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A Line-Scan System for the Inspection and Measurement of Cylindrical Surfaces

A. N. Zographos

ABSTRACT

This thesis describes research into a stereoscopic machine vision system specifically

developed for the imaging of objects that have a high degree of cylindrical symmetry.

A preliminary investigation involved the consideration of two imaging scenarios based on
the standard area array sensor. The first employed a network of such sensors in order to
produce all-round observation of a cylindrical object. The second consisted of a single area
array camera imaging a rotating object. It was found, however, that both schemes had a
number of limitations which precluded the efficient inspection of cylindrical objects. These
limitations were subsequently addressed by using a line-scan sensor and rotating the object

to be inspected.

Following this initial investigation, an experimental two-dimensional (2-D) line-scan system
employing rotational object motion was constructed. The imaging characteristics were
analysed and experiments were conducted to evaluate the 2-D coordinate measurement
capability of the technique. It was found that this system possessed the necessary attributes
to be used in the extraction of coordinate information from a defined object workspace. The
experimental line-scan system was utilised in the imaging of ballistics specimens, such as

cartridge cases and fired rounds of ammunition.

The results obtained from this part of the investigation led to the development of a
stereoscopic  line-scan camera system, which could be employed to extract
three-dimensional (3-D) coordinate data from an object of interest. To achieve this, a
rigorous calibration technique, based on independent geometry for each camera with respect
to both its platform and the object workspace, was devised. The resultant mathematical
model was extended to encompass the calibration of all the critical parameters of the

stereoscopic system.

Experiments were conducted to validate the system model and to determine the reliability of
the analytical procedures applied when performing 3-D measurements. Further experiments
were undertaken to characterise the spatial resolving properties of the stereoscopic system
and evaluate its coordinate measurement accuracy. Utilising the existing hardware, the
experiments indicate a spatial accuracy of 0.2mm to 0.4mm in all three coordinate axes at a

range of 1.5m.
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1. INTRODUCTION

A commonly utilised electronic imaging device in machine vision is the area array sensor.
Historically, this device was developed to produce images that were well-suited to human
observation. Although the last two decades have seen the successful introduction of such
cameras in industrial inspectionl234567 robot vision and control applications931L121314
area array cameras do not necessarily represent the best choice for all machine vision
applications 15161718 Indeed, sensor choice is critical in all vision systems and the suitability
of different types of sensor must be thoroughly assessed according to the specific

requirements of a particular application.

The imaging of cylindrical objects presents a number of problems when conventional
imaging techniques, based on area array cameras, are employed. It is for this reason that
techniques specifically developed for the imaging of such objects have been developed in
the past. One such technique dates back to the 1940’s and involves rotating the object to be
inspected in front of a photographic camera employing a slit aperturel9 The research
presented in this thesis replaces the photographic camera with a line-scan camera system. In

addition, the development of a stereoscopic variant of this system is presented.

The line-scan sensor consists of a single column of photosensitive elements, thus producing
an essentially one-dimensional image at any instant in time. In order to obtain a
two-dimensional image, relative motion between the sensor and the object to be imaged
must exist. The two-dimensional images produced by a line-scan device have different
characteristics from those of an area-array sensor, as their projective geometry is
fundamentally different. In particular, a line-scan sensor realises the perspective projection
in the sensor axis, but the projection in the motion axis is orthographic, that is, range
invariant. By exploring these properties, the inspection of cylindrical objects by means of a
line-scan camera offers a number of unique advantages over the area array sensor. These
include homogeneously distributed spatial resolution over the whole of the object’s surface,
and an all-round, i.e. 360 degree, inspection ofthe object in a single image. In addition, the
cylindrical surface of the object is ‘unfolded’ into a planar surface, which is significantly

more efficient to process.



1.1 Research Objectives

The principal objective of this work is to develop an efficient machine vision system
well-suited to the inspection of objects that have a high degree of cylindrical symmetry. In

order to achieve this, the following objectives were set:

i. the investigation into the suitability of different types of sensor formats and

operating modes in the context of cylindrical object imaging;

ii. the development of a rotating object two-dimensional line-scan system and the

analysis ofits imaging characteristics;

iii. the development of a stereoscopic variant ofthe two-dimensional line-scan system

and the analysis ofits imaging characteristics;

iv. the derivation of a rigorous calibration technique and the implementation of space

intersection (triangulation) algorithms;

v. the experimental verification of the stereoscopic system’s mathematical model.

1.2 Previous Related Work

Continuing work within the 3-D Imaging Group of The Nottingham Trent University has
focused on the utilisation of alternative sensors to the area array imager. Initially, an
investigation into the coordinate measurement potential of the position sensitive detector
(PSD) and the line-scan camera was undertaken20. It was found that the line-scan camera
possesses the necessary attributes of consistency and spatial resolving power to be used in
dimensional measurement. Subsequently, a stereoscopic line-scan system employing lateral
object motion was developed. The spatial resolving characteristics of this system were
ascertained, leading to the derivation of algorithms for the extraction of three-dimensional
coordinate information from an object workspace. This was done under the assumption of
perfect system alignment regarding both the relative position of the two line-scan sensors

and the stereoscopic camera arrangement to the reference object space coordinate system.



To facilitate measurement in object space, the horizontal and vertical axis object to image
space scale factors were determined using simple geometrical concepts. Such a system could
be employed to inspect objects in applications where linear motion is inherent, such as

production lines.

The next line of research involved the development of a stereoscopic line-scan system in
which an uncalibrated stereo-camera was rotated2l. Such an arrangement could acquire
omni-directional, i.e. panoramic, stereoscopic images for applications such as intruder
detection, autonomous robot navigation and the production of virtual realitymodels
scenes. Investigation into the spatial resolving properties of this system lead to the
development of coordinate measurement algorithms. These were based on Euclidean
geometry and perfect alignment was assumed between the two cameras and their platform.
However, a local object space coordinate system was established by implementing a
coordinate systems’ transformation from the stereo-camera frame to the object space

coordinate system.

1.3 Structure of the Thesis

The organisation ofthis report is as follows.

Chapter 2 discusses the decision to utilise the line-scan sensor inthis work. The limitations
of conventional imaging techniques when used for the inspection and dimensional
measurement of cylindrical objects are identified. The development of the rotating object
line-scan system, which addresses these limitations, is subsequently presented. The chapter

concludes with a description ofthe line-scan camera and its operating characteristics.

Chapter 3 details the design of the experimental system and presents a number of sample
images that demonstrate its imaging properties. A ballistics application utilising the rotating
object line-scan system is then presented, followed by the development of a coordinate
measurement mathematical model for the two-dimensional line-scan system. Experimental
work carried out to establish the integrity of the line-scan system and verify the validity of

the mathematical model concludes this chapter.



Chapter 4 presents a theoretical appraisal of the stereoscopic line-scan system. The
derivation of the calibration model is presented, followed by the application of space
intersection algorithms to extract three-dimensional coordinate data. Issues pertaining to the

implementation ofthe above processes and the quality ofthe produced data are considered.

The experimental strategy adopted to evaluate the coordinate measurement accuracy of the
stereoscopic system and verify the validity of the system model is given in Chapter 5. Tests
designed to analyse the imaging characteristics of the stereoscopic rotating object line-scan

system are also presented.

Chapter 6 contains a discussion of the results and the conclusions drawn from the work
presented in the previous chapters. The areas where additional work may be carried out to
improve the accuracy of the system are also identified. The thesis concludes with

suggestions for future research.



2. CYLINDRICAL OBJECT IMAGING

2.1 Introduction

The fundamental aim of this research is to develop an efficient machine vision system for
the all-round inspection and dimensional measurement of cylindrical objects. This chapter

investigates the imaging techniques that could be employed to facilitate these tasks.

Initially, the standard area array sensor is investigated in the context of cylindrical object
imaging. The imaging characteristies of a vision system employing a number of such
sensors to image the complete surface of a cylindrical object are then described. It is shown
that this arrangement has inherent limitations that complicate the imaging of cylindrical
objects and produce suboptimal results. An imaging system that addresses these limitations
is subsequently presented. This utilises a line-scan sensor and rotation of the object to be

inspected.

Following this, the principles of operation of the line-scan sensor are examined in more

detail and the imaging characteristics ofthis device are discussed.

2.2 Limitations of Area Array Sensors in Cylindrical Object Imaging
A perspective view of an area array sensor imaging a cylindrical object is illustrated in
Figure 2-1.
Area array
sensor
Field of

View

Object under
inspection

Figure 2-1 Area array sensor imaging a cylindrical object.



Cylindrical Object Imaging

Although this discussion assumes that the image sensor consists of discrete photosensitive
elements of finite size, analogous concepts are also applicable to a photographic camera

imaging a cylindrical object.
With reference to Figure 2-1, the following points can be made:
1. the spatial resolution defined o011 the circumference of the cylindrical object,
referred to as the circumferential resolution, decreases non-linearly;

ii. if the aspect ratios of the area array sensor and the object under inspection are

different, part ofthe image area cannot be utilised;

iii. surfaces of high reflectivity can give rise to specular reflections that cannot be

readily controlled;
iv. the maximum achievable angular field of view is restricted by the geometry ofthe
sensor and the perspective projection realised by the camera optics.
These issues are discussed in more detail in the following text.
The non-linear decrease in the circumferential resolution is produced by two factors:
¢ cach picture column lies at a different range, as corresponding distances from the

lens perspective centre to the surface of the object are a function of the object’s

curvature;
¢ the perspective projection through a single point in conjunction with the object’s

curvature gives rise to oblique views.

To illustrate the above effects, Figure 2-2 depicts a plan view of an area array camera

imaging a cylindrical surface.
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Figure 2-2 Geometry ofan area array sensor imaging a cylindrical object.

The cylindrical object of radius  is located distance Z. from the perspective centre. The
lens principal distance, i.e. the perpendicular distance from the lens perspective centre to the
image plane at a given lens focus distance, is denoted by /. The sensor consists of rows of
n photosites, and each photosite has a width, defined along the X axis, of dx. The Z axis

denotes range and is coincident with the lens’ optical axis. The optical axis and the main

cylinder axis are normal.

The spatial resolution of this system over the imaged area of the object is a maximum at a
plane parallel to the sensor at a range Z = Z —+ . This is because at this range the surface of
the object is closest to the lens perspective centre and hence the spatial sampling interval has
its smallest value. However, as the angle of subtendence ¢ increases tangentially with
photosite separation from the optical axis, there is a corresponding symmetrical reduction in

spatial resolution available. This effect can be quantified by the following analysis.

From Figure 2-2, the X axis coordinate of a point on the circumference of the circle can be

expressed as -
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X =ztan(p 2-1)

x =(Zc—z) tan o

Eliminating z produces -

x- UZ. (2-2)

where -

U= + (2-3)
\tanqo  tan o

The equation ofthe circle ofradius » is

r2=x2+(Zc-zy

Substituting equation 2-1 in the above expression produces -

1 ( -2
r2= 14" x1+ x+Z,
tan (p \ tan (p
Incorporating equation 2-2 gives -
1 '-271
U: +(Z2-1r2)=0

i+ +U
tan <) v tang?

The above quadratic is solved in U, and angle  is obtained from equation 2-3 as

= tan
VU tancp)

where the angle @ is given by -

,(ndx™M
P = tan-

The arc a, corresponding to a back-projected photosite i, i ->{!...«}, is then calculated as -
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where «j is the angle corresponding to photosite i. A resolution figure-of-merit is

established as -

f—o-m=c/di- ]

where ¢ is a normalising constant equal to -

¢ = [100<5,]

and a, is the arc corresponding to the outermost photosite of the area array sensor.

The following example utilises the above procedure. A realistic projection model is adopted
by assigning the following values to the geometrical parameters of Figure 2-2: a sensor of
512 photosites per row, having a width of 13jum each, a lens principal distance of 50mm
and a distance from the lens perspective centre to the axis of cylindrical symmetry of
approximately 1.5m. The object’s radius is chosen such that the outermost vertical scan line
is approximately tangential to the surface of the object. The resolution figure-of-merit,
normalised to the maximum achievable resolution for the particular example above is

plotted in the graph of Figure 2-3.

100
80
e
0
3 60
0]
0
X 40
(<<it 20
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250 number

Figure 2-3 Loss ofimage resolution over one quadrant due to object cylindricity.

From the above plot it can be seen that a rapid decrease in image resolution occurs at picture

columns of increasing separation from the optical axis.
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Furthermore, photosite columns of increasing separation from the centre of the sensor
sample parts of the object at increasing range. Consequently, the spatial sampling interval in
the Y image axis (parallel to the object’s axis of cylindrical symmetry) is also a function of
the cylindricity of the object under inspection. The resultant area sampled by a row of

photosites is illustrated in Figure 2-4.

Increasing separation
from the optical axis

Figure 2-4 The area sampled by a row o fphotosites.

From this figure it can be appreciated that the size of the photosites back-projected on the
surface of the object increases in both imaging axes with increasing separation from the

optical axis.

A further limitation can be observed in this system. The aspect ratio of the area array sensor
is predefined by the camera manufacturer and it usually conforms to either the television
imaging standard of 4:3 or the metric standard of 1:1. However, when the aspect ratio of the
object to be imaged is dissimilar to that of the sensor, a significant part of the image area
cannot be utilised. This is illustrated in Figure 2-5, where the sensor, and hence the image,
have an aspect ratio Xim. Ying of unity, but that of the object X ofj:Ydj is much smaller.

Under such conditions, the fixed geometry of the area array sensor becomes a limiting

factor.

* m

| §

Figure 2-5 Object and image having different aspect ratios.
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Illumination is of critical importance in machine vision applications as image information is
conveyed by the brightness level of individual pixels. Considering that for a highly
reflective surface the cylindricity of the object will result in dispersed reflected light rays,
potentially uncontrollable light reflections can occur. Such specular reflections are difficult
to control and can lead to loss of image information. If, on the other hand, highly diffused

light is used, image contrast will suffer.

An all-round observation of a cylindrical object requires a 360° angular field of view.
However, an area array camera can only image part ofthe object’s surface. Figure 2-6 shows
that the maximum angular field of view ¢meK is restricted by the geometry of the sensor and

the perspective projection through a single point.

Cylindrical
Perspective object
Area centre Maximum
array angular FOV
sensor

Figure 2-6 Restricted angular field o fview.

Hence, an all-round observation of the object is not possible unless multiple views, acquired
from different perspectives, are employed. This can be achieved by utilising either a
network of area array cameras distributed around the periphery of the object or by multiple

view acquisition from a single camera synchronised with object rotation.

2.3 The ‘Multiple View’ Area Array System

Figure 2-7 illustrates a network of four area array cameras imaging a cylindrical object. The

cameras are symmetrically distributed at right angles around the periphery ofthe object. The

11
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field of view of each camera in the horizontal plane, i.e. normal to the object’s axis of

cylindrical symmetry, is approximately tangential to the surface ofthe object.

Area array

sensor #1
Area array Cylindrical Area array
sensor #4 object sensor #2

Area array
sensor #3

Figure 2-7 A network o farea array cameras imaging a cylindrical object.

Although such an arrangement can be used to inspect the whole surface of the object, it

suffers from the following limitations:

1. cylindrical objects of different diameter require changes in the system set-up;

ii. inspection of the complete surface of the object from a single image requires the
production of an image mosaic, whereby the separate images are combined
together. It can be appreciated that the accurate registration of the individual

images will be non-trivial2

iii. the circumferential resolution offered by each camera decreases non-linearly (see

Figure 2-3).

12
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From Figure 2-7 it can be seen that the optical and geometrical parameters of the multiple
view area array system, such as the lens principal distance and the camera to object range,
have to be set in accordance with the diameter of the object. However, if an object of larger
diameter is imaged, adjacent fields of view will not overlap and part of the object’s surface
will not be viewed. Similarly, an object of smaller diameter will result in loss of resolution,

as the extent ofthe individual fields of view will be larger than their optimum value.

Figure 2-8 depicts the spatial sampling pattern produced by the same row of photosites in
the four area array sensors. The loss in circumferential resolution is indicated by the
increasing area of the spatial samples produced by photosites of increasing separation from
the optical axis. The horizontal scan line produced by the four sensors suffers from a ‘ripple’

effect.

Sensor #1 Sensor #2 Sensor #3 Sensor #4

TU . Lrjxi.! £ [rum T U

Figure 2-8 The combined area sampled byfour corresponding rows ofphotosites.

In order to decrease the ripple and increase the circumferential resolution, the number of
views have to be increased. However, this is uneconomical in terms of both the large
number of cameras and digital storage memory required. In addition, the production of the

image mosaic will require more processing power and time.

A more economical and efficient solution would be to use a single area array camera and
rotate the object under inspection. This would allow the inspection of the complete surface
ofthe object in a series of consecutive images acquired in synchronism with object rotation.

An example of such a system is illustrated in Figure 2-9.

13
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Cylindrical
Angular Angular Object
FOV #2 FOV #3
Perspective \
'
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rea Angular Angular
array FOV #1 FOV #4

sensor

Angular Angular
FOV #6 FOV #5

Direction of
rotation

Figure 2-9 An area array camera imaging a rotating object.

In the above example, because the acquisition of a 360° view of the object is divided into
six images having smaller angular fields of view, the ripple in horizontal scan lines is
reduced and the circumferential resolution is increased. Although this system can be used to
inspect the whole surface of a cylindrical object and partially solves the problem of
decreasing circumferential resolution, it still suffers from the remaining complexities
discussed in section 2.2. Furthermore, the integration of the large number of individual
images produced is expected to be a complicated process. Therefore, an alternative

technique is required for the efficient imaging of cylindrical objects.

2,4 The Rotating Object Line-Scan System

In order to address the above limitations, a line-scan system employing rotational object
motion is proposed. Although for the purposes of analysis the object under inspection is
assumed to be cylindrical, any object that has a degree of cylindrical symmetry is well
suited to this system. In the context of this work, ‘cylindrical symmetry’ refers to any object
which is symmetrical about a central axis, but may have unequal diameters at different

heights.

The principles of operation of the line-scan camera are discussed in section 2-5. Briefly, the

line-scan sensor consists of single column of photosites, thus requiring relative motion

14
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between the sensor and the object to produce a two-dimensional image. The projection

properties ofthis device are different from those of an area array sensor (see section 2.5.1).

The rotating object line-scan system is depicted in Figure 2-10. This system produces a
two-dimensional image by a ‘scanning’ process: consecutive columns of picture information
are acquired and stored in a frame buffer whilst the object is being rotated. Both the
instantaneous field of view (IFOV) of the line-scan camera and the axis of cylindrical
symmetry of the object are aligned to be coincident with the rotation axis. The origin of the
camera-centred coordinate system has been translated along the optical axis from the

perspective centre 0 to the rotation axis, to aid understanding ofthe drawing’s perspective.

Y
A

Rotation
axis

Object under
inspection

Line-scan
sensor

> Z

IFOV

Figure 2-10 A line-scan camera imaging a cylindrical object.

The following points pertaining to this system can be made:

i. an all-round view ofthe object can be readily obtained in a single image;

ii. the circumferential resolution is constant over the inspected surface;

iii. the Y axis field of view can be optimised for a given object height without

affecting the angular field of view;

15
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iv. lighting issues may be more easily addressed than in an area array system.

These points are discussed in the following text. From Figure 2-10 it can be seen that, for a
nominally cylindrical object, the distance from the lens perspective centre to the object’s
surface remains constant throughout the object rotation. Hence, assuming that the width of
the scan line is much smaller than the radius of the object, for a particular combination of
rotational speed and integration period (see section 2.5.3), the back-projected photosites will
retain their rectangular shape. As a result, there is no loss of circumferential resolution
produced by the cylindricity of the object. To illustrate this point, Figure 2-11 depicts a
comparison of the spatial sampling pattern of the multiple view area array and the rotating

object line-scan systems.

A
Multiple view
area array THU. 1] tilt] 111
system
Rotating object
line-scan IIUNiIIRrnin w n iT DII mmmiLnirmi

system

Figure 2-11 Comparison ofthe spatial sampling patterns.

The spatial sampling pattern of the area array system is produced by corresponding rows of
photosites in the four sensors (see section 2.3), whereas that of the line-scan system is
produced by a single photosite consecutively sampling the object. It can be appreciated that
the circumferential resolution ofthe line-scan system is constant and equal to the maximum
resolution offered by the area array system. In other words, the cylindricity of the object
does not adversely affect the spatial sampling characteristics of the line-scan system. The
resultant image is a planar vieM> of the object, in which the whole of the cylindrical surface

appears “unfolded” into a flat surface.

As the angular field of view of the line-scan system exists only in the frame buffer memory,
enough consecutive scan lines to image the complete surface of the object can be produced

if the necessary amount of frame buffer memory exists. This attribute of the line-scan

16
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system is of critical significance in that it solves the potentially involved problem of

obtaining a single, continuous image depicting the complete surface ofthe object.

In section 2.2 it was shown that the fixed geometry of the area array sensor may not suit all

applications: efficient imaging of a cylindrical object requires that the angular field of view

can be controlled to any value up to 360° and that the Y axis field of view is set in
accordance with the object’s height. As in the line-scan system these two parameters can be

controlled independently, maximum utilisation ofthe system resources can be achieved.

The line-scan system simplifies lighting issues by requiring that lighting ofthe object under
inspection is optimised only along the instantaneous field of view. This is in contrast to the

area array camera scenario, where lighting over a whole area on the surface of the object

must be optimised.

Having identified the advantages of the rotating object line-scan system, it is important to
consider the potential disadvantages of this system. This is because the successful
integration of the line-scan system to an application may be inhibited by certain limitations

ofthis system. These limitations can be summarised as follows:

i. due to the mechanical motion, the production of a two-dimensional image, in
general, requires a longer duration than that required by the multiple view area

array system;

ii. the line-scan system may not be suitable for the inspection of bulky or

heavyweight objects;

iii. the higher the dimensional measurement accuracy and the lower the imaging

distortion required, the more consistent the rotational speed must be.

The minimum integration period (see section 2.5.1) for line-scan cameras can be as low as
50juS 23, which is faster than many high-speed area array cameras. Furthermore, a
one-dimensional image can be transferred and processed faster than the two-dimensional
frames produced by area array cameras. In certain applications, the picture information

produced by a line-scan sensor may be processed on a line-by-line basis2425627282930 or in

17
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small two-dimensional frames3U233343536. In such applications, due to the reduced amount of
picture information, a machine vision system utilising line-scan cameras has a potential
speed advantage over an area array camera system. However, other applications, including
the rotating object line-scan system and satellite photogrammetry37, require two-dimensional
images consisting of hundreds or thousands of scan lines. As mechanical motion is involved
in such applications, the time required to produce the two-dimensional images will, in

general, be longer than that required by an area array camera system.

The rotating object line-scan system may not be suitable for the inspection of heavyweight
or bulky objects. Although in this research programme the object rather than the camera is
rotated, the two modes of operation are interchangeable as far as the resultant images are
concerned. This is evident from Figure 2-12, where the circumferential fields of view

produced by (a) object rotation and (b) concentric camera rotation are compared.

sensor sensor

Circumferential
field of

view

(a) Object rotation (b) Camera rotation

Figure 2-12 (a) object and (b) camera rotation modes.

Thus, the arrangement shown in Figure 2-12(b) may be more suitable for imaging of bulky

or heavyweight objects, or objects which cannot be moved.

If the rotational speed of the object under inspection is not constant, imaging distortion will
occur. Additionally, any variations in the rotational speed will have an impact on the
coordinate measurement accuracy and precision of the line-scan system. The experimental
work carried out in this work shows that the precision of the rotational speed can be

controlled to a high degree. Specifically, in Chapter 5 it is shown that the line-scan system
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can produce three-dimensional coordinate measurement to an accuracy of a few hundred
microns. Nevertheless, it is accepted that a much higher spatial accuracy may be difficult to

obtain due to technical limitations in controlling the rotational speed.

The following section presents the principles of operation of the line-scan sensor. A more

detailed description of line-scan camera technology can be found in the manufacturers’

literature 18394041.

2.5 The Line-Scan Camera

2.5.1 Principles of Operation

Figure 2-13 depicts a line-scan camera. The camera’s sensor consists of a single column of
photosensitive elements. At present, the typical number of photosites found in line-scan
sensors is 1024 and 2048 £4. However, sensors with as many as 7,926 photosites have been

produced44 mainly for astronomical applications.

Photosites Camera
Lens

Image

sensor

Figure 2-13 The line-scan camera: front and perspective views.

Although the sensor technology of line-scan and area array cameras can be identical as, for
instance, both are often based on the charged-coupled device*5464] the fundamentally
different sensor geometry gives rise to a number of different operating and imaging

properties.
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A line-scan camera can constantly produce successive columns of picture information. The
exposure time of each column, during which the photosensitive elements collect incident
illumination from a scene, is termed the integration period. 1t is set by the frequency of the
line-transfer signal, initiating transfer of photosite charge into the camera’s shift registers.
This is illustrated in the timing diagram of Figure 2-14. At the positive edge of the line
transfer pulse the shift registers ‘clock out’ the video data collected by n photosites during
the previous integration period. The time available for photon collection by the photosites in
each picture column is determined by the integration period. Thus, the longer this period the

brighter the resultant image and vice-versa.

ciock signal

Integration Period

Line Transfer " /
signal I 1// 11 I

1.2 .3.

Ij. Al. . n3.n2.n-1t n
Video signal 1] 1] \ i

Figure 2-14 Simplified line-scan timing diagram.

Image production by a line-scan camera is now discussed. Due to the fundamentally

different imaging properties in the X and Y image axes, each axis may be discussed

independently.

YIMAGEAXIS

Figure 2-15 depicts the instantaneous field of view of a line-scan camera in the Y image

axis. This axis is also termed the main axis and is parallel to the line defined by the sensor.
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Line-Scan
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Figure 2-15 Line-scan camera instantaneous field o fview.

The main axis acts in a similar fashion to a conventional two-dimensional image sensor or a

photographic camera. The field of view in this axis depends on:

i. the lens principal distance;
ii. the sensor length;

iii. the sensor to object range.

That is, the Y axis field of view is defined by the perspective projection model.

XIMAGE AXIS

The object to image space projection in the X axis is orthographic, that is, invariant of the
sensor to object range. In an orthographic projection there is no change in scale. The
absence of a second imaging axis in the line-scan sensor necessitates the introduction of a
temporal parameter to the imaging process to produce a two-dimensional image. This is

achieved by the application ofrelative motion between the sensor and the imaged object.

To illustrate this process, Figure 2-16 depicts a line-scan sensor being laterally translated
past an object. The motion direction is normal to the main axis and parallel to the camera

face, that is, it takes place along the X ¢ camera axis.
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Figure 2-16 Two-dimensional line-scan image production.

At the start of the scanning process, t=0, the perspective centre of the lens is at location Os,
while at the end of it, t=t,, the perspective centre will lie at location O. . Assume that object
motion is not continuous, but rather consisting of discrete translation steps, so that the
sensor is stationary during the interval the photosites collect photons from light incident on
them (the reasoning behind this will be promptly explained). After exposure equal to the
integration period, the column of generated picture information is stored in a suitable
medium. The object is then advanced by the width of the scan line, that is, the picture
column at the range of the object. If this process is repeated a number of times and
successive columns of picture information are stored alongside each other, a

two-dimensional image will be produced.

The X axis field of view of a two-dimensional line-scan image is proportional to:

i. the integration period;
ii. the relative speed of'the motion between the camera and the object;

iii. the number of scan lines stored in the image buffer memory.
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Since a two-dimensional line-scan image is produced by storing successive columns of
picture information, the time required for image acquisition depends on the integration
period. Assuming that the relative motion speed between the sensor and the object remains
constant and the image consists of a predetermined number of lines, decreasing the
integration period results in less time required for the production of a two-dimensional
image. This reduces the translation distance during which the sensor produces image

information, thus reducing the X axis field of view.

A similar effect is produced when the integration period is kept constant but the speed ofthe
motion is decreased: the reduced sensor translation distance results in reduced X axis field

of view.

An increase of the integration period and/or the speed of motion has the opposite effect,

increasing the X axis field of view accordingly.

Theoretically, the X axis field of view can be infinitely large, as new scan lines can be
continuously acquired at a given rate by the line-scan device. However, in practice, the
available frame buffer memory limits the maximum X axis field of view. Thus, the field of

view in this axis is also proportional to the number of scan lines stored in the frame buffer

memory.

So far, the relative motion between the sensor and the object has been assumed to consist of
discrete translation steps, so that the sensor is stationary during each integration period. In

practice, the motion is continuous, resulting in image smearing that degrades image quality.

2.5.2 Spatial Oversampling and Undersampling

The production of a two-dimensional line-scan image can be regarded as a discrete spatial
sampling process as the image sensor consists of discrete photosensitive elements. Each
column of picture information is acquired over an interval of one integration period, during
which the sensor is displaced by a distance Sx. Therefore, the X axis spatial sampling

interval, which is equal to the width of the scan line, is a function of the integration period
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and the relative speed of motion between the sensor and the object. In addition, it is

independent of the photosite dimensions. This is illustrated in Figure 2-17.

Back-projected
photosite

Image
sensor

Scan line

Figure 2-17 Effective spatial width ofa scan line.

In the context of this discussion, the condition for “correct” image aspect ratio (see next
section) can be expressed as: “the value of the product of the integration period and the
relative speed of motion between the sensor and the object which yields an X axis spatial
sampling interval equal to the width of the back-projected photosite at a given range”. Any
deviation from this value not only changes the image aspect ratio, but also introduces image

smearing due to spatial undersampling or oversampling.

Swv Siv

Image Oversampling Image Undersampling
sensor scan line sensor scan line

8w: width of projected
photosites

> Sv < 8JC width of scan line Sr

(a) (b)
Figure 2-18 (a) Spatial oversampling, (b) undersampling.

Spatial oversampling occurs when the X axis sampling interval & is greater than the width

Sw of the back-projected photosite at a given sensor to object range. This condition is
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illustrated in Figure 2-18(a). The larger the amount of oversampling the worse the spatial
resolution (see section 2.5.4), as each scan line occupies a larger spatial area. However, the

field of view is increased accordingly and this can be important in some applications.

The opposite effect, spatial undersampling, occurs when the width ofthe scan line is smaller
than the back-projected photosite width, i.e. Sx < Sw, and is illustrated in Figure 2-18(b). In
this case, adjacent spatial samples overlap, giving rise to multiple exposure at the
overlapping regions. Although this deteriorates the image quality, spatial resolution is
increased in comparison to that offered by an area array sensor having equal photosite
dimensions (equal lens principal distance and sensor to object range is also assumed). It
should be noted that the increased spatial resolution can be utilised only if feature
identification is not impeded by the reduced image quality. Hence, it may be concluded that
the Y image axis resolution of a line-scan system is equal to that of a system utilising area
array sensors, but the X image axis resolution is potentially higher. In recent work carried
out by Kaftandjian48 on the contrast transfer function of linear detectors, albeit of the X-ray

variant, the same conclusion is reached.

The effects of spatial undersampling and oversampling described here are peculiar to
line-scan camera operation and should not be confused with the same terminology used in
general sampling theory. Indeed, in sampling theory the conditions of undersampling and
oversampling are linked to the frequency spectrum of the sampled signal, whereas in a
line-scan system they are only related to the physical and system operating parameters
which determine the spatial size of the back-projected photosites and the sampling interval

in the motion axis.

2.5.3 Image Aspect Ratio

The aspect ratio of an object ‘seen’ from a given perspective can be defined as the ratio of
its width to height. However, the aspect ratio of an image is determined by the ratio ofthe X
to the Y axis spatial sampling interval. Therefore, the aspect ratio of a line-scan image

depends on:
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i. the lens principal distance;
ii. the size of'the photosites in the main axis;
iii. the sensor to object range;
iv. the integration period;

v. the relative speed of motion between the camera and the object.

As the above five parameters are independent, the line-scan camera can produce affine
images. Consider a line-scan system where the interaction of the above five parameters is
such that the X axis spatial sampling interval is smaller than that of the Y axis. Then, a
circular object, that is, of 1:1 aspect ratio, occupies a larger portion in the X image axis than

in the Y image axis, hence appearing expanded. This is shown in Figure 2-19(a).

Expanded "Correct" Condensed
linage aspect ratio Image
Increasing Increasing
integration integration
period ' period

(@) (b) (©)

Figure 2-19 The effect ofthe integration period on image aspect ratio.

In Figure 2-19(b) however, the integration period has been increased while the remaining
four parameters have been kept constant. This increases the X axis spatial sampling interval
and, for a particular combination of the five system parameters determining the X and Y
axis spatial sampling intervals, the line-scan image will have the same aspect ratio as the

object. This condition of “correct” aspect ratio is illustrated in Figure 2-19(b).

Increasing the integration period further, increases the X axis spatial sampling interval

relative to that ofthe Y axis and the object appears condensed, as shown in Figure 2-19(c).
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A similar effect is produced by altering the speed of motion whilst keeping the integration
period constant: increased speed of motion results in image condensing, as the object is
translated over a larger distance during the integration period and vice-versa. Since the
integration period is controlled electronically, the aspect ratio of a line-scan image can be
readily controlled to suit the requirements of a given application. From this discussion it
may also be concluded that, for a constant Y image axis spatial sampling interval, there is a
unique value for the product of the integration period and the translation speed for which the

image has a “correct” aspect ratio.

The effect of image condensing or expanding can be also achieved along the Y image axis.
In Figure 2-20 the camera to object range is progressively increased while the lens principal
distance, the integration period and the relative speed are kept constant. This results in
constant X axis spatial sampling interval, but that of the Y axis is increasing with range. In
Figure 2-20(a) the interaction of the above parameters is such that X axis spatial sampling

interval is larger than that ofthe Y axis, hence the image appears expanded in the Y axis.

Condensed Increasing
'Correct’ Image
Expanded & T range
Image
(@)

Figure 2-20 The effect o fincreasing range on image aspect ratio.

Progressively increasing range yields image (b), where the aspect ratio of the image is equal

to that of the object, and image (c) where the image appears condensed in the Y image axis.

2.5.4 Factors Limiting the Spatial Resolution of a Line-Scan Image

The general definition of the term “resolution” given in the Manual of Photogrammetry4 is:
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“The minimum distance between two adjacentfeatures, or the minimum size of a feature,

which can be detected by remote sensing’.

This definition is general and implies that both the geometric and the radiometric properties
of the imaging system are taken into account. Indeed, the resolution of a machine vision
system can be limited by its radiometric properties, i.e. its noise, dynamic range, linearity,
number of quantisation levels, etc. However, an investigation into the radiometric properties
of a line-scan system is beyond the scope ofthis research. Rather, the objective of the work
undertaken here is to characterise the geometric properties of a line-scan system. Hence, in
the context ofthis work, the spatial resolution of'a line-scan system in each imaging axis can

be defined by the parameters that determine the size of the spatial sample.

The Y image axis resolution of a line-scan system depends on:

i. the lens principal distance;
ii. the size ofthe photosites in the main axis;

iii. the sensor to object range.

Assuming that spatial undersampling or oversampling does not affect the identification of a

feature, the X image axis resolution depends on:

i. the integration period;

ii. the relative speed of motion.

