

ProQuest Number: 10290167

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro
ProQuest 10290167

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without the author's prior written consent.

40 0690157 X

CHARACTER RECOGNITION IN
UNCONSTRAINED ENVIRONMENTS

J.R. COWELL B.Sc, M.Phil.

This thesis is submitted to the Council for National Academic Awards in partial
fulfilment of the requirements for degree of Doctor of Philosophy.

Nottingham Polytechnic,

Department of Computing.

October 1990.

CHARACTER RECOGNITION IN
UNCONSTRAINED ENVIRONMENTS

J.R. Cowell

ABSTRACT

A multi-stage algorithm is devised for the recognition of alpha-numeric

characters in unconstrained environments. The images used for examining the

performance of the new algorithms are digitized pictures of vehicles in a wide

variety of typical environments. The alpha-numeric characters read are on the
vehicle licence plates.

The recognition process begins with a new algorithm for finding the licence plate

region in the image. The extraction of the individual characters is by a novel

region growing technique. As a precursor to the identification of the characters a

new thinning algorithm is used, which is both faster than conventional methods

and yields skeletons which conform more closely to the forms which are produced

by humans than by traditional thinning techniques. A syntactic approach is

used for the final stage of the recognition process. The selection of primitives is
novel and it is based upon nodes where the character strokes intersect. Neither

the size nor the orientation of the strokes affect the recognition process. The

pattern grammar developed yields the same string for a wide range of patterns

representing alpha-numeric characters irrespective of their position, size and
orientation.

The thesis is illustrated throughout by the detection and reading of vehicle

licence plates in unconstrained environments; however, the algorithms and

underlying techniques are appropriate to a wide range of applications.

CHARACTER RECOGNITION IN
UNCONSTRAINED ENVIRONMENTS

J.R. Cowell
1

. * 7 Jh ' *

ABSTRACT

A multi-stage algorithm is devised for the recognition of alpha-numeric

characters in unconstrained environments. The images used for examining the

performance of the new algorithms are digitized pictures of vehicles in a wide

variety of typical environments. The alpha-numeric characters read are on the

vehicle licence plates. 9 0 m , _
r f- 1 JUL 1999

The recognition process begins with a new algorithm for finding the licence plate

region in the image. The extraction of the individual characters is by a novel

region growing technique. As a precursor to the identification of the characters a

new thinning algorithm is used, which is both faster than conventional methods

and yields skeletons which conform more closely to the forms which are produced

by humans than by traditional thinning techniques. A syntactic approach is

used for the final stage of the recognition process. The selection of primitives is

novel and it is based upon nodes where the character strokes intersect. Neither

the size nor the orientation of the strokes affect the recognition process. The

pattern grammar developed yields the same string for a wide range of patterns

representing alpha-numeric characters irrespective of their position, size and
/orientation.

The thesis is illustrated throughout by the detection and reading of vehicle

licence plates in unconstrained environments; however, the algorithms and

underlying techniques are appropriate to a wide range of applications.

ACKNOWLEDGMENTS

The author would like to thank Dr. D. Al-Dabass for his guidance and support

throughout the duration of the research work. I would also like to thank my
company, GPT for the use of the computing facilities.

CONTENTS

Chapter l.INTRODUCTION.. 1
1.1 The Pattern Recognition Problem..4
1.2 Character Recognition Systems . ..5
1.3 Thinning Algorithms..6
1.4 Syntactic Pattern Recognition... 6

Chapter 2. CURRENT TECHNIQUES.. .8
2.1 OCRs... 9

2.1.1 Performance...15
2.1.2 Comments..17

2.2 Shape Description...18
2.2.1 Chain Codes and Shape Numbers...19
2.2.2 Quadtrees.. 20
2.2.3 Rectangular Codes..22
2.2.4 Symmetric Axis Transform... 24
2.2.5 Comments..25

2.3 Edge Detection..25
2.3.1 Grey Scale Gradient Based Methods......................................27
2.3.2 Template Matching Methods..28
2.3.3 Parametric Edge Models...28
2.3.4 Comments... 29

2.4 Image Segmentation.. 30
2.4.1 Binarization and Thresholding...31
2.4.2 Comments... 35

2.5 Thinning... 36
2.5.1 Thinning Criteria..36
2.5.2 Problems with Thinning Algorithms......................................39
2.5.3 Comments...42

2.6 Syntactic Pattern Recognition... 42
2.6.1 Comparing Strings... 44
2.6.2 Polygonal Approximations... 45
2.6.3 High Dimensional Pattern Grammars.................................. 46
2.6.4 Comments...46

2.7 Implementation of a Character Recognition System........................ 47
2.7.1 Character Extraction(EXTCHR.C).. 48

2.7.2 Character Normalization(ROTATE.C, SIZE.C).................... 48
2.7.3 Recognition(COMPARE.C).. 50
2.7.4 Results.. 50
2.7.5 Generating the Probability Matrices.....................................50
2.7.6 Discussion...51

Chapter 3. A NEW MULTI-STAGE ALGORITHM..54
3.1 Plate Region Detection..55

3.1.1 Characteristics of Licence Plates...56
3.1.2 Region Detection Metric... .. , ,56
3.1.3 Rectangle Recognizer... 66

3.2 A New Technique for Character Extraction..................................... 67
3.3 Character Thinning .-...68

3.3.1 A New Thinning Algorithm... 72
3.3.2 Advantages and Limitations.. .. .78
3.3.3 The Output from Pattern Thinning.......................................79

3.4 Syntactic Representation.. 79
3.4.1 Graph Grammars...80
3.4.2 Unconstrained Pattern Recognition...................................... 80
3.4.3 Primitive Selection...82
3.4.4 A New Grammar for Alpha-numerics....................................85
3.4.5 Character Strings...88
3.4.6 Node Detection... .. .90

3.5 Alternative Node Detection Technique.. .91
3.6 Checking Procedures ... 91

3.6.1 Extracted Object Distribution.. .. .92

Chapter 4. SOFTWARE DEVELOPMENT.. 93
4.1 Second Difference Metric(SECOND.C).. 96
4.2 Image Binarization(BINARY.C)... 97
4.3 Region Growing(RGROW.C)...98
4.4 Rectangular Checking(RECT.C)...99
4.5 Plate Removal(EXT.C)...99
4.6 Character Extraction(EXTRACT.C)..100
4.7 Context Checking(CON.C)...101
4.8 Thinning (THIN.C).. 102
4.9 Extending Strokes (EXTENDl.C and EXTEND2.C)..................... 104
4.10 Syntactic Representation(SYNTAC.C)... 106
4.11 String Generation and Recognition(STRING.C).......................... 107
4.12 Character Separation (SPLIT.C).. 109
4.13 Support Programs 110

4.14 Software Tools............................. I l l

Chapter 5. RESULTS AND DISCUSSIONS...113
5.1. The Images and the Second Difference Metric............................ 114

5.1.1. Image 1: Dark Red Vauxhall Cavalier.................................115
5.1.2. Image 2: Light Red Ford Sierra..116
5.1.3. Image 3: Brown Austin Metro.. 117
5.1.4. Image 4: Light Blue Bedford Van......................................118
5.1.5. Image 5: Red Ford Fiesta...119

5.2. Second Difference Metric...120
5.3. Image Binarization.. 121

5.3.1. Binarized Images 1 - 5 ..122
5.4. Region Growing... 124
5.5. Rectangle Recognizer.. 126
5.6. Plate Removal..126
5.7. Character Extraction..127

5.7.1. Image 1 - Extracted Characters...................................... 128
5.7.2. Image 2 - Extracted Characters.......................................128
5.7.3. Image 3 - Extracted Characters...................................... 129
5.7.4. Image 4 - Extracted Characters...................................... 129
5.7.5. Image 5 - Extracted Characters...................................... 129

5.8. Context Checking.. 130
5.9. Stroke Skeleton Generation..131

5.9.1. Unthinned Characters..131
5.9.2. Thinned Forms - Without Stroke Extension....................... 132
5.9.3. Thinned Forms - With Stroke Extension..........................133

5.10. Syntactic Representation of Characters....................................... 134
5.11. Final Recognition Results.. 136
5.12. Separation of Connected Characters.. 138

Chapter 6. CONCLUSIONS...139
6.1 Conclusions...140
6.2 Future Developments..142

BIBLIOGRAPHY... 144

GLOSSARY.. 160

,v_ i A ill:- '

APPENDIX 1 ... 162
A. 1.1 Image 1 - Summation length 50 Pixels..164
A. 1.2 Image 1 - Summation length 100 Pixels...................................... 165
A. 1.3 Image 2 - Summation length 50 Pixels..166
A. 1.4 Image 2 - Summation length 100 Pixels...................................... 167
A. 1.5 Image 3 - Summation length 50 Pixels.. 168
A. 1.6 Image 3 - Summation length 100 Pixels...................................... 169
A. 1.7 Image 4 - Summation length 50 Pixels.. 170
A.1.8 Image 4 - Summation length 100 Pixels...................................... 171
A. 1.9 Image 5 - Summation length 50 Pixels.. 172
A. 1.10 Image 5 - Summation length 100 Pixels................................... 173

APPENDIX 2 .. 174
A.2.1 Program SECOND.C.. 175

A.2.1.1 Conditions...175
A.2.1.2 Actions..175

A.2.2 Program BINARY.C.. 176
A.2.2.1 Conditions..176
A.2.2.2 Actions.............................. ...176

A.2.3 Program RGROW.C.. .. 177
A.2.3.1 Conditions... 177
A.2.3.2 Actions..177

A.2.4 Program RECT.C... .. .178
A.2.4.1 Conditions.. 178
A.2.4.2 Actions... 178

A.2.5 Program EXT.C... 179
A.2.5.1 Conditions.. 179
A.2.5.2 Actions....................... ... 179

A.2.6 Program EXTRACT.C 180
A.2.6.1 Conditions... 180
A.2.6.2 Actions... 180

A.2.7 Program THIN.C...181
A.2.7.1 Conditions.. 181
A.2.7.2 Actions ... 181

A.2.8 Program EXTENDl.C .. 182
A.2.8.1 Conditions.............. ...182
A.2.8.2 Actions... 182

A.2.9 Program EXTEND2.C.. 183
A.2.9.1 Conditions..183
A.2.9.2 Actions... 183

A.2.10 Program SYNTAC.C... .184
A.2.10.1 Conditions... 184

A.2.10.2 Actions.. .. 184
A.2.11 Program STRING. C 185

A.2.11.1 Conditions... 185
A.2.11.2 Actions... 185

FIGURES

Chapter 2. CURRENT TECHNIQUES
2.1 Closure Types... 12
2.2 Contour Primitives... 13
2.3 Transition Points..13
2.4 Contour Descriptions... .. 14
2.5 Major and Minor Axes..19
2.6 Quadtrees... 20
2.7 A Data Structure for Quadtrees...20
2.8 Rectangular Codes... 23
2.9 Effect of'Pimples' and 'Dimples'..24
2.10 Parametric Edge Models.. 29
2.11 The Giuliano Algorithm... 34
2.12 4 and 8 Connectivity.. 38
2.13 Expected and Actual Skeletons..39
2.14 Deviation at Intersections..40
2.15 Before Thinning... 40
2.16 The Stefanelli Algorithm..40
2.17 The Deutsch Algorithm.. 41
2.18 Effects of Imperfections... .. .41
2.19 Parallel Sided Stroke Thinning... 41
2.20 Region Growing..48
2.21 The Confusion Matrix.. 52

Chapter 3. A NEW MULTI-STAGE ALGORITHM
3.1 Scanning the images.. 57
3.2 Idealised Distribution..61
3.3 Actual Distribution................................ ...62
3.4 Character Intersections... 62
3.5 Region Growing..65
3.6 Character Extraction... 65
3.7 Character Extraction... 68
3.8 Region Connectivity...68
3.9 Structural Content.. 69
3.10 Thinning.. 69
3.11 Character Ambiguity...70
3.12 Stroke and Intersection Regions... 73
3.13 Regions of Intersections.. 73
3.14 Pixel Connectivity... 74
3.15 Pixel Connectivity... 75

3.16 Stroke Skeleton Splitting...76
3.17 Stroke Ends . .. 77
3.18 Stroke Intersections.. 77
3.19 Stroke Crossing Points..77
3.20 Nodes o f'A '...81
3.21 Nodes of 'D '...81
3.22 Nodes of A '.. 81
3.23 Nodes of'D' and W ... 82
3.24 Node Types.. 82
3.25 Operator Types..83
3.26 Subdivision of Type 'B' and fC' Nodes...86
3.27 Nodes o f ’E’ .. 88
3.28 Separating Touching Characters..92

Chapter 4. SOFTWARE DEVELOPMENT
4.1 Overview of the Recognition Process..95
4.2 Thinning Templates...103
4.3 Parallel Stroke Extension... 104
4.4 Stroke Intersection..105
4.5 Basic and Complex Intersection Types...106
4.6 Basic Intersection Types... 107
4.7 Character Splitting... 110
4.8 PC Vision System... I l l

Chapter 5. RESULTS AND DISCUSSIONS
5.1 Image 1 512x512 Representation... 115
5.2 Group Size 100.. 115
5.3 Group Size 50.. 115
5.4 Image 2 512x512 Representation... ,116
5.5 Group Size 100......... ..116
5.6 Group Size 50 ..116
5.7 Image 3 512x512 Representation...117
5.8 Group Size 100..117
5.9 Group Size 50 ..117
5.10 Image 4 512x512 Representation...118
5.11 Group Size 100..118
5.12 Group Size 50..118
5.13 Image 5 512x512 Representation...119
5.14 Group Size 100..119
5.15 Group Size 50... 119
5.16 Actual and Optimum Scan Length.. 120

5.17 Group Sizes and Threshold Values.............................. 121
5.18 The Giuliano Algorithm. ... 122
5.19 Results of the Recognition System................137

APPENDIX 2
A2.1 Structure chart of SECOND.C..175
A2.2 Structure chart of BINARY.C... 176
A2.3 Structure chart of RGROW.C.............................. ;177
A2.4 Structure chart of RECT.C... , . .178
A2.5 Structure chart of EXT.C... .. .179
A2.6 Structure chart of EXTRACT.C..180
A2.7 Structure chart of THIN.C ...181
A2.8 Structure chart of EXTENDI.C... 182
A2.9 Structure chart of EXTEND2.C.. 183
A2.10 Structure chart of SYNTAC.C...184
A2.ll Structure chart of STRING.C... 185

CHAPTER 1

INTRODUCTION

1.1 The Pattern Recognition Problem
1.2 Character Recognition Systems . .
1.3 Thinning Algorithms...................
1.4 Syntactic Pattern Recognition . . .

CHAPTER 1
2

INTRODUCTION

Traffic congestion is becoming an increasing problem as traffic volumes continue
to increase. In the U.K. the present system of motor taxation allows unlimited

use of the road network, irrespective of the amount of road usage. The
introduction of a system which charged for road usage was raised by the Smeed

Report [Smeed 1964] and includes varying the charges at different times of the
day and charging higher rates for more congested routes. It argues that this

approach would deter travel at peak hours on very busy roads and therefore

alleviate congestion; furthermore it ensures that road users are responsible for
the cost of their road usage, including the public costs of building and

maintaining the road infrastructure and the social costs of accidents and
pollution.

Most systems used for road-use pricing require the vehicle to have equipment

which identifies it to an inductive loop detector in the road. Experiments were
performed in New York in the late 1970's [Foote 1981] but the results indicated

that the system was not able to recognise vehicles reliably enough. The Hong
Kong electronic road-pricing scheme, [Clancy, Dawson et al. 1985] was a larger

scale experiment. It was found to perform well but the cost of maintaining the
inductive loops and the associated communications equipment was too high for a

commercial system to be installed. Most notable among the more recent work in

this area has been the HELP (heavy-vehicle electronic licence plate) programme
in the USA [Davies and Ayland 1989],

A common way of charging for road usage is to have tolls on major routes. This

can cause serious congestion. To alleviate the problem the use of unstaffed tolls

have become increasingly common in particular in the USA [Hills and Blythe
1989]. The system requires the driver to throw coins into a basket which has

3

automatic coin validation machinery. The system is often backed up by video
equipment which takes a picture of any vehicle which does not pay the fee. In

/
Bergen, Norway, there is a toll system where some vehicles are not required to

stop and pay at the toll, but may drive through 'non-stop' lanes providing that
they have a pass which is prominently displayed in the windscreen. These lanes

are monitored by cameras to detect offenders.

The first commercial automatic tolling system was introduced at the end of 1987

in the Alesund tunnel in Norway [Gosch 1988] which uses a micro wave
transponder mounted within the vehicle.

In Lyon, France in 1988 an experimental video image analysis system was
tested, however, the error rate was found to be unacceptable for pay-toll
applications.

A system capable of reading the licence plate of vehicles as they pass has several
advantages over other systems of vehicle identification. Vehicles do not need to
be fitted with any special equipment and photographic evidence is available if
there is any dispute over payment of the toll. Drivers may attempt to avoid

paying tolls by disabling their transducers, therefore most systems of this type

also have a back-up system of video cameras to photograph vehicles if the

transducer information is invalid or absent. Currently these back-up systems are

simply viewed by a human operator. A system capable of reading the licence
plate would therefore be of great value even it was not the primary method of
vehicle identification.

The reduced cost of computer hardware and in particular image processing

equipment [Taylor 1988] greatly improves the cost effectiveness of optical

recognition systems. The introduction of stereo vision systems offers the
potential for improving the performance of these systems [Al-Dabass 1981,1985].

In addition the development of new algorithms for the recognition of characters

4

in unconstrained environments will continue to improve the viability of vision
processing systems.

1.1 The Pattern Recognition Problem

Since the early 1960's much research has been directed at understanding

digitized images [Suen 1986]. As yet there are no techniques which will enable

an unconstrained image to be presented to a computer system and a description

of the image in terms of the objects it represents to be output.

The aim of a recognition system is to identify objects in an image. Humans

perform this process with such ease that it is initially surprising that this

problem is so complex. A major difficulty is the quantity of data present in a

single image. A resolution of 512x512 pixels, with each pixel having an 8-bit

intensity values is typical. The processing of such large quantities of data is

time consuming even with multi-processor systems; however, this does not imply
that given sufficient computing resources, the problem can be completely solved.

It is difficult to produce a set of criteria which defines an object such that it can

be readily distinguished from its surroundings, if the object size, position and

orientation are variable and also the background is unconstrained. If an image
is monochrome and its intensity is similar to its background, it can be very

difficult to partition the scene. The intensity variations caused by shadows or by

features which are internal to an object can easily yield greater intensity

differences than the edges of the object itself. If an object has to be identified in

a variety of images its pixel intensity will vary due to lighting conditions.

The partitioning of objects solely on the basis of their pixel intensity does not

yield good results except in very controlled environments. This has led to the
development of a wide range of locally adaptive thresholding algorithms

[Giuliano 1977, Marr and Hildreth 1983, Palumbo 1983], which classify pixels

not only on the basis of their own intensity but also the intensity of their

5

neighbours. There is a recurring conflict in thresholding algorithms of this type.
If the algorithm is to be sufficiently sensitive to extract small edges, it may

identify too much detail and obscure the objects it is trying to find. Conversely

less sensitivity may neglect important features. To cope with this, most
algorithms have constants which allow the algorithms to be tuned to the specific
image.

1.2 Character Recognition Systems

Although general purpose pattern recognition systems are not available, there

are some areas of notable success. Optical character recognition systems have

been commercially available for over ten years and are becoming increasingly

common. The cost of hardware has fallen and the performance of such systems
has increased as the input devices and recognition algorithms improve [Jones

1989, Eager 1990]. Such systems achieve their results by highly constraining

the input data. Input to an OCR system is usually required to have clear black
letters of a known font on a white background with lighting conditions, size and
orientation carefully controlled. This simplifies the problem of extracting the
characters from the background.

After isolating individual characters, they must be interpreted. This is performed

readily by many OCR systems when the input image is highly controlled. The

system knows the size and orientation of the characters, which must have sharp
edges and conform closely to the idealized shape for that particular font. OCRs

are usually unable to read less constrained text, for example FAXs. Most

character recognition systems use a simple comparison between the character to

be identified and a series of templates, which represent idealized forms of the

character set. This works well for clear highly constrained images but may

require substantial effort to 'normalize' the character for size, position and
orientation, prior to the comparison. Many OCR systems do not perform
normalization.

6

Recognition of hand written script is only possible if the system is trained to
recognise a particular person's writing or if individuals are trained to write in a
standard manner [Himmel 1976].

1.3 Thinning Algorithms

A major difficulty with recognizing characters is that patterns with widely

differing shapes and attributes are classified by the human observer as
representing the same character. Foremost among these attributes, is the
thickness of the character strokes. A wide range of thinning algorithms is
available which produce skeletal forms of patterns, for example, Rutovitz [1966],

Hilditch [1969], Yokoi [1973], and Tamura and Mori [1978]. It is surprising that
different algorithms produce different skeletons. This is partly explained by the

fact that some methods produce '4-connected' skeletons and some '8-connected

skeletons' [Yokoi 1973]. Two pixels are said to be '4-connected' if they are
orthogonal. 8-connected pixels are a superset of '4-connected', and includes
adjacent but non-orthogonal pixels. However, this does not account for all the

differences between skeletons, since a variety of thinning criteria is used. There

are also several problems with most of the algorithms. In particular they exhibit

a high degree of sensitivity to minor variations in pattern boundary. A single
pixel difference between patterns can lead to very different skeletons. Some
algorithms produce a flaring at the end of strokes. In addition the relative

thickness of the strokes which make up a pattern affects the output. The output

is invariably very different from that which is produced by a human observer.
This limits the usefulness of these algorithms.

1.4 Syntactic Pattern Recognition

An area of research which has been neglected in recent years is the syntactic

approach to pattern recognition. In this approach a 'pattern grammar' is

developed which defines primitives, usually in terms of lines or patterns of

known size and orientation. The earliest work in this field was done by Freeman

[1961], who expressed the boundary of a pattern in terms of a small set of

concatenated primitives. However, serious problems have been encountered

since the primitives chosen have a specified orientation and length. This leads to

difficulties if the pattern to be recognized has an unknown size and orientation.

Difficulties are also encountered when the primitives have to be combined in

ways apart from concatenation. The use of high level pattern grammars allows
the primitives to be combined in ways apart from concatenation [Fu 1986].

The syntactic approach has been used successfully for several applications
including the identification of chromosomes [Ledley 1964], the identification of

roads from satellites [Keng and Fu 1986], and the recognition of the
alphanumeric character set [Ali and Pavlidis 1977].

A syntactic approach is used in this thesis for identification of the skeletal forms

of the characters extracted from vehicle licence plates.

CHAPTER 2

CURRENT TECHNIQUES

2.1 OCRs... 9
2.1.1 Performance................ 15
2.1.2 Comments.. 17

2.2 Shape Description... 18
2.2.1 Chain Codes and Shape Numbers... .19
2.2.2 Quadtrees.. ..20
2.2.3 Rectangular Codes...22
2.2.4 Symmetric Axis Transform... 24
2.2.5 Comments...25

2.3 Edge Detection...25
2.3.1 Grey Scale Gradient Based Methods.. 27
2.3.2 Template Matching Methods..................... 28
2.3.3 Parametric Edge Models... 28
2.3.4 Comments...29

2.4 Image Segmentation...30
2.4.1 Binarization and Thresholding...31
2.4.2 Comments.. .35

2.5 Thinning.. .36
2.5.1 Thinning Criteria .. .36
2.5.2 Problems with Thinning Algorithms................39
2.5.3 Comments..42

2.6 Syntactic Pattern Recognition..42
2.6.1 Comparing Strings.. 44
2.6.2 Polygonal Approximations.. 45
2.6.3 High Dimensional Pattern Grammars... 46
2.6.4 Comments... 46

2.7 Implementation of a Character Recognition System.47
2.7.1 Character Extraction(EXTCHR.C)...48
2.7.2 Character Normalization(ROTATE.C, SIZE.C).............................48
2.7.3 Recognition(COMPARE.C)... 50
2.7.4 Results...50
2.7.5 Generating the Probability Matrices... 50
2.7.6 Discussion... 51

CHAPTER 2

CURRENT TECHNIQUES

Several areas of work are relevent to the recognition of characters in

unconstrained environments. The areas considered are:
• OCRs. These are widely available and have a high level of speed and

accuracy; however, they only operate in highly constrained
environments.

• Shape description. A wide variety of algorithms are available for
describing the boundary of patterns.

• Edge detection. Edges often indicate the boundaries of objects.

• Image Segmentation. This section is concerned with the partitioning of

the image into objects, and in particular includes image binarization.
• Thinning. This is the process of obtaining skeletal representations of

patterns and is most useful in extracting structural information about
them.

• Syntactic pattern recognition. This is a collection of techniques which

allow a pattern to be expressed as a collection of spatially related

primitives.

In addition, a recognition system which has been implemented using existing
techniques is described.

2.1 OCRs

The idea of a machine that can read text can be traced back to the 1960’s [Suen
1986]. Initially it was thought that the problem would be readily solved by

designing a system to recognize characters based upon simple descriptions of

character archetypes. However, many unanticipated difficulties were found and

9

the ideal of a machine capable of recognizing both characters printed in any
font and handwritten text has not yet been realised. Character recognition

systems which are able to read clear, printed text have been an area of notable

success and such systems are becoming more readily available.

Over a thousand type faces are in common usage and can be readily read by
humans; many of them have significantly differently shaped characters. To cope

with this difficulty, a recognition system which has to deal with a range of type

styles needs a set of descriptors for each font which is it is to read. Commercial
OCRs are now available but these only work successfully when the image

presented to the system is highly constrained, that is, if the orientation of the
text, its size, and font are known. To improve their performance, standard
fonts have been developed such as OCRA by ANSI and OCRB by ECMA. These

allow a recognition accuracy as high as 99.99% at speeds of over 100 characters

per second [Suen 1986]. The reading of handwritten script is still a topic for
research as is the recognition of characters in variable environments where the

font, size and orientation of the characters is not known. While the development
of OCRs has been a notable success, their performance is subject to important
limitations. The patterns corresponding to the characters are extracted from the

input image. Typically a character size of 8 pixels wide by 10 pixels high is
used. After identifying the individual digitized characters, the image is
smoothed in order to eliminate random noise and voids. In some cases the

image is normalized in size and orientation. The recognition process usually

takes one of two forms. The first is the comparison of the image against
templates of idealized characters. The second is the extraction of features which

are compared to a database. The operation of a typical OCR is described in
detail by Suen [1982].

Many manufacturers such as Panasonic, Hewlett Packard and Logitech produce

systems which are capable of recognizing a wide range of fonts. In recent years

10

the cost of commercial OCRs has greatly reduced. Jones[1989] and Eager[1990]
report on OCR software which runs on standard 80286 and 80386 based PCs.
The systems works with a wide range of fonts and achieve success rates of over

99% on clear text. The time taken to read a single sheet of A4 text is under a
minute using an AT PC computer. It should be noted that such systems are not
effective on text which is not very clear and they are unable to read typical FAX
messages.

Handprinted Script: The recognition of handprinted characters presents a
greater problem due to the wider range of character shapes. The human
observer interprets about 5% of characters incorrectly when reading hand
written text if the context of the character is not given [Suen and Mori 1982].

The set of shapes which a human readily identifies as representing a particular
character differ widely from each other. This means that a single description of
an individual character which describes the entire set of shapes which we would

recognize as representing that character cannot be developed. In addition there
are human perceptual attributes which affect our interpretation of ambiguous
characters. Blesser and Shilman [1973] address this problem by considering the
existence of three sets of attributes for each character. They are:

• Physical attributes, that is, the geometric parts which describe the
character.

• Perceptual attributes, the parts perceived as being present by the
observer.

• Functional attributes.

The distinction between them is illustrated diagrammatically in figure 2.1:

The first character is open in a functional, perceptual and physical way. The

second character has a small gap, the pattern is functionally closed, that is, it is
more often reported as representing 'O' than 'C'. However, it is apparent to the

11

12

observer that there is a gap. The third pattern has a small gap which is usually

not perceived, that is, it is functionally and perceptually closed but physically
open. The fourth pattern is closed in all three senses.

In the case of ambiguity the only
'correct' interpretation of a
pattern is the one agreed by
human observers. In practice,

humans base their decision on the
context of the pattern as well as

its shape.

The most straightforward
technique for the recognition of hand written script is simply to compare the

patterns against templates of idealized forms of the character set. Most systems
of this type require the user to submit a sample of handwriting [Burr 1980]. In

these circumstances the performance is good. However, it is an inadequate
method if the system is used as a script recognition system for many different
individuals.

In addition to simple template comparison, other methods have been developed
for reading handwritten script. Two of the most popular sets of techniques are:

• The contour description approach.
• The boundary approximation approach.

