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Abstract

To recognise trends embedded in patterns, a dynamical model of the system 

generating the patterns can be assumed. A second order model has a wide variety 

of patterns which can serve well in approximately describing the short-term 

behaviour of complex physical, financial, societal and biological systems. Apart 

from initial conditions, the output pattern of a simple second order system is 

completely defined by 3 parameters: natural frequency (co), damping ratio (Q and 

external input (u).

Three algorithms are proposed and investigated in this study to estimate the 

parameters of an equivalent second order system from a given trajectory (in time 

or space) of the pattern. The algorithms combine successive 1st order filters of 

specified cut-off frequencies, to provide smoothing and higher order derivative 

estimation, with non-linear static parameter estimators.

A complete simulation environment is devised enabling the three-parameter 

estimation algorithms to be tested for 3 categories of parameter sets: constant, 

variable with 1st order dynamics and variable with 2nd order dynamics. When the 

parameters have 2nd order dynamics, they themselves may be modelled as having 

their own unique time varying patterns, i.e. have dynamical behaviour. This leads 

to a hierarchical parameter estimation process where on-line algorithms are 

needed to work concurrently with the actual system to provide a continuous 

estimate of the first level parameters. When these parameters are time varying,

i



then they in turn are submitted as input to another level of parameter estimation 

algorithm to estimate the parameters of their own dynamics. This process may be 

repeated, in theory at least, to as many levels as necessary until a set of parameters 

is found which is constant.

Accurate estimations of co, £, and u were made using non-linear combinations of 

time derivatives of the measured output of the system. Results of the simulations 

are presented which show that the algorithms can cope well with variable 

parameters.

The effect of measurement noise on the estimation accuracy is considered when 

the incoming trajectories are corrupted with random noise. Noise is simulated 

using a random number generator with zero-mean and added to the simulated 

system output. Analysis of the simulation results show varying abilities of the 

algorithms to cope with the noise perturbations. In some instances high prediction 

robustness were achieved, in others, simulations showed high sensitivity to noise.
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List of symbols

u(t) Input variable

x(t) Output variable

co Natural frequency

C, • Damping ratio 

G,G1,..G4 Cut-off frequency 

Ex Filter estimate of x
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Eu Estimated u

coo Omega of omega
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CpL Zeta of zeta

uz u of zeta

cou Omega of u

£u Zeta of u

uu u of u
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CHAPTER 1 - INTRODUCTION

The subject of this project is the study of a parameter estimation problem 

encompassing a wide range of techniques and algorithms. Three hybrid methods 

were used for parameter estimation of a second order system. The aim of this 

Chapter is to introduce the subject of parameter estimation as well as the effects 

and the methods of modelling which have been used to study the behaviour of 

physical, biological, economic and social systems.

1.1 Parameter Estimation in General Dynamical Systems

Stimulated by the theory of classical mechanics, an important method interpreting 

the behaviour of processes has been expressed [D’Azzo et al, 1995], by means of 

differential equations, in terms of input and output variables u= u(t) and x = x(t), 

respectively:

dn d , d11 u d .a„ x-f- +-a . — x+-a -x=bn u-f- +  b . — u +  b - u  n n
° d t n " ^ d t  n ° d t n n~ l d t  n  V1*1)

In the linear case the parameters a;, bj are independent of u, x and their derivatives. 

If, in addition, they do not depend on time either, we have a case of constant 

parameters. This is the most tractable case. These parameters may, however, 

depend on time. If any a* or bj does depend on u, x or their derivatives, the 

process is non-linear.
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The general nth order differential equation can be described in state-space terms as 

the transformation of n first order simultaneous differential equations. This is 

interpreted by employing matrix notation:

x'(t)=Ax(t)  +  B-u(t) y(t)=C-x(t)  ( 1 2 )

If a system has r inputs and m outputs, then u (t) is an input column vector 

containing the r elements ui (t), U2 (t), ...ur (t) and y (t) is an output column vector 

containing the m elements yi (t), y2 (t), ...ym(t). Consequently the A matrix, ‘the 

coefficient matrix of the process’, must be of order (n x n), the B matrix, ‘the 

distribution matrix’, of order (n x r) and the C matrix, ‘the output matrix’, of order 

(m x n).

’an ai2 a i1 n ’bn ‘ b , 1 1 r ' Cl l  * Cl„~

A := a21 ao 2 n B := IIO

. a n l an2
a

nn _ , b n l b n2 bnr , Cm l Cm2
cmn

The total number of parameters (N) that represent the behaviour of such a system 

are then: n2+n.r+m.n. Since there are N unknowns, and n initial values (for x), it 

is necessary to use at least (N + n) points of the trajectories. The aim is to 

determine values for parameters within the modelled system that produce a closer 

fit to the measured data. The trajectory of the state variable x can be calculated for 

any time t, if values for the parameters of nth order equation are known. For 

example, for a full second order system with two inputs and two outputs there will 

be ‘ 14’ unknowns, 12 parameters and 2 initial values.
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1.2 Second Order System

1.2.1 Generality of the Second Order System

The second order equation is important because it can be used in a wide range of 

situations as an approximation to the actual process [Anand et al, 1995]. This is 

especially true for short periods of time. Although the parameters of a basic 

second order model are constant, it is often applied in situations where one or 

more of the parameters are time varying [D’azzo, 1995].

1.2.2 Formulation

The position x of an object subjected to an input u can be modelled as a second 

order system based on the physical characteristics of inertia, damping and 

elasticity as:

x-j- 2 -co •— x+- <a 2-x=o) 2-u  (1  -3 )
dt2 dt

Where C, relates to the damping of the system, co relates to the natural frequency 

with co = 27if and u is the external input on the system. Each parameter is 

assumed to be independent of time.
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A general solution of this equation is,

Where,

2 fl  ̂ 2  ̂ 2. u-co -e u-co -e u-co
x(t)=—    Y -  —7 T  ^ ------r - r - r  r - r - r  r -r1 V i 2/ 2 \ 1 2/ 12

.(1.4)

r =- i
-C, -a -t-JC2'®2-4-co2 .(1.5)

y y 2 2 . 2-C, ‘CO -  y\JC, ‘(0 -  4-0) .(1.6)

Where xo (0) and x'o (0) are the initial values of x (t) and its first time derivative,

i.e. the state variables of the system. The derivation of this solution is given in 

[Appendix A],

Common examples of a second order system are pendulums and spring & mass 

systems which move with Simple Harmonic Motion (SHM) about an equilibrium 

position. In the case of no damping, the angular frequency is the natural 

frequency a>n of Equation 1.3. When the damping ratio, has a non-zero positive 

value, the amplitude of the oscillation will decrease with time and the actual 

frequency, ©a, decreases according to,

4
(1.7)



Negative values of damping ratio cause amplitude to increase and the system is 

then known to be unstable.

1.2.3 Parameter Estimation

Parameter estimation is a common problem in many areas of process modelling, 

both in on-line applications such as real time optimisation and in off-line 

applications such as the modelling of reaction kinetics and phase equilibrium 

[Isermann et. al, 1992]. The goal is to determine values of model parameters that 

provide the best fit to measured data. Given values for the parameters of a second 

order equation, the trajectory of the variable x can be calculated for any time t. 

This trajectory is defined by the values of the parameters used to create it.

The process of parameter estimation aims to perform the opposite of this scenario. 

Given a trajectory of x through time, what are the values of the parameters that 

generated this trajectory?

This is far from a trivial problem. Each point on the trajectory requires the 

solution of the non-linear Equation 1.4. The values of the parameters, which 

satisfy all the solutions, must match. Since there are five unknowns, three 

parameters and two initial values, it is necessary to use at least five points of the 

trajectory.
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1.3 Hierarchical Models

The modelling phase is perhaps the most important phase in any control system 

design since ultimately, the controllers’ effectiveness is limited by the quality of 

the model used. Modelling is usually done in two parts i.e. first a structural model 

based on the physical process being modelled is developed. Then, data is used to 

determine the parameters of the model. Although this parameter estimation 

problem is of fundamental importance, among the different methods used to deal 

with'these problems are the hierarchical and decomposition techniques [Hassan et 

al. 1982],

To model the complete behaviour of higher dimensional (>2) systems a simple 

second order model with time varying parameters may be used. The behaviour of 

these parameters may be modelled as 1st or 2nd order systems, each with its own 

dynamical behaviour. This leads to a hierarchical parameter system process 

where on-line algorithms are needed to work concurrently with the actual system 

to provide a continuous estimate of the first level parameters. When these 

parameters are time varying, then they in turn are submitted as input to another 

level of parameter estimation algorithm to estimate the parameters of their own 

dynamics. This process may be repeated, in theory at least, to as many levels as 

necessary until a set of parameters is found which is constant.
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1.4 Main Aims

The program of work aims to investigate the problem of parameter estimation of a 

simple linear second order system. Three hybrid methods of estimating co, £ and u 

are proposed and tested through simulation for 3 categories of parameter sets: 

constants, variables with 1st order dynamics and variables with 2nd order 

dynamics.

An important part of this study will examine the performance and robustness of 

the parameter estimation algorithms when the incoming trajectories of the 

simulated output are corrupted with noise.



CHAPTER 2 - LIMITATIONS OF CURRENT

TECHNIQUES

2.1 Parameter Estimation

System identification or parameter estimation has remained a very active area of 

research for representing the behaviour of physical, biological, economic and 

social systems. It has been a fundamental element of engineering and many other 

fields for many decades, if not hundreds of years. It is defined as the study of 

determining the model, or structure of a process, using a limited number of input 

and output data measurements, that may or may not be disturbed by noise. 

However, in many cases, it is not feasible to assume a knowledge of the process 

parameters, and moreover, these are often subject to variation based on changing 

operating conditions. Therefore it is desirable for the values of these parameters 

to be obtained from input-output measurements on the process. Usually this 

procedure is called parameter estimation.

2.1.1 General Introduction

In this section, an introduction to parameter estimation theory is considered. The 

major properties of parameter estimation are discussed and illustrated on few 

examples.

Parameter estimation and system identification are parts of a very complex 

process. It is seen that the estimation problem is only a small part of the whole



identification process, which is preceded and followed, by a number of other 

important steps. In practice, it is very important to keep this in mind, because the 

necessary efforts spent in the identification and estimation step is highly 

dependent upon the choices made in the previous steps.

A first very important choice to be made is the selection of a class of models. The 

model is a mathematical description of the studied system. It is possible to divide 

all these models in different categories using some criteria. One criterion is the 

parametric/non-parametric division.

In parametric models the system is described using a limited number of 

parameters. For example, the transfer function of a filter, the motion equations of 

a piston, etc. However, the same filter could also be described by giving its 

impulse response using a large number of points. This is an example of a non- 

parametric description.

Another criterion is white/black box description.

During the construction of the model, it is possible to use physical laws (Kirchoff 

laws, the laws of Newton, etc). The use of this knowledge is strongly dependent 

upon the insight and skill of the researcher. Here, the specialized knowledge of 

different scientific fields is brought into the identification process. E.g. to model a 

loudspeaker, it is necessary to have a profound insight in mechanical, electrical 

and acoustical problems. So, a model is developed based on a good knowledge of 

the internal working principles of the system. Such a model is called a white box 

model.
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Another approach would be the black box model. Instead of making a detailed 

study and developing a model based on physical insight and knowledge, a 

mathematical model is proposed which allows to describe sufficiently well 

observed input and output measurements. In this way, the modelling effort is 

reduced significantly. E.g. instead of modelling a loudspeaker using physical 

laws, an input-output relation is proposed. This can be a transfer function of 

sufficiently high order [Schoukens et al, 1988].

The choice between these approaches strongly depends upon the aim of the study. 

If the results must give an insight into the working principles of the system, the 

white box approach is preferred. If the model will be used for short time 

prediction, a black box model may be sufficient [Fedorov, 1972].

After the class of model is determined, a specific model has to be selected. A 

typical example of this problem is choosing the order of a transfer function, what 

should be the minimal order of the numerator and the denominator to explain all 

the measured data sufficiently. Another example is the choice between different 

candidate models which all give a possible explanation of the observations 

[Schoukens et al, 1988].

This selection has to be made, using limited amount of measurements

(information) which are usually disturbed with noise. Due to these noise

influences the selection of a model is not unique, and there is an uncertainty on the

final choice of the model. Also modelling errors can influence this choice. It is

obvious that the design of the experiment used to get the necessary information
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for the selection process, will influence the uncertainty on the final result. The 

same will be true for the estimation step. It is possible to minimize the uncertainty 

on the estimates by an optimization of the input signals. Once the model is 

selected, its parameters have to be estimated to determine the model completely. 

Again measurements results are used during this step. Many methods have been 

presented to minimize the influence of the noise on the estimation. Frequently, 

the identification and estimation steps are linked together [Astrom, 1980],

When the identification/estimation step is finished, a first check can be made to 

verify the goodness of the fit and the adequacy of the proposed model. Due to 

noise, there will be a difference between the measurements and the estimates. 

These differences, called residuals, possess some known statistical properties. By 

checking this information (e.g. the mean value, standard deviation, etc) it is 

possible to conclude if systematic (model) errors still exist for the given input 

signals. Two algorithms are described here, Least Squares estimation and 

Maximum Likelihood estimation. A number of other well-known algorithms also 

exist, for example the Bayes5 estimation algorithm and the Markov estimation 

algorithm (this topic is well covered in many standard textbooks such as Eykhoff 

(1974)).

Least Squares Estimation:

The principle of Least squares was formulated by Gauss at the end of the

eighteenth century for determining the orbits of planets. According to this

principle, the unknown parameters of a mathematical model should be chosen in

such a way that the sum of the squares of the differences between the parameter
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values actually observed and their computed values, multiplied by numbers that 

measure the degree of precision, is minimized. Recently, an improved version of 

the Least Squares has been developed to handle the problem, where, the Least 

Squares algorithm can not be used for time varying systems, these include the 

Least Squares algorithm with selective data weighting, the Least Squares 

algorithm with covariance resetting and the Least Squares algorithm with 

covariance modification [Goodwin et al, 1984]. All of these modified algorithms 

have similar properties to the original Least Squares algorithms.

Maximum Likelihood Estimation

The maximum likelihood estimation method originally developed in statistics can 

be used to estimate the parameters of the models such as State-Space model (SS), 

Conditional Markovian Model (CM), Simultaneous Autoregressive model 

(SARM) or Autoregressive and Moving Average Model (ARMA), [Isermann et 

al, 1992], It produces asymptotically consistent and efficient estimates. However, 

the derivation of the Log-Likelihood function requires knowledge of a priori 

(before the measurement), [Eykhoff, 1974] probability density of the present 

output and is extremely difficult even if the Gaussian case, and in general the 

Maximum Likelihood scheme, leads, to non-linear optimization problems. The 

Maximum Likelihood estimator is one of the best known estimators. A lot of the 

properties are proven under conditions of independent, identical disturbed noise 

on the measurements and a Log-likelihood function, which is differentiable twice. 

For some specific problems it is possible to prove the properties making less 

restrictive assumptions. However, there is in general no guarantee that the

estimator still behaves in the same way if the previous conditions are not met.
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Linear State Models

Our attention will be focussing on the important type of state model S(A,B,C,D) 

defined by

x = Ax + Bu 

y = Cx +Du

Where x is an n-vector, the input u is a r-vector and the output y is an m-vector. It 

is well known that the system A(A,B,C,D) and S(TAT1,TB,CT1,D) where T is 

non-singular matrix are equivalent in the sense that they have the same input- 

output relation (a comprehensive study of the state models is provided by Kailath, 

1980). It can be verified that the systems S(A,B,C,D) and S(Aa,Ba,Ca,Da), 

“where A is the adjoint”, are equivalent in the sense that they have the same input- 

output relation if:

d  = d a

C AkB = CA AAk Ba k=0,l,....,n

The relations between the different representations were clarified by Kalman’s 

work (Kalman, 1963). The impulse response and the transfer function represent 

only the part of the system S which is completely controllable. It is thus clear that 

only the completely controllable and completely observable part of a state model 

S(A,B,C,D) can be determined from input-output measurements. The impulse 

response and the transfer function are easily obtained from the state description. 

The problem of determining a state model from the impulse response is subtler. 

The problem of assigning a state model of the lowest possible order, which has a 

given impulse response has been solved by Ho and Kalman (1966). Again the 

solution is not unique. The model S(A,B,C,D) contains 

Ni = n2 + n.r + n.ni + r.m

13



parameters. The fact that the input-output relation is invariant under linear 

transformation of the state variables implies that all Ni parameters cannot be 

determined from input-output measurements. To obtain unique solutions as well 

as to be able to construct efficient algorithms, it is of great interest to find 

representations of the system which contain the smallest number of parameters i.e. 

Canonical representations. Canonical forms for linear systems were studied by 

Kailath (1980). If the matrix A has distinct eigenvalues, canonical forms can be 

obtained by a suitable choice of co-ordinates and the matrix A can be brought into 

diagonal form. This representation contain 

N2 = n(r+m) + r.m

parameters. Since the system is completely controllable and observable there is at 

least one non-zero element in each row of the B matrix and of each column of the 

C matrix.