Note that this definition encompasses only the geometric properties of the line-scan system.
Furthermore, it should be noted that a given combination of the above five parameters
determines the maximum achievable resolution and, unless certain conditions are met, the
actual spatial resolution will be less than this maximum value. To illustrate this point,
Figure 2-21(a) shows a white planar object containing a black feature of square shape and of

size equal to the spatial sample at a given range.
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Figure 2-21 Spatial sampling effects.

Both the camera and the object are static, and the object is sampled by a particular photosite
in a scan line such that the corresponding pixel is exactly filled, as shown in Figure 2-21(b).
Then, the electrical output of the sensor is ideally a step function indicating maximum
contrast at the boundaries of that pixel. In this case, the frame buffer coordinate of the

feature can be determined to an accuracy of one pixel.

In Figure 2-21(c) however, the spatial relationship of the scan line and the feature is such
that half the area of two adjacent pixels is covered, giving rise to an electrical output level
representing mid-grey (assuming perfect sensor linearity) from the two neighbouring
photosites. It can be appreciated that, unless subpixelation9051R techniques are employed,

determination ofthe image location ofthe target is limited by an uncertainty of + 1 pixel.

Indeed, only for the condition shown in Figure 2-21(b) will the measurement uncertainty of
the target be equal to one pixel. Any relative shift between the feature and the scan line up to
the size of the spatial sample produces an electrical output from two adjacent photosites,

increasing the uncertainty to £+ 1 pixel.
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3. THE TWO-DIMENSIONAL SYSTEM

3.1 Introduction

This chapter presents the development and implementation of the two-dimensional rotating
object line-scan system. In order to illustrate the imaging characteristics of the rotating
object line-scan system detailed in the previous chapter, a number of sample images are

presented, following the description ofthe experimental system.

The rotating object line-scan system has been used in a ballistics application to image
cartridge cases. One of the requirements of this application is the measurement of
identification marks present o11 the surface of the cartridge cases, such as scratches and
marks. This requires the' development of a mathematical model for the two-dimensional

system, which is also presented in this chapter.

The chapter concludes with the results of the experimental work undertaken to evaluate the

integrity ofthe experimental system and the accuracy ofthe mathematical model.

3.2 The Experimental System

The block diagram of the hardware constituting the rotating object line-scan system is
depicted in Figure 3-1. This diagram refers to the sterecoscopic system, hence the two
cameras and two frame grabbers. However, this system also serves as a two-dimensional
measurement platform by utilising a single camera. The experimental system consists ofthe

following sub-systems:

1. arotary stage;
ii. acamera basewidth/convergence angle control table;

iii. two line-scan cameras;
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v. two frame grabbers;
vi. an external frequency generator;
vii. a stepper motor controller;

viii.a host computer.

Line Transfer

I Camera Clock Frame
Grabber #1
(Master)
Odd Video
Combiner
Even Circuit #1
External
Clock Clock
Generator
Odd
Video
Camera #2 Combiner
Even Circuit #2
Frame
Grabber #2
Camera Clock (Slave)

Syne

Rotary
Host Stage
Computer
(PC)
Stepper
Motor
Controller

Translation
Stage

Figure 3-1 Block diagram ofthe system.

Details of each of the above subsystems are given below, whilst the process of image

capture is described in section 3-3.

3.2.1 The Line-Scan Cameras

The cameras used are EG&G ReticoiTs LC1902 33 consisting of a linear array of 512 square

photosites having a width of I3jam each. The photosite centre-to-centre spacing is also

13//m and the total sensor length is 6.656mm. The photosites convert incident light into

discrete charge packets. After a user-definable integration period, the charge packets are

transferred into two shift registers where they are time-division multiplexed. The shift

registers carry the data streams from the odd and even numbered pixels, which are then

combined externally into a single video data stream.
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Camera operation is controlled by two externally generated signals: the line-transfer (LT)
signal that determines the integration period and the master clock (CLK) that determines the

video data rate. The timing of'these signals is shown in Figure 3-2.

CLK i3f[nfijiiw uiiWw T//lmeTTdeiiJ¥"mniirIwuudiTJTfU!JULrijuu]i] V,njui
LT i W1V T .
CLT r_ [f I_
— 16 Clock Cycles — P
Even Video JuT Tn _njin A U7 A- T. 1T
Out 2 4 6 I i 508 510 512

w— 12 Clock Cycles — -»

0dd Video JTITIT]J

Out 1 3 5 7 © 507 509 511

Figure 3-2 LC1902 timing diagram.

Half a clock cycle after the line-transfer pulse goes high, the timing circuit of the LC1902
outputs a camera line-transfer (CLT) signal. This signal is an internal re-transmission ofthe
line-transfer pulse and is used to synchronise the video combiner circuits and the frame
grabbers. During the interval the CLT signal is logic high, charge from each photosite is

transferred to the internal shift registers.

Immediately after the falling edge of a CLT logic level transition, the video output lines
become active. During the first 12 clock cycles of this phase, the dark diode time occurs
where image information is blocked, but the dark video level is present. This allows the
effects of the dark current, present in all photodiodes, to be removed thus improving the
video dynamic range. In the next phase, active video is available from both video output
lines. Video data from each line is output at a rate ofhalfthe clock frequency. Following the
transfer of one video line to the frame buffer, the video outputs are re-referenced to the dark

video level. A new cycle can then begin with a transition ofthe LT signal from low to high.
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3.2.2 The Video Combiner Circuit

This circuit performs the necessary signal conditioning functions to allow successful

interfacing of'the cameras with the frame grabbers. These include:

i. impedance termination of each video output line;
ii. DC level restoration of each video output line;
iii. gain and offset adjustment ofthe two video lines;
iv. elimination of dark current effects;

v. recombination ofthe odd and even video signals.

The schematic diagram depicted in Figure 3-3 is the circuit recommended by EG&G
Reticon® and was thus chosen to perform the above functions. A printed circuit board
utilising a ground plane to preserve the integrity ofthe high frequency signals was designed

by the author, and two such circuits were built.

With reference to the schematic diagram, each video line is terminated in 75 Ohms
to -5Volts in order to prevent signal reflections. The odd and even video outputs have a
negative, temperature sensitive DC offset, which is removed by CI and Q2. The latter is an
electronic switch operating at half the clock frequency. Q1 references the video signal to a

positive value before it is buffered and adjusted for variations in gain by Q3.

Control signals C and D are active only during the dark diode time and are used to clock Q4
and Q5 in order to remove the effects of dark current from the video signals. The output of
this clamp circuit is buffered by Q6 and the video output is sampled by Q7 and Q8 at half
the pixel rate. The even video output is conditioned in a similar way, but this time the signal
is sampled 180 degrees out of phase. The combined video signal is created on the hold
capacitor C7 and at the output of buffer Q9. Operational amplifier Ul applies an offset DC
voltage so that the dark output level is at zero. U2 adds gain to the circuit and buffer/amp U3

provides a low impedance output to drive the input ofthe frame grabber.
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Figure 3-3 Schematic diagram o fthe video combiner circuit.

VIDEO COMBINER CIRCUIT
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3.2.3 The Frame Grabbers

The frame grabbers are the P360Fs manufactured by Dipix35. These offer the following

functions:

i. programmable gain and offset adjustment;

ii. video signal sampling and grey level discretisation;
iii. general purpose programmable I/O control lines;
iv. 4Mb of on-board frame buffer memory;

v. implementation of image processing functions, using an on-board digital signal

processor (DSP);

vi. interfacing circuitry for transfer of image data to the host PC.

Figure 3-4 shows the block diagram%ofthe P360F.

Expansion
Board
Interface

FIFO DSP
Bus Bus

Video Mux FIFOs Memory
and 128x32 TM?)3’823C30 Arbitration
AtoD bits Logie

4 0r 16
Mbyte
Memory

Figure 3-4 Block diagram o fthe P360Fframe grabbers.
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An input multiplexer allows up to four analogue inputs to be switched into the digitising
section. After software-controllable gain and offset adjustment, the video signal is sampled.
The sampling process is synchronised with the camera clock and utilises the Bt252
analogue-to-digital converter (ADC). The sampled video signal is discretised into 8 bits per

pixel.

The ADC is connected through a 16 bit wide bus to afirst-in-first-out (FIFO) module. This
is used to provide a temporary buffer for the incoming data and is required for two reasons:
firstly it allows memory refresh and host PC or DSP access to the memory ofthe P360F and
secondly, it allows the DSP to operate at a different clock frequency from the ADC. Data is
packed into 32 bit words by the FIFO control logic, which is capable of storing 64 such
words at any one time. The data is then transferred either directly or after processing through
the DSP to the on-board memory. The DSP is Texas Instruments’ TMS320C30, a 32-bit

floating point/integer RISC processor rumiing at 32MHz.

Dipix provides ‘C’ language callable object modules that perform various image processing
tasks within the TMS320C30, as well as a number of utility functions5J, such as the transfer
of data to and from the P360F and the host PC. A number of these functions are utilised in

the code developed by the author, described in section 3.3.

3.2.4 The Stepper Motor Controller

The stepper motor controller is the MC3E, manufactured by North East Electronics® This
can control up to three- stepper motors individually and, through the complementing
mechanical equipment, provides object rotation, camera basewidth and convergence angle

control.

As equation 3-6 of section 3.6.2 indicates, coordinate values in the X image axis are a
function of the rotational speed of the object. It is therefore critical that the rotational speed
is kept constant during the image capture interval. However, due to the discrete rotor
positioning characteristics of stepper motors operating in full-step systems, their low-speed
operation can be notchy. In particular, when the pulse-drive frequency is close to the stepper

motor’s natural frequency, each step will suffer from excessive overshoot and the resulting
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motion will be erratic. To overcome this deficiency, microstepping is employed. This entails
supplying a precisely controlled, variable proportion ofthe full step current to each phase of
the stepper motor. Between two full steps, current flowing through one phase is slowly
increased whilst current flowing through the next phase is slowly decreased, ensuring
smooth transition between consecutive steps. The MC3E allows the user to set the number
of microsteps per full step to 5, 10, 25, 45, 90, 100 or 127. A larger number provides
smoother operation at the expense of reduced maximum obtainable speed. For the rotary
stage used, a value of ten microsteps per full step was chosen, yielding a positional angular
resolution of 14.4 seconds of arc, or 0.004 degrees, and a maximum rotational speed of 14
revolutions per minute. In practice, the actual maximum positional resolution that can be
obtained is determined also by the mechanical integrity of the drive system, i.e. the worm

gear wear and the pitch ofthe ballscrew.

In applications where stepper motors are employed to provide accurate positional control,
another.factor regarding the motor driving scheme must be taken into account: when the
rotor is at standstill and a particular speed built-up is required, even if the motor load is
below the maximum permissible limits, the load inertia may force the stepper motor to skip
some of the first steps. The higher the required speed, the greater the possibility of step
skipping. To solve this problem, ramping is introduced, whereby the motor drive system

limits the permissible maximum acceleration to a suitable value.

The MC3E communicates with the host PC via an RS232 serial port link and uses a custom
control script languaged consisting of strings of hexadecimal characters for each command.
The controller has an extensive set of commands build-in, providing flexible motion control
capabilities. In order to enable command checking before execution, commands are
followed by two data checksum characters. Checksum generation and calls to MC3E
commands are accomplished via the host computer. The relevant ‘C’ language code also

caters for the synchronised operation ofthe stepper motor controller and the frame grabbers.

North East Electronics would not supply the source code for their scripting language and the
user’s manual was found lacking in accurate information. As a result, the MC3E scripting
language was reverse engineered using an RS232 line monitor terminal and the supplied

executable code.
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3.2.5 The Basewidth/Convergence Stage

A translation stage provides an accurate mechanical platform for camera position control. It
is manufactured by McLennan Servo Supplies and consists of two linear axis tables, each
supporting a rotary stage (Figure 3-5). The two translation tables are mechanically coupled
by a gearbox arrangement such that a ‘move’ command results in a combined movement of
both tables either towards or away from each other, depending on the instructed direction.

The positional resolution ofthis platform is 0.004mm per step.

Figure 3-5 Camera positional controller.

Each translation table hosts a rotary stage, which is controlled individually by a stepper
motor. However, each stepper motor is connected in anti-phase so that the cameras are either
diverging or converging dependent on the instructed direction. The angular position

resolution is 0.02 degrees per step for each camera.

3.3 Host Controller and System Operation

An IBM PC compatible host controller provides the following functions:

i. control over the operation of all the sub-systems mentioned above;
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ii. synchronisation ofthe image capture process with object rotation;
iii. a platform for image storage and processing.
Software code was written to control the operating parameters of both the frame grabbers
and the stepper motor controller. This allows the operator to control the convergence angle,

the camera basewidth, the rotational speed, the integration period and the image generation

start point. The software flowchart is depicted in Figure 3-6.

Start

Initialise
MC3E

Input User's Data

Plant Basewidth/ Transmit MC3E
Convergence Command
Stage

|Rotary Stage
Initialise

P360Fs

Transmit MC3E
Command

Grab and Display
Left&Right Images

Key
None Pressed Save Images

Other ?

i Exit !

Figure 3-6 System operationflowchart.

An image capture cycle begins with the initialisation of the stepper motor controller. This

involves setting the PC-to~MC3E serial communication parameters, such as the Baud rate,

39



The Two-Dimensional System

parity usage and the datum position of the three mechanical stages. The operator is then
requested to input the required process, i.e. object rotation, camera convergence or camera

basewidth control. Motion direction and rotational speed can then be entered.

The next phase is the initialisation of the frame grabbers. This entails setting the camera
interface parameters and writing the appropriate values in the P360F registers. During the
initialisation process, frame grabber memory for image storage is allocated. Following this,
image capturing can begin. However, to avoid image distortion from the speed built-up (see
section 3.2.4), the image capture is delayed until the rotating stage has acquired a constant

speed.

To ensure that the image generation start point is precisely the same for both the left and the
right cameras, a means of simultaneously initialising both frame grabbers had to be found. It
was decided that a hardware pulse, generated by the parallel port of the PC, be used so that

software control over the frame grabbing process is maintained.

The rate of video data is controlled by a Hewlett Packard 8116A frequency generator. In
order to ensure consistent timing, this instrument clocks both cameras. In addition, one of
the frame grabbers operates in ‘master mode’, generating the line-transfer pulse for both
cameras. However, each video combiner circuit and frame grabber is synchronised by the
corresponding camera, by utilising the camera’s re-transmission of the clock and
line-transfer signals. This ensures correct synchronisation between each camera and
corresponding frame grabber regardless of any minor timing differences that may exist

between the two cameras.

The sequential image capture process is repeated until the operator directs otherwise, as a
number of consecutive image captures are required to yield a satisfactory image. This is
because an amount of initial alias charge is present in the CCD arrays and must be removed
to allow maximum dynamic range. Also, lens focusing or scene illumination adjustment

may be required.

Images stored in the frame grabber memory can be transferred to the host computer memory
for displaying or further processing. The images can also be saved on disk in the ragged

imagefile (TIFF) image format, which can be read by most image processing packages.
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3.4 Sample Images

In order to illustrate the imaging characteristics of the rotating object line-scan system, this
section presents sample images of a spray can and a drill chuck. The spray can was chosen
because its purely cylindrical and contains text which aids the intuitive interpretation of the
imaging properties of the system. The drill chuck has a high degree of cylindrical symmetry
and its metallic surface is highly reflective. Images produced by an area array camera are

also presented to allow comparison between the two systems.

Figure 3-7 shows the image ofthe spray can produced by an area array camera. A significant
part of the image area is not utilised because of the unequal image and object aspect ratios.

The loss of image resolution due to the cylindricity ofthe object is also apparent.

Figure 3-7 A cylindrical object as imaged by an area array camera.

Figure 3-8 shows the image of the spray can as viewed by the line-scan system. The
integration period and the rotational speed of the object have been set such that the image
has a 1:1 pixel aspect ratio, according to the method described in section 3.6.4. The

homogeneously distributed resolution and the planar view of the object are apparent in this

41



The Two-Dimensional System

image. In addition, the whole of the image area contains object information. This image

depicts an all-round view ofthe object.

DiRSCTJONSfOS US

Figure 3-8 The spray can as imaged by the line-scan system.

Figure 3-9 “Electronic zooming ”in the Xaxis.
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In Figure 3-9, the angular field of view has been decreased by decreasing the integration
period. This results in increased angular resolution over the imaged portion of the object, as
the number of scan lines is the same as that of Figure 3-8. This effect may be thought of as
“electronic zooming” since the camera optics have not been altered in any way, yet the
spatial resolution has increased. Note that the effects of spatial oversampling (see section

2.5.2) have not produced any noticeable deterioration in the quality ofthe image.

Area array and line-scan images of the drill chuck are shown in the next three figures.
Figure 3-10 depicts the image obtained by an area array camera. Resolution loss due to
object cylindricity, poor utilisation of the image area and loss of image information due to

excessive scene contrast are apparent in this image.

Figure 3-10 Area array image ofa chuck.

A 360° view of this object, obtained by the line-scan system, is shown in Figure 3-11. This
planar view can be expected to be significantly more efficient to process. For the image
shown in Figure 3-12, the operating parameters of the system have been set such that a 1:1

pixel aspect ratio is obtained (see section 3.6.4).
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Figure 3-11 All-round image produced by the line-scan system.

Figure 3-12 Line-scan image o fchuck depicting "correct’pixel aspect ratio.
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3.5 A Ballistics Application

The rotating object line-scan system has been employed in the inspection of fired cartridge

cases@in a collaborative programme with the ‘Edith Cowan University’ at Perth, Australia.

Up to date, the analysis of marks, scratches and other identification features on fired
cartridge cases are being carried out with the aid of comparison microscopes, where
examination of markings on different cartridge cases is performed. This is a significantly
labour-intensive and time-consuming process, and can prohibit the routine checking of
catalogued exhibits against those obtained from weapons that come into the possession of
the police. Moreover, it is difficult to routinely circulate such exhibits around a country.
Consequently, the need for an improved cartridge case inspection system is double-fold;
first in terms of greater inspection efficiency combined with reduced process times, and
second in terms of image storage and transmission technology, where a digital technique is

required.

Since cartridge cases are nominally cylindrical, the limitations associated with area-array
sensors when used to image cylindrical objects, detailed in section 2.2, are present. The
effect of these limitations, can be seen in Figure 3-13, which shows the image of a cartridge

case obtained by an area array camera.

Figure 3-13 Area array image ofa cartridge case.
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During preliminary experiments with the rotating object line-scan system, it was found that
the angle of the light source to the cartridge case has a major effect on image quality.
Consequently, an array of high-power, narrow-angle LEDs (Light-Emitting Diodes) was
used to illuminate the cartridge cases. Because the sensitivity of the line-scan cameras used
peaks in the near-infrared part of the spectrum, infrared LEDs were chosen. The experiments
indicated that there exists an optimal angle of approximately collimated, i.e. narrow angle,

light incident on the surface of the cartridge cases.

A sample line-scan image of the cartridge case used to produce Figure 3-13 is depicted in

Figure 3-14.

Figure 3-14 The image obtained by the line-scan system.

From the detail in the above figure, it can be seen that the rotating object line-scan system
produces efficient images that convey much higher surface detail than the area array camera
system. This application has set the foundations for a new research programme to be carried
out at The Nottingham Trent University. A dedicated hardware system along with the

necessary image processing support is currently under development.
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To identify whether two different cartridges have been fired by the same weapon, twelve
matching identification marks are required. This matching process requires the ability to
measure the location of marks on the cartridge cases. The following section presents the
development of a mathematical model for the two-dimensional system that can be used to

perform such measurements.

3.6 Algorithms for the Two-Dimensional System

The mathematical algorithms describing the two-dimensional system relate the Cartesian

coordinates (X, Y, Z) of a point in object space with its corresponding frame buffer
coordinates (xf, yf). This transformation expresses the projection of three-dimensional

space to the two-dimensional computer image as performed by the system. Since this
transformation is singular, depth is assumed to be known both for the purposes of analysis

and the relevant experiments carried out with the two-dimensional system.

3.6.1 Geometry of the Two-Dimensional System

Figure 3-15 depicts the geometry ofthe two-dimensional rotating object line-scan system.

Centre of
rotation

>X

Figure 3-15 Geometry o fthe two-dimensional system.
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The reference coordinate system is camera-centred, with its origin 0 located at the
perspective centre of the lens. The Z axis is coincident with the optical axis, and the Y axis
is parallel to the sensor. The X axis is normal to both the Y and the Z axes, and the XYZ

coordinate system is orthogonal. The centre ofrotation has coordinates (0, Zc).

A point P at distance r from the rotation axis has coordinates {XP, Yp, Zp). This point is
subjected to clockwise rotation and it is imaged by the line-scan cameraat spatial location P’
(see Figure 3-15). The Cartesian coordinate components X Pand ZPof P are expressed as a
function ofthe radius » and the angle w by -

X p —rsinco (3-1)

ZP=Zc -r cosc (3-2)

where angle  is the counterclockwise angle defined from the Z axis to point P and is

always positive.

3.6.2 X Axis Algorithm Derivation

Let the arc defined by points P and P’ be denoted by a . From Figure 3-15, arc a can be

expressed as a function of angle w by -

a-rco (3-3)
where -

0<w<In

If point P is rotating with rotational speed Ur, expressed in revolutions per minute (rpm), its

angular speed UA is given by -

Ua =2 (3-4)

48



The Two-Dimensional System

Let xf be the number of scan lines generated during image capture over distance a, and ¢IP

be the integration period. Then, capturing of distance equal to arc a requires #jPxf time,

hence -

a = Udtlpxf (3-5)
By combining equations 3-3, 3-4 and 3-5, xf can be expressed as -

30
X (69]
J  7U.th

(3-6)
In equation 3-6, Ur is the rotational speed of point P expressed in rpm, ¢/P is the integration

period in seconds and xf .is the X axis frame buffer coordinate ofpoint P, referenced to the

start of scan. From equation 3-6 it can be seen that the projection in the X image axis is
linear in angle and independent ofthe lens perspective centre to the rotation axis range. The
product ofthe integration period and the rotational speed determine the X axis scaling factor
in the transformation from the object space to the computer frame buffer. This scaling

factor, denoted by sx, is equal to -

30 (3-7)
n UrtIP )
and equation 3-6 is simplified as
xf ~ sxa> (3-8)

The X and Z axis object space coordinates of point P can be related to the X axis frame

buffer coordinate from equations 3-1, 3-2 and 3-8 as -

X P=rsin(s~xf) (3-9)

Zp =Zc -rcos(s~Ixf) (3-10)
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For a given set of values at the right-hand-side of equations 3-9 and 3-10, either a negative
or a positive solution for X p and Zp can be obtained. For example, points 4, and 42 of

Figure 3-16 have the same Z axis coordinate, but their X axis coordinates have opposite

signs.

X X

Figure 3-16 Points symmetrically located about the Z axis.

The correct solution can be determined only with prior knowledge ofthe quadrant that point

P occupied at the start of scan. This issue is addressed in the fourth chapter, where the

mathematical model ofthe stereoscopic system is developed.

3.6.3 Y Axis Algorithm Derivation

From the perspective projection model, the Y axis object space coordinate of point P can be

expressed as -

(3-11)

where / is the lens principal distance, y is the image space coordinate of the point in the

camera-centred coordinate system and ZPF is the distance from the perspective centre to

50



The Two-Dimensional System

point P ’in Figure 3-15, that is, the range from the perspective centre to point P at the instant

ofimage capture. This range is -

ZR=Zc-r (3-12)

where Zc is the distance from the rotation axis to the perspective centre, and r is the radial

displacement of point P from the rotation axis.

In equation 3-11, y is measured in the camera-centred coordinate system. This coordinate
is transformed by the system into yf, the Y axis frame buffer coordinate, which is

referenced to the top-left corner ofthe stored image -

yp - Sy(y.f ~Cy) (3-13)

where yf is the Y axis frame buffer coordinate of point P, and s is a scale factor

introduced to adjust the image space scale to that of the frame buffer system and transform
from metric units to frame buffer coordinates. Since image space values can be both positive
and negative, a positive offset must be applied to produce positive only frame buffer

coordinates. This offset is introduced by the term C , which is the Y axis coordinate of the

image centre expressed in the frame buffer coordinate system.

Substituting equations 3-12 and 3-13 into 3-11 produces -

Yr =S,(Zf ~r)(f -Cr) (3-14)

The scale factor s may be determined as follows. Let n be the total number of photosites

on the sensor and / be the physical length of the sensor. The scaling factor can then be

expressed as -

(3-15)

=g
I
1
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If the distance between adjacent photosites of the sensor is zero, as is the case for the

cameras used in the experimental system, the sensor length / is -

I- n-5y (3-16)

where Sy is the photosite width. Equations 3-15 and 3-16 produce -

sy - 8y

Therefore, for the cameras used in this work, the Y axis scale factor is equal to the photosite

width.

3.6.4 Determining the Conditions for Correct Image Aspect Ratio

The X and Y axis algorithms derived in the preceding section allow the determination of the
system operating parameters that yield a correct, i.e. 1:1, image aspect ratio. This requires
that an object having a 1:1 aspect ratio produces an image of equal aspect ratio. Since the

object is nominally cylindrical, its aspect ratio can be defined as the ratio of its
circumference to its height. Let these be denoted by C and H, respectively. Combining
equations 3-3 and 3-8 produces -

(3-17)

From equation 3-14 -

(3-18)

Combining equations 3-17 and 3-18 under the condition that C - H produces -
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But the image also has a 1:1 aspect ratio, so that xf - yf ~Cy, and equation 3-19 becomes

r\\ ~Zc (3-20)

where 1,., denotes the radius of the object for a correct image aspect ratio, f is the lens
principal distance, sx and sy are the X and Y scaling factors, respectively, and Zc is the

distance from the perspective centre ofthe lens to the rotation axis.

Ifthe dimensions ofthe object are known, equation 3-20 can be solved for the product ofthe

integration period and the rotational speed -

30sy Zc-r

Urtn>= 5T~ (3-21)

Because the image aspect ratio is determined by the spatial sampling properties of the
system, the aspect ratio of the raw image, as opposed to that obtained from an object of a
given aspect ratio, can be considered. Indeed, it is apparent that the above discussion
pertains to any part of an object that has an arc length to height ratio equal to unity. Thus, to
explicitly express that the image aspect ratio is independent of the object aspect ratio, the

term pixel aspect ratio will be adopted.

3.7 Two-Dimensional System Experiments

The purpose of the following experiments is two-fold: first, to evaluate the integrity of the
experimental system and second, to establish that the experimental system can be
successfully modelled using the algorithms developed in the previous section. The first task
requires that the precision of certain system parameters, such as the rotational speed and the
integration period, is adequately quantified. Here, the term “precision” refers to the

consistency of these parameters over the course of individual experiments as well as to their
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long-term repeatability, defined over a number of experiments undertaken at different

instants.

The coordinate measurement ability of any metrological system can be assessed by its
accuracy, i.e. the difference between the true and the measured value of a parameter. To
alleviate the effects of random errors, the mean of the measured values over a sufficient
number of observations is taken6l. Note that the absolute coordinate measurement accuracy
of the two-dimensional system is of limited consequence as the system cannot derive depth
autonomously anyway, and it is not calibrated. The latter indicates that the precise location
and orientation of the camera system with respect to the object space coordinate system, as
well as the interior orientation and temporal parameters camiot be determined accurately.
Thus, it is anticipated that relatively large systematic errors will be present in the relevant
experimental results. Regardless of absolute accuracy, however, results obtained from the
accuracy experiments will indicate whether the experimental system obeys the derived
analytical model or not. Indeed, the presence of systematic errors can only compromise the
degree of confidence pertaining to the validity ofthe mathematical model, but not to such a

degree as to render the results inconclusive.

3.7.1 Experimental Strategy and Error Representation

Due to the different underlying nature of the precision and accuracy experiments, their
respective outcome has to be specified in different forms. Specifically, repeatability
experiments are based on multiple observations ofthe value of the same physical parameter.
Hence, the results of these experiments are specified in terms of a mean value and standard
deviation. Experiments to characterise the validity of the system model, on the other hand,
require that the repeatability of the system parameters has been previously established to a
given degree of confidence. Consequently, the outcome of these experiments is specified in
terms of residual error and standard deviation. The statistical significance of the mean

value, residual error and standard deviation is summarised below, from Mikhail&.

Let /n be the individual observations in a set of measurements, » being the sample size. The

sample mean L isthe most probable value and is equal to -
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The deviation of each sample from the mean value is called the residual error Vi and is

given by -

VAL -L (3-23)

The standard deviation m is defined as

m=%, T £ K2 (3-24)

1Al

This parameter is also referred to as the rms (root-mean-square) error.

3.7.2 Establishing the Repeatability of System Parameters

The integration period is determined by a periodic electronic signal. The rotational speed
can also be observed as an electronic signal using a suitable transducer. However, the
electronic noise present in these signals as well as any spurious pickup from the
environment can render their observation in the time domain, for instance by means of a
storage oscilloscope, inconclusive. The preferred method is to observe their spectra (in the
frequency domain) on a spectrum analyser. High frequency noise then manifests itself as
spurious modulation of the signal envelope, whereas low frequency permutations shift the

whole envelope of'the signal, indicating poor consistency in the measured parameter.
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EVALUATION OF THE ROTATIONAL SPEED PRECISION:

In order to evaluate the consistency of the rotational speed independently of other system
parameters, an optical encoder is coupled to the stepper motor shaft. This is manufactured
by Hewlett Packard'3, type HEDS-5600A, and features a resolution of 500 pulses per
revolution. The transducer incorporates the required signal-conditioning and output drive
electronics making interfacing with measurement instruments straightforward. The use of a
storage oscilloscope was found to be inadequate, as, besides the aforementioned
deficiencies, reliable synchronisation could not be achieved. Subsequently, it emerged that
the most reliable observation method comprised the concurrent use of a frequency counter
and a spectrum analyser. The former requires a time-base of one second to yield a precision
better than 1 part in 104. Therefore, the measurement is a good indicator of consistency. The
spectrum analyser, on the other hand, has a minimum scan width of 20Hz, which may not be
sufficient to quantify consistency, but provides a good visual indication of high frequency

spurious components.

To ensure that the measurements are reliable, three different frequency counters were
utilised, namely a Thandar TF200, a Farnell FM600 and a Beckman Industrial DM27XL
multimeter. The highest resolution at a gate time of one second is offered by the Farnell
counter and the measurements reported in Table 3-1 were obtained by this instrument.

Visual inspection of the signal envelope is carried out on a Hewlett Packard HP8556A

spectrum analyser.

Stepper Rotatin
PP 90:1 gear ng
motor table
Mechanical
ecoupling
Optical
Instrumentation
encoder

Figure 3-17 Block diagram o fthe rotational speedprecision measurement system.

The optical encoder produces 500 pulses per motor shaft revolution, thus the transducer’s
output frequency is equal to 500/60 Hz for a rotational speed of Irpm. However, the rotary

stage incorporates a gearing of 90:1 (Figure 3-17) so that one revolution of the rotary stage
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at lrpm yields 45000/60 Hz. Therefore, if the stage rotates with a speed of Ur, the

encoder’s output signal has a frequency /

of -

(3-25)

Table 3-1 presents results of the rotational speed precision experiments. The first column

shows the nominal rotational speed in rpm and the remaining columns show the results of

ten experiments with a sampling interval of one second.

" nom
(rpm)
0.5

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

/% 4
(Hz)

753.14
1130.02
1512.62
1882.96
2259.51
2631.30
3001.19
3369.70
3766.21
4175.49
4465.95

TABLE 3-1 Output o foptical encoder in ten experiments.

/« # 2
(Hz)

753.18

1129.90
1512.50
1882.80
2259.47
2631.51

3001.16
3369.80
3766.14
4175.40
446591

3
(Hz)

752.94
1130.11

.1512.39

1883.07
2259.61

2631.44
3001.26
3370.01

3766.09
4175.62
4465.85

fen #4
(Hz)

753.11
1129.68
1512.44
1883.27
2259.88
2631.24
3001.43
3369.67
3766.00
4175.44
4465.86

/»#5
(Hz)

753.47
1129.73
1512.40
1882.90
2259.49
2631.00
3001.20
3369.51
3766.38
4175.66
4465.92

J« H>
(Hz)

753.51
1130.05
1512.34
1883.04
2259.67
2631.18
3001.15
3369.42
3766.36
4175.75
4466.15

I # 7
(Hz)

753.40
1129.72
1512.57
1883.38
2259.40
2630.99
3001.21
3369.49
3766.48
4175.78
4465.96

/T« #» "
(Hz)

753.28

1129.68
1512.57
1883.44
2259.49
2631.33
3001.18
3369.70
3766.38
4175.57
4465.89

V., #9
(Hz)

752.96
1129.59
1512.38
1883.26
2259.36
2631.35
3001.25
3369.93
3766.17
4175.35
4465.91

10
(Hz)

753.36
1130.04
1512.43
1882.92
2259.55
2631.41
3001.23
3369.71
3766.30
4175.52
4466.07

Readings for a nominal speed of 0.5rpm could not be obtained due to limitations in the

optical encoder. Table 3-2 presents the mean value U ofthe rotational speed obtained from

the output of the encoder, the residual error V' and the sample standard deviation m

obtained by applying equations 3-22 to 3-25. The last column indicates the precision of the

rotational speed in parts per 104
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TABLE 3-2 Results ofthe rotational speedprecision experiments.

u nm (rpm) U (rpm) V' (rpm) m (rpm) ~ p.p.104
1.0 1.00431 0.00431 +0.00026 +2.60
1.5 1.50647 0.00647 + 0.00024 + 1.60
2.0 2.01662 0.01662 +0.00012 +0.60
2.5 2.51081 0.01081 +0.00028 +1.12
3.0 3.01272 0.01272 +0.00019 +0.63
3.5 3.50837 0.00837 +0.00022 +0.63
4.0 4.00163 0.08017 +0.00010 +0.25
4.5 4.49293 -0.00710 +0.00024 +0.53
5.0 5.02167 0.02167 +0.00019 +0.38
5.5 5.56741 0.06741 +0.00018 +0.33
6.0 5.95460 -0.04540 +0.00012 +0.20

From the fourth column of this table it can be seen that there is no apparent deterioration of
the standard deviation at increasing speeds. Note that a standard deviation of + 0.00026 in
6rpm corresponds to a precision of £0.43 parts in 104 whereas the same value in lrpm
yields +£2.60 parts in 104. This would indicate that the measurements are bound by random
noise, frequency modulating the encoder’s output signal. This noise is attributed, in part, to
subsequent modules of the measurement chain, further contaminating the encoder’s output

signal.

A maximum standard deviation of + 0.00028 rpm was measured at a rotational speed of
2.5rpm. If this worst case value, bound by random noise rather than actual speed
inconsistency, is referred, to the maximum rotational speed of 6rpm, a speed precision of
+ 0.47 parts in 104is obtained. This value represents an inferred worst case speed precision

and is therefore regarded as the worst case precision ofthe system at all speeds.

Since the two-dimensional images produced by the line-scan system consist of 508 scan

lines, for an image having a 360° angular field of view the angular resolution of the system

508 « 0.709° / pixel

The worst case speed precision of +£0.47 parts in 104 can be expressed as an angular

precision of -
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+0.47—T1- w=0.017° in 360°
104

which is less than an order of magnitude the angular resolution ofthe system. Consequently,

for the purposes ofthis work, the rotational speed is regarded to be precise enough.