These techniques are variants of the general purpose techniques which are used

for pattern description and are discussed in section 2.2 on shape description.

Contour Description: These methods operate by following the boundary of
the shape and expressing it in terms of a series of primitives, each of which has

a defined direction. Among the earliest propounders of this work were

Freeman[1961] and Eden[1962]. More recent work on the application of the

Figure 2.1 Closure Types

13

contour description approach has been carried out by Toussaint[1970] and

Fu[1980a], This set of techniques is not limited to the recognition of the Latin
character set and has been successfully used by Badie and Shimura[1980] to

recognize Arabic cursive script. The Arab character set has a much higher
proportion of curves than straight lines compared with the Latin set. This
makes the recognition of Arab script more difficult . The transition of a straight

line into a curve, for example, where the vertical stroke of 'D' meets the curve

part of the character, is more easily identified than the partitioning of the letter

'S' into sections. In the technique suggested by Badie and Shimura[1980], the
contour following starts at an end of the shape. The direction of the curve is
taken as the direction of the line between the end and successive points on the
contour. The direction is one of eight lines each at forty five degrees to each
other as shown in figure 2.2.

f11*3
\
\\s4 \

)
1

//
/// fi4 ? / /

///
fi

Figure 2.2
Primi

\ 0 \s\\\
7}

Contour
tives

The character in figure 2.3 has its characteristic
points marked.

The point at which a

transition from one of

the eight directions to
another is a

characteristic point on

the contour. When a new characteristic point is

found, the process is repeated until the end of the
shape is reached. Shapes which consist of a single

continuous series of strokes can be expressed as a sequence of branches of
known direction. Shapes which have intersecting strokes also require a

connectivity matrix which specifies the spatial relationship between the lines.

On the test data used, a recognition rate of over 90% was achieved. The

characters are represented by a 16*16 matrix of pixels, which although not

T Indicates a
' characteristic point

Figure 2.3 Transition
Points

14

reported is an indication of a problem with this method. The usual pixel matrix

is 108. However, this does not provide adequate resolution for curve

partitioning. Since the representation of the character is composed of discrete

pixels rather than being a continuous curve, problems can arise. If, for example,

a single vertical line is considered, this can be represented in a variety of ways

due to rounding errors in the generation of the character. Each of the four lines

below could all be digitized representations of the same vertical line.

Point 'A' is the starting point.

The four widely different

representations may result. In the

second and third lines, the effect
of the single offset pixel is very

different due to its position

relative to the starting pixel A'.

There are other difficulties with

this approach. It is best applied
to skeletal representations of

characters. However, the term
skeleton needs careful definition and is dealt with at length in section 2.5. It is

possible to derive different skeletal representations of the same pattern which

can yield different characteristic points and therefore different interpretations
of the same character.

Boundary Description: A widely used alternative to contour description is

boundary description by polygonal approximation. An ordered list of the

boundary points is produced and then points are broken into a series of curves

using the polygonal approximation approach first described by Pavlidis and

Horowitz[1974]. The approximation technique makes the extraction of many

features about the shape straightforward, including the number of holes, the

Ideaised
Representation

A _ _ A

>

<

B
S-7-5-6

B
6-5-7-6

B
7-5-7-5~7-5-7-5

3 2 !

5 6 7

Figure 2.4 Contour Descriptions

15

number of concave arcs on the external boundary and a variable describing
holes; and so on. An exhaustive list and full explanation is given by
Pavlidis[1975]. The identification of the characters is done by matching the

extracted topological information about the shape against known attributes for

each character. A similar approach is used by Yamamoto and Mori[1978] who
describe the boundary in terms of a series of concave and convex arcs.

Centroid Lines: A variety of less widely used techniques has been developed

which do not fit into either of the above categories. Naito[1978] suggests the use

of centroid lines, where the character is divided into thin horizontal sections and
the centroid for each section is calculated. The group of centroid points obtained
is characteristic of the character. Naito and Hagita[1983] implemented an OCR
for Kanji characters using three characteristic features. Firstly the stroke
density function is produced by moving a horizontal line vertically down the

character and counting the number of strokes which intersect it. Secondly the

direction contributivity(sic) density function gives the direction of each stroke.
Finally the peripheral direction contributivity function is derived by scanning

horizontally across the character and calculating the component of the strokes

which are intersected in eight 45 degree directions. The technique achieved a
high degree of success. The system was firstly presented with characters by
unknown writers and secondly with a number of characters by a specified
author. The recognition rate was significantly higher for character written by
known author.

2.1.1 Performance

The performance of handwritten OCRs can be improved in several ways. The

problem of finding the text can be simplified by having either preprinted marks

on the paper or by requiring the user to enter each character into a separate

box. The performance of these systems in identifying the characters can be

improved in two ways; firstly by personalizing them, that is training them to

recognize a particular writer and secondly by training writers to draw their

characters in a more regular and consistent manner.

Large scale surveys conducted in the 1970's on the performance of commercial

OCRs illustrate some of their limitations. Himmel[1976] gives details of the

performance of OCRs on documents produced by the Netherlands PTT and the
Australian Post Office. The characters read in the survey were handprinted on

documents which had defined areas for each character; this highly constrained

their size and orientation. There were 3000 characters in the analysis, 90.0%

were correctly read, 4.5% were rejected, and 5.5% were incorrectly identified. It
was estimated that half of the rejected characters could be successfully

identified by improvements in the OCR algorithms. Improvements were
obtained by using pens with a more consistent performance. Ball points which
produced ink blobs caused many errors.

The most significant improvements in performance are obtained by training the

users who wrote the characters which were to be read. Himmel[1976] reports on

a study conducted using two groups of employees from the U.S Social Security
Administration; one group trained in writing legible characters, the other group

untrained. The trained group's characters were read with a success rate

varying from 98.5% to 99.5% depending on the recognition used. The untrained

group's success rate varied between 82% and 90%. This clearly illustrates the
importance of controlling the characters which are submitted to the OCR if a

high success rate is to be obtained. The benefits of training are further
demonstrated by a system developed by D'Amato[1982]. The recognition system

he produced for reading handwritten characters generates a compact description

of the character boundary in terms of eight geometric features. The encoding is

compared to a database of encodings which represent known characters. The

system was tested using about 15,000 unconstrained handprinted characters

and gave a correct recognition rate of 73%. On a sample of characters produced
by trained persons a figure of 96% was obtained.

Pavlidis[1983] considered the effects of character distortion on the recognition

rate of an OCR system. The system used was able to recognize nine different

fonts and obtained a recognition rate of 99% on characters written in these
fonts, this fell to 98% and 95% for two character sets which the OCR system
had not been specifically setup to recognize. The effects of distorting the

characters in the known fonts by about 5%, firstly in the horizontal and secondly
in the vertical direction had little effect on the recognition rate which fell by
under 1%.

These figures compare badly with the extremely high accuracies obtained for

OCRs reading the special OCRA and OCRB fonts. An accuracy of 99.99% is
achievable [Suen 1986].

This section has concentrated on the algorithms used to recognize digitized
characters. However, it should be noted that the scanner and the algorithms
used to digitize the image are of equal importance. A scan density of 500-1000

lines per inch is commonly used for image digitization; a lower density may

result in insufficient resolution. The digitized characters are in binary format,
that is a black character on a white background; the interface between the
background and foreground is a slope whose intensity varies from black to

white. Therefore the selection of an appropriate threshold for conversion to the
binary form is most important and is dealt with at length in a section 2.3.

2.1.2 Comments

The development of OCRs has been an area of success in the field of pattern

recognition. Commercial OCRs are becoming increasingly common as their price

falls and their performance improves. Significant advances have been made in

the area of reading hand printed script and good results can be obtained if
operators receive training and pre-printed forms are used to direct the OCR to
the character. However, there are significant limitations; for example, the

character must be well defined and of known size and orientation. In practical

terms this is straightforward to achieve as more text is produced by word
processor and the price of high quality printers is now low.

2.2 Shape Description

When a recognition system is presented with a digitized image it must separate
the image into components and compare each component, or a set of component
attributes against a database of the set of patterns the system can recognize.
The simplest case consists of a single two dimensional object which has binary
pixel intensity, that is, each pixel is designated as either black or white. If the

orientation and size of the object are fully controlled, it can be identified by

comparing it to a series of templates which are known objects. However, even in
this simple case it may be more efficient to compare object boundaries which
can be stored as a list of orthogonal co-ordinates. Such a list is a representation
of the object but allows the object itself to be recreated. The comparison

between object representations and a database of a set of representations of
known objects is potentially a far more powerful technique than the

manipulation of the objects themselves for object identification. The

development of techniques for storing a representation of an object without
actually storing the object itself has been a recurring theme over the past thirty
years of pattern recognition. It is closely related to problems of finding the

closest match to an object, as exact matches are rare due to the process of

digitizing the images. This always produces variations in the intensity values of

pixels and differences in edge sharpness if there is even a slight variation in
lighting conditions or camera position. Two dimensional shapes are the
simplest to represent, particularly regular geometric patterns. For example, a

19

square can be completely represented by simply storing its side length, although
a co-ordinate frame has to be setup in order to define its orientation. The
problem quickly becomes more complicated for the generalized case of an

irregularly shaped object. A range of techniques has been developed to deal
with this. The techniques considered in the next section are reversible, that is
the actual shape itself can be recovered from the representation of the shape.

2.2.1 Chain Codes and Shape Numbers

Freeman [1961] was among the earliest researchers to suggest breaking the

outline of two dimensional shapes into small sections and representing each
section by one of a small set of primitives. The shape itself is stored as the
concatenation of these primitives. The smaller the primitives, the more accurate
is the representation and the longer the string. The primitives used by Freeman
are four lines each at right angles to the other. A major problem with this
technique is that it is orientation dependent, that is different chains can be
obtained for the same shape in different orientations. There is also the problem
of determining if two shapes are similar when their Freeman chains are of
different lengths.

These problems have been addressed by
Bribiesca[1979] who devised a technique for
the derivation of a unique shape number. A

'basic rectangle' is derived for the shape and

the direction of the four primitives are along

the major and minor axes of the rectangle. The

basic rectangle is the smallest area rectangle

which wholly encloses the pattern. The major

and minor axes are respectively parallel to the
long and short sides of the rectangle.

By allowing the user to specify the order of the shape number, that is the
number of digits in its encoding, the problem of comparing different length shape
numbers can be overcome. However, in order to derive a shape number which is
unique, for a pattern, a few further rules must be followed; for example, moving
around the shape in a clockwise direction and selecting a starting point which

gives the smallest possible shape number. A similar system is used by

Badii[1983] who describes a chain code based upon the topological attributes of
the pattern perimeter, which is invariant under rotation, translation and scaling.

2.2.2 Quadtrees

Chain codes and shape numbers concentrate on expressing the boundary
information of objects; More recent techniques have concentrated on expressing
the area of the object by hierarchical data structures.

A popular technique for the compact representation of two dimensional shapes
is to use quadtrees.

Early work on this was done by

Sidhu[1972] and Tanimoto[1975].
A quadtree is generated by

dividing the image region into
quadrants. If a quadrant contains
a portion of the object, it is

further divided into sub­

quadrants. The process can be
repeated, resulting in a

hierarchical data structure representing the shape.

w
157

ip

CD C

D

!
m

i

Figure 2.6 Quadtrees

21

There are problems similar to
ones arising from the use of shape
numbers, in particular, the

quadtree representation is heavily

influenced by the position of the
object in the image, its relative
size and its orientation.

Normalized Quadtrees: To deal with the problem of the position of the object
in an image, Li, Grosky and Jain[1981] suggested a normalized quadtree form.
However, the problems of rotation and size were not resolved.

A normalized quadtree approach which deals with these problems was put
forward by Chien and Agrawal[1983]. Prior to generating the quadtree some
pre-processing takes place. A co-ordinate frame must be defined and the object
must be scaled. This is done by using two properties of shapes which are
independent of location and orientation, the centroid and the principal axes.

The object is rotated about its centroid until its principal axes are horizontal
and vertical, relative to a defined co-ordinate frame. It is then enclosed in a
minimal square whose sides are parallel to these axes. The bottom left corner

of the square is defined as the origin of their co- ordinate frame. The image

within the square is now scaled to a standard size. This normalized form is

independent of size, object position within the image, and orientation. The

processes of re-orientation and scaling are common for representational methods
of this type; however, they introduce problems of their own. The rotation

process is usually achieved by multiplying the orthogonal co-ordinates of every

pixel of the object by the direction cosines of the new frame with respect to the

old one. This causes a distortion in the image as well as being time consuming

i

1 ~T 1
B <

Empty

D E

1 1
H 1

I
J K

Empty Empty Full Full

Figure 2.7 A Data Structure for
Quadtrees

for large areas. The scaling process also causes distortion. If the ratio between
the size of the normalized image and the original is a power of two, the

distortion is minimized. If it is not, extrapolation must be used; for example, to

scale a square of side 1.5L into a square of side L.

A system was implemented to examine experimentally the effects of

normalization on a range of images of alpha-numeric characters. This is
reported in section 2.7. Two methods of normalization were used:

In the first only the outline of the object is considered for maximum speed. In

some circumstances a connected outline will not be produced after normalization
and it is necessary to extrapolate between pixels when holes are found.

The second method rotates the entire image. A different problem is found here.
An object which is solid, that is contained no holes prior to rotation, may have
several small holes after normalization due to rounding errors in the
normalization calculations.

The normalization process distorts the object, deleting valid information from
the image and introducing invalid information.

2.2.3 Rectangular Codes

A novel variation is the use of sets of elementary shapes to describe the object

area. Aoki[1979] suggested that this could be done by using circles, triangles

and rectangles. The circle requires the least information of these shapes to
define, only a centre and radius, while rectangles require the X and Y co­
ordinate of one vertex, the width and the height. Circles are difficult since a set

of non-overlapping circles always leaves gaps between them. The generation of

a set of rectangles is non-deterministic, that is there is more than one set of

rectangles which describes a shape. In practice this is not a problem as long as
the same algorithm is used for encoding all the objects considered. The use of

22

rectangles has been explored by Kim and Agrawal[1983] who present a heuristic
algorithm for constructing a set of rectangles which they call a rectangular code.
This set describes the object completely. Only a single pass through the image
is needed to generate the code. Starting in the top left corner the image is

scanned horizontally and rectangles are grown vertically downwards; when a

part of the region being scanned borders two growing rectangles, a simple set of
heuristic criteria is used to determine which rectangle is extended and which is

terminated. An example of an image partitioned in this way is shown 2.8.

Each rectangle is identified by
four pieces of information shown
in brackets in the figure; the two
co-ordinates of the top left corner,

the width and the height. Kim
and Agrawal suggest that a

compacting of this information

can be achieved by grouping
rectangles with similar properties

and recommend grouping where either the height or width of the rectangles is

similar. The information can be encoded by noting the four parameters which
denote the first rectangle in the list, the number of rectangles in the group, the

difference in the position of two consecutive rectangles in the group and an
indication of the parameter which is the same.

Scaling by a power of two can easily be achieved with this representation. This

technique is not ideal as, there is the usual problem of orientation. Rotation by

multiples of ninety degrees is easily resolved since partitioning of the object will

be the same, although this is not the case for rotation by other amounts. Even a

shape which can be represented by a single rectangle in one orientation

requires many rectangles if twisted by forty five degrees. The usual solution to

(0.0*

J
....... f............i I

Representation

2 j ¿ of the rectangles
Í J (3,1,2,1)

1 3 Ì (2,2,5,3)

(1,1,1,5)
cJ.LI 4 C2A2.fl

i 6 (M . 1.3).........¡.......... ;j
(6,5,1.3)

! ! 1

Figure 2.8 Rectangular Codes

24

this problem is to use information invariant to position to define a co-ordinate

frame and origin. This can be achieved in the same way as for quadtrees, that is
by using the centroid and the principle axes.

2,2.4 Symmetric Axis Transform

A different approach to shape description has been developed by Blum[1973]

which is designed to represent the shapes which occur naturally in biology. The

work describes the symmetric axis transform (SAT). The SAT description of an
object considers the set of maximal circles which fits within the object but not

inside any other circle in the object. The shape description is in two parts:

• The symmetric axis. This is the locus of the centres of the maximal
circles.

• The radius function. This is the radius at each point along the
symmetric axis.

This early work was extended by
Blum and Nagel[1978], By

partitioning the object at points

where the symmetric axis

divides, the object can be divided

into 'simplified segments'. The
relationship between them can be

expressed by a directed graph and
an associated data structure

giving details of the properties of the segments. This approach is significantly

different from the other shape descriptions considered so far. It is orientation

independent and suited to expressing objects where the structural content is

high. There are a number of difficulties which are not found in other
techniques. The SAT description is greatly affected by slight bumps or

Pimple Dimple

_ A_________
! X T/ \

Figure 2.9 Effect of 'Pimples' and
'Dimples'

25

depressions in the object boundary which can lead to the creation of additional
segments. An example of this is given in figure 2.9, where a slight difference in
the border of a pattern leads to widely differing skeletons. The skeletons are

shown as dotted lines.

A useful technique for extending the applications of SAT would be the use of

high order pattern languages which are suitable for expressing shapes which
have a high structural content.

2.2.5 Comments

This section has described a range of methods for describing shape. The
Freeman chain codes and shape numbers describe the boundary of shapes while
quadtrees and SAT deal with the area within the shapes. All apart from SAT
suffer from the problems of scaling and orientation, while SAT cannot deal with

shapes which have holes and is very sensitive to 'pimples and dimples' on the

surface. It is clear that although the problem of shape description is a
fundamental one, it is far from completely resolved. In three dimensions all of
the problems of shape description are far more acute. In practical systems
where it is necessary to recognize objects, the environment is often highly
constrained and the system is simply required to differentiate between a few

items whose size and orientation are known and where lighting conditions are
controlled.

2.3 Edge Detection

The detection of edges is of great importance in partitioning scenes into discrete

objects. In natural scenes the boundaries of objects tend to be characterized by

discontinuities in the intensity of the brightness of the image. These

discontinuities in the grey scale are edges, and due to their fundamental

importance, a great number of algorithms have been developed for their

26

detection. All edge finding algorithms, by examining the properties of pixels

over an area, search in a wide variety of forms for these discontinuities; in order
to provide a fuller description of an edge, many algorithms derive both the

magnitude and direction of any edges detected.

There are several difficulties in the detection of edges in real world images.

Objects tend not to consist of collections of adjacent pixels of equal intensity

with very sharp edges. Slight variations in lighting and surface imperfections,

particularly for coarsely textured surfaces, result in a variation of pixel intensity
within an object. Successful edge detection algorithms should therefore be able
to detect both very sharp or 'step' edges and also edges which are broader,
called 'roof or ramp’ edges. The larger the area which is considered by the

algorithm, the better is the roof detection performance, while the smaller the

area the better is step edge performance. It is important to be able to

differentiate between a step edge and the local variation within an object caused
by texture variation.

Since edge detection is of fundamental importance to low level image analysis

problems, there is a great variety of algorithms available. Surveys are available

by Davis[1974], and Rosenfeld and Kak[1982] and more recently by
Kashyap[1986].

A useful categorisation of the types of edge detection algorithm is given by

Ballard[1982], who divides them into three categories:

• Grey scale gradient based operators.

• Template matching operators.
• Parametric edge models.

2.3.1 Grey Scale Gradient Based Methods
27

First Derivative Methods: The earliest edge detectors developed are gradient

based, such as the operator suggested by Roberts[1965]; for an image function

f(x), the gradient magnitude s(x), and the direction d(x), are given by:

s(x) = V(§2 + §2)

d(x) = tan-KSi/^)
where

S|. = fix + n, y) - f(x,y)
% = f(x, y + n) - f(x,y)
n is a small number, normally one.

The Roberts method is widely used. Its main advantage is that it is very fast. Its
main disadvantage is that it operates on a small area and may therefore be

confused by a noisy image; it is essentially based on the first derivative of the
grey scales and therefore may respond erratically on a ramp intensity profile.

This second problem has led to the development of second derivative methods.

However, some improvement can be gained by using an absorption edge
detector[Kittler 1983].

Second Derivative Methods: At a step edge the second derivative is zero,
with a positive and negative peak on either side. The detection of edges is

achieved by finding zero crossings of the second order derivatives. A common

idea in the low level processing of images is the concept of image transforms, in

essence an image may be transformed, then filtered or manipulated, that is

convolved and subject to the inverse transform. Marr and Hildreth[1980] make
use of this idea by searching for zero crossings in:

f(x)» D2[G(r)*I(x,y)]
D2 is the second derivative of intensity in the appropriate direction.
G{r) is the Fourier transform of the Gaussian distribution.

* is the convolution operator.

28

Convolutions are relatively expensive computationally and their number can be
reduced by introducing an orientation independent second order differential
operator. The Laplacian V2 is the only operator which has this property. The

loci of the zero crossings can be found by searching for the zero values of the

convolution V2G*I. Haralick[1984] compares the performance of the Marr-
Hildreth with an edge detection method based upon the zero crossings of the
second derivative and claims an improvement in performance.

2.3.2 Template Matching Methods

The use of edge templates is a popular method. A variety of templates

representing ideal edges in various directions are matched against the image.
The mask which gives the closest match indicates the magnitude and direction of
the edge. This has been successfully used by Tamura and Mori[1978]. A major
problem reported by them is that large masks are needed to reduce the effect of
noise on images; 5*5 is regarded as a minimum. However, the larger the mask
the more likely the output is to be confused if more than one edge is within the
template area.

2.3.3 Parametric Edge Models

The final major category considered is the operators which fit local image

intensities with parametric edge models; a brief overview is given by

Nevatia[1980]. One of the earlier models which fits this category is the Heuckel

operator. This assumes that edges are step functions and describes edges in
terms of a straight line and two image intensities on either side of the edge.

A set of pixels which most nearly

approximates to a circle is
selected and the equation of the

edge and the intensities of the

image of both sides are calculated

as described by Heuckel[1971].
There are a number of difficulties

with the Heuckel operator. The most apparent is that edges are assumed to be
straight lines; this is often not the case and this operator is not suitable for

detecting corners. The model also assumes that only one edge is present in a

circle; it is therefore easily confused by multiple edges, particularly with larger

discs. This is a serious problem [Canny 1986]. A parametric edge model is
developed by Tretiak[1979] in which the edge is specified by a curve described by
a pair of parametric equations, and the edge detection problem is resolved by

minimising a cost function over the set of curves.

2.3.4 Comments

The role of edge detection is to partition an image into sections, which ideally

delimit objects. In practice this is very difficult to achieve. The more complex

methods such as the parametric edge detector do not necessarily yield better

results. When choosing between the range of methods available it is important
to consider the application for which it is to be used. Generally, models which

look at a small area are able to detect fine edges but are very sensitive to noise in

the image. The reverse is true for models which examine a large area. It is

therefore important to carefully balance these conflicting requirements.

2.4 Image Segmentation
30

Another low level operation used in image understanding is to segment the
image into regions based upon the properties of the pixels in the image.

Although this is a straightforward process, it is extremely difficult is to ensure
that these regions correspond to physical objects within the scene. The problem
is complex since it does not have a unique solution [Fischler 1983] and therefore

a purely mathematical criterion is insufficient to duplicate human performance.

Segmentation can be based either solely on the intensity of individual pixels, or

can include the intensity of local pixels. It is essential to consider regions when

performing a texture analysis of the image or taking into account the effect of
changes in shade. It is sometimes possible to perform the image segmentation
recursively using information gained in earlier segmentations in order to
improve the performance as suggested by Ohlander, Price and Reddy[1978]. A

popular set of techniques uses region growing where small sets of uniform
intensity are used as the basis of regions. Neighbouring pixels are then grouped
into the region based on their properties. In many images there is likely to be a

close correspondence between the region interfaces and the edges obtained by
edge detection algorithms. Milgram[1979] uses a variety of threshold values to

segment images, comparing each one with an edge map of the image. The
segmentation which gives the closest correspondence with the edge map is taken
as the optimum. A useful discussion of pixel classification techniques is given by

Rosenfeld and Kak[1982], A survey of region growing techniques is given by
Zucker[1976]. Pavlidis[1977] gives a detailed report on segmentation techniques
and includes a variation on the usual techniques of segmentation originally

suggested by Pavlidis and Horowitz[1973] which uses a split and merge

technique. The image is split into regions which can be either merged on the

basis of their properties, or split if they are insufficiently homogeneous.

Relaxation techniques have been applied to image segmentation by Zucker[1977]
and Boyle[1988] with some success.

In the general case of an unconstrained image which is segmented into sections

the results are usually not good, as there is often an incomplete or conflicting

subdivision of the image into regions which do not correspond to objects. The
performance of segmentation algorithms can be greatly improved by two

methods. The first is to increase the amount of information in the image either

by introducing colour, or by using stereo information. The second commonly

used technique is to tailor the segmentation process to the specific application by

the use of a-priori information. This can take the form of constraining the input
image either by reducing its complexity or by ensuring that the objects to be

recognized stand out from their surroundings by giving them or their

backgrounds special colours. Image segmentation techniques are often
supplemented by the use of heuristics, based upon experimental data collected

about the types of objects likely to be found in the images analysed.

A recent implementation of an image analysis and segmentation technique used
for identifying rectangular address blocks on mail items technique is given by

Srihari[1987]. It is essential in such a system that one of the segments detected

corresponds to the address block. To verify that the region has been correctly

identified, a tool-box approach is used, where a variety of checks are invoked to
test the validity of earlier tests and so increase the likelihood of success. The

tools include colour thresholding, intensity thresholding, texture discriminators

and shape analysis which measures how rectangular a region is. The author

reports a success rate of 86% for letters. However, even in this relatively
controlled environment, the processing time varies between seven and twenty

minutes using single processor systems such as a Sperry-7000, VAX-785 and
SUN-3 computers.

2.4.1 Binarization and Thresholding

A commonly used method of image segmentation is to binarize the image, that is,

rather than assigning a pixel an intensity value, each pixel is considered as

either 'black' or 'white'. Binarization is particularly useful when dealing with

images which consist of two discrete parts, for example black letters on white

paper. However, even in cases of this type when the document is digitized, the

edges are usually ramp edges rather than step edges, and the selection of a

threshold value for binarization which gives as clear a picture of the characters
as possible is essential.

A useful survey of document binarization algorithms is given by Palumbo,

Swaminathan and Srihari[1986]. Kittler and Illingworth[1985] include a
discussion of different categories of algorithms. There are two type of

binarization, global and locally adaptive

a. Global Thresholding: In global thresholding a single threshold value is

chosen for the whole image. This can be useful for certain special cases where a-

priori knowledge allows a threshold to be chosen. Some images have a strongly
bi-modal distribution of pixel intensities. This allows the pixels to be categorized

into two distinct groups by the selection of a threshold in between the two
concentrations of intensities. An alternative form of the global thresholding

method is to divide the image into sections and to determine a global threshold
for each section. This does not yield good partitioning of the image since, if a

section overlaps an object, there may be no clear representation of the object,

particularly if the thresholds chosen for the adjacent regions are widely
different. To some extent this can be partly resolved by dividing the image in

more than one way and comparing the output obtained by thresholding the

overlapping sections. However, this is difficult to implement and greatly

increases computational time. In addition to using grey scale variations, a range
of techniques for the selection of a global threshold has been used, such as second

order derivatives by Deravi[1983] and grey tone spatial dependency matrices as

used by Haralick[1973]; both of these methods use information concerning the
spatial relationship between intensity levels.

----------m ~ ---------- T — -------— - ~ ■----7 T T 7 T ----- — . - -• . « ' ’ " V "

33

b. Locally Adaptive: In locally adaptive thresholding the conversion of a pixel

to either black or white is dependent not only on its own intensity, but also on
the intensity of neighbouring pixels. A variety of locally adaptive thresholding
techniques has been reviewed by Palumbo[1986].

The three methods given below are by no means an exhaustive list of adaptive

thresholding techniques but represent typical examples of their type.

i. Running Average Thresholding: An efficient single pass adaptive
thresholding algorithm was developed by White and Rohrer[1983]. For a scan

line represented by the array l(n), the horizontal running average y(n) can be
expressed as the sum of the previous running average value and a fraction of the
difference between the current grey pixel value and the previous average value.

That is, y(n) for each row up to column n is given by the previous running
average and a weighting function:

y(n) ss y(n-l) + fU(n) - y(n-l))

Here y(n-l) represents the weighted running average for the current scan line
up to and including the previous point. The weighting function has a value

between zero and the value of its argument. The vertical running average is
given by:

z(n) = z(n-L) + g(y(n) - z(n-L))

Here z(n-L) represents the vertical running average calculated using the
previous scan line of image data. Finally the decision as to whether a pixel is
black or white is given by :

if h(l(n-N)) > z(n) then BLACK else WHITE

h(pixel) is a biasing function and N is a constant.

ii. Contrast Measure Thresholding: An adaptive thresholding algorithm
was developed by Giuliano[1977] which is now a U.S. patent. Five neighbouring
regions influence the threshold value used for a particular pixel. The regions

consist of a 3*3 template around the pixel under consideration and four
diagonally opposite 3*3 regions.

