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Abstract This article describes the aims of a new study funded by the British Nutrition

Foundation Drummond Pump Priming Award. This study will explore the

independent metabolic, endocrinal and behavioural effects of extended morning

and evening fasting. In an obesogenic society, there is an urgent need to identify

effective strategies for preventing obesity-related diseases, such as type 2 diabetes.

Implementing extended periods of fasting and restricted time permitted for food

intake may be an efficacious method for weight management and improving

metabolic health. However, recent research suggests that the success of this

intervention may be influenced by when the fasting window occurs, with evening

fasting appearing to elicit superior metabolic benefits compared to morning

fasting. The mechanisms driving these time-dependent outcomes are not yet clear

but may be due to circadian variations in metabolic physiology and in

behaviours known to influence energy balance. To date, no study has directly

compared the acute metabolic and behavioural responses to morning and evening

fasting with those of a control trial. Research on evening fasting is also currently

restricted to individuals living with overweight or obesity, emphasising a need for

research in lean individuals aiming to maintain a healthy bodyweight and

improve metabolic health. This article highlights the need for alternative

nutritional interventions to improve public health, before reviewing the existing

literature linking extended fasting, circadian rhythms and behavioural and

metabolic outcomes. The final part of this article outlines the aims, methodology

and intended outcomes of the current research project.

Keywords: chrono-nutrition, energy balance, meal timing, metabolic health, time-
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Introduction

Sixty-three per cent of the UK population are living

with overweight or obesity and are at increased risk of

numerous metabolic diseases, making this a significant
public health priority (NHS Digital 2020). Maintain-

ing a healthy bodyweight requires careful management

of energy balance, with weight gain occurring when
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energy intake exceeds energy expenditure over a pro-

longed period of time. If not arrested, this energy sur-
plus can lead to a series of metabolic disorders related

to the accumulation of adipose tissue. There is evi-

dence that weight gain occurs incrementally through-
out life, such that many individuals who are classified

as ‘normal weight’ (BMI <25 kg/m2) as young adults,

have a strong possibility of becoming overweight or
obese later in adulthood (Østbye et al. 2011). There-
fore, it is crucial that preventative methods which suc-

cessfully control energy balance are implemented prior
to becoming overweight or obese.

Weight loss requires the creation of an energy defi-

cit, typically achieved by reducing energy intake (i.e.
energy restriction) and/or increasing energy expendi-

ture (i.e. exercise). However, the long-term success of

such interventions is poor, likely impeded by persis-
tently elevated appetite stimulating an increase in

energy intake (Polidori et al. 2016), as well as reduced

physical activity and a disproportionate reduction in
basal metabolism, suppressing energy expenditure

(Hall et al. 2012). These compensatory behavioural

adaptations hinder weight loss progress, often culmi-
nating in reduced adherence (Dansinger et al. 2005)

and poor long-term success (Curioni & Lourenco
2005). Research has typically focussed on the magni-

tude of the energy deficit created but there is growing

evidence that when food is consumed can influence
the metabolic response (Johnston et al. 2016). This is

due to complex interactions between nutrient con-

sumption, circadian biology and metabolism, an area
of research termed ‘chrono-nutrition’ (Ruddick-Collins

et al. 2018).

‘Chrono-nutrition’ – meal timing
independently influences metabolism

Mammalian physiology has evolved to respond seam-

lessly to the catabolic and anabolic fluctuations associ-

ated with daily life (Mohawk et al. 2012).
Endogenous circadian timing systems regulate biologi-

cal pathways and adjust essential physiological and

behavioural mechanisms (Potter et al. 2016). The
suprachiasmatic nucleus (SCN), situated within the

hypothalamus, is referred to as the ‘master clock’ and

is regulated by external light-dark cycles (Ruddick-
Collins et al. 2018). The SCN is the primary factor in

synchronising human diurnal physiology (Mohawk

et al. 2012), but clock genes have also been identified
in several peripheral tissues (Dibner et al. 2010). Inter-
estingly, there appears to be little crossover between
rhythmic gene expression in different tissues (Storch

et al. 2002), highlighting not only the importance of

the SCN in coordinating these clocks, but also the
broad range of biological processes that are subject to

circadian influence (e.g. rate of digestion, metabolism

and appetite regulation) (Ruddick-Collins et al. 2018).
Circadian clocks are malleable and synchronise with

daily life in response to external environmental

entrainment cues, referred to as zeitgebers. Light-dark
cycles are the dominant zeitgeber for the SCN

