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Rural–urban scaling of age, 
mortality, crime and property 
reveals a loss of expected 
self‑similar behaviour
Jack Sutton1, Golnaz Shahtahmassebi1, Haroldo V. Ribeiro2 & Quentin S. Hanley1*

The urban scaling hypothesis has improved our understanding of cities; however, rural areas have 
been neglected. We investigated rural–urban population density scaling in England and Wales using 
67 indicators of crime, mortality, property, and age. Most indicators exhibited segmented scaling 
about a median critical density of 27 people per hectare. Above the critical density, urban regions 
preferentially attract young adults (25–40 years) and lose older people (> 45 years). Density scale 
adjusted metrics (DSAMs) were analysed using hierarchical clustering, networks, and self-organizing 
maps (SOMs) revealing regional differences and an inverse relationship between excess value of 
property transactions and a range of preventable mortality (e.g. diabetes, suicide, lung cancer). The 
most striking finding is that age demographics break the expected self-similarity underlying the urban 
scaling hypothesis. Urban dynamism is fuelled by preferential attraction of young adults and not a 
fundamental property of total urban population.

Cities are important drivers of economic and creative human activities1–4 and this behavior has long been linked 
to population5. These studies have shown super-linear scaling in urban performance indicators such as patents, 
GDP, and R&D employment1–3. Other less desirable features follow similar scaling such as homicide4,6, AIDS 
cases1, and general crime7,8. Conversely, there are important economies of scale found in cities in such indicators 
as road surface and petrol stations1. Underpinning this work is the notion of self-similarity leading to behavior 
which is well approximated by power laws9. Modeling this behavior remains an active area of research. These 
studies have shown that per capita measures are deeply and fundamentally biased in all but the rare metrics 
which show linear scaling2,10,11. This important paradigm shift has not been as widely appreciated beyond the 
urban scaling community.

Despite the improved understanding of power law scaling in urban regions, linear per capita models remain 
a cornerstone of many aspects of policy and resource allocation. For example, in the UK regional distribution 
of health care resources is done via clinical commissioning groups (CCGs). This begins with a per capita allo-
cation which is adjusted for mortality, market forces, and a range of other factors based on nutrition, obesity, 
smoking, drugs etc12–14. The use of scaled metrics provides an opportunity to better understand the taxonomy 
of health and well-being as well as a host of other metrics. Regional considerations also appear in discussions of 
economic and social issues in the UK as a north south divide15–17. The distribution of population explains some 
of this, but analysis of regional behaviour relative to scaling law expectations can provide a more definitive view 
of regional characteristics.

The urban scaling literature has an inherent bias by studying cities and neglecting rural regions. Although 
the urban population currently exceeds the rural population worldwide18, urban areas cover a relatively small 
amount of the world’s land area and very few studies have looked to see whether cities are fundamentally dif-
ferent from rural regions. Definitions of rural vary. Example definitions of rural areas include: areas which are 
not urban19, areas of low population density and other indicators of rural life20, or based on surface urban heat 
islands21. We consider rural and urban to be extremes of a continuum of human environments with population 
density providing a quantitative metric of position along that continuum. In previous work using data from 
England and Wales, we found that some metrics follow a single law while others undergo transitions at critical 
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population densities7. Metrics undergoing transitions exhibit a range of behaviors: acceleration (e.g. robbery), 
inhibition (e.g. shoplifting), and collapse (detached housing transactions). The statistical mechanics underlying 
this behavior remains an unsolved problem, but the existence of critical population densities allows an empiri-
cal division between rural and urban. The neglect of rural regions almost certainly neglects their importance 
assuring the food and material security of heavily urbanized regions.

A consequence of the improved understanding of the effects of scale in indicators is the development of scale 
adjusted and density scale adjusted metrics2,7,11. These were initially developed as indicators of the uniqueness 
of a particular urban region and used to develop a taxonomy of similar types of cities2. The methodology has 
since been adapted to density scaling of both urban and rural regions where it was used to understand the inter-
relationships between crime and property8.

