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Abstract

Abstract

It can be argued that the future of machines lies in embedding intelligent systems within 

them. Unfortunately, sophisticated artificial intelligence (AI) software is usually large 

and complicated, requiring powerful processors that are not practical in most embedded 

systems owing to cost, size, and heat production. One solution is to distribute the 

intelligent processing across many less powerful processors. This research has 

investigated the suitability, characteristics, and potential of a distributed blackboard 

system as an* architecture for the implementation of complex AI software in an 

embedded distributed processing network. A distributed blackboard system called 

DARBS (Distributed Algorithmic and Rule-based Blackboard System) has been 

implemented on a distributed processing network comprising up to 18 personal 

computers. Using the TileW orld environment as a test-bed, the distributed set-up was 

found to outperform a non-distributed one, although both were non-optimal. The 

speedup factor of the distributed blackboard system increases up to a maximum as the 

number of agent processors (APs) increases, after which it drops a little and levels off. 

To obtain maximum speedup for a given number of agents, it was found that an even 

distribution of agents across the APs is required, while avoiding saturation of the 

blackboard. The optimum number of agents per AP was found to be two, with 

blackboard saturation starting at eight APs. Based on these findings, an embedded 

version of DARBS (called emDARBS) was designed and implemented on a SARNet 

parallel processing network of low-cost StrongARM processors. This implementation 

has demonstrated that a distributed blackboard system is suitable for embedded 

distributed processing networks, but that some changes are required to tailor it for 

embedded systems. The potential for embedding intelligent systems in everyday 

machines has thus been demonstrated.
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Introduction

1. Introduction

People these days are demanding more intelligence from their machines, from small 

handheld devices to cars and airplanes. They want machines that are intelligent enough 

to work out what they want from them. They also want machines that are able to 

constantly adapt to their ever-changing requirements and needs. Nowadays, these 

machines contain at least one processor or micro-controller embedded within them. 

These machines are said to have embedded systems in them. The intelligence of future 

machines lies in their embedded systems. In order for machines to be intelligent, their 

embedded systems need the intelligence to know what to do and when to do it, based on 

their sensory data and knowledge of the user. These types of intelligent embedded 

systems would more easily fuse into society than embedded systems that require the user 

to have a deep technical knowledge. Embedded systems should be able to learn and 

► adapt to the user instead of the user learning and adapting to it [1]. Therefore, the future

of machines, such as mobile phones, washing machines, watches, televisions, industrial 

robots, cars etc. lies with its intelligent embedded systems.

1.1 A distributed blackboard system approach

To achieve the future vision of intelligent embedded systems, complex intelligent 

software is required. This type of intelligent software is usually large, complicated and 

processor-intensive, thus requiring powerful processors. Unfortunately, in embedded 

systems, processing power is a constraint. As embedded systems become more 

intelligent and require less human intervention, the reliability and robustness of the 

^ systems also become constraints, especially for life-critical systems and/or mission

1
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critical systems. Example areas of these embedded systems include: space exploration, 

military, aviation and health care. Embedded systems have many other types and degrees 

of constraints and not all constraints can be satisfied at the same time. A detailed 

discussion about embedded systems is in section 2.1.

One method of increasing the complexity and intelligence of embedded systems while 

still meeting the requirements and constraints of the embedded systems is to distribute 

the intelligent processing across many less powerful processors. These processors can be 

networked together so that they can share their information as they work towards their 

common goal. Distributing the processing would increase the overall processing power 

and at the same time make it possible to have redundancy, thus increasing the reliability 

and robustness of the overall system. Usually, intelligent machines are made up of 

modules of intelligent embedded systems and therefore would fit very well in a 

distributed processing network. A typical structure for a distributed processing network 

can be seen in Figure 1.

It could be argued that increasing the number of processors used could increase the 

chances of hardware failure. However, it is argued that the overall system can be better 

tested in small modules compared to a single, large and complex system, thus reducing 

the chances of failure. A detailed review of distributed processing networks is given in 

section 2.4.

2
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PN

COMMUNICATION NETWORK

( ^ PN^J) Processor Node 

* ^  Bi-directional communication link

Figure 1. Typical structure of a distributed processing network

On the software side, in order to exhibit complex intelligent behaviour, a variety of 

artificial intelligence (AI) methods (e.g. neural network, rule-based system, genetic 

algorithm, etc.) working together as one system is required. This is because no one AI 

method is suitable for solving all AI problems. For example, neural networks are 

particularly suitable for solving pattern classification problems especially if the patterns 

to be classified are not known to the designer [2]. Rule-based systems, on the other hand, 

are suitable to solve problems where the domain knowledge of the problem is fully 

known and can be easily coded into rules on to the system [3]. Genetic algorithms are 

suitable for optimisation problems, especially if the search space is of multiple 

dimensions [4]. Therefore, when complex intelligent behaviour is needed to solve a 

problem, an artificial intelligence architecture that can synergise all these different AI 

methods together in a distributed processing network is required. One such architecture 

that fits perfectly to this distributed processing network is the blackboard architecture [5]. 

The blackboard architecture, also known as blackboard system, is analogous to a team of 

experts who communicate their ideas by writing them on a blackboard. The team of

3
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experts, in this case, consists of the different AI methods working together to solve the 

overall problem on the blackboard. Figure 2 shows how a blackboard system would fit 

on a distributed processing network. A detailed review of the blackboard architecture is 

given in sections 2.2.1.

Rule-based
system

Genetic
algorithm

Neural
network

Blackboard

COMMUNICATION NETWORK

Processor node 

^---------► Bi-directional communication link

Figure 2. Distributed blackboard system on a distributed processing network

There are limited studies of using the blackboard system approach for distributed 

embedded processing networks and therefore there is a need to investigate the suitability 

and potential of this approach for distributed embedded processing networks and 

embedded systems in general. The challenges that arise from implementing a blackboard 

system in a distributed embedded processing network will also need to be investigated.

