1	A Narrative Review on Female Physique Athletes: The Physiological
2	and Psychological Implications of Weight Management Practices
3	Nura Alwan ¹ , Samantha L. Moss ² , Kirsty J. Elliott-Sale ³ , Ian G.
4	Davies ¹ , and Kevin Enright ¹
5	
6	¹ School of Sport Studies, Leisure and Nutrition, Liverpool John
7	Moores University, UK.
8	² Department of Sport and Exercise Sciences, University of Chester,
9	UK.
10	³ Musculoskeletal Physiology Research Group, Sport, Health and
11	Performance Enhancement Research Centre, Nottingham Trent
12	University, UK.
13	
14	Running head: Health considerations in female physique athletes
15	
16	Corresponding author:
17	Nura Alwan
18	¹ School of Sport Studies, Leisure and Nutrition,
19	Liverpool John Moores University,
20	Barkhill Road,
21	Liverpool,
22	L17 6BD
23	United Kingdom
24	Email: N.alwan@2016.ljmu.ac.uk

26 Abstract

Physique competitions are events in which aesthetic appearance and 27 28 posing ability are valued above physical performance. Female 29 physique athletes are required to possess high lean body mass and 30 extremely low fat mass in competition. As such, extended periods of 31 reduced energy intake and intensive training regimens are utilised with 32 acute weight loss practices at the end of the pre-competition phase. 33 This represents an increased risk for chronic low energy availability 34 and associated symptoms of Relative Energy Deficiency in Sport, 35 compromising both psychological and physiological health. Available 36 literature suggests that a large proportion of female physique athletes 37 report menstrual irregularities (e.g., amenorrhea and oligomenorrhea), post-38 which are unlikely to normalise immediately 39 competition. Furthermore, the tendency to reduce intakes of numerous 40 essential micronutrients is prominent among those using restrictive 41 eating patterns. Following competition reduced resting metabolic rate, and hyperphagia, are also a concern for these female athletes, which 42 43 can result in frequent weight cycling, distorted body image and disordered eating/eating disorders. Overall, female physique athletes 44 45 are an understudied population and the need for more robust studies to 46 detect low energy availability and associated health effects is 47 warranted. This narrative review aims to define the natural female 48 physique athlete, explore some of the physiological and psychological 49 implications of weight management practices experienced by female 50 physique athletes and propose future research directions.

51

53	Fat loss, low energy availability, physique events, body composition,
54	nutrition
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	

73 Background

74 Physique competitions are events in which competitors are judged on aesthetic appearance rather than on physical performance. Natural 75 76 (*i.e.*, drug-free) physique competitions have evolved dramatically in recent years, with a growth in organisations, contests and classes 77 (Halliday et al., 2016). The International Federation of Body Building 78 and Fitness (IFBB) hosts over 2,000 competitions annually, in 196 79 80 affiliated countries. Approximately 1,300 female and male athletes 81 competed at the World Fitness Championships in 2017 (Rowbottom, 82 2017) and this number is anticipated to increase, with around 1,000 83 new members joining the sport each year (Parish et al., 2010).

Female physique (FP) athletes have aspirations of achieving a lean and 84 85 muscular body composition for competitive success (Halliday et al., 86 2016). Preparing for a natural physique competition provides a myriad 87 of health benefits including improvement in cardiovascular status 88 (Kistler et al., 2014; Robinson et al., 2015), muscle strength 89 (Campbell et al., 2018), increasing feelings of accomplishment and 90 transient improvements in self-esteem (Aspridis et al., 2014; Baghurst et al., 2014; Probert et al., 2007). Despite these positive outcomes, 91 92 numerous unfavorable consequences also exist, including, but not 93 limited to: diminished levels of reproductive hormones (Hulmi et al., 94 2016) and symptoms of disordered eating and eating disorders 95 (DE/ED) (Walberg and Johnston, 1991). Available research on FP 96 athletes reveals prolonged periods of sustained energy restriction and 97 intensive training regimens in an attempt to acquire and maintain a 98 lean body composition, indicating an increased risk of low energy 99 availability (LEA) and its associated effects (Fagerberg, 2017). For a thorough understanding of the existence, aetiologies and clinical
consequences of LEA, readers are directed to the review by Loucks et
al. (2011).

Prolonged periods of LEA with or without disordered eating, menstrual dysfunction and low bone mineral density is termed the Female Athlete Triad (Triad), representing a medical condition observed in females who perform high levels of physical activity (Manore, 2007). In order to describe the wide range of physiological, psychological and performance-related impairments associated with LEA, the International Olympic Committee introduced the concept of Relative Energy Deficiency in Sport (RED-S) in 2014 (Mountjoy et al., 2014). Considering the health risks of RED-S, and the increasing participation of females in physique events, the purpose of this narrative review was three-fold: 1. to define the natural female physique athlete; 2. to explore the physiological and psychological implications of the weight management practices experienced by the natural FP athlete; 3. to address future research directions.

125 Literature Search

126 A literature search was conducted using databases: PubMed, Web of Science, Google Scholar, and SPORTDiscus (via EBSCO) up to 10th 127 128 September 2018. Despite slight variation in the terminology used for 'physique athlete' in the literature, synonyms were included in the 129 130 search strategy. Various combinations of the following search terms 131 were used, for the search: 'physique athlete' OR 'fitness competitor' 132 OR 'bodybuilding' OR 'competitive body-builder' OR 'figure athlete' 133 AND (contest or competition OR dieting OR dietary intake or nutrition 134 OR macronutrient OR micronutrient OR training OR body 135 composition OR peak week OR practices OR weight loss OR weight 136 regain). Several other search terms associated with health outcomes 137 included: 'physique athlete' OR 'fitness competitor' OR 'bodybuilding' OR 'competitive body-builder' OR 'figure athlete' 138 139 AND (energy availability OR menstrual cycle OR bone, OR eating OR 140 body image). Any additional articles relevant to the scope of this 141 narrative review were obtained through PubMed via the function 142 "similar articles" or from the reference lists of the included studies.

