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THE DEVELOPMENT AND ANALYSIS
OF FABRICATED CONVEYOR PULLEYS 

by

STEPHEN BAUGH

ABSTRACT

This work has developed a series of theoretical techniques to 
establish the stress behaviour within a -fabricated conveyor 
pulley. The distribution o-f the bending moments between the 
pulley and the through sha-ft are con-firmed. The Ray 1 eigh-Ritz 
energy method is adapted to develop a theoretical technique 
to analyse any variable thickness disc which is represented 
by cubic spline -functions. This technique is veri-fied on 
analysis of constant discs using a traditional well proven 
method. Extensive strain gauge experiments are used for 
further verification. The belt traction distribution between 
the belt and pulley is modelled. The analysis of the shell is 
developed using double Fourier series to represent the 
symmetrical and anti-symmetrical loading conditions produced 
by the belt traction. The variation in stress distribution 
absorbed by the shell for various belt wrap angles is 
illustrated. An account of the shell end effects is also 
developed. A complete strain gauged pulley assembly is 
subjected to a static belt pull, to verify theoretical 
predictions with respect to component stiffnesses and 
boundary conditions. A Finite Element Analysis is also 
presented as further comparison.
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CHAPTER 1
INTRODUCTION

1*1 REVIEW
The inland movement o-f bulk solid materials is usually 

per-formed by a combination o-f two modes o-f transport. For 

material transport over distances greater than l-2km the load 

is generally carried in units o-f up to 200 tonnes in road or 

rail containers. This mode is used -for national 

distribution of materials such as solid fossil fuel, ores and 

some unprocessed chemicals. For distances up to 2km the 

material, is for at least part of the journey, transported by 

some form of conveyor; whether underground or overland. The 

advantage of using a conveyor in this type of material 

recovery is that it supplies a relatively controlled constant 

flow of material to a transfer point or processing plant; the 

plant then need not be rated for peak material delivery 

rates.

Of the different types of conveyor that are used for bulk 

material transport the troughed belt conveyor is probably the 

most popular <a typical schematic layout and cross-section of 

a troughed conveyor is shown in figure 1.1). A material 

transportation rate of 10000 tonnes per hour over a distance 

of 1.5km can be found on some of the larger conveyor 

installations in Britain; in some countries <e.g. Germany, 

South Africa and Australia) a more typical maximum is 30000 

tonnes per hour.

To achieve these high overall ratings the conveyors are 

operated 24 hours per day at belt speeds of up to 6 metres
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per second on belts up to 3 metres wide. High reliability o-f 

the conveyor is essential and a design life of 25 years for 

the conveyor elements is not uncommon.

There are several ways of automatically monitoring belt 

conditions and it is easy to assess whether a belt need be 

replaced or repaired at the next major overhaul. Likewise, 

the idlers are easily accessible and even if one or two idler 

sets should fail in service, they are sufficiently closely 

spaced and the belt has adequate stiffness that the operation 

of the conveyor is not impaired.

The pulleys, however, and particularly drive pulleys, are 

usually guarded for safety, or are enclosed behind the sides 

for a material delivery chute. Hence they are completely 

inaccessible for inspection and maintenance and failure of 

the conveyor system is only discovered when the pulley has 

collapsed.

A pulley failure on a large conveyor system carryinq say 5000 

tonnes per hour of run-of-mine coal will cost 1000 pounds 

sterling per minute of lost production. The capital cost of 

installing a conveyor in parallel would be prohibitive; it is 

essential therefore, that the highest standards of design 

manufacturing are implemented in pulley production.

1.2 HISTORICAL BACKGROUND
Early design of conveyor pulleys was performed principally be 

empirical or rule-of-thumb methods. Conventional conveyor 

pulleys of forty years ago were made from cast iron (figure 

1.2), with either a single or double row of spokes or discs, 

with integral bosses bored to fit on a central through-shaft.



Generally, the only calculations preformed for these pulleys

were to determine bending and torsional strength of the

shEift, which, once sized, fixed the dimensions of the bosses
to which the spokes or discs were attached. The dimensions

of the drum shell were fixed to allow proper metal flow

during the casting process and shaped to prevent

contraction, deformation and cracking during manufacture.

Several reasons for their success can be established, but the
principal reason was that relatively low belt tensions induced 
low stresses in a component that was manufactured to minimise

stress raising features by virtue of the casting process.

Increasing belt tensions began to be subjected to the

1ower-strength belt carcasses of the time, resulting in the
need for larger pulley diameters, which rendered the bulky cast 
iron pulley design uneconomical. Improvements in welding

techniques caused the general introduction of fabricated 

steel pulleys which could be made larger and more 

economically.

The fabricated drums originally were straight substitutions 

for the shapes of the original cast pulleys, manufactured by 

structural steel fabricators, with a simple rolled steel 

shell and shell plate diaphragms, welded to bosses and fitted 

to shafts (figure 1.3). At the same time engineers 

considered that the stresses within the pulleys did not 

warrant the dimensions needed for castings and accordingly 

substituted thinner plates for shells and end dascs. Most of 

these pulleys operated satisfactory, but problems became more 

frequent with further increases in belt tensions; some 
pulleys failed in the shell, others cracked in the end discs



and others broke at the disc-to-boss welded connection.

The earliest specialised manu-facturer < in the 1950's) began 

to construct pulleys based on the primitive theoretical work 

o-f Jackson £143 and William £293. This enabled the size of 

the shell and discs to be determined.

However, this placed greater emphasis on the quality o-f 

manufacture than the previous conservative designs and 

invariably resulted in pulley -failure. Attempts were made to 

cater -for the inadequacies o-f the earlier design methods and 

poor manufacturing techniques by increasing the strength o-f 

the end diaphragms by attaching ribs between the end discs 

and shell and by strengthening the sha-ft <-figure 1.4).

An additional problem, which had existed -for many years, was 

the tendency o-f pulleys to "walk" off their shafts; this 

occurred more -frequently with wider belts and -fabricated 

pulleys. Key or shrink -fitting o-f the hubs onto the sha-ft 

was popular in early designs, attempting to both prevent 

walking and to integrate the discs with the sha-ft -for 

strength. Keyed hubs had limited load carrying capacity and 

usually were used in addition shrink -fitting. The shrinking 
method of shaft attachment was costly and made shaft

replacement di-f-ficul t, in the event o-f damage prompting the 

introduction o-f various clamping devices. These clamping 

mechanisms usually -featured a -form of- wedging action, which 

gave high pressure between the shaft and hub. The wedges 

were forced into position by screws which could be released 

to allow shafts to be withdrawn from the drum for 

replacement. Assembly of these earlier taper attachments 

(figure 1.5) involved unwieldy procedures for alignment. Jf
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alignment after welding was not carefully maintained then 

inefficient, eccentric clamping was produced and unnecessary 

bending moments were introduced into the boss and discs, 

leading to disc failures. These earlier single taper 

attachments moved laterally along the shaft during the
clamping process, again causing unnecessary forces to be applied 
to the disc. Early double wedge type attachments (figure 1.6)

overcame the problem of lateral movement, but still required 

accurate alignment. These devices offered reliable torque 
transmission, which eliminated the need for keyways as the

secondary means of support.. Later, a self-aligning 

double-wedge-type attachment (figure 1.7) was developed, 

which maintained the same reliable torque transmission 

features but, at lower surface pressures and required only 

simple machining techniques.

Initial pulley constructions used a boss bored to suit the 

single or double type tape*— lock attachments, with a disc 

diaphragm welded to the boss and shell. With higher belt 

tensions there was an increasing number of failures of disc 

to boss welds. To overcome these problems engineers 

developed what became known as the 'turbine blade' shaped 

pulley end disc. This style dispensed with the disc-to-boss 

joint and the equivalent of a boss was used to house and 

restrain the shaft clamping unit. The disc thickness reduced 

smoothly from inner to outer diameter to allow proper metal 

flow during the casting process.

This design proved successful for many installations.

However, failures of pulleys continued, where still further 
increases of both belt tensions and belt widths had occurred.



Further- innovations o-f the types o-f end disc shape are 

presented in chapter 3,

Early shell designs were adopted -from pressure vessel stress 

analysis. Failures o-f satisfactory shell welds on low wrap 

<30 degrees) pulleys, where 180 degree pulleys with the 

same belt tension worked successfully, highlighted the need 

to reappraise the shell analysis to account for various wrap 

angles^ this analysis is presented in chapter 4.

1.3 LITERATURE REVIEW
Literature associated directly with the analysis of conveyor 

pulleys is rare, usually illustrating only simple theoretical 
formulae to determine disc stresses and shaft deflections.

Jackson [143 considered the interactive influence between 

pulley elements in an integral assembly, making the first 

important distinction between 'thick' and 'thin' end-disc 
designs.
Lange [17] derived some interesting results concerning the

distribution of stresses across the pulley face, and 

oresented a basic analysis of variable thickness end discs.

The shell analysis was limited to one belt wrap angle and 

ignored the end effects normal to closed end shells.

Scbmoltzi [253 studied the effects of transverse bending 

moments applied through a double~wedge-type attachment from 
the shaft t.o disc .

Theoretical work on the analysis of the end disc and shell

was also scarce. Conway ([3], [4], [5]) presented basic
analyses of constant and variable thickness discs. Mansfield 
[19] and Olsson [20] illustrated more complex theoretical models

6



of variable thickness discs. However the disc profiles were 
very simple. Flugge [10] analysed various shell loading
conditions.

1.4 PURPOSE OF THIS INVESTIGATION
Whilst the most sophisticated non-destructive testing methods 

can be applied to the pulley during its manufacture little 

detailed information exists for the designer to be able to 

assess the levels of stress that a pulley experiences during 

service. The aim of the present investigation is to provide 

a comprehensive method of determining the stresses and
displacements in a conveyor pulley under practical conditions. 
The individual objectives are to provide stress and deformation

information for the pulley shell, end discs and shaft and to 

reinforce the proposed methods of analysis with experimental 

data. Further, a procedure for obtaining a minimum weight 

design of end disc is proposed, again verified by 

experimental data.

The text of this thesis is presented as follows:

Chapter £ presents an overview of shaft design methods.
Chapter- 3 presents the theoretical model for bending stresses 

induced in constant and variable thickness discs.

Experimental verification is also provided.

Chapter 4 presents a detailed consideration of the belt 

loading characteristics and theoretical model for shell 

stresses and deflections,

Chapter ‘5 presents experimental verification for both end 

disc and shell theoretical models.
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Chapter 6 presents a finite element analysis, which is provided 
for purposes of comparing various theoretical methods and

ex peri men t a1 r b b u Its.

Chapter 7 presents, a complete design procedure -for conveyor 

pul leys.

Chapter- 8 -finally draws conclusions -from the above discussion 

and presents ideas -for -further work which could be carried 

out to enhance the theoretical models considered.
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CHAPTER 2
GENERAL THEORY

The theoretical analysis carried out in the thesis will be 

based on loads induced during normal operation* The overall 

moment distribution within the pulley assembly will be 

presented in the chapter, with -formulas to determine 
resultant -forces, pulley and sha-ft sizes*

The complex stresses induced within a pulley are due to 
reaction loads resulting -from the belt pull and the 

statically indeterminate moments induced by the de-flection ot 

the pulley assembly may be determined independently and 

summed in the -final analysis.

2. 1 APPLIED BELT PULL
To determine the magnitude and direction o-f the resultant

belt pull P <-figure 2.1), consider a pulley to be subjected

to a tight side belt tension T and a slack side belt tensionp
T <-figure 2*1). The angle o-f the belt as it enters thes
pulley and exits the pulley are & and 6^ respectively. The 

weight o-f the pulley is generally small in relation to the 

belt tensions, and therefore is ignored. The resultant belt 

pull is determined by resolving the tensions, which gives

<2 .1 )
o. r>

P = (V 2 + T 2 + 2. T . T .cosfe - & 11^ t s t s ^ t SJJ

tan,1
where Q p T .sin<6 ) +• T . s in < B )i. t. & &

T «cos < Q ) T . cos < Q )■ t t S' s
The minimum outside diameter of the pulley is normally
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speci-fied by the belt manufacturer, who has carried out 

exhaustive tests to establish the minimum diameter o-f his 

belt to wrap around a pulley. A simple -formula is still used 

•for guidance which takes into account the belts stiffness, 

the angle of wrap and belt width.