1.2 Aims of this research

This research aims to investigate the suitability, potential and characteristics of a 

blackboard system in a distributed embedded processing network. This research would 

provide the foundation for future implementation of intelligent embedded systems. So

4
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far, traditional blackboard systems have all been implemented in a single processor 

system with each expert taking turns to be executed. This is because in a single processor 

system only one instruction can be executed at a time. A controller determines which 

expert will be executed next, based on the information that is on the blackboard. More 

recently, distributed blackboard systems have been developed that make use of the 

inherent parallelism of the blackboard system. The University of Edinburgh previously 

had a research project to use a distributed blackboard system in a distributed processing 

network [6]. A Canny edge detector algorithm [7] was implemented in a distributed 

blackboard system running on a Meiko multi-transputer system. In the research, it was 

discovered that the distributed blackboard system approach created larger overheads 

which in turn reduced the parallel performance of the algorithm. However, blackboard 

systems provide greater implementation flexibility in terms of being able to implement 

different modules known as knowledge sources (see section 2.2.1). In this thesis, even 

though maximum parallel performance cannot be achieved, blackboard systems are 

selected because of their implementation flexibility.

The performance of a distributed blackboard system has been investigated in a 

NCUBE/10 hypercube architecture [8]. In that research, the blackboard system is 

implemented in fine-grain parallelism [9], where the blackboard and the knowledge 

sources are split into many parts to run on separate nodes. This type of fine grain 

parallelism is good for maximising speedup but complicates the implementation of the 

blackboard system. In this thesis, coarse-grained parallelism [10] is chosen instead as it 

will allow the programmer to concentrate more on knowledge implementation and 

ignore issues of fine-grained parallelism. It is suggested that the increase in performance 

of the blackboard system in a distributed processing network would be 5 to 10-fold
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compared to a blackboard system in a single processor [11]. This increase in 

performance would need to be tested and analysed to see if it is suitable for an intelligent 

embedded system.

Implementing distributed blackboard systems for embedded systems has been proposed 

before, for example, a distributed blackboard architecture to support multi-agent systems 

[12]. In that paper, it is suggested that multi-agent systems would be needed to 

implement future intelligent systems, and the distributed blackboard architecture is the 

ideal architecture to implement this. This thesis investigates the benefits of multiple 

agents in a distributed blackboard system.

The research aims can be summarised as follows:

• To investigate the suitability, potential and characteristics of a distributed 

blackboard system in a distributed embedded processing network by:

o First, implementing a distributed blackboard system in a distributed 

processing network (chapter 3). 

o Then, running performance experiments and evaluating the suitability, 

potential and characteristics of the distributed blackboard system in the 

distributed processing network (chapter 4). 

o Finally, based on the results of the performance experiments, implement 

the distributed blackboard system on a distributed embedded processing 

network. The actual distributed processing hardware chosen is not 

important as long as the behaviour of the distributed blackboard system 

can be investigated on a truly parallel platform (chapter 5).

6 i
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•  To investigate the challenges that arise from implementing a distributed 

blackboard system in a distributed embedded processing network (chapter 5 & 6).

• To evaluate critically the effectiveness and feasibility of a distributed blackboard 

implementation in a practical embedded application (chapter 6).

1.3 Summary

The future of machines in general lies in their intelligence. In the future, intelligent 

machines that are made up of many intelligent embedded systems would be able to 

constantly adapt to the ever-changing user’s requirements. These intelligent embedded 

systems require complex intelligent software in order to exhibit this type of intelligent 

behaviour. These types of complex intelligent software are usually processor intensive. 

Unfortunately, embedded systems usually have, amongst others, processing power 

constraints and as such distributing the intelligent software across many less powerful 

processors is one way of reducing the processing power constraint. Complex intelligent 

software is usually made up of many different types of artificial intelligence techniques 

(e.g. neural network, rule-based system, genetic algorithm, etc.) all working together to 

solve a common problem. The blackboard architecture is a suitable architecture for 

different artificial intelligence techniques to work together in a distributed processing 

network.

7
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The aim of this research is to study the suitability, potential and characteristics of a 

distributed blackboard system in a distributed embedded processing network. The 

performance of the distributed blackboard system in the distributed processing network 

will be investigated. The challenges that arise from implementing the distributed 

blackboard system in a distributed embedded processing network and how this would 

affect future implementation of embedded distributed blackboard system will be studied.
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2. Literature survey

This chapter gives a detailed overview of the subject areas that this research covers. The 

areas that are discussed are: embedded systems, artificial intelligence systems, intelligent 

embedded systems, distributed processing networks and distributed blackboard systems 

in distributed processing networks.

2.1 Overview of embedded systems

Nowadays, the miniaturisation of electronic components has made it possible for an 

entire computer system to be fitted onto a single integrated circuit (IC). This has led to 

the development of embedded systems. Embedded systems are generally small self- 

contained specific-purpose systems that comprise of both hardware and software [13]. 

They are included in, for example, mobile phones, watches, microwave ovens and 

photocopiers. A general block diagram of an embedded system is shown in Figure 3. 

Embedded systems take in data from their environment either in the form of sensory data 

or communication data from other embedded systems. They then process the input data 

according to their software and produce output in the form of display or data to be 

further transmitted to other embedded systems. Some embedded systems use direct 

memory access (DMA) [14] for collecting and sending input and output. These days, 

complex embedded systems are made up of a few embedded systems connected together. 

For example, a car’s engine management system, anti-lock braking system, temperature 

control system and car navigation system are all connected to the driver’s display system.