143 Criteria for inclusion were: i) studies published in English language 144 and in peer-reviewed articles within the past 30 years (i.e., theses or 145 conference abstracts were not eligible), *ii*) studies involving human 146 participants, *iii*) studies with participants who were currently engaging 147 in or had previously been engaged in physique competitions, across 148 any category (i.e., bikini fitness, wellness fitness, and figure), iv) 149 studies using female participants, or studies using both female and 150 male participants, and v) studies investigating at least one of the 151 following: body composition, nutritional intake, micronutrients,

training strategies, psychology, menstrual cycle, hormonal markers, 152 153 bone mineral density, energy availability, and weight 154 loss/management practices). Exclusion criteria were studies that 155 reported use of performance-enhancing drugs, and only male 156 participants.

157

158 Definition of the natural female physique athlete

Benjamin and Joseph Weider established the first organisation which
specialised solely in bodybuilding events, known as the IFBB (Vallet,
2017). To date, the IFBB is one of the most influential amateur sports
organisations in the bodybuilding sphere and is an official signatory of
the World Anti-Doping Code where athletes participate in random
drug testing programs, such as urinalysis and polygraph tests for
prohibited substances (IFBB, 2014).

166 Although bodybuilding was traditionally a male dominated sport, the 167 growth of female competitors has increased significantly in recent 168 times (Spendlove et al., 2015). This increase in popularity is largely 169 due to the introduction of new female-specific physique categories 170 (e.g., Fitness, Body Fitness and Bikini Fitness) since 1995 (Spendlove 171 et al., 2015; Tajrobehkar, 2016). As these new categories allowed 172 'smaller' competitors to enter the sport, and reduced the emphasis on 173 muscle mass, it has encouraged healthier practices, indirectly 174 attracting more women from mainstream society than in previous 175 decades (Tajrobehkar, 2016).

Female physique athletes are assessed on aesthetic appearance andposing ability whereby high lean body mass (LBM) and low fat mass

178	(FM) are key markers of performance (Kleiner et al., 1994).
179	Competitions involve comparison rounds; wherein athletes are
180	instructed to perform poses, and a final round; in which top ranked
181	athletes perform an individual posing routine (Steele et al., 2018). The
182	intricate scoring system assesses athlete features, such as symmetry,
183	muscularity, size and presentation (i.e., personal confidence, facial
184	beauty, and skin condition) (Choi, 2003; Obel, 1996). Unlike other
185	weight-restricted sports (e.g., male bodybuilding, wrestling and
186	boxing), in which weight categories are utilised, FP athletes are
187	allocated to categories based on their subjective assessment of the
188	amount of LBM and FM, and are then further sub-classified by height
189	(Fry et al., 1991). At one end of the continuum (i.e., bikini fitness),
190	athletes typically have less LBM and higher FM, whilst at the other
191	end (<i>i.e.</i> , physique), athletes are diametrically opposed with high LBM
192	and a corresponding low FM (Fig.1).

193

194 [Insert Figure 1 near here]

195

Body composition in competition

Typically, an annual schedule for the physique athlete is divided into
an off-season phase and a pre-competition phase (Hackett et al., 2013).
Within the off-season phase, physique athletes manipulate resistance
training variables including volume, intensity and frequency for the
purpose of gaining LBM (Spendlove et al., 2015). This period can last
years and is characterised by a positive energy balance, in conjunction
with a high protein intake to stimulate muscle anabolism (Phillips,

204 2004; Campbell et al., 2018). In the pre-competition phase, the 205 majority of athletes attempt to reduce FM and preserve LBM using a 206 combination of rigorous resistance and aerobic training, while 207 manipulating their nutritional intake to achieve a negative energy 208 balance (Hackett et al., 2013; Petrizzo et al., 2017). The pre-209 competition phase lasts between 12 and 24 weeks (Mitchell et al., 210 2018) and athletes are likely to compete between two to three times 211 per year (Chappell et al., 2018). Usually, the pre-competition phase is 212 followed by a recovery phase (a transition to off-season), during which 213 athletes increase total energy intake and decrease total training load 214 (Hulmi et al., 2016). Previous research reports the magnitude of weight 215 loss is in the range of 6-10 kg over a 18-24 week period (Table 1). This 216 suggests that FP athletes pursue a gradual approach to weight loss (~ 217 0.4 kg per week), similar to male bodybuilding and physique athletes 218 (~ 0.6-0.8 kg per week) (Chappell et al., 2018; Kistler et al., 2014; 219 Robinson et al., 2015; Rossow et al., 2013). In the end stages of the 220 pre-competition phase, FP athletes achieve 8.6 - 16% body fat (Hulmi 221 et al., 2016; Rohrig et al., 2017; Tinsley et al., 2018; Trexler et al., 222 2017), which is exceptionally lower than the recommended values for 223 female athletes (Sundgot-Borgen and Garthe, 2011).

224

Strategies to manipulate body composition during competitionweek

Whilst FP athletes employ a gradual approach to fat loss, acute weight
loss practices occur during the competition week (Helms et al., 2014).
Peer-reviewed articles suggest fluid, salt, and carbohydrate
manipulation is commonly practiced to reduce body water content in

231 order to enhance muscle definition on competition day (Mitchell et al., 232 2017; Shephard, 1994). Over a third of twenty-two FP athletes 233 practiced water manipulations (36%), whereas more than two-quarters 234 practiced carbohydrate manipulations (77 %) (Chappell and Simper, 235 2018). Water loading, followed by water restriction is allegedly used 236 to modify renal hormones and encourage urination beyond the period 237 of increased fluid intake, resulting in reduced body water (Helms et al., 2014; Mitchell et al., 2017). The physiological effects of water 238 239 loading have only been investigated in male combat sport athletes with 240 a purpose of making-weight (Crighton et al., 2016; Reale et al., 2018), 241 as opposed to physique athletes trying to enhance their aesthetic 242 appearance. The acute weight loss experienced early in competition 243 week (~7-5 days prior to competition) is likely to be mediated by glycogen depletion prior to a carbohydrate loading protocol (Chappell 244 245 and Simper, 2018). Female physique athletes reduce their 246 carbohydrate intake from 4.1- 4.5 g·kg⁻¹·d⁻¹ before entering the precompetition phase, to 1.2 - 2.7 g·kg⁻¹·d⁻¹ at the end stages of pre-247 competition phase (Halliday et al., 2016; Rohrig et al., 2017). In one 248 case, daily carbohydrate intake was reduced to ~ $0.3 \text{ g}\cdot\text{kg}^{-1}\cdot\text{d}^{-1}$, three 249 days prior to competition (Tinsley et al., 2018). From the available 250 251 evidence, it appears that during the pre-competition phase, FP athletes 252 fall considerably below the carbohydrate recommendations for moderate volume training (5-7 g·kg⁻¹·d⁻¹) (Manore, 2002). Addressing 253 254 the distribution of carbohydrate intake throughout the day and in 255 relation to training, could provide further insights into the strategies 256 used to optimise body composition (Slater and Phillips, 2011).