Here, we investigated a range of indicators of mortality, crime, property and age throughout England and 
Wales to determine if mortality behaves similarly to the previous work on crime and property.

Theory
Population density scaling.  Density scale adjusted metrics7,8 are an area normalized approach to scale 
adjusted metrics2,11. Urban scaling uses total population to predict a range of indicator metrics using power laws.

where, Y is an indicator such as crime or GDP, Y0 is a pre-exponential factor; n is the population density of the 
region and β is a scaling exponent. When looking at both rural and urban regions, density metrics (y = Y/A) 
and population density (d = n/A) have been found to better predict overall behavior7,8 where A is the area of a 
given region.

Similarly to urban scaling, when β < 1, the scaling is sub-linear; when β = 1, the scaling is linear; and when 
β > 1, the scaling is super-linear. Data is usually fitted to log transformed data to obtain parameters.

Empirically, transitions appear at a critical population density, d*, for some metrics in the range of 10–70 
people per hectare7. To account for this, Eq. (3) can be adjusted to allow a segmented fit7 at the critical density.

In this, βL and y0 are the exponent and pre-exponential factor below the transition; βH and y1 are the exponent 
and pre-exponential factor above the threshold. For purposes of modelling, the transition point is held to be 
continuous (e.g. logy1 = logy0 + (βL − βH)logd

∗).
Density scale adjusted metrics (DSAMs)8, zi, are the residuals in the fits obtained from the models defined 

by Eqs. (3) and (4).

A number of issues have been noted when fitting power laws to urban scaling data sets22 and particularly 
when data sets have null values or zeros23. In the data considered here, this issue is occasionally severe. Although 
progress has been made on these problems we note the following: (1) The analysis of scale adjusted metrics2,8,10 
assumes that the power law fits are an incomplete explanation of the data. Specifically, the approach2,8,10 assumes 
the residuals around a power law fit contain explainable variance and are not random relative to other residu-
als. (2) Power variance models (e.g. Taylor’s law22,24) are good models of the noise in some instances and across 
limited scales. However, segmented fluctuation scaling occurs at least in the case of crime24. (3) Alternatives 
to power law models have been presented22,25 but the extent to which the problems driving their development 
apply to density scales is unknown. In this context, power law models and the segmented modifications used 
here remain useful for understanding scale in human systems despite their limitations.

If two arrays of DSAMs corresponding to indicators (X, Y) over a set of n regions are represented by 
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) , a range of similarity measures (sm) can be computed. A region 
in this context is a defined land area of some size. Here, it represents administrative areas in the UK (unitary 
authorities, non-metropolitan districts, metropolitan boroughs, and London boroughs) but could be any defined 
region for which indicator data is available. We considered 6 similarity measures: Pearson correlation (r(X, Y)), 
Spearman correlation ((S(rgX , rgY)), Kendall correlation ((K(X,Y)), cosine similarity (c(X, Y)), and Jaccard 
similarities (J(X, Y)) to investigate the inter-relationships between the DSAMs.

The matrix of similarity measures (smij) generated for each pair of indicator DSAMs (e.g. mortality, property, 
crime and age) were analyzed by hierarchical clustering based on a distance, δij =

√

2(1− smij).

Results and discussion
Overview of regions.  England and Wales consist of 348 regions including unitary authorities, non-metro-
politan districts, metropolitan boroughs, and London boroughs. The regions ranged in area from 289 ha (City 
of London, England) up to 518,037 ha (Powys, Wales). Regional populations were from 2158 (Isles of Scilly, 
England) to 1,070,912 (Birmingham, England) while population density ranged from 0.25 people per hectare 

(1)Y = Y0n
β

(2)y = y0d
β

(3)logy = logy0 + βlogd

(4)logy =

{

logy0 + βLlogd
logy1 + βH logd

d < d∗

d ≥ d∗

(5)zi = logyi − logy



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16863  | https://doi.org/10.1038/s41598-020-74015-x

www.nature.com/scientificreports/

(Eden, Cumbria, England) up to 139 p/ha (Islington, England). This covers a range of environments and regions 
from very rural to highly urban.