9
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Sensory input or 
communication data 
from external system

Environment or 
external system

Possible direct 
memory access

Possible direct 
memory access

Display output or transmit data to 
external system.

Processor

Output Components

Input Components

Memory 
(Contains the embedded 
system’s software and 

working memory)

Figure 3. General block diagram of an embedded system

Embedded systems differ from normal general-purpose computers in that they generally 

have tighter constraints. The main constraints of embedded systems are cost, processing 

power, memory capacity, reliability, electrical power consumption, physical size, real­

time and working environment. These constraints will be explained in the following 

sections.

Implementations of embedded systems vary greatly as each embedded system has 

different degrees of constraint. As such, there is no single architecture that all embedded 

systems can use. For example, the cooling control system for a nuclear power plant has 

tight real-time and reliability constraints [15] whereas an electronic dictionary has tight 

cost and physical size constraints. The nuclear power plant would use a distributed
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processor architecture to meet the real-time and reliability constraints [16] whereas the 

electronic dictionary would use a low processing power processor to keep the cost down.

For the envisioned future embedded systems that are able to learn and adapt to the user’s 

needs, complex artificial intelligence software is required. However, complex artificial 

intelligence software is usually processor intensive and this is in conflict with the 

processing power constraint. Therefore, there is a need for artificial intelligence software 

that is not processor intensive yet complex enough to be able to leam and adapt to the 

user’s needs.

2.1.1 Cost

The main constraint of any commercial embedded systems is cost. This includes both 

development and manufacturing costs. One way of reducing the total cost of an 

embedded system is to use the cheapest possible components that meet the minimum 

specifications. Another way of reducing development costs is to use off-the-shelf 

modules (both hardware modules and software modules). This is because off-the-shelf 

modules have been tried and tested by other manufacturers and are less likely to incur 

extra testing and verification costs. An example of low cost component design is in the 

PicoRadio networks [17]. PicoRadio network components provide low-cost, low- 

powered wireless communication for embedded systems.

2.1.2 Processing power

The processing power constraint is mainly governed by the price of the processor and the 

amount of electrical power consumed. Processing power is commonly measured in

11
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MIPS (millions of instruction per second) [18] and greater MIPS values mean more 

powerful processors. Usually, the more powerful the processor, the more electrical 

power (in terms of Watt) it consumes. Another consideration for processing power is the 

number of bits the processor processes simultaneously (e.g. 8-bit, 16-bit, 32-bit, or 64-bit 

processor). In general, 64-bit processors with high MIPS are more expensive than 8-bit 

processors with low MIPS. For example, the MIPS for a 32-bit 200MHz StrongARM 

SA-110 RISC processor according to the Dhrystone benchmark [19] version 2.1 MIPS is 

230 [20].

2.1.3 Memory capacity

The memory capacity available in an embedded system is also governed by the cost of 

the memory. Although the price per memory capacity (measured in terms of 

cost/megabyte) has decreased significantly throughout the years, in general, bigger 

memory capacity costs more than smaller memory capacity. As such, embedded systems 

are designed to use the minimum possible memory capacity. This usually means that the 

embedded system software has to be as compact as possible. There is on going research 

to develop compact embedded system software and an example of this is PicOS, the 

operating system for extremely small embedded platforms [21].

2.1.4 Reliability

For embedded systems that are used in life-critical and/or mission-critical systems, the 

reliability of these systems becomes an important constraint. These types of systems 

cannot afford to fail as failure could cost lives. Reliability of embedded systems is a 

widely researched topic because of its importance and it can be broadly broken down

12
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into two parts: the reliability of the hardware and the software. Formal design 

methodologies for both hardware and software are being developed to increase the 

reliability of the developed embedded system [22]. Another way of increasing the 

reliability is to introduce redundant systems. This means that if one system fails, the next 

redundant system will takeover. Usually the other redundant systems are designed by 

different teams and use different hardware to reduce the chances of producing the same 

error [23]. An example of this is in the Boeing 777 aircraft [23]. This aircraft uses three 

separate embedded systems for its Primary Flight Computer with two of them acting as 

redundant embedded systems. These two redundant systems act as backup for the first 

system.

2.1.5 Electrical power consumption

Lately, embedded systems are extensively used in portable devices. These portable 

devices run on limited battery power. In order to prolong the mean time between battery 

charges, the electrical power consumption of these types of embedded systems is kept to 

a minimum. One way to keep electrical power consumption low is to use slower 

processors or processors with dynamic power management (DPM) capabilities [24]. 

There is on-going research in power management for embedded systems, both on the 

hardware side [25] and on the software side [26]. More recently, work has been done to 

model power mode dependency and mode selection for power-aware embedded systems

[27]. This has led to a more efficient use of available power on an embedded system. In 

general however, to keep the processor’s electrical power consumption low, the 

processor’s clock is slowed down. This in turn leads to low processing power (i.e. low 

MIPS). Therefore, a balance needs to be attained between processing power and 

electrical power consumption. As an example of typical power consumption, the 32-bit

13
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200MHz StrongARM RISC processor consumes 330mW when operating in normal 

mode [20].

2.1.6 Physical size

As embedded systems are extensively used in portable devices, the physical size of an 

embedded system also needs to be small. This is so that the overall size of the device is 

small and portable. The physical size constraint will make the designer choose 

components that are small and energy-efficient, i.e. components that do not produce 

much heat. Components that produce too much heat will need large heat sinks which will 

cause the overall size of the device to be large. One of the main components that 

generate a lot of heat is the processor. In general, fast powerful processors generate more 

heat as they consume more electrical power than slower less-powerful processors. The 

physical size constraint also limits the number of components that can be fitted on an 

embedded system and because of this, new technologies such as System-On-a-Chip 

(SoC), have been developed to embed all the components into a single integrated circuit

[28].