Based on limited data, the efficacy and safety of competition week
strategies in physique events are still unknown, but might be
detrimental to athlete health (Chappell and Simper, 2018; Helms et al.,
2014) by increasing the risks associated with hyponatremia and
glycogen depletion (Slater and Phillips, 2011).

262

263 Health implications for the female physique athlete

264 Physique athletes typically reduce their total energy intake to induce 265 gradual weight loss over a prolonged period of time, and progress 266 towards acute weight loss methods, such as restrictive diets (energy availability $[EA] < 30 \text{ kcal} \cdot \text{kg}^{-1} \text{ FFM} \cdot \text{d}^{-1}$, where FFM = fat free mass), 267 268 in the latter stages of the pre-competition phase (Sundgot-Borgen et 269 al., 2013; Fagerberg et al., 2017). As such, FP athletes face major 270 health-related challenges in an attempt to reach and maintain a lean 271 body composition.

272

273 *Reduced energy availability in female physique athletes*

274 Current literature on FP athletes has documented prolonged periods of 275 LEA, specifically during the pre-competition phases. Halliday and 276 colleagues (Halliday et al., 2016) showed that during a 20-week pre-277 competition phase, the estimated mean EA was categorised as low in the initial (27.9 kcal·kg⁻¹ FFM·d⁻¹) and latter (23.3 kcal·kg⁻¹ FFM·d⁻¹) 278 279 stages of the phase, respectively. In this study (Halliday et al., 2016), 280 total energy intake and exercise energy expenditure were self-reported 281 and reproductive function was not measured. Similarly, Tinsley et al. 282 (2018) documented caloric intakes of between 18.2 and 31.1 kcal·kg⁻¹ 283 FFM·d⁻¹ in a FP athlete (during two different pre-competition phases) 284 indicating extreme caloric restriction (Manore, 2002). Although EA 285 was not objectively quantified, the authors estimated that the athlete 286 fell below the threshold of EA for the maintenance of normal 287 physiological function based on total energy intake and body 288 composition data. Self-report research designs are not uncommon in 289 the literature on physique athletes and, as such should be interpreted 290 with caution (Fagerberg, 2017). Therefore, EA data in FP athletes 291 remains questionable considering the lack of sensitive and relevant 292 screening tools (Heikura et al., 2018). Nonetheless, aforementioned studies highlight that FP athletes may induce sub-optimal EA and 293 294 shows the importance for future studies on this topic to utilise more 295 robust measures of total energy intake and exercise energy expenditure 296 in order to accurately evaluate EA (Elliott-Sale et al., 2018; Fagerberg, 297 2017).

298

299 *Nutrient deficiency*

300 Bodybuilding diets are traditionally characterised as restrictive and 301 monotonous, as they often limit food variability (Kleiner et al., 1994). 302 As a consequence, compromised micronutrient status is often observed 303 in the pre-competition phase among FP athletes (Slater and Phillips, 304 2011). Calcium, iron, zinc and sodium intakes have been shown to 305 decrease significantly, to less than two-thirds (~ 67%) of the 306 Recommended Daily Allowance (RDA) (Newton et al., 1993; 307 Walberg-Rankin and Gwazdauskas, 1993) in the absence of dietary 308 supplements during the pre-competition phase. These results may be 309 attributed to restricted energy intake combined with the elimination of 310 sodium and dairy products from the diet (Steen, 1991). Considering that weight loss trends/dietary fads typically change over time, it is
worth noting that the applicability of the aforementioned studies might
be limited (Spendlove et al., 2015).

314	More recently, Ismaeel et al. (2017) showed that FP athletes who used
315	extreme restrictive eating patterns consumed significantly less protein
316	$(123 \pm 23 \text{ g } cf. 65 \pm 16 \text{ g}, p = 0.02)$, sodium (4,060 ± 397 mg $cf. 2,636$
317	\pm 1,028 mg, $p = 0.03$), vitamin E (10 \pm 2 mg <i>cf</i> . 6 \pm 1 mg, $p = 0.03$)
318	and vitamin C (170 ± 47 mg <i>cf</i> . 66 ± 27 mg, $p = 0.02$) than athletes
319	who permitted dietary flexibility (Ismaeel et al., 2017). These
320	differences may be caused by the large variation in total energy intake
321	$(1,965 \pm 259 \text{ kcal} \cdot d^{-1} \text{ cf. } 1,455 \pm 541 \text{ kcal} \cdot d^{-1})$ consumed by each
322	group. While the study (Ismaeel et al., 2017) included dietary
323	supplements in the micronutrient analysis, it did not specify whether
324	individuals were in the pre-competition or off-season phase.
325	Nevertheless, these results identify potential risks for deficiencies in
326	essential nutrients for FP athletes, which could suppress the immune
327	function and cause increased susceptibility to illnesses and infections,
328	especially for those engaging in restrictive eating patterns (Sundgot-
329	Borgen and Garthe, 2011). As the majority of studies assessing
330	micronutrient status have also used self-report methods (Ismaeel et al.,
331	2017; Kleiner et al., 1994; Newton et al., 1993; Walberg-Rankin and
332	Gwazdauskas, 1993; Walberg and Johnston, 1991), it is prudent that
333	future measures are clarified using biomarkers in blood or urine
334	samples.

337 *Menstrual irregularities, endocrine effects and bone health in female*

338 physique athletes

339 Many active women with LEA develop various forms of reproductive 340 dysfunction, including oligomenorrhea, amenorrhea and luteal phase 341 defects (Manore, 2002). Low energy availability causes alterations in 342 the hypothalamic-pituitary-ovarian axis, namely diminished secretion 343 of luteinizing hormone and follicle stimulating-hormone, which 344 subsequently reduces oestrogen production. The final consequence is 345 typically described as functional hypothalamic amenorrhea (West, 346 1998). Previous research has shown that 82-86% of females (non-347 contraceptive users) who entered at least one physique competition 348 were either oligomenorrheic or amenorrheic (Walberg-Rankin and 349 Gwazdauskas, 1993; Walberg and Johnston, 1991). Similarly, case 350 studies have also observed amenorrhea (Hulmi et al., 2016; Petrizzo et 351 al., 2017; Rohrig et al., 2017), with some reporting delays in 352 menstruation of up to 71 weeks post-competition (Halliday et al., 353 2016; Kleiner et al., 1994; Kleiner et al., 1990).

