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Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents

show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from

the retinal spiking neurons, and constitute around 20–25% of the LGN cell population.

However, there is a definite gap in knowledge about the role and impact of IN on

thalamocortical dynamics in both experimental and model-based research. We use a

neural mass computational model of the LGN with three neural populations viz. IN,

thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality

of IN on LGN oscillations and state-transitions. The synaptic information transmission

in the model is implemented with kinetic modeling, facilitating the linking of low-level

cellular attributes with high-level population dynamics. The model is parameterized

and tuned to simulate alpha (8–13Hz) rhythm that is dominant in both Local Field

Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake

resting state with eyes closed. The results show that: First, the response of the TRN

is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit

effects a dramatic change in the model output, displaying high amplitude synchronous

oscillations within the alpha band in both TCR and TRN. These observations conform

to experimental reports implicating the IN as the primary inhibitory modulator of LGN

dynamics in a cognitive state, and that reduced cognition is achieved by suppressing

the TRN response. Second, the model validates steady state visually evoked potential

response in humans corresponding to periodic input stimuli; however, when the IN

is disconnected from the circuit, the output power spectra do not reflect the input

frequency. This agrees with experimental reports underpinning the role of IN in efficient

retino-geniculate information transmission. Third, a smooth transition from alpha to theta

band is observed by progressive decrease of neurotransmitter concentrations in the

synaptic clefts; however, the transition is abrupt with removal of the IN circuitry in the

model. The results imply a role of IN toward maintaining homeostasis in the LGN by

suppressing any instability that may arise due to anomalous synaptic attributes.

Keywords: thalamic interneurons, neural mass models, Lateral Geniculate Nucleus, kinetic modeling, synaptic
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1. INTRODUCTION

The thalamic interneurons (IN) are believed to play a

fundamental role in linking retinal sensory input to visual

perception by modulating thalamocortical alpha rhythms (8–

13Hz) recorded through electroencephalogram (EEG) from

the occipital cortex (Lörincz et al., 2009). Alpha rhythms are
traditionally known to represent an idling state of the brain when

a subject is awake but relaxed with eyes closed. Subsequently,

it emerged that alpha rhythms play a key role in controlling
perception and are of significance during an awake cognitive

state. A transition of EEG from the alpha to the theta (4–7Hz)
band in an awake state is associated with several neurological
disorders such as neurogenic pain, tinnitus, Parkinson’s disease,
and is termed as thalamocortical dysrhythmia (TCD) (Sarnthein
et al., 2003; Hughes and Crunelli, 2005; Llinas et al., 2005); a
similar symptom in Alzheimer’s disease is termed as “slowing”
(a decrease of dominant frequency) of the alpha rhythms. On
the other hand, alpha to theta band transition in a quiet resting
state is a marker of a change of brain state from wakefulness
to drowsiness. In the visual pathway, local field potential (LFP)
recordings of alpha and theta rhythms from the thalamic lateral
geniculate nucleus (LGN) show a high correlation with EEG
recorded simultaneously from the occipital cortex (Lopes da
Silva et al., 1973; Hughes and Crunelli, 2006). In this regard,
synchronous oscillatory patterns showing waxing-and-waning
of amplitude within the alpha band is a well known hallmark
of EEG and LFP in an awake and “resting” state (i.e., devoid
of sensory input or mental task), and have been a matter of
extensive research; their generation is attributed to the feed-
forward and feed-back connectivity between cell populations of
the Thalamocortical Relay (TCR: the main carriers of sensory
information to the cortex) and the Thalamic Reticular Nucleus
(TRN: a thin sheet of inhibitory cells surrounding the thalamus,
receiving “copies” of communications between the TCR and
visual cortex) (Steriade et al., 1990). Thus, computational models
simulating thalamocortical dynamics have focused on the TRN
as the primary inhibitory influence on the TCR, and thereby,
on the cortex (Destexhe et al., 1996; Golomb et al., 1996; Stam
et al., 1999; Robinson et al., 2004; Grimbert and Faugeras, 2006;
Bhattacharya et al., 2011a; Wang et al., 2014); the inhibitory
influence of IN is largely ignored. A similar gap is seen in
experimental research investigating the functional impact of
the IN cells on the thalamocortical oscillations (Crunelli et al.,
2006; Halassa et al., 2014), exceptions being some early research
in Crunelli et al. (1988) and Zhu et al. (1999a). This is in spite
of the IN constituting around 20–25% of the total number of
cells in almost all thalamic nuclei processing sensory information
in mammals; around 47% of the synaptic afferents of the the
IN are from the information carrying spiking neurons of the
retina (Sherman, 2004; Jones, 2007). Moreover, the critical role of
the IN in the visual signal processing by the LGN and information
transmission in the retino-geniculo-cortical pathway is now
well established (Dublin and Cleland, 1977; Wang et al., 2007;
Babadi et al., 2010; Saalmann and Kastner, 2011; Wang et al.,
2011a,b; Pressler and Regehr, 2013; Bastos et al., 2014; Hirsch
et al., 2015); also, their physiology and spiking characteristics

are now understood fairly well (Pape and McCormick, 1995;
Zhu et al., 1999a,b; Cox et al., 2003). Thus, it is surprising
that the importance of the causality of IN on brain rhythms is
underestimated in experimental research, perhaps due to the lack
of appropriate technology (Zhu et al., 1999a,b) that prevented
proper recordings of the IN population dynamics. The emphasis
on the role of IN in brain rhythms was revived only recently
when Lörincz et al. (2008), while studying the waking state alpha
rhythm and their response to cortico-thalamic inputs, report
the distinct inhibitory effect of IN over TCR; this validates
the findings in early research on IN cell dynamics (Crunelli
et al., 1988) where the authors report the significant GABA-ergic
influence of IN on the TCR oscillatory dynamics in the rat LGN.
In addition, Lörincz et al. (2008) report aminimal role of the TRN
on the TCR dynamics in the awake state. This is in agreement
with a recent study using a computational model on the role of
thalamic cells in the disappearance of alpha rhythms in sleep-
wake transitions (Bond et al., 2014), where we have reported
a dramatic effect of the presence of the IN cells on the TRN
response; the research presented here builds on this prior work.

Neural mass computational models (NMM) (Marreiros et al.,
2008; Moran et al., 2013) are often used to simulate brain
rhythms recorded in LFP and EEG that are believed to be
generated through dynamic interaction between networks of
meso-scale (104 − 107 neurons) neuronal populations. These
models were conceptualized in the works of Wilson and
Cowan (1973) and Freeman (1975), and later popularized by
the classic work on alpha rhythm by Lopes da Silva et al.
(1974) and Zetterberg et al. (1978). Subsequently, this classic
model was extended in Jansen and Rit (1995) and Suffczyński
(2000), and used extensively in model-based research of neuro-
psychiatric disorders (Wendling et al., 2002; David and Friston,
2003; Suffczyński et al., 2004; Modolo et al., 2013; Wang et al.,
2013; Taylor et al., 2014). In previous works, we have proposed
an enhancement to state-of-the-art neural mass models by
replacing the “alpha function” (Rall, 1967) with kinetic models
of Glutamatergic and GABA-ergic synapses (Bhattacharya et al.,
2012; Bhattacharya, 2013). The motivation for these research
has been to take a step forward in building computational tools
that can complement experimental research in understanding the
underlying cellular mechanisms of anomalous EEG signals in
neurological and psychiatric disorders. The main inspiration for
this approach has been the work by Destexhe (1994), where the
authors state the following when discussing the future benefits of
kinetic modeling of synaptic processes (p. 223): “A considerable
amount of experimental data is available from measurements
of the average activity of populations of brain cells: recordings
of electroencephalogram, LFPs, magnetoencephalograms, optical
recordings, magnetic resonance images, etc. It would be
interesting to attempt to establish a relationship between such
global measurements and dynamics at the molecular level.” Our
work on NMMs embedded with synaptic kinetics showed a high
sensitivity to the neurotransmitter concentration, forward and
reverse rates of reactions during synaptic transmission, and the
membrane conductance of the cell populations. Besides enabling
the correlation of lower-level synaptic attributes to population-
level dynamics in the model, the approach provided a 10-fold
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decrease in computational times compared to classic NMMs. The
study presented here uses a neural mass computational model
of the LGN implementing kinetics of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and γ -amino-butyric
acid (GABA) neuro-receptor mediated synapses, and is an
extension of the model in Bhattacharya (2013).