EVALUATION OF THE INTEGRATION PERIOD PRECISION:

The arguments outlined above rendering the evaluation of precision more accurate in the
frequency domain than in the time domain hold true also for the integration period
experiments. However, experiments indicated that the very small duty-cycle of the
line-transfer pulse (active-high for 10nS in each integration period) is not sufficient to
trigger any of the three frequency counters used. Evaluation in the time domain by means of
a storage oscilloscope- proved also inconclusive because of limited resolution,
synchronisation problems and the presence of noise. However, the line-transfer signal is
produced by a digital input/output port of the frame grabbers and is therefore expected to be

highly precise. This is verified experimentally in section 3.7.3.1.

EVALUATION OF THE REPEATABILITY OF START OF SCAN:

In certain cases, absolute distances of spatial points referenced to the same coordinate
system may be required over more than one pass of an object. For example, an experiment
presented in Chapter 5 requires one pass for system calibration and another for
measurement. Thus, the start of scan must be repeatable to within one pixel. To assess this,
the frame buffer coordinates of an arbitrary spatial point were measured ten times. Between
each run the rotary stage was returned to its datum position and the values of all other
system operating parameters were retained. Identical frame buffer coordinates to within one

pixel were recorded in all ten runs.
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3.7.3 Validation of the Mathematical Model

3.7.3.1 X Axis Algorithm Verification

In the following set of experiments, each one of the three unknowns that determine the X

axis frame buffer coordinates xf, namely the rotational speed Ur, the integration period ¢n>

and the angle co, are varied individually within the physical limits set by the experimental
system. During each experiment, it is assumed that all variables apart from that which is
stepped have constant and known values. The validity of the first assumption is established
in the previous section, whereas that of the second can only affect the accuracy of the
results. Thus, in accordance with the arguments presented at the beginning of section 3.7,
the above assumption is justifiable for the purposes of these experiments. Tables 3-3, 3-4
and 3-5 in conjunction with the respective graphs present the results. The notation used in

presenting the results is as follows:

¢ column shows the calculated frame buffer coordinates in the X axis;

¢ column /\xf'J shows the corresponding measured values;

¢ column V" xfJ shows the resultant error residual;

¢ column /{co] presents spatial radial values extrapolated from corresponding frame

buffer coordinate measurements;

¢ column F{co} presents the associated object space radial residual error.

Where necessary, calculated values have been rounded off to a precision of three or more

decimal points, dependent on the required resolution.

VARIATION OF THE INTEGRATION PERIOD:

Experimental conditions: Ur - 25rpm, co= 14°.
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TABLE 3-3 Accuracy in variations o fthe integration period.

tIP (mS) A/ } Vix,) l\(o] (deg) Vico} (d€
2 466.667 464 2.667 13.920 0.080
3 311.111 310 1.111 13.950 0.050
4 233.333 232 1.333 13.920 0.080
5 186.667 185 1.667 13.875 0.125
6 155.556 155 0.556 13.950 0.050
7 133.333 133 0.333 13.965 0.035
8 116.667 115 1.667 13.800 0.200
9 103.704 103 0.704 13.905 0.095
10 93.333 94 -0.667 14.100 -0.100
11 84.848 85 -0.152 14.025 -0.025
12 77.778 77 0.778 13.860 0.140

The mean value ofangle w is @ = 13.9340 with a standard deviation of m(co) =£0.1070.

The spatial residual error has a mean value of J=0.0660. Object space angular values,
corresponding to measured frame buffer coordinates, are plotted in Figure 3-18 as a function

of'the integration period.

2 3 4 5 6 7 8 10 11 12
Integration period 7¢M(mS)

Figure 3-18 Spatial angle measurementsfrom variations o fthe integration period.

A maximum absolute frame buffer coordinate error of less than three pixels was recorded.
The increasing spatial angular error trend is attributed to the combination of the discrepancy
between the nominal and actual values of the rotational speed and the inverse (1/x) rule

indicated by the X axis algorithm.
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VARIATION OF THE ROTATIONAL SPEED:

Experimental conditions: t

Ur (mS)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
55
6.0

The Two-Dimensional System

=10m S, o= 14°.

TABLE 3-4 Accuracy in variations o fthe rotational speed.

Li{xf)
466.667
233.333
155.556
116.667

93.334

77.778

66.667

58.334

51.852

46.667

42.424

38.889

l{xf)
466
232
155
116
94
77
67
58
51
46
43
39

0.667
1.333

0.556
0.667
-0.667
0.778

-0.333
0.333

0.852
0.667
-0.576
-0.111

l{co} (deg)

13.980
13.920
13.950
13.920
14.100
13.860
14.070
13.920
13.770
13.800
14.190
14.040

Vi{co} (deg)

0.020
0.080
0.050
0.080
-0.100
0.140
-0.070
0.080
0.230
0.200
-0.190
-0.040

The mean value of angle @ calculates to @ =13.9600 and the standard deviation is

m(co) =+0.130°. The mean spatial residual error is

V' —0.040°. Object space angle

measurements, calculated from frame buffer coordinate measurements, are plotted in Figure

3-19 as a function of'the rotational speed.

05 1

1.5

2

2.5

3

3.5

4

4.5

Rotational speed Ur(rpm)

5

5.5

Figure 3-19 Spatial angle measurementsfrom variations o fthe rotational speed.
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A maximum absolute frame buffer coordinate error of less than two pixels was recorded.
The non-linear increase in spatial angular error with increasing rotational speed is again

attributed to the inverse rule governing X axis frame buffer coordinates.

VARIA TION OF THE ANGLE co:

Experimented conditions: Ur =5rpm, tw = 10m S.

TABLE 3-5 Accuracy in variations ofthe angle co.

c (deg) Lixf) s } lfco] (deg)  V/co} (deg)
15 50.0 49 I 14.7 0.3
30 100.0 100 0 30.0 0.0
45 150.0 149 I 447 0.3
60 200.0 200 0 60.0 0.0
75 250.0 248 2 74.4 0.6
90 300.0 299 1 89.7 0.3
105 350.0 348 2 104.4 0.6
120 400.0 399 1 119.7 0.3
135 450.0 448 2 134.4 0.6

The mean spatial residual error is V =0.333° and the standard deviation is

m(co) ==+ 0.4240. Figure 3-20 plots the spatial residual error as a function of angle co.

0.6
0.5
n
&)0.4
3 03
3 0.2
>
0.1
0

0 50 100 150
Angle co(degrees)

Figure 3-20 Spatial residual errorfrom variations o fthe angle co.
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A maximum absolute frame buffer coordinate error of exactly two pixels was recorded. Due
to the presence of spatial quantisation noise, the effects of the inaccuracy of the rotational

speed can just be identified.

3.7.3.2 Y Axis Algorithm Verification

To verify the Y axis algorithm, equation 3-14 of section 3.6.3 is used. Solving for Y axis

frame buffer coordinates y f gives -

Since the interior orientation parameters of the camera are not known, nominal values for
the Y axis image centre and the lens principal distance are assumed. Therefore, the Y axis

image centre C 1is assigned a value of 256 and, unless otherwise stated, the 50mm nominal
focal length lens is used. Also, from section 3.6.3 the Y axis scale factor s is 13//m. The

notation used in presenting the results is as follows:

¢ column L\yf\| shows the calculated frame buffer coordinates in the Y axis;

¢ column / shows the corresponding measured coordinates;

¢ column V\yf | shows the resultant error residual;

¢ column /{T;,} presents Y axis spatial distances extrapolated from corresponding

frame buffer coordinate measurements;

¢ column V'\yPj presents the associated spatial residual error.
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VARIATION OF OBJECTSPACE YAXIS DISTANCE:

Experimental conditions: r = 0.05m, Zc= 1.25m.

)/ (m)

-0.060
-0.055
-0.050
-0.045
-0.040
-0.035
-0.030
-0.025
-0.020
-0.015
-0.010
-0.005

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060

TABLE 3-6 Accuracy in variations of Yp.

Lhf)

63.692

79.718

95.744

111.769
127.795
143.820
159.846
175.872
191.897
207.923
223.949
239.974
256.000
272.026
288.051
304.077
320.103
336.128
352.154
368.179
384.20.5
400.231
416.256
432.282
448.308

IM

73
89
105
121
138
154
170
186
203
218
235
251
268
284
300
316
333
349
365
381
397
413
430
446

v M
7.692

6.718
6.744
6.769
6.795
5.820
5.846
5.872
5.897
4.923
5.949
4.974
5.000
4.026
4.051
4.077
4.103
3.128
3.154
3.179
3.205
3.231
3.256
2.282
2.308

I} (m)
-0.06240
-0.05710
-0.05210
-0.04711
-0.04212
-0.03682
-0.03182
-0.02683
-0.02184
-0.01654
-0.01186
-0.00655
-0.00156
0.00374
0.00874
0.01373
0.01872
0.02402
0.02902
0.03401
0.03900
0.04399
0.04898
0.05429
0.05928

v {¥B (mm)

2.40
2.10
2.10
2.11
2.12
1.82
1.82
1.83
1.84
1.54
1.86
1.55
1.56
1.26
1.26
1.27
1.28
0.98
0.98
0.99
1.00
1.01
1.02
0.71
0.72

From Table 3-6 the mean residual error has a value of V' = 148mm and the standard

deviation is m(Yp) ==+ 1.56mm. The object space residual error as a function of Y axis

spatial distance is shown in Figure 3-21.
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-0.06  -0.04  -0.02 0 0.02 0.04 0.06

Y axis spatial distance T/?(m)

Figure 3-21 Spatial residual errorfrom variations of Yr.

A maximum absolute frame buffer coordinate error of eight pixels was recorded. Evidently,
this error is more significant than that present in the X axis results. This is attributed to
inaccuracies in the interior orientation parameters of the camera: Table 3-6 shows that the Y
axis image centre occurs at pixel 251 instead of the nominal 256. In addition, the linear
trend in error decrease indicates that the principal distance of the lens is larger than its
nominal value. Indeed, extrapolation yields a true principal distance value of approximately

52mm.

VARIATION OF THE PRINCIPAL DISTANCE:

Experimental conditions: v =0.05m, Zc¢ = 1.25m, Yp =0.05m

TABLE 3-7 Accuracy in variations o fthe principal distance.

mm ;
fron (mm) gy £y Dy R G v op) om)
25 336.128 331 5.128 0.0468 3.2
50 416.256 413 3.256 0.0490 1.0
75 496.384 488 8.384 0.0483 1.7
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The mean spatial error and the standard deviation are of limited consequence in this
experiment since the deviation of the lens principal distance from the nominal focal length

value is significant.

The maximum frame buffer coordinate error is nine pixels. It is concluded that, principally,

the discrepancy between nominal and actual lens principal distance gives rise to this error.

VARIATION OF THE RADIAL DISTANCE:

Experimental conditions: Zc¢= 1.25m, Yp = 0.05m.

TABLE 3-8 Accuracy in variations o fthe radial distance.

r (m) LS, . 1f¥p) (m) v {¥p} ()
0.025 412.986 414 -1.014 0.04839 1.61
0.050 416.256 416 0.256 0.04800 2.00
0.075 419.666 420 0.334 0.04817 1.83
0.100 423.224 425 1776 0.04859 1.41
0.125 426.940 427 -0.060 0.04809 1.91
0.150 430.825 432 1175 0.04840 1.60
0.175 434.891 435 -0.109 0.04811 1.89
0.200 439.150 440 -0.850 0.04830 170

The residual error has a mean value of V—1.74mm and the standard deviation is
m(YP) ~ + 1.87 mm. Figure 3-22 plots the spatial residual error as a function of the radial

distance r .
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0.05 0.1 0.15 0.2
Radial distance (m)

Figure 3-22 Spatial residual error from variations ofr .

The absolute frame buffer coordinate error is within two pixels, and its linear and constant

trend indicates that the image centre error is the cause.

VARIATION OF PRINCIPAL POINT TO ROTATION AXIS DISTANCE:

Experimental conditions: Yr =0.05m, r = 0.05m .

TABLE 3-9 Accuracy in variations o fthe depth Zc.

Zc (m)

Liy,} .y /{M (m)  V{YP] (mm)
1.0 458.429 462 -3.571 0.05088 -0.88
1.2 423.224 427 -3.776 0.05113 -1.13
1.4 398.450 400 -1.550 0.05054 -0.54
1.6 380.069 381 -0.931 0.05037 -0.37
1.8 365.890 366 -0.110 0.05005 -0.05
2.0 354.619 354 0.619 0.04969 0.31
2.2 345.445 346 -0.555 0.05031 -0.31
2.4 337.833 337 0.833 0.04949 0.51

From the above table, the mean residual error is ¥ —-0.31mm with a standard deviation of

m(Yr) = £ 0.65 mm. Figure 3-23 shows the plot of the spatial residual error as a function of

depth.
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1 1.5 2 2.5
Depth Zc (m)

Figure 3-23 Spatial residual error from variations o fthe depth Zc .

A maximum absolute frame buffer coordinate error of four pixels was recorded.
Inaccuracies in the lens principal distance and the measurement of the radial distance r
and/or in the exterior orientation parameters of the camera are thought to be the cause of the

recorded errors.

3.7.4 Discussion of the Experimental Results

The results presented in section 3.7.2 indicate that imaging errors produced by inconsistency
in the rotational speed are indiscernible. Although the consistency of the integration period
proved more difficult to assess, the fact that it is produced by a digital port clocked by a
crystal oscillator relaxes the uncertainty associated with its precision. Furthermore, since all
X axis accuracy experiments rely on the consistency of the integration period and no erratic
behaviour was recorded in any of them, it may be concluded that the line-transfer signal is
sufficiently precise. More rigorous exercise of the precision of this signal is undertaken in

the relevant experiments with the three-dimensional system.

Reasonable results regarding the verification of the two-dimensional system model were
obtained through the accuracy experiments. In examining these results, it is imperative to
note that the system calibration parameters are not known; rather, the experimental system is
assumed to be perfectly aligned, i.e. strictly conforming to the derived geometrical model.

Furthermore, the values of space resolving critical parameters, such as the lens principal
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distance, the rotational speed and radial and angular distances, have been assumed to be
exactly equal to their nominal or measured values. Both ofthese assumptions cannot be met

in practice, thus compromising the spatial resolving power ofthe two-dimensional system.
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4. THE STEREOSCOPIC SYSTEM

4.1 Introduction

This chapter presents the analysis of the stereoscopic line-scan system. The principal aim of
this analysis is to derive an analytical model for the line-scan system that will allow the
measurement of a three-dimensional object workspace from a pair of perspective images.
The discussion starts with the introduction of the stereoscopic region and the identification
of'the parameters determining its spatial extent. To ascertain the spatial resolving properties
of the stereoscopic line-scan system, the spatial sampling pattern is presented and the

parameters affecting the voxel size are discussed.

In order to produce object space metric information from the line-scan system, the
development of an analytical model is required. A primary consideration regarding the
development of such a model in this work is that the geometry of each camera is considered
individually and no dependency between them is assumed. This rigorous approach is
consistent with the majority of existing photogrammetric and machine vision research work
based on area-array cameras and has been demonstrated by numerous researchers, e.g.6465.
However, to the best of the author’s knowledge, no publications addressing the issues of
both rigorous calibration and space intersection on close-range stereoscopic line-scan

systems exist.

The topic of camera calibration has attracted considerable attention from scientists and
researchers of different disciplines. This is because of its extended field of practical
applications and significance towards improving the metrological accuracy of
photogrammetric and machine vision systems. Traditionally, calibration was exploited by
photogrammetrists in the -refinement of systems for the production oftopographic maps, but
calibration techniques have been employed in such diverse fields as autonomous robot
forldiftsé and satellite photogranunetry6/, to stereometric microscopy® and neurosurgery®.
More recently, following substantial cost reductions in computing power and quality
improvements in electronic image sensorsA7L727, the topic of calibration has received
renewed attention through the research efforts of the machine, robot and computer vision

communities 47507, R POSLLBALH
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One rigorous resection method employed to compute the camera calibration parameters
entails the mathematical modelling of the object to image space projective transformation
through the collinearity equations&*8 Other calibration methods include traditional
photogrammetric interior orientation carried out by goniometers combined with Euclidean
geometry space resection, non-parametric calibration®), calibration without point feature
extraction BN, self-calibration9l, the Direct Linear Transformation®®B (DLT), and the bundle

adjustment (this method utilises the collinearity equations).

Although numerous approaches to the calibration of photographic and electronic area array
cameras are available, the established base of research publications addressing die
calibration of line-scan sensors is comparatively limited. To the author’s knowledge, the
most comprehensive calibration method specifically developed for line-scan cameras is that
of Horaud et al9% However, Horaud’s method does not take the temporal parameters of the
two-dimensional line-scan image production into account. This is because, in many
applications, the image information produced by the line-scan sensor is processed on a
line-by-line basis (see section 2.4), rather that in two-dimensional frames. The calibration
model developed in this research addresses this issue in the context of rotational object

motion. In addition, the camera parameters are derived explicitly.

4.2 The Stereoscopic Region

Figure 4-1 depicts a plan view of the stereoscopic camera arrangement. The object of
interest is assumed to be nominally cylindrical, with its axis of cylindrical symmetry
coincident with the axis of rotation. The slit fields of view of both line-scan cameras are
coincident at a range Z7T from the rotation axis, that is, on the surface of the cylindrical

object. Further, it is assumed that the distance between each camera and the rotation axis is
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Cylindrical
object

\ow*’

Can A Camera #2
(after rotation)

Camera #2 Stereoscopic region Camera #1

(after rotation)

Figure 4-1 The stereoscopic region.

From sections 2.4 and 2.5.1, the angular field of view of the rotating object line-scan system
is produced only when relative motion between the sensor and the object exists and is
limited only by the available frame buffer memory. However, the extent of the stereoscopic
region, formed at the mutual volume of the left and right camera fields of view, depends
also on geometric parameters of the line-scan arrangement, such as the camera basewidth
and convergence angles. This is illustrated in Figure 4-1 where it can be seen that the
stereoscopic region, shown as the shaded area, is bound by the near (ZN) and far (ZF)
ranges. It will become apparent that, in the context of the stereoscopic system, the depth
planes are arranged concentrically with the rotation axis. Consequently, the near and far
boundaries of the stereoscopic region also take the form of concentric cylinders of radius

ZN and Z;, , respectively.

The stereoscopic region extends from the cylinder of radius Z, towards the cameras and the
near boundary ZN is imposed by physical constraints, namely the smallest range from the

lens at which acceptable focus can be achieved.

To evaluate the far boundary, consider Figure 4-2. The camera basewidth is signified by B,
the equal camera convergence angles by c¢p, and ¢z denotes the distance from the lens
perspective centre to the rotation axis. The cameras converge at distance Zr from the

rotation axis.
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Far Centre of
boundary rotation
t \ K.Y -
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Figure 4-2 Evaluating the far boundary ZF

It can be shown from Figure 4-2 that the radius of the circle which defines the far boundary

1S -

BZrsin (p

Therefore, the far boundary ofthe stereoscopic region depends o11 the camera basewidth, the
camera convergence angles and the distance from the cameras to the rotation axis. It can
also be appreciated that the volume enclosed by the cylinder ofradius ZF and the extent of
the Y axis field of view does not form part of the stereoscopic region. This gives rise to a
cylindrical volume ofocclusion which is coaxial with the rotation axis. The radius of this

cylindrical volume is given by equation 4-1.

4.3 The Spatial Sampling Pattern

The spatial sampling properties of the stereoscopic line-scan system can be identified by
consideration of the sampling pattern, depicted in Figure 4-3. This pattern stems from the
discrete nature of the sensor’s elements. The whole of the stereoscopic region is made up of
individual volume elements, or voxels9 each corresponding to the mutual volume of
back-projected photosite elements from the left and right camera through the camera optics
to object space. Unless subpixelation techniques are employed, the location of a point in
object space that falls anywhere within the volume of a voxel camiot be determined to an

accuracy better than the spatial dimensions of that voxel. Since this translates to an

74



The Stereoscopic System

uncertainty of £ 1 pixel, or two pixels in absolute value, individual voxels stretch between
two consecutive depth planes. The instantaneous fields of view of both cameras are
nominally parallel to the rotation axis, therefore the depth planes in Figure 4-3 (denoted r,,

72, etc.) are of cylindrical shape and coaxial to the rotation axis.

Voxels

Convergence

Left camera range

IFOV

Centre of
rotation

Right camera

IFOV Volume of occlussion

(normal to shaded area)

Figure 4-3 The spatial sampling pattern produced after object rotation (plan view).

From this diagram it is also apparent that the spatial resolution of the line-scan system is
highest at the minimum resolvable distance from the rotation axis, i.e. closest to the cylinder
of occlusion, and gets progressively lower as this distance is increased. In addition, the
spatial resolution is constant over the circumference of any cylinder coaxial to the rotation

axis lying within the stereoscopic region.

As voxels represent the way a digital imaging system samples space, all of the system
parameters governing image production affect their size. With reference to Figure 4-3, voxel

dimensions depend on -
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Main (Y) axis:
i. the lens principal! distance;
ii. the photosite dimensions;

iii. the camera to object range.

Any radial axis (normal to the main axis):
i. the integration period;
ii. the rotational speed;
iii. the radial separation from the rotation axis;
iv. the camera convergence angles;

v. the camera basewidth.

The number of variables involved in the determination of the voxel size precludes the
practical derivation of a closed-form solution. Thus, in order to quantify the voxel
dimensions, the three-dimensional space resolving algorithms must first be introduced.

Section 4.5.4 details the calculation ofthe voxel size.

4.4 Stereoscopic Line-Scan System Algorithms
4.4.1 Geometry of the Stereoscopic System

The geometry of the stereoscopic system is illustrated in Figure 4-4. The coordinates of
points in object space are defined in the three-dimensional Cartesian object space coordinate
system (X, Y, Z). The purpose of this coordinate system is to map the object workspace

and it is required to be independent from the camera coordinate systems.
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A three-dimensional rectangular coordinate system is established for each camera, denoted
by (Xcl, Ych Zcl) and (X cR YcR ZcR) for the left and right camera, respectively. Both
cameras are rotated inwards about the Y axis ofthe left and right camera-centred coordinate
systems by angles (pL and <R such that their optical axes converge at point C. Both Zc¢
axes are coincident with the respective optical axis, and the Yc axes are parallel to the line
defined by the sensor’s photosites. The Xc¢ axes are normal to the respective XZC plane,

and both camera coordinate systems are centred on the lenses’ perspective centre.

The origin of the object space coordinate system (X, ¥, Z) lies on the rotation axis, its
exact location determined by the Y axis translation component between the camera and
object space systems. In the nominally aligned system depicted in Figure 4-4, the X ZC
planes of both cameras and the object space coordinate systems are coplanar and normal to
the rotation axis. However, for the rigid transformation (see Appendix I) from the object
space to either camera coordinate system to be valid, all three coordinate systems must be
right-handed; hence the opposite direction of the ¥¢ and YR axes with respect to the Y

axis.

Centre of
rotation

Left Right
Camera Camera

Figure 4-4 Geometry o fthe stereoscopic system.
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An arbitrary point P, located distance » from the rotation axis, is subjected to a clockwise
rotation such that it is imaged first by the right camera at position PR and then by the left
camera at position P,. Provided that the cameras’ optical axes do not converge on the
rotation axis, stereoscopic parallax information will exist in the left and right perspective
images. This can be seen in Figure 4-5 where the left and right camera perspective images of

a cylindrical structure are reproduced.

Figure 4-5 (a) Left and (b) right perspective images depicting disparity.

If the convergence point is located on the rotation axis there will still be a lateral shift due to
the time delay between the capture of the spatial point by the left and right cameras, but no
stereoscopic parallax since the left and right perspectives are essentially the same. This is

discussed in more detail in Chapter 5.

4.4.2 The System Model

The development of a suitable model for the line-scan system begins with the derivation ofa
functional model. The functional model consists of a set of mathematical algorithms that

describe the operation ofthe line-scan system without taking stochastic effects into account.

Since the left and right cameras are geometrically independent, it is not valid to derive the
system algorithms on the basis of perfect relative alignment of the two sensors since these
would break down under real, non-perfect alignment conditions. The derivation of a suitable
model, whereby each camera has six degrees of freedom97 (three for position and three for
orientation), is presented in the following text. The discussion is divided into the following

four phases -

78



The Stereoscopic System

I.  Phase one details the derivation of the two-dimensional X and Y axis algorithms

in a camera-centred coordinate system assuming perfect system alignment.

II. Phase two extends the two-dimensional X and Y axis algorithms to encompass an

arbitrary object space coordinate system, hence modelling the non-perfectly

aligned system.-

IIl. Phase three details the calibration of the line-scan system and introduces the

stochastic model.

IV. Phasefour addresses space intersection.

PHASE 1: TPIE CAMERA-CENTRED ALGORITHMS

The geometrical model of the left camera system introduced in Figure 4-4 is illustrated in
more detail in Figure 4-6. It is subsequently demonstrated that the algorithms pertaining to

this model are also valid for the right camera system.

Zc

(0,0)

Figure 4-6 Detail ofthe left camera geometry.
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Let the coordinate systems’ alignment details be identical to those introduced in section
4.4.1, that is, a perfect system alignment. In addition, let the origin of the object space

coordinate system have coordinates (X Q 10, Z0) in the camera coordinate system and those

of an arbitrary point P be (X p, Yp, Zp).

X Axis Algorithm Derivation

With reference to Figure 4-6, angle c may be expressed as -

n ) yo i
o =—-(ol +w2 if
(4-2)
3V n 3n
Gg=— +0i+&2, if 2 <a)]~~Y
Further, angles coxr and 2 are given by
. fZ;p = ZQ/\
ax - sin
rp
(4-3)
co, - sin'1
Vr.
where the radius ofpoint P in the camera coordinate system is
r, ="X~X02+(z,-Z0): (4-4)

80



The Stereoscopic System

Combining equations 3-8, 4-2 and 4-3 produces -

n ) o X, " 1C n
— —< < —
Xf =S St \ rp J S Vl"p ! 2 Cal 2
(4-5)
37T+ | it M < BT
xf —5X Sin 1 ? 0, 1 E

Equation 4-5 expresses the transformation from the camera to the frame buffer coordinate

system in the X axis.

Y Axis Algorithm Derivation

The analysis of the two-dimensional system in chapter 3 derived a Y axis algorithm for the
rotating object line-scan system. However, it is noted from Figure 4-6 that, at the instant of
image capture, the spatial point P will have assumed location P'. In addition, the camera
and object space Y axes have opposite direction necessitating a sign inversion in equation

3-14.

Hence, equations 3-12 and 3-14 give -

yj=Cy-P — YP (4-6)

where yf is the Y axis frame buffer coordinate of point P, Cy is the Y axis image centre,
/1is the lens principal distance, sy is the Y axis scale factor and Zp, is the range from the

lens perspective centre to point P'. With reference to Figure 4-6 the depth Z,, is -

Z,, = Z0-PfxI(4-7)
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Hence, combining equations 4-6 and 4-7, the transformation from the camera to the frame

buffer coordinate system in the Y axis may be expressed as -

¢ h > (4_8)
y Z0 Vip Yo

The topic of lens non-linearity and their modelling is well-documented B¥'10010l. Appendix II
extends the Y axis algorithm to correct for up to fourth order radial lens distortion
components. However, practical constraints have precluded the use of a lens distortion

model in this work. This is discussed in more detail in section 4.5.1.

PHASE 2: REAL SYSTEM

A rigid transformation, described in Appendix I, is implemented in order to model the
arbitrary pose and orientation ofthe camera in the reference object space coordinate system.

This is given by -

pc=Rp +t (4-9)

where pc=\xp Yp Zp] and P~\x Y z] denote the camera and object space

coordinates ofpoint P, respectively.

From Figure 4-6, the translation vector ¢ is -
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Combining 4-3, 4-4 and 4-9

4 X +TYY +
aoxX = Sm

2{r, X +raY +ra z f+ (rmX + +

1 1.
wiri\X +rnY +ri3Z) +@3IX + m Y+1337)

co, - - sin

Substituting 4-10 into 4-5 the X axis system algorithm is obtained as -
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The derivation of the right camera system algorithms is now considered. The right camera

geometry is illustrated in Figure 4-7.

Figure 4-7 Detail ofthe right camera geometry.

From this diagram it can be seen that -

(4-13)

where the angles oo/ and o2 are given by equation 4-3. However, the translation vector for

the right camera system is -
t=k0-Y0 ZO]T (4-14)

so that the right camera X and Y axis algorithms are notationally identical to those ofthe left

camera system.
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PHASE 3: SYSTEM CALIBRATION

The aim of the calibration process is to estimate the interior, exterior and temporal
parameters of the line-scan system, given the spatial coordinates of a number of control
points and their corresponding frame buffer coordinates. The set of the control points and
their corresponding frame buffer coordinates is referred to as the control correspondence, or
just correspondence. The camera interior, exterior and temporal calibration parameters are
embedded in the functional model algorithms, that is, equations 4-11 and 4-12. These

parameters are summarised in Table 4-1.

TABLE 4-1 The calibration parameters.

Parameter Type Description
/ Interior Lens principal distance
¢ Interior Y axis frame buffer image centre
0, ep, IC Exterior Euler camera orientation angles
o5ty 51, Exterior The components ofthe translation vector
AV Temporal Rotational speed
P Temporal Integration period

Recalling equation 3-7 of the X axis scale factor, it is not possible to treat the rotational
speed and the integration period as two independent unknowns; it is their combined effect
that manifests itselfin the images, requiring that the product ofthese two variables is treated
as a single calibration unknown. This constraint is imposed by the operation of the system

and does not, in any way, compromise the accuracy ofthe derived functional model.

As numerous researchers have shown, the estimation of the camera parameters is not very

sensitive to the value of the image centre C . For instance, Tsai® has shown that

three-dimensional coordinate measurement (using passive stereo triangulation and
off-the-shelf cameras and lenses) with an accuracy of one part in 4,000 can be achieved
assuming that the image centre occurs at its nominal value. Hence, in order to reduce the
parameter space of the calibration model, it was decided not to incorporate the image centre

in the set ofthe calibration unknowns.
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Therefore, the calibration model employs eight unknowns for each camera and the
stereoscopic system can be modelled using sixteen calibration parameters. Each control
point contributes two equations from each image, thus the minimum number of control
points required for calibration is four. This compares favourably with the calibration of an
area-array camera, which, using a linear method and assuming that the camera lens is
distortionless, requires a minimum of six control points for calibration. However, it should
be noted that, in these conditions, the calibration of an area-array camera is a linear problem,
whereas that ofthe line-scan system is non-linear. This non-linearity is a consequence ofthe

rotational motion employed in the line-scan system.

In this work, calibration is performed using afull-scale iterative process. This method has

been traditionally employed in photogrammetry, and has two important properties:

¢ all the calibration unknowns are calculated in one step;

¢ the parametrisation of the camera is not constrained by the process, i.e. changes in

the functional model can be readily accommodated;
However, the method is computationally intensive and requires initial approximations for
each unknown (see section 4.5.2).

Let W denote the set ofthe calibration parameters -

Further, consider a point in object space having spatial coordinates (X, Y, Z) and
corresponding frame buffer coordinates (xfIt y/L) and (xfli y fR) produced by the left and

right cameras, respectively. The four simultaneous equations resulting from the system

algorithms can be expressed as -
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XNL-f*L(x>r,z,wD) =0
v.L-fy..(x, 1.Z, W) =0
*r-f*(x, Y,2Z, w,) =0

YK-fy*(x>

where WL and WR denote the set of the left and right camera calibration parameters,

respectively. The above set of equations can be extended to account for » points imaged by

both cameras -

Xju—
Y,Z,WIl)=0
x/w~fn(Xe>

where i —{1..n} .

In order to compute a solution for the calibration parameters, it is required to express the set

of simultaneous equations 4-16 in matrix notation as -

A x - 0

(4n,\6) (16)  (An)

where x is the column vector having the elements of W as its components, that is, the
sixteen calibration unknowns, and 4 is a 4n x 16 matrix. However, due to the non-linearity
of the system algorithms, a direct formulation of matrix 4 is not possible. To solve this
problem, a Newton-Raphson iterative technique is employed. The formulation starts with the

decomposition of the system algorithms into a suitable mathematical series. In particular, a

Taylors series expansion is utilised as follows.

Let the vector of the set of functions in equation 4-16 be denoted by F , so that

equation 4-16 is expressed as -
F(x)=0

Taylor’s series expansion ofthe above expression in the local region of x gives -
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dF d2F iszr dnF dx"

F(X+dx)=F(x) +— dx +— (4.17)

where dx is a small increment in x , # -» 00 and the terms inside the brackets are first and
higher order partial derivatives of F© with respect to x . In Euler’s method the above series

is truncated after second and higher order derivative terms giving -
dF
F(x +dx)* F(x) + dx (4-18)
0x

But F(x +dx) = 0, so that equation 4-18 produces -
Jdx « -F(x) (4-19)

where - / is the Jacobian matrix ofthe system algorithms, i.e. the matrix of the first partial
derivatives of F' with respect to each calibration unknown, evaluated either at the

initial approximations ofthe calibration unknowns or at the previous iterative step;

dx 1s the column vector ofthe corrections to be added to each calibration unknown

after completion ofthe current iterative step;

F(x) is the column vector ofthe values of each function in the set calculated at the

initial approximations ofthe unknowns or at the previous iterative step.

Equation 4-19 is solved using linear matrix algebra, but the truncation of higher order terms

in equation 4-17 requires that an iterative method is used.

Consider the evaluation of the elements constituting matrix J with reference to the system
algorithms. The X and Y algorithms are first expressed as per equation 4-15. Subsequently,

Taylor’s series expansion is applied as shown in equation 4-19 giving -
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jWdUrtip +jnda) +j ndep +j udic +j I5df +j vedtx +j xldty +j ndtz « xf - (xf)0 (4-20)

J2\dU,.tip +j 22dco +j 23d(p + j 24dic +j 2df +j 2dtx + j 2ldty +j 24tz « )0 (4-21)

where- ju and j2i, i—{1.8}, denote the first partial derivatives of the system

algorithms with respect to each calibration parameter, provided in Appendix III;

xf and y f are the observed (measured) X and Y axis frame buffer coordinates ofa

point, respectively;

(xf)0 and (y/)0 are the X and Y axis frame buffer coordinates evaluated at the

initial approximations ofthe calibration unknowns or at the solution ofthe previous

iterative step, respectively;

Note that terms involving the spatial coordinates (X , Y, Z ) of control points do not appear
in equations 4-20 and 4-21 as the spatial location of control points is known and therefore
constant. Furthermore, the system algorithms suggest that a number of partial derivative

terms are equal to zero -

715 =T ~ Tis ~ 72 ~ 0 (4-22)

The following equations 4-23 to 4-26 are derived from 4-20, 4-21 and 4-22 with subscripts
(L) and (R) indicating the camera they refer to. They are the four simultaneous equations

that result from the system algorithms for each point imaged by both cameras.