354 Changes to reproductive and metabolic hormones in FP athletes have 355 been observed in the pre-competition phase, including decreases in 356 oestradiol, testosterone, thyroid stimulating hormone, triiodothyronine 357 (T3) and leptin (Table 1). These hormones were normalised within 4 -358 16 weeks post-competition, when supported by an increased intake of protein (~ 2.g·kg⁻¹·d⁻¹) and greater EA (Hulmi et al., 2016; Trexler et 359 360 al., 2017) with the exception of serum T3 and testosterone (Hulmi et 361 al., 2016), which were only partially recovered 12-16 weeks after 362 competition. As such, the suppression of these key metabolic 363 hormones persist further into the recovery phase, possibly due to the effects of dropping below the EA threshold regardless of altered
exercise regimen, as previously described by Loucks and Heath
(1994). More longitudinal data is required on endocrine and metabolic
function beyond the 16 weeks post-competition to better understand
the time-course for full restoration.

369 Regular menstrual cycles are often used as a surrogate marker of longterm LEA; however, the use of hormonal contraceptives may 370 371 obfuscate this relationship (Heikura et al., 2018). Hormonal 372 contraceptives provide negative feedback to the hypothalamus and 373 pituitary glands, leading to suppression of follicle stimulating-374 hormone, luteinizing hormone and gonadotropin-releasing hormone, 375 and continuous down-regulation of endogenous oestrogen and 376 progesterone (Elliott-Sale et al., 2013). Previous data in FP athletes 377 have failed to investigate female sex hormones (i.e., oestrogen and 378 progesterone) (Trexler et al., 2017), did not include hormonal 379 contraceptive users (Halliday et al., 2016; Rohrig et al., 2017; Tinsley 380 et al., 2018) or grouped all oral contraceptive users together, making 381 the interpretation difficult (Elliott-Sale et al., 2013). Considering the 382 high prevalence of hormonal contraceptive use (Hulmi et al., 2016), 383 there is great concern that FP athletes, who are experiencing chronic 384 LEA, are going undetected, as hormonal contraceptive use maintains 385 regular menstrual cycles. To this end, there is a need for studies to 386 determine whether the FP athletes, who are using hormonal 387 contraceptives, are at increased risk of endocrine dysfunction.

Although it is not unusual for bone mineral density to be compromised
during calorie restriction and reduced body mass, it is possible that the
minimal changes observed in bone mineral density (1.062-1.204g.cm³)

(Van der Ploeg et al., 2001; Hulmi et al., 2016; Petrizzo et al., 2017)
is explained by the high-impact and weight-bearing activities
performed in their training regimens (Zanker et al., 2004). As a result,
this may have served to retain bone-mineral density compartment
(Layne & Nelson, 1999).

396

397 Weight cycling

398 Female physique athletes often experience rapid weight gain following 399 competitions (Andersen et al., 1995; Walberg-Rankin and 400 Gwazdauskas, 1993) with one study reporting uncontrollable binge 401 eating behaviour, reflecting a hyperphagic effect to intensive weight 402 loss protocols (Trexler et al., 2017). This practice is commonly known 403 as 'weight cycling' (*i.e.*, repeated cycles of weight loss and regain). 404 Previous research has reported unfavorable metabolic parameters 405 including a decline in resting metabolic rate (RMR) (reduced between 406 155 and 226 kcal) (Rohrig et al., 2017; Tinsley et al., 2018) during pre-407 competition phase and weight regain of up to 8.6 kg at 4 weeks post-408 competition refeeding in females (Walberg-Rankin and Gwazdauskas, 409 1993). The RMR suppression is possibly induced by the dietary 410 restriction during weight loss resulting in alterations in leptin levels, 411 thyroid status and sympathetic nervous system activity (Stiegler and 412 Cunliffe, 2006). Conversely, recent case studies have shown that some 413 FP athletes use a "reverse dieting" technique, in order to avoid those 414 implications (Trexler et al., 2014). This strategy requires athletes to 415 slowly increase their energy intake in an effort to limit any rapid 416 increases in FM, and to prevent reductions in RMR (Trexler et al., 417 2014). However, the effort to "reverse" (*i.e.*, slowly increase) energy intake requires considerable discipline to curb the increases in appetite
sensations (Greenway, 2015), and therefore the authors speculate,
whether such a strategy is achievable. Future research on "reverse
dieting" technique in the recovery phase is warranted.

422

423 Disordered eating /Eating Disorders behaviours

424 Considering that appearance is a major criterion to judge performance 425 of FP athletes, the increased risk of DE/ED in this population is 426 perhaps unsurprising. Important risk and trigger factors of poor eating 427 habits in FP athletes may include the focus on aesthetic appearance as 428 the primary performance marker in competition (Sundgot-Borgen and 429 Torstveit, 2004), the peer/media pressure which can elicit body 430 dissatisfaction (Hausenblas et al., 2013) and the influences from 431 coaches with inadequate nutrition knowledge (Sundgot-Borgen, 432 1994). There is also evidence that FP athletes are particularly 433 vulnerable to DE/ED and body image dissatisfaction because of the 434 preoccupation with being muscular and lean (Devrim et al., 2018).

For example, a cross-sectional study by Walberg and Johnston (1991) compared 12 aspiring and retired FP athletes with 103 recreational weight-lifters on the Eating Disorder Inventory. Results revealed that FP athletes had significantly greater food obsessions (67%), uncontrolled urges to eat (58%) and felt more terrified of becoming fat (58%; all p < 0.05). The use of laxatives, for weight loss, (17% *cf*. 15%) and binge eating (50% *cf*. 62%) were similar between the groups.

In another study, Andersen et al. (1998) reported that ten out of twenty-six FP athletes experienced binge eating episodes in the recovery phase

444 and eighteen out of twenty-six FP athletes displayed body and weight 445 dissatisfaction, reiterating that there is a high risk of eating and body 446 image-related problems within the sport (Pope et al., 1997). 447 Nevertheless, the small sample size and the lack of any comparative 448 group analysis by Andersen et al. (1998) somewhat limits the 449 interpretation. To the authors' knowledge, no quantitative data 450 examining disordered eating behaviours exists for a large cohort of 451 natural FP athletes.