(Mohawk et al. 2012), but, although data are largely

derived from rodent studies, nutrient intake also
appears to be an important peripheral zeitgeber, with

some evidence for this effect recently emerging in

humans (Lewis et al. 2020). The uncoupling of the
light-entrained SCN rhythm from feeding-entrained

peripheral rhythms has been implicated in the develop-

ment of obesity and metabolic disorders (Stenvers
et al. 2019). For example, shift workers are at a

greater risk of developing obesity and metabolic disor-

ders such as type 2 diabetes (Antunes et al. 2010).
These data suggest that temporally disordered beha-

vioural rhythms can incur metabolic consequences,

likely due, in part, to an uncoupling of centrally and
peripherally located clocks.

Human intervention studies have also revealed that
the metabolic responses to meals are profoundly influ-

enced by the time of day at which they are consumed

(Garaulet et al. 2013; Jakubowicz et al. 2013). Post-
prandial glycaemic control peaks in the morning,

before gradually reducing to its nadir in the evening

(Van Cauter et al. 1997), likely due to decreased
peripheral insulin sensitivity and impaired b-cell
responsiveness later in the day (Saad et al. 2012).

Moreover, greater weight loss has been observed in
participants with overweight or obesity when energy

intake was biased towards early, rather than late in

the day, despite no differences in self-reported energy
intake (Garaulet et al. 2013; Jakubowicz et al. 2013).
These weight loss findings imply an alteration in

energy balance kinetics in response to energy distribu-
tion. One possibility is increased dietary induced ther-

mogenesis (DIT), which is the energy expended

digesting and assimilating nutrients. DIT has been
shown to be greater in the initial 2-hour postprandial

period in the morning compared to the evening (Mor-

ris et al. 2015), although differences may be lost when
assessed over longer periods (Weststrate et al. 1989).
It is also possible that undetected changes in energy

expenditure and/or energy intake may have influenced
weight loss findings. Indeed, physical activity was not

closely monitored in these studies and there are well-

reported issues with assessing food intake from self-
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report methods (Dhurandhar et al. 2015). Neverthe-

less, these data suggest that encouraging food intake
at specific times of the day and reducing it at others

may be conducive to weight loss, but the behavioural

responses which could mediate these outcomes are not
well understood. Understanding how altered meal tim-

ing affects behaviours influencing energy balance is of

paramount importance for developing practical and
achievable guidelines on how meal timing can be opti-

mised to improve metabolic health.

Intermittent fasting – a possible strategy to
improve diet adherence

Whilst making small, daily reductions in energy intake

(i.e. continuous energy restriction) or altering energy
distribution can be an effective means of managing

bodyweight and improving metabolic health (Most

et al. 2017), many individuals struggle with the daily
adherence required by such interventions. Interest-

ingly, these adherence problems may be partly due to

the requirement to limit energy intake across the entire
day or at specific mealtimes, rather than abstain from

food intake completely (Templeman et al. 2020). The
absence of satiety after eating smaller meals (Alajmi
et al. 2016) and calorie-counting difficulties (Das et al.
2007) may be considerable barriers for some individu-

als, and therefore, dietary interventions that require
complete energy intake abstinence may offer a practi-

cal advantage over energy restriction (Johnstone 2015;

Parr et al. 2020). Intermittent fasting requires a transi-
tion from the traditional Western meal pattern of

three or more evenly spaced meals per day to a meal

pattern that shortens periods of energy consumption
and extends periods of fasting. There are several sub-

types of intermittent fasting (Table 1), and whilst each

type differs slightly in its application, all involve
extended periods of severe (≤25% energy require-

ments) or complete (i.e. fasting) energy restriction,

alternated with periods of adequate or ad libitum
energy intake.