(2 .2 )
Pulley outside diameter D = 2«b = 360.Pp ______________

n . B. p . ( 2 . 0  > b v
where is'effective modulus of rigidity of the belt,

2 x & represents the total wrap of the belt and B is the
V

belt width.

2.2 DETERMINATION OF SHAFT SIZE
The shaft is sized to accommodate the stresses and 

deflections corresponding to a beam supported at its ends and 

loaded at two symmetrically positioned forces which coincide 

with the end disc centres.

Often, the minimum shaft diameter is already established by 

the size of the bearings which are determined on the basis of 

the bearing load and the required life in hours (table 2.1, 

equation A). The value 3/10 is the factor for roller 

bearings which are normally used with conveyor pulleys.

The size of the shaft fastener is the next consideration in 

determining the shaft size, established by limiting the slope 

of the shaft at fastener centreline (table 2.1, equation B). 

Equation B, table 2.1 assumes that the shaft diameter between 

the end discs is the same as the diameter determined for the 

■fastener. The manufacturers recommended maximum allowable 

slope varies for different fastener types between 3 and B
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minutes. These limits should be related to the -fastener's- 

ability to absorb the bending moments carried by the pulley. 

This limit is set to prevent the sur-face pressures within the 

fastener (various types discussed in chapter 1) from becoming 

either too high causing plastic deformation or too low 

causing joint movement.

Finally, the shaft size is confirmed by checking the ability 

to absorb simultaneously stresses induced by the driving 

torque T on drive shafts (table 2.1, equation C) and the 

bending moment which reaches a maximum for the shaft just 

outside the end discs (table 2.1, equation D). The bending 

) and torsional fatigue factors used in equations C

and D are typically set to 1.5 and 1.0 respectively. The 
value for bending fatigue factor is typical for the design of 

a rotating shaft with variable amplitude bending load. 

Similarly the value for torsional fatigue factor is typical 

as the driving torque is reasonably constant. It will only 

vary during the starting and stopping of the conveyor, which 

normally only occurs in an emergency.
Consideration was not given to shear deformation, however with 

L(min.) = 300mm and the ratio ds/^(max.) < 0.2 the effect of

shear deformations is to increase the maximum deflection 
found at the centre of the shaft by less than 5V., thus its 
influence c.an he safety ignored.

I

2.3 SHAFT STIFFNESS
The shaft stiffness is easily obtained from elementary beam 

theory. However, it is custom and practice by many pulley 
manufacturers to increase the effective diameter from that

.1.8



used -for the -fastener. Again using beam theory -for

variable-section shafts (figure 2.3) the effective stiffness 
of the shaft is written as

k = M <2.3)
£  S

where M and d> are bending moment carried by the shaft and 

sha-ft rotation at the end disc centreline respectively. Using

simple beam theory the sha-ft rotation is defined by
<W-Ls>/2 W/2

<p = M } r 1 dx + c 1 dx <2.4)s s 1 1 1J0 Is 2 si<W-La>/2 I
4  4where I = rc.d and I = rc.d

51-4 4 » 2  2

64 64
Substituting the integral 2.4 into equation 2.3

k = 2.E <2.5)

VJ - Ls + Ls

I I
S 2  S l J

The end disc and shell stiffnesses will be determined in 

chapter 3 and 4 respectively. Chapter 6 will conclude these 

discussions by illustrating the design principles instigated 

in this chapter.
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TABLE 2.1
Some important sha-ft calculations. 

Ref. Description ?< Equation

A d <min) obtained -from a bearing manu-facturers data

sheets -for the -following rating C. 
_ 3 / 1 0

C = P .f .f [1.BS «L- <1 k I  __ to
2 I rT

-f -f, dynamic load -factors d )c

d (rnin) is determined -from limiting the slope $  at 

the centreline of- the end disc.

r\ «w r 32 "•v

- n

1/4

d f,mln) is determined from limiting the stressSi
t (permissible shear), subject to drives only

2. A/?- 1/3
= ( 16

K. ; K fatigue factors for bending & torsionti i.
respective!y.

d <min> is determined from limiting the stress 

a  (permissible bending), subject to non-drive only

d = 32 M .K
4/3

Kj fatigue factor for bending only.
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CHAPTER 3
END DISC ANALYSIS

The end disc o-f a pulley is subject to both membrane and 

bending stresses. The bending stresses induced in the end 

disc result -from the relative rotation o-f the sha-ft at the 

inner boundary. The membrane stresses in the end disc are due 

to the pressure o-f the belt on the shell at the outer radius, 

reacted by the pressure induced by the sha-ft fastener at the 

inner radius.

General .assumptions concerning to the disc analysis 

For the purpose of both membrane and bending analysis of the 

end disc, the disc is considered to be symmetrical about the 

centre line of its thickness. The disc material is assumed to 

be elastic, homogeneous and isotropic and the usual plate 
theory assumptions are invoked, namely 

<i). Deflections are small in comparison with disc 

thickness,

<ii) All points of the plate lying on a norma1 —to-a-midd1e 

plane of the plate remain so before and after 
deformation,

< i .1 i ) The normal stresses in the direction transverse to the 

plate can be disregarded (<y ~ G>.

3.1 OVERALL MOMENT DISTRIBUTION AND BOUNDARY CONDITIONS
3.1.1 OVERALL MOMENT DISTRIBUTION
The maximum bending moment {figure 3.1) produced just outside 

the end disc is given by li = PL/2. This moment is carried



by each o-f the components which make up a conveyor pulley and 

the relative distribution o-f this moment depends directly on 

each elements stiffness. The bending moment carried by each 

element is determined -from the product o-f its stiffness k and 

rotation

i e . M = k . <p <3,1)

The statically indeterminate system can be seen as a parallel

connection o-f two springs, one representing the sti-f-fness o-f

the sha-ft k^, the other representing the effective sti-f-fness

o-f the drum assembly k . They are bent by the same amount atP
the joint between the sha-ft and the -fastener. The assumption 

that they both rotate by the same amount at this connection 

is derived -from the -fact that the -fastener does not li-ft o-f-f 

the shaft. Compatibility of rotation is reflected in the 

following relationship.

M = M <3.2)s p

k k
S p

where M and M are the moments carried by the shaft and drum s p
assembly respectively.

The moment shared. between the shaft and the drum assembly is 

written as,

M = M + M < 3.3 >t s p
The stiffness k is the equivalent stiffness of the drum P
assembly which represents a number of springs connected in 

series (figure 3.2). With symmetry considered, these 

components consist of a shaft fastener, hub, end disc and a 

shaft plus shell up to a plane which is central between the 

end discs.
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Thus, the effective stiffness o-f the drum assembly is as 

•foil ows:

k = 1 <3.4)p

1 + 1 + 1 + 1

tr' sh'
where k - k, , k . k , represents the individual stiffnesses f >i d ah
of the fastener, hub, end disc and shell respectively. 

Substituting equations 3.2 and 3.4 into equation 3.3, yields 

the bending'moment carried by the drum assembly.

M M (3.5)

k k. k k

+ t

f h d sh-
As the drum assembly is constructed from a n u m b e r  of springs

connected in series the moment carried by each component must

be the same.

If each component of the drum assembly is examined more 

carefully it is possible to remove some of the stiffness from 

equation 3.5 with confidence. The large mass of the hub is 

very much stiffer than the other components, thus k. ishr
assumed to be infinite. The evaluation of the stiffness of a 

fastener has been considered previously Schmoltzi C253, with 

limited success. However, a well designed and constructed 

device will allow very little relative rotation within 

itself: therefore its stiffness is regarded as very high.

Hence, since the fastener and hub stiffnesses can be 

considered infinite, equation 3.5 can be written as

26



fi = M = M (3.6)p t d

k . 1 1 +■ 1S __ 4*

k , kL d sh 7

Such authors as Conway [3] [4] [5] , Jackson [14] , Lange [17] and
Williams [29] considered the shell stiffness to be infinite when

analysing the end disc, resulting in equation 3.6 -Further 

reducing to,

li = M (3.7)p ______>-
k + 1s

-k<.
This leads to a very conservatively designed drum assembly, 

with too many components regarded as rigid leading to an 

unnecessarily imbalanced moment distribution within the 

assembly. There-fore, equation 3.6 will be used to Form the 
basis o-f the present analysis.

3.1.2 BOUNDARY CONDITIONS
The relationship between the bending stiffnesses of the shaft

and drum assembly is discussed above, where two equations

describing the distribution of bending moment between these

elements are derived. The first assumption considers the

shell stiffness to be infinite, resulting in a rigid outer

boundary to the disc (figure 3.3). The second assumption 
considers the shell’s stiffness to be sufficiently low not to

influence the bending moment distribution between the drum 

and shaft (figure 3,4). The bending of the shell will result 

in a reduction in the moment carried by the disc (see 

equation 3.6).
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For a complete analysis therefore it is necessary to consider 

the following boundary conditions

CASE 1 Disc outer boundary fully-clamped to yield the disc 

stiffnesses required in the moment distribution in 

equation 3.7.

CASE 2 Outer boundary simply-supported, the results to be 

used as a comparison only with experimental data 

illustrated later in this chapter.

CASE 3 Outer boundary partia11y-restrained. The results from 

this analysis are to be used as a comparison against 

results from a static belt pull test on a complete 

pulley assembly. This boundary condition requires the

determination of both disc and shell stiffnesses.

3.2 METHOD OF ANALYSIS
To achieve our ultimate aim of developing a technique to 

analyse variable-thickness <ie. minimum weight) discs, two 

analytical techniques will be considered. The method of 

Timoshenko and Woinowsky-Krieger C283 for the analysis of 

variable-thickness discs does not easily allow for a 

re-distribution of shear forces and internal moments, which 

may both significantly affect stress and deflexion results.

It is necessary therefore to employ the Ray1eigh-Ritz strain 
energy method (Richards C223) to more accurately account for

these variables. The first stage of the analysis however will

be to analyser constant thickness discs usinq Ray 1 eigh-Ri tz 
against the method of Timoshenko and Woinowsky-Krieger to 

provide a' benchmark to assess the accuracy of the former 
method in relation to the number of terms required in the

28



approximation.

3.2.1 ELASTIC RELATIONSHIPS FOR A PLATE SUBJECT TO BENDING 

In order to describe the changes in shape due to the bending 

o-f either the constant or variable thickness discs, consider
the element shown in figure 3.5, 3.6. The governing equations 
may be written down as [28]

Sr

z. ft + i szi*n 
2

ft Si* + 1 6 «■’|

(r Sr r2 6(92 j
 \fr *

Ci-23

r r (9

°'e

22 .6 1
&r (r SQJ

i 3.8)

<3.9)

T — (3. ->■’ . r(9 where 2G ~ E

The bending and twisting moments per unit length (Mrr, M ) and 
Mr respectively, along with the shearing forces Qr, Q 
may be expressed as

...
M « r- c? , z d 2 

r
= V o +z->. 1 2Si* + 1  S' to

'• h/2
6r2 6r rZ 602

<3.10)

& 
 ̂hs 2

d 2 D.

Sr r&r r^SQ'
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■*-Ys/2.

h/2
o - f ,  .

'  J. /••it
h/2

h/2

Ox 
^h/ 2

. d

D - E . h‘

12. (l -i-'2)

Thus, the stresses for the disc are as follows

a  (max) = 6.ti = -6.D r. — r. fj.2& u> + ?,>. -
1 1

' 3N

, 2 . 2 h h 6rZ r 6r 2r 662_J

<3.11)

<3.12)

6.M^ = -6. D [i>. &Z Oi t- 1 £u + 1 j.-2if

Sr2 r<5r rZ&&2

t . (m a m > r& 6.M . = -6 . D< l-i>)rQ

h' h‘

1 &Z t£} - 1 6u>

r 6rotc> r S6

where the flexural stiffness D is represented by D and D(p)o
for constant and variable thickness discs respectively.

3. £. Z TRADITIONAL METHOD
The problem of twisting a constant-thickness annular disc 

with a rigid central boss along with various outer edge 

boundary conditions, has been considered previously C281i. 

This work derived solutions for the fully clamped (case 1) 

and simply supported (case 2) outer boundary conditions. An 
outline of the theory is reproduced here, together with a



solution -for partially restrained (case 3) outer boundary 

cond i tion.