2.1.2 Parameter Estimation of a Second Order System

Broadly speaking, two approaches to parameter estimation exist, off-line and on­

line. On-line methods will be described later in Section 2.2, Off-line methods use 

all data available prior to analysis. Consequently, they usually give estimates 

with high precision and set no time limit for the process of analysis. These include 

Least Squares (Kailath, 1978 and Gersch, 1974), Fourier Transformations 

(Cawley, 1984), Kalman Filters (Kalman, 1960), etc. In the above, the parameter 

estimation is achieved by the use of the following steps:

- Solving the differential equation of the given system,

- Approximating the solution of the differential equation by numerical methods,
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- Estimating the unknown system parameters in time domain.

Roberto (1990) described a new method of characterising the time domain 

response of a second order system to step function by dynamical parameter 

estimation. The fundamental parameters were obtained by comparing the real 

input signal with a mathematical model using an optimization procedure. The 

parameters of the model were varied until an adequate match was obtained with 

the real input signal. This paper showed useful estimates of system parameters 

that could be produced in only a few iterations.

Pachter et al. (1994) proposed a new technique for parameter estimation of a 

second-order linear dynamical system model. This approach belongs to the class 

of classic deterministic identification methods, which assesses the model 

parameters based on obtaining a few characteristic values directly from the 

measured unit step response of the real investigated system e.g. rise time, 

theoretical transient time, position of the inflection point, some ordinates of unit 

step response and so on.

Goodwin (1997) studied parameter estimation algorithms for second order 

systems. Conventional approaches (Power series and Fourier transform) were 

tested for parameter estimation of a stereo camera system. Simulation results 

showed the estimation of parameters was best achieved with the polynomial least 

squares fitting algorithm.
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Comparable methods have been used for parameter estimation of second order 

systems as in Meyer et al. (1967), Sundaresan et al. (1978), Hung and Clements 

(1982).

2.1.3 Parameter Estimation of Continuous Linear Systems

In recent years, polynomial series has been widely used in the analysis, 

approximation and parameter estimation of control systems [Homg and Chou,

1985]. Although most physical systems are of the continuous-time type, it is more 

convenient to use the samples of the input-output data and estimate the system 

model using a digital computer.

Stericker and Sinha (1993) derived algorithms for estimating the parameters of 

discrete-time model for a continuous-time system using the 6-operator from the 

samples of the input-output data either for a transfer function model or for a state- 

space model. Two approaches were considered in this paper to estimate a 

discrete-time model of a single-input single-output (SISO) system from the 

samples of the input-output data. In the first, they estimated the transfer function 

in terms of the 6-operator, while in the second they used a canonical state variable 

representation. Both of these methods can be readily extended to multivariable 

systems on the same line as by Sinha and Kszta (1983). Results of simulation 

indicated that the algorithms work well even if the sampling frequency is ten 

times the largest undamped natural frequency of the system to be identified, the 

approach using state-space model would give better results.
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Zhihong (1995) developed a novel method to estimate unknown system 

parameters for SISO linear time invariant systems using functional approximation. 

The technique is demonstrated by an example which showed that the differential 

equation of a linear time invariant system can be approximated by a finite Taylor 

series and the unknown system parameters are then estimated by using the 

information from Laplace transforms of the input and the output.

Dewolf and Wiberg (1993) developed an ordinary differential equation technique 

via averaging theory and weak convergence theory to analyze the asymptotic 

behaviour of continuous-time recursive stochastic parameter estimators. This 

technique is an extension of Ljung’s work in discrete time. The main purpose of 

this paper is to provide general conditions under which averaging theory can be 

applied to continuous-time parameter estimators. The theorem is used to prove 

convergence of continuous-time versions of both gradient and recursive prediction 

error parameter estimators. The theorem is also used to analyze the asymptotic 

dynamics of the simplest possible nontrivial parameter estimation problem, thus 

obtain an indication of the ordering of the dynamical behaviour of the four most 

common parameter estimators (Extended Kalman Filter, Extended Least Squares, 

Gradient Algorithm and Recursive Prediction Error).

2.1.4 Parameter Estimation of Dynamic Systems

Many applications in control systems require the estimation of one or more 

parameters of the plant. Among these are adaptive control algorithms based on 

plant identification. An example of this class of applications is the estimation of
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the coefficient of friction and the use of this estimate to generate an opposing 

force that cancels the friction (Friedland & Park, 1992); (Friedland & 

Mentzelopoulou, 1992). Friction, however, is not the only parameter that often 

needs to be estimated; time constants, natural frequency and gains are other 

parameters that one may desire to estimate for a variety of purposes. The theory 

developed in Friedland and Park (1992) for friction estimation can be generalised 

to address the problem of estimation any constant parameters in the system.

Friedland (1997) developed a new algorithm for estimating constant parameters in 

a dynamical system. The algorithm is a reduced-order observer, having two non­

linear functions, one being the Jacobian of the other. If the dynamics of the 

system are afine in the parameters to be estimated, the error in estimation of these 

parameters satisfies a linear, time-varying homogeneous differential equation. By 

proper choice of the non-linear function in the observer, it is possible to achieve 

asymptotic stability of the estimation error. Although the algorithm was derived 

on the assumption that the process state can be measured. The method is being 

successfully used in several applications with real data such as rapid thermal 

processing application (Belikov et al. 1995).

Ameen (1998) presented a new approach in estimating the parameters of a

dynamic system from an initial and relatively inaccurate state-space model. The

proposed approach is based on determining an optimal control law that minimizes

a quadratic performance index for a free state condition by means of solving a

two-point boundary-value problem. The control input to both the model and the

physical system were assumed to be the differences between their outputs. The
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analytical procedure proposes a correction matrix that is subtracted from the 

dynamics matrix of the initial model to yield the optimal value of the dynamics 

matrix. Numerical evaluation of this algorithm suggested that this method 

possesses high accuracy in terms of estimating the parameters of a dynamic 

system, it was applied to a second order system that had a modelling error of 

about 40%.

Yarimer and Virgin (1988) identified the non-linear dynamical roll motion 

equation for a ship using a standard recursive estimation technique (recursive 

Least Squares scheme). The time series were produced by 4th order Runge-Kutta 

method. Noise was incorporated into the forcing term at each time step as random 

pulses from uniform distributions. However, from this investigation point of 

view, this method will lead to the use of different noise values as the Runge-Kutta 

scheme uses 4 evaluations of the derivative vector, which results in inconsistent 

and unpredictable integration errors.

2.2 Hierarchical models

There has been a great deal of research activity in the area of identification of 

distributed parameter systems over the past two decades. An extensive treatment 

of off-line schemes (e.g., output least square, equation error, etc.) together with a 

comprehensive survey of the literature can be found in the monograph by Banks 

and Kunisch [Banks & Kunisch, 1989], In the case of on-line, or adaptive, 

schemes, the available literature is less extensive and more recent [Isermann et al, 

1995].
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The on-line methods give estimates recursively as the measurements are obtained 

within the time limit imposed by the sampling period. These include recursive 

projection algorithm [Baumeister et al, 1997], recursive Least Square algorithm 

[Glentis et al, 1990], on-line excitation algorithms [Ludwig et al, 1998], etc.

2.2.1 Parameter Estimation in Large-scale Systems

Parameter estimation of low order linear systems has been available for many 

years; the jump to the case of large-scale systems introduces special difficulties, 

which are associated with the high dimensionality of interconnected systems. 

Sage and his co-workers (Arafeh & Sage, 1974) have made important 

contributions in this area of identification for large-scale systems, such as the 

Maximum A Posterior approach (MAP). This approach is applicable to both state 

and parameter estimation, also the method is particularly attractive for parameter 

estimation since it is a sub-optimal method which converges to the correct 

parameter/state values near the final time and whilst this may not be acceptable 

for state estimation, it is usually so for parameter estimation.

An optimal state-estimation method for linear interconnected dynamical systems 

is the Multiple- Projection approach (Hassan et al. 1982). This technique has an 

excellent convergence behaviour since the estimator is computed in a number of 

iterations that is equal to the number of subsystems comprising the overall system 

(Sultan, 1988). Large-scale least-squares parameter estimation has been studied 

by Sultan et al. (1983,1985) by developing indirect algorithms using the
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decomposition-co-ordination approach. In 1988 Sultan, Hassan and Calvet 

developed two sequential decomposition algorithms for solving the problem of 

least-squares estimation in large-scale systems. The first algorithm based on the 

interaction-prediction approach for hierarchical optimization. The second 

algorithm treats the estimation problem as that of solving a large set of linear 

algebraic equations using Gauss-Seidal decomposition technique. A recursive 

version of each algorithm was also developed. The two algorithms were 

successfully applied to estimate the parameters of a multivariable discrete-time 

system. The Gauss-Seidal algorithm showed better convergence behaviour than 

the interaction-prediction algorithm.

Chemouil, Katebi, Sastiy and Singh (1981) examined the use of maximum A 

Posterior (MAP) approach for parameter estimation in large-scale interconnected 

dynamical systems. The first work in this area was by Sage’s group (Guinzy and 

Sage, 1974) who used the MAP approach in order to convert the estimation 

problem to an optimization problem, which could subsequently be solved using 

hierarchical techniques. In an earlier paper Chen and Perlis (1967) considered a 

hierarchical approach to optimal state estimation. Chemouil, Katebi, Sastry and 

Singh (1981) converted the approach of Chen and Perlis to the parameter 

estimation case and applied the co-state prediction approach (Hassan and Singh, 

1977) to the parameter estimation problem. Their conclusions were that although 

the original approach of Sage was sub-optimal, in most cases this sub-optimality 

was at an acceptable level particularly when they took into account the low 

computation requirements of the approach.
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2.2.2 Parameter Estimation using Hierarchical Structure

Linear time invariant multivariable systems may be considered as an 

interconnection of other subsystems, which may themselves be considered as an 

interconnection of other subsystems of lower order (Rosenbrock & Paugh, 1974).

Chang and Rae (1997) proposed a hybrid mapping parameter estimation method 

using the hierarchical structure in object-oriented coding. The hierarchical 

structure employed constructs of a low-resolution image. Then six mapping 

parameters for each object are then estimated from the low-resolution image and 

these parameter values are verified based on the displaced frame difference 

(DFD). Computer simulation showed that the estimation method gave a 

performance similar to that of conventional methods with greatly reduced 

computational complexity.

2.2.3 Parameter Estimation for Distributed Parameter Systems

Distributed time varying models are generally used for modelling dynamics, 

which are very complex. With the advent of powerful digital computers it has 

become possible to implement numerically intensive computations with much 

ease. Partial differential equations are often used to model the distributed 

parameter systems (Sunahara, 1982).

Mathew and Jha (1998) dealt with a functional approximation approach for 

identifying parameters from input output data for a class of systems. The 

operational properties of Hermit polynomials have been used in formulating an
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algorithm for identifying a class of time varying linear distributed parameter 

systems. Other authors have used different sets of orthogonal polynomials and 

piecewise constant functions such as Walsh functions (Rao & Sivakumar, 1975), 

Block pulse functions (Hsu and Cheng, 1982), Chebychev series (Horng and Tsai,

1986), Legendre polynomials (Mohan and Dutta, 1988), Laguerre polynomials 

(Ranganathan and Rajamani, 1987), etc. Mathew and Jha (1998) concluded that 

estimation of the parameters for the distributed linear time-varying system via 

Hermit polynomials, under noise free conditions, guaranteed convergence of 

estimate of the coefficients for Hermit series expansion.

2.3 Summary

This Chapter summarizes the current state of parameter estimation techniques in 

the literature with particular reference to on-line and off-line. The merits and 

problems associated with current studies, carried out using each approach, were 

reviewed. For the choice of parameter estimation method it is of interest to know 

the conditions under which stable and convergent system behaviour can be 

attained.
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CHAPTER 3 - THREE PARAMETER ESTIMATION 

ALGORITHMS FOR TIME VARYING SYSTEMS

3.1 Introduction

To recognise trends embedded in patterns, a dynamical model of the system 

generating the patterns may be assumed. A second order model has a wide variety 

of patterns which can describe the short-term behaviour of complex physical and 

biological systems well. Apart from initial conditions, the output pattern of a 

simple second order system is completely defined by 3 parameters -  damping 

ratio (0 , natural frequency (co) and external input (u).

In on-line applications, patterns are collected using devices taking measurements 

from the real system. The output patterns are fed to an analysis module, which 

classifies the input. Based on the output, a decision feedback action can make the 

system output produce the desired input to create a control system in which use is 

made of estimation techniques for adaptive purposes. Based on these estimates the 

adaptive module “controller” is adjusted to perform the desired input. The main 

purpose is to determine the parameters for stability in the modelled system.

Three algorithms are proposed and investigated in this study to estimate three

categories of parameters: constant, variables with 1st order dynamics and

variables with 2nd order dynamics, of an equivalent second order system from a

given trajectory (in time or space) of the pattern. The algorithms combine

successive 1st order filters of specified cut-off frequencies, to provide smoothing
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and higher order derivative filter estimation, with non-linear static parameter 

estimators.

Another major part of this investigation, the effect of measurement noise on the 

estimation accuracy is considered when the incoming trajectories were corrupted 

with random noise.

This' chapter describes three hybrid methods for estimating parameters of 

equivalent second order systems. Section 3.2 gives a detail of breakdown of the 

proposed algorithms. Section 3.3 describes the categories of parameter sets. In 

section 3.4, a study of parameter estimation is considered. Section 3.5 gives a 

description of modelling a hierarchical system based on second order sub-systems.

3.1.1 Definitions of ®, C, and u

Many physical problems are described by the solution of an initial value problem 

of the form:

co~2.x"+2.£. co~J.x f+x^u (3.1)

x(0) =x0) x'(0)=x'o

Where co is the natural frequency, C, is the damping ratio, u is the input and x is the 

output of the system.. The derivation of the theoretical solution of equation 3.1 is 

given in Appendix A.

25



3.2 Derivations of Parameter Estimation Algorithms

Three algorithms are investigated in this study by simulation to estimate the 

parameters of an equivalent second order system for 3 categories of parameter 

sets: constants, variables with 1st order dynamics and variables with 2nd order 

dynamics. These three methods were developed using the following approaches:

• By using three sets of estimated 1st and 2nd time derivatives of the measured 

output of the system.

• By using two sets of estimated 1st, 2nd and 3 rd time derivatives of the measured 

output of the system.

• By using a single set of estimated 1st, 2nd, 3rd and 4th time derivatives of the 

measured output of the system.

These are illustrated graphically in Figure 3.1.
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Figure 3.1: Three Parameter Estimation Algorithms

3.2.1 Algorithm-1: Three Points in x, x' and x"

This algorithm uses three points on the time trajectory to provide 3 simultaneous 

equations in the parameters. The algorithm uses a maximum of two derivatives of 

x to estimate these parameters. This is in contrast to later algorithms that use 

more. The algorithm is derived as follows:

Given the second order system:

aT2.x”+2. £ . co1. x'+x=u A l. 1

x(0)=x0, x'(0)^x'o
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Use three points of x, x r and x" to produce:

gT2 X]” + 2. £.cd~jjcj' + X] -  u A1.2

C0 ~2 X2 n + 2. ^.o f1 .X2  + X2  = u A1.3

o f 2 X3 " + 2. ( .o f 1 .x3 ' + x3  = u A1.4

Subtract (A1.3) from (A1.2) and subtract (A1.4) from (A1.2) to produce (A1.5) 

and (A1.6) respectively:

co~2.( xj" - x2 ") + 2. (.co 1 .(xi - x / )  + ( X1-X2 )  = 0  A1.5

a f2.(  x j” - X3 ”)  + 2. ( o f 1.(xi -X3  )  + (X1 -X3 )  = 0 A1.6

Divide (A1.5) by (xi' - X2 O to produce:

co2.(  x ” - x2”)  /  (xi -X2  )  + 2. ( c o 1 + (X1 -X2 )  /(x i - x2') — 0 A1.7

Divide (A1.6) by (xj' - xa') to produce:

G)~2.( Xj"- X3 ”) / ( X 1 -X3 )  + 2. (.Of1 + (Xj -X3) /(X 1 -X3 )  = 0 A1.8

Subtract (A1.8) from (A1.7) to produce:

of2 .[ (x j”- x ”)  /  (xi - x 2)  - ( x "  - x3") /  (Xi -X3 )]  + [(X!-X2) /

( X]'-x2) - (xj -x3) / (xir- x 3 ) = 0  A1.9

Use the following notations to simplify expressions:

A12=(xi-x2), A'12 = (x 1 ' - x 2% A”1 2 = ( x " - x2”)

A13=(X} -X3), A'13 = (x 1 , - x3), A"13 = ( x 1" - x3”)  A1.10
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By which we can get an expression from (A1.9) for estimated co:

Egt  =[A"13.A'12-A"12.A'13]/[A12A'13 -A13A '12] A l.ll

And an expression for estimated C, using (A1.5) is obtained: 

E(=  [ - E go2. A ” 12 -A 12]/[2 . EgTKA'U] A1.12

And finally an expression from (A1.2) for estimated u is obtained:

Eu = E g) 2. x i"  + 2. E ( .  E g) 1. X jr + x i A1.13

.2.2 Algoritlim-2: Two Points and One Extra Derivative

This algorithm uses only 2 points from the system output but requires one more 

time derivative than Algorithm 1, to provide a continuous estimate of the 3 

parameters. Algorithm-2 is derived to estimate ©, £ and u using two values of 

estimated x, x', x" and x"' as follows:

Given the second order system: 

co~2 .x”+2 . ( .  o f1. x'+x=w

Use two points of x, x', x" and x'" to produce:

co~2 x j” + 2. ( g E 1x i '  + xj — u  A2.1

of2 x2" + 2. (.oE1 x 2 + x2  = u A22

Subtract (A2.2) from (A2.1) to produce:

co 2.( X i "  -  X 2 n ) / ( Xi - x 2  )  + 2. (.co 1 + ( X ]  - x2) / ( x (  - X 2  )  -  0
29
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Divide (A2.3) by ( xi' - X2 ') to produce:

aT2. ( x ," -  x2" ) / ( x , ' - x 2')  + 2. £ a f J+(xj -x2) / ( x j ' - x2)  = 0 A2A

Differentiate (A2.4) with respect to time to eliminate 2.£.co"1 and produce: 

[w-2[ (x , '- x 2'). ( x , m -  x2"')J- ( x i " -  x2")2J /(x ,'- x 2')2 +  0 + [ ( x i ' - x 2’) 2 - ( x 1 

- X 2 ) .  (  x j "  -  X2 ) ]  /  ( X } '  -  X2  )  = 0  A2.5

Use the following notations to simplify expressions:

A12 =  (xi - X 2), A’12 =  ( x i  - X 2 ) ,  A” 12 =  ( x " - x2") a n d

A " ’1 2 = ( x r -  x 2”)  A2.6

By which an expression for estimated co is obtained:

Eoi = [(A '12). (A'" 12)-  (A"12)2]/[(A 'l /  - (A 12).