JwldUrltjpl +j nLdcof + jli[d(pL+ ju IdieL +j\"pdtxp - xfL—(XjL) 0 4.23)

J 2214 (dp + 723/d(pL + j 24ldicL + j pdfL + j 2:pdtxp + j 2pdtyp + ji&pdtid ~ y jp —(F/7,)0 (4-24)

J\ipdUrR IR + j\2pd°JR J'mtdtPn +juRdKR + j\pdtxR - XiR (Xjp)0 (4.25)

722RdcoR + j IZRIpR + j 24RdieR + j 25RAfR + ji(,RAt:>R 3> Jn RAOR + j PRAtR - yjR ~ {.yjRo (4-26)

90



The Stereoscopic System

Since the above equations are linear, a solution for the calibration unknowns is obtained

through linear matrix algebra. If n control points are used -

J dx» -F(x) (4-27)

(411,16) (16)
The Jacobian matrix J and column vectors dx and F(x) are partitioned as -

—

v 0

(2/>:I_‘8) (2",8) d;;é m(zn)L

whe ™ = P =
O R dxR F()R
’ 0 (.

where subscripts (L) and right (R) denote the left and right camera, respectively. Only the
left camera vectors and the Jacobian matrix are given below. The formulation for the right
camera is identical, except that the subscripts (L) are changed with (R). From equations 4-23

and 4-24, matrix J, is given by -

Jsurt  gnia  JUA 414 0 J1614 0 0
0 s2201 Ja31a 724U s2sp0 JIGL\  J21IA J2&14
JL = ! 5 : ! |
(2n,8)
Tnil) Jvihn Jnui J 141/ 0 JI6Ln 0 0
0

g22en Jasew J2anic J2sin J26mn s201n 52810

Appendix III presents the individual elements ofthe above matrix with respect to the system

algorithms. The vector ofthe corrections to the calibration parameters is -

dxL= dUrtIL dcoj dpj dicL dff dod dnl did

v

The vector of'the functions F(x)L is -

F(X)I - XJL\~(xJia)po ysr « O'Ll)o Xfln ~ (x flj,) 0 Turi ~ (T/L;j)o
(2u)
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It is important to note that, although in the above formulation the calibration unknowns are
evaluated using linear matrix algebra, the underlying problem is non-linear. In addition, the
high dimensionality of the process means that there can be numerous local minima
(hopefully well separated from the global minimum). Consequently, if convergence to the
global minimum is to be achieved, initial approximations for all the calibration unknowns

which are close enough to the target solution are required. This is discussed in section 4.5.2.

The Stochastic Model:

Various factors, such as the presence of spatial quantisation noise and inaccuracies in the
functional model, mean that, in practice, the functional model can never fit the control
correspondence data exactly. Therefore, solving for the calibration parameters is an
optimisation process. A residual vector r is used to represent the residual error in each

calibration unknown, and equation 4-27 is expressed as an exact equality -
J dx= r - F(x) (4-28)
(4»,16)(16) 4,1) (An)
where 7 is given by -

r=r , P ; y r i
(4n) 4 ylA xLn )O. xin yin Vet ylhi

A statistically optimal solution in each calibration parameter can be obtained by
implementing the well-known technique of least squares™™. This requires that redundant
equations exist. A correspondence of n control points produces an overdetermined system
of 4n simultaneous equations and the calibration parameters are obtained by least squares

minimisation ofthe objective function F -

N ~S jxuL xfLx)\ +\ypiy/it (x)\ +\xjm xjm((x)\ + \yfm  yjm (X) ]
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where x fi and yfl are the vectors ofthe observed X and Y axis frame buffer coordinates of
control points defined for both cameras, and xJ}(x) and yfl(x) are the corresponding X and

Y frame buffer coordinates computed by the calibration process.

In other words, the calibration process seeks the vector of calibration unknowns x which
minimises the sum of the squares of the differences between the measured and calculated
frame buffer coordinates of the control points. Since the latter are functions of x,
minimising the above objective function in the presence of normally distributed, i.e.

Gaussian, noise leads to the statistically optimum set of calibration parameters.

With reference to equation 4-28, i.e. the algorithmic procedure outlined so far, the

calibration problem can be stated as -

|[t]|2 = min\jdx + FX)|”

that is, a solution in dx that minimises the components of the residual vector in the least
squares sense. In this work, the least squares minimisation is obtained by the singular -value
decomposition method, described in Press et a /104 Due to the computational involvement of
the calibration process, dedicated software code has been written to make its implementation

possible. Details ofthis are given in section 4.5.

PHASE 4: SPACE INTERSECTION

The final step in extracting three-dimensional information from the object workspace is
space intersection. For each image shown in Figure 4-8, a unique line passing through the
perspective centre O, the spatial point P and its image p is defined. The point of
intersection of these lines coincides ideally with the unknown point. However, lens
distortions result in the lines OhP and OrP being skewed and non-intersectingl(h
Additionally, errors in the determination of the calibration parameters and in the

measurement of the frame buffer coordinates of the spatial point will generally be present.

93



The Stereoscopic System

This gives rise to corresponding errors in the derived coordinates of the original point

obtained by space intersection.

Right
Image

Figure 4-8 Space intersection.

Algebraically, space intersection is formulated in a similar way to the calibration process,
utilising iterative linear matrix algebra. The aim is to compute a 4x3 matrix A4 that maps

the computer image space to the object space, that is -

Ap =f

where , =VX Y z] and , = ., y, yx ,m are the column vectors of the

spatial and frame buffer coordinates, respectively, of a point. The objective function G to be

minimised is -

G = %L~XI(Y) + i - v e xp, s I

where the tilde indicates observed frame buffer coordinates. In linearising the system
algorithms for the purposes of space intersection, the calibration parameters are known and
therefore do not appear in the linearised form of the equations. Consequently, the system

algorithms are linearised as -
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JnLdX +j\2AdY +j BldZ ey fe o (XIL)0 (4-29)
J2ALdX +j 2LdY +j 2dZ %y f - (3,/L)o (4-30)
JVIRIX +JnndY +j URAZ t-X p( -~ (XJR)0 (4-31)
JAHAX+T2RAY +j BRAZ % 1, 1y w (R0 (4-32)

Introducing the residual vector and expressing equations 4-29 to 4-32 in matrix notation -

e JD2 o naot 1 xn (XJ/z)o

dXx
JUL  Jill  J231 JL— o GL
' dy — ° +
JUR - JIZRJLBR XR  (xsr )0 GR
_JnR  J2rR JBr_ y JK— o vk

where yn to /23 are the partial derivatives of the system algorithms with respect to the

coordinates of spatial points, provided in Appendix III.

Since there are four equations and three unknowns, the problem is inherently
overdetermined and the redundancy is used to obtain a better estimate for the object space
coordinates of the unknown point. The least squares adjustment also solves the problem of
non-intersecting rays, which could otherwise preclude the computation of a solution. It is
apparent that, in the presence of stochastic noise, the greater the number of images available,
the more accurate the least squares adjustment solution will bellg up to a limit imposed by
systematic errors. The minimisation of G is performed using the singular value
decomposition, which according to Rothwellll7 is the most accurate projective

reconstruction method.
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4.5 Implementing the System Model

When iterative methods are used, convergence and numerical stability must be addressed.

According to Atkinson 1§

"When automated processes largely replace direct human activity, automated methods of
data screening must be part of the automated process, in other words, the quality of the

data that are automatically generated must be automatically assessed”.

The following section details the measures taken to enhance the convergence properties of
the system model and the reliability ofthe produced data under real imaging conditions. The
associated processes are implemented through the calibration and space intersection

software code, which, as such, is an integral part ofthe line-scan system.

4.5.1 Calibration Implementation Issues

The least squares estimation (LSE) employed in the calibration and space intersection

processes is a powerful technique. Mikhail states that1®-

“This principle endeavours to ascertain that the new estimates are as close as possible to
the sample values of the observations taking their stochastic properties also into

consideration

However, the LSE solution can only be as good as the underlying system model; LSE
cannot compensate for an ill-conceived functional model, which will lead to divergence or,
perhaps more significantly, to convergence into erroneous minima. Such an issue can be
raised from the inclusion of lens distortion parameters to the system model (see Appendix
D). Ifthe effect of lens distortion is not apparent on the input data set, erroneous data will be
produced for the lens distortion coefficients®110. In addition, numerical instability is likely

to occur”. Significantly, this will affect the integrity of the rest of the produced data%. In
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this case, the erroneous fit is made possible by the existence of multiple local minima

stemming from the suboptimal nature ofthe model.

Consider the incorporation of lens distortion parameters into the line-scan system functional
model developed previously. The non-linearity ofthe lenses used in the experimental system
has been investigated in previous work carried out by Godber© at The Nottingham Trent
University. It was found that the 25mm lens suffers from barrel distortion which, in the
worst case of fully opened aperture, amounts to 1% of the maximum image space radius.
Godber’s work also showed that the 50mm lens suffered approximately one-third the

distortion ofthe 25mm lens.

In its most benign form, the radial non-linearity of the 25mm lens will be third order only.
In contrast, if the amount of radial distortion is known for a given image space radius, the
assumption that the non-linearity is produced only by a third order component is the most
stringent. The maximum image space shift of 1%, recorded from the image centre to the

bottom of the image, corresponds to a third order radial distortion coefficient £} of

0.225x 10 6m'2. This figure is arrived at from equation A2-2 of Appendix II by
constraining the lens non-linearity to a third order component only (/c2=0). However, the
cameras used in this work have a sensor length of 6.656mm, which is half of that used by
Godber. Consequently, the corresponding maximum image space radius for the cameras
used in this work is 3.328mm, giving a maximum image space distortion of approximately
81jum, calculated from the value of kx arrived at above. This result is in accord with the
lens distortion curve produced in Godber, the onset of radial distortion being identifiable
only at radial distances greater than approximately 3.5mm. Moreover, the value of the lens
distortion computed above represents the worst case, since the lens aperture will generally

be decreased to allow for greater depth of field, thus improving lens linearity.

It can therefore be concluded that, for the cameras and lenses used in this research, lens
distortion will affect the results only to a subpixel level. Consequently, the inclusion of lens
distortion correction coefficients in the system model must be avoided. Of course, this
would not be the case if cameras having smaller photosite aperture or subpixelation

techniques were employed.
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The issue of data quality is now addressed. The following tests are implemented during the

calibration process:

i. dynamic (run-time) detection and removal of singularities;
il. convergence detection using an adaptive criterion;

iii. divergence prevention.

After calculation of the elements of the Jacobian matrix, the product J 7J is tested for
singularities. The presence of singularities indicates that the problem is ill-conditionedIll as
one or more equations are linear combinations of another. If singularities are detected, the
associated equations are removed at run-time. This is because singular data not only do not
contribute to the least squares minimisation, but can also decrease the robustness of the

solution.

The iterative process of residual minimisation is continuously monitored for divergence.
This can occur if the control correspondence is incorrect and, if not monitored, it will lead to
numerical overflow. Poor estimates for the initial approximations are also likely to result in
divergence (or convergence towards the local minimum at infinity). In order to ascertain

convergence, the following criterion is implemented -

where i is the number of calibration unknowns, xn and dxn denote the corresponding
unknown and the correction to be applied to it after completion of the current iterative step.
The constant ¢ is initially assigned the value of 1(T12. If equation 4-34 is not satisfied after
fifteen iterations, the convergence criterion is relaxed by increasing c¢ to account for less
robust correspondences. This is known as an adaptive convergence criterion. After
convergence has been attained, the iterative process is terminated and the reliability of the

produced solution is ascertained by:
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i. verifying the orthonormality ofthe rotation matrices;
ii. displaying the variance of'the calibration parameters;

iii. examining the norm ofthe residual vector.

The first test involves calculating the norm of the three rows of the rotation matrices to
ensure that the three-dimensional camera coordinate systems are strictly rectangular. The
precision of this test is limited only by truncation errors. All arithmetic computations and

tests are performed in double floating-point precision, i.e. 64 bit.

Following the orthonormality test, the variance-covariance matrix of the solution is
calculated and displayed. The variance of each calibration unknown is the squared
uncertainty associated with its computed value. A large variance in a calibration parameter

indicates a poor fit.

The norm of the residual vector is subsequently examined and if the model fit is poor, the
user is informed. This can occur if the control correspondence is inaccurate due to, for
instance, the presence of blunders. A more detailed review of the statistical testing of the

least squares adjustment can be found in King112

4.5.2 The Requirement for Initial Approximations

As previously mentioned, the iterative process of linearising the system algorithms for both
calibration and space intersection requires reasonable initial approximations for the
unknowns. The task of producing these initial estimates is usually carried out manually and
is generally a disadvantage of all iterative optimisation techniques. To this extent, work
undertaken by numerous researchers in the field of machine vision has been aimed towards
eliminating the need for user-supplied initial approximations. Wengll3 devised a method
whereby a closed-form solution is obtained and is subsequently used as an initial
approximation to the iterative optimisation. However, such methods have been developed
for systems employing area array sensors where a closed-form solution is readily obtained if

the camera optics are assumed to be linear. For the system developed in this work, the
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degree of non-linearity inherent in the system algorithms impedes the implementation of

such an approach.

To obtain approximate values for the calibration parameters of the line-scan system,
nominal values for the lens focal length, the rotational speed and the integration period are
used. Approximate values for the camera pose and orientation are obtained through
observation or simple measurements performed on the particular system set-up. To this
extent, providing successful initial approximations requires familiarisation with the
operation of the line-scan system and the requirements of the calibration procedure. Tests
carried out by the author indicate that, if a sufficient number of well-separated control points
are used, the global minimum is well separated from local minima. In particular, initial
estimates as far off the global minimum as 200% still lead to proper convergence. However,
if the temporal relationship ofthe camera and object space coordinate systems at the start of
scan cannot be estimated to this accuracy, it may be necessary to adopt a trial-and-error

approach for the parameters concerned.

4.5.3 Space Intersection Implementation Issues

Initial approximations for space intersection are calculated in an entirely automated process
by utilising geometric constraints. In particular, the estimation utilises the midpoint method
where the mid-point of the vector of the minimum distance between the left and right
camera rays is calculated. This is done in order to minimise user intervention and increase

the overall reliability ofthe system. Hartley I(b states that -

“..an algorithm that attempts to minimise the costfunction (...) by an iterative search
beginning from an arbitrary initial point is in danger offinding a local minimum, even in

2

the case o fperfectpoint matches.

Consequently, the existence of a good starting estimate is imperative to the space
intersection iterative minimisation (section 4.4.2, phase four). An approximate solution for

the unknown point’s radius 7s is obtained from Figure 4-9 as follows.
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Centre of
rotation
Left camera Right camera
IFOV IFOV

Figure 4-9 Determining the unknownpoints radius.

From equation 3-8 of section 3.6.2 and Figure 4-9, angle £ is -

£ ~ SxLXJL SxRX JR

Let

feva P i v Brel

2 =R , otherwise

The radius 7 is obtained by numerically minimising the expression -

IIO(L . xR

-sin sin

in the range

X <r </u

where X is given by equation 4-36 and p is any constant greater than the

expected radius.

(4-35)

(4-36)

(4-37)

(4-38)

maximum
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An initial approximation for the angle aj of point P to the vertical axis, illustrated in

Figure 4-10, is also required. This is calculated as follows.

Centre of «
rotation !

Left camera Right camera
IFOV IFOV

Figure 4-10 Determining the unknownpoint's angle.

From the left camera geometry, angle i is -

Q1 =-p +sin~""L+ ~N'PL (4-39)

xL Ji Z

Similarly, the right camera produces -

=~fets p-+Y<PL+R+k. - R] (4-40)
xR i Z

ri

The initial approximation for the angle ojt is obtained as the mean of these two angles. A

cylindrical to Cartesian coordinate transformation is subsequently implemented as -

X, —lfsin coi
(4-41)
Z, - rtcos ot
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where Xt and Zi are the X and Z axis Cartesian components of the initial approximation

for the unknown point’s spatial location.

An initial approximation for the Y axis component can be obtained by combining the Y axis

algorithm (equation 4-12) and the solution of equation 4-37. The left camera produces -

Y, fy L fr. 0L yfD)+ DL r LA r23L% (4-42)
2L )

and the right camera -

where all symbols have their previously defined meaning. The Y axis initial approximation

Y/ is obtained by talcing the mean of Yu and YRj.

4.5.4 Calculating the Spatial Quantisation Error
The procedure adopted to calculate the spatial quantisation error is as follows -

¢ given a point of interest in space, its left and right camera frame buffer

coordinates are calculated by the system algorithms and the calibration data;

¢ successive small increments di+ are applied to one spatial coordinate until any

one ofthe four frame buffer coordinates changes by one pixel;

¢ successive small decrements di  are applied to the same spatial coordinate until

any one ofthe four frame buffer coordinates changes by one pixel;

¢ the spatial quantisation error is calculated as di++ Wi _|;

¢ the process is repeated for the remaining two spatial coordinates.
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A flow chart of'the algorithmic process is shown in Figure 4-11.

(- Start )

Calculate & store

W/ AA*>and Ve

Increment
(decrement)
spatial coordinate

new with
stored

1 pixel
Change axis
All

axes
done?

JL.
( Done )

Figure 4-11 Flow chart ofspatial quantisation error calculation.

Analogous procedures are adopted for the -calculation of the radial and angular
uncertainties, to be introduced in Chapter 5. The associated numerical processes are

implemented via the calibration software code.

4.5.5 Software Code

The software code was implemented in Visual C++. In addition to the class hierarchy

produced by Application Wizard, the following classes implement the calibration and the

space intersection processes:
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Class:

CCalibration

CObjectSpace

CFrameBuffer

Clntersection

COperations

The Stereoscopic System

TABLE 4-2 The calibration code hierarchy.

Purpose:

Encapsulates the calibration unknowns, calculates the rotation
matrices, loads control correspondence data files from permanent
storage media, and performs data quality tests. This class is derived
from MFC’s (Microsoft Foundation Classes) CCmdTargel and

forms the base class for the calibration code hierarchy.

Encapsulates the spatial coordinates of a point, calculates the
system algorithms® partial derivatives and verifies the
orthonormality of the rotation matrices. This class is derived from

CCalibration.

Encapsulates the frame buffer coordinates of a point, uses the
system algorithms to calculate frame buffer coordinates from a set
of calibration data and a control point, and constructs the vector of
the functions to be minimised F . This class is also derived from

CCalibration.

Encapsulates the data structures used in the space intersection
process and calculates the uncertainty components (see section 5.6).

This class is derived from MFC’s CObject.

LSE matrix algebra and other numerical routines (including the
Singular Value Decomposition algorithm). COperations is a base

class.

The source code for the above classes and their implementation is provided in Appendix IV.
The CDocument-doxived class which handles the main Newton-Raphson iterative loop is
also provided in Appendix IV. However, the rest of the supporting classes of the MFC

hierarchy used in the calibration code are not included.
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4.6 Summary
The work presented in this chapter is summarised as follows:
¢ the stereoscopic region of the line-scan system has been defined, its governing
parameters identified;
¢ the spatial sampling properties ofthe stereoscopic system have been analysed;

¢ a geometrical model with eight degrees of freedom has been established for each

camera;

¢ a functional model stemming from the above algorithms has been derived;

¢ a full-scale calibration employing least squares optimisation has been presented;

¢ issues pertaining to the implementation ofthe above process have been discussed;

constraints imposed by the experimental system were identified.

The following chapter presents the results of experiments undertaken with the stereoscopic

line-scan system.
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5. EXPERIMENTS WITH THE STEREOSCOPIC SYSTEM

5.1 Introduction

This chapter presents the experimental methodology and the results of a series of
experiments undertaken to ascertain the metrological ability of the stereoscopic line-scan

system. The experiments are divided in the following two categories:

1. Imaging characteristics experiments, devised to investigate the attributes of the
stereoscopic line-scan system that produce stereoscopic parallax, thus allowing the

extraction of three-dimensional coordinate information.

I. Metrological experiments, aiming to substantiate the mathematical model derived
in the previous chapter and characterise the coordinate measurement accuracy of

the stereoscopic system.

A number of considerations pertaining to all the experiments undertaken here and the
resultant decisions are initially presented. In order to carry out the experiments, a special
control field, consisting of a number of distributed targets, is utilised. The design and

implementation of'this structure is discussed.

5.2 Preliminary Considerations
5.2.1 Feature Matching

The extraction of spatial coordinate information from a set of perspective images requires
that conjugate image points are identified. This is known as the correspondence problem 114
Solving the correspondence problem automatically can be a complicated processll5 as
conjugate image points not only appear spatially shifted between the two images, but

generally also differ in brightness level due to the appearance of shadows or light
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reflections. Feature occlusion, whereby parts of the object are hidden in one or more images

due to the different imaging perspectives and shape ofthe object, may also be present.

A review of the methods developed to solve the correspondence problem is provided by
Joneslla Techniques that have been developed include featurell7l18 and areall9X-based
matching. However, it is not the intention of this work to provide an automatic solution to
the correspondence problem. Thus, points appearing in the images produced by the line-scan
system are manually identified. As this task requires the interaction of the user and the
images produced by the line-scan system, it was also decided not to employ an automated

subpixel target location technique. The following section addresses this issue.

5.2.2 Subpixelation

In section 2.5.4 it is stated that if a subpixelation technique is not used, establishing the
image location of a target has an uncertainty of + 1 pixel. However, the least squares
adjustment utilised in the calibration and the space intersection processes reduces the effect
of this uncertainty. This is achieved by the stochastic modelling of these processes in

conjunction with the redundancy present in the input data (see section 4.4.2).

An additional reason that would complicate the implementation of a subpixelation technique
in this work stems from an idiosyncrasy of the experimental system: the odd and even video
streams produced by each camera have unequal amplitudes. Although the video combiner
circuit has separate gain adjustments for each video stream, temperature drift effects reduce
the effectiveness of this adjustment and, hence, the radiometric quality of the images.
Consequently, the accuracy of a subpixelation technique would be compromised by a
systematic error, its magnitude being a function of the amount of gain difference between

the odd and even video streams.

Finally, the metrological experiments conducted with the stereoscopic line-scan system
show that the validity of the system model developed in the previous chapter can be

established without resorting to a subpixelation technique.
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5.2.3 Target Location

The size of the targets appearing in the two perspective images depends on the spatial
dimensions of the target and the operating parameters of the line-scan system that control
the dimensions of the spatial sample (see section 4.3). Hence, the location of a target in the
images produced by the line-scan system and the accuracy of an automated or a manual

target location measurement technique, are affected by -

Geometricfactors:

1. the relative size and position ofthe target to the spatial sample;
ii. the shape of'the target;
iii. the obliquity of view, giving rise to perspective distortion12];

iv. the effects of spatial oversampling and undersampling;

Radiometricfactors:

i. the intensity profile of the imaged targets, determined by the light reflection
properties of the target’s surface, the target illumination and the sensitivity of the

line-scan system;
ii. any difference in the sensitivity ofthe odd and even video lines;
iii. radiometric artefacts, such as blooming.
Thus the location, size and shape of a target appearing in an image is affected by numerous

parameters and its accurate identification can be an involved process. In related work carried

out by Singh on this topic, it is stated that12 -

“Although the target points produced by the laser projector look similar to each other,

different values of thresholding give different shapes for each target...So the centroid
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calculation of the area detected by the thresholding technique may not give the correct

co-ordinate value”

A substantial amount of research work has been carried out in the area of feature detection
and location, and various techniques are now available, e.g.13124125 However, since in this
work the targets are located manually, the pixel closest to the author’s interpretation of the

centroid ofthe target is used. This is further discussed in section 6.6.

5.2.4 Nominal System Alignment

The nominal alignment of the stereoscopic system is depicted in Figure 5-1. To obtain an
experimental set-up closely conforming to these conditions is not a trivial task. This is
because, not only must both camera convergence angles (p be precisely equal, but the
rotation axis must intersect the line normal to half the camera basewidth B, as shown in

Figure 5-1.

Centre of
rotation

Left Right
Camera Camera

Figure 5-1 Nominal stereoscopic system alignment.
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In addition, the imaging characteristics of the line-scan system (see section 5.6) are
substantially affected by the calibration parameters #x¥ and xR that is, the distance of the
IFOVs from the rotation axis. As for the experimental set-ups considered in this work these
distances are ofthe order of a centimetre, the location of the test field in the axis parallel to

the camera basewidth has to be controlled, ideally, to millimetric accuracy.

An area-array camera produces images that are interpreted by a human as real-time.
Conversely, considering that the experimental line-scan system stores 3048 scan-lines in
each frame, when a long integration period is used the production of a line-scan image can
take up to one minute. Moreover, in their existing configuration the frame grabbers used do
not permit the displaying of the line-scan image concurrently to its production. Instead, a
complete frame has to be grabbed and then copied to VGA memory. As a result, the setting

up the line-scan system is a time-consuming process.

Although an experimental set-up closely conforming to the nominal alignment is not
required by the system model, it is of critical importance to the identification of the imaging
characteristics of the system. This is because such an alignment, in conjunction with a
suitable object such as the cylindrical control field described in the next section, will allow
the intuitive interpretation of the images and, hence, the imaging characteristics of the

line-scan system.

5.3 Control Fields

A three-dimensional control or testfield consists of a number of distributed targets that have
known spatial locations in a local coordinate system. In general, a control field can be used

for:

1. camera calibration;

ii. validation ofthe mathematical model by metrological experiments;
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The targets on the control field can be divided into two categories, according to the purpose

they serve:

¢ control points;

¢ test points.

Control points are used to calibrate the system, whereas test points are used to evaluate the

metrological accuracy ofthe system.

In addition to the above general requirements, in this work the control field must also cater

for:

1. the setting up of'the stereoscopic line-scan system;

ii. the identification ofthe stereoscopic system’s imaging characteristics.

Furthermore, for space intersection to be applicable, a global object space reference
coordinate system, mutual to both cameras, must be established. This is achieved by
calibrating both cameras simultaneously. It can be appreciated that this process is similar to

photogrammetric relative orientation ofa stereo-pair of photographs.

The difficulties associated with setting up the line-scan system were identified previously.
Accordingly, it is important that the images produced by the control field are intuitive and

easily interpretable.

5.3.1 The Cartesian Control Field

Initial work involved the utilisation of an existing control field, depicted in Figure 5-2. This
consists of a distribution of targets comprising black-anodised aluminium rods having

conically machined tips painted white.
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Figure 5-2 The Cartesian control field.

However, it became apparent that this structure was farfrom ideal when used with the

line-scan system. The reasons for this are:

i. the shape ofthe control field is governed by a Cartesian format;

ii. the complete structure weighs 21 kilograms, thus restricting themaximum

achievable rotational speed to 1.5 rpm;

iii. the protruding rods are imaged off-axis (in oblique views), producing images that

are difficult to interpret;

iv. no indication of the position of the rotation axis is available in the images as no

cylindrical symmetry exists;

v. the targets are concentrated in an area covering a maximum angular field of view

of less than 180°.

Thus, this test field was deemed unsuitable and a new structure was designed, specifically

with the needs of the line-scan system in mind.
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5.3.2 The Cylindrical Control Field

In order to be suitable for the line-scan system, a test field should fulfil certain criteria.

These can be divided into three categories:

I. Targets: the targets should -

i. provide sufficient contrast and, preferably, also be highly structured so that their

identification by the system operator is unambiguous;
ii. have the smallest size possible, consistent with the above requirement;

iii. protrude as little as possible from the main body of the control field in orderto

avoid the sides ofthe targets appearing in the images.

II. Image production: the control field should be designed such that -

i. the images are intuitive and easily interpretable;

ii. it facilitates the setting up of the line-scan system in accordance with the

arguments detailed in section 5.2.4.

III. Calibration: the control field should have -

i. the coordinates of the targets specified to an accuracy of at least one order of

magnitude higher than the expected accuracy ofthe line-scan system;

ii. the coordinates of the targets specified in a local coordinate system, referenced to

the rotation axis;

iii. a number ofnon-collinear and non-coplanar targets.

114



Experiments With The Stereoscopic System

In addition to these requirements, the control field should be removable to allow for imaging

of other objects.

From the above set of requirements, it can be appreciated that not all criteria can be satisfied
with one structure. Most notably, the requirement of non-collinear targets conflicts with the
setting up of'the line-scan system, the intuitive interpretation ofthe images and, as discussed
in section 5.6, the imaging characteristics experiments. Furthermore, manufacturing
constraints and limitations in the coordinate measurement procedure of the targets
necessitated the adoption of a ‘segmented’ cylindrical structure of progressively decreasing

diameter. The resulting control field is depicted in Figures 5-3 and 5-4.

Figure 5-3 Side view ofthe cylindrical controlfield.
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Figure 5-4 Plan view o fthe cylindrical controlfield.

This structure was machined at the Mechanical Engineering Department of The Nottingham
Trent University to the specification described below. The height of the test field is
approximately 140mm and its minimum and maximum diameters are 70 and 188mm,
respectively. Seven ‘slices’ are used and thediameter of the central ‘slice’ is calculatedto
produce an approximately 1:1 pixel aspectratio at a rotational speed of 2rpm and an

integration period of 8mS (see section 3.6.4).

The whole structure is lightweight enough to be rotated at up to six revolutions per minute
using the existing hardware. In addition, the control field has a recessed base that fits
precisely to a specially constructed metal plate mounted rigidly on the rotary stage. This
way, the test field can be removed, for instance after completion of a system calibration, to

facilitate imaging of other objects.

Forty-nine targets, arranged collinearly in groups of seven, are distributed around the
periphery of the control.field, as shown in Figure 5-5. Each setof collinear targets is
assigned a number from 1to 7 and each setof concentric targets aletter from A to G. In
order to provide a sufficient number of targets for angular fields of view smaller than 360°,
the distribution of the collinear sets of targets is angularly asymmetrical. The targets consist

of black anodised aluminium rods having matt white tips to avoid specular light reflections.
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Figure 5-5 Plan view oftarget distribution in the cylindrical controlfield.

The manufacturing of the control field imposed a number of limitations. These are

summarised as follows:

i. the minimum diameter of the targets required by the coordinate measurement
machine was 1.5mm. This is larger than the spatial sample in most operating
conditions, thus the image of a target occupies more than one pixel. This can make

the manual identification oftheir location less intuitive and subject to larger errors;

ii. a finite target length extending from the main body of the control field was
required by the coordinate measurement machine. This can make the identification
ofthe centroid ofthe targets more difficult as part of the targets’ sides appear next

to the targets’ tip in the image;

iii. the location ofthe targets could only be specified relative to the axis of cylindrical

symmetry of the control field instead of the rotation axis. Therefore, any
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misalignment between the two axes produces systematic errors in the coordinates

ofthe targets;

iv. the location ofthe targets could only be specified to an accuracy of +75// m .

Despite these limitations, the cylindrical control field is effective both for the purposes of

setting up the line-scan system and for calibration, as the metrological experiments indicate.

5.4 Test Area Illumination

The test area, consisting of the components of the line-scan system described in section 3.2,
is illustrated in Figure 5-6. In addition to the two line-scan cameras, the host controller and
the camera basewidth/convergence stage, a linear translation table carrying the test field or

the object to be imaged and two Halogen flood lights are used.

I-lost Control
Controller Electronics
Camera & Light
rotary stage §1fb I source
! Rotary
Linear T stage
translation I i
stage Object of
interest
Camera & y . Lineal
rotary stage t fp V) Light \ translation

source

Figure 5-6 The test area.

The linear translation table supporting the control field can be precisely adjusted along the
direction parallel to the camera basewidth, thus simplifying setting up the system. The two
lamps are mounted on stands of adjustable height and they are controlled by individual
dimmer units. This allows the setting of the illumination level according to the operating

parameters of the line-scan system in order to produce images having sufficient brightness

and contrast.
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As previously mentioned, the radiometric properties of the line-scan system are not studied
in this work. As long as the features ofthe object to be imaged have high contrast and the
location of the targets can be the identified to an accuracy of + 1 pixel, the radiometric
properties of the line-scan system and details of the illumination arrangement are not of
critical importance. However, this may not be the case in a real application where both

lighting and the system’s radiometric properties may have to be optimised.

5.5 Coordinate Measurement: An Example

The procedure of extracting coordinate information from an object workspace begins with
the initialisation of'the line-scan system, as described in section 3.3. The system parameters
set by the operator are:

1. the camera basewidth;

ii. the camera convergence angles;

iii. the camera-to-object range;

iv. the workspace illumination.

After these preliminary settings are carried out and prior to image capture, the following

parameters are also set:

1. the integration period;

ii. the object rotation arc;

iii. the object rotation speed.

The start of scan, i.e. the instant image capture is initiated, is controlled automatically so

that synchronisation with object rotation is maintained. However, the relevant automatic

process can be manually overridden by the operator, if so required.
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After adjustment of the lenses’ focus, the acquired left and right images are saved on to disk.

The frame buffer coordinates of control points are measured via an image-processing

package and the control correspondence

is established. Coordinate data for this

correspondence is edited into a text file. Subsequently, the calibration code is invoked. The

control correspondence data are loaded at run-time, and a dialog box allows editing of the

initial approximations for the sixteen calibration unknowns.

On completion ofthe calibration process, the calibration results and the variance of the fitted

parameters are displayed on dialog boxes similar to those of Figures 5-7 and 5-8,

respectively. Additional information on the calibration results is reported as per Figure 5-9.

Rotating Object Line-Scan Camera Calibration

File Edit View Calibration Intersection Help

Calibration Results

Urtip (rpm.mS):

Omega (deg):

Phi (deg):

Kappa (deg):

Principal Distance (mm):

X Translation (m):

Y Translation (m):

Z Translation (m):

Ready

Figure 5-7 The calibration code showing sample calibration results.
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Calibration Results

Calibration Data 1 Other Data (Variance ij Rotation Matrices 1

iigji
~Left Camera - -j Right Camera
'vA 4
Urtip: 0.0000000000 | 0.0000000000
Omega: 0.0000005130 i  0.0000003036
Phi: 0.0000014593 0.0000011808
Kappa: 0.0000004008 0.0000001817
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X Translation: 0.0000000018 0.0000000013
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Figure 5-8 Variance ofthe calibration parameters.
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Figure 5-9 Other calibration data.
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The calculated calibration data can be subsequently used to perform space intersection. The
image correspondence, consisting of the left and right frame buffer coordinates of the
unknown spatial point, is also required. The results of the iterative least squares space

intersection are reported as shown in Figure 5-10.

Space Intersection Results

Frame Buffer Coordinates (L /R f-——mmmmmmmmm-

Projected:
ncertainty Co
127.65 127.34
Radial:  0.07
dius: 38
Y: 101 ngle: -3 .. 0.259 mm

0.081 mm

Figure 5-10 Space intersection results.

Additional information consists of the spatial quantisation noise calculated at the current
solution and the cylindrical coordinates of the spatial point. The calculated spatial solution is
also re-projected and the corresponding frame buffer coordinates are reported. These can be
compared with the original projected coordinates to provide an indication of how accurately

the data fitted the model. Section 5.7.3 addresses such issues in more detail.

5.6 Imaging Characteristics

A series of experiments were conducted to characterise the imaging characteristics of the
stereoscopic line-scan system. These experiments are based on the observation that the
information produced by the system is conveyed exclusively from the two perspective
images. Therefore, it should be possible to draw conclusions pertaining to the imaging
characteristics of the line-scan system by an intuitive analysis of the ‘raw’ digital image

data.
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Figure 5-11 depicts left and right images of the cylindrical control field. The system set-up
used to produce these images is such that the IFOVs of both cameras converge on the

rotation axis.

