limit.

The literature does not provide a commonly used value of sampling 

interval. Ishikawa [42] indicates tha t the sampling interval should be 

fixed. He states, however, tha t use of fixed sampling intervals gener­

ates the risk of overlooking the effect of these intervals on variation. 

The length of the sampling intervals should reduce the probability that 

assignable causes go undetected. Fixed sampling intervals give best 

results when relatively uniform raw materials are supplied and pro­

cessed stably and machinery is infrequently adjusted. It is believed 

that abnormalities will occur systematically in a stable process and 

will be more promptly identified a t the fixed times for sampling.

Ishikawa [42] further points out that, where composite samples must 

be taken, sample measurements may be averaged over 1 hour, 4 hours 

or one shift. Use of these times gives less loss of information on varia­

tion in comparison to averaging over one day. Juran [47] cites the work 

of Ewan(1963) who recommends an interval of T /6  between samples 

to plot a cumulative sum control chart. T  is the permissible average 

time before a shift in the process mean is detected.

Deming [25] mentions tha t points should be plotted on the control 

charts every half-hour or every hour. This would suggest that these 

are lengths of the sampling intervals. Such lengths may not be feasible 

under some conditions of production. In selecting sampling intervals
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we can be guided by the fact tha t the length of the interval influ­

ences the estimate of variation. Subgroups taken at too large intervals 

will yield incorrect estimates of variation. Infrequent sampling yields 

too few subgroups which will give inaccurate estimates for the mean 

range. Consequently, there will be incorrect positioning of the control 

limits. [47] Since 1956 a number of researchers have investigated the 

selection of optimum sampling intervals for use with control charts. A 

review of the literature featuring selection of sampling intervals will 

be presented in Chapter 2.

Sample sizes ranging from 2 to 5 are recommended for use with 

the variables control charts and are more commonly used. However, 

sizes ranging from 6 to 10 have been used in special cases [40, 41]. 

Juran [47] gives guidelines on the subgroup size tha t should be used 

with different types of control charts. Sample sizes of four or five items 

are recommended for use with the x —chart. He further states that the 

distribution of the sample mean is always normal for n > 4. This is 

the case even if the distribution of the observed values for the sample 

items do not follow the normal distribution. Larger subgroup sizes 

yield more sensitive x  charts since the control limits will be tighter. 

Here it is assumed that the standard deviation units used to place the 

control limits are calculated from the sample. In selecting sample sizes 

it must be understood tha t smaller subgroups lead to wider control 

limits. This will increase the risk of missing any signals of an assignable 

cause of variation. Control limits become too narrow if the sample size 

is too large. As a result the risk of getting false out-of-control signals 

is increased. [47]
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Betteley et al [7] point out tha t samples consisting of a single unit 

can be safely used. In such cases the variation is measured as a sample- 

to-sample difference. However, samples of size one could lead to com­

plications in interpreting the chart if the data do not come from a 

normal distribution. As sample size increases the distribution of the 

sample means tends towards a normal distribution. For this reason, 

sample sizes greater than one have been used. A minimum sample 

size of 5 has been found to give reasonable results and is most com­

monly used. However, larger sample sizes are recommended for x  and 

s charts. [7]

1.7 B asis For In v es tig a tin g  T h e  D esign of 

th e  X  C h a rt

A number of researchers have continued to investigate the economic 

design of the x chart. This investigation may have resulted from a need 

to make the chart more relevant to particular production conditions 

or quality characteristics. The parameters of greatest influence on the 

use of control charts are the sample size (n), the sampling interval 

(h), and the control limit coefficient (k). Recommended values for 

these parameters have been mentioned in Section 1.6. Use of the 

recommended values have produced reasonable results. Nevertheless, 

there is still room for investigation of the specificity of n, h and k 

to given processes. Consequently, the research presented in this thesis 

represents a further study of the ways in which cost and other technical 

parameters associated with the process influence the design of the x  

chart.
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In Section 1.3 it is stated tha t the x  chart gives indication of both 

changes in the mean and variance of the process’s output. The fact 

tha t this tool can give information about two facets of the process has 

singled it out for investigation. In Section 1.6 it has been pointed out 

tha t the exact values for sample size and sampling interval have not 

been firmly established. It is felt that the value of these parameters 

will be incumbent on the effect of other cost and technical parameters 

associated with the process. Shewhart [67] has used the inequality 

in Equation 1.2 to show that the value of the control limit coefficient 

is not necessarily 3 for all quality characteristics. (See Section 1.5). 

This value of 3 is heuristic. In view of the previous statements an 

investigation of the optimum design parameter values is aimed at se­

lecting values specific to the process and quality characteristic under 

consideration.

Ishikawa [41] has stated that control charts can be improved. This 

study of the economic design of the x chart can help improve these 

charts by making them more applicable to specific types of processes. 

This study will further confirm the influence of certain cost and tech­

nical parameters on the optimum control chart parameters and, hence, 

the function of the x  chart. Expected cost per time unit (ECPTU )  

functions will be derived and minimised with respect to sample size 

(n), the-sampling interval (h), and the control limit coefficient (k ). 

The penalty for use of the recommended design parameter values in­

stead of optimum design parameter values will be investigated. This 

research will produce guidelines or general rules of thumb for the op­

eration of the x  chart under different production conditions.
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The following chapter will be a review of work done by other re­

searchers on the economic design of the x  chart. Their work is used as 

the basis for the development of other cost per time unit equations.



C h a p te r  2 

T h e  E conom ic D esign  of th e  

X  ch a r t

2.1 C r ite r ia  fo r o p tim isa tio n

In Chapter 1 reference was made to the tangible economic benefits of 

using the control chart to monitor the state of a process. The control 

chart design parameters — sample size (n), sampling interval (h) and 

control limit coefficient (k) — used in the experiences cited had the 

heuristic values recommended by Shewhart and other specialists in 

the use of the charts. Recommended design parameter values for the 

5-chart are shown in Table 2.1. The literature does not indicate these 

values are the economic optimum.

The onset of the study of the economic design of the 5-chart started 

investigation of optimum design parameters for the charts. Optimum 

parameters are selected in a manner which is dependent on the other 

features of the process. Hence they are specific to the process being
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n h (hours) k

Shewhart [67] — — 3

Deming [25] — 0.5 or 1 —

Juran [47] 4 ,5 — 3

Ishikawa [51, 14] 5 8 3

Feigenbaum [51, 14] 5 1 3

Burr [51, 14] 4 or 5 — 3

Dale and Oakland [23] 5 1 —

Table 2.1: X -chart design parameter values proposed by various re­

searchers.

monitored. Their use enables more rapid determination of the need 

to correct or improve the process. This is because sample means are 

taken at regular intervals and plotted on control charts whose control 

limits create a trade-off between minimising the probability of a false 

alarm — Type I error — and maximising the probability tha t a point 

falls outside the control limits when the process is in the out-of-control 

state — power of the test for the in-control state. Accurate use of the 

control chart is costly. It is therefore important th a t this accuracy is 

optimised by selecting control chart parameters which minimise the 

cost of using the chart.

In much of the reviewed literature, there has been simultaneous 

optimisation of the control chart with respect to n, h and k . The 

optimum h is constant for the entire period of surveillance by the 

control chart. Tagaras [72], however, finds the economic design by 

selecting k and h only. Banerjee and Rahim [4] find the economic
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design by selecting n, hi and k. They state tha t it is desirable to 

have sampling frequency increasing with the age of a process which 

has an increasing failure rate. Hence, hi is the length of the first and 

longest sampling interval. Sampling frequencies increase as the length 

of the cycle increases. The length of each sampling interval, h j , is 

defined in a manner which keeps constant the probability that the 

process mean shifts within an interval, given no shift up to the start 

of this interval. In order to maintain this constant integrated hazard 

over each of j  sampling intervals they choose sampling intervals of 

length hj = \ j^  — (j  — I )77] h\. For this model the in-control period 

is assumed to follow the Weibull distribution having shape parameter 

v. Chung and Lin [16] use a similar model to determine optimum 

values of n, h\ and k.

Objective functions have been derived and optimised with respect to 

the design parameters. The functions provide an opportunity to assess 

the theoretical cost use of the control chart. The degree of complexity 

of the objective function is dependent on the assumptions which are 

made about the process. The most common form of the objective 

function has been the ratio of the expected cost to the expected time of 

operation of the control chart. Saniga [65] and G upta and Sachdev [35] 

use an expected cost of operating the chart to determine optimum 

design parameters. Castillo et al [9] use minimum expected number 

of false alarms; minimum average time to detection of the OOC state; 

and minimum sampling cost per cycle of operation of the chart as 

the criteria for selection of optimum control chart design parameters. 

These criteria are subject to statistical constraints.
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McWilliams [53] and Montgomery et al [56] also find the optimum 

values of n, h and k subject to statistical constraints. The economic- 

statistical design thus produced minimises the loss cost function while 

meeting constraints for average run length.

2.2 C o n tro l c h a rts  o p tim ised

The JS-chart has been the control chart most commonly singled out for 

selection of an optimum design. Since the 1950’s there has been in­

creased interest in the joint economic design of the J:-chart and control 

charts for dispersion parameters.

Ho and Case [39] state tha t Saniga [65], in 1977, pioneered inves­

tigation of joint economically optimal design of the x and R  control 

charts. The optimum values for the sample sizes and control limits 

were similar to those obtained when the design of the £-chart, only, 

is optimised. However, optimum sampling frequency decreased as a 

result of joint use of the x  and R  charts.

Rahim [62] later produced a computer program for determining the 

optimal economic design for joint use of the charts. Jones and Case [46] 

used Duncan’s work as the basis for deriving the economic design of a 

joint x  and R  chart. Unlike Saniga’s [65] model Jones and Case’s [46] 

work perm itted the mean and range to be out of control at the same 

time. Results from the latter study suggest tha t the “standard” design 

may not be the optimal design.
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Rahim et al [64] and Yang [80] also investigated the joint optimal 

design of control charts for monitoring the location and dispersion of 

the process output. Yang [80] used Taguchi’s quadratic loss function to 

develop the joint economic design of x  and s charts. His data analysis 

revealed that the optimum values of all three design parameters are 

significantly influenced by the cost of repair or replacement of the 

product. Production rate and its interaction with cost of product 

repair were influential to the optimum sampling interval and control 

limit coefficient. Rahim et al [64] developed a model for the joint 

economic design for the mean and variance charts. They found that 

the x — s2 chart has lower minimal cost than does the x — R  chart.

Points plotted on the x  control chart enable the user to detect shifts 

in the mean and the variance of the process. Economic design of the x 

chart, singly, initiates cost-effective use of the SPC techniques. How­

ever, concurrent optimisation of the R  chart would ensure more rapid 

detection of the need to correct or improve the process in response to 

a shift in variation. It is outside the scope of this thesis to develop 

objective functions for the joint economic design of control charts used 

to detect shifts in the location and dispersion of the process output. 

However, based on a reduced model, there will be derivation of objec­

tive functions for investigating the optimised use of x  charts. These 

functions may be modified for use in joint selection of optimum range 

chart parameters.

The rest of this chapter reviews the development and use of one 

particular form of objective function which is minimised to select op­

timum x-chart design parameters. This form is expressed as the ratio
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of expected cost of a cycle of operation of the chart to the expected 

length of the cycle. The basis for use of this functional form will be 

presented. There will be a review of the assumptions related to pre­

vious use of this objective function. The different methods used for 

its derivation and optimisation will be highlighted. The review of the 

literature reveals scope for additional investigation of optimised use 

of the x-chart. Hence, this chapter will close with an explanation of 

ways in which this research will facilitate this investigation.

2.3 A ssu m p tio n s  a b o u t th e  p rocess

The statistical distribution assumed for the time to shift in the process 

mean is very influential on the form of objective function. Duncan [28, 

29], Chung [14], Tagaras and Lee [73, 74] and Saniga [65] are among 

the researchers who assume tha t the time to shift in the process mean 

follows the exponential distribution. Ho and Case [39] state, however, 

tha t the exponential distribution assumption may be inappropriate 

for processes which deteriorate with time.

Others such as Banerjee and Rahim [4] and Chung and Lin [16] 

assume tha t the process-failure mechanism for the control chart has a 

non-constant hazard rate. Their cost models use the assumption tha t 

the time to shift in the process mean follows a Weibull distribution. 

Banerjee and Rahim [4] found that the optimal design parameters are 

insensitive to a moderate degree of misspecification on the Weibull 

parameters. In their research Surtihadi and Raghavachari [71] used 

the Weibull, Log-normal, Folded-normal, Folded-logistic and Gamma 

distribution assumptions to derive cost functions.
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The models commonly assume tha t the process is kept in operation 

while there is search for the assignable cause [14, 16, 28, 29]. More 

recent models by Chung [15] and Tagaras and Lee [73] assume other­

wise. Even when it is assumed that the process is shut down during 

search for the assignable cause the objective functions incorporate pa­

rameters associated with the cost and length of time for restoring the 

process to the in-control state.

Another common assumption is tha t the time to take and inspect 

a sample and plot the results is non-negligible [14, 15, 16, 28, 29, 

73]. In their investigation of the economic design of x  charts under 

a preventive maintenance policy Chiu and Huang [11] assume that 

this period is negligible. Ho and Case [39] cite work by Arnold and 

Collani published in 1987 which also uses the assumption of negligible 

sampling inspection time. There is always, however, a cost attached 

to the sampling and inspection of items.

The models generally assume that the production periods being- 

monitored are infinite. Crowder [22] and Tagaras [72], however, de­

veloped SPC models for production runs of a pre-specified length. 

Crowder’s research led to determination of the appropriate times at 

which the process is adjusted when the production run is finite. These 

optimum times for control action minimise the expected cost of op­

erating the control chart. Tagaras’s [72] model assumed a constant 

sample size of 1. In his model there was continuous updating the 

Bayesian estimate of the state of the process. This allowed for use 

of the dynamic programming approach to adjust values of the control 

limit coefficient — k — and the sampling interval — h.

27



The traditional statistical process control philosophy is tha t the 

process be adjusted only when the process mean is substantially off 

target [22]. In developing the objective functions, assumptions have 

been made about the point at which adjustment should occur. Adjust­

ment is action by those involved in production to return the process 

mean to an in-control state after the process is declared to be out of 

control. In the model published by Duncan [28] in 1956, action is 

taken to search for and remove an assignable cause once the plotted 

sample mean falls outside the single pair of control limits. This feature 

of the model is based on the assumption th a t a single assignable cause 

shifts the process mean to the OOC state.

Extension of his work in 1956 led to a 1971 publication of his paper 

in which there is derivation of a cost per unit time equation for pro­

cesses which are influenced by multiple assignable causes. Different 

levels of response were associated with the different causes. Tagaras 

and Lee [73, 74] and Chung [14, 15] also used this assumption in their 

derivation of cost equations. Tagaras and Lee [73] point out tha t pro­

cesses subject to multiple assignable causes can be monitored, theo­

retically, using control charts with many sets of control limits. Admin­

istration of such charts could prove burdensome. In these cases they 

propose the aggregation of assignable causes and restoration activities 

so that charts with two or three sets of control limits and respective 

corrective actions are developed. Much of the reviewed work which 

concerns the investigation of multiple assignable causes refer to design 

of control charts with two pairs of control limits.
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The cost and technical parameters which are included in the model 

vary according to the assumptions made about the process and the 

purpose for which the model is derived. The cost parameters which are 

commonly used include the costs of sampling; down-time in produc­

tion because the process is shut down during search for an assignable 

cause; operating in the out-of-control state. Technical parameters 

commonly included in the functions are the shift coefficient; the time 

for taking a sample and plotting its mean; the expected search time 

for an assignable cause. The shift coefficient is the number of standard 

deviations by which the process mean shifts when the process goes out 

of control.

According to Ho and Case [39], it is commonly assumed tha t the 

cost and operating parameters for the process are known or can be 

precisely estimated. This information is often unavailable or difficult 

to obtain. They cite previous research which reveals th a t a cost func­

tion which accounts for this imprecision in the parameters performs 

better than one which does not. They further report tha t previous 

work by Krishnamoorthi presents a simple method to estimate the 

magnitude of the shift coefficient.

A false alarm occurs when a sample mean falls outside the control 

limits but the process is still in control. Some models have a cost and 

search time associated with false alarms.

In cost models for processes subject to multiple assignable causes, 

values for some parameters change according to level of the out-of- 

control state [14, 15, 16]. These parameters include the shift coeffi­
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cient; the cost and time associated with restoring the process to the 

in-control state; the scale parameter for the distribution of the in­

control period; and the control limit coefficient.

The model presented by Crowder [22] is one of the few for which the 

sampling cost is not formally considered. His model accounts for the 

costs associated with deviation from the target value of output and 

the cost of making an adjustment to the process.

2.4 M eth o d s  o f d e riv a tio n  an d  o p tim isa ­

tio n

The E C P T U  function has been derived using the length and cost of 

operating the chart during the in-control and the out-of-control peri­

ods. The forms of the objective functions vary according to whether 

it is assumed that production continues while there is search for an 

assignable cause and whether the values of cost or technical parame­

ters change with the type of assignable cause influencing the process.

Duncan [28] used results from waiting time analysis to determine the 

average time to occurrence of an assignable cause within an interval. 

His method has been used by many other researchers. (See [11, 14, 64, 

62]). The models assume that samples are taken at intervals of length 

h. f ( t )  is the probability density function for the in-control period, t. 

Given the occurrence of the assignable cause in the interval between 

the ith. and i -j- 1st sample, the general expression for the average time
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to occurrence of an assignable cause within an interval is

-  ih )f{t )dt

s t 1)hf m
The probability that the out-of-control state will be detected and the 

probability of a false alarm were found using the normal distribution 

assumption. Expected costs were obtained as a product of the cost 

parameter and the expected length of different periods or the number 

of events within the cycle of the chart’s operation.

Lorenzen and Vance [51] presented a general method for determining 

the economic design of control charts. This was an attem pt to unify 

the approach of researchers to the economic design of control charts. 

The expected cost per cycle was the sum of expected costs of

i) producing non-conforming items during the IC — in-control — 

and the OOC states;

ii) searching when there are false alarms;

iii) locating and repairing the assignable cause which exists;

iv) sampling for the duration of the cycle.

As in Duncan’s model the expected costs were products of the cost 

parameters and the expected lengths of the states of the process or 

the expected number of events such as false alarms or sampling in­

spections. These general forms of the function can be made specific 

to particular types of process models. Dummy variables take different 

values depending on whether production ceases during search for the 

assignable cause and repair of the process. As originally intended, this
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model has been applied to different types of control chart models and 

generalised to statistical distributions different from the exponential 

distribution. (See [4, 52, 53, 71, 64]).

In his earliest work Duncan [28] found an approximation to the op­

timum design. He carried out Taylor series expansion of the functions 

for the number of samples taken during the in-control period and the 

average time to shift in the process mean within an interval. This pro­

duced expressions in terms of h having order two or lower. Substitu­

tion of such functions into the cost function allowed for determination 

of the partial derivatives. After setting to zero the partial derivatives 

with respect to n, /i, and k explicit equations for these parameters 

were derived. Repeated substitution of solutions to one explicit equa­

tion into another produced the approximate optimum chart design. 

Tagaras and Lee [74] and Chung [15] also used Taylor series expansion 

of their exponential expressions to obtain explicit equations in h. The 

solutions to such equations were used as the starting search values for 

the optimum combination of design parameters.

As interest in the economic design of the control chart has increased 

the methods of optimising the objective functions have improved. P a t­

tern search techniques have been more commonly used. Chung and 

Lin [16] used the pattern search technique to find the optimum com­

bination of design parameters. The starting value was n =  0 and k 

and hi are incremented by 0.01 for each search step of the algorithm. 

The search ends when the combination of parameters includes a value 

of n which has a minimum value of 10.
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Chung [14] developed an algorithm for obtaining economically opti­

mum control chart parameters. In this algorithm n  and k are treated 

as discrete variables, k is given unit length of 0.1 or 0.01. An explicit 

equation for h is solved and the solution is used as the starting value 

for the search procedure. The starting values for n and k are non-zero 

values.

A number of computer programs which calculate the optimal design 

for X  and X —R  control charts have been published. [53] Torng et al [75] 

have also produce a computer program for the economic statistical 

design of exponentially weighted moving average charts. The FOR­

TRAN program developed by McWilliams [53] enables users to deter­

mine — interactively or using data files — the economic, statistical, or 

economic-statistical x  chart design. This program is based on Loren- 

zen and Vance’s [51] general unified model. Rahim [63] also presents 

a FORTRAN program which which finds the optimal economic design 

based on the economic model of Banerjee and Rahim [4].

Hooke and Jeeves’ pattern search technique was published in 1961. 

Since then it has been the basis of search algorithms developed by 

researchers to find the optimum combination of design parameters. 

(See [4, 11, 15, 46, 62, 63, 64, 75].)

2.5 B asis o f th e  ob jec tiv e  fu n c tio n

For a reward renewal process the expected cumulative cost C(t)  per 

unit time tends asymptotically to the ratio of expected cost between 

renewals to the expected time between renewals. [3, 13, 19, 20]
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The average cost of renewal per unit time up to time t is C(t) / t  and 

is expressed as follows. [3]

Ci denotes the cost of the ith  renewal. N(t)  is the renewal function 

denoting the expected number of renewals in time t. As t oo the 

average cost per unit time tends to a limit which can be written as 

follows. [3]

limi—> oo
C(i)

W
ti represents the time to renewal on a single cycle. Derman and 

Sacks [26] also used this asymptotic result in their investigation of the 

optimal stopping rule for the replacement of periodically inspected 

equipment.

The operation of the 5-chart can be regarded as a reward renewal 

process. As in the model used by Derman and Sacks [26] the process 

under the surveillance of the control chart is checked periodically by 

inspection of a sample of output at specified intervals. The renewal or 

replacement is the detection of the OOC state when a sample mean 

falls outside the control limits. Work done by Ansell et al [3] and 

Christer [13] is formulated on an age replacement problem. Collani et 

al [20] investigates the specific application of this problem to the op­

eration of the 5-chart. This study also investigates this application by 

using the limit result given in Equation 2.1.
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2.6 O rig inal w ork

The current research is aimed at investigating the practical applica­

tion of optimal approaches to statistical control of a process. The 

history of control charts and their economic design will form the basis 

of continued improvement of the ECPTU functions for the 5-chart. 

Objective functions will be developed using different assumptions or 

models of the production process. They will be used to quantify the 

cost-effectiveness of using the 5-chart.

Widely accepted guidelines on the value of sampling interval do not 

exist [15]. On the basis of the recommendations presented in Table 2.1 

the units for sampling interval in this study will be hours. Hence, the 

E C P T U  gives the hourly cost of operating the 5-chart.

Initially, general forms of the E C P T U  will be derived. They will be 

made specific to the exponential and Erlang distributions. Figure 2.6 

shows the relationship of works by various researchers to models pro­

duced by Duncan [28] in 1956 and Lorenzen and Vance [51] in 1986.

In order to minimise the complexity of the objective function we 

will assume tha t the time for sampling inspection is negligible; the 

process is deemed OOC only when a sample point falls outside the 

control limits; the values of the cost and technical parameters do not 

change according to the assignable cause which affects the process. 

This reduced model will lessen the number of cost and technical pa­

rameters which require estimation. Work by Duncan [29], Chung [15]
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and Tagaras and Lee [73, 74] illustrate the complexity of objective 

functions which use different parameters to indicate the effect of dif­

ferent assignable causes.

According to Alexander et al [1], one of the purposes of SPC is 

continuous improvement. This can be achieved through adjustment 

of control chart design parameters over time. Hence, the objective 

functions derived in this study will be used to illustrate the optimised 

operation of the x-chart. The results will give the percentages by 

which design parameters may be adjusted in response to changes the 

size of the process shift as well as particular cost ratios. The penalty 

for use of sub optimal combinations of design parameters will be as­

sessed. The effect of length of the IC period on the optimal design 

will also be considered.

This study will also derive objective ECPTU functions by explicitly 

accounting for the stochastic nature of the entire period spent search­

ing for and removing the assignable cause. This restoration period 

will be assumed to be correlated with the period for which the pro­

cess was monitored by the a-chart. These objective functions will also 

be simultaneously optimised with respect to all three design param ­

eters. Benefits of incorporating the stochastic and correlated nature 

of restoration times to the optimised use of the control chart will be 

proposed.

The improved performance of computers and mathematical soft­

ware will be exploited to reduce the difficulty with which the objective 

functions are minimised. The functions presented in this thesis will
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be minimised using optimisation routines in Mathematical the m ath­

ematical computing package. Use of this package will improve the 

speed and accuracy with which the optimum values are found.

37



8 :S

£o 3

a 5

Figure 2.1: Tree diagram of various developments of Duncan’s [28] 

model for the ^-chart since 1956.
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C h a p te r  3

A  R ed u ced  M odel

3.1 In tro d u c tio n

Lorenzen and Vance [51] propose a unified general model which can 

be applied to the economic design of various control charts. Their 

model allows any distribution to model the time to shift in the process 

mean. It incorporates indicator variables which denote whether or not 

production continues during search for and removal of the assignable 

cause. In this chapter we generalise the model presented by Dun­

can [28] in 1956 to produce a special case of Lorenzen and Vance’s [51] 

unified model. These models are further explained in Section 3.2. We 

use this special case of Lorenzen and Vance’s [51] model to extend 

the previous literature by studying the limiting behaviour of a system 

of control which is based on the x-chart; quantifying the response of 

ir-chart design parameters to changes in the production environment; 

and investigating the penalty for use of suboptimal parameter values.
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As part of this research there is derivation of objective ECPTU 

functions based on the assumption that production continues during 

search for the assignable cause but not during its removal. In addi­

tion we assume that the time spent taking and inspecting samples is 

negligible. The time to shift in the process mean is an Erlang variate.

Different approaches are used to derive general forms of the objec­

tive functions. These are made specific to different Erlang distribu­

tions. The approaches yield probability density functions for the OOC 

period and for the number of samples taken while the process is under 

the surveillance of the x-chart.

Prior to an explanation of the derivation of the E C P T U  functions 

there is an outline of the notation used in this chapter. Following this 

there is discussion of the assumptions made about the process.

The study reveals tha t the primary penalties for use of the heuristic 

design parameter values instead of the optimum values are reduced 

probabilities of detecting the OOC state and a drastic increase in the 

ECPTU. For the data  studied, increases in the shape parameter for 

the Erlang distribution greatly increase optimum values of n and h.

3.2 P rev io u s  M odels

3.2.1 D u n can ’s M od el

Duncan’s [28] model determines the sample size (n), the sampling 

interval (/i), and the control limit coefficient (k ) which minimise the
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loss cost for operating the x-chart. His cost equation is

b + cn  B A M  +  f +----------- 1 h-----------
h 1 + B X

where

B  — ah +  en +  D

represents the expected length of the OOC period plus the time re­

quired to take and inspect a sample size n.

a = — -  0.5 +  — Ah

represents the time from the shift in the process mean until the sample 

which detects the OOC state is taken.

M  is the cost per hour for production during the OOC period.

T  is the cost of searching for the assignable cause when none exists.

W  is the cost of finding an assignable cause.

b is the fixed sampling cost.

c is the cost of measuring each sample item.

en is the time required to take and inspect a sample size n

D  is the average time to find an assignable cause after a sample point 

has been found to fall outside the control limits.