Use A2.5 to obtain an expression for estimated Q.

E£= [-EaT2. A" 12/A' 12- A12/A'12] /  [2. A2.8

And finally an expression for estimated u is obtained:

Eu =  Eco2. x 1 ”  +  2. E£. EaT1. x i ’ +  x j A2.9
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3.2.3 Algorithm-3: One Point and Two Extra Derivatives

This algorithm uses a single time point but two further time derivatives compared 

to Algorithm-1. Algorithm-3 is derived to estimate co, £ and u using estimated 

higher derivatives of x as follows:

Given the second order system: 

co'2. x "+ 2. C . co'1. x '+x=u

Differentiate (Al .1) with respect to time to produce:

co 2 x m + 2. Cco 1 .x” + x' = 0 A3.1

Divide (A3.1) by x"to produce:

co'2. x"’/x "  + 2. CaT1 + x '/x" = 0 A3.2

Differentiate (A3.2) with respect to time to eliminate 2-C-©*1 and produce:

co~2.[(xn. x"" - x'"2) /x " 2]  + 0 + [(x"2 -  x\ x n) /x " 2]  =0 A3.3

By which an expression for estimated co is obtained:

A3.4

Using (A3.1) an expression for estimated C, is obtained:

E£=-[Em-2x"'+x']/[2. Eco Jx"] A3.5

And finally an expression for estimated u is obtained: 

Eu = Eco~2.x"  + 2. EC  E a r1 .* '+*
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3.2.4 Derivation of Filter Values

Each of the input/output data sets of the second order system must be conditioned 

to remove the high frequency content, any initial transients due to initial 

conditions, and the bias within the signals. One method to reduce the effect of 

noise ‘high frequency components’ during continuous estimate of x, x', x", x '"  

and x ""  is to use low pass filters. The half power cut-off frequency of these 

filters is G (which is 1/L in the equivalent inductor/resistor low pass 1st order filter, 

see Appendix B).

3.3 Categories of Parameter sets

3.3.1 Constant Parameters

This is the most tractable case, when the parameters (o>, C and u) of a second order 

system do not depend on time. Positive and negative values could be estimated 

using the algorithms derived above over a range of set values.

3.3.2 Variables with 1st Order Dynamics

For the variable parameters case with 1st order dynamics, the parameters of the 

second order system do depend on time i.e. time varying parameters. Different 

sets could be estimated using the algorithms derived earlier; these include an 

exponential, sine wave, ramp or quadratic. When the parameters are set to 

exponentially varying (say from 0 to A), in this case, instead of using the
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exponential (A.e_t A) term, it has been modelled by the term derived below. This 

will make the model easier to implement and faster to execute.

The term is derived as follows:

Let x = -A.e‘At+A

For t = 0, then x = 0

For t = oo, then x = A

x' = A. e'At = A -  x

Simulation of the three algorithms derived above will be tested for a varying 

single parameter or for simultaneously varying multiple parameters.

3.3.3 Variables with 2nd Order Dynamics

Variable parameters with 2nd order dynamics may prove to be the most testing to 

be estimated. The parameters co, C, and u are time varying as outputs of second 

order systems to provide a rigorous test of the algorithms derived earlier. Each 

parameter sub-system will have its own 3 parameters: for co, they are coo, Cp and 

uo; for C, they are coz, Cp and uz; and for u, they are ou, Cp and uu. This will lead

to the modelling of hierarchical system based on 2nd order sub-systems, which will

be discussed in Section 3.5.
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3.4 Problems Encountered during the Estimation Process

The goal of parameter estimation in this investigation is to determine values of 

different model parameters that provide the best fit to the actual system using the 

algorithms derived earlier. Simulation will be carried out to show:

- The algorithms can cope well for estimating the 3 categories of parameter sets 

and test the accuracy of the estimation algorithms when the simulated system is 

assumed to be free of noise.

- The effect on the accuracy of the estimation algorithms when noise is added to 

the simulated system.

3.4.1 Parameter Estimation Algorithms without Noise

If no noise is present and the simulated system output of the second order system 

is assumed to be exact, then the filter estimate of the simulated system output and 

its higher time derivatives can be produced with a very high accuracy. This is 

achieved by reducing the 2nd order system to 1st order (state space representation), 

then the system output (x) is evaluated numerically using fourth order Runge- 

Kutta method with an adaptive step size. To provide continuous estimate of the 

filter estimate of the simulated system output and its higher derivatives i.e. Ex, 

Ex', Ex", Ex'" and Ex"", 5 first order low pass filters are needed. The half power 

cut-off frequency of these filters is G (which is 1/L in as derived in Appendix B). 

Also these 5 1st order equation are computed numerically using the Runge-Kutta 

method.
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3.4.2 Sensitivity of Parameter Estimation Algorithms to Noise

As mentioned in the aims, an important part of this study is to examine the 

performance and robustness of the parameter estimation algorithms when the 

incoming trajectories are corrupted with noise. To make the simulation more 

realistic simulation runs are made with some noise added, for the three categories 

of parameters; constants, variables with 1st order dynamics and variables with 2nd 

order dynamics. Noise is derived from a random number generator of mean zero.

3.4.3 Compensation for Lag and amplitude attenuation caused by Low gain:

Low gain (low cut-off frequency in the filter) is needed to filter out the noise, but 

low gain introduces lag and amplitude attenuation, which produce erroneous 

estimates of the parameters. A numerical lag compensation technique need to be 

introduced which selects progressively distant values of the higher derivatives. 

Also a numerical amplification factor technique needs to be introduced to 

overcome the attenuation problem. Simulation examples to investigate these 

problems and their solution will be presented in Chapters 4 and 5.

Figure 3.2 shows the arrangement of the desired parameter estimation system 

including the generation of the filter cascade to produce the higher derivative 

estimations and the three parameters co, £, and u estimated using one of the three 

algorithms.
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3.5 Parameter Estimation of Hierarchical Models

A hierarchical model based on second order sub-systems may be well formed by 

modelling the behaviour of each of the three parameters in the main second order 

system defined in 3.1.1. The parameters themselves are thus modelled as having 

their own unique time varying patterns, i.e. have dynamical behaviour. If these 

parameters are seen as time varying, then they in turn are submitted as input to 

another parameter estimation algorithm to estimate the parameters of their own 

dynamics. An example of a hierarchical model based on 12-second order sub­

systems is shown in Figure 3.3. The objective of the process of hierarchical 

parameter estimation is to produce the values of the first level parameters of the 

sub-systems co, £ and u that generate the given trajectory of x through time.

The process of estimating the first level parameters of the sub-systems co, Q and u 

from the observed main system output poses different filtering criteria. Firstly, 

high gain (G) is needed to produce accurate estimation of time derivatives and 

hence the the three parameters co, Q and u of the main system. Secondly, low gain 

is needed to produce filter estimate of these and their higher derivatives i.e. E q , 

E q ', Eco", E q '", and E q ""; EQ, EQ, EQ', EQ", and EQ'" ; Eu, Eu', Eu", Eu"', and 

Eu"". This low gain is needed because the estimation of the parameters q , Q and u 

is prone to noise and producing the derivatives is also prone to noise in itself. As 

the gain is reduced, compensation for lag and attenuation need to be introduced. 

When these derivatives are produced accurately then it is possible to achieve 

parameter estimates via the three algorithms described in section 3.2.
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CHAPTER 4 - SIMULATION SOFTWARE AND TEST 

STRATEGY

4.1 Simulation Structure

Simulation of the parameter estimation algorithms is implemented using Mathcad 

8. This package is a versatile and powerful tool for computing the numerical 

solution of ordinary differential equations and is very suitable for the simulation 

of dynamical systems. Numerical system solutions within the Mathcad package 

will be used to solve the problem described in this thesis after minor modification.

4.1.1 Structure Details

Programs implemented in Mathcad will be presented in this chapter for the three 

categories of parameters: constant and variable with 1st and 2nd order dynamics. 

The three algorithms will be applied to each category to test their effectiveness.

Constant Parameters

Consider the case when the parameters of the second order system (defined in 

3.1.1) are constants. The actual and estimated outputs of the system and their 

higher derivatives are computed using the built-in Runge-Kutta routine in 

Mathcad. This is achieved by reducing the second order system to a first order 

system as follows:
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Let Xi = x (4.1)

Xi = x2 = x' (4.2)

(4.3)

These expressions are substituted into equation 3.1.1, to get the following:

Equations 4.4 and 4.5, as well as five 1st order low pass filters, provide a 

continuous estimate of x up to the fourth derivative i.e. Ex, Ex', Ex", Ex'" and 

Ex"". These seven simultaneous 1st order equations are contained in the D vector 

[Figure 4.1], which is solved using the Runge-Kutta routine for the interval to and 

ti. The half power cut-off frequency of these filters is G, [Appendix B], Once the 

estimate of x and its time derivatives are determined, it will be possible to apply 

the three algorithms to estimate the constant parameters co, C, and u. The Mathcad 

program that further describes the estimation of co, Q and u is shown in Program 1 

[Appendix C],

xi = x2 (4.4)

X2 = -C02.Xi -  2.£.co.x2 + co2.u (4.5)
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x1 and x2 are the 
system state variables

x3l x 4, x 5 are estimates 
of x, x' and x"

x 6 and x 7 are estimates of
X". & x.h.

Figure 4.1: The D-vector, containing 7 simultaneous 1st order derivatives with 

initial conditions in vector x, for the constant parameters case.

When the three parameters of the 2nd order system defined in Section 3.1.1 are set 

as constants, the estimated output and their derivatives can be compared with the 

exact solutions [derived in Appendix A], The results are shown in Figure 4.2. A 

comparison between the numerical solution of the system, with the filter estimate 

of system output and its higher derivatives, could also be made from these plots. 

To provide an accurate estimation of these, a higher gain value (cut-off frequency) 

was used. The higher the gain the closer the filter estimates were. The gain used 

ranged from 1,000 to 10,000.

V

0

0

0 D(t,x) :=
0

0

*2
- c o  2 -X j -  2 ' C  'd> ' X j j  +  co 2 - u  

G-(xi-Xj)

G-[G-(Xl - JS)“ X4] 
G-fG-fG-^-x^-x^-xJ

G [G'[G'[G' (X1 ~ Xi)~ XJ  ~ xs]” xe]
o f o f  o f o f  G- (x, -  X3) -  x4] -  x j  -  Xg] -
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Figure 4.2: Exact and Estimated outputs and their derivatives for constant 

parameters (g> =10, £ =0.1 and u =1; G=1000)



Parameters with 1st Order Dynamics

Consider the case when the three parameters (co, £ and u) of the 2nd order system 

(defined in section 3.1.1), are variable with 1st order dynamics; the actual and 

estimated outputs of the system, as well as their higher derivatives, are computed 

using the built-in Runge-Kutta routine in Mathcad. The derivatives vector D is 

modified to include the rate of change of a>, £ and u. co', Q and u' are set to an 

exponential ramp, often in the form e'1 , which, when coupled with a suitable 

initial condition, allows these parameters to increases over a wide range in a 

reasonably short time (about 1 to 3 sec). However, in this case, instead of using 

the exponential (e‘l) term for the solution, the derivative form is used [Figure 4.3]. 

This makes the model easier to implement and faster to execute.

Once the estimate of x and its time derivatives have been determined, it is possible 

to apply the three algorithms to estimate the variables with 1st order dynamics (co, 

Q and u). The Mathcad program used for estimating co, £ and u is shown in 

Program 2 [Appendix C].
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x :=

0

0
0
0
0
0
0
2

0.1

1

D (t,x ):=

*2

- W S - 2,v v ^ + W 2,\  o
G ' ( Xl " X 3)  

g -[g - ( x i - x 3) - x 4]  

g . [ g [ g -(xi - ?S) - x 4] - x 5] 

G-[Cr[G{G-(x1- ^ ) - x 4] - x 5] - ^ ]  

Q[C3*[C3-[C3-[G(x1 -  -  x j  - x j ~  x j  -  Ky]

20— \
0
0

x1 and x2 are the system  
state variables

|^ ^ ,x 4j and j x5 are filter

estimate of x, x' & x"

x 6 and x7 are estimates of 
x’" & x""

x8 is a , x9 is Q and x 10 is u

Figure 4.3: The D-vector, containing 10 simultaneous 1st order derivatives 

with initial conditions in vector x, for variables parameters with 1st order

dynamics.

The exact and filter estimate of outputs and their derivatives are shown in Figure 

4.4 when the three parameters of the 2nd order system (defined in 3.1.1) have 1st 

order dynamics,

44



x & Ex x' &Ex' x" & Ex"

z.i,4

2

1

00 2000

x'(i)

“ 10 0 2000

100

,6

0

-1 0 0 0 2000

X"' & Ex'"
1000

-1 0 0 0 0 2000

x"” & Ex'
1*10

0

A
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Figure 4.4: Exact and Estimated outputs and their derivatives for variables 

parameters with 1st order dynamics (q: exponentially varying from 10 to 12,

C=0.1 and u=l;  G=5000).

Figure 4.4, shows how close the fit of the predictions is. However, this can only 

be achieved in a short period of time (from 1 to 3 seconds). As time increases the 

exact solution [derived in Appendix A] will become invalid, due to the 

assumption that the parameters were time independent.
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Parameters with 2nd Order Dynamics

Consider the case when the three parameters (co, £ and u) of the 2nd order system 

(defined in Section 3.1.1) are variable with 2nd order dynamics; the parameters (co, 

£ and u) are time varying as outputs of 2nd order systems, to provide a rigorous 

test of the algorithms. Each parameter sub-system will have its own 3 parameters: 

for co, they are coo, £o and uo; for £ they are ©z, C,z and uz; and for u they are oou, 

Qa and uu. The actual and filter estimate of the outputs of the system, and their 

higher derivatives are computed using the built-in Runge-Kutta routine in 

Mathcad. The derivatives vector D is modified to include the rate of change of ©, 

C, and u (which are reduced from 2nd order form to a 1st order). The Mathcad 

program used for estimating co, C, and u with 2nd order dynamics is shown in 

Program 3 [Appendix C]. The derivatives vector is shown in Figure 4.5.



0
0
10

0
0.1
0
1
0
0
0
0
0
0

D (t,x ) :=

*2  

X4
2 2

- c o o  -x^ -  2 ^ o c d o -x4  +  coo  -u o

2 2
- C 0 Z  ■X5 ~  2 -^Z 'C O Z -X g -l-C O Z  - u z

Xg
2 2~cou -Xy-2-^u-cou->^+-cou -uu

G (*,-*>)
° [ G'(xi - ^ ) - xio]

G [ G [ G-(xi - ^ ) - x. o ] - xii]  

G [& [g [G -(x , -  -  X jJ -  Xj,] -  X,2]

G { G {& [G [G (x 1 -  ^  -  x,0] -  x j  -  x j  -  x j

x 1 and x2 are the 
system  state variables

x3 is co

xs is C

x7 IS u

x9 x 10 and x^  are
filter estimate of 
x, x’ and x"

x12 and x 13 are 
filter estimate of 
x"' and x"" respectively

Figure 4.5: The D-vector, containing 13 simultaneous 1st order derivatives 

with initial conditions in vector x for parameters with 2nd order dynamics.

