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Abstract

The purpose of this research project is to investigate the implications of the loop 
equations formulation of the state estimation procedure for the implementation of decision 
support (DS) systems in operational control of water networks. The proposed DS system 
comprises a number of standalone applications which could be grouped in the mathematical 
modeling and simulation of the water systems and how to deal with the information 
uncertainty in the decision-making process. Both tasks are essential in order to supply 
safely, treated water to consumers. The mathematical modeling and simulation forms the 
basis for detailed optimization of the water network operations while the uncertainty based 
reasoning is used to reduce the complexity of the network system and to increase the 
credibility of its model. This research attempts to integrate the two aspects of operational 
decision support into a single computational framework of loop equations.

The prototype DS system will be validated using case studies taken from the water 
industry. The optimal control of water systems is a challenging problem because the models 
are non-linear and large-scale and measurements are noisy and frequently incomplete.

The problem of steady state analysis of water distribution systems is studied in the 
context of a co-tree flows simulator algorithm that is derived from the basic loop corrective 
flows algorithm. It is shown that the co-tree formulation has some inherent advantages over 
the original formulation due to the use of the spanning trees. This allows a rapid 
determination of the necessary input data for the simulator (the loop and topological 
incidence matrixes and the initial flows) as well as the fast calculus of the nodal heads at 
the end of the simulation.

A novel Least Square (LS) state estimator that is suitable for on-line monitoring of the 
water distribution systems is presented. The state variables are both the loop corrective 
flows and the variation of nodal demands. It is shown that the input data necessary to build 
the network equations can be derived from the spanning tree obtained for the co-tree flows 
simulator and so there is a natural connection between the novel state estimator and the 
simulator algorithm. In spite of the increased size of the state vector, a satisfactory 
convergence is obtained through an enhancement in the Jacobian matrix. Furthermore a 
fine-tuning of the inverse of the tree incidence matrix is carried out in order to avoid the 
lack of numerical stability characteristic to the nodal heads state estimators. A very efficient 
and effective loop flows LS state estimator is developed that is tested successfully on 
realistic water networks.

Based on the novel state estimation technique, Confidence Limit Analysis (CLA) 
algorithms that are quantifying the measurement uncertainty impact on the state estimates, 
are developed. They include a formulation of an Experimental Sensitivity Matrix method 
(ESM), a sensitivity matrix method within the loop equations framework and an Error 
Maximization technique (EM). The performances of these algorithms are assessed in terms 
of their computational complexity and the accuracy of the results that they produce. It is 
shown that the computational efficiency and the accuracy of results of the EM method 
renders it suitable for online decision support applications.

Finally, it is shown that the novel state estimation technique and the confidence limits 
analysis algorithm are connected to a previous developed pattern classification module. The 
overall system is used for fault detection and identification for a realistic 34-node water 
network. Both, the “loop-equations based” state estimates and the variations of the nodal 
demands, together with their confidence limits are used as input data to the classification 
module in order to decide on the operational status of the 34-node water network. The 
extensive performance studies for 24 hour of water network operations with particular 
emphasis on detection and correct location of leakages are earned out.
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Chapter 1 

Introduction

1.1. Project description

The overall aim o f this research project is to investigate the implications of the loop 

equations formulation of the state estimation procedure for the implementation of 

decision support (DS) systems in operational control of water networks.

The operational DS system includes a number of standalone applications from 

which the mathematical modelling and simulation of the water systems and the 

managing o f the uncertainty in the decision-making process are essential in order to 

supply safely, treated water to consumers. The mathematical modelling and simulation 

forms the basis for detailed optimization of the water network operations while the 

uncertainty based reasoning is used to reduce the complexity of the water system and to 

increase the credibility of its model. This research attempts to integrate the two aspects 

of operational decision support into a single computational framework of loop 

equations. The research will build on our previous research results in the area of 

operational decision support of water systems in the context of uncertainties, and 

extends other researchers’ work that confirmed the feasibility of using the loop 

equations in water networks modelling and simulation.

The novelty of the project lays in developing more efficient tools for decision 

support of water networks, as well as enhancing the existing ones, and then combining 

them into a coherent environment for optimal control of complex water networks.

The prototype DS system will be validated using case studies taken from the water 

industry. The optimal control o f water systems is a challenging problem because the 

models are non-linear and large-scale and measurements are noisy and frequently 

incomplete. Loop equations are used also in the modelling and simulation of the gas 

networks (Osiadacz, 1987; Osiadacz & Salimi, 1988) and power systems (Exposito et
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Chapter 1 :1.2 Water Distribution Systems

al., 1995; Shirmohammadi et al., 1988; Goswami & Basu, 1994) and within these 

respects the results of this research can have similar correspondents in other utility 

systems.

All parts of the project and their interconnections can be presented in a form of the 

block diagram presented at Figure 1-1.

Accurate input 
data

Exact flows 
and pressures

Realistic flows 
and pressures 
(with noise)

Topology 
as known 

by the 
system

Loop flows 
simulator 
algorithm

Telemetry
simulation

Loop-based 
state estimation 

technique

Actual
topology

Mathematical modeling and simulation

Estimates of flows 
and pressures

Operational 
control 

decision

Information about 
accuracy of meters 
and variability of 

iwater consumptions

Confidence 
limit analysis 
for loop-based 
state estimation State estimates 

with confidence 
limits

Previously 
developed pattern 
classification and 
decision making 

module

(close valve kj, 
increase infloM/ 

in the node i 
etc.)

Uncertainty based reasoning and decision making process

Figure 1-1: Operational decision support for water distribution systems using the 

loop equations in the numerical algorithms.

1.2. Water distribution systems

Modem water distribution systems, as the other two major utility systems 

electricity and gas, are characterized by its complexity and large scale.
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Chapter 1 :1.2 Water Distribution Systems

Additionally, it is quite difficult to identify a typical water distribution system. Each 

one has some unique characteristics due to the water source, service area topography, 

history of the system, etc. In general, all that can be said is that there are water sources 

and water users and that they are connected by pipes. The pipes can be made of many 

different materials (cast iron, steel, concrete etc.) and may be connected in many 

configurations.

There may be a single source such as a central pump station, or water may be 

supplied by a large number of wells. While pumps are a common component of many 

systems, there are networks which do not have any pumping and the water is supplied 

from some sources at high elevation.

Most systems contain some storage capacity in the form of tanks which are 

connected directly to the system, from which water must be pumped or which hold 

water under pressure.

Valves are required to shut off lines, suppress surges, release air, drain pipes, or 

control pressure.

Booster pumping may be required to provide adequate pressure in certain portions 

of a system where there is significant variation in elevation or use rate. On the other 

hand, pressure reducing valves serving just the opposite purpose may be needed.

Thus, water distribution systems consisting of large number of pipes, pumps, valves 

etc. are indeed complex hydraulic systems.

As indicated by Figure 1-1 our interest in water distribution systems as a case study 

is directed towards operational control rather than design or management of such 

systems. In fact in water distribution systems one can identify three levels of decision 

making that differ by time horizon, planning and decision variables (Bargiela, 1993; 

Urbaniak, 1998):

system development decisions: decisions about the planning and sequencing of 

the investments in building new elements of a distribution system, 

strategic planning decisions: decisions concerning the utilization of water 

resources and their preservation, as well as the legislative measures, 

operational control decisions: decisions concerning water pumping schedules, 

pressure control measures, leakage monitoring an the co-ordination of the 

leakage remedial actions.



Chapter 1 :1.2 Water Distribution Systems

This project deals with the area of operational control which comprises of those 

decisions and actions that need to be varied in time, in response to current operating 

conditions and the actual state of the water distribution system. This is the area where 

the system dynamics play a dominant role, where the randomness of inputs cannot be 

neglected and where the physical and system management constraints make the problem 

of control both difficult and challenging.

Therefore efficient control o f a water distribution system requires accurate 

information about its operating state. At present in the water industry, modem telemetry 

hardware and software systems are being installed to meet these needs. Unfortunately, 

due to financial constraints, it is not practical to measure all variables of interest. By 

variables o f interest, we mean here heads at all network nodes and inflows at fixed-head 

nodes which are the components of the state vector of the system because given this 

information and the static parameters of the network, all other variable such as pipe 

flows or consumptions, may be calculated immediately. As this information is not 

entirely achievable, consequently any advanced operational control of the water 

distribution network needs to rely on the mathematical modeling and subsequent 

simulation of the system.

The system state is obtained by solving a set of equations which are defined using 

the network topology data, the measured or estimated water consumptions and the 

inflows into the system. Different sets o f independent variables can be employed in 

order to build the water network equations. The most frequently used variables are the 

nodal heads, the pipe flows and the loop corrective flows.

Regardless the independent variables used to build the network equations, from on

line control point of view this method has two major drawbacks. Firstly, if  one 

measurement is incorrect or lost, this approach gives incorrect results or no results at all. 

And secondly, the method uses only the system inflows and consumptions which, as in 

the case of predicted values, may carry considerable errors, while other more accurate 

and readily available measurements are not used.

A method that overcomes these drawback is known as state estimation procedure 

and over the last two decades has been the key point for the implementation of 

monitoring and control of large scale public utility systems. Its strength lays in 

processing all available measurements and fonnulating the problem in terms of 

redundant equations. This redundancy is essential for the successful performance of

4



Chapter 1 :1.2 Water Distribution Systems

state estimation procedure since it enables the erroneous information to be filtered out. 

In water systems the degree of redundancy is achieved by combining the measurement 

information with the pseudomeasurements (i.e. predictions about water consumptions). 

Thus, by increasing the number of measurements it is possible to improve both the 

reliability and accuracy of state estimation.

The simulation of any complex engineering system will always include a degree of 

uncertainty. No meter can be fully accurate, no mathematical model can fully reflect the 

intricacies of a real system’s behaviour and no engineer’s knowledge is complete. Water 

distribution systems are no exception to this rule.

This measurement uncertainty has clearly an impact on the accuracy to which state 

estimates can be calculated. It is, therefore, very important that the level of uncertainty 

present in state estimates can be quantified in some way if these estimates are to be used 

as the basis for making control decisions. The process of quantifying the uncertainty in 

the state estimates is known in water distribution systems as confidence limit analysis 

(CLA). In the effect of applying this procedure, the lower and upper limits for each state 

estimate value are produced and the state vector is rather presented with corresponding 

confidence limits than in deterministic form.

Although the knowledge of the current operating state, and how accurate the 

estimates are, is absolutely essential, it is the task of classifying the current state of the 

network (i.e. normal operating state, leakage in area i, etc.) and subsequently, on the 

basis of this classification, making an operational decision (i.e. close valve k, do 

nothing, etc.) that is paramount in an operational decision system. In the process of 

simulation of faults in the distribution system the leakages will not be pressure 

dependent. Finally, fault detection and diagnosis in water systems, based on patterns 

recognition that involves neural networks is one of the latest attempts to build effective 

and efficient operational decision support systems for water networks.

The material presented so far, concerning water networks simulation and state 

estimation, CLA and fault diagnosis is well researched and documented. However most 

of these algorithms are based on network equations that employ the nodal heads as state 

variables. This raises the question of potential benefits of using other set of variables, 

such as the loop corrective flows, in numerical simulations. This implies not only 

reformulation of the mathematical foundations of the existent algorithms but also 

development of new methods that match the new sets of variables.

5



Chapter 1 :1.3 Why loop equations?

1.3. Why loop equations?

The practice o f transporting water for human consumption has been around for 

several millennia. From the first pipes in Crete some 3500 years ago, to today’s 

complex hydraulic models, the history of water distribution technology is quite a story. 

Over time people have understood that supplying water requires an understanding of the 

basic hydraulics and water network flow problems. While hydraulics problems include 

fluid properties and fluid flow characteristics in pipes, the water network problems 

consist mainly of water network definition and optimization, and network flow analysis.

Network flow analysis for real water distribution systems, that do not consist o f a 

single pipe and cannot be described by a single equation, consists o f solving a system of 

equations. The first systematic approach for solving these equations was developed by 

Hardy Cross (Cross, 1936). The invention of digital computers, however, allowed more 

powerful numerical techniques to be developed. These techniques set up and solve the 

system of equations describing the hydraulics of the network in matrix form. These 

numerical methods can be classified in the following way: the numerical minimization 

methods (Collins et al., 1978; Contro & Franzetti, 1982), the Hardy-Cross method 

(Chenoweth & Crawford, 1974; Eggener & Polkowski, 1976), the Newton-Raphson 

method (Martin & Peters, 1963; Lemieux, 1973; Donachie, 1974) and the Linear 

Theory method (Collins & Johnson, 1975; Fietz, 1973). The last three classes include 

methods used for the solution of systems o f non-linear equations, while the first deals 

with the search of minimum of a non-linear convex function under linear equality and 

inequality constraints.

Irrespective of the numerical methods used, the solution o f network flow analysis 

has led to the development of many methods of analysis using various types of 

decompositions. Each decomposition expresses the resulting system of equations in 

terms of a specific type of independent variables. The most common methods are those 

in which the independent variables are expressed in terms of the link flow Q (Wood & 

Charles, 1972), the loop corrective flows AQi (Epp & Fowler, 1970; Gofman & Rodeh, 

1982), and the nodal heads H  (Shamir & Howard, 1968; Jeppson, 1975).

The overall methods for network flow analysis are summarized at Figure 1-2.
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The methods for network flow analysis can be 

classified in terms of

/^T he independent variables used 

" build the system of equations that 

describes the distribution network.

1. Nodal heads H.

2. Loop corrective flows AQi

3. Pipe flows Q.

4. Hybrid node-loop approach used by the 
Environmental Protection Agency of 
U SA -EPA N ET (Rossman, 1994).

e numerical methods used to find, 

the solution of the system of equation^

1. The Hardy-Cross method.

The drawback of this method is the 

slow rate of convergence.

2. The Newton-Raphson method.

A powerful numerical method for 

solving systems of non-linear 

equations; most frequently used.

3. The Linear Theory method.

It requires the solution of a larger 

system of equations (number o f loops 

+ number of nodes).

4. Numerical minimization 

Not practical when dealing with large 

complex networks.

Figure 1-2: Network flow analysis.

It has been shown (Todini & Pilati, 1988; Todini, 2000; Ulanicka et al., 1998) that 

the Newton-Raphson method applied in the node or loop sub-domain and the Linear 

Theory method applied in the loops domain have equivalent convergence properties. 

However, they involve solving systems o f linear equations of different size. In order to 

asses the relative merits of the different formulations for solving large pipe network 

problems, the comparison can be made in terms of simplicity o f input, initial solution,

7
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size o f the system of linear equations and efficiency of solution of the system of 

equations.

The balance of these merits made the combination of the nodal heads and the 

Newton-Raphson algorithm to be the most frequently used procedure for solving water 

networks (Usman et al., 1987; Rahal, 1980; Powell, 1992). However the use of nodal 

equations in network flow analysis has disclosed a couple of weaknesses. In (Nielsen, 

1989) it has been reported that nodal heads based algorithms have weak convergence 

for the parts of water network containing low pipe flows, while in (Gabrys & Bargiela, 

1995; Sterling & Bargiela, 1984; Powell et al., 1988; Hartley, 1996) the sensitivity of 

the nodal heads based estimation procedure to the measurement errors has been 

recognized and reported. Moreover practical problems in modelling and simulation of 

particular networks have been envisaged (Hartley & Bargiela, 1993).

The combination of the Newton-Raphson method and the loop corrective flows is 

called the loop system of equations. In the last years the numerical simulations based on 

loop equations have received an increased attention. It has been shown that using the 

loop equations for the simulator algorithm is a suitable framework for the inclusion of 

pressure-controlling elements without specifying the operational state (Andersen & 

Powell, 1999b). Moreover a rapid convergence has been reported (Andersen & Powell, 

1999a; Rahal, 1995) for the steady state analysis of water networks based on the co-tree 

formulation that is derived from the loop equations method. Although the results were 

encouraging, no further efforts have been made for developing an integrated operational 

decision support system for on-line monitoring of water networks based on loop 

equations. This research project can be regarded as a major contribution towards this 

goal.

1.4. Organization of the report

Chapter 2 is wholly devoted to mathematical modeling in water distribution systems. 

First the basic principles of hydraulics that are frequently employed in water 

distribution system modeling process are described. Next the mathematical models of 

the simple elements that are parts of the water systems and the methods of combining 

those models of elements with the basic hydraulics laws to produce concise model of 

the water network are presented. Since consumption of water, also known as water



Chapter 1 :1.4 Organization o f  the report

demand, is the driving force behind the hydraulic dynamics occurring in water 

distribution systems, some questions will be answered such as how much water is being 

used or how does the usage change as a function of time. Following this, since the 

uncertainty is an inherent part of water systems the ways of introducing it into the 

network model are also discussed. Finally having developed the network model and 

addressed some of the connected problems, the task of operational control of large scale 

systems is tackled.

Chapter 3 introduces the loop corrective flows simulator algorithm. It defines what 

is a steady-state simulation and it presents methods for finding the loops and calculation 

of initial flows with case studies taken from water industry. The performance o f the 

simulator algorithm will be enhanced through the modification of the Jacobian matrix.

Chapter 4 can be regarded as one of the major contributions of this research project. 

This chapter discusses a state estimation technique suitable for on-line monitoring of 

water networks. The mathematical formulation of the state estimator is based on the 

loop equations and the optimality of the state estimation vector is addressed. The 

accuracy of results is improved through the modelling of the topological incidence 

matrix Anp as an upper form tree incidence matrix T  and a co-tree incidence matrix C. 

The advantages of this state estimator over the nodal heads based state estimator are 

presented.

Chapter 5 is another major contribution of this report. This chapter presents 

confidence limit analysis algorithms based on the novel loop flows state estimator. 

These include a formulation of an experimental sensitivity matrix method, a sensitivity 

matrix method within the loop equations framework and an error maximization 

technique. The performances of these algorithms are assessed in terms of their 

computational complexity and the accuracy of the results that they produce.

Chapter 6 reviews the fuzzy state classification and clustering techniques used in 

pattern recognition problems. Having found the state estimates with their corresponding 

confidence limits, the next task, usually carried out by a human operator, is to classify 

the current operating state (e.g. normal operating status, leakage in pipe z) before any 

control action can be taken. Therefore, this chapter describes a previously developed 

fuzzy min-max clustering and classification neural network that is capable of clustering 

as well as classifying the state estimation vector with its confidence limits.

9
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Chapter 7 integrates all the modules developed in the previous chapters into an 

effective and efficient operational decision support for water distribution systems. It is 

shown that the loop flows state estimation technique and the confidence limits analysis 

algorithms are connected to a pattern classification module presented in the previous 

chapter. The overall system is used for fault detection and identification for a realistic 

34-node water network. Both, the nodal heads and the variation of nodal demands, 

together with their confidence limits are used as input data to the classification module 

in order to decide on the operational status o f the 34-node water network.

Chapter 8 presents the main conclusion of the project and some suggestions for 

further research.

10



Chapter 2 

Mathematical modeling of water distribution networks

2.1. Introduction

Water network simulation is the process of using the mathematical representation of 

the real system, or the water network model, in order to replicate the dynamics of the 

existing water system when it is not practical for the real water system to be directly 

subjected to experimentation, or for the purpose of evaluating a water system before it is 

actually built. In addition, for situations in which water quality is an issue, directly 

testing a system may be costly and a potentially hazardous risk to public health. 

Simulations can be used to predict system responses to events under a wide range of 

conditions without disrupting the actual system. Using simulations, problems can be 

anticipated in proposed or existing systems, and solutions can be evaluated before time, 

money, and materials are invested in a real-world project.

Mathematical modeling and simulation of many water distribution systems requires 

an understanding of the hydraulics and pipe network flow problems. Hydraulics 

problems include fluid properties, fluid flow characteristics in pipes, and pipe network 

problems which consists mainly of two different stages: network definition and 

optimization, and network flow analysis.

Properties which influence the flow behavior of fluids include density, viscosity and 

surface tension. These properties affect the fluid flow in a pipe, fluid flow which can be 

described by the following equations: continuity, momentum and energy equation, and 

for solving practical problems the energy equation must be coupled with one of the 

equations that predict head loss.

Since water distribution systems consist of combination of pipes, pumps and other 

hydraulic control systems, specific techniques should be used for finding the solution of 

network problems. These techniques can be classified in methods for network definition 

and optimization (e.g. rules for using equivalent pipe and pump to simplify the

11



Chapter 2 : 2.2.Rreview o f Closed Conduit Hydraulics

problems, modeling distributed consumer demands) and methods for network flow 

analysis (e.g. setting up flow equations, loop equations and head equations, methods 

used to solve the set of equations that describes the water distribution system).

Although the mathematical model may be accurate, the simulation process is based 

on input data that contain a significant amount of uncertainty. Therefore the uncertainty 

in the network model and solution of flows and pressures will be also discussed. 

Finally, the topic of operational decision support for large scale and complex water 

distribution systems based on uncertain measurement data will be addressed.

2.2. Review of Closed Conduit Hydraulics

Usually the solution process for modeling and simulation of a water distribution 

system involves simultaneous consideration of a couple of equations describing the 

fluid flow in pipes and some independent relationships describing what is so called head 

loss. These equations depend on the properties and flow characteristics of the fluids met 

in water supply systems.

2.2.1. Types of flow and head loss formulas

Pipes that are most frequently used conduits for the conveyance of fluids are 

produced from a variety o f materials, including steel, cast iron, concrete, plastic and 

glass. In such pipes the flow can be described as steady at a particular location if  the 

velocity vector V [m/s] at the location does not change with time; it is described as 

unsteady if  the velocity vector at the - 12 - velocity vector changes with time.

In mathematical terms these definitions are written as

(1) steady flow

dV
, &  ,

=0 (Eq. 2.1)

(2) unsteady flow

' dV 
dt

(Eq. 2.2)
xo> y  o^o
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Flow is said to be uniform, if the velocity vector is constant along the flow path or 

streamline. Conversely, flow is described as non-uniform if the velocity vector varies 

along the flow path. These definitions are expressed in mathematical tenns as

(1) uniform flow

The most regular of the foregoing flow types is steady uniform flow such as that 

wich occurs in pipes of fixed diameter having a constant discarghe rate.

In their new condition, the internal wall surfaces of the pipes vary considerably in 

roughness depending on the material from which they are fabricated: from the very 

smooth glass or plastic surface to the relatively rough concrete surface. Also depending 

on the fluid transported and the pipe material, the condition of the pipe wall may vary 

with time, either due to corrosion, as in steel pipes, or deposition, as in hard water areas. 

When fluid flow is confined by solid boundaries, such that random lateral mixing in a 

direction perpendicular to that flow is suppressed, flow is described as laminar, that is, 

flowing in separate layers with minimal lateral momentum transfer between layers. 

Where there is significant lateral mixing and momentum transfer in a direction normal 

to the flow direction, flow is classified as turbulent. Reynolds (1885) carried out 

extensive pipe flow tests from which he was able to define the flow regime as either 

laminar, transitional, or turbulent. Reynolds found that transition from one type flow to 

another occures at a critical velocity for a given pipe and fluid. He expressed his results 

in terms of the dimensioneless parameter, Re, called Reynolds number

(Eq. 2.3)

(2) non-uniform flow

(Eq. 2.4)

where S  [m2] is the cross-sectional area through which the flow occur.

VD (Eq. 2.5)Re=----
V

where: V - the average velocity of flow [m/s].

D  - the pipe diameter [m].
» 2 v - the kinematic viscosity [m /s].

13
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He found that for Re less than about 2000 the flow was laminar, and that for Re 

greater than about 4000 the flow was always turbulent. For Re between 2000 and 4000, 

he found that the flow could be either laminar or turbulent, and termed this the 

transition region.

In a further set o f experiments, he found that for laminar flow the frictional head 

loss in a pipe was proportional to the velocity, and that for turbulent flow the head loss 

was proportional to the square of the velocity.

These two results have been previously determined by Hagen and Poiseille (h~V) 

and Darcy and Weisbach (h~V2), but it was Reynolds who put these equations in the 

context of laminar and turbulent flow.

Since most of flows which are encountered in water distribution systems are 

turbulent flow we restrict our considerations to turbulent flows.

The Darcy-Weisbach head loss equation for turbulent flows can be written as 

follows

L V 2h = X ± ^L -  (Eq. 2.6)
2 gD

where: X - pipe friction factor [dimensionless factor],

L - pipe length [m]. 

g  - gravitational acceleration [m/s2].

The original investigators presumed that the friction factor was constant. Nikuradse 

(Nikuradse, 1932), however, found that the turbulent flow could be divided into three 

regions and that the value o f friction factor depends on relative roughness (k/D) o f the 

pipe and Re. These three kinds of turbulent flow can be described as follows:

• Smooth turbulence -  the limiting line of turbulent flow that is approached by all 

values of relative roughness (k/D) as Re decreases.

• Transitional turbulence -  the region in which X remains constant for a given k/D. In 

practice, most of pipe flow lies within this region.

• Rough turbulence -  the region in which X remains constant for a given k/D , and is 

independent o f Re.

The following equation



Chapter 2 : 2.2.Rreview o f Closed Conduit Hydraulics

that relates the friction factor to k/D and Re is known as Colebrook-White transition 

formula. It is applicable to the whole of the turbulent region for commercial pipes using 

and effective roughness values determined experimentally for each type of pipe.

Although the Darcy-Weisbach equation using Colebrook-White formula is the most 

accurate for the head loss assessment it had not been easy to use for engineers hand 

calculations. There was a need for simpler empirical formulae. For water distribution 

system analysis one the most commonly used of empirical formulas is the Hazen- 

Williams equation (Williams & Hazen, 1920; ASCE, 1992).

( i \0-54
\H —H

?j,=0.27746 C yD jjM '— i  (Eq. 2.8)

where: qy - flow from node j  to node i [m /s],

Cij - Hazen-Williams coefficient for pipe [dimensionless factor].

Dij - diameter of pipe [m].

Lij - length of pipe [m].

Hj - head at node j  [m].

Hi - head at node I  [m].

Hj> Hi.

or for computer program implementation

q tJ= R f * [ H j - H ^ H j - H ^ M (Eq. 2.9)

where Ry is the resistance between nodes i and j  given by

R0 =10.742Cr18U ..D-4-87 (Eq. 2.10)

The use of the Hazen-Williams versus Darcy Weisbach equations is one of the most 

frequently discusses in practical hydraulics. In general Hazen-Williams equation gives 

the same results as the Darcy-Weisbach for smooth flow and in the transition range. It is 

not until the flow becomes rough turbulent when the Hazen-Williams runs into 

somewhat significant errors (Liou, 1998; Walski, 1984; Kamey, 2000). However in 

typical water networks the flows are in the transitional range, and therefore the changes 

in fluid density and viscosity does not matter too much (Walski, 2002).

Nevertheless for the purposes of this project the head loss has been calculated using 

the Hazen-Williams equation.
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2.2.2. Continuity equation

During any time interval At, the principle of conservation of mass implies that for 

any control volume the mass flow entering minus the mass flow leaving equals the 

change of mass within the control volume. It can be written as

min -  mout = Amstore (Eq. 2.11)

where: min - mass flow entering [kg]. 

mour mass flow leaving [kg].

Amstore~ change of mass stored [kg].

If the flow is steady, then the mass must be entering (or leaving) the volume at a 

constant rate. If we further restrict our attention to incompressible flow, then the mass 

o f fluid within the control volume must remain fixed. In other words, the change of 

mass within the control volume is zero.

Taking these assumptions into consideration and knowing that

q = ̂ L  (Eq. 2.12)
p t

where: p  - density of fluid (water) [kg/m3]. 

t - unit of time [s]. 

m - mass flow [kg] . 

q - volumetric flow [m /s].

The equation (Eq. 2.11) can be written as

Qin — Qout = —— (Eq. 2.13)
At

where: Q[n - flow in.

Qout - flow out.

AS - change of volume stored.

At - time period.

For p  pipes meeting at a point, if  we will consider the inflow positive, outflows to be 

negative and let t to be small, equation (Eq. 2.13) reduces to

Qi + Q2 + Q3 + ... + QP = dS/dt (Eq. 2.14)

where: Qj - flow in through pipe 1.

16
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Q2 - flow in through pipe 2.

Qp - flow in through pipe p. 

dS/dT - time rate of change storage.

The equation (Eq.2.14) is the continuity equation that will be used for water 

distribution problems.

2.2.3. Energy equation

In general terms for the fluid (water) flow in a pipe the energy equation states that, 

given the energy at point 1 , the energy at point 2  equals the energy at point 1 , plus the

net work done on the fluid (work done on water minus work done by water), minus any

energy losses due to friction. Mathematically this can be written as

E2 = E 1 + W - H  (Eq. 2.15)

where: E2 - energy at point 2 [N-m].

Ei - energy at the entry point [N-m].

W - net work done on the fluid [N-m].

H  - friction energy loss [N-m].

The energy in the fluid exists in three forms: kinetic energy, potential energy due to 

elevation, and internal energy (pressure). The total energy may be expressed as

E  = (mV2/2) + mgz + Pm/p (Eq. 2.16)

where: m - mass of the fluid [kg].

V - velocity [m/s].

g  - acceleration due to gravity [m/s2], 

z - elevation [m].

P  - pressure [N/m2]. 

p  - density [kg/m3].

The term mV2/2 refers to the kinetic energy and in water distribution system 

problems is usually small in comparison to the other terms. The mgz term refers to the 

energy the fluid has because o f its position in the gravitational field. The Pm/p term 

refers to the amount of energy stored in the form of pressure.

17
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Dividing equation (Eq. 2.16) by gm and noting y for pg  (specific weight of water), 

will allow all the energy terms to be expressed in units o f length

y 2_ jz 2 P - P
1!— 12_+z1 - z 2 +2L^L2.=--w +/z (Eq. 2.17)

2 g y

where: w  - net work done on fluid [m]. 

h - friction energy loss [m], 

y - specific weight [N/m3].

The terms from the equation (Eq. 2.17) have the following names
2

Z_ - velocity head [m].
2g

P. - pressure head [m].

z - elevation head [m]. 

w - lift (when referring to pumps) [m]. 

h - friction head [m].

The momentum equation, that may be used directly to evaluate the force causing a 

change of momentum in a fluid, has been omitted. The reason for this omission is the 

fact that the applications where the momentum equation is used include:

- determining forces on pipes bends and junctions, nozzles and hydraulic machines - 

useful for designing the water network; or

- solving problems when the flow is unsteady.

The project and problems described in this report are not concerned with either of 

these applications. More information on dynamic behaviour of the fluids can be found 

in (Walski et al., 2000; Casey, 1992; Chadwick & Morfett, 1986; Meritt, 1967).

2.3. Water Distribution Systems Modeling and Simulation

As discussed at the beginning of this chapter, a water distribution model is a 

mathematical description of a real-world water system. The network model contains all 

of the various componenets o f the system, and defines how those elements are 

interconnected. Network models are comprised of nodes, which represent features at 

specific locations within the system, and links, which define relationships between

18
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nodes. Water distribution models have many different types of nodal elements, 

including junctions nodes where pipes connect, storage tanks and reservoirs nodes, 

while examples of link elements are pipes, pumps and valves. Sometimes valves and 

pumps are classified as nodes depending on the modelling method.

A boundary node is a network element used to represent locations with known 

hydraulic grade elevations. A boundary condition imposes a requirment within the 

network that simulated flows enetring 0 1* exiting the system agree with that hydraulic 

grade. A reservoir represents a boundary node in a water distribution model, that can 

supply or accept water with such a large capacity that theoretically can handle any 

inflow or outflow rate, for any length of time, without running dry or overflowing. A 

tank is also a boundary node, but unlike a reservoir, the hydraulic grade of a tank 

fluctuates according to the inflow and outflow of water.

The junction node role, as the term implies, is to provide a location for two or more 

pipes to meet. The other use is to settle the place to withdraw water demanded from the 

system or inject inflows into the system. A pipe conveyes flow as it moves from one 

junction to another in a network. A pump is an element that adds energy to the system 

in the form of an increased hydraulic grade while a valve is an element that can be 

opened and closed to different extents in order to control the movement of water 

through a pipeline.

During the constructing of the water network model, a Skeletonization process 

(Ulanicki et al., 1996; Shamir & Hamberg, 1988a; Shamir & Hamberg, 1988b; Eggener 

& Polkowski, 1976) is performed that is the selection for inclusion in the water network 

model only the parts of the hydraulic network that have a significant impact on the 

behaviour of the overall system. Attempting to include each individual component of a 

large system in a model could be a huge undertaking without a significant impact on the 

model results. Moreover capturing every feature of a system would also result in 

tremendous amounts of data, enough to make managing, using, and troubleshooting the 

water network model an overwhelming and error-prone task. An example of a water 

network model is depicted at Figure 2-1.

Once the basic elements have been defined and the water network model has been 

assembled, further refinement of the model can be done depending on its intended 

purpose. There are various types of simulations that a model may perform, depending 

on what the modeler is trying to observe or predict. The two most basic types are:
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- steady-state simulation (Nogueira, 1993; Collins & Johnson, 1975; Rahal, 1994) -  

computes the state of the system (flows, pressures, valve position, etc.) assuming that 

the water demands and boundary conditions do not change with respect to time.

- extended period simulation (Rao et a!., 1977a; Rao et al., 1977b) -  determines the 

dynamic behaviour of a system over a period of time, computing the state of the system 

as a series of steady-state simulations in which water demands and boundary conditions 

do change with respect to time.

Q-

Figure 2-1: Water network model.