Evidence from randomised controlled trials indicates

that intermittent fasting is as effective as continuous
energy restriction for weight loss and improving meta-

bolic health (Barnosky et al. 2014). However, the

majority of long-term studies (>8 weeks) have utilised
versions of intermittent fasting that permit small

energy intakes (400–600 kcal) within fasting windows,

such as 5:2 and alternate-day modified fasting (Carter
et al. 2016; Trepanowski et al. 2017). Despite this

approach having only a minor impact on energy bal-

ance, interrupting the fasting period may preclude the
attainment of health benefits that extend beyond sim-

ple calorie restriction. Researchers postulate that fast-

ing periods exceeding 12 hours will accelerate lipolysis
and oxidation of endogenous lipid-derived substrates,

known as ‘flipping the metabolic switch’ (Anton et al.
2018). Research in rodents has shown that imposing a
daily fasting period of 16 hours can elicit several

health benefits, including improved insulin sensitivity,
reduced hyperlipidaemia, reduced inflammation and

reduced bodyweight, without the need to restrict abso-

lute energy intake (Hatori et al. 2012). Prolonged peri-
ods of fasting are uncommon within the traditional

Western meal paradigm, which is characterised by

short intervals between meals. This results in the
majority of the day being spent in the postprandial

state, concomitant with elevated glucose, insulin and

triglyceride concentrations, producing a lipogenic state
conducive to fat mass accretion (Saponaro et al.

Table 1 Characteristics of popular continuous and intermittent methods of dieting as frequently implemented in research

Diet Characteristics

Continuous Energy

Restriction

Daily reduction (typically ~ 25%) in energy intake below baseline intake.

Intermittent Fasting An umbrella term for diets involving extended periods of severe or complete energy restriction, alternated with periods of

adequate or ad libitum energy intake.

Time-Restricted Eating Daily fasting periods within defined time windows during the day with adequate or ad libitum energy intake during non-fasting

periods.

5:2 Severe energy restriction (typically consuming 400–600 kcal per day) on two consecutive or non-consecutive days of the week

with adequate or ad libitum energy intake on the remaining 4 days.

Alternate-Day Fasting Complete fasting for 24-hour periods, alternated with 24-hour periods of adequate or ad libitum energy intake.

Modified Alternate-Day

Fasting

Severe energy restriction (typically ≤25% energy requirements) for 24-hour periods, alternated with 24-hour periods of adequate or

ad libitum energy intake.
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2015). Therefore, despite the current consensus that

the benefits of intermittent fasting are largely driven
by energy restriction, interventions involving fasting

intervals of sufficient duration to elicit a metabolic

shift may be able to unlock independent health bene-
fits (Anton et al. 2018).

Time-restricted eating – skipping meals to
improve metabolic health

Extended morning fasting

Assuming a regular sleep pattern, the most practical
approach to sustaining a fast of more than 12 hours is

to extend the morning fast by delaying the first intake

of energy and/or to extend the evening fast by advanc-
ing the final intake of energy. One approach to

extending the morning fast is to skip breakfast. It has

been reported that 36% of the UK population either
sometimes or regularly skip breakfast (Reeves et al.
2013), implying that morning fasting is a frequently

utilised form of intermittent fasting. Compared to fast-
ing, consuming a morning meal appears to acutely

increase resting energy expenditure beyond that of the
natural morning elevation in resting energy expendi-

ture, a response which is likely driven entirely by an

increase in DIT following nutrient ingestion (Kobaya-
shi et al. 2014; Clayton et al. 2016; Nas et al. 2017).
However, when assessing 24-hour metabolism in a

respiratory chamber under isocaloric dietary condi-
tions, morning fasting has been shown to have no

effect (Kobayashi et al. 2014), or to slightly increase

(+41 kcal/day) energy expenditure, whilst also increas-
ing fat oxidation (Nas et al. 2017). Moro et al. (2016)
assessed the effects of 8 weeks of extended morning

fasting (meals consumed at 13:00, 16:00 and 20:00)
with a control trial (meals consumed at 08:00, 13:00

and 20:00) under isocaloric conditions in a sample of

healthy men performing resistance training 3 times per
week. Delaying the first meal until 13:00 resulted in

greater fat mass loss compared to the control trial,

which was concomitant with a relative increase in the
contribution of fat oxidation to resting energy expen-

diture. Moreover, reductions in fasting glucose and

insulin concentrations were observed only in the
morning fasting trial. This evidence supports the

notion that routinely fasting beyond 12 hours can eli-

cit a metabolic shift and may lead to improvements in
health outcomes.