The exact and filter estimate of outputs and their derivatives, when the three 

parameters of the 2nd order system (defined in Section 3.1.1) are variables with 2nd 

order dynamics are shown in Figure 4.6.
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Figure 4.6: Exact and Estimated outputs and their derivatives for parameters 

with 2nd order dynamics (co: coo=10, Co=0.3, uo=20; Q: coz=5, Cz=0.3, uz=0.1;

u: qu=10,£u=0.3 and uu=l).

4.1.2 Initialization

The time trajectory of a second order model response differs for each set of initial

conditions. The most standard is to start with the system at rest. There are

sometimes limitations on the parameters of the second order system and initial

conditions values, when the solutions of the differential equation do not exist, are
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required. On the other hand, when the parameters have 1st and 2nd order dynamics 

they should be used with suitable initial conditions to allow the parameters to 

increase over a good range.

4.1.3 Execution

In the simulation, each estimation algorithm can be executed separately or 

combined with other estimation algorithms. Within Mathcad, the execution of the 

programs is simply carried out by calling the estimation algorithm program. 

Mathcad then updates results in the worksheet window automatically.

4.2 Test Strategy

4.2.1 Varying a Single Parameter

Many applications in control systems require the estimation of one or more 

parameters of the system. Among these are adaptive control algorithms based on 

system identification. This class of applications includes the estimation of the 

coefficient of friction and the use of this estimate to generate an opposing force 

that cancels the friction (Freidland & Park, 1992).

The estimation algorithms derived in Chapter 3 can be generalised to address the 

problem of estimating time varying parameters. By modelling one parameter that 

varies with time and keeping the other two parameters constant, the estimation 

algorithms are expected to produce accurate predictions. However, by keeping 2 

parameters constant, this system will only be valid for parameters with 1st and 2nd
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order dynamics. An example of modelling co (varying with time exponentially), 

keeping £ and u constant is shown in Figure 4.3 above. Program 2 [Appendix C] 

was used and simulation results are presented in Chapter 5.

4.2.2 Varying More than One Parameter

One example of a system described by more than one varying parameter is the DC 

servomotor modelled as second order system. In the design of a position and 

speed controller for the DC servomotor, two parameters have to be estimated: the 

damping ratio and natural frequency. As in the previous example, the algorithms 

derived in Chapter 3 will be examined in the case of time varying damping ratio 

and natural frequency. By modelling the two time-varying parameters, and 

keeping the third parameter constant, the estimation algorithms are expected to 

produce accurate predictions. The D-vector of modelling co (exponentially 

varying from 10 to 12 in 1 sec.), Q (exponentially varying from 0.1 to 0.9 in 1 sec) 

and keeping u constant at one is shown in Figure 4.7. When all three parameters 

vary at the same time at a rate comparable with the system dynamics, invalid 

estimations results are expected due to the breakdown of the assumptions in the 

derivation of the three algorithms, i.e. constant parameters. Program 2 [Appendix 

C] is used to produce the simulation results presented in Chapter 5.
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Figure 4.7: The D-vector, containing 10 simultaneous 1st order derivatives, 

varying co, £ and keeping u constant for variable parameters with 1st order

dynamics.

4.2.3 Sensitivity to Noise

Constant Parameters, Variables with 1st Order Dynamics and Variables with 

2nd Order Dynamics

To prepare for system simulation with noise, the Runge-Kutta integration routine 

had to be abandoned as it uses 4 evaluations of the derivative vector resulting in 

different noise values being used in each evaluation. A simple iterative Euler 

integration algorithm with a single evaluation is used instead as shown in Figure 

4.8.

Moving from top to bottom of Figure 4.8, the top expression represents the 

random number generator (n), feeding an integrator whose output N forms the
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noise source. The 2nd and 3rd expressions represent the state variable derivatives of 

the 2nd order system, generating the observed trajectory xl and its derivative x2. 

Depending on the rate of change of the three parameters, the 4th to 9th expressions 

represents co, Q and u, respectively (Figure 4.8 is an example of co varying 

exponentially from 10 to 30 rad/sec in 3 sec). The 10th expression shows a 1st 

order filter whose input is the noise corrupted trajectory xl+N with a gain G and 

integration step d. The 11th to 14dl expressions show the successive first order 

filters that generate the progressively higher time derivatives of x, i.e. x', x", x'" 

and x"". A noise source of 10% of the nominal trajectory amplitude is shown in 

Figure 4.9. The Mathcad Program for this simulation is shown in Program 4 

[Appendix C] and the simulation results for the three algorithms are discussed in 

Chapter 5.

N .+  1000- |m d ( n ) - ^ j - N .  

xl. +- x2.-di i

x 2 i +  [ u l i “  2 ' C V ( ®  1i ) " 1'x2 i “  x l J ' ( ®  1i ) 2 ’d

co 1. -f— (30— to l.j-d  

0

Cij-t-o 
0

ul. +• 0i
0

Ex-|-G-(xl. +  N .-E x ) -d  

Exd. +  Gl-^G- (x 1. +  N .— Ex) -  E x d ]d  

Exdd. -f- G2-[g 1-[G- (xl. +  N. -  Ex) -  Exd.] -  Exdd]-d 

Extd -h G3-[G2-[G1-[G (xl. +  N. -  Ex) -  Exd] -  Exdd.] -  Extd.]d  

Exqd. +  G4-[G3-[G2-[G1| g  (xl. + -N .-  Ex) -  Exd.] -  Exdd.] -  Extd] -  Exqd] -d

Figure 4.8: Iterative Euler integrator for the noise source, trajectory 

generator, the three parameters and time higher derivative estimators.
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Figure 4.9: An example of random noise of 0.1

Compensation for Lag and Amplitude Attenuation caused by Low gain:

A low gain (low pass filter) is needed to filter out the noise. However, a low gain 

introduces lag and amplitude attenuation, which produce erroneous parameter 

estimations. To compensate for this lag, the values of the filter estimate for higher 

time derivatives are selected by 'shifting' indices. Furthermore, to compensate for 

the attenuation, the filter estimation of the simulated output and its higher time 

derivatives are multiplied by the absolute value of the gain factor (A) of the low 

pass filter as shown in Equation 4.6 below.

(4.6)
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Where f  is the frequency of the main system (f = co/ 2 . tc) ,  and fc is the cut-off 

frequency of the low pass filter (fc = G/2.ti;).

For example, a second order system with f  = 2 Hz (i.e. co = 4.7t), ^ = 0.001 and u =1 

and solved in a duration of 3 second using an integration step of 3/T (T is the total 

number of points, set to 2000 to provide accurate integration results). If the cut-off 

frequency of the low pass filter is twice f  (i.e. G = 8.n), the results show a lag of 

about 25 time steps at each stage of the higher derivative estimators, and an 

attenuation of about 10%, the exact value is A=1.118 from equation 4.6. Figure 

4.10 shows sample results of the output compared with its filter estimate, and their 

1st time derivatives. Table 4.1a,b shows the lag (L points) caused when the value of 

G is set to 20 at various values of co and when the value of w is set to 20 at various 

values of G respectively.

a.
© 5 10 15 20 25 30

Lag (L) 34 32 30 29 25 22

b.
G 1000 500 300 100 50 20

Lag (L) 0 1 2 6 13 31

Table 4.1.a, b: Lag caused by different values of co and G (simulation time = 3

seconds).

The results of introducing of the lag/amplitude compensation for this example are 

shown in Figure 4.11. After the initial transient period, the filter estimation of 

the simulated system and its 1st derivative begin to have a close fit to the actual 

simulated system output and its 1st derivative.
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Figure 4.10: Results of the example before introducing the lag/amplitude 

compensation to the filter estimation of the simulated system and its 1st

derivative.
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Figure 4.11: Results of the example, after introducing lag and amplitude 

compensation to the filter estimation of the simulated system and its 1st
derivative.
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Higher Derivative Estimation:

Noise added to the trajectory undergoes successive filtering as it passes through 

the stages of the higher time derivatives. Low values of G correspond to low cut­

off frequencies in the filter, resulting in smoother derivative estimates. Figures 

4.12.a & 4.12.b below show 2 such cases when G=20 and 30 respectively. The 

heavier filtering effect of G=20 on the derivative trajectories is quite noticeable. 

The noise level is 10% of the nominal value of x at 1.0.

The effects of noise on the estimation accuracy of the algorithms in the simulation 

are presented in Chapter 5.
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Figure 4.12.a: Higher derivative estimation: n=0.1, G=20.
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Figure 4.12.b: Higher derivative estimation without compensation: n=0.1,
G=30.

4.3 Parameter Estimation of Hierarchical Models

The hierarchical model based on 2nd order sub-systems can be seen when the 

parameters of the main second order system (defined in 3.1.1) are variables having 

2nd order dynamic behaviour. In section 4.1.1 the variables with 2nd order 

dynamics co, £ and u were modelled in the D-vector and the numerical solutions is 

obtained using the built-in 4th order Runge-Kutta scheme. Deep within the system 

lie the first level parameters (coo, Qo, uo; coz, C,z uz; and cou, £u uu) which are 

constants. In this section, these first level parameters will be estimated using the 

three algorithms derived in Chapter 3.

To prepare for the simulation of these, the iterative Euler integration (with a single 

evaluation) is used after estimating the three parameters of the main system (as 

described in 4.1.1). The Euler method is chosen for the following reasons:
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1) Producing estimates of the three parameters of the main system are prone to 

noise. The first level parameter estimation depends upon the accuracy of the 

filter estimate of these three parameters and their higher derivatives. Low gain 

is required and consequently lag problems will occur.

2) Shift indices are required and the built-in Runge-Kutta routine can not be 

modified to introduce these.

3) The use of a programmed Euler routine permitted better control of the 

simulation.

4) When the number of rows in the D-vector is increased (adding the filter 

estimate) in the Runge-Kutta method, the tolerance has to be reduced to 

complete the simulation within reasonable time duration. This decreased the 

accuracy of estimations.

4.3.1 Hierarchical Model for The © Subsystem

Consider the hierarchical model simulation structure for the © subsystem with 2nd 

order dynamics. The objective of this simulation is to provide an estimate of the 

first level parameters (©o, Co and uo) of the sub-system ©, from the simulated 

main system output, using the three algorithms derived in Chapter 3.

59



The estimate of 0  (E0 ) of the main system is obtained using the three algorithms 

described in 4.1.1 (also Program 3, Appendix C). To provide an estimate of the 

first level parameters, the iterative Euler routine is used to generate the filter 

estimate of the parameter Eq (FEq) of the main 2nd order system and its higher 

derivatives i.e. FE0 ', FE0 ", FE0 "', and FE0 "". Moving from the top to the 

bottom of Figure 4.13: the 1st expression generates the filter estimate of the 

estimated parameter E© (FEq) of the main system (for example, E©3 estimates 

the parameter 0  of the main system using Algorithm-3). The 2nd to 5th 

expressions show the successive first order filters that generate the time 

derivatives of E©„ i.e. FE©', FEq", FEq'", and FE©"".

The values of the gains (G, Gl, G2 to G4) are assigned different letters to allow a 

number of gain values; the integration step d which is equal to the simulation time 

divided by the total number of points. Once the time derivatives have been 

determined, it is possible to apply the three algorithms to estimate the first level 

parameters (qo, £ 0  and uo). The Mathcad program that further describes the 

process of estimating the first level parameters of the sub-system © is shown in 

Program 5 [Appendix C]. Simulation results will be presented in Chapter 5.
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FE©3. , 
i+-i

FE® d3 . , , 
i + i

FE®dd3 . , ,
i + i

:=

FE©td3 . , .i + i

FB»qd3 . ^

FBffl3i + G -(B o)3.-F B »3i) d 

FE®d3.+ Gl ^G-^Bco3.- FEro3.j -  FE®d3.J-d 

FE® dd3. +  G2-[ G 1- [ G- (Ero 3. -  FEw 3.) -  FE® d3.] -  FE® dd3.] -d 

FE® td3. +  G3-[G2-[g f [ g -(E®3. -  FEw 3.) -  FE® d3.] -  FEcodd3.] ~  FE® td3.]-d

Figure 4.13: Iterative Euler integration for the filter estimate of E© of the 

main system and its higher derivative estimators.

4.3.2 Hierarchical Model for The C, Subsystem

The method described in section 4.3.1 is repeated here. Estimations of the first 

level parameters (coz, C,z and uz) of the sub-system C, are conducted as shown in 

program 5 [Appendix C]. Estimates of Q (EQ of the main system are obtained as 

before. Moving from the top to the bottom of Figure 4.14: the 1st expression 

generates the filter estimate of the estimated parameter EC (FEQ of the main 

system (for example, EC3 estimates the parameter C of the main system using 

Algorithm-3). The 2nd to 5th expressions show the successive first order filters 

that generate the time derivatives of EC,, i.e. FEC, FEC", FEC", and FEC".
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FE^3.-hG(H;3.-FEC3.)-d

F E C d ^ i FB;d3.-|- G1-[g (h ;3 . -  FEC3.) -  FH;d3.]-d

FECdd3. +  1 := FECdd3.+ G2-[g 1-[g -(B!;3 . -  FE^3.) -  FB^d3.]- FB^dd3.]-d

FH;td3.+1 FB;td3. +  G3-[G2-[GF[G(EC3. -  FE£3.) -  FE^d3.j -  FE^dd3.] -  FE^td3,]-d

FB^qd3.+1 FECqd3. +• G4-[G3.[G2-[g 1-[G-(E£3.-  FE£3.) -  FB!;d3.] -  FB;dd3.] -  FE^td3.] -  FB;qd3.] d

Figure 4.14: Iterative Euler integration for the filter estimate of of the 

main system and its higher derivative estimators.

4.3.3 Hierarchical Model for The u Subsystem

The methods described in section 4.3.1 are repeated here. Estimations of the first 

level parameters (cou, and uu) of the sub-system u are conducted as shown in 

program 5 [Appendix C], Estimates of u (Eu) of the main system are obtained as 

before. Moving from the top to the bottom of Figure 4.15: the 1st expression 

generates the filter estimate of the estimated parameter Eu (FEu) of the main 

system (for example, Eu3 estimates the parameter u of the main system using 

Algorithm-3). The 2nd to 5th expressions show the successive first order filters 

that generate the time derivatives of Eu,, i.e. FEu', FEu", FEu'", and FEu'".

FEu3. +  G-(Eu3.-FEu3.)-d  

FEud3. •+- G1-[G- (Eu3. -  FEu3.) -  FEud3.] -d 

FEudd3. -t- G2-[GF[G (Eu3. -  FEu3.) -  FEud3.] -  FEudd3.] -d 

FEutd3. +  G3-[G2-[G1-[G (Eu3. -  FEu3.) -  FEud3.] -  FEudd3.] -  FEutd3.]-d

Figure 4.15: Iterative Euler integration for the filter estimate of Eu of the 

main system and its higher derivative estimators.
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CHAPTER 5 -  SIMULATION RESULTS AND

DISCUSSION

This chapter presents the results of extensive simulation work and investigations 

into the parameter estimation algorithms proposed and developed in Chapters 3 

and 4. It details each stage of the simulation, describing notable features in the 

results. The overall test strategy is as described in Chapter 4.

5.1 Estimating Constant Parameters

This section covers parameter estimation of an equivalent second order system 

using the three algorithms derived in section 3.2 when the parameters are assumed 

to be constant. Program 1 [Appendix C] is used to get an estimate of the three 

parameters oo, C and u, corresponding to set values of o=10, C=01 and u=l, for a 

duration of 3 seconds throughout.

5.1.1 Algorithm 1 

Algorithm 1 - Without noise

This algorithm uses three points on the time trajectory to provide 3 simultaneous

equations. In each equation the values of its 1st and 2nd time derivatives are

obtained from the filter cascade. D is an n-element vector-valued function

containing the first derivatives of the system and three 1st order low pass filters to

provide a continuous estimate of x, x1 and x". The half power cut-off frequency of

these filters is G (which is 1/L in the equivalent inductor/resistor low pass 1st order
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filter) and is set to 1000 to provide a compromise between good response to 

systems dynamics and noise filtering. The built-in Runge-Kutta routine was used 

to find the solution of x for the interval tO and tl, which ranged between 1 to 3 

seconds and T (total number of points) has the value of 2000 for an integration 

step of tl/T (0.00015). The separation between the 3 points used for the three 

simultaneous equations clearly affects the accuracy of the estimation. The further 

they are apart the larger are the differences between the variables and the more 

accurate the estimation. A separation of 30 to 70 points was found to give good 

accuracy and rapid convergence to the correct values. Running Program 1 

[Appendix C] for co = 10, C, = 0.1 and u = 1 produced the estimations of co, C, and u 

shown in Figure 5.1.
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60

Estimated Zeta Estimated u

" 40

0.5
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0.5

0
0 1000 2000 0 1000 2000 0 1000 2000

Figure 5.1: Estimated constant parameters co , C, and u using Algorithm-1.