Legend

□ Reservoir

O Node

- X I - Valve

Pump

Other types o f simulations are water quality simulations (Rossman et al., 1994; 

Rossman, 2000; Clark & Grayman, 1998; Harding & Walski, 2000; Grayman et al., 

1996) used to ascertain chemical or biological constituent levels within a system or to 

determine the age or source of water, automated fire flows analyses (Boulos, 1996; 

Moore & Boulos, 1998) that establishes the suitability of a system for fire protection 

needs or cost analyses that are used for looking at the monetary impact of operations 

and improvements.

The simulation of a water distribution system that does not consist of a single pipe, 

but combinations of pipes, pumps and other elements, depends to a great extent on 

whether the network is branched or looped. Looped network problems are the problems 

in which there are one or more loops in the network or if  the head is specified at more

20
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than one location, in which case the energy and continuity equations cannot be solved 

independently. Even a single pipe with head known at both ends fall into this category. 

Branch network problems will refer to networks with no loops and one or no fixed head 

point and for this kind of network the continuity equation can be solved to yield flows 

in individual pipes, and then the energy equation can be used to calculate heads. In the 

following section, the continuity and momentum equations will be written in a more 

detailed form for a water network model consisting ofp  pipes, n nodes and I loops.

2.3.1. Continuity Equation for n nodes

Applying the continuity equation (Eq. 2.14) for n nodes we obtain a set o f equations 

called the nodal equations

where: n - number of nodes in the network. 

Qi - set o f nodes comiected at node i. 

ui - inflow at node z. 

di - demand at node i. 

qy - flow from node j  to node z.

(Eq. 2.18)

Inflow

Demand

Figure 2-2: Continuity equation for z'-th node.

The continuity equation for the z'-th node is

Qik <hi + <lip + u i-  dt (Eq. 2.19)
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2.3.2. Energy Equation for a loop

Applying the energy equation (Eq. 2.15) written for a single pipe to a pipe loop, 

since the beginning and ending points are the same (E2=Ej), this means that the net 

work done on the fluid in a loop, must equal the head loss in the loop

HhPj-Thi=0 (Eq. 2.20)

where: hpj  - head provided byy'-th pump. 

hi - head loss in z-th pipe.

In solving a loop problem, it is essential to define a direction in which flow is 

considered as positive (e.g. clockwise or in a pseudo-loop from higher to lower tank). 

The continuity equation (Eq. 2.18) and energy equation (Eq. 2.20) can now be coupled 

with a suitable head-flow formula (e.g. Hazen-Williams or Darcy-Weisbach/Colebrook- 

Wliite) to construct a set of network equations.

Sometimes when a network is fairly complicated, it becomes difficult to identify 

loops without double counting and thus, over specifying the problem. For preventing 

this problem, it is necessary to apply the energy equation only for independent loop (i.e. 

loop for which the energy equation can not be derived from the energy equations 

written for the other loops).

Positive 
head loss 
direction

Figure 2-3: Energy equation for /c-th loop.

- h\ - h2 + h2 - h4 = 0 (Eq. 2 .2 1 )
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The number of independent loops I for a water network with n nodes and p  pipes can 

be determined from the following rule which is called also Euler relationship

I = p  —n+1 (Eq. 2.22)

where: I - number of basic loops. 

p  - number of pipes. 

n - number of nodes.

The number of pseudo-loops in a network is given by t-1 where t is the number of 

constant head nodes (i.e. boundary nodes) in the network (e.g. tanks, reservoirs).

2.3.3. Network flow analysis

Network flow analysis of real water distribution systems implies writing one 

continuity equation for each node in the system, and one energy equation for each pipe 

(or loop). For real systems, these equations can number in the thousands. Moreover 

energy equations are non-linear in terms of flow and head, they cannot be solved 

directly. Therefore some powerful numerical techniques for solving non-linear 

equations must be employed. Definitely more powerful and faster method is the 

Newton-Raphson method. It obtains the solution to a system of non-linear equations by 

linearization and iteratively solving a system of linear equations. This method has been 

adopted in this work for solving the network equation.

The network equations can be written in the following way

g(x) = z  (Eq. 2.23)

where x  represents the state vector that needs to be determined and z is the measurement 

vector. An important observation is that vectors x and z can comprise different 

combinations of variables and measurements, depending o f the method used to 

construct the network equation.

There are three main ways of constructing the network equation that have been 

mentioned earlier: the flows, the nodal heads, and the loop corrective flows.

In the first o f these methods the network equation is set up by using the flow rates as 

unknowns (state variables) and writing one energy equation for each independent loop
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and one continuity equation for each node. It results in deriving p  equations (where p  is

the number of pipes) called the flow equations.

In the second method the network equation is derived by combining the continuity 

equation for each node with head loss equations. The state vector in this method 

consists o f nodal pressures and inflows into fixed head nodes if any of such nodes are in 

the system. This method is called the nodal equations and it has been used largely in 

water networks flow analysis. The size of the system of equations is equal with n that is 

the number of nodes of the water network.

Third approach to setting up the network equation is to write energy equation in 

such a way that, for an initial solution, the continuity equation is not violated. This can 

be done by adding a correction to the flow to every pipe in the loop. These corrections 

are the unknown in a set of I equations -  one for each loop. The simulation problem 

based on the loop equations is discussed in mode detail in Chapter 3.

Some more details about each of these methods can be found elsewhere (Bhave, 

1991; Lansey & Mays, 2000; Larock et al., 1999).

Once the network equation has been established, it is solved iteratively with the 

Newton-Raphson numerical method. Hence, more detailed explanation of the Newton- 

Raphson method in a context of the network equation is given below.

Expanding g(x) by an initial guess of the state vector %(0), using a first-order Taylor 

series and defining z(0) = g(x(0)), we obtain

Using the linearised models (Eq. 2.24), (Eq. 2.25) and the network equation 

(Eq. 2.23) we obtain the following set of linear equations

z = z^  + Az (Eq. 2.24)

g(x) = g(x(0}) + , / 0)zk (Eq. 2.25)

jf® Axf® — z - g (x^) (Eq. 2.26)

where: j  (*)=—  - Jacobian matrix evaluated at x(k).
ux x - x x '

Ax(k) - the correction vector.

x(k) - the current estimate of the state vector.

z - the measurement vector.

g(x(k))  - the network function evaluated at d®
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Since the network equation is nonlinear, the solution finding is an iterative process 

with the consecutive state estimates calculated by under-relaxation of the linear 

solution:

x»+r, =  xm +  (E q  2 .2 7 )

I f  all elements o f Ax(t> in k-th iteration are lower or equal to a predefined 

convergence accuracy, the iteration procedure stops. Otherwise, a new correction vector 

is calculated using equation (Eq. 2.26) w ithv(*+/) instead of x^k\

2.3.4. Uncertainty of the network model and solution

Even though all the required data have been collected and entered into a hydraulic 

simulation software package, the human operator cannot assume that the model is an 

accurate mathematical representation of the system. This is because the simulation 

software solves the equations of continuity and energy using the supplied data. In 

consequence, the quality of the results will depend on the quality of the data that is put 

in the simulation software.

Usually, the accuracy of data is the weakest link in the modeling process. Therefore 

the model results need to be compared with the field observations, and, if necessary, 

adjusting the input data describing the system so that the model results to agree with the 

measured system performance over a wide range of operating conditions. This process 

is called Calibration (Walski, 1990; Walski, 1983; Ormsbee & Lingireddy, 1997; 

Ormsbee & Woods, 1986; Ormsbee, 1989) and any and all input data that have 

uncertainty associated with them are candidates for adjustment during the calibration 

process, in order to obtain reasonable agreement between model-predicted behavior and 

actual field behavior.

The scope of carrying out such a calibration procedure is to increase the confidence 

of the engineer in the model’s ability to predict the real water system behavior. Results 

provided by such a computer model are frequently used to aid in the operational 

decisions taken for the hydraulic system. Other reasons are a better understanding of the
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behavior and performance of the system for better capital improvements or operational 

changes or identifying errors caused by mistakes during the model-building process

There are two main sources of uncertainty and errors in water systems modeling and 

simulations, for which we need to employ the calibration procedures. First, topological 

errors, are associated with the modeling of the physical elements and represent static 

inaccuracy of network model. The second source of uncertainty has dynamic nature and 

is associated with inaccurate predictions of consumptions and inaccuracies of measured 

pressure and flow values. While, for instance, the pipe’s C factor or friction factor 

usually varies gradually over years or decades, consumptions and flows in the network 

change from minute to minute and are of unpredictable nature.

There has been a lot o f research work done in order to develop methods for 

improving the network model accuracy. One of the sources o f inaccuracies of network 

model is a simplified representation of the physical system and it can appear during the 

scheletonization process (Eggener & Polkowski, 1976). Then the correct estimation of 

the C-values and friction factors has been considered by many authors (Cesario & 

Davis, 1984; Coulbeck, 1984; Lansey, 1988; Ormsbee & Chase, 1988; Walski, 1984). 

The calibration of roughness coefficients can be based on manual calibration 

approaches (Herrin, 1997; Walski, 1983) or computing based calibration methods. The 

last category implies solving an optimization problem that is trying to minimize the 

discrepancy between the model heads and flows and the observed heads and flows. The 

optimization approaches include gradient-based methods (Ormsbee & Lingireddy, 

2000; Lansey & Banset, 1991) and stochastic search method, more commonly referred 

to as genetic algorithms (Savic & Walters, 1995, 1997; Walters et al, 1998).

In all the publications dealing with methods of assessing and improving the accuracy 

of network models it has been emphasized that models must be calibrated and 

recalibrated regularly. On the basis of the above briefly discussed research work it can 

be said that there will be only a small amount of residual inaccuracy if the network 

model is constructed and calibrated properly.

The problem of measurement and pseudo-measurements uncertainty and their 

influence on accuracy of the network equation solution has received, also, a significant 

attention in the literature (Gabrys & Bargiela, 1995; Powell et al., 1988; Sterling & 

Bargiela, 1984; Bargiela, 1984; Bargiela & Hainsworth, 1989; Carpentier & Cohen, 

1993; Powell, 1992).
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One major source of inaccuracy in water network modeling and simulation is how to 

allocate the water demand through the system. Determining nodal demands is not a 

straightforward process like collecting data 011 the physical characteristics of a system. 

Some data, such as billing and production records, can be collected directly from the 

utility but are usually not in a form that can be directly entered into the model. There 

have been many suggestions for how nodal consumptions should be modeled and 

predicted (Suter & Newsome, 1988; Wright & Cleverly, 1988) that involves modeling 

different types of consumption (e.g. domestic use, industrial use etc.) separately and 

combining them to represent the overall nodal consumption. Short-time water demand 

prediction methods based on time series analysis can be found (Chen, 1988; Quevedo et 

al., 1988). However there are water systems where instead of metering individual 

customers, the distribution systems are divided up into smaller zones, called District 

Metered Areas (DMAs). These zones are isolated by valving and are fed through a 

smaller number of inlet and outlet meters (WRc, 1985). The number of properties in a 

DMA is known fairly precisely and the flows are recorded using data logging 

technology or telemetered to a central location. Within those DMA by studying the 

demand of a large number of consumers then is possible to determinate reasonably the 

water demands for other groups of consumers that have the same characteristics (i.e. 

type o f consumer, socioeconomic background, etc.) as the first group. A similar study is 

carried out in the first part of Chapter 3 for the nodal consumptions of a general water 

network.

Although it is possible to study the patterns of water consumption of a few 

customers in detail and extend the conclusions of that study to the rest of the system, 

this type of data extrapolation can carry a significant amount of inaccuracies. Therefore 

another way of diminishing the effect of inaccuracies in measurements and pseudo

measurements 011 the solution is to redefine the method of solving the network equation. 

Since the number of unknowns is equal to the number of equations in the linearised 

model (Eq. 2.25) of the network equation (Eq. 2.23) used in the Newton-Raphson 

method, each inaccurate data has a huge influence on the solution. It could even lead to 

the case when there would be no solution to the set of equations (Eq. 2.23) at all. The 

more robust method, known as the state estimation procedure (Gabrys & Bargiela, 

1995; Powell et al., 1988; Sterling & Bargiela, 1984; Bargiela, 1984; Arsene & 

Bargiela, 2001; Arsene & Bargiela, 2002a), utilizing all available measurements and
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pseudo-measurements is, therefore, used. Using all available information results in 

constructing overdetermined set o f equation (number of equations is grater than the 

number of unknowns) and the solution can no longer be found by simple solving a 

square set of equations. The solution finding problem has to be defined as the 

optimization of a suitable chosen cost function. On the other hand, these additional 

measurements, also known as redundant measurements since they are not absolutely 

necessary to arrive at some solution, allow the corrupted data to be rejected and to 

obtain a more reliable solution. The estimation procedure will be based on the loop 

corrective flows variables and is discussed in more detail in Chapter 4.

The methodology and algorithms for quantifying the impact o f measurements and 

pseudo-measurements inaccuracies on the state estimate vector in water distribution 

systems were first introduced in (Bargiela & Hainsworth, 1989; Hainsworth, 1988) 

under the name of confidence limit analysis. The concept has been further investigated 

in (Gabrys & Bargiela, 1996; Gabrys, 1997) yielding a number of confidence 

algorithms that were based on the nodal heads variables for building the network 

equations. In Chapter 5 new confidence limit procedures are developed (Arsene & 

Bargiela, 2002b) using the loop corrective flows and the accuracy and efficiency of the 

results will be compared with the solution from the nodal heads based algorithms.

2.4. Operational decision support of water distribution systems

The design and development of techniques for operational control and analysis of 

large-scale water distribution systems has captured the attention of researchers for the 

last twenty years. In the 1980s, general-purpose hydraulic simulators became 

commercially available, such as GINAS (Coulbeck et al., 1989), WATNET (Wright & 

Cleverly, 1988) and more recently EPANET (Rossman, 1994). Initially, the simulators 

were improved primarily in terms of their numerical computation. The simulators have 

been used for over twenty years for planning work, but have also been incorporated into 

on-line operating schemes (Orr et al., 1990; Ranee et al., 1993). As the simulator 

became computationally mature and robust, its software organization, data model and 

user interface became more important. This was made particularly acute by the rapid 

advances in computer hardware and information technology. However the theoretical 

models for these simulators often assumed idealized pipe networks, thus hiding the
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inherent discontinuous operation of pressure sustained valves and pressure reduction 

valves. Realistic operational support system must allow the inclusion in the network 

flows analysis of such elements.

At the beginning of 90’s, water companies have come under increasing pressure to 

improve the performance of their physical assets and their management organization. 

Many companies started to invest in information systems for automation of decision 

activities and data processing such as Geographical Information Systems (GIS), 

Supervisory Control, Automation and Data Acquisition Systems (SCADA), databases 

and customer billing systems (Johnson, 1993; Johnson et al., 1993).

Modem water production and distribution system have required systematic handling 

of systems complexities so that more efficient guidelines to be provided for overall 

operations. Consequently, the requirements on decision support software have greatly 

increased and were found to be deficient in a number of ways. Most of the water 

software packages did not communicate with any other package, especially one 

developed by another vendor. Consequently, they did not exchange or share data and so 

the user could not readily share the services of other packages. Secondly, the software 

packages were not designed to interface to any new application or the decision support 

software usually considered a single network.

Integrated Operational Systems have emerged as the key to successful decision 

support systems for operational control o f water distribution systems (Moms, 1998; 

Ulanicki & Ranee, 1998). Tenant, Ranee, Ulanicki and Bounds (1998) report on an 

architecture for integrating water network applications. They developed an on-line 

operational water network environment for both simulation and optimal scheduling that 

include a module for communicating with a SCADA system via a third party 

supervisory system. More recently additional applications were integrated into a new 

version of this environment (Ranee et al., 2001). Other very good examples o f such 

integrated operational systems in water industry can be found elsewhere (Cameron et 

al., 1998; Vigus, 2001; Alzamora et al., 2001).

A neurocomputing system for operational decision support in water distribution 

networks has been outlined (Gabrys & Bargiela, 1998; Gabrys, 1997; Gabrys & 

Bargiela, 1999; Bargiela et al., 2002). An analog neural network was used to calculate 

the water network state estimates. This was followed by the confidence limit analysis of 

the calculated state estimates and a General Fuzzy Min-max neural pattern
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classification/clustering system (Gabrys & Bargiela, 2000). The overall system was 

used for fault detection and identification in water networks based on the examination 

of patterns of state estimates. In Chapter 7 the neuro-fuzzy system is adapted and 

extended so that to include the new procedures developed for state estimation and 

confidence limit analysis based on loop equations. The integration of the basic water 

network simulation program with the confidence limit analysis and neural 

classification/clustering modules will deliver operational decision support functionality 

to water systems operators.
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Loop-based simulation of water networks using nodal 
modeled water consumptions

3.1. Introduction

Water network simulation provides a fast and efficient way of predicting the 

network behavior, calculating flows, velocities, head-losses, pressures and heads, 

reservoir levels, reservoir inflows and outflows and operating costs.

In the last twenty years the capabilities of the hydraulic simulation module have 

been continuously extended based on improved mathematical and computer- 

programming techniques as well as advances in computer hardware. The first computer 

programs for water network simulation were developed and implemented in the 1960s. 

Two programs that were widely used are Shamir-Howard’s program (1968) and the 

Epp-Fowler’s program (1969). Both programs made use of the Newton-Raphson 

technique for calculations but while the first was based on a node-continuity formula, 

the Epp-Fowler’s program was loop oriented. The historical development of the 

simulator algorithms continued with the programs developed by Wood and Charles 

(1972), Jepson and Davis (1976). Significant improvements in the capabilities of 

network simulation packages began to appear in 1970s. The software could simulate all 

of the components of a water system, including pump stations, pressure-regulating 

valves, check valves and reservoirs. Extended time simulations became available as 

well (Rao et al., 1977a; Rao et al., 1977b).

Microcomputers of the mid-1980s were more powerful than large mainframe 

computers of the 1950s and 1960s and, therefore, were capable o f solving complex 

mathematical problems. Popular network simulation programs of the 1960s and 1970s 

were converted to run on microcomputers, and many new programs were introduced by 

software vendors and consultants (Orr & Coulbeck, 1988; Coulbeck & Orr, 1984; 

Coulbeck et al., 1985; Wright & Cleverly, 1988). Attention began to shift to expanded
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capabilities, such as database management, network graphics, pumping-energy cost 

calculations, sizing optimization routines (Orr et al., 1988; Coulbeck & Orr, 1982).

In the last decade, hydraulic simulators became powerful decision-making tools 

enabling the engineers and the scientists to analyze and manage distribution networks 

with unprecedented accuracy and efficiency. The hydraulic simulators comes now 

integrated with a complete geographic information system, they provide data 

management tools necessary for handling the enormous amount of data required for 

hydraulic modeling, they hold as well very good graphical presentations and diagnostics 

capabilities, analyze and perform steady-state and extended time simulations for very 

large water distribution systems. Example of such complete commercial simulators are 

EPANET (Rossman, 1994), FINESSE (Ranee et al., 2001), WATERCAD (Iiaestad, 

2002) and InfoWorks (HR Wallingford, 2002).

The numerical method that is used to solve the flow continuity and headloss 

equations in these simulators is based on a nodal heads formulation (Todini & Pilati, 

1988; Salgado et al., 1988; Rossman, 2000) that for small and medium size water 

networks proved to be numerically stable. Moreover the simulator algorithms 

necessitate some input data that include network topology and components parameters, 

and water demands. One would like to minimize the amount of information to be 

provided to the simulator algorithm and this made the nodal heads formulation to be 

preferred to other formulations when developing network flows analysis packages 

(Todini & Pilati, 1988).

However, with the increased computational power of the computers in the last 

decade, the requirements of the simulator algorithms in terms of input data, has stopped 

to represent a major drawback in the modeling and simulation of water networks. This 

produced a revival of the simulators based on the loop corrective flows variables and 

combined with the Newton-Raphson numerical method. This combination is called the 

loop simulator (Epp & Fowler, 1970; Gofman & Rodeh, 1982). The input information, 

that is generally required by this class of simulators, is obtained now with computer 

based graph search operations and stack-oriented data structures (Rahal, 1995; Arsene 

& Bargiela, 2001; Andersen & Powell, 1999b). The aim of using the loop simulators in 

network flows analysis is to benefit from the smaller solution matrices which relate to 

the loop structure rather than the nodal structure and to avoid the poor convergence 

reported in some of the case studies where the nodal heads simulators were employed 

(Nielsen, 1989; Donachie, 1974; Hartley & Bargiela, 1993; Hartley, 1996).
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While the full potential of hydraulic simulators for water networks can only be 

realized with appropriate computer hardware and software solutions, their numerical 

results can be fully exploited by the human operator only if  great level of accuracy 

exists in the data provided to the algorithm with special regard to the predictions of 

water consumptions.

The consumption of water is the driving force behind the hydraulic dynamics 

occurring in water distribution systems. Determining the water consumptions is not a 

straightforward process like collecting data on the physical characteristics of a system. 

For example billing and production records can be collected directly from the utility but 

are usually not in a form that can be directly entered into the simulator algorithm. 

Moreover establishing water consumptions is a process requiring study of the past and 

present usage trends, and, sometimes, the projection of future ones. While the water 

consumptions are determined, the water use has to be spatially distributed as demands 

assigned to the network nodes. It can be concluded that in order to obtain an accurate 

representation of the system performances, water consumptions must be allocated 

geographically and throughout the day that is diumal-demand allocation.

In the next section the modeling of the water consumptions is performed for a 

general distribution system that will enhance the ulterior results obtained with the loop 

simulator algorithm.

3.2. Water consumption

In network simulation software, nodal demand values are assumed known and are 

used as the given variables from which the other hydraulic variables are derived.

Usually the process o f modeling the nodal water consumption starts with 

determining the baseline demand that is commonly represented by the average day 

demand in the current year. To this baseline demand a dimensionless demand factor is 

applied at each time increment that represents the amount of time between 

measurements and has a direct correlation to the resolution and construction of the 

diumal-demand curve: as for example if  measurements are available hourly, then hourly 

averages can be used to define the pattern over the entire day.
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The demand factors are derived from information such as property counts and 

consumer type, and they can be reused at nodes with similar characteristics. The 

baseline demand is found from several sources such as the water utility’s existing data 

(previous studies or already existing models), system operational records (flow and 

pressure measurements) and customer meters and billing records.

There are water systems where District Metered Areas (DMAs) are dividing the 

networks up into separately metered areas that are giving information about demands 

based on the total inflow pumped into these smaller units of the distribution networks. 

Within those DMAs, the distribution factors can be used to allocate the overall water 

consumption through the network. Although the distribution factors are only 

proportional guesses, this information can be sometimes more reliable than the baseline 

demand from the non-DMA networks. This is because the baseline demands typically 

include both customer demands and flows that are lost in the system such as leakage or 

flow measurement errors. These are called unaccounted-for water and it means that the 

user does not know where to place it in the network.

Methods for determining the baseline demand have been developed (Cesario, 1995; 

AWWA, 1989). They are based on information coming from the full billing records and 

the overall water production. However in spite of this data, sometimes it is impossible 

to know with absolute certainty how much water is being used in a short period of time 

and how much water has been lost. Therefore studies have been carried out in order to 

develop stochastic models for the various types of water consumptions such as 

residential water consumptions (running the washing machines, using the shower or the 

sink). The methods have been verified with data collected from individual customers 

(Buchberger & Wu, 1995; Buchberger & Wells, 1996; Bowen et. al, 1993). Other 

investigations into the patterns of the water use have been realized (Flack, 1982; 

Linaweaver et al., 1966; Butler, 1991). Such an approach is presented in the next 

section where the patterns of water usage of a group of customers are investigated and 

then applied to other customers with similar social and economical characteristics. For a 

residential house the socio-economic characteristics can be the number of occupants, 

household income or water price.
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3.2.1. Modeling the water network nodal demands

The total water consumption allocated to a node can be determined by flow 

measurements, customer meters, billing records or even previous studies of the 

respective water network. If such data is available on a node-by-node basis, then the 

modeler will be faced with a simple task of using this data without any other 

preparations. However due to the cost o f metering, obtaining such information is 

justifiable only for large customers and a sampling of smaller ones. Based on this 

sampling, the results can be extended further to other similar water consumers, 

increasing the accuracy of the overall nodal consumptions.

In Figure 3-1 is displayed a typical diumal-demand curve for a residential area of 

1 0 0 0  thousand people that is plotted as flow rate versus time and is modeled as an 

average nodal consumption of 2.4 1/s.

7 Flow 
rate 1/s

5

3
2.4 1/s

1

Time

1 2  p.m.1 2  noon 3 6  p.m. 96  a.m. 91 2  p.m. 3

Figure 3-1: Typical diumal demand for a residential area of 1000 thousand people.

By carrying out a comprehensive survey as well as using customer meters is 

possible to characterize the intensity, the duration and the frequency of the water use for 

the various fixtures and appliances that exist at a residential house. In this work there 

have been chosen three types of distributions in order to represent the water use: 

rectangular, triangular and trapezoidal distribution. Each of the distributions is 

described by the following parameters: the duration and the intensity of flow, and the
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frequency of a given distribution within a time interval. In Figure 3-2 are displayed the 

rectangular, triangular and trapezoidal distributions together with their parameters.

The modeling of the water consuming process by the three distributions is based on 

the characteristics of the water consuming process itself. As for example, the water use 

while flushing a toilet can be described as a short time process that involves a 

significant amount of water. Therefore a triangular distribution with a peak flow of 0.3 

1/s and a total duration of 8  seconds is suitable to represent the water use in this case.

flow [1/s] 

peak flow

flow [1/s]  ̂ flow [1/s]

peak flowpeak flow

time [s]time [s]time [s]

duration o f flow duration of flow duration of flow

a) Rectangular distribution b) Trapezoidal distribution c) Triangular distribution

Figure 3-2: Types of distributions.

In order to investigate how the overall water consumption can be described by these 

distributions, a group of 6  people living together in a house had their water use habits 

scrutinized. In Table 3-1 are displayed the water consumptions for the group of 6  

people, together with the number and the frequency of the distributions characterizing 

their water use habits, as well as the time intervals when they occurred.

Use
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Sink 2 5 3 5 2 3 2 4 - - - -
Shower 1 5 - 3 - - - - - - - -
Toilet - - - - - - - - 4 14 2 8

Leakage 2 2 2 2 3 4 - 4 - - - -

Table 3-1: Modeling the residential water use with rectangular, trapezoidal and 

triangular random distributions.
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A rectangular distribution with the intensity o f flow of 0.15 1/s and the duration of 2 

minutes can represent the use o f a sink during the morning. It can model also a 

continuous leakage for 24 hours at the flow rate of 0.0005 1/s. The same logic is 

followed for the other types o f distributions. Therefore not only the water use habits can 

be described by different distributions, but the distributions of the same type can have 

different values for their parameters (i.e. duration and intensity o f flows). This makes 

the modeling and simulation of the water use versatile and corresponds to the real life 

situations where for example a leakage can be spread throughout the day at a constant 

flow rate, and therefore modeled as a rectangular distribution, but can also be associated 

with the temporarily used o f a sink and then represented as a trapezoidal distribution. 

The entiie data obtained from the survey, have been translated into groups of 

distributions that were assembled together and randomly spread within the given time 

intervals. By virtue o f a random process, it is unlikely that more than one distribution 

will start at the same time. Moreover, owing to the finite duration o f each distribution, it 

is possible that two or more distributions with different starting and ending times, and 

different intensity of flow, to overlap for a limited period. When this happens, the total 

water use at the residence is the sum of the individual intensities from the coincident 

distributions. Finally, this produces a stochastic model for estimating the overall house 

water consumption and the resulted diurnal demand curve is shown at Figure 3-3.

q 4 5  Flow rate 
1/s

0.4 - 

0.35- 

0.3 - 

0.25 - 

0.2 -  

0.15 

0.1 

0.05 

0
0

Time

3 6  9 1 2  15 18 21 24
Figure 3-3: Daily pattern of water use at a 6  people residence (Vertical

lines are hypothetical water consumptions).
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The plot shows about 55 demands with the maximum rate approaching 18 1/min. 

Periods of peak activity are clustered around 9 A.M. and again around 22 P.M. Most of 

the time, however, this residence uses no water.

The 6  people residence is selected as the elemental unit for analysis and the results 

are extended to multiple residences that in total count 1000 people. The predicted 

demand profile for this large community is shown with continuous line at Figure 3-4.

Flow
7 rate 1/s

5

3
2.4 1/s

1

Time

6  p.m. 91 2  p.m. 6  a.m. 3 1 2  p.m.3 9 1 2  noon

Figure 3-4: Estimated diurnal demand for 1000 people.

The derived domestic demand profile for this large area of 1000 people will require 

further modification to reconcile measured demands shown with dashed line at Figure 

3-4 and predicted consumptions obtained through our study. This will require a 

reduction of the number of distributions in the interval 1 2  pm to 2  am and a larger 

number o f the distributions for the afternoon. Finally the modified adopted domestic 

profile will contain reliable information about the characteristics of the daily water use 

o f the group of 1 0 0 0  people.

The final scope of building a stochastic model is to apply it for other customers from 

the distribution system that exhibits similar patterns of water consumption. Through the 

comparison of the simulated water demands by the stochastic model, versus the 

information coming from available meters or customer bills, it will be able to increase 

the accuracy of the final values of the nodal consumptions and to localize the problems 

to the parts o f the water network where they are coming from.
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For example, if  the metering information shows an increasing of water consumption 

in a network node during the night (i.e. continuous line 12 p.m. to 6  a.m. at Figure 3-5) 

when compared to the values expected from the previous studies and the stochastic 

models (i.e. dashed line at Figure 3-5), then this could be a good indication that there 

exist a leakage in the area modeled by the network node.

90 r  Flow 
rate 1/s

60

30

Time0

1 2  p.m. 6  a.m. 1 2  noon 6  p.m. 1 2  p.m.

Figure 3-5: Differences between the predicted water consumption and metered demand.

The work presented here is being motivated by the need to provide a more realistic 

picture o f the nodal consumptions of a distribution system. Such information can 

improve the reliability o f the water network model that through simulation intends to 

predict the behavior of the real network.

The present formulation is limited to the use of simple distributions randomly 

spread within some time intervals as a way of describing the water consumptions for a 6  

people residence house. The results are then extended for multiple residences with the 

same social and economic characteristics. The discrepancy between the expected values 

for the water use and the available metered information can represent an indication of 

some anomalies (e.g. leaks) that might exist in some parts of the network.

Although it is possible to study a few customers in detail and extend the conclusions 

of that study to the rest of the system, this generalization has some inherent dangers. 

The probability of selecting the “best” representative customer for all the system is 

small, and any deviation from the norm of error in nodal consumptions will sum up 

when it is applied to an entire water system. Moreover there are cases in which the use 

of a representative customer is inappropriate under any circumstances: demands for 

large consumers such as hospitals, hotels should be individually detennined and the 

volume and the patterns of their usage should not be applied to other consumers just

39



Chapter 3 : 3.3. The simulator algorithm

because they are neighbors within a geographical zone. Therefore some other specific 

methods, state estimation and confidence limit analysis, will be used later in order to 

improve the accuracy of the overall operational status of the water system. As for now, 

this study showed how the uncertainty in the water nodal consumptions can be reduced 

by comparison o f groups of consumers with the same socio-economic background. In 

the next section the water consumptions together with the other physical characteristics 

of the system will be used as input data in the simulation process of a water network.

3.3. The simulator algorithm

A water system simulation represents a snapshot in time and is used to determine the 

operating behaviour o f the water network for a set of nodal demands. The simulation 

algorithm shown here is based on a co-tree flows formulation, which is derived from the 

loop corrective flows algorithm, defined for a water distribution system with w-nodes, /- 

loops, and p-pipQS.

♦p.

di

Figure 3-6: General water network with n - nodes,/? - pipes and / - loops.

An initial solution Qt that satisfies the continuity equation is calculated as

AnpQ r d  (Eq. 3.1)

40



Chapter 3 : 3.3. The simulator algorithm

where d (n x 1) is the vector of nodal demands and Anp in x p) is the topological 

incidence matrix that has a row for every node and a column for every branch 

(component) of the network. The non-zero entries for each row +1 and -1 indicate that 

the flow in pipe j  enters or leaves node i.

1 i f  flow  o f pipe j  enters node i 

Anp (*'» J) = < 0  z/  PiPe J 25 not connected with node i

- 1  i f  flow  o f pipe j  leaves node i

The energy equation has to be satisfied, that is the vector of loop head losses 

residuals AH  (/ x 1) must be equal to zero

AH  = 0

The vector of loop head losses residuals AH  is calculated as

AH =M}P h

(Eq. 3.2)

(Eq. 3.3)

where h (p x 1 ) is the vector of pipe head losses described by the Hazen-Williams 

equation

h—kQ '1 (Eq. 3.4)

Here k  (p x 1) is the vector of pipe resistance coefficients and Q (p x 1) is the vector of 

flows that has to be determined. The loop incidence matrix Mip is the (/ x p) matrix with 

the following properties

MipU’V
1 i f  flow  o f p ipek flows clockwise in loop j
0  i f  p ipek  does not pertain to loop j

- 1  i f  flow  o f  p ipek flows anti -  clockwise in loop j

By solving equation (Eq. 3.2) with the Newton-Raphson iteration method, the loop 

corrective flows at the step t+ 1 of the iteration method are

AQit+i ~&Qit dAH
3A 0#

AH (Eq. 3.5)

where dAH
5A

(/ x /) is the Jacobian matrix, i.e. the derivatives of the loop head losses
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residuals AH  with respect to the loop corrective flows AQ  at the t-th step of the 

Newton-Raphson process. The final solution is obtained for the vector of flows Q

Q  = Q i+ M plA Q t (Eq. 3.6)

where M pi {p  x I) is the transpose of the loop incidence matrix and A Q i (/ x 1) is the 

vector of loop corrective flows.