Rural–urban scaling.  The density scaling model gave reasonable fits to power laws (e.g. Figs. 1, S1 to S4). 
Regions did not stand out relative to the scaling laws with the notable exception of the City of London. This 
region was an obvious outlier in 23 separate metrics and was so extreme that it merits special attention (e.g. 
Fig. 1). The City of London is a small 289 hectare region within the greater London metropolitan area with a 
small resident population (7355) and a much larger (> 350,000) daytime population. Scaling laws have been 
shown to change depending on whether resident or floating population is considered26. In our work, many crime 
indicators gave positive deviations consistent with daytime population. However, dementia mortality and to a 
lesser extent lung cancer exhibited extreme negative deviation. The generally reduced incidence of dementia 
in the high population density portion of the scaling plot is intriguing. The trend can be partly explained by a 
lower proportion of older people. However, the exponents for age and dementia are incommensurate. Dementia 
mortality decreases to a greater extent than the reduction in older people. This makes the City of London which 
is nearly a factor of 10 below expectations even more remarkable and future studies of dementia risk should 
consider a more detailed look at this group of people.

The density scaling exponents (Figs. 2a,b, S1, S2, S3, and S4; Tables S1 and S2) for crime and property were 
similar to those observed previously7 when parliamentary constituencies were used to define areas. Approxi-
mately half of crime metrics followed simple power laws: ASB, Burglary, Vehicle Crime, Violent Crime, Other 
Crime, Bike Theft, Weapons and Order. The remainder exhibited segmented scaling. Drugs, Other Theft, Theft 
from the Person and Robbery accelerated while Shoplifting and CD&A were inhibited in high density regions. 
This heterogeneity of behaviors is a challenge to crime opportunity theory27,28 and situational action theories29,30. 
A simple power law suggests uniformly increasing opportunities or criminogenic settings, but critical densities 
with both acceleration and inhibition require a clearer picture of what these opportunities and criminogenic 
settings represent. Similarly, the observation of a single relationship defining burglary across all scales challenges 
the notion of designed environments31 for reducing this and the other crime types showing single exponential 
behavior. The behavior of the eight single power-law crime types is remarkably robust over the entire land area 
of England and Wales.

Examination of mortality (Figs. 2c, S3, and Table S2) revealed that in rural regions except for 5 types of can-
cer (liver, stomach, lung, larynx and uterine cancer) and homicide, all mortality indicators exhibited sub-linear 
to linear scaling. In high density regions, all mortality except homicide was strongly sublinear. The dramatic 
improvement in mortality can be understood by examining the scaling of age groups.

Population density (Figs. 2d, S4; Table S2) had a profound influence on age demographics. High density 
regions attract young adults aged 25–39 and people age 45 and over preferentially leave. Although density 
exponents are not directly comparable to conventional ones32, the strength of the super-linear attraction for 
young people (βH = 1.46 for the 30–34 age group) may be sufficient to explain almost all reported super-linear 
economic indicators1,2,33. This can entirely explain the acceleration of Robbery in high density areas (Figs. 3, S1, 
and Table S2). Age has a strong influence on the exponent for mortality indicators. For example, kidney cancer 
and dementia show sublinear scaling in high density regions for the general population (Fig. S5, Table S3). When 
the two oldest age groups are considered, the protective effect of high density remains but is less pronounced. 
The data is suggestive for homicide having a single scaling exponent when considered using only the 30–34 
age group, however, the data is too sparse at high density to reach a robust conclusion with this data set. If this 
observation holds beyond the UK, it is probably an important underlying mechanism for many effects observed 
in the urban scaling literature. As a minimum, age groups break the universal self-similarity of the urban scaling 
hypothesis. Scaling is not constant across age groups.