The equilibrium equation -for a plate -free o-f distributed 

tractions, expressed in polar co-ordinates is: —

- 1 6M - 2 62II + 1 <52M + 6Zli + 2 611 « 0 (3.13)x- y c? r- r-

r2 60 r 6r60 rZ 602 60“ r 6r
Substituting for the derivatives of the internal moments

shown in section 3.2.1, and assuming that the thickness and

hence the flexural stiffness, are independent of both r and

O, the following differential equation in terms of the

transverse displacement to can be obtained:- •v
0 (3.14)sz - 1 6 4* 1

*1
6 2 •

f
6  to + 1 6  to 4- 1

•v
x:26  co

y
6 r ' r  6 r

2
r seZ" r2p  r r 6 r

2r 6ez
For this particular problem, a solution has been formulated 

C281 E whore fundamental cosine variation only is 

considered. It may be verified by direct substitution that 

Lhe foi ..owing is a solution of tequation 3.1

to(p > = fx p-f X.p3 4- X p 1 4- X ,p. loq ( p) 1 . cos ( 6 ) (3.15ci D C d ^
where p is a non-dimensional radial co-ordinate (p=r/b). In

order to establish the four arbitrary constants X , X , X ,
CS. vJ C:

X use must be made of the kinematic boundary conditions.

3.2.3 STRAIN ENERGY METHOD

The principles of the Ray1eigh-Ritz method are reproduced 

here, The total strain energy stored in a plate (i.e. disc) 
is described in [22] and is given by
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<3.16)

LI =

/K ♦ f

K. < (u + v )** - 2. < l-?.~i) <u v - 1 (u + v > *”) ) dxdy 
x y x y x y

D. < < o> + o> )2 - 2 . < 1 -1-1} < to co> ~ Of 2 ) ) dxdy x#- yy xx yy xy

i e . U — U + 11vfi h

where U and U, are respectively the strain energy due to m b
membrane anB bending actions alone. Similarly, the total 

potential energy o-f a disc can be written down as

0 = 0 + 0 ,  <3.17)m b
where Q and O, are respectively the potential energy o-f the m b
stress resultants associate with the in-plane and

out-of-pi ane effects. Thus, the total energy o-f the system is

V = U + O <3.18)

The membrane and bending components of the total energy o-f

the system are uncoupled and, tor clarity, will be considered

separately in the following sections.

The Ray 3eigh-Ritz method is applied determining the minimum 

of a function which describes the total energy of the system. 

A series is assumed to represent the deformations, for 

example

<3.19)
to = a j < >t, y ) + a j < x , y ) + a j < x , y ) + ....... + a j < x , y >I t  2 2 3 3 N' N
where -functions j <x,v), i <x.y>. i (x . y > j <x,y) are1 2 3 M
chosen to represent the deformation of the system, and at the 

same time satisfy the boundary conditions. Once the solution 

of the double integral has been obtained the coefficient can
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be determined by

6V = 0  6V = 0 ......   6V = O < 3.20)

6a 6a 6a1 2  N
Thus, a system of n linear equations a , a , a a

1 2  3  N

are obtained which may readily be inverted- The number of 

terms taken in the series will have a direct bearing on the 

accuracy of the solution.

3.3 ANALYSIS OF A DISC WITH CONSTANT THICKNESS 
CBENDING ONLY!)

3.3.5 TRADITIONAL METHOD
Table 3.1 shows all the kinematic boundary conditions to be 

assumed. The solution of the constants in equation 3.15 for 

each boundary group can be obtained from equations 3.10, 3.11 

and the kinematic boundary conditions listed in table 3.1. 

Table 3.2 lists the resulting transverse displacement <»j> for 

anv radius (j&> < p  < 1> and cor responding values for the 

unknown constants.

Table 3.3 lists the disc stiffness for each set of boundary 

conditions considered, which may be inserted into e^uurtioA 3.6. 

Figures 3,7, 3.8, 3,9 illustrate the variation in components 

of stress for both fully clamped and simply supported outer 

boundary conditions. Table 3.5 shows some important results 

of stress at the inner and outer boundaries for the fully 

clamped disc boundary condition,

3. 3. 2 STRAIN ENERGY METHOD

The analysis of a constant thickness disc is re-examined to 

determine the number of terms required for the strain enerqy



method, This is done by comparison o-f the results obtained 

-from the method described in the previous section, the speed 

o-f convergence is tested. The outer boundary conditions 1 

and 3 (section 3.1,2) are only discussed in this section.

The same fundamental cosine variation of displacement with B 

is retained, but a more complex variation with radius is 

adopted by choosing an arbitrary polynomial

to t
Z 3a^ + a 4p +■ a +■ a^p + a cos(B >i a- W

No natural boundary conditions are invoked, but the

(3.21)

imposition of kinematic restrictions listed in table 3.1 will 

result in the transverse displacements as listed in table 
. 6/«

The total strain energy due to bending actions alone is shown

in the integral of equation 3.16. However, the contribution

of the term containing the factor (1 - ?.>) is negligible for

the boundary conditions considered, thus 
1 ar/2

i i —“b
r r

2 . D (p > £*to + 1 <5 to - to
z

.<■ - r. r-fs wp «r U*C/ \ /

b2 &P2 P &P PZ„
ft o

The potential energy of the stress resultants associated with

the bending action only is

O = - M Sco (3,23)b d
p=/?

b Sp B- 0
Noting that cos<&) term appears in each derivative in 3.22 we

may carry out the integration with respect to B immediately

and thus the total energy of the system can be written as 
1

Vb « n D (p) .'*,2<5 to +• 1 Sto — co p  S p .- M Sto| 
__ ™ |

2 . b2
ft

6pZ p zOp p " b *>|

(3.24 >

P-ft
0-0



Application o-f- the Ray! eigh-Ri tz principle leads to a -farniiy 

o-f integral equations -for *5V/<Sa = 0, <5V/<5a = 0, . . SSJ/Sa = 0.1 7  N
For clarity first let the transverse displacement listed in

table 3.6 and their derivatives be written down in a

generalised contracted form

where f0(n> are obtained by termu.rise differentiation

representing the transverse displacement as listed in table

3,6. Similarly, f' , f' are obtained through termurise
z  3

differentiation of the first term of the same equation. The 

first part of each of these equations is the influence of the 

partially restrained outer boundary, and would, in the case 

of the fully clamped outer boundary condition be zero. The 

bracketed term in equation 3.24 can also be represented in a 
contracted form

(3.25)

Sa

i e . So* ~ f ( s ) 2

Sp Sp&a.

f <s>

SpZ S>a.

of the second part (within the summation) of the equation



N
) * Zi9 n f (n) - f (n) -i- f (n)s i 2

N
= y *Zi3 na . G (n )

- N ^
6 [ Y a . G < n ) ] = G<s>

6a

ff ' - f* + f'! 2 i 2

P P J

=  G '

< 3 ,

o

6a

Thus, the reduced -form of equation 3.24 is given by

<3

O = u D < p > . G ' « G < s > p S p •+• >7 D < p>
I M

. l a  .. G (n >.G < s > p  SpB n

- M ,. f < s > cl 2
1 rf'y'ZZ 
0-0

For the fully-clamped outer boundary condition the first

integral of equation 3.28 is zero. The expansion of the

bracketed term 3.26 is given by

6 ( z > = p~ 2. q ( z > + q < z > 4- p  2. q < 2 ) < :
3 i ^ 2  ’ 3

a <z > = -3.(z-1) 2 M

j>&

26)

27 )

28)

.29)



g3<z> = -( z-1) .

H I
z ~ n or s for G(n>, G(s> respectively.

The second integral of equation 3.28 may be solved explicitly 

within the summation signy if D(p> is constant (i.e. 

independent of the integral) as in the case of constant 

thickness disc.

The fully-c1amped outer boundary condition will be considered 

only to evaluate the rate of convergence towards the known 

results obtained from the plate theory discussed in section
-j•*..* *  **.» a & *r

The convergence is rapid and the transverse displacement «&> 

(the summated term of the equation listed in table 3.6), is 

within 0.25% of the "known" answers, when N is taken to be 

10, for ,6 betwc-en the values of 0.25 ana 0.80.

The variation of the stresses with respect to p is listed in 

table 3.7. With the introduction of the derivatives to 

establish the stresses <r/ , c* and r . , a small differencer U t-U
occurred over a range of (3 between 0.25 and 0.4, and is 

corrected by increasing N to 20.

It can be concluded therefore that provided sufficient terms 

in the Rayleigh-Ritz approach are chosen the method will 

yield acceptable accuracies.
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3.4 ANALYSIS OF A DISC WITH VARIABLE THICKNESS 
CBENDING ONLY}

For variable thickness discs, let the thickness at any 

be h(p) ~ h .Kip), The -flexural stiffness (equation 3O
can now be rewritten

D(p> « E.h 3 .Kip)3 = D .Kip)3 o o

radius 
1 1 )

( •!> • 30 )

1 2 ( 1 )

Substituting into equation 3.28 and re-arranging gives a new 
family of integral equations for 6V/<Sa = O

1

O — |X(p ).G '.G (s )p Sp

<3.31)

ft

1um ". G (n ).G (s )p Sp - M .b.f (s ) a n  ^ d 2

nr. D |P=/3
a=oft a

K\fjf) — luiid Lari L will result in the solution fauna in section

o , o . J. ,

There are an infinite number of possible choices for 

modelling the disc profile by the function Kip) , such as

(3 .3 2 )X(p) = ft > £ II r ft
3/2

t Kip) =
r *v
ft

w p. w p. . P.
also illustrated graphically on figure 3.10.

In order to make optimum use of material used in manufacture, 

extra material should be concentrated near the inner and 

outer boundaries whilst near the point of contraflexure, a 

"necking" portion (thinnest section) may be incorporated. To 
allow this, a more complicated function of the disc’s profile
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is needed. However, the majority of ideal -functions which can 

be chosen are totally impractical to manufacture. Lengthy 

discussions with several United Kingdom steel -foundries led 

to the -following conclusions?-

should be used at the hub to disc and shell to disc 

boundaries. These blending curves are essential to 

ensure good material -flow during the casting process 

and wi11 assist in eliminating shrinkage cracks at 

section changes.

<ii) Minimum thicknesses must be retained at the "necking”

portion ( thinnest section) o-f the disc and is dependent 

on the distance between the inner and outer radius o-f 

the disc,

(iii) The complexity o-f the disc profile should be kept as 

simple as possible because, in practice, ideal 

theoretical functions describing the disc thickness are 

often impossible for the foundry to reproduce. 

Therefore, to enable these constraints to be incorporated 

into the analysis for variable thickness discs, cubic spline 

functions are adopted to enable any disc profile to be 

modelled. Any particular disc profile function would have the 

above mentioned inadequacies removed by choosing collocation 

points (figure 3.11 illustrates) and fitting a spline 

function according to the following:-

<i) Large blending curves at the sharp sectional changes



where A. = \<p)

H 6x.

C. = Z.X.

D.

6 „H.

p. represents the radial co-ordinate p  at the ithx.

collocation point (figures 3,12). A, B , C, D, H and>. K K K i.
Z.can be solved -For use with any variable thickness disc

pro-Fi le.

The variation o-f the stresses &  » rj , t with respect to pr ct r ct
is listed in table 3.8, Experimental verification o-f the 

Rayleiqh-Ritz technique -for variable thickness discs is 

presented in section 3.6.

3.5 ANALYSIS OF A DISC CIN-PLANE LOADING ONLY>
It can be shown that the stresses induced by purely in-plane 

loading of the disc, for the thickness of plate under 

consideration, are small in comparison to bending stress 

components (see Finite Element and experimental results in 

chapter 5), The in-plane membrane stresses are therefore 

disregarded further in this analysis.

3.© EXPERIMENTAL VERIFICATION CBENDING ONLY}
The Ray 1eigh-Ritz approximate theory for bending stresses in 
both constant- and variable—thickness discs was further
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tested experimentally using equipment shown in -figure 3*13,

The rig was designed such that the disc outer boundary could 

be taken to be encastred (case 1 (section 3.1*2))*

3*13*1 EXPERIMENTAL FRAME
Figures 3.14, 3.15 show schematically the experimental -frame 

set up for parallel and pro-filed end disc respectively* The 

apparatus consists of two heavy-gauge steel outer plates 

(figure 3 * 14 item A) and two heavy gauge steel centre plates 

(figure 3*14 item C) used to sandwich the test discs (item B) 

to stimulate encastre boundary conditions at the outer edge*

The radius b (figure 3*14, 3.15) is 250mm* A shaft was 

secured between the two central plates, to which the moment 

was applied.