For a long time, the only role of the thalamus was
thought to be relaying sensory information to the cortex. The
significant advances in our current understanding of other
important functions of the thalamic circuitry, especially its
integral role in cortical dynamics, is based upon some crucial
and pioneering experimental investigations of the thalamic cells
in vitro (McCormick and Prince, 1987; von Krosigk et al.,
1993). Based on de-corticated (disconnected from the cortex)
thalamic slices from the LGN of mammals and rodents, these
works established an in-depth understanding of the intrinsic
dynamics of the intra-thalamic cell populations (McCormick and
Pape, 1990; Steriade et al., 1993; Pape and McCormick, 1995;
Bal et al., 1995) and its fundamental role in cortico-cortical
communication (Sherman and Guillery, 2002). In this work, our
objective is to gain a thorough understanding of the synaptic
dynamics of the IN afferents and efferents and their role in
the LGN dynamics. In fact, a pioneering work identifying the
significant effect of IN on the TCR cell dynamics constitutes
of an in vitro experimental study on LGN slices from the rat
brain (Crunelli et al., 1988). The model presented in this work
endeavors to simulate the dynamics of a de-corticated LGN,
similar to these early experimental studies.

The model output dynamics are observed under conditions
of deletion of the IN synaptic pathways in the LGN circuit and
corresponding to a set of “base” parameter values in the model as
well as with parametric deviations. Our motivation toward such a
model simulation set up is two-fold: to investigate the functional
significance of the IN population on LGN oscillatory dynamics,
considering that these cells are ignored in current model-based
studies of thalamocortical oscillations; to investigate dynamical
transitions in the model output that may arise with a dysfunction
of the IN cell circuitry, which in turn may be caused by some
abnormal pathological conditions in the network. The model
input is a white noise simulating background spiking activity of
the retinal neurons with eyes closed i.e., absence of visual input.
Our results show that: First, if the IN population is disconnected
from the network, both TCR and TRN population outputs
display synchronous oscillations with waxing-and-waning of
amplitude and power spectral peak frequency within the alpha
band at ≈ 11 Hz: the hallmarks of EEG and LFP in an
awake and resting state with eyes closed. Similar alpha rhythmic
synchronous oscillations are also seen for reduced glutamatergic
retinal input to the IN population (i.e., when IN is included
in the network but receiving reduced visual input). Second, a
“smooth” transition of the power spectra from the alpha to theta
band is effected by a progressive decrease of neurotransmitter
concentration in the synaptic clefts. In contrast, if the inhibitory
effect of the IN is reduced by decreasing its efferent synaptic
connectivity to the TCR below a certain threshold, a “dramatic”
(as opposed to “smooth”) transition from alpha to theta band is
observed in themodel output when the levels of neurotransmitter

concentration are lower than the set base value; the TCR and
TRN enter a state of synchrony, showing waxing-and-waning
amplitude patterns within the theta band. Third, increasing
the ensemble leakage conductance of the IN cell population
hyperpolarizes its average membrane potential, and both TCR
and TRN time-series show synchronous oscillations in the limit-
cycle mode and within the theta band. Thus, our results make a
strong case for the IN as an integral part of the LGN circuitry
in the awake cognitive state, maintaining an overall homeostasis
in the system by preventing dramatic oscillatory state transitions
in the TCR and the TRN, which appear when specific sets of
synaptic attributes linked to the IN are altered.

As a case study, the model is tested for simulating
Steady State Visually Evoked Potentials (SSVEP)—brain signals
corresponding to flickering visual input at a constant or slow-
varying frequency that can be observed through EEG. The
frequency of the SSVEP signal is easy to control through the
visual input, thus making it popular as a tool to study both
lower-level and higher-level vision (see Norcia et al., 2015
for a review). The primary advantage of SSVEP is that the
response frequency follow that of the input stimulus, making
it possible to distinguish between multiple stimuli at different
frequencies. It is therefore not surprising that SSVEP is growing
in popularity for applications in clinical neuroscience aimed
at understanding brain diseases (see Vialatte et al., 2010 for a
review). In addition, Brain-Computer Interface (BCI) research
have also used SSVEP for advancing current state-of-the-art
applications (Guger et al., 2012). Thus, it seems appropriate
that a model simulating LGN dynamics be tested for SSVEP
response corresponding to a cognitive brain state. A visual
stimulus input to the model is simulated by superimposing the
(above-mentioned) white random noise with periodic impulse
trains at a single frequency within the range 5–50Hz. For all
frequencies in this range, the fundamental frequency of themodel
output reflects the frequency of the input impulse train and
has distinct harmonic components, thus agreeing with existing
literature on SSVEP characteristics (Vialatte et al., 2010; Norcia
et al., 2015). Furthermore, the IN and TCR cells in the model
show similar power spectra characteristics and their time-series
are in-phase. However, the TRN time-series is in anti-phase
(approximately) with TCR. There is a distinct change in the
model behavior when the IN is disconnected from the circuit:
the TRN and TCR time-series are now in-phase (approximately)
and the resonant frequency of the circuit dominates the power
spectra, thus implying a reduced effect of the periodic stimulus
input.

The model structure, parameterization, and simulation
methods are discussed in Section 2. Results are presented in
Section 3 alongwith discussions on their implications andmodel-
based predictions. We conclude in Section 4 and mention future
directions that will build on this work.

2. MATERIALS AND METHODS

A schematic of the model used in this work is shown in Figure 1.
The synaptic layout of the model is based on the intra-thalamic

Frontiers in Computational Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 115

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bhattacharya et al. Interneurons of the LGN in Brain State Transitions

FIGURE 1 | Schematic of the neural mass model of the thalamic

Lateral Geniculate Nucleus (LGN) consisting of three cell populations

viz. the Thalamocortical Relay (TCR), the Interneurons (IN) and the

Thalamic Reticular Nucleus (TRN). The excitatory synapses are modeled

with AMPA kinetics while the inhibitory synapses are modeled with GABAA
and GABAB kinetics. The output of the TCR population is taken as the model

output, while the model input is assumed to be mean activity of the retinal

spiking neurons (RET). The model “base” (reference) parameter values are

tuned for dominant alpha rhythms in the model output and are given in

Tables 1, 2. The intra-thalamic population connectivities are based on

experimental findings (Sherman and Guillery, 2001) and are discussed in

Section 2.2. Both AMPA and GABAA are ionotropic (fast) synapses and are

modeled with one first order differential equation (Equation 2). The GABAB is a

metabotropic (slow) synapse and is modeled with two sets of first order

differential equations (Equations 3–5).

connectivity presented in Sherman (2006) and Sherman (2007),
which in turn are informed by experimental data obtained
from the LGN of mammals and rodents and are as reported
in Van Horn et al. (2000), Sherman and Guillery (2001) and
Jones (2007). In addition, recurrent feedback in both IN and
TRN (Huntsman et al., 1996) populations are observed in the
experimental studies and are included in the model.

The output of the TCR cells form the main source of sensory
information to the visual cortex. Furthermore, in simultaneous
studies on LGN and cortical outputs, the LFP from the TCR
cells are observed to have a high coherence with EEG from the
occipital scalp electrode (Lopes da Silva et al., 1974; Hughes and
Crunelli, 2006; Bastos et al., 2014). Thus, in this model of the
LGN, the time-series of the TCR cells is considered as the output
and is hereafter referred to as the “model output.” Input to the
model represent the mean activity of the retinal spiking neurons
(the afferent population to the LGN) when the brain is in an
awake state with eyes closed.

The retinal spiking neurons (ganglion cells) make excitatory
(glutamatergic) synapses with the TCR and IN population of
the LGN that are mediated by both fast ionotropic (iGluR)
and slowmetabotropic (mGluR) glutamate neuro-receptors (Cox
et al., 2003; Wang et al., 2011b). However, Pape and McCormick
(1995) report that in the presence of iGluR, mGluR have minimal
effect on the IN membrane potential and their synaptic activities.

This observation is subsequently confirmed by Govindaiah and
Cox (2006). Hence, this pathway is often ignored in synaptic
circuits of the LGN (Sherman, 2006). We follow the latter
work, and consider only the ionotropic AMPA (iGluR) neuro-
receptors mediated synaptic efferent pathways from the retina to
both IN and TCR populations. The IN cells make feed-forward
inhibitory (GABA-ergic) synapses on the TCR cells mediated by
the ionotropic GABAA neuro-receptors. The TRN cells receive
excitatory synapses from the TCR population mediated by
ionotropic AMPA neuro-receptors, and send inhibitory feedback
to the TCR cells mediated by both ionotropic GABAA and the
metabotropic GABAB neuro-receptors. In addition, the cells in
both TRN and IN make feedback connections on their respective
self populations, mediated by the ionotropic GABAA neuro-
receptors.