2.1.7 Real-time

M ost embedded systems used to control processes in the real world have real-time 

constraints. Real-time embedded systems are embedded systems that can respond to the 

changes in the environment faster than the environment can change. Real-time 

embedded systems have time deadlines which usually coincide with the frequency of the 

changes in the environment. These types of embedded systems also tend to use very fast 

processors or many slower processors connected together, with each processor
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controlling a small section of the overall process. Examples of real-time embedded 

systems are flight control systems [29], nuclear power plant control systems [30] and 

missile targeting systems [31].

2.1.8 Working environment

Some embedded systems are used in hazardous environments such as those in space 

exploration and deep sea exploration. These types of embedded systems have a working 

environment constraint. For example, the Mission to MARS Rover’s embedded system 

needs to be able to function under extreme climate and unexpected environmental 

conditions [32]. These types of embedded systems require special environment monitor

routines to maintain the embedded system’s internal working environment.
*■

2.2 Overview of artificial intelligence systems

The field of artificial intelligence has been around since the late 1940s [33]. The AI field 

refers to the study of implementing intelligent machines to do tasks that require human 

intelligence. According to the Oxford dictionary, the definition of the word “intelligent” 

is to show a high degree of understanding, and to be quick to comprehend [34]. 

Therefore, intelligent machines are machines that have the ability to understand and 

comprehend things in order to perform their tasks. To date, there are no intelligent 

machines that can actually understand and comprehend their tasks, but instead they 

exhibit behaviours that are similar to those an intelligent human would exhibit. An 

example of this is Deep Blue, the chess playing supercomputer [35]. Although in May 

1997, Deep Blue defeated the world chess champion Garry Kasparov, the level of 

intelligence in Deep Blue is still considered to be very low. The reason Deep Blue
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managed to defeat Garry Kasparov was because Deep Blue was able to search through 

200 million chess moves per second and not because it is intelligent.

In order for these machines to exhibit intelligent behaviour, they use various AI 

techniques that have been developed throughout the years. Artificial intelligence systems, 

or intelligent systems for short, are machines that use AI techniques to exhibit intelligent 

behaviour. There have been some limited successes of intelligent systems, for example 

intelligent chess playing machines [36], intelligent medical diagnostic systems (MYCIN) 

[37] and intelligent automatic vacuum cleaners (Trilobite) [38][39].

AI techniques can be broadly broken down into two classes: knowledge-based system 

techniques and computational intelligence techniques [5]. Knowledge-based system 

techniques involve explicitly representing knowledge in the form of rules or other 

symbolic representations in the machine. Data is then manipulated with these rules to 

form the solution to the AI problem. Examples of knowledge-based systems are expert 

systems and agent systems. Computational intelligence techniques involve representing 

the AI problem in numerical form. The conclusion to the AI problem is then computed 

by performing arithmetic operations on the numbers. Examples of computational 

intelligence techniques are evolutionary algorithms and artificial neural networks. There 

are also some hybrid systems that use both knowledge-based system techniques and 

computational intelligence techniques. Examples of these are fuzzy logic systems and 

Bayesian theorem systems.

The reason there are so many different AI techniques available is because no single AI 

technique is suitable for solving all AI problems. Each technique is suitable for solving
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particular types of AI problems. Usually, for complex real world problems, a mixture of 

AI techniques is required. For example in [40], a mixture of fuzzy logic and neural 

networks is used to drive a simulated racing car. The results show that the car’s 

performance is better using a combination of fuzzy logic and neural networks than using 

fuzzy logic or neural networks alone. Another example of mixed AI techniques can be 

found in [41], where an attempt at generating creative musical rhythm is made by using a 

neural network to calculate the fitness value of the genetic algorithm (a type of 

evolutionary algorithm).

One way to integrate all these different AI techniques together is to use a blackboard 

architecture. The blackboard architecture consist of different ‘experts’ working together 

to solve a problem. These different ‘experts’ can represent the different AI techniques 

that can be used. Multi-agent systems are the latest field of research that can also 

integrate different intelligence into different agents and having them work together to 

solve an overall problem. This is similar to the blackboard architecture except that the 

agents can communicate directly with each other while in the blackboard architecture, 

the ‘experts’ can only communicate with each other via the blackboard. In a sense, 

blackboard systems can be considered as a subset of multi-agent systems. In fact, 

blackboard architectures have been used frequently as the implementation architecture 

for multi-agent systems [42][43]. Multi-agent systems are a broad research area and 

because the focus of this thesis is on blackboard systems, the following sections will 

only discuss blackboard systems in more detail. Further information on multi-agent 

systems can be found, for example, in [44][45].



Kum Wah CHOY
Literature survey

2.2.1 Blackboard systems

A blackboard system is a software architecture that is based on the analogy of a group of 

experts working together to solve a common problem by writing their ideas onto a 

common blackboard. Figure 4 shows the analogy of a blackboard system with the 

blackboard as the common database.

C o m m o n  D a ta  
B ase

(B la c k b o a r d .)

E x p e r ts
M o d e r a to r

Figure 4. Analogy of a blackboard system

Figure 5 shows how the blackboard analogy is represented in software. There are two 

main classes of blackboard systems, traditional non-distributed blackboard systems and 

distributed blackboard systems.