Algorithm 1 - Sensitivity to noise

The highest time derivative used in this algorithm is x" and thus unaffected by 

errors in estimating x'" and x"". A low gain (low pass filter) was needed to filter 

out the noise, but this introduces lag and amplitude attenuation (Table 4.1), which 

produce erroneous estimates of the parameters. To compensate for this lag, the 

values of the higher derivatives were selected by shifting indices. For example,
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produce erroneous estimates of the parameters. To compensate for this lag, the 

values of the higher derivatives were selected by shifting indices. For example, 

using the same values for co, £ and u as in Figure 5.1, a gain G of 20, and running 

the simulation of the algorithm without noise for a duration of 3 seconds, produced 

a lag of about 32 points. The amplitude factor in this example was found to be 

1.118. The derivatives estimate was multiplied by this value. Simulation results 

for this example, before and after introducing the lag/amplitude compensation, are 

shown in Figures 5.2.a and 5.2.b respectively.

Estimated Omega 20 Estimated Zeta

EG.

Estimated u

0 1000 2000 0 1000 2000
0 1000 2000

Figure 5.2.a: Estimated constant parameters cd=10, <̂ =0.1 and u=l, using 

Algorithm-1, before compensation with G =20, Lag (L) =0 and no noise (n=0).
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Figure 5.2.b: Estimated constant parameters co=10, £==0.1 and u=l, using

Algorithm-1, after compensation with G =20, Lag (L) =32 and no noise (n=0).
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The algorithm was tested for increasing noise levels of 0.1%, 1% and 10% of the 

nominal trajectory amplitude (x). With gains set to 20, noise was injected into the 

observed trajectory, producing the results shown in Figures 5.3.a, 5.3.b and 5.3.c 

respectively.
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Figure 5.3.a: Estimated constant parameters ©=10, £=0.1 and u=T, and low 

noise (n = 0.001) using Algorithm-1 with G = 20, Lag (L) = 32.
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Estimated uEstimated Omega 
40  T-----------

Figure 5.3.b: Estimated constant parameters ©=10, £=0.1 and u=l, and

medium noise (n = 0.01) using Algorithm-1 with G = 20, Lag (L) == 32.
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Estimated uEstimated Zeta 
1 0 0-----•-----

Estimated Omega

0 1000 2000 0 1000 2000 0 1000 2000 
i i '

Figure 5.3.c: Estimated constant parameters ©-10, £=0.1 and u=l, and high 

noise (n = 0.1) using Algorithm-1 with G = 20, Lag (L) — 32.

5.1.2 Algorithm 2

Algorithm 2 - Without Noise

This algorithm uses only 2 points from the systems output but requires a further 

time derivative to provide a continuous estimate of the 3 parameters. The filter 

cascade is increased by one to yield the extra derivative. The two sets of x, x', x" 

and x'" are used in the solution to the 2 simultaneous equations to give the 

estimated ©, ^ and u. The separation between the two points can be larger than 

the previous 3-points case to provide better accuracy; a situation helped by the 

fact that the parameters are constant. Algorithm 2 (in 3.2) was applied and 

Program 1 for © = 10, £ = 0.1 and u = 1 [Appendix C] was run to produce the 

results shown in Figure 5.4.
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Figure 5.4: Estimated constant parameters co, £ and u using Algorithm-2.

Algorithm 2 - Sensitivity to Noise

The simulation presented in 5.1.1 was repeated using Algorithm 2 (section 3.2). 

Noise (as described in section 5.1.1 Algorithm 1 - sensitivity to noise) was added 

to the simulated state variable output. By applying the same set values used in 

Algorithm 2, the results in Figures 5.5.a, 5.5.b and 5.5.c were obtained.
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Figure 5.5.a: Estimated constant parameters ©=10, £=0.1 and u=l, and low 

noise (n = 0.001) using Algorithm-2 with G = 20, Lag (L) = 32.
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Figure 5.5.b: Estimated constant parameters o=10, £=0.1 and u=l, and 

medium noise (n = 0.01) using Algorithm-2 with G = 20, Lag (L) = 32.

Estimated u
JSstimated Omega Estimated Zeta

Figure 5.5.c: Estimated constant parameters 0=10, £=0.1 and u=l, and high 

noise (n = 0.1) using Algoritlun-2 with G = 20, Lag (L) = 32.
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5.1.3 Algorithm 3

Algorithm 3 - Without noise

This algorithm uses a single time point but two more time derivatives than 

Algorithm-1. The filter cascade is again increased by one to provide a continuous 

estimate of the 4th time derivative x"". The separation problem now disappears 

altogether to provide a continuous estimate of all parameters at each point on the 

trajectory. Program 1 [Appendix C] was run and the results of the estimation are 

presented in Figure 5.6. Fast and accurate convergence is clearly indicated.

Estimated Omega

Eco3 10-02

2000

Estimated Zeta

EQ
n 0.095

0.09

0.085 0 2000

Estimated u
1.002

Eu3n 1

0.998

0.996 2000

Figure 5.6: Estimated constant parameters co =10, C, =0.1 and u =1 using

Algorithm-3 with G= 1000.

Algorithm 3 - Sensitivity to noise

The simulation presented in 5.1.1 was repeated again using Algorithm 3. Noise (as 

described in section 5.1.1) was added to the simulated first state variable (output). 

By applying the same set values, the results shown in Figures 5.7.a, 5.7.b and 

5.7.C were produced.
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Figure 5.7.a: Estimated constant parameters 0=10, £=0.1 and u=l, and low 

noise (n = 0.001) using Algorithm-3 with G = 20, Lag (L) = 32.
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Figure 5.7.b: Estimated constant parameters ©=10, £=0.1 and u=l, and 

medium noise (n = 0.01) using Algorithm-3 with G = 20, Lag (L) = 32.
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Figure 5.7.c: Estimated constant parameters ©=10, £=0.1 and u=l, and high

noise (n = 0.1) using Algorithm-3 with G = 20, Lag (L) = 32.



5.1.4 Discussion

Estimated values for constant dynamic parameters were close to the desired set 

values for all three algorithms. The derived algorithms estimated co, C, and u for a 

good range of values: 0  from 1 to 20, £ between ±0.01 and ±1, and u between 

±0.5 and ±40. Accurate estimates were produced. Estimation errors decreased as 

0  increased, particularly when £ was less than 0.5, where oscillation provided 

large values and wide variation in the variables. The differences between the 

(simulated) system time derivatives (x, x' and x") and their estimates from the 

filter cascade depended on G (the cut-off frequency). A high value of G provided 

a more accurate estimation of derivatives but made the algorithms prone to noise 

and vice versa. Another disadvantage of high G from the simulation point of view 

is that simulation time increased considerably due to the integration routine 

adapting to ever-smaller steps. The algorithms provided progressively faster 

convergence with Algorithm-3 being the fastest to converge.

Furthermore, when noise (derived from a random number generator with a mean 

of zero) was added to the simulated system output, the lag index shift (L) clearly 

had a direct effect on the estimation accuracy. It was found that best results were 

obtained when L was about 32 with a gain (G) of 20. The low value of G used to 

filter out the noise is related to the value of the natural frequency (0 ) of the 

system (G should be at least equal to four times 0 ). However, the relationship 

between G and 0  means that when the gain is lower than 4 times 0  the accuracy 

of estimating 0  is affected.
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The three algorithms were tested for increasing noise levels: low, 0.1%, medium, 

1% and high, 10% of the nominal trajectory amplitude. Heavy smoothing is 

provided by low values of G (cut-off frequencies, G=20), which introduces 

increasing lags in the successive stages of the higher derivative estimators and 

amplitude attenuation. Numerical lag and amplitude amplification techniques 

were introduced which selected progressively distant values of the higher 

derivatives and calibrated the reduction in the magnitude; these, together with the 

increased smoothing applied to the higher derivatives gave Algorithm-3 the 

leading edge in combating noise.

5.2 Estimating Parameters with 1st Order Dynamics

The parameters were set to vary with time. The derivative vector D was modified 

to include the rate of change of co, £ and u. co' was set to (A-x) to give an 

exponential profile as derived in section 4.1.1. When coupled with a suitable 

initial condition this allowed co to increases over a good range, e.g. 10 to 30 

rad/sec in a reasonably short duration (3 sec). Q and u' were similarly arranged to 

vary from 0.01 to 0.9, and 1 to 10 respectively, both in 3 sec. Program 2 was used 

to get an estimate of the three parameters co, £ and u using the three algorithms.

5.2.1 Algorithm 1

Algorithm 1 -  Varying a Single Parameter at a Time -Without noise

Three points are used in this algorithm, which immediately raises the issue of the 

effect of the size of the gap between successive points. Parameters do not change
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much when the gap is small. Thus, the 3 simultaneous equations are less 

erroneous in assuming (implying) constant parameters. The larger the gap the less 

accurate this assumption is and therefore estimation is less accurate. Running 

Program 2 [Appendix C] when co was varied from 10 to 30 (setting £ = 0.1 and u 

= 1); £ was varied from 0.1 to 0.3 (setting co = 10 and u= 1); and u was varied 

from 1 to 10 (setting co = 10 and C, =0.1). G was set to 1000 and simulation time to 

3 seconds in all three cases. . Figure 5.8.a shows the case when the points were 

separated by 40 time-steps. Figure 5.8.b shows the case when the points are 

separated by 100 time-steps, the errors in the estimation are very clear and 

indicates the extent by which the assumption for constant parameters has broken 

down in the simultaneous equations. There is a counter effect however, a small 

gap also means that the variables do not change very much and therefore 

differences will be prone to numerical errors. It is therefore expected that an 

optimum separation gap exists.
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Figure 5.8.a: Estimated parameters with Ist order dynamics for co, C, and u 

using Algorithm-1 (separation time step = 40 points).
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Figure 5.8.b: Estimated parameters with 1st order dynamics for co, £ and u 

using Algorithm-1 (separation time step =100 points).

Algorithm 1 -  Varying more than One Parameter at a Time -Without noise

Simulation results were also obtained using Algorithm 1 for parameters with 1st 

order dynamics, when more than one parameter was varied. Figure 5.9.a, shows 

the results obtained for estimating: co increasing from 10 to 30 in 3 sec, C, 

increasing from 0.1 to 0.3 in 3 sec. and keeping u constant at 1. Figure 5.9.b, 

shows the results obtained for estimating: 0  increasing fromlO to 30 in 3 sec., u 

increasing from 1 to 10 in 3 sec. and keeping Q constant at 0.001.
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Figure 5.9.a: Estimated parameters with 1st order dynamics for © and C but

keeping u constant using Algorithm-1.
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Figure 5.9.b: Estimated parameters with 1st order dynamics for © and u but 

keeping £ constant using Algorithm-1.

Algorithm 1 - Sensitivity to noise

Noise added to the trajectory undergoes successive filtering as it passes through 

the stages of the higher derivatives, immediately raising the issue of the effect of 

low gain. Low values of the gain G to filter out the noise are needed as discussed 

in section 5.1.4. By setting the value of G to less than 4 times the value of © will 

produce erroneous results in the estimation of©. An example of estimating © as 

it increases from 10 to 30 and keeping C, and u constants at 0.1 and 1 respectively 

produces the erroneous result shown in Figure 5.10. From the simulation point of 

view it was found that when the value of G was set to 20 and L to 32, © starts to 

diverge from the set value after it reaches the value 5. This is also true in the 

constant parameter case when the set value of © is greater than 5 when G is 20.
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Figure 5.10: Estimated parameters with 1st order dynamics co, keeping Q and

u constants using Algorithm-1 with G =20, Lag (L) =32 and no noise (n = 0).

Running Program 4 [Appendix C] when co was varied from 10 to 12 (setting £ = 

0.1 and u = 1); C was varied from 0.1 to 0.3 (setting co = 10 and u= 1); and u was 

varied from 10 to 12 (setting co = 10 and C, =0.1), for noise levels of 0.1% (low) 

and 10% (high), the results shown in Figures 5.11.a, 5.1 l.b were produced.
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Figure 5.11.a: Estimated parameters with 1st order dynamics for 0 , Q and u, 

and low noise (n = 0.001) using Algorithm-1 with G = 20, Lag (L) = 32.
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Figure 5.1 l.b: Estimated parameters with 1st order dynamics for oo, £ and u, 

and high noise (n = 0.1) using Algorithm-1 with G = 20, Lag (L) = 32.

5.2.2 Algorithm 2

Algorithm 2 -  Varying a Single Parameter at a Time - Without Noise

Only two points (occupying half the time duration of 3 points) are used here so the 

constant parameters assumption is less pronounced. This also allows a wider gap 

to reduce numerical difference errors. Two simultaneous equations are used with 

two values of x, x', x" and x"' instead of three values of x, x' and x". Program 2 

[Appendix Cj was run to produce the results shown in Figure 5.12: where 5.12.a 

and 5.12.b correspond to gaps of 40 and 100 time-steps respectively. Overall, the 

40 time-steps gap gives better performance despite large initial errors. The 

noticeable reduction in these errors for the larger gap case is probably due to the 

reduction in numerical errors as the variables have larger values.

Estim ated Zeta

0 1000 2000

E stim ated  u

0 1000 2000

78



Estimated Omega
30

Estimated Zeta Estimated u

o 1000 2000

0.4

E Q

0
1000 20000

10

Eu2.
t_  ^ /

/
I
0 1000 2000

Figure 5.12.a: Estimated parameters with 1st order dynamics for co, C, and u 

using Algorithm-2 (separation time step =40 points).
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Figure 5.12.b: Estimated parameters with 1st order dynamics for co, Q and u 

using Algorithm-2 (separation time step = 100 points).

Algorithm2 -  Varying more than one Parameter at a Time -  Without Noise

The simulation shown in section 5.2.1 for more than one varying parameter was 

used to estimate the same set values of co, C, and u used earlier, but using 

Algorithm 2 rather than Algorithm 1. Simulation results obtained are shown in 

Figures 5.13.a and 5.13.b.
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Figure 5.13.a: Estimated parameters with 1st order dynamics for © and Q but 

keeping u constant using Algorithm-2.
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Figure 5.13.b: Estimated parameters with 1st order dynamics for © and u but 

keeping C, constant using Algorithm-2.

Algorithm 2 - Sensitivity to Noise

The simulation presented in 5.2.1 was repeated using Algorithm 2. Noise (as 

described in section 5.2.1) was added to the simulated first state variable (output). 

By applying the same set values, the results shown in Figures 5.14.a, 5.14.b were 

produced.
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Figure 5.14.a: Estimated parameters with 1st order dynamics for co, Q and u, 

and low noise (n =0.001) using Algorithm-2 with G = 20, Lag (L) = 32.
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Figure 5.14.b: Estimated parameters with 1st order dynamics for co, C, and u, 

and high noise (n =0.1) using Algorithm-2 with G = 20, Lag (L) = 32.
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5.2.3 Algorithm 3

Algorithm 3 -  Varying a Single Parameter at a Time - Without Noise

Just one point is used- here but with one extra derivative, x"". As there are no gap

effects, the accuracy of the parameter estimation depends entirely on the

estimation accuracy of the time derivatives. These are obtained as by-products of

the filter cascade and the accuracy of their instantaneous values will depend on the

gain. Larger gain, i.e. smaller filter time constant and shorter delay, gives more
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accurate derivatives. However, larger gain also means higher cut off frequency 

and therefore less immunity to high frequency noise. Figures 5.15.a and 5.15.b 

show two cases with gains of 1000 and 300 respectively.

Estimated Zeta Estimated u0.4
EQ.

i,9 Z."i,10 02

Eu3.1
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Figure 5.15.a: Estimated parameters with 1st order dynamics for ©, C, and u 

using Algorithm-3 with G =1000.
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Figure 5.15.b: Estimated parameters with 1st order dynamics for q, Q and u

using Algorithm-3 with G =300.

Algorithm 3 -  Varying more than one Parameter at a Time -  Without Noise

The simulation used in 5.2.1 was repeated using Algorithm 3 to estimate the same 

set values of variables co, £ and u used earlier. Simulation results are shown in 

Figures 5.16.a and 5.16.b.
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Figure 5.16.a: Estimated parameters with 1st order dynamics for © and C, but 

keeping u constant using Algorithm-3.
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Figure 5.16.b: Estimated parameters with 1st order dynamics for © and u but 

keeping Q constant using Algorithm-3.

Algorithm 3 - Sensitivity to Noise

The simulation presented in 5.2.1 was repeated again using Algorithm 3. Noise (as 

described in section 5.2.1) was added to the simulated first state variable (output). 