The equations are based on the assumption tha t the in-control pe­

riod is an exponential variate with mean j .  The OOC period begins 

when the process mean shifts from X "  to X "  +  8a. Action is taken 

to search for an assignable cause only when a single sample point falls 

outside the control limits. The process is assumed to continue during 

search for the assignable cause.
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In Section 3.5.1 we explain how the model presented in this chapter 

generalises Duncan’s [28] model.

3.2.2 Lorenzen and V ance’s M odel

Lorenzen and Vance [51] present a general process model which is 

used to derive an hourly cost function and optimise it with respect 

to sample size (n), sampling interval (h) and control limit coefficient 

(k ). They define the cycle of operation of the control chart as the time 

between the start of successive in-control periods.

This cycle time is the sum of:

i) the time until the assignable cause occurs,

ii) the time until the next sample is taken,

iii) the time to analyze the sample and chart the result,

iv) the time until the chart gives an out-of-control signal, and

v) the time to discover the assignable cause and repair the process. 

The expected cost of operating the chart is the sum of costs due to

i) production of non-conforming goods when the process is in con­

trol and out of control,

ii) searching for an assignable cause,

iii) sampling and inspection.
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Their model assumes that, when the process goes out of control, 

the process mean shifts by a known amount. It is restored to the 

in-control state when the cause of this shift is removed so tha t the 

system is repaired. As does Duncan [28], Lorenzen and Vance [51] 

assume that the time to take and inspect a sample is non-negligible.

The model is considered a general unified one because it incorpo­

rates the indicator variables, and <52, and it allows any distribution 

to model the time to shift in the process mean. <5q =  1  if produc­

tion continues during searches and S\ = 0  if production ceases during 

searches for the assignable cause. 6 2  =  1  if production continues dur­

ing removal of the assignable cause and 6 2  — 0  if production ceases 

during this period. In their derivation of the hourly cost function the 

researchers assume th a t the time to shift in the process mean is an 

exponential random variable with mean j .

For an x-chart this model assumes tha t the observations are identi­

cally and independently normally distributed with mean equal to the 

centre line and standard deviation a.

Lorenzen and Vance [51] give the following expression as the ex­

pected cost per hour

~ — f- C i  ( A R L 2 h  -f- t i E  — t  T  5\ T \  T  $2^2)^

A R L 2 h  -f—-• T  t i E  — t  V
A R L 1

4- T\ +  T2  ) +

A R L \
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Definition of notation for this expression is given in Appendix A.

In Section 3.5.1 we outline the differences between Lorenzen and 

Vance’s [51] model and the model presented in this chapter.

3.3 N o ta tio n  For T h is C h a p te r

There are random variables, design parameters, probabilities and cost 

and technical parameters associated with operation of the x —chart. 

The characters used to represent these are listed below.

The random variables are denoted as follows

X  — the measured value of the output.

T  — period for which the process is in control (IC).

S  — period for which the process is out of control (OOC).

J  — the number of complete sampling intervals during the OOC 

period.

I  — the number of complete sampling intervals and, hence, the num­

ber of samples taken during the IC state. E(I)  — m x

M  — the number of samples taken during the OOC period (M  =  

J  -I- 1 ). E ( M )  =  m 2

r  — the length of the IC period within a sampling interval before 

the process mean shifts within th a t interval.
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R  — the number of samples taken for the duration of the cycle.

The x —chart parameters are denoted as follows:- 

n  — sample size. 

h — sampling interval. 

k — control limit coefficient.

{n*, k*, h*} — the combination of sample size, control limit coeffi­

cient and sampling interval which together minimise the ECPTU 

function.

The notation for cost and technical parameters is as follows:-

C  — the cost of a cycle of operating the x —chart.

b — the cost per sample of sampling and charting.

e — the cost of measuring each sample item.

C2  — the hourly cost of operating in the OOC state.

C3  — for each false alarm the cost of searching for the non-existent 

assignable cause.

C4  — the average cost of searching for the existing assignable cause.

L — the length of a cycle of operating the control chart.

D — time spent searching for the assignable cause.

5 — is the number of standard deviations by which the process mean 

shifts when the process goes OOC.
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The associated probabilities are denoted as follows:-

ckii — the probability tha t when the process is OOC a sample mean 

falls outside the control limits. This will also be referred to as 

the power of the test which determines whether the process is in 

control.

ckoi — the probability of a false alarm. A false alarm occurs when 

there is no shift in the process mean but a sample mean falls 

outside the control limits.

3.4 T h e  A ssum ptions

The time to shift in the process mean can be regarded as the “lifetime” 

of the process in the in-control state. According to Lawless [49], the 

exponential distribution has been widely used to model the lifetime of 

various processes and products. However, caution must be exercised 

in its use as many inferences may be sensitive to departures from the 

exponential model. Procedures based on the exponential distribution 

tend to be highly non-robust. Bendell and Edgar [6 ] also state that 

practical time to failure distributions are frequently non-exponential.

In this chapter the time to shift in the process mean is assumed to be 

an exponential variate. We subsequently incorporate other Erlangian 

distributions. The Erlang distribution can be used to model failure 

which occurs in multiple stages [2 1 ] as may be appropriate for the IC 

period. In previous literature, there has not been widespread use of 

the Erlang distribution assumption to model the IC period. Surtihadi
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and Raghavachari [71] are among the few researchers who use the 

assumption tha t the IC period is a Gamma(A, 2 ) variate.

It is here assumed tha t the operation of the process is not halted 

while the samples are taken and inspected. Thus, as in work done by 

Chiu and Huang [1 1 ], Banerjee and Rahim [4], the time spent tak­

ing and inspecting samples is considered negligible. The objective 

functions produced by this study, therefore, have no parameters rep­

resenting these events. This assumption facilitates the simplicity of 

the general theory of the E C P T U  function.

Duncan [28], Lorenzen and Vance [51], Rahim et al [64] and oth­

ers [14, 16] find the economic design of the x-chart using the assump­

tion tha t production continues during search for an assignable cause 

but ceases while action is taken to remove it. For this study we as­

sume that production is discontinued during search for and removal of 

the assignable cause. Nevertheless, the cost and time associated with 

searching for the assignable cause are input values for the objective 

functions. The expected length of the cycle {E(L))  used in our study 

concerns the period for which the production continues until the cause 

of a shift in the process mean is identified.

Removal of the assignable cause should lead to process improvement 

by reducing the variation in process output. It is here assumed that 

the x-chart is being used to create opportunities for process improve­

ment. Neave [60] indicates that, when the control chart is used in an 

improvement context Shewhart’s criterion for declaring the process 

out of control — points falling outside the control limits — can be
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sufficient. As such, in this study, Shewhart’s criterion is assumed as 

the signal for action. This is referred to as Detection Rule One [77].

The E C P T U  functions take account of the fact th a t there will be 

false alarms. These are points which fall outside the control limits 

when there is no assignable cause of variation. According to Lorenzen 

and Vance [51] the expected cost of these false alarms includes the 

expected cost of testing and searching for the non-existent assignable 

cause.

W hether or not the process is in the in-control state the measure­

ment value taken from the inspected output is assumed to be a con­

tinuous variable which follows a normal distribution. This assumption 

is common to all the reviewed articles on the economic design of the 

^-chart. When the process changes from the in-control — IC — to 

the out-of-control — OOC — state its mean output value shifts from 

a value of /jq to fj. 1 =  jUo +  8 a. We assume that 5 is known.

Most naturally occurring measurements and a large number of mea­

surements arising from industrial processes, either have a normal dis­

tribution or have distributions which are symmetrical around the mean 

and can be reasonably approximated by the normal distribution. [18] 

Work by Spedding et al [69] shows tha t the assumption of normality 

can be expected to increase the average run length for the lower pro­

cess limit and increase the number of false alarms for the upper limit. 

They state that these errors are quite small, however, and would be 

negligible in the practical situation. The errors would, possibly, be 

of consequence in situations where tight control is required [69]. The
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findings of Spedding’s et al [69] research indicate tha t it is safe to use 

the normal distribution assumption for the many types of data tha t 

might be presented for use on the control chart. Wheeler [78] uses 

previous work by Burr to demonstrate th a t control charts work well 

even if the data are not normally distributed.

The normal distribution assumption as well as the known value 

for (5 facilitate the derivation of the probabilities associated with the 

operation of the control chart. These are the probability that the 

OOC state is detected and the probability of a false alarm, a n  and 

ofoi> respectively.

We assume that measurement of the quality characteristic is perfect, 

as is assumed by Chung [15].

3.5 G en era l T h eo ry  of th e  E C P T U  func­

tio n

The E C P T U  function, in this study, takes the form of the ratio of 

two expectations, The basis of this formulation is discussed in

Section 2.5. C  is the cost of the cycle of operation of the 5-chart and 

L is the length of this cycle. In this study, a cycle begins with the 

operation of the process in the in-control state and ends when the 

special cause of variation is identified. This cycle is represented in 

Figure 3.1.

E(L)  is a summation of the expected length of the IC period, the 

expected length of the OOC period and the search period. E(C)  is a

49



Cycle Starts f  (iy1)h
Process mean 
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Figure 3.1: Diagram of a cycle of operating the a:-chart when i samples 

are taken during the IC period and j  +  1  during the OOC period.

summation of the associated expected costs. Some objective functions 

may exclude expressions for the expected cost and length of the search 

period. Derivation of the expectations utilises the density functions 

for the in-control period and the geometric random variable.

In Section 3.5.1 we present general forms for the E C P T U  objective 

function. These can be made specific to different statistical distribu­

tions used to model the IC period. In this study they are made specific 

to Erlang and exponential distributions. If the variate t follows the 

Erlang distribution with shape parameter, /?, and scale parameter, A, 

the probability density function can be written as

e~xt

( /» - ! ) !

We use this form of the density function in our derivations. (5 — 1 

yields the probability density function for the exponential distribu­

tion. For the Erlang distributions (5 is always a positive integer. As (5 

increases shape of the curve for the density function becomes similar 

to the normal probability density curve [45]. The proportion of the 

distribution in the upper right tail also increases as (5 increases. Plots 

of the generalized Gamma distribution in [1 2 ] illustrate this increase. 

The Erlang distributions used in this research yield closed forms of
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the functions before numeric values are given to the scale parameters.

3.5.1 D erivation  of th e  E C P T U  fun ction

The methods presented here illustrate different approaches to deriva­

tion of ECPTU functions. The first approach yields a general form of 

the objective function which, in theory, can be made specific to any 

distribution assumption for the IC period. This general form which 

yields the objective functions E C P T U a and E C P T U a\ represents a 

special case of the function presented by Lorenzen and Vance [51]. In 

[51] the expected cycle time is given as follows

ARL2 h + j + n E - r  + -  (3.1)

A R L 1  and AR L2  represent the average run lengths for the IC and 

OOC periods, respectively. represents the expected time

to search for and remove assignable causes. In our model this is re­

placed by a single parameter, D, which represents the expected search 

time for assignable causes. T2 , the time spent removing the assignable 

cause and n E , the time to analyze the sample and chart the result 

of the analysis, are taken as zero in our objective functions. Using 

Lorenzen and Vance’s [51] notation, our general result for expected 

cycle time is as follows,

Y + A R L 2 h - r  + T 1 (3.2)
A

|  represents the mean IC period; A R L 2  h — r  the OOC period; 

and Ti, the search period.

These researchers give the expected cost per cycle as

^  +  Ct (ARL2 h + n E - T  + S +  (3.3)
A
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A R L l  h

C0  and Cx represent the hourly loss cost due to production of non- 

conforming goods during the IC and OOC periods, respectively, a+bn  

is the per sample cost of sampling and inspection. The expected cost 

of false alarms and locating and repairing the true assignable cause is 

given by

Our expected cost per cycle does not account for Co. We assume 

that production ceases during search for the assignable cause and its 

removal, th a t is, ch =  52  — 0. However, our model does incorporate the 

cost of searching for assignable causes. As do Lorenzen and Vance [51],

as separate from the cost of searching for the existing assignable cause, 

W.  Thus, our expected cost per cycle is given as a sum of the expected 

sampling cost; the expected cost of production while the process is 

out of control; and the search costs. Using notation in [51] our cost 

function can be written as follows

The second general form of the objective function which is presented 

yields ECPTUb  and exploits the lack of memory property of an IC 

period which is an exponential random variate. This general form 

leads to the derivation of a probability density function for, ARL2 h —

we regard the expected cost of search when there is a false alarm s Y
’ A R L l ’

E ( C ) = C\ (A R L 2  h — t )  + (3.4)

A R L l
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r ,  the OOC period. Thus the general result for the expected length 

and cost of a cycle can be expressed as shown in Equations 3.2 and 

3.4 with 0 = 1.

Unlike the second general expression for the objective function, the 

third form can, in theory, be made specific to any distribution assumed 

for the IC period. Derivation of functions using this third approach 

exploits the discrete nature of the period of surveillance by the x- 

chart. As a result E C P T U c is produced. For this derivation the cycle 

length excludes the period spent searching for the assignable cause. 

Here the general result for the expected length and cost of a cycle are 

expressed as in Equations 3.2 and 3.4 with 7 \ and W  set to zero. 

A convolution yields a density function for the number of samples 

taken while the process is monitored by the control chart. This final 

approach facilitates extension of the objective function to incorporate 

a stochastic restoration time which is correlated with the period for 

which the process is monitored by the 5-chart.

Our derivation of A R L l  uses the distribution for the IC period. We 

derive ARL2  using the distribution for a geometric random variable 

whose parameter is the probability tha t a sample mean falls outside 

the control limits when the process is out of control.

The derivations which are shown in the following sections gener­

alise the objective function presented by Duncan [28]. His model is 

based on the assumption tha t the IC period is an exponential random 

variate with parameter, A. In his model the production continues 

during search for the assignable cause. However, the cost of restor­
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ing the process to the IC state after the assignable cause is discov­

ered is not incorporated. His loss-cost function also ignores the cost 

of producing non-conforming goods during the IC period. Thus for 

Duncan’s [28] model the objective functions for the expected cost and 

length of a cycle are as given in Equations 3.1 and 3.3 with <5i =  1 

and T -2 =  Co =  0 .

3.5.1.1 Special case of previous functions

The probability density function, /(£), for the IC period and the den­

sity function for a geometric random variable are used to determine 

the expected length of a cycle. The geometric random variable has the 

parameter a n .  The two density functions are used as separate entities 

to determine the expected lengths of different parts of the cycle. They 

are also used separately to find the expected costs incurred for the du­

ration of the cycle. The following expressions for the expected length 

of the cycle, E(L),  and the expected cost of the cycle, E(C),  are a 

simplification of the general result given by Lorenzen and Vance [51].

E(Ci)  is the expected cost of sampling and inspection.

E(C2) is the expected cost of operating in the OOC state.

E{C$) is the expected cost of false alarms.

E(Ct)  is the cost of searching for the existing assignable cause.

E(L) f t f ( t )d t  + h -  E(t) +  ĥj« n ( l  -  “ n ) 3 +  E(D)
o i=Z

E ( t ) 

E(C )

00 r ( i + l ) h
J 2  I ( t - i h ) f { t ) d t

E[C\) + E(C2) + +
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E{CX) =

E(Ci)  =  c2

E(Cs) — C3  aoi

Y  I i f ( t )d t  +  Y  m « ii( !  ~  « n )
J=0 m— 1

m— 1

h -  £ ( r )  +  /i]>] j a n ( l  ”  Qfii)5'
i=o

£  L
.< = 0  ■/,/l

£ (C 4) c4

Jo°° gives the mean time to shift in the process mean.

h — E(r)  gives the expected length of time within an interval tha t 

the process operates in the OOC state.

Yl'jLo. ^ 1 1 ( 1  ~  Qfn)J is the expected number of complete sampling 

intervals which elapse during the OOC period.

Iih+l)k is the number of samples taken while the process

is in the IC state. This sum is denoted as m i.

The derivation of m 4 using different Erlang distributions is shown 

in Section B .l of Appendix B.

£m = 1 mQUi(l “  QJii)m~x gives the expected number of samples taken 

for the duration of the OOC period. This is denoted as m 2 .

While the process is in the IC state it is assumed that the mean 

measured value of the output follows the normal distribution with 

mean /i0 and variance a2. This assumption enables us to calculate 

aoij the probability that a false alarm occurs.
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When the process is OOC, x is normally distributed with mean Hi 

and variance a2. Therefore, with fi\ — fj,$ +  5a , the probability tha t 

the sample mean falls outside either of the control limits is

% ) + ' h » - 7 s )
=  P  (Z  > k  — (5Vn)

can — P  I x  >  jiQ H— -j=z J +  P  I x  <  /io —

— $ k — 5\/n) + $ k + 5\Zrij

Z  denotes the standard normal random variable. $(z) is the cu­

mulative probability that Z  is less than or equal to z.

When the time to shift in the process is an Erlang(A, 2 ) variate the 

expressions for the expected length and cost of a cycle are as follows,

^  s 2  , ,  , 1 - a n  ^E (T a) — — -f- h — jE(t) T  h f* D
A a n

2
E( t ) — — T  hmi  

A

1 _  ( h — ( l ~ e~Xh +  hX' 
A V I  — e~Xh j \ 1 — e~Xh

E(Ca) = {b +  en)(m i 4- m 2) +  c2  (h  -  E(r)  +  h - — — +
V a n  J

C^a^iTRi +  c4



1
m 2  — ----Qfn

Another objective function is given below. This is the result of as­

suming that the time to shift in the process mean is an Erlang(A, 3)

variate. This is further evidence that use of the Erlang family of dis­

tributions will give closed forms of the E C P T U  function.

|  +  h -  E ( t )  +  h 1  ~  - 1- +  D  
A a n

Y — hmi  
A

( ~ e - 3Afe +  ^  +  e - ^ )  h2 A2 1 +  ~
2 (1 — e~(/lA))3 ehX (1 — e~(hX )̂

( 6  +  en)(m i +  m 2 ) + c2 (h — E(r)  h  -f
\ a n  /

czOtQimi +  C4

3.5.1.2 E xploiting th e  lack of m em ory property

If it is assumed that the time to shift in the process mean is an expo­

nential variate the lack of memory property of such random variables 

may be exploited in order to derive an objective E C P T U  function.

The expected length of a cycle is the sum of the expected length of 

three periods.

E(L)  =  E(T)  +  E(S)  +  E(D)

T  and S  are random variables representing the IC and OOC periods, 

respectively. D  represents the time spent searching for an assignable
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cause. Figure 3.2 illustrates this cycle of operation of the a;-chart.

Cyclj: begins (m-’j  )h (m-2)h
Final sample

(time = h )  (tim^= 0) C ycl| ends¥

Figure 3.2: Illustration of a cycle of operation of the x-chart based on 

a model which exploits the lack of memory property.

The expected cost of the cycle becomes the sum of the expected 

costs incurred in each period. This sum consists of the expected cost 

of sampling, the expected cost of operating in the OOC state, the 

expected cost of false alarms, and the expected cost of searching for 

an existing assignable cause.

T  has an exponential distribution with scale parameter A. E ( S ) is 

derived using the lack of memory property of the variable T. f ( t )  and 

g(s ), respectively, denote the probability density functions for the IC 

and OOC periods.

Since
— A£

then

f ( t )

E{T)  =  -

00 rmh
E (S) =  E  /  , sg(s)ds

 1 J s = ( m—l)hJ s = ( m —l)h

In order to derive g(s) we recall tha t S  =  S' 4 - (M  — 1  )h. See Fig­

ure 3.2. S' = h — r  is the random variable representing time from the
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shift in the process mean until the sampling inspection immediately 

following, r  is the random variable representing the length of the IC 

period within the interval in which the process mean shifts. M  repre­

sents the number of samples taken during the OOC period. Therefore, 

(M — 1 )h is the duration of the remaining sampling intervals in the 

OOC period. It is assumed that the process fails at time r  ~  t' from 

the start of the sampling interval of length h. We assume that S'  is 

independent of (M  — l)/i.

Therefore,

g(s) = g{s'\t' < h)P(mh)u  ( m  — ( i n t  

for mh > s > (m — 1  )h.

+  1

u \ m  — [ In t +  1
j 1  if m  — In t  +  1  

0  otherwise

g(s'\t' < h) is derived using the probability th a t the process remains 

in the IC state for a period h — s' given tha t the process survived the 

previous interval of length h. P(mh)  is the probability tha t there 

are m  sampling inspections and, therefore, m — 1  complete sampling 

intervals until the shift in process mean is detected. The step function, 

u(m)t stipulates the range of g(s).

The lack of memory property of exponential random variables means 

tha t whatever the present age of the process, the residual lifetime is 

unaffected by the past and has the same distribution as the lifetime 

itself.[32] For this reason r  is an exponential variate with parameter
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A since it is part of the IC period. The conditional cumulative dis­

tribution function of S'  given t' < h is used to derive the conditional 

probability density function for the variable S'.

G(sr\tr < h) =  P { S ' < s ' \ t ' < h )

= 1  -  P(S '  > s'\t' < h)
P(S '  > s', t'  < h )

P( t ’ < h)

t’ — h — S'. It follows that, if S' > s' then t' < h — s'. The 

cumulative distribution function is expressed as follows since t' is an 

exponential variate.

P(t'  < h — s',t '  < h)
G ( s ' \ t '< h ) =  1  

=  1

P i t ’ < h )
X _  e-Kh-s’)

1  -  e~Xh

If X  and Y  are jointly continuous then the conditional cumulative 

distribution of Y  given X  — x is defined as

ry
FY\x(y\x) =  / fy \x{z \x )dz

J —oo

for all x  such tha t f x(x) > 0. [57] This means

Therefore,

,  , , N dFY\x{z\x)

/ / i ;  7X dG{s ' \ t '<h)g { s V < h )  =  _ L

A e -A  ( h - s 1)

~  1  _  e~A/l
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P{m h) =  « n ( l  — a u ) m 1. Therefore,

a n ( l - a n ) m lu ( m ~

for mh > s > (m — 1  )h.

Since s' = s — (m — l)h  the expression for g(s) becomes

In t  ~  + 1

Therefore, the expected period for which the process operates in 

the OOC state is as follows,

Steps in the derivation of E(S)  are given in Section B . 2  of Appendix B.

As a result the expressions for the expected length and cost of a 

cycle are as given below.

E{C\) is the expected cost of sampling and inspection.

E(C2) is the expected cost of operating in the OOC state.

E(C%) is the expected cost of false alarms.

E(C±) is the cost of searching for the existing assignable cause.

E ( L b)

E{C) = E{C{) +  E{C2) +  E{C3) +  E(C4)
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E(Ci) — (b + en)

(b +  en)

w  r ( i + l ) h  m f tE I if(t)dt + E  / ...
, t= 0  1/2/1 m = l

- A h X \

00 rmh

+ ----
1  — e~Xh a n  /

E{C2) -  c 2 E ( s )

(  h 1  he~Xh
=  C2  — 4-

y o u i  A  1  — 6 -A/i

E(Cs) — 0 3 ( ^ 0 1

' 00 r ( i + l ) h

E L m *
j=o lh

cs2 $ { - k )
-Xh

1  — e- X h

E(C4) =  c4

Thus,

. . /7  J  e xh 1  \  f  h 1  he Xh \
=  (^ +  e" ) ( r r ^  +  ^ J + cT ^ ~ A  +  l E 7 ^ J  +

P~xh
C32 $ ( - fc) T - ^ I * + C4

3.5.1.3 E xp lo itin g  th e  discrete nature of th e  cycle length

In this section the expected length of a cycle is derived from a discrete 

probability density function. This discrete function arises because we 

regard the length of a cycle as an integer multiple of sampling intervals. 

That is, as illustrated in Figure 3.3, L — rh  so tha t

E(L) = hE(R).  (3.5)
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R  is the random variable representing the number of samples taken 

for the duration of the cycle.

Last sample taken
First sample

C ycl| begins ta^en (OOC state^etected)

 \ ----------------------------------------------------
0 h 2h (r - 3)h (r-2)h (r-l )h rh

time units

Figure 3.3: Illustration of a cycle which ends with the sampling in­

spection which indicates tha t the process is out of control.

oo

=  Y  r P ( R  — r)
r = l

r ~ }  . r { i + l ) h
=  -  Qfn)7'^  1 f( t )d t

t= 0 Jlh

f ( t )  is the density function for the IC period, i represents the number 

of samples taken for the duration of the IC period.

The expected length of the cycle in Equation 3.5 does not account 

for the time spent searching for and removing the assignable cause. 

Hence the associated costs will not be incorporated into expected cost 

of the cycle. The expected costs which comprise E(C)  are

the expected cost of sampling and inspection, E(C\)\

the expected cost of operating in the OOC state, and

the expected cost of false alarms, E(C 3).

E(R)  

P ( R  = r)
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£ (C i) =  (b + en)E(R)

E(C2) =  c2(h E (-

E(T)  is the expected length of the IC period.

i-1- l ) / i
E(C3) = c3a 0l i f{t )d t

When the time to shift in the process mean is assumed to be an 

Erlang(A, 2) variate the expected length and cost of a cycle are written 

as follows,

3.5.2 C onvolutions and th e p .d .f. for R  —  th e  

to ta l num ber o f sam ples for the duration  of  

th e cycle.

The probability function for R  is derived from convolution of two dis­

crete probability statements. Feller [32] states tha t if two independent 

random variables have densities /  and g , respectively, the convolution 

of the two densities is denoted as /  * g. This rule applies for discrete 

and continuous variables [32].

E(C c) = +

cs2 $(-fc)
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It will now be illustrated using the example of two independent ran­

dom variables, X  and Y ,  whose sum is Q. Feller [31] further states 

that if X  and Y  are two non-negative integral-valued random vari­

ables, the event (X =  j, Y =  k) has probability c i j b This is the case 

if P { X  = j} =  aj, and P { Y  = k} — 6 *. For the new random variable 

Q = X  +  y  the event Q — q is the union of mutually exclusive events

The distribution cq =  P{Q — q} is the sum of the probabilities of 

these events. This distribution is termed as the convolution of the 

sequences {aj} and {bk}. [31]

Now, R, the random variable representing the total number of sam­

ples taken and, hence, the total number of sampling intervals for the 

duration of the cycle equals I + M .  The variable I  represents the num­

ber of samples taken for the duration of the IC period and M  — R — I  

the number taken during the OOC period. (P ( /)}  and {P (R  — I) }  

are two numerical sequences. I  =  0, . . . , P — 1 . The new sequence 

which defines the distribution P { R  =  r} is defined by the convolution 

of (P ( /)}  and {P ( R — /)}  and can be written as follows,

The convolution is the sum of products of the probabilities that there 

are i samples before the process goes out of control and there are 

m  =  r  — i samples taken thereafter. The probability tha t there are i 

samples before a shift in the process mean can be written as

(X  =  0 , y  =  q) , (X  = l , Y = t q - l ) , . . . , ( X  = q ,Y  = 0 ).

r(i+l)h
P{I) =IJih
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The probability that there are (r — i) samples after the process goes 

out of control is written as follows,

Since i can only take values ranging from zero to r  — 1  the density 

function for R  is written as follows,

r ~ 1 . /•(*+ l)h
P{R = r) = ]T  a n (l -  a i i )r~l~l f{t)dt

*=o Jih

3.5.2.1 C haracteristic features of P ( R  = r)

1. The sum of P ( R  — r ) over all R  is 1.

This summation will now be shown using the assumption tha t 

T  is an Erlang(A, 2 ) variate. Under this assumption P ( R  = r) 

takes the following form,

r _ 1  /•(*+!)*» A2/
P (R  = r) =  r - 1/  3 7

i=o Jlh e
dt

which equals

V - . .  . N—1-i+ r  . (  , ( l - e
E C  a “ ) a U I gfc(l+i)A +  ehi\
r— 1

-1—i+r

This means tha t 

P ( R  =  r) =

( 1  -  a n  ( 1  -  *-<“ >) ( ' g
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a n )  * A
>/i i A J

77 t t t t t  can be written as ( 7-r— 1 v . In order to obtain a( l - o n )  e fc»A \ ( l —a n )  e n x  J

closed form of the expression for P ( R  = r) we assume that 

l '(i-an j 'e^A [ ^  ^  Application of the results for finite sums given 

by Prudnikov et al [61] yields the following result.