452 Furthermore, it is difficult to capture sensitive data using questionnaire 453 methods concerning mental health and well-being without a 454 confirmatory interview (Andersen et al., 1998). Athletes may be 455 anxious of revealing inappropriate eating practices in fear of being 456 negatively judged, which could prevent honest disclosure. 457 Nevertheless, there is a plausible link between participation in 458 physique sports and DE behaviours. Further research is warranted to 459 explore the psychopathological and behavioural outcomes in these 460 athletes. Understanding the experiences and perceptions of weight 461 management and eating behaviours across the pre-competition, 462 recovery and off-season phases might be of particular importance. 463 Using validated screening tools to detect DE and EDs and follow-up 464 interviews will allow researchers to collect comprehensive data that 465 could inform practice.

466

467 Conclusions and future research

468 The ultimate determinant of competitive success in physique events isa high degree of muscularity and minimal FM. As such, FP athletes

engage in both prolonged energy restriction and intensive training
regimens in order to meet these demands. Some FP athletes may be
vulnerable to chronic LEA and associated physiological and
psychological health effects, even during the recovery phase. Despite
an increased participation in physique events, there is paucity in the
literature on FP athletes. Future research should therefore:

- 476 *i*) identify the weight management strategies and DE/ED
 477 behaviours of FP athletes, in order to determine the risks
 478 of LEA in this population;
- 479 *ii*) explore such strategies using a qualitative approach, to
 480 enable FP athletes to express and elaborate on their
 481 experiences of weight management, eating behaviours
 482 and psycho-physiological health implications;
- 483 *iii*) investigate endocrine and micronutrient changes in FP
 484 athletes using objective biomarkers, to assess whether
 485 these individuals are in chronic states of LEA throughout
 486 the season;
- 487 *iv*) develop effective, safe and evidence-based nutritional
 488 recovery guidelines to minimise any long-term health
 489 implications.
- 490

491 Practical Application Statement

492 At present, it is difficult to draw upon practical applications from the 493 existing literature. FP athletes are an understudied population, and 494 methodological limitations exist. A primary issue is that the majority 495 of cited reports are case studies or observational studies with small 496 sample sizes, which may be insufficient for drawing definite 497 conclusions on the possible physiological and psychological health 498 implications among natural FP athletes. More research will have a 499 valuable impact upon the advice and strategies provided by coaches 500 and practitioners who work with these athletes.

501 It is worth noting that many female athletes are reluctant to discuss 502 their weight management practices and health histories with sport 503 science/health professionals (Manore, 2002), making this population 504 difficult to research (Aspridis et al., 2014), and may explain the small 505 sample sizes reported by previous studies (Halliday et al., 2016; 506 Ismaeel et al., 2017; Petrizzo et al., 2017). Therefore, it is imperative 507 that coaches and sport science/health professionals working with 508 physique athletes build trusting relationships and respect their desires 509 to be lean, with a view to achieve an optimum body composition and 510 health outcomes, through a collaborative relationship.

511

512 Novelty statement

513 This is the first review to summarise the common physiological and514 psychological health implications among female physique athletes.

515

516 Acknowledgements

517 The authors would like to thank Dr Jim McVeigh, Director of Public
518 Health at Liverpool John Moores University for his valuable input to
519 this review.

520

521 Author's contributions

- 522 The lead author on this paper was NA. SM, KE-S, ID and KE
- 523 participated in the drafting of the manuscript. All authors read and
- 524 approved the final manuscript.

Declaration of funding sources

- 527 No funding was received for the preparation of this manuscript

Conflicts of interest

- 530 The authors declare that they have no conflicts of interest

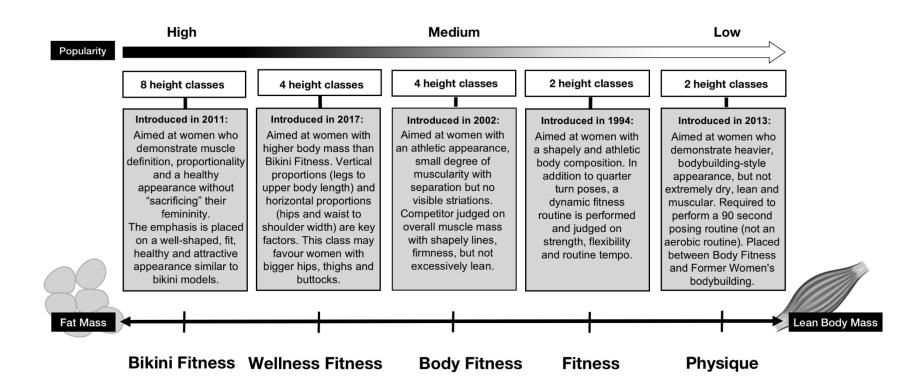
561 562	References
563 564 565 566	Andersen, R. E., Barlett, S. J., Morgan, G. D., and Brownell, K. D. (1995). Weight loss, psychological, and nutritional patterns in competitive male body builders. <i>International Journal of</i> <i>Eating Disorders</i> , 18(1), 49-57.
567	
568 569	Andersen, R. E., Brownell, K. D., Morgan, G. D., and Bartlett, S. J. (1998). Weight loss, psychological, and nutritional patterns in
570 571	competitive female bodybuilders. <i>Eating Disorders</i> , 6(2), 159-167.
572	157-107.
573 574 575 576	Aspridis, A., O'Halloran, P., and Liamputtong, P. (2014). Female Bodybuilding: Perceived Social and Psychological Effects of Participating in the Figure Class. <i>Women in Sport and</i> <i>Physical Activity Journal</i> , 22(1), 24-29.
577	Destruct T. Destal. A seal Descence C. (2014) Without Wassers Descence
578 579 580 581 582	Baghurst, T., Parish, A., and Denny, G. (2014). Why Women Become Competitive Amateur Bodybuilders. <i>Women in Sport and</i> <i>Physical Activity Journal</i> , 22(1), 5-9.
583	Campbell, B. I., Aguilar, D., Conlin, L., Vargas, A., Schoenfeld, B. J.,
584	Corson, A., and Couvillion, K. (2018). Effects of High Versus
585	Low Protein Intake on Body Composition and Maximal
586	Strength in Aspiring Female Physique Athletes Engaging in
587	an 8-Week Resistance Training Program. International
588	Journal of Sport Nutrition and Exercise Metabolism, 1-6.
589	
590	IFBB Elite Pro Categories. (2017). Retrieved from
591	https://eliteproifbb.com/our-disciplines/categories/.
592	
593	Chappell, A., and Simper, T. (2018). Nutritional Peak Week and
594	Competition Day Strategies of Competitive Natural
595	Bodybuilders. Sports, 6(4), 126.
596 597	Chappell, A. J., Simper, T., and Barker, M. E. (2018). Nutritional
598	strategies of high level natural bodybuilders during
599	competition preparation. Journal of the International Society
600	of Sports Nutrition, 15, 4.
601	oj op ono 1 (m. mon, 10, 11
602	Choi, P. Y. L. (2003). Muscle matters: maintaining visible differences
603	between women and men. Sexualities, Evolution and Gender,
604	5(2), 71-81.
605	
606	Crighton, B., Close, G. L., and Morton, J. P. (2016). Alarming weight
607	cutting behaviours in mixed martial arts: a cause for concern
608	and a call for action. British Journal of Sports Medicine, 50(8),
609	446-447.
610	
611	Devrim, A., Bilgic, P and Hongo, N. (2018). Is there any relationship
612	between body image perception, eating disorders, and muscle
613 614	dysmophic disorders in male bodybuilders? American Journal
614 615	of Men's Health, 12(5), 1746-1758
010	