Two static thresholds t2 and t2
are chosen. If the pixel intensity

is less than t-L it is changed to
black. This simply reduces
computational effort for pixels

towards the edge of the grey scale
spectrum. The subset of pixels in

A2, whose intensity exceeds t2 is

found, they are denoted by A2t. If
the average intensity of pixels in A2t (weighted by the parameters t3, t4, t5)

exceeds the average intensity of pixels in A1 then the pixel is considered black.
Formally the algorithm is:

if (l(x,y) < tx) then Z(x,y) := black else
begin

if (t3 x a2 + t5) > (t4 x ax) then Z(x,y) := black
else Z(x,y) := white

end

ax := Average of 9 pixels in area Ax
A2t:= {(x,y)l(x,y) in A2 and l(x,y) > t2}

a2 := Average of pixels in A2t

An example of a practical implementation of this algorithm is used by

Srihari[1987] for the identification of address blocks on mail items.

Hi. Edge Based Thresholding: Marr and Hildreth[1983] suggest a

binarization technique based upon the Marr-Hildreth operator[1980] which is

used for edge detection. The method convolves the image with the Laplacian of a

a2 A2

—

a 2 a 2

Pixel under
consideration

Figure 2.11The Giuliano Algorithm

35

Gaussian operator. The zero crossing points of the function, mark intensity

changes in the image. Since the positive part of the function represents the side
of the edge where the intensity is high and the negative part of the function
represents the side where the intensity is low, the function can be used as a
thresholding criterion. The positive values are assigned to white and the
negative to black.

A limitation of the Marr-Hildreth approach is that it is very time consuming if a
large operator size is chosen. Palumbo[1986] indicates that for a 31*31 operator
running on a 512*512 image, 5122x312 additions and multiplications are required

and would take about 200 minutes CPU time on a VAX 11/780. This compares to
about 2 minutes CPU time for the contrast measure binarization. The running
average method is faster still. A further problem with second derivative

binarization is that thick black regions get converted into black regions with
small white holes inside. This problem also occurs with the contrast measure
method.

2.4.2 Comments

Running average thresholding is the fastest and yields good results, but in noisy
environments is inferior to the other two methods which are computationally far

more expensive. In a test reported by Palumbo[1986] on binarization of a mail
item represented by a 512x512 pixel array, the CPU time on a VAX 11/780 was

200 minutes for the edge based method and two minutes for the contrast method.
The time taken for the running average method was not given. However, it was
reported to be the fastest of the three.

The most straightforward method to implement is the running average method;

it is also computationally the cheapest; unfortunately it tends to perform poorly

with noisy images. The performance can be improved by having a pre-processing
smoothing stage which reduces the amount of noise in the image.

36

The choice of method is dependent on the type of images used. There is no 'best1
binarization algorithm; each of the methods available has its merits and
drawbacks. The method chosen depends on the application. Generally the

adaptive techniques perform better than global binarization; however, in some

cases such as documents with dark letters on a light background in a controlled

environment, global binarization with a carefully chosen threshold is most
suitable.

2.5 Thinning

2.5.1 Thinning Criteria

A major difficulty in recognizing and giving a meaning to a pattern is often not
that insufficient information is available for recognition, but that there is too

much detail. In the recognition of an alpha-numeric character much of the

information present is not relevant to the analysis. The set of shapes which
represents a character have a variety of shapes but all contain similar
structural information which allows their identification by a human observer.

The thickness of characters is of little importance and can obscure the essential
structural information. A technique which has been widely used to remove

thickness information but to preserve structural detail is 'thinning' or
'skeletizing'. For simple shapes which are thin, that is long in relation to their

width, there is an intuitive awareness of what constitutes a valid skeleton of the

shape. To formally define which criteria are used and to provide an algorithm

is less straightforward. Blum[1973, 1978] makes use of the idea of maximal

circles. A maximal circle fits within the shape touching but not crossing its

boundary at a minimum of two points. The locus of the centres of the maximal

circles provides a thinned formed of the shape. Calabi[1968] uses analogy of a

fire-line propagating from the edges towards the inside of the shape at constant

speed. The points where at least two fire-lines meet constitute a skeleton. The

fire-line analogy is taken up by Arcelli[1981] who describes a parallel
implementation of such an algorithm.

Many thinning algorithms use a set of templates which are applied to each
border pixel of the image in turn, where a border pixel is one which is within the

shape but touches at least one pixel outside it. A set of templates are centred on
it, and surrounding pixels are matched against it. If a match is obtained then
the pixel is deleted. A typical template set is given by Arcelli and

Cordella[1975]. The templates must be applied repeatedly to the contour pixels
until they can be applied to the whole image without deleting any pixels. Pixels
left are skeletal. Depending upon the template set used, a few other simple

criteria may need to be applied to prevent the shape being thinned to a single
pixel. If for example a contour pixel is not deleted, that is, it is considered

skeletal on one pass, it should not be deleted in subsequent passes.

Many of the earlier thinning algorithms were developed according to a set of

heuristic criteria and did not include proofs that they would always work to
produce connected skeletons. However, Several researchers have done this,

such as Rosenfeld and Thurston[1971] and Arcelli[1975], so verifying earlier
work on the conventional 'border following' methods. Many thinning algorithms
have been developed by, for example, Rutovitz[1966], Hilditch[1969], and

Yokoi[1973]. It is worthwhile comparing the output of popular thinning

algorithms, A survey was carried out by Tamura[1978] which illustrates the

differences between Rutovitz[1966], Hilditch[1969], Deutsch[1972], Tamura and

Mori[1978], and Yokoi[1973]. The results show that the differences are
substantial. This is initially surprising, since they are all aiming for the same

result. However, on closer inspection images represented by rectangular arrays

of pixels cannot always be thinned to produce a set of pixels which matches the
maximal circles criteria. In a simple case of a vertical line four pixels wide, the

theoretical skeleton is between the two central row pixels. Clearly a heuristic

decision must be made to decide which set of pixels is chosen to be skeletal. The
position is more confused for complex shapes. In addition, while all the
algorithms mentioned produce connected skeletons, the manner in which they
are connected is different.

Four and Eight Connectedness: The concept of 4-connectedness and 8-
connectedness is fundamental in explaining the differences in these algorithms.
The eight neighbours of the element E0 can be denoted as follows;

Elements Ex, E3, E5 and E7 have 4.

connectedness with E0. All of the neighbours
to E0 are 8-connected. A 4-curve only contains
points which have 4-connectivity.
Rutovitz[1966] makes use of these concepts to
define the crossing number X as:

Here the value 0 is used for the background and 1 for the foreground. This gives

a measure of the number of background-foreground chains in the 8 neighbours
of E.

Yokoi[1973] defines measures of 4 and 8-connectivity in terms of connectivity
numbers as:

Nc4 = X(E k- E kE k+1E k+2) (4-connectivity case)
k€sl

Nc8 = X(E k- E kE k+iE k+2) (8-connectivity case)
kesl

Ek means (1 - Ek)

E4 E3 E2

E5 EO E1

E6
E 7

CO
LU

Figure 2.12 4 and 8
Connectivity

X = E® i E k - E k+1|
k=l

Where si is a set of 4-neighbours.

The properties of a point are characterized by the values of X, Ec4 and Ec8. This

has been investigated in detail by Yokoi[1973] and by Rosenfeld[1971].

2.5.2 Problems with Thinning Algorithms

Most thinning algorithms attempt to apply the maximal circles criteria by

moving around the perimeter of the shape and considering each pixel in turn.

However, it is not guarantied that this criterion is met using this approach, even
when errors introduced as a result of the shape being composed of indivisible
pixels are ignored. What is guarantied by all the commonly used algorithms is

that an 8 or 4-connected skeleton is produced which lies wholly within the
boundary of the original solid shape. On closer examination it is found that

even if the maximal circles criterion was met fully, the skeleton produced is not
always as anticipated by the human user. Consider the simple case of three
thick lines intersection at right angles in the form of a "F.

The expected shape is quite different from the

actual shape. The maximum deviation of the
thinned line from the anticipated shape is
shown in figure 2.14.

—K -d ~ Deviation \ j
t T

Thick fKittcm M Actual
skote skeleton

Figure 2.13 Expected and
Actual Skeletons

The deviation is directly
proportional to the width W. In

an attempt to overcome the
distortions which are produced
particularly in thick patterns

where strokes intersect,

Murthy[1974] suggests an
extension of the usual 3*3
thinning templates. The
technique searches for stroke
intersection points or stroke end
points by applying a series of non-

reetangular templates to the image and then searching for vertical, horizontal,

left and right inclined strokes from each of the intersection points. Murthy also
gives a comparison between his algorithm and those used by Stefanelli and
Rosenfeld[1971] and Deutsch[1972], For the character 'K', represented by the

pattern given below, two quite different representations are given by the
Stefanelli and the Deutsch algorithms. These differences would be more
pronounced if the original character was less regular.

W/2 W/2
------- 3**

d

W/2

d = Deviation WW2 -1)
2 aT2

Figure 2.14 Deviation at Intersections

Figure 2.16 The Stefanelli
Algorithm

41

As can be seen from the above

diagrams serious distortion results at
the intersections and strokes are

shortened.

With most thinning algorithms there is

a serious problem which is their high

sensitivity to irregularities in the

surface of the shape. In extreme cases

a slight change can cause a dramatic
change in the skeleton as reported by

Pavlidis[1982]. An example is given in figure 2.18, where a slight surface

imperfection may lead to widely differing representations.

This problem is particularly pronounced when

the shape contains thick strokes, that is
strokes which are wide in relation to their

length.

Figure 2.19 Parallel Sided Stroke
Thinning

/
V
j

At/ \/ \»/
i \

Figure 2.18 Effects of
Imperfections

The point at which the skeleton

ends varies for different

implementations. There are three

possibilities for a simple parallel
sided stroke as shown in figure
2.19

The thinned version of the shape

is also dependent on the thickness of the original image.

2.5.3 Comments

The purpose of a thinning algorithm is straightforward. It is to produce a
connected skeletal representation, which preserves the structural information of
the original shape. However, the choice of algorithms and the different

skeletons produced indicates that the selection of a thinning algorithm is not
straightforward. Care must be taken to consider the sensitivity to irregularities
in the border, the thickness of the strokes to be thinned, whether 4 or 8

connectedness is needed, and the preferred type of representation at

intersections. The output of thinning algorithms is not always as anticipated by
the human observer.

The use of an idealized skeleton is considered by Cox[1982] since a skeleton
retains the essential structural information of a character, while removing
details such as stroke thickness which are often a hindrance to recognition.

2.6 Syntactic Pattern Recognition

The problem of shape recognition is closely related to shape identification. If a
pattern can be succinctly described in a compacted form in terms of either its

outline, its area, or features, it can be compared to a database of known patterns
described in the same manner and so identified. Fu[1980b] places the many
techniques used for scene or pattern recognition into two categories: the

decision-theoretic or discriminant and the syntactic or structural. The decision
theoretic extracts a selection of features which characterizes the pattern and is

used in the recognition algorithm. The syntactic approach views patterns as

combinations of components. Both the components and the structural

relationship between them can be expressed in terms of a sentence in a

language specified by a grammar. Syntactic methods have been used for nearly

thirty years and early work was carried out by Eden[1962] and Ledley[1964,
1965]. A good overview of the work in this field is given by Fu[1986]. The
syntactic approach can be used for compact image representation, since strings
of primitives can be stored rather than the image itself. However, the main use

is for pattern recognition. Ideally the primitives and the spatial relationships
between them, should be deduced automatically by specifying the patterns to be
recognized and applying algorithms capable of recognizing primitives and how

they are connected. This is not currently possible and this process must be done
manually. There are two stages to the development of a syntactic recognition
system, firstly the selection of primitives and secondly the design of the
grammar which relates the primitives to each other. As yet there are no general

purpose pattern primitives which can be used for the representation of all
patterns; selection must be made on the basis of the patterns to be encoded. The
selection of the grammar is also data dependent. The selection of primitives and
the grammar must be carefully considered since a simple set of primitives may
require a complex set of rules to indicate how they are connected, while complex

primitives tend to require a simpler grammar. Primitives should represent

basic components of the pattern. For two dimensional patterns which may be
described by boundary lines, primitives consisting of lines of specified size, shape

and orientation are suitable choices. The notation used by many researchers to
express pattern grammars was suggested by Aho and Ullman[1972], who
expresses pattern grammars by the four-tuple

G = (Vn, Vt, P, S)
• G is the pattern grammar.
• V nis the set of non-terminals.

• V tis the set of terminals.

• P is the set of productions

• S is the starting symbol.

44

The terminals or variables are the lowest level primitives. The non-terminal
variables are expressed in terms of the terminals and other non-terminals. The
productions are a set of rewrite rules that give the relationship between the
variables.

The syntactic approach has been successfully used for a number of applications.
One of the earliest and most widely reported is the syntactic representation of

chromosomes by Ledley[1964]. This was later to be extended by Lee and
Fu[1972]. Keng and Fu[1976] used a syntactic approach for the identification of
roads from satellite pictures. Ali and Pavlidis[1977] developed a syntactic
representation of the alphanumeric character set.

2.6.1 Comparing Strings

There are inherent problems with the syntactic approach and despite some

successful applications, syntactic methods are not widely used. Until recent
years syntactic recognition was thought to be most useful for abstract or

artificial patterns. When dealing with real world images, the strings generated
which represent patterns in the image are unlikely to match exactly the patterns
which are stored in the database. To resolve this serious difficulty there has been
a number of developments. When a pattern string has been developed the
simplest type of recognition process is template matching. When an exact match

occurs recognition has been achieved; however, if an exact match is not found,

action must be taken to determine which of a set of strings has the closest match.
Levenshtein[1966] considered this problem although he did not attempt to apply

it to image recognition. He suggests that the closeness between two strings was

indicated by the number of error transforms needed to convert one string to

another. He suggests three types of errors:

• Deletions. A missing item.
• Insertions. An extra superfluous item.

45

• Substitutions. An incorrect item, caused for example by the
transposition of two items.

More recently error-correcting parsers to measure the distance between strings

have been used by Thomason and Gonzalez[1975], Lu and Fu[1978], and Aho
and Peterson[1972].

2.6.2 Polygonal Approximations

A complementary technique which has extended the range of applications of

syntactic methods is the use of polygonal or functional approximation as a means
of eliminating much of the superfluous noise found along the edges of shapes.
Pavlidis[1982] describes a scheme for the description of closed boundaries which

uses polygonal approximations for the representation of portions of the outline.
The direction of each of the parts is specified as belonging to one of eight 45
degree sectors. Although the output strings are not completely orientation
independent, the specified orientations relative to each other are consistent.
When this technique was used on a sample of digits, each boundary encoding
was slightly different. However, certain characteristics were present in all the

descriptions which allowed the digits to be identified. Unfortunately, details of
the data used to test the algorithm are not available for a more critical

assessment. A syntactic approach which uses polygonal approximations was
also used by Ali and Pavlidis[1977] for the recognition of handwritten
numerals. An important advantage of polygonal approximation is that it

overcomes one of the major problems of syntactic pattern recognition. The

boundary of patterns often has a lot of noise which is not needed for recognition
and which causes the representational strings to be long. By dividing the

boundary and expressing each section in terms of a simple primitive curve or

straight line, the strings are simplified and the recognition process made easier.
This approach is therefore only useful where the pattern considered has a

particular meaning, that is it represents, for example, either a digit, a character,

or an identifiable object rather than a shape which must be preserved. On a test
sample of 1320 handwritten numerals a successful recognition rate of about 93%
was obtained. One regular expression was not adequate to express all of the
patterns which represented a particular digit. Even a simplest digit '1' required
3 expressions while '9' required 8.

2.6.3 High Dimensional Pattern Grammars

When a pattern grammar is used to express a pattern in terms of its boundary
the only relational operator which is needed between its primitive is the

concatenation operator. However, there are many patterns which cannot be

expressed using only this operator, and a new set of grammars is required.

These are known collectively as high-dimensional pattern grammars. A two
dimensional grammar known as a web-grammar was suggested by Pfaltz and
Rosenfeld[1969]. A sentence in a web grammar is a directed graph with symbols
at the nodes or vertices. They show that this class of grammars can be used to
express tree structures, two-terminal series-parallel networks and 'triangular'

networks. A special case of a web grammar is identified when there is only a
single terminal symbol. This type of web grammar is known as a graph
grammar.

2.6.4 Comments

The syntactic approach has significant advantages in pattern representation and

identification. Expressing complex patterns in terms of a small set of simple
primitives with rules for describing the spatial relationship between them is very

attractive. It allows patterns to be compressed into a highly compacted form and

allows a quantitative measure of the similarity between pattern strings to be

made by the use of metrics. The difficulty of the method is in choosing the

47

optimum set of primitives and the best grammar to state how the primitives are
combined.

2.7 Implementation of a Character Recognition
System

There are several recurring problems which need to be overcome in the

development of a successful character recognition system. Rather than
overcoming the difficulties of separating individual characters from adjacent
characters and of resolving character orientation and size, many OCR systems

simply operate in a highly constrained environment. When authors report on
the behaviour of an OCR system or report on a low level operation used within
the recognition process, the problems found in the implementation and the

limitations of the system are not always clearly stated. For these reasons a
working recognition system has been developed and is reported in this chapter,

prior to the development of the new recognition system which is reported in the

coming chapters. The objective here is not to extend the state of the art but to
explore the problem as an essential step in the development of the novel
recognition system which is described in later chapters and is the core of this
thesis.

Aim s: The aims of the recognition system developed are as follows:

• To separate a collection of adjacent binary characters into discrete
characters.

• To normalize the characters for orientation.
• To normalize the characters for size.

• To compare the characters against a database of known characters and
to identify them.

The recognition system consists of four programs. Communication between the

programs is by files. The development environment is described in chapter 4.

2.7.1 Character Extraction(EXTCHR. C)
48

The input to this program is a binary 512*512 image file. The file EXT.IMG is
output by the EXT program as described in section 4.5. This file has a group of
'black* characters on a 'white' background.

The characters are extracted by a region growing technique. The image is
scanned from top to bottom until a foreground pixel that is a black pixel is
found. This pixel and other black pixels which are adjacent to it are noted. The
scan is repeated again from bottom to top and so on until no more adjacent black
pixels are found. For example, the scan procedure for the letter 'M' proceeds as
follows:

This process is repeated for each
character. The characters are
output to a series of 100x100 pixel

files, called XA.S01, XB.SOl and
so on. The number of files output

is written to the file FILE.NO

2.7.2 Character Normalization(ROTATE.C, SIZE.C)

A common problem which has been considered earlier in this chapter is the

normalization of the character. Before it can be compared against a database, it
must be manipulated so that its size and orientation are the same as the
patterns in the database against which it is compared.

The ROTATE Program: The aim of the ROTATE program is to normalize
the character for orientation. In order to achieve this, a co-ordinate frame must

be defined using shape properties which are independent of size and current
orientation. The principal axes are used. This is achieved by simple calculation

of the longest chord. This defines one axis. The other axis is the longest chord

at right angles to it. The origin of the frame is taken as the intersection of these
axes. The character is rotated about the origin so that the axes are horizontal
and vertical.

The input to the ROTATE program is a set of binary files each containing a

character as output by the EXTCHR program. The longest chord is found by

determining the two pixels in the image which are the furthest apart. The other
axis is found by calculating the distance between pixels along a line at right
angles to the longest chord. The line which gives the maximum value is the
second axis. The image is rotated about the intersection point of the axes such
that the principal axis is vertical.

The process is repeated for every character extracted. The number of files is
given by FILE.NO.

The outputs are a series of files called YA.SOl, YB.SOl and so on.

The SIZE Program: The normalization process is completed by the SIZE
program which scales the character to ensure that the maximum width and

height along the axis is 100 pixels.

The inputs to SIZE are the set of files output by the ROTATE program. The

outputs are a series of files called ZA.SOl, ZB.SOl and so on. These files contain
normalized representations of the characters.

50

2.7.3 Recognition(COMPARE.C)

The final stage is to compare the normalized shape matrix with a database of
matrices representing known characters.

The inputs are the files output by the SIZE program. Each pattern is compared

in turn to a set of 100*100 probability matrices, one for each character and an

index generated. If a pixel in the input shape is white and the corresponding

entry in the probability matrix is P1? an index is incremented by P^ If the pixel

is black the index is incremented by (1-Px) since if the probability of a pixel

being white is Px, the probability of it being black is (1-PX). The probability

matrix which yields the highest index identifies the closest match and therefore
identifies the character.

2.7.4 Results

The results obtained for the recognition are very good; five representations of
each character, excluding 'Q' since this not found on U.K number plates, were

submitted to the recognition process. Of these 175 characters, 170 were

correctly identified. The incorrectly identified characters were 'O','O','5','I1 and
'9'.

2.7.5 Generating the Probability Matrices

The database of probability matrices was developed by taking ten normalized

representations of each character as produced by the method given above and
by producing a probability matrix for each character which indicates the

likelihood of a pixel being white. A value of P in the probability matrix indicates

that in 10 representations of the character, (P*10) times the pixel is white.

In order to identify characters which are likely to be confused with each other,

each of the probability matrices were compared to all the other matrices by the

program CONFUSE.C. The sum of the differences between the corresponding
matrix values indicates the level of confusion between the two characters. The
resulting confusion matrix is given in figure 2.21.

2.7.6 Discussion

A high value in the confusion matrix indicates a high possibility of confusion
between the characters; particularly between ’O' and 'O', 'B' and '9', T and T , and
more surprisingly between '5' and '6'. For the recognition of characters on
vehicle licence plates, the confusion between the numeric and alpha characters
can be resolved since the format of the character sequence is known, typically a
single alpha, three numerics and three alphas for vehicles sold after August
1983. In addition the characters on the plate all have the same orientation and

size. This information can be used to develop a more reliable technique for
normalization. By using these enhancements an accurate recognition system

could be developed; however, there are a number of drawbacks which can only be
overcome by employing fundamentally different recognition techniques.

The efficiency of the recognition system is very dependent on the quality of the
characters input to it; for example, the selection of thresholds when converting
to a binary representation could result in character shapes which are thinner

than expected and therefore though clearly recognizable to the human observer,

could not be reliably recognized by a system of this type. Characters with

irregular edges would also cause problems. The failure of a recognition system

to identify a character is serious, but incorrect identification is far worse since

it does not permit notification to the user for him to intervene. This system

incorrectly identified characters with as much certainty as it correctly identified

characters. This weakness is a particular problem for this application since the

characters on a plate consist of a group of random alphas, a group of random
numerics and a single alpha. The more sophisticated OCR systems can readily

be linked to a spell checker which can help the recognition process in cases of
ambiguity.

A 0

B 15 0

C 22 16 0

D 21 13 11 0

E 20 14 15 12 0

F 15 13 19 18 9 0

G 22 13 12 6 10 15 0

H 20 15 20 20 17 15 19 0

I 16 19 19 25 21 19 25 25 0

J 15 15 17 17 17 19 18 22 17 0

K 19 18 18 20 16 17 20 20 21 22 0

L 20 16 13 16 13 16 18 19 17 13 19 0

M 33 33 32 34 31 30 33 31 31 30 29 30 0

N 25 22 19 19 23 25 18 17 25 29 16 24 33 0

0 27 19 10 8 16 22 9 21 27 22 22 18 34 15 0

P 15 13 18 10 17 12 12 18 23 20 17 22 31 19 17 0

R 15 12 16 12 15 12 11 16 24 22 15 22 32 17 15 5 0

s 21 14 13 13 10 14 11 21 22 17 16 17 31 20 14 17 15 0

T 18 18 17 21 19 17 22 24 4 17 19 18 28 23 24 20 21 20 0

u 24 14 10 8 17 23 11 16 23 14 18 13 33 17 11 16 16 15 22 0

V 19 17 20 20 18 19 20 18 18 12 20 15 21 25 25 18 19 19 18 15 0

w 23 30 33 38 34 29 37 26 24 26 29 28 30 31 38 33 34 33 27 33 28 0

X 15 19 21 24 18 16 22 16 20 16 14 18 29 19 27 20 18 20 18 23 18 26 0

y 19 18 20 24 18 17 24 18 11 16 16 17 21 23 27 22 23 20 9 21 12 26 12 0

z 19 17 13 15 12 15 15 21 15 13 18 15 29 26 17 20 18 15 13 18 19 33 12 14 0

0 27 19 10 8 16 22 9 21 27 22 22 18 34 15 0 17 15 14 24 11 25 38 27 27 17 0

1 14 18 19 25 23 21 24 24 12 9 19 16 29 25 28 23 25 21 14 21 15 20 16 13 17 28 0

2 21 13 12 13 9 12 11 16 20 16 19 15 31 22 14 16 12 12 19 15 17 34 18 18 11 14 21 0

3 18 12 10 11 13 16 11 20 19 11 23 14 33 24 14 18 15 12 17 13 18 32 18 18 11 14 16 9 0

4 9 15 21 17 19 15 18 22 18 12 18 19 32 24 24 14 15 21 18 19 17 26 18 19 20 24 15 21 17 0

5 19 14 12 13 9 14 13 16 19 16 18 14 33 23 16 19 17 9 17 14 19 31 19 18 14 16 19 12 9 18 0

6 19 10 11 11 8 12 10 16 20 14 18 13 33 22 15 17 14 8 18 13 18 31 19 18 13 15 20 9 7 17 5 0

7 19 19 17 19 17 16 17 24 13 15 22 20 24 26 20 18 17 17 11 21 14 31 19 11 13 20 14 15 13 18 17 18 0

8 21 13 12 11 9 14 10 16 23 17 19 15 34 22 13 17 14 10 22 13 19 34 20 20 14 13 23 8 9 20 8 6 18 0

9 21 11 12 10 10 14 9 16 22 17 20 16 32 21 13 15 12 8 20 12 18 34 20 20 13 13 22 8 8 20 7 7 17 6 0

A B C D E F G 11 I a K L M N 0 P Q R S T U V W X Y Z O 1 2 3 4 5 6 7 8 9

Figure 2.21 The Confusion Matrix

Two further problems are found with this recognition system. Firstly, some
characters are nominally symmetrical such as 'A' and this leads to two possible

normalized forms. Secondly, a new position must be calculated for each pixel of

the pattern when it is reorientated in the normalization process. In some

situation this leads to the creation of holes within the pattern due to the
rounding of the results of calculations to the nearest pixel.

CHAPTER 3

A NEW MULTI-STAGE ALGORITHM

3.1 Plate Region Detection...55
3.1.1 Characteristics of Licence Plates... 56
3.1.2 Region Detection Metric...56
3.1.3 Rectangle Recognizer..66

3.2 A New Technique for Character Extraction................................... 67
3.3 Character Thinning... .. 68

3.3.1 A New Thinning Algorithm... 72
3.3.2 Advantages and Limitations..78
3.3.3 The Output from Pattern Thinning....................................... 79

3.4 Syntactic Representation...79
3.4.1 Graph Grammars80
3.4.2 Unconstrained Pattern Recognition...................................... 80
3.4.3 Primitive Selection... 82
3.4.4 A New Grammar for Alpha-numerics....................................86
3.4.5 Character Strings..88
3.4.6 Node Detection... 90

3.5 Alternative Node Detection Technique.. .91
3.6 Checking Procedures...91

3.6.1 Extracted Object Distribution..92

CHAPTER 3

A NEW MULTI-STAGE ALGORITHM

The objective of the work is to develop algorithms suitable for the recognition of

alpha-numeric characters in unconstrained environments. The images used are

street scenes containing vehicles. The alpha-numeric characters read are on
vehicle licence plates.

3.1 Plate Region Detection

There are a number of possible approaches to the reading of alpha-numeric
characters on vehicle licence plates. Ideally a general purpose recognition
system could be developed which would be capable of partitioning any image into

objects which it can identify. This is not currently possible for unconstrained
images. An alternative approach is to segment the entire image by a

combination of edge detection and binarization techniques and to search for the

alpha-numeric characters in the resulting output. However, there are serious
problems with this approach. Firstly, the quantity of information in a typical

512*512 pixel image is very large and to perform edge detection, binarization and
to search for small alpha-numeric characters would be very time consuming.

Secondly, it is doubtful whether this approach would perform well. To identify

the edges of each character, where the thickness of the strokes may only be ten
pixels, would require an edge detection algorithm capable of detecting small

edges. A detector of this sensitivity would contain large numbers of pseudo

edges caused by variations in the shading of the picture and the texture of the

objects. To binarize the image requires an adaptive thresholding algorithm to

be used. This would generate many regions which did not correspond to objects.