It is worth mentioning here that all thalamic nuclei that
process sensory information are reported as having a similar
architecture to that of the LGN (Sherman and Guillery, 2001;
Saalmann and Kastner, 2011). Thus, the model in Figure 1 can
also be used for simulating the thalamic dynamics corresponding
to other sensory pathways. The mathematical framework for
the model is mentioned in Section 2.1; model parameterization
is discussed in Section 2.2; simulation methodologies are
mentioned in Section 2.3. The reference values, referred to in this
work as “base values,” of the model parameters are mentioned in
Tables 1, 2.

2.1. Model Equations
The model in Figure 1 is defined by the set of first order
differential equations in Equations (1)–(8). The neurotransmitter
concentration in the synaptic cleft ([T]) is a function of the mean
membrane potential of the pre-synaptic population, Vpre, and is
simulated with a sigmoid defined in Equation (1):

[T](Vpre) =
Tmax

1+ e−
Vpre−Vthr

σ

, (1)

where Vthr is the threshold voltage when the neurotransmitter
concentration crosses the 50% of its maximum value Tmax,
and σ is the steepness parameter of the sigmoid. An increase
of neurotransmitter concentration in the synaptic cleft can be
simulated in the model by decreasing Vthr and increasing σ .

Equation (2) defines the dynamics of the ionotropic synapses
in the model viz. those mediated by the AMPA and GABAA

neuro-receptors. The variable r defines the proportion of open
ion-channels on the post-synaptic population caused by the
binding of the glutamatergic and GABA-ergic neurotransmitters
with the AMPA and GABAA neuro-receptors respectively.

dr(t)

dt
=α · [T](Vpre) · (1− r(t))− β · r(t), (2)

where α and β refer to the forward and reverse rates of chemical
reactions respectively.

Equations (3)–(5) define the dynamics of the metabotropic
synapses in the model viz. those mediated by the GABAB neuro-
receptors. They activate G-proteins which in turn act as the
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TABLE 1 | (A) Data for the forward (α) and reverse (β) rates of synaptic

transmission is according to the range mentioned in Golomb et al. (1996)

and Destexhe et al. (1994).

(A) NEUROTRANSMISSION PARAMETERS

Parameters Value Synaptic pathway

α
(

(mM) −1. (s)−1
)

1000 AMPA, GABAA

β
(

(s)−1
)

50 AMPA

40 GABAA

α1,α2
(

(mM) −1. (s)−1
)

10, 15 GABAB

β1,β2
(

(s)−1
)

25, 5

g
syn
max

(

µS/cm2
)

300 AMPA (RET to TCR)

100 AMPA (RET to IN)

(TCR to TRN)

100 GABAA

60 GABAB

E
syn
rev

(

mV
)

0 AMPA

−85 GABAA (TRN/IN to TCR)

−75 GABAA (TRN (IN) to TRN (IN))

−100 GABAB (TRN to TCR)

Kd 100 GABAB

n 4

(B) CELL MEMBRANE PARAMETERS

RET TCR IN TRN

gleak (µS/cm2) X 10 10 10

Eleak (mV) X −55 −72.5 −72.5

Vrest (mV) −65 −65 −75 −85

Note that the units used in our model are at a different time scale (sec-1 ), and thus absolute

figures are different from these references. The data for maximal synaptic conductance

g
syn
max is in the range mentioned in (Wang et al., 1995; Golomb et al., 1996); note that the

unit for this parameter in our model is µS/cm2. Data for Erev is as in (Wang et al., 1995;

Golomb et al., 1996). Specific data relating to the thalamic IN synapses are not mentioned

in any of these sources, and are set as similar to those of TRN in this work. The ‘RET’ in

the parameter superscripts refer to the retina as the source of input to the model. (B) The

leakage current in the model cell populations are assumed to be due to Potassium (K)

mainly. Thus, the leakage conductance and reverse potentials parameters in the model

are in the range mentioned in (Wang et al., 1995; Golomb et al., 1996). The resting state

membrane potential for TCR and TRN are as in (Wang et al., 1995), and that for IN is

set arbitrarily to a depolarised (hyperpolarised) value with respect to the TRN (TCR). The

resting membrane potential for the retinal spiking neurons (RET) is set at −65mV, and

their efferent signal to the TCR is simulated by a white random noise with mean −65mV

and standard deviation 2 mV2. Thus, there is no ODE corresponding to the RET in the

model, and its leak conductance and leak reversal potentials are indicated with a ‘does

not matter’ symbol ‘X’.

“secondary messengers” and initiate the opening of ion channels.

dR(t)

dt
= α1 · [T](Vpre) · (1− R(t))− β1 · R(t) (3)

d[X](t)

dt
= α2 · R(t)− β2 · [X](t) (4)

r(t) =
[X]n(t)

[X]n(t)+ Kd
(5)

TABLE 2 | Base values of the synaptic connectivity parameters Cuvw in

Equation (6) are derived from experimental data on LGN of mammals and

rodents (Van Horn et al., 2000; Sherman and Guillery, 2001; Jones, 2007)

(see Section 2.2 for a brief overview).

Efferents→
TCR IN

TRN
Retinal

Afferents ↓ GABAA GABAB

TCR X
Ctii Ca

tni
Cb
tni

Ctre
1
2 of 30.9 3

8 of 30.9 1
8 of 30.9 7.1

IN X
Cisi

X X
Cire

23.6 47.4

TRN
Cnte

X
Cnsi

X X
35 20

Each parameter value is a normalized figure that represents the percentage of the synaptic

contacts made on the post-synaptic cell population u by the pre-synaptic cell population

v, and w represents the sign of the synapse i.e., excitatory (e) or inhibitory (i). The afferent

populations are represented by the letters t for TCR, n for TRN, i for IN and r for retina.

For synaptic contacts by a cell population on itself, v is represented by s, which stands

for a connection from “self.” All “X” indicate a lack of biological evidence for any synaptic

connectivity in the specific pathway.

where R is the fraction of activated GABAB receptors, which acts
as a catalyst in activating the secondary-messenger G-protein
(guanine nucleotide binding proteins); [X] is the concentration
of the activated G-protein; r is the fraction of open ion channels
caused by binding of [X] with independent binding sites; α1, 2

and β1, 2 are the forward and reverse binding rate constants
respectively; n is the number of bound receptor sites and Kd is
the dissociation constant of binding of [X] with the ion channels.

The resulting post-synaptic current, Ipsc(t), is defined in
Equation (6):

Ipsc(t) =Cuvw · g
syn
max · r(t) · (Vpsp(t)− E

syn
rev ), (6)

where g
syn
max and E

syn
rev are the maximum conductance and reverse

potential respectively and their values depend on the mediating
synapse syn ∈ {AMPA, GABAA, GABAB}; Vpsp is defined
in Equation (7) and is the ensemble post-synaptic membrane
potential; Cuvw is a normalized figure that represents the
percentage of the synaptic contacts made on the post-synaptic
cell population u by the pre-synaptic cell population v, and w
represents the sign of the synapse i.e., excitatory or inhibitory.

κm ·
dVpsp(t)

dt
= −

∑

Ipsc(t)− Ileak(t), (7)

where κm is the ensemble membrane capacitance of the post-
synaptic cell population,

The parameter Ileak in Equation (7) is the ensemble membrane
leak current of the post-synaptic cell population and is defined in
Equation (8):

Ileak(t) = gleak(Vpsp(t)− Eleak), (8)

where gleak and Eleak are conductance and reverse potential
respectively corresponding to “non-specific” leak (Golomb et al.,
1996; Suffczyński et al., 2004) in the ensemble membrane of the
post synaptic cell population.
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2.2. Model Parameterization
The model input is simulated by computer generated random
noise that has a low variance and a white frequency spectrum.
The resting state membrane potential of both excitatory cell
populations of the model viz. the retinal cells and TCR are set
to −65mV. Thus, the mean of the retinal noisy input is −65mV
and the standard deviation is set to 2mV2 to reduce the stiffness
of the solution (in Matlab) for the set of differential equations
defining the model in Equations (1)–(8).