616		
617	Elliott-S	ale, K. J., Smith, S., Bacon, J., Clayton, D., McPhilimey, M.,
618	(Goutianos, G., and Sale, C. (2013). Examining the role of oral
619	(contraceptive users as an experimental and/or control group in
620	:	athletic performance studies. <i>Contraception</i> , 88(3), 408-412.
621		
622	Elliott-S	ale, K. J., Tenforde, A. S., Parziale, A. L., Holtzman, B., and
623		Ackerman, K. E. (2018). Endocrine Effects of Relative Energy
624]	Deficiency in Sport. International Journal of Sport Nutrition
625	(and Exercise Metabolism, 28, 335-349.
626		
627	Fagerber	rg, P. (2017). Negative Consequences of Low Energy
628	L	Availability in Natural Male Bodybuilding: A Review.
629		International Journal of Sport Nutrition and Exercise
630		<i>Metabolism, 0</i> (0), 1-18.
631		
632	Fry, A. C	C., Ryan, A. J., Schwab, R. J., Powell, D. R., and Kraemer, W.
633		J. (1991). Anthropometric characteristics as discriminators of
634	1	body-building success. Journal of Sports Sciences, 9(1), 23-
635	-	32.
636		
637	Greenwa	ay, F. L. (2015). Physiological adaptations to weight loss and
638	t	factors favouring weight regain. International Journal Of
639		Obesity, 39, 1188.
640		
641	Hackett,	D. A., Johnson, N. A., and Chow, C. M. (2013). Training
642	1	practices and ergogenic aids used by male bodybuilders.
643		Journal of Strength and Conditioning Research, 27(6), 1609-
644		1617.
645		
646	Halliday	v, T. M., Loenneke, J. P., and Davy, B. M. (2016). Dietary
647]	Intake, Body Composition, and Menstrual Cycle Changes
648	(during Competition Preparation and Recovery in a Drug-Free
649]	Figure Competitor: A Case Study. Nutrients, 8(11), 740.
650		
651	Hausenb	blas, H. A., Campbell, A., Menzel, J. E., Doughty, J., Levin,
652		M. and Thompson, J. K. (2013). Media effects of experimental
653		presentation of the ideal physique on eating disorder
654		symptoms: A meta-analysis of laboratory studies. Clinical
655	1	<i>Psychology Review, 33</i> (1), 168-181.
656		
657		, I. A., Uusitalo, A. L. T., Stellingwerff, T., Bergland, D.,
658		Mero, A. A., and Burke, L. M. (2018). Low Energy
659		Availability Is Difficult to Assess but Outcomes Have Large
660		Impact on Bone Injury Rates in Elite Distance Athletes.
661		International Journal of Sport Nutrition and Exercise
662		Metabolism, 28(4), 403-411.
663	TT 1	
664		E. R, Aragon, A.A., Fitschen PJ. (2014). Evidence-based
665		recommendations for natural bodybuilding contest
666		preparation: nutrition and supplementation. Journal of the
667	1	International Society of Sports Nutrition, 12(11), 20.
668	TT-1 · ·	
669 670		J. J., Isola, V., Suonpaa, M., Jarvinen, N. J., Kokkonen, M., Wennerstrom, A., and Hakkinen, K. (2016). The Effects of

671 672 673		Intensive Weight Reduction on Body Composition and Serum Hormones in Female Fitness Competitors. <i>Frontiers in</i> <i>Physiology</i> , 7, 689.
674 675 676	IFBB.	(2014). IFBB anti-doping area. Retrieved from <u>https://ifbb.com/wada-anti-doping-rules/.</u>
677 678	Ismaee	, A., Weems, S., and Willoughby, D. (2017). A Comparison of
679 680 681 682		the Nutrient Intakes of Macronutrient-based Dieting and Strict Dieting Bodybuilders. <i>International Journal of Sport</i> <i>Nutrition and Exercise Metabolism</i> , 28(4), 502-508.
683 684 685 686 687	Kistler,	B. M., Fitschen, P. J., Ranadive, S. M., Fernhall, B., and Wilund, K. R. (2014). Case study: Natural bodybuilding contest preparation. <i>International Journal of Sport Nutrition and Exercise Metabolism</i> , 24(6), 694-700.
688 689 690 691 692	Kleiner	r, S., Bazzarre, TL., and Ainsworth, B. E. (1994). Nutritional status of nationally ranked elite bodybuilders. <i>International Journal of Sport Nutrition.</i> , <i>4</i> (1), 54-69.
693 694 695 696 697	Kleiner	S. M., Bazzarre, T. L., and Litchford, M. D. (1990). Metabolic profiles, diet, and health practices of championship male and female bodybuilders. <i>Journal of the American Dietetic Association</i> , 90(7), 962-967.
698 699 700 701	Layne,	J. E., and Nelson, M. E. (1999). The effects of progressive resistance training on bone density: a review. <i>Medicine and Science in Sports and Exercise</i> , <i>31</i> (1), 25-30.
702 703 704 705 706	Loucks	, A. B., and Heath, E. M. (1994). Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. <i>American Journal of Physiology</i> , <i>266</i> (3 Pt 2), 817-823.
707 708 709 710	Loucks	, A. B., Kiens, B., and Wright, H. H. (2011). Energy availability in athletes. <i>Journal of Sports Sciences</i> , 29 Suppl 1, S7-15.
710 711 712 713	Manore	e, M. M. (2002). Dietary recommendations and athletic menstrual dysfunction. <i>Sports Medicine</i> , <i>32</i> (14), 887-901.
714 715 716 717	Mitche	II, L., Hackett, D., Gifford, J., Estermann, F., and O'Connor, H. (2017). Do Bodybuilders Use Evidence-Based Nutrition Strategies to Manipulate Physique? <i>Sports</i> , <i>5</i> (4), 76.
718 719 720 721	Mitche	II, L., Slater, G., Hackett, D., Johnson, N., and O'Connor, H. (2018). Physiological implications of preparing for a natural male bodybuilding competition. <i>European Journal of Sport Sciences</i> , <i>18</i> (5), 619-629.
722 723 724 725	Mountj	oy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., and Ljungqvist, A. (2014). The IOC consensus statement: beyond the Female Athlete Triad—Relative