These problems indicate a recurring theme in pattern recognition; an
unconstrained image does not contain insufficient information to allow

identification of an object; it contains too much information, which in this

application obscures the alpha-numeric characters on the licence plate.

The first stage in reading the characters on the licence plate is to find the region

containing the licence plate. In order to do this, it is not necessary to have a
complete understanding of the image. However, if the image is not fully

understood it is essential to use all the known information available about the

scene to ensure that the plate is correctly identified. By identifying the

attributes of the plate region, areas of interest can be found.

3.1.1 Characteristics of Licence Plates

Licence plates have the following features which enable them to be distinguished
from the rest of the image:

• A defined shape, rectangular if viewed head on, a parallelogram if
viewed from the side.

• The plate background is light in colour; white at the front, yellow at the
back.

• The plate foreground is black at the front and back.

• The plate foreground is made up of discrete alpha-numeric characters.

3.1.2 Region Detection Metric

The detection of the licence plate region is achieved using a metric which checks
areas of the image for the characteristics listed above.

a. A Second Difference Metric: A characteristic of the licence plate area is
that there are a number of light- dark transitions. While the variation in grey

scales is less than that caused by some other features such as headlamps, the

vehicle licence plate is characterized by a close grouping of rapid intensity

changes. This characteristic can be detected by generating an index for regions

56

of the image which takes into account both the intensity fluctuations and the
close grouping of these fluctuations.

When deciding how to generate an index of this type it is essential to consider
images typical of the situations in which the index is intended to be used.

Therefore 100 digitized images of vehicles in a wide variety of environments
were used as test data for this work.

The variation in intensity along horizontal lines in the images is determined. It
is not necessary to do this for every line since the size of the region being sought
must be at least ten pixels high otherwise the characters are too small to be read

even by a human observer. Therefore every tenth line was considered. It is

readily apparent that the grey scale variations found in the plate region are not
the greatest found in the images. In particular, lights cause large, sharp
transitions in intensity. Regular variations in intensity were found in some
backgrounds for example, where there is fencing. However in these cases
intensity variations tended not to be as great as in the plate region.

The grouping of the edges generated by the
collection of dark characters on a light

background can be reflected in the index by
summing the intensity change values over a

small region of contiguous pixels along each of
the scan lines.

Since for the purposes of generating the index

it is unimportant if the transitions at edges

are light-dark or dark-light, the modulus of

the intensity changes can be taken.

Group width

h— H
[1 !-------- X - ,-------- 1 ~~ ~

......... } _ 1_____I.....
Sc$n Ur*!, 1 1-------- ---------- \.------ j---------

1 i-------- ---------- f ------ ,----------
1 L _L
1 1 1

| - S & 1 2 - R H ‘n

— t — 1— + —
.....1........ ! !

F ig u r e 3 .1 S c a n n in g th e
im a g e s

The importance of the sharpness of the edges

relative to the number of edges can be emphasized by considering the second
differences of the intensities of the pixels.

In summary, two indices can be generated. In both the image is scanned in a

horizontal direction every tenth vertical pixel. The first is produced by summing

the first differences of the grey scales for groups of adjacent pixels along the

scanned lines. The second is produced by summing the second differences in the
same way.

Both of the indices have the following effects:

• The distinction between light-dark and dark-light transitions is lost.
• The larger the individual transitions, the larger the index.

• The smaller the region over which the transition occurs, that is the
sharper the edges, the larger is the index.

• Summing the differences over a small distance means that the

licence plate region which has a number of fairly large transitions
yields a higher index than a region which has a single very large
transition, such as the edge of a headlamp.

By scanning across the image at regular intervals a series of indices for

sections along each of the lines is obtained. A high index value is likely to
indicate that the scan line crosses the plate.

In order to implement this algorithm there are two important variables to
consider:

• The pitching of the scan lines; if they are set too far apart, the plate

may be missed completely. If they are too close the searching is slowed
down.

• The group size; if it is too large the effect of the plate may be masked by

the background. If it is too small an insufficient number of the edges on

the plate are considered and therefore a small index generated.

There are significant differences when using the first and second differences. It

is important both to understand why there are these differences and to
determine which performs best in this application.

The effect of using the first differences is to emphasize regions of transitions
from light to dark. Areas of constant intensity yield zero values.

The effects of using the second differences are to further emphasize areas

which have sharp intensity transitions and to give a zero value for areas where

the rate of change in intensity is constant. The second difference increases

the contribution of the sharpness of the edges to the index compared to the first
order differences.

It is worthwhile identifying the factors which affect the size of the index and
establishing the contribution of these elements.

The index is dependent on the following elements:

• The magnitude of the light-dark transitions
• The size of the light-dark transition region.
• The size of the light region.
• The size of the dark region.

• The group size for which the differences are summed.

Consider the value of the index based upon the sum of the second differences:
• Lt= size of dark --> light light~> dark transition.
• Lj= size of light region.

• Ld= size of dark region.

• N = (grey scale intensity of light region) - (intensity of light region)
• Is= second difference index.

• If= first difference index.

• L = The length over which the differences are summed.

All sizes are in pixels.

For one dark --> light —> dark transition
Is = 4N/Lt

Length of one transition = 2Lt + ld + L]

IfL1 = Ld for length L

Is * (L/(2Lt + Ld + L,))x (4N/Lt)

Is = 2LN / ((Lt2) + Ld)

Similarly for the first differences index:

If = LN/(Lt + Ld)

The difference between the above two formulae is that the value of the index is
inversely proportional to the square of the transition length for the second

difference index and to the transition length for the first difference index.
This has the effect of greatly increasing the value of the index for regions

where there is a fast transition from dark—>light and light—>dark. The
direction of the transition is not important since it is the modulus of the

differences that is considered. A number of transitions within the length L
also contribute to a high index.

As anticipated the second difference metric gives a far more reliable indicator of
the plate region than the first difference metric.

What is the optimum value of L in terms of the plate length in order to obtain

the maximum index value for the plate region?
P = the plate length

r = the ratio of (summation length / plate length)
r = L / P

For the range 0 < r < 0.5, as the value of r increases, the value of the index

increases in direct proportion since the whole of the length considered overlaps

the plate. However for the region r > 0.5, where r < 1, as r increases the

61

maximum possible index increases but the probability of obtaining it diminish.
The optimum value for r is obtained by maximising the expression:

f(r)=(probability of complete overlap)*(index obtainable)
+ (probability of minimum overlap)x(index obtainable)
fl(r) = (l-r)/r * r + (2r-l)/r * (1-r)
f(r) = 4 - 3r - 1/r
d(fl(r))/dr = -3 + 1/r2

At the maximum value for r
0 = 1/r2 - 3

r = 1/V3 = 0.577

The optimum length over which the second differences are summed is 0.577 *
plate length.

b. Image Binarization: A new metric is used for the detection of the licence
plate region. As a result of this analysis, a series of lines are identified which

can be used as the basis of the second component of the tool-box. Each of the
lines is divided into sections along which the second differences are summed.

The section which gives the highest index is considered first.

It was anticipated at this point that an

examination of the distribution of the pixel

intensities would yield a bi-modal distribution
if the line crosses the licence plate region. One
peak in the intensity distribution corresponds

to the foreground and one to the background.

The idealized distribution of grey scales

assumes that the edges of each character are
very sharp and each pixel is either in the

of pixels
with a parte

intensity

Forward Background

A AA AW \
Figw

L

btensiiy
"e 3.2 Idealised
Hstribution

62

background or foreground. In fact, this is not achieved and a typical actual
distribution is shown.

In a plate with a width of one hundred and

twenty pixels such as image 3 in section 5.1.3.

the characters are clearly legible. The width of

each stroke of the characters is about seven
pixels. The typical edge thickness is not less

than three pixels and therefore there is no
single intensity which corresponds to the

foreground. The way in which the line, along
which the distribution is being considered, cuts

the strokes has a great impact on the distribution.

The results of intersecting with a portion on

the character 'L' along lines 'A', 'B' and 'C' as

shown will yield different results.

In this application there are also problems

with the intensity of the foreground which is
not completely uniform.

There are however two common features of all

the distributions. Firstly , the range between
the lightest and darkest pixels is a maximum of about 250. Secondly, there are
very sharp cut offs at each end of the spectrum.

The pixels fall into three categories:

• Black characters - the foreground.

• Yellow or white licence plate - the background.

• Transition pixels - between the foreground and the background.

A

Figure 3.4 Character
Intersections

t o t e of pixels
with a particular

intensity

Foreground Background

Figi
L

intensity

ire 3.3 Actual
Ustribution

63

Although the distribution of intensities does not correspond to a pattern showing
two well defined peaks, it is still possible to use the information available as the
basis for selection of a global binarization threshold. A value mid-way between
the highest and lowest intensities is used as a global threshold. This method not
only takes advantage of the sharp cut-offs exhibited by the intensity

distributions for lines which intersect the plate region but also is not affected by
variations in distribution.

When a global threshold has been determined it can be used for two purposes:
• To convert the image into a binary representation.
• As a basis for isolating the licence plate region.

Global thresholding is simple to apply; a pixel which has a higher intensity than
the threshold is taken as 'white' all other pixels are converted to 'black'.

Binarization of the image has several advantages. It is more straightforward to

search for patterns in a binary image and the extraction of the patterns is
simple. When dealing with an unconstrained image a global thresholding
algorithm yields poor results and many edges are not detected. This is a serious
drawback of global thresholding and has lead to the development of adaptive
thresholding algorithms, in which the threshold chosen for different regions of
the image varies. The only circumstance where global thresholding is effective is

where the image consists of a single foreground and a single background
intensity. This is the case for the portion of the licence plate region of the image.

Although the selection of a single threshold is likely to obscure other edges in the

images, it is advantageous in this situation where the objective is to isolate the
plate region from the remainder of the image.

After the image has been binarized the quantity of information within the image
is significantly reduced. It can be further reduced by the use of a region growing
technique which isolates the plate region from the remainder of the image and

simplifies subsequent analysis.

64

c. Region Growing: The objective of this work has not been to develop a

complete understanding of the images presented, rather it has been to find
areas of interest as quickly as possible and to discard regions of the image

considered unimportant. The quantity of information present within a 512x512
pixel image with pixel intensities ranging from 0 to 255, is very large; the main

difficulty in detecting and reading the vehicle licence plate stems not from
insufficient information being available, but from too much being available. The

quantity of information considered to be of interest is successively reduced by

each stage of the analysis. As a result of binarization, instead of pixels having
an eight bit intensity associated with them, they have one bit intensity values.

The region growing process continues with this philosophy of removing
superfluous information.

The whole image is not subject to the region growing scheme; instead, the

process starts from the background pixels along the line which yields the highest
value of the second order difference metric. All 4-connected and 8-connected

background pixels are grown from them. It is important to use all the
background pixels for the basis of the region growing since it is possible, that if

only one of them is used, it may be fully enclosed within a region of a character

such a 'O' or 'O' and therefore the plate region is not fully identified.

It is better to region grow from the background licence plate pixels rather than

the foreground pixels since this has the advantage of identifying the rectangular
plate region. The characters on the plate are separate from each other and to

region grow all of them would require a starting point for each one. This is not
available at this stage.

In the region growing process used, the starting points are the licence plate
background pixels. These pixels are given a temporary intensity value to

distinguish them from the 'black' and 'white' pixels that constitute the binary

image. For convenience, this intensity assignment is called 'grey'. The image is

scanned from top to bottom, and background 'white' pixels which touch grey
pixels are changed to grey. This is repeated for successive rows of the image

until no more pixels are changed. However, this is not the end of the process.

The image is scanned again, this time upwards, starting from the bottom row

containing grey pixels, until no more transformations occur. This pair of scans
is repeated until a scan is made in which no more pixels are changed. Often only

one downward scan and one upwards scan are needed however in extreme cases

such as the example shown in figure 3.5, five scans are needed to convert all the
necessary pixels.

This process does require varying

amounts of backtracking;
however, this can proceed very

rapidly due to the small amount of
data which is being processed. A
plate which is clearly legible may

be only 150*50 pixels in size, less
than 3% of the original image.

Furthermore, these pixels are
binary in intensity rather than

possessing an eight bit intensity.

The region growing process has
identified a set of connected pixels which enclose the characters on the plate.

After the region growing process has finished, all information except for the plate
and its characters can be extracted from the image and subject to further

processing by converting all non-grey pixels to black and all grey pixels to white.

There is one problem with the region growing algorithm which requires a small

amount of subsidiary processing. Some characters, such as 'D' and 'O', contain
fully enclosed background pixels. Since these pixels cannot be connected to the

•< < ik: r " -r- v \ • w .c .'s , > ■■

M M
v 'i’J T r r

n
Starting ftjiit One down scan One up scan

Two down, one up Regic î growing
complete

Figure 3.5 Region Growing

66

pixels used to start the region growing, they are not part of the connected

foreground set. A second stage is required to deal with background pixels which
are fully enclosed within a connected foreground pixel set.

The region growing satisfactorily produces outlines of the characters but not the
holes they may contain. The area which is developed as a result of the region
growing process may contain completely enclosed background pixels. If this

occurs when all the non-grown pixels are converted to an intensity different to
the grown pixels, the holes disappear. As a result, the pixels which make up the

character interior are not differentiated from the pixels which make up the
characters. This process is illustrated by figure 3.6.

The grey pixels are shown as the hatched area. The black pixels are shown as
black and the white pixels shown as white.

The first part of the figure shows the plate

background grey with the letter 'O' in black.
The interior of the letter has been untouched
by the plate region growing and is therefore

white. The second part of the diagram shows
the result of applying the simple rule that all

non-grey pixels are converted to black and all
grey pixels are converted to white. This erases
all of the image except for the plate region and

The identification of the licence plate outline increases the certainty that the
region is the one being searched for. It is not necessary for the region extracted

in the earlier analysis to correspond to the plate; however, it is anticipated that

Figure 3.6 Character
Extraction

the fully enclosed characters.

3.1.3 Rectangle Recognizer

at least traces of the plate edge will be found. If this is not the case then it is
likely that the region under consideration is not valid. If this occurs, the second
difference metric should be used again, in order to consider other regions of the
original image which are likely to contain the plate.

The only portion of the original image which is considered in this analysis is the
set of connected background pixels. Ideally, the outline of the region extracted
corresponds to the vehicle licence plate. There are two basic shapes of plate

which are in common usage. The usual pattern on vehicles is where all the

characters are in a single line; a much less common form is found on commercial
vehicles where the characters are in two rows, one on top of the other. In both
cases two pairs of parallel edges should be detected and reported. If they are not
found, there is a greatly reduced likelihood that this is the licence plate region.
The direction of these vectors is cross referenced with a vector through the
characters as reported in section 3.6.1

To isolate the characters and to remove the plate, region growing is started from
the background outside of the plate. The grown pixels are changed to the same

intensity as the plate. This leaves 'black' characters on a 'white' background.

In order to overcome the enclosed hole' problem, reference is made to the image
first produced after the binarization process; each black pixel which makes up

the character is compared to the same pixel in the binarized image. Any pixel
which in the new image is black, while its corresponding pixel in the earlier

image is white, is converted to white. This can be done very rapidly since each
character is usually only a few hundred pixels in size.

3.2 A New Technique for Character Extraction

The image is scanned in columns, starting at the top left. When a foreground

pixel is found, adjacent pixels on the same column are noted. In figure 3.7, these

67

pixels are the start of region 1. The process continues until other pixels are

found which are not yet connected to the region 1 pixels. The process is repeated

until groups of foreground pixels are collected into regions. It is straightforward
to connect regions with each other. Sets of connected regions correspond to
objects.

Regions — 1 2 3 4

1 *

2 *

* indicates
3 *

connected
4

Figure 3.8 Region Connectivity

The scanning process forms the four

regions as indicated in figure 3.7. During the scanning, a matrix is built up

indicating the connectivity of the regions. For the two characters above the
connectivity of the regions is given in figure 3.8. By combining regions 1 and 2,
and 3 and 4, two character are produced.

3.3 Character Thinning

The recognition process begins after extracting individual characters from the

original image. The characters are thinned to obtain a skeletal representation.

Not all patterns are suitable for thinning; the thinned form of some patterns
does not bear a strong physical relationship to the original unthinned form.

Patterns which are suitable have a high structural content; they consist of
interconnected members which are long and thin as shown in figure 3.9.

69

The 'blob' pattern has a large area in relation to its volume and is unsuitable for
thinning. The behaviour of thinning algorithms tends to be unpredictable due

to the sensitivity of most algorithms to slight surface irregularities. These

irregularities have a much greater effect on the thinned form of 'blob' patterns

There are usually two reasons for

thinning. The first is as an aid to

a recognition process; used when
the pattern has some intrinsic
meaning, for example a character.
The second is that it provides a
compacted version of the original.

Ideally in both cases the thinned
form of each pattern should be a

unique representation of the original. However, this is not always the case even
for patterns which have a high structural content as is shown in figure 3.10. If
the two shapes given are simply regarded as members of the same set of patterns
the thinning is usable. In some cases, the convergence of patterns as a result of
the thinning process is beneficial when the aim is to recognize the pattern rather

than to store a compacted form of the original. In the case of alpha-numeric
character recognition, it is most helpful that characters which are composed of
strokes of different thickness yield the same thinned form.

The patterns which constitute the alpha­

numeric character set are very suitable for

thinning. Their structural content is high and
they can be subdivided into thirty six subsets
(A-Z and 0-9). The thinned form of a member

of any subset contains sufficient information

to differentiate it from any other subset. The

than on long, thin patterns.

High structural content Low structural content

’blob'
...... Thinned form

Figure 3.9 Structural Content

sole exceptions are the number 'O' and '1' and the letters 'O' and 'I' which are

very similar, but this is not a result of the thinning process. Even the best

recognition system available, the human observer, makes frequent mistakes in

the absence of context information. The range of patterns in each subset, that is
the different forms of each character are varied. This is due to a number of

reasons. There are many different font types, even after excluding the highly

styled ones, such as Gothic. However, the range of fonts found on vehicle plates

is comparatively small. The most important attribute of the licence plate is

legibility. However, even when two patterns of the same letter from the same

font are compared there are differences. This is due to either irregularities in

the boundary caused by poor threshold selection when converting to a binary
pattern, or to insufficient precision in the image capture and digitisation system.

Thinning helps to eliminate these problems.

Since such a wide range of patterns can all represent a particular character

there are occasionally ambiguous patterns. Consider the character in figure
3.11.

The first character is clearly 'A', the second 'H',

but the third is ambiguous. As a result of
thinning it is interpreted as 'A'. The thinner

the top line in the third representation the

more the human observer is likely to interpret

it as 'A' rather than 'H\ However, there is no
correct interpretation, since the rules which

define what it is that constitutes a particular

character are heuristic and certain patterns
even cause problems for humans.

It is highly advantageous to have thinning as the first process in the recognition
process because:

71

• After thinning the character is still recognizable to the human observer

indicating that, although information has been removed concerning the

thickness of components of the pattern, that information has little
bearing on the recognition process.

• The volume of data representing the character is reduced, so that
processing can proceed more quickly.

• There is no shape boundary which in a conventional syntactic pattern

recognition system is followed, broken into primitives and used to

express the pattern. The pattern has been reduced to a series of lines
and nodes

The thinning process is fraught with difficulties. Different algorithms tend to
produce different representations particularly at the ends of strokes. For most

algorithms, the thickness of the pattern alters the skeleton obtained. The
criteria used to determine the skeleton are often not explicitly stated. The
maximal circles criterion is often given, this is the locus of centre of the set of

maximal circles for the pattern. This is hard to obtain in practice and
researchers tend to use small templates compared against pixels at the boundary

of the pattern, nibbling at the edges until a connected skeleton is obtained. The

results obtained do not always agree with the skeletons drawn by humans,
indicating that the maximal circles approach is not the criterion which
individuals use. This is explained by the fact that humans examine the whole
image when thinning, while the maximal circles and its implementation by using

boundary templates examine only a small area. Most thinning algorithms

exhibit extreme sensitivity to slight irregularities at the boundary. In addition

there are problems caused by different forms which are produced by generating a
4-connected and an 8-connected skeleton.

Ideally an algorithm suitable for thinning alpha-numeric characters should have
the following characteristics:

• Explicitly stated criteria used for the production of the skeleton.

• Insensitivity to boundary irregularities.

• Insensitivity to the thickness of the pattern.

• No 'flaring' of stroke ends.

• Rapid execution.

The new thinning algorithm has these characteristics.

3.3.1 A New Thinning Algorithm

Patterns which are most suitable for thinning have a high structural content.

The alpha-numeric character set is a good example. The character set can be

viewed as consisting of strokes some of which intersect. For example, the letter

'T' consists of two strokes at right angles to each other. Each of the patterns can
be subdivided into two distinct region .̂

• Stroke regions.
• Intersection regions.

A stroke region has two roughly parallel sides and is long in relation to its

thickness. In the simplest case the thinned form of a stroke region is parallel to
the two sides and directly between them.

An intersection region is formed by the intersection of two or more strokes. In

order to find the thinned form of regions of intersections the skeletons of the
stroke regions must be considered.

7? t, - . -s- ~ ~ •. ■ 7—T T ‘ ~ * f' " '"K" ' ” * s*? vj-̂ r*--'’-.''*. ' '» *v/ -■’V-; •» •' ¡; * ;,-c »•• * ' ■*

73

For the simplest case of two

strokes intersecting at right
angles. The result of thinning the

stroke regions is that two lines

are obtained which are at right
angles to each other, both of
which enter the same region of
intersection. The lines can be

extended until they intersect.
This gives a right angled ’L’
shape.

The results for three and four
stroke intersections are similar:

By extending the thinned lines
which result from thinning the

stroke regions, into the regions of
intersection, a complete skeleton

can be produced. This yields
skeletal representations which

bear a close resemblance to those

which are intuitively produced by
humans. A stroke component of a

pattern can be thinned by

reference to its own shape, but the

thinned form of a region of

intersection is wholly dependent upon the strokes of which it is the intersection.

In order to distinguish between the two region types the properties of each must
be considered.

Before Thinning After Thinning

Stroks Regions

intersection Regions
Figure 3.12 Stroke and Intersection

Regions

:&y Liti vy..¿±n±

In the ideal case the strokes are parallel sided, and the thinned form is a line
which is the locus of points which are mid-way between the two sides. These

points have the property that vectors drawn from them to the nearest two edges
will be at a 180 degrees to each other.

In order to execute quickly, the algorithm should be implemented as follows:
• Generate a Hst of edge pixels.

• For each interior pixel calculate the distance to the nearest edge pixel.

• Extend a vector at 180 degrees to the vector from the interior pixel to

the nearest edge until it reaches another edge.
• Calculate the distance of the interior pixel to the second edge.
• If the two distances are the same, the pixel is an interior pixel.

An edge pixel is a foreground pixel which touches both a foreground and a

background pixel. An interior pixel is a foreground pixel which touches only

Applying this algorithm produces

a skeleton for the stroke regions.
If the stroke region is parallel

sided, the skeletal pixels for the
region are connected. This is not
necessarily true if the sides of the

stroke region are not parallel

sided. However, the situations

where connectivity occurs can be
readily identified. Figure 3.14

considers a vertical stroke and the position and size of pixel rows which yield a
connection with an adjacent row of five pixels.

other foreground pixels.

"X 3 C l il ■ 1 !
X D

i 1

: j : upSFh cap u p

[X T 71Tri X pj L
■ f f

æ y NJ Lnrn■Ü

"T" Hi . A n :e 1 Skeletal
pixel

Figure 3.14 Pixel Connectivity

A similar analysis can be performed for longer adjacent rows. The sizes and

positions of rows of pixels which give connectivity with an adjacent row, of

length N pixels, where N is an odd number of pixels in width is given below.

n is an integer and the row size is greater than zero

• For a row size N±2n, a displacement of one pixel to the left or right yields
three positions.

• For a row size N±(2n-1), a displacement of one pixel from each of the
nominally central positions (an even number of pixels has no one true

central pixel, but two nominally central pixels) yields three positions.

Similarly for a row of length N pixels, where N is an odd number:

• For a row size N±2n, a displacement of one pixel to the left or right from

each of the nominally central pixels yields four positions.
• For a row size N±(2n-1), a displacement of one pixel from each of the

nominally central position yields five positions.

As a result of applying this
algorithm, thinned forms of the

stroke regions are generated. If
the conditions given above are

met, each stroke skeleton is

connected.

The behaviour of the algorithm at

the end of strokes is very
predictable and this means than

the problem of ’flaring' is dealt
with satisfactorily, as in the case of a simple parallel sided stroke.

This is illustrated below in figure 3.15.

æ £ 5±, n u T 3
a T FI? W “ T

B 1 T 1 1 i
Œ

I T I

E b H^fi] n t
n _ rp m n m i n d r ^ g skeletal

pixel

Figure 3.15 Pixel Connectivity

As shown in figure 3.16 there is a
gap between the end of the stroke

and the end of the flared

components of length L;

L = (V2-l)w/2

w is the nominal stroke width.

By ignoring connected skeletal
pixels of length less than w/2

these pixels are eliminated. If
there is an unusual pattern at the

stroke end, a further simple check may be applied. A stroke skeleton splits only
where there is a hole in the pattern or, in some unusual cases, where two strokes
intersect. In summary, if a stroke skeleton splits and there is no hole between

them and their length is less than w/2, end flaring has occurred and the flares
can be ignored. In the ideal case the stroke skeleton ends w/2 from the end of
the pattern.

The connection of the thinned strokes is determined from a consideration of the
original image and the stroke skeletons.

Consider the case of a two way intersection. The extension of the stroke
skeletons into the region of intersection until they cross gives a complete
skeleton.

End Flaring

stroke intersection

caused by hole

Figure 3.16 Stroke Skeleton Splitting

The problem of extending into the intersection region in order to determine the

skeleton is more complex for an intersection of more than two strokes. Before

considering the general case there is an important special case to consider.

The crossing point which results from extending the stroke skeletons is shown in

figure 3.18 figure by ’X’. This is a special case, since the extended skeletons will
not always intersect at one point. A more general case is shown in figure 3.19.

In the general case of a three way intersection,
there are two crossing points. Often these will
be coincident, as in the case of the intersection

in the letter 'T1, since the two horizontal

strokes are really a single stroke divided by the

vertical stroke. In cases where there are two
discrete crossing points, either may be chosen.

- H -

X indicates a crossing point

Figure 3.19 Stroke Crossing
Points

3.3.2 Advantages and Limitations

There are many advantages of this algorithm over conventional methods which
use either sets of large templates or a maximal circles criterion:

• It should be faster to execute and does not require repeated passes over

the pattern in order to produce a result.

• It should not be sensitive to small variations in the boundary of the
pattern, which can cause large deviations in other methods.

• The problem of the flaring of ends can be satisfactorily resolved.

• The skeleton produced is the same irrespective of the thickness of the
original pattern.

• The problem of unpredictable behaviour at stroke intersections does not
occur.

There are drawbacks to the technique:

• A connected skeleton is not produced, and there is no guarantee that the
stroke skeletons will be connected.

• The method only produces a meaningful result on patterns with a high

structural content and stroke lengths which are long in relation to their
width.

• A small amount of post processing is required both to remove
superfluous pixels and to produce either a 4 or 8 connected skeleton as
required.

The problem of the stroke skeleton not being continuous is the most significant
drawback; however this can easily be dealt with by a small amount of post

processing. The production of an 8-connected skeleton is easily solved by the use

of simple templates. One pass is sufficient.

The limitation regarding patterns with a low structural content is not a problem,

since any thinning technique is only valid on patterns of this type.

79

3.3.3 The Output from Pattern Thinning

Depending upon the type of use to which the output is to be used, there are two

possible strategies. The first is to produce a connected skeleton and then to

proceed to a conventional recognition system. Such a system may use either

template comparison, or a syntactic scheme where the primitives are expressed

in terms of stroke size and orientation. The second strategy is to use the

connectivity information as the basis for a recognition system, strokes which

enter the same region of intersection are connected. A syntactic recognition

scheme based upon the intersections of nodes is now developed.

3.4 Syntactic Representation

The syntactic approach to pattern recognition expresses patterns in terms of

primitives and operators which describe the spatial relationships between them.

The set of primitives and the operators constitutes a pattern grammar. The

usual technique is to specify primitives which have a defined size and

orientation, and to use only the concatenation operator. This works well in

highly constrained environments, but it is not a successful technique when the

input patterns are less controlled. While most grammars have the strokes of the

patterns as the primitives, there is a class of grammars which have the nodes or

stroke intersections of the pattern as the primitives. These are called graph

grammars.

The recognition process is by matching the string which represents the pattern

against a set of strings of known meaning.