The Jacobian matrix can be expressed also as

J  Mip A  M pi

The matrix A ( p x p )  is the diagonal matrix with the property

(Eq. 3.7)

«-i

0 

0

0...  0

n 0
_ | in-l
° -  n h \

(Eq. 3.8)

where kix..P are the pipe head losses coefficients, and n is the exponent in the Hazen- 

Williams equation.

3.3.1. Loop defining algorithm and calculation of the initial flows

> The loop method requires the computation of the loop incidence matrix Mip and the

initial flows Q (. There are many ways to choose the loops and to define the loop 

incidence matrix. These loops can be considered either fundamental (Gofman & Rodeh, 

1981) or natural (Epp & Fowler, 1970). The natural loops are, most likely, what a 

designer could pick visually, because they are formed by the most neighbouring links to 

a loop. The fundamental set o f loops are the independent loops found in a spanning tree 

and defined by the non-tree pipes.

A spanning tree for a network (with n nodes and p  pipes) is a subnetwork (with n 

nodes and p x pipes) such that n ~ ri and the subnetwork contains at least one pipe and 

no loops, and is said to be connected. A network is connected if  for every pair of 

I different nodes n\ and /i2, there is a path between them. A path represents a finite
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sequence of nodes and pipes between the initial node n\ and the terminal node n2 and no 

node or pipe is repeated in the path.

Computer experiments for generating the loops showed that the fundamental loop 

generator is faster than the natural loop generator (Rahal, 1995). Furthermore the loop 

flows correction algorithm requires the determination of the nodal heads when the 

convergence has been reached. The fastest way to determine the nodal heads is to 

follow the tree structure of the spanning tree by starting with the main source.

The loop method that is using a fundamental loop generator is called the co-tree 

method from the pipes that do not belong to the spanning tree and are called co-tree 

pipes or chords (e.g. dashed arrows in Figure 3-7), and are providing the loop 

information. The co-tree method is employed in this presentation. For the general water 

network from Figure 3-6, a spanning tree is shown at Figure 3-7.

/
/t

Figure 3-7: Spanning tree for the water network shown at Figure 3-6.

The fundamental loop generator works in the following way: all the pipes are 

assigned an initial ordering according with a hydraulic criterion such as the head loss 

coefficient. This order is followed while a searching algorithm is used to visit the entire 

network and construct the spanning tree. During the visiting o f the network, the 

information about nodes and pipes is recorded. The spanning tree is built from a root 

node that has to be a fixed-head node (e.g. node d\ in Figure 3-7). The root node has 

zero depth. As the search moves to a new node, the respective node is marked as visited.
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The search is continued and if a previously visited node is encountered it means that a 

loop has been detected (e.g. pipes 3, 4 and 5 in Figure 3-7).

Different search strategies can be employed in order to produce the spanning tree: 

Depth First (DF) search or Breadth First (BF) search. Choosing the right search depends 

on the particulars o f the tree. However, for water networks it has been shown that Depth 

First (DF) search is more suitable for finding the fundamental set of loops (Gofman & 

Rodeh, 1982; Andersen & Powell, 1999b; Bounds, 2001); this is based on the property 

of the DF search that always the pipe that does not belong to the tree (i.e. co-tree pipe), 

connects a node with one of its predecessor in the tree. Moreover in the DF search 

algorithm, the nodes adjacent to an already visited node are recursively traversed and 

therefore the DF search can be implemented as a recursive algorithm.

For the water network used in (Gofman & Rodeh, 1982) new labels are assigned to 

pipes and nodes during the search of the water network.

Figure 3-8: Water Network from Gofman and Rodeh (1982).

The spanning tree for the water network from Figure 3-8 is at Figure 3-9. Starting 

with the fixed-head node 1 the DF search traverses tree pipe e\, and arrives at node 2, 

further visiting nodes 3 and 4. Edge 6 9  goes back to the already visited node 1 and it 

represents a chord pipe (or a co-tree pipe). Assuming the direction o f pipes the one 

given in the figure, tracing the loop becomes an easy task: starting with the down node 

of the chord pipe, the loop tracing algorithm is traversing all the tree edges up, that is 

pipes 6 6 , <?3 and e\, until the upper node 1 of the chord pipe is encountered (Figure 3-9a).

While we are building the spanning tree and tracing the loops, new labels are 

assigned to nodes and pipes (Figure 3-9b). With the new labels, the DF search produces 

a one-column matrix: the index of the matrix points to the current node, while the 

element of the matrix points to the previous visited node from the tree.
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Figure 3-9: a) Tree Network, b) Tree Network with new labels for pipes and nodes.

For the spanning tree from Figure 3-9b, the following one-column matrix stands

I  = [7 1 2 2 4 5 f(Eq. 3.9)

If the search detects a chord pipe (e.g. pipe eg connects node 3 to node 7 at Figure 3- 

9b), we start in matrix L at index 3 (i.e. the down node of the chord pipe eg) which 

points to node 2. We move then to index 2 in matrix L which points to node 1 and 

further index 1 points to node 7. Node 7 represents the upper node of the chord pipe eg, 

and the loop has been obtained, that is the tree pipes ej, 62 and ej, and chord pipe eg. As 

the tree is built, the loop incidence matrix Mip is obtained together with the topological 

incidence matrix Anp: the topological incidence matrix contains an upper-form tree 

incidence matrix T  and a co-tree incidence matrix C. Because the head of the root node 

(i.e. node 7 in Figure 3-9b) is known, it is not included in the tree incidence matrix T.

Anp — [71 C] (Eq. 3.10)

where T (n x  n) is the upper tree incidence matrix and C ( n x l )  is the co-tree incidence 

matrix. The upper form of the tree incidence matrix will have a threefold importance for 

the numerical algorithms: it will make easier the calculation of the initial flows, it will
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alleviate the modeling o f a leak in a pipe and will improve the accuracy of the state 

estimator results.

Once the topological and the loop incidence matrixes have been obtained, the initial 

flows Qi must be determined. The initial solution in the co-tree method must respect the 

mass continuity, because the governing system of equations does not account either 

implicitly or explicitly for continuity. While the initial co-tree flows are zero, the initial 

flows Qi in tree pipes can be calculated as

A number of authors have investigated the performances of the loop method with 

respect to the initial flows: closer are the initial flows to the final solution, less iterations 

are necessary in order that Newton-Raphson method converges.

In (Nielsen, 1989) there were reported difficulties in starting the Newton-Raphson

gives a singular Jacobian matrix. An algorithm had been developed which was not using 

an initial flow solution that had to respect the continuity equation. Instead the numerical 

algorithm was starting with a single Linear Theory Method (LTM) iteration followed by 

the Newton-Raphson iterations. Rahal (1994) was using a linear head-loss formula 

during the first iteration of the Newton-Raphson algorithm and the Colebrook-White 

head loss formula for subsequent iterations.

In order to avoid a singular Jacobian matrix, initial small flows of less than 0.1 1/s 

are considered in the co-tree pipes that belong to the loops with the head losses equal to 

zero. Furthermore an enhancement (Arsene & Bargiela, 2002a) is introduced in the 

Jacobian matrix that speeds-up the convergence of the Newton-Raphson algorithm

regardless the initial solution. The enhancement is introduced in the chord flows Qc 

that are on the diagonal of matrix A and are calculated with the formula

G /=  T ~ ‘ (Eq. 3.11)

iterations due to the existence of a singular Jacobian matrix. If the initial pipe flows in a 

loop are zero then the sum of the head losses around that loop is equal to zero which

\t  In
H  ~ H

Q + s i g n ( H i ~ H ,) — — — -  

c J k
» r

V (Eq. 3.12)

2

46



Chapter 3 :3 .3 . The simulator algorithm

where Hjj are the nodal heads at the two end nodes i and j  o f the chord pipe, 

Qc is the loop corrective flow in chord pipe r calculated from equation (Eq. 3-5) and

s ig n iH -H j) \ H i - H ,
1 In

k
represents the Hazen-Williams equation written as flow

function of pipe head loss.

Instead o f using the Newton-Raphson formula for solving iteratively the loop head 

losses equations, we calculate a partial solution by solving one equation at a time. Each 

equation represents the head losses in a single loop and it has to be equal to zero. In the 

Figure 3-10 is shown at iteration t+l the corrective flows AQj are calculated for each
lt+1

loop with the equation

A Qj = sign(Hi - H J)
lt+1

f \
H , - H j

k
V )

N 1/h

(Eq. 3.13)

AH  has been written as the difference between the entry and the exit nodes in the 

loops (Figure 3-10). It is obvious that the influence that the loops with common pipes 

can have one onto the other is overlooked in equation (Eq. 3.13).

A Qj
'i+i

u

\
\
\

\
\
\
\

\
\

\.

Figure 3-10: The solution A Qj o f the system of equations AH  = 0 is found
lt+1

individually for each loop.
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We observed experimentally that if  we introduced the average sum of & Q i(+] 

(calculated from Newton-Raphson method) and A Qj in the Jacobian matrix we
lt+1

could then improve the convergence of the co-tree flows simulator algorithm.

A graphical interpretation of the previous equation is shown at Figure 3-11.

Perhaps we should mention here that other authors have used such enhancements in 

the numerical algorithms that solve water networks. Wood and Charles (1972) in 

developing their linear theory method used for each pipe flow the average flow rate for

Q _ + Q
the pipe from the past two solutions (i.e. Q = —— — )• This resulted in a stable 

algorithm when the successive iterative solutions approached the final solution.

AH

AQi

/II ✓

Figure 3-11: Speeding-up the convergence of the co-tree flows simulator.

The software developed by Rossman (1994) (i.e. EPANET) for simulating water 

networks is based on the algorithm presented by Todini and Pilati (1988) and later 

Slagado et al. (1988) and called the “Gradient Method”. This algorithm updates the pipe 

flow by using the average flow rate for the pipe from the present and the last solution. 

To formulate the network equations, a hybrid node-pipe approach is used.

48



Chapter 3 : 3.3. The simulator algorithm

A similar enhancement has been presented by Andersen and Powell (1999b) in their 

co-tree flows simulator algorithm which was expressed as a function of the head losses 

in the co-tree pipes.

Having defined the topological and the loop incidence matrices and calculated the 

initial flows, the modified Newton-Raphson algorithm is used to determine the pipe 

flows. Following this, the nodal heads are obtained with the equation

H =  H  - ( f ) ' 1 hT (Eq. 3.15)

where II^ is the vector o f (n x 1) size with the fixed-head root node Hq on each entry in

the vector. Matrix (T7) ' 1 (i.e. the inverse of the tree incidence transpose matrix) 

describes the tree structure between the root node Ho and the nodal heads H  (e.g. nodal 

heads 1 to 6  at Figure 3-12). Vector hr represents the head losses in tree pipes.

0
h\ ^ 

J I

h2

H i

*4/ ~ V

hs

Ha

I
h l

H.

Figure 3-12: Calculation of the nodal heads based on the tree structure.

Before presenting some numerical results, let us point out the reasons for which the 

co-tree flows algorithm is superior to the nodal heads simulator.

During the Newton-Raphson iterative process, it may happen that one or more pipe

flows to be close to zero Q — 0 or, equivalently the pipe head loss h= 0. In the nodal
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heads formulation, the Jacobian matrix expresses the continuity equations at the nodes 

of a network and zero pipe flows may result in a singular Jacobian matrix. By contrast, 

in the co-tree flows simulator the effect o f one or more vanishing pipe flows is simply 

that the contribution from the pipe with the zero flow is ignored in the system of 

equations (Eq. 3.5). As long as not all the pipe flows are zero in a loop, the Jacobian 

matrix J -J{  AQ ) is non-singular and we can find a well-defined solution. However,

even when the head losses around a loop are equal to zero, the respective loop can be 

excluded from the system of equations and a solution can be found without the loop 

with the zero head loss.

A more serious situation can appear in the nodal heads simulator due to the limits on 

the numerical precision (e.g. the condition number of the Jacobian matrix is big). In the 

nodal heads formulation the Newton-Raphson method iterates in the space of nodes and 

therefore the variation of pipe flow at the step t of the iteration method can follow the 

direction from node n\ to node « 2  while at the next iteration the direction of flow 

reverses from node nj to n\. This oscillating behaviour may appear when the iteration 

gets close to the solution. It results in a numerically oscillating algorithm with poor 

convergence properties which represents a disadvantage for the simulators based on the 

nodal heads equations.

In the loop equations framework the Newton-Raphson algorithm iterates in the 

space of loops where the number of unknowns is equal to the number of independent 

loops that is typically half the number of nodes. Thus the dimension of the matrices 

involved in the numerical computations is much smaller than the one used in the nodal 

equations framework. Therefore not only the Jacobian matrix has a reduced size but 

also it is denser than its counterpart from the nodal heads equations. In fact it has been 

observed that more looped is the Jacobian matrix, more stable is the co-tree flows 

simulator algorithm.

Worth mentioning herein that the DF search procedure finds the most “depth” loops 

compared to the other search methods. This means that the loops obtained by the DF 

search tend to interact with each other more than in other search procedures, and this 

assures again a denser Jacobian matrix.

We conclude that the loop simulator is numerically stable when the iteration 

approaches the solution (Nielsen, 1989) and the error at the steps t and t+ 1 satisfies the 

relationship
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|sh-i |<  N  (Eq. 3.16)

The errors e,+i, et can be written as

s,= AQ,r A Qh x(Eq. 3.17)

s<+i=AQ(+l-A  Qh(Eq. 3.18)

3.3.2. Numerical results

To illustrate the preceding analytical expressions, the water network from 

Figure 3-13 is considered. The initial data that is the topological and the loop incidence 

matrixes and the initial flows are obtained with the DF search.

Figure 3-13: Realistic water network.

New labels for pipes and nodes are considered so that to obtain an upper form for 

the tree incidence matrix and to be able to calculate the initial flows and the nodal heads 

(Figure 3-14).
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79’*.,

W

Figure 3-14: DF search with new labels assigned to nodes and pipes.

As expected the DF first search together with the enhancement in the Jacobian 

matrix exhibits the best convergence (Figure 3-15). It is generally accepted that the 

convergence is achieved when the loop head losses residues are smaller than 10"3. This 

corresponds to 7 iterations for the DF search with enhancement. The minimum value of 

10' 14 for the loop head loss residues is obtained in 9 iterations.

The convergence of the co-tree flows formulation for the steady state simulation 

compares very well with what other authors (Bargiela, 1984; Powell et. al, 1988) have 

reported for the same testing conditions (i.e. loading condition, network pipes data) 

using nodal heads network equations.

This formulation uses a smaller set of equations since the number o f loops in a water 

network is likely to be far smaller than the number of nodal heads and/or pipe flows. As 

it will be shown in the next chapter, the reduced set of equations will improve the 

numerical stability of the loop-based state estimator.

Finally, the smaller size of the set of equations together with the enhancement in the 

Jacobian matrix does not require any new conditions on the initial solution estimate, 

unlike the original formulation of loop corrective flows simulator.
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Figure 3-15: Convergence of the co-tree flows simulator for the water network from

Figure 3-13.

3.4. Concluding remarks

In this Chapter, the problem of steady state analysis of water distribution systems is 

studied in the context of a co-tree flows simulator algorithm that is derived from the 

basic loop corrective flows algorithm. It is shown that the co-tree formulation has some 

inherent advantages over the original formulation due to the use of the spanning trees. 

This allows a rapid determination of the necessary input data for the simulator, the loop 

incidence matrix and the initial flows, as well as the fast calculus of the nodal heads at 

the end of the simulation. Furthermore an enhancement introduced in the Jacobian 

matrix speeds-up the overall convergence of the algorithm regardless of the initial 

testing conditions.

The co-tree flows simulator algorithm uses nodal water consumptions that are 

obtained from the information available from different sources such as customer’s
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meters or billing records. A simple stochastic model for prediction of nodal 

consumptions is developed and the results are extended to other consumers that exhibit 

similar patterns of water use. It can represent a way to reconcile the discrepancy 

between the simulated water consumptions obtained with the stochastic model and the 

metered information in order to increase the accuracy of the final values of the nodal 

consumptions. However, it has been stressed that such an approach can produce in 

certain circumstances completely wrong results and therefore more effective operational 

decision tools will be developed in the next chapters.

The final result is a robust co-tree flows simulator algorithm that is using more 

consistent values for the nodal water consumptions. To the author’s knowledge this 

unique approach to the modeling and simulation of the water systems based on a co-tree 

flows formulation has not been treated in the literature before and in this sense it is an 

original contribution to this work as well as a first step towards building an effective 

operational decision system for water networks.
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Loop flows state estimation technique

4.1. Introduction

In the operational decision support of water networks, state estimation is an 

important element that enables processing o f inconsistent measurements and facilitates 

calculation of the best approximation of the operational state of the system (Sterling & 

Bargiela, 1984; Powell et al., 1988; Gabrys & Bargiela, 1995). The measurements can 

be real flow or pressure measurements obtained through telemetry systems from the real 

water network, as well as the less accurate predictions of the water consumptions at the 

network nodes. These predictions are frequently referred to as pseudomeasurements.

As the complexity o f modem water networks increases, the state estimators became 

an accepted tool assisting operators in their operational decision-making (Gabrys & 

Bargiela, 1996; Gabrys, 1997). However, the adoption of state estimators as operational 

control tools puts new requirements with respect of their efficiency and effectiveness. 

The state estimators are required to be both capable of real-time data processing and be 

relatively immune to numerical convergence problems that might be caused by 

incomplete or inaccurate data.

State estimation can be viewed as a process of optimisation of a suitably chosen cost 

function (also called energy function). The choice of the optimisation criterion 

characterizes different state estimators. According to the criterion used the state 

estimation procedure can be divided into the following three major groups: least square 

(LS) criterion where the sum of the squared differences between the measured and 

estimated values is minimised, least absolute value (LAV) criterion where the sum of 

the absolute differences between the measured and estimated values is minimized and 

minimax criterion where the maximum difference between the measured and estimated 

values is minimised.
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The state estimators became these days the key utility for the implementation of 

monitoring and control of large public utility systems, not only in water distribution 

systems but also for gas or electric distribution systems. Within these applications, the 

proper choice of the estimation criterion depends greatly on the type of errors that are 

likely to occur in the system. Due to this fact, that will be discussed in more detail in the 

following sections of the chapter, only the first two criterions (LS and LAV) and their 

variations have been practically used in water systems’ state estimation problem. The 

review of the state estimation methods will include also a perspective over the 

independent sets of variables that can be employed in the mathematical formulation of 

the water network equations while using an adequate state estimation criterion.

4.2. State estimation in water distribution networks

4.2.1. Review of state estimation methods

Before we begin the presentation of our loop flows state estimation method for 

water systems let us take a closer look to the optimization criterions mentioned above 

and find out why the LS and LAV criterions have been so popular amongst water 

systems researchers.

From robust statistics (Hampel et al., 1987; Huber, 1981) it is known that the LS, 

LAV and minimax criterions are optimal for certain error distributions. The standard LS 

criterion, that has been the most popular one and in use for a long time, is optimal for 

the Gaussian (normal) distribution only. However, in many applications the assumption 

that the distribution of measurement errors is Gaussian is unrealistic. For a non- 

Gaussian error distribution a standard LS estimation may be very poor, especially where 

measurements contain large errors called “measurement outliers”. In order to reduce the 

influence of the outliers the more robust iteratively re-weighted LS or LAV estimator 

can be used. The LAV criterion may be also preferable when very little is known about 

the distribution of errors. The LAV criterion produce optimal results for an error 

distribution having long tails, i.e. the Cauchy distribution. If the error distribution has 

sharply defined transitions, such as the uniform distribution, the Chebyshev criterion
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can be the most suitable choice. Because the maximum deviation is minimized in the 

minimax criterion it is an appropriate one to be used when the data are relatively free 

from outliers.

When we now look at the most likely errors to occur in water networks we find that 

there are two main errors: these associated with transducer noise, A/D conversions etc. 

that can be classified as having Gaussian distribution and these associated with 

topological anomalies, caused by the physical system deviating from the original system 

as modeled (e.g. due to a new pipe burst) and meter malfunction, that can be classified 

as gross errors or outliers. In view of these facts the choice of LS and LAV estimators 

for water systems state estimation seems to be justified.

Although the choice of appropriate optimality criterion is absolutely crucial the 

algorithms used to solve these optimization problems are also very important. As a 

matter of fact the problems with using the LAV and minimax criterions, mainly due to 

the non-differentiability of the objective function which may and have caused some 

analytical and numerical problems, have been another reason why the LS criterion is so 

popular. In water systems different algorithms such as linear programming, non-linear 

programming, unconstrained optimization have been used to solve the state estimation 

problem.

The comparison of the weighted least squares (WLS) problem solved using the 

augmented matrix approach with the LAV problem solved using linear programming 

technique can be found in (Bargiela, 1984). Via simulation results Bargiela found that 

the LS estimator in its augmented matrix formulation is computationally efficient and 

exhibits very good numerical stability characteristics, especially in the case of 

structurally ill-conditioned systems. However, the LS approach was found to be 

intrinsically sensitive to measurement outliers thus requiring further bad data processing 

followed by re-estimation o f the state variables. In contrast, the LAV produced unbiased 

estimates automatically rejecting the bad data but the solution time of the linear 

programming technique dramatically increased with the size of the network preventing 

its on-line application to large-scale problems. To enhance the efficiency of 

implementations both methods utilized the sparsity of matrices involved in problem 

formulations.

The sensitivity of the LS estimators to the outliers has been recognised and reported 

in many other publications dealing with the utility systems state estimation problem 

(Dopazo et al., 1970; Falcao et al., 1981; Gabrys & Bargiela, 1995; Handschin et al.,
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1974; Hartley, 1996; Merill & Schweppe, 1971; Powell et al., 1988; Powell, 1992; 

Schweppe et al., 1970; Sterling & Bargiela, 1984). In order to diminish the influence of 

the bad data on the final solution several techniques used with the LS estimators have 

been developed.

hi (Schweppe et al., 1970) two tests were used: observing the weighted sum of 

squared residuals for detection of bad data and using the list o f largest normalised 

residuals as a guide for the identification of bad data points.

Another approach to improvement of the LS estimates in presence of the bad data is 

the use of methods penalizing the largest residuals so that the potential bad data have a 

reduced influence on the final estimates. In these methods of state estimation the non

quadratic cost functions, which approximate to a standard LS criteria when all the data 

are good, are often used (Falcao et al., 1981; Handschin et al., 1974; Merill & 

Schweppe, 1971). Another set o f examples of iteratively reweighted LS estimators, 

based on detecting the largest residuals, can be found in (Hartley, 1996; Powell et al., 

1988; Powell, 1992).

An alternative formulation to the LS criterion, that can be classified as another case 

o f a non-quadratic criterion and is known as the weighted least absolute method 

(WLAV), has been proposed by a number of authors for utility systems applications 

(Bargiela, 1984; Falcao et al., 1981; Gabrys & Bargiela, 1995; Hartley, 1996; Kotiuga 

& Vidyasagar, 1982; Sterling & Bargiela, 1984).

To conclude, the method of LS state estimation is sensitive to the presence o f large 

errors. An alternative to this problem can be the weighted variant of the LS method or 

the LAV method. However, the LAV method requires more time than the usual LS 

method for solving large water networks. A solution would be to use the LS criterion 

that will assure computational efficiency, while constraining the state estimation to the 

regions o f the water network for which there exists reliable measurement information so 

that to avoid the influence that bad data can pose on the final state estimates.

The application of the LS/WLS state estimators for on-line monitoring of water 

networks has been studied at an extent level in the past. The nodal heads were in most 

o f these studies the independent variables (Gabrys, 1997). Although the mathematical 

model is accurate, it leads sometime to difficulties in modeling and simulation of 

realistic water networks (Nielsen, 1989; Gabrys & Bargiela, 1995; Sterling & Bargiela, 

1984; Powell et al., 1988; Hartley, 1996; Hartley and Bargiela, 1993).
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An alternative to the nodal heads as state variables is the loop corrective flows. This 

can be an advantage because of the smaller size of the matrixes involved in the 

numerical computations. A WLS state estimator based on the loop equations and the 

state variables were the unknown nodal demands was presented in Andersen and Powell 

(1999a). The minimization problem was solved using a Lagrangian approach. A LS 

state estimator was shown in Arsene and Bargiela (2001) that employs both the 

variation of nodal demands and the loop corrective flows as independent variables. A 

leakage detection scheme was envisaged based on this state estimation technique.

The novel state estimator is depicted in the next section. Following this, the global 

optimality of the LS solution is demonstrated.

4.2.2. Formulation of the loop flows state estimation problem

In the previous chapter, it has been shown that the co-tree flows simulator algorithm 

can benefit from using spanning trees: the loop incidence matrix and the initial flows 

were easily calculated from the spanning tree obtained for a water network. Moreover, 

at the end of the Newton-Raphson method the nodal heads could be calculated based on 

this spanning tree.

The loop flows state estimator presented here is using once again the spanning trees 

and their properties. The state estimator has been received the loop flows denomination 

because of the loop corrective flows variable that is one of the sets of variables used to 

construct the network equations

z= g (x ) + r  (Eq. 4.1)

where z is the vector of measurements contaminated by errors and disturbances; r is the 

unknown vector, called the vector of residuals, that accounts for measurement noise, 

model errors and disturbances; g() is the nonlinear function (also) called network 

function describing the system; x represents the state variables used to build the network 

function g. At this stage in our presentation no decision has been taken with regard to 

the state variables.
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If the loop corrective flows were the state variables, then the state estimation 

problem would not be completely defined.

The continuity equation for the initial flows can be written as

Anp Q i-  dt (Eq. 4.2)

where A np is the topological incidence matrix, di are the nodal demands at the start of 

the Newton-Raphson iterative method, and Qi are the initial pipe flows. At this stage the 

topological incidence matrix has not taken any special structure (e.g. upper form).

The continuity equation at the end of the Newton-Raphson iterative method can be 

written as

A np Q  — df  (Eq. 4.3)

where Q  are the pipe flows that are updated at each Newton-Raphson iteration step and 

are expressed as

Q  =  Q i + M plA Q i  (Eq. 4.4)

From the basic hydraulics theory, between the topological and the transpose of the 

loop incidence matrixes stands the equation

A np M p i  = 0 (Eq. 4.5)

Therefore in the equation (Eq. 4.6) the loop corrective flows would not cany 

anymore because the product between the topological incidence matrix and the loop 

incidence matrix is equal to zero

Anp Q  =  Anp Q i+  A np M plA Q i  (Eq. 4.6)

In this case, equations (Eq. 4.3) and (Eq. 4.6) gives

Anp Qi -  df  (Eq. 4.7)

The topological incidence matrix multiplied by the initial pipe flows equals the 

nodal demands df  obtained at the end of the Newton-Raphson iteration method. From 

equations (Eq. 4.2) and (Eq. 4.7) an identity has been obtained (i.e. df -  di) which 

means that the continuity equation as written at equation (Eq. 4.2) can have an infinite

of flow solutions Q . In order to avoid these difficulties an additional set of variables 

has been considered, the variation of nodal demands Ad.
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The hydraulic model g() for head, flow and demand measurements becomes a 

function of both the loop corrective flows (y) and the variation of nodal demands (,r).

The advantage of using the variation of nodal demands lays in writing the network 

equations based on the topological information obtained from the spanning tree. By 

making use of the spanning tree, the topological incidence matrix Anp has been modeled 

in the previous chapter as an upper form tree incidence matrix T (n x n) and a co-tree 

incidence matrix C ( n x l )

Anp = [T C] (Eq. 4.8)

In order to build the hydraulic model ̂ (),the spanning tree from Figure 4-1 is used.

ei

loop 1 ( e8

\
\ > \ '

loop 2

Figure 4-1: Example of a spanning tree.

\  pseudo-loop 3

The transpose o f the loop incidence matrix can be written as

M p,=
M nl
M ,

(Eq. 4.9)

The matrix Mu (/ x I) is a diagonal matrix (each loop corrective flow corresponds to 

a single loop) that together with the matrix M„i (n x I) resembles the transpose of the 

loop incidence matrix Mpi (p-n+l).
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Since an additional set of independent variables has been introduced, the pipe flows 

will be written function of the loop corrective flows AQi and the variation of nodal 

demands Ad as

tree pipes, the initial flows in the co-tree pipes are zero (i.e. zero vector (/ x l) 0 /) , and

There are two sets of equations which describes the hydraulics of the water network. 

The first set of equations states that the loop head losses around the loops are equal 

to zero

where the loop head losses residuals AH  are a function of the loop corrective flows y  

(AQi) and the variation of nodal demands x (Ad) and are calculated from equation 

(Eq. 3.3) presented in the previous chapter.

The second set of equations states that the total amount of inflow/outflow from the 

water network carried out through the fixed-head nodes should equal the variation of 

nodal demands. This equation can be written as

The matrix Bni (n x /) has a non-zero element equal to 1 which corresponds to the 

main root node and -1 for each of the fixed-head nodes. In the spanning tree from 

Figure 4-1 there is a pseudo-loop between the fixed-head node 3 and the main root node 

which fills the 3rd colmnn of matrix Bn{. This matrix is shown in full fonn below.

Q  -  Qi - A Ad + M piAQi (Eq. 4.10)

where Q are the pipe flows in tree and co-tree pipes, Qt are the initial flows in

matrix A* is the matrix with the property A* =
In _

AH (AQl , Ad) = 0 (Eq. 4.11)

Ad -  B ni A Q i (Eq. 4.12)
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loops 

1 fO 0 O '!

fixed-head node 3

4
5
6

main root node 1 \

0 0 0
0 0 - 1  
0 0 0
0 0 0
0 0 0
0 0 1

The equations (Eq. 4.11) and (Eq. 4.12) represents the hydraulic function that 

describes the water network. It can be written as a system of equations

AH (AQ{, Ad) = 0

B nlA Q [- A d  = 0
(Eq. 4.13)

If x (n x 1) and y  ( I x l )  are the estimates of the vectors x  (variation of nodal 

demands - Ad) and y  (loop corrective flows - AQi), and g(x ,y )  is the non-linear 

function to be minimized (Eq. 4.13), by using the first-order Taylor series g(x ,y )  

becomes

g (x ,y )  = g (x ty ) i0) + dg(x,y) dg(x,y)

1
1*> 1 /-—\

 O S-/
1

dx II / -\ O dy i
o'II

-----1
o'11

(Eq. 4.14)

where [ #°) jX°) ] is the initial guess of the state vector. The Jacobian matrix is

dg(x,y) dg(x,y)J
dx dy

(Eq. 4.15)

dg(x y) dg(x y)
where ••• • A and *■ are the partial derivatives of the function g (x ,y )  with

ox dy

respect to the vectors x  and y  . The Jacobian becomes

dAH dAH

J  = dx dy

dx B, dy

(Eq. 4.16)
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The Jacobian matrix can be further written as

dAH dAH

J  =
dx

- I

dy

Bni

(Eq. 4.17)

where Inn is the (n x n) identity matrix.

By suppressing the line and the row for the main root node in matrixes Imt and Bni 

and re-calculating the inflows/outflows for the water network at the end o f the Newton- 

Raphson method (i.e. by subtracting the variation of the nodal demands at the fixed- 

head nodes from the loop corrective flows that are connecting the respective fixed-head 

nodes to the main root node) then matrix B„i becomes the zero matrix of size (n x /)• 

Following this, the Jacobian matrix becomes

J  =

dAH dAH
dx

I

dy

0 III

(Eq. 4.18)

The Jacobian matrix J  resembles the one presented in Arsene and Barigela (2001).

If we denote with g(x, j>) the non-linear equation that describes the residuals in the 

loop head losses and the variation of nodal demands then the variation of the state

variables Ax
4y

during the Newton-Raphson method is calculated as

Ax

A)>
(Eq. 4.19)

The LS estimate of is found by an iterative process with the consecutive state

estimates calculated with the following equation

"x(/c+1)"
+

1

'W'

1

(Eq. 4.20)
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If all elements of A x ^
A

at k-th step of the estimation process are lower or equal to a

predefined convergence accuracy, the iteration procedure stops. Otherwise, a new 

correction vector is calculated using (Eq. 4.20) with -*(*-»■ instead o f
«(k)

.y .

4.2.3. Optimality of the LS estimate

The non-linear equation g (x ,y ) is a function of the head losses residuals in the co

tree pipes and the variation of nodal demands. This non-linear function can be split in 

two sets of equations which can be solved by a Lagrangian approach where the head 

losses residuals in the co-tree pipes represents the constrains (the head losses residuals 

are equal to zero) and the variation of nodal demands represents the function to be 

minimized (Andersen & Powell, 1999a). However, if  the Hessian matrix of the non

linear function g(x, j>) is (semi) positive definite then any local minimum is a global 

minimizer as well. The minimum of this function can be found with the LS method.