The base values of the synaptic connectivity parameters in
the model are based on physiological data (Van Horn et al.,
2000; Sherman and Guillery, 2001; Jones, 2007) and mentioned
in Table 2 along with the corresponding nomenclature for
specific connectivities used in this work. For the purposes of
this work in simulating the LGN dynamics of a de-corticated
thalamus (discussed in Section 1), we ignore all afferent
cortico-thalamic inputs to the model. A brief overview of the
literature survey on intra-thalamic cell connectivity is provided
below:

• TCR afferents: Data from the dorsal cat LGN (LGNd) (Van
Horn et al., 2000) suggest that the TCR receive ≈ 7.1% of
their inputs from the retinal ganglion cells (Ctre), while ≈
30.9% of their inputs are from inhibitory sources viz. IN and
TRN. However, and to the best of our knowledge, there is no
data available that distinguish between the afferent synaptic
terminals from the IN and TRN. Thus, in this work, the
GABAA afferents from TRN and IN (Ca

tni and Ctii respectively)

and the GABAB afferent from the TRN (Cb
tni) are tuned so that

the sum total of all inhibitory afferents on the TCR is 30.9%.
The remaining ≈ 62% of the connections are from the cortex
as well as other sub-cortical sources, and are ignored in the
present work for brevity.
• IN afferents: A study made on the cat LGNd in 1991 suggest

that the IN cells receive around 25% synapses from the
retinal spiking neurons, 37% from other inhibitory sources
including themselves, while 26% synapses are from the cortex.
However, according to a more recent study (Van Horn
et al., 2000), these figures are reported as 47.4, 23.6, 29%
respectively. On the other hand, data from the LGNd of a
squirrel monkey (primate) indicates that the IN cells receive
an equal proportion of each of the three categories of synaptic
terminals (Jones, 2007). To maintain consistency with the
source of data for TCR population, we follow the data by Van
Horn et al. (2000) and set the retinal input (Cire) and self-
inhibitory (Cisi) connectivities in the IN as 47.4 and 23.6%
respectively. It may be noted that the IN circuitry in the LGN
has a unique triadic spiking arrangement (Sherman, 2004)
consisting of dendrites that are not only post-synaptic to the
retinal cells but are also pre-synaptic to the TCR cells as well as
to themselves (dendro-dendritic synapses). These are referred
to as the F2 terminals of the IN while the usual pre-synaptic
axonal terminals are referred to as F1. However, the exact
distribution of F1 and F2 terminals are not yet available from
physiological studies; thus the above-mentioned figures for
synaptic afferents to the IN refer to the combined numbers of
both types of terminals.

Experimental observations of IN cell dynamics do mention
an excitatory feed from the TCR to these cells (Crunelli et al.,
1988; Zhu et al., 1999a; Lörincz et al., 2008), however, these
were speculations based on cell behavior as opposed to cell
physiology. On the other hand, experimental studies on IN
physiology suggest two specific cell types in the LGN (Cox
et al., 2003): the intra-layer IN cells that do not receive any
afferents from the TCR cells; the inter-layer IN cells that
do receive inhibitory feedback from the TCR cells, and are
often thought to be “stray” cells of the TRN. In the present
work, we consider the intra-layer IN cell population only;
thus, as in our previous work (Bhattacharya et al., 2011b),
the IN population do not receive any synaptic afferents from
the TCR.
• TRN afferents: Both thalamocortical and corticothalamic

synapses on the TRN sector corresponding to the rat LGNd
and visual cortex are excitatory (glutamatergic) in nature
and constitute ≈ 30–40% and ≈ 50% respectively of the
total synapses; the remaining up to 25% of the synapses are
from other inhibitory sources including neighboring intra-
population cells (Jones, 2007). In our model, we maintain the
TCR afferent connectivity (Cnte) as 35%, and self inhibitory
connectivity (Cnsi) as 20%.

The parameter [T]max in Equation (1) is well approximated by
1mM (Destexhe et al., 1998), while the base values for Vthr

and σ are obtained by trial simulation studies on the model
(further elucidated in Section 3.1) and are set to−32 and 3.8mV
respectively. The capacitance κm is set at 1 µF/cm2.

It is worth noting that while the model output time-
series in Bhattacharya (2013) demonstrates rich dynamics
corresponding to alterations in AMPA and GABAA synaptic
parameters and conforming to experimental observations, the
period of oscillations in the model were below that of normal
brain oscillations as seen in LFPs and EEGs. Appropriate
modifications are made in this work to overcome the limitations
of the previous work, and the parameters α,β and g

syn
max in the

Table 1A as well as gleak in Table 1B reflect the modified unit
scales.

The variable Vpsp for TCR, TRN, and IN are initialized to
the respective resting state values as in Table 1B; the variables
“r,R,X” in Equations (2)–(5) are initialized to an arbitrarily small
value 0.001 (and the ODE solutions do not show any dependency
on the initial values). Please see the Table 1 legend for further
information on parameter sources.

2.3. Simulation Methods
The ODEs are solved using the 4th/5th order Runge-Kutta-
Fehlberg method (RKF45) in Matlab for a total duration of 40 s
at a resolution of 1ms. The output voltage time series is averaged
over 20 simulations, where each simulation runs with a different
seed for the noisy input. For frequency analysis, an epoch from
10 to 39 s of the output signal is sampled every 1ms (1000Hz)
and bandpass filtered between 1 and 100Hz with a Butterworth
filter of order 10. The filtered signal is then transformed using 4-
point FFT and power spectral density derived using the Welch
periodogram. The power plots in Section 3 show the averaged
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power spectral density over 20 simulations. The bar plots show
the total frequency content within each of the four frequency
bands viz. delta (1–3.5Hz), theta (3.75–7.5Hz), alpha (7.75–
13.5Hz), and beta (13.75–20). Short Time Fourier Transform
(STFT) is carried out on the averaged membrane potential of
each cell population with a Hamming window of duration 1 s and
overlap of 50%.

Simultaneous variation of parameters is an inherent feature
in the brain as in all dynamical systems in nature. The kinetic
modeling approach based NMM is computationally efficient
in terms of both time and memory usage compared to the
alpha-function based NMMs, as well as possessing greater
biophysical plausibility. This approach is adopted in model
presented here and has allowed for extensive simulation trials
of the model involving simultaneous parameter variation in
order to set the base parameter values in Table 1, as well
as to study model behavior as discussed in the following
text.

3. RESULTS AND DISCUSSION

The results presented herewith make a comparative study on
the effects of incorporating the IN in the LGN model with the
case when it is excluded from the circuit. In Sections 3.1–3.4, we
present and discuss parametric deviations that are observed to
effect a state transition in the model output time-series and a shift
in its power spectra. In Section 3.5, we examine a case study by
simulating SSVEP in the model.

3.1. Causality of the Neurotransmitter
Concentration: Setting Base Parameters
Figures 2A,B show an overview of the model output power
within the alpha and theta bands respectively for simultaneous
variation of σ in the range 3–4mV at a resolution of 0.1mV,
and Vthr in the range −30 to −35mV at a resolution of 1mV,
simulating a gradual increase of neurotransmitter concentration
[T] (the reader may please refer to Equation 1). The power within
the theta band has a left skew for lower values of both parameters;
there is a drop in the overall band power for increasing values of
Vthr . Power within the alpha band saturate for higher values of σ
across all values of Vthr ; however, the absolute power is less than
that within the theta band for lower values of sigma. In general,
for a fixed value of Vthr (σ ), increasing (decreasing) σ (Vthr)
causes an increase in [T] and effects a progressive shift of the
model output power spectra from a dominant theta band power
to a dominant alpha band power accompanied by a consistent
increase in beta band power.

As mentioned in Section 2.2, the base values of both
parameters Vthr and σ are set by visual inspection of the results
in Figure 2 such that the model output power is dominant within
the alpha band. In Figure 2A, the image show minimal skewness
for Vthr = −32 mV. In Figure 2C, the case for Vthr = −32 mV is
shown: we note that at σ = 3.8, the alpha band power is greater
than that of the theta band, and the difference between the two
band powers is maximum for the tested range; thus, Vthr = −32
mV and σ = 3.8 mV are set as base parameter values in the
model.

FIGURE 2 | The model output power spectra for simultaneous variation of parameters Vthr and σ and within the (A) alpha and (B) theta frequency bands.

(C) Histogram of the model output power within the theta and alpha bands at Vthr = −32 mV and for values of σ between 3 and 4mV at a resolution of 0.2mV. The

power within the alpha band is greater than that within the theta band for σ > 3.6. For 3.6 6 σ 6 4, the alpha peak has a maximal difference with the theta peak at

σ = 3.8 mV. Thus, the base values of Vthr and σ are set at −32 and 3.8mV respectively.
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Discussion
The gradual alpha to theta band transition with reduced
levels of neurotransmitter concentration in the model mimics
the EEG marker of transition from a state of wakefulness
to a state of drowsiness (Hughes and Crunelli, 2005). It is
now well understood that the release of neurotransmitters
in the synaptic cleft is mediated by calcium current; an in-
depth study by Llinas et al. (1981) on squid giant axon
suggests transmitter depletion in the cleft due to reduced pre-
synaptic activity, which in turn lead to reduced post-synaptic
activity. In the LGN, McCormick (1992) have demonstrated that
thalamic slices in vitro display membrane depolarization and
cessation of rhythmic oscillations on application of cholinergic
and noradrenergic neuromodulatory inputs. This implies that
conversely, depletion of these neuromodulators may lead to
slow synchronous rhythms in the LGN. More recently, Zhao
et al. (2002) have shown that dopaminergic neuro-receptors
affect information transmission efficiency in the LGN by
neuromodulation of the IN cells. Furthermore, their study
suggest a stronger suppression of the TCR cells with blockage of
GABAA neuro-receptors. Ourmodel-based study show an abrupt
(as opposed to progressive) transition from alpha to theta rhythm
when the IN feed-forward inhibition of the TCR cells are deleted
in the circuit (see Section 3.2). Overall, it may be speculated
that the state transition in the model may mimic the effect of
IN cells due to neuromodulatory influences from extra-thalamic
sources.