3* 13* 2 MODELLED DISCS

Four steel discs were manufactured for this study, two of 
constant 3mm thickness and two variable thickness discs as 
illustrated by figure 3.16. The relatively thin plate used can 
be accounted for by the necessity to provide measurable

out-of-piane deflections. Any thinner plate would have a very 

high slenderness ratio and non-linear, large deflections may 
have resulted.

The strain gauges were attached to the steel discs, using 

general purpose gauges of the self—temperature compensation 

90 degrees rosette type (Welwyn Strain

Measurement CEA-06-125TQ-120ohm) glued and sealed to the 

surface of the disc at intervals (figure 3.14 item D>* All 

the gauges were wired into a strain bridge in a
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quarter-bridge arrangement.

The radial and tangential strains obtained -from loading all 

the model discs will be used in conjunction with the elastic 

relationship (equation 3.13) to determine the stresses.

The values o-f Passion's ratio and Young's Modulus used were 

0.3 and 210k,N/m respectively.

3.15.3 RESULTS
By means o-f a DTI attached to the securing plate, the 

de-flection o-f the model disc was monitored at various radii 

-from the inner to the outer boundaries. The correlation 

between theory and experimentally measured deflections, -for a 

constant thickness disc = 0.3), is given in -figures 3.17. 

Figures 3.18, 3.19, 3.20 and 3.21 illustrate the comparison 

between the experimental and theoretical stresses -for all the 

discs considered. Strains were stable to within 17. during the 

loading period.

Figure 3.17 illustrates that the variation of deflection <i> 

w.r.t & follows a simple cosine function. During the 

experiment it was found that the test rig deformed slightly, 

thus a small amount of compensation was necessary to obtain 

the actual deflection between the shaft and the disc.

Figures 3.18 and 3.19 illustrate the variation of stress with 

respect to p on the end disc's surface at B - 0 for the end 

disc concerned. The theoretical and experimental stresses 

compare favourably, with a difference of less than 67. between 

the two sets of results. Similarly, figures 3.20 and 3.21 

illustrate the variation of stress with respect p  on the 
disc's surface at & - 0 for the two variable thickness disc's



concerned (figure 3.16). Again, the correlation between 

theoretical and experimental results was good, with a 

difference of less than 87.. The theoretical stresses were 

greater (ie. safer) than the experimental for all disc's 

concerned.

The errors indicated above are mainly associated with the 

tangential stress at the inner boundary of the disc. It

was concluded that these discrepancies were due to slight 

losses in tangential strains at the inner radius caused by 

ineffective clamping of the disc by the centre boss.

Both theoretical stress and deflection results show 

sufficient correlation with the experimental results to 

conclude that the disc behaviour with respect to pure bending 

is adequately prescribed and that the Ray1eigh-Ritz technique 
is sound.

3.7 EXPERIMENTAL VERIFICATION CIN-PLANE LOADING ONLY>
To confirm the assumption that the stress produced by 

in-plane loading was negligible the experimental test rig 

used previously was re-used as shown in the figure 3.22. 

Figure 3.22 shows schematically the equipment details.

3.7.1EXPERIMENTAL FRAME
The apparatus consisted of a heavy-gauge steel central plate 

(figure 3.22 item A) and shaft (figure 3.22 items C). The 

central plate was pressed into the bore of the disc (item B) 

at the inner edge and the outer boundary was clamped to 

provide encastre conditions. The load was applied by means



o-f weights attached to the sha-ft <-figure 3,22 item E) 

symmetrically about the plane o-f the plane,

3, 7, 2 MODELLED DISCS
The constant-thiekness discs used as described in section

3.6.2 were used -for this test (ie./3 = 0.22 -figure 3.22(a) and 

0  = 0.41 -figure 3.22(b)),

3. 7. 3 RESULTS
The strains recorded with a maximum 25kg. load were to small 

to measure, which was also rein-forced by F.E. analysis. It 

can be concluded therefore that -for the disc slenderness 

ratios used in-plane loading can be neglected.
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TABLE 3.1
The kinematic boundary conditions: —

CASE 1 Clamped outer boundary

o> = 0, So> - 0 © p = 1 -for all 6

M = b d . p. cos<0) + M g. p. sin <60 - Q ► b . p**cos (60 J , dO

-it
© p = 1

CASE £ Simply supported outer boundary

<«> - 0, M = 0 © p - 1 -for all &v

)-M = b{ |M ^.p.sin <60 - Q .b.p c d b (0) L d 0d J  ̂ra r
J
“ 77

© P = 1
CASE 3 Partially restrained outer boundary

<«> - 0, S m  ~ fp .cos<60 © p = 1 -for all &sh
Sp

M = b d
77

jVl̂  .p. cos < 60 + M^.p.sin <60 - Q „ b . p2c os < 60 J . d6l

77

© p - 1
The boundary condition applicable to all cases, ie. rigid 

central boss.

= to © p = -for 0 - 0

6p
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TABLE 3,2
The transverse displacement <o ;

t|X p + hio = M . . b X. IX p + X p“ + X p 1 + X ,p. loa(p) ) ,cos(6)u c a ' J

where ,V, X , X. , X ; X are listed belowa b c d
CASE 2 Clamped outer boundary

X = i-,52 , Ab = -1 , Xc = , Xd = 2 . ( W ]A
Cl

X == |qjt .
-.t

CASE 2 Simply supported outer boundary
i2X = < 1 +%> >

Cl

\  =  <4'j Z  [ < 3 + v >  "  fjZ <1 >  ]

A b  ~

x
/a^d-v) + (n*v)J 

+• (3+u>J

CASE 3 Partially restrained outer boundary

X =Cl [i-r/] +- D o i + ( ? ' ]

r— 
-

ED 3 i +f?2' 2 -b - c h \ - p 2 ' J
X. = - D

8?I [l +/32] . b . ks h

X =

X

ftz D ft2O

b . k H I
where shell sti-f-fness k , is established in section 4.3sn
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TABLE 3.3
Disc st i i -f ness k , -for constant thickness discs

k , = 11, = M .. bcl cl d
<$> So:, d

op

X -t- 3.Xh(3 - \c(3 2 + Xd.<log</3) + 1

where X, X r \ . X } X t are listed in table 3.2cl b e d
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TABLE 3. 4.
The important stresses o' , o',; r „ are listed ; -r o' rc?
O’ = - 12. M X 
x- cl

b „ h'

< 3+?,>) X . p +• < 1 -?,P X . p 3 +- ( l+vJA , p 1b e cl r C O S - (  $ >

1 2 , ii 4 —i< 1 +3v> A .p — <1— j,>)A .p " +- (l+?>)X.p j .cos(6)r> r- * ‘ 1

r-a

b . h'

fx .p X .p- 3  -1+ X . p si n  <a>

where X, X , X , X ; X, are listed in table 3.2ct. b o d
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TABLE 3,3
Some important variations, -for & = 0 showing behaviour o-f a 

constant thickness disc, with clamped outer boundary*

Parameter p  - {3 p  = 1

<r/ . h2b

M , Tiftd

J t O  ! M .
^ 2+i} 77 [l+P*]

r? , h^b - 31-' j ! H M
Md tt/3 1 I[1 t )

li

- 3 <1-2.0 

n(3

t 1} 3 < i

n K )

(P »h^bs
M

3 -1.2J j}?2-1J - 1 oq < ft) 0
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TABLE 3.15
The transverse displacement <*.> 3 —

'.<> = fx . (p2 - f:lZp ■+■ ft3'| +- y a v (pri +■ Xp2 - X f t h* X ll.cos<#>
*  V- J  n  C  * ?*' ■'‘J J

where X , X , X ; X are listed below.■U i' £{ . s

CASE 1 Clamped outer boundary.

X = 0 £?
CASE 3 Partially restrained outer boundary.

Variables applicable tor both cases

>•' II n i | = n + 2 < n -1 ) j ! 
ij

I1 | |[1- ^ ]

Xh = <n-l >

M

50



TABLE 3.7
The important stresses, a  , & • T (constant thickness discr t? vU
on I y >

«r/ = M . br- cl fl +• I 1 *L 4 cos(&) — M «b fl + £ 1. cos (60 t? <!  ̂s. r»J
. 2 n

li A. b fl& + I _|«sin<60

— £>

7T

T a « | <n-l > <n+-iO .g <n > + (2+iO.g <n > - i> .q <n> 
n | * 2 “

~
2 ~ n

I =
— 3

(n-l)(Hi + l>.g (nl + <2̂ -»-l>.g <n) - i .q <n>1 it ‘ g

I = - 6

7T

N
I ar.' (n -1 ) . a (n >wi +• q < n )J2

I P ‘
V n>
p z J

CASE A Clamped outer boundary.
I = I = I = 0  * n <r,

CASE 3 Partially restrained outer boundary.

o' (2 + V- [l - /?V2)] I, = - D,..- [2^ <• t - ftZp~2JI = - D-4-

bZk

D . <a 11-7.» [1 - r/p_zl

b2k
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TABLE 3.0
The important stresses &  , «yrt; r (variable thickness di

on 1 y >

& - M . b
v d

h 2

b X (p) . jfI ̂ + 3 , c os < & >

ct„ “ M . b X (p) . j 3 + 3 1.cos<£>
hf d ^ 2 rfj

h 2

t  _ = 11 . b X<p)»fl + I l.sin(6?) l'& d '  ̂3 O’J
•O'h

where I r I $ I are listed in table 3.7 and X(p> may be1 2  3
determined using equation 3.33.

CASE 1 Clamped outer boundary.
I = I ss I =r. 0 ■* £» <5
CAS1S 3 Partially restrained outer boundary.
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CHAPTER 4
S H E L L  A N A L Y S I S

The shell o-f a conveyor pulley is subject to two components 

o-f stress viz membrane and bending stresses, induced by 

external loading and internal reactions* The external-Ioad 

is due totally to the conveyor belt traction, whereas the 

internal reactions are due to the in-plane pressure 

transmitted by the end discs and localised bending at the 

disc to shell connection* In order to analyse a pulley shell, 

it is necessary to develop two sets o-f equilibrium equations 

which represent its shape due to <1> external load and i2 ) 

internal reactions, The analysis -for both loading conditions 

will, -for clarity be developed separately below,

G e n e r a l  a s s u m p t i o n s  a p p l i e d  to t h e  s h e l l  a n a l ysis.

For the purpose o-f both membrane and bending analysis, the 

shell is considered to be a thin elastic, homogeneous 

cylinder, with isotropic material o-f constant thickness t and 

mean radius b <-figure 4,1). The -following assumptions also 

apply:
<i) The thickness t is small compares to the radius b and 

shell length W,

(ii) All points o-f the plate initially on a

normal-to-a-middl eplane o-f the plate remain so before 

and after de-formation,

<iii) The normal stresses in the direction transverse to the 

plate can be disregarded = 0 >.
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any mutual influence on each other

For the purpose of analysing the shell subject only to the 

belt pressure, it is assumed that the shell is supported at 

each end by a rigid disc which allows no deformation in its 

own plane. Therefore, the ends of the cylinder will bey' 

constrained to move only perpendicularly to this rigid plane. 

Thus, displacements v and w , and stress resultants and

vanish at the shell edges.

4.1' METHOD OF ANALYSIS C BELT LOADING ONLY!
4.1.1 BELT LOADING CHARACTERISTICS
The pulley is subject to a tight side tension T and a. slack 

side tension T (figure 4.1). The belt is wrapped around the 

shell between the angles of belt entry 4f ~ snd the. belt 

exit 4> ~ - & , with respect to a datum (i.e. 4f ~ 0) , The 

direction (figure 4.1) and the magnitude of the resultant 

belt pull is calculated using equation group 2 .1.

To establish the belt traction distribution between the belt 

and a drive pulley, consider figure 4.1, which illustrates 

•four distinct zones. Firbank 193 regards these as the 

important regions of belt contact as it passes over the outer 

surface of a drive pulley.

(i) Arc of ‘’running on”

(ii) Arc of ’’stick” or "adhesion"

(iii) Arc of "slip"

(iv) Arc of "running off"
The phenomenon of the "running on" and "running off" arcs are 
not well documented. However their presence is mainly



associated with the process o-f 'bending' the belt around the 

pulley. The degree o-f bending is dependent on how well the 

belt runs onto and off a pulley, which is a function of its 
stiffness, pulley diameter and the operating environment, it 

is assumed that the belt as been selected in accordance with 

belt manufacturers recommendations, so that these bending 

effects are minimal and therefore are ignored.