The first derivative of the loop head losses residuals with respect to the loop 

corrective flows is

d W = M lpA M pl (Eq. 4.21)

where matrix A is given by the equation (Eq. 3.8) from the co-tree flows simulator. For 

the exponent n equals 2, matrix A is

2k abs(Qx) 
0  

0

0

2k ̂ a b s (Q ) 
0

0

0

2k abs(Q ) 
P P

(Eq. 4.22)

where the pipe flows O . — are written asj  = \,P

Qj  = Qi + M pl( j il : l ) A Q l ~A*( j , l : n ) Ad (Eq. 4.23)
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where Q..  is the initial flow in pipe j  and M  is the y'-th row of the transpose

of the loop incidence matrix.

The second derivative becomes

d2AH
 = M  K M

.2 Ip pi
(Eq. 4.24)

dy'

where K  is the y?-diagonal matrix with the positive coefficients 2k\t,.,p on the diagonal. 

The second derivative o f the loop head losses residuals with respect to j) is a positive 

definite matrix.

In the Jacobian matrix /  the identity matrix Inn is a constant and the first derivative 

with respect to the variation of nodal demands x  is zero. It remains to calculate the first 

and the second derivative of the loop head losses residuals with respect to the variation 

of nodal demands. The first derivative is

(Eq. 4.25)

The second derivative is

AFI , ,  , __ i s 9
 = M 1 K (  1: n ,1: n) ( -T  )

Sic2 In (Eq. 4.26)

The square o f the inverse o f the tree incidence matrix T  is positive-definite. This is 

also true for the first /2-rows and //-columns in matrix K. In the spanning tree from 

Figure 4-1 by choosing the clockwise direction for the loops then matrix M„i will 

contain positive elements. Consequently the matrix from equation (Eq. 4.26) will be 

positive definite. The Hessian matrix of the function g(x, y)  becomes

H  =
d2A H

dx2
0 0

f .2

nl

(Eq. 4.27)

Although matrix I I  is underdetermined (i.e. more columns than rows), it is a semi

positive matrix, and therefore the LS estimate of the function g(x, y ) when there

are no pressure and flow measurements is a global minimum for this function.
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The function g{x,y)  can be augmented with pressure and flow measurements. In 

the residual form a flow measurement Qr is written as

Qr = Q j - Qt - M P1U ’ 1 : ( Eq. 4. 28)

where Q  is the flow measurement at pipe j .  In the equation (Eq. 4.28) the second 

derivatives with respect to the loop corrective flows and the variation of nodal demands 

are zero. Therefore a flow measurement is not changing the optimality of the minimum 

of the non-linear function g( x , y ).

A pressure measurement in the residual fonn Hr can be written as

H = H  -H- [ r . O . l  0  J (Eq. 4.29)
V J 1 j

where Hj is the pressure measurement at node j ,  Ht j  is the initial pressure value at node

j  calculated at the beginning of the Newton-Raphson method, matrix T\ is the inverse of 

the transpose of the tree incidence matrix (i.e. (TT)~X), h is the vector of pipe head 

losses and 0/ is the zero vector of size /. The first derivative of the equation (Eq. 4.29) 

with respect to the loop corrective flows is

dH ___r_
dy

Tl ( j , l : n )  O y A M "  (Eq. 4.30)

The second derivative of the equation (Eq. 4.29) with respect to the loop corrective 

flows is

dH

dy
Tl ( j  \ U n )  0 K M  (Eq. 4.31)L I pl

where matrix K  is from equation (Eq. 4.26). The elements of the transpose of the tree 

incidence matrix are equal to - 1  and the elements of the transpose of the loop incidence 

matrix are equal to 1 if  the direction of the loops and the tree flows is taken as in 

Figure (4-1).

The non-zero /-elements due to the pressure measurement do not change the

positiveness of the eigenvalues of matrix I i . Hence the convexity of the function 

g(x ,y )  is maintained.

The benefit of using the loop corrective flows and the variation of nodal demands 

together with the LS method stays in the simplicity o f formulating the equations for the
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non-linear function g(x, y ) . This allows for different combination of pressure and flow 

measurements to be used. However, the superiority of this method over the nodal heads 

LS state estimator in terms of convergence and numerical stability has still to be shown.

4.2.4. Advantages of the LS loop flows state estimator over the 

nodal heads formulation

The state estimators based on the nodal heads equations have brought to attention 

their poor convergence for the regions of the water networks characterized by low flow 

condition (i.e. pipe flows tend to be zero) as early as Donachie (1974). Therefore the 

scope of using the loop corrective flows in the state estimator is to obtain an 

improvement of the performances of the state estimators based on the nodal heads.

In the previous chapter it has been observed experimentally that the convergence of 

the co-tree flows simulator has been improved if  we introduced an enhancement in the 

Jacobian matrix. The same enhancement is used in the Jacobian matrix of the state 

estimator described by the equation (Eq. 4.18). The loop flows state estimator has been 

tested on the medium-sized water network from Figure 3-12 that is shown again below. 

Combinations of pressure and flow measurements have been used in conjunction with 

the pseudo-measurements. The convergence has been in most o f the simulations 

between six to eight iterations. This compares very well with the convergence of the 

state estimators based on the nodal heads equations.

A water consumption of 10 1/s has been considered at node 6 in addition to the 

initial consumption of 1.6 1/s. This represents a major leakage at node 6. The estimated 

pressure nodes and pipe flows are shown at Figure 4-3. It can be observed that the 

pressure at node 6 and the area around the tested node is decreasing which is due to the 

additional water consumption. The twin effect to the decreasing of pressure is the 

increasing of the flows in the pipes adjacent to the tested node (i.e. pipes 6 and 65).

In the first experiment no pressure or flow measurements have been used. From the 

convergence’s point of view 7 iterations were necessary in order to obtain a relative 

variation o f the loop corrective flows and variation of nodal demands smaller than an 

error o f 1 O'4.
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Figure 4-2: Water network.

Let see how the state estimator behaves in the following experiment where the set of 

measurements has been augmented with two pressure measurements at nodes 5 and 8 

and a flow measurement at pipe 8.
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Figure 4-3: Additional water consumption at node 6 affecting pressure and flow values. 

Pi -  P6 5 : Pressure values at nodes 1 to 65.

1-92: Pipe indexes.
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By increasing the number of real measurements it is expected that the loop flows 

estimator to be able to reject the additional water consumption in node 6. This can be 

actually noticed at Figure 4-4 where the pressure and flow values tend to approach the 

horizontal axes that are representing the normal operating status of the water network 

which was obtained with the co-tree flows simulator algorithm.

In the last simulation we will look to the ability of the state estimator to make the 

best use of the available measurements. This corresponds in our series of experiments to 

reject entirely the supplementary water consumption of 10 1/s. Therefore in addition to 

the existent flow and pressure measurements a pressure measurement is placed at the 

tested node 6.

The result displayed at Figure 4-5 shows that the pressure and flow values coincide 

with the horizontal axes that is what the state estimator should deliver. This also 

compares very well with the numerical results of the nodal heads formulation of the 

state estimator both in terms of the convergence (i.e. 6 to 8 iterations) and the values of 

the state estimates.
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Figure 4-4: Pressure and flow measurements improving the state estimates. 

Pi -  P6 5 : Pressure values at nodes 1 to 65.

1-92: Pipe indexes.
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Figure 4-5: Pressure and flow measurements improving the state estimates.

Pi -  ? 6 5 : Pressure values at nodes 1 to 65.

1-92: Pipe indexes.

Until this stage in our presentation no significant benefits in terms of convergence or 

numerical stability have been observed for the loop flows state estimator. In order to 

search for such possible improvements the loop flows state estimator has been used 

extensively for the water network from Figure 4-2. A low flow condition (i.e. pipe flows 

tend to be zero) was identified in the area delimited by nodes 22, 28, 29, 30 and 31 

(Figure 4-6).

It is well known that for the regions of water network with low pipe flows the 

numerical stability o f the LS nodal heads state estimator may suffer. This is due to the 

oscillating behaviour of the pipe flows that at the k-th iteration during the Newton- 

Raphson method follows the direction from node n\ to node « 2  and at next iteration /c+1 

the direction of flow changes from node ni to node n\. The outcome of the oscillation is 

a poor performance of the state estimator in terms of convergence.

Having been tested for the region o f the water network shown at Figure 4-6, the loop 

flows state estimator exhibited the same lack of numerical stability as the nodal heads 

counter part.

71



Chapter 4 : 4.2. State estimation in water distribution networks

36

"6F

Figure 4-6: Region of the water network characterized by small pipe flows. 

The Jacobian matrix from equation (Eq. 4.18) can be rewritten as

J  =
- M ,  A A  M , A M  ,ip ip pi

- I  0 ;nn nl
(Eq. 4.32)

The matrix A relates the variation of nodal demands to the tree flows. If this matrix 

is zero then the derivatives of the loop head losses with respect to the variation of nodal 

demands become zero

M lpAA*= 0 (Eq. 4.33)

Furthermore the Jacobian matrix becomes

J
0 ; M  A M  ,In Ip pi

- /  0nn nl
(Eq. 4.34)

Since Inn is the ^-identity matrix and the initial values of the variation of nodal 

demands is zero then in the Newton-Raphson method the loop corrective flows would 

be updated while the variation of the nodal demands would maintain the same values. It 

is equivalent to saying that the state estimation problem has been transfonned into a 

simulation one by zeroing in the Jacobian matrix (Eq. 4.32) the derivatives of the loop 

head losses with respect to the variation of nodal demands (Eq. 4.33).
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The inverse of the tree incidence matrix T 1 has the ability to constrain the state 

estimation procedure to some regions in the water network while for the rest of the 

water network the simulation problem is carried out.

In order to be more explicit in our presentation, let us consider some numerical 

examples. In the first part of the following experiment, the water consumption at node 6 

is increased and a pressure measurement is used at node 8. The puipose of the 

simulation is to investigate the influence o f the pressure measurement onto the nodal 

demands situated in the vicinity of the tested node and throughout the network.

In the figure below it is shown that the pressure measurement at node 8 has a limited 

influence on the pressure value at node 6 (Figure 4-7): that is the pressure at node 6 

does not coincide with the point on the horizontal axis. Moreover the rest of the 

pressure nodes are somehow increasing. It suggests that the additional water 

consumption at node 6 has not been rejected by the pressure measurement and is 

satisfied by the reservoirs or the other nodal demands which exist in the system. The 

numerical results for the fist part of the simulation are displayed at Table 4-1 (rows 2, 5, 

8, 11 and 14). It can be observed that the variation of nodal demands has spread to the 

most part of the water network (i.e. the majority of nodes have changed their demands).
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Figure 4-7: Increased water consumption at node 6 and pressure measurement at

node 8.

Pi -  ? 6 5  • Pressure values at nodes 1 to 65.

1- 92: Pipe indexes.
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The variation of nodal demands due to the presence of a pressure measurement at 

node 8 can be avoided by zeroing some of the columns of matrix A . This is because 

matrix A* makes the connection between the variation of nodal demands and the tree 

pipe flows (Eq. 4.32 -  Eq. 4.34).

In the second part of the experiment, the columns 1 to 3 and 10 to 65 have been 

zeroed. It results in constraining the variation of the nodal demands to the area around 

the node with the increased water consumption (i.e. node 6) as well as the node with the 

pressure measurement (i.e. node 8) (see Table 4-1 rows 3, 6, 9, 12 and 15). The state 

estimation constrained to a region of the water network is illustrated at Figure 4-8:

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

Ad(l) 0 0 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.3 0.3 0.3 0.2

Ad(ll) 0 0 0 0.3 0.3 1.2 1.7 2 1.7 0 0 0 0

Node 14 15 16 17 18 19 20 21 22 23 24 25 26

Ad{\) 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.1

Ad{ll) 0 0 0 0 0 0 0 0 0 0 0 0 0

Node 27 28 29 30 31 32 33 34 35 36 37 38 39

Ad{ I) 0.2 0.2 0.2 0.2 0.2 0.1 0 0 0 0.2 0.2 0 0.1

Ad{ll) 0 0 0 0 0 0 0 0 0 0 0 0 0

Node 40 41 42 43 44 45 46 47 48 49 50 51 52

Ad( I) 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2

Ad(II) 0 0 0 0 0 0 0 0 0 0 0 0 0

Node 53 54 55 56 57 58 59 60 61 62 63 64 65

Ad(l) 0.1 0.2 0.2 0 0.2 0.2 0.2 0.1 0 0 0 0 0

Ad(ll) 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-1: Variation of nodal demands in the water network (I) constraining 

the variation of nodal demands around node 6 (II).
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Figure 4-8: Constraining the state estimation to the area delimited by nodes 4 to 9.

Pi -  P<55 : Pressure values at nodes 1 to 65, 1-92: Pipe indexes.

The matrices shown at Figure 4-9 have been obtained with the function spy from the 

MATLAB simulation software.

nodes nodes

\

a) b)

Figure 4-9: Visualization of the matrix A * used in the simulations shown at Table 4-1.

The dark areas within each rectangle represent the non-zero elements 1 or -1. The 

state estimation procedure is carried out for the regions of the water network that 

corresponds to the non-zero columns shown at Figure 4-9b (i.e. columns 4 to 9). For the 

rest of the network a simulation has been performed. This can be observed at Figure 4-8 

where the estimated pressures (nodes 10 to 65) and flows are identical with the 

simulated values represented by the horizontal axes. Hence, the state estimation 

problem can be constrained to the regions of the water network that are of interest (i.e.
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where the real meters - pressure and flow - lays). By zeroing the /'-columns of matrix A*, 

which corresponds to the /-entries in the vector of variation of nodal consumptions, then 

the influence of the variables Adj on the tree flows is zeroed (Figure 4-10). The y'-tree 

pipe flows are calculated from the loop corrective flows AQi while a simulation is 

carried out for the nodal consumptions dj.

A
1 - 1 1  . 0 1

0 - 1 1  . 0 1

0 0 1  . 0 0

0 0 0  . 0  . . . .  1

• • • . . . . 0 •

\  / 0 0 0 ............ 0 . . . . . 1  I
A 0 0 0 1  1

V 0 0 ..............0 . . . 1

Figure 4-10: Zeroing the y-th column of matrix A * (matrix A* contains the inverse 

of the tree incidence matrix T  and a zero block matrix of size (/ x n)).

By constraining the state estimation procedure to the regions of the water network 

where there exist real measurements a limitation of the changes in the nodal demands is 

obtained. Actually this can be regarded as a special case of the observability problem in 

water systems (Bargiela, 1984). Therefore the solution is to apply the LS procedure to 

the network areas where the real meters (pressure and flow measurements) are located.

A spanning tree has been built for the water network. The tree incidence matrix 

describes the incidence of nodes and pipes in the spamiing tree. Based on the 

topological information derived from to the spanning tree, we can decide the extent of 

the network area around a real measurement that will be scrutinized (i.e. the state 

estimation problem will be carried out for this area of the water network).

In the spanning tree shown at Figure 4-11 there is a pressure measurement at node 

32. It is o f common sense to suppose that the pressure measurement will improve the 

measurements accuracy in all the nodes except node 37 which is the remotest node from 

the pressure measurement. Therefore the 37-th column of matrix A* associated to the 

spanning tree will be zeroed. In the Newton-Raphson method the pressure measurement 

at node 32 will not bear any influence on the pseudo-measurement value at node 37.
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Figure 4-11: Pressure meter in the spanning tree.

We can base on the topological distance in the spanning tree in order to decide the 

extent around the real meter that is state estimated. Other factors that can be taken into 

account are the size of the water network or the depth of the spanning tree and the 

position of the real meter in the spanning tree.

If we go back to the water network from Figure 4-2, flow and/or pressure 

measurements are introduced in the same time with constraining the state estimation 

procedure to those regions of the water network where the low pipe flows have been 

detected (Figure 4.12). This scheme results in a highly stable state estimator even for 

the zones of the water network with small pipe flows such as the example discussed 

here. No ‘a-priori’ information is required with regard to the network regions with small 

pipe flows. The topological distance in the spanning tree is used to select the areas from 

the water network which are state estimated.

It is interesting to notice that in our experiment, flow measurements introduced in 

the co-tree pipes did not affect the convergence of the state estimator even for the low 

flow regions of the water network. It suggests that the error calculated as the difference 

between the loop corrective flows at successive iterations is decreasing monotonically 

towards zero.
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simulation

state Estimation.

Figure 4-12: Improving the numerical stability of the state estimator by carrying out the 

state estimation procedure to a region of the water network.

Finally, the state estimator showed a very good convergence and numerical stability 

for all the simulations carried out on the water network shown at Figure 4-12.

4.2.5. The nature of the numerical results of the LS loop flows state 

estimator

The loop flows state estimator will be the heart of a decision system for the 

operational control of water networks. Therefore it is important not only to 

acknowledge the good convergence and numerical stability of the state estimator but 

also to have an insight into the numerical results that it produces it.

As for example the proposed decision system will contain a module for 

quantification of the uncertainty in the state estimates due to the presence of 

inaccuracies in the input data. This module is called Confidence Limit Analysis (CLA) 

and will make use of the state estimator in order to calculate the confidence intervals on 

the state estimates. The size of these intervals depends on the properties of the state
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estimator and the confidence algorithm employed in calculations. It might be the case 

that state estimators using different sets of variables in order to construct the network 

equations will deliver different state vectors and subsequently different confidence 

intervals.

In general a state estimate achieved with the LS criterion represents a point in the 

space of feasible solutions minimizing the sum of squares of distances between itself 

and the measurement hyperplanes. Therefore the position of the solution point in the 

space depends on the existing measurement hyperplanes. Those measurements 

hyperplanes are subsequently depending on the set of independent variables (loop 

corrective flows or nodal heads) used to build the network equations.

Inflows and fixed-head nodes

One of the main characteristics of the loop flows state estimator is the main root 

node from where the spanning tree is constructed and the loops are obtained. The 

pseudo-loops are the loops that connect the fixed-head nodes to the main root node 

(Figure 4-13a).

It will be one equation in the estimator for each loop corrective flow, which will 

hold for the pressure difference between the main root node and each of the fixed-head 

nodes from the spanning tree. Therefore in the loop flows state estimator we can 

introduce as measurement data the value of the fixed-head node (pressure value at node 

5 in Figure 4-13 a) but we can not use in the same time the inflow at the same node since 

the loop corrective flow between the respective node and the main source will modify 

the inflow value according to the water consumptions and the other boundary nodes (i.e. 

fixed-head nodes) existing in the network.

Inflow = 10 1/s

Figure 4-13: a) Pseudo-loop between node 5 and node 1, b) Inflow measurement.
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On the other hand if we know the inflow but not the head at node 5 then we can 

calculate the initial flow solution considering the inflow as measurement data and 

discarding the pseudo-loop (Figure 4-13b).

In Figure 4-13, AQi is the loop corrective flow determined from the pseudo-loop that 

connects the fixed-head node 5 to the main source node 1. In this case the head at node 

5 is considered known and the inflow is calculated as

Inflownew = Inflow\md - AQi (Eq. 4.35)

where Inflowm\^\ is the inflow used at the beginning of the Newton-Raphson method to 

calculate the initial pipe flows and Inflownew is the inflow calculated at the end of the 

Newton-Raphson method when AQi becomes available.

If the inflow at node 5 is the measurement data then the pseudo-loop is discarded. 

The initial flow in the pipe 5-3 is equal to the value of the inflow since the demand d5 is 

zero. As there are no other loops that include pipe 5-3, the flow through the pipe will 

remain constant when solving the system of non-linear equations with the Newton- 

Raphson method. The head at node 5 will be calculated as the difference between the 

head value at the main source and the head losses in the pipes that are on the path to 

node 5.

It can be observed that in the examples shown at Figure 4-13 we used as 

measurements the head of the main source and the head or the inflow at node 5. 

However, it is not possible to consider as measurement data, in whichever combination 

of pressure and flow measurements, the inflow at the main source node 1. The condition 

to have a main source node where the inflow can not be considered known a priori may 

sound as a disadvantage. As we will see in the following sections, this will actually help 

to detect the topological error (e.g. leakages) and to determine efficiently the confidence 

intervals.

Pressure and flow measurements

For the water network shown at Figure 4-14 we use the nodal heads and the loop 

flows state estimators and then we compare the results. The measurement data used in 

the simulations is displayed at Table 4-2.
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Head measurements 1,2, 4, 8 ,11 ,15 ,17 , 19, 22

Fixed-head inflow measurements 27, 28, 29 ,30 ,31 ,32 , 33,34

Water consumptions All nodes

Fixed-head measurements 27, 28, 29, 30,31,32, 33, 34

Table 4-2: Measurement data for the 34-node water network.

We build the spanning tree from the node 30 which is the main source node. A 

pseudo-loop is added between the fixed-head node 31 and the main source node 30. The 

inflow at the fixed-head nodes 27, 28, 29, 32, 33 and 34 is considered constant and used 

as measurement data in the loop flows state estimator. Consequently, no pseudo-loops 

are added for these nodes.

31
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33
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32

27

Figure 4-14: 34-node water network.

In Table 4-3 on the second column are displayed the simulated nodal heads when a 

leakage is modeled as an additional water consumption of 15 1/s in the pipe 14-15.

On the third column are shown the state estimates obtained with the loop flows state 

estimator and on the fourth column are shown the state estimates obtained with the 

nodal heads state estimator. We compare the numerical results o f the two state
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estimators by looking to the pressure measurement at node 15, which is the closest 

pressure measurement to the location of the leakage.

It is obvious that the loop flows state estimator gives ‘better’ results compared to the 

nodal heads state estimator. ‘Better’ results means that the loop flows state estimator is 

able to deliver the set of state estimates that entirely satisfy the pressure measurement at 

node 15. This is not the case with the nodal heads state estimator.

The explanation for the above situation is discussed next.

The Jacobian and Hessian matrixes can be partitioned according to the state 

estimator (loop flows or nodal heads) used in calculations and the type of 

measurements.
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Figure 4-15: The Jacobian and the Hessian matrixes of the loop flows state 

estimator and the nodal heads state estimator.
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State
variable

Simulated
values

S.E. obtained 
with the loop 

state estimator.

S.E. obtained 
with the nodal 

heads state 
estimator.

1 31.5653 31.5560 31.5100
2 43.7285 43.7271 43.7270
3 45.8230 45.8218 45.7986
4 46.3367 46.3352 46.3079
5 43.2182 43.2169 43.2188
6 42.9314 42.9304 42.9182
7 42.3066 42.3052 42.3044
8 42.0317 42.0303 42.0243
9 43.6634 43.6457 43.6370

1 0 45.7147 45.3114 45.6821
1 1 44.5385 44.5370 44.5224
1 2 43.9563 43.9546 43.9362
13 47.9004 47.8206 47.8014
14 45.7848 45.7330 46.1468
15 45.6675 45.6675 46.0849
16 48.0820 48.0468 48.0099
17 46.8565 46.8550 46.7829
18 48.2814 48.2721 48.2137
19 48.1606 48.1606 48.0983
2 0 46.3327 46.3312 46.3034
2 1 45.3763 45.3753 45.3468
2 2 46.2572 46.2572 46.2250
23 47.6503 47.6530 47.5946
24 43.1938 43.1929 43.1785
25 42.4350 42.4337 42.4254
26 31.0197 31.0104 30.9631
27 -16.1085 -16.1086 -16.0806
28 -33.8088 -33.8103 -33.8088
29 30.6295 30.6203 30.5700
30 43.5820 43.5820 43.5609
31 44.1879 44.1865 44.1746
32 -46.6972 -46.6987 -46.6972
33 -37.6454 -37.6546 -36.6454
34 -13.2992 -13.3003 -13.2991
35 0.0723 0.0723 0.0723
36 0.0927 0.0927 0.0927
37 -0.0229 -0.0229 -0.0229
38 -0.0384 -0.0379 -0.0384
39 -0.0325 -0.0325 -0.0323
40 0.0254 0.0254 0.0254
41 0.0614 0.0614 0.0614
42 0.1063 0.1063 0.1063

Table 4-3: State estimates obtained by the loop flows and the nodal heads LS state 

estimators for an additional water consumption of 15 1/s in pipe 14-15.
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The state variables 1 to 34 are the nodal heads [m] at nodes 1-34 and the state 

variables 35-42 are the fixed-head nodes in/out flows [m /s] at nodes 27-34.

We denoted with Ji and Hi the Jacobian and the Hessian matrixes of the loop flows 

state estimator. Jn and Hn are the Jacobian and the Hessian matrixes of the nodal heads 

state estimator. AH  are the residual loop head losses.

H  and F  are the pressure and flow measurements in the loop flow state estimator. 

Their formulas are given by the equations (Eq. 4.29 - Eq. 4.30) for the pressure 

measurement and equation (Eq. 4.28) for the flow measurement. As it has been 

previously shown, the second derivatives of a flow measurement are zero and this has 

been shown in the Hessian matrix (i.e. the fourth row in the matrix at Figure 4.15c).

hi the nodal heads state estimator L are the n-continuity equations and the Inflow 

variables represent the fixed-head node inflows. The formulas o f the first and second 

derivatives of the real measurements used in the nodal heads state estimator have been 

presented in the literature (Bargiela, 1984).

The Hessian matrix gives the direction of minimizing the objective function that in 

our case comprises the loop head losses and the additional pressure and flow 

measurements. If we compare the Hessian matrix of the loop flows state estimator 

(Figure 4-15c) with the Hessian matrix of the nodal heads state estimator (Figure 4- 

15d), then we can observe that the second derivatives of the pressure measurements 

have vanished in the Hessian matrix o f the nodal heads state estimator while they are 

present in Hessian matrix of the loop flows state estimator. This explains why the loop 

flows state estimator is able to calculate the nodal demands for which the pressure 

measurements are satisfied and the loop head losses are zero.

It is important to observe that introducing a pressure measurement in the loop flows 

state estimator does not come in contradiction to finding the loop corrective flows for 

which the loop head losses are zero. This is because a pressure measurement implies the 

alteration of the nodal demands while the loop flows state estimator modifies the 

inflows into the fixed-head nodes so that the sum of the new nodal demands to match 

the amount o f inflow into the network. We have previously mentioned the existence o f 

the main source node where the inflow can not be considered known beforehand and 

can not be maintained constant during the iteration method. This is now explained by 

the recalculation of the inflows during the Newton-Raphson method and the 

modification o f the nodal demands due to the presence of pressure and flow 

measurements.
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With regard to the flow measurements in the loop flows state estimator: they can not 

be entirely accounted in the network model because their second derivatives in the state 

estimator Hessian matrix are equal to zero. However, we observed that if  accurate 

measurements are available then the differences between the pipe flows calculated from 

the mathematical model and the flow measurements are constantly decreasing. This in 

itself is a very useful result because it proves that the loop flows state estimator has the 

tendency to fully solve the flow measurements when enough real measurements are 

available. The case in which there is a pressure measurement at one of the two end 

nodes of the pipe with the flow measurement, is a good example when not only a 

pressure measurement may be fully accounted for in the network model, but also a flow 

measurement

Let us now turn the attention onto the nodal heads state estimator. As it has been 

reported in the literature, the nodal heads state estimator does not fully solve any of the 

equations but reaches a point in the space of feasible solutions that minimizes the sum 

of squares of distances between the derived solution and all the measurement 

hyperplanes. This is because when a pressure measurement is affected by non-Gaussian 

noise (e.g. as would be the case with a leakage in the vicinity of the measurement) then 

minimizing the discrepancies in the first ^-continuity equations may come in 

contradiction with the pressure measurement affected by the non-Gaussian noise.

The first four columns of Table 4-4 are the same as in Table 4-3 and on the fifth 

column are shown the state estimates obtained with the nodal heads state estimator for a 

flow measurement at pipe 15-10. The value of the flow measurement was 11.9 [1/s] 

while the estimated pipe flow obtained with the nodal heads state estimator was 5.4 

[1/s]. Therefore we can observe that although the second derivatives of a flow 

measurement are still available in the Hessian matrix, it may not be fully solved by the 

nodal heads state estimator.
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State
variable

Simulated
values

S.E. obtained 
with the loop 

state estimator.

S.E. obtained 
with the nodal 

heads state 
estimator.

S.E. obtained with 
the nodal state 
estimator (flow 
measurement at 

pipe 15-10)
1 31.5653 31.5560 31.5100 31.5135
2 43.7285 43.7271 43.7270 43.7271
3 45.8230 45.8218 45.7986 45.7994
4 46.3367 46.3352 46.3079 46.3086
5 43.2182 43.2169 43.2188 43.2184
6 42.9314 42.9304 42.9182 42.9165
7 42.3066 42.3052 42.3044 42.3034
8 42.0317 42.0303 42.0243 42.0229
9 43.6634 43.6457 43.6370 43.6323

1 0 45.7147 45.3114 45.6821 45.6113
1 1 44.5385 44.5370 44.5224 44.5216
1 2 43.9563 43.9546 43.9362 43.9346
13 47.9004 47.8206 47.8014 47.8053
14 45.7848 45.7330 46.1468 46.1841
15 45.6675 45.6675 46.0849 46.0794
16 48.0820 48.0468 48.0099 48.0162
17 46.8565 46.8550 46.7829 46.7744
18 48.2814 48.2721 48.2137 48.2176
19 48.1606 48.1606 48.0983 48.1018
2 0 46.3327 46.3312 46.3034 46.3042
2 1 45.3763 45.3753 45.3468 45.3464
2 2 46.2572 46.2572 46.2250 46.2257
23 47.6503 47.6530 47.5946 47.5975
24 43.1938 43.1929 43.1785 43.1767
25 42.4350 42.4337 42.4254 42.4239
26 31.0197 31.0104 30.9631 30.9667
27 -16.1085 -16.1086 -16.0806 -16.0804
28 -33.8088 -33.8103 -33.8088 -33.8088
29 30.6295 30.6203 30.5700 30.5738
30 43.5820 43.5820 43.5609 43.5590
31 44.1879 44.1865 44.1746 44.1752
32 -46.6972 -46.6987 -46.6972 -46.6972
33 -37.6454 -37.6546 -36.6454 -37.6454
34 -13.2992 -13.3003 -13.2991 -13.2991

Table 4-4: State estimates obtained with the loop flows and the nodal heads LS state 

estimators for an additional water consumption of 15 1/s in pipe 14-15 (on the last 

column are shown the state estimates with a flow measurement at pipe 15-10).

The following conclusion can be reached with regard to the characteristics of the 

loop flows state estimator: if  accurate pressure measurements exist, then the loop flows
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state estimator will give accurate results. Otherwise the corrupted pressure 

measurements will affect the final state estimates and eventually mislead the human 

operator.

We can also use the inflows at the fixed-head nodes as measurement data. 

Alternatively, the head values of the fixed-nodes can be used to form the pseudo-loops. 

In this last case the inflows are used only to calculate the initial pipe flows.

Flow measurements may improve the accuracy of the state estimates but not at the 

extent of a pressure measurement.

4.3. Concluding remarks

In this chapter, a novel LS state estimator that is suitable for on-line monitoring of 

the water distribution systems is presented.

Present day deterministic state estimation techniques are very efficient, having small 

computational requirements and producing results of an acceptable level of accuracy. 

However for particular water networks, like ones displaying low pipe flows, the 

numerical stability of the algorithm may suffer. A solution to this problem is to employ 

the more stable loop flows state estimation techniques. Therefore a new formulation of 

the standard least squares (LS) criterion for water networks is developed.

It is shown that the loop corrective flows do not provide enough basis to build the 

network equations o f the state estimator. Therefore the state variables are both the loop 

corrective flows and the variation of nodal demands.

Using the variation o f nodal demands in addition to the loop corrective flows do not 

pose any problems on the input information that is needed in order to develop the 

mathematical model of the water network. It has been shown that this information can 

be derived from the spanning tree obtained for the co-tree flows simulator and so there 

is a natural connection between the simulator algorithm and the state estimator.

In spite of the increased size of the state vector, a satisfactory convergence is 

obtained through an enhancement in the Jacobian matrix for the loop corrective flows. 

Furthermore a fine-tuning of the inverse of the tree incidence matrix is used in order to 

avoid the lack of numerical stability characteristic to the nodal heads state estimators. A

87



Chapter 4 : 4 3 . Concluding remarks

very efficient and effective LS state estimator has been developed that has been tested 

successfully on realistic water networks.

In the final part of the chapter a comparison has been made with the nodal heads 

state estimator and some of the intrinsic properties of the loop flow state estimator have 

been shown.

The state estimator developed here represents one of the major contributions to the 

originality of the project and will serve as a central part for a decision support system 

for fault detection and preventive maintenance of water distribution systems.
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Chapter 5.

Confidence limit analysis -  a loop flows approach

5.1. Introduction

In order to supply water to consumers without any disruption in service, the state o f 

the water distribution system has to be monitored. In the previous chapter it has been 

shown that this can be achieved by using state estimators that provide a means o f 

combining diverse measurements by relating them to the mathematical model o f the 

system (Bargiela, 1984; Sterling & Bargiela, 1984; Powell et al., 1988). Although the 

mathematical model may be accurate, the state estimates are based on input data that 

contain a significant amount of uncertainty. The uncertainty in input data associated 

with the real measurements, flows and pressures, and the pseudo-measurements, 

estimation o f the water consumptions, is discussed here in the context o f the loop flows 

state estimation technique.