Knowledge Source 1

Knowledge Source 2

Blackboard
Knowledge Source n

Figure 5. Software model of a blackboard system
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2.2.1.1 Non-distributed blackboard systems
The traditional non-distributed blackboard system consists of three main modules: the 

blackboard module (BB), the expert or knowledge source module (KS), and the control 

module (also known as the scheduler module). The BB module is a global shared 

memory area where KSs can read and write information. A KS can be any software 

module such as rule-based production systems, neural networks, fuzzy logic systems, 

genetic algorithms, or just procedural algorithms. The system’s current state of 

understanding of a problem is stored on the BB as it develops from a set of data towards 

a conclusion. The sets of data on the BB are organised into different levels/partitions and 

each KS would work on different levels/partitions of the BB.

The first blackboard system was developed around 1976 at the Carnegie-Mellon 

University in the Hearsay-II speech understanding project [46]. Later, the original 

developers of Hearsay-II moved on to different universities and started their own 

versions of blackboard systems that concentrated on different aspects of blackboard 

systems. The blackboard framework was then picked up by other researchers and was 

modified to suit the different researcher’s needs. This has led to the usage of blackboard 

systems in a variety of applications. More recent applications of the blackboard 

architecture include: control of a mobile platform (1992) [47], schema integration (1995) 

[48], fault diagnosis on low voltage distribution networks (1998) [49], and medical 

diagnosis (2000) [50].

The Open University’s Intelligent Computer Systems Research Group has developed a 

non-distributed blackboard system called ARBS (Algorithmic and Rule-based 

Blackboard System). ARBS has been successfully applied to the interpretation of 

ultrasonic images [51], the management of a telecommunications network [52], and the
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control of plasma deposition processes [53]. Another successful non-distributed 

blackboard system called BEST (Blackboard-based Expert System Toolkit) was 

developed at the Mihailo Pupin Institution, Belgrade [54]. BEST has been successfully 

applied in a diagnostic system for the aluminium industry [55] and in an investment 

advisory system (INYEX) [56].

All these non-distributed blackboard systems include a controller module to control the 

execution of the KSs. This makes the blackboard system not truly opportunistic as the 

KSs cannot all execute whenever they want to but instead they have to wait for the 

controller to schedule the KS for execution. Fathi has argued that having a controller 

module is advantageous as it allows different scheduling or control strategies to be 

explored [57] but this is only useful if the domain knowledge of the problem is well 

understood. The control strategy can also be opportunistic, but in general there is an 

overhead required for evaluating the control strategy at every turn to decide which KS to 

execute next. One way of avoiding the use of a controller module is to have a distributed 

blackboard system with all the KSs running in parallel on separate processors.

2.2.1.2 Distributed blackboard systems
There are two main research fields in distributed blackboard systems. One is the same as 

the traditional non-distributed blackboard system except that the KSs and the BB are run 

on separate processors (in parallel) or as separate threads on the same processor 

(concurrently) [58] [59]. The other is where many mini blackboard systems are 

networked together to form a large blackboard system [60] [61]. Both of these systems 

can be run on a single processor with multiple threads/processes running concurrently or 

on different processors running in parallel.
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An example of the second type of distributed blackboard systems (network of mini 

blackboard systems) can be seen in Naaman et al’s fractal blackboard framework [61]. 

Here the KS of the upper-level blackboard system is the blackboard system of a lower- 

level. The KS of this lower-level blackboard system is in turn the blackboard system of 

another lower-level blackboard system. This is repeated until the problem is broken 

down into a simple enough sub-problem that can be solved by a KS. The structure of a 

fractal blackboard system can be seen in Figure 6.

Level t

BB

KS2 KS3KS1

KS1 Level 2 KS2i Level 2

BB;

KS1 KS2; KS1 K S2: KS3;

Level 3 Level 3

BB;BB;

KS1 KS2; KS1 KS2;

Figure 6. Structure of a fractal blackboard
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Another example of a network of mini blackboard systems can be seen in Knowledge 

Technologies International’s NetGBB [60]. Here, NetGBB makes use of multiple 

processors to implement the individual mini blackboard system. Each mini blackboard 

system is implemented in a processor (NetGBB node) and they are networked together 

via the NetGBB Interface. The network of mini blackboard systems still uses a controller 

module which means that it is essentially a traditional non-distributed blackboard system 

but with the BB or KS connected to other BBs or KSs. NetGBB was successfully 

implemented as the integration framework for Ford Research Laboratory’s RRM (Rapid 

Response Manufacturing) Engineering Environment [62].

Another type of distributed blackboard systems is one that does not have a controller 

module. An example of this is DARBS (Distributed Algorithmic and Rule-based 

Blackboard System) developed by the Open University and Nottingham Trent University 

[59]. In DARBS there is no controller module, instead the BB and all the KSs are run as 

processes of their own. This makes the blackboard system closer to its analogy of a 

group of experts who communicate their ideas that help towards solving a problem 

through the BB. This means that the distributed blackboard system without a controller 

module is more truly opportunistic than the traditional non-distributed blackboard 

system with a controller module.

Blackboard systems have been argued to be similar to a multi-agent system but Ferber 

[45] agues that blackboard systems are not truly multi-agent systems as they have a 

centralised controller module. Distributed blackboard systems on the other hand better 

resemble multi-agent systems as each KS runs as an independent process on its own
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without the need for a controller module. Each KS represents an agent that 

communicates with other KS agents via the BB. The BB itself can also be argued to be 

an agent that provides services to the other KS agents, e.g. communication services, 

storage space services and storage space update services.

2.3 Overview of intelligent embedded systems

Current day embedded systems are generally unreliable when their operating condition 

falls outside their narrow design specifications [63] or when an unexpected condition 

occurs. Unfortunately, the real world environment constantly changes and unexpected 

events occasionally occur. As biological beings, humans have developed adaptability 

skills to cope with this. The same should apply for future embedded systems. In order for 

embedded systems to be more reliable, they must be able to adapt to their changing 

environment. To be able to adapt, they must have some form of intelligence. Therefore, 

intelligent embedded systems are the next evolutionary step for embedded systems. 