It is difficult to provide a description of an alpha-numeric character which

describes the set of patterns which would be recognized by a human observer as
representing a particular character. Any pattern grammar which uses as its

primitives, objects which include in their descriptions a size and orientation,

generate different strings for slightly different forms of the same characters. To
overcome this problem a new graph grammar has been developed which

expresses the character set in terms of the intersections of strokes, irrespective
of the size and orientation of those strokes.

3.4.1 Graph Grammars

One dimensional pattern grammars are only able to use the concatenation
operator. For more complex spatial relationships, additional operators are

needed. In graph grammars the terminal symbols are the nodes in the graph

rather than the branches. Sentences generated by a graph grammar are

directed graphs with symbols at their vertices. A graph grammar can be
expressed in terms of the four-tuple:

G = (Vn,Vt, P, S)

• V nis a set of non-terminal structures, nodes and graphs.
• V tis a set of terminals.

• P is a set of productions or writing rules.
• S is a set of initial graphs.

3.4.2 Unconstrained Pattern Recognition

There are two main stages in the development of a graph grammar. The first is
to determine what feature of the pattern constitutes a node. In simple cases this
may simply be an intersection point. The second is to develop operators which

express the spatial relationships between the nodes.

Three types of nodes are identified. They are illustrated in the character A' in
figure 3.20

81

Node B

Node C

I NodeD7 "r
Node A g 1 NodeE■ —

Figure 3.20 Nodes of A'

Nodes ’A' and 'E' are distinguished as end

points. Nodes ’B' and 'D! are intersections

between three lines and node ’C1 is the

intersection of two lines, signalled by an abrupt

change in direction of greater than 90 degrees.

It is quickly

apparent

that the
selection of nodes is inadequate. The

characters 'O' and 'O’ have no nodes according

to this scheme, since there are no end points,
intersections, nor abrupt changes in direction.

There are also ambiguities with characters
such as 'D'. For this character nodes A and B

are connected. This is the same information as for T and *1'. There is also a

difficulty with other characters. For example in figure 3.22, the representation
A' is incorrect unless a new node type is introduced, since node 'C' is not found

because the upper part of the character from nodes 'B’ to 'D' is curved.

Node C

Node B

Node A

NodeD

Node E

— indicates a node

Figure 3.22 Nodes of A'

Clearly a new node type must be developed. It

is essential to follow the curves of a pattern

and to identify a change in the curve direction
of ninety degrees as shown in figure 3.23.

In addition a node type for the intersection of

lines as found in the character 'X' is needed.
This gives four node types as shown in figure
3.24.

..1*-
indhtesanode

Figure 3.23 Nodes of 'D' and
'A'

It should be noted that the type 'c'

node is used for abrupt changes in
direction and also for curves
where there has been a change in
direction of greater than or equal
to ninety degrees.

3.4.3 Primitive Selection

For the representation of the information contained within the connectivity
matrix, a low dimensional pattern grammar is not adequate since it can only use
the concatenation operator. A high dimensional web or graph grammar must be

used. The most suitable grammar type is to use a graph grammar which is

capable of expressing the relationships between the nodes of the alpha-numeric

character set. The smaller the number of primitives in a pattern grammar the
more complex is the grammar needed to express how they are related. However

83

the scheme proposed here has both a small selection of primitives, that is node

types, and a simple grammar.

The following types of operators for expressing spatial relationships have been

The numbers on the diagram

indicate arbitrary node

numberings.

The operator is used for

expressing a simple connection

between nodes without branching.

The operator is used when

branching occurs, and the two

branches do not join at a later

point. It indicates two alternative

paths.

The operator indicates two paths which join together again after branching

The '+' operator indicates the concatenation between two patterns, that is

between two loops which share a single side.

a. String Conflicts: Using these node types there are a number of conflicts

when the same string represents two characters. This occurs for:

• 'C\ TJ, ’N' and ’Z\

• ’S’, 'M' and 'W\

• T and T .

• ’O’ TV and ’O’.

• T and ’1’.

• VT, '7', and TA

identified as shown in figure 3.25.

2 3
0 1 2

° _ y \ _ 7

4 5
0-1-2 0-1-Ü2-3-6W 4-HH

; — 3 Æ \
! _ y A V

\ A \ /
>----- 5
4

0-1-M&Î4-5) A+B

Figure 3.25 Operator Types

84

• ’6’ and ’9’.

Some of the conflicts such as between 'O' and 'O' and between 'l 1 and T are
inevitable because the characters are so similar. Even a human observer is often

unable to differentiate between them without using context information.

Fortunately, in the U.K. most licence plates follow a strict pattern of either
three alphas, three numerics and an alpha or, for more recent vehicles an alpha,

three numerics and three alphas. The gap between the block of three alphas and
the three numerics is larger than the gap between individual characters. It is
possible from this information to infer the correct interpretation of the character.

A small number of vehicles have 'personalized' plates which do not follow this
pattern. A few vehicles have plates where there is a deliberate attempt to make

the number 'O' look like the letter 'O'. In these cases it is the intention of the

plate owner to deceive the observer into confusing certain pairs of characters.

Dealing with these cases is beyond the scope of this report.

The syntactic representation is not dependent upon the orientation of the
character. While this has many advantages it can lead to some confusion. An
upside down 'M' is very similar to a 'W', similarly '6' and '9' and 'L* and '7' can be
confused. This problem can easily be solved by using context information, since
it is known that all the characters on the plate have the same orientation and

most characters are unambiguously represented. Indeed, in the case of a plate

consisting entirely of '6's and 'L’s, it is still possible to infer the correct
interpretation, since even a vehicle which is cornering is unlikely to have its

plate at an angle greater that 20 degrees to the co-ordinate frame of the image.

Therefore in the case of '6' and '9' an adequate test is determines if the loop of
the character is at the top or bottom within the image's frame.

This leaves a few character pairs which cannot be resolved by using context
information. 'U' and 'V' are very similar in appearance. At the two extremes,

the character rVt has a sharp intersection at its base, while 'IT has a curve.

However, there are many intermediate forms of the two letters which are

ambiguous either as a result of the font or due to a lack of clarity in the image.
The same is true of the characters 'Y' and 'T'. While the extremes are easy to
identify there is a range of intermediate shapes which cannot definitely be

assigned to either character. In these cases the relative directions of the strokes

as they enter the regions of intersection can be used to differentiate between
them. Such a criterion is heuristic, but this is inevitable when a variety of fonts

are used and distortions occur due to lack of resolution of the images and the

effects of processing the image prior to this stage of the analysis.

In order to overcome the problems of confusion between the remaining
characters such as ’J' and 'L' and 'T' and 'Y1, the introduction of two further node
types is required.

After determining the co-ordinate frame of the characters 'J' and 'L’ the type V

nodes can be considered from the viewpoint of a starting node and it can be
determined if the node is generated as a result of a clockwise or anti-clockwise
change in orientation of the line.

To resolve the 'T' and 'Y' conflicts, the three way intersections can be classified

into two types dependent upon the relative angles of strokes as they enter the

regions of intersections. To implement this requires a considerable amount of
extra processing and leads to an increased number of strings representing some
characters.

A serious problem is the differentiation between 'D' and 'O'. The character 'O’ is
not used to indicate the year of a vehicle, but both letters are used in the alpha

part of the plate. In this case a heuristic criteria must be used to differentiate
between them. In the letter 'O' the position of the upper two nodes will be in the

same vertical position as will be the two lower nodes. This is not the case for the
letter 'D'

The new node types are shown

below in figure 3.29:

The introduction of additional

node types is not required by some

characters since they yield a

unique representation. It is only
when the string produced is

identified as representing more

than one character that it is
necessary to consider the

additional node types.

3.4.4 A New Grammar for Alpha-numerics

The relationships between the nodes can be expressed formally. Since the
recognition system is based upon the relationship between nodes rather than

the branches connecting them, web grammars are ideal for expressing node
relationships. The grammar given below has been used to express the alpha­
numeric character set:

G = (Vt,Vn, P, S)

Vt = (a, b, c, d,}

Vn = {<character>, <subweb>, <node>, <operator>}

<charaeter>

<operator>
-> <subwebxoperatorxsubweb>

->
->

->
-> &

<subweb>
<subweb>
<node>

<nodexoperatorxnode>

<nodexoperatorxsubweb>

a

b

bi

C

Cl

c2
d

S = {alblb1lb2lclc1lc2ld}

The ' 11 operator means ’or'.

The lengths of the lines which connect the nodes are not considered, nor is the

path they follow, provided that the path does not deviate by ninety degrees or
more, since this would be interpreted as a further node.

The node types are given in the string representations of the patterns rather
than some arbitrary node numbering.

->

->

->

->
->

->
->

->
>

->

A type 'a' node is chosen as a starting symbol.

If a type a' is not available then either a type
'b' or 'c' is chosen. It is clear that there are

possible ambiguities when there is more than

one possible starting node and when the

character is not symmetrical. This is shown for
the character *E' in figure 3.27.

If the starting point is 1 or 3 the string
representation is:

a~c-b~((a)&(c-a))

If the starting point is 2 the string expression is:
a-b-((c-a)&(c-a))

Clearly a recognition system must detect that these strings represent the same

pattern; to determine if a string representing a pattern is an 'E' it must be

compared against two strings. In the list given below, where there is more than

one representation of the character, such as for 'E' all representations are shown.
The letter 'Q' is not considered since this not found on licence plates in the U.K.

3.4.5 Character Strings

A a-b-((c-b)*(b))-a I a-b-((b)*(c-b))-a

B (b-b-c-c)+(b-b-c-c)
C a-c-c-a I a-c2-c2-a

D c-c-c-c

E a-c-b-((a)&(c-a)) ! a-c-b-((c-a)&(a)) I

a-b-((c-a)&(c-a))

F a-c-b-((a)&(a)) I a-b-((c-a)&(a)) I a-b-((a)&(c-a))
G a-c-c-c-c-a i a~c2-c2-c2-c2-a

H a-b-((a)&(b-(c)&(c)))

c I

I
b f

I

a - < - - - - - - - - - Point 3

Point 2

* Point 1

’aVb1 and V are nodes
Figure 3.27 Nodes of 'E'

89

J a-c-a I a-c1-a
K a-b-((a)&(b-(c)&(c)))
L a-c-a I a-c2-a

M a-c-c-c-a I a-c1-c2-c1-a
N a-c-c-a I a-cr c2-a

O c-c-c-c

P a-b-((c)*(c-c)) I a-b-((c-c)*(c))
R a-b-((b)*(c-c-b))-a I a-b-((c-c-b)*(b))-a
S a-c-c-c-c-a I a-c2-c2-c1-c1-a

T a-b-((a)&(a)) I a-b2-((a)&(a))
U a-c-c-a I a-c2-c2-a

V a-c-a I a-c2-a

W a-c-c-c-a I a-c2-c1-c2-a I a-c-c-c-c-c-a
X a-d(a&a&a)
Y a-b-((a)&(a)) I a-br ((a)&(a))
Z a-c-c-a I a-cj-c2-a

0 c-c-c-c
1 a-a

2 a-c-c-c-a I a-c2-c2-a

3 a-c-c-b-((a)&(c-c-a)) I a-c-c-b-((c-c-a)&(a))
4 a-b-((c)*(c))

5 a-c-c-c-c-a I a-c1-c2-c1-c1-a I a-c2-c2-c1-a

6 a-c-b-((c)*(c-c-c)) I a-c-b-((c-c-c)*(c))
7 a-c-a I a-cr a

8 (b-b-c-c)+(b-b-c-c)

9 a-c-b-((c)*(c-c-c)) I a-c-b-((c-c-c)*(c)) I
a-c-b-((c)*(c-c)) I a-c-b-((c-c)*(c))

I a-a

90

3.4.6 Node Detection

There are two techniques which can be used for node detection, depending on

how the skeletal forms of the characters are derived. Conventional thinning

algorithms produce connected skeletons. If an algorithm produces 8-connected
skeletons, node detection is as follows:

A type 'a' node has only one other pixel adjacent to the node pixel.

A type 'b' node has more than two pixels adjacent to the node pixel.

A type ’c' node is found where a line has no intersection with another line but
undergoes either an abrupt change in direction, or a gradual change in direction

of equal to or greater than ninety degrees relative to the direction of the line
from another node.

A type'd' node can be determined since it is the intersection of four strokes and
at least one pixel where they meet is adjacent to 4 pixels.

The detection of a type 'a' node is straightforward; it is necessary only to search
for a character pixel which touches only one other pixel.

The detection of a type 'b' node is also straightforward. However, determining
precisely what type of 'b' it is, is more complex, since the angle of each of the
intersecting lines with respect to the other two lines must be calculated. The

gradient of a line can be found by calculating the ’best fit' line for the intersection

point and for a small number of other points along each of the lines. This can be

performed for all intersecting lines. The co-ordinate frame within which this is
carried out is arbitrary but this is unimportant since the same frame is used for

all intersecting lines and it is the angle between them that is significant.

The detection of type 'c' nodes can also be performed by calculating the gradient

of a line for a group of points, advancing by one pixel, recalculating the gradient
and comparing it to the previous value.

3.5 Alternative Node Detection Technique

In order to generate the graph representations of characteristics it is not

essential to generate the connected skeletons first. If it is known that three

strokes enter the same region of intersection then a type 'b' node exists at this

point; similarly, when two strokes enter the same intersection region a type 'c'

node exists. The detection of type 'c' nodes caused by a curve in the stroke can be
detected by following each disconnected portion of the stroke from one to the

other. Prior to doing this, checks must be made to ensure that if only two strokes

enter the same region of intersection and are roughly parallel then a node does
not exist.

3.6 Checking Procedures

Ideally, after performing the binarization process and region growing, the area

considered would contain only the alpha-numeric characters, which would not be

touching each other. In practice this is not the case. There are two problems
which frequently arise:

• Non-characters are left.

• Adjacent characters are touching.

Small groups are sometimes produced which do not correspond to characters.

These can be easily eliminated prior to the thinning and character recognition by
ignoring groups below the minimum size which could be read if they were a
character.

The problem of adjacent characters touching is harder to resolve. However, if a

pattern is not recognized, a check is made to determine whether its width
indicates that it may be two characters. The orientation of the plate is known

from the calculated orientation of the plate region, and by the relative positions
of the characters successfully read from the plate.

92

In order to separate the
characters the density of black

pixels is considered along lines at

90 degrees to the direction of the

characters, and the long
horizontal axis of the plate as

shown in figure 3.28

At the point where the characters

touch, the density of black pixels
is a minimum for the central
portion of the image. The

characters can be separated along
this axis and re-submitted to the thinning and recognition processes.

3.6.1 Extracted Object Distribution

A valuable check on the likelihood of the extracted objects being characters on a
licence plate is to consider both their relative size and position. The size and

orientation of the vehicle plate are known from the earlier analysis. The two
orthogonal sides of the plate can be used to define a co-ordinate frame. Within
this frame the height of the characters is constant, although the width varies

between the widest character ('W') and the thinnest (T). Patterns which meet
this criterion have the centre of their basic rectangle calculated. A line

connecting the centres of these rectangles gives the orientation of the plate. This

may be checked against the long horizontal axis of the plate calculated from the
rectangle recognizer. They should be parallel.

CHAPTER 4

SOFTWARE DEVELOPMENT

4.1 Second Difference Metric(SECOND.C)...96
4.2 Image Binarization(BINARY.C)... 97
4.3 Region Growing(RGROW.C)..98
4.4 Rectangular Checking(RECT.C)... 99
4.5 Plate Removal(EXT.C).. ,99
4.6 Character Extraction(EXTRACT.C)...100
4.7 Context Checking(CON.C).. 101
4.8 Thinning (THIN.C).. 102
4.9 Extending Strokes (EXTEND1.C and EXTEND2.C)......................104
4.10 Syntactic Representation(SYNTAC.C)..106
4.11 String Generation and Recognition(STRING.C)...........................107
4.12 Character Separation (SPLIT.C)...109
4.13 Support Programs..110
4.14 Software Tools..I l l

CHAPTER 4
94

SOFTWARE DEVELOPMENT

The software consists of a set of programs which reflect the multi-stage nature of

the algorithm. Data is passed between the programs using files. This means

that the recognition process proceeds far more slowly than would be achieved if
data remained memory resident. When the image has been binarized it is
written to a file. The next program in the sequence is the region growing. This

necessitates the reading of the binary file. For most of the programs the

majority of the execution time is occupied by disc access. The main advantage of
this approach is that it is easier to determine the behaviour of the system at each
stage, by examining the input and output files. The detection of errors in the
system is also more straightforward. An overview is given in figure 4.1

The programs often make reference to values, for example, the size of each row
in the binary files. These references are referred to symbolically throughout the

programs. They are given in the include file' VI.H. In this section the symbols
are referred to in capitals, for example LINE_SIZE.

Several of the programs require parameters to be input. Sometimes it is

preferable to be prompted for these; on other occasions, particularly if the
program is being rim from a batch file, it is preferable if in-line parameters are

used. This is straightforward in ’C as the number and a list of in-line
parameters are given in the integer variable 'argc and the array of addresses of

the in-line parameters 'argv1. Both argc and argv are specified as input

parameters to the program. If no in-line parameters are provided the value of
argc is 1.

Outline structure charts as described by Jackson[1983] and Burgess[1984] are
given for the main programs are in Appendix 2.

95

A system optimized for speed with a sophisticated user interface could be

developed readily by the application of standard software design and

implementation methodologies. This is outside the scope of this thesis.

The following set of programs find, extract and interpret the characters. They
are intended to be run in sequence. Each program takes its input from files

produced by the previous program and writes to files which are used by later
programs in the chain.

4.1 Second Difference Metric(SECOND.C)

This is the first program in the suite. Its purpose is to determine the second
differences of the pixel intensities of the images, which are indicative of the
licence plate region.

The input to this program is a file containing a digitized 512*512 pixel image.

The first row of the image is read and the modulus of the first difference in
intensity, I, between pixel n and pixel n+1 is calculated by (In+i-In). The process

is repeated to give the modulus of the second differences. The second difference

values are summed for groups of adjacent pixels. The process is repeated along

the line, to give LINE_SIZE/GROUP_SIZE values. The image file pointer is
incremented by GAP_BETWEEN_LINESX(LINE_SIZE-1) pixels and a new line

is read. The process is repeated for this line. At the left edge of the image it is

not possible to derive a second difference value for the two leftmost pixels and
therefore the average value for that group is used.

Two files are output. The first(SECOND.OUT) is an ASCII file containing a
table of second order differences, each row of the table corresponds to one

scanned row of pixels in the image file. The second(FILE.NAM) contains the
name of the input image file. This is used by later stages of the processing.

4.2 Image Binarization(BINARY.C)

The aim of this program is to convert the image file to a binary representation
where each pixel is either BLACK or WHITE, rather than possessing an eight-

bit intensity value. It derives a global threshold which it applies to the entire
image.

There are three inputs to this program. The first is a file containing the name of

the image file(FILE.NAM). The second input is the image file itself. The final
input is the file of second differences(SECOND.OUT).

This program reads the second difference file SECOND.OUT, output by the
previous program. The highest second difference value is found. The
GROUP_SIZE and the GAP_BETWEEN_LINES is known, therefore the

maximum second difference value can be readily related to a group of pixels in
the original image. If the maximum second difference value occurs in a position

specified by row 'R' and column *C' in SECOND.OUT. The row in the image file
is given by:

R * LINEJ3IZE

The column is given by:

C * GROUP „SIZE

The first row in the image is zero. The offset from the start of the image file is
given by:

offset = (R x LINE_SIZE) + (C * GROUPJ3IZE)

The pixels considered start at the offset calculated above and are of length
GROUP_SIZE. They are read from the image file.

The maximum and minimum intensity values within the group of read pixels are

found and the average is taken as the global threshold. The binarization process
is straightforward, the image file is read and pixels whose intensity is less than

the threshold are converted to BLACK and all others to WHITE. A new binary
file is produced called BINARY. IMG.

4.3 Region Growing(RGROW.C)

The aim of this program is to region grow from the background(WHITE) pixels of

the licence plate. All connected background pixels are found and all other pixels
are converted to BLACK This program has the effect of highlighting the plate
region and deleting all other information in the image.

The input is a binary image file, BINARY.IMG produced by the previous
program and the second difference file SECOND.OUT

SECOND.OUT is read in order to determine the section of the image file which

was used to calculate the global threshold.

The region growing process starts from all background pixels in the section of the

image which was used to calculate the global threshold. All connected WHITE
pixels are converted to GREY, that is any intensity which is not BLACK or
WHITE. When this has been done all non-GREY pixels are converted to BLACK

and the GREY pixels to WHITE. This has the effect of highlighting the licence

plate background. It is seen as white on a black background. The characters on
the plate are seen as completely contained groups of BLACK pixels.

This stage of the region growing has the side effect of filling the completely

enclosed background areas found in characters such as 'O' and '6'. However it

does highlight the shape of the plate and allows a check to be made of the

likelihood of this being the correct region.

The resulting image is output to a file called RGROW.IMG.

4.4 Rectangular Checking(RECT.C)

The input file is the binary image file produced by the region growing process

RGROW.IMG.

The program chooses as a starting point the edge of the plate. The edge is

followed in one direction until an abrupt change in direction of the edge occurs.

The edge is again followed from the starting point in the opposite direction until

an abrupt change occurs here. This process is repeated from the termination of

the first edge. When a straight section is found this is followed. This section is
terminated under the same conditions. The procedure continues until the whole

of the plate perimeter has been considered. In this way a set of vectors is

generated. Where possible the vectors are paired for parallelism. Ideally four
vectors are generated which form two pairs. The magnitude of the two vectors in
each pair should be the same. The pair with the greatest magnitude corresponds

to the long horizontal side of the plate. The short vector pair correspond to the

shorter vertical side. Ideally the two pairs should be roughly right angles to each
other. However, this may not be the case even when the plate is clearly isolated
due to the perspective of the image.

The direction of the larger of the vector pairs is taken as giving the orientation of
the plate. This value is output to the file RECT.TXT.

The vector groupings are displayed as an indication of the validity of the region

under consideration being a plate region. A failure to identify the plate outline

tends to indicate that another region should be considered using the next most
likely region indicated by the second difference metric.

4.5 Plate Removal(EXT. C)

The aim of this program is to generate an image file with the characters in
BLACK on a wholly WHITE background.

The input files are RGROW.IMG and BINARY.IMG.

The program is a variant of the RGROW program. The image file RGROW.IMG

has the characters in BLACK surrounded by a WHITE plate region which in
turn is surrounded by BLACK pixels. This program region grows the outermost
BLACK pixels and converts them to WHITE. This leaves the characters as

BLACK on a wholly WHITE background. The region growing starts from a
BLACK pixel in the top left of the image which is assumed not be a part of a
character. All the connected BLACK background pixels are converted to

WHITE. The output file is EXT.IMG

The problem of the filled holes is resolved by referring to the first binary file
produced, BINARY.IMG. If a BLACK pixel is found in EXT.IMG whose
corresponding pixel is WHITE in BINARY.IMG this pixel is fully enclosed in a
character. It is therefore converted to WHITE.

The final output file EXT.IMG consists of an image comprising only the
characters in BLACK with enclosed holes and background in WHITE.

4.6 Character Extraction(EXTRACT.C)

The image file EXT.IMG output from the EXT program has the characters on the

plate as completely enclosed BLACK objects on a WHITE background. By
searching for a BLACK region and growing all the connected BLACK pixels,
individual characters can be isolated and each one can be output to an individual
file.

The input to this program is the binary image file EXT.IMG.

The image file EXT.IMG is read into memory and scanned in columns, starting
on the left of the image until a BLACK pixel is found. The connected pixels are

grown into regions as described in chapter 3. More than one region may

constitute a single character. If regions touch, they are connected to form one

100

new region. Only one pass is required to extract all the characters. In some

images it was found that there are small groups of BLACK pixels which do not

correspond to characters. These are typically less than ten pixels in size,

therefore to eliminate them, the set is ignored if the size of the set of extracted

pixels is less than MIN_CHAR_SIZE. Ignoring these small groups of pixels is
valid since a pixel set which is less than several hundred pixels does not contain

sufficient resolution to allow the characters to be interpreted even by a human
observer.

Each of the connected set of pixels is output to a separate file. The name of the
original image file is read from FILE.NAM as output by SECOND. The prefix of

the name is given to each of the output files. The extension of the files is SOI,

S02 and so on. For example, the names of the files containing individual

characters extracted from image file IM1.IMG is IMl.SOl, IM1.S02 and so on.

The horizontal and vertical sizes of each character are measured to ensure that

the pixel is centrally placed in the output image files. The image files produced
are 100x100 pixels.

The number of files output is written to the file FILE.NO. This is used by later
programs in the analysis

4.7 Context Checking(CON.C)

The role of the context checking part of the analysis is to determine the relative

sizes and dimensions of the extracted characters. In the co-ordinate frame of the
licence plate the vertical height of the characters is the same. The widths are
similar.

Their are two advantages from this program:

• If the extracted characters are in a line, in the co-ordinate frame of the

plate, this means that they are characters and a more detailed analysis
can begin.

• If an extracted object is twice the width of the other items, but spatially

correct, it can be deduced that the object corresponds to two characters
and therefore it can be divided.

The input to this program is a set of 100x100 binary image files produced by the
EXTRACT program, each of which ideally contains a single character, and the
output of the RECT program RECT.TXT.

The output is a file, CONTEXT.TXT, which contains details of the characteristics

of the input image files, specifically the height and width of the patterns and
their position within the original 512x512 image file. From this information the

orientation of the plate is calculated. These figures is compared to those output
by the RECT program and the closeness is reported.

At this stage no attempt is made to modify the set of image files. If however an
image file is not recognized by the later stages of the analysis, reference is made

to CONTEXT.TXT in order to determine if the image file contains two characters
which can be separated.

If the orientation of the plate is found to be within ± 45 degrees of the horizontal,

no re-orientation of the characters is required by later stages of the recognition
process. If the plate is outside of this range, re-orientation is necessary, since for

example, the letter 'N' becomes 'Z' if it is rotated. In all the images considered no
re-orientation is required.

4.8 Thinning (THIN.C)

This program takes 'solid' forms of the characters input and produces skeletal
forms of them.

The names of the input files are derived in the following way. The file
FILE.NAM, output by SECOND, is the name of the original image file. This is

read to determine the prefix of the names of the solid characters. The number of

files is given by the file FILE.NO, output by EXTRACT. The names of the files

to be thinned is 'image_name.SOn' where n is between zero and the number of
files.

The input file is read, and a list of edge pixels compiled. An edge pixel is a
BLACK pixel which touches at least one WHITE pixel. Each BLACK pixel is

considered in turn. Both the distance and direction to the nearest edge pixel are

calculated. A vector is extended at 180 degrees to this direction and the distance
to the nearest edge pixel in this direction is calculated. If the two distances are
the same +1 pixel the pixel is skeletal.

A further stage is required to ensure that an 8-connected skeleton is produced.
The second stage comprises a single pass. Each remaining pixel is matched to
see if it matches the patterns shown below

If the match is found, the central
pixel is converted from BLACK to

WHITE since, it is not required
for 8-connectedness of the
skeleton.

The output is a 100*100 binary
file with the same name as the

input file but with a '.SKn'
extension, where n is a value

between 0 and the number of files.
The files contain only the stroke skeletons not the connected skeleton.

4.9 Extending Strokes (EXTENDI.C and
EXTEND2.C)

The aim of these two programs is to extend the stroke skeletons into the regions
of intersections. The number and name of the files which contain the output

skeletons are derived in the same way as for the THIN program, except the file

extensions are ’.SLn' for EXTENDI and '.SMn' for EXTEND2, where 'n is an
integer between 0 and the number of files.

This process is divided into two parts. The first program, EXTENDI, deals with

the problem of two strokes which if extended, produce two lines which are
roughly parallel and do not touch as shown below.

The EXTENDI Program: The
first part of EXTENDI is to find

the end points of strokes. This is

straightforward, since for the 8-
connected stroke skeletons, an

end pixel is BLACK and
connected to only one other
BLACK pixel. Next, the

directions of straight lines, which

could be extended from each end

of each stroke, are calculated.
The direction of the line is based

on a line fitted through the last 10 points of the stroke or the number of points

in the stroke if less than 10. The process is repeated for each stroke end.
Extensions which are close to 180 degrees of each other are found. For the test
data used, within ±15 degrees of parallel was found to be suitable.

Pairs of stroke end points whose extensions meet this criterion are found, and

the direction of a vector between them is calculated. If the direction of this

No
intersection

-■ Parallel Extension ------- Required Extension

Figure 4.3 Parallel Stroke Extension

vector is close to the direction of the extended lines, these points are connected in

the new skeletal. A value of within ± 20 degrees was found to be suitable.

The input files to EXTENDI are FILE.NO and the first thinned form, which has
a '.SKn' extension.

The output file is the thinned form with certain stroke ends connected if the
criteria outlined above are met. It has a '.SLn' extension.

The EXTEND2 Program: This program completes the extension process.