The measurement uncertainty has an impact on the accuracy with which the state 

estimates are calculated. It is important, therefore, that the system operators are given 

not only the values o f flows and pressures in the network at any instant o f time but also 

that they have some indications o f how reliable these values are. The procedure for the 

quantification of the inaccuracy o f the state estimates caused by the input data 

uncertainty was developed in the late 1980s and termed Confidence Limit Analysis 

(CLA) (Bargiela & Hainsworth, 1989). Rather than a single deterministic state estimate, 

the CLA enables the calculation o f a set o f all feasible states corresponding to a given 

level o f measurement uncertainty. The set is presented in the form of upper and lower 

bounds for individual variables and hence provide limits on the potential error of each 

variable. A decision system build on the concept of confidence limit analysis has been 

further developed (Gabrys & Bargiela, 1999). It performed like a fault detection and 

identification system being able to distinguish between different types o f errors that are 

occurring in water networks. Although a great amount of work has been done, and 

significant results have been delivered in the area of uncertainty analysis of water
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networks, they were obtained with the nodal network equations. This raises the 

question o f the potential benefits o f using the loop equations for CLA.

Employing the loop corrective flows variables for the numerical simulations, has 

received an increased attention in the last years. As it has been shown in the first 

chapters as well as reported in the literature of speciality, satisfactory convergence and 

good numerical stability have been achieved for the loop flows based simulations 

(Arsene & Bargiela, 2001; Arsene & Bargiela, 2002a; Andersen & Powell, 1999a). In 

spite o f this work, the results in the area of CLA based on the loop flows algorithms are 

scarce (Nagar et al., 2002).

This chapter addresses the problem of CLA based on the loop flows state estimator 

and the co-tree flows simulator algorithm shown in the previous chapters. It investigates 

both the relationship between the quality o f measurement data and the quality o f the 

confidence limits for the individual state estimates, as well as the nature of the 

relationship itself. It shows several CLA algorithms and compares them with the CLA 

algorithms that are using the nodal heads formulation of the state estimator.

The chapter is organized as follows: next section presents the review o f previous 

research in uncertainty analysis of water networks followed by the description of the 

Experimental Sensitivity Matrix method for CLA. This method will make use o f the 

loop flows state estimator. Although computationally inefficient, the Experimental 

Sensitivity Matrix method will give a useful reference point for interpreting further 

results. A Sensitivity Matrix method within the loop equations framework and an Error 

Maximization technique will be then developed. The performances o f these algorithms 

will be assessed in terms o f their computational complexity and the accuracy o f the 

results that they produce.

5.2. Uncertainty analysis in water networks

In the previous chapter it has been shown that for a given set o f input data and 

estimation criterion there is one optimal solution. However due to the inaccuracies in 

the input data, there are many possible, different combinations o f such input data and 

therefore there are many feasible, different state estimate vectors. As a result the 

uncertainty analysis becomes an inevitable part of the water distribution systems since it 

is very important, from the safety of the system operational control point of view, to 

know how the inaccuracies can affect the estimated solution.
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Extensive work on the quantification o f the influence o f measurement and 

pseudomeasurement uncertainties in water distribution system has been done in 

Bargiela and Hainsworth (1989) and carried out further in Gabrys and Bargiela (1996), 

Brdys and Chen (1993) and Gabrys (1997). It is called Confidence Limit Analysis and 

is based on the principle o f unknown-but-bounded errors for the set of measurements

z=g(x)+r , |/v| < |e , |, z=1, ...,m (Eq. 5.1)

where e is the vector representing the maximum expected measurement errors, z is the 

measurement vector, g  is the network function and x  are the state variables. The 

knowledge o f statistical properties o f errors is not required and the only restriction 

imposed was the one o f errors falling within a range bounded by e. A several CLA 

algorithms were proposed but the most successful ones in terms of computational 

complexity were based on the linearized model of the water network. From those, the 

Sensitivity Matrix method proved to be efficient enough to be used in real time decision 

support.

The linearized model o f the water network was used to obtain the sensitivity matrix 

S. The sensitivity matrix was the pseudo-inverse of the Jacobian matrix calculated for 

the state estimates by using a deterministic state estimator. A state estimate was 

produced on the assumption that the measurement vector z‘ is correct and the possible 

error of the measurement set Az was considered and used together with the sensitivity 

matrix S  in order to predict the resulting error in the state vector.

This approach was facilitated by the use o f the nodal heads equations in the state 

estimator. Because of this, the (zj)-th element Sy o f the pseudo-inverse of the Jacobian 

matrix relates the sensitivity o f the z-th element, xh o f the state vector, x1, to the y'-th 

element, zy, o f the measurement vector. Calculating the confidence limits for the state 

variables xt was produced as

Xclj = max SjAz (Eq. 5.2)

where Sj is the z'-th row o f the sensitivity matrix S  and Az represents the perturbations in 

the vector o f measurements. The underlying principle of the CLA is to consider the 

worst possible case for the perturbations in the vector of measurements (i.e. the 

maximum variability o f consumptions and inaccuracies for real meters).

The method was very efficient and flexible since in the state estimator any 

combination o f real measurements could be used in conjunction with the water 

consumptions in order to obtain the confidence limits on the state variables.
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Unfortunately the Sensitivity Matrix method as described above is difficult to follow 

within the loop equations framework.

Let us rewrite the equation (Eq. 3.5) that gives the loop corrective flows in the 

simulator algorithm

Afi; =
d A H n~l
0A Q,

The element Sy of the inverse o f the Jacobian matrix

AH  (Eq. 5.3)

dAH relates the sensitivity
dA Q t

of the i-th element, AQh , of the vector o f loop corrective flows, AQ{, to the J-th

element, AHj, o f the vector o f loop head losses residuals.

The relationship carried out by the inverse o f the Jacobian matrix between the 

measurement vector (only water consumptions in the previous equation) and the loop 

corrective flows is not straight forward as in nodal heads based algorithms but is 

realized through the mean of the loop head losses residuals (i.e. vector AH).

Introducing an error, Ad, in the pseudo-measurement vector, d, then a perturbation, 

h(AH), in the vector o f loop head losses is obtained, and further an alteration o f the loop 

corrective flows in equation (Eq. 5.3). Therefore the value b(AH) is important to 

determine for a given level o f errors in the vector of measurements: providing that 

8 (AH) is determinable, the confidence limits on the loop corrective flows would be 

obtained and the other variables o f interest (i.e. tree flows and nodal heads). However, 

6(AH) is difficult to calculate for the variability o f water consumptions. The analysis 

becomes even more tedious if real measurements are included. In the next section an 

Experimental Sensitivity Matrix is constructed that has the properties o f the pseudo

inverse o f the Jacobian matrix from the nodal heads based simulations.

5.3. Experimental Sensitivity Matrix

In normal use, deterministic state estimators produce one set o f state variables for 

one measurement vector. Used in this way, they give no indication o f how the state 

variables may be affected by the frizziness o f input data. Alternatively, if a deterministic 

state estimator is used repeatedly for each measurement modified with its defined 

maximum variability, then a matrix S2 can be determined as
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S ‘ = ^ L  i=\,...n(Eq. 5.4)
Azj

where i= 1 , ...n is the index for the state vector xl, that is nodal heads and in/out flows, 

andy=l, ...m is the index for the measurement vector zl.

The measurement vector z comprises the estimates for the water consumptions and 

the fixed-head nodes. It can be augmented with real pressure and flow meters. The loop 

flows state estimator will be the deterministic state estimator used to obtain the 

experimental sensitivity matrix.

Matrix S3 is called the Experimental Sensitivity Matrix (ESM) since resembles the 

characteristics o f the pseudo-inverse o f the Jacobian matrix from the nodal heads state 

estimator and is obtained through a number o f successive simulations. It expresses the 

variation, Ax, o f the i-th element, xh o f the true state vector, x ,  because o f a 

perturbation, Az, in the y'-th element, zh o f the true measur ement vector z*.

The true state o f the system is not known but instead the best state vector available 

x is used in the process of determining the sensitivity matrix and the confidence limits.

The method is applied for the water network shown at Figure 5-1. For real 

measurements and pseudo-measurements an interval is defined \z\ , zu] according to the 

relative variability o f z .  The variability o f the pseudo-measurements is ±20% and the 

accuracy of the fixed-head nodes is ±0 . 0 1  [m].
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Figure 5-1: Realistic water network.
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In real water networks, the true measurement vector z* rarely coincides with the 

observed measurement vector z°. This discrepancy is caused by meter noise or meter 

error in the case of real measurements, and because o f the difficulty in predicting 

demand in the case o f nodal consumptions. Because o f this, the measurement values 

used (i.e. the observed measurement values in Table 5-1 and Table 5-2) are not the same 

as the true measurement values that would be expected for the true operating state and 

are listed in the 2-nd column o f Table 5-1 and the 2-nd and 5-th column o f Table 5-2.

Fixed-head nodes [m]
Node True Obs.

27 -15.1991 -15.1991
28 -33.4879 -33.4978
29 31.7221 31.7221
30 43.5619 43.5819
31 44.1710 44.1703
32 -46.3814 -46.3814
33 -36.5470 -36.5478
34 -12.1990 -12.1963

Table 5-1: True and observed fixed-head nodes.

Nodal consumptions [1/s]
Node True Obs. Node True Obs.

1 52.6 57.5 18 1 2 . 1 13.2
2 2.7 3.0 19 4.5 4.9
3 19.2 2 1 2 0 1 2 . 1 13.2
4 5.9 6.5 2 1 22.3 24.4
5 1 . 1 1.23 2 2 32.4 35.4
6 2 . 1 2.3 23 38.2 41.7
7 3.0 3.3 24 5.0 5.5
8 69.4 75.8 25 9.0 9.8
9 8 . 1 8.9 26 1 1 . 1 1 2 . 1

1 0 3.8 4.2 27 6 . 2 6 . 8

1 1 1.9 2 . 1 28 0 0

1 2 1 0 . 2 1 1 . 1 29 22.9 25
13 2 1 . 2 23.2 30 39.5 43.1
14 10.3 1 1 . 2 1 31 39.3 42.9
15 2 2 . 2 24.3 32 0 0

16 4.7 5.12 33 0 0

17 2.4 2 . 6 34 0 0

Table 5-2: True and observed nodal consumptions.

The observed measurement values, z°, were selected randomly horn within the range 

specified by the following upper and lower limits
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Zi = Z*-Azi (Eq* 5*-*)

zu=zl-Azu. (Eq* 5-6)

An interval has been deternnned for the true measurement vector, z-Azi <z < z-AzUi 

that corresponds to the real-life situation where measurement values are not exact but 

are contained in a range specified by the accuracy of the real meters and the accuracy of 

the pseudo-measurements values.

The state vector x  shown in columns 3 and 6  of Table 5-3 are the state variables 

(nodal heads and in/out flows) calculated for the observed measurement vector using 

the loop flows state estimator.

The difference between the observed state variable x and the true state x should be 

noted. It is caused solely by the addition o f the simulated measurement errors and shows 

how corrupted measurement data can affect deterministic state variables.

True and observed state variables
Nodal pressures [ml Nodal pressures [ml

Node True Obs. Node True Obs.

1 31.1852 31.0577 23 44.0663 43.9127

2 43.3886 43.2835 24 42.9028 42.7773

3 44.2289 44.1968 25 42.0751 41.7974
4 44.3191 44.2706 26 31.3306 31.2399
5 42.8133 42.6358 27 -15.1991 -15.1991

6 42.6765 42.5082 28 -33.4879 -33.4966
7 41.8478 41.5228 29 31.7221 31.7242

8 41.7190 41.3762 30 43.5619 43.5819

9 43.0165 42.8746 31 44.1710 44.1715

1 0 41.6933 41.1195 32 -46.3814 -46.3798

1 1 43.5925 43.5813 33 -36.5470 -36.5457
1 2 43.5845 43.5817 34 -12.1990 -12.1942

13 45.3550 45.2569 Inflows 1/sl
14 40.1661 39.2083 Node True Obs.

15 43.0940 39.1235 27 34.0 35.2

16 43.4858 43.0441 28 96.5 96.6

17 43.9047 43.7263 29 64.3 73.4

18 44.7605 44.5342 30 106.3 130.2

19 44.3638 44.1934 31 38.9 48.7

2 0  ■ 44.1362 44.0702 32 6 . 0 6 . 0

2 1 43.6560 43.6053 33 121.7 121.7

2 2 43.8080 43.7161 34 2 1 . 6 2 2 . 8

Table 5-3: True and observed state variables.
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If we consider vector x as being the optimal state vector (i.e. columns 3 and 6  of 

Table 5-3), then the observed measurement data z° is randomly modified Az according 

to the accuracy o f the water consumptions and the fixed-head nodes. For the randomly 

generated measurement data the loop flows state estimator produces a variation of the 

state vector Ax{, which is shown at Figure 5-2 and calculated as

Ax^=x^-x (Eq. 5.7)

The observed measurement vector z° is used once again to obtain the experimental 

sensitivity matrix Sf. This matrix is multiplied with the variation o f the measurement 

values Az, which gives the variation o f the state vector Ax^ shown at Figure 5-2

Ax2 -S^Az (Eq. 5.8)

0.6
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Figure 5-2: Variation of the state variables obtained with the ESM method and the loop

flows state estimator.

1-34: variation of nodal heads [m] at nodes 1-34.

35-42: variation o f fixed-head nodes in/out flows [m3/s] at nodes 27-34.

The differences between the two sets o f curves and Ax  ̂ are minimal and one

can conclude that for a given set o f measurements and level o f errors associated with the 

set o f measurements, the ESM method is an effective way of determining the state 

variables without running the loop flows state estimator.
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5.3.1. Confidence limits based on Experimental Sensitivity Matrix 

method

Having found the matrix Sf, we can carry out the maximization process in order to 

obtain the confidence limits for the state variables (Eq. 5.2). For the i-th state variable, 

calculating its error bound is done by maximizing the product between the z-th row of 

the experimental sensitivity matrix S* and the vector Az. The maximization process is 

performed separately for each row of the sensitivity matrix determined in the previous 

section. The confidence limits for the state variables (nodal heads and in/out flows) are 

shown on the 4-th column o f Table 5-4.

The results have been obtained for the variability of consumptions ±20% and the 

accuracy o f fixed-head nodes ±0 . 0 1  [m].

In the 5-th and 6 -th column are shown the state variables and the confidence limits 

calculated with the Jacobian matrix from the state estimator based on the nodal heads 

equations. The confidence limits are comparable with the ones produced by the ESM 

method (i.e. the 4-th column o f Table 5-4). It can be concluded that matrix S0 resembles 

the properties of the pseudo-inverse o f the Jacobian matrix from the nodal heads state 

estimator. It can be used as a substitute for the loop flows state estimator in order to 

determine the state variables and the confidence limits.

However, someone should perhaps observe that no pressure or flow measurements 

have been used in the example shown at Table 5-4. Nevertheless, in the absence o f such 

real measurements the confidence limits obtained with the ESM method and the pseudo

inverse o f the Jacobian matrix from the nodal heads state estimator show similarity.

Although the ESM method is effective in providing realistic state vectors and 

confidence limits, it requires as many simulations as the number o f measurements and 

pseudo-measurements. Therefore the computational complexity tends to be a major 

drawback because even for a small-sized system, as discussed in this chapter, the 

number of feasible measurements is great, rendering this approach difficult to use in on

line decision support system. In view o f these limitations, two alternative methods have 

been developed. In both methods an accurate linearization o f the system model is used 

to reduce the mathematical complexity. The first uses the linearized network equations 

to construct a new sensitivity matrix that avoids the computational drawback from 

above. The second solves the linearized model o f the water network for the maximum 

of errors in the estimated measurement vector.
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State
variable

Exact
State

State
variables

Confidence
limits

Nodal 
based s.e.

Nodal 
based c.La.

1 31.1852 31.0577 0.3007 31.0566 0.3002
2 43.3886 43.2835 0.2557 43.2818 0.2604
3 44.2289 44.1968 0.0667 44.1960 0.0618
4 44.3191 44.2706 0.1013 44.2702 0.0965
5 42.8133 42.6358 0.4212 42.6336 0.4377
6 42.6765 42.5082 0.3971 42.5048 0.4166
7 41.8478 41.5228 0.7570 41.5214 0.8001
8 41.7190 41.3762 0.7925 41.3748 0.8441
9 43.0165 42.8746 0.3423 42.8282 0.3544

1 0 41.6933 41.0095 1.3561 40.9050 1.5754
1 1 43.5925 43.5813 0.0117 43.5815 0.0130
1 2 43.5845 43.5817 0.0033 43.5818 0.0035
13 45.3550 45.2569 1.3782 44.3555 1.9953
14 40.1661 39.3083 2.2626 39.5726 2.8137
15 43.0940 39.2235 2.2657 39.4799 2.8731
16 43.4858 43.0441 1.0413 43.1425 0.9928
17 43.9047 43.7263 0.4081 43.6956 0.3504
18 44.7605 44.5342 0.5268 44.5576 0.4893
19 44.3638 44.1934 0.3900 44.2076 0.3748
2 0 44.1362 44.0702 0.1410 44.0704 0.1360
2 1 43.6560 43.6053 0.1006 43.6056 0.0938
2 2 43.8080 43.7161 0.1993 43.7192 0.1899
23 44.0663 43.9127 0.3484 43.9223 0.3344
24 42.9028 42.7773 0.3027 42.7718 0.3119
25 42.0751 41.7974 0.6471 41.7951 0.6847
26 31.3306 31.2399 0.2259 31.2384 0.2096
27 -15.1991 -15.1991 0 . 0 0 0 0 -15.1991 0.0185
28 -33.4879 -33.4966 0.0151 -33.4978 0.0191
29 31.7221 31.7242 0.0196 31.7221 0.0116
30 43.5619 43.5819 0.0004 43.5819 0 . 0 1 0 2

31 44.1710 44.1715 0.0151 44.1703 0.0183
32 -46.3814 -46.3798 0.0151 -46.3810 0.0197
33 -36.5470 -36.5457 0.0161 -36.5478 0.0142
34 -12.1990 -12.1942 0.0135 -12.1963 0.0159
35 34.0 35.2 3.1 35.6 3.7
36 96.5 96.6 0 . 1 97.0 0 . 1

37 64.3 73.4 21.4 73.4 21.5
38 106.3 130.2 56.9 130.1 56.2
39 38.9 48.7 2 2 . 8 48.3 2 2 . 0

40 6 . 0 6 . 0 0 6 . 0 0

41 121.7 121.7 0 121.7 0

42 2 1 . 6 2 2 . 8 2 . 6 2 2 . 8 2 . 6

Table 5-4: State variables and confidence limits for the 34-node water network. 

1-34: nodal heads [m] at nodes 1-34;

35-42: fixed-head nodes in/out flows [m3/s] at nodes 27-34.
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5.4. Confidence limit analysis based on the linearized model of the 

water network

An alternative approach to the ESM method is the confidence limit algorithm based 

on the linearized model o f the water network. If we use the loop flows state estimator, 

then the solution to the linearized model o f the water network is

= ( J  TJ y \ j  g(Arf,A (Eq. 5.9)

T   -I J 7

where (J  J  ) J  is the pseudo-inverse of the Jacobian matrix J  horn the loop

flows state estimator, and g  represent the loop head losses residuals and the variation o f 

nodal demands.

In order to calculate the confidence limits for the nodal heads and pipe flows, we can 

use equation (Eq. 5.9) and derive the confidence limits on the variables AQ^ and A d .

Following this, by using equation (Eq. 4.10) from the loop flows state estimator, the 

confidence limits on pipe flows and subsequently on the nodal heads would be obtained

Q = Q t- A*Ad + MplAQi (Eq. 5.10)

Two algorithms are developed in the next sections based on the linearized model o f the 

water network.

5.4.1. Sensitivity Matrix method within the loop framework

In the context of the nodal heads state estimator the elements o f the pseduo-inverse 

o f the Jacobian matrix were expressing a linear relationship between the elements o f the 

state vector and the elements of the vector of measurements. Moreover the 

measurements together with their accuracy could be introduced explicitly in the 

linearized model o f the water network. However this is not the case with the co-tree 

flows simulator algorithm or the loop flows state estimator.

Let us consider equation (Eq. 5.9) from the loop flows state estimator only for the 

loop corrective flows. We will then recall equation (3.5) from the simulator algorithm

Ad
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-i-l

A 6 /
dAH AH (Eq. 5.11)

where the matrix dAH
dAQi

-l
is the inverse o f the Jacobian matrix from the simulator

algorithm and AH  is the vector o f loop head losses residuals.

Equation (Eq. 5.11) can be used to determine the loop corrective flows for a given 

set of pseudo-measurements. No real meters are included at this stage. The vector o f 

pseudo-measurements d (n x 1) is not introduced explicitly (as it is) in equation (Eq. 

5.11) but through the mean o f the vector of loop head losses residuals AH  (Eq. 5.12 -  

Eq. 5.15)

Q,= (T)-‘d

Q  =  Q i + Mtp AQi

(Eq. 5.12)

(Eq. 5.13)

h = kQ n

AH  = Miph

(Eq. 5.14)

(Eq. 5.15)

where h (p x 1 ) represents the vector o f pipe head losses and k (p x  1 ) is the pipe 

resistance coefficient.

A variation 5 {AH) o f the vector o f loop head losses residuals will be obtained if we

modify with bd the vector o f pseudo-measurements and follow the set o f equations (Eq. 

5.12 -  Eq. 5.15). This forms the basis o f the first confidence limit algorithm based on 

the linearized model o f the water network. The inverse o f the Jacobian matrix o f the co

tree flows simulator algorithm will act as a sensitivity matrix between the loop head 

losses residuals AH  and the loop corrective flows AQi.

The proposed algorithm comprises o f a number of steps:

- By using the underlying principle o f CLA of maximum errors in the pseudo

measurement vector d, that is [di du], a confidence interval [aH ( AH^ j is determined

for the vector of loop head losses AH.

- The confidence interval for the loop head losses together with the inverse o f the 

Jacobian matrix calculated for the pseudo-measurement vector d  will give the

confidence limits on the loop corrective flows a  q \a  e ;

100



Chapter 5 :  5.4.Confidence limit analysis based on the linearized model o f the water network

The loop incidence matrix Mip and the limits a  q \ao ; will produce the confidence

limits on the tree flows and the nodal heads.

The scope o f the algorithm is to calculate the confidence limits 011 the loop 

corrective flows without running the simulator algorithm but using the Jacobian matrix 

obtained for the pseudo-measurement vector d  and the vector o f loop head losses AH. 

Unfortunately the algorithm is inappropriate because o f the impossibility o f

determining with accuracy o f the confidence interval AH, for the vector AH.

This is because vectors AH  and AH  are calculated from the equations (Eq. 5.12 -  Eq.I u

5.15) based on the non-realistic assumption that the initial co-tree pipes flows Qc  are

zero and the water consumptions are fed through the tree pipes.

At Figure 5-3 are displayed with dashed line the loop lead losses AH  calculated from 

equation (Eq. 5.15) for the observed nodal consumptions. AH  ̂ are the true loop head

losses obtained from the equation

AH t = ~J& Qi (Eq. 5.16)

where J  is the Jacobian matrix and AQ{ are the loop corrective flows obtained at the 

end of the Newton-Raphson iteration method for the observed pseudo-measurements d.
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Figure 5-3: Comparison between vectors AH  and A H .

The correlation between AH  and AH  can be expressed by factor r as
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AH
AH

(Eq. 5.17)

The rationale behind determining factor r is to use it together with the confidence

interval and the Jacobian matrix in order to determine the confidence limits

on the loop corrective flows.

An assumption is made that dividing the confidence interval by factor r

would give the same values as when simulating the water network for each pseudo

measurement vectors di and du. At Figure 5-4 with dashed line are shown the loop head 

losses AHi that are obtained from the equations (Eq. 5.12 -  Eq. 5.15) for the 

measurement vector di and subsequently divided by factor r.

The continuous line (Figure 5-4) is used to show the loop head losses AHt

calculated from the equations

AH t = -< / AQ\ (Eq. 5.18)

AH, = - J A Q “
*

(Eq. 5.19)

where J  and AQlf  are the Jacobian matrix and the loop corrective flows obtained by 

simulating the water network for the pseudo-measurement vector di.
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Figure 5-4: Comparison between the loop head losses calculated for the measurement 

vector di and the loop head losses from equation (Eq. 5.18).
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AH t are 1°°P head losses residuals and AQuu are the loop corrective flows
U I

obtained by simulating the water network for the pseudo-measurement vector du
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Figure 5-5: Loop head losses obtained for the pseudo-measurement vector du.

By applying factor r to the vectors o f loop head losses AH u and AHf , some 

inaccurate results are obtained. They are put in evidence by the dashed circles at Figures

5-4 and 5-5. These inaccuracies will propagate in the confidence limits AQl and AQ"

of the loop corrective flows A Q i. The confidence limits are calculated with the Jacobian

matrix J  and the ratios &Hjl andr r

(Eq. 5.20)
I r

AO” = - J - 1 ^ 2 -  (Eq. 5.21)
/ r

On the 3-rd and 4-th column o f Table 5-5 are shown the confidence limits for the 

nodal heads. They have been obtained by using the upper and the lower limits o f the 

loop corrective flows from equations (Eq. 5.20) and (Eq. 5.21). These values are 

compared with the confidence limits from the ESM method.

The efficiency o f the CLA algorithm can be judged through the size o f the 

confidence intervals. More tight confidence intervals we have, more efficient the 

confidence algorithm is considered to be. The confidence limits shown on the 3-rd and
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4-th column of Table 5-5 differ to a great extent from the confidence limits obtained by 

the ESM method. Moreover the upper and lower limits are not symmetrical.

State
variables

ESM
method

Confidence 

limits (AQf)

Confidence 

limits ( A<2 “ )

1 0.3007 0.9344 0.7840
2 0.2557 0.9645 0.8977
3 0.0667 1.2241 1.3777
4 0.1013 1.5303 1.4753
5 0.4212 1.4136 1.8550
6 0.3971 1.0208 2.0690
7 0.757 1.1580 2.4591
8 0.7925 1.1405 3.3654
9 0.3423 1.1436 3.3818

1 0 1.3561 1.5208 3.3300
1 1 0.0117 1.6088 3.1653
1 2 0.0033 2.0854 2.9140
13 1.0782 2.9216 2.6347
14 2.2626 3.1735 1.9935
15 2.2657 2.9216 1.8004
16 1.0413 2.6217 1.8174
17 0.4081 6.6122 3.8742
18 0.5268 3.5666 1.5654
19 0.3900 3.0151 1.7929
2 0 0.1410 2.4796 2.4794
2 1 0.1006 2.4796 2.4794
2 2 0.1993 2.4703 2.5374
23 0.3484 2.4575 2.6185
24 0.3027 2.2117 2.6931
25 0.6471 3.0133 1.7973
26 0.2259 3.0165 1.8051
27 0 . 0 0 0 0 3.0381 1.8825
28 0.0151 3.0421 1.8727
29 0.0196 2.9339 2.1357
30 0.0004 1.2563 1.7632
31 0.0151 1.7321 1.0236
32 0.0151 1.8641 1.8973
33 0 . 0 2 0 1 1.3045 1.2463
34 0.0199 1.8993 1.3172

Table 5-5: Inaccurate confidence limits on the nodal heads.

1-34: confidence limits for the nodal heads 1-34.

The inaccurate determination o f the ratios and that have been used as
r r

confidence limits for the true loop head losses AH t , had caused the errors in the 

confidence limits of the nodal heads. This makes the algorithm impractical to use.
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The previous discussion has taken into consideration only the water consumptions as 

the measurements. If  real meters were to be considered, the Jacobian matrix from the 

state estimator should have been used. This can complicate even more the confidence 

limit analysis algorithm, since the structure o f the loop flows state estimator Jacobian 

matrix is more complex than the Jacobian matrix from the co-tree flows simulator 

algorithm: it contains in addition the derivatives o f the loop head losses with respect to 

the variation o f nodal demands as well as the derivatives o f the additional real pressure 

and flow measurements.

We can conclude that there are practical difficulties when using the inverse o f the 

Jacobian matrix o f the co-tree flows simulator algorithm as a sensitivity matrix between 

the loop head losses residuals and the pseudo-measurement vector d. New confidence 

limits algorithms are required that avoid the computational drawback of the ESM 

method and the inexact results o f the last algorithm.

5.4.2. Error Maximization method

The ESM method uses a maximization step described as the multiplication o f the 

absolute value of the experimental sensitivity matrix and the maximum level of errors in 

the observed measurement vector. This procedure is depicted again below and forms the 

basis of the new derived method called the Error Maximization method (EM).

true measurement 

vector

ESM  : 5“ x  zl < z°< zlt 

EM  : x1 x z l <z < z11

The experimental matrix S3 calculated for the state vector x and the upper z11 and the 

lower bounds z  o f the observed measurement vector z° were the fundamental 

ingredients in the ESM method.

► z  —

observed

measurement

vector

ST

state

vector

estimated

measurement

vector
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The EM method considers the maximum variability o f consumptions and accuracy 

of meters for the estimated measurement vector z instead of the observed measurement 

vector z°. Furthermore the upper or the lower measurement limits [ z 1 z 11] of the 

estimated measurement vector z , is used in the loop flows state estimator. The resulted 

state vector x 1 is used for determining the confidence limits on the state variables (nodal 

heads, inflows) with the equation

Xclj ~ abs{ x1- x ) (Eq. 5.22)

where x c i  is the confidence limit on the i-th state variable, x is the state vector
i

obtained for the observed measurement vector z° and x 1 is the state vector obtained for 

the maximum level o f errors in the estimated measurement vector z .

The rationale beyond the equation (Eq. 5.22) lays in the properties o f the loop flows 

state estimator, which were discussed at the end of the previous chapter. It is o f 

paramount importance to emphasize that calculating the confidence limits with the EM 

method is characteristic to the loop flows state estimator and it will not work with other 

state estimators that are not based on the loop corrective flows such as the nodal heads 

state estimator.

It has been highlighted in the previous chapter the property o f the loop flows state 

estimator o f modifying the inflows into the fixed-head nodes so that to match the sum of 

the nodal demands obtained with the loop flows state estimator. This means that if we 

modify the nodal consumptions to their lower or upper limit ( z l , z 11), then the mass 

balance o f the network will still be satisfied. The inflows will be modified during the 

Newton-Raphson iteration method according to the nodal demands. In this case the 

fixed-head nodes are the measurement data and are used to form the pseudo-loops.

We can have a different case when the inflows into the fixed-head nodes represent 

the measurements. It means that they are known and kept constant during the iteration 

method, which if we consider the lower or the upper limits of the nodal consumption, 

may not satisfy the mass balance o f the network. However, this will not happen because 

in the loop flows state estimator there is always the main source node (i.e. the root node 

from where the spanning tree is built) where the inflow can vary so that the sum of the 

nodal demands is equal to the amount of inflow.

The scheme can include pressure or flow measurements together with their 

measurement accuracy without loosing from generality.

The previous considerations are sketched in the following figure.
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Main source node 
'"'where the flow modifies'* 
► during N-R method so 

\  that to maintain the 
\  continuity equation.

HP Fixed-head nodes 
I belong to the 

i f  i measurement data and 
are used to build the 
pseudo-loops.

Inflow~|~|

Inflows are the 
measurement data and 
are kept constant 
during Newton- 
Raphson method.

Figure 5-6: a) Fixed-head nodes used to form the pseudo-loops, b) Inflows are

measurement data.

Figure 5-6 shows the spanning tree of a small water network. The black square 

represents the main source node where the inflow can not be controlled during a 

simulation. The circles are the network nodes while the empty squares are the fixed- 

head nodes. A pressure measurement is indicated with the letter P.

The measurement uncertainty has been represented in the figure by the means o f an 

arrow with two wedge-shape ends. The white arrows define the accuracy o f the nodal 

consumptions while the black arrows represent the maximum variability o f the fixed- 

head nodes and the pressure measurements.

In Figure 5-6a is shown the first case where the fixed-head nodes are part o f the 

measurement data and their head values are considered known and used to form the 

pseudo-loops (i.e. the dashed lines).
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We take the lower or the upper limit on the nodal consumptions and then run the 

loop flows state estimator in order to obtain the confidence limits. The fixed-head nodes 

and the real meters can be also modified according to their maximum measurement 

accuracy.

In Figure 5-6b we show the second case where the values o f the fixed-head nodes 

are not known and instead the inflows are used as measurements and kept constant 

during the Newton-Raphson method. If  we bring now all the measurements at then- 

lower or upper limit then the mass balance equation is satisfied by the inflow from the 

main source node.

It is obvious that the EM method works only with the loop flows state estimator. 

This is based on the existence o f the main source node where the value o f inflow can 

not be maintained at a fixed value and it varies according to the demands from the 

network. This is in contrast with the nodal heads state estimator where if we bring all 

the measurements to their lower or upper limit and then run the nodal heads state 

estimator, we do not obtain any valuable information for the confidence limits.

At Figure 5-7 is described the EM method in a form o f a block diagram.

x  observed 
state vector

Loop flows 
state 

estimator
jo

Re-run the loop 
flows state 

estimator for
z l or z u

observed
measurement

vector

z  estimated 
measurement

i
vector

cibs( x  - x  )

x l resulted 
state vector

confidence 
interval for ?-tlf 

state variable!

Confidence Limit Analysis

Figure 5-7: CLA based on EM method.