Figure 5-11 Left and right camera images having no stereoscopic parallax.

It can be seen that, although there is a constant lateral shift of corresponding targets between
the two images, no stercoscopic parallax exists. In other words, under these operating
conditions, the left and right views are essentially the same. The two images are
differentiated only by the time-delay associated with ‘capturing’ a target by each camera,
which is realised as a lateral shift. Evidently, this time-delay is independent of the radial

distance ofthe targets to the rotation axis.

Figure 5-12 Left and right camera images depicting stereoscopic parallax.
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If the line-scan system is arranged such that the IFOVs converge at a finite distance from the
rotation axis, as illustrated in Figure 5-1, stereoscopic parallax is produced. This can be seen
from the left and right images depicted in Figure 5-12. Recalling the X axis algorithm ofthe
functional model, stereoscopic parallax is created in this case as the image location of the
targets is a function of their radial displacement. Therefore, the condition for stereoscopic
parallax to exist is that the IFOVs ofthe line-scan cameras converge at a finite distance from

the rotation axis.

As shown in the following series of experiments, further conclusions pertaining to the
imaging characteristics of'the line-scan system can be drawn from a consideration ofthe raw
digital image data produced by imaging the cylindrical control field. A typical system set-up

is obtained by setting the line-scan system’s operating parameters to the following values:

Integration period: 10mS

Rotational speed: 2rpm

Convergence angles: 10°

Nominal lenses principal distance: 50mm

Absolute distance o fthe IFOVsfrom the rotation axis: 15mm

Range: 1.5m

The integration period and the rotational speed are set such that an angular field of view of
360 degrees is obtained. The perspective centre to rotation axis distance setting produces a
Y axis field of view slightly larger that the height ofthe cylindrical control field. Finally, the
camera convergence angles are set such that the radius ofthe volume of occlusion is slightly

smaller that the minimum radius ofthe control field.

The following experiments utilise the calibration data for the cylindrical control field, which
are provided in Table A, Appendix V. The first experiment utilises the cylindrical control
field in order to plot the X image axis coordinates as a function of the radial displacement

from the rotation axis.
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Figure 5-13 A set ofcollinear targets imaged by the line-scan system.

Seven collinear targets A, B, C, D, E, F and G are coplanar with the rotation axis at time
t=0, as shown in Figure 5-13. This set of targets is subjected to clockwise rotation and is
imaged first by the right and then by the left camera. From Figure 5-13 it can be seen that
the right camera ‘sees’ target A first at time t=t]? whereas the same target is seen last by the
left camera at time t=t2 This effect is apparent also in Figure 5-14, which shows part of the

left and right perspective images superimposed.

t=0 t=tl t=t2

Figure 5-14 Superimposed left and right perspective images.
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As the same target appears in reverse order in the left and right images, lines produced by
the collinear set of targets have opposite gradients. This can be appreciated from the graph
of Figure 5-15, which plots the X axis frame buffer coordinates ofthe collinear set oftargets

as a function oftheir radial displacement.
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Figure 5-15 Graph ofleft and right image X axisframe buffer coordinates against radius

for a single set ofcollinear points.

The graph of the X axis frame buffer coordinates of the seven sets of collinear targets
present on the cylindrical control field as a function of radius is shown in Figure 5-16. A

polynomial line fit is added for each collinear set of targets.
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Figure 5-16 A axis frame buffer coordinates against radius.

As indicated by the legends, each symmetrical set of adjacent lines corresponds to the X
axis frame buffer coordinates of a collinear set of targets (which are also coplanar with the
rotation axis), produced by the left and right cameras. Only a lateral shift in the X image
axis differentiates the pairs of lines corresponding to each set of targets, as the X axis
coordinates are a linear function of angle. However, each line is non-linear, as the X axis

coordinates are a non-line.ar function ofthe radial displacement.
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The radial distance from the rotation axis at which the IFOVs converge can also be
estimated from the left and right perspective images and the corresponding graphs depicted
in Figures 5-15 and 5-16. At this distance the parallax is zero. This range corresponds

approximately to the radius of “slice £ | i.e. 44mm from the rotation axis.

The graph of the X axis frame buffer coordinates of control points as a function of angle is

shown in Figure 5-17. This graph is produced from the concentric set of targets G. A

polynomial line is fitted.
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Figure 5-17 A axis frame buffer coordinates against angle.

As expected from both the two-dimensional analysis presented in Chapter 3 and the
stereoscopic system’s model, X axis frame buffer coordinates are linear in angle. The
parallax Axf for the seven concentric sets of targets as a function of angle is depicted in

Figure 5-18.
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Figure 5-18 Graph ofparallax Axf against angle.

From this figure it is apparent that the concentric set of targets Gl to G7, which has the
smallest radius, produces the largest disparity. This effect can be appreciated from the
diagram of Figure 5-13. It is also noted that the parallax is independent of angle. This is
attributed to the X axis system algorithm: the left and right camera frame buffer coordinates

are linear in angle and are both scaled by the horizontal scale factor sx.

The graph of the Y axis frame buffer coordinates of control points as a function of Y axis
spatial distance is shown in Figure 5-19. A polynomial line is fitted to the left and right

camera frame buffer coordinates.
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Figure 5-19 Yaxisframe buffer coordinates against Y axis spatial distance.

Since the projection in the line-scan sensor's main axis is perspective and each set of
concentric targets lies at a different range from the perspective centre, the graphs are slightly
non-linear. However, the maximum radius of the targets is approximately an order of
magnitude smaller that the perspective centre to rotation axis range. Thus, the variation in
range is minimal and, in the above graphs, the Y axis frame buffer coordinates appear

approximately linear in Y axis spatial distances.
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THE UNCERTAINTY COMPONENTS

The spatial sampling pattern of the line-scan system is presented in section 4-3. It is noted
that the spatial resolution of'the line-scan system is limited by the dimensions of the voxels.
From Figures 5-20 and 5-21 it can be seen that the dimensions of the voxels are
characterised by a radial, an angular and a Y axis component. The latter is defined in the

direction parallel to the sensor’s main axis.
p

Voxels

800 (Angular uncertainty)

S5r (Radial uncertainty)

Left camera

IFOV
Convergence

range

Centre of

. rotation
Right camera

IFOV

Figure 5-20 Radial and angular uncertainty.

Scau line

S5y (Y axis uncertainty)

Image
sensor

Figure 5-21 Y axis uncertainty.
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The location of a target appearing anywhere within the volume of a voxel cannot be
determined to an accuracy better than the spatial dimensions of that voxel. Thus, the terms
radial uncertainty, angular uncertainty and Y axis uncertainty are adopted to represent the

corresponding spatial quantisation noise component.

Estimating the Radial Uncertainty:

Figure 5-22 plots the parallax Axf ofa set of collinear points as a function of the radius.

100
-50

x -100

-200

-250
Radius (mm)

Figure 5-22 Graph ofparallax Axf against radius with fitted tangents.
The radial uncertainty Sr at a given radius is given by the gradient of the parallax graph. To
estimate this from Figure 5-22, seven straight lines, approximately tangential to the parallax

curve at different radii, are fitted. The radial uncertainty estimated from these tangents is

shown in the fourth column of Table 5-3.
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TABLE 5-3 Estimated and calculated radial uncertainties.

Target r (mm) Axf Estimated radial Calculated radial
uncertainty Src uncertainty Src
(mm/pixel) (mm/pixel)

A4 93.286 21.5 0.661 0.601
B4 84.369 6 0.482 0.496
C4 73.769 -19.5 0.394 0.374
D4 64.913 -46.5 0.282 0.288
E4 54.058 -92 0.204 0.197
F4 44.243 -153 0.120 0.130
G4 34.998 -246 0.090 0.078

In order to compare the results of this approach with those obtained analytically, the image
information utilised in the above experiment is used to calibrate the system. Following this,
space intersection is performed and the radial uncertainty calculated by the method
described in section 4.5.4 is recorded for each target. The results from this method are
shown in the last column of Table 5-3. The graph of the estimated and calculated radial

uncertainties is shown in Figure 5-23.
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Figure 5-23 Graph o festimated and calculated radial uncertainties against radius.

From Figure 5-23 it can be seen that the estimated and the calculated radial uncertainties are

in close agreement.
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Estimating the Angular Uncertainly:

The angular uncertainty can be estimated graphically from the graphs of Figure 5-17: it is
equal to the gradient of each line. For each concentric set of targets, the gradient is
calculated at points (1) and (2), which have the largest angular separation (270°). Both the
parallax and the estimated angular uncertainty are shown in Table 5-4. In addition, the

calculated angular uncertainty, computed after calibration and space intersection, is shown

in the last column of this table.

TABLE 5-4 Estimated and calculated angular uncertainties.

Concentric set  Angle(1-2) Ax*(1-2¢« " ~(1-2) ' Estimated Calculated

oftargets ©) (pixel) (pixel) angul.ar angulgr
uncertainty uncertainty

(0/pixel) (0/pixel)

A 270.442 2233.5 22335 0.12108 0.12158

B 270.418 22355 2232 0.12096 0.12158

C 270.339 2234 2231.5 0.12115 0.12158

D 270.339 2233 22355 0.12106 0.12158

E 270.331 2235 2235.5 0.12095 0.12158

F 270.150 2232 2231.5 0.12106 0.12158

G 270.063 2242 2224 0.12143 0.12158

From this table, it is noted that the graphically estimated and the calculated uncertainties are

in close agreement.

Estimating the Y axis Uncertainty:

The Y axis uncertainty may be estimated from the graphs shown in Figure 5-19. Assuming
that these graphs are linear between two consecutive collinear points, the Y axis uncertainty,

obtained graphically, is shown in the third column of Table 5-5:
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TABLE 5-5 Estimated and calculated Y axis uncertainties.

Target Y axis spatial ~ Estimated Y axis Calculated Y axis

coordinate uncertainty uncertainty

(mm) (mm/pixel) (mm/pixel)
A4 129.926 0.3502 0.3530
B4 109.965 0.3521 0.3550
C4 89.894 0.3617 0.3580
D4 69.822 0.3610 0.3600
E4 49.786 0.3703 0.3630
F4 29.791 0.3712 0.3650
G4 9.929 - 0.3680

The last column in Table 5-5 shows the Y axis uncertainty calculated after calibration and
space intersection. As the range variation in the perspective centre to the targets is minimal,
the uncertainty in the main axis is approximately constant for all seven targets. The results

ofboth the graphical and the analytical method are similar.

5.7 Experiments with Synthetic Data

In evaluating the robustness of the functional model, it is important to devise a procedure
whereby the calibration process is evaluated independently from space intersection. This is
because the calibration process is the computationally most complex process in extracting
coordinate information from an object workspace and hence, potentially more prone to data
reliability problems. Thus, the convergence properties of the calibration must be

investigated to ensure that meaningful data are produced in real imaging conditions.

Stochastic effects, such as the spatial quantisation noise present on the images and
high-order non-linear effects, such as lens distortions, mean that, in practice, no functional
model can be strictly satisfied. Moreover, since no a priori knowledge of the precise values
of'the calibration parameters is available, the assessment of the reliability ofthe calibration
process with data produced from image measurements is problematic. The procedure shown
in Figure 5-24 addresses these problems by testing the functional model in controlled

conditions.

135



Experiments With The Stereoscopic System

Synthetic calibration
data

Synthetic control
correspondence

ofivp X, Y, Z)

Non-ideal process

Calibration

Evaluation

Figure 5-24 Flow chart ofcalibration tests.

To achieve this, a set of synthetic calibration data, denoted by W, is produced. The
functional model is then used to produce frame buffer coordinates corresponding to a
number of simulated control points. The latter can be either randomly generated or conform
to a given geometrical structure, such as, the cylindrical control field. The synthetic control

correspondence, denoted by the set (xf, yf, X, Y, Z), is subjected to a 1o11-ideal process,

such as lens distortion or contamination with noise. These processes are used to simulate the
real imaging conditions where lens distortion is present and the spatial and frame buffer

coordinates of control points are not known exactly.

Subsequently, the 11011-ideal control correspondence is used to calibrate the system. The

resultant calibration results are denoted by W*. By comparing the sets W and W#*, the

robustness ofthe calibration process under 1o11-ideal imaging conditions can be established.
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5.7.1 Varying the Amount of Control in the Presence of Noise

Spatial quantisation noise can be modelled by adding zero mean Gaussian noiseld to

noise-free synthetic frame buffer coordinates (xf, yf). In the following experiments the

effect of varying the number of control points in the presence of noise is ascertained.

Table 5-6 shows the calibration data used to produce the control correspondence.

TABLE 5-6 Calibration data used in simulation.

Urtjp (rpm.s) / (mm) no, <px (°) tx, ty, t2 (mm)

A simulated control field .is used to produce the control data. Both the radius and the Y axis
coordinates of the control points are generated randomly with a uniform distribution. The
simulated control points occupy a volume approximately equal to that of the real cylindrical
control field. The number of control points » is varied from 4 to 50, and uncorrelated
Gaussian noise of zero mean and =+l pixel maximum is added to the frame buffer

coordinates ofthe control points.

The calibration parameters have different scale. Thus, in order to allow a direct comparison
between the calibration unknowns, the error in each parameter is normalised to unity. In
addition, a mean normalised calibration error (MNCE) is calculated as the mean of the
normalised errors in each calibration parameter. Since the MNCE is calculated over all the

calibration unknowns, it is an indicator of'the robustness ofthe calibration.

The results of this experiment are presented in Table 5-7. Although four control points are
theoretically sufficient for calibration, in the presence of noise a significant numberof
simulations failed to converge when this minimal amount of control was used.

Consequently, in real imaging conditions at least five control points must be used.
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TABLE 5-7 Calibration errorfor varying amounts o fcontrol.

Parameters n— n=6 77=8 T7=15 T7=50

U, Ufj M(M 0.020029 0.000266 0.002005 0.001934 0.000586

w- of /o)) 0.066321 0.001052 0.008779 0.004501 0.003750
(p-af N\ 0.013533 0.011673 0.021709 0.013742 0.000952
c—x /K 0.053403 0.006138 0.011572 0.012848 0.003358

\f_ 7 W 0.420857 0.294711 0.123085 0.054450 0.007062

0.025199  0.005506 0054 . .
t,—C\/ c 0.005473  0.002087  0.001820
y 0.009035  0.000006  0.003492  0.001758  0.000720
ty-fy  ty
7, ~h;\|/|fZ 0.394466  0.281566  0.117619  0.052574  0.006968
MNCE 0.125355  0.075115  0.036717  0.017987  0.003152

The following conclusions can be drawn from the results of Table 5-7:

ii.

when few control points are used, the MNCE is dominated by the error in the lens
principal distance and the translation component ¢z. These two parameters require
well-separated non-coplanar control points for reliable estimation. If the control
points are coplanar, the two parameters become linearly depended and it is not
possible to determine their values. In practice, control points separated by at least
an order of magnitude from the maximum value of the radial uncertainty
component must be available. Unless large control redundancy is utilised, both the
simulated and the real control fields do not provide adequately separated control
points for the reliable estimation of the lens principal distance and the translation

component ¢z in the presence ofnoise.

with a maximum noise amplitude of + lpixel, there is a tangible improvement in
the MNCE when up to fifty control points are used. Thus, all forty-nine targets
available on the cylindrical control field should be used in calibrating the line-scan

system.
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iii. as illustrated in the graph of Figure 5-25, the MNCE falls off initially very rapidly

with increasing number of control points.
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Figure 5-25 The MNCE as afunction ofthe number o fcontrol points.

When the number of control points is close to the required minimum, the available
redundancy is correspondingly minimal and the calibration results are affected to a
large extentby the stochastic noise. As the number of control points is increased,

the least squares adjustment reduces the effect of this noise.

5.7.2 Effect of Radial Lens Distortion

In this experiment a synthetic control correspondence consisting of fifty control points is
produced and the frame buffer coordinates of the targets are subjected to simulated radial
lens distortion. The distorted correspondence is used to compute a set of calibration data,
which is then compared to the ideal calibration data set. The calibration data used in this

experiment are the same as those of'the previous experiment (see Table 5-6).

Theradial distortion coefficient k& computed in section 4.5.1 is increased by a factor of five
to yield a maximum distortion of approximately +2.5 pixel. The normalised errors in each

calibration unknown and the MNCE are shown in Table 5-8.
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TABLE 5-8 Calibration error due to radial lens distortion.

Parameters k=11.125x1(T7
0.000221
0.000093

k-p kM 0.000339

-k /1d 0.000228

I / . / ‘M /l 0.003643
b-Mkkl 0.000045

0.000022

0.010227

MNCE 0.001852

The following conclusions can be drawn from the results presented in Table 5-8:

i. the error in the computed calibration parameters is smaller that that produced by a
target location measurement uncertainty of + 1 pixel. This is because the target
measurement uncertainty affects all the control points, whereas radial lens
distortion only affects the points close to the upper and lower parts of the image.
Therefore, for uniformly distributed control points, relatively few points are

affected by this distortion.

ii. since the radial distortion coefficient used in this test was five times larger than its
actual value computed in section 4.5.1, radial lens distortion will have a negligible

impact on the calibration accuracy ofthe experimental system.

5.7.3 Projection and Back-Projection Accuracy

The following series of experiments are devised in order to evaluate the overall effect of a

non-ideal process on the accuracy of the complete system model. This includes both the

140



Experiments With The Stereoscopic System

processes of calibration and space intersection. Figure 5-26 shows the flow chart of the
synthetic data tests. To evaluate the projection accuracy of the system model, the frame
buffer coordinates of targets are calculated from their spatial coordinates and the calibration
parameters. The back-projection accuracy of the system model is the 3-D coordinate

measurement error in object space obtained by space intersection.

Synthetic calibration
data

Synthetic control
correspondence

Non-ideal process

Calibration
(both cameras)

Functional model Space intersection

Back-projection

Projection evaluation :
evaluation

Figure 5-26 Projection and back-projection tests.

The ideal (error-free) control correspondence is denoted by (xfi yfo, X, Y, Z), and the
control correspondence produced by the functional model and space intersection is denoted
by (xj,y¥f,X* Y\ Z*) . To determine the projection accuracy of the system model, the

following expression is used -
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where -
N is the number of observations;

xf, yf are the nominal (error-free) X and Y frame buffer coordinates, respectively;

xf, yf are the X and Y frame buffer coordinates calculated from the calibration data

set W* and the object space coordinates ofthe control points.

The parameter // is referred to as the image error and is the mean square error ofthe X and
Y frame buffer coordinates calculated over N targets. An image error for each image axis

can also be evaluated as -

The following experiment is conducted to evaluate the effect ofradial lens distortion on the
projection and back-projection accuracy of the system model. Table 5-9 shows the

calibration parameters used.

TABLE 5-9 Calibration data used in simulation.

Urtu>(rpm.s) / (mm) @, L, R K (°) txL, txR ty, tz (mm)
0.015 55 1,-10, 10, 1 -15, 15,65, 1000

The radial lens distortion coefficient is set to k& =11.125x 10~7, and fifty synthetic control
points are generated with uniform distribution. Half of these are used as control points for

the purposes of calibration and the remaining points are used as test points.

Table 5-10 shows the mean square errors // and the maximum projection errors Smx in

each image axis.
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TABLE 5-10 Projection accuracy.

P (pixels)  386x10'5 098101 475 x 105 0.98215
3™, (pixels) 0.00011 -2.46399 -0.00012 -2.46377

From Table 5-10 it can be seen that the X axis image errors are negligible. This result is
expected as radial lens distortion affects only the Y image axis. The maximum Y axis image

errors are relatively large,- as the system model does not correct for radial lens distortion.

The back-projection errors in each axis due to radial lens distortion are shown in Table 5-11.
The second row, labelled Le, shows the mean object space error, the third row indicates the

standard deviation me, and the last row Anax shows the maximum errors.

TABLE 5-11 Back-projection accuracy.

Axis X Y 7
4 (mm) 0.00146  0.01325 0.00014
me (mm) 0.00264  0.08348 0.00267
0.00742  0.19481 -0.00353

A max (m m )

From the above table it can be seen that the X and Z axis errors are very small. However, the
mean Y axis error is approximately one order of magnitude larger. Overall, the errors
presented in the above two tables follow their expected trend, and no erratic behaviour is

present.

5.8 Experiments with Real Data

When real data are used, no a priori knowledge of the calibration parameters or the
projection data is available. Thus, the metrological accuracy of the line-scan system is

evaluated using ‘ground truth’, that is, objects containing a distribution of targets with
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known coordinates in a local coordinate system. To achieve this, the following tests are

performed:

i. measurement oftest points on the cylindrical control field;

ii. measurement of 3-D vectors defined on a generic object.

Recalling from section 5.3.2 that the coordinates of the targets on the cylindrical control
field are specified to an accuracy of + /5pm , the results presented in this section are subject
to errors not directly related to the mathematical model. Furthermore, a compromise
between the number of control and test points has to be made since, from section 5.7.1, all

forty-nine targets should be used in calibrating the line-scan system.

5.8.1 Accuracy in the Measurement of Test Points

This experiment involves determining the coordinates of test points on the cylindrical

control field. The nominal or approximate parameters of the experimental set-up are shown

in Table 5-12 -

TABLE 5-12 Line-scan system set-up parameters.

U. (rpm) tIP (mS) / (mm) o @ pr ok ©) > AW

10 50 0,20, 0 -15, 15, 65, 1500

Ofthe forty-nine targets ipiaged, the following twenty-five are used for calibration:

Al, A2, A4, A7, B2, B3, BS, B7, C2, C5, C7, D1, D3, D4, DS, E2, E4, E5, F2, F3, F5, F7,
G1,G3, GS.

The remaining targets are used as test points. Table 5-13 shows the calibration results of this

experiment.
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TABLE 5-13 Calculated calibration parameters.

Parameters Left camera  Right camera
Urjp (rpm.s) 0.020141 0.020161
©) -1.511896 0.243810
9 0 -94.01425 -72.95121
;¢ O -1.586053 0.131903
/ (mm) 57.74528 60.01034
tx (mm) 15.64549 -14.45087
ty (mm) 63.07157 64.23931
tz (mm) 1659.198 1721.118

Residuals’ norm 1.02x10“D 2.96 x10" BB

The norm of the residual vector, shown in the last row of Table 5-13, indicates that,
although halfthe test field’s control points have been used in the calibration, the model fit is
good. Having calibrated the line-scan system, space intersection is performed for each ofthe
twenty-four test points. The mean error Le and the standard deviation mc in each axis are

presented in Table 5-14.

TABLE .5-14 Accuracy in the measurement o ftestpoints.

Axis X Y Z
Le (mm) 0.084417 -0.09713 -0.06188

me (mm) 0.147261 0.349605 0.17681

From the above table, it can be seen that the Y axis standard deviation is approximately
twice that of the X and Z axis. This result is expected as, for theexperimental conditions,

the mean value of the circumferential uncertainty, i.e. the product of the radius and the
angular uncertainty, is lower than the mean Y axis uncertainty. Indeed, from Table 5-4 of
section 5.6, the mean circumferential uncertainty is approximately 0.136mm/pixel, whereas

the mean Y axis uncertainty is approximately 0.36 1 mm/pixel.

The spatial error in each test point is presented in Table 5-15,
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TABLE 5-15 Spatial error in the test points.

Test Point AX (mm) AY (mm) AZ (mm)
Bl 0.330 -0.248 -0.058
Cl 0.201 -0.347 -0.267
El 0.044 -0.267 -0.059
FI 0.042 -0.594 -0.468
D2 -0.273 -0.005 0.214
G2 0.095 -0.416 -0.246
A3 -0.184 0.752 -0.273
C3 -0.010 0.744 -0.102
E3 0.009 0.619 0.270
B4 0.123 -0.260 0.288
C4 -0.048 -0.140 0.007
F4 0.058 -0.426 0.091
G4 0.022 -0.437 0.009
A5 0.019 -0.264 -0.002
A6 -0.134 -0.282 0.033
B6 0.208 -0.206 -0.077
Co6 0.130 -0.013 -0.039
D6 0.207 0.010 -0.003
E6 0.270 -0.137 -0.067
F6 0.236 -0.198 -0.144
G6 0.236 -0.192 -0.145
D7 0.212 0.065 -0.240
E7 0.106 -0.016 -0.214
G7 0.127 -0.073 0.007

From this table it can be seen that, although half the control points have been used in the
calibration, the mathematical model maps the object workspace to a high degree of
accuracy. As previously mentioned, part of the error recorded is due to the coordinates of
the control points being specified to + 75pm. Furthermore, due to the off-axis views of the
target rods and the resulting perspective distortion, the unequal gains of the odd and even
video streams and the imperfect finish of the rods, the frame buffer coordinates of some test

points may have been estimated to an accuracy lower than + 1 pixel.
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The results obtained from a different system set-up are presented below. In order to produce
a radically different system set-up, the integration period, the rotational speed, the nominal
lens focal length, the convergence angles, the range and the start of scan are all changed.

Table 5-16 contains the approximate system set-up parameters.

TABLE 5-16 Line-scan system set-up parameters.

Ur (rpm) tJP (mS) / (mm) L -<PR>K (°) > td y> 2w

3 7 25 0, 40, 0 -15, 15,60, 800

The control points used in the previous experiment are employed to calibrate the system.

The results ofthe calibration are shown in Table 5-17.

TABLE 5-17 Calculated calibration parameters.

Parameters Left camera  Right camera
Urtip (rpm.s) 0.021087 0.021119
<00 -0.158614 0.053569
@ () -118.3418 -75.14895
*(°) -0.246367 -0.093288
/ (mm) 27.03242 26.82368
tx (mm) 16.59464 -12.47871
ty (mm) 57.61908 58.33130
tz (mm) 778.6365 785.8020

Residuals’norm 828 x10"15 147 x10“15

With the calibration parameters determined, space intersection is performed for the
twenty-four test points. The mean errors and the standard deviation in each axis are

presented in Table 5-18. Table 5-19 shows the spatial error in each test point.
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TABLE 5-18 Accuracy in the measurement o ftestpoints.

Axis X Y Z
4 (mm) 0.00311 -0.06513 -0.07171

me (mm) 0.14825 031249  0.16760

TABLE 5-19 Spatial error in the testpoints.

Test Point AX (mm) AY (mm) AZ (nun)
Bl 0.372 -0.409 0.317
Cl 0.307 -0.427 0.134
El -0.066 -0.307 -0.117
FI -0.002 -0.421 -0.228
D2 -0.215 -0.239 -0.208
G2 0.014 -0.021 -0.068
A3 -0.077 0.641 -0.515
C3 -0.047 0.698 -0.046
E3 -0.001 0.606 -0.047
B4 -0.209 -0.226 -0.448
C4 -0.001 -0.106 -0.013
F4 0.003 -0.240 0.014
G4 0.072 -0.310 -0.050
AS -0.002 -0.165 0.022
A6 0.141 -0.157 0.011
B6 0.208 -0.206 -0.103
Co -0.043 -0.065 -0.003
D6 -0.130 -0.045 0.067
E6 0.268 -0.056 -0.062
F6 -0.049 -0.174 -0.055
G6 0.141 -0.125 -0.133
D7 0.081 0.096 -0.043
E7 0.044 0.158 -0.149
G7 -0.062 -0.063 0.002

Although the experimental conditions in the above two experiments are different, the results
presented in Tables 5-18 and 5-19 indicate that the mathematical model maps the object

workspace with comparable confidence. Indeed, comparison of the mean errors and the
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standard deviation shows that, in both cases, the coordinate measurement accuracy is limited

mainly by the uncertainty in establishing the frame buffer coordinates of the test points.

5.8.2 Accuracy in the Measurement of a Generic Object

This experiment involves measuring three-dimensional vectors defined on an object other
than the cylindrical control field. This is done in order to assess the coordinate measurement
accuracy of the line-scan system in a practical application. The object used in this
experiment is a metal cylinder having a diameter of 91mm and a height of 144mm. Since no
apriori knowledge ofthe exact dimensions of the object is available, nine targets consisting
of high-contrast crosshairs are placed randomly on the surface of the object. The targets are
labelled ‘1’ to ‘9. A number of three-dimensional vectors between them are measured
manually with a pair of callipers. The precision of this measurement is estimated to be

approximately 0.5mm.

The process of measuring this object starts with the calibration ofthe line-scan system. After
setting-up the system with the cylindrical control field, the control correspondence of the
forty-nine targets is established and the system is calibrated. Table 5-20 shows the

calibration parameters.

TABLE 5-20 The calibration parameters.

Parameters Left camera  Right camera
U, .tir (rpm.s) 0.020175 0.020182
® (°) 0.076350 0.038681
9 (°) -39.199697 -9.51205
*(9) 0.114650 0.124578
/ (mm) 0.055763 0.054896
tx (mm) 0.016966 -0.020651
ty (mm) 0.061621 0.062247
tz (mm) 1.141911 1.140252

Residuals’norm 3 13x]0"¥ 274 x10“HK
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The control field is subsequently removed and replaced by the cylindrical object. Left and
right perspective images are acquired and the frame buffer coordinates of'the nine targets are
measured. Space intersection is performed for each target, yielding the spatial coordinates of
the targets in the three-dimensional coordinate system established by the calibration process.

The magnitude of the three-dimensional vectors is then calculated. For two targets

P(XP>» P%P) and ¢q(xq>» (Fzq) #this is given by the norm ofthe vector , - .,

\o- <= Yy&P-x.)2+ (0 -V )2+ () -2,)2
Table 5-21 presents the magnitude of the three-dimensional vectors obtained both by the

analytical process (labelled ‘calculated’ values) and the manual measurement (labelled

‘measured’ values).

Table 5-21 Magnitude o fthe three-dimensional vectors.

Vectors Calculated (mm) Measured (mm) Residual
error (mm)
1->8 83.600 84.5 -0.900
1->9 104.428 105.0 -0.572
2->9 71.789 73.0 -1.211
9->3 78.237 78.5 -0.263
3->5 84.174 85.0 -0.826
4->3 90.152 91.5 -1.348
6->2 96.334 95.0 1.334
5->4 35919 355 0.419
6->7 76.492 77.0 -0.508
7->1 79.506 79.5 0.006
8->3 98.487 99.0 -0.513
Mean (mm) 81.738 82.136 -0.398

The accuracy of the manual measurement is considerably lower than that of the line-scan
system, thus the distances shown in the third column of Table 5-21 cannot be considered to

be definitive. Consequently, this experiment does not aim to quantify the coordinate
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measurement accuracy of the line-scan system. Rather, it provides an intuitive method to

verify the coordinate measurement capability ofthe system under real imaging conditions.

The results obtained from the experiments conducted with the stereoscopic system will be

discussed further in the next chapter.



6. SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 Introduction

This chapter concludes this research by:

1. summarising the work carried out in this research;
ii. providing concluding remarks;

iii. presenting possible future directions following on from this research.

6.2 The Imaging Concept
6.2.1 Motivation

An investigation into the imaging of cylindrical objects was carried out. Initially, this
involved assessing the standard area array sensor in the context of cylindrical object
imaging. The results of this investigation indicated that imaging of objects having a high

degree of cylindrical symmetry by means of such sensors suffers from the following

limitations:

i. the circumferential resolution decreases rapidly at picture columns of increasing

separation from the sensor’s centre;
ii. it is difficult to obtain an ‘all-round view’ of'the object;

iii. potentially uncontrollable specular light reflections can occur if the surface of the

object under inspection is highly reflective;

iv. any mismatch between the aspect ratio ofthe object and the area array sensor leads
to poor utilisation of'the resources of the imaging system, as part of the image area

cannot be utilised.
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In light of the above limitations, it was concluded that an alternative imaging technique

must be developed to allow efficient imaging of cylindrical objects.

6.2.2. The Rotating Object Line-Scan System

A review of existing techniques indicated that photographic cameras employing a slit
aperture have been used in the past to image cylindrical objects. Such systems overcome the
limitations of conventional photographic or electronic image cameras that have a
two-dimensional image plane. This is made possible by the different projective properties of
slit cameras and the application of rotational object motion. Specifically, a slit aperture
photographic camera realises the perspective projection in the slit axis, and the orthographic
projection in the motion axis. The equivalent of a slit aperture camera in electronic form is
the line-scan camera. Thus, this device was selected to be the imaging sensor for the

cylindrical object vision system.

The rotating object line-scan system was subsequently analysed. The following points can

be made about this system:

i. the spatial resolution is constant for a given radius;

ii. an angular field of view of 360° is readily obtained, and the Y axis field of view

can be set independently, in relation to the object’s height;

iii. specular reflections affecting image quality can be reduced or completely

eliminated.

Sample images demonstrating these attributes were presented in the third chapter. A
ballistics application, involving imaging of highly specular metallic surfaces, indicated the

advantages ofthe rotating object line-scan system.
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6.2.3 The Image Sensors

The operation of the line-scan sensor is summarised below. This device employs a single
column of photosensitive elements and, therefore, has different imaging characteristics from
the area array sensor. In particular, the field of view in the main axis depends on:

i. the lens principal distance;

ii. the sensor length;

iii. the sensor to object range.

For a two-dimensional line-scan image produced either by lateral motion parallel to the
camera face and normal to the main axis or by rotational motion as in the rotating object

line-scan system, the field of view in the X image axis is controlled by:

i. the integration period;

ii. the relative speed ofthe motion between the camera and the object;

iii. the number of scan lines stored in the image buffer memory.

In section 2.5.3 it was seen that because the field of view in each image axis is determined
by different parameters, a line-scan camera can produce affine images, i.e. of different scale
in the X and Y image axes. The parameters that determine the resolution of a line-scan

system were also discussed in section 2.5.4.

6.3 The Experimental Two-Dimensional System

Details of the experimental line-scan system were presented in the third chapter. This
included a description of the hardware and the operation ofthe system. A geometrical model

describing the two-dimensional system was established and object space coordinate
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extraction algorithms were developed. A series of experiments were carried out to quantify
the consistency and reliability of the experimental system operating in two-dimensional

mode.

The experiment conducted to establish the consistency of the rotational speed indicated that,
for the purposes of this work, the rotational speed can be controlled accurately enough.
Specifically, it was shown that, even in the worst case, the error caused by speed variation is

at least an order of magnitude less than the resolution ofthe system (see section 3.7.2).

Additional experiments were carried out to establish the validity of the mathematical model.
The results of these experiments indicated that the two-dimensional system had the
necessary attributes to be used for coordinate measurement and could thus form the basis of

a stereoscopic system.

6.4 The Stereoscopic System

6.4.1 The System Model

The ability to perform dimensional measurement with the stereoscopic line-scan system was
a fundamental requirement of this work. Essentially, this task involves the ability to
reconstruct an object workspace from the pair of perspective images produced by the

system. To achieve this, the processes of calibration and space intersection were employed.

The aim of the calibration process is to determine the interior, exterior and temporal

parameters of each camera for a given system set-up. These parameters are:

i. the lens principal distance;

ii. three Euler angles and a three-dimensional vector, mapping the orientation and the
location ofthe camera, respectively, in a reference object space coordinate system.
The incorporation of the reference coordinate system is required in order to allow
coordinate measurement in a local, independent coordinate system, rather than the

camera-centred frame;
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iii. the product ofthe camera’s integration period with the rotational speed.