The process is very similar to the earlier program except that strokes are
extended until they meet one of the following criteria:

• The edge of the 'solid' form of the shape is reached.

• Another extended stroke is met. If this is the case, both strokes are
deleted after the point at which they intersect.

• A part of a stroke itself is met. The extended stroke is deleted after this
point.

Two criteria may qualify as an intersection as shown below.

An extended stroke which has no
intersections is deleted.

The input files to EXTEND2 are

FILE.NAM, FILE.NO, the solid
form which has a '.SOn' extension,

and the thinned form output by

EXTENDI which has a '.SLn'
extension.

Intersection at Common Point No Common Point

Figure 4.4 Stroke Intersection

The output from EXTEND2 is an
extended skeleton file, with a '.SMn' extension.

4.10 Syntactic Representation(SYNTAC.C)

The input to this program is FILE.NAM, FILE.NO and a file with a '.SMn'
extension as output by the EXTEND2 program. The ’.SMn* file is an 8-connected
skeletal representation of a character.

The first stage in the analysis is to find the nodes of the character. The second
stage is to determine the connectivity of the nodes.

The identification of nodes which are at the end of strokes is straightforward.
End nodes are BLACK pixels which touch only one other BLACK pixel.

It is a little more complex to find the 3-way intersection nodes. A variety of

intersection patterns are possible as shown in the figure below, since the

extension process may result in skeletons containing pixels which are not needed
for connectivity.

All of the example 'complex'

configurations shown are
reducible to a single ’basic’ form.
This form has a single
intersection pixel which is

connected to three other BLACK

pixels.

The reduction of the more complex
intersection types is

straightforward. The *T’ shaped
pattern of pixels are sought, using the template shown. The central pixel of the

’T* is deleted to convert from a complex to a basic form of intersection.

I D

Basic

" I "
Template for converting complex

to basic Intersection types

Note 1 : Intersection pixels are.
shown as fgj fefS

Note 2 : Unshaded template pixels
may b© any wtensfly. sr\aa«
pixels are BLACK (above)

Figure 4.5 Basic and Complex
Intersection Types

A second basic intersection type is also possible. This consists of an 'L' shaped
group of three BLACK pixels each of which is connected to three other BLACK
pixels. The two basic types are shown in figure 4.6.

After this preliminary analysis, intersection

pixels are BLACK pixels which touch three or

four other BLACK pixels. If the single pixel
type is found, the three strokes extend from

the three connected directions of the pixel. If

the intersection is of the 'L' shaped type, one
stroke extends from each of the three
intersection pixels.

Apart from intersection and end pixels, all BLACK pixels touch two other
BLACK pixels.

Pixel chains are followed from the end pixels until either another end pixel or an
intersection pixel is found. The change in direction of this line is calculated and
a variation in direction of more than 90 degrees is noted. This is a new node. In
this way the manner in which the nodes of the pattern are connected is found.

The file output from this program has a '.SYn' extension. It contains the
following information for each node.

• The type of node, for example, end or intersection.

• A node number, which is used for node identification.

• The co-ordinates of the node in the image file.
• The nodes to which this node is connected.

4,11 String Generation and Recognition(STRING.C)

This program takes as input the files FILE.NAM, FILE.NO, CONTEXT.TXT and

the ’.SYn' file giving node details as output by the SYNTAC program.

■ r lk

I T
■

Figure 4.6 Basic Inter
Types

'section

The connectivity information is used to generate a string representation of the
character using the grammar defined in chapter 3.

The identification process is done by comparing the string with a series of
strings which have a known interpretation. These strings are in file
STRING.TXT.

A string representation is produced for the pattern. In some cases this is

sufficient to uniquely identify the character; for example, the representation of

the character 'E' is unique. The derived string is compared to the list in
STRING.TXT. If the string corresponds to more than one character a more

detailed analysis is required. The general type 'b' and 'c nodes as described in
chapter 3 are examined and converted into types bx, b2, bl5 etc. This requires the

orientation of the characters to be taken into account; for example 'Z' is the same

shape as 'N', but they are differentiated by the human observer because of the
difference in their orientation. The new string is derived and again compared to

STRING.TXT to see if the new string is unique. STRING may contain multiple
strings for the same character. These strings may be due either to different
shapes corresponding to the same character, or because the character needs sub-

types of node types 'b' and 'c! for a full unique description. For example, the
letter 'C' is represented by the string description 'O-b-b-O' and also by '0-br br 0'.

The character 'N' is also represented by the 'O-b-b-O' sequence. However, it is
distinguished from the letter 'C' by the introduction of the sub-types to be

represented by the string '0-b2“b1-0'.

There are three possible results of this final comparison:

• Successful unambiguous recognition of the character.
• Failure to identify the character.

• Incorrect recognition.

If the database of strings does not describe the pattern found the system fails to
identify the pattern. If this occurs it may be due to the pattern not

corresponding to a character. A common problem is that two characters are
connected, usually as a result of fixing bolts on the plate being directly between
two characters; reference is made therefore to the file CONTEXT.TXT with a
view to splitting the pattern into two separate patterns. This is done by the next

program in the sequence SPLIT. C.

Finally a character may be incorrectly identified when a valid string
representation of the character is produced which corresponds to a valid
character which is not the right character. This may be caused by a poor quality
image which cannot be resolved by the system; some characters cannot be
identified even by the human observer.

Setting up the String Database: The database is a single file STRING.TXT.
It is set-up using the idealised forms of the character set as described in the

chapter 5. If a character is not recognized and the representation is not already
found in the database it is incorporated into the database. In this way if the
system is presented with a similar pattern in the future, it will be able to

recognize it. Therefore, the performance of the system improves as it is presented
with more patterns.

4.12 Character Separation (SPLIT. C)

The objective of this program is to consider patterns which have not been

identified by the STRING program. The file CONTEXT.TXT is read. This
contains details of the characteristics of the patterns. If the pattern width is
twice that of identified patterns, it is likely that it contains two characters. This

splitting is achieved by considering the number of BLACK pixels along lines
which are parallel to the vertical edge of the plates within the central 50% of the
pattern as shown below.

109

110

The line which contains the
minimum number is used to
separate the two characters. It is

anticipated that this line will be
near the centre of the pattern,

since the characters are usually
the same width. However, this is
not always the case; characters '1'

and T are always narrower than

all other characters and 'W' and
'M' are usually wider. This method therefore yields better results than the
method of simply splitting the pattern into two equal parts.

In order to recognise them, the two new patterns are again subject to the
thinning, extension and recognition sequences.

4.13 Support Programs

The following programs perform image capture and printing.

a. Image Generation(READER.C): The configuration of the system is
shown in figure 4.8.

The images used are digitized photographs. These are produced using a

PCVISIONplus' frame grabber manufactured by Imaging Technology fitted into

an IBM PC compatible computer(Imaging Technology 1987). It is a video

digitizer and frame memory, capable of digitising standard RS-170/330 video

input and storing the digitized images in an on-board frame memory. The

digitized image is 512*512 pixels. Each pixel has an 8-bit intensity value. An
image is stored in four 64K segments, each of which has a configurable base
address.

I l l

A simple program was developed

to read the four segments and
transfer the results into a 256K
binary file, each byte representing

the intensity value of a single
pixel.

b. Image Display(SC2FI.C and FI2SC.C): Software is needed to capture

images from the PCVISION monitor to file and to transfer those images from file
to screen. The two programs SC2FI and FI2SC performed this function.

c. Image Printing(IMAGE2.C and IMAGE255.C): These two programs
print the images shown in the chapter 5. IMAGE255 prints images with 8-bit

intensity, while IMAGE2 prints binary images. Both programs use the Postscript
’IMAGE' operator to generate the images. The word processor WOED5 is able to

incorporate encapsulated Postscript files into documents providing that scaling
information is passed by using the 'Bounding Box' command. The images are
printed by a DEC LN03R Postscript laser printer.

4.14 Software Tools

All software is written using Microsoft 'QuickC' [Microsoft 1987] which includes
comprehensive editing and debugging facilities. An extensive library of 'C'

functions is also available. The compact memory model is used; a single code

segment(CS), limited to 64K and multiple data segment(DS) each limited to 64K.

The majority of the development work is carried out using an IBM XT

compatible computer with 640K of memory, a 32Mb disk and a monochrome
EGA screen and MS-DOS V3.2 operating system. Some work is carried out
using the Digital 'C' compiler on VAX computers with VMS operating system
where it is found that the software is completely portable between the two
systems, providing that the memory and stack size of the PC are taken into
account.

113

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1. The Images and the Second Difference Metric............................ 114
5.1.1. Image 1: Dark Red Vauxhall Cavalier................................. 115
5.1.2. Image 2: Light Red Ford Sierra..116
5.1.3. Image 3: Brown Austin Metro.. 117
5.1.4. Image 4: Light Blue Bedford Van...118
5.1.5. Image 5: Red Ford Fiesta... 119

5.2. Second Difference Metric...120
5.3. Image Binarization.. 121

5.3.1. Binarized Images 1 - 5 .. 122
5.4. Region Growing..124
5.5. Rectangle Recognizer.. 126
5.6. Plate Removal.. 126
5.7. Character Extraction... 127

5.7.1. Image 1 - Extracted Characters..128
5.7.2. Image 2 - Extracted Characters...128
5.7.3. Image 3 - Extracted Characters...129
5.7.4. Image 4 - Extracted Characters...129
5.7.5. Image 5 - Extracted Characters...129

5.8. Context Checking...130
5.9. Stroke Skeleton Generation.. 131

5.9.1. Unthinned Characters..131
5.9.2. Thinned Forms - Without Stroke Extension....................... 132
5.9.3. Thinned Forms - With Stroke Extension.............................133

5.10. Syntactic Representation of Characters....................................... 134
5.11. Final Recognition Results... 136
5.12. Separation of Connected Characters................................... 138

CHAPTER 5
114

RESULTS AND DISCUSSIONS

In the experimental work one hundred images were considered. To illustrate the
results, five images are considered in detail.

5.1. The Images and the Second Difference Metric

The images shown below are produced from the image files. They all have the
same resolution and intensity variation. They are not photocopies of photographs

since photocopies would not indicate the actual data on which the recognition
system is operating.

Graphical representation of the second difference metric obtained for the five

images under consideration is also given below for two group sizes. The peaks
correspond to high values and these peaks correspond closely to the licence plate
regions in the images. The full numerical results are tabulated in Appendix 2.

115

5.1.1. Image 1: Dark Red Vauxhall Cavalier

The background is a
typical street scene with
brick buildings and

sections of road and
pavement. The headlights

and windscreen are
significantly brighter than
the surrounding scene.

Due to their large areas

these regions are not

likely to be confused with
the plate region. In this

scene the road is wet, but
the variations in intensity caused by reflections are not sufficient to cause
problems.

5.1.2. Image 2: Light Red Ford Sierra
116

The vehicle engine size is

written to the left of the

plate in silver letters, but

the contrast between

these letters and the
background is too small to

be a problem. The image
presents two difficulties

for the recognition process

which are not apparent.

The first is a small
mounting bolt between the
first '5' and the '8' which

causes the numbers to be connected for some thresholds. The second is the
indistinct shape of the letter ’W' which is due to an inadequate resolution of the
image.

117

5.1.3. Image 3: Brown Austin Metro

The characters on the

plate are very clear since
both the car and the road

are dark in contrast to the

light coloration of the

plate background. The
rear windscreen is
reflecting light and its

interface with the car body

forms a sharp
intersection.

Figure 5.7 Image 3 512x512 Representation

118

5.1.4. Image 4: Light Blue Bedford Van

The main problem with

this image is that the

plate is dirty. This is not

obvious to the human
observer but it darkens

the background of the

plate and creates some
difficulty in the

recognition process. The
mounting bolts do not
cause a problem since

although they are seen as

a part of the characters for

some threshold values, they do not cause characters to be joined.

119

5.1.5. Image 5: Red Ford Fiesta

The main difficulty with

this image is that there is
insufficient contrast

between the plate

background and the car

body. The rear of the

vehicle is in shade.
Humans are able to make

use of colour as there is a
clear colour interface
between the plate and the

car. However, the
contrast in intensity

between these two regions is not large. There is a dark line around the

characters and the '3' is touching a manufacturers name on the bottom of the
plate.

5.2. Second Difference Metric
120

Appendix 1 tabulates the actual results for lengths of 50 and 100 pixels. The top
2% of the values obtained are highlighted. For all images there is a good
clustering of the highest values around the plate region. The results obtained

from using the longer summation metric when calculating the metric give a

tighter grouping around the plate region. In several images, for example images
4 and 5, a length of 50 pixels gives rise to highlighted areas which are remote
from the plate region. When a longer length is considered, these regions are not

highlighted indicating a very localized area in which there is a large variation.
In image 3 there is a small area in the top left of the image which gives metric

values in the highest 2% for the shorter length but this area is not in the top 20%
when the summation length is doubled. The table below shows the optimum
length for the plates in order to yield the highest possible metric value. All

lengths are in pixels

I m a g e A c t u a l p l a t e
l e n g t h

O p t i m u m m e t r i c
s c a n l e n g t h

1 200 115
2 280 161
3 200 115
4 230 132
5 290 167

Figure 5.16 Actual and Optimum Scan Length

Optimum plate length = 0.577 x actual plate length. This is derived in section

3.1.2.

The metric calculated with a length of 100 is far closer to the optimum than the

shorter length and is expected to yield a better result. However, the metric does

not exhibit a great sensitivity to variations in length. In the worst case, which is
image 5, half of the top 2% of values are outside the plate region in the top right

of the image. The metric is not deemed to have failed if it highlights areas

outside of the plate region, since its purpose is to indicate regions of the image

which can be subject to farther study. The area outside the plate region which
yields a high metric value is quickly rejected by later stages of the analysis
which then directs effort towards other likely areas of the image.

The average value of the top 2% of values obtained for the images is in all cases
significantly greater than the average value of the remaining 98%, in all cases

more than twice the value and in most cases more than three times greater.
These results indicate a high degree of correlation between the metric and the

plate region for the images considered.

5.3. Image Binarization

Using the second difference metric a global threshold is derived as described in
earlier chapters. The table below shows the value of this global threshold for two
different group sizes.

I m a g e
T h r e s h o l d V a l u e s

G r o u p s i z e 100 G r o u p s i z e 50

1 193 143
2 168 168
3 173 170
4 137 140
5 158 155

Figure 5.17 Group Sizes and Threshold Values

Three groups of binary images are shown below. Two are produced using the

global thresholds given above. The third is generated using the locally adaptive
method of Giuliano(1977]. This algorithm has the effect of highlighting edges
which are shown in black.

122

In the Giuliano five neighbouring

regions influence the threshold
value used for a particular pixel.

The regions consist of a 3*3
template around the pixel under

consideration and four diagonally

opposite 3X3 regions as shown
below. The algorithm is described
in detail in section 2.4.1.

5.3.1. Binarized Images 1 - 5

Image 1

^2 A2

Ai

A2 A2

Pixel under
consideration

Figure 5.18 The Giuliano Algorithm

-IÖ E JL '

Global Threshold 193

[
>

Î
Global Threshold 143

Image 2

123

Image 3

Image 4

Image 5

Global binarization is not suitable in situations where a-priori knowledge is not

available. Its great advantage over locally adaptive methods is that it is much

faster to perform. The implementation of the Giuliano algorithm produced

124

unexpected results. The edges of the images are emphasized and are displayed

as dark areas, while both light and dark areas of the images are shown as white.

An important aspect of an adaptive algorithm is that it does not require a-priori
information about the image on which it is to operate. However, although this is
an adaptive algorithm it requires five constants to be assigned; each of these

alters the value of the threshold calculated for a pixel. Giuliano gives no

guidance as to how these parameters are to be chosen. Choosing a set of
parameters which performs well with one image may result in poor performance
with other images. This is borne out by the set of images in which the five
parameters remain unchanged. Some produce clear outlines of the plate and the
characters on it, while others show no discernible features. The purpose of the
global binarization is not to produce a clear overall image, but simply to produce
a clear picture of the characters on the plate region. In all cases this was
achieved and both the edges of the plates and the characters on them are clearly

visible. As anticipated the edges of the individual characters are not completely
straight; this is due to the resolution of the camera system and the binarization
process. On real digitized images it is inevitable that edges are not always 'step'

but have a 'ramp intensity' profile. However, this can be dealt with satisfactorily
by the later stages of the analysis which are able to cope with edges of this type.

5.4. Region Growing

The results of the first region growing process are shown below. The purpose

here is to erase all detail from the images except for a white plate region with

black alphanumeric characters on it. The characters are clearly identified and

the remainder of the image has been deleted. Completely contained background

areas such as found in the '9' and 'O' are not shown. In addition, the background

is shown in the same intensity as the characters. These two problems are
resolved in the next stage of the process.

125

J5FED GSE3

Image 1 Image 2 Image 3

The outline of the plate is only important in that it helps to determine if the
plate region has been correctly identified. In all images except image 5 the

outline of the plate is complete. However, even Image 5 has a substantial
amount of the plate visible, adequate to confirm that it is a plate. A more

important aspect of the images is the clarity of the characters. Ideally each
character should not be touching either its neighbours or the black background
of the image.

s w a m

Image 4

There are a total of 35 characters. Of these, two

pairs are touching. They are the ’5' and ’8’ in image

2, the ’9' and the '5' in image 5. The connection in
images 2 and 5 is caused by a mounting bolt on the

plate directly between the characters. These
features can be clearly seen in the representations of

the original images given earlier in this chapter. In

addition, there are 2 characters which are touching
the background. They are the '3' and 'U' in image 5.

This is caused by a combination of two factors. The
plate is indented, and therefore in shadow. The

vehicle is bright red which in terms of pixel

intensity is similar to the yellow background of the

plate. There is a black line around the characters,

which reduces the thickness of the border around

the characters. The central '3' in the image has a manufacturer’s name on the

plate touching it, this in turn touches the edge of the plate, linking the character
with the region outside the plate.

5.5. Rectangle Recognizer

The program follows the region of the plate and identifies its four sides. In

images 1, 3 and 4 all four sides of the plate are clearly and unambiguously

identified. The orientation of the plate calculated corresponds closely to the
actual orientation.

Image 5 is less clear since the right of the plate is not found and the bottom

vector is split into two regions. However, the top of the plate in this image is

readily found and is parallel to the two vectors which correspond to the bottom
edge. These in turn are at right angles to the left side of the plate. Although the

results do not correspond to the ideal of four vectors which can be paired on the
basis of their direction and magnitude, there is sufficient information to indicate
that this likely to be a plate region.

Image 2 has all four sides of the plate identified but in addition, there is a small
connected region below the left bottom corner. There is still sufficient

information to indicate that this is a plate region since the required two pairs of
vectors can be found from among the vector of the outline.

5.6. Plate Removal

This stage removes the plate background and leaves the characters as black on a
white background. It also resolves the problems of the enclosed 'holes' in

characters.

The results are shown below.

127

8433 JRA 0585 ELT9KY

Image 1 Image 2 Image 3

In all cases the characters are clearly displayed.
Images 4, and 5 also have several small groups of

black pixels which do not correspond to characters.
In image 4 these correspond to additional writing on

the plate, which gives the manufacturer’s name. In

image 5, the marks correspond to a black outline

around the characters. The detection of these shows

the sensitivity of the processing so far carried out.
These collections of pixels can be discarded easily at
the next stage when pixel groups below a certain
size are ignored.

5.7. Character Extraction

The objective here is to separate the group of black characters on a white

background, so that each character is in a separate file. Groups of pixels which
are below a threshold size are ignored.

Three forms of each character are shown:

FVL 5I9T

Image 4

A95 UT

Image 5

• The solid, unthinned form of the character,

• The thinned form - without extending the nodes into the strokes.

• The thinned forms - with extension of strokes into the nodes to form
connected skeletons.

5.7.1. Image 1 - Extracted Characters

1B 4 3 3 J R i
o

u
/! 3 3 0

Î \ A

Ô A 3 3 J R
5.7.2. Image 2 - Extracted Characters

ID 5 6 5 1u F 1If
D cJ o0 j " ~*J J Jr 1 11

5 8 5 J F '■ :
I

5.7.3. Image 3 - Extracted Characters

E L T 9
c
L I T

i 3

E L T 9
5.7.4. Image 4 - Extracted Characters

1F V 1L

in

i1f \/
<1 5

— V 5
5.7.5. Image 5 - Extracted Characters

A 9 5
ii

' t
/ i

C
O (0

A

C
O 6

u

9
Cl
vJ

q
vJ

r

T

V

T

Y

In all cases the characters are clearly recognizable to the human observer with

the exception of the character ’W' which is found in image 2. This is largely due

to a lack of resolution in the original image file. In cases where there is an

irregularity in the character line this can usually be traced back to the form of
the image file. In the 'T' in image 4 and the TJ' in image 5, there are slight
defects in the characters. This is due to mounting bolts, which can be seen in the
original images.

The thinning and stroke extension algorithms produce clear 8-connected

skeletons. The only exception is 'W' in image 2. The unthinned form is not a

clear representation of the characters and the thinned form is not recognizable.

The characters '3' and 'U' in image 5 have not been detected.

5.8. Context Checking

The context checker collects information about the extracted characters which is

used later. The basic rectangle is derived for each pattern and output to a file
along with the position of each pattern in the original 512*512 image file.

Connecting the mid points of the basic rectangles gives the horizontal axis of the

plate. The calculation of an axis at right angles to it defines a co-ordinate frame
for the characters in the original image. For the five images considered here the
frame is within 4 degrees of the frame as measured from the images.

The context checking confirms whether or not that the extracted objects are

spatially distributed in a format which correspond to that expected for a row of
characters on a licence plate. It also enables a pair of touching characters to be
separated.

5.9. Stroke Skeleton Generation

After the individual characters are extracted, they are thinned. The complete
alphanumeric set of thin and thinned characters is shown below. The characters
are generated by digitizing images of characters, rather than by using an
idealized form with parallel sides and regular features, which are very special

forms of the characters.

Three forms of each character are shown:

5.9.1. Unthinned Characters

A B c E E
F G H 1 J
K L AT r □
P R S i U
V 1In/ X: > z

132

□ 1 a 3
5 eo 7 8

5.9.2. Thinned Forms - Without Stroke Extension

4
9

A 01 *

____)

\

o

/

/)

133

1
o

1 D
o / LJ

5.9.3. Thinned Forms - With Stroke Extension

Ld

6

----- ■

r

z
¿j
c

In all cases the final skeletal forms are clear representations of the original
characters despite a far from regular border. The skeletons are clearly legible to
a human observer.

5.10. Syntactic Representation of Characters

After thinning, string representations of the characters are generated. The nodes
for an idealized alphanumeric character set and the representation of each
member expressed as a pattern string are shown below. In a few cases, for
example 'E1, there is more than one representation.

a-b-((c-b)*(b))-a
I

a-b-((b)*(c-b))-a

(b-b~c-c)+(b-b-c-c) a-c-c-a
I

a-c2-c2-a

c-c-c-c

a a

H
a-c-b-((a)&(c-a))

I
a-c-b-(((c-a)&(a))

I
ct-b-((c-a)&(c-a))

a-c-b-((a)&(a)) I
a-b-(c-a)&(a))

I
a-b-((a)&(c-a))

a-c-c-c-c-a
I

CL-C2-C2-C2~C2~Ct

a-b-((a)&(b-
(c)&(c)))

8
a-a

C C

M
a a

a-c-c-c-a
I

a-c1-c2-c1-a

R
a-b-((b)*(c-c-b))-a

I
a-b-(c-c-b)*(b))-a

a a

V
c

a-c-a

a-c2-a

a

Ü
dh

a-c-a
I

a-Cj-a

c a

N
a c

a-c-c-a
I

a-cr c2-a

C-

Q
a-c-c-c-c-a I

a-c2-c2-c1-c1-a

a ci

w
c c

a-c-c-c-a

a-c2-c1-c2-a

a a

K
a a

a-b-((a)&(b-
(c)&(c)))

c

o
c-c-c-c

D

a
a-b-((a)&(a))

I
a-b2-((a)&(a))

a a

X
a a

a-d(a&a&a)

d

L
a-c-a

I
a-c2-a

a
a-b-((c)*(c-c))

I
a-b-((c-c)*(c))

a au
a-c-c-a

!
a-c2-c2-a

a a

Y
a

a-ó-f(a)&(a))
I

a-b1-((a)&(a))

136

a-c-c-a
I

a-cr c2-a

o

C

c-c-c-c
a

a-a

c

a-c-c-c-a
I

a-cr c2-c2-a

a-c-c-b-((a)&(c-c-
a))

I
a-c-c-b-((c-c-

a)&(a))

a-c-c-c-c-a
I

CL~C i~C 2~C i~Cj~CL
a-c-b-((c)*(c-c-c))

I
a-c-b-(c-c-c)*(c))

a

a-c-a
I

a-Cjr-a

ft — ft

b b

c w c

(b-b-c-c)+(b-b-c-c) a-c-b((c)*(c-c-c))
I

a-c-b-((c-c-c)-c

5.11. Final Recognition Results

The strings generated for the extracted characters are given below. In cases

where a string is generated which is different from the idealised string, it can be

included in the database providing that it does not clash with an existing string.

137

String
Repre s ent at i on s

I d e n t i f i e d
Character

Actual
Character

Image (b - b - c - c) + (b - b -c - c) B B
1 < a - b - ((c) * (c)) 4 4

(a - c - c - b - ((c - c - a) &(a)) 3 3
(a - c - c - b - ((c - c - a) &(a)) 3 3
a-c-^-a J J
a - b - (c -c -b) * (b)) - a R R
a - b - ((b) * (c - b)) - a A A

Image c - c - c - c D D
2 a~c1- c 2 - c 1- c 1- a 5 5

(b - b - c - c) + (b - b - c - c) 8 8
a _ c l “ c2 “ c l " ‘ c l ’"a 5 5
a-C2-C2~a U U
a - c - b - ((a) &(a)) F F
a-C2“ C2“-a V W

Image a - c - b - ((a) &(c - a)) E E
3 a - c 2_ a L L

a -b 2- ((a) & (a)) T F
a - c - b - (c - c - c) - c 9 9
a -a 1 1
a -a 1 1
a - b x- ((a) & (a)) Y Y

Image a - c - b - ((a) & (a)) F F
4 a-C2~a V V

a-C2~a L L
a“ c l ” c 2 ” c l “ c 1“ a 5 5
a-a 1 1
a - c - b - (c - c - c) - c 9 9
a -b 2 ~ ((a) &(a)) T T

Image a - b - ((b) * (c - b)) - a A A
5 a - c - b - (c - c - c) - c 9 9

a“ c l " c 2 " c l “ c l ~ a 5 5
none — 3
a—C2 _ c 2 “ a U U
a -b 2- ((a) & (a)) T T
none — Ü

Figure 5.19 Results of the Recognition System

33 out of 35 characters are successfully extracted. 32 of these are correctly
identified. Two characters are not detected since they are connected to the
region outside the plate after the image binarization and are therefore not

detected as characters. A single character 'W' in image 2 is not correctly
identified. Of the 33 extracted characters there are 2 connected pairs. All of
these pairs were successfully separated and identified.

5.12. Separation of Connected Characters

Three pairs of characters were connected. They are submitted to the 'SPLIT'
program not having been successfully identified by the recognition process. In

all cases the pairs of characters are successfully separated and re-submitted to
the recognition process.

CHAPTER 6

CONCLUSIONS

6.1 Conclusions...............
6.2 Future Developments

CHAPTER 6
140

CONCLUSIONS

The recognition of alpha-numeric characters in unconstrained environments is a

complex problem which requires a wide range of image processing algorithms.

The objective of the work here was to develop new approaches to this aspect of
character recognition.

The application chosen to illustrate the experimental work is the reading of

vehicle licence plates. However, many of the techniques used and principles
examined are equally applicable to a wide range of image recognition systems.

New algorithms were developed which cover the entire recognition process from

the finding of the licence plate through to the identification of the characters.

The performance of the algorithms was rigourously tested using a wide range of
input images. The behaviour of five of these images was discussed in detail and
the results shown at each stage of the recognition process.

The system developed runs quickly, using standard IBM PC compatible

machines and has shown itself to be capable of reading the vehicle licence
numbers with a high degree of success.

6.1 Conclusions

A major problem in image processing is that each image contains such a large

amount of information. The complexity of the problem is surprising since
humans perform the recognition process with such ease. At present there is no

vision processing system available which is capable of examining an image and

identifying all the objects it contains except in a very constrained environment.

The system developed recognizes this and at each stage of the analysis reduces

both the complexity and the size of the image being processed in order to extract

the specific information required.

A metric was developed which allows the licence plate region to be identified by
using known characteristics of the region. The use of metrics has been proved to
be successful. This technique is very rapid compared to alternative methods

which attempt to extract patterns and compare them against a database. The

second difference metric performed well and allowed a global threshold to be

calculated and the image to be binarized.