A comparison o f the confidence limits produced by the Experimental Sensitivity 

Matrix method and the Error Maximization method is shown at Table 5-6. The 

confidence limits are calculated for the observed measurement vector shown on the 

columns 3 and 6  of Table 5-2 and column 3 o f Table 5-1. The state variables 1 to 34 

represent the nodal heads at nodes 1-34 and the state variables 35 to 42 represent the 

fixed-head nodes inflows at nodes 27-34.
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State
variables

Exact
state

State
variables

C.L, with 
ESM method

C.L. with 
EM method

1 31.1852 31.0577 0.3007 0.2893
2 43.3886 43.2835 0.2557 0.2381
3 44.2289 44.1968 0.0867 0.1056
4 44.3191 44.2706 0.1213 0.1505
5 42.8133 42.6358 0.4212 0.4010
6 42.6765 42.5082 0.3971 0.3785
7 41.8478 41.5228 0.7570 0.7302
8 41.7190 41.3762 0.7925 0.7700
9 43.0165 42.8746 0.3423 0.3233

1 0 41.6933 41.1195 1.3561 1.3034
1 1 43.5925 43.5813 0.0117 0.0511
1 2 43.5845 43.5817 0.0033 0.0152
13 45.3550 45.2569 1.0782 0.9456
14 40.1661 39.2083 2.2626 2.1782
15 43.0940 39.1235 2.2657 2.1947
16 43.4858 43.0441 1.0413 1.0164
17 43.9047 43.7263 0.4081 0.4438
18 44.7605 44.5342 0.5268 0.5347
19 44.3638 44.1934 0.3900 0.4137
2 0 44.1362 44.0702 0.1410 0.1951
2 1 43.6560 43.6053 0.1006 0.1476
2 2 43.8080 43.7161 0.1993 0.2445
23 44.0663 43.9127 0.3484 0.3746
24 42.9028 42.7773 0.3027 0.2826
25 42.0751 41.7974 0.6471 0.6240
26 31.3306 31.2399 0.2259 0.1880
27 -15.1991 -15.1991 0 . 0 0 0 0 0 . 0 0 0 0

28 -33.4879 -33.4966 0.0151 0 . 0 1 1 2

29 31.7221 31.7242 0.0196 0 . 0 1 1 2

30 43.5619 43.5819 0.0004 0 . 0 0 0 0

31 44.1710 44.1715 0.0151 0.0141
32 -46.3814 -46.3798 0.0151 0.0139
33 -36.5470 -36.5457 0 . 0 2 0 1 0 . 0 1 2 1

34 -12.1990 -12.1942 0.0199 0.0141
35 34.0 35.2 3.1 2.9
36 96.5 96.6 0 . 1 0 . 2

37 64.3 73.4 21.4 21.9
38 106.3 130.2 56.9 55.5
39 38.9 48.7 2 2 . 8 23.9
40 6 6 0 0

41 121.7 121.7 0 0

42 2 1 . 6 2 2 . 8 2 . 6 2 . 6

Table 5-6: Confidence limits obtained with the ESM and EM methods.
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The confidence limits obtained with the ESM and EM methods are similar. The 

computational load associated with the ESM method is over 15 seconds, which is far 

higher than the less o f 0.5 second obtained with the EM method. This is due to the 

computational time required for calculating the experimental sensitivity matrix. In order 

to obtain the experimental sensitivity matrix, we had to run the state estimator for a 

number o f times equal to the number o f measurements. Therefore a higher number o f 

measurements will require an equal amount o f extra simulations which is posed to 

increase the computational time necessary to calculate the experimental sensitivity 

matrix in special for large water networks. However, what is important to notice here is 

the elegance in obtaining the confidence limits with the EM method that requires 

running the loop flows state estimator for the lower or the upper limits o f the 

measurement data as opposed to the awkwardness of the ESM method that needs the 

calculation of the experimental sensitivity matrix.

The EM method can include pressure and flow measurements as well. A pressure 

measurement is introduced at node 14 o f the water network from Figure 5-1. For 

simplicity we will consider the estimated measurement vector to be the same as the 

observed measurement data. The maximum variability o f the pressure meters is ±30%.

On the 3-rd column o f Table 5-7 are shown the confidence limits obtained for the 

variability o f pseudo-measurements and accuracy of the fixed-head nodes but no other 

real meters are included.

The purpose of calculating the confidence limits is to obtain an information about 

how far from the real state the estimated values could be in the worst case. The 

requirement to have the state variables as close as possible to the real state is equivalent 

to the requirement o f having the confidence limits as tight as possible. The means o f 

achieving that is the introduction o f additional accurate real meters into the system. 

Therefore on the 4-th column o f Table 5-7 are shown the confidence limits when a 

pressure measurement is located at node 14. There is an improvement not only in the 

node where the pressure measurement was introduced but also in the adjacent nodes.

The same logic is applied for the flow measurements. A flow measurement with the 

accuracy ±20% is introduced between nodes 22 and 23. On the 5-th column o f 

Table 5-7 are shown the confidence limits. It can be observed an improvement in the 

region where the flow measurement was placed.
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State
variables

State
variables

C.L. (case 1) C.L. (case 2) C.L. (case 3)

1 31.0577 0.2893 0.2801 0.2593
2 43.2835 0.2381 0.2448 0.2234
3 44.1968 0.1056 0.0842 0.0455
4 44.2706 0.1505 0.1123 0.0636
5 42.6358 0.4010 0.4042 0.3824
6 42.5082 0.3785 0.3832 0.3616
7 41.5228 0.7302 0.7254 0.7030
8 41.3762 0.7700 0.7641 0.7416
9 42.8746 0.3233 0.1553 0 . 1 2 0 1

1 0 41.1195 1.3034 0.7980 0.8301
1 1 43.5813 0.0511 0.0401 0.0098
1 2 43.5817 0.0152 0.0199 0.0028
13 45.2569 0.9456 1.0041 1.4464
14 39.2083 2.1782 1.1753 1.1761
15 39.1235 2.1947 1.1631 1.1638
16 43.0441 1.0164 0.5342 0.4530
17 43.7263 0.4438 0.1043 0.0991
18 44.5342 0.5347 0.2145 0.0141
19 44.1934 0.4137 0.2307 0.0485
2 0 44.0702 0.1951 0.1397 0.0789
2 1 43.6053 0.1476 0.1026 0.0484
2 2 43.7161 0.2445 0.1737 0.0931
23 43.9127 0.3746 0.2432 0.0869
24 42.7773 0.2826 0.2916 0.2703
25 41.7974 0.6240 0.6224 0.6002
26 31.2399 0.1880 0.1988 0.1780
27 -15.1991 0 . 0 0 0 0 0 . 0 1 0 0 0 . 0 1 0 0

28 -33.4966 0 . 0 1 1 2 0.0095 0 . 0 1 1 2

29 31.7242 0 . 0 1 1 2 0.0087 0 . 0 1 2 2

30 43.5819 0 . 0 0 0 0 0 . 0 1 0 0 0 . 0 1 0 0

31 44.1715 0.0141 0.0095 0.0113
32 -46.3798 0.0139 0.0095 0 . 0 1 1 2

33 -36.5457 0 . 0 1 2 1 0.0087 0 . 0 1 2 2

34 -12.1942 0.0141 0.0087 0 . 0 1 2 2

35 35.2 2.9 1.5 0.4
36 96.6 0 . 2 0 . 1 0 . 1

37 73.4 21.9 18.4 16.5
38 130.2 55.5 46.1 41.1
39 48.7 23.9 2 0 . 8 18.8
40 6 0 0 0

41 121.7 0 0 0

42 2 2 . 8 2 . 6 2 . 6 2 . 6

Table 5-7: Confidence limits obtained with EM method when real meters are present.
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With bigger number o f measurements the reliability o f estimation increases. 

However, introducing a new measurement we introduce a new source o f inconsistency 

which is given by the variability o f the meter.

It can be concluded that the addition o f a new measurement for the z-th state variable 

can have the tightening effect on the confidence limit o f this variable only if the error 

resulted from the inaccuracy o f the meter is smaller than the confidence limit calculated 

for the existing set o f meters. I f  the previous condition is satisfied then the confidence 

limits for the inflows (i.e. state variable 35-42) become tighter as well.

The main contribution of this section is that effective CLA algorithms have been 

developed and applied for realistic water networks while using the loop equations in the 

numerical algorithms.

5.5. Concluding remarks

This chapter examines the problem o f real measurements and pseudo-measurements 

uncertainty in water systems based on the loop equations framework for the numerical 

simulations. The loop flows approach for the CLA procedures has not been treated 

before in the literature and it represents a major contribution to the originality o f this 

project.

Present day deterministic state estimation techniques are very efficient, having small 

computational requirements and producing results of an acceptable level o f accuracy. 

However for particular water networks, like ones displaying low pipe flows, the 

convergence o f the algorithm might suffer. A possible solution to this problem is to 

employ the more stable loop flows state estimation techniques.

On the other hand, in the process o f state estimation, the inaccuracy o f input data 

contributes greatly to the inaccuracy o f system state estimates calculated from them. 

Due to the cost o f metering, the water industry is constrained to make used of relatively 

inaccurate pseudo-measurements. For this reason, the computationally results of state 

estimators can be inaccurate when compared to the actual system state. Therefore the 

degree o f confidence that can be put in these results must be calculated and presented
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with the state estimates themselves. Only then can the computational results be used in 

the operational control.

The calculation o f these confidence limits for the state estimates has been largely 

investigated in the past within the nodal heads state estimators. In this chapter a similar 

investigation has been carried out but within the loop framework. It has been shown that 

the inverse o f the Jacobian matrix from the co-tree flows simulator algorithm can not act 

as a sensitivity matrix between the loop corrective flows and pseudo-measurements 

because o f the non-realistic way the initial loop head losses are calculated. This has a 

negative impact on the calculation o f the confidence limits that are bigger than expect it. 

Instead, a sensible number of simulations can be used, one for each measurement 

modified with its defined maximum variability, in order to determine an experimental 

sensitivity matrix. This experimental sensitivity matrix can be later employed for 

determining the nodal heads and the inflows for a random error in the measurement 

data. Furthermore the confidence limits obtained with the experimental sensitivity 

matrix are comparable with the ones produced with the pseudo-inverse o f the Jacobian 

matrix from the nodal heads state estimator. This mathematical result means that the 

Experimental Sensitivity Matrix (ESM) method provides a trusting reference point 

against which other confidence algorithms can be tested.

The ESM method requires a large number o f simulations equal with the number o f 

real measurements and pseudo-measurements. For this reason, the ESM method might 

be an unrealistic proposition for the real-time applications in special for large water 

networks. An alternative method is developed, the Error Maximization (EM) method, 

that requires only an extra simulation in order to derive the confidence limits. An 

additional simulation is carried out for the estimated measurement vector instead o f the 

observed measurement vector, which is modified with the highest level of inaccuracies. 

Following this the confidence limits are calculated by subtracting the resulted state 

vector from the optimal state vector obtained for the observed measurement data. 

Finally the set o f confidence limits are compared with the ESM method and it shows a 

very good similarity. The computational efficiency of the EM method renders it suitable 

for online decision support applications.
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Chapter 6.

Pattern Recognition for Fault Detection in 

Water Networks

6.1. Introduction

The operational control o f water systems is a challenging task because it requires 

that operators develop a mental model o f operation of a large-scale non-linear system 

which is subject to random disturbances (fluctuation o f consumption) and which is 

monitored using relatively few measurements.

Having found the state estimates with their corresponding confidence limits, the 

next task usually carried out by a human operator, is to classify current operating state 

before any control action can be taken. In the following chapter, the classification task 

is to be attempted by using an already developed neural algorithm (Gabrys & Bargiela, 

2 0 0 0 ) capable o f clustering as well as classifying the state vector with its confidence 

limits. Therefore this chapter introduces the background information about what are the 

neural networks together with a special regard to the General Fuzzy Min-Max (GFMM) 

(Gabrys, 1997; Gabrys & Bargiela, 1999) neural network that will be used in the next 

chapter for fault detection and identification in operational control o f water distribution 

systems.

The GFMM neural network has been originally developed by Gabrys (1997) and 

successfully applied to the pattern recognition in the water networks state identification 

task in order to distinguish between different patterns of ‘nodal heads-equations based’ 

state estimates. One o f the mam conclusions o f his work was to study the recognition 

system performance in association with different state estimation procedures and this 

forms the premise for testing the GFMM neural network with the ‘loop-based’ state 

estimates and confidence intervals.

The chapter is organized in two main sections: first what are the neural networks 

and the fundamental features o f a neural network are presented. Typical architectures of 

neural networks are shown together with methods for training and learning. The last 

section is dedicated to a special class of neural algorithms for classification and
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clustering. A review o f the clustering and classification techniques used in pattern 

recognition, is given together with the description o f the main characteristics o f a 

general fuzzy min-max classification and clustering neural network (Gabrys & Bargiela, 

1999).

6.2. Neural networks

There are various points o f view as to the nature o f an artificial neural net. For 

example, is it a specialized piece o f hardware or a computer program? We shall take the 

view that neural nets are basically mathematical models o f information processing. 

They provide a method o f representing relationships that is quite different from Turing 

machines or computers with stored programs. As with other numerical methods, the 

availability o f computer resources, either software or hardware, greatly enhances the 

usefulness of the approach, especially for large problems.

6.2.1. Biological neural systems

The human information processing system consists o f the biological brain. The 

basic building block o f the nervous system is the neuron, the cell that communicates 

information to and from the various parts of the body. Figure 6-1 shows a simplified 

representation o f a biological neuron. The neuron consists of a cell body called soma, 

several spine-like extensions of the cell body called dendrites, and a single nerve fibre 

called the axon that branches out from the soma and connects to many other neurons.

The many dendrites receive signals from other neurons. The connections between 

neurons occur either on the cell body or on the dendrites at junctions called synapses. 

The signals are electric impulses that are transmitted across synaptic gap by means o f 

chemical process. A helpful analogy is to view the axons and dendrites as insulated 

conductors of various impedances that transmit electrical signals to the neuron 

(Churchland, 1986; Kandel & Schwartz, 1985). The nervous system is constructed of 

billions o f neurons with the axon from one neuron branching out and connecting to as 

many as 10,000 other neurons. All the neurons - interconnected by axons and dendrites 

that carry signals regulated by synapses - create a neural network.
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INPUT from other neurons OUTPUT to other neurons

sends signal down, the exon

Axon

Terminal branches

Dendrites

Figure 6-1: Biological neuron.

6.2.2. Artificial neural networks

An artificial neural network is an information-processing system that has certain 

performance characteristics in common with biological neural networks. The extent to 

which a neural network models a particular biological neural system varies. For some 

researchers, this is a primary concern, for others, the ability of the net to perform useful 

tasks (such as approximation o f a function) is more important than the biological 

plausibility of the net. Although our interest lies almost exclusively in the 

computational capabilities of neural networks, we shall briefly present some features of 

biological neurons that may help to clarify the most important characteristics of 

artificial neural networks.

An artificial neural network is characterized by:

a) its topology of interconnected neurons with their non-linear activation functions 

(called its architecture),

b) its method of encoding information (called its training or learning algorithm).

Artificial neural networks are made up of large number of individual models of the 

biological neurons (artificial neurons). Each neuron is connected to other neurons by 

means of directional communication links, each with an associated weight. The neuron 

models that are used are typically much simplified versions of the actions o f a real
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neuron. The weights represent the information used by the net in solving a particular 

problem.

Several key features of the processing elements of artificial neural networks are 

suggested by the properties of biological neurons:

• The processing element receives many signals.

• Signals may be modified by weight at the receiving synapse.

• The processing element sums the weighted inputs.

• Under appropriate circumstances (sufficient input), the neuron transmits a single 

output.

• The output from a particular neuron may go to many other neurons.

• Information processing is local.

• Memory is distributed: a) long memory resides in the neurons’ synapses or 

weights, b) short-memory corresponds to the signals sent by the neurons.

• A synapse’s strength may be modified by experience.

• Neurotransmitters for synapses may be exitatory or inhibitory.

Yet another important characteristic that artificial neural networks share with 

biological neural systems is fault tolerance. Biological neural systems are fault tolerant 

in two respects. First, they are able to recognize many input signals that are similar but 

not identical to any input that was seen before. Second, damage to individual neurons 

can occur in the brain without a severe degradation in its overall performance (Hopfield, 

1982; Hopfield et al., 1983; Hopfield, 1984). If a portion of a brain is removed, the 

knowledge of the concept or idea is still retained through the redundant, distributed 

encoding of information. In a similar manner, artificial neural networks can be designed 

to be insensitive to small damage to the network, and the network can be retrained in 

cases of significant damage.

In the final attempt to answer the question: What is a neural network? let us quote 

the definition taken from (Hecht-Nielsen, 1988):

A neural network is a parallel, distributed information processing structure 

consisting of processing elements (which can possess a local memory and carry 

out localized information processing operations) interconnected together with 

unidirectional signal channels called connections. Each processing element has a 

single output connection which branches (“fans out”) into as many collateral 

connections as desired (each carrying the same signal - the processing element 

output signal). The processing element output signal can be of any mathematical
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type desired. All of the processing that goes on within each processing element 

must be completely local: i.e., it must depend only upon the current values of the 

input signal arriving at the processing element via impinging connections and 

upon values stored in the processing element’s local memory.

6.2.3. Fundamental features of ANNs

This section attempts to explain, in general terms, what an artificial neural network 

is and where the inspiration for neural computing came from, the subsequent sections 

will present typical neural network architectures and training algorithms.

Artificial neurons

Artificial neurons, also referred to as nodes or processing elements, are the ANN 

components where most, if  not all, o f the computing is done. The most commonly used 

neuron model is depicted in Figure 6-2 and is based on the model proposed by 

McCulloch and Pitts in 1943 (McCulloch & Pitts, 1943). Each neuron input, x\ - xn, is 

weighed by the adjustable values w\ - wn. A bias, or offset, in the node is characterized 

by an additional constant input of 1 weighted by the value of wq. The output, y, is 

obtained by summing the weighted inputs to the neuron and passing the result through a 

non-linear activation function, f(). Mathematically this operation is defined as:

Axons Synapses
Dendrites Body

Axon

—► y
Output

Non-linearity

WeightsInputs
Bias

Figure 6-2: McCulloch-Pitts model of neuron.

(Eq. 6.1)

Various types of non-linearity are possible and some of these are shown below

f  n \
y = f  +w o

Vi=l
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Activation functions

Activation functions, also called threshold functions or squashing functions, map the 

neuron’s infinite domain (the input) to a prespecified range (the output). Four common 

activation functions are the linear, ramp, step, and sigmoid functions. Table 6-1 shows 

the mathematical equations describing these functions and their typical shapes

Name and mathematical 
description

Shape
Remarks

Linear function 

f{x) = ax

/ ( * ) '

/ X

a  is a real-values constant that 
regulates the magnification of 

the neuron activity x.

Ran 

/ ( * )  = <

up function

7 lf  x  —7 

x i f  |x| < y  

- y  i f  x < - y

/(* > ' k--- y.----
r /

—---------- ►
X

-7

The output is bounded to the 
range [-y, +y]. Values y and -y 
are commonly referred to as 

the saturation levels.

Step function

f y  i f  x > 0
/ ( * )  = \

[-e> otherwise

A * ) ‘
r

k

------------►
X

-8

Step function respond only to 
the sign o f the input, emitting 
+y if the input sum is positive 
and - 8  if it is not. y and 8  are 
positive scalars. Often step 
function is binary in nature 
emitting a 1 if x > 0  and 0  

otherwise.

Sigmoid function

/ ( * ) = ( ! + e ~ V

fix)*
—11

------------►X

Sigmoid function is bounded, 
monotonic, non-decreasing 

function that provides a 
graded, nonlinear response. 

The saturation levels are 0 and 
1 .

Table 6 -1: Four common activation functions.

6.2.4. Typical architectures

ANN architectures, or topologies, are formed by organizing neurons into layers 

(also called fields or slabs) and linking them with weighted interconnections.
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There are three primary neuron interconnection schemes: lateral connections, inter

layer connections, and recurrent connections. Lateral connections are connections 

between neurons in the same layer o f neurons. Inter-layer connections are connections 

between neurons in different layers. And finally, recurrent connections are connections 

that loop and connect back to the same neuron.

Interlayer connection signals propagate in one of two ways, either forward or 

feedback. Feedforward signals only allow information to flow amongst neurons in one 

direction. Feedback signals allow information to flow amongst neurons in either 

direction and/or recursively. On the basis o f these two types o f signal propagation the 

difference between two methods o f information recall in ANNs can be defined as 

follow.

Figure 6-3: Four common ANN architectures: a) two-layer feedforward ANN; b) 

three-layer feedforward ANN; c) one-layer lateral feedback ANN; d) two-layer

feedback ANN.

During feedforward recall, the input cue is passed through the memory, represented 

by the weights W, and produces an output response in one pass. During feedback recall, 

the input cue is passed through the memory and produces an output response that is, in 

turn, fed back into the memory until the cue and response cease to change.
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Layer configurations combine layers o f neurons, information flow and connection 

schemes into a coherent architecture. Layer configurations include lateral feedback, 

layer feedforward, and layer feedback. A layer that receives input signals from the 

environment is called an input layer and a layer that emits signals to the environment is 

called an output layer. Any layers that lie between input and output layers are called 

hidden layers and have no direct contact with the environment. Figure 6-3 illustrates 

four common ANN topologies.

6.2.5. Training/Learning algorithms

In addition to the architectures, the method of setting the values o f the weights 

(learning or training) is an important distinguishing factor of different neural nets. As it 

has been pointed out in (Hassoun, 1995), in the context of artificial neural networks, the 

process of learning is best viewed as an optimization process. More precisely, the 

learning process can be viewed as “search” in a multidimensional (weight) space for a 

solution, which gradually optimizes a prespecified objective (criterion) function. This 

view allowed Hassoun to unify a wide range o f existing learning rules which otherwise 

could have looked more like a diverse variety o f learning procedures.

All learning methods can be classified into two categories, supervised learning and 

unsupervised learning, although aspects o f each may co-exist in a given architecture. In 

addition, there are nets whose weights are fixed without an iterative training process.

In supervised learning (also called learning with a teacher) each input vector, 

pattern or signal is presented with an associated target output vector. Usually the 

weights are gradually updated with each step o f the learning process so that the error 

between the desired (given) target and the network’s output is reduced.

On the other hand, unsupervised learning, also referred to as self-organization, is a 

process that incorporates no external teacher. Unsupervised learning involves the 

clustering or detection o f similarities among unlabelled patterns o f a given data set. 

Here, the weights and the outputs of the network are usually expected to converge to 

representations o f the input data.

There is some ambiguity in the labelling of training methods as supervised or 

unsupervised and some authors find a third category, reinforcement learning or self
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supervised learning, useful. Reinforcement learning involves updating the network’s 

weights in response to an “evaluative” teacher signal; this differs from supervised 

learning, where the teacher signal is the “correct answer”.

In general, however, there is a useful correspondence between the type o f training 

that is appropriate and the type of problem we wish to solve. Some examples o f ANN 

applications are given in the next section.

6.2.6. ANN applications

The purpose of this section is to give a sample of various areas of ANN applications 

and to illustrate a strong preference for using certain types of neural nets to solve certain 

types o f problems.

Multilayer, feedforward, supervised ANN applications

Among the supervised learning methods for multilayer neural nets the 

backpropagation algorithm is by far the most popular. Backpropagation and its 

variations have been applied to a wide variety of problems, including pattern 

recognition, signal processing, image compression, speech recognition, medical 

diagnosis, prediction, nonlinear system modelling, and control.

One of the earliest applications of backpropagation was the system known as 

NETtalk that converts English text into speech (Sejnowski & Rosenberg, 1987). 

Another example of a multilayer feedforward ANN application is a neural based 

adaptive interface system, known as Glove-Talk, that maps hand gestures to speech 

(Fels & Hinton, 1993).

The recognition of handwritten digits is a classic problem in pattern recognition. 

Specifically, the Postal Service is interested in the recognition of handwritten ZIP codes 

on pieces of mail. A backpropagation network has been designed to recognize 

segmented numerals digitized from handwritten ZIP codes that appeared on U.S. mail 

(Le Cun et al., 1989).

ALVINN (autonomous land vehicle in a neural network) - a backpropagation- 

trained feedforward network designed to drive a modified Chevy van (Pomerleau, 1991) 

- is an example of a successful application using sensor data in real time to perform a 

real-world perception-control task.
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Clinical diagnosis is often fraught with great difficulty because multiple, often 

unrelated disease states can surface with very similar historical, symptomalogic, and 

clinical data. As a result, physicians’ accuracy in diagnosing such diseases is often poor. 

Feedforward multilayer neural networks trained with backpropagation have been 

reported to exhibit improved clinical diagnosis over physicians and traditional expert- 

system approaches (Bounds et al., 1988; Yoon et al., 1989; Baxt, 1990).

One of the major objectives for the management of a water supply and distribution 

system is the forecasting of the daily demand. The multilayer feedforward ANNs, 

reported in (Canu et al., 1990; Cubero, 1991), have been used to accomplish this task.

Feedforward, unsupervised ANN applications

The best known ANN in this group is the self-organizing map, developed by 

Kohonen, which has the special property of effectively creating spatially organized 

“internal representations” of various features of input signals and their abstractions. The 

self-organizing map has been particularly successful in various pattern recognition tasks 

involving very noisy signals.

One of the applications demonstrating the power of the map method when dealing 

with difficult stochastic signals is the area of speaker-independent recognition of 

speech. The example of the self-organizing map application to speech recognition is the 

“phonetic typewriter” net (Kohonen, 1988).

Other areas were self-organizing maps have been successfully used include control 

of robot arm (Graf & LaLonde, 1988; Veelenturf, 1995), EEG signal analysis 

(Veelenturf, 1995), control of industrial processes, especially diffusion processes in the 

production of semiconductor substrates (Marks & Goser, 1988).

Feedback, unsupervised ANN applications

Dynamic associative memories (DAMs), the most representative in this group, are a 

class o f recurrent ANNs that utilize a learning/recording algorithm to store vector 

patterns as stable memory states. A part of the DAMs are Hopfield networks that have 

been successfully applied to many combinatorial optimization problems- situations that 

require the minimization of multiple-constraint cost function to determine the set of 

optimal system parameters.

An example of the optimization problem, that was addressed in (Hopfield & Tank, 

1985) using recurrent neural network, is the classical travelling salesperson problem. A 

salesperson wants to visit n cities, once each, along a path that ends at the initial city.
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The problem is to perform this loop in such a way as to minimize the total mileage. An 

interesting feature of the solution proposed by Hopfield and Tank is the fact that 

weights are defined by the problem (they are the distances between the cities) and not 

set using some learning method.

Other than combinatorial optimization applications, the Hopfield ANN’s ability to 

reconstruct entire patterns from partial cues stands out as one of its primary application 

strengths. In addition, the Hopfield ANN’s nearest-neighbour response and fault 

tolerance qualities are also appealing. Because o f these qualities, pattern classification 

and noise removal from patterns are key Hopfield network’s applications.

One more type of ANN and its applications is worth mentioning here: ART 

(Adaptive Resonance Theory) clustering neural network. This unsupervised ANN has a 

special interest for us due to the fact that the neural net used in the next chapter is 

capable to learn cluster structure in a self-organizing, stable manner.

6.3. Fuzzy State Clustering and Classification for Operational 

Control

The operational control o f water systems requires the human operator to classify the 

current operating state (e.g. normal status, leakage) before any control action can be 

taken. In (Gabrys & Bargiela, 1999) this classification task has been carried out by 

developing a flexible neural algorithm capable of clustering as well as classifying the 

state vector with its confidence limits. Their research has shown that the fuzzy state 

clustering and classification performed by neural networks can copy to a large extent 

the high level information processing by human operators. They tested their pattern 

recognition algorithm with examples of state estimates and confidence intervals 

obtained with the nodal heads equations.

A review of the existent classification and clustering techniques is made before the 

description of the pattern recognition algorithm proposed by Gabrys and Bargiela

(1999) is presented.
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6.3.1. Pattern clustering review

In many pattern recognition and decision making tasks, there is little prior 

information available about the data that need to be utilised. Pattern clustering uses the 

minimum amount of information to organize data into categories such that patterns 

within a cluster are more similar to each other than patterns belonging to other clusters. 

There are many different techniques that have been offered for solving the clustering 

problem. In the following sections is shown a brief review of some traditional, fuzzy 

and neural network clustering techniques.

1) Traditional Clustering: There are many clustering algorithms that have been 

developed to date, including ISODATA, FORGY, WISH, and CLUSTER (Dubes & 

Jain, 1976), many of which are commercially sold. Jain (Jain, 1986) has reduced these 

clustering techniques to two popular methods:

• Hierarchical Clustering: A hierarchical clustering technique imposes a 

hierarchical structure on the data which consists of a sequence of clusters.

• Partitional Clustering: A partitional clustering technique organizes patterns into 

a small number of clusters by labelling each pattern in some way. Unlike 

hierarchical clustering, which offers several partition of the data, partitional 

clustering finds a single cluster partition.

In addition to the two techniques cited above, there are also combinations of the two 

clustering approaches that are employed. There are many books that describe classical 

approaches to pattern clustering, including (Anderberg, 1973; Everitt, 1974; Hartigan, 

1975; Duda& Hart, 1973).

2) Fuzzy Clustering: Fuzzy sets bring a new dimension to traditional clustering 

systems by allowing a pattern to belong to multiple clusters to different degrees. Bezdek 

has organized fuzzy clustering algorithms into five categories:

• Relation Criterion Functions: Clustering driven by optimization of criterion 

function which assesses partitions according to some global property of the 

grouped data. Ruspini (Ruspini, 1969) was the first to utilize this technique in the 

fuzzy community and he and Bezdek (Bezdek, 1981) have since considerably 

extended this pioneering work.

• Object Criterion Functions: Clustering directly on the data set A in the n- 

dimensional feature space according to some objective function is the most 

popular form of the fuzzy pattern clustering. The fuzzy c-means and fuzzy
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ISODATA algorithms introduced by Dunn (Dunn, 1974) and generalised by 

Bezdek (Bezdek, 1981), are the most popular technique for this class of fuzzy 

clustering algorithms.

• Convex Decomposition: The decomposition of a fuzzy partition (a set o f fuzzy 

clusters) into a combination of convex sets. The use of the convex 

decompositions may provide added insight into data structure that otherwise 

might be lost. Bezdek & Harris (Bezdek & Harris, 1979) describe three 

algorithms that can perform this decomposition.

• Numerical Transitive Closures: The extraction of crisp equivalence relations 

from fuzzy transitive similarity relations. This technique is closely related to 

hierarchical methods based on graph-theoretic models.

• Generalised Nearest Neighbour Rules: Although the nearest neighbour algorithm 

is used mostly for classification, there is a clustering version as well. This 

technique is primarily used once the data set has already been partitioned using 

another clustering algorithm such as fuzzy c-means.

3) Neural Network Clustering: Neural network clustering offers the ability to 

determine the size, shape, number, and placement of pattern clusters adaptively while 

intrinsically operating in parallel. In addition, the use of clustering to form sensory 

maps has strongly biological support. Although there is a large number of neural 

networks available today there are only two primary neural clustering techniques 

currently in widespread use:

• Competitive Learning: Similar to the c-means clustering algorithm, competitive 

learning finds the centroids of decisions regions in the n-dimensional pattern 

space. Although this form of neural network learning seems to have been 

introduced by Grossberg (Grossberg, 1972; Grossberg, 1976a) and von der 

Malsburg (von der Malsburg, 1973), it has been most successfully championed by 

Kohonen (Kohonen, 1984), who has extended the neural dynamics to include 

topographic constraints.

• Adaptive Resonance Theory: Similar to the leader cluster algorithm, adaptive 

resonance theory nondestructively creates pattern “codes” (clusters). The concept 

of adaptive resonance was introduced by Grossberg (Grossberg, 1976b) and was 

first cast into a neural network formalism by Carpenter and Grossberg (Carpenter 

& Grossberg, 1987). There have been numerous extensions and refinements since 

(Carpenter & Grossberg, 1987). The most recent results of ART evolution are the
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algorithms combining ideas of ART and fuzzy logic. These methods, considered 

as the most flexible (sharp or fuzzy outputs, binary or analog inputs, supervised 

or unsupervised learning), seem to be the most appropriate for the purposes of 

processing fuzzy outputs of confidence limit analysis. The min-max clustering 

and classification neural networks (Simpson, 1992; Simpson, 1993) seem to be 

especially interesting because of their representation of classes (clusters) which is 

a hyperbox in ^-dimensional pattern space. A hyperbox is completely defined by 

pairs of min-max points. Gabrys (Gabrys, 1997) found an analogy with the state 

o f the water network after the confidence limit analysis which can be viewed as a 

hyperbox in ^-dimensional space defined by upper and lower bounds for each 

state variable. Other properties like on-line learning, the number of clusters 

(classes) that grows to meet the demands o f the problem were exploited in the 

neuro-fuzzy classification and clustering algorithm developed by Gabrys for fault 

detection and identification in operational decision support of water systems.

We end this section by listing here several properties that a good pattern classifier 

should possess (Simpson, 1992):

On-Line Adaptation

A pattern classifier should be able to leam new classes and refine existing classes 

quickly and without destroying old class information. This property is sometimes 

referred to as on-line adaptation or on-line learning.

Nonlinear Separability

A pattern classifier should be able to build decision regions that separate classes of 

any shape and size.

Overlapping Classes

In addition to pattern classes being nonlinearly separable, they also tend to overlap. 

A pattern classifier should have the ability to fonn a decision boundary that minimizes 

the amount of misclassification for all of the overlapping classes. The most popular 

method of minimizing misclassification is the construction of a Bayes classifier. 