P ( R  =  r) =

( l -  e e ^ Ar) +  ( 1  -  a n ) r ) a n

(l  -  C-(*A>)
1 -  e- 

1 / lAaqi 1

(A A) _  q,1;l 
y e - ( / > A ) - f t A r  +

1
1

( l  -  e-(/lA))
(1 —  e~( 

I h  X ct\i i

V‘A> -  a n ) 2

—( h  A) —h X v  j .  ( 1 —a n ) r ^
1

( 1  — e_^ Al — a n ) 2

( 1  -  Q!U)” l+r a n  hA (b rio " ' (1~e° 1.1>r ‘)
,/iA +

( 1  — a n )  1+ra n  ( l  — e ^ h  X f
- l + r

(i
t= 0

When summed over all possible values of R, P {R  — r) reduces 

to the following expression which equals 1 .

1 hX  I1 ~  i - “-(W ) _  -
eh\  ^  _  g—(/tA)̂  ehX ^  __ a n  _  e-(/iA))

2. W ith x'  as the dummy variable, the following moment generating 

function for R  can be derived.

oo

m {x') =  Y ,  =  r)
r —1

l-e-(fcA) A A

l _ e - ( 7 i A ) + x '  I g U ^ . g - ^ A J + x ' j 2

1  -  ex> ( 1  -  On)
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This has been used to produce the characteristic moments 

about the origin and about the mean for R . We have therefore 

been able to derive the coefficients of skewness and kurtosis for 

the variate R.

3. Negative moments about the mean have also been derived. These 

will be used in Chapter 4.

Derivation of these features of the distribution function for R  are 

further outlined in Appendix C.

3.6 L im iting  B eh av io u r of E C P T U  F unc­

tio n s

In this section we use the objective functions to investigate the limiting 

behaviour of a system of control which is based on use of the ^-chart. 

Plots of the functions are presented in Figures 3.5 and 3.6. D ata in 

the first row of Table D .l in Appendix D have been used to produce 

these plots.

There will be discussion of the implications of the responses of these 

functions to the extreme values of n, h and k — the control chart’s 

design parameters. Examples of the ECPTU functions which will be 

considered are E C P T U a; E C P T U al\ E C P T U h; and E C P T U c. The 

values of the shape parameter, /?, for the Erlang distribution assump­

tion used to derive these functions are 2, 3,1 and 2, respectively. Unlike 

E C P T U c, E C P T U a incorporates the cost and length of the period 

spent searching for the assignable cause. The objective functions are



as follows.

E C P T U .  =  f j£ !  (3.6,
£J\L,a)

E C P T U a\ =  (3.7)

E C P T U " =  f ( § )  (3 '8)

ECPTUc = (3.9)

The functional forms of the expectations which comprise these ratios 

have been presented in Section 3.5.1.

k and n influence the ECPTU through their effect on, a n  and aoi, 

the probabilities associated with the operation of the x —chart. a u  

is the probability of detecting shift in the process mean and aoi, the 

probability of a false alarm. Figure 3.4 illustrates the relationship 

between n, k and a n  and a 0n n also affects the ECPTU through

the cost of sampling which is dependent on this parameter, h is a

more integral part of the ECPTU functions. Changes in this design 

parameter will therefore be more influential to the objective functions.

In order to derive general results for the limits of these functions 

we will assume that D  and C4 , relative to other parameter values, are 

very small. Thus, the general forms of E(C)  and E(L)  are simplified 

to
00 p ( i + l ) h  00

= ih f ( t )d t  +  h y  m a n ( l  — a n ) 771" 1

i=0 ^ih TO-1

0 0  r{i+l)h 0 0

5 3  /  i f ( i )d t  + m a n ( 1  -  a n ) ”"
i = 0  J i h  m = l

w r(i+\)h poo
y_  / ih f ( t )d t  +  h y  m a n ( l  — a n ) m — tf ( t )d t

. * = 0  J ih TO— 1
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Figure 3.4: Plots of a n  versus n and of a n  and a 0i versus k
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c3 * aoi * / i f ( t ) d t
2 — n  Jih

The general results for the limits of the Equations 3.6 to 3.9 are as 

follows:-

As h — > oo, E C P T U  — > C2 -

As h — » 0 , E C P T U  — ¥ oo.

As n — » oo, E C P T U  — > oo.

As n — > 1 , cru  — > 0 so tha t E C P T U  — >

& +  e , c2  / 0°° , c3  * aoi , 0  1 n,^  + + (3-10)

As k — > oo, cvn — > 0  and a 0i — > 0  so that E C P T U  — >

^  +  C 2  _  (3.11)
h Ego

As k — > 0, a n  — > 1  and a 0i — > 1 so tha t E C P T U  — >

b + en _ C2/0°° , c3

“  ^  ( }

As n — > oo, the ECPTU approaches infinity. This is because, while 

a n  — > 1 , the sampling cost approaches infinity. Thus E(C)  — > oo 

while E(L)  tends to a finite, fixed value. For D  small relative to the 

length of the cycle this finite value is h{m\ +1). This finite value is the 

expected length of the period of surveillance by the control chart when 

only one sample is taken during the OOC period. Figure 3.5 illustrates 

that ECPTUa i aproaches infinity more rapidly since it incorporates 

the largest of the shape parameter values.
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As the n  — > 1 , a n  — > 0 . Thus, the OOC state is extended be­

cause its existence cannot be readily detected. The limit of ECPTU 

is predominated by the hourly costs of sampling one unit and of oper­

ating in the OOC state. See Equation 3.10. In Figure 3.5 we see tha t 

the limiting value as n — * 1  is largest for E C P T U a

As k — 0, a n  — > 1 and aoi — > 1. For D  and C4  small relative 

to the other cost and time parameters the ECPTU approaches a limit 

which accounts for the resulting proliferation of false alarms. This 

limit is also a function of the hourly costs of sampling and of operating 

in the OOC state. See Equation 3.12.

As k — * 0 0 , a n  — } 0 and a 0i — > 0. The length of a cycle is there­

fore extended because failure of the process is not readily detected. 

The limit of the ECPTU becomes the sum of the hourly costs of op­

erating in the OOC state and of sampling, c2' =  $1 0 0 .0 0 , b = $0.50, 

n =  5, h =  1  hour and e = $0.10. Therefore, in Figure 3.6 the 

functions all approximate to +  C2  =  $1 0 1 . 0 0  as k — > 0 0 .

The limit of the ECPTU, C2 , as h — > 0 0  indicates th a t a very 

long sampling interval could result in the process going out of control 

even before the end of the first sampling interval. The length of time 

between samples then delays the detection of the OOC state. There is 

even greater delay if there is a low probability th a t the process failure 

is detected. Hence, the expected length of a cycle approximates to 

the length of the OOC period and the expected cost becomes tha t 

of operating in the OOC state. Figure 3.6 therefore illustrates tha t 

the functions approach this limiting value of c2  =  $ 1 0 0  per hour, the
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hourly cost of process operation during the OOC state. The limit is 

approached at a faster rate for larger values of /?, the shape parameter. 

The limit as h — * 0 indicates th a t increased sampling frequency 

causes a drastic increase in the ECPTU.

For the parameter values used, the plots illustrate little difference 

between the values of E C P T U a and E C P T U c. Both these functions 

were derived using the Erlang distribution with shape parameter 2 . 

The illustrations indicate, however, that changes to the value of the 

shape parameter for the time to shift in the process mean create differ­

ences in the response of ECPTU. These differences will be examined 

in the Section 3.8.

3.7 U se of th e  O b jec tiv e  F un c tio n s

In this section the objective functions are used to quantify the response 

of optimum design parameter values to changes in the production 

environment. Changes in the production environment are expressed 

in terms of increments in 6 , r c23, r c 2 4  and (3. 5 is the shift coefficient. 

?'c2 3  = and r c 2 4  =  C2  is the hourly cost of operation during 

the OOC state. c3 is the cost per occasion of searching when there 

is a false alarm. c4  is the cost of searching for the existing assignable 

cause. (3 is the shape parameter for the distribution of the IC period. 

The penalty for use of suboptimal design param eter values will also 

be investigated.

In order to carry out the investigation, each objective function 

is, initially, minimised with respect to individual design parameters.
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There is also minimisation of the ECPTU functions with respect to n, 

h amd k simultaneously. When there is optimisation with respect to 

a single design parameter the resulting combination of design param­

eter values may be suboptimal compared with results which could be 

obtained from simultaneous optimisation with respect all three design 

parameters. The practitioner who uses the suboptimal results must 

accept the penalty of increased ECPTU.

For minimisation with respect to individual parameters, there is 

selection of optimum value h for a given n and k\ k for a given n and 

h\ and n for a given k and h. The given design parameter values used 

in the numeric search are those tabulated in Section 2.1 of Chapter 2. 

These are n — 4 and 5, k =  3 and h — 0.5, 1, and 8  hours.

The minimum values of the ECPTU functions are found using the 

numerical minimisation function in the mathematical package Math- 

ematica. This numeric minimisation procedure finds local minima 

using an iterative procedure. It searches for the local minimum us­

ing symbolic first partial derivatives of the function to be minimised. 

It works by following the path of steepest descent from the starting 

search value. [79] The maximum number of iterations used to produce 

the results shown was 1 0 0 0  or more. Use of this large number of it­

erations was primarily aimed at increasing the probability of finding 

optimum values.

D ata in Table D .l of Appendix D are input values for the objective 

functions. Based on these optimum values the effects of changes in the 

production environment as well as the penalty for use of suboptimal
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parameter values have been quantified as percentages. Mean values 

for the percentages are tabulated in the subsequent sections of this 

chapter.

3.8 T h e  R esu lts

3.8.1 Effects of cost and techn ical param eters

There is an inverse relationship between the 5 — the shift coefficient 

— and n* and also between the C2  — the hourly cost of operating 

the process in the OOC state — and h*. These relationships were 

identified in sensitivity analyses done by Duncan [28] and Tagaras 

and Lee [73]. The results presented in this section illustrate that 

the ECPTU functions derived in this study appropriately model the 

expected response of each control chart parameter to changes in c2, 5 

and the other design parameters.

Figure 3.7 illustrates, for all three functions, an increasing trend in 

n * and h* and a decreasing trend in the value of k* as the example 

number increases. This is because the first 15 parameter sets have 

8 = 2 while the last ten sets 8 = 1 or 0.5. This increasing trend in 

n* leads to the decreasing trend in k*. The lower values for c2  among 

the final ten cases contribute to the increasing trend in the optimum 

value of h.

Table 3.1 reveals the extent to which the optimum design parameters 

are influenced by changes in 5. For a 50% reduction in the value of 5 

the optimum value of n can be expected to increase by over 100%. The
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optimum value of h responds similarly. For a 50% reduction in the 

value of 8 a 1 0 % reduction in the optimum value of k can be expected. 

The results in Table 3.1 correspond to the guidelines for n* found in 

Duncan [28] and cited by Lorenzen and Vance [51]. They point out 

tha t the value of n* is largely determined by 8, the magnitude of the 

shift. Table 3.2 gives the ranges for n* for different ranges of 8 values.

Shift Coefficient E C P T U b E C P T U c E C P T U al

n h k n h k n h k

8 = 2 6 1.7 3.05 6 2.4 3.05 8 10.7 2.98

8 = 1 17 7.7 2.72 17 10.5 2.73 2 0 21.3 2.71

8 = 0.5 48 21.4 2 . 2 1 46 39.5 2.15 45 42.4 2.3

Table 3.1: The mean values for the optimum combination of design 

parameters at different values of shift coefficient, 8.

8 > 2 1  <  8 < 2 0.5 <  5 < 1 8 < 0.5

n* [51] 2 - 1 0 1 0 - 2 0 20 -  40 —

n* [28] 2 - 6 8 - 2 0 — 40 or more

Table 3.2: As cited by Duncan [28] and Lorenzen and Vance [51], 

expected ranges for n* in response to values of 8.

Table 3.3 further illustrates the inverse response of h* and n* to 

increasing values of C2 . C3  is the cost of searching for a non-existent 

assignable cause. C4  is the expected cost of searching for the existing 

assignable cause. r C2 3  denotes the ratio of C2  to C3  and r C2 4  the ratio 

of C2  to C4 . As r c 2 3  or r c 2 4  exceeds 1  a reduction of up to 75% in the
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optimum n can be expected. For the same increase in the ratios h* 

can fall by as much as 6 6 %. The results do not clearly indicate an 

inverse or proportional relationship between k * and these ratios, k* 

for different values of the ratio can be rounded to 3.

r c23 rc 24 E C P T U b E C P T U c E C  PTU ai

n h k n h k n h k

< 1 < 1 23 1 2 . 8 2.92 27 25.0 2.75 24 31.6 2.82

1 ~ 5 1  -  1 0 1 0 2 . 1 2.85 1 0 3.0 2.85 15 11.3 2.81

> 5 > 1 0 5 0.7 2.83 5 1 . 0 2.83 9 9.5 2.69

Table 3.3: The mean values for the optimum combination of design 

parameters at different values of r c2 3 , the ratio of the c2  to C3  and r c2 4 , 

the ratio of c2 to C \.

Figure 3.8 illustrates th a t use of larger sampling intervals will re­

quire larger samples sizes for minimising the ECPTU. The percentages 

in Tables 3.4 and 3.5 further confirm the increment in n* in response 

to a 30 minute increase in sampling interval.

rc 23 r c24 E C P T U b E C P T U c E C P T U ai

< 1 < 1 89 125 8 8

1  -  5 1  -  1 0 64 77 70

> 5 > 1 0 31 51 38

Table 3.4: For different ratios of the cost of operating in the OOC 

state, c2, to the search costs, C3  and C4 , the average percentage by 

which optimum n for h =  1 hr exceeds optimum n for h =  0.5 hr.
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Shift Coefficient E C P T U h E C P T U c E C P T U ai

8 — 2 60 81 65

8 = 1 79 78 90

8 = 0.5 1 0 2 187 —

Table 3.5: For different values of the shift coefficient, 8, the average 

percentage by which optimum n  for h = 1  hr exceeds optimum n for 

h =  0.5 hr.

Table 3.4 shows that the optimum value of n could increase by as 

much as 125% in response to a 30 minute increase in the value of h. 

This large difference can occur if the ratio of c2  to C3 or C4  is less than 

1 . The value of the increment decreases as this ratio increases. It finds 

an average as low as 31% as the ratio exceeds 1.

The value of 5 also influences the increment in the optimum value of 

n in response to changes in h. The increment increases as 5 decreases. 

For example, when 8 = 2, a 30 minute increase in h can yield an 

increment of about 60% in the optimal n. This increases to over 100% 

for 8 — 0.5. See Table 3.5. These findings suggest that it is crucial 

tha t the sample size is increased as sampling interval increases if use 

of the 5-chart must be optimised. This is particularly important if the 

ratio of C2 to C3  or C4  is less than 1  and for 8 < 2 .

As the sample size increases for a given k, a n ,  the probability of 

detecting the OOC state, increases. See Figure 3.4 in Section 3.6. 

W ith a long sampling interval the process is likely to be out of control 

for a longer time prior to detection. An increase in the sample size
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facilitates more rapid detection of the presence of an assignable cause. 

Thus, a larger sample size shortens the length of the OOC period. 

Alexander et al [1 ] state tha t increased sampling frequency compen­

sates for the reduced probability tha t the OOC state is detected — 

power of the statistical test — which results from reduced n. Fig­

ure 3.8 illustrates that use of the aj-chart is optimised through use of 

larger sample sizes with larger sampling intervals .

Figure 3.9 illustrates tha t for a one unit increase in sample size larger 

k values minimise the objective function. Table 3.6 shows that, as h 

increases, there is an increase in the mean increment in k in response 

to a one unit increase in sample size. For h < 1 hour an increment of 

3 to 5% can be expected. For h = 8  hours this increment averages 6  

to 1 2 %.

Sampling Interval E C P T U h E C P T U c E C P T U al

iOoII*
2 4 4 3

h = 1 5 4 4

0
0II 1 0 12 7

Table 3.6: For different values of the sampling interval, h, the average 

percentage by which optimum k for n =  5 exceeds optimum k for 

n =  4.

The response of the optimum value of k to the sample size is a trade­

off between a large probability of detecting the OOC state and a small 

probability of a false alarm. As n increases the optimum value of k 

increases. While the increasing value of n increases a n  the associated
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increase in the k value which minimises the objective function will 

lower aoij the probability of a false alarm. The corresponding lower 

optimum value of k for a smaller sample size illustrated in Figure 3.9 

will increase the value of a n .  Figure 3.4 in Section 3.6 shows the 

relationship of k to a n  and a 0n

Figure 3.10 illustrates the inverse relationship between h and the 

value of k that will minimise the ECPTU. In response to a 30 minute 

reduction in h the increment in the optimum value of k averages 8  to 

1 1 %. This occurs whether n — 4 or 5. See Table 3.7. A seven hour 

reduction in h from 8  hours to 1  hour yields increments in excess of 

30%. The findings in Table 3.8 suggest tha t the increment decreases 

as sample size increases.

Sample Size E C P T U b ECPTU c E C P T U ai

n — 5 1 0 9 8

n  — 4 1 1 1 0 8

Table 3.7: For different values of the sample size (n) the average per­

centage by which the optimum k for h — 0.5 hr exceeds the optimum 

k for h = 1  hr.

Larger optimum values of k are produced when the sampling interval 

is smaller. Frequent checking of the process increases the possibility of 

false alarms. Therefore the optimum value of k increases to reduce aoi, 

the probability of a false alarm. Long sampling intervals could mean 

that, within an interval, the process remains in the OOC state for a 

longer period after it fails. Hence the optimum value of k decreases in

85



n = 5 n = 4
LO

CO

38 888^ 88

o
Q .O 255 10 15 200

E xam ple No.

n = 5

98 9s88a8 988

Z)I— D. O 
LU

£
8

£3
£
Q .o

LO

CO

CM
W q  ^ ( ( s ^ V c s ^  99
88 8 88 98 8 8 8 8 8 88 8 8 89 88

8

5  10 15 20  2 5
E xam ple No.

0  -> Optimum k for h = 0 .5  hr.
1 -> Optimum k for h = 1 hr.
8 -> Optimum k for h = 8  hours;

0  5  10 15  2 0  25
E xam ple No.

Figure 3.10: For different sample sizes and ECPTU functions, opti­

mum control limit coefficient (k) for h =0.5 hr., 1 hr. and 8  hrs.

86



Sample Size E C P T U b E C P T U c E C P T U a 1

n — 5 46 64 39

n = 4 55 90 43

Table 3.8: For different values of the sample size (n) the average per­

centage difference by which the optimum k for h — 1 hour exceeds the 

optimum k for h = 8  hours.

order to increase the probability that the OOC state is detected.

The results presented in this section indicate that, irrespective of 

the distribution assumed for the IC period, the objective ECPTU 

functions from the reduced model can illustrate the response of control 

chart design parameters to changes in other parameters. The results 

further indicate that, for a 50% reduction in 5, there should be at least 

a 50% increase in n and h in order to optimise use of the rr-chart. An 

attendant 10% reduction in k will also enhance optimisation. As r c 2 3  

or r c 2 4  exceeds 1  a 60% reduction in h will facilitate optimised use of 

the control chart.

3.8.2 Effect o f shape param eter values

13 denotes the shape parameter for the distribution of the IC period. 

Figure 3.7 illustrates tha t larger values of f3 can yield larger optimum 

design parameter and E C P T U  values. The mean percentages given 

in Table 3.9 indicate tha t h* is most greatly increased by a one unit 

change in /3. The tabulated values further suggest th a t the increase in 

n* for a one unit change in /? will be more noticeable as this parameter 

exceeds 2 .
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In Figure 3.7 the optimum k obtained for all three functions appear 

to coincide for all twenty five sets of parameter values. This is con­

firmed in Table 3.9 where the mean difference between the optimum 

values of k is less than 1%.

The optimum values of n and h increase as the value of the shape 

parameter, P exceeds 1. The effect of the increase in p  from 1 to 2 

on n* is, apparently, negligible since, for the data studied, the mean 

percentage increase in n* is less than one percent. However, as p  

increases from 2 to 3 a mean 30% increase is observed. A similar level 

of increase in the value of h* is observed for one unit increase in (3.

The minimum E C P T U  decreases as (3 increases from 1 to 2. The 

percentage change in the minimum E C P T U  ranges from —95% to 

—27% in response to this one unit change in p. The negative difference 

follows because E C P T U c, unlike ECPTUb , excludes the parameters 

associated with search for the assignable cause. For E C P T U c, P — 2 

while for ECPTU b , p = 1. However, as p  increases beyond 2 the 

minimum ECPTU also increases drastically. See Table 3.9.

Difference n h k E C P T U

(/3 =  3) — (/3 =  2) 30 450 0.9 2965

1! to 1 II !—1 0.7 38.3 0.4 -41.4

Table 3.9: The mean percentage by which the optimum parameter and 

function values produced by this study respond to a 1 unit increase in 

the shape parameter, p.



A reduction in process variation could facilitate increased length of 

the IC period. Thus, a larger shape parameter yielding increased mean 

time to failure could represent process improvement. This improve­

ment makes a longer sampling interval and, in turn, a larger sample 

size more feasible. Increased n  becomes feasible in response to pro­

cess improvement particularly if the shift coefficient, <J, also becomes 

smaller.

It may not be practical to use the large n* and h* obtained when 

the time to shift in the process mean is assumed to be an Erlang(A, 3) 

variate. In Section 3.4 it was pointed out tha t procedures based on the 

exponential distribution tend to be highly non-robust and inferences 

may be sensitive to departures from the exponential model. Hence in 

order to obtain solutions of more practical value for which inferences 

are less sensitive to deviations from the model, the assumption tha t 

the IC period is an Erlang(A, 2) variate is more appropriate for use in 

selecting optimum design parameters.

3.8.3 T he p en alty  for use o f su bop tim al values

The main penalties for use of suboptimal combinations of parameter 

values are reduced a n  — probability tha t the OOC state is detected; 

increased aoi — probability of false alarms; increased ECPTU for 

operation of the x-chart. In this section the penalty for use of subop­

timal parameter combinations {5, 1 hour, 3} and {5, 8 hours, 3} will 

be investigated.
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The following expression will be used to calculate the percentages by 

which the heuristic probabilities, ratios or sampling intervals exceed 

or fall short of the optimum values.

heuristic — optim um-------------------L----------- x 100
optim um

For 5 =  2, 1, and 0.5, the respective values for a n  are 0.9295, 0.2225, 

and 0.0299 when n — 5 and k = 3. When k — 3, ckoi =  0.0027. The 

n* and k* and the corresponding 5 values have been used to calculate 

the probabilities a n  and ckqi- Table 3.10 gives the mean values of a u  

and a 0i for different values of 5. The tabulated values indicate tha t 

the use of the suboptimal combination of n =  5 and k = 3 will most 

severely reduce the power of the test when 5 < 2. The results further 

suggest that, for 5 — 2, use of the n* and k* can shorten the average 

run length for the OOC period if the IC period is truly an Erlang(A, 

3) variate. The tabulated values also indicate tha t use of k* instead 

of k — 3 increases qj0i* This increase suggests that selection of k* to 

minimise a 0i may be a more suitable criterion for selecting optimum 

design parameters.

5 ECPTUb E C P T U c E C  PTU al

OiU CK01 a n QfOl a n croi

2 0.9219 0.01231 0.9216 0.01220 0.9876 0.01461

1 0.9058 0.01536 0.9057 0.01483 0.9318 0.01454

0.5 0.8867 0.02696 0.8740 0.08091 0.7627 0.04185

Table 3.10: The mean values of a u  and a 0i for the optimum com­

bination of design parameters a t different values of shift coefficient, 

6 .
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Use of h > h* can extend the OOC state. This or the increased 

sampling frequency for use of h < h* can lead to increased ECPTU. 

Table 3.11 gives the mean percentages by which h — 1 hour and h — 8 

hours exceed or fall short of the h*. The mean percentages tabulated 

are most negative for r c23 or r c24 < 1. This is the result of the inverse 

relationship between c2 and h*.

For use of h =  8 >  h* the extension of the OOC state can be less 

than 10% for r c23 or r c24 < 1 when the IC period is an Erlang(A, 2) 

variate. h = 8 falls short of h* by less than 20% if r c23 or r c24 >  1 

and the time to shift in the process mean is truly an Erlang(A, 3) 

variate. Hence the penalty for use of h = 8 <  h* can be at its lowest 

under these conditions. The tabulated values further indicate that, 

whatever the value of r c23 or r c24, use of h — 1 will drastically increase 

the sampling frequency or extend the OOC period.

V'c23 ?"c24 E C P T U b E C P T U c E C  PTU ai

1 hr 8 hrs 1 hr 8 hrs 1 hr 8 hrs

< 1 < 1 -75.4 68.7 -86.7 6.5 -95.7 -65.3

1 -  5 1 -  10 -38.2 394.5 -56.4 249.1 -89.5 -16.1

> 5 > 10 174.1 2092.4 94.8 1458.7 - 89.4 -15.2

Table 3.11: The mean percentages by which h — 1 hr and h — 8 hrs 

exceed or fall short of h* at different values of r c23, the ratio of c2 to 

c3 and r c24, the ratio of c2 to c4.

Tables 3.12 and 3.13 give the mean percentages by which the 

E C P T U {5,1,3) and E C P T U {5,8, 3) exceeds E C P T U (n \ h% **). The
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tabu lated  values suggest th a t the hourly cost penalty for use of either 

suboptim al com bination of param eters will exceed 2 0 % unless 5 — 2 , 

r c23 and r c24 >  1 , and the process is correctly described by E C P T U a\. 

For 5 =  1 and the process described by E C P T U ai the  mean penalty 

for use of the com bination {5, 8 hours, 3} is also less than  20%. The 

very large percentages in all other cells of the tables indicate the very 

low efficiency and profitability w ith which the 5-chart could be used 

when the design param eter values are suboptim al.