Although cross-sectional studies have regularly asso-

ciated skipping breakfast with a higher BMI (Ode-
gaard et al. 2013), several acute studies have reported

that skipping breakfast reduces energy intake within a

24-hour period (Clayton et al. 2015; Chowdhury
et al. 2015). These studies also found that whilst appe-

tite is significantly elevated in the morning after skip-

ping breakfast, the next meal of the day (typically
lunch) appears to offset appetite completely, resulting

in no differences in appetite following this meal (Clay-

ton et al. 2015; Chowdhury et al. 2015). Thus, these
studies suggest that skipping breakfast may be an

effective method of modulating energy intake and may

assist in appetite control (Clayton & James 2016).
Despite breakfast skipping acutely reducing energy

intake, some evidence suggests that 6 to 16 weeks of

routine morning fasting does not significantly improve
anthropometric measurements compared to morning

meal consumption in either lean adults (Betts et al.
2014; Tinsley et al. 2019), or adults living with obe-
sity (Schlundt et al. 1992; Chowdhury et al. 2016).

However, these findings are not unequivocal. A recent

8-week study in adults with obesity reported a ~ 3%
reduction in body mass when unrestricted eating was

permitted from 13:00–19:00, compared to unrestricted

eating with no timing constraints (Cienfuegos et al.
2020). It should be noted that the reduction in body

mass observed in this study is smaller than expected,
given the reported ~ 550 kcal/day reduction in energy

intake in the morning fasting group. The minor or null

body mass changes observed in these studies are likely
due to passive compensatory reductions in compo-

nents of energy expenditure, including resting energy

expenditure, DIT and, perhaps most significantly,
physical activity energy expenditure (PAEE) (Hall

et al. 2012). Betts et al. (2014) investigated 6 weeks

of fasting until midday or consuming breakfast
(>700 kcal before 11:00) in lean individuals under

free-living conditions. Results found that 24-hour

energy intake was lower in the morning fasting trial
compared to the breakfast trial, however, PAEE was

also lower in the fasting trial. This reduction in PAEE

fully compensated for the lower energy intake, leading
to no change in anthropometric measurements

between trials. When the same intervention was

applied to individuals with obesity, there were trends
for lower energy intake and PAEE in the morning fast-

ing trial compared to the breakfast trial, although

these did not reach statistical significance (Chowdhury
et al. 2016). Nevertheless, these results indicate that

the association previously identified between skipping

breakfast and higher BMI may be causally related to
compensatory changes in behaviour.

There is also tentative evidence from short-term

intervention studies that repeated morning fasting
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negatively affects insulin sensitivity and glycaemic con-

trol. Farshchi et al. (2005) found that fasting until
11:00 for 2 weeks decreased insulin sensitivity, com-

pared to an isocaloric trial with first meal consump-

tion at 08:00. Additionally, Betts et al. (2014)
reported that fasting until midday under free-living

conditions for 6 weeks resulted in higher glucose vari-

ability in the evening, compared to consuming at
least 700 kcal before 11:00. It is possible that the

detrimental glycaemic response to routine extended

morning fasting is a product of adaptations to the
acute response. Specifically, a larger postprandial ele-

vation of plasma glucose, either with or without a

concomitant increase in insulin concentrations, is typi-
cally observed in response to lunch, when breakfast

has been omitted – often referred to as the ‘second

meal effect’ (Jovanovic et al. 2009). This effect may
be mediated by the upregulation of lipolysis in

response to a prolonged overnight fast, causing a sub-

sequent increase in plasma non-esterified fatty acid
(NEFA) concentrations, which if sustained, can inhibit

the insulin response (Grill & Qvigstad 2000). Con-

suming breakfast will stimulate the release of insulin
and consequently suppress lipolysis during the morn-

ing, permitting greater insulin-stimulated glucose
uptake into active tissues at lunch (Jovanovic et al.
2009).