Unfortunately, to build a Bayes classifier requires knowledge of the underlying 

probability density function for each class. This is an information that is quite often 

unavailable.

Training Time

A very desirable property of a pattern classification approach able to leam nonlinear 

decision boundaries is a short training time.

127



Chapter 6 :6.3. Fuzzy State Clustering and Classification fo r  Operational Control

Soft and Hard Decisions

A pattern classifier should be able to provide both soft and hard classification 

decisions. A hard, or crisp, decision 0 or 1. A pattern is either in a class or it is not. A 

soft decision provides a value that describes the degree to which a pattern fits within a 

class.

Verification and Validation

It is important that a classifier, neural or traditional, have a mechanism for verifying 

and validating its performance in some way.

Tuning Parameters

A classifier should have as few parameters to tune in the system as possible. Ideally, 

a classifier system will have no parameters that need to be tuned during training. If there 

are parameters, the effect these parameters have on the system should be well 

understood.

Nonparametric Classification

Parametric classifiers assume a priori knowledge about the underlying probability 

density functions of each class. If this information is available, it is possible to construct 

very reliable pattern classifiers, but often this information is not available. If the 

classifier is nonparametric, it should be able to describe the underlying distribution of 

the data in a way that provides reliable class boundaries.

6.3.2. The Fuzzy Min-Max Clustering and Classification Neural 

Network

In the previous chapters the loop based state estimation and CLA algorithms for 

water distribution networks were presented. These two algorithms are the first two steps 

on the way from measurement readings to the operational control decisions. Before any 

control decision can be made the state of the network has to be interpreted - classified. 

This interpretation task is usually carried out by an experienced, human operator. 

However, the growing size and complexity of the modem water distribution systems 

makes this task more and more difficult. The need for the “diagnosis” o f a water 

network state (i.e. normal operating state, leakage between node i and node j  etc.) had 

prompted Gabrys and Bargiela (Gabrys & Bargiela, 1999) to investigate into
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classification and clustering neural networks. They developed a new fuzzy neural 

algorithm based on the concept of the Fuzzy Min-Max Classification and Clustering 

Neural Network. Their Neural Network combines the functionality o f both the Fuzzy 

Min-Max Classification and Clustering Neural Networks and at the same time a few 

major changes were made to accommodate the input in a form of the state vector with 

confidence limits and to improve the effectiveness of the algorithm. The resulted Neural 

Network was applied to patterns of state estimates and confidence intervals obtained 

with the nodal heads equations. In the following chapter this Neural Network will be 

applied for state estimates and confidence intervals obtained with the loop equations. 

This was actually one of the main conclusions of their work, to study the recognition 

performance of this Neural Network with different state estimation procedures. 

Therefore this section is intended to provide a brief description of their pattern 

recognition algorithm.

The fuzzy min-max clustering and classification neural networks are built using 

hyperbox fuzzy sets. A hyperbox defines a region of the n-dimensional pattern space, 

and all patterns contained within the hyperbox have full cluster/class membership. A 

hyperbox is completely defined by its min point and its max point. The combination of 

the min-max points and the hyperbox membership function defines a fuzzy set (cluster), 

ha the case of classification hyperbox fuzzy sets are aggregated to form a single fuzzy 

set class.

Learning in the fuzzy min-max clustering and classification neural networks 

consists of creating and adjusting hyperboxes in pattern space as they are received. It is 

an expansion/contraction process. The learning process begins by selecting an input 

pattern and finding the closest hyperbox to that pattern that can expand (if necessary) to 

include the pattern. If a hyperbox cannot be found that meets the expansion criteria, a 

new hyperbox is formed and added to the system. This growth process allows existing 

clusters/classes to be refined over time, and it allows new clusters/classes to be added 

without retraining. One of the residuals of hyperbox expansion is overlapping 

hyperboxes. Hyperbox overlap causes ambiguity. It is reasonable to assume that a 

pattern can have the same partial membership in more than one cluster/class. It is not 

reasonable to assume that a pattern can completely belong to more than one 

cluster/class. In the case of classifying NN the overlap is eliminated for hyperboxes that 

represent different classes. A contraction process is utilized to eliminate any undesired 

hyperbox overlaps.
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The fuzzy min-max clustering and classification learning algorithm that will be used 

in the following chapter and it has been originally developed by Gabrys and Bargiela

(2 0 0 0 ) can be described as follows:

Initialization

The pattern recognition algorithm developed by Garbrys and Bargiela has been 

intended to be used for the water distribution network state classification task. 

Therefore the information obtained from confidence limit analysis, namely confidence 

limits for each state variable, had been accommodated by this classification procedure. 

This requirement had been met by specifying the input to classification/clustering

algorithm as a pair of two vectors: X h = [ X lh X uh ] - the lower and upper limits for the

state vector. In other words instead of a point in n-dimensional space that had to be 

classified, they obtained a hyperbox with the min point determined by the vector 

X lh and the max point determined by the vector Xf t . When the min and max points are

equal the hyperbox shrinks to the point. In conclusion the algorithm is capable of 

classification/clustering inputs in a form of the n-dimensional vector without any 

changes to the algorithm because a point in n-dimensional space is simply the special 

case o f a hyperbox with the min and max points equal.

They observed that because of the size o f the modern water distribution networks it 

is impossible to predict and cover all possible combinations of consumption-inflows 

patterns and anomalies that can occur in the network during day to day operations. 

Therefore, in order to allow labelled (i.e. normal operating state etc.) and unlabelled 

inputs to be processed an additional index, d/t = 0  meaning that the input pattern is not 

labelled, had been introduced. A hybrid, supervised (labelled inputs - classification) and 

unsupervised (unlabelled inputs - clustering), Neural Network had emerged.

Hyperbox membership function

The fuzzy hyperbox membership function plays a crucial role in the Fuzzy Min- 

Max Classification and Clustering algorithms. The decisions whether the presented 

input pattern belongs to the particular class or cluster, whether the particular hyperbox 

is to be expanded, depend mainly on the membership value describing the degree to 

which an input pattern fits within the hyperbox. They'-th hyperbox fuzzy set, Z?j, can be 

defined by the ordered set:

BJ ={Xh,VJ,W] , b f X h,Vj,WJ))
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for all / i=l,2 , where X ,  = [Xh I f ]  is the A-tli input pattern,

Vj2,—,Vjn) is the min point for they'-th hyperbox, Wj = (w .j, Wj2 Wjn) is

the max point for the y-th hyperbox, and the membership function for they-th hyperbox 

is 0 < bj ( X h, Vj , Wjr) < 1. The min points are initialized with 1 and the max points

with 0 .

An investigation has been carried out by Gabrys and Bargiela (Gabrys & Bargiela, 

1999) in order to decide the most appropriate form for the membership function. They 

chose the function so that the membership values of the patterns to decrease steadily 

with the increasing distance from the hyperbox. The reason for doing so is to eliminate 

the cases when hyperboxes that represent different classes are overlapping. The chosen 

function is shown below and it can be described as the minimum value of maximum 

min-max hyperbox points violations for all dimensions

bj ( x h> = | ™ n ( m i n ( [ l - w Jt, / , ) ] , [ 1 - / 0 ^  -x '„ ,r ; ) ] ) )  (Eq. 6 .2 )

where x “lt are x hi the lower and the upper limits of the A-tb input pattern specified for

each dimension i. Wji and vy are the max and min points of the y-th hyperbox. f(x, y) is a 

two parameter ramp threshold functions which can be written as

f ( x , r )  =

1 i f  xy  > 1 

xy  i f  0  < xy  < 1 

0  i f  xy  < 0

The membership function contains also the parameter y ~ that regulates

how fast the membership values decrease and it has to be specified for each dimension 

(i.e. nodal pressures, inflows).

Hyperbox expansion

This process can be described briefly as to identify the hyperbox closest to the input 

pattern that can be expanded and expand it. If  an expandable hyperbox cannot be found, 

add a new hyperbox. A user specified value © was introduced to control the size of the 

hyperbox which can be described as the difference between the max and min value for 

each dimension. It has been observed (Gabrys, 1997) that keeping the parameter © 

constant during the learning process can have undesired effects on performance or the 

number of created hyperboxes. Setting 0  big can cause too many misclassifications,
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especially when there are complex, overlapping classes. On the other hand, it has been 

observed that when © is small too many unnecessary hyperboxes can be created, 

especially for concentrated, standing alone groups of data forming one class, while 

small © might be needed to resolve other overlapping classes. These problems were 

addressed by introducing an adaptive maximum size of the hyperbox.

We shall take into account these observations when testing the recognition system 

with the loop-based state estimates and confidence limits. The other steps performed 

during the training/learning process of the Neural Netowrk are as follows.

Hyperbox overlap test

Determine whether the recent expansion caused any undesired overlap between 

hyperboxes.

Hyperbox contraction

If the overlap test identified overlapping hyperboxes, then contract the hyperboxes 

to eliminate overlap.

More detailed about each of these steps can be found in (Gabrys, 1997; Gabrys & 

Bargiela, 1999). However, we will mention here that the training process is completed 

when after presentation of all training patterns there have been no misclassification for 

the training data or the minimum, user specified value of the parameter © has been 

reached.

The neural network that implements the generalized fuzzy clustering-classification 

algorithm as it has been described above and developed by Gabrys and Bargiela (2000) 

is shown at Figure 6-4. The topology o f this neural network grows to meet the demands 

of the problem. The input layer has 2*n processing elements, two for each of the n 

dimensions of the input pattern X h = [X lh X% ]. Each second layer node of this three-

layer neural network represents a hyperbox fuzzy set where the connections of first and 

second layer are the min-max points and the transfer function is the hyperbox 

membership function. The min points are stored in the matrix V and the max points are 

stored in the matrix W. The way these connections are adjusted is described in (Gabrys, 

1997). A detailed view of the y-th second layer node is shown at Figure 6-5. The 

connections between the second and third layer nodes are binary values. They are stored 

in the matrix U. The equation for assigning the values of U is

1 i f  bj is a hyperbox fo r  class c
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Input Hyperbox Class
Nodes Nodes Nodes

Figure 6-4: The three layer neural network that will implement the clustering- 

classification algorithm applied to the patterns of ‘loop-based’ state estimates.

Each o f the third layer nodes represents a pattern class. The node cq represents all 

unlabelled hyperboxes from the second layer.

In Figure 6-5 the node with its associated membership function and connections in 

from of vectors Vj and Wj represents a hyperbox fuzzy set.

w

w<

Figure 6-5: A detailed view of the y-th second layer node.

The classification and clustering algorithm briefly described here had been tested 

extensively on different sets of data (both data points and fuzzy labelled and labelled 

input patterns) and compared to other existent classification algorithms (Gabrys, 1997). 

We will just say here that Gabrys algorithm dealt successfully with both labelled and 

unlabelled patterns, in most of the cases resolved all the overlappings between 

hyperboxes from different classes, which finally resulted in fewer misclassifications
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compared with several other neural, fuzzy and traditional classifiers (Gabrys & 

Bargiela, 2000; Gabrys, 1997).

6.4. Conclusions

Pattern recognition has long been studied in relation to many different applications 

(and mainly unrelated), such as classifying galaxies by shape, identifying fingerprints or 

handwriting recognition. Human expertise in these and many similar problems is being 

supplemented by computer-based procedures, especially neural networks. Pattern 

recognition has been extremely widely used, often under the names of ‘classification’, 

‘diagnosis’, or ‘learning from examples’.

Gabrys and Bargiela (1999) are perhaps the first to use pattern recognition within an 

operational decision support in water distribution networks and, in particular, to 

detection and identification of faults based on the fuzzy classification and clustering 

Neural Networks, Their training data included patterns of water network state estimates 

and confidence limits obtained by simulating a 34-nodes water network for a complete 

24 hours period o f operation. An analogy between the information processing by the 

classification and clustering algorithm, and the human operators had been identified and 

highlighted in this context.

Studying the performance of the recognition system with patterns of state estimates 

and confidence limits obtained with the novel loop flows state estimator, is to be 

addressed in the following chapter.
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Chapter 7

The synergism of the loop algorithms and the neural 

classification for fault detection and identification in

water systems

7.1. Introduction

Two broad categories of faults occurring in water distribution systems are 

considered in this work. The faults dues of malfunctioning of transducers and 

telecommunication equipment are referred to as the measurement errors. And the faults 

due to leakages and wrong status of valves, invalidating the system model used in the 

estimation, are referred to as the topological errors.

The crucial difference between these two types of errors is the fact that although 

both are responsible for poor state estimates, the meter malfunctions do not have any 

bearings on the actual state of the system while the leakages or the valve status errors 

directly affect the physical system and can result in service disruptions.

In the case that the measurement errors are uncorrelated and if  there is a high 

enough local measurement redundancy it is often possible to reject erroneous data by 

using a suitable estimation procedure as described in Chapter 4.

On the other hand, model based errors give rise to correlated changes in groups of 

incoming signals. In such a case the state estimation procedure trying to compensate for 

invalid network model may result in a set of errors scattered across the network as it is 

the case with the nodal heads state estimator. However, it has been shown in the 

previous chapters a novel state estimator based on the loop corrective flows. It improves 

the best approximation of the operational status of the water system providing that 

accurate pressure and flow measurements are available.

It is obvious that in the absence of accurate real measurements, the topological 

errors not only pose a much greater danger to the safety of water network
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operation but also are more difficult to locate and eradicate even when reliable and 

efficient state estimators are available. Depending on the topology of the distribution 

network and the state estimator used, the topological class of errors form characteristic 

patterns that can be utilized to classify the state of the network.

The classification of the state of the water network it has been largely investigated 

in Gabrys (1997) and Gabrys and Bargiela (1999) in the context of the state estimators 

based on the nodal heads equations. Their approach for diagnosis o f leakages and other 

operational faults occurring in water networks was based on the examination of patterns 

of state estimates or residuals by a General Fuzzy Min-Max neural network (GFMM). 

They have shown that both the state estimates with their confidence limits and the 

residuals with their confidence limits can be successfully used to train the GFMM 

neural recognition system.

This chapter presents the application of the GFMM neural network to the 

classification of the state of the water system based on patterns of loop flows state 

estimates and confidence limits (Bargiela et al., 2002). The investigation will have a 

twofold intention: first, to build an effective decision system for fault detection and 

preventive maintenance of water system by using the loop flows state estimator, the 

confidence limits analysis algorithms and the GFMM neural network. The second 

attempt will be to search for the advantages that this combination might have over the 

initial system described in Gabrys (1997).

The chapter is organized in three sections. The review of the previous work on the 

subject o f bad data detection and identification is presented in Section 7.2. This is 

followed by Section 7.3 which is the main section of the chapter and is concerning the 

fault detection in water systems based on the combination of the loop algorithms and 

the GFMM neural network. The aspects of training and testing of the neural network 

with the Toop-equations based’ state estimates and the variation of nodal demands with 

confidence limits are discussed. And finally, the closing section of the chapter presents 

the discussion and conclusions.

7.2. Review of the previous work

Very often the algorithms found in the literature and referred to as bad data analysis 

are concerned with the identification and rejection of erroneous measurements and do
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not attempt to identify the underlying cause of the bad data. Rather than only asking the 

questions: Are the state estimates accurate? How to construct the state estimation 

procedure in order to reject anomalous data?; one would like to know the answers to the 

questions: What do those state estimates mean? Is the current state a normal operating 

state of the network? Is there a leakage present that requires a remedial action? etc.

Bargiela introduced the idea of bad data analysis in water distribution systems state 

estimation (Bargiela, 1984). In order to distinguish between the measurement and 

topological errors his method checks the magnitude and sign of the weighted 

measurement residuals at each end o f a pipe. It was shown that the presence of either a 

leakage or incorrect status of control valves is equivalent to neglecting a part of the 

actual network structure thus producing an imbalance at the network nodes adjacent to 

the pipe in question. The idea therefore was that the topological error can be thought of 

as a pair of erroneous load measurements for which the error terms (residuals 

representing the mass balances at those nodes) are carrying information about a type of 

topology error. Figure 7-1 gives a graphical representation of Barigela’s method.

A ctual Modelled Estimated

a ) ( r > ^ 0  0 i i ©  o ^ ®

n = -q rj = q

b) qy = q 9ij = 0

© H><1"^© Ci/'ĉ ©

qy

i )------- ►( J

qy = 0

c)

1'i -  qu - qy rj = qy - qy

Figure 7-1: Identification of topological errors as presented by Bargiela: a) closed 

valve monitored as open; b) opened valve monitored as closed; c) leakage.
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Although these ideas are very useful they rely on the high local measurement 

redundancy ratio so that the erroneous data can be rejected. It is not always the case and 

the effect of topological error occurrence cannot be restricted to the end nodes of 

effected pipe but is spread in the larger area around the leaking pipe. Perhaps we should 

mention here the novel state estimator described in the previous chapters that by 

carefully considering a region in the water network where the state estimation is 

applied, can reduce the spreading of the topological errors to larger areas in the network 

(Arsene & Bargiela, 2002a).

These problems have been also recognized by Powell (Powell, 1992) whose method 

is based on finding paths linking groups of high measurement residuals. Once the 

connecting paths between high residuals have been identified, heuristics are applied to 

determine the location and cause of errors. In these heuristics the residuals are sorted by 

type, direction, magnitude and location. For instance if the leakage is present in the 

network the pressures in an area near to the leakage will decrease. On the other hand, if  

there is a blocked pipe in the network the pressure upstream of this pipe will be high 

and downstream it will be low. Since the changes in pressure are characteristic for 

different faults one should be able to observe those changes in the residuals representing 

the pressure measurements in mathematical model of the network.

Other publications on the subject for water distribution system concern only leakage 

detection studies. Pudar and Liggett (Pudar & Liggett, 1992) attempted the leak 

detection task by solving an inverse problem. This inverse problem is essentially the 

state estimation procedure with additional state variables being the unknown leaks. The 

method assumed that the leaks occur in the nodes and do not change the topology o f the 

network. Furthermore, the locations of suspected leakages are assumes to be known. 

Unfortunately, both assumptions are a gross oversimplification.

Carpentier and Cohen in their paper (Carpentier & Cohen, 1993) tell the story about 

1 0  years of involvement of their research group in the application of mathematical 

techniques for the management of complex water supply networks. One of the two main 

topics discussed is state estimation and leak detection. The leakage detection in this 

work is based on a comparison of the consumption values estimated on-line, using 

current, real flow measurements, with the pseudomeasurements of the same 

consumptions considered as standard values in the normal situation (without any 

leakage present). These pseudomeasurements are obtained from 24-hour mathematical 

model of the nonnal network operations. Throughout this work a heavy emphasis is put
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on the necessity of having the well calibrated model of the network. The performance of 

the method was tested on a real subnetwork of the water network of the city of Paris. 

The leakages were introduced to the network by opening fire-hydrants in some places. 

The fact that experiments were carried out on the real network give additional weight to 

the results. The weights in the weighted least squares criterion were chosen in such a 

way that the errors occur in nodal mass balance equations and represent increase in 

nodal consumptions. Occurrence o f a set of significant errors in some area of the 

network is treated as a sign of leakage presence in this area. No attempts were made to 

further process these errors in order to find a reduced number of the most likely pipe(s).

Recently, the fault detection and diagnosis problem in water distribution systems 

has been attempted based on the examination of patterns of state estimates implemented 

by a newly developed neurofuzzy recognition system (Gabrys, 1997; Gabrys & 

Bargiela, 1999). Their approach combines the ability of fuzzy systems to cope with 

uncertain and ambiguous data with the computational efficiency, learning, and pattern 

recognition ability of neural networks.

The rationale for this approach is that although the analysis of precise numerical 

results of state estimation of state estimation is useful, it also tends to ignore the grater 

picture of the overall system state, which is something that experienced human 

operators primarily focus their attention on before analyzing the detail. The pattern 

recognition based approach to fault diagnosis was thought to mimic the infonnation 

processing and abstraction forming by human operators.

In particular, it has been shown that both the ‘nodal heads equations’ state estimates 

with their confidence limits and the residuals with their confidence limits can be 

successfully used to train the neural recognition system. However, it has been also 

found that due to the high susceptibility o f the residuals to the typical measurement 

noise, the ability to detect and identify faults by the recognition system based on the 

state estimates performed better for the data for which it has been trained, due to much 

lower ration of the noise to the useful signal and larger spatial separation of patterns 

representing different classes.

The successful application of the fuzzy neural recognition systems to the water 

network state identification has pointed to a couple of possible further research areas. 

One of these areas of interest is regarding the study of the recognition system 

performance in association with different state estimation procedures, and this is
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addressed here in the context of the loop flows state estimator and the confidence limits 

algorithms developed in the previous chapters.

7.3. The combination of the loop algorithms and the pattern 

recognition system

7.3.1. The significance of confidence limits

In any pattern classifier design problem it is necessary to have a representative set of 

accurate training examples. Since we would like to utilize the information about 

confidence limits in the process of constructing our classification system it is absolutely 

necessary to understand what is the meaning of those confidence limits when calculated 

for different values of state estimates and if and when they can be used in the training 

stage without compromising the performance of the pattern classifier.

The significance of confidence limits referred to in the title of this section can be 

explained by imaging two different experiments.

In the first experiment the estimates are calculated for accurate measurements. If 

one also assumes that the mathematical model of the process used in the estimation 

procedure accurately represents the behaviour of the physical system, a true state 

estimate of the system can be obtained. This is obtained by x t in Figure 7-2 for the
acc

i-th state variable.

However, since the measurements have a finite accuracy it is interesting to know 

how sensitive is the same estimate to the measurement inaccuracies. In this case, the 

confidence limits calculated for the true state represent the boundaries within which all 

estimates of this true state will fall as long as the measurements used are at least as 

accurate as the ones taken to compute the confidence limits themselves, hi Figure 7-2

the lower and upper bound for the i-th state variable are denoted x l and x 11
i i

acc acc

respectively. In other words, if  for purpose of pattern classification the true state was
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labeled as “the normal operating state” all the estimates falling within its confidence 

limits could be classified as “the normal operating state”.

■u
acc

lacc
X;.1

acc

Figure 7-2: Graphical representation of state estimates and confidence limits for 

accurate and inaccurate measurements. x t - estimate for the z'-th state variable
acc

calculated for accurate measurements; x l , x tl - the lower and upper bound
i i

acc acc

for X: ; X; and x  are the two examples of the z-th state variable estimate1 star lcrossacc

calculated for inaccurate measurements.

In the second experiment the estimates are calculated for a set of measurements that 

are measured with some finite error. This is to say that the true state is unknown and for 

a given set o f inaccurate measurements one can only compute the best estimates of this 

true state. Two examples of the instantaneous estimates of the true state value x-L are
acc

denoted by Xi and s in Figure 7-2. Unlike the confidence limits computed for

the true state, the confidence limits found for any o f the instantaneous estimates only 

indicate that the true state value is contained within their range. The confidence limits 

for X; and x  are depicted in form of dashed vertical lines in Figure 7-2. When in
star lcross

the extreme case the estimated values were equal to x{ and x 11 using the
acc acc

confidence limits for such estimates during the training of the classification network

141



Chapter 7 :  7.3. The synergism o f the loop algorithms and the neural classification
fo r  fault detection and Identification in water systems

would mean the introduction of additional 50% error to the cumulative error resulting 

from inaccurate measurements.

It follows from the above that when the true state (or a very good estimate of it) can 

be computed, than the confidence limits found for such an estimate directly give a 

hyperbox (cluster) without the need to use a large number of instantaneous estimates 

during the training (which would arrive at the same cluster).

However, when the sufficiently accurate estimate of the true state cannot be found 

one has to resort to a large number of correctly labeled instantaneous estimates.

7.3.2. Generating the training data

While for the well maintained water distribution systems the normal operating state 

data can be found in abundance the instances of abnormal events are not that readily 

available. In order to observe the effects of abnormal events in the physical system one 

sometimes is forced to resort to deliberate closing of valves or opening o f hydrants (to 

simulate leakages) (Carpentier & Cohen, 1993). Although such experiments can be very 

useful to confirm the agreement between the behaviour of the physical system and the 

mathematical model, it is not feasible to carry out such experiments for all pipes and 

valves in the system during the whole day or days as might be required in order to 

obtain the representative set of labeled data.

It is an accepted practice that, for processes where the physical interference is not 

recommended or even dangerous, mathematical models and computer simulations are 

used to predict the consequences of some emergencies so that one might be prepared for 

quick response. In our case the computer simulations are used to predict the 

consequences of some emergencies so that one might be prepared for quick response. In 

our case the computer simulations were used to generate data covering 24 hour period 

for the water distribution network depicted at Figure 7.3. Such simulations that stretch 

over longer periods of time are called extended time simulations. The reason for 

choosing this network is that we will be able to compare the results of training the 

recognition system with patterns o f Toop-equations based’ state estimates and
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confidence limits with the results reported in Gabrys (1997) for the same water network 

and operational testing conditions in the context of the nodal heads equations.

25

P-2 ; [24]

32 [13.

[2 2 ; i2 l]

[2 3 ] 17]

27 [1 9 ] fia [14 [15 [id]

[13]

load or inflow
34

load node
fixed-head, node

— parabolic pump 
— {Xj—  valve
O measurement; point

Figure 7-3: 34-node water network used to generate the training data for 

the pattern recognition system.

The process of generating the training data is shown in the form of block diagram at 

Figure 7-4. It consists of three major blocks.

The first module is the co-tree flows simulator that is used as a substitute for the 

physical water distribution network. It is this module where the leakages are simulated 

by updating the topology information rather than opening hydrants.

In the second module, the loop flows state estimation process is carried out for 

accurate measurements taken from the simulation module but without a knowledge of 

any anomalous event that might have happened, as would be the case in the real 

distribution network. In the third module the confidence limits are found for state 

estimates and the variation of nodal demands calculated at the estimation stage.
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Additionally to the state estimates with their confidence limits the system’s status or 

label o f the current pattern is stored.

System’s status (i.e. normal 
operating state, leakage 

between node i and j ,  etc.)

Accurate 
input data

Co-tree
flows

simulation

Accurate 
measurements 
-----------------H Loop 

flows state 
estimator

State 
estimates and 

residuals 
 ► Confidence 

limit analysis 
for loop-based 
state estimation

State 
estimates and 
residuals with 

confidence 
limits

Actual topology 
(i.e. open valve, 

leakage)

Topology as 
known by the 

system

Information about 
accuracy of meters and 

variability of consumptions

Figure 7-4: Graphical representation of the training patterns generation scheme.

The loop-based numerical algorithms developed in the previous chapters are used 

here to generate the training data necessary for the classification module. The co-tree 

flows simulator, the loop state estimator and the confidence limits analysis are the 

algorithms employed in the block diagram shown at Figure 7-4. However, these 

algorithms were previously developed as standalone applications that were not 

communicating each other, as it is the case in an extended time simulation of the block 

diagram.

It is well known that an extended time simulation of a water network implies 

different sets of nodal consumptions, in/out flows and head values at the boundary 

nodes of the network for each simulation of the distribution system.

On the other hand, the co-tree flows simulator and the loop flows state estimator 

require as input data the loop and the tree incidence matrixes and the initial pipe flows 

that have to satisfy the continuity equation. The input data is obtained from a spanning 

tree which has to be rebuilt at each step of the extended time simulation in order to 

determine the incidence matrixes and the initial pipe flows.

144



Chapter 7 7.3. The synergism o f  the loop algorithms and the neural classification
fo r  fault detection and Identification in water systems

Rebuilding of the spanning tree may represent a computational drawback for the 

block diagram shown at Figure 7-4 which may be a disadvantage when compared to the 

nodal heads variant developed in Gabrys (1997). This is because the block diagram 

implemented with nodal heads equations does not require any input data that may be 

computational expensive to obtain.

However, let us assume that Mip, Q{ and T  are the loop incidence matrix, the initial 

pipe flows and the tree incidence matrix obtained from the spanning tree as described at 

Chapter 3. The nodal demands d  are given.

The training patterns generation scheme is pursued once. The state estimates with 

the confidence limits and the status of the water network are stored for subsequent 

utilization in the classification module.

For the following step in the series of extended time simulations, a new set of nodal 

demands d and head values at the boundary nodes of the network are provided. 

Furthermore, instead of carrying out the time consuming process of rebuilding the 

spanning tree, the new set of initial conditions (i.e. initial pipe flows, incidence 

matrixes) are detennined with the following equation

Q 'i= T -h f (Eq. 7.1)

where Q are the initial pipe flows used in the next extended time simulation.

The loop and tree incidence matrixes are obtained function of the initial pipe flows. 

Therefore, where the direction o f initial flows Q} changes due to the new set of nodal 

demands d , then the loop and the tree incidence matrixes are updated as follows

M\p (:,£ )=  (-1) M lp ( :,k) (Eq. 7.2)

T '(:,k)=  (-1) T (:,k )  (Eq. 7.3)

where k  is the pipe with the reversed flow, M\p and T  are the new loop and tree

incidence matrixes used in the next extended time simulation.

By means of the equations (Eq. 7.1 -Eq. 7.3), the block diagram shown at Figure 

7-4 has been successfully run for a 24 hours extended time simulation. The Central 

Processing Unit (CPU) times were similar with the times obtained for the 

implementation based on nodal heads equations. The 24 hour profiles of consumptions 

and inflows that characterize the normal operating states throughout the day are similar 

with the ones reported in Gabrys (1997) and are shown below for completeness.
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Figure 7-5: 24 hour profiles of consumptions at nodes 1,8, 29, 30 and 31.
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Figure 7-6: 24 hour profiles o f inflows at fixed head nodes 27, 28, 32 and booster

pump between nodes 29 and 18.
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Simulation o f leakages

In the physical system simulator, the leakage is modeled as an additional demand 

lying midway between the two end nodes of a pipe. The additional demand is not 

modeled as a pressure dependent variable and thus can be set to any desired value.

The spanning tree for the 34-node water network is shown at Figure 7-8. The main 

root node is node 30 and a pseudo-loop is added between the fixed head-node 31 and 

the main source node. The inflows to the other fixed-head nodes 27, 28, 29, 32, 33 and 

34 are maintained constant. This means that the pumping stations represented by links 

32-20, 27-29, 28-4, 33-29, 29-19 and 34-1 are assumed to produce a constant inflow 

and are not affected by leakage. Therefore the inflows at the reservoirs 30 and 31 will 

be adjusted during the Newton-Raphson method so that to cover the additional demand 

resulting from the leakage. Please notice also that new labels are assigned to nodes so 

that the tree incidence matrix to become upper triangular.

However, before simulating the leakages perhaps we should observe that the link 

29-18 is a pump with a constant flow that is not included in any loop. Unfortunately, as 

other authors have observed (Bounds, 2002), such situations can not be solved by using 

a simulator based on the loop corrective flows. Moreover, Gabrys (1997) observed in 

the context of the simulator based on the nodal heads equations, that is possible even for 

very small leakages, to restrict the possible leakage area to the three pipes connecting 

nodes 1, 26 and 29. This is because of the constant flow in the pump between nodes 29 

and 18 that separates nodes 1, 26, 29, 33, and 34 from the rest of the network. It has 

been concluded that since changes in the lower part of the network had no bearings on 

the other part, only the upper part will be used for fault detection and identification 

(Gabrys, 1997).

We should take in consideration the last observation and by systematically working 

through the network, ten levels of leaks are introduced, one at a time, in every single 

pipe for every hour of the 24 hour period. Since there are 38 pipes multiplied by 10 

levels of leakages and plus the normal operating status gives 381 patterns of state 

estimates for each hour. For a full day this will become a training set of data consisting 

of 9144 labeled patterns of state estimates computed for accurate measurements and 

leakages ranging from 0.002 to 0.029 [m3/s], .

However, since an additional consumption is used in order to simulate the leaks, this 

would require modifying the incidence matrixes and the initial pipe flows for the loop
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algorithms. Therefore rebuilding the spanning tree for each of the 9144 patterns of data 

would represent a computational drawback for the training patterns generation scheme 

shown at Figure 7-4. This would be also a disadvantage when compared to the 

implementation based on the nodal heads equations, which does not require the 

recalculation of the incidence matrixes.

12 m
13 (13) 26

16 m

Leakage17 ©

Labels of nodes 
and pipes are 

incremented by 
one.20 (25j

24) 22

31

Figure 7-8: Graphical representation of the spanning tree for the 34-node water network.

The solution adopted here is to modify the initial spanning tree built for the normal 

operating state of the water network so that to account for the additional water 

consumption that models the leak. Furthermore, a new set of incidence matrixes and
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initial flows are determined for the simulator algorithm that avoids the time consuming 

process of rebuilding the spanning tree.

Let us now simulate a leakage in the pipe between nodes 17 and 18. In order to 

simulate the 35-node water network (i.e. the original 34-node water network plus the 

leakage modeled as an additional consumption) the incidence matrixes and the initial 

flows are recalculated.

The labels for the nodes and pipes that are situated in the spanning tree below the 

leakage location, are incremented by one so that to preserve the upper form of the tree 

incidence matrix. Observed that although the lower part of the network (i.e. nodes 26, 

29, 33, and 24) has been included in this process, no leaks will be considered for this 

part o f the network.

The new vector of nodal demands d comprises the initial nodal demands d  plus the 

leakage that is introduced as a distinct element in the vector of water consumptions.

One column and one row are introduced in the incidence matrixes (loop and 

topological) so that to take into account the incidence of the two half-pipes resulted 

from the additional demand. Following this, the new initial pipe flows and the loop and 

the tree incidence matrixes are obtained through simple matrix operations (Eq.7.1 -  

Eq.7.3) more efficient to use in terms o f computational time than to reconstruct a 

spanning tree for the 36-node water network.