The derivation of the calibration model involved three independent coordinate
transformations: a rigid 'transformation from the object space coordinate system to the
camera frame, an orthographic and a perspective projective transformation from the camera
frame to the X and Y image space axes respectively, and a linear mapping of the image
space coordinates to the frame buffer memory. The projective and the linear mapping
transformations were adapted from the two-dimensional system algorithms by incorporating
the necessary changes in the geometry of the two-dimensional system. This entailed shifting
the instantaneous field of view of each line-scan camera off the rotation axis (see

section 4.4.1).

In addition to the resulting eight calibration parameters, the incorporation of lens distortion
correction into the system model was considered. The analysis presented in section 4.5.1
indicated that lens distortion correction parameters should not be included to the calibration
model. This is because, for the lenses used in this work, the maximum radial distortion is
comparable to the uncertainty component in the sensor’s main axis. In general, if the
mathematical model does not describe the physical system accurately, numerical instability

will occur, thus producing unreliable results.

The process of space intersection was employed in order to extract coordinate information
from an object of interest. This requires the eight calibration parameters and the projection
of unknown spatial points in the left and right images to be known. Space intersection
entails determining the point of intersection of the two collinear rays defined by the
unknown point in space, the perspective centres of the two lenses and the corresponding
images of the point. Ideally, these rays are straight lines intersecting at the unknown point.
In practice, however, the two rays can be skewed due to lens non-linearities. Furthermore,
the presence of spatial quantisation noise will generally produce non-intersecting rays. To
solve this problem, the vector of the minimum distance between the two rays can be
determined, and the spatial point can be assumed to lie at the mid-distance of the vector. In
this work, determination ofthe spatial location of the unknown point is performed using the

singular value decomposition method, which, although more abstract and computationally
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more intensive than the mid-point method, produces more accurate results (see section 4.4.2,

‘phase 4°).

Both the calibration and the space intersection processes are optimisation problems, that is,
their solution involves determining the minimum value of an objective function. This is
because the functional model of the line-scan system, utilised in both processes, is an
approximation of the physical system. Furthermore, the discrete photosensitive elements of
the sensor give rise to spatial quantisation noise, which, in turn, introduces errors in the
calibration and the space intersection processes. To this extent, a least squares adjustment, in
conjunction with redundant input data, is employed to produce a statistically optimal
solution. In the calibration process, redundant data are obtained by utilising more than the
minimum required number of control points, whereas in space intersection redundancy is

inherent when two or more views, acquired from different perspectives, are used.

6.4.2 The Experimental Results
Imaging characteristics -

Experiments were conducted to characterise the imaging properties of the line-scan system.
Initially, these experiments aimed to identify the conditions required to produce stereoscopic
parallax. It was shown that if the instantaneous fields of view (IFOV) of the two cameras
converge on the rotation axis, no stereoscopic parallax is produced. Thus, extraction of
three-dimensional coordinate data requires that the IFOVs converge at a finite distance from

the rotation axis.

As indicated by the spatial sampling pattern of the sterecoscopic line-scan system (see
section 4.3), the distribution of voxels is symmetrical about the rotation axis. The
dimensions of'the voxels in the stereoscopic region at planes normal to the rotation axis can
thus be quantified by an angular and a radial component. A Y axis component, defined
along the rotation axis, is also required. Both the angular and the radial uncertainties,
defined for a point at a given radius, are independent of the absolute angle the point makes
with the reference object space coordinate system and its Y axis coordinate. They are,

however, non-linear functions of the radius. Conversely, the Y axis uncertainty depends
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linearly on the range of'the point of interest from the sensor, the lens’ principal distance and

the photosite aperture, but it is independent of the angle ofthe point.

The voxels can be thought of as a graphical interpretation of the spatial sampling properties
of an imaging system that utilises discrete image sensors. In order to analytically determine
the spatial dimensions of the uncertainty components, the mathematical model developed
for coordinate measurement is required. In addition to this method, a less accurate, albeit
more intuitive, method was also utilised in the imaging characteristics experiments. This
graphical method involved measuring the gradient ofthe X and Y image data as functions of
the radial parallax, the angle and the Y axis component of a target. The results of this
graphical method were compared with those obtained analytically. It should be noted that
the graphical method is subject to larger errors as perfect system alignment is assumed and
the gradient of the tangents cannot be determined accurately if the graphs are non-linear.

Nevertheless, the results of both methods were found to be in close agreement.

Experiments with synthetic data -

This series of experiments aimed to analyse the robustness of the calibration process by
simulating the real imaging conditions. Computer simulations are useful when tests utilising
real data cannot be performed. This is the case with the calibration process, as no a priori
knowledge of the calibration data exists. Although the metrological accuracy of the
line-scan system can be established without resorting to an independent evaluation of the

calibration process, it is imperative to analyse the robustness ofthe latter for two reasons:

¢ the calibration process is computationally more intensive than space intersection,

and hence subject to larger errors;

¢ the spatial quantisation noise can, to some extent, ‘mask’ calibration inaccuracies,
thus rendering the identification of the source of coordinate measurement errors

inconclusive.

The following tests utilising synthetic data were performed:
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i. evaluation of the effect of spatial quantisation noise on the robustness of the

calibration;

ii. evaluation of the effect of radial lens distortion on the robustness of the

calibration;

1. evaluation of the effect of radial lens distortion on the coordinate measurement

accuracy ofthe stereoscopic line-scan system.

In order to evaluate the effect of spatial quantisation noise on the calibration process, the
number of control points was varied in the presence of Gaussian noise. To achieve this, the
following procedure was devised. Synthetic sets of calibration parameters and control points
were established. The system model was used to produce the corresponding ‘ideal5synthetic
control correspondence. The frame buffer coordinates of the control points were then
subjected to Gaussian noise of zero mean and = 1 pixel magnitude. The resultant control
correspondence was used to calibrate the system and the calibration results were compared
with the ‘ideal5 set. This process was repeated for 4, 5, 6, 8, 15 and 50 control points. The
results indicated that the calibration error drops rapidly as the number of control points is
increased from the minimum. When fifty control points are used, the calibration error is
insignificant. Consequently, all forty-nine targets present in the cylindrical control field

should be used to calibrate the experimental line-scan system.

The analysis presented in the main text (see section 4.5.1.) indicated that lens distortion
correction parameters should not be incorporated into the system model. However, in order
to evaluate the effects of radial lens distortion on the system model, a suitable experiment
was devised. This involved accentuating the radial non-linearity of the lenses used in this
work by a factor of five to produce a ‘worst caseS scenario. Fifty control targets were
generated with uniform probability distribution and their frame buffer coordinates were
subjected to radial lens distortion. The results ofthis experiment (see section 5.7.2) indicate

that radial lens distortion has a minimal impact on the robustness ofthe calibration.
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Experiments with real data -

Experiments were conducted to determine the coordinate measurement accuracy of the
stereoscopic line-scan system when real objects are imaged. The first two tests involved
using half the targets of the cylindrical control field to calibrate the system, whilst the
remaining targets were used as test points. After calibration of the line-scan system, the
coordinates of the test points were determined through space intersection, and the results

compared with the calibration data supplied for the control field.

Ideally, the coordinates of the test points must be known to an accuracy of at least an order
of magnitude higher than the expected accuracy ofthe line-scan system. However, technical
limitations in the coordinate measurement machine utilised to calibrate the cylindrical
control field resulted in a measurement accuracy of £ /5pm. The results obtained by the
two experiments (see section 5.8.1) indicated a mean error of less than 100pm and a
standard deviation of approximately 200pm in the X and Z axes, and 350pm in the Y axis.
Consequently, these figures can be expected to be compromised by a factor not directly

related to the metrological accuracy ofthe line-scan system.

It can be seen that the standard deviation in the X and Z axes are approximately half of that
in the Y axis. However, this does not have to be the case. For example, if the cameras’
sensors consisted of twice the number of photosensitive elements and the Y axis field of
view was kept constant, ceteris paribus, the Y axis standard deviation would nominally be
halved. Furthermore, in contrast to the Y axis uncertainty which, for the experimental
conditions, remains almost constant with radius, the radial uncertainty that determines the X
and Z resolution is a non-linear function ofthe radius. Thus, the Y axis mean square error is
approximately constant, but the X and Z axis mean square errors are strongly affected by the
radius ofthe targets (see Tables 5-3 and 5-5, section 5.6). Furthermore, the images produced
by the stereoscopic line-scan system consist of 3048 lines in the X axis, but only 508 pixels

in the Y axis.

The experiments discussed so far utilised the cylindrical control field both for the purposes
of calibration and as a test object. However, in a practical situation, the control field would
be used to calibrate the system and then be substituted by the object to be measured. Hence,

a test was devised in which a cylindrical object with a number oftargets distributed over its
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surface was imaged. A number of three-dimensional vectors defined between targets were
measured manually with a pair of callipers, and the same distances were determined using
the stereoscopic line-scan system. The results indicate that the coordinate measurement
errors are higher than those obtained in the previously mentioned experiments. This is
because the manual measurement has lower precision than that offered by the line-scan

system.

6.5 Conclusions

The principal objective of this research was to develop and analyse a machine vision system
capable of efficient and accurate inspection and dimensional measurement of cylindrical
objects. The investigation into different imaging sensors and operating modes initially
concentrated on the standard area array sensor. However, it was found that this sensor is far
from ideal when imaging of cylindrical objects is required. Thus, the rotating object

line-scan system was developed.

The conclusions that can be drawn from this research are presented below.

In the imaging concept -

i. By applying rotational motion to the object under inspection and utilising a
line-scan sensor, a 360° field of view can be obtained in a single image. Thus, the

complete surface ofthe object can be efficiently inspected;

ii. The spatial resolution is constant over the whole surface ofthe object, and it is not
affected by the object’s curvature; consequently, the whole of the cylindrical

surface appears “unfolded” into a flat sheet;

iii. Lighting has to be optimised only along the instantaneous field of view, i.e. a thin
strip, rather than a large area on1 the surface of the object. Hence, if a highly
reflective surface is imaged, specular reflections can be controlled more effectively

in the line-scan system;
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iv. The aspect ratio of the line-scan images can be set according to the dimensions of
the object; that is, the instantaneous field of view can be optimised for a given

object height without affecting the angular field of view.

In the two-dimensional line-scan system -

i.  An experimental system conforming to the previously discussed imaging concepts

was designed ail'd built;

ii. Sample images of cylindrical objects were acquired, demonstrating the imaging

characteristics of the rotating object line-scan system;

iii. Details of a ballistics application utilising the line-scan system to image firearm

cartridge cases were given;

iv. A mathematical model was developed in order to facilitate the modelling of the

system and allow coordinate measurement;

v. Experiments were conducted to verify the integrity of the experimental system; in
particular, the consistency of the rotational speed was independently evaluated,

and was found to be precise enough for the purposes of this work;

vi. Further experimentation was carried out to substantiate the mathematical model.
The accuracy of both the X and the Y axis algorithms was established, thus

allowing the development of a stereoscopic variant ofthe two-dimensional system.

In the analysis o fthe stereoscopic line-scan system -
i. The stereoscopic region was defined;

ii. The spatial sampling pattern of the system was presented, and the factors

determining the voxel dimensions were identified (also see point x, below);

iii. A functional model describing the geometry of each camera was established. This

included three independent coordinate transformations: a rigid transformation from
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the object space to the camera coordinate system, a perspective and orthographic
transformation from the camera to the image plane, and a linear mapping from the

image to the frame buffer coordinate systems;

iv. A rigorous calibration technique was developed, which computed the eight

V.

Vi.

calibration unknowns in one step. This utilised a full-scale iterative process;

Space intersection algorithms were developed to allow extraction of

three-dimensional coordinate data from an object of interest;

Both calibration and space intersection were implemented using a least squares
adjustment to allow stochastic modelling of the system. This enabled the

computation of a statistically optimal solution;

vii.The issue of lens distortion was considered. It was found that, for the hardware

used in this work, lens distortion correction coefficients should not be incorporated

into the system model;

viii.The implementation of the system model addressed the issues of data quality.

IX.

X1.

Tests performed on the input data consist of checking the control correspondence
for singularities. If singularities are detected, the corresponding data are removed.
The iterative optimisation is continuously monitored to prevent divergence. The
computed solution is checked to verify the orthonormality of the rotation matrices,
and the variance-covariance matrix of the calibration unknowns is displayed. In

addition, the norm ofthe residual vectors is computed;

A method to compute an approximate solution for the spatial coordinates of
unknown points was devised. The results of this step are used as an initial

approximation for space intersection, so that reliable convergence is attained;

A numerical method utilising the system model and the calibration parameters was
developed to calculate the spatial quantisation error at a given point in the

stereoscopic region;

Software code was written to allow the implementation of the calibration and

space intersection processes.
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In the experiments conducted with the stereoscopic system -

1.

il.

iii.

1v.

V1.

Vii.

The design of a calibration structure, specifically developed for this work, was

presented;

Stereoscopic parallax is produced only when the instantaneous ficlds of view of

the cameras converge at a finite distance from the rotation axis;

Graphs depicting the X axis frame buffer coordinates as a function of radius and
angle, and Y axis frame buffer coordinates against Y axis spatial distance were

presented;

Experiments were carried out to determine graphically the uncertainty components

for a typical system set-up;

The results of the above step were compared with those obtained by the analytical

process utilising the system model;

An experimental strategy based on computer simulations was devised to
characterise the robustness of the calibration process in the presence of noise and

lens non-linearities;

The coordinate measurement accuracy of the stereoscopic line-scan system was
established using both the cylindrical control field and a generic object. For the
set-ups considered, the results indicate a precision of approximately 200pm in the

X and Z axes, and 350//m in the Y axis.

The experiments both with the two-dimensional and the stereoscopic system indicate that

there is

no significant discrepancy between the results obtained and those which are

predicted theoretically.
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6.6 Future Work

This section presents the authors’ suggestions on possible future work that can be

considered with the stereoscopic line-scan system.

6.6.1 Automating the Calibration Process

Although the system model developed during the course of this research produces accurate
results, the calibration process is labour intensive and time-consuming. This is because the
frame buffer coordinates of forty-nine targets have to be manually measured. Similarly, the
correspondence of each p'oint is manually established, as is the control correspondence data
file. Since it was not the intention of this work to automatically solve the correspondence
problem, this limitation was considered to be acceptable. Nevertheless, it is accepted that the
successful integration ofthe line-scan system into a practical application would benefit from
an automated solution to the above problems. To this extent, image processing algorithms
could be developed to identify, label and measure the coordinates of the control points
automatically 12718 This would then allow the automated production of the control

correspondence, so that the calibration process would be considerably simplified.

6.6.2 Improving Accuracy
Subpixelation -

Image processing algorithms to extract the frame buffer coordinates of targets to subpixel
accuracy can be developed for use with the line-scan system. Such algorithms would
increase the spatial accuracy ofthe system (see section 5.2.1). The implementation of such a
technique would have to take into account various factors, such as target distortion due to
oblique views, the affine nature of'the line-scan images, i.e. the different scale in each image

axis, and the radiometric properties ofthe cameras.

The process that would benefit most from subpixelation is space intersection. This is

because the calibration can utilise a large number of redundant control points, which, in
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conjunction with the least squares adjustment, decreases the effects of the spatial
quantisation noise. The redundancy available in space intersection, however, is determined
by the number of cameras used. To this extent, it may be possible to utilise more than two

cameras, so that space intersection would produce more accurate results.

Modelling o flens non-linearity -

If a subpixel technique is implemented, lens non-linearities would, in general, have to be
taken into account. For this reason, the system model developed in the fourth chapter has
been extended to encompass radial lens distortion correction parameters. The relevant
formulation is presented in Appendix II. Although this model takes into account only radial
distortion, numerous researchers have shown that this type of distortion is approximately an
order of magnitude larger than tangential distortion. Nevertheless, in highly critical
applications or if wide-angle lens are used, tangential distortion correction parameters
should also be incorporated into the system model. It should be stated that, despite the
essentially one-dimensional geometry of the line-scan sensor, tangential distortion still

affects the images as the distortion is produced by the lens.

6.6.3 Further Investigation of the Line-Scan Sensor

Additional work can be carried out in the following areas:

1. the radiometric performance ofthe line-scan sensors;

ii. modulation transfer function experiments.

An investigation into the radiometric properties of the line-scan system was beyond the
scope ofthe work undertaken here. Such an analysis would concentrate on the evaluation of
the noise, the linearity and the dynamic range ofthe line-scan system. As feature detection is
strongly affected by these factors, the radiometric characteristics of the line-scan system can

be of critical importance in a practical application.
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Summary, Conclusions and Future Work

Modulation transfer function (MTF) experiments can be carried out to evaluate the spatial
resolution of the line-scan system under different operating conditions. Such an analysis
would assess the resolution of the complete imaging system, from the camera optics to the

video display unitI,
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Appendix I

The Rigid Transformation and the Rotation Matrix



A transformation between two three-dimensional coordinate systems, whereby both true
shape and scale are retained, is referred to as a rigid transformation. Two three-dimensional
rectangular coordinate systems are depicted in Figure Al-1. A rigid transformation from the
X'Y'Z' to the XYZ system requires the application of a rotation about each of the
X', Y and Z' axes, denoted by Euler angles @ and ic (omega, phi and kappa)
respectively. These angles are defined as positive if they are clockwise when viewed from
the origin of their respective axis. Also required is a translation along the X, Yand Z axes

through vector ¢ = ftx t tle. The positive direction for each axis is indicated by the

relevant arrowheads on Figure Al-1.

Y>

Figure Al-1 Coordinate transformation.

Ifvectors x = /X Y Z] and x =[X' Y Z'l define the location ofa point in the XYZ

(transformed) and X 'Y'Z’ (original) systems respectively, provided that the order of
rotation is co, (p, k and all rotations are positive, the rigid transformation can be expressed

as -

x - RT& +t¢

where R is the rotation matrix, presented below.

Figure A 1-2 shows a point P in a rectangular (xyz) system with coordinates (x, y, z). It is

required to calculate the coordinates of this point in a rectangular coordinate system (X, Y,



Z) obtained by three independent rotations co, (p and K about the x, y and z axes

respectively.

Figure Al1-2 Original and rotated coordinate systems.

Vector P defined from the origin of the coordinate systems to point P has coordinate

components [ x y z | . Ifclockwise rotation about the X axis is applied the coordinates of

P become -

P, =Ro[x y 7]

where -

1 0 0
0 cosa> sinw

0 -sinw cosw

The clockwise rotation about the Y axis produces -

P,=R R [x y z}
where -
cosp 0 - sin(p

0 1 0
singp 0 cosp



Finally, the clockwise rotation about the Z axis gives -

P«IK = z]

where -

cosic  sinic 0
K = - sinic cosic 0

0 0 1

The rotation matrix R is obtained by multiplying R (0, R@pand RK as

R - RORIRK ,7 12

r3l r32 ;<33 _

with -

ru = cos @cosic

m - Sin csin cosic+ cos wsinic
i3 = ~cos tosin VcosK + sin tosin K
rJ] =-coscpsimc

m ~ ~sin fosin @sinic +cos cocos ic
13 = cos cosin @sin ic + sin cocos ic
13l - sincp

r32 ~ “ sinaocos @

3B - coscocoscp



Appendix 11

Extension of the System Algorithms to Account for Radial Lens Distortion



Radial lens distortion is caused by imperfect curvature of the lens elements and is
symmetrical about the optical axis. Its effect is to reduce or increase the lens focal length,
and hence the lateral magnification, at the outer parts of the image. This gives rise to barrel
or pincushion distortion respectively. In Figure A2 straight lines parallel to the edge of the
field of view are reproduced as curved lines. When barrel distortion exists, these lines are

concave towards the optical axis. Similarly, pincushion distortion produces convex lines.

v Pincushion distortion' *

T ek

Barrel >,
distortion

Figure A2 Radial lens distortion.

Let yu and yd be the undistorted and distorted image space coordinates of a spatial point
respectively. A lens radial distortion factor D may be used to transform from undistorted

to distorted image space coordinates as -

X, =y¢ + Dy A2-1

where the image space coordinates yu and yd are specified in milimeters. The radial

distortion factor is commonly expressed as a polynomial ofthe form -

Dr=y,{k" + A2-2

where thedistortion coefficients are denoted by kx and k2and up to fifthorder distortion

componentshave been included. Combining equations A2-1 and A2-2 produces -

II-2



v =t

Transforming from (distorted) frame buffer coordinates y, to distorted image space

coordinates yd -

v, =s8,(yr-cr) A2-4

where C is the Y axis frame buffer image centre and s 1is the Y axis scale factor.
The Y axis algorithm, given by equation 4-12 ofsection 4.4.2, can thus be expressed as -
syv.f - ey){l+klyd+ ky<) =
f |
TN X wWHf2 Yy +rB-Zy - Ty

U -i/ (fric +ru . Yw+r]3.Z9i2+ /Y1eA w TRe  +/3e  2~T1)

A2-5

11-3



Appendix III

The Partial Derivatives of the System Algorithms



The partial derivatives of the system algorithms with respect to the calibration unknowns

are -
X

7
U
Jo -as {-A (-r33r+r32Z)+ " [xc(rBr+n2Z)+ Zt (" r+r327))}
JB =a, [SZG - Xc pp,s|
Ju -aJXc(Yc+ty)

« r,
/16
Jn °Pt {-r, Y +mZ +ry[X. {-rnY+1DZ)+ Ze(- 1BY +1rR7)]}
J» =A Zcsink +yWs —Xecos;r)
Ju PyXc - I+ 75k +1y)

Prc

J2s

f
J 26 - P
J21  ~Py

P, K
J2s

t,-a,

where -

-2



X —i\|X +r2Y+ n3Z

Zc~ r2\X + r22Y + T23Z ~ ty

Zc h\X +r32Y + 1337

rc=Jxl+ZI

SX

2-1/2
n n
1-/4¢ if
Irc 2 1 2

itV

13

/ o\ 2~12
Itr}

\re)

1

r, A

£e= X cos” + 7sinctfsin<p-Zcos<wsin<p

a

3 /1
A M/ -a, =
/v = v

The partial derivatives of the system algorithms with respect to the coordinates of spatial

points are -
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T~ a x| fix™31 /[ (ril + r3)X + (~11M2 + + (riiri3 + A31733)7 1}

TH2 = «v { A 732 ~ /[ (riiri2 + r3ir32)" + (ri2 + 132)Z + (M12713 + 132/33)7 ]}

73 a , {~r3  Aprivst w3133 A+ (M2M3 es2Es)z v (13 73

721 — <% *21 + Py (™M1 ¢ + *31Zc)]

J2 —av . Py (™2X ¢ + r32Z c)]

73 7 ay[*3 + Pyi"U’c + 733/c)]

where -

sr

A = - if
[S=—Y
-12
Z\z ¢ n 3,r
- 1 — < 0), —
A= 2 """
~ -1/2"
1 r o 2i o
r = — A zc =
e \rj
/ 1
a,:_
i
1 R
A

I11-4



Appendix IV

Software Code



File: CalibratelDoc.h
Purpose: Defines the CCalibratelDoc class (Visual C++ v5)
7/

#ifl!defined(d FX _CALIBRA TEID OC _H _8627D BEBJD ES9JID IJB 78__C802892FDE4F __INCLUDEDJ
M efine A4 FX _ CALIBRATE 1D O CH 8627DBEB _DESY9 _ JID 19B78 _ C802892FDE4F _JNCLUDED
#if M §C _VER > = 1000

kpragma once

bendif//_M SC _VER > =1000
#include "sldafx . h"

#include "calibrate!. h"
Uinclude "Calibration.h"
finclude "0 perations,h”
#include "0 bjectSpace.h "
Uinclude "Forcim eBuffer.h”

U include "Intersection . h"
include "InputD ataD ialog.h "
Uinclude "IntersectC orr. h "
#include "InterD iagnostics, h "

class C C alibratelD oc public CD ocument

protected

C CalibratelID oc();

DECLARE D YNCREATE(CCalibratelD oc)

B O OL ClearM atrices();

C C alibrationD ata * injplInitC aliblL ; //Initial estim ates
B .
C CalibrationD ata mo_plInitCalibR
C CalibrationD ata?* m _pCalibD atal ; // The calibration objects
. % .
CCocilibrationDd ata m  pCalibD ataR
CCalibrationD ata * m _pCalibReslL /) Calibration results
%

CCalibrationD ata m jp C alibR esR
COperations* m _pO perations;
CO bjectSpace * m _pO bjectSpace;
—_ "
CForameB uffer m _pForameB uffer;
CFrameB uffer* mjp ForameB uffers;

ke
double m _ppRL /7 T he R otation m atrices
double®% in ppRR

%
double mo_ppd; /7 The Jacobian matrix
doubler* mjppCovm L /7 The Variance-Covariance matrices
doubie®* mippCovm R
double* mipp Vo /1 cctor o fSingular values
U IN T * mjpnvZonelL; /7 Zone conditions
UIN T * mjinvZoneR

* )
double mjpdvForm Calc, /7 Vector o fcalculated coordinates

* )
double injpdvX ; /7 Vector o fcurrent corrections

* .
double m _pdvF /7 Vector o ffunctions to be m inim ised

Iv-2



double+ m_pdvW; // SVD Vector

UINT m jiT o tP ts, m jiC P, //Controlpoints
m o jiltl m jn ltR , Il 1ieraiions
m _nSngl, m jiSngR: Il singuiarities
B O 0L m _bFlaglL, m _bFlagR, /10 rihonormatity flags
m _bAllocFlag; Il Hoeap atiocation flag
double m jdNorm L, m jLNormR, //Norm ofresidual vectors
m jdSthLl, m dSthR ; //Singularity thresholds
C Siring m _sNorm L, mjsNorm R, mjsSnglL. mjsSngR:
Clntersection* mjy Inter;
UCR mojucr; // U nmcertainty struciture
0O BJSPACE m _fln 0O S // Spatial solution
double m _dAppRadius; //Approximate radius

i

// 0 perations

public

/)0 verrides
S/ ClassW izard generated virtualfunction overrides
//{ (A FX _VIRTUAL(C Calibrate ID oc)
public
virtual B O OL O nNewD ocumentQ ;
virtual void Serialize(C Archived& ar);
virtual void O nCloseD ocum entQ

J/}JJAF X _ VIRTU AL

//Im plem entation
public:
virtual -C Calibrate ID oc ();
#ifdef/D EB U G
virtual voidd ssertValid() const;
virtual void D ump(CD umpContext& dc) const;

Uendif

protecied:

// G enerated m essage m ap functions
protected
/{4 FX _M SG (CCalibratelD oc)
g fxjnsg void O nCalibrationStarlQ ;
aficjnsg void O nUpdateC alibrationStart(C CmdUI*pCmdUTI);
afxjnsg void O nCalibrationO penQ
g fxjnsg void O nintersectiontartQ
g fxjnsg void O nUpdatelntersectionSitarifCCmdU II* pCmdUI);
/A F X M SG

DECLARE _MESSAGE_MAP()

//{{AF X _INSERT_LOCA4TION]}/

#enairll

Idefined(Ad FX _CA4 LIBRATEID O C H _8627D BEBDES8Y9_11D1_9B 78_

C 802892F D E4F _

IN

¢ L UDED J
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File: Calibration.lIt
Purpose: Defines the CCalibrationData class.

#if!defined( C 4 LIBR TI10O N H )

M efine CALIBRATION _H

#.nclude "stdgqgfx . h"
Ninclude < m ath. h>

#include "D efinitions.h

class C CalibrationD ata :public CCmdTarget

{

private

dowuble m _urtip
m _omega,
mo_phi,

m jeappa,

mj

m _tx
mojy
m otz

D ECLARE_SERIAL(CCalibrationD ata )

public
C CalibrationD ataQ mo_wortip (0.0 ),

mo_omega(0.0),

mo_tz(0.0)

C CalibrationD ata( double urtip,
double omega,
dowuble phi,
double kappa
doublef
dowuble tx,

double ty,

mo_wortip (urtip ),
m om ega(omega),
mo_phi(p hi),

m jecappa(kappa),

~Ccatibrationd ata () [



double G eturtip() const {return m jartip; }

double G etomega() const { return m om ega;)
double GelphiO const freturn om o _phi:)
double G ethappa() const {return m _kappa: }
double G etfQ const freturn m\_f:)
double GetixQ const freturn m o _tx ;)
double G etty() const {return mo jy i}
double G ettzQ const {return m o jzo:)
void Seturtip(double urtip ) {m jirtip = wurtip; }
void Setom ega(double om ega) {m _omega T omega,; }
void Setphi(dowublep h i) fmo_phi T pohoi:}
void Sethappa(double kappa) {m kappa - kappa; }
void Setf(doublef) ® fmoj~ S
void Settx(double tx) {mojx o~ ix i}
void Setty(double ty) tmjy oy}
void Settz(double 1z) fmo_ iz = }
void ConstructRotationM atrix(C CalibrationD atad& , double**)
int CorrectdndTest(CCalibrationD ata& . double U INT),
void Serialize( CArchive& archive ),
UINT LoadC orrD ata(double* );
// The sole globalfunctions
inline double D egToRad(double x) freturn (P 1 ¥y /180 .0) )
inline double RadT oD eg(double x) freturn (x ¥ 1800 /P 1)

Hendif

File: ObjectSpace.h
Purpose: Defines the CObjectSpace class.

#if!defm ed( O BJECTSPACEJT)

M efine O BJECTSPACE _H

Uinclude "“Calibration, h

class C O bjectSpace :public CCalibrationD ata

{

private:

UINT m JP i
double m _Xos,
m _Yos,
m _Zos:
public
C O bjectSpaceQ m o _ P t(0),

mo_Xos(0.0),
moY oo s (0.0 ),

mo_Zos(0.0)

C O bjeciSpaceQ ()



void SetO bjCoords(double doubley, double x, UINTp )

m _ Pt = p

m _Xos — X * le-3

m _Yos =y *le-3

mJZos = z ¥le-3
/
U IN T GetpQ const {return m _Pit; }
double GetxQ const {return m _X os;)
double GetyQ const {return m _Yos; }
double Getz() const { return m JZos;}
void ShiftY (doublefactor) {m _Yos -—factor; m _Yos *— -1
BO OL ConstructJx(C CalibrationD ata& , CO bjectSpace*, double
void ConstructJy(CCalibrationD atad& , C O bjectSpace™ double
B O OL VierifyO rihonormality(double** );

4

Uendif

File: FrameBuffer.li
Purpose: Defines the CFrameBuffer class.

#ifldeflned (F R AM EBUFFERIJI)

M efine FRAM EB U F F ER Ji

#include "“Calibration, h"

#include "O bjectSpace.h”
class CFrameBuffer :public CCalibrationD ata

private

U IN T mo_ P
double m jefL
mo_yfL
m _xfR
m jy fR
public
CFrameBuffer() mo_P (0 )

mo_xfL(0.0)

mo_yfL.(0.0),

m o _x/R (0.0 ),

m yIR (0.0 )

SC FrameBuffer()

void SetFrm Coords(double y/R, double xjR, double yfL, double xfL,

m JP & - Pt

m _xfL = x/fL

m o _yfL - yfL;
m xfR = xfR

£

* %

U

double**

double**

1IN

TP

)

U

U

IN T

IN T )

U

IN T *);
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m _yfR = yfR

UINT G etpQ const {return m _P i}
double G oetxlQ comst {return m _xfL ;)
double G etylQ comnst {return m o _yfL )}
double G etxr() const {return m _xfR ;}
double G etyrQ const {return m _yfR :}

void Swecip(double txfR, double tyfR, double a, double b, UIN

m _xfL = t(x[R

m jfL = 4y fR

mo_ v SR b

void CalcFrm B ufferCoords( CCalibrationD cita&
doubile®
double**,
CObjectSpace
UINT,

UI:VT*

void ComtructF (double*, double®  CFrameBuffert, UINT);

#endif

File: lintersection.h
Purpose: Defines the Clntersection class.

#ifldefined (INTERSETCTION _H )

M efine INTERSECTION _H

#include "stdafx . h"

#include < m ath.h >

#include "D efinitions.h"
M nclude "0 perations, h "
#include "calibration . h”
lypedefstruct _FRM B UFFER {

double xfL, yfL. xfR ., y[R

) FRM BUFFER

typedefstruct 0 BJSPACE {
double Xos, Yos, Zos;

) O BJSPACE:;

Iypedefsiruct _CND 1

UINT znl, znR ; Ilzone information
} CND
typedefsiruct U CR !

double dXpos, dYpos, dZpos: J/ wuncertaintics

T P

t)



double dXneg, d¥Yneg, dZneg:
dowuble dR;
dowuble dA;

double reXfL, reYfL, reX R, reY R //re-projected coordinates

class Clntersection public CO bject

{

private

FRM BUFFER m JF rm B uffer;

0 BJSPACE mjo bjSpace;

CND mjC ond;
public

ClntersectionQ ()}

~Clntersection () {}

void SetFrm (double, double, double, double );

void Set0 bj(double, 'double, double);

void SetCnd( UINT, UINT);

FRM BUFFER G etFrmQ const {return m JF rm B uffer;)
O BJSPACE G etO bjQ const {return m _0 bjSpace; |}
CND G etCnd() const {return m _Cond;}

int  Imoproveli( C CalibrationD ata&

C CalibrationD ata&
double**,
double**,

*

O BJSPACE

CND* )

UCR Uwmncertainty( C CalibrationD ataé&

C CalibrationD ata &
d()uh[('**

double**,

O BJSPACE®*,

#endif

File: Operations. It
Purpose: Defines the COperations class. Refer to the book ‘Numerical Recipes in C: the Art of
Scientific Computing”for thefunction definititions.

m f!defined( OPERATIONS_H )

M e¢fine O PERATIONSUJT
M nclude “"sidajx.h"
Hlinciude < maih h>

#include "D efinitions. h"

class CO perations
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public

COperations() Iy

SC O perations() {7

double D Pythag(double, double);
double** D M atrix( UINT, U INT, U INT, U INT);
void FreeD M atH x (double®**, U INT, U IN T ):
void O perationE rror(char* error)
AfeM essageBox(error, M B _IC ONSTO P );
N * N *
void SvdBkshb(double**, double dowuble**, ini, int,d ouble dowuble*);
void SvdD cm p(dowuble**, int, int, double*, double**);
void Svdvar(double**, int, double*, double*?*);
Uendif
File: Definitions, h
// Constants and m acros
#if!defm ed (D EFINITIO NS _ H )
M efine D EF INITIO NS _H
M efine IM G C 254 .0 // Y axis im age centre
M efine A P T 1 3e-6 // P hotosite aperture
M efine C ONVLIM IT le -1 3 // Convergence lim it
M efine D IV L IM IT le 5 //D ivergence lim it
M efine U N K S 8 //N o o fcalibration unknowns
M efine E LM S 3 // N o o funknowns in rotation m atrices
M efine M A XITS 99 // M ax num ber o fiterations
M efine M A X P O INTS 100 S/ M oaxim um number o fcontrolpoints
M efin e YSHIFT 0.13 // 0 bject space Y axis shift
M e fine P 1 3.141592653589793238462643383279735
M efine C ONVERGETD 0
M efin e D IV ERGED -1
M e fin e C O NTINU E 1
M efine 0 K 0
M efine E N D 1
M efine SO R (x) ((x) * (x))
M efine iU NK S 3
M efine iE QO U S 4
M efine N 3048 // N umber o flines grabbed
M efine ilT E R 29 J/ M oaxim oum num ber o fiterations
M efine iD IV JLIM IT 100.0 // D ivergence threshold
M efine iC ONV _LIMIT le -1 2 // Convergence threshold
M efine ITER le 8 // M ax quantisation error cale iterations
M e fine M A XRAD IU S 0.2 // M ax intersection radius
static double dsqrarg:;
M efine D SQ R (a) ((dsqrarg= (a)) - 0.0 2 0.0 dsqrarg*dsqrarg)



static double dm axargld, dm axarg?2;

M efine DM A4 X (a,b) (dm axargl-(a),

(dm axargl) (dm axarg2))

static int im inargl, iminarg?2;

M efine JM IN (a.b) (im inargl = (a), im inarg?2-(b), (im
(im inargl) : (im inarg?2))

M efine SIG N (a.b) ((b) > -0 .0 ?fabs(a) ~fabs(a))

#endif

File: CalibratelDoc, cpp

// calibrate!D oc.cpp im plem entation o fthe C C alibratelD oc

/1

#include "calibrate ID oc.h"

M nclude "calibratel View .h
#ifdef_ D EBU G
M efine new DEBUG _NEW
UwndefTHIS FILE

static char TH 1S _FILE[] = F1LE

Uendif

i

I/l ccatibraceip oc

IM PLEMENT _

BEGIN M ESSAGE _

J/{{AFX_MSG _M AP(CCalibratelD

ON _COMMAND (ID _C ALIBRA

ONJUPDATE _COMMA4ND _UI

ON _COMM AND(ID C ALIBRA
ON_COMMAND (ID
oN_U

P D ATE;COMMAND _UI

//ppAF X _ M SG J44P

M ESSAGE _M AP()

e

//C C alibratelD oc

C CalibralelD oc::C CalibratelD oc()

{.