The impact of morning fasting on the circadian sys-
tem may also drive the metabolic outcomes. Rhythmic

expression of the core clock and clock-controlled

genes of the circadian system are strongly implicated
in the successful regulation of glucose homeostasis

(Gachon et al. 2017). Accordingly, rodent and human

studies have revealed associations between desynchro-
nised or absent expression of circadian clock genes

with reduced insulin secretion, b-cell proliferation and

insulin resistance (Vieira et al. 2014). As highlighted
earlier in this article, temporally disordered feeding

patterns which likely cause misalignment between

feeding-driven peripheral clocks and the light-driven
central clock lead to deleterious metabolic outcomes

(Antunes et al. 2010). Similarly, clock and clock-con-

trolled gene expression was adversely altered during
the morning when breakfast was omitted compared to

when breakfast was consumed, in both healthy partici-

pants and participants with type 2 diabetes (Jakubow-
icz et al. 2017). These adverse effects on gene

expression were not restored by the consumption of a

lunch meal at 12:00, and glycaemic control was
impaired at lunch in the breakfast skipping trial, sug-

gesting that early meal consumption after the over-

night fast may have a fundamental role in regulating

normal circadian oscillations and glucose control.

Moreover, even when the fasting duration is equidis-
tant, NEFA concentrations display circadian variations

and are typically greater in the afternoon and evening,

compared to the morning (Morgan et al. 1999; Hutch-
ison et al. 2019). As such, circadian regulation of lipid

metabolism may be a mediating factor in the second

meal effect.
In summary, time-restricted eating which omits food

intake in the morning is shown to suppress acute daily

energy intake, without compensatory elevations in
appetite. However, its long-term effects on weight loss

are equivocal due to concomitantly reduced PAEE,

and some evidence suggests that glycaemic control
may be impaired. It is important to note that imple-

menting time-restricted eating by morning fasting and

skipping breakfast are not synonymous and skipping
breakfast may be associated with other deleterious

behaviours (Keski-Rahkonen et al. 2003). However,

morning fasting may be considered the most feasible
method of achieving a >12 hour fast, therefore,

research should seek to explore whether the benefits

of extended fasting can be harnessed when imple-
mented in the morning.

Extended evening fasting

Restricting eating opportunities to a window of
8 hours or less by morning fasting appears to be an

effective method of increasing lipid oxidation and has

been shown to improve insulin sensitivity when
accompanied by regular exercise (Moro et al. 2016).

However, outside experimentally controlled trials,

extended morning fasting may not necessarily equate
to time-restricted eating. For example, late-night eat-

ing may be a contributing factor to the poor long-term

metabolic health outcomes associated with skipping
breakfast (Kutsuma et al. 2014), and in the absence of

a structured exercise regime, reductions in PAEE may

also occur (Betts et al. 2014). Kelly et al. (2020) found
that moving the breakfast meal from 08:00 to 22:00,

whilst fixing lunch and dinner time, reduced 24-hour

lipid oxidation, indicating different metabolic effects
of consuming the same meal at a different time of the

day. By contrast, studies which have restricted evening

energy intake have shown improvements in several
markers of metabolic health (Antoni et al. 2018;

Gabel et al. 2018; Sutton et al. 2018; Parr et al. 2020)
and achieved weight loss (LeCheminant et al. 2013;
Gabel et al. 2018). Additionally, consuming all daily

energy before 14:00, compared to 20:00, improved
circadian clock and clock-controlled gene expression
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(Jamshed et al. 2019), which is in contrast to the neg-

ative effects on clock gene expression observed with
morning fasting (Jakubowicz et al. 2017). Numerous

metabolic markers display 24-hour circadian varia-

tions, including plasma lipids (Morgan et al. 1999)
and insulin sensitivity (Saad et al. 2012), which

appears to ameliorate in the morning and decline in

the evening. This suggests that time-restricted eating
interventions restricting energy intake to an earlier eat-

ing window may be particularly efficacious for health.