During the belt's passage through the arc of "stick” the 

velocity of the belt surface assumes the same velocity as the 

pulley surface. Within this region the belt effectively 

sticks to the pulley, As rotation continues towards the 

angle 9 , shear strains develop in the belt cover resulting
C \

in a steadily decreasing tension in the belt strand. This 

decline in the belt is equilibrated by the interfacial shear 

traction. This state of equilibrium is preserved until <p - 

S , where the contact pressure is insufficient to maintain
C

stick and slip will result. Within the arc of slip (-6̂  > rp

> & >, the belt tension falls exponentially to the exit c
tension T in accordance with elementary theory of belt

mechanics, Johnson E153.

T <d>> - T.e~/Ĵ ’ -0 > d> > O (4.1)y w ^ c
where T is the belt tension as it enters the arc of "slip".

In a conveyor idler pulley, the regions of belt contact as it 

passes over the outer surface are shown on figure 4.2. With 

the entry belt tension T equal to the exit belt tension T . 

The velocity of the belt surface will assume the same 

velocity as the pulley surface for the region between the 

arc's of "running on" and "running off". Within this region 

the belt will effectively stick to the pulley and there will
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be no slip 2one.
The belt tension variation with respect to p can be written 

as;
<4,2)

For Drive pulleys only

Arc o-f “Stick ” £'T <£) - T 9 > <p > 9I sZ W
Arc o-f "Slip" lifp) = T ,e"/Ĵ  -9 > <p > 9o v c

For Idler pulleys only

Arc o-f “Stick” T < rp>) - T —9 > (p > 9
—  C  V

where T is the belt tension at cp - & .c c
pj is the coefficient o-f -friction between the belt and the 

pulley surfaces; a typical value given by belt manufacturers 

is 0.25 -for an unlagged pulley,
The normal <P<0,x)> and tangential <P'<#,x)) components o-f 

the belt traction -for both drive and idler pulleys may be 

written as;

For Drive pulleys only
<4,3)

P(<£,x> = T(x>.T ; P'(^x) = d<P<«jfr,x>> = 0 & > 4> > &i L- v

W . b dtp

R (4?) x ) = T < x > . T. e”^  ; P' <«£.x ) = -T<x).T -© > 4> > &C C V C

W . b W . b
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For Idler pulleys only
<4.4)

P(#,x> = T < x ) .T P'(#,x> = d(P<^,x)> = 0 ■& > & > St V V

W.b d<£

Distribution of the belt load across the pulley face is 

dependent on the type of construction of the belt and the way 

it enters and exits the pulley (i.e. bend and take-up pulleys 

as illustrated in figure 1.1) the pressure is constant across 

the width (curve a, figure 4.3). If the belt is troughed as 

it enters or exits the pulley (i.e. drive and tail pulleys as 

illustrated with figure 1.1) the pressure is non-uniform 

across the width and depends mainly on the relative position 

(i.e. height) of the pulley to the trough of the belt. If 

the point of contact between the belt and pulley is higher 

than the centre of the trough, than the pressure distribution 

will be in accordance with curve b, figure 4.3. Whereas, if 

the same contact point is lower than the centre of the 

trough then the pressure distribution will be as curve c, 

figure 4.3. To enable any of these variations in pressure to 
be represented, a Fourier series is used

The pressure generating function f' < ><) is assigned the value 

of unity to represent constant pressure across the belt width 
(curve ”a %  fagure 4.3) which gives

< 4 .5)

Z nr>
0 < >t < W

dx and X - n / W
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N
T (x > = 4 ^ sin <nX.x ) n = 1,3,5, . . N <4.6)

‘"g----------
tt n

This variation of pressure with respect to x will he inserted 

into equations 4.3 and 4.4 for drive and idler pulleys 

respeclively.

4.1.2 EaWX LI Bf&I \M CONDI TX OHS
In order- to describe the changes in the shell shape due to

the belt traction, consider the element shown in figure 4.4

and 4.5. The first of these figures displays all the 

external and internal forces on the element and the second 

shows the internal moments. These equilibrium conditions 

have previously been documented, Flugge 1103 and Timoshenko

1283 and is detailed as follows

<4.7)

a . <6H + *N , *- - a . X ( x )3C <jPK

&&

fSM . a ..fSiM . r , -- 1.6M, ~ - a.Y <<£, x)
it J - t ______t

3<fi &/■ 3>t a Sfp

M 4- s zH . +• -a.6zM - S z M . «- 1 , » - a.2< *,x>

6)F &x&$ a
where X < x ) , Y < ; Z ( x ) are ex terna 1 force component ts

acting on the shell and u„ v » w are displacements, aii
parallel to the x, y, z axes respectively (figure 4.6).

For the determination of the shell displacements u, v, and v?

consider the components of stress and strain



<4.8)

u 2 . W Cv - w3 ~ *-Cv " *•"».)

a:.x0 = l'u4> + v, - 2z (v* + W^ 3

where ( ) <5< ) and < ) , - 6 < )V

<50
<4 .9)

a  - e h* + ’-’-VJ • “ E + w ‘̂ 3

:0

i-v
E

1 -2/

* 3(0

2 <l+^>
Substituting these expressions -for strain into the stress 

equations, the resultant loads <ie» N , N x, N ,, etc.) and
5C ip X<p

the moments (i.e. ii „ (4., etc.) can be expressed in terms of3< 0
displacement only

N =3(
ISil
a . I d;■•r 21

is a

» K. U + l->34

(4.10)

N , =
U.ĵ.2 * f 1 -
I (̂ *  dZj V'

= K.
i r * " w3

+ l-‘.U34
1 >• 5> - X b •4

M = C? . I .2 d 23( 2 = -D. W ^ ^ I v .  + W . . 1__I 0 00J
 ̂IS2 b2
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N =
4>

a . zX d z = -D. L b + W . , I 4- . WtJTXjpJ xx
u

b2 i
where b  = 1 4- Z , D = - j. 3L « tl and K = E.t

b 12 ( t - D « 2 1 -v
As stated earlier, the thickness t of the shell is small in 

comparison with the radius b. Thus the quantity z/b is 

neglected, giving

<4„ i 1 >

N . =
ut<p

= M =fJX

r I..-*'2
r , dz == K < i-is)

f %
u , 4- V

tfi X

>1!1^2 2 bV .  y

ii A = ~y.fp qnc

X sz
r , „ z dz = D ( 1x$>

b
The equilibrium equation can now be rewritten in terms o-f 

displacements and external -force components only

<4.12) 

(a )b£u 4- < i ~i> > . u + < i > b . v - is. b2w = - b2« X < d?„ k >xx <p<p xcp x

D

( 1 4-v> b „ u , +■ < t -i*) b2v 4* v , , - w , +• t2 1 w , < 1 v
X</> XX Ifw , < t “72) , V jxxtjp xxJ

12

b**. Y < <p* x 1 

D

< b )

t2 fb4w 4- 2 .bZw + w l^ xxxx ttitrpfp tptpxpfp}

1 2 . b"
b » / ( i, x )

D

< c )
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4. 1. 3 MODEL BELT LOADING
To study the stress state induced by a shell subject to the 

belt loading only, allow the components o-f load and 

displacement to be -formed using a double Fourier series. The 

resulting coefficients o-f these series can be determined 

using the -functions -for belt traction described in section 

4.1.1. Consider the external -force components to be 

distributed according to the -following set o-f equations

<4.13)
M  W  M  W

y X^cos < m$> cos < nX. x > -*- y / X sin(m^)co5 (nX,x) 
rft „ rt~- o“" to , ri*= O*"

M  M  M  a  __
Y<$,x) ~ ) ) Y sin ( m$?> sin < nX. x > +■ ) ) Y cos < md>) sin < nX . x >

JL. Li Li Li rurito „ n = it rfi, n = o

M  W  M  N

Z (4'* x > =: ̂  2 7'm cos f' sin < nX.x > ^ ̂  s in < rr«0> sin < nX. x >to,n= O  to,n~£t

where X , X , Y , Y , Z ; Z  are determinedran van w n  tovi toi-i toti

independently from the equations representing the modelled 

belt traction described in section 4.1.1. Let X , Y ; Z
rtin  tt-.Yi Ytfn

be representative of the symmetric components of the belt

traction for both drive and idler pulleys and X , Y ? Zran rrm ran

correspond to the anti-symmetric components of the belt 

traction relevant only to drive pulleys.

Consider the components of displacement to be distributed 

according to the following set of equations
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(4-14)
M H M W _

cos ( m$>> cos < nX . x ) + J £  u,w sin * cos * *  K *
yfi * iri •- o

M N
v cos < m^> sin (nX . x) rar ira , rj - O

r*ri

M N _
cos (m<f>> sin (nX . x ) + ^ T  w sin < m$>sin (nX « x > i A A rar i

where u , u , v , v , w s w are the unknown van mri mri ran mr> ran
displacements coefficients. Let u „ v ; w beran ran ran
representative df the symmetric components of displacement
and u , v ; w correspond to anti-symmetric components of mr. inn nm
displaceroent.

The first terms of equations 4-13 and 4.14 reflect the 

symmetric components of load and displacements respectively, 
whereas the second terms are the anti-symmetric components of

load and displacements.

For clarity the symmetric and anti-symmetric elements of load 

and deflection will be considered separately, with the 
resulting displacements superimposed at a later stage.

For the symmetrical loading of the pulley shell it is 

necessary to introduce the first terms of 4.13 and 4.14 and 

tbe'ir derivatives into the equilibrium equation 4.12. The 

trigonometric constants are common to all elements of the 

equations, and are therefore omitted, resulting in the

following set of three linear equations in terms of u , v ;ran ran
w
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<4.15)

f- < b* >2 - <1 -v >m * 1< 1 +-v) b m | | r-*v.b »

f t '1  f 2  1r. 2.<l+i.>)b m | — |m + <1— *>)<b ) < 3 +2k ) rt i I n
■ir. 2. 1 + M b  > n

m f *: 2 2") 11 + k j < b ) + m j j

1. O

w

= O

2=-b Z

D

w here b = b.n and k = I2 .b

W t
Similarly, for the anti-symmetric loading case it is

necessary to introduce the second terms of 4.13 and 4.14 and

derivatives into the equilibrium equation 4.12 to arrive at a 
further set of linear equations in the terms of uin v#n; vffin.

<4.16)
• r  

f *r- V ,b*lrt i u

< 1 +i.») b m n rn + (1-vXb') (l+2k)n
I z J t
r 1*1 r l-i>.b 1 - rn — 1

IK |

J w J

1 + M b *)2n

1 + k£<b*>2 + m2J

v

w

v.

Q

•b2Y

D 

■b*’ Z

D

To solve each set of linear equations, consider first the 

load constants X, Y, Z for both symmetric and anti-symmetric 

load conditions.
Loads transmitted -from the belt to the pulley in the axial
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direction are assumed to be negligible because any

signi-ficant axial -force would lead to the belt moving -from

side to side <ie tracking off line), hence the -force

components in the X direction vanish, i.e. X = X =0._ _ ran ran
Constants Y , Y , Z and Z are determined by consideringrn rt run ran ran
the external forces applied by the belt traction, consisting

only o-f the pressure normal to the surface p ($>, x ) and a

tangential component p'($>,x), which were both defined in 
sec tion 4.1.1.