From a policy perspective, these findings are important. Mortality and health are primarily understood in per 
capita terms. As noted above, UK National Health Service funding is provided through clinical commissioning 
groups using a formula based primarily on a constant per capita cost12–14. This per capita model may significantly 

Figure 1.   Scaling behavior of mortality from dementia and Alzheimer’s disease. The black circle indicates the 
position of the critical density. This shows the exceptionally low incidence in the resident population of the City 
of London. Gray shaded region represents 95% CI.
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under-estimate the economies of scale in high population density regions and the additional cost associated 
with delivering effectively to people in rural environments. The extent of the economies of scale are striking and 
there is a clear rural–urban divide in terms of mortality. The scaling phenomenon explains persistent northern 
excess mortality in the UK16. The regions north of the “north–south” divide have a lower population density 
and DSAM metrics make clear that the excess mortality is per capita and is commensurate with rural metrics.

Critical densities.  Fifty-one out of sixty-seven indicators (6 crime, 8 property, 21 mortality and 16 age) 
exhibited a critical density (Fig. 4) distributed around a median of 27 p/h. This is similar to the average value of 
30 p/h for 19 indicators in our previous work7. Although a bimodal density histogram is observed (Fig. 4b), a 
single distribution dominates. This is remarkable considering they arise from a wide range of indicators includ-
ing crime, property, mortality and age. The exceptions to the rule include four age groups (aged 5–9, aged 10–14, 
aged 40–44, aged 45–49). The 40–49 age range is the boundary between the young adults who are super-linearly 
attracted to high density urban regions and the elderly who preferentially leave. It is likely that were the age 

Figure 2.   Allometric scaling exponents for crime (a), property transactions (b), mortality (c) and age (d) using 
density metrics. Black symbols indicate exponents for single power-law scaling. Red symbols indicate exponents 
below d* and blue symbols are for exponents above d*. Error bars represent the 95% confidence intervals for 
β ,βL,βH based on the standard errors of regression. The dotted line represents β = 1.
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Figure 3.   Scaling relationship for Robbery when restricted to the 30 to 34 year age group. The acceleration seen 
for the general population disappears when age range is restricted.

Figure 4.   The critical population densities for metrics with segmented scaling. (a) Rank order plot of critical 
densities with the median indicated (dotted line). (b) Histogram of critical densities (logd∗) . Error bars represent 
95% CI.
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ranges defined differently no critical point would be observed and the change in exponent around the critical 
values for all four is relatively small. Without these transitional age groups, only two exceptions remain. For 
the 45 indicators with critical densities in the same distribution, there is currently no explanation. There is no 
explanation for why mortality, crime, and property scaling pivots around a critical density. Age group behavior 
is important, but there is no explanation for the preferential attraction of young people to regions above a criti-
cal density. The critical density appears robustly near 27 p/h, but the reason it appears at that scale is unclear. 
The physics of percolation transitions34–36 may offer solutions, but a unifying statistical mechanics remains to be 
found which predicts a transition in human behavior (crime), health (mortality), economics (property transac-
tion values), and age demographics at a critical density remains to be found.

Correlation and hierarchical clustering of DSAMs by category.  Correlation analysis and hierarchi-
cal clustering of DSAMs (Fig. 5) showed a tendency for crime, property, and mortality to be positively correlated 
and cluster together with other members of their class. As examples, most mortality types were positively corre-
lated and clustered with all other mortality types (Fig. S6) with many correlations above 0.5 and values reaching 
0.72 (e.g. Fig. S7: Lymphoid Cancer vs. Prostate Cancer). The exceptions were bone cancer, larynx cancer, and 
homicide. All crime types were positively correlated (Fig. S8) and clustered (Fig. 5) with all other types of crime. 
All property types were positively correlated (Fig. S9) and clustered (Fig. 5) with all other property types with 
some very strong correlations (e.g. Freehold vs. Old properties had Pearson correlation = 0.95 (Fig. S10)).

Age did not follow this pattern. Age groups were highly stratified with children and old people anti-correlated 
(Fig. S11). Different age ranges clustered with different indicator classes. Young people (15–34) clustered with 
crime. Older people (55 and above) clustered with mortality except for bone cancer. The very young (0–14) and 
middle-aged people (35–54) clustered with property. Most correlations in the first two clusters were positive, 
while most property indicators were anti-correlated with children aged 0–14.