/

C CalibralelD oc

{

B O O L

dm axarg2=(b),

D YNCREATE(CCalibratelD oc,

M AP (C CalibratelD oc,

C C alibratelD oc::0 nNew D ocum

C D ocument)

o)

TION _

(ID JC ALIBRA

(dm axargl) >

inargl) < (im

CDocument)

STARTCALIBRATIO N,

(dm ax

inarg2)

class

TI10NJOPEN, O nCalibrationO pen)

(ID _INTERSECTION

comnstruction/destruction

~C CalibratelD ocQ

ent()

_START,

0 nU

arg2) ?

O nCalibrationStarl)

_INTERSECTION _START, O nintersectionStart)

pdatelntersectionStart)

TION _STARTCALIBRA TION O nUpdateC alibrationS§tart)
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if(ICD ocument::0nNewDocument())

return F ALSE:;

m JbFlagl = m jbFlagR = mjbAllocFlcig = FALSE ;

m jiT o tP ts = m _nltl = m _nltR = m _nSngl = mjnSngR
injd N orm L - in _dN orinR ~ 0.0 ;

ln _dSthL - m _dSthR = [.0e-12;

return TRUE:;

/
iz

void C CalibratelD oc O nCloseD ocument()

{

Il Reiease objects, vectors ete

if(m _bAllocF lag)

{

delete m _plInitC alibl ;
delete m _plnitC alibR ;
delete m jp C alibD atal ;
delete m jo C alibD ataR
delete mjoC alibR eslL
delete mjo C alibR esR

in_pO perations->FreeD M atrix(mjppRL, I,

m _pO perations->FreeD M atrix(m _ppRR, I,

m _pO perations->FreeD M atrix(m _ppJ., I, 1);

mjp O perations-> FreeD M atrix(in_ppV., I. 1);:

mj)O perations->FreeD M atrix(injppC vnil,
m _pO perations->FreeD M atrix(m _ppCovmR

delete m _pO perations;

delete [] m _pnvZonel;
delete [] m _pnvZoneR
delete [] m _pO bjectSpace;
delete [] m _pFrameBuffer;
delete [] m _pFrameB ufferS:
delete [] m _pdvW

delete [] m _pdvF;

delete [] injpdvX

delete [] injpdvFrm Calce;

CDocument::0 nCloseD ocnment();

/
Y

// C CalibratelD oc serialization
void C C alibratelD oc: :Serialize(C A rchivedc ar)

m _pCalibD atal -> Serialize(ar);

m _pCalibD ataR -> Secrialize(ar);

Viiiiiiiiiinaaiiaaaniiaiza

// C C alibratelD oc¢ diagnostics



H ifd efJD EB UG

void C C cilibratelD oc::AssertValid () const

{

CDocument::AdssertValidQ ;

void CC cilibratelD oc::D ump(C D umpContextd& dec) comnst

CDocument::Dump(de);

4endif//_D EBU G

Il ccatibratelD oc comm ands

void CCalibrateID oc::0 nCalibrationS$tari()

Begin W aitCursor();

m jiSnglL T m nSngR = m _nltL = m _nltR - 0;
m _dNorm L = m dNorm R — 0.0;
m JbFlagl - m jbFlagR - FALSE;

BOOL bOSFlag = TRUE:;

int nChecklL, nCheckR:;

// Initial estim ates

m _pCalibD atal -> Seturtip(mjilnitC alibL->G ecturtip ());:

m _pCalibD atal -> Setom ega(m _plnitCaliblL->Getomegal());
m _pCalibD atal~> Setphi(m plinitCaliblL-> G etphi()):

m _pCalibD atal -> Sethkappa(mjpliniiCalibl->G ethkappa()):
m _pCalibD atal-> Setf(m _plnitCaliblL-> G etf());
mjp C alibD atal -> Settx(m _plnitCalibL->G etix() );:

m _j)C alibD atal -> Sectty(m _plnitCalibL->G ettyQ );

m _pCalibD atal-> Settz(m _plnitCaliblL-> G ettz() );:

m _pCalibD ataR -> Seturitip(m _plnitCalibR -> G eturtip () );

m _pCalibD ataR -> Setom ega(m _plnitCalibR -> G etom egaf() );
m _pCalibD ataR -> Setphi(m _plnitCalibR ~> G etphi());:

m _pCalibD ataR ~> Setkappa(m _plnitCalibR-> G ethappad());
m _}))C alibD ataR -> Setf(injplInitC alibR -> G etf() ):

m jp C alibD ataR -> Setix(m _plnitC alibR

> G oettx () )

mjp C alibD ataR -> Setiy(m _plnitCalibR -> G etty());

m _pCalibD ataR -> Settz(m _plnitCalibR -> G etiz() );:

ClearM atrices ();

UINTnRow, nCol;

for(nRow = 1; nRow < - UNKS; nRow+ + )
for(mnCol = I;nCol <= UNKS; nCol+ + )

m _ppCovm L[nRow][nCol] = m _ppCvniR[nRow][nCol]
for(nRow = 1; nRow < - ELMS; nRow+ + )
for(nCol= 1; nCol <T ELMS; nCol+ + )

m _ppRL[nRow J[nCol] — mjppRR[nRow ][nCol] — 0.0;

m/ T

/1l Cualibrate left camera:



mo_m L+ o+

/7 Evaluate rotation matrix

mj)C alibD atal -> C onstructR otationM atrix( *mjpC alibD atal, mjppRL );

/7 Calculate currentX -axispartial derivatives:
bO SFlag = m _pO bjeciSpace->Constructx( jpCalibD atal, m _pO bjeciSpace,

m jopJ. mjppRL., mjnTotPits, mjpnvZonelL );

if(!bO SFlag) { //bad news
AfxM essageBox(" D iverged from CO bjeciSpace -L " M BJC ONSTO P );
break;

/7 Calculate current Y-axispartial derivatives

m jjO bjeciSpace-> ConstructJy( *m _pCalibD atal, m _pO bjeciSpace, m _ppJ, m _ppRL., m _nToiPits);

m _pFrameBuffer-> CalcFrm BufferCoords( *m _pCalibD atal,

mjpdvFrm Cale,.m ppRL, m _pObjeciSpace, m jiT otP ls, m _pnvZonelL );

/7 Construcitfuncition F (to be minim ised):

m _pForameBuffer->ConstructF (m jpdvF, mjpdvFrmCale, mjpForameB uffer, m _nTotP ts);

/1 Singular Value D ecomposition & Backsubsititution

m _pO perations->SvdD cmop(mjppJ, m jiT otP ts *2, UNKS, m _pdvW , m ] opV);

double dW max = 0.0;
for( UINT nCntr =g nCntr <T UNKS; nContr+ + )

if(m jjdv W fnC onir] > dW moax) dW max = m jpdv W fnC onir];

double dW min = dW max m o _dSihL;
/7 D iscard offending equations
for(nCoantr = I; nCoantr < UNKS; nConitr+ + )

if(m _pdvW fnCoautr] < dW min ) {
mo_pdvW [nCoatr] = 0.0;

m o _nSngl+ +

*

m _pO perations->SvdBbksb(m _ppJ, m _pdvW , m _ppV., m nTolPis 2, UNKS., m _pdvF, m _pdvX);:
/1 Process monitor:

nCheeckl = m _pCalibD atal->CorrectAndTest( *m _pCalibD atal, m _pdvX . m _nlil );
if(nCheckl == DIVERGED ) //a cted funny

{

M essageBeep(D W ORD (-1));
A4 jxM essageBox( " Controlled divergence in left camera. \n\n Processfailed. 1",

M B JD K M BJCONSTOP );

/

while(nChecklL != DIVERGED & & nCheckl [ CONVERGED & & m jiltlL <= M AXITS);

// End o fNewton-Raphson loop

/7 O rthonormality flag
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m _bFlagl = m _pO bjectSpace-> VerifyO rthonormality( mjppRL );

m _pO perations-> Svdvar(mjppV, UNKS, m _pdvW , m _ppCvmlL);

iffm _nltL = M A4 XITS + 1)

A4 fxM essageBox( " W ARNING : Left cameraprocess stopped artificially \t", M B JC O N
if( m _nSngl > 0) {

m o jiSngl /- m _nltl;

C String sLs;

SLs.Format( "% dsingular value(s) detected... (L)", m _nSngl );

A ficM essageBox(sLs, M BJCONSTO P );

/7 Cualculate norm o fresidual vector
for( UINT nind = I1; nind <= UNKS; nind+ + )

m _dNormL T= D SO R (mijpdvX [niInd]);

m JN orm L = sqri(mjdNorm L );
m _sNorm L .Format( "% .3e", m jdN orm L);
m _sSnglL.Format( "% d" m _nSngl);

m _pCalibResL->Seturtip(m _pCedibD atal~>G eturtip());:

m _pCalibResL~>Setomega(m _pCalibD atal->G etom egaf()):
m _pCalibResL-> Setphi(m _pCalibD atal->G eiphi());

mjp CalibResL-> Setkappa(m _pCalibD atal~>G ethkappa() );
m _pCalibResL-> Self(m _pCalibD atal-> G etf() );:

m _pCalibResL -> Settx(m _pCalibD atal -> G ettx() );

m _pCalibResL -> Setty(m _pCalibD atal-> G etty() ),

m _pCalibResL->Settz(mjpCalibD atal ~> G ettz() ):

i e sz

/1l Calibrate right camera
for( UINT nPit = 1; nPt <= m auTotPis; nPt+ + )
in_pForam eBufferS{nP i].Swap/( in_pForameBuffer[nP t].G etxr(),

in_pForameBuffer[nP t].G etyr(),
00, 0.0, [laontcare

m _pForameBuffer[nP t].Geip()):

ClearM atrices ();

mo_nItR + +

/7 Evaluate rotation m atrix:

1l _pcalibbD ataR -> C onsiructR otationM aitrix( *m jiC alibD ataR, m _ppRR);

/1 Calculate currentX -axispartial derivatives:
bO SFlag ~ m _pO bjeciSpace->ConstructJx( *m _pCalibD ataR, m _pO bjectSpace,

m _ppJ. m _ppRR., m jiT otP ts, in_pnvZoneR);:

iff!b 0 SF lag) {
AfxM essageBox(" D ivergedfrom C O bjectSpace -R "~ M BJC ONSTO P );:

break:;

sTO P

)
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/1 Calculate current Y-axispartialderivatives:

m _pO bjectSpace->ConstructJy( *mjpC alibD ataR, mjpO bjectSpace, m _ppJ, m _ppRR, m _nTotPis);

m _pFrameBufferS->CalcFrmBufferCoords( *m _pCalibD ataR,

m jpdvForm Calc, injypR R, mjpO bjectSpace, m jiT otP s, mjm vZoneR );

/1 Construcitfunction F (to be minim ised)

m j)F ram e¢B ujferS->ConstructF (mjrdvF ., mjpdvFrm Calc, m jyFrameB ufferS, m jiT o (P ts );

/7 Singular Value D ecom position & Backsubstitution:
mj)O perations-> SvdD cm p(m _ppJd. m jiTotP ts ¥2, UNKS, mj>dvW , m _ppV);
double dW max = 0.0;
for( UINT nCuntr — 1; nCntr <= UNKS; n.Cntr+ +)

if(m jjdv W [nC ntr] > dW max) dW max = mjpdv W [nC nitr];

_ *

double dW min = dW m ax m jd S th R
/7 Discard offending equations:
for(mnCntr - 1; nCntr <T UNKS; nCuntr+ + )

if(m jydv W [nC onitr] < dW min ) {
mjjdv W [nC nitr] = 0.0;

mo_nSngR+ +

m jjO perations-> SvdBksb(mjppJ., mjydvW . m _ppV. m jiT otPts *2, UNKS, mjpdvF, m jydvX);:

/1 Process monitor

nCheckR = mjpCalibD ataR ->C orrectdndTest( *mjoCalibD ataR, mjpdvX, m nltR );

if(nCheckR

{

DIVERGED ) //aciedfunny

M essageBeep (D W ORD (-1));
AfxM essageBox( " Controlled divergence in right camera. \nin Processfailed. 1",

M B _ 0 K M B JCONSTO P );
while(nCheckR != DIVERGED & & nCheckR [= CONVERGED & & m _nltR <= M 4 XITS);

//End o fNewton-Raphson loop

/1 O rthonormality flag
m JF lagR = m _pObjectSpace-> VerifyO rlhonormality(mjypRR );
m _pO perations-> Svdvar(m _ppV, UNKS, m jidvW . m jppCvmR):

if(m _nltR M AXITS + 1)

AfxM essageBox (" W ARNING : Rightcameraprocess stopped artificially...\t", M BJC O NSTO P );
if( m jiSagR > 0) {
m _nSngR /= m nltR

C String sRs;
SRs.Format( "% dsingular value(s) detected...(R)", m jiSngQR );

4 jxM essageBox(sRs, M BJC ONSTO P );
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/1 Residual vector's norm
for(mind - 1: nind <= UNKS; nind+ + )

m _dNorm R *T= D SO R(m _pdvX[nind]);

m _dNorm R = sqri(mjdN orm R );

m jsNorm R.Format( "% .3¢" m _dNormR );

m _sSngR.Formait( "%d", m jnSngQR):;

m _pCalibResR-> Seturtip(m _pCalibD ataR -> G eturtip() )

m _pCalibResR->Setomega(m _pCalibD ataR ->G etom egaf());
mjp CalibResR-> Setphi(m _pCalibD ataR ->G etphi() );:

m _pCalibResR->Sethkappa(m _pCalibD ataR -> G ethappal () );
m _pCalibResR->Setf(m _pCalibD ataR -> G etf() )

m _pCalibResR~>Secttx(m _pCalibD ataR -> G ettxQ );

m _pCalibResR->Setiy(m _pCalibD ataR->G etiy() );

m jiC alibR esR -> Seitz(m _pCalibD ataR->G ettz() );

EndW aitCursorQ ;

intnCom = IDNO

if(n C hecklL CONVERGED & & nCheckR == CONVERGED & & !'m _nSngl & & !m _nSngR)

nCom = ApcM essageBox( " Process finished.\nin W ouldyou like to view the calibration results?

M B _YESNO JM BJCONEXCLAM A4 TION);

else

nCom — AfxM essageB ox(

C alibrate detected problem s in the calibration procedure. \nin W ouldyou like to view the

calibration resulis anyway?

M B _YESNO M B ICONOQUESTION);
iffn C om == ID YES ) {
CFrameW nd*pFrameW nd = STATIC _DOWNCAST(CFrameW nd, AfxGeiM ainW ndQ );
C Calibratel View* p View = (C Calibratel View *)pFrameW nd->G etdctiveF rame()-

> G oetdctive ViewQ

p View-> D isplayP ropSheet();

BO OL CCalibratelD oc::ClearM atrices()
UINT nRow, nCol;
for(nRow = I; nRow <~ m jiT otPits * 2; nRow+ +) ‘
m _pdvF [nRow] = m _pdvFrm Calc[nRow ] — 0.0,
for(nC ol = 1;nCol <= UNKS; nCol+ + )

m _ppJ[nRow ][nCol] = 0.0;

for(mRow — I; nRow < — UNKS; nRow+ + )
for(mnCol = I; nCol <T UNKS; nCol+ +)
m _ppV [ [nRow ][[nCol] = 0.0:
for(nRow = I;nRow <= UNKS; nRow+ + )

m _pdvX[nRow] =m _pdvW [nRow] = 0.0;



return TRUE:;

void C C alibratelD oc::0 nUpdateC alibrationStart(C Cmd.UI*pCmdU/I)

{

pCm dU I- SetC heck(F ALSE );

pCmdUI-> Enable/ (BO OL)m _nTotPts);

void C CalibratelD oc::0 nC alibrationO pen()

// Begin the begin

m jplnitCalibL = new CCalibrationD ata/( 002, // U rtip

0.0, /S omega

0.0, // kappa
0.050, ///

0.015, /ot

0.05 /ity

mjplinilC alibR = new C CalibrationD ata( 002, /U rtip

0.0, 1o esa
0.0, Srpon
0.0, //kappa
coso 1
co.0rs, ]

0.05, /7ty

]0), /2

m _pCalibD atal = new C CalibrationD ata;
m jo C alibD ataR = new C CalibrationD ata;
m _pCalibReslL = new CCalibrationD ata;
m _pCalibResR = new C CalibrationD ata;:

*

double ™ m _pdvD ata nmew double[ M AXP O INTS * 9 + 9 ];

m _nCP — 0;
m nC P — mjC alibD alal -> LoadCorrD ata/mjpdvD ata);
m o _nTotPits =m _nCP;

ClnputD atabD ialog InD lg;

UINT nZlL, nZR:;:

InD lg.m _nZlL = 1InDlg.m _nZR = 36; //zomne #2 after this

if(InD Ig.D oM odalQ

Il
Il
©
o
=

nZL = InD Ig.m jT ZL

nZR = InDlg.m _nZR
else return;

m _pnvZonelL ~ nmew UINT [ m nTotPis + 1];

m _pnvZoneR = new UINT[m nTotPits + 1];
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/1 Zone conditions

for( UINT nPt - 1;nPt <= m aTotPis; nPi++ ) {
m _pnvZonelL [nP (] mjynvZoneR [nP (] = I; //d e fault
if(tnPt >= nzlL ) m _pnvZomnelL [nP (] T 2;
if(n Pt > = nZR ) m _pnvZoneR [nP (] = 2;

J

iz

//4 1locate objects on the heap:

mjp O bjecitSpace = new CO bjectSpace[ m jiT otP s +
m jiF ram eB uffer —new CFrameB uffer[ m nTortPits T
m jtF ram eB ufferS = new CFrameBuffeifm jiT otP t5s +
mj/O perations = nmew CO perations;

3

j> pRL -m _pO perations->D M atrix( 1, ELM S, I, EL

mijjp R R = m jiOperations->D M atrix( 1, ELM S, I, EL
mjppCvm L - mj)O perations->D M atrix( 1, UNKS, I,
m jppCvm R = m jpOperations->D M atrix( 1, UNKS, I,
. = . . *
mojip .J m jp O perations->D M atrix( I, m jiT o (P ts 2,
= . *

m jydvFrm Cale new double[ m jiT o (P ts 2+ 1]
mjid vX ~ new double[ UNKS + 1];
mjpdyv W = wew double[ UNKS T 1

- . . * .
mjjdvF = new double[ m jiT o (P ts 2+ 1
m jppV — m _pO perations->D M atrix( 1, UNKS, I, UN

m jbAllocFlag = TRUE;//allocation flag

for( UINT nRow = I; nRow <= ELMS; nRow+ + )

for( UINT nCol = I; nCol <= ELMS; nCol+ + )

M S )

M s )

UNKS);

UNKS);

1. UNKS);

K s);

injpp R L [nRow][nCol] = mjjpRRfnRow ][nCol] -

if(m jic P )

{

U INT ndddEIm = 0, nPi;

for(n Pt ~ I; nPt <= m jiT otP ts;: nPit+ + )
m _pO bjectSpace[nP 1].SetO bjC oords(
mj)dvD ata[ + +ndddEIm j,

mjidvD ata[ + +ndddEIm

mj)dvD ata[ + +ndddEIm |,

UINT (mjydvD ataf+ +ndddEIm ] ) )

nAdddEIm ~ 0;// Reset counter

for(mpP t = I; nP 1t <

mojiT o (P is; nPi+ + )

m _pForameBujfer{nP i].SetFrm Coords(
m _pdvD ata[ + +nAdddEIm T m
m j)dvD ata[ + +ndddEIm + m
m jpdvD ata[ + +ndddEIm T+ m

m jpdvD ataf[ + +ndddEIm + m

JiT o tP

JjiT o (P

JiT o tP

jiT o tP

UINT(m _pdvD ata[ + + ndddEIm + m

for(npPt = /; nPt <= m jiT otP ts; nPit+ + )

mj)O bjectSpace[nP t].ShiftY (YSHIFT); i

transla

L0

te

T o (P 15

origin

1'30m

m

IV-18



delete [] m _pdvD ata;

CSiring M essage - "The Control Correspondence was successfully loaded
M essage = "in\nThe calibration procedure may now be invoked

A4 ficM essageBox(M essage, M BJC ONINFORM 4 TION );

void C C alibratelD oc::0 nilntersectionS§tart()

m _plnter = new Clntersection:
ClintersectCorr InterD ialog;
if( InterD ialog.D oM odalQ == 1D 0 K)
m _plnter-> SetFrm ( InterD ialog.m _dlnterX L,
InterD ialog.m _dinterY L,
InterD ialog.m dinterX R

InterD ialog.m jdinterY R );

/1

Il Estimate the unknown point's radius, angle and zone conditions:

//lo cal bits andpieces (radius estim ate)

double sxL, sxR, xi, dM inR ad;

sxL = 30 .0/ (P11 *m _pCalibResL->G eturtip());
SxR - 30.0/ (P11 *m _pCalibResR->G eturtip () );:
xi = m _j>1Inter-> G etFrm ().xfL / sxL - m _plnter->G e¢tFrm ().x/R / sxR;

if(fabs(m _pCalibResL->G ettx()) > fabs(m _pCalibResR-> G etix() ) )

dM inRad Tfabs(m _pCalibResL-> G ettx () ),
else
dM inRad = fabs(m _pCalibResR-> G etix());
for(m _dAppRadius —dM inRad; m _dAppRadius < M AXRADIUS + le-3; m _ddAdppRadius T le -6 )

{

if(fabs(fabs(xi-fabs(mjpCalibResL->G etphi()) -
m _pCalibResR ->Getphi()) -
asin(fabs(m _pCalibResL->G ettx() ) / m _dAppRadius) -
asin(fabs(m pCalibResR->Getix()) / m _dAdppRadius) ) < le-5)

breatk:;

iftm _dAppRadins > M 4 XRADIUS) //Struggling - relax criterion

{

far(doublerdn—deuRnd:rdn<MAXRADIUS+I:’

{

rdan = 1e -6

if(fabs(fabs(xi-fabs(m pCalibResL->G eiphi()) -
m _pCalibResR->Getphi()) -
asin(fabs(m jpCalibResL -> G etixQ ) /rdn) -

asin(fabs(m _pCalibResR->G ettx() ) /rdn)) < le-4)

break;
m _dAppRadius = rdan
Afx M essageBox( " Radius convergence criterion has been relaxed. ". M B _IC O NSTO P )
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iffm _dAppRadins > M AXRADIUS) ¢
A fxM essageBox( " Could not determine radius - inputdata are unreliable. \nin A borting process.

M B JCONSTO P );

return;
cND zomne; //zone conditions
0 BJSPACE apx0S; //to hold approximate solution

// local bits andpieces (zone condition estim ates)

double wRefL, wRefR, wRef, wZonelL, wZoneR:

wRefL = (m _pCalibResL->G etphi() T m jpCalibResR-> G etphi()) / 2.0 -
fa b s((m _pCalibResL->Getphi() =m _pCalibResR-> G etphi())/2 .0 ) +

m o _plnter-> G etFrm ().xfL / sxL T asin(m pCalibResL~> G etix() / m _dAppRadius);

wRefR = (m _pCalibResL->G eiphi() + m _pCalibResR->G eiphi()) / 2.0 +
fabs((m _pCalibResL-> G etphi() -m _pCalibResR->Getphi()) / 2.0) T

m _plnter~> G e¢tFrm (), xR / sxR + asin(m _pCalibResR->Getix() / m _dAppRadius);

wRef- 0.5 * (wRefL + wRefR);

wZonel — wRef-mjpCalibResL~>G etphi();

wZoneR = wRef-m _pCalibResR->G etphi();

apx0 S.Xos = m _dAdppRadius * sin(wRef); // Cartesian solution rotated

apx0S.Zos =m _dAdppRadius Xcos(w Ref); //by 90 degrees

// local bits andpieces (Y coordinate estim ate)

double yD enl, yCarnl, yW IdL, yD enR, yCamR, yW IdR

yD enl - m _pCalibResl->Gettz() -sqri(SQR(m _dAppRadius) -SQ R (m _pCalibResL->G etix() ) );
yCam L - yD enl *(APT/mipCalthResL—>Gel/()) * (m _plnter-> G etFrm ().yfL - IM G C );

YW ldL - (yCamL F* m pCalibResL->G etty() -

* * , ]
m o _ppRL[2][1] apx0S.Xos - m _ppRL[2][3] apxO0 S.Zos) / mjppRL[2][2];

yD enR - mjpCalibResR-> G ettz() - sqri(SQ R (m _dAppRadius) -SQ R (m _pCalibResR->G etix() ) ):
yCam R = yD enR *(APT/ m _pCalibResR-> G etf()) * (m _plnter->G etFrm ().yfR =IM G C );

yW IdR = (yCam R T m _pCalibResR->G etty() -

m _ppRR[2][1] * apxO0S.Xos -m _ppRR[2][3] *apx0S.Zos) / mjopRR[2][2];

apx0 5. Yos = 0.5 (yW 1dL + yW IdR );

iffwZomnelL > 0 & & w ZonelL < P 1) zone.znl —7,

else zone.zn L = 2;

iffwZoner > 2 ¥*poqy {

A /xM essageBoxf"Point exceeds stereo F O V. (+ve)\nind borting process "M BJCONSTO P );

return ;

iffwZoneR < P 1) zone.znR = I, else zone.znR = 2;



ClnterDiagnostics DiagnDialog;

D iagnD ialog.m _dLAngle T RadToD eg(wRefL );
DiagnD ialog.m _dRAngle = RadToD eg(wRefR );
DiagnD ialog.m dLAngleZn - RadToD eg(wZonelL);
DiagnD ialog.m dR AngleZn - RadToD eg(wZoneR );
= *
D iagnD ialog.m _dRadius le 3 m _dAppRadius;
DiagnD ialog.m _dX = le3 *apx0 S.Xos;
. = *
D iagnD ialog.m _d7Y le 3 ( YSHIFT - apx0S.Yos );
*
D iagnD ialog.m _dZ — le3 apx0 S.Zos;
DiagnD ialog.m _nlZone - zomne.znl
DiagnD ialog.m nR Zone — zone.znR

DiagnD ialog.D oM odalQ ;

I

zomne.

/M ANUAL O VERRIDE OF ZONE CONDITIONS (DEBUG)

zone.zn R - I

1l

0 BJSPACE improOS — apxOS;: //preserve approximate solution
/7 Attem pt non-linear im provem ent o fapproximate solution
int bIFlag — m _plnter->1Improveli( *mjp CalibResL, *m _pCalibResR,

m _ppRL. mjppRR,

& impros.,

& zone );
if( b1Flag != D IV ERG ED )
/7 a sim ple test
double dTstRadius - sqri(SQ R (impr0OS.Xos) + SOR (imprOS.Zos) );
iff ( (dTstRadius/ m _dAdppRadius)> 1.1 |l (dTstRadius/ m _dAdppRadius)< 0.9)) I
AficM essageBoxf " Singular Value D ecom position fails =inputdata may be unreliable. ",
M B JC O NSTO P );
mJin O S - apxOS;
eclse m JinO S = impros; //all is 0K

else
AficM essageBoxf " SV D diverged "M BJCONSTO P );

m Jin O S T apx0 S;

m jucr-m _plnter-> U ncertainty( *mjpC alibResL, *mjpC alibR esR
injppRL., m _ppRR
& m Jin O S,

& zone );
m JinO S. Yos = YSHIFT -mJinOS.Yos

CFrameW nd* pFrameW nd = ST A TIC DO WNCAST(CFrameWnd, AjxG etM ainW ndf));

C Calibratel View* pView = (CCalibratel View *)pFrameW nd->G etdctiveFrame()-> G etdctive Viewf);

p View-> IntersectionSolutionf);

delete mjpinter;
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void CCalibratelD oc OnUpdatelntersectionStartfC CmdUI* pCmdUI)

{

pCm dU I-> SetC heck(F ALSE );

pCmdUI-> Enablef (B O OL)m _nlth );

File: C alibration.cpp

#include "calibration. h"

void C C alibrationD ata:

{

Serialize( C Archivedc archive )

C O bjecti:Serialize(archive);

iffarchive. IsStoringf) )

archive « m ojuortip;
archive « m _omega;
archive « mo_phi;
archive « m jtappa
archive « m o_f
archive « mojx
archive « mojy
archive « mo_ itz

/

else

{
archive » mja rtip
archive » m jpm ega
archive » mo_phi;
archive » m _kappa
archive » m o
archive » mojx
archive » mo_ 1y
archive » mo_ iz

/

IM PLEM ENT_SERIAL(CCalibrationD ata, C O bject, 0);
/1 Construct the rotation m atrix
void C CalibrationD ata::C onstructRotationM atrix(C CalibrationD ata& cd, dowuble**ppR)

PP RIII[I] — cosfed.m _phi) ¥cosfed.m jiappa);

PRIII[2] - sinfecd.m _omega) Fsinfed.m phi) *cosfecd.m _kappa) T

=

cosfed.m jomega) *sinfed.m _k.appa);
_ N * +
ppPR[IJ[3] = -cosfecd.m _omega) sinfed.m _phi) cosfcd.m jtappa )

sinfed.m _omega) ¥sinfed.m jtappal);

PP R[2][1] = -cosfed.m phi) Xsinfecd.m kappa):
= S * Lok
ppR[2][2] “sinfed.m omega) sinfed.om _phi) sinfed.m jtappa ) +
cosfed.m _omega) *cosfed.m jtappa);
= . * * +
ppPR[2][3] cosfed.mjom egal) sinfed.m _phi) sinfed.m jiappa)
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sinfcd.m _omega) Fecos(cd.m _kappa);

pp R [31[1] = sinfed.m _phi);
= *
ppPR[3][2] Ssin(ed.m _om ega) cos(ed.m _phi);
_ *
ppPRI[3][3] = cos(ecd.m _om ega) cos(ed.m _phi);
/7 Correct initial approxim ations and checkfor convergence / divergence

ini C CalibrationD ata CorrectdndTest(CCalibrationD atad& cd,

*

double ¥pdvx, // corrections’vector

UINT iter)

static double dC onvLimit;

if(iter == 1) dConvLimit = CONVLIMIT; //Initialise convjim it
/7 G radually relax initial convergence criterion:

. . o . s L k=

if( (iter % 5 == 1) & & (diter > 15) ) dConvLimit 3.3

/7 A dd corrections

cd.m juriip += pdvX [I];

cd.m omega t= pavx[2];

cd.m __phi Ft= pavxyrig;

cd.mjeappa += pdvX[4];
cd.m _ f t = pdvX[5];
cd.m jx += pavxr6g:
cd.m jy += pavxr77:
cd.om 1z v - pdvX[8];
’7 Check for convergence:
double rsjsum - 0.0;
rsjsum = sqri( D SO R( pdvXfl]/ cd.om itrtip )+

DSQR(pdvX [2]/ cd.m omega) +

D SQR(pdvX [3]/ cd.m _phi ) +

D SQR(pdvX [4]/ cd.mjcappa) +

D SQR(pdvXfs | /cd.mJ )+
D SQR(pdvX [6]/ cd.m jx ) o+
D SQR( pdvX [7]/ cd.m _ty> )+
D SQR(pdvX [8]/ cd.m Jz )
if(rsisum < dConvLimit) return CONVERGED
2 Check for divergence:

forcuinT e =[]3¢<=vuvnks, Ct++;
if(pdvX fe] > DIV LIMIT) {
AfxM essageBox( "Normaldivergence detected. ", M BJC ONSTO P );

return D IV ERGED

return C O NTINUE; // N either converged nor diverged - continue;

UINT € CalibrationD ata::LoadCorrD ata(double* pdD ata)

{

C File theFile;



static char B ASED C O D E szFilterf] — "Control C orrespondence Files (*.dat)\*.dat\d Il Files

C FileD ialog dlg( TRUE, "dat", "*dat", OFN _FILEM USTEXIST |\OFN _HIDEREMAD ONILY, szF ilter);

if(dlg.D oM odal() = = ID O K )
theFile.Open(dlg.G etPathNameQ , CFile::modeRead);
else

return 0;

Begin W aitCursorQ ;

char* psBanf=- new char[ M AXPOINTS 9 + 107;

char* psFin = new char[M 4A4XPOINTS ¥o + 100
Al N

pSBuf[0] - psFinf0] = 10,

LONG ICount = 0L;

B O OL bEnd = FALSE

U INT i = 0,1 = 1;

wohile(IbEnd)

do //dload number to buffer
do Il ignore irrelevant characters ( CR., LF, etc.)

theF ile.Seek(lICount+ + , CFiler.begin);
theF ile Read (& psBufl[i+t + J, I );

/

wohile((psBuffi-1] < 44) W (psBuffi-1] > 57 ));

// ifithe character is num eric copy it
iff(psBufli-1]> = 46) & & (psBuflfi-1] <= 57))
Istrepy(psFin, psB uf);

/

w hile( psBufl[i-1]

/= C O MM 4 & & (D W O RD )ICount < theF ile.G etLength ());

//stop here or crash and burn:

iff (D W O RD )IC ount = = theFile.GetLengthQ ) b End = TRUE;
llol.

psBufli] = psFin[i] = S//nmuw Il term inate

pdD ata[l] = atoffpsF in); /leonvertasciito double

for(U INT k=10, k<=1i; k++) psBuffk] = pstinsk] - '10%

i= 0 // resetpointer

. //mext number

theFile. CloseQ

delete [] psB uf;

delete [] psFin;