4.1.4 SYMMETRIC LOADING CONDITIONS
As the symmetric loading conditions are subject only to

pressure normal to the surface, Y = 0  and Z may beran ran
resolved using the following integral

W e

'TZran P < k ) .cos< m<£) sin (nX « x ) dxd<£ (4.17)

rc.W 0 -:-0 v
P (tfi, x ) and T(x> were evolved -for symmetric belt traction in

section 4.1.1.. However they are confirmed to be

P (tp, x > =■ T(x).T and T < >t > = a sin < nX. x ) (4.18)f. n

b . W
The loading constant Z is easily determined for all valuesin r<
of rn and n, which leads to the following

(4.19)
Z = T a sin(m.<9 ) m = 1 , 3, 5, .... , Mran 1 n v ’ 7 .. ---------  n =  1, 3, 5, .... , N

b . W m
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Z = T a . & Oiv f.

b.W
where a = 4

m - 0
n = 1, 3, 5, , M

Substituting 4,19 into 4,15, the displacement coefficients 

are established by computation,

4.1.3 ANTI-SYMMETRIC LOADING CONDITIONS
The anti-symmetric loading conditions are subject to pressure

normal to the surface and its tangential component. Thus,

Y and Z are determined using the same method described in nm nm
section 4.1.3.

i4.20)

Y

■re.W O —a

P ' (<pi x ) . sin < m̂ >> cos< nX. x > dxd<£

Z = 2
X f l7 ,

w a

o -a
P < d>, k > . s in (m<£ > sin (nX. x > d xd<£

The components of the belt traction stated -for drive pulleys 

only (equation 4,3 contain both symmetric and anti-symmetric 

elements, There-fore, since both components of belt traction 

are being considered separately and later' super imposed, it is 

necessary to remove the symmetric element by subtracting 

equation 4.18 from the expression for P($,x> which was 

derived in section 4.1.1, equation 4.3. Thus, resulting in 

the following equation for the anti-symmetric load element of 

P < 4-'r )< i and P v (46, x ) ,
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<4,21>

P < 4' i x •* := T < x )
(©v+*j

b.W

P ' <«*,x) = T(k >

b.W

l-i
T . e p V ' ^ h  . T( ,J | and T < >\ > =J a sin (nX. >x) n

Loadinq constants Y and X are easily determined -for allsun
values o-f rn and n, which qives

< 4,22)

Yinn r-, /j (Ŷ  j/j . cos (m . d ]| ~ m . sin |m . j|

z z n . b . W fj +n»

J/j. c os jro. & J m . s m

tTl 1  ̂ *J» ji ^  ji « « « « 5 H  ^  1 ji -i ji 5  n i i c i | M

Y

n . b . i

where a = 4
n,<7
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(4,23)

Z = a j 1 IT [u. sin {m«6) I - m,cos U . 0  || ran r. __ j______I t \_ c J i_ ej J

7T . b

T„ sin |m .& J - m.cos|nn0

« cos Jm«0^  - m.cos |m,0 Jjj

m = 1 » 2, 3 y 4
m
. , M n - 1 , 3, 5, . . . . , N

where a = 4, r, /HiT
Substituting 4,22, 4.23 into 4,16 the displacement

ss zr ss
coefficients u , v ; w are established by computation«m nm nm

4,1.13 RESULT ANT STRESSES

The displaced shape of the shell (i.e. u, v, w>) is 

determined by substituting the symmetric and anti-symmetric 

displacement coefficients computed in sections 4,3.4 and

4,1,5 (for drive pulleys only) into equation 4.14. Thus, the 

important stresses for inner (+ve sign) and outer surfaces

are
«r/., (max )

r 6 . M.. Hr
r *v
N.\x X.

tZV ■> tk. J

(4.24)

The resultant moments and forces were established in section 

4.1,3.
How well the load and displacement series converge greatly 

depends on the magnitude of certain dimension!ess ratios, 

such as b/t. If b/t is large (greater than 20), the series 

for the M-forces converge quickly, whereas the series for
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M--forces require a larger number o-f terms:-.. In any event, -for 

the typical sizes expected with heavy duty conveyor pulleys 

15 terms are found to be sufficient to permit the series to 
c onverge.
Figure 4,7, 4,8, 4,9 illustrate the variation o-f stress -for 

various belt wraps subjected to an idler pulley. Figure 4.10 

illustrates the maximum stress variation <belt wrap 65 

degrees) along the shells length -for the case o-f a belt wrap 

o-f 180 degrees i -figure 4.8). Similarly, the -figure 4.11 

illustrates the variation o-f stress for a drive pulley with a 

typical belt wrap o-f 210 degrees. Ver i-f ication o-f this 

technique is carried out by experimental and -finite element 

analysis comparisons, in chapter 5.

A, £ METHOD OF ANALYSIS CSHELL END EFFECTS}
The shell o-f a conveyor pulley is subject to additional loads 

which were not accounted -for in the previous sections, 

namely, radial expansion o-f the end discs due to a sha-ft 

-fastener and the reaction -forces at any connection between 

the shell and supporting end discs.

CASE 1 Reaction between the end discs and shell

It was assumed in the previous sections that the shell 

was supported at each end by a rigid plane, where the 

displacements v and w and stress resultants N and M 

vanish at the shell edges. In -fact, there will be a 

very small displacement in the end discs caused by the 

belt pressure generating a reaction -force Q and
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bending moment M at the disc/shell connection (-figure 

4.12).

CASE i5 Reaction between the centre supporting discs and shell 
Central annular disc are o-f ten used to support the 

pul ley shell and assist in providing even wear o-f the 

shell during operation. Very small displacements in 

the shell caused by the belt pressure will be 

restrained by the centre supporting discs, which will 

generate a reaction -force Q and bending moment M at 
the disc/shell connection <-figure 4.12).

CASE 3 Elnd disc expansion due to sha-ft -fastener expansion 

The compressive sha-ft -fasteners commonly used with 

conveyor pulleys as discussed in chapter 1, generates 

a pressure at the inside diameter o-f the end disc, 

which is normally dissipated through the central boss 

and end disc. There-fore, any displacements that remain 

at the shell can be safely ignored.

1 EQUILIBRIUM CONDITIONS
The study o-f shells with stiffeners is not well documented, 

mainly because the analysis is very complex and should only 

be dealt with in three dimensions, in terms of both loading 

and geometry.

The literature reviewed assumed gross approximations on how 

the bending moments and -forces are distributed between the 

shell arid stif feners. Also the previous work only considered 

shells subjected to uniformly distributed internal pressure.
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A conservative analysis will be presented to demonstrate key 

areas o-f stress. This analysis will be -further discussed in 

chapter 5 with the aid o-f -finite element analysis and 

exper imerita 1 comparisons.
Timoshenko and Woinowsky-Krieger C283 and Hartenburg E123 

discussed the equilibrium o-f a shell with supporting discs 

which is subject to -forces distributed symmetrically with 

respect to the axis. To account -for the three load conditions 

described above, it is assumed that the generated pressure is 

uni-form around, and normal to, the shell surface. Thus, the 

three equations o-f equilibrium (equation 4.7) will be reduce 

to
N t + a . & 'M ” - a . 2 i x )

f p X
(4.25)

£jt
From symmetry it is assumed that in the circumferential 

direction the displacement component v vanishes and the 

change of curvature is negligible. The expressions -for the 

strain components (equation 4.8) will also reduce to

/s- U - 2 . W ; £■■ ,:< an fp - w (4.26)

Hence, by invoking Hooke's law (equation 4.9) and 

substituting into the integrals in equation 4.10
(4.27)

N = K .ii U ,w] = 0 U = X> n W
x

N , = K . f I-*. u - w
f p { X

H , = - E.t.w
4>
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il = -D.w ; 11. = v.M

The equilibrium equation may now be written only in terms o-f 

displacements and external -force components.
(4.28)

W +* 4 . /;f*w = ZMMMM

D

where = E . t = 3

4. b2D b2 .t2
The general solution of this equation is

<4.29)

w = e^x jc^cos<fix > +• C^sinC/?^)^
+- e ^ c o s  (fix) + C^sin < fix ) J + f < x ) 

where f(x ) is a particular solution 4.28, and C ...C are the
i  .4

constants of integration. Since the forces applied at the end

x ~ □ produce local bending which vanishes rapidly as x

increases, it is concluded that the first term of equation

4.29 must also vanish. Introducing 11 and Q at the load point

x = 0 and assuming the fIx> will be independent of x for all

examples considered, the two constants C and C may be3 4
estab i ished

11 = 11

< 4.30)

Q = Q

- - D . w3C2C

x=0 x =0

= *5115C = ~ D . wKMM

x=0 Sx x =0 x =0

C = - 1 |Q +■ f-Mjo + /3tlJ ? 11

2. fi3 D 2. fiZD



Thus, the -final general expression -for w is

e . |̂/3. M . < sin </?x > - co5 (/?x) ) - Q . cos (/3w > jj •+• f<x) <4.31)

2„/3aD

w

4. £. £ MODEL LOADING
To study the stress state induced by localised bending, it is 

necessary to -first described the shell's displacement -for 

each o-f the three load conditions described above.

To de-fine the displacement w and particular solution -HO) 

<i.e. -f < x) at x = 0 ) -for case i, which is subject to an 

assumed uniformly distributed pressure P', and thrust Q, let

w = jp' „hd + 2.Q]. f < x ) = P' . b"1* < 2-.v) <4.32)

A .E d 2.E. t

where h and A are end supporting disc thickness and d a
cross-sectional area- respectively.

Also, assuming that the slope at x = 0 is zero, and 

substituting the result o-f this along with equation 4.32 into

4.31, M and Q may be resolved 
2M = P ' . b h - < 2-i->)

A 21

= Q 2(3.6 < 4

+ 4.b 2 (3

Thus, the displacement w -for case 1 may be written as

w = e ^ C(Pd |sin < (3>\) + cos < (3kx ) J <4.34)

2 . /3“D
Similarly, w and -f < 0) -for case 2 may be de-fined as

w |P' .h_ 2 .qJ . b' f < x ) = P' . b < 2-h>) < 4.35)

A .E c .E.t
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where h and A are centre supporting disc thickness and 

cross-sectional area respectively*

Again, assuming that the slope at x - 0 is zero, and 

substituting the result of this along with equation 4.35 into 

equation 4.31, M and Q may again be resolved

P ' . bz h - iT-vi SS /•*. Q - - 2fi.ip <4c C c

E A 2t c

1 + 4 . b2fs\

Tff D A E ̂ c

4.a.3 RESULTANT STRESSES
The important stresses are determined by substituting the 

resultant moments and forces <equation 4.27> into equation 

4.24. These stresses are superimposed onto the resultant 

stresses determined in section 4.1.6. Figure 4.13 

illustrates the localised nature of the stress produced by 

the above shell end effects, whilst table 4.1 shows some 

important results of stress.

Verification of these results are carried out by experimental 

and finite element analysis comparisons in chapter 5.

4.3 SNELL STIFFNESS
The shell can be regarded as a tube, to which a moment is 

applied at the ends. For the purpose of calculating the 

stiffness of the shell it will also be assumed that the ends 

will remain in plane. Thus, using elementary beam theory the 

stiffness of the shell is written as



(4.37)

k 2 . E . I = 1-1 HP
W

I n [d4 ~ <D ~ 2 t>4]
V. J

64
This simple beam theory ignores the effect o-f the shear-

stress distribution on the strains and hence the deflections.

The deflections caused by shear in a pulley shell, is only of

real practical influence on its stiffness when the ratio b/t 
becomes large (greater than 40) and the ratio W/b becomes small

(less than 3). For the typical sizes expected with heavy 

duty conveyor pulleys it is assumed that the shear influences 

will not produce any significant discrepancies in the overall 

bending moment distributions between the shaft and pulley.

96



TABLE 4,1
Some important shell stresses due to shell end e-f-fects.

Parameter Variation

(max) ~6 $ . e . jcos ( fix ) - sin < fix ) *jxx

t2

( \ ~fi-A&' .(maw) -o' . e//Tv/Tv m¥'*f'

UJ+
¥

<0 cos ( fix ) 6 . v - E sin (fix)

 ̂t2 b . tv . t2 b.t. J
fp = or shown by equations 4,33 and 4.36 respectively.2 a c
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CHAPTER 3
STATIC BELT PULL SUBJECTED TO A PULLEY ASSEMBLY

Following the preliminary experiment with the model steel 
discs described in chapter 3, which studied in isolation the
bending and in~plane stresses in a disc, a second test rig was

constructed to perform a more comprehensive study of the 

stresses induced in a pulley when loaded by a conveyor belt. 

This experiment would impose a static loading o-f the belt on 

a pulley aBsembly, to establish the accuracy o-f the boundary 

conditions assumed in chapters 3 and 4. Figure 5.2 shows 

schematically some o-f the equipment details shown in -figure 

5.1.