3.2. Causality of the Interneurons in the
LGN Circuit
The time series and power spectra of the model cell populations
when all parameters are at their base values are shown in
Figure 3. The membrane potential of the TRN has a low
peak-to-peak oscillatory envelope of ≈ 0.3 mV in comparison

to ≈ 0.8 mV for TCR and IN. The power spectra of both
TCR and IN are broad with peak frequencies at ≈ 8.5 and
13Hz respectively. The corresponding STFT plots in Figure 4

(C: with IN) show that the power spectra of both populations
span the theta, alpha and lower-beta (4–20Hz) frequency bands.
In comparison, the TRN has a sharp power spectral peak
at around 7.5Hz, and the STFT plot in Figure 4 (C: with
IN) show a narrow power spectra within the theta to lower-
alpha (4–10Hz) region corresponding to base model parameter
values.

Next, the IN cell population is disconnected from the
network by making Ctii = 0. This condition simulates
the blocking of GABA-ergic feed-forward inhibition of the
TCR due to neuromodulatory effects on the IN by several
neurotransmitters such as acetylcholine (McCormick, 1992)
and dopamine (Zhao et al., 2002). The time series output of
both TCR and TRN in Figure 4A shows a distinct bifurcation
with synchronized waxing-and-waning of amplitude within
the alpha band frequency. The mean membrane potential of
both populations show depolarization and increased peak-to-
peak oscillation compared to their respective counterparts in
Figure 3. The bar plots of both TCR and TRN in Figure 4B

demonstrate the dramatic decrease in theta band power and
the distinct dominance of alpha band power when the IN is
removed from the circuit. The STFT plots for both TCR and
TRN in Figure 4 (C: with IN) indicate a stationary power
spectra with a dominant frequency within the alpha band.
Furthermore, in the absence of IN, decrease of neurotransmitter
concentration in the model effects a dramatic slowing of
the model output: thus, while the time series still retain the
amplitude-waxing-and-waning pattern in synchrony with the
TRN, the dominant frequency of oscillation is within the
theta band (not shown here; please refer to discussion in
Section 3.1).

FIGURE 3 | Time-series (Left) and Power spectral density (Right) plots for the TCR, IN and TRN cell populations corresponding to base parameter

values in the model. The dominant frequency of oscillation of both TCR and IN is within the alpha band (8–13Hz) with peaks at around 8.5 and 13Hz respectively.

Furthermore, both these populations show a wide power spectra spanning the theta (4–7Hz), alpha and lower-beta (14–20Hz) bands. The TRN shows a

comparatively narrow power spectra spanning the theta and lower-alpha (5–10Hz) band with a dominant peak within the theta band at ≈ 7.5Hz. The time-series

show-case a representative sample from 15 to 25 s of the total simulation time of 40 s.
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FIGURE 4 | (A) The time-series plots show the phase-locked waxing-and-waning oscillatory patterns within the alpha band, (hallmarks of EEG and LFP in a quiet

awake state with eyes closed, and resting) in both TCR and TRN, and in the absence of IN in the circuit. The average membrane potential from 15 to 25 s of the total

simulation time of 40 s is show-cased and may be compared to the time-series plots in Figure 3, corresponding to when the IN is included in the circuit. (B) The bar

plots for TCR (Left) and TRN (Right) show a comparison between when the IN is in the circuit and when the IN is disconnected: In the former case, the TCR and TRN

have different power levels within the specified frequency bands. The dominant frequency of the TCR is within the alpha band, while the dominant frequency in the

TRN is within the theta band. In the latter case, i.e., with the IN is removed from the circuit, the proportion of power within the delta, theta and beta bands in both TCR

and TRN are negligible in comparison to the power within the alpha band. (C) The STFT plots in the lower panel (without IN) show a fairly stationary signal for both

TCR and TRN with a peak at ≈ 12.5Hz in the absence of IN. In comparison, when the IN is included in the circuit, the STFT plots (upper panel) for the TCR indicate a

broad power spectra spanning the theta, alpha and lower-beta bands and is similar to that of the IN. However, STFT plots for the TRN output lies within the theta to

lower-alpha region (4–10Hz), implying suppressed dynamics in the presence of IN.

Discussion
The model results show a distinct suppression of TRN activity
in the presence of IN in the circuit; the corresponding time
series is low-amplitude with a broad power spectral content
spanning the alpha to lower-beta regions, similar to EEG and
LFP in awake cognitive state. Removal of IN effects feed-forward
disinhibition of the TCR and generation of synchronous waxing-
and-waning oscillations. Experimental studies have shown that
the waxing-and-waning patterns in EEG, both in alpha rhythms
(amplitude) as well as in sleep spindles (frequency), are the

result of the feed-forward and -back interactions between the
TCR and the TRN. As both patterns underpin a state of “low
vigilance” (Saalmann and Kastner, 2011) i.e., devoid of task-
related activity and reduced information transmission efficacy in
the retino-geniculo-cortical pathway, it is suggested (Saalmann
and Kastner, 2011) that a state of increased information
transmission (as opposed to a state of low vigilance) is facilitated
in the circuit by suppressing the inhibitory influence of the
TRN. The model validates these experimental observations and
further predicts that feed-forward inhibition from the IN play an

Frontiers in Computational Neuroscience | www.frontiersin.org 9 November 2016 | Volume 10 | Article 115

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bhattacharya et al. Interneurons of the LGN in Brain State Transitions

important role in cognitive activities by suppressing the feedback
inhibitory effects of the TRN cells.

Another interesting observation by Halassa et al. (2014)
reports better task-related performance when the inhibitory
efferents of the TRN are suppressed by application of an “external
stimulus”—we hypothesize that the “external stimulus” may have
simulated the indirect effect of IN on the TRN. Overall, the
model predictions underpin a causal role of the IN in transitions
between awake cognitive state to that of diminished cognition.

In addition, themodel results show that commonmechanisms
in the LGN cause alpha to theta band transitions, thus agreeing
with experimental observations suggesting that common
neuronal mechanisms underlie EEG and LFP of alpha and theta
rhythms (Hughes et al., 2004).

3.3. Varying the Connectivity Parameters
The synaptic connectivity parameters in the model are varied
around their base values, the details of which are mentioned in
Table 3 along with a brief overview about their effects on the
model behavior. The results are presented and discussed below:

• When the self inhibition connectivity parameter of the IN
(Cisi) is decreased, the TRN population output is suppressed
significantly in spite having no direct connectivity with the IN
cells. Overall power in the model output is decreased due to
increased inhibition from the IN population, and the power
spectra shifts right with relatively more power within the
upper alpha (10–13Hz) and lower beta bands (14–20Hz) as
shown in Figure 5B. Increasing the parameter values above the
base value reduces the effect of IN on the TCR, and thereby on
the TRN. A narrow peak within the alpha band in Figure 5B

indicates an increased effect of the TRN population on the
TCR cells.

TABLE 3 | Synaptic connectivity parameters that show sensitivity to the IN

in the model are increased (>) and decreased (<) progressively with

reference to their respective base values.

Parameter ←− < Base > −→

value

Cisi 3.6, 13.6 23.6 33.6, 40 α ↑

0.1, 0.15 θ ↑

0, 0.05 δ ↑

Ctii 2.5, 5.5, 7.5, 10.5 α ↑ 15.45 23, 30.9

< 5 αaww

Cire 7.4, 27.4, 37.4 α ↑ 47.4 57.4, 67.4

Ca
tni

0, 2.5, 7.5, 11.6 αaww 15.45 23, 30.9 limit cycles

(without IN) (without IN)

Cnsi 0, 5, 10, 15 θ ↑ 20 25, 30

The parameter values mentioned in the table are representative samples of the range of

values for which the model is tested in this work. An overview of the significant effects

on the model output time-series and power spectra corresponding to the respective

parameter variation are also mentioned where ↑ indicates an increase, and ↓ indicates

a decrease of power within the specified frequency band. All synchronous waxing-and-

waning oscillatory patterns within the alpha band are indicated as αaww, where the suffix

“aww” refers to the amplitude waxing-and-waning pattern.