726 727 728	Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine, 48(7), 491-497.
729 730 731 732 733 734	Newton, L. E., Hunter, G., Bammon, M., and Roney, R. (1993). Changes in Psychological State and Self-Reported Diet During Various Phases of Training in Competitive Bodybuilders. <i>The Journal of Strength and Conditioning</i> <i>Research</i> , 7(3), 153-158.
735 736 737 738 739	Obel, C. (1996). Collapsing Gender in Competitive Bodybuilding: Researching Contradictions and Ambiguity in Sport. <i>International Review for the Sociology of Sport, 31</i> (2), 185-202.
740 741 742 743	Parish, T., Bahgurst, T., and Turner, R. (2010). Becoming competitive amateur bodybuilders: Identification of contributors. <i>Psychology of Men and Masculinity</i> , <i>11</i> (2), 152-159.
744 745 746 747 748 749	Petrizzo, J., DiMenna, F. J., Martins, K., Wygand, J., and Otto, R. M. (2017). Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-free Female's Lean Body and Bone Mass. <i>International Journal of Sport Nutrition and Exercise Metabolism</i> , 27(6), 543-549.
750 751 752	Phillips, S. M. (2004). Protein requirements and supplementation in strength sports. <i>Nutrition</i> , 20(7), 689-695.
753 754 755 756 757 758	Pope, H. G., Gruber, A. J., Choi, P., Olivardia, R., and Phillips, K. A. (1997). Muscle Dysmorphia: An Underrecognized Form of Body Dysmorphic Disorder. <i>Psychosomatics</i> , 38(6), 548-557.
759 760 761 762	Probert, A., Palmer, F., and Leberman, S. (2007). The Fine Line: An insight into 'risky' practices of male and female competitive bodybuilders. <i>Annals of Leisure Research</i> , 10(3-4), 272-290.
763 764 765 766 767 768	Reale, R., Slater, G., Cox, G. R., Dunican, I. C., and Burke, L. M. (2018). The Effect of Water Loading on Acute Weight Loss Following Fluid Restriction in Combat Sports Athletes. <i>International Journal of Sport Nutrition and Exercise</i> <i>Metabolism</i> , 28(6), 565-573.
769 770 771 772 773	 Robinson, S. L., Lambeth-Mansell, A., Gillibrand, G., Smith-Ryan, A., and Bannock, L. (2015). A nutrition and conditioning intervention for natural bodybuilding contest preparation: Case study. <i>Journal of the International Society of Sports Nutrition</i>, 12(1), 20.
774 775 776 777 778 779	Rohrig, B. J., Pettitt, R.W., Pettitt, C.D., and Kanzenback, T.L. (2017). Psychophysiological tracking of a female physique competitor through competition preparation. <i>International Journal of</i> <i>Exercise Science</i> , 10(2), 301-311.

780 781 782 783 784	Rossow, L. M., Fukuda, D. H., Fahs, C. A., Loenneke, J. P., and Stout, J. R. (2013). Natural bodybuilding competition preparation and recovery: a 12-month case study. <i>International Journal of</i> <i>Sports Physiology and Performance</i> , 8(5), 582-592.
785 786 787 788 789 790	Rowbottom, M. (2017, December 1). IFBB competitors place their bets for World Fitness Championships. Retrieved from <u>https://www.insidethegames.biz/articles/1058593/ifbb-</u> <u>competitors-place-their-bets-for-world-fitness-</u> <u>championships.</u>
791 792 793	Shephard, R. J. (1994). Electrolyte manipulation in female body- builders. <i>British Journal of Sports Medicine</i> , 28(1), 60-61.
794 795 796 797	Slater, G., and Phillips, S. M. (2011). Nutrition guidelines for strength sports: sprinting, weightlifting, throwing events, and bodybuilding. <i>Journal of Sports Sciences, 29 Suppl 1</i> , S67-77.
798 799 800	Steen, S. N. (1991). Precontest strategies of a male bodybuilder. International Journal of Sport Nutrition, 1(1), 69-78.
801 802 803 804	Spendlove, J., Mitchell, L., Gifford, J., Hackett, D., Slater, G., Cobley, S., and O'Connor, H. (2015). Dietary Intake of Competitive Bodybuilders. <i>Sports Medicine</i> , 45(7), 1041-1063.
805 806 807 808	Steele, I., Pope Jr, H., and Kanayama, G. Weightlifting. (2018). In I.D. Glick, S. Todd., and D. Kamis (Ed.), <i>The ISSP Manual of</i> <i>Sports Psychiatry</i> (pp. 91-116). New York: Routledge.
809 810 811 812	Stiegler, P., and Cunliffe, A. (2006). The Role of Diet and Exercise for the Maintenance of Fat-Free Mass and Resting Metabolic Rate During Weight Loss. Sports Medicine, 36(3), 239-262.
813 814 815 816	Sundgot-Borgen, J. (1994). Risk and trigger factors for the development of eating disorders in female elite athletes. <i>Medicine and Science in Sports and Exercise</i> , 26(4), 414-419.
817 818 819 820 821	Sundgot-Borgen, J., and Garthe, I. (2011). Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. <i>Journal of Sports Sciences, 29</i> <i>Suppl 1</i> , 101-114.
822 823 824 825 826 827 828 829 830	Sundgot-Borgen, J., Meyer, N. L., Lohman, T. G., Ackland, T. R., Maughan, R. J., Stewart, A. D., and Muller, W. (2013). How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. <i>British Journal of Sports</i> <i>Medicine</i> , 47(16), 1012-1022.
831 832 833 834	Sundgot-Borgen, J., and Torstveit, M. K. (2004). Prevalence of eating disorders in elite athletes is higher than in the general population. <i>Clinical Journal of Sport Medicine</i> , <i>14</i> (1), 25-32