Rodent studies have shown that restricting feeding
to the early hours of the active phase can elicit numer-

ous health benefits, including improvements in insulin

sensitivity and blood lipid profile, and resistance to
weight gain (Hatori et al. 2012). In rodents, these

effects may be partly driven by increased 24-hour

energy expenditure when meals are consumed exclu-
sively within the early active phase (Hatori et al.
2012), but a similar effect does not appear to occur in

humans. Four days of consuming all meals between
08:00–14:00, compared to 08:00–20:00, increased 24-

hour fat oxidation, but had no effect on energy expen-

diture (Ravussin et al. 2019). Similar findings were
reported in an older population (Kelly et al. 2020),

and although one study reported that evening fasting
marginally increased (+91 kcal/day) 24-hour energy

expenditure compared to a 12-hour eating window

(Nas et al. 2017), the fasting interval prior to assess-
ment was not standardised. Discrepancies between

human and rodent findings may be due to differences

in physiology and/or behaviour; for example, rodents
exhibit food-seeking tendencies during periods of food

restriction (Mitchell et al. 2016), whereas humans

appear to reduce physical activity in these circum-
stances (Betts et al. 2014; James et al. 2020). More-

over, the respiratory chamber method typically

employed when assessing 24-hour energy expenditure
in humans severely impedes free-living energy expendi-

ture estimates, due to physical constraints imposed by

their small size. As such, the effects of evening fasting
compared to a traditional meal pattern on habitual

PAEE, the most malleable component of energy

expenditure, is not known.
Fasting after 19:00 for 2 weeks was shown to

reduce daily energy intake by ~ 250 kcal and signifi-

cantly reduced bodyweight compared to a control trial
with no eating time restrictions (LeCheminant et al.
2013). Two further studies have extended the evening

fast by advancing dinner by 1.5 hours, alongside
delaying breakfast by 1.5 hours, for 10 weeks (Antoni

et al. 2018), or by terminating eating at 18:00 until

10:00 the following day for 8 weeks (Gabel et al.

2018). Both studies observed reductions in self-re-

ported energy intake, however, only one reported sig-
nificant weight loss (Gabel et al. 2018). The reasons

for these different findings are unclear but may relate

to differences in study design or suggest a mediating
role of altered energy expenditure. Self-reported

energy intake should also be interpreted carefully due

to potential issues with accuracy and sensitivity (Dhu-
randhar et al. 2015). Furthermore, the concomitant

restriction of morning energy intake in the studies by

Antoni et al. (2018) and Gabel et al. (2018) make it
difficult to elucidate the specific effects of evening fast-

ing on free-living energy intake.

Ravussin et al. (2019) observed that evening fasting
from 14:00 compared to eating from 08:00 to 20:00

reduced mean fasting concentrations of the hunger-

stimulating hormone ghrelin and increased the satiety
hormone PYY in the evening, as well as reducing sub-

jective appetite. Similar reductions in PYY and subjec-

tive appetite were observed by Sutton et al. (2018) in
response to 5 weeks of evening fasting. However,

infrequent appetite hormone assessment was a limita-

tion of both studies. Only fasted blood samples were
taken, and the proximity of sampling to the prior meal

was not standardised between trials. Therefore, the
effects of evening fasting on indices of energy balance,

particularly outside strict dietary and experimental

control, are not well understood.
In the most comprehensive study to date, eight men

with pre-diabetes underwent 5 weeks of consuming

energy and macronutrient matched diets within either
a 6-hour (08:00–14:00) or a 12-hour (08:00–20:00)
eating window (Sutton et al. 2018). Extended evening

fasting increased insulin sensitivity and improved
blood lipid profile in the absence of weight loss, sug-

gesting that evening fasting can induce metabolic ben-

efits without altering energy balance. Unfortunately,
the 7-week washout period employed in this study

was seemingly insufficient to normalise baseline mea-

surements following the evening fasting trial, and a
trial order effect was observed for baseline insuli-

naemia. Whilst hindering interpretation of the results,

this suggests that 5 weeks of evening fasting may have
a profound and long-lasting positive effect on insulin

sensitivity in this population.