5 E C P T U b E C P T U c E C P T U ai

(5 ,1 ,3 ) (5 ,8 ,3 ) (5 ,1 ,3 ) (5 ,8 ,3 ) (5 ,1 ,3 ) (5 ,8 ,3)

2 431.7 8861 175.4 270.9 16.1 1.6

1 543.4 1425.8 263.0 293.0 57.3 12.3

0.5 475.9 1387.4 608.5 760.2 228.6 56.1

Table 3.12: The m ean percentages by which E C P T U ( b ,  1,3) and 

E C P T U (5 ,8,3) exceed E C P T U ( n * : h*, k*) for different values of shift 

coefficient, 5.

rc 23 ĉ24 E C P T U b E C P T U c E C P T U al

(5,1,3) (5,8,3) (5,1,3) (5,8,3) (5,1,3) (5,8,3)

< 1 <  1 842.1 724.4 477.5 186.3 145.6 26.4

1 -  5 1 -  10 209.5 3725.5 181.8 427.5 19.0 9.2

>  5 >  10 324.7 24297.1 53.4 691.1 1.5 0.25

Table 3.13: The mean percentages by which E C P T U ( 5 : 1,3) and 

E C P T U ( 5 ,8 ,3 ) exceed E C P T U { n *,&*,**) at different values of r c23 

and r c24-
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From the findings presented in this section we can infer that, partic­

ularly for 8 <  2, an increased probability of a false alarm could result 

from use of k* instead of k =  3. However, this increased probability 

is compensated by the reduced sampling frequency and the increased 

sample size which are optimum when 5 <  2. Thus the ECPTU will not 

be increased even though the expected number of false alarms could 

be increased if k*is used. The penalty of reduced power of the test 

from use of n = 5 and k = 3 will be most costly if 5 < 2 .  The very 

large mean percentages given in Tables 3.12 and 3.13 imply tha t use of 

the suboptimal parameter combinations can be highly unprofitable.

3.9 Im p lica tio n s  of th e  re su lts

The probability density functions presented in this chapter can be 

used to study the probability distribution and other features of the 

OOC state and of the number of samples taken for the duration of the 

cycle.

Objective functions derived using a reduced model such as the one 

presented in this chapter effectively describe the operation of a sys­

tem under the surveillance of the 5-chart and the response of design 

parameter values to changes in the production environment. This de­

scription becomes particularly useful if the changes in the production 

environment can be quantified using the cost and technical parameters 

of the model.

If the aim of use of the 5-chart is increased profitability, it is crucial 

that optimum design parameters are used for 6 < 2. Compared with
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the penalty for use of the combination {5, 1 hour, 3}, that for use of 

{5 , 8  hours, 3} is lower when r c 2 3  or r c 2 4  <  1. If the IC period is an 

Erlang variate whose shape parameter is under 3 the penalty for use 

of {5, 1 hour, 3} is lower when r c 2 3 or r c 2 4  >  1.

Loss in the power of the test for the OOC state due to use of n =  5 

and k = 3 is lowest when 8 — 2. It is essential tha t the n * and k* are 

used when 8 <  2 if the average run length for the OOC period is to 

be shortened with the consequent improved profitability.

Surtihadi and Raghavachari [71] state that h* increases as the mean 

time to shift in the process mean increases. The results in Section 3.8.2 

confirm this. The results indicate tha t a one unit increase in shape 

parameter which therefore increases the mean length of the IC period 

can increase h* by over 30%. The researchers [71] state, however, tha t 

for practical purposes such large values of h* are often of little interest. 

This implies tha t the optimum solutions produced by E C P T U a\ which 

is based on the Erlang(A, 3 ) variate may be of little practical value. 

However, such an objective function can be used to quantify effects of 

changes in the production environment on the operation of the control 

chart and on the behaviour of design parameters.

E C P T U c which is based on the Erlang(A, 2 ) distribution gives so­

lutions which have more practical value. This distribution assumption 

is also more appropriate for use, instead of the exponential distribu­

tion, to model failure time. In the derivation of E C P T U c the discrete 

nature of the cycle length is exploited. This facilitates extension of the 

model to incorporate stochastic restoration times which are correlated
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with the period, r/i, for which the process has been monitored by the 

5-chart.

In this chapter, as in the literature reviewed, we have assumed that 

the time and cost parameters are deterministic and independent of 

each other. Lorenzen and Vance [51] state tha t, in reality, these pa­

rameters may be stochastic. According to [51], the quantities enter 

the functions in a linear manner. Therefore, deterministic values can 

be replaced by expected values without changing the ECPTU. In the 

next chapter we will investigate the effect of explicitly accounting for 

the stochastic and correlated nature of the time spent searching for 

and removing the existing assignable cause.
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C h a p te r  4 

S to ch astic  R e s to ra t io n  

T im es

4.1 E x ten sio n  of P rev io u s  R esearch

Generally in the literature, as in Chapter 3, the time spent identifying 

and removing the assignable cause has not been regarded as a stochas­

tic variable. In the models developed by Lorenzen and Vance [51], 

Chung [14, 15], Duncan [28], Chung and Lin [16], Rahim et al [64], 

Banerjee and Rahim [4], Chiu and Huang [11], Tagaras and Lee [73] 

and Surtihadi and Raghavachari [71] the expected time to identify the 

assignable cause and the associated cost have fixed values. In these 

models, fixed values are also given to the expected time to remove the 

assignable cause when this is an input value for the objective ECPTU 

function. In Chapter 3 the time spent searching for the assignable 

cause also has a fixed value.
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In this chapter we generalise the model to allow for a distribution 

of total time spent searching for and removing the assignable cause. 

We also allow for this time to be dependent upon the period which 

elapsed while the process was monitored by the x-chart. It is assumed 

tha t removal of the assignable cause brings or restores the process to 

the IC state.

In a typical production environment the length of the period rh  for 

which the process is monitored by the rr-chart can influence the length 

of the restoration period. For example, a shift in the process mean 

may have resulted from extensive tool wear [70] after a long period of 

surveillance. If such a shift moves the process to the OOC state, tool 

replacement may be required to ensure restoration to the IC state. 

Consequently, the restoration period may be long or short depending 

on the length of rh  and, hence, the nature of action which must be 

taken to bring the process back to the IC state.

In previous research [4, 11, 51, 64, 71] on the economic design of 

the :r-chart, the term “repair” refers to activities concerned with re­

moval of the assignable cause and is separate from the search for 

the assignable cause. In this chapter, as in models developed by 

Tagaras and Lee [73] and Chung [15], the term “repair” or “restora­

tion” time will refer to the total period spent locating and removing 

the assignable cause.
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4.2 T h e  E x te n d e d  M odel

In previous chapters and other literature, the period spent restoring 

the process to the IC state has not been regarded as a random variable.

In this chapter the repair periods will be regarded as variates which 

have increasing hazard rates. Since the Weibull and Gamma family of 

distributions can have increasing hazard rates it is suitable to assume 

that the times spent bringing the process back to the IC state can 

have such distributions.

For these distributions the symbols a  and j3 will represent the scale 

parameter and shape parameter, respectively. Derivation of the ex­

pected restoration times will be based on the following forms of the 

probability density functions for Weibull and Gamma variate. For the 

Weibull variate

For the Gamma variate
x^~xaP e~ax

(T W
We assume th a t repair time follows the Erlang distribution which is a 

member of the Gamma family of distributions.

The relationship of the repair time to the period, rh, for which the 

process is monitored by the 5-chart is forged through the functions for 

the scale parameter. The scale parameter is assumed to be a function 

of rh. Here we model the relationship by a  =  a + vrh  and a  — a +

Four different examples of functions for the expected time to restore 

the process to the IC state will be presented. The symbol Z{ (i =
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1 ..  .4) will be used for the repair time variate in each example. The 

random variables for the total time spent searching for and removing 

the assignable cause are denoted as follows:-

Z \ — time which follows the Erlang(a +  v rh , (3) distribution.

Z 2  — time which follows the Weibull(a +  vrh, (3) distribution.

Z3 — time which follows the Erlang(a +  /?) distribution.

Za — time which follows the W eibull(a+ -j-,/?) distribution.

For the distribution assumptions used, E(Zi)  to E (Z 4) — the ex­

pected time to restore the process to the IC state — are expressed as 

power series in the variable R. In the sections which follow general 

forms of these series are presented and the conditions for their conver­

gence is explained. These series enable derivation of general results as 

well as sequential approximations for the expected repair time.

ECPTUc as developed in Chapter 3 will be extended to incorporate 

E[Z{), functions for the expected repair time. Four general ECPTU 

functions are produced when the different E(Zi) are incorporated into 

the basic objective function. These ECPTU functions will be denoted 

as ECPTUzi  (i =  1 . . .  4).

W ith the parameter values used by Duncan [28] and in Chapter 3, 

a numeric search procedure is carried out to find the optimum com­

bination of sample size (n), sampling interval (h), and control limit 

coefficient (k ). The results obtained from the ECPTUzi  are compared 

with those obtained when ECPTUc is minimised.
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Explicit reckoning of repair time as a stochastic variate correlated 

with the period rh  most appreciably increments the optimum value 

of h. The increments are larger when Zi is an inverse instead of a 

linear function of rh. Larger increments are also obtained when Zi 

is regarded as an Erlang instead of a Weibull variate. The calculated 

penalty for use of suboptimal values of n, h, and k is lower when 

the ECPTU functions incorporate the inverse relationship between Zi 

and rh. These findings will be further illustrated and discussed later 

in this chapter.

4.2.1 R estoration  tim e versus rh

When a. =  the rate of restoring the process to the IC state, a , de­

creases as the period rh  increases. This relationship suggests tha t the 

mean time to restoration will be greater for a longer surveillance pe­

riod. This definition of a  describes the case in which extended length 

of the surveillance period makes restoration of the process extensive 

and time-consuming.

For a  — a 4- vrh, the rate of restoration is a direct linear function 

of the period for which the process is monitored by the ai-chart. This 

suggests tha t more restoration of the process is faster after an extended 

period of monitoring. For example, the process mean may shift to 

the OOC state when extended production leads to the breakdown of 

machinery. Rapid replacement of equipment could then restore the 

process to the IC state.
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In order to illustrate the relationship between restoration time and 

the period spent monitoring the process using the z-chart we will let 

j3 =  1. W ith restoration periods having distributions from the Weibull 

or Gamma family of distributions the mean restoration time is For 

these examples, we assume a > 0 and v >  0.

# f t = a + i
Here the mean time to process restoration is (a +  . Thus,

as r and, therefore, rh  increases to infinity the expected restora­

tion rate decreases to the asymptote a. This results in expected 

repair time increasing to the asymptote a~l . This is illustrated 

in Figure 4.1. As rh  approaches 0 the restoration rate tends 

to infinity so tha t the expected restoration time approaches 0. 

This model for the scale parameter describes processes for which 

there is a limited period allotted for restoration of the period to 

the IC state. As rh  increases the repair period approaches this 

limit.

• a  ~  a + vrh

Figure 4.2 illustrates the linear relationship between restoration 

rate (a) and r  and, therefore, rh. The resulting inverse rela­

tionship between restoration time (^) and r  and, therefore, rh  

is also illustrated in the picture. As rh  approaches infinity the 

expected repair time approaches 0 as the restoration rate tends 

to infinity. As rh  tends to 0, a  — > a, so tha t the ^  increases to 

a~l . See Figure 4.2. This model describes the process for which 

the repair period is longest when the process is not monitored
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by the z-chart.

4.3 G en era l R esu lts  For E(Z{)

Distributions from the Weibull and Gamma families have mean values 

expressed as functions of their shape and scale parameters. The mean 

is inversely related to the scale parameter. W ith the scale and shape 

parameters represented by a  and /?, respectively, the general form of 

the mean for these distributions is The numerator for this ratio,a '
l({3)i is a general function for j3.

4 . 3 . 1  ot — cl T- ^

When a = a +  ^  the mean time to restore the process conditional on 

the value of R  has the following general form.

E (Z i \R = r) =  j M -
rh )

K0) f_a. . .
arh

E ( Z i) = E R ( E ( Z i \R = r))

Therefore, the expected restoration time can be expressed as follows.
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a lp h a  = a + ( v / ( r  h ) ) ;  a = 1; v  = 1
1

# 1 . 0 8

0 6

1 . 0 4

a  1 . 0 2

1
8 0 0 1 0 0 00 2 00 4 0 0 6 0 0

No. o f  Sam ples  (r) d u r in g  S u r v e i l l a n c e  p e r i o d  ( rh hou rs )

( 1 / a l p h a )  = ( 1 / (a + ( v / ( r  h ) ) ) ;  a = 1;  v  = 1

0 . 9 8

0 . 9 6

0 . 94

°  0 . 9 2

10008 0 00 20 0 4 0 0 6 0 0

No. o f  Sam ples  (r) d u r in g  S u r v e i l l a n c e  p e r i o d  {rh hou rs)

Figure 4.1: Restoration rate versus r  and expected restoration time 

versus r  when a  =  a +  ^  and h ranges from 0.5 to 8 hours.
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a lp h a  = a + v  r h; a = 1; v = l
8 0 0 0

6 0 0 0

4 0 0 0

m 2 0 0 0

8 0 0 1 00 00 20 0 4 0 0 6 0 0

No. o f  Sam ples  (r)  d u r in g  S u r v e i l l a n c e  p e r i o d  (rh hou rs)

( 1 /a l p h a )  = ( l / ( a + v r h ) ) ;  a = 1;  v = l

m 0 . 0 4

® 0 . 0 2

8 0 0 1 0 0 00 20 0 6 0 04 0 0

No. o f  Sam ples  (r) d u r in g  S u r v e i l l a n c e  p e r i o d  ( rh hou rs)  j

■i1

Figure 4.2: Restoration rate versus r  and expected restoration time
t

versus r  when a  = a +  vrh  and h ranges from 0.5 to 8 hours. j
i
I
i
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-  f  ( g  ( a ) “ -  £  ( £ T

This means

( ™ / V \  2q n “  /  ti \  2^  „

E|z->'” (g(a) ^ " i - g y  E('r 'M,)
iu — ^p- is the conditional mean of the variable ^  when v is set 

to zero.

That is,

w — E(Zi \R  =  r )1J=o

The multiplier, w , can be expressed as shown in Table 4.1 for expected 

restoration time following the Gamma or Weibull distributions.

Function for a Distribution assumed

7  : W :  a, (3

a  =  a  +  ^ £.a
r (^ r)

a

Table 4.1: Tabulation of the expressions for the multiplier, iu, when the 

mean restoration time is based on the Gamma or Weibull distributions.

4.3.2 a =  a +  vrh

When a  =  a +  vrh  the mean time taken to restore the IC state con­

ditional on the value of R  has the following general form.

£« s- r> - (JL j
/

vrh \ v rh
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Now

E(Zi) = ER(E(Zt\R = r))

=E ^ ( - \  +  1') " l p (*: =  r )~ y vrh \ v r h  J 

Therefore the expected restoration time can be expressed as the 

following series expansion.

§ ®  ( £ l ’ 7 . -  ( a ) ' ' i  * ■ •)p<* -  +

This means

y is the conditional expectation of the variable Zi when r  is equal 

to one and a equals zero.

That is,

y = E(Zi\R = r)a=0,r=i

The multiplier, y, can be expressed as shown in Table 4.2 for ex­

pected restoration time following the Gamma or Weibull distributions.

The subsection which follows explains the conditions for conver­

gence of the general results for the expected restoration time.

4.3.3 E xp lanation  o f convergence

Abel’s test for convergence states that if the series Y,Un converges 

and {an} is a bounded monotonic sequence then the series E  Unan 

converges. [44]
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Function for a Distribution assumed

7  : oc,/3 W  :

a  = a +  vrh 1.vh
r ( ^ )

hv

Table 4.2: Tabulation of the expressions for the multiplier, y, when the 

mean restoration time is based on the Gamma or Weibull distributions.

We recall tha t for a  = a +  E(Z{) —

-  ( |  ( i f  m - « )  - 1  ( i f * '  («)

The series 9 converges as shown below if and only if | ^ |  < 1.

§  - (■ - m '

For a  =  a 4- vrh , E(Zi)  =

.  ( |  ( £ f '  -  g  ( £ ) * "  (4.2)

The series converges as shown below if and only if | ^ |  <  1.

00 (  a \ 2q A / a  \ 2N 1

q- 0

is the general expression for the bounded monotonic 

decreasing sequences in Equations 4.1 and 4.2. I = 0 ,1,2. This is be­

cause the variable R takes values greater than or equal to one. Conse­

quently, 0 < E  (R - (2<7+z)) < 1 and each term in the sequence decreases

as q increases.
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oo oo
] T ( f f  (a))25{ E ( K - (2',+,))}  and (ff (a))2,+1 { fi (f l_(2,,+')) }
q- 0 q= 0

are general expressions for the series which comprise Equations 4.1

and 4.2. H  (a) denotes the ratios and Provided ^

l^-l < 1, the series will converge.

<  1 and

According to Tranter [76], if ]£ ?7n converges to s and ^2Vn con­

verges to t then ]F (Un db Vn) converges to 5 ±  t. The expectations in 

Equations 4.1 and 4.2 are expressed as the difference of two convergent 

series. This implies the series given here for the expected restoration 

time will also converge.

In view of this convergence the series for the expectations will be 

approximated as shown below and used in the ECPTU functions.

For a  = a +  vrh

E {Zi) =  „  [ e ( R ^ )  -  ( ± )  +  ( £ )  V ~ 3)

For a  =  a +  —

4.4 I llu s tra tin g  E(Zj)

The forms of the functions for the E(Z{)) which will be incorporated 

into the ECPTU functions are as given in Equations 4.3 to 4.6.

E (Z l ) = £ ^ ) - ( ^ ) E (R - 2) + ( ^ ) 2 E (R - ^ { 4.3)
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E(Z2) =

nJ? (E(irl> - (S  £(R"2)+ (£>2 E(K_3)) (4-4) 

^  = !(i- £ ) e^  + Q 2e(r'2)) (4-5)
E{Zi)  =  * ( * - * ) + ( J L ) ’ E (fl-* )) (4.6)

E C P T U C1 the objective function which will be extended for incor­

poration of repair time, is based on the assumption tha t the time to 

shift in the process mean is an Erlang(A, 2) variate. Consequently, we 

derive the negative moments and expectations given in Equations 4.3 

to 4.6 using the probability function for R  which is also based on the 

assumption tha t the IC period is an Erlang(A, 2) variate. The objec­

tive function for P { R ) is given in Section 3.5.2.1. The expectations 

given below were derived using solutions to series summation given by 

Prudnikov et al [61].

E ( R  — qui
h A

ehX (1 — e~(hX} — a n )
-1-

( ( l  -  e-<»*>) h A l o g ( J = 0  , ( l  -  -  & )  logC1̂ )
Qj11        1_

,h A(i a n ) ■(h\) a n

2 ( { }  -  e~(hXA hX  log(l -  e ^ A) ) \
E ( R  ) -  a u[  ̂e_(hA)_  ^  ]  +
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( l  -  e-<fcA>) h X (—PolyLog(2, e-<fcA>) +  PolyLog(2,1 -  a n )) \

ehX (1 — e~(hX) — qjh)2 J

f ( l  -  e“ ^ A) -  (-PolyLog(2, e"(/lA)) +  PolyLog(2,1 -  a u ))
1 — e_^ A) — Qfn

a n

3 /  ( l - e  (/lA)) h X PolyLog(2, e ^ A)) \
> “  “ “  i  _  e -(fcA ) _  a n  +

( l  — e ^>0) h A ( —PolyLog(3, e ^ Â) +  PolyLog(3,1 — a n ) )  \  

ehX (1 — e~(hX} — an)2 y

' ( l  -  e~(/lA) -  (-PolyLog(3, e“ (/lA)) 4- PolyLog(3,1 -  a n ))
1 — e~(hX} — a  n

a n

In addition to r/i, the parameters a and v will also influence the 

behaviour of the expected restoration time functions. In the next 

section we will attem pt to illustrate the response of the functions to 

changes in these parameters.

4.4.1 Effect o f Influential param eters

Equations 4.3 to 4.6 are the general forms for the approximated func­

tions for expected time to process restoration. The response of these 

functions to changes in a, v and h will be illustrated for (3 ranging 

from 1 to 11.

Figures 4.3 and 4.4, respectively, illustrate that, as v increases from 

0.001 to 1, E(Zi)  and E ( Z 2) tend to 0. This zero limit results as 

long as vh exceeds a and the multiplier within these functions. 

The pictures also illustrate that, as a increases but is less than vh,
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E (R ~ 2) > E (R ~ 3), so tha t E(Z{)  and E ( Z 2) decrease.

However, the expectations tend to infinity as a exceeds vh so tha t 

(^j^J E (R~2) <  E (R ~ 3). The expectations remain decreasing

functions of a only if LjM < 1.

The response of E ( Z 3) and E (Z 4) to increasing v and a is opposite 

to that of E(Z\)  and E ( Z 2)• Figures 4.5 and 4.6 tha t E(Z$) and 

E ( Z 4), respectively, approach 0 as a increases relative to the value of 

v. This limit is approached as long as a becomes large relative to g 

and 1(13). Conversely, E ( Z 3) and E(Z4) are increasing functions of v if 

v exceeds ah so tha t E (R ~ l ) < E (R ~ 2). This is illustrated

in Figures 4.5 and 4.6. The Figures also illustrate that, as v ,increases 

but is less than ah, the expectations are decreasing functions of v since

( * )  m - 1) >

The definitions for the scale parameter, a, are such tha t the ex­

pected restoration time should be decreasing functions of a and v. 

The expectations will remain decreasing functions of a and v only if, 

for E(Z3) and E ( Z 4), < 1 and, for E(Zi)  and E ( Z 2), | ^ |  <  1.

Under these conditions E(Z\)  and E (Z 2) decreases to a 0 limit as h 

increases while E(Z$) and E ( Z 4) rapidly increase to an asymptote of 

See Figures 4.7 and 4.8. The values for h used in Figures 4.7 

and 4.8 will not be used in practice. However, they are used here to 

illustrate the response of the expected restoration time to values of h 

which are large relative to J in Figure 4.7 and to J in Figure 4.8.

A one unit change in (3, the shape parameter, yields a smaller incre­

ment in the mean when the Weibull distribution assumption is used.
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Z_l~ Erlang(a+vrh, beta = 1 to 11); v  = beta*5,14*10A (-11); h = 8 hrs.
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Figure 4.3: E(Zi)  versus the parameters a and v for shape parameter

(P) ranging from 1 to 11.
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Z_2 -  W s ib u l l ( a + v r h ,  b e t a  = 1 t o  1 1 } ; v  = f ( b e t a ) * 5 .1 4 * 1 0 A( - 1 1 ) ;  h = 8 h r s .
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Figure 4.4: E ( Z 2) versus the parameters a and v for shape parameter 

(/?) ranging from 1 to 11.
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h r s ;  v= b a t a * 0 .0 3Z_3 -  E r l a n g ( a + ( v / ( r h ) ) ,  b e t a  = 1 t o  1 1 ) ;  h
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Z_4 -  W e i b u l l ( a + ( v / ( r h ) ) ,  b e t a  = 1 t o  1 1 ) ;  h = 8 h r s ;  v= f ( b e t a ) * 0 . 0 3  
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Figure 4.6: E(Z4) to the parameters a and v for shape parameter (/?)

ranging from 1 to 11.
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Z_l- Erlang(a+vrh, beta = 1 to 11)
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Figure 4.7: E(Zi)  and E(Z2) versus sampling interval (h) for shape

parameter (/?) ranging from 1 to 11.
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Z_3 - Erlang(a+(v/(rh)), beta = 1 to 11)
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Figure 4.8: E(Z^) and E(Z4) versus sampling interval (h) for shape

parameter (/?) ranging from 1 to 11.
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Therefore, Figures 4.3 to 4.8 illustrate the narrow range of the E(Zi)  

as the value of (3 increases. This suggests that, if the restoration time is 

assumed to be a Weibull variate, less precision is required in selection 

of the shape parameter.

4.5 E C P T U  functions In c o rp o ra tin g  E{Zj)

E C P T U c  as presented in Chapter 3 will be extended to incorporate 

Equations 4.3 to 4.6 presented in Section 4.4. The resulting four 

ECPTU functions are expressed as the ratio of the expected costs 

and lengths of cycle as follows,

E C  P T J J z i  =
p  v *-*zi )

E ( L z i )  =  E ( L C)  +  E ( Z i )

E { C z i ) =  

for i =  1 . . .  4

E ( L zi)  and E (C ^), respectively, are the expected length and cost of a 

cycle which ends when the process restoration period, Zj, ends. The 

cycle length is illustrated in Figure 4.9. The response of the functions

First sampling Final sampling End of repair period
Cyel| Begins in

0 h (r-2)h (r-l)h
^ _________________________rh  3-- -T-_______Z

Figure 4.9: Illustration of the length of a cycle which includes the 

period spent searching for and removing the assignable cause.

inspection and cycle
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to changes in the design parameters will be assessed through algebraic 

manipulation as well as observation of plots of the functions. D ata 

from row one of Tables D .l and D.2 in Appendix D are used to draw 

the plots.

Table 4.3 shows the limits approached by the expectations as the 

design parameters approach extreme values. 7t(A/i) represents the lim­

iting values of the negative moments for R  as n  and k approach ex­

treme values. These limiting values are functions of Ah> As n  — 1, 

h — 0, and k — >• oo the E(Z{) tend to limits which are small relative 

to the limits approached by the remainder of the ECPTU functions. 

It therefore follows tha t the disparity in the ECPTU as a result of the 

different forms of the expected restoration time functions diminishes 

as the design parameters approach extreme values. Thus Figures 4.11 

and 4.12 illustrate, for example, tha t as h — > oo and k —  ̂ oo the 

limits of the ECPTU zi  approximate to those given for E C P T U c in 

Section 3.6. These are c2 =  $100 and ^ p T - c 2 =  $101.00, respectively.

Figure 4.10 illustrates that, for the data studied, ECPTUc and the 

ECPTUzi approach infinity as n tends to infinity. As n — > oo, 

ttn fth e  probability of detecting the OOC state) — 1. This leads to 

the different functions for the asymptotes for the E(Zi).  See Table 4.3. 

These limits influence the rate at which the ECPTU approaches in­

finity and maintains the difference between the the ECPTU functions 

over a relatively long range of values of n. See Figure 4.10.



E {Z l ) k E { Z 2) E ( Z z )h E ( Z , )

n  — 1 0 m
a

n — oo i f  (1 -  *(A

h - -> 0 oo OO

h - oo 0 m
a

k - -* 0 i f  (1 -  -rr(Xh))

k - -¥ OO 0 m
a

Table 4.3: Limits approached by the E(Zi) as the design parameters 

approach extreme values.

In Figure 4.12, as k — » 0 the limits of the ECPTUzi are influenced 

by the form of the E(Z{). They incorporate the limit of ECPTUc given 

in Equation 3.12 of Section 3.6 and limits of the E (Z i ) given in Ta­

ble 4.3. Thus, the difference between the objective ECPTU functions 

is maintained as k — > 0.

W ithin the range of design parameter values which may be feasibly 

used in practice Figures 4.10, 4.11 and 4.12 highlight the different 

responses of the objective functions. For all three design parame­

ters, ECPTUzz exceeds all the other functions. For the data studied, 

there is no appreciable difference between ECPTUzi , ECPTUzi and 

ECPTUc.