5. 1 PULLEY ASSEMBLY
A conveyor pulley with a diameter of 455mm, length of 600mm 

and end disc centres of 484mm was constructed, with two 70mm 

diameter shafts machined, one for a bearing centre of 750mm 

and the other for a bearing centre of 1200mm,. Following the 

preliminary experiments described in chapter 3, which clearly 

demonstrated that for both constant and variable thickness 

discs, theoretical and experimental stresses compared very 

closely. This study therefore, was confined to determining 

the stress variations in a single conveyor pulley constructed 

with 'constant' Smm thick discs and a 6mm thick shell. This 

was regarded as cost effective, as any variation in the 

predicted stress behaviour could be accounted for by the 
boundary conditions not being exactly modelled. All 
components selected were typical for the slue of pulley used.
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3.a EXPERIMENTAL FRAME
The apparatus consisted of two heavy duty frames with a 

design rating of 12 tonnes, built into an 'Avery' tensile 

loading frame, which was hydraulically-operated with a 

maximum loading capacity of 20 tonnes for the pulley shaft 

arrangement shown. The Avery tensile loading frame was 

calibrated prior to carrying out these experiments. The 

first frame (figure 5.2 item A) was used to secure the 

conveyor belt (figure 5.2 item C) to exert a static belt pull 

(entry belt tension = exit belt tension) with a fixed 180 

degree angle wrap. The second frame (figure 5.2 item B) 

supported the pulley, shaft and bearings and was designed to 

enable 750mm and 1200mm bearing centres to be utilised. The 

pulley was attached to the shaft by means of a single split 

taper compressive fastener, manufactured by the writer's 

company.

A 500mm man-made woven carcase conveyor belt (type 315/3) was 

used, with a minimum rating of 120kN/metre of width. In an 

attempt to ensure that the belt tension would be constant for 
the entire wrap angle, P.T.F.E. sheets were laid between the 

belt and the pulley shell. This would minimise the 

tangential forces which may be set up between the belt and 

steel shell due to uncontrolled tightening of the belt.

In order to obtain the radial and tangential strains within a 

disc, five 120 ohm two-element, ninety-degree stacked rosette 

strain gauges (Welwyn Strain Measurement_CEA-06-125WT-120ohm) 

were glued equal distances between the centre boss and the 

shell rim. Five additional gauges of the same type were used
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to measure the axial and tangential strains in the shell rim. 

The gauges attached to the shell were placed in a groove

0.5mm deep to prevent them from coming into contact with the
belt, and were spaced at equal distances between one end disc

centre line and the shell centre line. Since the loading was

symmetrical, only Dne half of the pulley was strain gauged.

All gauges were wired into a strain bridge in a quarter

bridge configuration. To eliminate any strains produced

during assembly all gauges were set to zero after the shaft 

had been secured into the pulley and fixed into the testing 

frame (figure 5.2 item B).

Strain gauges were not attached to the inside surfaces of the

end disc and shell because of the limited size of the pulley 

used. Therefore, the variation of stress across the plate 

thickness was not measured.

By means of a D.T.I attached to the bearing mounting, the 

deflection at various angular positions on the disc at the 

inner boundary and the fastener adjacent to the shaft were 

measured,. The difference between the two results is the 

actual displacement w. These displacements followed the same 

cosine variation as illustrated in section 3.6.3.

5.3 RESULTS
Figure 5.3, 5.4, 5.5, 5.6 and 5.7 illustrate the comparison 

between the experimental and theoretical stresses at various 

positions on the disc and shell respectively.

To illustrate the theoretical stresses summarised in table 

3.4, it was necessary to determine the moment carried by the 
disc. Equation 2,8 describes the distribution of the bending
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moment M between the drum assembly and shaft.

M = M <5.1)p t
r*k .»

r
1 + j _ ' ■«- 1

u k ksV J

Referring to figure 2.2, the total bending moment just 

outside the hub is given by

<5.2)

M = P.L where L = X ~ W = 1200 - 484 « 358mmt
2 2 2 '

M = 25E6 k 358 = 4.39E6 Nmmt
2

k , k : k J are determined using equations 2.10, 4.37, tables s r< d
3.3 respectively. Therefore, the moment carried by the disc 

which has the same value as the moment carried by the drum 

assembly,, may be calculated by

<5.3)

k = 1.024E12 Nmm, k = 4.62E11 Nmm? k , = 1.83E15 Nmma d Sri

M = 4.39E6 = 1.36E6 Nmmd

rl .024E12 x 1 +■ 1 p r

4.62EI I 1 .83815^
Figure 5,3 illustrate the variation of stress with respect to 

p  on the disc's surface at & ~ 0. The theoretical and 

experimental stresses compare favourably, with a difference 

of 6'/. to 127. between the two sets of results. The theoretical 

stresses were greater <ie. safer) than the experimental at 

all points measured on the disc's surface. Figure 5.3, curve 
2 illustrates the theory (section 3.1.2, case 3) developed to
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take into account any local rotation in the shell at the 

outer boundary o-f the disc. It can be seen that there were 

some small discrepancies in the levels o-f stress at the inner 

and outer boundaries o-f the disc. It may be concluded that 

the discrepancy at the outer boundary is due to the 

disc-to-shel1 joint not being as rigid as prescribed in the 

theory. The discrepancy at the inner boundary o-f the disc is 

special to the components used in the experimental pulley.

The theory assumes that the components between the sha-ft and 

disc <ie.. -fastener and hub) are per-fectly rigid. By measuring 

the actual displacements o-f both the compressive -fastener and 

the attached hub at various radii this assumption was -found 

to be inaccurate. A very small amount o-f rotation was present 

in the -fastener and hub assembly, resulting in the 

di-f-ferences between experimental and theoretical stresses at 

the inner boundary o-f the disc. The magnitude o-f the 

rotation was small and it was impossible to detect whether 

this was due to the compressive joint relaxing and allowing 

movement or the rigidities of -fastener and hub were not as 
sti-f-f as assumed.

Figure 5.4 and 5.5 illustrates the variation of stress with 

respect to B on the disc's surface at various radii. It 

clearly confirms that the angular variation of stress closely 

follows a simple cosine function irrespective of radial 
position.

Therefore, it can be concluded from the results obtained 

above and the results obtained in chapter 3, that the theory 

developed in chapter 3 accurately describes the behaviour of 
an end disc within a pulley.
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Figure 5.6 and 5.7 illustrates the variation of stress with 

respect to B on the shell's surface midway between the end 

discs.
As described in section 5.2, it was necessary to machine out 

a 0.5mrn deep channel on the outer surface of the shell for 

placement of the strain gauges. This was unavoidable, but 

immediately imposed an error in the comparison of the 

theoretical and experimental results, because it is 

impossible to account for the stress concentration caused by 

the channel.

The variation of stress of the theoretical curves display 

good comparison with the experimental results. The 

theoretical and experimental tangential stresses compared 

well, with a 107. difference between the two for the maximum 

stress at B - 70deg. However, the axial stresses do not 

compare as well, with the experimental results 167. higher 

than the maximum theoretical stress at & - 70deg. Making 

allowances for the machined channel described above, the 

theory gives a close approximation of the behaviour a shell 

within a pulley

Figure 5.8 and 5.9 illustrates the variation of stress with 

respect to x on the shell's surface at B - 60 deg. The 

experimental curve shows clearly a peak stress close to x =

0, which is produced by end effects between the end disc and 

shell as described in chapter 4. Theoretical curve 1 gives a 

good account of the localised stress near x - 0 (also x = W 

due to s y m m e t r y ) .  Curve 1 is the summation of the stresses 

established for belt pressure only (curve 1A) and end effects 

as described in sections 4.1 and 4.2 respectively.

1 16



The results discussed in this section are only related to the 

bearing centres set at 1200mm. The results obtained when the 

bearing centres were set at 750mm followed very closely the 

comparisons with theory shown above and are thus not 

illustrated.
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CHAPTER 6
FINITE ELEMENT ANALYSIS CFEAU OF A PULLEY ASSEMBLY

For -further comparison between the theory developed in 

chapters 3 and 4 and the experimental data obtained in 

chapter '5, a -finite element study was carried out. To analyse 

a complete pulley assembly using -finite elements is a very 

expensive and time consuming exercise. Therefore, the model 

was kept as simple as possible, without jeopardising too much 

the accuracy of the analysis.

6.1 METHOD OF ANALYSIS
The pulley assembly was modelled using the ANSYS Finite 

Element package installed onto a VAX 785 mainframe operating 

at Nottingham Polytechnic Computer Centre. The model was 

developed in ANSYS PREP7 preprocessing module. The analysis 

phase for the shaft, end disc and shell elements were carried 

out in ANSYS POST1 postprocessing module.

6-1.1 MESH GENERATION
The conveyor pulley described in section 5.1 was modelled 

using two types of elements*

<i). Three dimensional elastic beam element (ANBYS STIF4) 

was used to represent the shaft. This element is a 

uniaxial type with tension, compression, torsion, and 

bending capabilities.

(ii). Quadrilateral shell element (ANSYS STIF63) was used to 

represent the bush, hub, end disc and shell. This 

element has both bending and membrane capabilities.



The disc was constructed with nine radially spaced, 15 

degree pitched elements. Similarly, the shell was 

constructed with nine axially spaced, 15 decree pitched 

elements.

Both types o-f elements have six degrees of -freedom at each 

node: translations in the nodal x, y, and z directions and

rotations about the nodal x, y, and 2 axes.

To simpli-fy the model, -full use of symmetry was made, 

enabling only one quarter of the pulley to be modelled 

(figure 6.1).

13.1.2 LOADING OF THE FINITE ELEMENT MODEL

A pulley belt wrap of 180 degrees on the experimental pulley 

was simulated by applying an uniformly distributed pressure 

load acting radially inwards over a arc of 90 degrees 

between z = 34mm to 2 = 280mm. The pressure load of O.ilN/mm** 

produced a total load of 25kN acting on the actual pulley 

resulting in a reaction of 12.5kN at each of the bearings.

6. .1.3 MODEL RESTRAINTS

The conveyor pulley used in the static loading experiment 

(section 5.1) was modelled, with bearing centres of 1200mm. 

The weld between the hub/disc and the disc/shell were ignored 

as their effects on the overal1 stress distribution would be 

neg1igib1e .
The finite element model was restrained at both symmetrical 
boundaries (figure 6.1);--
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(i). Symmetrical boundary midway between the bearings. 

Restrained in the 2 direction (axial direction) and 

rotation about the Y axis.
(ii). Symmetrical boundary along the length o-f the pulley. 

Restrained in the Y direction (hoop direction) and 

rotation about the 2 axis.

To restrain the model in the X direction, a restraint was 

applied to the bottom surface of the shaft, at a position 

corresponding to the bearing in the actual experimental 

pu11ey .

6. 3 RESULTS
Figure 6.2 illustrates the comparisons between experimental 

and theoretical stresses at various radii on the disc at 

f3=30deg. Clearly, the statements in section 5.3 concerning the 

discrepancies at the inner and outer boundaries are further 

reinforced. The FEA will account for a less than rigid 

fastener and hub components resulting in a closer comparison 

with the experimental results as shown. However, due to the 

simplicity of the FEA model, there was no account taken of 

the mating surfaces within the compressive fastc?ner. This, 

in theory, was a reasonable assumption. However, this cannot 

oe ruled out as a reason for the discrepancy found between 

the experimental and FEA results at the inner boundary.

Figures 6.3 and 8.4 illustrate the variation of stress with 

respect to & on the discs surface at the position of the 

first strain gauge, (nearest to the hub), on the test pulley 

(p - 0.45>» All the experimental results confirm that the 

deflections and stresses induced in a disc, closely follow a
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cosine -function. The dotted line on curve 2 illustrates that 

the FEA stress results local to the axis o-f symmetry 

(B = 0,180_degree) do not. It was discovered that the 
rotation restraint at the axis o-f symmetry <section 6.1.3) 
was not acting perpendicular to the axis. The actual

rnis-al ignment will correspond to the angular pitch o-f the 

-first two elements. ANSYS states that a 15 degree

increment for the elements is satisfactory for the type of 

model considered. Thus, increasing the number of elements 

close t.o the axis of symmetry will minimise the influence of 

these effects. However, as the effects were localised, no 

improvements were made due to the expense of further re—runs. 

It is clear that FEA results further endorse previous claims 

in section 5.3, that the theory developed in chapter 3 

accurately prescribes the behaviour of an end disc within a 

DU 11ey ,

Figures 6.5 and 6.6 illustrate comparisons between 

experimental and theoretical stresses on the shell's surface 

at various angular positions midway between the end discs.