For Cisi ≤ 0.15 and as shown in Figure 5A, the overall
power decreases with maximum frequency within the theta
band, until Cisi ≈ 0.05%, when the dominant frequency shifts
to the delta band. When Cisi = 0, the dominant frequency is
within the delta band.

Discussion
Cortico-cortical and cortico-thalamic modulation is well
known to be vital for delta band oscillations corresponding
to slow wave sleep and/or reduced cognitive state. In the
model, the only instance of delta band oscillations are
simulated for the case corresponding to synaptic deletion of
the self-inhibitory afferent pathway of the IN that effectively
disinhibits the IN, thus increasing the feed-forward inhibition
of the TCR.

Based on these observations, we hypothesize that the
cortical feedback to the IN cells target the self inhibitory
mechanisms in the population, which in turn effects slow
wave oscillations in the LGN. While it may not directly affect
an alpha band oscillation, the cortical feedback may cause an
increased self inhibition in IN cells, which in turn will lead to
decreased effect on the TCR, thus allowing the TRN inhibition
to dominate the output showing synchronous alpha rhythms.

• A progressive decrease of Ctii from its base value shows
a progressive increase of power within both alpha and
theta bands (Figure 6). For Ctii 6 5, the TCR and TRN
time-series display alpha rhythmic synchronous oscillations
with amplitude waxing-and-waning. Increasing the parameter
value did not have any significant effect and the model output
showed a relatively flat spectrum within the alpha and lower
beta bands, indicating an increased inhibition in the circuit;
this is demonstrated in Figure 6 for Ctii = 23.
• Decreasing the retinal input connectivity for the IN (Cire)

effects a significant rise of the alpha band power in the TCR
output until below a threshold, when the TRN dominates and
the output show alpha band waxing-and-waning oscillations.
Increasing Cire from its base value does not affect the model
output.

Discussion
In summary, the results show that a decrease in feed-forward
inhibition in the LGN causes an increase in power within
the alpha and theta bands, implying that at base parameter
values, the inhibitory effect of TRN on TCR is suppressed by
IN. We have discussed (above) the correspondence between
cognitive states and suppression of TRN activity by the
IN. Indeed, experimental evidence suggest that the IN feed-
forward inhibition serves to enhance the “sensitivity to
visual features” (Wang et al., 2011a), and thus increase
the overall efficiency of retino-geniculo-cortical information
transmission (Dublin and Cleland, 1977; Hirsch et al., 2015).
The results support these experimental reports.

The model identifies a vital difference between the two
GABA-ergic efferent pathways of the IN—synaptic variation
in the efferent pathway to the TCR (Ctii) bears a linear relation
to the power spectra, unlike in the self inhibitory efferent
pathway (Cisi), where synaptic depletion/enhancement shows
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FIGURE 5 | (A) Near zero values of the self-inhibitory connectivity of the IN population (Cisi ) show dominant frequency within the theta and delta bands. (B) For

increased values of Cisi from its base value (23.6), the power spectra is fairly flat with dominant frequency within the alpha and beta bands. For decreasing values of

the parameter, there is an increase of power within the alpha band with a slight right-shift of the peak frequency.

FIGURE 6 | Increase in power within the alpha band with diminishing

values of the feed-forward inhibitory connectivity of the IN on TCR

population (Ctii ). For values less than around 5, the time-series shows

synchronized oscillation of the TCR and TRN. For values higher than the base

parameter value of 20, the power spectra is fairly flat with maximum power

within the alpha and lower beta bands.

a non-linear relation with the power spectra dominant
frequency. Thus, it seems likely that these two pathways
form parts of different circuitry in the LGN: while the Cisi

may be a part of the cortico-thalamic feedback mechanism
(discussed above), the Ctii appears to be an intra-thalamic
connectivity that aids retino-geniculo-cortical information
transmission and regulates brain cognitive states. This
hypothesis is further supported by identical effects of synaptic
depletion in both the retino-geniculate (Cire) and the intra-
geniculate (Ctii) pathways, causing amplitude waxing-and-
waning synchronous oscillations within the alpha band in both
TCR and TRN, implying a reduced cognitive state.

• The GABAA inhibitory feedback from the TRN to the TCR
(Ca

tni
) shows minimal effect on model output. However, there

is a dramatic effect when the IN is disconnected from the
network: The time-series of both TCR and TRN display
bifurcation into a high amplitude alpha band limit cycle
oscillations for Ca

tni > its base value (Figure 7). The limit

cycles disappear for Ca
tni 6 15.45 (base value), and the output

signal displays synchronous waxing-and-waning alpha band
oscillations (as is expected from our earlier observations with
disconnecting the IN from the network).
• Decreasing the self inhibitory connectivity of TRN (Cnsi) from

its base value of 20 cause a small but progressive increase of
power within the theta band as shown in Figure 8A. However,
removing IN from the network with a simultaneous decrease
in parameter value induces a bifurcation of the time-series to a
limit cycle mode for both TCR and TRN; the case forCnsi = 10
is shown in Figure 8B, left panel. The corresponding STFT
plots in Figure 8B, right panel show second harmonic of the
dominant frequency within the alpha band. For both cases i.e.,
with and without IN, when Cnsi = 0, the dominant frequency
of oscillation is within the theta band as seen in Figure 8A.

Discussion
The results are in agreement with the suppression of the TRN
output in presence of the IN as discussed in Section 3.2:
efferent and afferent synaptic pathways in the TRN in the
model have minimal effect when the IN has the dominant
inhibitory influence in the LGN circuit. Bifurcation to
synchronous waxing-and-waning of amplitude as well as
limit cycle oscillations are observed in both TCR and TRN
when the IN is absent from the LGN circuitry. Limit cycle
oscillations are often associated with abnormal brain behavior
for example epilepsy (Suffczyński, 2000). Thus, the model
predicts a homeostatic role of the IN in the LGN circuitry by
controlling high amplitude synchronous oscillations.

In Saalmann and Kastner (2011), the authors speculate
that a disinhibition mechanism adopted by the TRN (by
increasing its self inhibitory connectivity) may regulate the
appearance/absence of synchronous oscillations in the TCR.
However, the model predicts the IN as the “master switch” that
“enable” such mechanisms. When the IN synaptic pathway is
sufficiently depleted, the IN is “disabled” in the circuitry, and
both inhibitory efferent pathways of the TRN show significant
role in TCR oscillations. In addition, the model predicts
that with deletion of the self inhibitory mechanism in the
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FIGURE 7 | The TCR population output displays alpha band waxing-and-waning behavior in synchrony with the TRN population in the absence of IN in

the circuit. Under this condition, if the ionotropic GABAA connectivity from the TRN to the TCR (Ca
tni
) is increased, the model time-series shows a bifurcation into a

limit cycle mode. With the IN population incorporated in the LGN circuit, variations of Ca
tni

values do not have any significant effect on the output.

FIGURE 8 | (A) Slowing of the power spectra with reduced value of the self-inhibitory pathway (Cnsi ) of the TRN population. (B) In the absence of IN in the LGN circuit,

the TCR and TRN population output are synchronized and oscillate in the limit cycle mode for reduced values of Cnsi . The figure shows the case when Cnsi = 10.

TRN cells, the TCR output is “stalled” within theta band,
an EEG biomarker of drowsy states or reduced cognition.
This is contrary to the speculations made in Saalmann and
Kastner (2011), where the authors suggest an increased self
inhibition in the TRN population as a possible mechanism for
facilitating useful thalamocortical information transmission.
The disagreement may be due to the lack of a cortico-thalamic
pathway in the model, and will need further investigation

in future works with enhanced thalamo-cortico-thalamic
circuitry.

3.4. Effects of Leak Conductance
Increased or suppressed potassium leak currents are
reported as facilitating hyperpolarization and depolarization
respectively of cell membrane potential, and show evidence
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of the critical role in normal (Goldstein et al., 2001) and
abnormal brain-state transitions (Gentiletti et al., in press).
Neurotransmitters/neuromodulators such as serotonin and
acetylcholine inhibit potassium leak currents to enhance
neural excitability. On the other hand, anaesthetics are
known to decrease excitability in muscles by increasing
leakage conductance. To make a qualitative validation of these
observations in our model, we vary the leakage conductances of
all three cell populations in the model.