By applying the same set values, the results shown in Figures 5.17.a, 5.17.b were 

produced.
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Figure 5.17.a: Estimated parameters with 1st order dynamics for co, C and u, 

and low noise (n = 0.001) using Algorithm-3 with G = 20, Lag (L) = 32.
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Figure 5.17.b: Estimated parameters with 1st order dynamics for ©, Q and u, 

and high noise (n = 0.1) using Algorithm-3 with G = 20, Lag (L) = 32.
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5.2.4 Discussion

For the variable parameter case with 1st order dynamics, Algorithm 3 gave better 

predictions for co and u than algorithms 1 and 2. For £, however, the accuracy of 

estimation in Algorithm 1 was highest, closely followed by Algorithm 2 then 

Algorithm 3. On the other hand, the accuracy of the three algorithms depends on 

the accuracy of the estimated higher derivatives. When the simulated first state 

variable (position) reaches its maximum, the estimated 1st derivative (velocity) 

drops to exactly zero and when the estimated velocity reaches its maximum, the 

estimated 2nd derivative (acceleration) drops to exactly zero. This also occurs for 

the higher derivatives. As long as this situation exist, with the necessary value of 

the lag compensator L, then accurate predictions can be expected.

The effects of measurement noise on the estimation accuracy of the three

algorithms for parameters with 1st order dynamics were investigated when the

incoming trajectories were corrupted with random noise. Two different ranges of

random numbers were applied to each algorithm. Simulation results showed

highest prediction robustness was achieved by Algorithm-3, followed by

Algorithm-2 then Algorithm-1. By simulation, several factors have been seen to

affect the estimation accuracy. Firstly, the accuracy of the derivatives is very

important and is related to the filter gain. This case showed improvement on the

accuracy of the estimation when the simulated output of the system was without

noise. However, when noise is present an increase in the gain results in less

accurate derivatives obtained and hence produces less accurate estimations.

Secondly, if any noise is present, however small, the derivative values become

increasingly inaccurate for higher gains and the algorithm that uses fewer
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derivatives is the most robust. This problem was practically resolved by 

sufficiently reducing the gain and hence the cut-off frequency (G from 1000 to 

20); for simplicity and consistency G was made equal throughout the higher 

derivative estimators. Shift indices and amplitude magnification techniques were 

introduced to compensate for the lag and the amplitude attenuation that occur 

during reduced G values.

5.3 Estimating Parameters with 2nd Order Dynamics

In this section the parameters co, £ and u are time varying as outputs of 2nd order 

systems to provide a rigorous test of the algorithms. Each parameter sub-system 

will have its own 3 parameters: for co, they are coo, £o and uo; for £ they are coz, 

£z and uz; and for u they are cou, £u and uu. Program 3 [Appendix C] was used to 

get continuous estimate of the three parameters co, £ and u, corresponding to 

values of: variable co with (©0=3, £o=0.5,uo=30) and (£=0.001, u=T, variable £ 

with (©z=3, £z=0.5,uz=0.3) and ©=5, u=l, and variable u with (cou=3, 

£u=0.5,uu=10) and co=TO, £=0.001 and G=5000, for a duration of 3 seconds in 

each case.

5.3.1 Algorithm 1

Algorithm 1 -  Varying a single Parameter at a Time- Without noise

Program 3 [Appendix C] was used to get two sets of results corresponding to gaps 

of 40 and 100 time steps between the points needed for the 3 simultaneous 

equations in this algorithm, Figures 5.18.a and 5.18.b respectively. As expected,

8 6



large errors resulted from the larger gap; using a gap of 40 reduced these errors 

considerably.
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Figure 5.18.a: Estimated parameters with 2nd order dynamics for co, £ and u, 

using Algorithm-1 (separation time step = 40 points).
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Figure 5.18.b: Estimated parameters with 2nd order dynamics for co, C, and u, 

using Algorithm-1 (separation time step =100 points).

Algorithm 1 -  Varying more than one Parameter at a Time -  Without Noise

Simulation results were then obtained using Algorithm 1 for parameters with 2nd 

order dynamics, when varying more than one parameter at a time. Figures 5.19, 

show the results obtained for estimating: co (coo=5, £p=0.1, uo=ll starting from 

5), C, (coz=5, <£z=0.1, uz=0.1 starting from 0.01) and u constant at 1.
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Figure 5.19: Estimated parameters with 2nd order dynamics for © and £ but 

keeping u constant using Algorithm-1.

Algorithm 1 - Sensitivity to Noise

Program 4 [Appendix C] was used to test the estimation accuracy of the algorithm 

corresponding to two noise levels (low, 0.1% and high, 10%). The simulation 

results shown in Figures 5.20.a, 5.20.b produced values that agree with the desired 

set values, i.e. © with (©o=10, £o=0.9, uo=30) and 0=0.001, u=T, 0 with (©z=10, 

Oz=0.9, uz=0.3) and ©=5, u=T and u with (©u=10, 0.9, uu=T0) and ©=10,

0=0.001 for a duration of 3 seconds.
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Figure 5.20.a: Estimated parameters with 2nd order dynamics for ©, £ and u,

and low noise (n = 0.001) using Algorithm-1 with G = 20, Lag (L) =32.
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Figure 5.20.b: Estimated parameters with 2nd order dynamics for ©, £ and u, 

and high noise (n = 0.1) using Algorithm-1 with G = 20, Lag (L) =32.

5.3.2 Algorithm 2

Algorithm 2 -  Varying a Single Parameter at a Time - Without noise

Program 3 [Appendix C] was used to estimate the parameters based on two points. 

Figures 5.21. a and 5.21.b show two sets of results for gaps of 40 and 10 time-steps 

respectively. The results in Figure 5.21.b are smoother than Figure 5.21.a. For the 

40 time-steps gap, the large random errors shown in Figure 5.21.a for co, Q have 

reduced considerably in Figure 5.21.b; for u, however, the improvement is only 

marginal.
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Figure 5.21.a: Estimated variables with 2nd order dynamics for ©, Q and u

using Algorithm 2 (separation time step =40 points).
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Figure 5.21.b: Estimated variables with 2nd order dynamics for co, £ and u 

using Algorithm 2 (separation time step = 10 points).

Algorithm 2 -  Varying more than One Parameter at a Time- Without Noise

Using the same set values as in Section 5.3.1, but using Algorithm 2 rather than 

Algorithm 1 produced the simulation results shown in Figure 5.22
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Figure 5.22: Estimated parameters with 2nd order dynamics for co and £ but 

keeping u constant using Algorithm-2.

Algorithm 2 - Sensitivity to Noise

The simulation presented in 5.3.1 was repeated using Algorithm 2. Noise (as 

described in section 5.3.1) was added to the simulated first state variable (output).
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By applying the same set values, the results shown in Figures 5.23.a, 5.23.b were 

produced.
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Figure 5.23.a: Estimated parameters with 2nd order dynamics for co, C and u, 

and low noise (n = 0.001) using Algorithm-2 with G = 20, Lag (L) =32.
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Figure 5.23.b: Estimated parameters with 2nd order dynamics for co, C, and u, 

and high noise (n = 0.1) using Algorithm-2 with G = 20, Lag (L) =32.
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5.3.3 Algorithm 3

Algorithm 3 -  Varying A single Parameter at a Time - Without noise

Program 3 [Appendix C] was used to obtain results for the single point algorithm. 

The accuracy of the derivatives is very important and is related to the filter gain; 

three sets of results were obtained to correspond to 2 gain values of 300, 1000 and 

as shown in Figures 5.24.a, 5.24.b respectively.
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Figure 5.24.a: Estimated parameters with 2nd order dynamics for to, £ and u

using Algorithm-3 with G = 300.
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Figure 5.24.b: Estimated parameters with 2nd order dynamics for ©, Q and u

using Algorithm-3 with G = 1000.
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Algorithm 3 — Varying more than one Parameter at a Time — Without Noise

The simulation used in 5.3.1 for varying more than one parameter was repeated 

using Algorithm 3 to estimate the same set values of variables with 2nd order 

dynamics. The same desired values of the variables co, £ and u were used as 

earlier. Simulation results are shown in Figure 5.25.
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Figure 5.25: Estimated parameters with 2nd order dynamics for co and C but 

keeping u constant using Algorithm-3.

Algorithm 3 - Sensitivity to Noise

The simulation presented in 5.3.1 was repeated using Algorithm 3. Noise (as 

described in section 5.3.1) was added to the estimated state variable and its higher 

derivatives. By applying the same set values, the results shown in Figures 5.26.a, 

5.26.b were produced.
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Figure 5.26.a: Estimated parameters with 2nd order dynamics for ©, Q and u,

and low noise (n = 0.001) using Algorithm-3 with G = 20, Lag (L) =32.
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Figure 5.26.b: Estimated parameters with 2nd order dynamics for co, C and u, 

and high noise (n = 0.1) using Algorithm-3 with G = 20, Lag (L) =32.

5.3.4 Discussion

Variable parameters with 2nd order dynamics proved to be the most testing as 

expected. Algorithm 3 gave better results for co and u than algorithms 1 and 2. 

Estimation of C, however, proved to be problematic, with Algorithm 1 giving 

marginally better estimate than Algorithm 2, which in turn was better than 

Algorithm 3. This is thought to be due to the increasing use of higher derivatives 

in the latter 2 cases. Different values of gain were tried in Algorithm 3 to improve 

the accuracy of the higher derivatives, which resulted in marginal improvement as 

the gain was increased from 300 to 1000. In practice, however, this gain increase 

will reduce the estimator’s noise immunity. There seems to be a clear 

compromises between these two effects, i.e. estimation accuracy and noise 

immunity.
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5.4 Parameter Estimation of Hierarchical model

A hierarchical model based on second order sub-systems may be formed by 

modelling the behaviour of each of the three parameters in the main second order 

system as defined in 3.1.1. The parameters themselves are thus modelled as 

having their own unique time varying patterns, i.e. have dynamical behaviour. If 

these parameters are seen as time varying, then they in turn are submitted as input 

to another parameter estimation algorithm to estimate the parameters of their own 

dynamics. In section 5.3 the variable parameters with 2nd order dynamics were 

successfully estimated for all three algorithms. Deep within the system another 

level of parameters (©o, Co, uo; © z ,  C ,z  u z ;  and ©u, £u uu) which are constants. In 

this section, the three algorithms will be tested to provide continuous estimate of 

these.

5.4.1 Estimation of Variable Parameter © with 2nd Order Dynamics

In sections 5.3 it was concluded that Algorithm 3 showed a better estimation than 

Algorithm 1 and, Algorithm 2. Consider the estimation of constants coo, Co and uo 

of the 2nd order dynamic behaviour of the parameter © using Algorithm 3. To 

provide an estimate of the first level parameters, the iterative Euler routine was 

used to generate the filter estimate of the parameter E© (FE©) of the main 2nd 

order system and its higher derivatives i.e. FE©', FE©", FE©'", and FE©"". 

Running program 5 to estimate the set values of the first level parameters used in 

section 5.3 (Algorithm 3- Noise Sensitivity), produced the filter estimate of the 

first level parameters shown in Figure 5.27.
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Figure 5.27: Estimated first level parameters (0 0 , and uo) of sub-system 0

using Algorithm-3.

5.4.2 Estimation of Variable Parameter £ with 2nd Order Dynamics

In this section the estimation of the first level parameters (coz, £z and uz) of the 

subsystem C is considered. The estimated parameter £ of the main system (in 

section5.3.3, using Algorithm 3) was fed into a cascade of filters in a similar way 

to 0  in the last section. To provide continuous estimate of the higher derivatives 

i.e. FEt,', FE^", FE£"', and FE£""; the procedure is similar to the one described in 

section 5.4.1. When these derivatives were obtained, Algorithm 3 was applied. 

The results of estimating these first level parameters are shown in Figure 5.28.
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Figure 5.28: Estimated first level parameters (oz, £z and uz) of sub-system £

using Algorithm-3.

5.4.3 Estimation of Variable Parameter u with 2nd Order Dynamics

Finally the estimation of the first level parameters ( q u , £ u  and uu) of the sub­

system u is presented in this section. The estimated u was produced after 

producing the estimated © and C, of the main system (as described in section 5.3 

using Algorithm 3). The filter estimate of u and its higher derivatives were 

obtained by the same manner described in section 5.4.1. The result obtained of 

estimation the first level parameters of the sub-system u is shown in Figure 5.29.
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Figure 5.29: Estimated first level parameters (gdu , £u and uu) of sub-system u

using Algorithm-3.
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5.4.4 Discussion

Estimated values for constant parameters of the sub-systems with 2nd order 

dynamic co, C, and u were close to the desired set values when Algorithm 3 was 

used. The estimation accuracy of the parameters depends largely on the following:

The estimation accuracy of the 3 sub-systems output co <£ and u 

(estimated using Algorithm 3).

The time derivatives (co, co', co", co'" and co""), (£, Q, and £"") and 

(u, u', u", u'" and u""} of the sub-systems co u.

These in turn depend on the gain value G where, more accurate derivatives are 

obtained using larger gains. To provide smooth continuous estimate of these 

derivatives, the values of G had to be reduced (from 1000 to 20) because the 

estimated (variable) parameters co, C, and u are prone to noise and the 

procedure for producing their derivatives is also prone to noise itself. For low 

gain lag and amplitude attenuation had to be compensated for using the 

techniques discussed in section 5.3. Algorithm 3 was applied to estimate the 

first level parameters of the sub-systems co, £ and u and showed accurate 

estimation.
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CHAPTER 6 - CONCLUSIONS AND FURTHER WORK

6.1 Conclusions

6.1.1 Second Order Systems

The three algorithms presented in this work are not limited in their applications to 

any specific system. Any measurement device that has observed data available 

can be used. This means that the work conducted here has enormous scope and 

could be used in a vast range of applications and fields.

Many dynamic systems can be approximated with a second order system. Such a 

system is sufficiently complex to display the significant features of higher order 

systems but can be analyzed without excessive computation.

A second order system is determined by three parameters and two variables. The 

parameters are natural frequency, damping ratio and external input. These 

parameters can be modelled as constant, variables with 1st order dynamics and 

variables with 2nd order dynamics. The precise trajectory is determined by the 

initial values of the signal and its first derivative. This study concentrates on 

determining the parameter values.

6.1.2 Parameter Estimation Algorithms

Three algorithms were developed for the estimation of natural frequency (co),

damping ratio (Q and input (u). These were estimated by using three points of x,
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x' and x", two points of x, x1, x" and x'", and one point of x, x', x", x'" and xn". The 

algorithms were tested for 3 categories of parameters: constant, variable with 1st 

order dynamics and variable with 2nd order dynamics. The algorithms were 

implemented using Mathcad.

Constant Parameters

Estimated values for constant parameters were very close to the desired set values 

for all three algorithms. The derived algorithms estimated co, C, and u for a good 

range of values: co from 1 to 20, Q between ±0.01 and ±1, and u between ±0.5 and 

±40, and all gave accurate estimates. Estimation errors decreased as co increased, 

particularly for small C, (less than 0.5), where oscillation provided wide variation 

in the variables. The differences between the (simulated) system time derivatives 

(x, x' and x") and their estimates from the filter cascade depended on G (the cut­

off frequency). A high G provided a more accurate estimation of derivatives but 

made the algorithms prone to noise and vice versa. Another disadvantage of high 

G from the simulation point of view is that simulation time increased considerably 

due to the integration routine adapting to ever-smaller steps. The algorithms 

provided progressively faster convergence with Algorithm 3 being the fastest to 

converge.

Variable Parameters with 1st Order Dynamics

For the variable parameter case with 1st order dynamics, the estimation of the 

three algorithms were close to the desired set values both when varying a single 

parameter and when simultaneously varying multiple parameters.
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Algorithm 3 gave better predictions for 0  and u than algorithms 1 and 2. For 

however, the accuracy of estimation in Algorithm 1 was highest, closely followed 

by Algorithm 2 then Algorithm 3. The accuracy of the three algorithms depended 

on the accuracy of the estimated higher derivatives. When the first state variable 

(position) reaches its maximum the 1st derivative (velocity) drops to exactly zero 

and when the velocity reaches its maximum, the 2nd derivative (acceleration) 

drops to exactly zero. This also occurs for the higher derivatives. As long as this 

situation prevails, with suitable lag compensation and amplitude magnification for 

low G, then accurate predictions can be expected.

Variables Parameters with 2nd Order Dynamics

Variable parameters with 2nd order dynamics proved to be the most testing as 

expected. The estimation of the three algorithms was again close to the desired 

set values, both when varying a single parameter and when simultaneously 

varying multiple parameters.

Algorithm 3 gave better results for 0  and u than algorithms 1 and 2; but £, 

however, proved to be problematic, with Algorithm 1 giving marginally better 

estimate than Algorithm 2 which in turn was better than Algorithm 3. This is 

thought to be due to the increasing use of higher derivatives in the latter 2 cases. 