Intelligent embedded systems are embedded systems with some form of artificial 

intelligence software incorporated into them. A well known example of an intelligent 

embedded system is Sony’s robot dog, AIBO [64]. AIBO can learn and adapt to its 

owner and environment by recognising faces and objects. Electrolux’s Trilobite [38][39] 

is another example of an intelligent embedded system. Trilobite is an intelligent vacuum 

cleaner that can adapt to its environment (in this case, the room it is in) and 

automatically vacuum the entire room.

A general block diagram of an intelligent embedded system is the same as an embedded 

system in Figure 3 except that the software now contains some form of artificial
►

intelligence software. Like all embedded systems, complex intelligent embedded systems
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can be made up of many smaller intelligent embedded systems connected together. 

Using the previous car example, the modern intelligent car contains small modules of 

intelligent embedded systems. For example, adaptive cruise control [65], rain-sensitive 

windscreen wipers and light-sensitive headlights. The adaptive cruise control uses fuzzy 

logic to adapt the cruise speed to the speed of the car in front and to the driver’s needs, 

i.e. sensed from the accelerator pedal [65]. The rain-sensitive windscreen wipers can 

sense the amount of water on the windscreen and automatically adjust the wiper’s speed 

accordingly. Finally, light-sensitive headlights can sense the amount of light in the 

environment and automatically switch on the headlights when it gets too dark.

Presently, intelligent embedded systems exhibit relatively simple intelligent behaviours. 

To exhibit more sophisticated intelligent behaviours, complex artificial intelligence 

software is required. For real-time embedded systems, running complex artificial 

intelligence software can be a problem. Complex artificial intelligence software usually 

takes an unpredictable amount of time to reason before it can respond to the changes in 

the environment. This unpredictable time for reasoning is not acceptable for real-time 

embedded system. A late intelligent response is just as bad as a wrong response. 

Generally, the more intelligent the response the longer the processing time is. Therefore 

a balance between how intelligent the response is and the amount of time required for 

processing the response needs to be struck. The field of real-time artificial intelligence 

(RTAI) delves into the research of implementing artificial intelligence software that has 

time deadlines [66].

Currently, there are limited successes in implementing real-time intelligent embedded 

systems. M ost of the intelligent embedded systems have limited processing time and
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power which severely limits the level of intelligence of the system. An example of real­

time artificial intelligence system is in OASIS [67]. OASIS is a real-time air traffic 

management system that can handle realistic peak hour traffic samples from Sydney 

airport. OASIS is fairly intelligent but it demands powerful UNIX workstations. Another 

example of a real-time intelligent embedded system is in University of M ichigan’s 

Uninhabited Aerial Vehicle (UAV) project [68] [69]. They have developed CERCA-II, a 

Cooperative Intelligent Real-time Control Architecture for their UAV. The intelligence 

on the CIRCA-II is fairly low as it still requires a human pilot backup. Currently, a lot 

more intelligence is required for their UAV in order for it to achieve fully autonomous 

flight [68].

The constraints of an intelligent embedded system are the same as for an embedded 

system but with the added exception that it requires more processing power. This is to 

accommodate the extra processing power required by the artificial intelligence software. 

In the future as the requirements of the users become more sophisticated, more complex 

intelligent behaviour will be needed. This is where the extra processing power is 

required. There are two ways of increasing the processing power of the embedded 

system, one is to use a high MIPS processor and the other one is to have many lower 

MIPS processors connected together. There is a physical speed of light limit [11] for 

increasing a processor’s MIPS. Using a distributed processing network is an alternative 

way to further increase the processing power. A general block diagram of an intelligent 

embedded system with these distributed processors is shown in Figure 7.
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Figure 7. General block diagram of an intelligent embedded system with distributed processors

2.4 Overview of distributed processing networks

Distributed processing networks are a subset of the parallel processing architecture. 

F lynn’s taxonomy of parallel architectures is based on the instruction and data elements 

of a system [70]. This is broken up into Single Instruction Single Data (SISD), Single 

Instruction Multiple Data (SIMD), Multiple Instruction Single Data (MISD) and 

Multiple Instruction Multiple Data (MIMD) as shown in Figure 8.

—^ ^ D a t a  
Instructions'*^*-—

Single Multiple

Single SISD SIMD

Multiple MISD MIMD

Figure 8. Flynn’s taxonomy

26



Kum Wah CHOY
Literature survey

Flynn’s taxonomy is well accepted in the parallel processing world, but fails to classify 

modem computers. This has led to various modifications to Flynn’s taxonomy, one of 

which is Duncan’s taxonomy [71]. Figure 9 shows D uncan’s modification to Flynn’s 

taxonomy and it can be seen that distributed processing networks (also known as 

distributed memory) belong to the MIMD model.

DataflowVector

Reduction

Systolic W avefront

SIMD
MISD/SIMD

MIMDSynchronous

Processor
Array

Associative
Memory

Shared
Memory

Distributed
Memory

MIMD Paradigm

Figure 9. Duncan’s Taxonomy

One of the major studies of distributed processing networks is in interconnection 

network topologies. There are many different network topologies being used in 

distributed processing networks such as linear networks, ring networks, star networks, 

hypercube networks and fully connected networks. The more interesting network 

topology is the hypercube network and examples of this network include the Intel iPSC 

[72] and nCUBE [73]. Most of the work using the Intel iPSC is on intensive numerical 

operations. For example, using iPSC to perform distributed simulation of timed Petri 

nets [74]. Unfortunately, Intel has ceased production of the iPSC systems [75]. nCUBE,
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on the other hand, has been successfully implemented in on-demand video streaming 

systems [73].