The most striking finding is the division of the bulk of mortality indicators into two groups. One group 
clustered with the elderly and tended to have positive correlation with certain types of property DSAMs. The 
other group, nearly all of which are to some degree preventable (Accidents, Liver Cancer, Diabetes, Lung Cancer, 
Stomach Cancer, Oesophagus Cancer, Kidney cancer, Uterus Cancer, Homicide, Suicide and Larynx Cancer) 
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Figure 5.   Indicator clustering and heatmap. The color of the heatmap refers to the relationship between 
every pair of DSAMs (i and j) by evaluating the Pearson correlation coefficient (ρi,j ). The red indicates positive 
correlation and blue indicates negative correlation. The darker the shade the stronger the correlation. The upper 
and left side panels are the dendrograms constructed via the hierarchical clustering algorithm.
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had nearly universal anti-correlation with property DSAMs (c.f. Fig. S12, Flat vs. Lung Cancer DSAMs). The 
extent to which the magnitude of property transaction value exceeds scaling expectations protects against a 
wide range of mortality from preventable conditions ranging from homicide to uterine cancer. These conclu-
sions were generally reinforced by all correlation measures (Figs. S13 and S14). The similarity measures were 
less informative (Figs. S15 and S16).

A limitation of the heatmap and clustering (Fig. 5) is the pairwise structure which does not display the sig-
nificance of the correlations. A network accounting for this was created by bootstrapping the Pearson correlation 
with 2000 replications for every pair of metrics to identify correlations significant at 99% confidence. The result-
ing network (Fig. 6) has 66 nodes including all metrics except bone cancer which had no statistically significant 
correlations. There were 784 significant connections out of 2211 possible and the optimal modularity score 
(0.472) partitioned the network into 3 communities very similar to the clusters in the indicator heatmap (Fig. 4).

Specifically, the network analysis found three modules containing: the elderly and mortality; children, mid-
dle-aged people and property; and young adults and crime. There were only two exceptions to this pattern, 
suicide and cancer of the larynx, which clustered with young adults and crime. These two were also most closely 
related to each other in the clustering analysis. Cancer of the larynx has long been associated with alcohol37 and 
smoking38 and preventative measures beyond cessation are limited. The association with suicide as well as the 
positive correlations of cancer of the larynx and suicide with ASB, CD&A, violence, accidents, diabetes, liver 
and lung cancers suggests health care delivery focusing on mental health39,40, alcohol41, and community safety 
may be beneficial for this group. Considering these types of mortality as long term responses to violence, stress, 
and mental illness could lead to more efficient prevention strategies.

Analysis of DSAMs by region.  To understand regional behavior the clustering and correlation analysis 
was repeated on the transpose of the matrix of DSAMs such that it was presented by region rather than indica-
tor (Fig. 7). Although heterogeneity is seen, broadly two clusters appear with universal anti-correlation at the 
extreme ends. The two extreme ends (e.g. Stoke-on-Trent vs. Bromley) live in nearly opposite worlds. If crime 
and mortality are above expectation in one it is below in the other. A geomap of the two clusters (Fig. S17) 
divided North England, Wales and the Midlands from Southern England with some exceptions.

Self‑organizing maps.  The simple geomap (Fig. S17) did not provide sufficient understanding of regional 
heterogeneity apparent in the cluster analysis. Regions are also affected by age demographics and their impor-
tance needs to be understood better. To explore regional behavior, the 348 regions were distributed onto an 8 by 
8 hexagonal self-organizing map (Fig. S18). After 350 iterations convergence was reached (Fig. S19) with 4 clus-
ters containing 2, 95, 190 and 61 regions which were colored orange, red, blue and green, respectively (Fig. 8).