Different values of gain were tried in Algorithm 3 to improve the accuracy of the 

higher derivatives, which resulted in marginal improvement as the gain was 

increased from 300 to 1000. In practice, however, this gain increase will reduce
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the estimator's noise immunity. There seems to be a clear compromise between 

these two effects.

6.1.3 Parameter Estimation of Hierarchical Models

The three parameters (0 , £ and u) of the second order system may be modelled as 

having their own unique time varying patterns, i.e. having dynamical behaviour. 

When the three parameters (0 , £ and u) are estimated, they are in turn submitted 

as input to a second level parameter estimation algorithm to estimate the 

parameters of their own dynamics (the first level parameters).

The process of estimating of the parameters of the sub-systems 0 , £ and u from 

the observed main system output requires many different steps. Firstly, high gain 

(G) was needed to produce accurate higher derivatives and hence estimations of 

the three parameters 0 , C, and u of the main system. Secondly, low gain was 

needed to produce a filtered version of 0 , £ and u and then their higher 

derivatives. This low gain was needed because the estimation of the parameters 

was prone to noise, as was the production of their derivatives. As low gain was 

used, compensation of lag and attenuation was essential to produce accurate 

estimation of the sub-systems parameters.

Algorithm 3 proved to produce accurate estimation of these parameters.

6.1.4 Noise Sensitivity

The effects of measurement noise on the estimation accuracy of the three 

algorithms for the three categories of parameter sets were investigated when the
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incoming trajectories were corrupted with random noise. Noise was based on a 

random number generator of zero mean. The Runge-Kutta integration routine had 

to be abandoned as it uses 4 evaluations of the derivative vector, which give 

different noise values in each evaluation and this leading to inconsistent 

integration results. A simple iterative Euler integration with a single evaluation 

was used instead.

The three parameter estimation algorithms were tested for an increasing noise 

levels of 0.1%, 1% and 10% of the nominal trajectory amplitude. Heavy 

smoothing was provided by low values of G (cut-off frequencies), which 

introduced increasing lags and amplitude attenuation in the successive stages of 

the higher derivative estimators. Numerical lag and amplitude compensation 

techniques were introduced which selected progressively distant values of the 

higher derivatives and calibrated the reduction in the magnitude; these techniques, 

together with the increased smoothing applied to the higher derivatives gave 

Algorithm 3 the leading edge in combating noise.

6.2 Overview

Overall, the estimation of parameters is best achieved with Algorithm 3, which 

uses the time trajectory and its 1st, 2nd, 3rd and 4th time derivatives. This algorithm 

is successful because it uses a single point, where changes in the parameters are 

negligible when the integration step is sufficiently small. Thus, the time 

derivatives are less erroneous in assuming (implying) constant parameters. In the 

other two algorithms, the gap between points causes a flaw in this assumption and
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therefore the estimation is less accurate. Furthermore, Algorithm 3 proved to be 

the most robust and behaved well when noise was added.

The three algorithms presented in this study showed accurate estimation of 

different categories of parameter sets. Filter estimates of the time derivatives are 

obtained using numerical methods. The numerical methods are available in many 

software packages. Implementation of these algorithms is therefore 

computationally inexpensive.

6.3 Further Work

In this study only simulation was used. It would be beneficial to see how 

accurately the algorithms can cope with real data. This would require a real-life 

situation which can be approximated to a second order system to be identified. 

Such systems include waveform of human speech, images in stereo camera 

systems and the non-linear dynamical roll motion for ships. This may well 

involve adjustment to cope with noise sources with different frequency spectrums. 

It will also be important to see how well each algorithm copes when the system 

being investigated is not exactly a second order system, as in the simulations 

carried out so far.

Estimating natural frequency (co) is a form of information mining using numerical 

frequency de-modulation. On the theoretical side, the method need to be 

generalised in terms of matrix formulation to higher order system dimensions.
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Appendix A

Derivation of Complex Solution to the Second Order System

This A ppendix derives the solution x(t), given the  initial conditions xo(0), x'o(0) 
and input u, o f  the  characteristic equation,

a - x "  +  b - x '  +  c -x = u -cg' (A .1)

W here a  =  1, b =  2.C-®, c =  or2 and. E ach  apostrophe given to  each x  indicates a 
tim e derivative.

e.g. x"= ------ x
d t 2

The ro o ts  o f  the  characteristic equation  are:

-b  -t-
r =- i

Jb2 -  4-a-<

2-a

(A.2)

-b  -  Jb2 -  4-a-( 
r  = -------- --------------

2-a

N o te  that,

(A.3)

r -r =- 1 2
- b  -h b 2 -  4-a-c - b  - bz -  4 -a -c _ b 2 -  (b 2 -  4-a-c) c 

2-a 4 -a2 a2-a

The free Solution can be w ritten  as,

iv t  iy t
x ( t ) = c  -e 1 +- c -ev J 1 2

(A. 4)
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To find the values for Ci and C2 , we examine the initial conditions for x(t) and x'(t). 

The initial conditions are, 

x o ( 0 )  and x ' q ( 0 )

We can therefore write that,

x (0)=c f c  (A.5)
0 v '  1 2

r,-t r2-t

Now since,

i .  a 1
x'(t)=c *r -e + c r -ev '  1 1 2 2

We can write,

x' (o)=r -c +• r -c
0 v ; 1 1  2 2

Inserting Equation A. 5 into Equation A. 7, we get,

c =-
2 r -  r

2 1

(A.6)

(A.7)

x' (0)=r-[x  (0) -  c 1-1- r-c  = r-x  ( 0 ) -  r -c + c -r (A.8)
o v / i L o v /  2 J 2 2  1 0  1 2  2 2  v 7

Re-arranging,

x'o ( 0 ) - ri-xo (o)=c2-(r2- ri) (A.9)

Further re-arranging for c2, we get,

[x'o (0) -  ri-x0 (0)] (A. 10)

Now inserting Equation A. 10 into Equation A. 5,
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c =x (o) -  c =x (0) -1 0 v 7 2 0 v 7
[X'o (°) -  r, X0 ( ° ) ]_ X0 (°) f2 -  X'o ^°) (A. 11)

r -  r 2 1 r -  r2 1

We now calculate the forced solution which is then added to the free solution.

x(t)=af 4> (t — x)*u(t)dx (A. 12)

r.-t iyt
Where (|)(.) is a free response of the system =c -e 1 + c2-e

Therefore, for u(t) = u,

x ( t )= u * o f ri4 rf T [ V1 r2*X c^e -e I +• 1 c *e -e dx (A. 13)

r.-t r24
Where <j>(t)=ci -e 1 +  C 2 ' Q

we can now deduce Ci + C2 from ({>(0) = 0, and recalling that (J)'(0) = 1 
(universal initial condition for weight functions.

We can now write,

r, *t
<i),(t)= ci*ri-e 1 + c2-r2-e 

f(0 )= l= c i-ri t c 2T;

T2 *

l=c -r -  r -c =c •(r -  r
1 1  2 1 i V i 2

c =i r -  r1 2
and c =- -1

r -  r 1 2
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Therefore using the expressions of Cj and C2 in Equation A.4,

x(t)=
2 rf ‘ u-co -e

r • r
1 v 1

2 V 1 u-co -e
r • r -  r

2 V 1 2

u-co
r * / r

1 V l
r • r -  r

2 V 1 2

x(t)=
2 fj't u-co -e 2 r2 -t 2 u-co -e u-co

r • r -  r
1 V 1 2

r • r -  r
2 V 1 2

•h
r -r

1 2

The total solution is then,

r, -t r.-t
x(t)=ci-e1 -t-^-e2 +

2 r T t u-co -e
r • r -  r

1 V 1 2

u-co -e2 V 1 u*co
r • r -  r
2 V 1 2

+
r -r

1 2

x(t)=
u-co

C H- 1 r • r -  r
1 V 1 2

V1 •e -t-
u-co

c -
2 r • r -  r

2 v 1 2

r?-t u-co 
■e -1- -----

r -r
1 2

(A. 14)

x'(t)=
u-co

C -h 1 r • r -  r
1 V 1 2

ri*■e + r c -
u-co

r • r
2 V 1

x"(t)=
U-0)

c +■ 1 r • r -  r
1 V i 2

■er’% ( r 2)2.
u-coc -

2 r • r
2 v 1

xM,(t)= c +• 1
u-co

r • r -  r
1 V 1 2

u-co
c -

2 r • r -  r
2 V 1 2

•e
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u-coc +1 r • r -  r
1 V 1 2

u-co
c -

2
J2*

r • r -  r
2 V 1 2
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Appendix (B)

Derivation of Filter Values (G)

This appendix derives the values of the cut-off frequency (G) in terms of RL low 

pass filter.

The RL circuit shown in Figure (B.l) is a 1st order low pass filter, whose 

characteristic equation is:

L  dl/dt + R.I = Vi (J)

L

Vo

Figure B.l: Simple RL circuit

Total impedance of the RL circuit is: Z = jocL + R

Total current is: I  = V i/Z

The output voltage V0 is: VQ = I.R
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Thus V0 = R  [Vi /Z]

The voltage gain is: V0 /V t -  1/[1 +jcoL/R]

If coc = R/L then

The voltage gain is: V0/Vt = 1/[1 +j(x/coc]

When o)/coc -  1, the gain is equal to 0 .707

Where fc = ©c/2. % is called the cut-off frequency and equal to R/L 

To derive an expression for G in terms of R and L is 

We have = (xn.j -  x,) . G

And (1) can be rewritten as

X'n = (X„.j -R-Xn) . 1/L

When R is equal to one, this gives:

G = 1/L
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Appendix C 

Simlation Programs of Parameter Estimation Algorithms 
using Mathcad-8

Program (1)

This program is implemented to test the estimation accuracy of the three 
algorithms for constants co, £ and u.

G := 1000 sets the value of the gain (cut-off frequency in Hertz)

tO :=0 tl :=3 Set the simulation time from tO to t1 in Seconds

T :=2000 sets the total number of points Tolerance used =0.0001

to := 10 sets the desired value of the natural frequency in Hertz

C, :=0.1 sets the dersired value of the damping ratio

u := 1 sets the desired value of the external input

x :=
D (t ,x )  :=

*2
2 2 

-to  Xj -  2  -x^-f- co u

g '(x i - x3)
0[°;'X | —x,)-x4]

G-[g -[g -(x, -  x ,) -  x4] -  x ,J

G [o .[o .[G .!x , - x 3(i - x 4] - x 5] - x 6]

G [ g  [g  [ 0  [G (X| -  Xj) -  x4] -  x5] -  x j  -  x,]

Xj and x̂  are objects

x3, x4, x5 are filter 
estimate of x, x' and x"

Xq and x7 are filter estimate of
x .., &  x ,„ .

Z :=Rkadapt(x,t0,tl ,T ,D )  Solving theD-vector using 4th order Runge-Kutta method with
adaptive step size.

Note that Zn 4 is Ex, Z  ̂5 is Ex', Zn 6 is Ex" Zn 7 is Ex'" and Zn>8 is Ex""
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Algorithm-1: Using Three points of x, x’ and x"

A1 := 1 A2 :=2 set the 2 nd and the 3rd points 

i := 1.. T -  A2 Sets the number of iterations

«3i ~(Z1>4-Z .+A2_4) A'13.:=(Z.i!-Z .+^ !)

I A " 1 2 .\  A"13.

Ewls. :=-
A'12. / A'13.t
A12. A13.

A'12. A'13. Eo)l. :. :=a/E o)1s.i 'V i

A"1 2 L: = ( Z i , 6 ~ Z i - | - A l , 6 )

ECE;=-

A"12.
A12.-Ea)l. +- i

‘ Etol.

2 * A* 12.

Z i 6 E ^ iEul. IiL -h-2 -  L-Z. „
1 Ernls. Ecol. l* *’

Algorithm -2: Using two points and one extra derivative

A := 1 sets the 2 nd point 

i := 10.. T -  A Sets the number of iterations

A1V = ( \ 4 - Zi+ A.4) * » V = ( ZI . 5 - Zi+ A.5) A "12.:=(Z .6 - Z . + i 6 ) e  1 2 .~ ( Z . i7- Z . +i>7)

A’12..A"'12-- (A"12.)2J
Eo)2s. :=-

( a 1 2 . ) 2 -  A12. A "1 2 .j
Eo>2. :=a/E(i)2s.i \  i
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1A12. 1 A" 12. \ 1

A'12. E
, \ «

'(o2s.-A'12.1 1/

' K 1

Z. ,
Eu2. :=— 1— +  2-E^.-(Eco2.) -Z. , +  Z. , 

‘ Eg)2s. ’’5 ^

Algorithm -3: Using one point and two extra derivaitves

i := 1.. T Sets the number of iterations

Ew3s. i 1   — '-J—±  or Eto3. := J | Ew3s.

EC3. :=- Eo)3.-— —  +  1,7
1 2 Z. 2 Ew3. Z. ,i 1,6/

Z. . EC3.
Eu3. : = _ i iL - h 2- I-Z. , +  Z. „

1 r* *> ^ i»5 1,4Eco3s. Eco3.
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Program  (2)

This program  is im plem ented to  test the estim ation accuracy o f  the th ree 

algorithm s for varaibles w ith 1st o rder dynam ics co, £ and u.

G := 1000 sets the value of the gain (cut-off frequency in Hertz) 

tO :=0 tl := 3 S e the simulation time from tO to t1 in Seconds 

T :=2000 sets the total number of points Tolerance used =0.0001

x :=

0

0
0
0
0
0
0
10

0.1

1

D (t,x )  :=

*2

-(X8)2'Xl - 2'X9'X8'X2+(X8)2'X10

° '(Xl - X3)
G ' [ G ' ( X1 - >S ) - X4] 

G-[G-[G-(x, -  x,) -  x4J -  x5j

G [G .[G [G (x 1- x 3) - x 4] - x 5] - x (.]

G [G [G [G .[G .(x 1- x 3) - x 4] - x 5] - x 6] -

3 0 -  x8

0-4 - x ,

0

Xj and x2 are objects

(x^, x^  and J x$ are filter 

estimate of x, x' & x"

x6 and x7 are filter estimate of
x". & x»..

x8 x9 and x10 are desired set 
value of co, C, and u respectively

Z :=Rkadapt(x,t0,tl ,T ,D ) Solving the D-vector using 4th order Runge-Kutta method with
adaptive step size.

Note that Zn 4 is Ex, Z  ̂5 is Ex', Zn 6 is Ex" Zn 7 is Ex'" and Zn 8 is Ex"
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Algorithm-1: Using Three points of x, x' and x"

A1 := 1 A2 :=2 set the 2 nd and the 3rd points 

i := 1.. T -  A2 Sets the number of iterations

A12. :=(Z. - Z .  A1 .) A'12. := (Z. -  Z  ) A"12. := (Z.  , -  Z. A1i  V 1,4 i - f - A l , 4/  i V ',5 j - t - A l , 5;  1 \  1,6 i - f - A l , 6/

A13i : = (Z i , 4 “ Z i-(-A2,4) A'13. := (Z.  -  Z  ) A"13. := (Z. ,  — Z. )i  \  i ,5 i + A 2, 5/  i \  i ,6 i - f - A2, 6y

Ecols. :=-

'A"12.\

A'12.

A" 13.

A'13.

A12. A13.

ECU

A'12. A'13.

A" 12.
- I A12.-Eal. +• i

1 E o l .

2-A'12.

or E al. := Eals.

Z, 6 Ê iEul. ; = _ E L + 2 - ----- - Z. .-i-Z. .
1 Eals. E a l. ’’5 ,*4

Algorithm -2: Using two points and one extra derivative

A := 1 sets the 2 nd point 

i := 10.. T -  A2 Sets the number of iterations

A 1 2 .  := (Z. -  Z .  )  A ' 1 2 .  := fZ. ,  -  Z. A A” 1 2 .  := (Z. Z .  A .) A"r1 2 .  := fZ. Z .  .i v «,4 t - f - A , 4/  i  v 1,5 i - J - A , 5/  i V 1,6 i ^ - A , 6/  i \  1,7 i - + - A , 7y

A'12. A'" 12
Ea2s. :=-

(A '12.)2 -A 12.-A "12.J
or Ea2. := /Ea2s.
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Algorithm -3: Using one point and two extra derivaitves

i := 1.. T Sets the number of iterations

E ( o 3 s .  : =
. ■ [ y \ « - ( z ,-.7 ) 2]

Zi,5-Zi .7 -  (z i,6)2 or Eo, 3 . : = J |E ^ “

• Z i ’ 5 -h
Z i,7  \

2  Z .  .
t , 6 2 E ( o 3 : - Z .  J

i 1 , 6 /



Program (3)

This program is implemented to test the estimation accuracy of the three 
algorithms for varaibles with 2nd order dynamics ©, C and u.

G := 1000 sets the value of the gain (cut-off frequency in Hertz)

to := 0 tl := 3 Set the simulation time from tO to t1 in Seconds

T := 2000 sets the total number of points Tolerance used =0.0001

coo :=3 

oz :=3 

(ou :=3

Co = 0.5 uo

oII

Cz = 0.5 uz = 0.3

Cu = 0.5 uu := 1
the sub-system s co, C, and u.