835 836 837	Tajrobehkar, B. (2016). Flirting With the Judges: Bikini Fitness Competitors' Negotiations of Femininity in Bodybuilding Competitions. <i>Sociology of Sport Journal</i> , <i>33</i> (4), 294-304.
838 839 840	Tinsley, G. M., Trexler, E. T., Smith-Ryan, A. E., Paoli, A., Graybeal, A. J., Campbell, B. I., and Schoenfeld, B. J. (2018). Changes
841	in Body Composition and Neuromuscular Performance
842	Through Preparation, 2 Competitions, and a Recovery Period
843	in an Experienced Female Physique Athlete. The Journal of
844	Strength and Conditioning Research, Publish Ahead of Print.
845	
846	Trexler, E. T., Hirsch, K. R., Campbell, B. I., and Smith-Ryan, A. E.
847	(2017). Physiological Changes Following Competition in
848	Male and Female Physique Athletes: A Pilot Study.
849	International Journal of Sport Nutrition and Exercise
850	Metabolism, 27(5), 458-466.
851	
852	Trexler, E. T., Smith-Ryan, A. E., and Norton, L. E. (2014). Metabolic
853	adaptation to weight loss: implications for the athlete. <i>Journal</i>
854 855	of the International Society of Sports Nutrition, 11(1), 7.
856	Van der Ploeg, G. E., Brooks, A. G., Withers, R. T., Dollman, J.,
857	Leaney, F., and Chatterton, B. E. (2001). Body composition
858	changes in female bodybuilders during preparation for
859	competition. European Journal of Clinical Nutrition, 55(4),
860	268-277.
861	200 2777
862	Vallet, G. (2017). The gendered economics of bodybuilding.
863	International Review of Sociology, 27(3), 525-545.
864	
865	Walberg-Rankin, J. E. C., and Gwazdauskas, F. C. (1993). Diet and
866	weight changes of female bodybuilders before and after
867	competition. International Journal of Sport Nutrition., 3(1),
868	87-102.
869	
870	Walberg, J. L., and Johnston, C. S. (1991). Menstrual function and
871	eating behavior in female recreational weight lifters and
872	competitive body builders. Medicine and Science in Sports
873	and Exercise, 23(1), 30-36.
874 875	West, R. V. (1998). The Female Athlete. Sports Medicine, 26(2), 63-
876	71.
877	/1.
878	Zanker, C. L., Osborne, C. Cooke, C. B., Oldroyd, B., and Trustcott,
879	J. G. (2004). Bone density, body composition and menstrual
880	history of sedentary female former gymnastics, aged 20-32
881	years Osteoporosis International, 15(2), 145-154.
882	•
883	
884	
885	
886	
887	

Study	N		ight change Fat %)	Time period (weeks)	TEST		E ₂		T ₃		T_4		CORT		Ghrelin		LP		TSH		IN		Method for menstrual status	Absence of menstruation	Bone mass density (DXA)
			C P	R C		C P	R C	C P	R C	C P	R C	C P	R C	C P	R C	C P	R C	C P	R C	C P	R C	C P	R C		
Haliday et al. 2016	1 ♀	-8.3kg; (15.1- 8.6%)	+5.2kg; (8.6- 14.8%)	20 CP; 20 RC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Self-report	9 weeks pre- and up to 71 weeks post- competition	NA
Hulmi et al. 2016	27 ♀	-7.8kg (23.1- 12.7%)	+6.1kg (12.7- 20.1%)	20 CP; 17.5 RC	Ļ	(†)	Ļ	Ţ	Ļ	(†)	Ļ	ţ	-	-	-	-	Ļ	Ţ	Ļ	Ţ	-	-	Serum and self-report	11.5% pre- competition and 28% post- competition	↓CP; ↑RC
Trexler al. 2017	8 ♀ 7 ♂	-	+3.9kg (12.5- 14.9%)	4-6 RC	-	Î		-		-		-		↑↓		ſ		↓	-	-	-	Ţ	Saliva	-	-
Petrizzo et al. 2017	1 ♀	-7.7kg (24.4- 11.3%)	-	24 CP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Self-report	Oligomenorrhea	No change
Rohrig et al. 2017	1 ♀	-10.1kg (30.5- 15.9%)	-	24 CP	ţ↑	-	ţ↓	-	-	-	-	-	↑↓	-	-	-	Ļ	-	Ļ	-	-	-	Serum and self-report	8 weeks pre- competition	-
Tinsley et al., 2018	1 ♀	-6 kg (20.3- 11.6%)	+6.8kg (11.6- 18.8%)	18 CP (1) 7 CP (2) 9 RC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Self-report	12 weeks pre- competition (1) and up to 12 weeks post- competition (2)	NA

Table 1: Overview of the recent studies of reproductive health of female physique athletes.

 \bigcirc indicates female physique athletes, \bigcirc indicates male physique athletes, $\uparrow\downarrow$ indicates fluctuation, CP indicates the pre-competition phase, RC indicates recovery phase, () indicates not recovered to initial baseline values, (1) indicates 1st competition and (2) indicates a 2nd competition. TEST = Testosterone, E2 = Estradiol, T₃ = Triiodothyronine, T₄ = Thyroxine, CORT = Cortisol; TSH= Thyroid stimulating hormone; LP= Leptin, IN = Insulin; DXA = Dual-energy X-ray absorptiometry. NA = Information not available.

Figure 1: An overview of the current female categories in women's physique competitions. The categories are progressive steps along a continuum between lean body mass and fat mass. 'Dry' refers to dehydration and the subsequent reduction in body water (Chappell et al., 2018). The number of height classes in each category is determined by the popularity of the single category. This figure was drawn using information retrieved from the International Federation of Bodybuilding and Fitness website (FBB Elite Pro Categories, 2017).