The four clusters represent: (i) 61 mostly coastal areas (green) with a few more urban inland regions consisting 
of St. Helens, Stoke-on-Trent, Wyre Forest, Malvern Hills, Strafford-on-Avon, Dacorum, Ipswich, Kensington 
and Chelsea, Hammersmith and Fulham, City of Westminster, Islington and Camden); (ii) 2 regions (orange) 
including the City of London and St. Edmundsbury; (iii) 95 regions (red) mostly within the south of England 
(exceptions are: Richmondshire, Leeds, Bradford, Preston, Chorley, Blackburn with Darwen, Rosendale, Trafford, 
Manchester); and (iv) 190 more rural regions (blue) primarily in the North of England and Wales.

Figure 6.   Network of statistically significant positively correlated DSAMs. Network representation for the 
positive connections among crime, property, mortality and age DSAMs. The colors indicate network module 
and the edge thicknesses are proportional to the correlation. Node sizes are proportional to their degrees.
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A key feature of the primarily coastal grouping was excess mortality and a more elderly demographic (people 
aged 60 +). The City of London and St. Edmundsbury were exceptional in comparison to the other clusters. They 
exhibit extremely low DSAMs for nearly all mortality types and high property and crime DSAMs driven by the 
City of London and to a lesser extent by St. Edmundsbury. Characterizing this cluster is aided by a plot of St. 
Edmundsbury Vs. City of London (Fig. S21) which shows the similarity to be related to high crime and property 
DSAMs and low mortality. It is important to note that the SOM classification is not based on correlation. Thus, 
the large group of more neutral indicators form part of the overall picture. The cluster primarily in the South of 
England is characterized by low mortality, a younger age demographic, and high property DSAMs. The remain-
ing cluster (blue) represents most of the area of England and Wales. These are generally average for age, crime, 
and mortality with below expectation property DSAMs.

Conclusion
This study represents an advance in our understanding of scaling behavior while challenging the urban scaling 
hypothesis. It supports the general concept of scaling by making clear the problems of per capita models when 
applied to health outcomes. However, incommensurate scaling in different age demographics is a challenge. The 
scaling hypothesis considers all people as equal participants in the acceleration of life in cities. The data here 
shows that much of that acceleration depends on the ability of urban regions to attract young adults. Observed 
urban scaling is a consequence of separate scale related processes that define the behavior of specific age demo-
graphics around a critical transition in human behavior at the rural and urban boundary.

The consequences of this are great. There have now been many studies making clear that linear per capita 
measures are biased1,4,7,10,11. The current study is the first to extend this to mortality from non-transmissible 
diseases and age demographics. Epidemiologists studying excess death need to understand the bias of per capita 
models. For example, the observed northern excess mortality in the UK16 reflects mortality at low population 
density rather than north–south division. The north mostly falls into a single category (the blue region of Fig. 7) 
and this region does not have exceptional mortality for the population densities. Policy makers need to under-
stand the limitations of linear per capita models. In terms of mortality outcomes, there are large cumulative 
economies of scale between the most rural and the highest density urban regions. This is a consequence of scale 
related changes in age groups, to scaling behavior across all population densities, and conditions where high 
density areas provide protection (e.g. dementia). Within this context, health care resourcing is skewed in favor 
of population dense regions.
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Figure 7.   Regional heatmap and clustering. Format and color coding are the same as Fig. 4. The hierarchical 
clustering roughly divides England and Wales into two regions. A geomap of these two regions appears as 
Fig. S17.
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The robust rural–urban division near 25–30 p/h makes clear that ignoring rural regions is a missed oppor-
tunity for researchers studying urban systems. The existence of a rural–urban boundary justifies the study of 
cities while providing a clearer comparison against which claims about urban areas can be made. The lack of a 
clear explanation for critical densities and why they appear in such a consistent place is an important unsolved 
problem.

The success of DSAMs and related methodologies2,8,10,11 makes clear that any set of scaling laws provides an 
incomplete picture of both rural and urban landscapes. Although they may appear to be, the residuals are not 
randomly distributed around the scaling law whatever the model. They are extensively correlated and reveal 
persistent structure and regional variation.