We can say that the computational time required to rebuild the spanning tree and 

assign new labels for each of the 9144 labeled patterns of data is roughly 15 minutes. 

This is unfavorable when compared to less of 40 seconds obtained by using the graph 

and matrix operations described above. It is worth mentioning also that the 

computational time obtained during the rebuilding of the spanning tree increases 

steadily with the size of the network (i.e. the larger is the size of the network in terms of 

pipe and nodes, more time is required to build the spanning tree and assigned new 

labels). By contrast, the solution presented here is based on a couple of basic matrix 

operations that are almost insensitive to the size of the network.

Finally, the whole set of parameters used during the generation of the training set 

are shown at Table 7-1.
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Head measurements 1,2, 4, 8 , 11, 15, 17, 19, 22, 29, 30,31

Fixed-head inflow measurements 27, 28, 29, 30 ,31 ,32 ,33 , 34

Water consumptions All nodes

Fixed-head measurements 27, 28, 29 ,30 ,31 ,32 , 33,34

Leak levels
0.002, 0.005, 0.008, 0.011, 0.014, 0.017, 

0.020, 0.023, 0.026, 0.029 [m3/s]

Parameters used in confidence limit analysis

Accuracy of head measurements at load 
nodes +-0 . 1 [m]

Accuracy of inflow measurements +-1 %

Variability of consumptions +-1 0 %

Table 7-1: Parameters used during generation of the training data set.

7.3.3. State estimates and classification system design

In order to design the recognition system based on state estimates the set of 9144 

training patterns representing 37 categories were used. The training data spanned across 

24 hour period of water network operation. The 37 categories stand for normal 

operating state and leakages in 36 pipes o f the upper part of the network shown at 

Figure 7-3. The indexes dh of classes (see the description of the pattern recognition 

system in Chapter 6 ) were chosen the same as in the original algorithm (Gabrys, 1997): 

dh =1 -  normal operating state; dh =2 -  leakage in pipe between nodes 3 and 4; dh =3 -  

leakage in pipe between nodes 4 and 20, etc.

The training data has to be first scaled in order to be contained in the range (0,1) as 

required by the pattern recognition system. The range of values for the nodes’ head state 

variables was chosen to be between 2 and 50 [mH20], and for inflows between -0.2 

and 0.2 [m3/s]. There are 6  state variables (heads in fixed-head nodes 27, 28, 32, 33, 34
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and inflow at node 32) that do not change during the 24 hour simulation period and 

since they do not introduce any additional information that could be used to distinguish 

between patterns from different classes they are excluded from the training set.

Furthermore since we will cany out the analysis only for the upper part of the water 

network, the fixed-head node 29, nodes 26 and 1, and the inflows at nodes 29, 33, 34 

will also be excluded from the training set.

In the original work based on patterns of state estimates calculated with the nodal 

heads equations (Gabrys & Bargiela, 1999), it has been observed the existence of 

multiple classes with full membership for a large number o f testing patterns (i.e. 

patterns belonged to classes representing leakages in different pipes). Therefore a two 

level recognition system has been proposed as a means of solving the problem 

(Figure 7-9) (Gabrys, 1997).

The purpose of the first level of the recognition system was to distinguish between 

different typical behaviour of the water system (i.e. night load, peak load etc.) while the 

second level components were responsible for detection of anomalies for some 

characteristic load patterns. The second level was viewed as “experts”. By doing so, the 

distinctive variations in the typical network behaviour for different days o f the week or 

seasons of the year, could be accommodated without the need to retrain the existing 

networks. In exchange, a new expert network was added to the second level and the size 

of the first level network was increased accordingly. Thus the general fuzzy min-max 

Neural Network was able to grow so that to meet the demands of the problem.

Moreover, the dimensions if the input patterns processed by neural networks in the 

first and second level are reduced in comparison to the full pattern. Furthermore, the 

fact that only one of the “experts” is selected for further processing also means that the 

other n-1 “experts” are not active. This way another dimensionally reduction is achieved 

since each of the second level networks covers only small part of the day rather than 24 

hour period.

Input to the first level network will consist in our case (the same as in the original 

system, (Gabrys, 1997)) of inflow to nodes 27 and 28, flow between nodes 29 and 18 

and heads at reservoir nodes 30 and 31. Hence the dimension of the input vectors to the 

second level of neural networks becomes 26.

Six characteristic inflow patterns can be found for six periods during 24 hour water 

network operation and they are marked by dashed vertical lines at Figure 7-6.
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First level Second level

Classification

Classification

I
I
I
i
—------------- Classification

Figure 7-9: Two level recognition system proposed in (Gabrys, 1997). First level 

consists of one neural network of the type shown at Figure 6-4 and its purpose is to 

select one of the n second level “experts”. Input to the first level NN, Xi, comprises all 

the variables not affected by occurrence of anomaly. Second level consists o f n NNs. 

They are called “experts” since each of them is trained using only a part of training set 

and covers a distinctive part o f 24 hour operational period. Input to the second level 

NNs, Xn, comprises all the variables sensitive to occurrence of anomaly. The output of 

the second level NNs is the classification of the water network state.

We are going to use the two level recognition system shown above for 9144 labeled 

patterns of data obtained with the loop flows state estimator and the confidence limits.
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The six distinct periods during 24 hours are 1-5, 6 -8 , 9-12, 13-17, 18-20 and 21-24 

and they are shown at Figure 7-6.

The misclassification rates for the testing set consisting of 9144 examples of loop 

flows state estimates with and without confidence limits computed for accurate 

measurements is shown at Table 7-2.

Training set Parameter
©

Misclassi]Ication rates
Highest

member
ship

Top 2 
alterna

tives

Top 3 
alterna

tives

Top 5 
alternatives

Loop flows state estimates 
computed for accurate 
measurements without 

confidence limits

0 . 2 33.41 21.63 15.63 8.69

0 . 1 1 0 . 1 2 4.62 2 . 6 2.39

Loop flows state estimates 
computed for accurate 

measurements including 
confidence limits

0 . 2 7.83 6.51 5.39 3.71

0 . 1 1 . 0 1 0.73 0.70 0.32

Variable* 0 . 0 0 2 0 . 0 0 1 0 0

Table 7-2: Misclassification rates for a test set consisting of 9144 examples of loop 

flows state estimates computed for accurate measurements.

* Parameter 0  was determined separately for each dimension of each of the six subsets of the 

training set and was set to the value of the largest input hyperbox for each of these six subsets.

The first interesting result is the comparison of the performance of the recognition 

system trained for patterns of loop flows state estimates with the performance of the 

recognition system trained for patterns of nodal heads state estimates. The 

misclassification rates in our case are slightly higher with 2-4% on average (see the 

similar table reported in (Garbys, 1997)). This is due to the high sensitivity of the state 

estimates calculated with the loop flows state estimator to the available pressure and 

flow measurements. For this case we used a large number o f pressure measurements 

compared to the reduced size of the water network shown at Figure 7-3. Consequently, 

the loop flows state estimates used for training in Table 7-2 define a space of patterns of 

data, which are overlapping, making difficult to resolve them in a robust way.

The second observation is regarding the training of the recognition system with 

patterns of loop flows state estimates and confidence limits. The obtained 

misclassification rates compares well with what has been reported in the context of the

155



Chapter 7 :  7.3. The synergism o f the loop algorithms and the neural classification
fo r  fault detection and Identification in water systems

training set consisting o f nodal heads state estimates with confidence limits. However, 

after an examination of the number o f hyperboxes obtained during the training process, 

it has been observed that in order to solve all the overlapings, there were necessary a 

number of hyperboxes equal to the number of patterns of loop flows state estimates and 

confidence limits.

Training set Parameter
0

To]3 5 alternatives
Misclassification

rates
Number of 
hyperboxes

Patterns of 
data

Loop flows state 

estimates computed for 

accurate measurements 

including confidence 

limits

0 . 2 3.71 6411 9144

0 . 1 3.2 7062 9144

0.009 2.9 8597 9144

0.008 0 . 1 8700 9144

0.005 0 8777 9144

Table 7-3: Number of hyperboxes and misclassification rates for different parameters ©.

Since the attempt to solve all the overlappings for the training set has resulted in an 

unacceptable number of hyperboxes representing identical classes of operation (i.e. 

leakages), further efforts to train the recognition system with patterns of loop flows state 

estimates and confidence limits has been abandoned. Instead, the training has been 

performed for patterns of variation of load measurements and confidence limits. This 

has given excellent recognition rates.

7.3.4. Classification of the water network state based 011 patterns of 

variation of load measurements and confidence limits

Bargiela (1984) in the context of the nodal heads LS state estimator introduced the 

idea that the topological errors can be thought of as a pair o f erroneous load
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measurements for which the error terms (residuals representing the mass balances at 

those nodes) are carrying information about a type of topology error.

Since for an accurate model of the network and accurate measurements all the 

residuals should be zero irrespectively of the operating state (e.g. night load, peak load 

etc.), this property would make the use of the residuals in bad data analysis very 

desirable since the presence of any anomalies could be detected by monitoring the 

deviation of the residuals from the zero reference point.

Gabrys (1997) used the previous ideas and trained the recognition system with 

patterns of residuals and confidence limits. Unfortunately, the simulations that were 

carried out showed a very poor recognition rate with a high number of input patterns 

representing large leakages being misclassified. The poor performance was due to the 

inability of the training algorithm to resolve overlappings in a robust way. The 

overlappings were caused by the fact that in the nodal heads LS state estimator, for 

typical variabilities of consumptions and inaccuracies of meters encountered in water 

distribution systems, the ratio of noise (quantified as confidence limits) to the useful 

signal (value of the residual that would result from the occurrence of an anomaly) was 

very high. For the recognition system it meant a large number of input hyperboxes 

concentrated around the zero reference point with big overlapping regions.

In the case of the loop flows LS state estimator, it has been shown that for a pressure 

measurement the mismatch between the actual measurement and the value of the 

measured quantity as computed by our estimation algorithm tends to be zero (i.e. the 

residual is zero) (i.e. referred to the Chapter 4 the section with the Hessian matrix).

It means that the variation of the load measurements (nodal consumptions) due to 

the presence of a pressure measurement will carry out information about the possible 

existence of topological errors. In terms of the recognition system, this ensures that the 

hyperboxes representing topological errors o f different magnitudes will be moved away 

from the zero reference point representing the nonnal operating point for the 24 hour 

operational period. This, in turn, will assure the conditions to deal with the overlappings 

in a robust manner.

To conclude, the presence o f topological error in the vicinity of a pressure or flow 

measurement would result in the alteration o f the nodal demands Ad located in the 

respective region of the water network. By using patterns of variations of nodal
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demands, we can classify the operational state of the water network. Similarly we dealt 

with the residuals from the nodal heads LS state estimator.

For an accurate model and accurate measurements in the loop flow state estimator 

all the variations of nodal demands should be zero irrespectively o f the operating state.

The variation of nodal demands with corresponding confidence limits have been 

used. The training data have been scaled and mapped onto the [0,1] range.

A single neural network of the type shown at Figure 6-4 has been used for the entire 

operational period of 24 hours.

The testing showed excellent recognition rates for both patterns of variations of 

nodal demands as well as patterns of variations of nodal demands with confidence 

limits. The initial maximum size of hyperbox was set to the value © ~ 0.1. The training 

was completed after one run through the entire training data of 9144 examples of 

variations of nodal demands and confidence limits. There were no misclassifications.

In Table 7-4 there are shown the number of hyperboxes created during the training 

process. Since no information about the level of leakage has been included in the 

training set, then by increasing the size of the hyperbox we could eventually obtain a 

single hyperbox that is representing all the levels of leakage from a pipe.

Training set Parameter
©

Number of 
hyperboxes

Patterns 
of data

Missclasification
rates

Variations of nodal 
demands computed for 
accurate measurements 

without confidence limits

0 . 2 53 9144 0

0.25 47 9144 0

0.5 39 9144 0

Variations of nodal 
demands computed for 
accurate measurements 

including confidence limits

0 . 2 62 9144 0

0.25 52 9144 0

0.5 39 9144 0

Table 7-4: The significance of the parameter © on the number of hyperboxes and 

misclassification rates for a test set consisting of 9144 examples of variations of nodal

demands and confidence limits.

To understand the reasons for the excellent recognition rates of the classification 

system let us show a couple of examples of the behaviour of the variations of nodal
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demands for different levels of leakages between nodes 3 and 4 (Figure 7-10) and 

between nodes 15 and 10 (Figure 7-11).

Figure 7-10a presents an example of variation of nodal demand at node 3 found in 

the course of state estimation carried out for accurate measurements. As one can see, 

even for a small leakage of 2 [/s] the variation of nodal demand at node 3 is distinctive 

from the zero reference point (“normal operating point”). At Figure 7-10b we can see 

the influence of the random measurement errors on the variation of nodal demand at 

node 3. The monotonic trend caused by the leakage is not too much distorted by the 

measurement noise. Finally, Figure 7-10c shows effective ranges within which the 

variation of nodal demand at node 3 can vary. The same experiment is carried out for 10 

levels of leakage between nodes 15 and 1 0  and the variation of nodal demand at node 

15 is shown at Figure 7-1 la.
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Figure 7-10: Examples of variation o f nodal demands for different levels of leakage 

between nodes 3 and 4; a) variation of nodal demand at node 3 for accurate 

measurements; b) variation of nodal demand affected by typical measurements 

inaccuracies; c) examples of tight confidence limits marked with for variation of 

nodal demand at node 3 represented by solid line.
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Figure 7-11: Examples o f variation of nodal demands for different levels of leakage 

between nodes 15 and 10; a) variation of nodal demand at node 15 for accurate 

measurements; b) variation o f nodal demand affected by typical measurements 

inaccuracies; c) examples of tight confidence limits marked with for variation of

nodal demand at node 15 represented by solid line.
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Two main conclusions can be drawn up from the last experiments:

- The ability o f the loop flows state estimator to make full use of the pressure 

measurements has produced patterns o f variation of nodal demands that are 

distinctive from the zero values corresponding to the normal operating point. 

Consequently this helped the identification of the topological errors that have been 

deliberately introduced in the system.

- Tight confidence limits on the variation of nodal demands can be also attributed to 

the previous bullet point and it further explains the similar recognition rates for the 

testing set consisting o f 9144 examples of variations of nodal demands and 

confidence limits shown at Table 7-4.

In particular our water network contains a high number of pressure measurements, 

which makes it easier to spot the leakages or other types o f malfunctions (i.e. wrong 

status of valves). For the purposes of comparison, we have kept the same number of 

measurements and accuracy of the measurements as the measurement data used in the 

original study performed in (Gabrys, 1997) in the context of patterns of state estimates 

obtained with the nodal heads state estimator. In Figure 7-12 it is shown the location of 

the pressure measurements together with the new labels for nodes, and with dashed 

lines are shown the chord pipes.

The conclusions from above are reinforced in Figure 7-13 where the confidence 

limits on the variations of nodal demands representing normal operating states are 

pictured in form of dashed lines, while examples of the input patterns representing 

different levels of leakage in the pipe between nodes 27 and 26 (4 and 3 on the old 

notation), are marked by **’. Once again, the tight confidence limits for the normal 

operating state together with the distinctive variation of the nodal demands located in 

the vicinity o f the leakage are the reason for the excellent performance of the detection 

system based on patterns of variation of load measurements.

Observed that for ease in interpretation, for the variation of nodal demands that are 

located near the leakage, we have used the labels for nodes and pipes from Figure 7- 

9, which are shown again below. This assures some consistency between the proximity 

of the nodal demands to the position of the leakage and the information presented in 

Figure 7-13.

A similar simulation is carried out for three levels of leakage (29 [1/s], 17 [1/s] and 2 

[1/s]) in pipe between nodes 14 and 16 (nodes 15 and 10 with the original labels), for
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which the results are shown at Figure 7-14. It is easy to identify the presence o f the 

leakage by looking to the variation of the nodal demands that are situated outside of the 

upper and the lower bounds displayed with dashed lines. The examples shown at 

Figures 7-13 and 7-14 were obtained for the same operational time period, which 

explains the similarity of the confidence intervals for the normal operating state.

\ 4 6

24 ( 2

25

26(3

\ 4 0

3 6 /
( 2) 30

Figure 7-12: New labels for nodes which forms an upper triangular incidence matrix; 

with dashed lines are shown the co-tree pipes which close the loops.

Since the testing set consisting of patterns of variation o f load measurements and 

confidence limits has shown excellent recognition rates, a similar study carried out on a 

larger amount of pattern examples would come to confirm again the findings presented 

in this section.
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Figure 7-13: Examples of variation of nodal demands for different levels of leakage

between nodes 27 and 26 (nodes 3 and 4 if  you refer to the original notations); a) 

leakage of 29 [1/s]; b) leakage of 17 [1/s]; c) leakage of 2 [1/s].
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Figure 7-14: Examples of variation o f nodal demands for different levels of leakage 

between nodes 14 and 16 (nodes 15 and 10 if you refer to the original notations); a) 

leakage o f 29 [1/s]; b) leakage of 17 [1/s]; c) leakage o f 2 [1/s].
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7.4. Conclusions

The suitability of interpretation/classification of the water network state by using a 

fuzzy neural network for pattern recognition has been once again confirmed.

The assumption that fault diagnosis can be based on pattern analysis without a need 

to employ any heuristic or specialist knowledge has been again highlighted within the 

context of patterns of Toop-equations based’ state estimates and confidence limits and 

patterns of variation of nodal demands and confidence limits.

It has been shown that the Toop-equations based’ state estimates can be successfully 

used to train the neural recognition system. Slightly higher misclassification rates have 

been obtained when compared to the training of the recognition system with nodal 

heads based state estimates. This is because of smaller separation of patterns 

representing different classes (topological errors, operational time periods) and due to a 

much higher ratio of the sensitivity of the nodal heads to the existing set of pressure and 

flow measurements.

The recognition system based on confidence limits for Toop-equations based’ state 

estimates has performed somehow better for the data for which it has been trained for. 

However, this came at the expense of a high number of hyperboxes necessary to cover 

the space of input patterns.

On the other hand, the classification of the water network state based on patterns of 

variation of load measurements and confidence limits has given excellent results.

The neural network used for fault detection in this case has been essentially a 

simpler version of the recognition system used above. It consisted o f a single neural 

network of the type shown at Figure 6-4, which has been used for the entire 24 hour 

period of operations o f the realistic water distribution network.

Remarkable recognition rates have been obtained for the detection o f anomaly based 

on patterns of variation of the nodal demands and confidence limits. The overlapping 

regions o f different classes could be resolved in a robust way. This was due to the fact 

that the presence of topological error o f different magnitudes have been reflected in the 

variation of the nodal demands which sprung up the hyperboxes from the zero reference 

point representing the normal operating point for the entire 24 hour operational period.

While the overlappings could be resolved in a robust manner, it also kept the 

number of hyperboxes representing different classes to a small number. This is because
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identical topological errors happening at different operational times have resulted in 

similar variations of the nodal consumptions, which in turn were represented by the 

same hyperbox.

The use of the Toop-equations based’ state estimates and confidence limits, and the 

variation of nodal consumption with confidence limits to train the neuro-fuzzy 

recognition system for detection of faults in a water distribution system has been proved 

successful.
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8.1. Conclusions

The purpose of this research project was to investigate the implications o f the loop 

equations formulation o f the state estimation procedure for the implementation o f 

decision support systems in the operational control o f water networks. The nonlinear 

models and large scale o f the water distribution systems made them both a 

challenging problem to be tackled and a very good validation example for a prototype 

decision support system useful in other utility systems.

We divided the project in two distinctive parts. In the first part, we used the loop 

equations for the implementation o f a co-tree flows simulator algorithm and 

developed a novel loop flows state estimator. A particular emphasis has been placed 

on the fast calculation of the initial input data (the incidence matrixes and the initial 

pipe flows), enhancement of the results and good convergence properties for the 

numerical algorithms.

The second part o f the project was concerned with uncertainty based reasoning in 

modeling and simulation o f water networks (confidence limit analysis) as a prelude to 

an existing module for interpretation and classification o f the water system state based 

on a fuzzy neural network pattern recognition system.

All the developed modules have been integrated into an efficient operational 

decision system used for fault detection and identification for a realistic 34-node water 

network.

Short summaries o f the problems uncovered and solutions found in the course of 

investigations as well as the main conclusions of the project are presented below.
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8.1.1. Loop equations and simulator algorithm

Steady state analysis of flows and pressures in a distribution system has been a 

major issue for hydraulic engineers involved in the design, management or planning 

of water distribution system. This interest has led to the development o f many 

methods of analysis (simulator algorithms) using various types o f decomposition (i.e. 

the independent variables used to build the network equations).

In this work the loop corrective flows were used to express the network equations. 

In particular, a co-tree flows formulation, which is derived from the basic loop 

corrective flows algorithm, has been developed. The emphasis was put on the fast 

determination o f the input data required by the simulator (the loop and the topological 

incidence matrixes and the initial flows) as well as the quick calculation of the nodal 

heads at the end of the simulation. It has been shown that the spanning trees can 

provide the means for obtaining this information.

Due to the properties highlighted above, the co-tree flows formulation o f the 

simulator algorithm has some advantages over the original formulation based on loop 

corrective flows. In relation to other simulators (e.g. nodal heads simulator), the co

tree flows simulator is numerically stable and has a superior rate o f convergence.

The developed simulator algorithm served as a preamble to a novel state 

estimation techniques based on loop corrective flows.

8.1.2. Loop equations and water network state estimation

Over the last two decades state estimators gradually became the key utility for the 

implementation of monitoring and control o f large scale public systems such as water, 

gas or electric power distribution systems.

In the context of the state estimation o f water distribution systems, a couple o f 

problems have been addressed. One o f these problems is the ill-conditioned problem 

which can appear for example in particular water networks like ones displaying low 

pipe flows. In those cases the numerical stability of the state estimator may suffer. A 

solution to this problem is to employ the more stable loop flows state estimation 

techniques.
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Therefore a new formulation o f the standard least square (LS) criterion for water 

networks has been developed in which the loop corrective flows and the variation o f 

nodal demands are the state variables.

In spite of the increased size o f the state vector (loop corrective flows plus 

variation o f nodal demands > nodal heads), a satisfactory convergence is obtained 

through an enhancement in the Jacobian matrix for the loop corrective flows. Hence, 

the convergence o f the new state estimator is comparable with the convergence 

obtained for the nodal heads variant of the LS state estimator for similar water 

networks and testing conditions.

However, the novel LS state estimator has exhibited the same lack of numerical 

stability as the nodal heads LS state estimator when it has been tested on difficult 

examples (e.g. networks with low pipe flows). We have focused our attention on the 

tree incidence matrix T which expresses the incidence of nodes and pipe in the 

spanning tree. In our state estimator this matrix relates the variation of nodal demands 

to the tree pipe flows. It has been shown that by zeroing some columns o f the tree 

incidence matrix, it is possible to run the state estimation problem for some parts o f 

the water network while for the rest o f the network the simulation problem is carried 

out. By constraining the state estimation procedure to the regions o f the water network 

where the real measurements are located, a limitation of the spreading o f the variation 

o f nodal demands has been obtained. Thus, it was possible to avoid the lack o f 

numerical stability characteristic to the nodal heads LS state estimators.

Ultimately some o f the intrinsic properties o f the novel loop flows state estimator, 

were revealed. It has been shown that because of the way the network equations are 

constructed, the introduction o f accurate pressure measurements can significantly 

improve the accuracy o f the state estimates. Otherwise the corrupted pressure 

measurements may affect the final state estimates and eventually mislead the human 

operator.

The inflows at the fixed head nodes could be also used as measurement data. 

Alternatively, the head values o f the fixed nodes could be used to form the 

pseudo-loops in which case the inflows are used only to calculate the initial pipe 

flows. It has been also observed that flow measurements may improve the accuracy of 

the state estimates but not at the extent of a pressure measurement.

An efficient and effective loop flows LS state estimator has been developed that 

has been tested successfully on realistic water networks.
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8.1.3. Loop equations and confidence limit analysis

Bargiela and Hainsworth (1989) were perhaps the first to investigate the precise 

nature and level of the measurements uncertainty impact on the accuracy to which 

state estimates can be calculated. It is believed that the safety o f the operational 

control can be enhanced when operators are given not only the information about 

estimates o f the current operating state but also an indication o f how reliable these 

estimates are for a given set of measurements at a particular operating state. In 

confidence limit analysis this information is provided in the form o f upper and lower 

bounds for each state estimate variables.

Bargiela and Hainsworth (1989) found that in the context o f the nodal heads LS 

state estimator, the Jacobian matrix can be used as a sensitivity matrix between the 

measurement vector and changes in the state vector (nodal heads). This formed the 

basis o f a sensitivity matrix approach to confidence limit analysis. It has been also 

observed that the method produce results that compare well with the Monte Carlo 

results while the computation time is much shorter. The Monte Carlo method is the 

best known and mathematically the most reliable method of quantifying the state 

uncertainty which is based on repeated simulation for a large number o f parameters 

with random variations.

In this work new confidence limit analysis algorithms based on the novel loop 

flows state estimator were developed.

First, it is shown that the Jacobian matrix from the co-tree flows simulator 

algorithm can not act as a sensitivity matrix between the loop corrective flows and the 

pseudo-measurements because o f the non-realistic way the initial loop head losses are 

calculated. This has a negative impact on the calculation o f the confidence limits that 

are much bigger than expected it.

Instead, a sensible number o f simulations have been used, one for each 

measurement modified with its defined maximum variability, in order to determine an 

experimental sensitivity matrix. The experimental sensitivity matrix has been used to 

determine the nodal heads and the inflows for a random error in the measurement 

data. The confidence limits obtained with the experimental sensitivity matrix are 

comparable with the ones produced with the pseudo-inverse o f the Jacobian matrix 

from the nodal heads state estimator when no real measurements are introduced. The
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Experimental Sensitivity Matrix (ESM) method provides a trusted reference point 

against which other ‘loop-equations based’ confidence algorithms can be tested. 

However, the ESM method required a large number o f simulations equal to the 

number o f real measurements and pseudo-measurements, which can represent an 

unrealistic proposition for the real-time applications especially for large water 

networks. An alternative method has been developed, the Error Maximization (EM) 

method, which requires only an extra simulation in order to derive the confidence 

limits. An additional simulation is carried out for the estimated measurement vector 

instead o f the observed measurement vector, which is modified with the highest level 

of inaccuracies. Following this the confidence limits are calculated by subtracting the 

resulted state vector from the optimal state vector obtained for the observed 

measurement data. Finally the set o f confidence limits are compared with the ESM 

method and it shows a very good similarity. The computational efficiency o f the EM 

method renders it suitable for online decision support applications.

8.1.4. Classification of the water network state based on patterns of 

‘loop-equations based’ state estimates and confidence limits

The appropriateness o f interpretation/classification o f the water network state by 

using a fuzzy neural network for pattern recognition has been once again confirmed. 

The assumption that fault diagnosis can be based on pattern analysis without a need to 

employ any heuristic or specialist knowledge has been again highlighted within the 

context o f patterns o f Toop-equations based’ state estimates and confidence limits.

It has been shown that the Toop-equations based’ state estimates can be 

successfully used to train the neural recognition system. The emphasis has been put on 

the task o f detection and accurate location o f topological errors. Thus the performance 

of the recognition systems has been tested for a large number o f topological errors 

(i.e. 10 different levels of leakages have been simulated for all pipes) over the 24 hour 

period o f operations of a realistic water distribution network.

Slightly higher misclassification rates have been obtained when compared to the 

training o f the recognition system with nodal heads based state estimates. This is
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because of smaller separation o f patterns representing different classes (topological 

errors, operational time periods) and due to a much higher ratio o f the sensitivity o f  

the nodal heads to the existing set of pressure and flow measurements.

On the other hand, the recognition system based on confidence limits for ‘loop- 

equations based’ state estimates has performed somehow better for the data for which 

it has been trained. However this came at the expense o f an increased number o f 

hyperboxes necessary to cover the space o f input patterns. Eventually it has been 

observed that for a given operational period of time in order to solve all the 

misclassifications it might be necessary to have a number o f hyperboxes equal to the 

number of input patterns o f data (in this case a hyperbox is equal to a fuzzy input 

pattern described by the lower and upper limits on each input vector variable). This is 

due to the high non-linearity o f the input space, which consists o f regions of different 

classes that are overlapping, making difficult to separate them without increasing the 

number o f hyperboxes.

The non-linearity o f the input space has been attributed to the properties o f the 

loop flows state estimator of making full use of the existing pressure and flow 

measurements. This resulted in patterns o f state estimates with confidence limits, 

corresponding to different operational time periods and topological errors, which were 

overlapping, and so it has made it difficult to identify and classify them correctly 

except by increasing the number o f hyperboxes (obtained by decreasing the parameter 

© that controls the maximum size of the hyperbox).

In conclusion, the training o f the fuzzy neural recognition system with patterns of 

Toop-equations based’ state estimates and confidence limits although successful has 

revealed the following fact: the high sensitivity o f the nodal heads and inflows to the 

available set o f real measurements in the loop flows state estimator results in patterns 

o f state estimates and confidence limits that are overlapping which makes it difficult 

to identify and classify the data patterns without decreasing the size o f the hyperbox 

which further results in increasing the number o f hyperboxes that are covering the 

input pattern space.

However, the successfully application o f the fuzzy neural network for pattern 

recognition to the water system identification task based on patterns o f Toop- 

equations based’ state estimates and confidence limits, has confirmed the previous 

findings that the high level o f information processing by human operators can be 

mimicked, to a large extent, by a suitable neural based recognition system.
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8.1.5. Classification of the water network state based on patterns of 

variation of load measurements and confidence limits

By far the classification o f the water network state based on patterns o f variation 

o f load measurements and confidence limits performed the best in our study.

The great advantage o f processing the variation o f load measurements (nodal 

consumptions) is the fact that irrespectively o f the operating state, when there is no 

anomaly present in the system, the variation of the nodal consumptions is zero, or in 

practical terms, it is contained within the confidence limits. This represents a universal 

reference point (hyperbox) labeled as normal operating state. All the other patterns 

representing leakages and other possible malfunctions can be mapped into the space 

around this zero reference point.

The neural network used for fault detection in this case has been essentially a 

simpler version of the recognition system used in the previous paragraph. It consisted 

o f a single neural network o f the type shown at Figure 6-4, which has been used for 

the entire 24 hour period o f operations o f the realistic water distribution network.

Excellent recognition rates have been obtained for the detection o f anomaly based 

on patterns o f variation o f the nodal demands and confidence limits. The overlapping 

regions o f different classes could be resolved in a robust way. This was due to the fact 

that the presence o f topological error o f different magnitudes have been reflected in 

the variation of the nodal demands which sprung up the hyperboxes horn the zero 

reference point representing the normal operating point for the entire 24 hour 

operational period.

While the overlappings could be resolved in a robust manner, it also kept the 

number of hyperboxes representing different classes to a low limit. This is because 

identical topological errors happening at different operational times have resulted in 

similar variations o f the nodal consumptions, which in turn were represented by the 

same hyperbox.

Finally, the use o f the Toop-equations based’ state estimates and confidence 

limits, and the variation o f nodal consumptions with confidence limits to train the 

neuro-fuzzy recognition system for detection o f faults in a water distribution system 

has been proved successful.
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It is postulated the combination o f the training o f the recognition algorithm with 

patterns o f nodal heads state estimates and confidence limits, and patterns o f variation 

o f nodal demands and confidence limits obtained with the loop flows state estimator 

would result in excellent recognition rates.

8.2. Further research

As the simulation studies presented in this thesis have shown it is possible to use 

the loop equations in developing robust state estimation techniques for solving water 

networks. However, the full potential o f these numerical algorithms can only be 

realized when implemented on a real-time monitoring and control operational decision 

system for water distribution networks.

The GFMM classification and clustering neural network has performed well for 

different training and testing patterns o f data consisting of ‘loop-equations based’ state 

estimates and confidence limits as well as the variation o f nodal demands and 

confidence limits, respectively. However, similar to the training o f the recognition 

algorithm with nodal heads state estimates, the hyperboxes created in the training 

stage with patterns o f Toop-equations based’ state estimates depend on the order o f 

presentation o f the training patterns. This reinforces the previous observation referred 

to the initial fuzzy neural recognition system, with regard to the optimization o f the 

GFMM algorithm so that the final partitioning of the pattern space is independent of 

the order o f presentation of the training patterns.

Since application o f the loop equations to the operational control of water systems 

has shown to be successful the following topics deserve further research effort:

• Including o f various non-linear hydraulics elements (pressure reducing valves, 

non-return valves, pressure sustaining vales) into the numerical algorithms 

developed.

• Developing an operational decision system for real-time control and 

monitoring o f water system by integrating seamlessly the modules developed 

in this report with other information systems such as Geographical Information
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Systems (GIS), Supervisory Control, Automation and Data Acquisition 

Systems (SCADA), databases and customer billing systems.

Since the study of the recognition system performance in association with 

different state estimation procedures has been successfully the following bullet points 

may worth further investigation:

• Modification o f the neural pattern recognition system to the detection o f 

multiple malfunctions.

• Comparison o f the performances o f the fuzzy neural recognition system to 

other architectures of neural networks (e.g. radial basis neural networks, self

organizing map).
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