Global binarization was very rapid to execute and for this application yielded

superior results to the more complex and time consuming adaptive thresholding
algorithms. If a-priori knowledge is available global binarization often yields

excellent results.

The information reduction process continued with region growing which yielded

black characters on a white background. The extraction of characters was
achieved by a novel single pass technique, which proceeded rapidly and was

straightforward to implement.

The identification of the characters is seen to highlight many problems with
conventional recognition algorithms. For unconstrained characters to be

recognized by techniques such as comparison against templates, extensive
normalization of the character for size, position and orientation is required.

However, even by the use of such techniques, problems still arise since there is a
wide variation in the form of the patterns that are recognized as representing a
particular character. For these reasons a novel approach was adopted, which

expressed the patterns in terms of the connectivity of their strokes. In order to

do this it is necessary to skeletize the patterns. A study of existing skeletizing or

thinning algorithms revealed a series of problems which caused distortion to the
character, for example, the relative thickness of the strokes. For characters
which are thick, i.e. with a height:stroke ratio of less than about 8:1, the existing

..... I T; -.V ..■* - I ' “ . . ,.y, -■ .

141

algorithms required many passes and were slow to execute. The patterns
produced are often not close to those which are produced by a human. In the

light of these difficulties a new thinning algorithm was developed which

operated quickly and produced clear representations of the patterns. It is most
suitable for patterns with thick strokes.

The syntactic approach used is a viable method for the identification of
characters. The grammar is based upon the intersection of strokes and is

independent of size, position, orientation, and stroke thickness.

The system developed considers the entire image recognition problem from
beginning to end rather than considering a single aspect of it. As a whole, the

system performed well with a high proportion of the characters being correctly

identified. The speed of the system is superior to comparable systems.

6.2 Future Developments

The aim of this work was not to produce an excellent user interface, or to

optimise the speed of execution. The design of the software was intended to
demonstrate each stage of the image processing. The performance of the system

could therefore be increased by enhancing the design of the software and using a
faster processor.

The recognition process lends itself to parallelism and the greatest
improvements would be achieved by using a parallel processing system.

The use of cameras for identifying traffic offenders is becoming more popular.
Such a system coupled with a vision processing system of the type described

could readily produce an automatic vehicle identification scheme. The success
rate of a system of this type could be enhanced by triggering the camera using,

for example, pneumatic tube vehicle detectors in the road. In these

circumstances the position of the vehicle would be more constrained. A series of

images taken with the same background would enable the metrics used for

finding the region of interest to be enhanced and therefore their performance to

be increased. The system also has the potential to be used for charging for tolls
for road usage.

A major problem of vision processing is the interpretation of different patterns

which represent the same object. The syntactic approach used provides a

technique for expressing the structural form of a pattern and thereby allowing it

to be identified. This is a powerful technique and extension of the work on

syntactic pattern recognition is likely to be an area of fruitful research.

Neural nets are being used for character recognition. These techniques could be

combined with the syntactic approach by using the neural net to recognize the

nodes of characters. After node identification the pattern string could be
generated as described.

BIBLIOGRAPHY

BIBLIOGRAPHY

Aho [1972]; Aho A; Peterson T.

A minimum distance error correcting parser for context free languages.

SIAM Journal of Computing. Dec 1972 Vol 4.

Ali [1977]; Ali F; Pavlidis T.

Syntactic recognition of handwritten numerals.

IEEE Trans Systems MAN Cybernetics. SMC 7 1977 .

Al-Dabass [1981]; Al-Dabass D; Moualed R.

A Vision Algorithm for Distance and Orientation Measurements.

Proc LASTED International symposium on Modelling, Identification and Control,
Davos Feb 1981

Al-Dabass [1985]; Al-Dabass D;

Characteristics Estimation of Point Objects using Stereo Vision
IEE Colloquium on Digital Signal Processing, London December 1985.

Aoki [1979]; AokiM.

Rectangular Region Coding for Image Data Compression
Pattern Recognition 1979 Vol 11.

Arcelli [1975]; Arcelli C; Cordelia L.
Parallel thinning of binary pictures.

Electron Lett. 1975 Vol 11 no 7.

Arcelli [1981]; Arcelli C; Cordelia L.
From local maxima to connected skeletons

IEEE Trans pattern Analysis machine Intelligence. PAMI 3 1981.
I

Badie [1980]; Badie K; Shimura M.
Feature extraction and primitives.

Paper from - pattern recognition in practice, ed. Gelsema E.S. 1980.

Badii [1983]; Badii F; Peikari B.
Invariant numerical shape modeling

Paper from proceedings of IEEE computer society conference on computer vision
and pattern recognition. June 1983. Washington.

Ballard [1982]; Ballard D.H; Brown M.
Computer Vision.

ISBN 0-13-165316-4.

Blesser [1973]; Blesser B. A.

Character recognition based on phenomenological attributes.

Visible Language 1973 Vol 7[3].

Blum [1973]; Blum H.

Biological shape and visual science.

Journal theoretical biology. Part 38, 1973.

Blum [1978]; Blum H; Nagel H.

Shape recognition using weighted symmetric axis features.
Pattern recognition Vol 10.

Boyle [1988]; Boyle R.D; Thomas R. C
Computer Vision - A First Course.

Blackwell Scientific Publications. ISBN 0-632-01577-2.

Bribiesca [1979]; Bribiesca E; Guzman A.

How to describe pure form and how to measure differences in shapes using shape
numbers.

Paper from conference on pattern recognition and image processing. Aug 1979.

Brzeski [1987]; Brzeski M.

Using the EGA card for colour graphics.

.EXE Jan 1987.

Burgess [1984]; Burgess R. S
An introduction to program design using JSP.

ISBN 0-09-154961-2.

Burr [1980]; Burr D. J.

Designing a Handwriting Reader.

Proc of 5th International Conference on Pattern Recognition. 1980.

Calabi [1968]; Calabi L.

Prairie fires, convex deficiencies and skeletons.

Am. Math. Mon. 1968 Vol 75.

Canny [1983]; Canny J.

A variational approach to edge detection.

Paper from National Conference on AI. Aug 1983. AAAI-83.

• ’
U 7 |

. ..
M

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

_
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

r,
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
a.

 .
...

...
...

...
...

...
.!.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.
.r

..
n.

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..

__
__

_..
v

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..Z

.1..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.

Canny [1986]; Canny J.

A computational approach to edge detection

IEEE trans on Pattern analysis and machine intelligence.

Chien [1983]; Chien C.H; Aggarwal J.K

A normalised quadtree representation.

Paper from proceedings of IEEE computer society conference on computer vision
and pattern recognition. June 1983. Washington.

Clancy [1985]; Clancy M. J; Dawson J.; et al
Electronic Road pricing in Hong Kong.

Proceeding PTRC Annual Meeting 1985.

Cox [1982]; Cox C; Coveignoux P.

Skeletons: A link between theoretical and physical letter descriptions.

Pattern recognition 1982, Vol 15.

D Amato [1982]; D'Amato D; Pintsov L; Hoay H.

High speed pattern recognition system for alphanumeric hand printed characters.
Proc IEEE pattern recognition and image processing Conf. Las Vegas 1982.

Davies [1989]; Davies P; Ayland N.

Automatic vehicle identification for heavy vehicle monitoring.

IEE Conference on Road Traffic Monitoring 1989

Davis [1974]; Davis. L. S.

A survey of edge detection techniques.

Computer graphics and image processing Vol 4 1974.

Deravi [1983]; Deravi F; Pal S.K.
Grey level thresholding using second order statistics.

Pattern recognition letters 1 1983.

Deutsch [1972]; Deutsch E. S.

Thinning algorithms on rectangular hexagonal and triangular arrays.

A.C.M. 1972 Vol 15 part 9.

Eager [1990]; Eager J.
Character Building

PC Magazine (UK Edition) June 1990 Vol 3 Issue 6

Eden [1962]; Eden M.

Handwriting and pattern recognition.

IRE Transactions on Information Theory. Vol IT-8. 1962.

Fischler [1983]; Fischler M.A.

Perceptual organisation and curve partitioning.

Paper from proceedings of IEEE computer society conference on computer vision
and pattern recognition. June 1983. Washington.

Foote [1981]; Foote R. S.

Prospects for non-stop toll collection using automatic vehicle identification.

Traffic Quarterly 1981. p.35.

Freeman [1961]; Freeman H.

On the Encoding of Arbitrary Geometric Configurations.

IRE Trans on Electronic Computers EC-10. Part 2. 1961.

150

Fu [1980a]; Fu K S.
Syntactic pattern modelling using stochastic tree grammars.
Computer Graphics image proc. 1980 Vol 12.

Fu [1980b]; Fu K. S.
Syntactic models in pattern recognition and applications.
Paper from - pattern recognition in practice, ed. Gelsema E.S. 1980.

Fu [1986]; Fu K S.
Syntactic pattern recognition
Paper from handbook of pattern recognition and image processing, ed. Young
T.Y. 1986.

Giuliano [1977]; Giuliano E; Paitra O.
Electronic Character reading system.
U.S. Patent No. 4-047-152. 1977.

Gosch [1988]; Gosch J.
Philips moves to grab automatic toll market
Smart card Monthly, 1, 1988.

Grimsdale [1959]; Grimsdale R; Sumner F; Tunis C; Kilburn T.
A system for the automatic recognition of patterns.
IEE Vol 106 part B No. 26. March 1959.

Haralick [1973]; Haralick. R. M.
Textual features for image classification
IEEE Transaction. Man. Cybernet. 3

Haralick [1984]; Haralick R.M.
Digital step edges from zero crossing of second directional derivatives.
IEEE trans pattern Analysis Machine intelligence Vol 6 No.l 1984.

Heuckel [1971]; Heuckel M.

An operator which locates edges in digital pictures.

Jnl. Ass Comput. Mach. 1971 Vol 18.

Hüditch [1969]; Hilditch C.

Linear Skeletons from Square Cupboards.

Machine intelligence IV. Eds. Meertzer B; Michie D. University Press.
Edinburgh 1969.

Hüls [1989]; Hills P.J; Blythe P.
Paving your way

IEE Review November 1989

Himmel [1976]; Himmel D.P.

Some real world experiences with handwritten optical characters.

Proceedings of IEEE international conference on Cybernetics and Society,
Washington 1976.

Imaging Technology [1987]; Imaging Technology

PCVISIONplus Frame Grabber User Manual

Jackson [1983]; Jackson M.

System Development.

Prentice Hall International. ISBN 0-13-880328-5

Jones [1989]; Jones G.

Accustomed to your face.

Computer Weekly May 25 1989.

Kashyap [1986]; Kashyap R.

Image models

Paper from handbook of pattern recognition and image processing, ed. Young
T.Y. 1986.

Keng [1976]; Keng J; Fu K

A syntax directed method for land-use classification ofLANDSAT images.
Proceedings of Symposium of Current Mathematical Problems in Image Science.
Monterey California, Nov 1976.

Kim [1983]; Kim Y. C; Aggarwal J.K.
Rectangular coding for binary images.

Paper from proceedings of IEEE computer society conference on computer vision
and pattern recognition. June 1983. Washington.

Kittler [1983]; Kittler J; Paler K.
An absorption edge detector.

Paper from proceedings of IEEE computer society conference on computer vision
and pattern recognition. June 1983. Washington.

Kittler [1985]; Kittler J; Illingworth J.

Threshold selection based on simple image statistics
Computer Vision Graphics and image processing 1985 Vol 30.

Ledley [1964]; Ledley R. S.
High speed automatic analysis of biomedical pictures.

Science. Vol 146. 1964.

Ledley [1965]; Ledley R; et al

FID AC film input to digital automatic computer and...

Optical and electro optical info Proc. Eds Tioppet S ; Beckowitz J. MIT Press
Cambr. USA 1965.

Lee [1972]; Lee H; Fu K.S.

A Stochastic syntax analysis procedure and its application to pattern
classification.

IEEE Transactions on Computers. Vol C21. No. 7. 1972

Levenshtein [1966]; Levenshtein A. V.

Binary codes capable of correcting deletions, insertions and reversals.

Soviet. Physics. Doklady. Vol 10. No. 8. Feb 1966»

Li [1981]; Li M; Grosky W. I; Jain R.
Normalized quadtrees with respect to translation
Proc. PRIP-81 Dallas Texas.

Lu [1978]; Lu S; Fu K

Error correcting tree automata for syntactic pattern recognition.

IEEE Trans Computers. November 1978 Vol C-27 No 11.

Marr [1980]; Marr D; Hildreth E.

Theory of edge detection

Proc. Royal Society London. 1980 Vol B207.

Marr [1983]; Marr D; Hildreth E.

The detection of intensity changes by computer and biological vision systems.
Computer vision graphics and image processing 1983 (22)

154

Microsoft [1987]; Microsoft Corporation
QuickC Programmers Guide
QuickC Language Reference
QuickC Run-Time library Reference

Milgram [1979]; Milgram D. I.
Region extraction using convergent evidence.

Computer graphics image processing 1979. Voi 11 part 1 12 p23.

Murthy [1974]; Murthy W; Voupa K.

A search algorithm for skeletonisation of thick patterns.

Computer Graphics image processing 1974 Voi 3.

Naito [1978]; Naito S; Arakawea H.

Recognition of handwritten alphanumerics and symbols on centroid lines.

Paper from 4th international joint conference on pattern recognition 1978.

Naito [1983]; Naito S; Hagita N; Masuda I.
Handwritten Kanji recognition by feature matching methods and its applications
to OCRs.

Paper from proceedings of IEEE computer society conference on computer vision
and pattern recognition. June 1983. Washington.

Nevatia [1980]; Nevatia R; Babu R.
Linear feature extraction and description.

Computer Graphics Image Processing. 1980 Voi 13.

Ohlander [1978]; Ohlander R; Price K; Reddy D.

Picture segmentation using a recursive region splitting method.

Computer graphics image processing. 1978 Voi 8.

Palumbo [1986]; Palumbo P; Swaminathan P.
Document image binarization : Evaluation of algorithms.

Proc of SPIE Symposium on applications of digital image processing DC
Washington. 1986.

Pavlidis [1973]; Pavlidis T; Horowitz S. L.
Piecewise approximation of plane curves.

Proceedings l 8t international joint conference pattern recognition.

Pavlidis [1974]; Pavlidis T; Horowitz S.

Segmentation of plane curves.
IEEE Transaction on computers. Aug 74 Vol C 23.

Pavlidis [1975]; Pavlidis T; AH F.

Computer recognition of handwritten numerals by polygonal approximations.
IEEE Trans. Syst. Man. Cybernetics. Nov 1975 Vol SMC 5.

Pavlidis [1977]; Pavlidis T.
Structural Pattern Recognition.

Springer-Verlag Berlin Heidelberg New York. 1977

ISBN 3-550-08463-0.

Pavlidis [1982]; Pavlidis T.

Algorithms for graphics and image processing
ISBN 0-914894-65-X.

Pavlidis [1983]; Pavlidis T.

Effects of distortion on the recognition rate of a structural OCR system.

Paper from proceedings of IEEE computer society conference on computer vision

and pattern recognition. June 1983. Washington

Pfaltz [1969]; Pfaltz J; Rosenfeld A.

Web Grammars.

Paper from proceedings of the 1st international conference on A.L Washington

1969.

Roberts [1965]; Roberts L. G.

Machine Perception of three dimensional solids.

Optical and opto electrical information processing, Tippett.J.P et al (Editors)
Cambridge MA: MIT Press 1965

Rosenfeld [1971]; Rosenfeld A.
Connectivity in digital pictures.

Journal A.C.M. 1971 Vol 17 Part Jan.

Rosenfeld and Thurston [1971]; Rosenfeld A; Thurston M.
Edge and curve detection for visual scene analysis.

IEEE Trans Comput 1971 Vol C20.

Rosenfeld [1982]; Rosenfeld A; KakAC
Digital Picture Processing Vol 2.

Academic Press ,Inc. London. ISBN 0-12-597302-0

Rutovitz [1966]; Rutovitz D.
Pattern Recognition.

Jnl Royal Statistics Soc, Vol 129, Series A. 1966

Sidhu [1972]; Sidhu G; Boute R. T.

Property encoding : Application in binary picture encoding and boundary
following.

IEEE Trans on Computers. Vol C21 Part 11 1972.

157

Smeed [1964]; Smeed Committee Report
Road Pricing: the economic and technical possibilities.

Ministry of Transport 1964. HMSO.

Srihari [1987]; Srihari S.N.

Recognising address blocks on mail pieces.

AI magazine Vol 8 no 4 Winter 1987.

Stefanelli [1971]; Stefanelli R; Rosenfeld A,

Some parallel thinning algorithms for digital pictures.

Jnl. Assoc. Computing machines 1971 Vol 18 no 2

Suen and Mori [1982]; Suen C. Y. ; Mori S.

Standardisation and automatic recognition of hand-printed characters.

Computer analysis and perception, Vol 1 Visual signals (CRC Press, Boca Raton,
Florida 1982)

Suen [1982]; Suen C. Y.

Distinctive features in automatic recognition of handprinted characters.
Signal processing April 1982. Vol 4.

Suen [1986]; Suen C. Y.

Character recognition by computer and applications.

Paper from handbook of pattern recognition and image processing, ed. Young
T.Y. 1986

Tamura and Mori [1978]; Tamura H; Mori S.

Textual features corresponding to visual perception
IEEE Trans on Systems Man and Cybernetics.

Tamura [1978] Tamura H.

A comparison of live thinning algorithms from a digital geometry viewpoint.

Proceedings of 4th international conference on pattern recognition.

Tanimoto [1975]; Tanimoto S; Pavlidis T.

A hierarchical data structure for picture processing.

Computer graphics and image processing. Part 4. 1975

Taylor [1988]; Taylor R.

Board-level decision (image processing survey)

Systems International November 1988.

Thomason [1975]; Thomason M; Gonzalez R.

Error detection and classification in syntactic pattern structure.

IEEE Trans Computers. Jan 1975 Vol C-24 Part 1.

Toussaint [1970]; Toussaint G; Donaldson R.

Algorithm for recognising contour traced handprinted characters.

IEEE Trans. Comput. Vol C-19 1970

Tretiak [1979]; Tretiak O.
A parametric model for edge detection

Proceedings 3rd COMPSAC. Nov 1979.

White [1983]; White J. M; Rohrer G. D

Image Thresholding for character image extraction and other applications

requiring.

IBM Journal 1983 Vol 27 part 4.

159

Yamamoto [1978]; Yamamoto K; Mori S.
Recognition of handwritten characters by outermost point method.

Paper from proceedings of the 4th international joint conference on pattern
recognition. Kyoto 1978.

Yokoi [1973]; Yokoi S; Toriwaki J.

Topological properties in digitised binary pictures.

Systems Computers Controls Vol 4, Part 6. 1973

Zucker [1976]; Zucker S. W.

Region growing : childhood and adolescence.

Computer graphics and image processing 1976 (5)

Zucker [1977]; Zucker S; Hummel R; Rosenfeld A.

An application of relaxation labelling to line and curve enhancement.

IEEE Trans Comput 1977 Col C26.

160

GLOSSARY

■

GLOSSAEY
ANSI - American National Standards Institute.
ECMA - European Computer Manufacturers Association.
OCR - Optical Character Reader.

OCRA - Optical Character Reader (font A).

OCRB - Optical Character Reader (font B).

PTT - Postal, Telegraphic, Telecommunication.
SAT - Symmetric Axis Transform.

162

APPENDIX 1

SECOND ORDER DIFFERENCE METRIC

A. 1.1 Image 1 - Summation length 50 Pixels...................................... 164
A. 1.2 Image 1 - Summation length 100 Pixels 165
A. 1.3 Image 2 - Summation length 50 Pixels................................... . 166
A. 1.4 Image 2 - Summation length 100 Pixels.....................................167
A.1.5 Image 3 - Summation length 50 Pixels.......................................168
A. 1.6 Image 3 - Summation length 100 Pixels.....................................169
A. 1.7 Image 4 - Summation length 50 Pixels...................................... 170
A.1.8 Image 4 - Summation length 100 Pixels.....................................171
A. 1.9 Image 5 - Summation length 50 Pixels.......................................172
A. 1.10 Image 5 - Summation length 100 Pixels.................................173

APPENDIX 1

SECOND ORDER DIFFERENCE METRIC

This appendix contains tables which show the values of the second order

differences. The technique used is described in detail in chapter 3. In all cases

the distance between the rows is ten pixels. The size of the pixel groups in which
the differences are summed in these sample results is 50 and 100.

A. 1.1 Image 1 - Summation length 50 Pixels

Row Number Column Number --------------->
0 50 100 150 200 250 300 350 400 450

V 0 126 118 112 0 0 0 0 67 182 126
10 147 106 91 0 0 0 0 60 248 131
20 104 111 139 14 0 0 0 34 225 131
30 130 165 105 68 26 0 0 37 209 119
40 135 200 149 95 43 0 0 16 164 93
50 152 156 85 86 43 0 2 14 169 107
60 102 157 143 173 217 100 104 100 131 149
70 136 220 179 128 135 168 116 226 233 85
80 149 168 77 82 103 129 109 108 200 116
90 128 106 117 88 108 73 91 123 193 160

100 111 113 67 86 124 80 87 106 136 136
110 151 107 87 93 52 88 120 128 89 122
120 185 106 103 125 78 110 142 140 107 129
130 134 100 110 108 105 138 101 94 162 100
140 115 107 91 104 112 97 117 98 96 159
150 106 94 109 106 91 102 67 99 109 157
160 64 113 117 106 115 113 106 90 82 130
170 130 120 193 82 112 116 125 109 102 108
180 179 21 165 113 106 78 112 108 182 120
190 90 57 158 129 123 110 125 152 164 152
200 88 46 201 120 107 120 140 127 121 135
210 122 104 177 95 90 125 117 87 171 151
220 144 142 152 108 132 188 102 109 189 104
230 137 127 110 114 132 214 120 91 151 192
240 142 120 161 93 129 154 103 106 136 191
250 127 140 204 120 140 114 134 121 262 196
260. 105 101 114 92 120 126 96 153 119 144
270 84 112 112 108 102 110 106 121 181 118
280 88 69 93 106 117 110 100 119 148 135
290 84 105 118 92 96 128 98 108 119 120
300 92 106 107 123 112 112 109 115 134 127
310 115 112 90 129 150 120 114 103 125 111
320 105 135 109 191 92 139 95 114 118 111
330 102 96 115 280 311 144 186 134 113 96
340 89 120 101 236 219 181 291 171 124 118
350 86 93 77 273 218 206 293 178 94 84
360 76 116 127 248 255 228 303 138 88 82
370 93 101 104 119 230 221 285 170 93 85
380 88 120 89 99 216 164 128 140 105 98
390 91 87 122 100 107 86 111 126 85 111
400 106 92 96 93 117 113 87 85 85 119
410 128 102 118 89 116 104 102 110 105 136
420 111 94 92 122 125 80 92 116 107 87
430 113 115 87 104 95 98 97 94 88 112
440 118 126 114 92 99 112 103 93 101 86
450 131 101 113 105 92 80 99 85 106 99
460 90 108 100 138 121 121 89 110 82 109
470 145 82 106 96 90 90 121 112 108 120
480 160 116 125 91 115 78 97 112 101 147
490 129 100 94 100 96 101 97 102 110 128
500 151 94 107 70 104 89 131 109 86 142
510 91 105 124 104 84 81 105 98 109 103

A. 1.2 Image 1 - Summation length 100 Pixels

Row Number Column Number - - >
1 0 100 200 300 400

V
0 244 112 0 67 308

10 253 91 0 60 379
20 215 153 0 34 356
30 295 173 26 37 328
40 335 244 43 16 257
50 308 171 43 16 276
60 259 316 317 204 280
70 356 307 303 342 318
80 317 159 232 217 316
90 234 205 181 214 353

100 224 153 204 193 272
110 258 180 140 248 211
120 291 228 188 282 236
130 234 218 243 195 262
140 222 195 209 215 255
150 200 215 193 166 266
160 177 223 228 196 212
170 250 275 228 234 210
180 200 278 184 220 302
190 147 287 233 277 316
200 134 321 227 267 256
210 226 272 215 204 322
220 286 260 320 211 293
230 264 224 346 211 343
240 262 254 283 209 327
250 267 324 254 255 458
260 206 206 246 249 263
270 196 220 212 227 299
280 157 199 227 219 283
290 189 210 224 206 239
300 198 230 224 224 261
310 227 219 270 217 236
320 240 300 231 209 229
330 198 395 455 320 209
340 209 337 400 462 242
350 179 350 424 471 178
360 192 375 483 441 170
370 194 223 451 455 178
380 208 188 380 268 203
390 178 222 193 237 196
400 198 189 230 172 204
410 230 207 220 212 241
420 205 214 205 208 194
430 228 191 193 191 200
440 244 206 211 196 187
450 232 218 172 184 205
460 198 238 242 199 191
470 227 202 180 233 228
480 276 216 193 209 248
490 229 194 197 199 238
500 245 177 193 240 228
510 196 228 165 203 212

A. 1.3 Image 2 - Summation length 50 Pixels

Row Number Column Number ------- >
0 50 100 150 200 250 300 350 400 450

V 0 128 119 115 0 0 0 0 0 0 0
10 175 114 145 118 138 157 121 0 0 0
20 195 134 123 130 123 123 108 121 115 0
30 174 110 122 232 149 134 137 143 181 259
40 129 109 167 117 191 124 113 126 167 119
50 100 120 170 146 135 65 109 83 147 147
60 100 73 153 125 129 118 134 118 106 181
70 101 108 149 99 106 103 100 102 105 140
80 118 98 182 102 111 121 115 121 187 75
90 120 102 165 123 129 111 132 109 94 111

100 88 103 127 104 108 121 89 78 12 6 95
110 101 103 133 123 105 126 113 116 116 146
120 114 93 99 76 94 110 164 131 118 112
130 112 84 128 115 109 94 148 117 98 106
140 105 112 128 107 96 100 82 115 106 152
150 66 101 148 119 142 125 99 111 102 134
160 134 131 123 120 130 97 115 92 100 107
170 162 157 120 99 111 93 123 121 93 115
180 140 137 148 96 119 103 83 112 89 100
190 105 111 133 119 172 121 84 131 88 153
200 112 107 141 104 167 145 90 101 111 98
210 108 101 86 87 158 190 101 91 99 108
220 96 129 129 108 119 141 86 101 106 111
230 78 114 103 120 108 151 128 127 101 114
240 126 123 95 105 83 76 102 81 88 111
250 131 95 116 119 101 101 103 143 111 98
260 123 112 137 100 119 105 111 84 82 89
270 106 123 125 133 112 127 115 116 124 112
280 95 103 180 187 152 92 90 73 96 98
290 144 129 214 185 140 105 100 126 115 116
300 163 105 238 252 192 218 144 135 114 111
310 147 98 195 176 246 219 207 208 103 88
320 162 119 209 272 254 262 183 242 118 128
330 98 126 205 236 243 215 198 228 101 122
340 126 132 158 137 192 194 221 170 119 119
350 152 128 141 151 170 163 219 216 108 101
360 110 139 130 97 130 108 187 189 120 141
370 96 98 89 96 113 94 92 127 113 162
380 136 107 130 102 100 89 101 133 125 115
390 114 87 104 104 99 79 107 97 120 100
400 150 106 95 97 100 116 99 87 106 125
410 145 119 115 103 112 126 78 98 113 173
420 91 91 150 219 237 160 183 199 97 87
430 117 214 172 200 24 8 185 140 136 99 97
440 102 72 91 105 101 79 103 102 103 94
450 76 96 93 74 47 14 40 68 108 126
460 85 106 64 91 82 127 96 99 78 93
470 113 91 99 95 76 81 76 112 95 133
480 82 113 85 129 118 116 114 117 142 82
490 101 80 99 114 74 97 129 70 107 93
500 82 89 94 79 113 122 99 112 110 119
510 100 102 95 98 85 96 107 103 91 112

167

A. 1.4 Image 2 - Summation length 100 Pixels

Row Number Column Number - - >
1 0 100 200 300 400

V
0 247 115 0 0 0

10 289 263 295 121 0
20 329 253 246 229 115
30 284 354 283 280 440
40 238 284 315 239 286
50 220 316 200 192 294
60 173 278 247 252 287
70 209 248 209 202 245
80 216 284 232 236 262
90 222 288 240 241 205