Materials and methods
Data sets.  Data on mortality and age were provided by NOMIS (https​://www.nomis​web.co.uk) a database 
service for labour market statistics run by the University of Durham on behalf of the UK Office of National 
Statistics. To anonymise the mortality data, NOMIS sets values ≤ 2 to 0 and values of 3 and 4 to 5 causing some 
distortion of low values and rare events. The age demographic data is model adjusted for a particular year based 
on the most recent census. Population, land area, crime and property information were obtained from the UK 
Home Office and Land Registry via UKCrimeStats (https​://www.ukcri​mesta​ts.com) which provides alignment 
of public data sets using geographic shape files obtained from the Ordnance Survey Boundary Line dataset. 
Data covering the period from 2013–2017 were captured on 20/03/2019. A total of 67 indicators were obtained 
(Table 1) and are available as S1 Dataset.

Networks.  Previous studies of crime and property found that DSAMs show extensive correlations and form 
modular networks8. The network representation N = (V ,E) consists of nodes V = {v1, v2, . . . , vn} and edges 
E = {e1, e2, . . . , em} . Here, nodes are indicators (e.g. Burglary, Suicide, etc.) and edges between them indicate 

Figure 8.   Map of England and Wales coded by self-organizing clusters. (a) The map includes all 348 Unitary 
Authorities, non-metropolitan districts, metropolitan boroughs and London boroughs colored by cluster. (b) 
The mean DSAMs for the 4 regions are shown after normalization to facilitate comparison. Un-normalized 
versions are available as Fig. S20. Map was created using R version (3.6.2) (https​://www.r-proje​ct.org/) running 
under R-Studio (Version 1.2.5019) (https​://rstud​io.com/).

https://www.nomisweb.co.uk
https://www.ukcrimestats.com
https://www.r-project.org/
https://rstudio.com/
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two indicator metrics (i and j) with significant positive Pearson’s correlation, ρi,j , between their corresponding 
DSAMs (edges weighted by ρi,j ). The Pearson correlation was selected based on our previous work7. Indicators 
in networks were clustered by modularity optimization to detect community structure42–45.

Self‑organizing maps.  A self-organizing map is an iterative approach to representing high dimensional 
datasets in a low dimensional space46,47 using a pre-defined array of nodes, m, arranged in a “grid-like” structure. 
We selected an 8 × 8 hexagonal array of nodes initialized to a random weight wij in the interval [0, 1]. This array 
was the largest n × n array without empty nodes48. The nodes were then updated after introducing each regional 
DSAMs input vector x1, . . . , xn at iteration t  . The distance, D

(

j
)

, was obtained by calculating the Euclidean dis-
tance between the input vector and weight vector for all units such that:

The input vector (regional DSAMs) was assigned to the unit index j that has the minimum Euclidean distance. 
The weight vector wij is updated on the “winning” unit j after each iteration such that:

where x(t) is the input vector’s instance at iteration t, wij(t) is the old weight, wij(t + 1) is the new weight and α is 
the learning rate in the interval [0, 1], which decreases with t  , to ensure the network converges. After the learning 
phase, all observations (i.e. regions) are positioned into a node within the map. If two or more observations are 
positioned within the same node this shows similarity.

The nodes were clustered by the standardized gap statistic49,

where k is the number of clusters, Wk is the pooled within-cluster sum of squares around the cluster means and 
E∗n denotes expectation under a sample of size n from the reference distribution49 usually a uniform distribution 
(i.e. a distribution with no obvious clustering). An estimate of E∗n

{

log(Wk)
}

 , is obtained by simulating B samples 
of log

(

w∗
k

)

 each of size n generated from a Monte Carlo sample X∗
1 , ...,X

∗
n drawn from the reference distribution. 

(6)D
(

j
)

=

n
∑

i=1

m
∑

j=1

(

xi − wij

)2

(7)wij(t + 1) = wij(t)+ α
(

x(t)− wij(t)
)

(8)Gapn(k) = E∗n
{

log(Wk)
}

− log(Wk)

Table 1.   Comprehensive list of indicators studied. Sixty-seven indicators were studied: 14 indicators of crime, 
9 indicators of property, 26 indicators of mortality and 18 indicators of age.