The FEA curves demonstrate that the theoretical results give 

a good account of the stresses in the shell. Figures 6.7 and 
6.8 illustrate comparisons between experimental and 

theoretical stresses along the shell. The theoretical and FEA 

curves give a good account of the localised stresses produced 

by end ef fects between the shell and end disc as discussed in 

section A, 2. In conclusion, the-1 FEA results confirm that the 

behaviour of the shell is well prescribed by the theory 

d e v e 1 o pe d i n e ha p t. e r 4 .
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CHAPTER 7
DESIGN PROCEDURE

The methods used to design the components of a conveyor 

pulley were presented in chapters 2, 3 and 4 with 

experimental verification carried out in chapter 3 and 5. It 

is clear from section 3.1 that changes to one component of 

the pulley assembly have a strong influence on the rest of 

the construction. A generalised design procedure is 
presented below to highlight the importance of accurate 

design of each of these components.

7. 1 DESIGN PROCEDURE
To carry out Finite Element Analysis on a day-to-day basis as 

required by the pulley designer, it needs the software to be 

quick and available. Although, micro/mini computers are 

becoming a more practical machine for carrying out Finite 

Element Analysis of a pulley, it still requires a high level 

of technical skill and capital investment. The time to input 

construction data, processing the model and post-processing 

assessment does not allow Finite Element Analysis to be 
regarded as sufficiently quick in obtaining a final solution. 

A typical pulley engineer in the UK may be required to design 

upto 20 or 30 different pulley constructions per day because 

of the various industry standards <ie. British Coal, C.E.G.B, 

British Steel, etc, etc). Thus, Finite Element Analysis can 

only be considered for refinement of standard pulley 

constructions. Therefore, it would be useful if the engineer 
had available to him, a simple and quick method of designing
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conveyor pulleys with the same order of accuracy as Finite 

Element Analysis. The -flowchart (figure 7.1) illustrates the 

calculations and decision making process required to design 

any conveyor pulley using the methods described in this work. 

The flowchart is the basis of a computer program installed 

onto a micro computer in the writer's company, which allows a 

full design analysis of any pulley shape within seconds.

There are three phases to designing a conveyor pulley are 

shown in figure 7,1 .

7.1*1 Receive load and dimensional data from client 

This is an important stage which dictates the level of 

specification the pulley engineer will work to. All external 

loads are? established by the belt conveyor designer, who also 

determine?s the overall dimensions of the pulley which will 

fit into his structure or drive frame. He will also specify 

the operational requirements of his conveyor system, with the 

pulley be?ing one of several components which must comply.

7.1.2 evaluation
The design procedure (figure 7.1) for conveyor pulleys is 

best served by a worked example which has been manufactured 

by the writer's company. There is over 100 of this predictual 

pulley operating in a number of large underground conveyors 

<750kW drive) initially installed during 1987 at British 

Coal's largest mine. A careful design study was carried out 

as these conveyors operate for 20 hours per day which equates 

to over 25 million revolutions per year. The design of the 
belt conveyor was determined by specialist conveyor system
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designers. The basic design data provided by the system 

designer is summarised in table 7.1.
The -first consideration in the design stage is to determine 

the minimum shaft diameter based on the calculations listed 

in table 2.1. These are elementary equations with only 

-fastener selection requiring comment. The fastener size 

cannot be selected independently of the pulley stiffness, 

because its size is a function of the bending moment required 

to be transferred through it. However, the initial choice 

may be made by estimating this moment as a proportion (say 

907.) of the total bending moment.
Unless the pulley designer is using his own fastener or a 

shrink fit method of attaching the pulley to the shaft, he 

can use standard design data published by specialist fastener 

rrianufacturers. This data provides him with information to 

select a fastener to absorb the driving torque and the 

bending moment transferred through the device.

Recommendations on hub diameter are also provided. Thick 

cylinder theory and the analysis of frictional fasteners are 

the basis of their designs, which have been further verified 

by extensive field trials. The merit of their designs are 

not a subject of this work.

The hub should be sufficiently large to absorb the stresses 

induced by the shaft connection, whether shrink-mounting, 

press-mounting or compression type fastener mounting.

The shaft, end disc and shell stiffnesses are now calculated 

to establish the bending moment carried by the drum assembly. 

The initial choice of fastener is now checked anil modified, 
requiring the moment M to be re-calculated. Similarly, the

p
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end disc shape is initially estimated and then modified to

suit the re-calculated moment M . Obviously, as the shaft,p
end disc and shell stiffnesses change, a constant

reassessment of moment M is required. This iterative processP
can only be effectively carried out on a computer. The
results obtained for this example using the above procedure are

summarised in Table 7.1.

Figure 7.2 illustrates the fin̂ al design along with the

stresses for the shell using the theory developed in chapter

4. The weld connection between the cast end disc and shell

as shown in figure 7.2 is positioned to correspond with zero

shell stress. It is important that the position

of this joint does not coincide with the high local stresses

induced by the shell end effects as described in chapter 4

(figure 4.12 illustrates) and further experimentally verified

in chapters 5 and 6 (figures 6.7 and 6.8 illustrate).

Chapter 3- discussed the problems in designing a profiled disc

in practice. The size of the blending curve, the minimum

cross-section and the complexity of the profile are all

constraints of manufacture which require careful

consideration when designing the end disc. Each affects the

disc stiffness and therefore moment M . Thus, standardisationP
can only be carried out on a pulley assembly basis. Figure

7.3 illustrates the disc profile created for this example and 

the problem areas which needed to be overcome to enable the 

shape to be manufactured. Figure 7.3 also illustrates the 

maximum stress profiles (i.e. O = 0 deg,) for the profile 

shown using the theory developed in chapter 3.

The above illustrates the simplicity of the design procedure
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developed. Once it has been computerised it will allow the 

engineer to design any pulley shape within minutes which, as 

previously stated is impossible with Finite Element Analysis. 

Furthermore, he is allowed to do this without sacrificing 

accurac y.

7.1.3 Examination of the proposed design
This phase is rather simple and often requires no design 

work, but is essential in assessing that the design can be 

manufactured and complies with customer specification.
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TABLE 7.1
INPUT DATA (read in conjunction with -figure 2.1 and 2.2)

T = 342«'5kN, T = T , 0 = 6 - Odeg. , 2.6 = IQOdeg.,t a 1 » t v
2.b = 800mm
Face width = 1500mm, X = 1974mm, B — 1400mm, W = 1360mm,

Sha-ft Length = 2208mm, d^<specified) “ 240mm.

CALCULATION

P = 6Q5kM, 6 = Odeg.P
d = 264mm _ Table 2.1 Reference B (slope)&

d = 251mm _ Table 2.1 Reference D (bending only)B

d (actual) = 280mm, standard compressive type fastener with 

centering web (illustrated in figure 1.7) were used. Using 

hub size recommended by fastener supplier (ie. 2.a - 510mm).

Using chapter 4, shell thickness t = 20mm.

Disc profile was developed using design procedure (figure 

7.1) and figure 7.3 illustrates.
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INPUT DATA 
FROM CLIENT

DETERMINE P, 8p (EQN 2.1) 
VERIFY CLIENTS 

CHOICE OF D

DETERMINE MINIMUM ds TO 
SATISFY EQ'N A.B,C;D 

(TABLE 2.1)

ESTIMATE Mp,

SELECT FASTENER 
TO ABSORB A MINIMUM Mp

SELECT W,a 
(MANUFACTURER'S STD.)

DETERMINE ks 
(EQN 2.5)

SELECT DISC PROFILE 
(RIGIDITY AS LOW 

AS POSSIBLE)

DETERMINE t
(SECTION 4.1 & 4.2)--1-- ------ -

DETERMINE ksh 
(SECTION 4.3)

DETERMINE kd 
(SECTION 3.3 & 3.4)

DETERMINE Mp 
(SECTION 3.1.1)

no IS FASTENER CAPABLE 
OF ABSORBING Mp

IS WORKING STRESS 
IN DISC LESS THAN 

ALLOWABLE 
 (CHAPTER 3)

no
AS FULL RANGE 

OF DISC PROFILES 
BEING SELECTED

yes

EXAMINATION STAGE

T IT L E ;; D E S IG N  P R O C E D U R E F IG U R E : 7 .1
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CHAPTER 8
CONCLUSION

8.1 SUMMARY OF WORK
This study has developed a series o-f theoretical techniques 

to examine the stress behaviour within the conveyor pulley.

We proceeded in chapter 1 with a description o-f the 

environment which the conveyor pulley operates in. The 

development o-f the conveyor pulley over the last 30 years was 

then reviewed, with a summary o-f the limited literature 

directly and indirectly related to this work.

In chapter 2, we considered the selection process -for the 

sha-ft and pulley diameter and presented the -formulae for 

determining the resultant belt pull.

In chapter 3, we tirst considered the distribution o-f the 

bending moments within pulley assembly and various boundary 

conditions which an end disc o-f a pulley is subjected to . To 

achieve our ultimate aim o-f developing a technique to 
analyses variable-thickness (i.e. minimum weight) discs, two

analytical techniques were presented. The -first v>el 1-proven 
technique was limited to the analysis of a constant-thickness

disc, but did provide a benchmark to assess the accuracy o-f 

an adapted Rag 1eigh—Ritz energy method. The rate o-f 

convergence o-f the Rag1eigh-Ritz energy method was rapid and 

compared -favourably with the “known” results. As a -further 
enhancement to the energy method, cubic spline -functions were 

-formated to enable any disc shape and thickness to be 

considered. The choice o-f Ragleigh-Ritz energy method to 
analyse constant and variable-thickness discs was
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•further rati-fied by extensive experimental studies. To 

isolate any boundary conditions which may emanate -from 

surrounding pulley components < ie shaft, shell), various 

discs were subjected in isolation to bending and in-plane 

loadings. Both theoretical stress and deflection results show 

sufficient correlation with the experimental results to 

conclude that the disc behaviour is adequately prescribed and 

the Rag 1eigh-Ritz technique is sound.

The belt traction distribution between the belt and pulley 

was presented in chapter 4. The analysis of the 

shell was developed for both symmetrical and anti-symmetrical 

loading conditions produced by the belt traction for drive 

and idler pulleys respectively. The stress distribution for 

drive and idler pulley belt tractions were illustrated, along 

with the effects produced by different belt wrap angles on 

the shel1. An introduction to the analysis of shell end 

effects was also included.

In chapter 5, we described a test rig which was constructed 

to perform a more comprehensive study of the stresses induced 

in a pulley when loaded by a conveyor belt. The experiment 

imposed a static loading of the belt on a pulley assembly to 

establish the accuracy of the boundary conditions assumed and 
theories developed for the end disc and shell. The 

correlation between the theoretical and experimental results 

were good. The test pulley was then re-examined in chapter 6 

by a Finite Element Analysis to futher compare the

theoretical and experimental results obtained in chapters 3,

4, and 5. Again, the results obtained show sufficient

correlation to conclude that the techniques developed in this
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work, adequately prescribe the behaviour of all components 

considered.
Finally, in chapter 7 the theoretical techniques were brought 

together in a design procedure, with an illustrated example. 

Further discussions concluded, that the use of Finite Element 

Analysis was limited to the design of standard pulley 

constructions and not as a day-to-day design tool. Once the 

design procedure was computerised it would allow the engineer 

to design any pulley shape within minutes with comparable 

accuracy with Finite Element Analysis.

8.8 FUTURE WORK

The main topic for future work would be to evolve a greater 

understanding of the dynamic effects on a conveyor pulley. 

This is especially important 'with the use of steel cord and 

newly developed Kevlon reinforced belts which allow the belt 

to be wrapped around comparatively small diameter pulley. A 

number of studies have been instigated in Australia and Japan 

to investigate the various stress fronts r e c e n t l y  being 

discovered in steelcord belt. British Coal are currently 

investigating this phenomenon on a five mile long conveyor, 

where a number of large stress fronts occur every time the 

conveyor starts and stops. These fronts travel at very high 

speeds and are causing many problems with bearings, pulleys 
and take-up mechanisms. Kevlon, as mentioned, is a new type 

of belt and presently no dynamic effects have been recorded. 

To establish more accurate belt traction model to comply with 

static and dynamic characteristics for the following:-

150



a). Belt constructions.
b>, Pulley positions within a conveyor system, 

c). Belt wrap angles.
Any o-f the belt traction models can be inserted into the 
shell analysis presented. This work can only be explored by 

large experimental rigs and on-site -field trials.

Finally, establish all possible dynamic variations in belt 

loading to determine a load history -for various pulleys 

types. This would enable a comprehensive -fatigue analysis to 

be undertaken. Again this would involve extensive on-site 

-f iel d tr i als.
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