100 191 231 229 167 221
110 204 256 231 229 262
120 207 175 204 295 230
130 196 243 203 265 204
140 217 235 196 197 258
150 167 267 267 210 236
160 265 243 227 207 207
170 319 219 204 244 208
180 277 244 222 195 189
190 216 252 293 215 241
200 219 245 312 191 209
210 209 173 348 192 207
220 225 237 260 187 217
230 192 223 259 255 215
240 249 200 159 183 199
250 226 235 202 246 209
260 235 237 224 195 171
270 229 258 239 231 236
280 198 367 244 163 194
290 273 399 245 226 231
300 268 490 410 279 225
310 245 371 465 415 191
320 281 481 516 425 246
330 224 441 458 426 223
340 258 295 386 391 238
350 280 292 333 435 209
360 249 227 238 376 261
370 194 185 207 219 275
380 243 232 189 234 240
390 201 208 178 204 220
400 256 192 216 186 231
410 264 218 238 176 286
420 182 369 397 382 184
430 331 372 433 276 196
440 174 196 180 205 197
450 172 167 61 108 234
460 191 155 209 195 171
470 204 194 157 188 228
480 195 214 234 231 224
490 181 213 171 199 200
500 171 173 235 211 229
510 202 193 181 210 203

A. 1.5 Image 3 - Summation length 50 Pixels

Row Number Column Number ------- >
0 50 100 150 200 250 300 350 400 450

V 0 28 172 200 0 0 0 0 0 122 240
10 0 84 188 54 0 0 0 0 88 217
20 94 0 76 126 0 0 0 0 51 2 62
30 74 113 125 140 22 0 0 0 48 272
40 83 110 114 97 48 0 0 0 35 282
50 92 128 88 120 148 0 0 0 28 226
60 73 116 108 73 169 127 113 9 16 313
70 119 154 98 97 145 155 75 127 118 250
80 135 128 133 113 124 139 23 126 143 199
90 92 146 108 110 100 125 87 85 131 223

100 127 104 138 159 89 117 139 105 114 164
110 170 193 152 161 212 121 116 134 145 209
120 109 333 164 137 270 111 110 160 113 117
130 134 130 108 151 193 119 144 166 101 111
140 144 104 114 101 243 128 93 94 112 115
150 125 96 100 115 118 147 119 215 130 101
160 133 108 138 117 89 155 133 159 152 128
170 124 132 109 113 83 122 121 87 128 98
180 116 104 126 117 96 82 125 127 153 140
190 107 99 86 116 116 104 94 188 119 115
200 68 111 108 122 108 129 125 221 140 129
210 138 139 126 141 96 113 96 102 114 140
220 81 131 133 117 123 85 80 80 156 144
230 102 118 108 149 99 82 85 123 140 138
240 84 127 100 89 125 106 138 113 91 151
250 80 94 109 96 104 115 130 117 122 143
260 91 128 75 86 124 104 112 104 119 166
270 85 90 127 85 92 110 108 98 119 98
280 86 95 132 116 110 101 95 93 123 93
290 108 111 127 111 159 94 108 78 138 111
300 85 119 187 184 186 128 149 100 127 89
310 81 117 167 193 265 293 154 106 118 97
320 66 126 206 161 174 317 136 86 88 89
330 70 93 162 180 169 249 146 101 87 142
340 72 116 146 96 145 269 142 95 106 166
350 79 138 87 91 124 107 138 89 75 153
360 113 258 98 97 98 96 128 85 105 179
370 83 174 112 91 116 108 104 106 115 131
380 107 108 106 79 104 97 139 144 166 117
390 110 190 106 87 92 105 155 168 125 139
400 107 97 110 78 92 94 150 186 152 123
410 85 89 88 101 106 118 140 205 137 116
420 90 111 97 91 87 105 106 166 160 136
430 101 98 99 90 88 91 114 137 139 159
440 78 112 85 91 112 103 121 152 173 137
450 112 109 73 91 86 100 99 114 160 185
460 78 82 90 112 85 96 88 124 179 164
470 89 85 96 112 117 94 97 87 165 188
480 60 84 74 93 89 112 104 86 235 189
490 89 99 95 126 97 83 96 94 185 176
500 87 144 75 86 112 100 96 98 181 211
510 95 113 106 122 110 105 91 111 161 158

169

A. 1.6 Image 3 - Summation length 100 Pixels

Row I

V
0

iumber Column
0 100 200

Number — >
300 400

200 200 0 0 362
10 84 242 0 0 305
20 94 202 0 0 313
30 187 2 65 22 0 320
40 193 211 48 0 317
50 220 208 148 0 254
60 189 181 296 122 339
70 273 195 300 202 368
80 263 246 263 149 342
90 238 218 225 172 354

100 231 297 206 244 278
110 363 313 333 250 354
120 442 301 381 270 230
130 264 259 312 310 212
140 248 215 371 187 227
150 221 215 265 334 231
160 241 255 244 292 280
170 256 222 205 208 226
180 220 243 178 252 293
190 206 202 220 282 234
200 179 230 237 346 269
210 277 267 209 198 254
220 212 250 208 160 300
230 220 257 181 208 278
240 211 189 231 251 242
250 174 205 219 247 265
260 219 161 228 216 285
270 175 212 202 206 217
280 181 248 211 188 216
290 219 238 253 186 249
300 204 371 314 249 216
310 198 360 558 260 215
320 192 367 491 222 177
330 163 342 418 247 229
340 188 242 414 237 272
350 217 178 231 227 228
360 371 195 194 213 284
370 257 203 224 210 246
380 215 185 201 283 283
390 300 193 197 323 2 64
400 204 188 186 336 275
410 174 189 224 345 253
420 201 188 192 272 296
430 199 189 179 251 298
440 190 176 215 273 310
450 221 164 186 213 345
460 160 202 181 212 343
470 174 208 211 184 353
480 144 167 201 190 424
490 188 221 180 190 361
500 231 161 212 194 392
510 208 228 215 202 319

A. 1.7 Image 4 - Summation length 50 Pixels

Row Number Column Number ------- >
0 50 100 150 200 250 300 350 400 450

V 0 86 113 109 97 122 138 106 94 93 117
10 101 105 98 50 0 0 0 79 110 117
20 90 93 97 94 38 72 23 88 126 111
30 82 128 86 95 81 211 95 84 85 119
40 65 93 73 82 95 181 107 99 77 109
50 102 115 101 88 130 159 83 69 86 105
60 80 90 115 84 118 99 95 106 95 86
70 97 94 104 67 98 101 92 115 88 115
80 88 119 96 110 103 85 91 94 102 108
90 100 115 95 106 109 81 75 92 108 100

100 89 82 96 113 92 88 71 82 80 86
110 99 93 111 81 106 97 98 112 103 102
120 65 119 90 111 111 94 96 98 113 92
130 88 110 102 107 121 88 90 127 106 109
140 104 123 139 98 88 93 101 104 100 146
150 117 123 194 157 165 147 162 175 98 113
160 109 116 186 147 143 123 161 178 184 96
170 86 121 137 206 168 135 175 176 159 127
180 103 107 91 119 114 110 109 106 119 125
190 92 120 96 110 102 115 91 115 89 131
200 96 158 114 115 97 103 79 119 102 190
210 102 122 135 128 100 106 102 119 110 142
220 82 128 111 213 130 111 172 171 159 112
230 71 142 139 171 186 107 207 186 131 178
240 106 185 133 192 148 150 205 182 185 113
250 95 220 166 229 155 120 203 190 187 145
260 118 200 150 168 151 101 186 140 182 110
270 92 140 165 160 150 172 184 169 146 135
280 108 90 179 176 130 150 265 175 167 135
290 74 184 141 82 148 192 195 136 164 104
300 101 127 133 122 106 132 98 99 118 118
310 95 121 117 125 119 126 80 108 159 147
320 94 101 105 115 82 150 81 131 99 130
330 104 120 106 115 98 126 109 124 96 136
340 103 125 102 99 105 124 141 136 96 123
350 104 105 106 101 146 113 113 92 127 115
360 139 110 107 89 135 124 148 128 98 119
370 125 125 109 94 111 103 134 100 109 135
380 97 101 116 106 107 127 102 123 142 92
390 106 104 92 100 104 108 78 105 114 115
400 82 111 81 94 121 111 82 73 89 94
410 58 111 123 97 100 116 122 83 88 119
420 107 110 113 100 93 122 104 94 131 120
430 68 91 96 114 101 92 100 99 110 82
440 67 108 104 117 100 116 108 99 112 85
450 90 120 100 114 122 109 107 119 98 107
460 80 95 93 104 125 116 103 91 75 106
470 60 87 126 99 128 105 103 86 98 96
480 77 99 114 75 102 123 140 83 103 107
490 90 103 96 90 80 87 108 96 88 103
500 83 104 86 81 67 91 72 88 106 84
510 87 102 85 94 75 66 74 96 88 97

A. 1.8 Image 4 - Summation length 100 Pixels

Row I

V
0

sfumber Column
0 100 200

Number - - >
300 400

199 206 260 200 210
10 206 148 0 79 227
20 183 191 110 111 237
30 210 181 292 179 204
40 158 155 276 206 186
50 217 189 289 152 191
60 170 199 217 201 181
70 191 171 199 207 203
80 207 206 188 185 210
90 215 201 190 167 208

100 171 209 180 153 166
110 192 192 203 210 205
120 184 201 205 194 205
130 198 209 209 217 215
140 227 237 181 205 246
150 240 351 312 337 211
160 225 333 266 339 280
170 207 343 303 351 286
180 210 210 224 215 244
190 212 206 217 206 220
200 254 229 200 198 292
210 224 263 206 221 252
220 210 324 241 343 271
230 213 310 293 393 309
240 291 325 298 387 298
250 315 395 275 393 332
260 318 318 252 326 292
270 232 325 322 353 281
280 198 355 280 440 302
290 258 223 340 331 268
300 228 255 238 197 236
310 216 242 245 188 306
320 195 220 232 212 229
330 224 221 224 233 232
340 228 201 229 277 219
350 209 207 259 205 242
360 249 196 259 276 217
370 250 203 214 234 244
380 198 222 234 225 234
390 210 192 212 183 229
400 193 175 232 155 183
410 169 220 216 205 207
420 217 213 215 198 251
430 159 210 193 199 192
440 175 221 216 207 197
450 210 214 231 226 205
460 175 197 241 194 181
470 147 225 233 189 194
480 176 189 225 223 210
490 193 186 167 204 191
500 187 167 158 160 190
510 189 179 141 170 185

A. 1.9 Image 5 - Summation length 50 Pixels

Row Number Column Number ------- >
0 50 100 150 200 250 300 350 400 450

V 0 82 114 126 85 94 109 136 157 138 125
10 117 119 101 93 57 136 112 121 136 118
20 112 126 122 83 113 96 100 119 143 103
30 121 133 104 106 131 116 114 161 156 104
40 186 125 101 121 107 107 107 114 127 102
50 174 147 155 104 108 86 95 193 125 146
60 87 149 193 193 211 89 88 116 125 113
70 118 146 121 191 102 136 98 117 151 143
80 89 103 116 117 102 198 75 119 144 161
90 122 116 140 117 102 112 125 134 139 137

100 99 129 126 130 133 129 156 173 149 163
110 97 103 126 121 85 151 155 115 111 100
120 95 100 134 103 114 148 120 103 88 118
130 89 107 113 99 130 222 124 103 95 127
140 86 106 121 102 100 173 125 113 85 93
150 85 139 126 98 75 138 135 103 117 104
160 112 122 105 110 119 133 105 114 86 135
170 102 134 100 99 106 105 113 110 138 126
180 102 98 118 111 120 130 94 99 100 133
190 107 92 138 103 106 103 93 105 115 112
200 73 129 152 86 123 98 156 134 108 103
210 104 110 120 103 108 114 161 142 125 138
220 75 111 99 102 97 124 179 131 109 94
230 127 119 135 78 91 100 109 113 110 98
240 116 86 137 100 122 84 112 99 128 107
250 132 105 143 99 86 114 111 112 96 108
260 96 98 96 117 117 107 98 82 95 76
270 114 126 111 128 97 103 90 112 98 115
280 125 89 97 146 117 111 96 86 86 146
290 122 108 98 162 173 169 196 206 164 159
300 129 94 91 164 210 237 165 216 218 197
310 97 104 106 175 184 171 162 174 198 151
320 108 102 109 192 191 137 171 162 269 177
330 106 103 75 154 177 169 121 205 183 181
340 127 108 112 167 146 190 205 212 198 167
350 108 94 87 157 139 160 111 155 211 149
360 101 112 105 120 71 116 112 112 115 107
370 125 100 99 118 119 131 109 112 86 111
380 95 118 137 83 107 120 108 108 106 133
390 87 115 135 90 115 113 99 103 96 113
400 97 106 84 89 88 101 90 91 89 98
410 88 101 118 89 126 124 87 107 89 111
420 113 93 85 69 95 90 124 120 95 100
430 79 84 100 96 116 139 97 84 86 81
440 103 95 110 89 109 97 122 89 114 83
450 86 116 97 89 101 98 131 106 93 85
460 77 89 94 96 105 93 116 108 104 97
470 76 99 104 112 92 130 83 65 103 89
480 85 100 93 112 97 106 101 88 108 116
490 95 135 87 97 102 110 111 95 115 105
500 102 84 112 125 116 90 111 102 103 111
510 84 90 106 93 96 85 91 99 120 91

A. 1.10 Image 5 - Summation length 100 Pixels

Row I

V
0

dumber Column
0 100 200

Number - - >
300 400

196 211 203 293 263
10 236 194 193 233 254
20 238 205 209 219 246
30 254 210 247 275 260
40 311 222 214 221 229
50 321 259 194 288 271
60 236 386 300 204 238
70 264 312 238 215 294
80 192 233 300 194 305
90 238 257 214 259 276

100 228 256 262 329 312
110 200 247 236 270 211
120 195 237 262 223 206
130 196 212 352 227 222
140 192 223 273 238 178
150 224 224 213 238 221
160 234 215 252 219 221
170 236 199 211 223 264
180 200 229 250 193 233
190 199 241 209 198 227
200 202 238 221 290 211
210 214 223 222 303 263
220 186 201 221 310 203
230 246 213 191 222 208
240 202 237 206 211 235
250 237 242 200 223 204
260 194 213 224 180 171
270 240 239 200 202 213
280 214 243 228 182 232
290 230 260 342 402 323
300 223 255 447 381 415
310 201 281 355 336 349
320 210 301 328 333 446
330 209 229 346 326 364
340 235 279 336 417 365
350 202 244 299 332 360
360 213 225 187 224 222
370 225 217 250 221 197
380 213 220 227 216 239
390 202 225 228 202 209
400 203 173 189 181 187
410 189 207 250 194 200
420 206 154 185 244 195
430 163 196 255 181 167
440 198 199 206 211 197
450 202 186 199 237 178
460 166 190 198 224 201
470 175 216 222 148 192
480 185 205 203 189 224
490 230 184 212 206 220
500 186 237 206 213 214
510 174 199 181 190 211

174

APPENDIX 2

SOFTWARE STRUCTURE CHARTS

A.2.1 Program SECOND.C..175
A.2.1.1 Conditions.. 175
A.2.1.2 Actions.............................. .. 175

A.2.2 Program BINARY.C... .176
A.2.2.1 Conditions..176
A.2.2.2 Actions... 176

A.2.3 Program RGROW.C.. 177
A.2.3.1 Conditions.. .177
A.2.3.2 Actions................ .. 177

A.2.4 Program RECT.C.. 178
A.2.4.1 Conditions..178
A.2.4.2 Actions... 178

A.2.5 Program EXT.C..179
A.2.5.1 Conditions.. .. .179
A.2.5.2 Actions... 179

A.2.6 Program EXTRACT.C...180
A.2.6.1 Conditions..180
A.2.6.2 Actions... 180

A.2.7 Program THÏN.C.. 181
A.2.7.1 Conditions..181
A.2.7.2 Actions... 181

A.2.8 Program EXTEND1.C... 182
A.2.8.1 Conditions......... ..182
A.2.8.2 Actions...182

A.2.9 Program EXTEND2.C.. 183
A.2.9.1 Conditions... ,183
A.2.9.2 Actions...183

A.2.10 Program SYNTAC.C...184
A.2.10.1 Conditions... 184
A.2.10.2 Actions...184

A.2.11 Program STRING.C... 185
A.2.11.1 Conditions... 185
A.2.11.2 Actions... .. 185

APPENDIX 2

SOFTWARE STRUCTURE CHARTS

A.2.1 Program SECOND. C

D-cg'am
SECO N D

ODen file s Body I e rm ina :

<f C1 i r NC

! D e te -m 'n e 0 j

I fne name

I D e te rg in e 0

I file n a ^ e

!

O

I
© Ó Ò

! W niie C2

h a e x * i
^a icu la tion I

Figure A2.1 Structure chart of SECOND. C

A.2.1.1 Conditions
Cl. In-line parameter found.
C2. Not end-of-file.

12 i

A.2.1.2 Actions

1. Get in-line image file name.
2. Open image file for reading.
3. Get prompted image file name.
4. Open FILE.NAM for writing.
5. Write image file name to FILE.NAM.
6. Open SECOND.OUT for writing.
7. Read one line from image file.
8. Calculate second difference.
9. Sum groups of adjacent second differences.
10. Output result to SECOND.OUT.
11. Increment image file pointer by GAPJBETWEEN_LINES lines.
12. Close all files.

A.2.2 Program BINARY.C

krogr3T'
3!NARV

Whüe C1

: In.Tianse ' i R ead
i.........
j T n re sh c ic • 3 m a r is e * j j

jSECCND.Ou'7 1 c a ic j ia t 'o n
1.............. i

! le^mination |

Wnle Cl

e

rie :a in o

value

I b e t

I Line

Output
line

W hile C3

C o n s .o e r*

n e x t pixel

if C2

©
If NOT C2

w h i~ e BLACK ° i
i p ixe: fou nd I ; p ix e 1 fou nd

9) U O

Figure A2.2 Structure chart of BINARY.C

A.2.2.1 Conditions

Cl. Not end-of-file.
C2. If pixel > threshold.
C3. Not end of line.
C4. If value > maximum value so far read.

A.2.2.2 Actions

1. Open FILE.NAM for reading.
2. Read name of image file from FILE.NAM.
3. Open image file for reading.
4. Open SECOND.OUT for reading.
5. Open BINARY.IMG for writing.
6. Calculate OFFSET into image file.
7. Read GROUPJ3IZE bytes from image file at OFFSET.
8. Threshold = (maximum + minimum)/2
9. Convert pixel in line to WHITE.
10. Convert pixel in line to BLACK.
11. Output converted line to BINARY.IMG.
12. Close files.

A.2.3 Program RGROW.C
177

Program
RGROW

Whne C1 OR C2

Ooen i

f ie s I miTia ;se
Region *
Growing

4 ; 5
Grow from !
top aown .

Grow from

botTom up

While Ci While C2

GROW GROW

ie rm ina iion

@ ® ¿) ¿) © ©
Figure A2.3 Structure chart of RGROW.C

A.2.3.1 Conditions

Cl. Pixel intensities change on growing down.
C2. Pixel intensities change on growing up.

A.2.3.2 Actions

1. Open BINARY. IMG for reading.
2. Open RGROW. IMG for writing.
3. Open SECOND. OUT for reading.
4. Open FILE.NAM for reading.
5. Get maximum second difference from SECOND.OUT.
6. Calculate offset into image file for region growing.
7. Read GROUP_SIZE pixels in the image file at the calculated offset

and convert WHITE pixels to GREY.
8. Top of region growing = current line in image file.
9. Convert WHITE pixels touching GREY above to GREY.
10. Bottom of region growing = current line.
11. Read line below from image file.
12. Convert WHITE pixels touching GREY below to GREY.
13. Top of region growing = current line.
14. Read line above from image file.
15. Close all files.

A.2.4 Program RECT.C

! Program

i RECT

Figure A2.4 Structure chart of RECT.C

A.2.4.1 Conditions

Cl. Perimeter of plate traversed.

A.2.4.2 Actions

1. Open RGROW.IMG for reading.
2. Open RECT.TXT for writing.
3. Follow edge from start point until abrupt change in direction.
4. Follow edge from start point in the untraversed direction.
5. Calculate vector for line.
6. Follow edge until abrupt change.
7. Pair vectors which are in the same direction.
8. Determine if vector pairs are at right angles.
9. Calculate orientation of long horizontal size of plate = direction of

greatest vector.
10. Output orientation to RECT.TXT.
11. Display statement of results.
12. Close files.

179

A.2.5 Program EXT.C

Figure A2.5 Structure chart of EXT.C

A.2.5.1 Conditions

Cl. Pixel intensities change on growing down,
C2. Pixel intensities change on growing up.
C3. WHITE in source and BLACK in work file.

A.2.5.2 Actions

1. Open RGROW.IMG for reading.
2. Open EXT.IMG for writing (work file).
3. Open SECOND. OUT for reading.
4. Open FILE.NAM for reading.
5. Open BINARY.IMG for reading (source file).
6. Set pixels in top left corner to GREY. (Top line = current line).
7. Read line below from image file.
8. New current line = line below current line.
9. Convert WHITE pixels touching GREY to GREY.
10. New current line = line above current line.
11. Read line below from image file.
12. Read line from image file.
13. Read line from work file.
14. Convert BLACK pixels in work file to WHITE.
15. Close all files.

A.2.6 Program EXTRACT. C
1 Program
! EXTRACT.

1---------------
! Whiie NO" Cl

3ooy

Wnile N0~ C2 j While NO" C3

7 ^ ' ' S Coiect adjacent A"° ls ' 0,xels* ‘
1 ' K y O O ' BLACK o'xelp toorouDS:Î 0 QfOUDS;

If C£ | I: NO" C* if C5 j if NOT C5
i ” ' I i------ -----------1

¡Ado pixei°| 0re2te nevPj m j . io 0 Make new 0
; to l;St ! 1 P|Xe' !IS*- ! i croup j 1 g'QUP

gs: next
row

------- !----

©

I Whne NOT C7 While NOT C7

Copsber al; *
pairs o? groups

C6

kdo to 0
1 QfOUP

© © ®
Figure A2.6 Structure chart of EXTRACT.C

A.2.6.1 Conditions

butput *
pharacters erminatiorj

Cl. Last row.
C2. Last pixel in this row.
C3. Last pixel list for this row.
C4. Last pixel in row.
C5. Pixel list touches existing pixel list.
C6. Pixel groups touch.
C7. Last pair of pixel group.

A.2.6.2 Actions

1. Open EXT.IMG.
2. n = 1.
3. Open FILE.NO for writing.
4. Current row = top row of pixels in EXT.IMG.
5. Add pixel to existing list of BLACK pixels for this row.
6. Create new BLACK pixel list for this row.
7. Add pixel list to an existing group of pixels.
8. Create new pixel group.
9. Read new pixel row from EXT.IMG.
10. Combine the pair of pixel groups under consideration.
11. Open .SOn file for writing.
12. Write pixel group to .SOn file as 100x100 bit map.
13. Close .SOn.
14. Increment n.
15. Write number of characters (= n-1) to FILE.NO.
16. Close all files.

A.2.7 Program THIN.C
181

Program

; While C3

I Uoen f -■ Ifiles
Booy

X f 0 ° en Ge; eaae 1 1

0 0 © ! E|leL . .

point iist j

u o se
flies

! Vv'niie CI

SKeietal
checK

Length
Cneck i D'xels

eileîe superflue us I Termination
i o ' this .SOI

00® G
if C4

aeiermine
i: skeletal

sKeleta! 0
pixel

j D¡xe; not
I skeletal

VjO,
Figure A2.7 Structure chart of THIN.C

A.2.7.1 Conditions

Cl. All skeletal pixels have not yet been considered.
C2. If pixel and neighbours match one of templates, remove superfluous

pixel.
C3. .SOn files processed so far < value read from FILE.NO.
C4. Pixel is skeletal (distance to two opposite edges is the same).

A.2.7.2 Actions

1. Open FILE.NO for reading.
2. Read number of files to be processed from FILE.NO.
3. n = 1.
4. Open .SOn file for reading.
5. Open .SKn file for writing.
6. Increment n.
7. Generate edge point list.
8. Calculate distance to nearest edge.
9. Generate vector in opposite direction.
10. Ensure pixel is skeletal in .SKn file.
11. Delete skeletal chains 2 or less pixels long.
12. Ensure pixel is not skeletal in .SKn file.
13. Close .SOn and .SKn files.
14. Close files.

.------! 7T - — T— — 7 r—

A.2.8 Program EXTENDl.C

Droc'sm
EXTEND"

Whue C3

G et no. c* j
ies to be reao

* i
Body

; W hile C4

O o e r

Pi.es
Get vectors j
fo r strokes |

i Fine strokes
1 to oe joined

© © (l) L-mo i:ne
ends-----1----

[Calculate angiej
Between stroked

:< C6
(Calculate angi§
joetween stroki
i____aaaa

ti C7

strokes mjst
De jomea

Figure A2.8 Structure chart of EXTEND l.C

Wmle C5

A.2.8.1 Conditions

Cl. All skeletal pixels have not yet been considered.
C2. If pixel and neighbours match one of templates.
C3. .SOn files processed so far < value read from FILE.NO.
C4. All strokes have not yet been considered.
C5. All pairs of strokes have not yet been considered.
C6. If strokes are at 180+15 degrees to each other.
C7. If vector joining stroke ends is parallel to strokes ±20 degrees.

A.2.8.2 Actions

1. Open FILE.NO for reading.
2. Read number of files to be processed from FILE.NO.
3. n = 1.
4. Close FILE.NO.
5. Open .SKn file for reading.
6. Open .SLn file for writing.
7. Increment n.
8. Determine direction of both ends of stroke.
9. Connect ends of strokes.
10. Ensure pixel is not skeletal in .SLn file.
11. Close files.

A.2.9 Program EXTEND2.C
\ P rogram

! E X T E K 3 2

While C4

! G e t n o . o f !
: I

u e s to be re a b
I
T '

■>-. far,2 } \ ó \ a
;o e n
: iles

tody

Wi^ie C5

Strode *
extension

j Follow
! stroke

10

Figure A2.9 Structure chart of EXTEND 2. C

Extension

intersection

| Extena Follow

| stroke
i

strokes
i

C lo s e
file s

If C1 | 1' C2 | l i C3

j Extension 0 j Extension 0 | Extension C
■ meets stroke | meets edge meets extensior

i I
; i
i 1

10

A.2.9.1 Conditions

Cl. Extended stroke meets a stroke.
C2. Extended stroke meets an edge.
C3. Extended stroke meets another extension.
C4. files processed so far < value read from FILE.NO.
C5. All strokes have not yet been considered.

A.2.9.2 Actions

1. Open FILE.NO for reading.
2. Read number of files to be processed from FILE.NO.
3. n « 1.
4. Close FILE.NO.
5. Open .SLn file for reading.
6. Open .SMn file for writing.
7. Increment n.
8. Determine direction of both ends of stroke.
9. Extend stroke from both ends.
10. Delete remainder of stroke.
11. Close files.

A.2.10 Program SYNTAC.C
184

Get no. o* |
flies ic be reab

program

SYI'TAC

j Open
i Files

Wnne

3ody

' Wniie C2 Whne C2

c ind
end nooes

n n c *
n te rse c tio n

nooes

C iose
f:ies

Figure A2.10 Structure chart of SYNTAC.C

A.2.10.1 Conditions

Cl. files processed so far < value read from FILE.NO.
C2. All skeletal pixels have not yet been considered.
C3. All strokes have not yet been considered.
C4 Type 'c' node found.

A.2.10.2 Actions

1. Open FILE.NO for reading.
2. Read number of files to be processed from FILE.NO.
3. n = l .
4. Close FILE.NO.
5. Open .SMn file for reading. Open .SYn file for writing
6. Increment n.
7. Type ’a’ node.
8. Log node type and connectivity.
9. Type 'b' node.
10. Type 'c' node.
11. Output node details to .SYn file.
12. Close files.

__gj-i ■■

A.2.11 Program STRING. C

j Program j

j S T R ' N G j

-----------------, p
^poly co-oro .j j Derive j Interprete I See if char.

transform j !_ s t in g | string | identified

® © ®
Figure A 2.ll Structure chart of STRING.C

A.2.11.1 Conditions

Cl. Characters processed so farcvalue read from FILE.NO.
C2. String representation ambiguous.

A.2.11.2 Actions

1. Open STRING.TXT for reading (database file).
2. Open FILE.NO for reading.
3. Read number of files to be processed from FILE.NO.
4. n = 1.
5. Close FILE.NO.
6. Open RECT.TXT for reading.
7. Open character connectivity (.SYn) file for reading.
8. Increment n.
9. Produce string representations using simple types.
10. Compare derived strings to STRING.TXT database.

Resolve
ambiguity

11. Convert node co-ordinates to co-ordinate frame derived
RECT.TXT if character >45 degrees from image co-ordinate frame.

12. Produce string representations using extended types.
13. Attempt to identify character using context information.
14. Display string.
15. Display character.
16. Display failure to recognize message.
17. Close character connectivity file.
18. Close files.