The gleak for any one cell population is increased to 100
µS/cm2 progressively, while the values of the same for the other
two cell populations remain at their base values of 10 µS/cm2.
A simultaneous variation of neurotransmitter concentration
parameter [T] is also made by varying σ . The results are
summarized below:

• When gleak =100 µS/cm2 for the IN cells, their mean
membrane potential is hyperpolarized, causing a reduced
effect on TCR and TRN, both of which show a depolarization.
However, for reduced values of the neurotransmitter
concentration (σ < 3.4), the TCR cells are hyperpolarized.
• When gleak = 100 µS/cm2 for TRN cells, their mean

membrane potential is hyperpolarized and the TCR cells are
depolarized, and a smooth alpha to theta transition occurs with
decreasing neuro-transmitter concentration.

However, if the IN is removed from the circuit, increasing
gleak for the TRN population causes a depolarization in both
TRN and TCR cells. The time series of both cell populations
(not shown here) display synchronous alpha rhythmic waxing-
and-waning oscillations while the power spectra display
harmonics of the dominant frequencies within the alpha band.
• When gleak = 100 µS/cm2 for the TCR cells, both TCR

and TRN are depolarized, with a larger beta content in the
power spectra for increasing neurotransmitter concentration.
Both time series and power spectra display smooth transition
to lower frequency bands with decreasing neurotransmitter
concentration. Removing the IN did not show any drastic
change in the output characteristics.

Discussion
The results imply that for a model tuned to oscillate within the
alpha band and consisting of all three LGN cell populations,
hyperpolarization of the TCR is effected only when the
leakage conductance of the IN population is increased, and
under the condition of reduced transmitter concentration;
we note that this is similar to the above-mentioned effects
of anaesthetics (Goldstein et al., 2001). Furthermore, in
their experimental investigation on interneuron physiological
characteristics, Pape and McCormick (1995) mention that
membrane hyperpolarization is affected by an increase in
membrane potassium conductance, which in turn is effected by
activating acetylcholine (ACh) receptors. All cell populations of
the LGN are known to receive significant cholinergic inputs
from the brainstem (Sherman, 2006), which play a dominant role
in effecting alpha band oscillations in the LGN (Saalmann and
Kastner, 2011). Thus, the effects of increased leak conductance
in the model may be a simulation of the causality of brainstem
cholinergic inputs to the LGN.

On the other hand, if the synaptic efferent from the IN to
TCR is decreased while leak conductance of TRN is increased,
both TCR and TRN are depolarized leading to abrupt state
transitions to high amplitude synchronous oscillations with
dominant alpha band frequency; decreased neurotransmitter
concentration under these conditions generate synchronous
waxing-and-waning within the theta band. This observation,
once again, predicts a significant role of the IN in maintaining
a homeostasis in the LGN; it minimizes any unwanted state
transitions in the circuit that may be caused by increase of the
leakage current.

Overall, our model-based study emphasize the role of leakage
potassium currents in the LGN circuitry and identifies the need
for further investigation and validation with experimental studies
in the context of unwanted and abrupt transitions in the circuit.

3.5. Simulating Steady State Visually
Evoked Potentials: A Case Study
As a case study, the LGN model tuned to simulate alpha
rhythmic output in an awake state is tested for simulating
SSVEP output corresponding to a periodic impulse train
simulating visual stimulus. The white noise input to the
model as used in Sections 3.1–3.4 is now superimposed by
periodic impulse train of frequency f ∈ {5 − 50Hz}. The
amplitude of the periodic impulses are set arbitrarily at a value
of 10mV.

Figure 9 shows the time series and power spectral density
plots corresponding to an 8Hz impulse train input:

With all parameters at their respective base values, the TCR
and IN time-series are in-phase (Figure 9A, left) with a power
spectral density (Figure 9B, left) peaking at the fundamental
frequency 8Hz (periodic input stimulus frequency) for TCR and
at the second harmonic 16Hz for IN. Furthermore, both power
spectra show harmonics at integer multiples of the fundamental
frequency. In comparison, the TRN time series show a low
amplitude of oscillation and peak at a delay of around 20ms
from that of IN and TCR. The power spectral peak for TRN is at
7.5Hz. (We note that across all frequencies (f ) in the tested range
for this study, the power spectral peaks for the TRN population
consistently lie in the range of≈ 6–8Hz when the IN is included
in the LGN circuitry).

Next, the IN is removed from the circuit; the amplitude of
oscillation for the TRN time-series increases significantly in
(Figure 9A, right), which is reflected in the increased magnitude
within the dominant frequency in the power spectra (Figure 9B,
right). The TCR time-series pattern changes dramatically and
is now similar to that of the TRN, albeit at a lead of around
10ms. The power spectral plot also follows that of the TRN
with a peak frequency at 13Hz, and thus do not reflect the
that of the input impulse train. In general, across all f within
the tested range and when the IN is removed from the circuit,
both TCR and TRN show dominant frequency within the range
12–14Hz, thus over-riding the fundamental frequency of the
input impulse train. For some f across the tested range, the
power spectra of TCR population show harmonics. However,
the power magnitudes in these harmonics are negligible in most
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FIGURE 9 | The Steady state visually evoked potential (SSVEP) simulated in the model corresponding to an input periodic impulse train at 8Hz

superimposed on a white random noise. (A) A representative sample of 1 cycle of the total simulation time is shown for all three cell populations. For clarity, the

input signal is represented by the impulse trains only i.e., the white noise component is not shown. When the IN is in the circuit (left panel), the TCR and IN population

have similar waveform with peaks that are in-phase; both waveforms settle to a steady state prior to the next cycle. The TRN population peak lags that of the TCR and

IN by 20ms. When the IN is disconnected from the circuit (right panel), the TCR waveform is now similar to that of the TRN population, and peaks at a delay of 10ms

compared to when receiving inhibitory afferents from the IN (left panel). (B) The power spectral density plot (left panel) for both TCR and IN show peaks at the

fundamental frequency corresponding to that of the periodic impulse train, with harmonics at integral multiples of the fundamental frequency. However, for TRN, the

peak frequency is at ≈ 7.5Hz. With IN feed-forward synaptic pathway deleted from the circuit (right panel), both TCR and TRN population dominant frequency is at ≈

13Hz. This do not resemble the input impulse train frequency, rather reflect the inherent circuit frequency with white noise input (see Figure 4). The magnitude of

power in the dominant frequency for both TCR and TRN are much higher compared to when IN was in the circuit (the power spectra for IN is included just for ease of

comparison). Power within harmonics for both TCR and TRN are negligible relative to that within the dominant frequency.

cases; where the TRN population power spectra show harmonics,
these are always at integral multiples of the peak frequency in the
range 12–14Hz.

Discussion
A study by Babadi et al. (2010) suggests that around 33% of TCR

cells in the LGN receive “locked” feed-forward inhibitory inputs

from the IN; “locked” (“non-locked”) refers to the case when

TCR and IN receive inputs from same (different) retinal ganglion
cells (RGC). Furthermore, output of locked TCR cells bear a

high degree of correlation with RGC inputs and is speculated

to be a mechanism for increasing LGN response precision (Blitz

and Regehr, 2005). In the model, both TCR and IN receive the
same retinal input for a particular simulation, and the output of
both populations are perfectly in-phase; thus the model output
may be thought to simulate locked TCR response observed in
experimental studies. While we did not consider this aspect (i.e.,
locked/non-locked IN cells) in our model design, the validation
with experimental studies imply a degree of robustness in the
model; however, this needs to be tested thoroughly prior to
making claims.

The appearance of alpha rhythmic dominant frequency in the
model output power spectra underpin the dominant role of TRN
with abolition of IN inhibitory input to the TCR and is consistent
with our previous results in Sections 3.2 and 3.3. Moreover,
the disappearance of the input impulse frequency in the TCR
power spectra indicates a de-correlation with the input; rather,
the TCR power spectra is now correlated with that of the TRN.
This is an interesting phenomenon in the model considering
that the TCR continues to receive direct retinal input. These
observations possibly imply a greater significance of the indirect
sensory pathway of the TCR via its afferent pathway from the
IN. Along these lines, synchronous oscillations in the LGN are
suggested as amechanism for decorrelating retinal input from the
thalamic output in order to reduce the efficiency of information
transmission in the geniculo-cortical pathway (Saalmann and
Kastner, 2011). The model validates these speculations and
further predicts that: the dominant role of the TRN is facilitated
by what appears to be a separate circuit mechanism that
inhibits the IN cells beyond a threshold, so that these are in a
“disabled” mode and have minimal inhibitory influence on the
TCR cells.
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Another interesting implication of the results are the
known symptoms of fatigue during SSVEP-based BCI
experiments (Cao et al., 2014). The increased level of fatigue in
a subject undertaking the experiment can drastically reduce the
performance, and the corresponding EEG shows an increased
proportion of alpha and theta band power. In our study, deleting
the IN pathway to the TCR cells effect a significant rise in the
power within both alpha and theta bands. This raises speculation
that neuromodulatory circuits inhibiting the IN may play an
indirectly role in inducing fatigue corresponding to SSVEP-based
BCI tasks.