EndW aitCursorg

return (U INT)pdD ata[l-5J; //return number o fcontrolpoints



File: Objectspace.cpp

#include "O bjectSpace.h”

//Adds X -axis

BO OL CObjectSpace::Constructlx(

dowuble

U IN T

pdAdipha

Jacobian elem entsfrom thepartial

*pdX

pdBeia —

pdG amm

pdD elta

pdEpsilo

n

for ( UINT nC o

{

pnV [nControl]

C Calibrat

derivatives

ionD ata &

cd,

CObjeciSpace ¥po s,

double**pplJ,

* %

double ppR

S}

IN T pits,

UINT* pnvZone)

¢, *pdZec, *pdAdlpha, *pdBeta,

new double[pits+ Ij;

new doublefpis+ 1j;

new double[pits+ 1j:

new double[pts+ Ij;

ew double[pits+ Ij;

new double[pits+ 1j;

new double[pis+ 1j;

new double[pits+ Ij;

new U INT [pits+ Ij;

ntrol = 1; nControl < =pis;

*pdG am

nC ontrol+

—pO s[nControl].m JPt *Tpo sinc

m oa,

ontrol-1] .m

+
+

+

+

I e
1] ine

C

O bjeciSpace

alibration object

//the Jacobian m atrix

/1 cne

otation m aitrix

conditions

*pdD elta, *pdEpsilon,

_ P

SQ R (pdZc[nControl]) J;

*pdRd[nC ontrol]);

//pnV [nControl] points to odd-numbered rows
pdXc[nControl] - ppR[I]J[I] *pO s[nControl].GeixQ
PP R[I][2] *pO s[nConitrol].Gely()
* . .
ppR[IJ[3] FpoOsinControl].Getz0Q
pdZc[nControl] = ppR[3][1] *pO s{nControl].G etx0Q
ppPR[3][2] *pO s[nControl].G elyQ
* . .
ppRI3T[3] FpoO s[nConirol].GetzQ ;
pdRd[nControl] — sqri(SQ R (pdXc[nControl]) +
pdAdlphalnControl] - 30 .0 /(P11 *cd.GeturtipQ
pdBeta[nControl] = 1.0/ sqri( 1.0 -S0R(pdZc/[nC

if(pnvZone[nConirol]

ife

S0 R

delet

delet

delet

delet

delet

delet

delet

delet

delet

A Jx M

(cd.GettxQ ') /

e []pdXc:
e []pdZc;
e [Jpddlipha;

¢ []pdB eta;

-2 pdBetal[nControl] *

SO R (pdRd[nC

e [JpdG amma;

e []pdD elta;

¢ [JpdEpsilon:

e []pdRd;
e [TpnV

essageBox( "

Fatal Error inO B JSP C

omnitrol] ) >

Sinoin

-1

ontrol])

0

/' SQ R (pdRd[nC

Aborting Calibration.

object

[l number o fecontrolpoints

I1'zone

*pdRd;

ontrol] ) );

"M B _JC O N

sSTO P )
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return F ALSE

pdG ammalnControl] — c¢d.G etix() / sqrif1.0 -SQR(cd.GetixQ ) / SQR(pdRd[nC ontroll) ):

pdD elta[nControl] = (pdG ammafnControl] T pdBetafnControl] *pdzZe[nControl]) / S0 R (

pdRd[nC ontrol] );

pdEpsilon [nControl] = cos(ecd.GetphiQ ) *pO s[nControl], Getxo T
sin(cd.GetomegaQ ) *sin(cdG etphiQ ) ¥po sfnControl], GetyQ -

cos(cd.GetomegaQ ) *sin(cdG eiphiQ ) ¥po s[nControl].Getz0Q ;

2 wort urtip:
if(pnvZone[nC ontrol] = ~ 1) {
ppilpnV (nControl] J[1] ~ -~30.0/(P1 *SO0R((cd.Geturtip0 ) ) ¥

P 1/2.0 - asin(cd.GetixQ /pdRd[nC ontrol]) -

asin(pdZe[nControl] /pdRd[nC ontrol]) );

else
ppilpnV [nControl] J[1] - -30.0/ (P11 *SQR(cd.GeturtipQ ) ) * (
* +
3 P I/2 .0 =asin(cd.GettxQ /pdRd[nC ontrol])
asin(pdZc[nControl] /pdRd[nControl] ) );:
/1 wortomega:
ppilpnV [nControl] J[2] =pddiphalnControl] * (-pdBeta[nControl] ¥

(-ppRI3)[3] ¥posinControl]. Getyo + ppR[3][2] ¥posfnControl].Geizo ) +
pdD eltafnControl] ¥y
pdX c[nControl] ¥ (. ppR[IJ[3] *pO s[nControl].Getyo FppR[I][2] *

pO s[nControl].Getzo ) +

pdZc[nControl] ¥ (- ppR[3][3] *pO s[nControl].Geive F*pprysjrz; *
PO s[nControl].Getz0Q ) ) )
77/ wortphi:
i . = ¥ *
ppilpnV [nControl]’]J[3] pdAlphalnControl] (pdD elta[nC ontrol] *pdZec[nC ontrol] (
pdEpsilon[nControl] -pdXc[nControl] ¥cos(cd.GethappaQ ) ) -
* . .
pdBetal[nControl] “pdEpsilon[nControl]);
/7 wort kappa
ppilpnV [nControl] ] [4] =pdda lpha[nControl] *pdD eltafnC ontrol] *
pdX c[nControl] *(ppR[2]71] ¥po s[nConirol]. Getxo *+
* . . . + * . .
pPR[2][2] TpO s[nControl].G etyQ ppPR[2][3] “pO s[nControl].GetzQ );
/7 wortotx
ppJlpnV [nControl] J[6] = -pdAlphal[nControl] *pdGamma[nControl] / ¢d.G etixQ

delete [Jpddlpha;
delete [] pdB eta;
delete [] pdG am m a;
delete [] pdD elta;
delete [JpdEpsilon;

delete [] pdRd:;
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//4 dds Y-axis Jacobian elem entsfrom thepartial derivatives
void CO bjeciSpace:.Constructly(C CalibrationD atad& cd,
CObjectSpace *poO s,
double** ppJ,
double** ppR.,

UINTpis)

double *pdXec, *pdYe, *pdZc, *pdRd, *pdAlpha, *pdBeta, *pdGamma;

U INT *pn Vb

pdXx e = new double[pits+ 1j;
pdYe = new double[pis+ 1j;
pdzZe - new double[pis+ Ij;
pdAlpha- new doublefpis+ Ij;
pdBeta = new double[pis+ )
pdG amma — new double[pits+ [j;
pdR d = nev> double[pits+ Ij;
pnVb = new U INT [pits+ 1j;

for (UINT nControl

I: mControl <= pis; nControl+ + )

pnV b [nControl] =p0 sinControl).m Pt + p0O sinControl-1j.m Jp it + [}

pdXc[nControl] = ppR[I]J[I] *pO s[nControl].G etxQ +
ppPR[I]J[2] *pO s[nControl].G etyo +
PP R [II3] ¥p 0o s[nControl]. Getzo

pdYe[nControl] — ppR[2][1] *pO s[nControl].GetxQ +
pPPR[2][2] *pO s[nConirol].Gectyo T

PPR[2][3] *pO s(nControl].GeizQ - cd.G etiyQ

pdZec[nControl] = ppR[3][I] *pO s[nControl].Getxo T
pPR[3][2] *pO s[nControl].G ety Q +

PP RI3I[3] ¥po sinConirol].Geiz0Q

pdRd[nControl] - sqri(SQ R (pdXc[nControl]) + SQ R (pdZc[nControl]) );
pdAlphal[nControl] = sqri(SQ R (pdRd[nC ontrol]) -SQ R (cd.G ettxQ ) );
pdBetal[nControl] = (cd.GetfQ / AP T ) * (1 .0/ (cd.GetizQ -pdAlphal[nConirol] ) );
pdG ammal[nControl] = pd¥Ye[nControl] / (pdAdlphal[nControl] ¥ (c¢d.GetizQ -pdAipha[nControl’])
/7 wort omega:

pp./[anb[nCanlrul]][Z]:deela[uCanlroI] *

(=PpR[2][3] *pO s[nControl].Gety0 T ppR[2][2] *p 0O s[nConirol].Getz0 ) +
*
pdG ammalnConitrol] (

det‘[eronlraI]*/-ppR[I][j'] *pO s[nControl] .G ety Q +ppR[I][Z]*

pO s[nControl], Getzg ) +

pdZc[nControl] * (-ppR[3][3] *pO s[nControl].G etyQ +ppR[3][2]

PO s[nControl] ,GetzQ ) ) )y

/7 wortphi

PP lpnV b[nControl] ] [3] = pdBetal[nControl] *pdZecf[nControl] *¢
sin(cd.GethkappaQ ) + pdG ammaflnControl] ¥

pdXc[nControl] ¥cos(cd. G ethappao ) + (
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cosfed.Getphif)) F¥po s[nControl].Geix0o +

sinfedGetomegaf)) Xsinfed.Getphif)) *pO s[nControl].GetyQ -

cosfecd.Getom egaQ ) *sxn/cdvGetphx/}) *pO:[n(‘onlro/]Gele})):

/7 wort kappa

pp il pnV b nControl] J[4] =pdBetafnControl] *pdXc[nControl] ¥

1.0 4+ pdGammafnConitrol] Xrpdve[nControl] + cd. G etlyQ ) );

/1 worif:

ppJL[pn Vb [nControl] J[5] =pdBeia[nControl] *pdYc[nConirol] / cd.G etfQ
/1 wortotx

ppilpnVb[nControl] J[6] = -pdBeta[nControl] *pdG ammafnControl] *cd.GetixQ ;
Y wort oty

ppilpnVb[nControl] J[7] - -pdBetafnC ontrol];:
/7 wort otz

ppJLpnV b [nConirol] J[8] - -pdBetafnC ontrol] ¥pd¥el[nConirol] / (cd.GetizQ =

pdAd IphafnControl] ):
/
delete []pdXc:
delete [] pdYec;
delete []pdZc;
delete []pddalphas:
delete [] pdB eta;
delete [JpdG amm a;
delete [] pdRd:

delete [JpnV b;

Il verify orthonormality o frotation matrices

B O OL CO bjectSpace:"VerifyO rthonorm alityfdouwuble**ppR )

{

double dinter[4] - (0,0, 0, 0 );

fo rf UINT i = 1; i< 4; i+t + )

fo rf UINT ] = 1;j < 4:]+ + )

dinterfi] Y= SO RfppR[i][j]):
dowuble dVer = 0.0;

forf UINTn - I:n < 4: n+ + ) dVer + = (sqrifdinteifn]) ):

Il voundorss/ truncation errors

ifffd v oer < 3.0+ de-15) &E& (aver > 3.0 te-15))
return TRUE,;

else

return F ALSE:;

File: Framebuffer.cpp

include "FrameBuffer.h"

4include "O bjectSpace.h?”



Il catcutatesframe buffer coordinates

void CF ram

c
UINT nPoints,
UINT* pnvZone)
double *pdXec, *pdYc, *pdZc, *pdRec;
UINT *pnVa, *pnaVb;
pdXec — new double[nP oints+ I];
pdYe new double[nP oints+ 1]
pdZc = new double[nP oints+ I];
pdRc = new double[nP oints+ 1j;
pnVa — new UINT/[nPoints+ I];
pnVb = new UINT[nPoints+ [];
double sx — 30.0 / (P11 *cd.Geturtip() )"
for (UINT nControl = I; nControl <= nPoints; nControl+ + )
pnValnConirol] = (UINTjpO s[nConirol].Getp() F (UINT)pOs[nConirol-1].G etp();
pn Vb [nControl] —pnVal[nControl] + I
pdX c[nConirol] = ppR [I]J[I] *pO s[nConirol].Getx() T
ppR[I]J[2] *pO s[nControl].Getyo +
ppPR[I][3] *pO s[nControl].G etzQ
pdYclnControl] = ppR[2][1] ¥po sinControl].Getxo +
PPR[2][2] *pO s[nControl].G etyo T
ppPR[2][3] *pO s[nControl].GetzQ - cd.G ettyQ
pdZe[nControl] — ppR[3][1] *pO s[nControl].Geixo T

pdRc[nControl] ~ sqri(SQO R (pdXc(nConirol]) ¥ SO R (pdZec[nControl]) ):

¢ B uffer:

SCalcForm BufferCoords(C

C alibrationD ata & cd,

double *pdvCalc,

double** ppR.

ppPR[3][2] *pO s

PPRII]IZ] *poO s

if(pnvZone[nControl] == 1)

{

\
/
pdvCale[pnVb[nContirol] ] = IM GC * (cd.Geifo /4 P T ) * ¢
pdYec[nControl] / (cd.GettzQ - sqri(SQ R (pdRc[nConitrol])
te []pdX e
te [] pd7Y e
te [] pdZe
te []pdR ¢

pdvCalcfpnValnControl]] = s

pdvCalefpnValnConirol] ] = s

asin(pdZec[nControl]

asin(pdZc[nC ontrol]

0 bjectSpace ¥po s,

[nControl]. G etyo =+

[nControl]. G etzQ ;

x

/pdR c[nC ontrol]) )

X Y (3 *PI1/2.0 -asin(cd.Gettx0 |pdRc[nConirol])

/pdRc[nControl]) );

(P I/2.0 - asin(cd.G ettxQ c[nControl])

) )
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v

i

delete

delete

Il consiruce

void CF ram

r7pn

Va,;

[]pnVb

Vector

e B uffer:

for (UINT nCount = I; nCount <=
intyvar =xvar +* I
pdvF [xvar] - pObserved[nCount].G
pdvF fyvar] -

F

;C onstructF (

double ¥pavrF,

File: Intersection, cpp

doubile®

pdvCale,

CFrameBuffer¥po bserved,

U INT nPoints)

n P ooints;

PO bserved[nCountl.G etyl()

etxi()

nCountt+t + )

X fR

Zos )

Hindude "Intersection.h"
void Clntersection SetFrm (double xfL, double yfL, double
m JF rm B ouffer.xfL — xfL:
m  Form Bouffer.yfL - yfL;
in Form Buffer.xfR - xfR;
m F rm Buffer.yfR = yfR
void Clnterseedon::SetO bj(double Xos, double Yos, double
m jO bjSpace.X os o s
m O bjSpace. Yos = Yos;
m O bjSpace.Zos = Zos;
oid Clntersection::SetCnd( UINT:znl, UINT :znR )
m _Cnd.znl — znl;
injC nd.znR = zaR:
nt Clnitersection Im provelit( C CalibrationD ata& rCL,
double**ppRL, double**ppRR,
O BJSPACE® os,
cND Fione)
int iter;
double aM [iEQ U S+ IJ[iUNKS+ 1], bM [iEQ US+ [];

COperations*po P

new

COperations;

~pdvCale[xvar];

=pdvCalcfyvar];

doubleyfR

C CalibradonD ata&

)

c



0

uble

uble**

uble* *

* %
ia;

iu;

iv;

pO P -> DM atrix( 1, iEQUS, I, iUNZK S);

pO P ->DM atrix( 1, iEQUS, I, iE Q U S);

pO P ->D M atrix( 1, iUNKS, I, iUNK §);

le* iw = new> double[iUNK S+ I1'];

le* ib = new double[iE Q UGS+ I];

le* ix = new double[iUNZKS+ 1J:

le X clL Xe¢R, YelL, YeR, ZecL, Zc¢cR, reclL, reR, FxL, FyL, FzL, FxR, FyR FzR,
alphaXLl, alphaXR, alphaYL, alphaYR, betaXL, betaXR, betaYL, betaVt R,
gatnmal, gammaR, deltal, deltaR, sxL, sxR ;

ter = 0; iter <= UTER; ; iter+ + )

XelL =ppRLIIJ[I] Fos->Xos FppRL[1]JI2] Fos-> Yos FppRL[IJ[3] * os->Zos:

YeL = ppRL[2][I] * os->Xos + PPRL[2][2] *os->Yos Y ppRL[2]J[3] *os->Zos

Zel = ppRL[3][1] os->Xos + ppRL[3][2] os->Yos + ppRL[3I][3] 0s->Zos;

X ¢ R = ppRR[I][I]] *a:->)(o: +ppRR[/][Z] *os->Yos + ppRR[I][3] 0os-> Zos;

YeR = ppRR[2][IJ * os->Xos + ppRR[2][2] * os->Yos T ppRR[2][3] * os->Zos

z - * + * + * :

c R =ppRR[3][I] os-> X os ppPpRR[3][2] os-> Yos ppPpRR[3][3] os->Z7Zos;

FxL = (ppRL[IJ[I] *ppRL[I][I] + ppRL[3I][I] *ppRL[3][IJ) * os->Xos +
(pp RL[IJII] *ppRLLITI2] Y pp RL[3][1] *ppRLIZ]I2]) *o0s->Yos +
(PPRL[I1][1] *ppRL[I][3]+ ppRL[3I][I] *ppRL/[3][3]) *os->Z7Zos;

FyL = (ppRL[IJ[1] *ppRL[I][2] Y ppRrRL[3)[1] *ppRL[3][2]) *os->xXos T
(ppRL[I]J[2] *ppRL[I]J[2] Y ppRL[3)[2] *ppRL[3][2]) *os5->Yos T+
(ppRL[I][2] *ppRL[I][3]+ ppRL[3][2] *ppRL[3][3J) * os->2Zos;

F:zL = (ppRL[IJ[I] *ppRL[I]J[3] T ppRL[3][I] *ppRL[3][3]) * os->Xos T
(pp RLIIJ[2] *ppRLLIJI3] T ppRL[3]72] *ppRLI3][3]) * 0os-> Yos +
(pp RLIIJI3] *pp RLIIJI3] Y ppRL[Z]I3T *ppRLIZI[3]) * 0s5-> Zos:

F xR (ppRR [I][1] *ppRR[I]J[I] + ppRR[3J[I] *ppRRI[3I][I]) *os-> Xos +
(pp RR[IJ[I] *ppRR[IJ[2] Fpp RR[3]IJ] *pp RRI3][2]) *o0os->Yos +
(pp R R [I1][I] *ppRRI[I][3J +PPRR[]][IJ *ppRR[3][3]) * os->Z7Zos,

FyR = (ppRR[I1]J[1] *ppRR[I][2] ¥ ppRR[3][1] *ppRR[3][2]) * os->Xos +
(ppRR[I][2] *ppRR[I][2] + ppRR[3][2] *ppRR{[3][2]) * os->7Yos +
(ppRR[IJ[2] *ppRR[I][3J T ppRR[3][2] *ppRR[3][3]) *os->Zos;

FzR = (ppRR[IJ[1] *ppRR[I][3] Y ppRR[3][1] *ppRR[3][3J) *os->Xos +
(ppRR[IJ[2] *ppRR[I][3] + ppRR[3J[2] *ppRR[3][3]) * os->7Yos +
(ppRR[JJ[3J *ppRR[IJ[3] Y ppRR[3][3] *ppRR[3][3]) * os->Zos;

rel = sqrt(SQ R (XclL ) T SOR(ZecL ) );

reR = sqri(SQR(XcR ) T SO0 R(ZcR ) );:

alphaXl =30.0 /(P I *rCL.GeturtipQ * rcl );

alphaXR = 30.0/(P I* rCR.Geturtip() * rcR );

betaXL = -1.0/ sqri( 1.0 - (SQR(ZclL )/ SQRI(rcl ) ) J;

rc L

=rCR

G etiyQ

LG ettty ()
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betaXR = -1 .0 /sqri(l.0 - (SQ R (ZcR ) /SQORI(rcR))):

if(zome-> znl ) betaXL -- betaXL;:

if(zomne->znR == 2) betaXR = =betaXR;

gammal = rCL.Gettx() / sqri( 1.0 - (SO R(rCL.Gettx0Q ) /SO R (rel)));

gammaR = rCR.Getix() / sqri( 1.0 - (SQR(rCR.Getix0Q ) /SQR (rckR)j):

deltal = (betaXL *ZclL -gammal ) / SQR(rcl ):

deltaR = (betaXR ¥ZcR =gammaR ) / SO R (rcR );

alpha¥YL = (rC L .G etf()/dPT) / (rCL.GetizQ - s5qri(SQ R (recl) -S0R(rCL.Getix0Q ) ) );
betayl YeL / ((rCL.GettzQ - sqri(

SO R (rcl) -SOQR(rCL.Gettx())))* (sqri(SO R (rekl) -S0R(rCL.Gelix())))):
alpha YR = (rCR .G etJQ /APT) / (rCR.Gettz() ~5qri(SQO R (rcR) -SOR(rCR.GellxQ )));
betaYR = YeR/((rCR.GettzQ - sqrit(

SO R (recR) -SQR(rCR.Gettx0 ) ))* (sqri(S$0R(rcR) -SOR(rCR.Gettx0 ))))
aM [1][1] = alphaXl ¥ (ppRL[3771] Fbetaxt -detiar ¥rar ),

@M [1][2] = alphaXL * (ppRL[3][2] *betaXL -deltal *F yL);
aM [1][3] S alphaXL * (ppRL[3][3] *betaXL -deltal * F :L);
@M [2][1] = alphaYL * (ppRL[2][1J F betaYL * (ppRL[IJ[I] *XcL FppRrRL[3][1] *ZcL ) );
aM [2]772] S aiphavi ¥(ppri[2772] F betavi * (ppRL[IJ[2] *XclL FppRrRL[3]2) ¥zer ) )
@M [2][3] = alpha¥YL * (ppRL[2][3] F betayL * (ppRL[I]J[3] *XecL + ppRL[I][3] *ZcL ) ):
@M [3][1] = alphaXR * (ppRR[3][I] *betaXR -deltaR *F xR );
- * *
@M [3][2] = alphaXR (PP RR[3][2] * betaXR - deliaR FoyR )
@M [3][3] = alphaXR * (ppRR[3][3J * betaXR - deltaR * F :R );
@M [4][1] = alphaVYR * (ppRR[2][1] ¥ betaYR *(ppRR[IJ[I] *XcR FppRR[3][1] *ZcR) )

- * + * * . + * .

@M [4][2] = alphaVR (ppRR[2][2] betavR (ppRR[IJ[2] *XcR pPRR[3][2] Fzcr ) ),

aM [4][3] =

N

IphaYR * (ppRR[2][3] F betaYR *(ppRR[I][3] *XcR + ppRR[3][3] *ZcR ) );

/) eomnstruct vB

sxL = 30 .0 /(P 1 *rCL.GecturtipQ );
sxR = 30 .0 /(P *rCR.GeturtipQ );
bM [1] = GetFrmQ .xJL - (sxL * (P I1/2.0 -asin(rCL.GettxQ / recl) -asin(ZclLl/recl)));
bM [3] = G etFrmQ .xfR - (sxR * (P 1/ 2.0 -asin(rCR.Gettx() / rcR ) - asin(ZcR /rcR ) ) );
if(zone->znl == 2)
bM [I] T G etFrm Q .xfL - (sxL * (3 *P I/2.0 -asin(rCL.Gettx0Q /[ rel) T asin(zZel / rel) )):
if(fzone->znR == 2)
bM [3] = G etFrmQ .xfR - (sxR * (3 * P [/2.0 - asin(rCR.GettxQ /reR) T asin(zZecR /recR ))):
_ . + *
bM [2] = G etFrmQ .yfL - (IM G C (rCL.GetfQ /4 P T ) (
YelL / (rCL.GettzQ - sqrt(SQ R (rel) -SQR(rCL.Gettx0Q ))) ) ) ;
bM [4] = G etFrmQ .yfR - (IM G C + (rC R .G etf()/4 P T ) * (
YecR / (rCR .G ettzQ - sqrit(SQOQ R (rcR ) -SQR(rCR.Gettx() ) ))))
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dele
dele
dele
po P
poO P
poO P

dele

retu

//VA and vB calculated - continue:

for( UINT i = I, i<= iEQUS; i+ + )
.

/or(UINT/=I,.]<

iw [i][j] = aM [i][]];

iUNKS;j+ o+ )

/or(;=/;f<='\aS'; i+ o+ )

ivri; - 6M/7/;

pOP->SvdD ecmp(iu, iEQUS, iUNKS, iw, iv);

pO P ->SvdB kshb(iu, iw, iv, iEQ U S, iUNKS, ib, ix);

os->Xos T= ix[i1]:
os-> Yos T= ix[2];

os->Zos T = ixr3u;

if( fabs(ix[1] / os->Xos) < iCONV _LIMIT & &
fabs(ix[2] / os-> Yos) < iC ONV _LIMIT & &

fabs(ix[3] / os->Zos) < iCONTV _LIMIT)

delete [] ix:
delete [J ib;
delete [J iw;
pO P ->F reeD M atrix( iv, I, 1)
pO P ->FreeD M atrix(iuv, 1. 1);
pO P ->FreeD M atrix(ia, I, I);

delete pO P

return iter; /Il converged - stop searching

if( (fabs(ix[1]) FTrabs(ixi2]) Ffabscix(3])) = iD IV _LIM IT)
{

delete [J ix;

delete [] ib;

delete [] iw:

pO P ->FreeD M atrix(iv, I, 1);

pOP->FreeD M atrix (iu, 1, I);

pOP~>FreeD M atrix(ia, I, I);:

delete poO P

AjxM essageBox( "D ivergence detected...aborting process."

return D IV ERG ED

te [] ix; // significant residuals
te [] ib;

te [] iw

-> FreeD M atrix(iv, I, 1);

-> FreeD M atrix (iu, I, I);
-> FreeD M atrix(ia, I, I);

e po P

rnoiter;

M B I1IC O N STO P ).
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UCR Clntersection::Uncertainly( C CalibrationD ata& rCL, CCalibrationD ata& rCR
double**ppRL, double**ppRR,
OBJSPACE?®* absCoords,

CND* zone )

// Re-projectsolution
double xeBackl, yeBackL, zeBackL, xcBackR, yeBackR, z¢cBackR,

reBackL, reBackR, xfBackL, yfBackL, xfBackR, yfBackR, sxL, sxR;

XxeBoetekl = PP RLIIJ[I] *absCoords-> Xos +
* : +
ppRL[I][2] absCoords->Yos
PP RL[IJ[3] *absCoords->Zos;
yeBoctckl = PP RLI2][1] ¥absCoords->xos T
*
ppRL[2][2] absCoords->Yos +
PP RL[2][3] ®absCoords->Zos - rCL.Getly0
teBaclel = ppRLI3]I[I] FabsCoords->Xos T
* +
PPRLI3][2)] FabsCoords->Yos

PP RLII]I3] ¥absCoords->Zos;

xcBackR = PP RRIIJII] ¥absCoords~>Xos +
ppPRR[IJ[2] *absCoords->Yos T
pPRR[I]J[3] *absCoords->2Zos;

yeBackR = pPPRR[2][1] *absCoords->Xos T

* +
pPRR[2][2] FabsCoords->vos
B
ppPRR[2][3] absCoords->Zos - rCR.GettyQ
B
z¢BackR — ppPRR[3][1] absCoords-> Xos +

pPRR[3][2] ¥*absCoords->vos +

pPPRR[3][3] ¥absCoords->2Zos;

reBackL - sqri(SQ R (xcBackL ) T S0 R (zcBackL ) );
reBackR — sqri(SQO R (xcBackR ) ¥ SO R (zcBackR ) ):
sxL = 30.0/(P I* rCL.Geturtip());
sxR = 30.0/(P I *rCR.GeturtipQ )
if(zome->znl = = 2

xJBackL = sxL * (3.0 *P 1/2.0 F cisin(zeBackL/ rcBackL) - asin(rCL.GettxQ / rcBackL)):
else

xfBackL = sxL * (P I/2.0 -asin(zcBackL / rcBackL) - asin(rCL.GettxQ / rcBackL) );
if(zome->znR - — 2)

jBackR = sxr ¥ (3.0 *p1/2.0 F asin(zcBackR /reB ackR) - asin(rCR.G etix0Q / rcBackR));
else

YfBackR —sxR ¥ (P 1/2.0 - asin(zcBackR / rcBackR) - asin(rCR.Gettx0Q / recBackR) )
yfBackL = IM GC + (rCL.GetfQ / APT) * (ycBackL / (rCL.GettzQ - sqrt(

SO R (r¢cBacklL) - SQR(rC L .G ettxQ ))))

yfBackR = IM G C ¥ (rCR.Getf() /AP T ) * (ycBackR / (rCR.GettzQ - sqri(

SO R (recBackR ) =850 R (rCR .G ettxQ ) )))

/1

Il Thefoliowing calculates the spatial quantisation error:

double xelL,yel, z¢elL, x¢cR, yeR, z¢cR, relL, recR, xCualclL, xCualecR, yCalelL, yCalcR,

xResPos, yResPos, z:ResPos, xResNeg, yResNeg, :ResNeg,

storedX L, storedX R, storedY L, storedVYR
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/1
/1

O BJSPACE solution =

absCoord

double Zw = absCoor

le X wnew

= Aw;
1V

= Zw;

double Ywnew

double Zw

new

bsCoords; //preserve objectspace solution

s-> X os;

absCoords->Yos;

Calculate radial

xel ZppRL[I][I] *Xw
zel T ppRL[3][1] *Xw
rel sqri(SQ R (xcl )
xecR = ppRR[I]J[I] *Xw
zeR S ppRR[3][1] *Xw

sqri(SQ R (xcR )

double

uncertainty:

new Foppririrr2] FYWWEW t ppr 17737 Fzwnew

wew toppRrRL[3I[2] Fyw ‘oo RL[3773] FZwanew

new

+ S50 R (zclL ) )

wew Fpp RR[1J72] ¥ Ywnew> FppR R [1j73] ¥zw

new

mew + ppRR[3I[2] ¥ Ywanew FppRR[3I[3 * Zwnew

+ S50 R (zcR ) )

anglel = asin(zel / rel ):
double angleR = asin(zcR /rcR );
. il
double rSiepl = rcl: 11 FI'S radius
double rSiepR = rcR;
double xfL., x/R
if(zome->znl - — 2)
- * * .
xjL sxL (3 PI12.0 + anglel - asin(rCL.GetixQ / rSiepl ) ):
else
xjL = sxL * (P 1/2.0 -anglel - asin(rCL.G ettxQ /rStepl ) );
if(zone->znR ==2)
XjR = sxR ¥ (3 « P 1/2.0 + angleR - asin(rCR.GetixQ /rStepR));
else
xjR = sxR * (P I1/2.0- angleR - asin(rCR.Getix() / rStepR ) ):
double disp = xfL - xjR
double (D isp, RadialU ncertainty;
for(long iter = 0; iter < ITERI; iter+ + )
if(zone->znl 2
= * . + ,
X fL sxL (3.0 PI/2.0 amglel =asin(rCL.G ettxQ / rStepl) J:
else
XfL = sxL ¥ (P I/2.0 - anglel - asin(rCL.G etix0 / rStepl) )
if(zone->:nR == 2)
XfR = sxR * (3.0 ¥P U/2.0 + angleR - asin(rCR.GetixQ /rStepR ) )
else
xfR T xR * (P I1/2.0 - angleR - asin(rCR.G etixQ / rStepR)):
(D isp — xfL - xjR
if(fabs(tD isp - disp) >= 1.0) ¢
RadialUncertainty = rStepl =rcl;

break:;
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}

rStepl F= de-6: // 1 micron
rStepR F—le-6: //1 micron
/1 Calculate angular uncertainty
anglel = asin(zecl / rel );
angleR = asin(zecR / recR )
iffzone->znl = =2
anglel = 3 * P11/ 2.0 + anglel - asinfrCL.Getixf) / recl );
else
anglelL = P I /2.0 -anglel - asinfrCL.G ettxf) / recl);
iffzome-> znR 2
angleR =3 =P 1/2.0 + angleR - asinfrCR.Getixf) / reR);
else
angleR = P 1/2.0 - angleR - asinfrCR.Getixf) / reR );
double angStL = anglel: // Fix angle
douwuble angStR = angleR ;
xfL = sxL * anglel ;
YfR —sxR Fangler
double AngularUmncertainty, xfLnew , xfRnew ;
fo rfiter = 0; iter <= ITERI; iter+ + )
"
iffzome->znl == 2
xfLonew syl Fangsi
else
xfLnew = sxlL angSiL;
iffzone->zn R = =2
XfRmew = sxR Fangsir;
else
xfR new = sxR *.nngSlR4
iff (fabsfxfLnew -xfL) Z= 1.0) & & (fabsfxfRnew - x/fR

AngularUncertainty =

break:;
angsiL *T= 1e-5; YA
angStR tT= le-6;

/

m

icrovrad

angSiL - anglel

)

>

// NOTE: The routinesfor calculating the Cartesian uncertainties are similar to that ofthe radial
In order to conserve space, they will not be provided in the thesis.

// uncertainly given above.

UNC unc;

le3 *xResP

une.dYpos = Ie3 *yResP os;

wunc.dZpos = le3 *:zResP os;

unc.d Xneg = le3 *)RFSIV

le 3 YR esN

unec.dZneg = le3 *:zResN

0 s

eg

g

g
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wuncec.dR = le3 *RadtalUncurxalntv,

iinc.dA = RadToD egfAdngularUmncertainly ).

wune.reX fL = xfLB achk;
wune.re¥Y fL = yfLB ack;
wune.reX R = xfR B ack:;
unc.reY fR = yfRBack:

return wunc;
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Appendix V

Control Field Calibration Data



Target

A2
A3
A4
AS
A6
A7
Al
B2
B3
B4
B5
B6
B7
Bl
C2
C3
C4
Cs
Co6
Cl
Cl
D2
D3
D4
D5
D6
D7
D1
E2
E3
E4
ES5
E6
E7
El
F2
F3
F4
F5
F6
F7
FI
G2
G3
G4
G5
Go6
G7
Gl

TABLE A Controlfield calibration data.

Radius (mm)

93.437
94.636
93.286
94.002
93.854
92.717
93.574
83.218
84.973
84.369
84.214
83.926
83.395
84.317
74.026
74.821
73.769
74.099
73.531
73.876
74.155
64.192
64.068
64.913
63.671
64.621
63.886
63.170
54.084
54.057
54.058
53.728
54.324
53.350
53.626
44.164
44.533
44.243
44.032
44.007
43.735
43.662
34.096
33.954
34.998
34.501
34.208
33.572
35.130

Angle (0)
0.239
67.569
90.291
112.615
165.372
195.436
270.681
0.249
67.551
90.225
112.627
165.442
195.459
270.667
0.278
67.505
90.212
112.659
165.431
195.542
270.617
0.252
67.496
90.152
112.671
165.439
195.608
270.591
0.158
67.392
90.116
112.699
165.555
195.756
270.489
0.207
67.371
90.025
112.573
165.644
195.901
270.357
0.162
67.319
90.026
112.662
165.725
196.215
270.225

Y (mm)

130.106
130.784
129.926
130.003
130.320
130.685
130.318
110.080
110.720
109.965
110.023
110.321
110.541
110.29
90.176
90.626
89.894
90.020
90.111
90.569
90.238
70.021
70.601
69.822
70.115
70.093
70.530
70.133
49.996
50.686
49.786
49.891
50.199
50.414
50.092
29.935
30.678
29.791
30.055
30.127
30.439
29.956
9.915
10.653
9.929
9.937
10.053
10.424
10.016
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