Work in this section has illustrated tha t, as the design parame­

ter values approach their extreme values, the ECPTUzi reach limits 

which approximate to those reached by ECPTUc. The plots illus­

trate tha t in the region of the minimum function values the functions
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Figure 4.10: ECPTU as accounted for by ECPTUzi and ECPTUc 

versus sample size (n) as n tends to infinity.
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n = 5; k = 3
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Figure 4.11: ECPTU as accounted for by ECPTUzi and ECPTUc 

versus sampling interval (h) as h tends to infinity.
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Figure 4.12: ECPTU as accounted for by ECPTUzi and ECPTUc 

versus control limit coefficient (k) as k tends to zero and to infinity.
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behave differently. The influence of the E(Z{) on the optimum com­

bination of design parameters will be investigated in the next section. 

The ECPTU functions will be assessed using the data sets in Ap­

pendix D.

4.6 T h e  Effect of S to ch astic  R e s to ra tio n  

to  th e  IC  S ta te

4.6.1 C hanges to  optim um  design  param eters

Compared with the results obtained when ECPTUc is minimised, 

explicit reckoning of stochastic restoration times can increase the value 

of h*. Figure 4.13 illustrate tha t the n* and k* values produced by the 

different objective functions are approximately equal. The difference 

in the h* for the functions is more detectable, particularly, for the final 

ten examples. We will now go on to show th a t low values of r c2 3 , r c 2 4 

and 8 contribute to this increased variation in the h* values.

Table 4.4 gives further evidence that the n* and k* produced by the 

ECPTUzi are equal to those from ECPTUc for most examples. The 

absolute mean percentage differences for these parameters is less than 

1 %. The tabulated mean percentages indicate that an appreciable 

increment in the h* results from minimising ECPTUzi , ECPTUzz 

and ECPTUza instead of ECPTUc. The increment can be as high as 

2 0 % if E C P T U z 3  is optimised.

Values in Table 4.4 also indicate tha t compared with the Weibull 

distribution assumption, incorporation of E(Z{) based on the Erlang
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Figure 4.13: Optimum values (n*, h*, k*) produced when the

ECPTUzi and ECPTUc are minimised simultaneously with respect 

to n, h and k.
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ECPTU function n h k

E C P T U z i 0.7 2.2 -0.4

E C P T U Z2 0.2 0.7 -0.05

E C P T U z s -0.38 20.3 -0.2

E C P T U za -0.48 9.7 -0.01

Table 4.4: For different ECPTUzi, the mean percentage by which the 

n*, h* and k* exceed or fall short of the optimum values produced by 

ECPTUc.

distribution will yield a higher increment in h*. Thus the mean incre­

ments obtained for ECPTUzi and for ECPTUzs are higher than the 

mean values obtained for ECPTUZ 2 and ECPTUZa> respectively.

The tabulated values also give some evidence of the effect of the 

nature of the relationship between restoration rate, cr, and the period 

rh. Compared with incorporation of the E{Z() based on a linear 

relationship, incorporation of an inverse relationship yields a higher 

increment in h*.

The mean percentages given in Table 4.51 indicate the influence 

of 5 on h* values produced by the ECPTUzi• The tabulated val­

ues indicate that, particularly when S — 0.5, h* values produced by 

ECPTUzi and ECPTUz2 will exceed those produced by ECPTUc. 

From the values we can also infer that, for S ranging from 0.5 to 2 h* 

produced by minimising ECPTUzs and ECPTUza will be noticeably 

higher than those from ECPTUc.

^ o r  ECPTUzz, optimum results obtained for only one example when 5 = 0.5.

126



ECPTU function 5 = 2 (5 =  1 5 = 0.5

ECPTUzi 0 . 1 0 . 6 1 1 . 1

e c p t u Z2 0 . 0 1 -0.03 4.0

ECPTUzz 7.0 68.5 1.4

ECPTUza 3.3 14.3 38.8

Table 4.5: For the different ECPTUzi and values of <5, the mean 

percentage by which the h* exceeds or falls short of h* from ECPTUc.

Table 4.6 indicates tha t the difference between the h* values will 

be greatest for r c 2 3  or r c 2 4  <  1. Noticeable differences will also be 

observed for 1  <  r c 2 3  <  5 and 1  <  r c 2 4  <  1 0  when E C P T U z s  and 

E C P T U z i  are minimised. For r c 2 4  <  1 0  or r c 2 3  <  5 the tabulated 

percentages indicate th a t h* from E C P T U z s  and E C P T U z a  can ex­

ceed those from E C P T U c by over 3%. The increment in h* can be as 

high as 73% when E C P T U z z  is minimised and r c 2 4  or r c 2 3  < 1 .

ECPTU function ^c23 < 1 

U:24 <  1

1 <  rc23 < 5 

1  <  r c 2 4  <  1 0

ĉ23 > 5

r c 2 4  > 1 0

ECPTUzi 5.5 0 . 0 2 0 . 0 1

e c p t u Z2 2 . 0 2 -0.25 0 . 0 1

ECPTUzz 73.3 6.5 0.3

ECPTUza 28.2 3.0 0.14

Table 4.6: For different ECPTU functions and values of the ratio of

c2 to c3 (rc23) or c4 (rc24), the mean percentage difference between h*

for ECPTUzi  and for ECPTUc.



Table 4.7 gives further evidence tha t when E C P T U z z  and E C P T U z a  

are minimised the h* values will differ appreciably from those obtained 

when E C P T U c is minimised. Noticeable differences are observed for 

all values of the shape parameter for the restoration time. Noticeable 

differences are also observed in the h* produced by E C P T U z i  and 

E C P T U Z 2 when p  =  4. For these two functions, the values averaged 

to give results for (3 — 4 are a subset of those used to calculate mean 

values for 5 = 0.5, r c 2 3 and r c 2 4 < 1 . This implies th a t the tabulated 

results could be a reflection of the influence of these parameters and 

not necessarily that of (3.

ECPTU function

CN1II COII 1! P  =  5

E C P T U z i 0 . 2 0.7 19.2 1 . 0

E C P T U Z2 -0 . 1 0 . 2 6.7 0.5

E C P T U z a 32.4 10.5 — 1 1

E C P T U za 7.9 5.2 — 17.1

Table 4.7: For the different E C P T U Zi and values of shape parameter 

(P) for the restoration time distribution, the mean percentage by which 

the h* exceeds or falls short of h* from E C P T U c.

Explicit reckoning of stochastic restoration times can increase sig­

nificantly the value of h*. This increase is influenced by the nature of 

the relationship of restoration rate to rh and the distribution of the 

restoration time. The observed increments are higher when the inverse 

relationship instead of a linear one is accounted for. Compared with 

increments resulting from use of the Erlang distribution, assumption 

for restoration time, those from the Weibull distribution are lower. In
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view of these differences we can expect tha t the penalty for use of 

suboptimal parameter combinations will also be influenced. This will 

be investigated in Section 4.6.2.

4.6.2 C hanges in p en alty  for use o f suboptim al 

values

In Section 4.6.1 it was established tha t incorporation of stochastic 

restoration times into the objective functions will not change, appre­

ciably, the values of n* and k* compared with values obtained when 

ECPTUc  is optimised. Thus, the penalties of reduced probability of 

detecting the OOC state; increased probability of a false alarm; as 

well as increased ECPTU due to use of n — 5 and k =  3 will be ap­

proximately equivalent to those observed for E C P T U c in Chapter 3.

The appreciable and, in some cases, statistically significant increase 

in h* when the EC P T U zi  are optimised merits investigation of the 

penalty for use of suboptimal design parameter combinations. The 

penalty of increased ECPTU results from an extended OOC period 

or increased sampling frequency when h =  8  hours or 1  hour is used 

instead of h*. In this section we will examine the variation in the 

penalty in response to changes in 5, r c 2 4  and r c2 3 .

The inverse relationship between h* and c2  has been illustrated in 

Chapter 3. The mean percentages given in Table 4.8 illustrate this 

relationship. As such, the percentages by which h — 1 hour falls short 

of h* become less as c2 increases relative to the values of c3 and c4. 

The percentages indicate, however, tha t incorporation of the E(Z{)
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has little bearing on the penalty of increased sampling frequency for 

use of h — 1 hour instead of h*.

ECPTU function r c23 < 1 

Tc24 <  1

1 <  Fc23 <  5

1 <  r c24 <  1 0

rc2 3  >  5  

rc 24 > 1 0

E C P T U z i 83 56 32

e c p t u Z2 83 59 32

E C P T U z z 87 59 32

E C P T U za 84 58 32

E C P T U c 83 56 32

Table 4.8: For different ECPTU functions and values of the ratio of 

c2 to C3 (rc2 3 ) or C4 (rc24), the mean percentage by which h — 1 hour 

falls short of optimum sampling interval (h*).

The mean percentages in Table 4.9 illustrate tha t the penalty of an 

extended OOC state can result from use of h = 8 hours instead of h*. 

For r c23 or r c24 > 1 this penalty is not greatly changed by incorporation 

of the E ( Z i ) .  However, for r c23 or r c24 < 1, the effect of the functional 

dependence of repair rate on rh  becomes noticeable. Incorporation 

of a linear relationship — as done in E C P T U z i  or E C P T U z 2 — 

does not change, appreciably, the percentage by which the sampling 

interval is extended by use of h =  8 hours instead of h*. However, 

if an inverse relationship is the correct description for a process, the 

penalty — relative to tha t obtained from a linear relationship — can 

be reduced by at least 10%. See Table 4.9.
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ECPTU function r C23 < 1  

rC2A < 1

1 < U:23 < 5

1  <  r c 2 4  <  1 0

rc23 > 5

TC2A > 1 0

E C P T U z i 40 249 446

E C P T U z i 40 250 446

E C P T U z s 7 227 444

E C P T U za 29 238 445

E C P T U c 40 249 445

Table 4.9: For different ECPTU functions and values of r c 2 3 or r c24, 

the mean percentage by which h = 8  hours exceeds h*.

The penalties of higher ECPTU associated with use of the subop­

timal parameter combinations {5, 1 hour, 3} and {5, 8  hours, 3} at 

different values of r c 2 4  and r c 2 3  are given in Tables 4.10 and 4.11. We 

note the appreciable reduction in the penalty of increased hourly cost 

due to incorporation of the inverse relationship between restoration 

rate and r h . If the control system based on the use of the rr-chart can 

be correctly described by E C P T U z a  or EC PTU za the penalty for use 

of the suboptimal combination {5, 1 hour , 3} can be less than 15%, 

particularly if r c 2 3  >  5 or r c 2 4  >  10. See Table 4.10. For a process 

described by the same objective functions the penalty for use of the 

combination {5, 8  hours , 3} can be less than 30% if r c 2 3  or r c 2 4  < 1. 

See Table 4.11.

The inverse relationship between n* and 5 contributes to the inverse 

relationship between the ECPTU penalty for use of the suboptimal 

combination {5, 1 hour, 3} or {5, 8  hours, 3} and 5. Mean percentages 

given in Tables 4.12 and 4.13 illustrate the inverse relationship between
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ECPTU function Tc23 <  1

r C2A  < 1

1 <  Fc23 <  5 

1 <  r c 2 A < 10

r c 2 3  >  5 

r c 2 A > 1 0

E C P T U z i 265 180 19

E C P T U Z2 266 181 19

E C P T U z z 27 36 6

E C P T U za 68 67 12

E C P T U c 267 182 19

Table 4.10: For different ECPTU functions and values of r c 2 3  or 

r c2 4 , the mean percentage by which E C P T U ( 5 , 1,3) exceeds minimum 

ECPTU ( E C P T U * ) .

the penalty of increased ECPTU and 5 for all the objective functions.

For restoration rate inversely related to rh  and 5 > 1, explicit reck­

oning of a stochastic restoration time yields a more noticeable reduc­

tion in the penalty for use of either suboptimal combination of design 

parameters. The percentages given for E C P T U z z  and E C P T U za 

in Tables 4.12 and 4.13 indicate tha t an increase in hourly cost of 

less than 100% can be observed. The penalty can fall below 30% if 

E C P T U z z  correctly describes the process and 6 =  2.

We assume that, compared with E C P T U c, the E C P T U z i  represent 

a truer description of a control system based on the use of the x- 

chart. Use of the E C P T U Zi to select optimum design parameters 

gives results which lower the hourly cost penalty for use of suboptimal 

values values of h and, hence, for use of the suboptimal parameter 

combinations {5, 1 hour , 3} and {5, 8 hours , 3}. A very large
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ECPTU function rc23 <  1 

r C2A < 1

1 < ^c23 <  5 

1 <  r c24 < 10

rc23 >  5 

r C2A > 1 0

ECPTUzi 137 416 168

e c p t u Z2 138 424 168

ECPTUzz 11 94 68

E C P T U za 30 162 121

ECPTUc 139 428 168

Table 4.11: For different ECPTU functions and values of r c 2 3  or 

rc2 4 , the mean percentage by which E C P T U (5,8,3) exceeds minimum 

ECPTU (E C P T U *).

reduction in the penalty is observed for the functions ECPTUzz  an(f 

ECPTUza• These two functions incorporate the inverse functional 

dependence of repair or restoration rate on the period rh.

ECPTUzi  and ECPTUz 2 incorporate the linear relationship of 

repair or restoration rate to the period rh. The tabulated mean per­

centages suggest tha t incorporation of this linear relationship will not 

change drastically the penalty for use of suboptimal values. The im­

plications are that, where the relationship of restoration rate to rh is 

a linear one, explicit reckoning of this relationship will not yield re­

sults which differ appreciably from those obtained by a function which 

takes no account of the relationship.

The results indicate that the nature of the relationship between 

restoration rate and the period rh  will influence the optimum results 

obtained when objective functions are minimised. It is, therefore,
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important that the nature of this relationship be correctly identified 

so tha t the optimum design parameters selected will be more specific 

to the system being monitored.

ECPTU function II'O

O
n II I—
1 5 =  0.5

ECPTUzi 115 257 459

EC PTUZ2 116 258 463

ECPTUZS 18 27 178

ECPTUza 37 71 182

ECPTUc 116 258 464

Table 4.12: For different ECPTU functions and values of the 

mean percentage by which ECPTU(5,1,3) exceeds minimum ECPTU 

(ECPTU*).

ECPTU function 5 =  2 5 =  1 5 =  0.5

ECPTUzi 114 304 1564

e c p t u Z2 117 313 1574

ECPTUzz 18 82 902

ECPTU za 35 80 719

ECPTUc 118 316 1580

Table 4.13: For different ECPTU functions and values of 5, the 

mean percentage by which ECPTU(5,8, 3) exceeds minimum ECPTU 

(ECPTU*).
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4.7 D iscussion  of R esu lts

In this chapter there has been an evaluation of the effect of explicitly 

accounting for the stochastic nature of the restoration time variate 

which is correlated with the period rh. The objective functions which 

have been produced yield optimum results which have higher h* values 

than those from the function which excludes the repair time. For each 

function the observed differences have exceeded 25% for r c 2 3  or r c 2 4  <

1 . The optimum values of n* and k* are not appreciably changed.

The increment in h* due to incorporation of the E(Zi) is dependent 

on the nature of the relationship between restoration rate and the pe­

riod rh  as well as the distribution of the restoration time. Compared 

with the linear relationship, an inverse relationship leads to higher 

increments in the h*. Use of the Erlang instead of the Weibull distri­

bution assumption also leads to higher increments.

The results presented suggest tha t selection of h* without account­

ing for the correlation of restoration time with the period of surveil­

lance by the control chart could be costly. This is because use of h* 

found without accounting for this correlation can increase sampling 

frequency.

Use of the heuristic design parameter combinations {5, 1 hour, 3} 

and {5, 8  hours, 3} instead of {n*, h*, k*} yield the expected increase 

in ECPTU. This increment is lower if the E(Zi) is based on the Erlang 

rather than the Weibull distribution. The penalty for their use can 

also be lowered if the restoration rate is an inverse function of rh. If
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E C P TU zz  correctly describes a process, the increment from use of 

{5, 1 hour, 3} can be minimal for r c23 > 5 or r c24 >  10. For the same 

objective function the increment from use of {5, 8 hours, 3} can be 

minimal for r c23 or r c24 < 1.

If either of these suboptimal combinations must be used the loss 

in profitability can be reduced if the restoration time is an Erlang 

variate; the repair rate is inversely related to rh ; and r c23 and r c24 lie 

within the ranges previously specified. Profitability from use of the 

5-chart with these design parameter values can be enhanced if there 

is precise determination of the distribution of repair time as well as 

the functional dependence of this period on the period of surveillance 

by the control chart.

The illustrations in Section 4.4.1 indicate that the difference in the 

shape parameter yields wider variation in the E(Zi)  based on the Er­

lang distribution. It is possible that differences in the shape parameter 

could also influence the values of n*, k* and h*. This has not been 

identified in this study possibly because the effect of the shape param­

eter had been confounded with the effect of 5.

The results give additional evidence that use of a 1 hour sampling 

interval is least unprofitable if r c23 > 5 or r c24 >  10; an h = 8 hour 

sampling interval is most suitable, economically, if r c23 < 1 or r c24 <  1; 

and use of n = 5 and k = 3 will be suitable when 5 = 2.
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C h a p te r  5 

T h e  P ro d u c t io n  

E n v iro n m en t an d  th e  

E C P T U

5.1 T h e  E n v iro n m e n t’s In fluence

The literature has not specifically addressed the development of the 

production environment to allow for selection of the optimum design 

parameters using the ECPTU function. It is important tha t there 

is clear understanding of the role of facets of the environment in the 

selection of the design parameters for the control chart.

Dale and Oakland [23] state that the design of control charts should 

be based on practical experience as well as statistical criteria. They 

further state that the frequency of sampling is subject to many prac­

tical considerations and should be determined by the economics of 

the process. The economics of the process relates to the stability of
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the process; the cost of inspection; costs incurred by the production 

of non-conforming output; and the frequency of changes made to the 

process tha t might affect the quality of output.

In the previous chapters we illustrated the response of design pa­

rameters n and k to changes in sampling frequency as determined by 

h. That the selection of sampling frequency should be determined by 

the economics of the process implies that the values of n and k will 

also be influenced by economic factors. This creates scope for use of 

ECPTU functions for selection of optimum control chart parameters. 

The practicality of selecting design parameters requires due consider­

ation for the environment in which they will be used.

The ECPTU functions developed in Chapters 3 and 4 may be used 

to select optimum design parameters for processes which yield a stream 

of continuous data. The work environment can be prepared for util­

isation of these functions through staff training; the practitioner’s 

knowledge of the process and product; understanding the standards 

for quality; accurate collection and use of data.

In this chapter we will explain how each of these factors can influ­

ence the cost or technical parameters associated with operation of the 

the 5-chart. The effects on the ECPTU functions and, in turn, the op­

timum value of design parameters will also be discussed. We will use 

the objective functions, E (L a) and E{Ca), found in Section 3.5.1.1 of 

Chapter 3 to illustrate these effects. There will also be an exposition 

of the practical issues which must be taken into consideration if use 

of the objective functions will be implemented.
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5.2 S taff T ra in ing

Education in statistical thinking will equip practitioners to carry out 

appropriate subgrouping of data; accurate and precise measurement of 

process output; and correct action in response to points plotted on the 

control chart. This training can also equip persons to use, effectively, 

the seven simple and elementary quality tools. Ishikawa [41] points 

out that people cannot be expected to master more difficult methods 

of analysing data if they have not been trained to handle the simple 

tools. The success of the Japanese manufacturing sector since the 

1960s can be attributed, in part, to the ability of workers at all levels 

— ranging from top management to production line workers — to use 

correctly the seven quality tools [41]. This competence at using the 

tools is indicative of an appreciation of their importance to the success 

of the organisation as well as an understanding of variation in data.

Education in statistical thinking and training in the use of statis­

tical techniques should ultimately lead to improved process perfor­

mance and quality of output. However, such training involves more 

than the study of statistical methods and the preparation of control 

charts. [41] Effective training in use of the quality tools — one of which 

is the control chart — must come against a background of training in 

other areas. It should be part of the quality management system and 

should lead to improved productivity. Areas of training which form 

the background for training in use of the statistical tools include [41]

1. The concept of quality.

This involves having respect for customers; recognition of the 

next process as a customer; and an understanding of quality
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assurance.

2. Principles of implementation which concern management and 

improvement.

These include quality circles and the PDCA cycle.

3. A statistical way of thinking.

This gives an appreciation for variation in data.

Ishikawa [41] sates tha t improvement of human relations and self- 

improvement for the entire work force must be encouraged. Thus, 

implementation of the control chart and further optimisation of its 

use through ECPTU functions will be facilitated. Education encour­

ages adaptation to change [59], Co-operation between departments 

with employees experiencing “joy in work” as discussed by Neave [59] 

can enhance the benefits derived from training in the use of control 

charts and subsequent selection of design parameters using ECPTU 

functions.

Staff training which promotes the correct use of the control chart 

will ensure its cost-effective use. Any staff training that is done must 

be updated regularly to take account of changes in working methods 

and other facets of the production environment. [43] The subsequent 

sections indicate different forms of training which can enhance the 

cost-effective use of control charts and implementation of use of the 

ECPTU function.
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5.2.1 E ducation  In U nd erstand in g  V ariation

Ishikawa [41] postulates the need for staff to be educated in under­

standing variation. This staff includes top management. The benefits 

of use of the control chart will not be optimised if production-line staff 

are led to cheat by presenting data which has small variation. If the 

within-group variation is falsely presented as being very small the re­

sult could be excessive chasing after special causes of variation which 

are really due to common causes. This could, in turn, lead to drastic 

increases in the ECPTU for operating the control chart because of a 

proliferation of false alarms.

Education in understanding variation or any statistical training 

must be linked to specific organisational goals. It will be successful if 

it is conveyed as being critical to the achievement of the organisation’s 

objectives. The pay-off from this knowledge and its application must 

be assessed. [36]

The extent to which variation in data is understood can be expected 

to influence the value of the cost and technical parameters used to 

determine the ECPTU. For example, an appreciation for variation in 

data will lead practitioners to seek to remove special causes of variation 

only and to reduce the common cause variation.

Based on the general form of the objective functions given in Sec­

tion 3.5.1.1 of Chapter 3 we derived the following

E (L a) =  |  +  h -  E (t ) +  / i - - - —  +  D
A G i l l
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a n
csuoimi + C4

1 — e~Xh
e~Xh 1 -  e~Xh +  hX 

1 — e~Xh

1
mo — -----a n

Removal of the special cause of variation can lead to a reduction in 

A, the rate at which the process mean shifts to the OOC state. Thus 

A — > A, with 0 < *0 < 1. Since e~Xh <  m i, the expected num­

ber of samples taken during the IC period, and the mean IC period 

will increase. However, results in Section 3.8.2 indicate that longer 

sampling intervals and, in turn, a larger sample sizes more economi­

cally optimum. If sampling intervals are increased in response to the 

reduction in A, mi is reduced. The consequent reduction the expected 

sampling costs, (£> +  en)(m\ +  m 2 ), and in the expected cost of false 

alarms, c3a 0im i will reduce E (C a). A reduction in E (L a) would also 

follow these changes in A and h. Consequently, the ECPTU for oper­

ation of the control chart can be reduced.

A reduction in the ECPTU can also result from use larger sample 

sizes are used in response to a reduction in A. This is a consequence 

of the increase in a n ,  the probability tha t the OOC state is detected. 

From Section 3.5.1.1



a n  — <f> ( —k — 5\Znj + $  k +  6y/nj

Recall tha t <$(—k — 6y/n) is the cumulative probability tha t the 

standard normal variate, Z, is less than or equal to —k — 5^/n. If n in­

creases, then the cumulative probabilities and, therefore, a n  increase. 

Increased a n  will lessen h — E (r)  4- , the length of the OOC

period. Consequently, the expected sampling costs and the expected 

cost of production during the OOC period, c2 (ji — E (t ) +  

fall. These changes can contribute to a reduction in the E (C a) and 

and the ECPTU.

Removal of the special cause of variation could also lead to a re­

duction in £, the number of standard deviations by which the process 

mean shifts in response to an assignable cause. Results in Section 3.8.1 

indicate tha t use of the control chart is optimised if sample size, n, is 

increased in response to a reduction in 5. As indicated in the previous 

paragraph, use of larger n  can reduce the ECPTU.

As the process is improved through reducing common cause varia­

tion the quality of output is improved. This may reduce, c2, the cost 

of poor quality output from the process during the OOC period. This 

will again help to reduce the ECPTU.

As well as selecting optimum design parameters the objective func­

tions may be used to assess the effect of training in understanding 

variation. This could be done by comparison of ECPTU values calcu­

lated before and after the lessons learnt are applied. The benefits of
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training in statistical thinking will be substantial, particularly if it is 

given to those using SPC techniques to do their jobs [36].

5.2.2 Training in th e  use of SPC  techniques

Hare et al [36] report tha t mass training of managers in the use of SPC 

techniques often meets with limited success. This results if managers 

do not understand why they need to possess statistical knowledge and 

make no effort to develop the knowledge. The managers also need to 

ensure that the knowledge is effectively applied. If these issues are 

addressed the managers can help to create a work environment which 

fosters positive attitudes to the use of SPC tools. Such attitudes 

will lead to an interest in the process so that data will be collected, 

recorded and used to improve the process. [23] Effective training in 

the use of SPC techniques can then be a reality.

Use of SPC techniques will lead the operators to understand more 

about statistical methods and give them more confidence to handle 

more advanced methods such as the design of experiments and the 

analysis of variance. [23] Persons who competently use SPC techniques 

such as the control chart can be expected to handle more confidently 

selection of design parameters using ECPTU functions.

Correct training in the use of techniques such as the control chart 

will be particularly beneficial to operators of processes which can be 

monitored by such tools. Training should encourage easy plotting 

of points on the chart. This may be facilitated by use of the range 

rather than the standard deviation as a measure of dispersion. It is
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the operators who should plot the points on the charts which should 

be displayed as closely as possible to the process or activity being 

monitored [23]. Correct training will also facilitate concurrent use of 

the R  and ^-charts. More rapid detection of the OOC state can be 

expected as a result. The relevant efforts can then be made to reduce 

variation in the process output. Variation reduction should be the 

emphasis of process improvement.

Correct training in the use of SPC techniques can, therefore, reduce 

the hourly loss cost of operating the control chart by shortening the 

OOC period or reducing the occurrence of false alarms. There could 

also be an extension of the IC state in which there is a high quality of 

output. A more precise estimate of the ECPTU can result. This can 

yield more accurate estimates of the optimum design parameters.

5.2.3 Training for th e  m easurem ent process

Shewhart [68] points out tha t there are two aspects of the operation 

or method of measurement. These are the physical and numerical 

aspects. The relevant staff need to be trained to carry out the physi­

cal aspects of measurement with speed, precision and accuracy. This 

can enhance the consistency of the numeric results. Speed, accuracy 

and precision in the physical aspects of the measurement process will 

make even more valid the assumption of negligible sampling inspection 

time. This assumption is used in the derivation of ECPTU objective 

functions presented in this study.
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Prior to any study of the process all operators and their supervisors 

should fully understand the use of calibrated measurement equipment 

appropriate for the characteristic or parameter which is to be con­

trolled. [23] Incorrect use of measurement equipment because of inad­

equate training can lead to the production of wrong readings. If the 

shift coefficient is calculated from these wrong readings this parameter 

may be estimated a t 6 — (j>5 for which 0 < 4> < 1. According to results 

in Section 3.8.1 use of the control chart can be optimised if smaller &, 

the control limit coefficient, is used with reduced 5. Recall that

croi =  24>(—k)

Thus use of smaller values of k can increase the value of croi, the prob­

ability of a false alarm. The increased expected cost of false alarms 

0 3 0 :0 1 ^ 1  can contribute to an increase in E (C a). Conversely, wrong 

readings can produce an inflated value of 5. Selection of a larger value 

of k based on this inflated value can reduce a n  and thus extend the 

OOC period as well as the cost of production during this period. Thus, 

an increase in the number of false alarms or the extension of the OOC 

state can increase the ECPTU for operation of the control chart.