Crime types

Anti-social behaviour (ASB) Bike theft Burglary

Criminal damage and Arson (CD & A) Drugs Order

Other crime Other theft Robbery

Shoplifting Theft from person Vehicle crime

Violent crime Weapons

Property types

Detached Flats Freehold

Leasehold New Old

Semi-detached Terraced Other Property

Mortality types

Accidents Bladder cancer Brain cancer

Colon, sigmoid, rectum and anus cancer (CSR&A) Gallbladder cancer Kidney cancer

Larynx cancer Liver cancer Oesophagus cancer

Ovary cancer Pancreas cancer Prostate cancer

Stomach cancer Lung cancer Uterus cancer

Bone cancer Breast cancer Lymphoid cancer

Skin cancer Cardiac arrhythmias Cardiomyopathy

Dementia Diabetes Suicide

Homicide Other mortality

Age categories

Aged 0–4 Aged 5–9 Aged 10–14

Aged 15–19 Aged 20–24 Aged 25–29

Aged 30–34 Aged 35–39 Aged 40–44

Aged 45–49 Aged 50–54 Aged 55–59

Aged 60–64 Aged 65–69 Aged 70–74

Aged 75–79 Aged 80–84 Aged 85 + 
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In each case, E∗n
{

log(Wk)
}

 is an average of B samples of log
(

w∗
k

)

 . Therefore, assuming the reference distribution 
is a uniform distribution, a large gap statistic means that the clustering structure does not resemble uniformly 
distributed observations. Thus, the optimal number of clusters k occurs when Gap(k) ≥ Gap(k + 1)− sk+1 . 
Here, sk is the simulation error in E∗n

{

log(Wk)
}

.

Data analysis.  The data were analyzed using the statistical software R version (3.6.2)50 with the Segmented 
(1.1–0)51–54, proxy (0.4–2.4)55, boot (1.3–2.4)56,57, kohonen (3.0.1)58,59, and factoextra (1.0.6)60, moments (0.14)61, 
gplots (3.0.3)62, ggplot2 (3.3.1)63, car (3.0–8)64, nortest (1.0–4)65, RColorbrewer (1.1–2)66, NbClust (3.0)67, 
tidyverse (1.3.0)68, cowplot (1.0.0)69, psych (1.9.12.31)70, sf (0.8–1)71, raster (3.0–12)72, dplyr (0.8.3)73, spData 
(0.3.3)74, tmap (2.3–2)75, leaflet (2.0.3)76, mapview (2.7.0)77, shiny (1.4.0.2)78, and png (0.1–7)79 packages. The 
data were log transformed and analyzed by piecewise regression. The Davies test was used to test the signifi-
cance of any changes of slope with a 99% confidence level set for inclusion of a second segment. The Davies test 
and Akaike (AIC) and Bayesian (BIC) information criteria were used to select single and double exponential 
models. The residuals from the selected model were computed and used directly as DSAMs. Correlation and 
similarity measures were investigated including Pearson, Spearman and Kendall correlation, cosine similarity, 
and Jacquard distance using the proxy package computed in a pairwise manner for all indicator metrics and 
regions. The Pearson correlation and uncertainties were bootstrapped using the boot package to find significant 
connections at 95% confidence. The obtained connections for both the indicators and the regions are used to 
form positive and negative networks. The networks were constructed using Gephi version (0.9.2)80. The self-
organizing maps (SOM) were constructed using the kohonen package to investigate regional characteristics. A 
range of clustering methods were deployed on the SOM using the package factoextra to find an optimal number 
of clusters. These clusters are represented in the regional maps.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files). This data was compiled from a range of publicly available sources as noted in the manuscript. 
These are provided as the Following files: S1_data_raw.csv, S1_data_densities.csv, S1_data_cluster_means.csv, 
and S1_data_residuals.csv.

Code availability
We have also provided a set of R-scripts as supplementary information. This has been provided as 
S1_maincode_rev1.R.
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