However, one problem with the hypercube network topology is that communication 

between processors that are more than one processor away must pass through 

intermediate processors. If there is heavy communication through a processor, then that 

processor might be delayed in receiving its own messages. Ideally, the communication 

topology should be point-to-point (fully connected network) but this would be too costly 

or impractical for a large network of processors.

One approach to interconnection is to have a router or switch network topology. This is 

also known as a dynamic interconnection network [76] as the connection to each 

processor is determined dynamically at runtime. The IBM SP-2 uses this type of network 

topology and has been used with great success for linear feature extraction from images 

of up to 512 x 512 pixels [77]. Another distributed processing network that can use the 

switch network topology is the INMOS transputer [78]. Research from the University of 

Edinburgh that uses the Meiko multi-transputer system in a torus network topology 

showed that the torus topology requires careful planning to distribute the processes in the 

network to minimise communication time [6]. This has led to the development of routers 

or switchers to offload the communication burden from the transputers. One such router 

is the ICR C416 router developed by ICRouting Ltd [79].

Unfortunately, INMOS was sold to ST Microelectronics in 1986 and ST 

Microelectronics has ceased production of the transputers. The Parallel Processing 

Research Group from Nottingham Trent University then developed the SARNet to
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replace the diminishing transputers [80]. SARNet consist of a switched network of 

StrongARM RISC processor nodes (SARNodes) [81]. Each SARNode consists of a 32- 

bit 200MHz StrongARM SA-110 RISC processor, 8 megabytes of SDRAM, a 32-bit 

1MHz real-time timer, a UART debug port, and an OS-Link (over sampling link) [79] 

communication module. The switcher or router used is the same as the ones originally 

used for transputers (i.e. the ICR C4I6). A typical network layout of the SARNet 

distributed processing network is as shown in Figure 10.

SN SARNode 
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(OS-Link 
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Figure 10. Typical network topology of SARNet

2.5 Overview of distributed blackboard systems in distributed 
processing networks

There are a few distributed blackboard systems that have been implemented in 

distributed processing networks before. One such system is the distributed blackboard 

system in MACE (Multi-Agent Computing Environment) [82]. This system was
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implemented on a 16-node Intel Sym-1 large-memory hypercube environment. Another 

blackboard system implemented on the hypercube topology is the tactical decision 

generator on the CUBE CLAWS system [58]. As mentioned earlier, the disadvantages of 

a hypercube network is in its communication bottleneck when the communication 

volume is high. Another system with a different network topology is the vision 

application program implemented in a torus network on the Meiko multi-transputer 

system [6]. This implementation showed relatively good performance but careful 

distribution planning was required.

A slightly different type of distributed processing networks that has been used for the 

blackboard system is that of using the Internet as the communication network. An 

example of such a system is the cell-based design support system for composite 

structures [83]. Here the local blackboard system that supports the cell-based design can 

consult the database of another blackboard cell-based design support system to find a 

better composite structure that meets its current requirements. A more recent and 

interesting work is in implementing distributed blackboard system in mobile robots [84]. 

Here, the mobile robots are scattered all over a room and their job is to sense their 

surrounding environment and build up a detailed map of the room on the BB. The 

mobile robots are the KSs (called agents in this paper) and they are connected to their 

central BB via wireless Ethernet and radio modem connection. The overall aim was to be 

able to have strategic-level path-planning from the detailed map of the room, but 

currently only the map-building part has been accomplished.

Apart from DARBS [59], all distributed blackboard systems reported in the literature 

have a control module. The current implementation of DARBS uses the popular TCP/IP
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communication protocol which is supported by the Ethernet switch network topology. 

As mentioned in section 2.4, the router or switch network topology is a good topology as 

it is comparable to point-to-point connection. Therefore, DARBS is a suitable candidate 

for testing the performance of distributed blackboard systems.

2.6 Summary

The main constraints of embedded systems are cost, processing power, memory capacity, 

reliability, electrical power consumption, physical size, real-time, and working 

environment. Different embedded systems have different degrees of these constraints to 

meet. Future embedded systems need to be able to adapt to the changing environment 

and needs of the user. To do this, complex artificial intelligence software, which is 

processor intensive, is required. Therefore, there is a need for artificial intelligence 

software that is not processor intensive yet complex enough to be able to learn and adapt 

to the user’s needs.

The field of artificial intelligence has been around since the late 1940s. To date, there are 

no real intelligent machines around but instead there are machines that exhibit intelligent 

behaviours. There are many different artificial intelligence techniques available, for 

example, rule-based systems, neural networks, genetic algorithms, and fuzzy logic. No 

single artificial intelligence technique is suitable to solve all types of problems. One way 

to integrate different artificial intelligence techniques together is to use the blackboard 

architecture. The blackboard architecture is based on the analogy of a group of experts 

working together to solve a common problem by writing their ideas onto a common 

blackboard. There are two main classes of blackboard architecture, distributed 

blackboard systems and non-distributed blackboard systems.
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As future embedded systems need to be able to adapt to their ever changing environment, 

intelligent embedded systems are the next evolutionary step for embedded systems. 

Intelligent embedded systems are embedded systems with some form of artificial 

intelligence software. Presently, intelligent embedded systems have relatively primitive 

intelligent behaviours. Complex artificial intelligence software is required for more 

sophisticated intelligent behaviours. For real-time embedded systems, complex artificial 

intelligence software causes real-time issues. The field of real-time artificial intelligence 

(RTAI) delves into the research of these issues. Complex artificial intelligence software 

requires high processing power. One way of increasing the processing power is to have 

distributed intelligent embedded systems.

Distributed processing networks are a subset of the parallel processing architecture. 