5.3 K now ledge o f P ro cess  an d  P ro d u c t

Prior to implementation of use of the control chart there should be a 

clear knowledge of the mode of the process’s operation and the differ­

ent characteristics or parameters which influence the quality of prod­

ucts. Such knowledge will elicit appropriate reaction to different types 

of data and facilitate use of the control chart and ECPTU functions 

for providing more information about the process and product.
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5.3.1 R eactin g  to  data

It may become necessary to have different control charts monitoring 

different characteristics. In order to account for any correlation be­

tween these characteristics the control charts will need to be observed 

simultaneously. In some environments the correlated characteristics 

must all simultaneously conform to specifications for product accept­

ability. Steiner and Wesolowsky [70] have investigated the optimum 

design of control charts when a product has two or more correlated 

characteristics. They determined optimum control limits and sample 

sizes for each characteristic. Their study shows th a t the optimum 

sample size and control limit is dependent on the producer’s and con­

sumer’s risks as well as the acceptable and rejectable mean levels as­

sociated with each characteristic. This suggests th a t control charts 

for monitoring correlated characteristics may have to be modified to 

ensure optimised use.

Identification of autocorrelation between process output values re­

sults if the process and product are understood. The way in which 

large positive autocorrelation within data is handled must be based 

upon a working knowledge of the process and careful interpretation of 

the control chart [78].

Familiarity with the desirable quality characteristics of the product 

is particularly crucial when qualitative measures are used to determine 

the state of the process. Criteria by which elimination of the assignable 

cause can be determined must be set up. The operator must know 

when the product can be declared as being in control within limits. [67]



5.3.2 E nhanced  use of th e  control chart

Apt familiarity with the process will enable the operator to make 

notes at appropriate places on the ^-chart to indicate occurrences of 

technical importance. Such events include equipment and coolant ad­

justment, tool replacement, change of operator, new batch of material 

or components. These notes enable identification of sources of trouble 

when the chart indicates the presence of assignable causes of varia­

tion. [23] Consequently, there can be more rapid identification of the 

assignable cause and its removal. The associated costs and, hence, the 

ECPTU can then be further optimised.

Elimination of the assignable cause of variation should be followed 

by a recalculation of the measure of dispersion for the process. The 

data used should exclude the subgroups which identified the OOC 

state of the process. Removal of the special cause creates a “new” 

process. [23] A consequence of this may be changes in the process 

parameters such as the shift coefficient (5), the hourly cost of operating 

in the OOC state (0 2 ), and the cost of restoring the process to the IC 

state (C4).  A “new” process, therefore, requires redetermination of 

optimum design parameters for the control chart.

5.3.3 U se  o f E C P T U  functions

The ECPTU functions can be used to aid selection of optimum design 

parameters. The results of research presented in Chapter 3 indicate 

ways of optimising use of the :r-chart in response to changes in the 

production environment. In order to make correct use of these results 

the practitioner must know the expected behaviour of the process.
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O utput produced during the OOC period may need to be held in 

quarantine until results on a later sample indicating change of the pro­

cess’s status becomes available [23]. The loss cost due to withholding 

the products can be used to estimate c2, the hourly cost of operat­

ing in the OOC state. This value of c2 can be input to an ECPTU 

functions which is being used to assist or assess process performance.

The control chart cannot be guaranteed to detect, immediately, a 

change in the state of the process when a sample is taken. It may be 

necessary, therefore, to withhold output prior to detection of the OOC 

state. [23] The expected length of the OOC period may be calculated 

using functions presented in this study. Results of this calculation will 

give an estimate of the quantity of output which needs to be withheld.

It is imperative tha t the process is thoroughly understood before 

the ECPTU functions can be used to select their design parameters. 

Only a knowledge of the process obtained from a continuous study of 

it will enable estimation of the cost and technical parameters which 

are used to calculate the function values.

5.4 E n su rin g  A ccu ra te  C o llec tion  an d  U se 

of D a ta

Accurate collection and use of data requires a clear distinction be­

tween factors which affect the within-group and those tha t affect the 

between-group variation. Autocorrelated data or data made inaccu­

rate by flaws in the measurement process can prevent clear identifi-
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cation of these two sources of variation. Accurate data collection and 

use can help lower the ECPTU for operation of the 5-chart. This 

is because special cause variation has been separated from common 

cause variation. Consequently, the OOC state can be more readily 

detected or the IC state can be extended.

Dale and Oakland [23] recommend that a minimum of 20 subgroups 

should be gathered and used to set up control charts. These subgroups 

allow for the initial study of the process so tha t there may be adjust­

ments for existing autocorrelation in data. In addition, major sources 

of variation as well as any flaws in the measurement process can be 

identified. Observation of the process using these subgroups can pro­

vide estimates of cost and technical parameters associated with oper­

ation of the control chart. Once the current assignable causes have 

been revealed and removed and the measurement process has been 

suitably adjusted, the ECPTU can be more safely used to select opti­

mum design parameters for the chart.

In the following subsections there is discussion of ways in which the 

accurate collection and use of data may be safeguarded.

5.4.1 Separating th e  typ es o f variation

Data should be collected and used in a manner which enables mea­

surement of the variability in a process [36] and therefore reveals the 

problem areas. Action based on incomplete, non-representative data 

yield financial losses and costs higher than those obtainable if rational 

subgrouping is used [36]. Wheeler [77] also emphasises the need to
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use the right data. He states tha t meaningless data yield meaningless 

analysis.

According to Wheeler [77], in aiming to create data which separates 

the types of variation accumulated data should be avoided. Accumu­

lated data — usually in the form of summary counts and percentages 

— are not focussed and specific. Therefore, they do not clearly re­

veal the sources of variation. Each process which yields a separate 

data stream should be monitored by a separate control chart. [77] 

Ishikawa [42] further states tha t data on products made under similar 

conditions should be collected in the same subgroup. This type of 

subgrouping minimises the within-group variation and increases uni­

formity within the group. It also increases the between group varia­

tion.

A more efficient use of the 5-chart indicated by a lower ECPTU can 

result from subgrouping which minimises the within-group variation. 

The within-group variation is used to determine the position of the 

control limits. If this is minimised the limits become narrower and 

a n ,  the probability tha t the OOC state is detected, is increased, a n  

can be expressed as follows

_  / _  k c r \  „  f  _ k a
a n  — P  \ x  > n o — 7= } ~\~ P  \ x  < Ho------ 7=

\ vW \ V™
if it is assumed that 5 is normally distributed with mean Ho and 

variance a 2 during the IC period. If for a given k,  a  is reduced to

7 <j with 0 < 7  <  1, then P (x > Ho +  ~§) and P  (x < Ho —

are increased. Thus, an increased a n  could produce a shorter OOC 

period,(h — E(r)  -1- h ,1~^a ) and a reduced cost of operating in this
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period.

Conversely, lower within group variation can be an indication of 

increased process stability so th a t the relative length of the IC period 

is increased. As indicated in Section 5.2.1 the lower cost of operating 

in the OOC period or the increased length of the IC period can both 

lead to reduced ECPTU for operation of the 5-chart.

5.4.2 In terpreting autocorrelated  d ata

Neave [60] points out, however, tha t efforts to minimise within-group 

variation can be hazardous if the observations are naturally autocor­

related. Wheeler [78] gives guidelines on how to interpret data which 

may be autocorrelated.

Autocorrelation can lead to considerable misinterpretation of data 

displayed on the control chart. Excessive autocorrelation has a visible 

impact on the running record and on control limits calculated using 

the formula ± k S D ( X ) 1. Time series with a very large positive lag-one 

autocorrelation will have very coherent running records. As a result 

there may be very little need for calculation of control limits. Any 

common cause variation will be very small compared with the special 

cause variation so tha t the running record itself reveals the behaviour 

of the process. [78]

Wheeler [78] further indicates that large positive autocorrelation can 

make the control limits narrower than they should be. As a result, the 

frequency of false alarms increases. [17] [55] As such, he recommends

1S D( X )  is the estimated standard deviation for the measured output.
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inflation of the natural process limits by a factor — r 2) 2, as

long as the sampling frequency is suitable for the process; the full 

range of the output values is thought reasonable for the process; and 

the moving range chart does not indicate discontinuities in the process. 

After adjustment for autocorrelation, points falling outside the control 

limits will not represent a warning tha t the limits are too narrowly 

placed.

Even when data from a process are known to be serially correlated 

there is still scope for use of the ECPTU function to determine £-chart 

parameters. The ECPTU functions can be used to select optimum val­

ues of n, h and k which can be used with the inflated values for the 

standard deviation. Increased lag size may eliminate the need for ad­

justment of the standard deviation for the effect of autocorrelation. 

Under these circumstances the ECPTU functions may be used to de­

termine the optimum values of h and k which may be used with the 

z-chart.

5.4.3 A djusting  th e  m easurem ent process

A lack of knowledge of the appropriate measuring methods can lead 

to collection of wrong or useless data. [41] Inadequate calibration of 

the test or measuring equipment could lead to production of imprecise 

or inaccurate readings. Such readings can hamper the efficiency with 

which the control chart correctly monitors the process. This is because 

inaccurate readings could either delay the detection of the OOC state 

or increase the occurrence of false alarms. Hence, poor performance

2 Equation (1) in [17] indicates the rationale for use of this factor.
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of measurement equipment can increase the ECPTU for operation of 

the ir-chart. Measurement equipment must be properly calibrated and 

yield accurate measurements. Production of wrong readings can be 

prevented if methods are set up to check test equipment. [33] Failure 

of the chart to yield correct decisions about the process because of 

inaccurate or imprecise measurements can yield financial losses.

The ^-chart practitioner, as an applied scientist, has the job of 

getting enough data before making estimates or drawing conclusions 

about the process. The practitioner must also ensure that the data 

are both repeatable and reproducible within specified limits of toler­

ance. Reproducibility within tolerance limits is an indication that the 

measurement process is in a state of statistical control. [68] Absence 

of repeatability and reproducibility could be indicative of flaws in the 

measurement process. In order to remove such faults measurement 

equipment may have to be replaced.

Autocorrelated data reflects variation in the measurement process 

rather than common cause variation. [60] Thus, there may be need for 

changes to the measurement process in order to reduce the autocor­

relation in the data. For example, there may be need to change the 

times at which measurements are taken if a running record of the data 

reveals definite cycles. This may become particularly necessary if the 

cycles prohibit correct interpretation of the data.
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5.5 U n d e rs ta n d in g  In te rn a tio n a l S ta n d a rd s  

for Q uality

According to Dale and Oakland [23] a standard is a technical or man­

agement specification which gives a precise and authoritative state­

ment of criteria necessary to ensure that a material or procedure is 

fit for the purpose for which it is intended. Standardisation is activ­

ity aimed at improving efficiency by bringing consistency to products, 

services and processes. Standards should be a means of preventing 

recurrence of abnormalities in processes. Improved quality and reli­

ability are seen as advantages of standardisation. [23] The ISO 9000 

and the British Standards Institution (BSI) series are examples of 

documented standards for quality.

Seddon [66] has stated tha t ISO 9000 discourages managers from 

learning about the theory of variation. Understanding the theory of 

variation has been established as a key factor in correct interpretation 

of data and correct use of the control chart. Seddon indicates tha t 

following guidelines set out in the standards leads to businesses being 

run solely by manufacturing operations without the additional benefits 

gained from use of the control chart.

The role of variation and statistical tools in the operation of business 

must be considered when adhering to the British and international 

standards for quality. If this is done the profitability of certification by 

the ISO will be continuous. Attention is here drawn, yet again, to the 

success of the Japanese manufacturing industry. In Japan promotion 

of industrial standardisation and quality control were started at the
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same time [40]. Investigation of theories and experiments in sampling, 

division, and measurement and analysis methods for iron ore led to 

Japan Industrial Standards for quality of this product. These became 

the accepted standards for the International Standards Organisation. 

They helped to smooth the functioning of international trade. [41]

We will now show how adherence to the standards for quality influ­

ences use of the control chart.

5.5.1 Effects on th e  use of control charts

Statistical techniques have been recognised in the ISO 9000 series as 

well-established tools in quality assurance and quality improvement 

programmes. The standard requires identification of points in the 

process where statistical techniques should be used. Applications of 

the standard include establishing, controlling and verifying process ca­

pability and product characteristics. Where there are only few charac­

teristics, application of the standards for statistical techniques may be 

limited. [43] Before applying the specifications of the standard there 

must be adequate training in the techniques which are to be standard­

ised. There should also be a thorough knowledge of the process and 

the product.

There are indications, however, tha t the British standards currently 

available could hamper or limit the use of control chart for statisti­

cal process control. Harris [37] indicates tha t these standards reflect 

more of an SQC rather than an SPC stance. SQC deals more-so with 

measurement of product characteristics after their manufacture. The
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standards currently available include BS5701 —- Control charts for 

the number defective; BS5703 — Guide to data analysis and quality 

control using cusum techniques; BS5700 — Guide to control charts. 

These all reflect monitoring after the event. Harris [37] regards as 

SPC the more up-to-date approach of identifying im portant process 

parameters which influence variation in product characteristics and 

monitoring them using control charts. He points out tha t different 

committees within the ISO have been set up to revise and update the 

standards so tha t they reflect more current thinking in SPC.

The BS series present the operator of the control chart with a con­

flict of ideas in some respects. This concerns, particularly, whether 

the probabilistic or heuristic control limits should be used. [37] The 

penalty for use of the sometimes sub-optimal heuristic values for con­

trol limits has been highlighted in Chapters 3 and 4.

Current thinking in SPC incorporates control of process parame­

ters; requires knowledge of the relationship between the process and 

the product; and may require use of special techniques such as R  and 

^-charts to monitor process parameters. [37] Certification by the ISO 

should be a by-product of a total quality management programme 

which incorporates use of the relevant statistical tools. Then, certifi­

cation can also become a by-product of use of ECPTU functions to 

optimise use of control charts.
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5.6 P ra c tic a l A p p lica tio n  of E C P T U  func­

tio n s

Certain practical factors must be considered in order to enhance the 

successful application of ECPTU functions to the selection of design 

parameters for the a;-chart. Such factors include:-

1. parameter estimation;

2. availability of technology for optimisation;

3. mathematical intractability of some functions;

4. variation in the parameters omitted from the functions;

5. difficulty in obtaining a minimum value.

Ways of addressing these factors will be dealt with in turn.

5.6.1 P aram eter estim ation

In order to implement use of the ECPTU functions distribution pa­

rameters and cost coefficients need to be estimated. The examples of 

numerical values of cost and technical parameters used in this study 

were first found in [28]. The exact source of the data  is not known 

but we assume tha t they mirror particular production conditions.

As well as describing the production environment, the numeric es­

timates of the parameters should have desirable statistical properties. 

Bard [5] states th a t it is desirable tha t estimators have sampling distri­

butions which are concentrated in the neighbourhood of the true values
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for the parameters. Such estimators will be unbiased; have minimum 

variance; have low mean square error; and be consistent. [34]

Theoretical analysis, replication and computer simulation are ap­

proaches to the assessment of these properties. Theoretical analysis 

is based on the derivation of the sampling distribution for parameters 

and some of its relevant properties such as the mean and variance. 

Replication provides estimates of the mean, variance and other prop­

erties of the sampling distribution after repetition of processes which 

yield sample values. Computer simulation can be used to find multiple 

estimates of parameters. Estimates of the mean and variance of the 

sampling distribution can thus be obtained. In addition, the bias of 

the estimators can be estimated. [5]

In this study, we have derived probability density functions for S, 

the OOC period and Z*, the restoration period which follows the OOC 

signal. A probability distribution function was also derived for R, the 

number of samples for the duration of the cycle, ck, (3 and A are 

distribution parameters which have been used in these derivations.

Computer simulation could be used to produce multiple estimates 

of S , R  and for given values of a , /3 and A. The mean of observed 

values of R  and Zi may be regarded as the functions of “true” values of 

the distribution parameters. Estimates of these parameters for a given 

process can be found through comparison of the mean of observed 

values of Z% and R  with those simulated for given values of a, (5 and 

A. Distribution parameter values which will be applied to the selection 

of design parameters should be those which produce comparatively low
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estimates of the bias and variance of 5, Z{ and R.

The cost coefficients enter the function in a linear manner. W ith 

all other parameters of the ECPTU function held constant, the least 

squares method of estimation could be used to provide estimates of 

these cost coefficients. If the probability density functions for these 

coefficients are known, maximum likelihood estimation methods could 

be used to find estimates.

In some organisations there are records of costs associated with iden­

tification and removal of defective items. There may also be records of 

costs incurred by activities to prevent production of defective items. 

It may be possible to obtain estimates of the cost coefficients from 

such records.

Montgomery [54] states that the magnitude of the shift in the pro­

cess mean is easier to estimate than are the costs. Models tend to be 

more sensitive to inaccuracies in the shift coefficient estimates than 

to inaccurate cost estimates. [54] Therefore, it is im portant that S is 

estimated with greatest precision following careful study of the nature 

of shift in the process mean.

5.6.2 A vailab ility  of technology  for op tim isation

The literature report a limited application of the results of research 

into the economic design of control charts. [54, 15] This limited appli­

cation arises from a need for increased availability of computer pro­

grams for the economic design of the control chart and development 

of simplified approximate optimisation procedures suitable for manual
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computation [54]. If these needs are met increased practical implemen­

tation of the result would be facilitated.

The optimum design parameters presented in this study were ob­

tained using the numerical minimisation functions of Mathematics a 

mathematical computing package. Other researchers [1, 15] have de­

veloped their own computer programmes and optimisation routines 

implementable on a personal computer. Researchers such as Tagaras 

and Lee [74] and Duncan [28] have used manual computation of partial 

derivatives to begin the search for approximate optimum values.

Manual computation using partial derivatives will be feasible if the 

exponents which form part to the ECPTU functions are approximated 

to simpler expressions. Such approximations lead to polynomial ex­

pressions in terms of h. An optimum value for h can then be obtained 

manually.

A computing package such as Mathematica will minimise the re­

quirement for advanced programming skills or for tedious manipula­

tion of partial derivative functions in efforts to obtain the optimum 

parameter values. The functions as presented in the literature can be 

input directly into the package’s minimisation subroutines. The speed 

with which results are obtained is thereby enhanced.

Mathematica 's minimisation function has its limitations, neverthe­

less. As stated in Section 3.7, the package’s minimisation function 

computes estimates using the steepest descent method. Bard [5] states 

tha t the method of steepest descent is often very inefficient. Wol-
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frara [79] states tha t this method does not use infinitesimal steps in 

searching for a minimum value. Therefore, it is possible to “overshoot 

even a local minimum”. Bard [5] further states th a t this method is 

not recommended for practical applications.

Appendix G gives guidelines3 which can be used to develop an algo­

rithm which finds n*, h* and k* using partial derivatives. Unlike some 

algorithms presented by Chung [14, 15], Duncan [28] and Tagaras 

and Lee [73], the first and second partial derivatives of the objective 

function are used to determine the increment in the design parameter 

values until optimum values are found. Future work could involve de­

velopment of a computer program based on the guidelines given. The 

efficiency of such a program could be assessed by comparison of its 

results with those obtained using existing algorithms.

The relative simplicity of the objective functions presented in Chap­

ter 3 should help reduce the complexity of the optimisation procedure.

5.6.3 M athem atica l in tractab ility  of som e func­

tions

In Chapter 3 the different approaches to derivation of the ECPTU 

functions have yielded general forms of the functions. All the ap­

proaches to their derivation involve summation over discrete variables. 

See Sections 3.5.1 and 4.3. Use of the Erlang distribution assumption 

for the IC period has produced closed forms of the objective functions. 

As the value of the shape parameter increases, however, the algebraic

3The late Dr. D.W. Wightman assisted with preparation of these notes.
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expressions become more complex. Such complexity could deter their 

usefulness, particularly in the absence of the relevant knowledge and 

skills required for their effective use.

For some distribution assumptions, closed forms of the summations 

would not be produced. This could be a hindrance to application of 

general results for the functions presented in previous chapters. For 

example, a study of the process could reveal tha t the in-control or 

repair period is better modelled by the log-normal distribution. For 

the log-normal distribution, the difficulty in finding a closed form of 

the various summations could obstruct derivation of an objective func­

tion. If the objective function is found using a different distribution 

assumption the results may be somewhat sub-optimal for the process 

to which they are applied.

5.6.4 V ariation in om itted  param eters

The ECPTU functions used here neglect the parameter representing 

the time spent taking and inspecting a sample. For E C P T U c the time 

and cost associated with searching for the assignable cause are also ne­

glected. If the values of these omitted parameters varied greatly they 

could lead to larger design parameter values and increased ECPTU. 

This uncertainty is ignored. Thus, the model is simpler and more 

easily minimised.

Over time, the relevant personnel should become more experienced 

at sampling inspection or searching for the assignable cause. Conse­

quently, the times associated with performance of these tasks should
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have minimum variation. Thus, in objective functions, it becomes 

more feasible to have these periods relegated to a constant or omitted 

if they are small relative to the rest of the cycle length. Since a ratio is 

being used to determine optimum parameter values, omission of this 

time period is less likely to yield results which are sub-optimal for the 

process.

5.6.5 Problem s w ith  convergence

A minimum value was not obtained for all parameter sets. Some 

combinations of parameter values created objective functions which 

could not be solved simultaneously for optimum parameter values. 

Some minimisation routines are limited. For example, as stated in 

Section 5.6.2, a local minimum may not be found because of the large 

steps used by the steepest descent method of parameter estimation. 

Therefore, parameter value combinations for a particular production 

environment can be such tha t a turning point for the plane or curve 

is not found. This limits implementation of the ECPTU function in 

this environment.

The results obtained in Chapters 3 and 4 were local minimum val­

ues. At times the starting point for the numeric search had to be 

changed in order to obtain a result. Failure to obtain an optimum 

result after repeated changes to the starting point for the search led 

to a declaration tha t the function failed to converge to an optimum.

It may become necessary to resort to manual partial differentiation 

of objective functions in order to obtain approximate optimum so­
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lutions. If the relevant personnel are unfamiliar with use of partial 

derivatives to find a minimum value and the numeric search by com­

puter fails to give a result then further use of the ECPTU function 

may be prevented. In such situations, the results in Chapters 3 and 4 

can be used to guide selection of design parameter values which will 

minimise the penalty for use of sub-optimal values.

5.7 A D esirab le  P ro d u c t io n  E n v iro n m en t

In this chapter we have discussed aspects of the production environ­

ment which influence, directly and indirectly, the use of the ECPTU 

function for selecting optimum design parameters. Adequate and ap­

propriate staff training; a thorough knowledge of the product and 

process; accurate collection and use of data; addressing practical is­

sues relevant to implementation of the ECPTU function are desirable 

features of a work environment interested in applying results of this 

function. Certification by national and international standards organ­

isations for quality can be a by-product of these desirable features.

The quality of the production environment is further enhanced if it 

makes the relevant application of the Shewhart control chart through 

selection of optimum control chart parameters. The ECPTU func­

tion enables selection of optimum control chart parameters. Such se­

lection must be implemented as part of a total quality management 

programme if it is to be truly beneficial to production.

Inaccurate data collection; inadequate staff training; or ignorance 

of the process and product can produce cost and technical parameter
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values which do not describe the process correctly, n, h, and k can 

be suboptimal if they are selected using such parameter values. Use 

of the ECPTU function to select design parameters can be safely im­

plemented in an environment in which there are competent operators 

using control charts. Their competence will be reflected in the accu­

racy with which data are collected due to a very clear understanding 

of the process and product.

A good work environment has training regularly. Here training in 

measurement methods; the uses of SPC techniques; understanding 

variation is focussed. This means that the trainer aims at meeting 

the specific purpose of the training. This is an im portant contribution 

to reduction in variation in performance when the lessons learnt are 

practised. [6 8 ]

Efforts to create an environment for use of the ECPTU functions 

to select design parameters will require top management’s ability to 

identify whether or not the practitioner’s performance is in a state of 

statistical control. Deming as cited by Neave [59] states that once per­

formance is in a state of statistical control — th a t is, it becomes pre­

dictable —further training will not improve this performance. Cost- 

effective improvement in performance can be expected only if another 

worker is correctly trained and set to carry out the task. This sug­

gests tha t if an individual’s incorrect use of the control chart is in a 

state of statistical control training will not improve performance. Re­

placement of this worker with another who has been correctly trained 

in the use of control charts will yield better results. This is because 

training is a “one-chance opportunity” . If it is done wrong initially,
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the damage is permanent. [59]

Research reveals tha t the most widely experienced benefits of ISO 

9000 certification include improvements in efficiency; better manage­

ment control; increased customer satisfaction; improved customer ser­

vice; and improving profitability. [8 ] The desirable features of the pro­

duction environment mentioned in this section, if they form part of a 

total quality management programme, will ensure tha t these benefits 

are maintained throughout the life of the organisation.
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C h a p te r  6 

C onclusions an d  

R eco m m en d a tio n s

6.1 M a in  F ind ings

This research has derived the probability density function for the OOC 

period and a probability distribution function for R, the total number 

of samples taken for the duration of a cycle of the control chart’s 

operation. Derivation of the probability distribution function for R  

enabled us to account explicitly for the stochastic nature of the time 

spent restoring the process to the IC state. This stochastic variable 

is assumed to be correlated with the period, rh : for which the process 

is monitored by the x-chart. Thus general results for the expected 

restoration time, E (Z i)) have been derived.

Objective functions from the reduced model presented in Chapter 3 

have been used to produce guidelines on the effects of important pro­

cess parameters on n*, h* and k*. The penalty for use of sub-optimal
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design param eter combinations has also been studied.

If 5 =  2 and the IC period is an Erlang variate with shape param­

eter equal to 2 or 1, the use of n — 6 , k =  3.05 and h = 2 hours 

will be approximately optimal. A 50% reduction in 5 will require an 

increase in n  and h of up to 1 0 0 % if the penalty for use of design pa­

rameter values is to be minimised. A 10% reduction in k will enhance 

optimality.

When the time to shift in the process mean is an Erlang variate a 

one unit increase in the shape parameter j3 increases n* and h* most 

noticeably. As f3 exceeds 2  the increment in n* and h* can exceed 

30%.

Incorporation of the stochastic nature of the restoration time which 

is correlated with the period rh  most significantly increases the value of 

h*. Accounting for the restoration rate as being inversely related to rh  

yields higher increments. Explicit reckoning of this inverse relationship 

can yield mean increment of up to 2 0 % in comparison to a mean value 

of less than 3% when the linear relationship is incorporated.