0
0
10

0
0.1
0
1
0
0
0
0
0
0

D (t,x )  :=

!x1 - 2'X3'XSX2+ (X3)2'X7

-0)0 •X3-2^0'W0-X4+ ( i)0 -uo 

X6

2 2 
- O Z  -x -  2-£z oz x +• oz -uz

2 2 
-OU X j -  2-Cu-OU-Xg -f ou uu

G (X1 — x 9 )  

G ' [ G ( X1 - X9 ) " X1o]

G [G [G-(x, -  x9) -  Xjq] -  x,,J 

g [ g  [ g [ g (Xl- x 9) -  x10] -  xu ] -  x12] 

O [G [o  [<r-[(J (x, -  X ,) -  x,0] -  x„] -  x12] -  x13]

Xj and x2 are objects

x3 x5 and x7 are desired set 
values of co, and u respectively

[ (V xio) and] xn arefllter 

estimate of x, x' & x"

x12 and x13 are filter estimate of
x". & x....

Z :=Rkadapt(x,t0,tl ,T ,D ) Solving the D-vector using 4th order Runge-Kutta method with
adaptive step size.

Note that Zn 10 is Ex, Znt11 is Ex', Zn 12 is Ex" Zn 13 is Ex’" and Zn 14 is Ex"
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Algorithm-1: Using Three points of x, x’ and x’

A1 := 1 A2 := 2 set the 2 nd and the 3rd points 

i := 1.. T -  A2 Sets the number of iterations

A12. := (Z.jl0 -  Zi+A1)10) A12i ' “ (Zi,n"~ ^i+ .A i,n) A 1 2 , (Z. n -  Zi+A1>12)

Al3i := ( h i o - Zi+ i2 ,.o) A'13. “ (Z .(11- Z i+4JiU ) tf  13, := (Z. Z.+/Q>12)

I A”12.\ A” 13.

E ols. :=-
A'12. A'13.

A12. A13. or

A'12. A'13.\ > I i

I A" 12.
- A12.-Effll.-h-

Effll.
E g ; :=-

2 -A'12.

Effll. :. := /Efflls.1 ^ I

Z, 12E u l . —-i_ -h  2------ L-Z. ,,-hZ . 1ni ■*—» p  i  1,11 i,10Ecols. Ecol.

Algorithm -2: Using two points and one extra derivative

A := I sets the 2 nd point 

i := 10.. T -  A Sets the number of iterations

A12. :=/Z. , - Z .  A in) A’12. :=(Z. , , - Z .  A A"12.:=(Z. Z ., A \  A'"12. :=(Z. , , - Z .  A
i \  i ,1 0  i -h A ,1 0 /  i V t»H i - h A , l l /  1 \ i ’ l l  i + A ,  12/ i V i,13 i -h A , 13 ;

Effl2s. :=-
A'12.-A’" 1 2 .-  (A”12.)2] 

(A’12.)2-  A12.-A"12.] or
Ew2.. : = / E m 2 s . i y i
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A12. A" 12. \
1 ■ + •

E a
A'12. Era2s.-A'12.\ i_____ » »/

2-(E w2.)'1

2,

' Eo)2s. 1 1 '> ‘M  ‘•10

Algorithm -3: Using one point and two extra derivaitves

i := 1.. T Sets the number of iterations

E«3s. := K izA .h - f t . , , ) 2]

z u ,  z i . , -  ( Z i , G ) 2

or Ero3.:. := /Ew3s.i 'V i

W > -  Z i - "  +
Z- \  i ,  13 |

I
l ' 2 Z i , l 2 2-Eo)3.-Z.i 1,12/

Z. EC3.
Eu3. : = _ ii_>t- 2------ -Z . -t* Z.1 1—I  ̂ T-> A 1,11 1,10Eo)3s. Ecd3.
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Program (4)

This program  is im plem ented to  test the estim ation accuracy o f  the th ree 
algorithm s w hen noise (n) is added. The program  can be used for the  th ree 
categories o f  co, Q and u (contants, varaibles w ith 1st o rder dynam ics o r variable 

w ith 2nd o rder dynamics).

G :=20 sets the value of the gain (cut-off frequency in Hertz)

G1 :=G G2 :=G G3 :=G G4 :=G 

time :=3 Sets the simulation time in Seconds

T :=2000 Sets the total number of points Tolerance used =0.000001

d time gets the integration step size n:=0.1 sets the value of the random number

set the desired values of the first level parameters of 
the sub-system s co, C, and u.

w o:= 3 C° :=0.5
oIIop

(oz:= 3 Cz .‘=0.5 uz := .l

(ou:= 3 Cu:=0.5 uu := 1

Set initial conditions:

x lo :=0 x20:=0 :=0 ExdQ :=

wlo := 10 co2o :=0 Cl0 Vs 0.1 C2,
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i :=0.. T S ets  the number of iterations

N.
i+ l

xl
i+ l

x2,
i +  l

0)1
i+ l

0) 2 .
i+ l

Cl;i + l
C2;i + l
Ul.

i+ l
u2 *
Ex.

i+ l
Exd

i +  l
Exdd. ,

• +  i

Extd +  1 

Exqdi +  l j

N . + 1000 L( m d ( n ) - ^ - N .  

x l. +  x 2 .di i
x2. +  [u l. -  2-£l.-^<»li)"1-x2. -  x l. - ĉo 1 j)2*d

(ol. +  o)2.di i
o)2. +  [ u o -  2 -£p-(o)o) 1-o)2.~ o l .j (o)o)2 d 

Cli +  C2i-d 

£ .  +  [u z -  2 -SKCo)'1 C25 -  Cl;] CCo)2 d

ul. +  u 2.di i
u2. +  [ u u -  2-^u-(am)’ 1-u2.-  u l.j  (o)u)2-d 

Ex. +  G -fxl. +  N . -  ExVdi V i i 1/
Exd. +  G1 { G - (x l . +  N. -  Ex.) -  Exd.] d 

Exdd. +  G2-[G1 •[G (x l. +  N. -  Ex.) -  Exd.] -  E x d d ]d  

Extd. +  G 3-[G 2|G 1 -[G-(xl. +  N. -  Ex.) -  Exd.] -  Exdd.] -  Extd.] 

Exqd. +  G 4 [G 3 [G 2 -[G l[G -(x l. +  N . -  Ex.) -  Exd.] -  Exdd.] -  Extd] -

Iterative Euler integrator for, noise source, time trajectory generator and 
high derivative estimator.

Note: from row 4 to row 9 can be modified to include rate of change of©, C, and u.



Now: check is being made to s e e  how much Lag occurs when reducing the cut-off frequency
(G).

I x l := s<— x 1 I Ex :=

for i e 1.. T 

s<— x 1.i
return i if s=m ax(xl)

s*-Ex,

for i e 1.. T

s*-Ex.1
return i if s=max(Ex)

Lag :=I_E x- I_xl calculate the lag

L :=Lag

Algorithm-1: Using Three points of x, x' and x"

A1 := 1 A2 :=2 set the 2 nd and the 3rd points 

i :=0.. T -  A2 -  3 L Sets the number of iterations

A l 2 i :=  ( EXi +  L -  EXi + L + A l )  A'1 2 i “  ( E x d i4 -L  2 -  E x d i +  L - 2 + A l )  A"1 2 i ~  ( E x d d i +  3 . 1 . -  l i x d d , + 3 I .+ A! 

^ ^ ^ ( ^ i  +  L - ^ i + L + A i )  A' I 3 i : = (E x d i + L - 2 - E x d i + L-21-A 2) A"‘ 3 i ( E x d d , + 3-L - E x d d i + 3 i  +  A2)

Ecols. ;=-

A" 12. \ A" 13.

A'12. A'13.

IA12. \ A13.

\ A'1 2 i /
A'13.

- A12.Ecol . +-•

E n .:= -

A"12.i
Ecol.

2-A’12.

or
Ewl. := /Ecols.

Exdd. __ EC1.
Eul. := +• 2-------L-Exd. r ,-t-Ex. ,

1 Eal s. E<ol. '^ L2 ,+L
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Algorithm 2, using two points and one extra derivative

A := 1 sets the 2 nd point 

i :=0.. T -  A -  4 L Sets the number of iterations

A12i := (Exi +  L - Exi +  L+A)

A" 1 2 ; (Exddi+ 3-L Exddj_j_3_ l A )

A'12.: (Exd.^L2 E><di+L .2+A)

A" 12i := (Extdi +  4-L“  Extdi+ 4Lt A

E(o2s. :=-
A’12.-A’"12

A’12. -  A12

IA12. A" 12.
■ + •  ■

A'12. Eo)2s.-A'12.

2 * (Eco2 .
-l

or E(o2.:. := /E(o2s. 1 1

Exdd. , .  EC,2.
Eu2. :.=? i ± f ± + 2- i-Bxd. . . f E x .  .

Eo)2s. Eo2. 1EL'2 ,+ l

Algorithm 3, using one point and two extra derivatives

i :=0.. T -  5 L Sets the number of iterations

[Exdd. , ,  -Exqd. , ,  -  (Extd. , ,  ')21 i----------
EU3S, := i '^ 5L . 1 ’t W .J. or E<«3. :=j  E<o3s.

Exdi+L.2 E x , d i + 4 .L -  ( E x d d i + 3 .L ) 2

! Exd. T _ Extd. „. \
EQ .  :=- Eo)3.----------------------  lJ ± k ----- j

1 2 -Exdd ’ 2-E©3.-Exdd. , T
\  i -J- 3 L i i -f- 3 L /

Exdd. E Q ,
Eu3. :=------- l ± i ± ^ 2 — i-Exd. _ ., +  Ex. .

Eo)3s. Eco3. ,EL2 ,eL
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Program (5)

This program  is im plem ented to  provide an estim ate o f  the first level param eters 
o f  the sub-system s co, C, and u using the th ree  algorithms.

G := 10 sets the value of the gain (cut-off frequency in Hertz)

G1 :=G G2 :=G G3 :=G G 4:=G

time :=3 Sets the simulation time in Seconds

T :=2000 Sets the total number of points Tolerance used =0.000001

d Sets the integration step size
T

coo:=3 ^o:=0.5 uo:=10

coz :=3 '=0.5 uz :=.!

cou:=3 ^u :=0.5 uu := 1

Set initial conditions:

x lQ:=0 x2q :=0 EXq :=0 ExdQ :=0 ExddQ:=0 Extd0 :=0 ExqdQ:=0 

col0 :=10 cd20 :=0 q o :=0.1 C20 - 0  u l0 := l u2Q:=0

set the desired values of the first level parameters of 
the sub-system co, C, and u.
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i :=0.. T Sets  the number of iterations

x l. +* x2.dI 1
x2. +  [ u l . -  2 < l.-(co l.)" 1 x 2 . - x l i] -(o )l .)2-d 

col.-t-co2.-di i
co2.-t- j^ u o -  2 -^o-(coo) 1- c o 2 . -  c o l .J - (c o o )2 -d 

Cli 4-C2; d

C2. +  [u z -  2 ' <2. -  Cl,] (Co)2 d

ul. +- u2.-di i
u2.-t- j^uu- 2 £u (cou)~1u2. -  ul.j-(cou)2-d 

Ex.-t- G-^xl.— Ex.j -d 

Exd.-t-Gl |G '( x l .  -  E x) -  Exd.J-d 

Exdd. +  G2-[G1 -[G -(xl. -  Ex.) -  Exd.] -  Exdd.] d 

Extd. +  G3 [G2-[G1 [ G - ( x l . -  Ex.) -  Exd.] -  Exdd] -  Extd.] -d

Exqd. -t- G4-[G3 -[G2-[g 1 jG -(x l . -  Ex.) -  Exd.] -  Exdd.] -  Extd.] -  Exqd.] -d

Iterative Euler integrator for, time trajectory generator and time higher derivative 
estimators.

Note: from row 3 to row 8 can be modified to include rate of change of co, C, and u.

' x l i+.l

x2,+1

“ ’ i+ l

“ 2i+ l

C'l+I
ul. , :=

l-(-1
u2. ..-l-i

Ex. -i -|* 1
Exd. , 

'-l-i
Exdd. . 

■ + 1
Extd^,

,Exqdi+ l .

133



Algorithm-1: Using Three points of x, x’ and x’

A1 := 1 A2 :=2 set the 2 nd and the 3rd points

i ;=o .. T -  A2 Sets the number of iterations

A12. AM 2. := (E x d .-E x d .+41)

A13. := (Ex. -  Ex.+4J) AM3. := (Exd. -  E x d . ^ )

(A''\2.\ A"13.

Ecols. :=-
A’12.i / A’13.

A12. A13.

,A'12. A’13.

or

'i-* !Eool. := /Ecols.

A" 12. := (Exdd. -  Exddi V ‘ i-f-A1
A" 13. := (Exdd. — Exdd. AO

i V i i-f-A2

Ea==-

/ A"12.
A12.Ecol. 1 -

\ 1 1 Ecol.

2 -A’12.

Exdd. E Q  ■
E u l. :=------- 1- +- 2• I  Exd. +  Ex.

1 Era Is. Ecol.

Algorithm 2, using two points and one extra derivative

A := 1 sets the 2 nd point 

i :=0.. T -  A Sets the number of iterations

A12. := (Ex. -  Ex. . )i \  i i -f- A / A’12. := fExd. -  Exd. ^i \  i l -f- A /

A" 12. := (Exdd. -  Exdd. A) A’"12. := (Extd. -  Extd. ■ ) i  v  i  ' - h A y  i  v i  i - f - A y

A'12.-Am1 2 .-  (A"12.)2]
Eco2s. := - t

(A’12.)2 -A12.-A"12.]
or Eco2. := /Ego2s .
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A12. A" 12.

I A'12. E©2s. A'12. 
EC2. :=- 1 ' ‘

2-(Eco2 .) '1

Exdd. E^2.
Eu2. :=------------ 2-------  Exd. + Ex.

1 E©2s. E©2.

Algorithm 3, using one point and two extra derivatives

i :=0.. T Sets the number of iterations

E©3s. :=
^Exdd.-Exqd. -  ^Extd.^2j

Exd.-Extd -  (Exddj2 ° r ^©3. .. := /Eo3s. 1 ^ 1

I Exd. Extd.
EC3. :=- E©3.

2 Exdd. 2 E©3 .-Exdd.i i i

Exdd EC3.
Eu3. :=------- --I-2--------  Exd. -t- Ex.

1 E©3s. E©3.

Now: Generation of the higher derivatives of the filter estimate of the sub-system ©:

Set initail conditions:

EE©30 :=0 EE©d30 :=0 EE©dd3Q:=0 EE©td3Q :=0 EE©qd3Q :=0

G :=20 G1 :=G G2 :=G1 G3 :=G2 G4:=G3

135



i :=0..T

EEm3.i + l
EEood3.i +  i

EEcodd3.

EE©td3. . *+l
EEcoqdS.̂ j

Sets  the number of iterations

EEm3. 4- G |Em3. -  EEa>3.) d 

EE©d3. +- G1 [G-(Em3. -  EEm3.) -  EE©d3.] d 

EEcodd3. -t- G2 [G1 |G -(E © 3i -  EEm3.) -  EE©d3(] -  EE©dd3ij d 

EErotd3. 4- G3 [G 2[G 1 [G-(Em3. -  EEm3.) -  EEcod3.] -  EEwdd3.] -  EEootdsJ d 

EE©qd3.4- G4-[G3 [G 2-[g1 •[g-(Em3i -  EEm3.) -  EE©d3.J -  EEcodd3.] -  EE©td3.j -  EE©qd3_] d

Iterative Euler routine to generate higher derivative estimators of Em3.

Now: check is being made to se e  how much Lag occurs when reducing the cut-off frequency
(G).

I E© 3 := s«— Em 3

for i e  1.. T

s«- Em3.1
return i if s=max(EM3)

I E©d:= s<— EE©d3

for i e  1.. T

s<— EE©d3.1
return i if s=max(EEMd3)

Lag :=I_EMd- I_Em3 calculate the lag

L :=Lag

Agorithm 3 is being used to produce an estimate of the first level parameters of the sub-system m 

( m o , Co and uo):

i :=0.. T — 5 L Sets the number of iterations

[ n ^  .EtoqdJ (EEo,.d3.+ 4 ,L) 2]
Emo3s. :=

EE©d3. -EEMtd3. . -  (EEMdd3. . ,  or Emo3. := |E mo3s.
i q - 2 L  )4 - 4 L  V >4 -3 L /  i >

/ EE©d3
ECo3. :=- Emo3.- ' + 2 L

EE©td3.
i q - 4 - L

1 2-EEMdd3. 2-EMo3. EEMdd3. ,«4-3L i t4-3L I

EE©dd3.
E uo3.:=-

Emo3s

. , .  ECo3.
4-2*. -EEMd3. 4-E E m3. .

Emo3. *+2L ‘+ l
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