Only one study has directly compared morning
and evening fasting. Fifteen men with overweight or

obesity and at elevated risk of type 2 diabetes com-

pleted 7 days of morning fasting (eating between
12:00–21:00) and 7 days of evening fasting (eating

between 08:00–17:00), in randomised crossover

order (Hutchison et al. 2019). To ensure equidistant
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fasting periods prior to sampling, the pre- and post-

intervention metabolic assessments occurred in con-
junction with the first meal of the day for each trial

and consequently commenced at different times

(08:00 or 12:00). Results found that both time-re-
stricted eating methods reduced postprandial plasma

glucose and fasting triglyceride concentrations and

tended to reduce postprandial insulin, although there
were no differences between trials. Mean fasting

blood glucose concentrations over the intervention

period (assessed with continuous glucose monitoring)
were reduced following evening fasting only. These

findings provide some support to the notion that

reducing the window between the first and final
meal of the day can improve metabolic profile, but

advancing the final meal may be preferable for 24-

hour glucose control. Both trials similarly resulted
in~ 1 kg body mass loss. Energy intake was not clo-

sely monitored in this study, although measurement

of several appetite hormones revealed no differences
between trials. Estimates of free-living PAEE from

wrist- and arm-worn accelerometers were also not

different between trials, although wrist- and arm-
worn accelerometers have previously shown ques-

tionable accuracy (O’Driscoll et al. 2020). Therefore,
whilst time-restricted eating by extending the over-

night fast appears to be a potent method of improv-

ing glycaemic control, the specific effects of evening
and morning fasting on energy balance remain

unclear.

At present, time-restricted eating implemented either
as morning or evening fasting appears to elicit a meta-

bolic shift towards lipid oxidation, which may convey

benefits to health. However, the outlook on the long-
term effects of morning fasting is less positive and

associated behaviour changes, such as late-night eating

and reduced PAEE, may outweigh potential benefits.
By contrast, evening fasting appears to elicit several

benefits to metabolic health, but the effects on beha-

viour are poorly understood. Therefore, the proposed
study will aim to elucidate and compare the acute

effects of morning and evening fasting on parameters

of metabolic health and behaviours influencing energy
balance. Additionally, this study will explore time-re-

stricted eating in a lean population, providing evidence

on the acute effects these interventions might have if
employed infrequently.

Study objectives

Early evidence suggests that time-restricted eating
could be optimised if implemented as an evening fast

(Sutton et al. 2018; Jamshed et al. 2019), however,

very little is currently known about how evening fast-
ing influences indices of energy balance. In addition,

the majority of studies in this field have been con-

ducted in adults with overweight or obesity, often
with underlying health problems (Sutton et al. 2018;

Hutchison et al. 2019; Jamshed et al. 2019), and there

is a paucity of data in lean individuals. This is despite
evidence that weight gain begins in early adulthood,

indicating that nutritional interventions to regulate

energy balance should be implemented early to pre-
vent weight gain later in life (Østbye et al. 2011).

Therefore, the focus of this study is to comprehen-

sively evaluate the acute effects of morning and eve-
ning fasting on indices of energy balance and

metabolic health, in lean adults. The key objectives of

the study are represented schematically in Figure 1.
The project will compare how physiology and beha-

viour are influenced by an acute episode of extended

morning and evening fasting, as well as a control trial.
There are two overriding objectives:

• to assess how energy balance parameters, including

energy intake and PAEE, respond to extended morn-

ing and evening fasting and explore underlying
endocrinal mechanisms influencing eating behaviour;

• to investigate the acute effects of morning and eve-

ning fasting on important indices of metabolic
health, including glycaemic control, blood lipid pro-

file and substrate oxidation.

This study will expand current understanding by

exploring how singular, infrequent exposure to morn-

ing and evening fasting will influence acute energy bal-
ance and metabolic parameters. This holds particular

relevance for lean, metabolically healthy individuals,

who are only likely to adopt such interventions occa-
sionally as a preventative measure against weight gain.

An overview of the literature, research gaps and aims

of the study are outlined in Figure 2. Based on the
outlined evidence and data in UK adults showing

that ~ 40% of daily energy intake is consumed in the

evening (Almoosawi et al. 2016), the principal hypoth-
esis for this study is that evening fasting will reduce

energy intake and elevate markers of appetite, but will

improve glycaemic control, relative to morning fasting
and a control trial.