Penalties for use of sub-optimal values were quantified as the per­

centage increment in ECPTU for use of suboptimal parameter com­

binations {n, h ) ft} =  {5, 1 hour, 3} and {5, 8  hours, 3} instead of 

{n*,h*,h*}. Compared with values obtained for use of {5, 8  hours, 

3}, use of {5,1 hour, 3} yielded relatively lower penalty when r C2 4  >  10 

or r c 2 3  > 5.
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A mean penalty of less than 20% has been observed when the func­

tions account for restoration time as a stochastic variate correlated 

with the period rh. When the stochastic and correlated nature of 

restoration time is not explicitly accounted for the results indicate 

that the penalty for use of {5, 1 hour, 3} is also lower when 5 = 2.

In the absence of explicit reckoning of stochastic restoration times, 

the penalty for use of {5, 8  hours, 3} can be under 20% if the time to 

shift in the process mean is truly an Erlang(A, 3) variate and 5, r C2 4  

and r C2 3  are all greater than or equal to 1 . Use of {n =  5, k = 3} 

most appreciably reduces the probability of detecting the OOC state 

if 5 < 2 .

6.2 Possib le  E x ten s io n  of T h is  R esearch

There is need for further investigation of the nature of the relationship 

between the restoration time and the period for which the process is 

monitored by the x-chart. Further research is also required to deter­

mine the distribution which best models these stochastic restoration 

times.

Further work can be done to investigate any advantages of using 

distributions different from the Erlang as the basis for the probability 

function for the number of samples taken for the duration of the cycle. 

It may become necessary to provide numeric values for all the parame­

ters before closed solutions will be obtained. Efforts can also be made 

to extend the use of this probability function to process improvement 

using other types of control chart.
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General results have been given for the expected length of the OOC 

period based on the exponential distribution; the expected restoration 

time and the expected number of samples taken for the duration of the 

cycle. These have all been based on statistical distributions which have 

scale and shape parameters. There is scope for research into the use 

of parameter estimation techniques such as calibration or non-linear 

estimation to determine the values of these distribution parameters.

The results of this research have particular relevance to the man­

ufacturing sector. However, the UK economy possibly typifies the 

economies of other countries in becoming increasingly service oriented. 

There is scope for use of statistical tools such as the 5-chart in the 

service sector. This needs further investigation in order to optimise 

its use in this sector. Hence, this research can be extended to deriv­

ing objective functions which could be used to select optimum control 

chart parameters for the service sector. This will have to follow from 

consideration of whether the cost and technical parameters used for 

the manufacturing environment are relevant to the service sector.

6.3 Conclusions

In this study relatively large values of n* and h* have been found 

optimal for 5 < 1. It may not be practical to make use of such values. 

However, use of sample sizes which are less than five is not an economic 

optimum if 5 < 1 . The 5-chart must be concurrently used with other 

statistical tools such as the range or cusum chart if 6 < 1  and use of 

n > 1 0  is not feasible.
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There are processes for which an inverse relationship between repair 

rate and the period of surveillance by the control chart holds true. 

In such cases, it is important tha t this is accounted for in ECPTU 

functions used to select optimum design parameters. It is particularly 

crucial that this is done for r c 2 3  or r c 2 4  <  1 .

Values of <5, r c 2 3  and r c 2 4  should be used to guide selection of n, 

h, and k for a process. As a result, the penalty of increased hourly 

for use of these design parameter values can be reduced. The penalty 

could be less than 1 0 % if the repair rate truly is an inverse function of 

the control chart’s surveillance period and the repair time is an Erlang 

variate.

If there must be successful implementation of use of the objec­

tive ECPTU function for selection of optimum design parameters the 

production environment must be adequately prepared. This prepa­

ration must be based on a TQM programme which promotes self- 

improvement for the entire work force. Thus they will be more adapt­

able to the changes which become necessary for implementation of the 

ECPTU.

Research done by Lockyer et al [50] has revealed limited usage of 

statistical methods of quality control in the UK manufacturing indus­

try. The major barrier to acceptance of SQC in this region is a lack 

of knowledge of effective steps th a t must be taken to improve qual­

ity [50]. Before steps can be taken to implement the economic design 

of the cc-chart this barrier will have to be surmounted.

172



6 A  R ec o m m e n d a t io n s

Selection of optimum design parameters using ECPTU objective func­

tions should follow a careful long term study of the process to which 

the values will be applied. This study should provide estimates of 

cost and technical parameters which will be input to the function. 

The study should also seek to determine any relationship between the 

restoration period and the surveillance period. Figure 6.1 summarises 

recommendations for choosing the approporiate ECPTU function used 

to obtain optimum design parameter values.

Figure 6 . 2  summarises recommendations for selecting design param­

eters based on values of 8, r c 2 3  and r c 2 4  if facilities for use of ECPTU 

function are unavailable. The results of this study indicate that n =  5 

and k =  3 are best used when 8 — 2.

For a 50% reduction in £, n should be increased by 100% and k 

decreased by 1 0 %.

Use of h =  8  hours is best for r c 2 3  or r c 2 4  < 1. Use of h = 1 hour is 

best for r c 2 3  > 5 and r c 2 4  > 1 0 . For 1 < r c 2 3  <  5 or 1  <  r c24 <  10, use 

of h = 3 hours will lessen the penalty for use of suboptimal values.

In the absence of facilities for minimising ECPTU functions, changes 

in h may be used as the basis for selecting n  and k. Figure 6.3 sum­

marises recommendations for such selection.

The cusum chart could be used in conjunction with the x  and range 

charts, particularly when 8 <  1 and use of n >  5 is not feasible. Such

173



use of the charts will facilitate a shortened OOC period.

Repair'"^ 
time dependent on, 
V  rh

No

Yes

^-'"'Repair \  
time distribution 
''- '\k n o  wn

No

Yes

No

Yes

No

Yes

Are all other input 
\v a lu e s  known V

distribution ofIC  
vperiod known V"

Study the process

Assume Erlang with 

shape parameter = 2

Input values and mini­

mise function

Optimum results 
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U se ECPTU from

Chapter 4

U se ECPTU in 
Chapter 3

Assume Weibull

with shape parameter 
not equal to 1

Select (n, h, k) based

on shift coefficient 

and cost ratios.

Figure 6.1: Summary of recommendations for choosing the appropri­

ate ECPTU function.
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Figure 6 .2 : Recommendations for selecting n, h and k based on cost 

ratios, r c 2 3  and r c24, and the value of the shift coefficient, 5.
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Figure 6.3: Recommendations for selecting n  and k based on changes 

in h.
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A p p e n d ix  A

N o ta t io n  U sed  by L orenzen  

an d  V ance [51]

A . l  O u tp u t  an d  C a lcu la ted  Variables

i  A
—  eh A

T “  (l-e-(^))A 
1

S ~  ehX(1 -  e - W )

ARL1 =  average run length while in control 
1_ 
a

a  =  Pr(exceeding control limits—process in control)

when the measured statistics are independent

ARL2 =  average run length while out of control 
1

— - — — when the measured statistics are independent 

f3 = Pr(not exceeding control limits—process is out of control)
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-" f
4
i

A .2 I n p u t  Variables

mean time process is in control.
A =  number of standard deviations slip when out of control.

E  =  time to sample and chart one item.

To =  expected search time when false alarm.

T\ — expected time to discover the assignable cause.

T2 =  expected time to repair the process.

A =  lif  production continues during searches

=  Oif production ceases during searches.

8 2  = lif  production continues during repair

=  Oif production ceases during repair.

C0 =  quality cost per hour while producing in control.

Ci =  quality cost per hour while producing out of control(> Co).

Y  = cost per false alarm.

W  =  cost to locate and repair the assignable cause.

a = fixed cost per sample.

b =  cost per unit sampled.
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A p p e n d ix  B

D eriv a tio n  of O b jec tiv e  

F unctions in  C h a p te r  3

B . l  D er iv a t ion  of m \ for E r lan g  var ia tes

i represents the number of samples taken for the duration of the IC 

period. We assume tha t i is an Erlang variate with scale parameter A 

and shape parameter (3.

We use the distribution function for an Erlang variate given in [38] to 

produce

=  t  -  ™-Hi+1)h (g j
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Thus, for (3 — 2,
oo

m \ = (ie~Xth (1 +  ihX) — ie~x l̂+l ĥ (1 +  (i +  l)hA))
i-0
oo

=  Y .  (ie~Xih(! +  ih0 -
i = 0

For (3 = 3,

m  i

Y  ( i e - * +1»  ( l  +  (i +  l ) h \  +  (('  + 12)hX)2

= E (ie' AiA (i +ihX + ̂ Y~) 0 - e~M)) -
Y  (e~xhie-Mk(\h + »(A

e ~ Xih( l  — e ~ xh) can be regarded as the probability function for a geo­

metric variate which has parameter (1 — e~Xh). W ith x' as the dummy 

variable the moment generating function — denoted as m (x')— for

this probability function is as follows
Px ( i _  P~{hX)\ 

m ( * ' )  =  !  _  e - ( />A )+ x  ( R 1 )

This m.g.f. was differentiated repeatedly to produce moments about 

the origin. Differentiation routines in the package Mathematica were 

used.

The moments about the origin produced by Equation B .l are as 

follows

ie~Xih
e^ h

ih (■* _  .-A/A _  C
\ ) ~  (1 — e~Xh)

i V * “ ( l - e - Xh)  =  e~ ^ (1V J (1  _  e -Afc)2

■3 - A ih ( 1 _  - A h \  _  c  ^
V  e ) ~  (1 _  e-Ah)

e~Xh(l +  4e~A/l +  e-2A/l)
A/i\3
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Substitution of the respective moments about the origin yield the fol­

lowing expressions.

For p = 2
e-A h e~Xh(l +  e~Xh) e- 2 \h

=  7 1  — \ h \  ~ b  ^  71_____\ h \o —‘(1 — e“ A/l) (1 — e~Xh)2 (1 — e Xh)2
"A/l '  Ah

1 +(1 -  e~Xh) \  (1 -  e~Xh)

For (3 = 3,

777,1 =

e~Xh i ^ e _A/l(l + e “A/l) t (Ah)2e“ A/l(l +  4e”A/l +  e~2A/l) 
_1_ —    (_

(1 — e~Xh) (1 — e“A/i-)2 2(1 — e A/l)3

W, e~" y + (A W - 2M (1+ e- M>(1 -  e~xh) J v '  (1 -  e- A/l)3 2 ^(1 -  e~A/l)

( - e - ^  +  ^ x  +  e - ^ ^ )  h2 A2 1 +  F T f W  -  2eM (»a_ * (hA)) 
2  (i _  e~DA))3 ehX (1 — e~(h>3)

B.2 D er iva t ion  of £'(5)

S  is the random variable representing the period for which the process 

is out of control. The derived density function for this variable is shown 

below.
\ p —X ( m h —s )  /  /  r o ]  \ \

=  i  _  e —a/ i  " ^ n O -  ~  ^ u ) m ~ l u  ( m  -  [ I n t  -  +  1  j J

for m h > s > (m — 1 )h. m  is the number of samples taken for the 

duration of the OOC period.

Now E{ S )  = sg(s)ds .

00 A p _ A m / l r v n  f l  — O ' n  l m_1 rmh 
E(S)  =  Y  —   1 ° ll) --------  /

K ’ m=\ 1 — e
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r hi h SeXSdS =  (m h { l -  e~xh) -  j(- e - ^ )  +  /ie-M)
\ e Xmh /  . . .  1

r(m—l)/i

Therefore, the expected length of the OOC period when time to 

shift in the process mean is an Exponential variate is

^  A e - ^ a u C  -  
{ > ~  P ,  1 — e~xi1 A *m = 1

^m h( 1 — e A/l) — i ( l  — e A/l) +  he A/l̂

£  — -  e~Xh) - 1(1 -  e_A/‘) + h e ~ X H )
\ m —1Lqm  ~  uni,

1   a —A/i
m = l

h 1 he~Xh
a n  A 1 — e~Xh
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A p p e n d ix  C

D eriv a tio n  of C h a ra c te r is t ic  

F ea tu res  of R

C .l  S u m m atio n  of P(R  =  r) over all R

R  is the random variable representing the number of samples taken 

for the duration of the cycle. We recall tha t when the IC period is 

assumed to be an Erlang(A, 2 ) variate the expression for P ( R  = r) is 

as follows
r- l  . r(i+i)h

P ( R  =  r) =  £ ° n U - « u r - W  - j j d t
• rv J i l l  &t= 0

This equals

Thus P ( R  = r )

=  ( 1  -  a n  ( l  -  Q g  -
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( 1  -  a „ r 1+r a n  hA A ^ A )

ehx

(1 -  au )-1+r an (l -  e " ^ )  ( ~g (1 ~ ^ P < )

We assume (1 —an) e;i*
given by Prudnikov et al [61] yields

r —1 (  p - { \ h )

£

< 1. Application of the results for finite sums

i= 0 1  -  a n
1 -

/ e ( - A / 0 \ r
V 1—a n  /

1 / e ( - A h ) \
-L

\  1 —a n  )

-  V1- ^ /  ( * - (£ £ ) )
Thus,

P fH -r l  -  I1 -  e~(AA) ~ M l  ( - e~('lAr) + t1 ~ «u 
( 1 ~  i _ e- ( M - a n

(! _  e-(**)) U a n

( 1  — e~(/lA) — a n ) 2

( l  _  e-(/lA)) h A a n  (V(/*A)-/>Ar r  -  

( 1  — e~(hX) — cm ) 2

klence we have P ( R  — r)

( l  -  e ~ (/lA) -  pA) (-e“^ Ar) + (1 -  an )r) au
1  — e~(hX) — a n

(* _fA \l\a

+

x
( l  — e” ^ Â  h A

( 1  — a n  — e~(hX})2
f  (1  — a n )  _  e _ ( h \ ) - h \ r  __ (1  — Q-'ll) r  _j_ g - ( / i A ) - / i A r  ^ \  
y  ehX e h X r  J

In order to sum P ( R  = r) over all R  we use the following results.

1 — a n
53(1 -  a n ) 7
r = l a n
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^ p e(-kAr)
r = 1

oo p - ( h X )

Y , r e l - h Ar)

e ~{hX)

1  -  e-(^A)

e"
rt l  ( l - e - ( ^ ) y

Substitution of the results yields

E ”  i P (R  = r)

1 — — h \ e^ ~Xfl  ̂ ( 1 — a n  e ( ~ A/ l )

1  — e(~A /ll — ai
a n  (l — e- ^ )  j  /i A

x

e A/l(l — a n )  f  e Xh \ 2 e 2Xh ( 1  — a n )e  xh 
+a u  \ ( 1 ~ e~Xh) J ( 1  — e Xh) ( 1  — e~Xh)'

/1  _  e( A/i) _  ^ e( A/i)\ /1  _  e( A/i) _  Qj11\

“n V J V a ( l - e ( - ^ > )  J +
a  ( l  - e - (/,A)) ft A 

( 1  — a n  — e~A/ i A ) ) 2

f e'
(-A/i) |( l - e (-A/i)']i ( 1  — a n )  — 2A^ a n  1(l -  e("A/l))

I
a  i(l — e,-(AA)jI h A

a n  ( 1  — e(-A/9 ) 2  

a n  e(~2Xh') — a n  e^"A/î 4- a^e^- ^
( 1  — a n  — e~ ( / l A ) ) 2  \  a n  ( 1  — e( ” A / l ) ) 2  )

Thus,

E £ i  P ( R  =  r) =

\he (~Xk'>
1 “  —  ̂ X h )  +

Ji\ e(~Xfl) ( l  — a n  — 2ê -~Xh') +  2 a n  e^~xh  ̂ +  e^~2Xh^

( 1  — e(~A/l)) ( 1  — a n  -  e( “ A / l ) ) 2  

h \ e ^~Xh) a n  e(_2A/l) — a n  e(-Afc)+ a u e (- 2 Afc))

( 1  -  e(“A/l)) (l -  a n  ~  e( ~ A / 1 ) ) 2  +
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h\e( (aue(  A/ d  — Q f n +  0512) 

( l - e ( - ^ ) ) ( l - a n - e ( - ^ ) ) 2

Hence, X)£Li P{R  = r) — 1 since ( l  — a n  — e (hX^  =  

1  - 2 a u  +  a \ x -  2e~Xh + 2 a n  e~Xfl + e~2Xh

C.2 T h e  M o m e n t G en e ra tin g  F u n c tio n

We will now outline the steps in the derivation of m (x '), moment 

generating function for the probability distribution function for the 

variate R. x' is used as the dummy variable.

m[x') =

~  , IXi 1 •. (  h A f l  — e~^hXA (1 + h iX )

r =  1 i= 0  \

When r  =  1, i — 0. Therefore,

m(x') ~  ex>a n  ( l  — e~^hX  ̂ — X he~<<hX̂

When r =  2, i =  0 or 1. Therefore,

mix')  =  e2x' ( a n ( l  — a n )  ( l  — e“ /̂lÂ — A 4- 

e2x' ( a u  ( ( 1  -  e- (',A))e-(',A)(l +  hX)

When r  =  3, i — 0, 1 or 2. Therefore,

(xr) = e3x' ( l  — e~xh — Xhe~xh ĵ a n ( l  — a n ) 2 +

e3x' ( ( l  — e~A/l) e“ A/l(l +  A h) — X he~^2Xh^  a n (l -  a n )  +  

e31' ( ( l  -  e~Xh) e~2Xh(\ + 2  Aft) -  A a n
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When r  = 4, i = 0, 1, 2 or 3. Therefore,

m(x') — e4x> ( l  — e~Xh — A he~ Xh)  a n ( l  — a n )3 +

e4x> ( ( l  — e~A/l) e~Xh(l  4- A h) — A he~^2Xh^  a n (l — a n ) 2  +  

e4*' ( ( i  _  e - M )  e~2Xh(l +  2 A h) -  A /ie~<3A'‘>) a u ( l -  a n ) +  

e41' ( ( l  - e - xk) e - 3Xk(l + 3 \h) -A  / ie -(4A*>) a n

Summation over all values of R  yields 

m(x /) =

+

+

+

+

+

+

+

1  — e - X h A he~Xh) x 

ctuex' + o!11(l — a u ) e2x' +  . . .  +  a u (l -  a u ) ' * ^ 1̂ )

( l  -  e -A/l) e - xh{l + Xh) -  A/ie~(2A'‘>) x

a u e 2x' +  a a (l -  a n ) e3x' +  . . .  +  « u ( l  -  a n ) ’ e " +2)x')

( l  -  e 'A /l) e- 2 Ah(1 +  2 A ft) -  A /i e~(3A x

a u e 3*’ +  « u (l — “ 1 1 ) e4x' +  .. • +  a u (l — a n ) ’ e^+3'1’)

( l  -  e~xh) e~3Xh(\  +  3 A ft) -Xx

a u e 4 1  +  a n ( l  — a n )  e3x +  . . .  4- a n ( l  — a n ) 4 e^4 4 *4 ^1  ^

( l  -  e~xh) e~*Aft(l +  4 A ft) -  A ft e“ (5Afc>) x

otne5x' +  a n ( l  — a n )  e3x' +  . . .  +  a u (l — a n ) 11 ê 44-5'1’)

( l  -  e~xh)e - ^ " 1) A A ( 1  +  (r -  1 ) A ft) A ft x

a n e r l ' +  a u (l -  a i l )  e(1+r)j;' +  ■ • • +  a u (l -  a u ) 'e (,+' )‘ ')

for q — 0 . . .  oo. Further series summation gives 

m{x') —

a / i  a j - \ h . \  a n e ®^1 — e Xh — A he Xh)
1  -  ( 1  -  a u )e 
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((! _ e-*») e~xll(l +  X h )  -  X h  e ~̂+

( fl  -  e-xh) e~2Xh(l +  2 Xh) -  X h e - ^ V )  - ?-- 3*   7 +
w / ' 1 -  (1 — a u ) e x

( ( l  -  e-**) e - 3A'‘(l + 3 X h )  — X h  e -  + . . .

((l -  e~xh)e-(’- 1)A'*(l + (r -1) X h  -  +

Thus 

m (x f) =

^ a i i e ^  (1  e _  ^  g x ' -A / i  +  g 2 ( x ' - A / 0  +  ^ { x ' - X h ) _ j_  < _ _ j_  ^ ( x ' - X h )  _ j_  _

/  a n  A he( ) \  / ^  ^x'-Xh _j_ g2 (x'-A/i) ^(x'-A/i) eq{x'-\h) _j_
\ 1  -  (1  -  Q J n J e ^ y  '

One A fc(l — e  ̂ / x ' -A / i  _j_ 2 g2 (®'-A/i) _j_ g e3(x'-A/i) _{_ _ _ _j_ q eq{x’-Xh)
1 — (1  — a n )  e x/ ^

which equals

/  a u ex/(l — e~A/l) \  /  1

\ J  -  (1 -  cni)ex' j  VI -  ex'-\h
Cinex' \  / Ahex'~XH(l — e~Xh) \ h e ~ Xk

+

1  — ( 1  — a u ) ex' J \  ( 1  -  ex'~Xhf  ( 1  -  ex'~Xh)

Thus, when the time to shift in the process mean is an Erlang(A, 2) vari­

ate, the moment generating function for the variable R  can be written 

as follows

l+eg/̂ h A

m{x')

xi / 1 _e-(fcA) x . .
' I l - e - ( ?lA)+r e/!A ( i _ e-(/iA)+x/ ) 2 I 11

1  -  ex> ( 1  -  a n )

C.3 N ega tiv e  M o m en ts  a b o u t  th e  O rig in

We will now outline steps in the derivation of the negative moments 

for the variable R  when the IC period is an Erlang(A, 2)variate.
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In order to obtain negative moments we use the following results of 

series summation presented by Prudnikov et al [61].
oo k
E j  =  - i o g ( i - z )
k= 1

oo r k
E u  =
k= 1 K

Lin(x) — PolyLog(n, x)

r(«)
for [n >  2 , |a;| <  1 ; n  =  1 , — 1  <  x < 1 ]

For \x\ < 1
^  x k rx , . l  — t

&  -
— PolyLog(2, x)

t

Now,
/  1 \  "

E (*"*) = E  (-) P(R r)
r- 1 w  '

for g — 1 , 2 , . . .  oo. We recall that

( l  -  e-<AX> -  J& ) (—e-</lAr> +  (1 -  a u )r) c*„
— r ) — +

+

1  — e~(h^  — a n  
( l  — e~(-hX̂  h X a n  ^—e-(hX)~hXr +  Iko^iLLj

( 1  — e~(hX> — a n ) 2  

( l  — e“ ^ Â  hXotu (̂e~(hX)~hXr r — ^ 7 --) 

( 1  — e~^hX  ̂ — a n ) 2

Derivation of the first negative moment, E ( R  x) uses the following 

results
00 p —h \ r

E   =  - lo g ( l  -  e~hX)
r = l  r
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E ( 1  =  - M a n )
r = l  r

Therefore E{R~l )

( l  -  -  2*^) (]0g (l “  e~hX) ~  lo g (a n ))  cru
1  — e~(hX) — a n

4*

a  ( l  — e (/iA)) /i A
x

( 1  — a n  — e- ^ ) ) 2

(  _/ _/x e"(/lA) ( l  -  a n  -  e“ (/lA))
f - e  log(an) +  e (/lA)l o g ( l - e  h ) --------------  _ e_{hX)-------- -

which gives

E ( R  A) =  a u  (i _  e-(hx) _  a n ) )  +

/ ( l  -  e~(/tA>) h A log(- ea~ f - ) ( l  -  e~(kX  ̂ -  |A )  Iog(^ ~ -- ) \  

t t l 1  y eftA ( 1  — e“ (/lA) — a n ) 2  +  1  -  e“ (ftA) -  a u  J

Derivation of the second negative moment, E(R ~ 2) uses the following 

results

00 p —h \ r

E — r -  =  PolyLog(2 ,e - '>A)
r = l  r

E  ^ ~ | -l)r =  PolyLog(2 , ( 1  — a n ) )
r = l  T

Therefore E (R ~ 2)

( l  -  e“ (/lA) -  ^ r )  ( —PolyLog(2, e- ^ )  +  PolyLog(2, ( 1  -  a n ) ) )  a u
1  — e- (/lA) — a n

f y p - ( ^ A) ( 1  —  p — h \
 —   A--------- — L —  (—PolyLog(2, e " (/lA)) +  PolyLog(2 , 1  -  a n )) +

( 1  — a n  — e_ tftAJ) v

a  ( l  -  e“^ A)) h A / s
 —     p f l  — QJn — e (hXA  log(l — e ))
(1 - a n - e - M ) 2  V J ;
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which gives

(  ( l  — e (hXA h A logfl — e (ftA) ) \
=  * * “  [-  1 -  e - ( ^ )  -  a u   +

( l  — e (/iÂ ) h A (—PolyLog(2 , e t ^ )  +  PolyLog(2,1 — a n ) )  \
e h \  ^  _  e - ( h \ )  _  o/ x l ) 2  J

' ( l  -  e - { h X )  _  A A )  (-P o iy L o g (2 ,e -^ A)) +  PolyLog(2,1 -  a n ))

1  — e“ (/lA) — a n
a n

Derivation of the second negative moment, E {R  3) uses the fol­

lowing results
oo p —h  X r

E — r ~  =  PolyLog(3,e"/lA)
r = 1 r

 f^IlL =  p 0 lyLog(3, ( 1  -  a u ))
r = 1 V

+

Therefore E ( R  3)

( l  -  e-<AA> -  p ir)  (-PolyLog(3,e“ ^ A)) 4  PolyLog(3, (1 -  a n ) ) )  <*n
1 — e “ ^ lA l — a n

pj  p ~ ( h  A) (i — /, a
—   1 —  (-PolyLog(3, e“ (/lA)) 4  PolyLog(3,1 -  au)) -

( 1  -  a n  -  e“ (/lA)) J
a  ( l  — e_(/lA)) h \  . . .v
—A 4 - 5  ( l  -  a u  -  e (,lA)) PolyL°g(2 ,e  (,lA))
(1 — an — e~vlX>) v 7

which gives

0 /  ( l  — e~(hXA h A PolyLog(2 , e_^ AD \
£( iT)  = au j _ e-(*A) _ j  +

( l  — e ^ Al) /iA PolyLog(3, e (/lA)) 4  PolyLog(3 , 1  — a n ) )  \  

ehX ( 1  — e~(hX>> — a n ) 2 y

' ( l  -  e“ ^ A) -  ^ r )  PolyLog(3, e_(/lA)) +  PolyLog(3 , 1  -  a u ))
1  — e_(/lA) — a na n
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Thus, we derive the following general result for E (R ~ q)> when the 

time to shift in the process mean is and Erlang(A, 2 ) variate. For 

q > 2  the general result is

I  ( l - e " ^ )  h A PolyLog((g — 1 ), e~(hx^)\
E{R } = M ------------- 1  - e ~ ( ^ ~ a u ---------------- r

( l  — e /̂lÂ  hX  PolyLog(q,e ^ A)) +  PolyLog(g, 1 — a n ) )  \
eh\ ( i  _  e-(h\) — a n ) 2 J

f ( l  -  e~(/lA) -  |rx )  (-PolyLog(g, e“ ^A)) +  PolyLog(g, 1 -  a n ))
1  — e~(hX) — a nocn
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A p p en d ix  D 

D a ta  se t used  to  assess th e  
E C P T U  functions

In Table D.2, 

rav represents J in E(Zi)  and E ( Z 2)- 

rva represents -  in E(Zs)  and E ( Z 4).