Overall, the preliminary results on the model simulation of
SSVEP validates experimental research reporting significant role
of IN in modulating visual input that is relayed to the cortex by
the TCR population (Lörincz et al., 2009; Wang et al., 2011b;
Hirsch et al., 2015). We hypothesize that any anomaly in the IN
circuitry will disturb the normal processing of visual information
during an awake cognitive state.

4. CONCLUSION

We use a neural mass computational model of the thalamic
LGN, implemented with synaptic kinetics, to understand the
effects of the inhibitory interneuron (IN) population on the LGN
dynamics. The IN population constitute around 20–25% of all
sensory information carrying thalamic nuclei in mammals, and
in the LGN of rats. Specifically in the LGN, the IN cells receive
around 47% of their inputs from the retinal spiking neurons. It is
thus not surprising that extensive research have investigated the
functional significance of the IN afferent and efferent synaptic
pathways in precise spatial and temporal transmission of visual
information to the cortex (see Hirsch et al., 2015 for a review).
In contrast, very little research has looked into the role of
the feed-forward inhibitory pathway of the IN in normal and
abnormal thalamocortical dynamics of health and disease, for
example Crunelli et al. (1988), Zhu et al. (1999a) and Zhu et al.
(1999b); these studies have emphasized both physiological and
functional importance of the IN population in modulating LGN
oscillatory activity. A similar trend is evident in computational
model-based research on thalamocortical dynamics of health and
disease that largely ignore the feed-forward inhibition by the IN;
rather, the emphasis has been on the feedback inhibition by the
TRN population. The interest in IN is revived in a recent set of
experimental studies by Lörincz et al. (2009, 2008) emphasizing
a vital role of the IN in modulating LGN oscillations in an
awake cognitive state. In a previous work on a thalamo-cortico-
thalamic model (Bhattacharya et al., 2011b), we have shown
that the IN plays a role in “slowing” (left shift of the power
spectral peak frequency) of alpha rhythms (8–13Hz) recorded
from the thalamo-cortical relay (TCR) cells and in the presence
of cortical inputs, simulating an EEG biomarker of Alzheimer’s
disease. However, the non-triviality of the parameter space in
the model puts a constraint on an in-depth understanding of
the essential thalamic influence on cortical dynamics and vice-
versa. Instead, we suggest that a “bottom-up”modeling approach,
where the LGN cell dynamics corresponding to retinal input in

both resting and awake conditions are studied independently of
the cortical input, may better serve our goal of understanding
the underlying cellular mechanisms of the IN circuitry and their
role in the overall dynamics of the LGN. Indeed, the pioneering
experimental studies that have provided the current fundamental
knowledge about the thalamus were based on in vitro studies
of LGN slices from mammals and rodents, when disconnected
from the cortex. Here, based on insights from our prior model-
based work, we follow the precedent set by the early experimental
studies and model a de-corticated LGN responding to extrinsic
input from the retinal pathway.

Several studies have shown that the LGN dynamics
recorded from the TCR cells as LFP are correlated with an
electroencephalogram (EEG) recorded from the occipital (visual)
cortex. Thus, the time-series and power spectra from the TCR
cells are considered as the “model output” and are validated
qualitatively with reports of LFP (thalamus) and EEG (cortex) in
existing literature. In Sections 3.1–3.4, the sensory input is taken
as the background firing activity of the retinal ganglion cells in
an eyes closed condition and is simulated with a “white” (flat
power spectra) random noise. In Section 3.5, a case study is made
to simulate Steady State Visually Evoked Potentials (SSVEP) in
the model, a research paradigm that is increasing in popularity
owing mainly to a direct correlation of the recorded brain
response to a periodic input stimulus (see Norcia et al., 2015 for
a review). Here, the model input is simulated with a periodic
impulse train at a constant frequency in the range 5–50Hz and
superimposed on a white random noise, thus mimicking flashing
LED lights provided as visual stimulus in SSVEP experimental
studies.

The goal in this work has been to investigate the role of the
afferent and efferent synaptic pathways of the IN population
in effecting state transitions in the LGN circuitry. Toward this,
systematic parametric variations with respect to their base values
are explored in the model. The effect of synaptic depletion in
the IN feed-forward pathway to the TCR is tested alongside the
parametric variations, the objective being to draw a comparison
with previous studies that ignore the IN population. Based on
some preliminary results in Bond et al. (2014), our hypothesis
in this work has been to understand possible underlying neuro-
pathological changes that may “block” the IN inhibitory effects
on the TCR cells, which may lead to state transitions in the
LGN corresponding to both normal and pathological conditions.
Indeed, experimental studies have shown the neuromodulatory
effects of acetylcholine, noradrenaline (McCormick, 1992) and
dopamine (Zhao et al., 2002) on the LGN that seem to
“regulate” (under normal conditions) or affect (under abnormal
pathological conditions) its synaptic efficacy and oscillatory
patterns; specifically, dopamine has been implicated in affecting
information transmission in the LGN by neuromodulation of IN.
In this work, we have simulated the effects on neuromodulation
by varying the neurotransmitter concentration in the synaptic
clefts. However, for brevity in this study, we have maintained a
single set of parameters for all neurotransmitter concentrations
in the model (please refer to Equation 1); thus, any variation
of parameter affects changes in all synaptic processes in the
model.
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The results validate several experimental reports and may
be summarized thus: First, the IN population play a dominant
role in efficient information transmission in the retino-geniculate
pathway by suppressing the TRN feedback inhibitory effect
on the TCR cells. Second, bifurcation to high amplitude
synchronous oscillations are effected in the TCR cells with
synaptic depletion and/or deletion in the feed-forward inhibitory
afferent from the IN. A simultaneous decorrelation of the TCR
output with retino-geniculate input is observed, thus simulating
a transition from an awake state to a state of reduced cognition.
Third, the IN plays a “homeostatic balancing” role in the LGN
circuit, and its absence or reduced impact (owing to other
related parametric deviation) may be speculated to aid unwanted
periodic oscillations in the LGN that are often biomarkers
of neuro-psychological disorders, for example “thalamocortical
dysrhythmia” in schizophrenia or “slowing of alpha rhythms” in
Alzheimer’s disease. At the same time, a smooth transmission
from alpha to theta band with a reduced inhibitory effect of IN
simulates EEG of wake-sleep transitions. (The reader may please
refer to Section 3 for detailed discussions, model validations and
predictions).

The bidirectional connectivity between the thalamus
and the cortex are well known to be fundamental to brain
rhythms (Sherman, 2005; Destexhe, 2008). Specifically,
the cortico-thalamic feedback is speculated to be a key
factor in transition between a drowsy state showing theta
rhythmic EEG to a deep sleep stage with delta rhythmic
oscillations (Abeysuriya et al., 2014) and is consistent with
studies on de-corticated thalamus Timofeev and Steriade (1996).
Furthermore, physiological studies have attributed the delta band
oscillations induced in the thalamus by cortico-thalamic inputs
to a specific type of mGluR mediated synapse (Crunelli et al.,
2006). However, the cortico-thalamic inputs are not modeled
in this work; thus it is not surprising that there is a distinct
lack of delta rhythms in the model output, the exception being
the case corresponding to the total synaptic deletion in the self
inhibitory pathway of the IN population. Our results have shown
a non-linear relationship between the power spectral behavior
of the model output and the IN self inhibitory mechanisms (the
reader may please refer to Table 3, Figure 5); this non-linearity
may imply a modulatory effect on the IN population. Along these
lines, an experimental study (Lörincz et al., 2008) report that the

impact of IN on thalamic oscillations could be identified only

upon application of a cortico-thalamic stimulus. We hypothesize
that the modulatory cortico-geniculate feedback to the IN targets
its self inhibitory mechanism: a deletion of the pathway would
lead to delta oscillations in the LGN. Ongoing work will extend
our model by incorporating the thalamo-cortico-thalamic closed
loop circuit to test this hypothesis. One other inconsistency in
the model is that the GABAB pathway does not seem to have
a significant effect on the model output, and thus does not
conform to experimental reports (von Krosigk et al., 1993). This
calls for a further investigation of the parameters in this pathway,
which is also expected to add to the dynamic repertoire of the
model.

In conclusion, our model-based study implicates the IN
population as a significant and vital constituent of the retino-
geniculo-cortical pathway, regulating the state transitions of
both TCR and TRN populations, and maintaining an overall
homeostatic balance in the LGN circuitry in a normal awake state;
any direct or indirect disruption to its synaptic mechanisms may
cause unwanted brain rhythms that are EEG and LFP markers of
neuro-psychiatric disorders.
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