Methodology

Lean, young and healthy individuals (age: 18–30 years;
BMI: 20–27 kg/m2; body fat: <25%) will complete a

randomised crossover study, involving two consecutive
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days of either morning fasting (mFAST; all calories

consumed between 12:00–20:00), evening fasting

(eFAST; all calories consumed between 08:00–16:00),
or a control trial (CON; all calories consumed

between 08:00–20:00), separated by at least 7 days.

Day 1: After collection of a baseline fasted blood
sample, expired gas sample and appetite perceptions

(Flint et al. 2000), participants will be fitted with an

Actiheart monitor to continuously measure PAEE
throughout the trial period. Participants will consume

a 24-hour standardised diet (50% carbohydrate, 30%

fat, 20% protein), containing 100% of energy require-
ments determined by predictive equations, distributed

over the day in accordance with the experimental trial.

Participants will fast (consuming only a prescribed
amount of plain water) outside of the permitted eating

window, with appetite perceptions collected periodi-

cally throughout.

Day 2: Participants will return to the laboratory

after a 12-hour (CON) or 16-hour overnight fast

(mFAST and eFAST). To ensure equidistant fasting
durations between the two fasting trials, participants

will attend the laboratory at 07:30 (eFAST and CON)

or 11:30 (mFAST). Baseline measurements will be
repeated in the fasted state, after which participants

will consume a mixed macronutrient meal (~700 kcal;

70% carbohydrate, 15% fat, 15% protein) followed
by repeated blood, expired gas and appetite perception

sampling for 3.5 hours. After the postprandial assess-

ment, participants will be given access to an ad libitum
buffet and permitted to eat until they feel satisfied.

Upon leaving the laboratory, participants will adhere

to the same eating window as day 1, weighing and
recording all subsequent food and drink intake in a

food diary. A full study schematic is shown in

Figure 3.

Figure 1 Key objectives of the study are to understand how acute morning and evening fasting influences energy balance and key markers of metabolic health.

Specifically, this study will focus on how these interventions influence behaviour, and obtain additional subjective experience information, providing comprehen-

sive pilot data on the acute response. This will support chronic fasting interventions exploring weight management and metabolic health.
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Outcomes

This study will provide a comprehensive data set to

assess the acute effects of morning and evening fasting

in lean individuals, whilst also generating important
pilot data to inform long-term interventions assessing

whether infrequent implementation of fasting can elicit

adaptations in this cohort. Important information
regarding eating behaviour will be obtained by combin-

ing rigorously controlled laboratory eating protocols

alongside low-burden participant self-reported data, in
accordance with best practice recommendations (Blun-

dell et al. 2010). Supporting this, subjective appetite

perceptions will be evaluated periodically throughout
each intervention period and mechanistic data on the

endocrinal regulation of appetite will be assessed

(including acylated ghrelin, GLP-1 and PYY). Individu-

ally calibrated Actiheart monitors, which combine

accelerometry and heart rate to yield the most accurate
estimation of free-living energy expenditure from any

device (Chowdhury et al. 2017), will provide novel data

on PAEE in response to evening fasting. An advantage
of Actiheart monitors over doubly labelled water is that

they can detect subtle temporal changes in PAEE and

are not confounded by alterations in substrate oxida-
tion, both of which might be anticipated with a dietary

intervention involving fasting (Betts et al. 2014; Anton
et al. 2018). Plasma concentrations of glucose, insulin,
NEFA and triglycerides, alongside fat and carbohydrate

oxidation data from expired gas samples, will provide a

comprehensive metabolic profile, permitting the

Figure 2 Summary of current research, the aims of the proposed study and what this study will contribute to current understanding. TRE, time-restricted eat-

ing; CER, continuous energy restriction.
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examination of glycaemic and lipaemic responses to

acute morning and evening fasting. Finally, subjective

data relating to participant experience of the interven-
tions will contribute an improved holistic understand-

ing about the utility of periodic fasting to improve

metabolic health outcomes in this population.

Conclusions

Early evidence indicates that evening fasting is an effi-

cacious way to implement intermittent fasting to

improve metabolic health. This study aims to further
understand how evening fasting influences energy bal-

ance, whilst also providing a comprehensive examina-

tion of the acute metabolic responses in lean
individuals. This information will contribute to cur-

rent understanding and may lead to innovative knowl-

edge on the optimisation of intermittent fasting
methods in the context of weight management.
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