203



Input Data [28]
No. 5 A c2 d c3 c4 b e
1 2 . 0 0 . 0 1 1 0 0 . 0 0 2 50 25.0 0.5 0 . 1

2 2 . 0 0 . 0 2 1 0 0 . 0 0 2 50 25.0 0.5 0 . 1

3 2 . 0 0.03 1 0 0 . 0 0 2 50 25.0 0.5 0 . 1

4 2 . 0 0 . 0 2 50.00 2 50 25.0 0.5 0 . 1

5 2 . 0 0 . 0 1 1 0 0 0 . 0 0 2 50 25.0 0.5 0 . 1

6 2 . 0 0 . 0 1 1 0 0 0 0 . 0 0 2 50 25.0 0.5 0 . 1

7 2 . 0 0 . 0 1 1 0 0 . 0 0 2 50 25.0 0.5 0 . 1

8 2 . 0 0 . 0 1 1 0 0 . 0 0 2 0 50 25.0 0.5 0 . 1

9 2 . 0 0 . 0 1 1 0 0 . 0 0 2 5 2.5 0.5 0 . 1

1 0 2 . 0 0 . 0 1 1 0 0 . 0 0 2 500 250.0 0.5 0 . 1

1 1 2 . 0 0 . 0 1 1 0 0 . 0 0 2 5000 2500.0 0.5 0 . 1

1 2 2 . 0 0 . 0 1 1 0 0 . 0 0 2 50 25.0 5.0 0 . 1

13 2 . 0 0 . 0 1 1 0 0 . 0 0 2 50 25.0 0.5 1 . 0

14 2 . 0 0 . 0 1 1 0 0 . 0 0 2 50 25.0 0.5 1 0 . 0

15 2 . 0 0 . 0 1 1 0 0 0 . 0 0 2 50 25.0 0.5 1 . 0

16 1 . 0 0 . 0 1 12.87 2 50 25.0 0.5 0 . 1

17 1 . 0 0 . 0 1 128.70 2 50 25.0 0.5 0 . 1

18 1 . 0 0 . 0 1 12.87 2 500 250.0 0.5 0 . 1

19 1 . 0 0 . 0 1 12.87 2 50 25.0 5.0 0 . 1

2 0 1 . 0 0 . 0 1 12.87 2 50 25.0 0.5 1 . 0

2 1 0.5 0 . 0 1 2.25 2 50 25.0 0.5 0 . 1

2 2 0.5 0 . 0 1 225.00 2 50 25.0 0.5 0 . 1

23 0.5 0 . 0 1 2.25 2 500 250.0 0.5 0 . 1

24 0.5 0 . 0 1 2.25 2 50 25.0 5.0 0 . 1

25 0.5 0 . 0 1 2.25 2 50 25.0 0.5 1 . 0

Table D .l: D ata set [28] used to assess the ECPTU functions.
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Input Data —  randomly generated
No. P V ^ a v a ^ v a

1 2 0.5298220 0.5265320 0.0872807 0.5265320
2 2 0.0518233 0.6027140 0.0204792 0.6027140
3 3 0.1641580 0.7762780 0.0165538 0.7762780
4 3 0.8702740 0.9144380 0.0113101 0.9144380
5 3 0.8625510 0.0536381 0.0854982 0.0536381
6 4 0.5298220 0.5265320 0.0872807 0.5265320
7 2 0.0518233 0.6027140 0.0204792 0.6027140
8 2 0.1641580 0.7762780 0.0165538 0.7762780
9 3 0.8702740 0.9144380 0.0113101 0.9144380
1 0 3 0.8625510 0.0536381 0.0854982 0.0536381
1 1 2 0.5298220 0.5265320 0.0872807 0.5265320
1 2 3 0.0518233 0.6027140 0.0204792 0.6027140
13 5 0.1641580 0.7762780 0.0165538 0.7762780
14 2 0.8702740 0.9144380 0.0113101 0.9144380
15 5 0.8625510 0.0536381 0.0854982 0.0536381
16 2 0.5298220 0.5265320 0.0872807 0.5265320
17 5 0.0518233 0.6027140 0.0204792 0.6027140
18 3 0.1641580 0.7762780 0.0165538 0.7762780
19 2 0.8702740 0.9144380 0.0113101 0.9144380
2 0 5 0.8625510 0.0536381 0.0854982 0.0536381
2 1 5 0.5298220 0.5265320 0.0872807 0.5265320
2 2 2 0.0518233 0.6027140 0.0204792 0.6027140
23 4 0.1641580 0.7762780 0.0165538 0.7762780
24 4 0.8702740 0.9144380 0.0113101 0.9144380
25 5 0.8625510 0.0536381 0.0854982 0.0536381

Table D.2 : Additional data, randomly generated, used as input values 
for the ECPTUzi.
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A p p en d ix  E

R esu lts  from  ECPTUai, 
ECPTUh an d  ECPTUc
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Output D ata —  ECPTUal
No. r(4 ,0 .5 ) £*(4,1) ft* (4 ,8 ) ft*(5, 0.5) **(5,1) ft*( 5,8)
1 3.55670 3.34130 2.41549 3.86100 3.43286 2.738810
2 3.48214 NA 2.37955 NA 3.31032 NA
3 3.76976 3.50087 2.58855 3.90390 3.64157 2.777920
4 3.64874 3.37272 2.44963 3.78564 3.51812 2.650000
5 3.14953 2.84625 1.99593 3.30468 3.01838 2.114270
6 2.76561 2.44514 1.42897 2.94309 2.64642 1.726220
7 3.72592 3.45464 2.54569 3.86100 3.59723 2.738810
8 3.72213 3.45073 2.54127 3.85738 3.59345 2.734740
9 3.26694 2.96973 1.99593 3.41680 3.13437 2.236820
1 0 4.14475 3.89811 3.06568 4.27400 4.03005 3.224590
1 1 4.53809 4.31357 3.55884 4.66656 4.44193 3.697290
1 2 3.72581 3.45458 2.54568 3.86099 3.59717 2.738800
13 3.72583 3.45460 2.54568 3.86099 3.59717 2.738800
14 3.72492 3.45412 2.54561 3.85989 3.59659 2.738720
15 3.26695 2.96973 1.99593 3.41673 3.13438 2.236820
16 3.42455 3.17496 2.27664 3.51700 3.26732 2.372760
17 2.99451 2.70665 1.61607 3.08788 2.80092 1.727720
18 3.81722 3.59623 2.83145 3.90904 3.68727 2.920800
19 3.42374 3.17452 2.27657 3.51629 3.26688 2.372680
2 0 3.42390 3.17460 2.27658 3.51629 3.26688 2.372680
2 1 3.30294 3.07822 2.28653 3.35409 3.12918 2.337580
2 2 2.43742 2.13038 0.84191 2.49385 2.18797 0.919506
23 3.76123 3.56896 2.92278 3.80350 3.61027 2.960760
24 3.29835 3.07573 2.28611 3.34955 3.12672 2.337170
25 3.29926 3.07623 2.28619 3.34955 3.12672 2.337170

Table E .l: From E C P T U ai, the optimum values of k when n — 4  or 
5 and h — 0.5, 1 or 8  hours.
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Output D ata —  ECPTUai
No. n*(0.5) n*( 1 ) n*( 8 ) h*{ 5) h*( 4)
1 2 3 7 9.053650 6.951500
2 2 NA 8 5.279920 4.273780
3 1 4 7 3.884360 3.223980
4 2 3 7 6.275500 5.291540
5 4 5 9 6.484640 3.736860
6 6 8 1 1 5.940330 2.446570
7 2 3 7 9.053650 6.951500
8 2 3 7 9.018260 6.912820
9 2 3 7 8.844980 6.700450
1 0 2 3 7 10.669300 8.790460
1 1 1 2 7 17.701900 16.148500
1 2 2 3 7 13.283900 11.588300
13 1 1 5 13.283900 10.961700
14 NA NA 2 25.136700 22.050800
15 2 3 7 7.925560 5.519580
16 2 3 13 4.342430 3.375950
17 4 7 23 1.358080 1.044550
18 1 3 13 6.474090 5.199780
19 2 3 13 9.837920 8.109720
2 0 NA 1 6 9.837920 7.377990
2 1 NA 2 16 4.305830 3.680370
2 2 1 2 2 1 79 0.332768 0.276582
23 NA 1 1 2 9.265060 8.381020
24 NA 2 16 15.338600 15.618100
25 NA NA 3 15.338600 12.703600

Table E .2 : From E C P T U ai for k = 3, the optimum values of n when 
h — 0.5, 1 or 8  hours and optimum h when n =  4 or 5.
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Output D ata —  E C P TU ai
No. E C P T U ( n * ,h \ k * ) k* h* n*
1 33.23410 3.15169 10.92730 8

2 33.25870 3.15642 6.15540 8

3 33.26990 3.15485 4.40184 7
4 16.78310 3.14665 6.99594 7
5 330.54600 3.05555 8.89577 1 0

6 3303.27000 3.01966 8.52838 1 2

7 33.23410 3.15169 10.92730 8

8 31.95890 3.15119 10.89750 8

9 33.16580 2.35483 10.64400 6

1 0 33.74970 3.80004 11.09600 1 0

1 1 38.75260 4.33410 11.26920 1 2

1 2 33.57850 3.08425 14.69410 8

13 33.63320 2.41776 14.39370 5
14 34.99500 1.44046 20.02790 2

15 331.22500 2.35319 9.97254 6

16 4.49756 2.74866 19.51320 19
17 42.90070 2.72198 12.12630 25
18 5.02463 3.44047 20.41240 25
19 4.68831 2.71190 26.45660 2 1

2 0 4.91533 1.93514 28.02810 8

2 1 1.00625 2.34209 39.87440 38
2 2 75.26540 2.33602 13.14120 79
23 1.51851 3.10292 55.57960 59
24 1.10474 2.28524 52.31330 43
25 1.29407 1.45241 51.10310 7

Table E.3: The minimum E C P T U ai and optimum combination of n, 
h and k.
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Output D ata —  ECPTUb
No. **(4,0.5) **(4,1) **(4,8) k*(5,0.5) **(5,1) *•(5,8)
1 3.34992 3.05764 2.098430 3.49617 3.21721 2.32941
2 3.20633 2.90649 1.929950 3.35849 3.07449 2.17664
3 3.12074 2.81659 1.830000 3.27687 2.99011 2.08629
4 3.35164 3.05967 2.100180 3.49761 3.21885 2.33062
5 2.85513 2.53866 1.532560 3.02664 2.73243 1.81912
6 2.32274 1.98889 0.959325 2.53417 2.23048 1.30552
7 3.34992 3.05764 2.098430 3.49617 3.21721 2.32941
8 3.34915 3.05701 2.096750 3.49540 3.21662 2.32795
9 2.85506 2.53862 1.532560 3.02657 2.73239 1.81912
1 0 3.80587 3.53990 2.649810 3.93915 3.67936 2.83423
1 1 4.26031 4.02115 3.218130 4.38846 4.15070 3.36744
1 2 3.34956 3.05745 2.098400 3.49582 3.21703 2.32938
13 3.34963 3.05749 2.098410 3.49582 3.21703 2.32938
14 3.34674 3.05596 2.098190 3.49236 3.21522 2.32914
15 2.85510 2.53864 1.532560 3.02661 2.73241 1.81912
16 3.08243 2.80528 1.772720 3.17387 2.89694 1.87562
17 2.59396 2.26324 0.944730 2.68843 2.36054 1.09188
18 3.54228 3.30552 2.473170 3.63086 3.39290 2.55823
19 3.07972 2.80378 1.772450 3.17117 2.89545 1.87535
2 0 3.08026 2.80408 1.772500 3.17117 2.89545 1.87535
2 1 3.02525 2.78461 1.909320 3.07231 2.83131 1.95641
2 2 2.01073 1.64367 NA 2.06844 1.70419 NA
23 NA NA NA NA NA NA
24 3.00898 2.77547 1.907640 3.05636 2.82235 1.95476
25 3.01213 2.77727 1.907980 3.05636 2.82235 1.95476

Table E.4: From E C P T U b, the optimum values of k when n — 4 or 5 
and h — 0.5, 1 or 8  hours.
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Output D ata —  ECPTUb
No. n*(0.5) n*(l) n*( 8 ) h*( 5) h*( 4)
1 3 5 9 1.414000 1.235910
2 4 5 9 1.003290 0.877253
3 4 6 1 0 0.821433 0.718440
4 3 5 9 1.427200 1.248570
5 6 7 1 1 0.444846 0.388580
6 8 9 13 0.140478 0.122686
7 3 5 9 1.414000 1.235910
8 3 5 9 1.412050 1.234140
9 3 5 9 1.334270 1.159350
1 0 3 5 9 2.062920 1.848800
1 1 2 4 9 5.913780 5.415840
1 2 3 5 9 3.173870 2.884080
13 1 2 7 3.173870 2.635620
14 NA 1 4 9.777120 8.035080
15 3 5 9 0.993478 0.824293
16 3 6 2 1 1.592820 1.274160
17 8 13 31 0.479035 0.380660
18 3 5 2 0 2.610360 2.156790
19 3 6 2 1 3.842530 3.256290
2 0 NA 2 1 1 3.842530 2.933650
2 1 2 5 31 2.238010 1.989390
2 2 25 41 1 1 1 0.129036 0.107723
23 NA NA NA NA NA
24 2 5 31 49.173300 NA
25 NA NA NA 49.173300 100.974000

Table E.5: From E C P T U b for k = 3, optimum values of n when h 
0.5, 1 or 8  hours and optimum h when n — 4 or 5.
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Output D ata —  ECPTUb
No. E C P T U { r i \ h \ k * ) k* h* n*
1 1.80501 3.19083 1.452090 6

2 2.63940 3.18945 1.030660 6

3 3.29659 3.18367 0.841726 6

4 2.00068 3.18630 1.464490 6

5 5.19441 3.19949 0.457970 6

6 15.91310 3.21589 0.146001 6

7 1.80501 3.19083 1.452090 6

8 1.53607 3.19082 1.450100 6

9 1.47063 2.43183 1.345140 4
1 0 4.09524 3.81155 1.568360 7
1 1 26.03740 4.34232 1.885210 9
1 2 3.60297 3.13795 3.433770 8

13 3.52940 2.47201 2.687170 3
14 7.79173 1.51415 5.489710 1

15 10.70420 2.48024 0.843256 3
16 1.07889 2.76623 5.811420 17
17 2.93436 2.77812 1.791700 17
18 3.29387 3.45463 7.367320 23
19 1.60084 2.70216 11.005300 2 1

2 0 2.13553 1.89387 12.328500 8

2 1 0.76267 2.22275 24.181400 44
2 2 6.13384 2.29891 2.052650 46
23 NA NA NA NA
24 0.90762 2.13025 37.862900 53
25 NA NA NA NA

Table E.6 : The minimum ECPTUb and optimum combination of n, 
h and k.
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Output D ata —  EC PTU c
No. **(4, 0.5) A:* (4,1) **(4,8 ) **(5,0.5) **(5,1) **(5,8)
1 3.48969 3.20511 2.264440 3.63111 3.35750 2.48065
2 3.34951 3.05718 2.097780 3.49578 3.21677 2.32882
3 3.26574 2.96895 1.999150 3.41534 3.13333 2.23930
4 3.49000 3.20553 2.264870 3.63128 3.35772 2.48075
5 3.00814 2.69840 1.703910 3.17061 2.88040 1.97322
6 2.48630 2.15677 1.132460 2.68427 2.38282 1.46047
7 3.48969 3.20511 2.264440 3.63111 3.35750 2.48065
8 3.48969 3.20511 2.264440 3.63111 3.35750 2.48065
9 3.00814 2.69840 1.703910 3.17061 2.88040 1.97322
1 0 3.92865 3.66976 2.801200 4.06013 3.80597 2.97554
1 1 4.32847 4.09284 3.301770 4.45674 4.22215 3.44859
1 2 3.48969 3.20511 2.264440 3.63111 3.35750 2.48065
13 3.48969 3.20511 2.264440 3.63111 3.35750 2.48065
14 3.48969 3.20511 2.264440 3.63111 3.35750 2.48065
15 3.00814 2.69840 1.703910 3.17061 2.88040 1.97322
16 3.20747 2.94059 1.961630 3.29960 3.03280 2.06176
17 2.74495 2.43146 1.209430 2.83893 2.52740 1.33875
18 3.61590 3.38246 2.565530 3.70654 3.47222 2.65412
19 3.20747 2.94059 1.961630 3.29960 3.03280 2.06176
2 0 3.20747 2.94059 1.961630 3.29960 3.03280 2.06176
2 1 3.10801 2.86997 2.017070 3.15809 2.91977 2.06744
2 2 2.17246 1.83064 0.150303 2.22969 1.88988 0.26696
23 3.52750 3.32266 2.626520 3.56891 3.36299 2.66358
24 3.10801 2.86997 2.017070 3.15809 2.91977 2.06744
25 3.10801 2.86997 2.017070 3.15809 2.91977 2.06744

Table E.7: From E C P T U c: the optimum values of k for n =  4  or 5  

and h — 0.5, 1 or 8  hours.
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Output D ata —  EC PTU c
No. n*(0.5) n*(l) n*(8 ) h*( 5) h'(  4)
1 2 4 8 1.996870 1.744240
2 3 5 9 1.415360 1.236430
3 4 5 9 1.157760 1.011480
4 2 4 8 2.008390 1.754760
5 5 6 1 0 0.628994 0.549324
6 7 9 1 2 0.198660 0.173487
7 2 4 8 1.996870 1.744240
8 2 4 8 1.996870 1.744240
9 2 4 8 1.886380 1.638080
1 0 2 4 8 2.880450 2.578950
1 1 2 4 8 7.241630 6.611580
1 2 2 4 8 4.481020 4.065680
13 1 2 6 4.481020 3.716070
14 NA 1 3 13.787500 11.286000
15 2 4 8 1.404640 1.164940
16 3 5 18 2.192880 1.749020
17 7 1 1 28 0.673355 0.534622
18 2 4 18 3.213550 2.638140
19 3 5 18 5.163970 4.333330
2 0 1 2 9 5.163970 3.923520
2 1 1 4 26 2.442530 2.108250
2 2 19 32 1 0 0 0.180297 0.150344
23 NA 2 25 3.971720 3.589880
24 1 4 26 10.744900 12.200800
25 NA NA 6 10.744900 9.115960

Table E.8 : From E C P T U c for k =  3, the optimum values of n when 
h = 0.5, 1 or 8  hours and optimum h when n — 4 or 5.
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Output D ata —  EC PTU c
No. E C P T U (n * ,h \h * ) k* h* n*
1 1.126550 3.193200 2.053750 6

2 1.591090 3.190770 1.454630 6

3 1.946720 3.189260 1.190110 6

4 1.122990 3.190080 2.065610 6

5 3.570150 3.193980 0.646718 6

6 11.298100 3.209310 0.204775 6

7 1.126550 3.193200 2.053750 6

8 1.126550 3.193200 2.053750 6

9 1.043230 2.433220 1.903840 4
1 0 1.200830 3.814910 2.192020 7
1 1 1.268720 4.354780 2.322270 9
1 2 2.423630 3.144640 4.854240 8

13 2.374270 2.474930 3.812280 3
14 5.476940 1.519910 7.819950 1

15 7.547020 2.480580 1.192240 3
16 0.608176 2.766950 8.134780 17
17 1.942350 2.779670 2.533220 17
18 0.677744 3.456890 9.310400 23
19 0.987073 2.725440 15.491300 2 2

2 0 1.388350 1.910580 17.234400 8

2 1 0.402516 2.295330 32.268700 49
2 2 4.253980 2.317600 2.971070 48
23 0.468180 2.986430 39.134000 6 8

24 0.513075 2.154820 45.610700 51
25 0.814754 0.977454 78.645800 14

Table E.9: The minimum E C P T U c and optimum combination of n, 
h and k.
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A p p e n d ix  F

R esu lts  from  th e  ECPTXJzi 
(i = 1. . .  4)
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Output D ata —  ECP TU ]
No. E C P T U ( n \ h \ k * ) k* h* n*
1 1.130770 3.19134 2.052820 6

2 1.753920 3.19055 1.462250 6

3 2 . 1 1 2 2 0 0 3.19023 1.196540 6

4 1.137460 3.18805 2.065760 6

5 3.573800 3.19447 0.646698 6

6 NA NA NA NA
7 1.169510 3.19135 2.055500 6

8 1.140070 3.19135 2.053450 6

9 1.043460 2.43425 1.903890 4
1 0 1.241810 3.81511 2.194950 7
1 1 1.708070 4.35593 2.357720 9
1 2 2.482160 3.14485 4.858000 8

13 2.405140 2.47483 3.807490 3
14 5.478780 1.52147 7.768630 1

15 7.551890 2.48069 1.192510 3
16 0.612102 2.77846 8.224230 17
17 2.044610 2.77942 2.538780 17
18 0.867037 3.46010 9.663060 24
19 0.989240 2.70275 15.449700 2 1

2 0 1.393540 1.91043 16.923400 8

2 1 0.409732 2.25704 34.395000 48
2 2 4.290120 2.31373 2.958450 47
23 0.645437 3.00252 49.296900 74
24 0.515693 2.18653 51.236500 57
25 NA NA NA NA

Table F .l: The minimum E C P T U z i  and optimum combination of n, 
h and k.
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Output D ata —  ECPTU Z 2

No. E C P T U { n \h * ,k* ) k* h* n*
1 1.128420 3.19134 2.052650 6

2 1.663530 3.19054 1.458180 6

3 1.996230 3.19029 1.192310 6

4 1.127300 3.18806 2.064570 6

5 3.571240 3.19447 0.646691 6

6 NA NA NA NA
7 1.145610 3.19135 2.053840 6

8 1.132540 3.19135 2.052930 6

9 1.043300 2.43425 1.903880 4
1 0 1.213030 3.81568 2.193410 7
1 1 1.463460 4.35577 2.338060 9
1 2 2.441080 3.14486 4.852250 8

13 2.379940 2.47485 3.804670 3
14 5.477740 1.52147 7.768410 1

15 7.547920 2.48069 1.192490 3
16 0.609928 2.77846 8.220610 17
17 1.961200 2.77975 2.533710 17
18 0.734211 3.46029 9.396940 24
19 0.988034 2.70276 15.446300 2 1

2 0 1.389360 1.91048 16.911500 8

2 1 0.403323 2.24462 33.650600 47
2 2 4.269800 2.30332 2.906010 46
23 0.509334 2.99278 40.354400 69
24 0.513093 2.19522 50.294800 57
25 NA NA NA NA

Table F .2 : The minimum E C P T U z 2  and optimum combination of n, 
h and k.
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O utput D ata —  ECPTUzz
No. E C P T U { n \ h * , k *) k* h* n*
1 3.55725 3.19169 2.077980 6

2 13.04420 3.19117 1.543640 6

3 18.65960 3.18737 1.296760 6

4 18.32570 3.18459 2.519380 6

5 6.76240 3.19478 0.647824 6

6 NA NA NA NA
7 8.89914 3.18862 2.135040 6

8 10.04410 3.19084 2.137880 6

9 1.86884 2.42996 1.910560 4
1 0 38.10730 3.80638 2.766830 7
1 1 NA NA NA NA
1 2 11.86920 3.14208 5.099450 8

13 15.88060 2.48098 4.099410 3
14 14.45940 1.52019 8.168720 1

15 11.48260 2.48043 1.195240 3
16 3.04860 2.77900 9.152850 17
17 14.54090 2.79859 2.715490 17
18 NA NA NA NA
19 11.85440 2.65494 50.427200 2 1

2 0 6.46191 1.89389 22.239300 8

2 1 NA NA NA NA
2 2 10.99140 2.31861 3.011940 48
23 NA NA NA NA
24 NA NA NA NA
25 NA NA NA NA

Table F.3: The minimum ECPTUzz  and optimum combination of n , 
h and k.
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Output D ata —  E C P TU za
No. ECP TU {n* ,h* ,k*) k* h* n*
1 2.26838 3.19144 2.06433 6

2 8.56715 3.19107 1.50717 6

3 12.08320 3.18725 1.25053 6

4 11.49160 3.17936 2.30205 6

5 NA NA NA NA
6 NA NA NA NA
7 5.33361 3.18927 2.09504 6

8 6.11611 3.18909 2.10320 6

9 1.45148 2.43331 1.90824 4
1 0 13.46980 3.81376 2.34589 7
1 1 NA NA NA NA
1 2 6.40573 3.14309 4.95336 8

13 7.21309 2.47464 3.89910 3
14 10.82940 1.51902 8.06742 1

15 8.43278 2.48071 1.19302 3
16 1.75416 2.77990 8.61608 17
17 6.11907 2.77827 2.57391 17
18 NA NA NA NA
19 7.48429 2.70571 22.70060 2 2

2 0 2.52538 1.90821 17.80160 8

2 1 1.49509 2.19247 57.59140 48
2 2 7.89814 2.30534 2.94728 46
23 NA NA NA NA
24 NA NA NA NA
25 NA NA NA NA

Table F.4: The minimum EC PTU za and optimum combination of 
h and k.



A p p en d ix  G

Use of P a r t ia l  D eriva tives  to  
F in d  n*, /i* an d

Let x  be the vector of parameters.

x

\ k  j

EC P TU (x)  is the scalar-valued function of x.

E C P T U x(x) is the vector of first partial derivatives of E C  P T U  (x).

E C P T U x (x) =

d E C P T U ( x )
dn

DEC P T U  (x) 
dh

d E C P T U ( x )
dk

\

EC  PTUxx(x) is the matrix of second partial derivatives of E C  P T U  (x). 

E C P T U xx(x)

(  d 2 E C  P T U  (x) d 2 E C P T U ( x )  &2E C P T U ( x ) \
dn'2 dndh dndk

d 2 E C P T U ( x )  d 2 E C P T U ( x )  d2E C P T U ( x )
dhdn dh'2 dhdk

d2 E C  P T U  (x) d2 E C P T U ( x )  d2E C P T U ( x )
d kd n dkdh dk 2

A

A„ ^ 

A h

&k

221



An, and A fc are close to zero.

For scalar variables 

E C  P T U  (x + A) =  E C P T U (x )  + A +  A

For vector variables 

E C P T U (  x + A )  = E C P T U ( x )+ E C P T U x{x ) A + \ a 'E C P T U xx{x )A

To find the point at which E C P T U ( x  + A) is stationary we equate 

its gradient to zero. That is,

^ E C P T U ( x  +  A) =  EC P T U  (x) + =  0 (G .l)
O X

In Equation G .l E C  P T U  (x) is the vector of first partial derivatives 

and E C P T U x(x) is the matrix of second partial derivatives. Generally, 

any function F'(x)  denotes the gradient of the function f (x ) .  Thus,

E C P T U ' jx ) =  ^ E
O X

The optimum parameter values make E C  P T U 1 (x) =  0 so that

A =  ~ [EC PT U x(x)}~l E C P T U {x)

In a numeric search for the optimum parameter value A is the vector 

of increments in the starting vector of param eter values. The search is 

stopped when A equals zero and E C P T U x (x) > 0. When the vector 

of increments is zero the optimum parameter values have been found.

That is, for any vector Xi of starting param eter values, Xi+ 1 =  Xi+A.
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