According to Duncan’s taxonomy, which is based on Flynn’s taxonomy, distributed 

processing networks (also known as distributed memory) belong to the Multi 

Instructions Multi Data (MIMD) model. One of the major studies of distributed 

processing networks is in interconnection network topologies. There exist many different 

network topologies for distributed processing networks. One network topology which is 

close to the ideal point-to-point network topology is the switch or router network 

topology. The Parallel Processing Research Group from Nottingham Trent University 

has developed a distributed processing network called SARNet which uses ICR C416 

router.
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There are a few distributed blackboard systems implemented on distributed processing 

networks. Each implementation uses different network topology. Presently, apart from 

DARBS, no other published distributed blackboard system uses a switch network 

topology without a control module. Therefore, DARBS is a suitable candidate for testing 

the performance of distributed blackboard systems. The next chapter will describe the 

implementation of a test application on a distributed blackboard system for later 

performance experiments.

>
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Implementing a test application on a distributed blackboard system

3. Implementing a test application on a distributed 
blackboard system

This chapter explains in detail the aims and implementation of a test application on a 

distributed blackboard system. This implementation will provide the foundation for the 

experiments carried out in chapter 4.

3.1 Aims and requirements

One of the aims of this work is to investigate the performance of a distributed blackboard 

system in a distributed processing network. In order to do this, a suitable distributed 

blackboard system and a test application to run on it needed to be chosen. The 

distributed blackboard system chosen did not have a centralised control module. This 

was to make sure that the distributed blackboard system was truly opportunistic. The 

choice of distributed blackboard system was also based on the programming language 

used in order to make sure that it was portable, suitable for an embedded system and 

suitable for further development work to be done on it.

The choice of application to run on the distributed blackboard system was not important 

just so long as it met the basic requirements. The application did not have to be a 

practical application but had to be a naturally distributed problem that was suitable for a 

distributed blackboard system. It also had to be scalable so that performance experiments 

could be carried out on it. A well known application was appropriate as peers would be 

familiar with it and therefore, find it easier to understand. The application had to have 

the possibility for different KS implementations so that the advantages of distributed
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blackboard systems could be fully utilised. This would also provide opportunity for 

future experiments involving different KS implementations.

3.1.1 Selecting a distributed blackboard system

At the onset of this project, there were commercially available distributed blackboard 

systems: one such system was Knowledge Technology International’s NetGBB [60] 

which was an extension to their Generic Blackboard (GBB) product. However, problems 

with commercial products include cost and the fact that source code was not normally 

accessible. NetGBB was written in LISP and this is not a suitable language for 

embedded systems as embedded systems are typically prone to memory and speed 

constraints (section 2.1). LISP has been proven to be too slow to run on speed critical 

systems such as Pilot’s Associate control-advisory system [85]. There are at the moment 

no commercial distributed blackboard systems that cater for embedded systems. There is 

a research-based blackboard system called BEST from Mihailo Pupin Institution, 

Belgrade [54] but that is a traditional blackboard system and full access to the source 

code was not possible.

Therefore, the distributed blackboard system that was chosen for this project was 

DARBS [59]. One of the reasons for choosing this distributed blackboard system was 

because it did not have a control module. This was one of the requirements and it would 

be an interesting opportunity to see how a distributed blackboard system without a 

control module performs in a distributed processing network. The other reason was that 

DARBS had been developed into a relatively stable working system and the source code 

for it had been provided freely with the intention that DARBS could be further improved 

during the course of this research. This meant that changes to the DARBS source code
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could be done freely to suit the research needs. This was an essential requirement for the 

success of this research.

The source code for DARBS was written in C++ and this is a suitable language for 

embedded systems. Full access to the source code was also crucial to allow DARBS to 

be fully understood. This would then enable successful implementation of DARBS in the 

distributed processing network. The current DARBS source code was not efficient in 

terms of its coding for speed. It was therefore hoped that further parallelism could be 

achieved during the course of this project. Unfortunately, parallelism led to data 

consistency problems but these were addressed in this research.

3.1.2 Selecting an application

The choice of application to run on the distributed blackboard system was not important 

just as long as it allowed the performance experiments to be carried out. Creating a 

custom application for this purpose would be the easiest to implement but this would 

have made it difficult for peers to compare results as it would not be an established 

application. The MACE system in the University of Southern California used a simple 

arithmetic calculator application for their distributed blackboard system [82]. The KS in 

this arithmetic calculator represents each of the arithmetic operators, i.e. PLUS-KS, 

MINUS-KS, TIMES-KS and DIVIDE-KS. This application was deemed not suitable as 

it was too simple and not scalable beyond the four arithmetic operators. The University 

of South Carolina on the other hand, used chemical structure analysis as the application 

for their blackboard system but this was deemed to be too specific and difficult to 

understand [8]. It was also nearly impossible to implement the same application without 

an in-depth knowledge of chemical structure analysis.
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Occello and Demazeau proposed using blackboard systems for implementing multi­

agent systems [12]. Corkill has also suggested that the future of collaborating software 

consist of a hybrid of blackboard systems and multi-agent systems [86]. Therefore, a 

multi-agent system application was a suitable application to run on the distributed 

blackboard system. There were a few multi-agent system test-beds currently being used 

by multi-agent system researchers, one of which is TileWorld [87]. The TileWorld test­

bed was deemed a suitable application to run on the distributed blackboard system 

because it is a naturally distributed problem and is scalable. The TileW orld test-bed is 

also a well established test-bed and, therefore, peers would be familiar with it. By 

implementing the individual agents in the TileW orld test-bed as individual KSs, different 

agent implementations were also possible (e.g. rule-based agents, neural network agents, 

fuzzy logic agents, etc.). The following section gives a more detailed overview of the 

TileW orld test-bed.

3.1.2.1 Tile World test-bed
The TileWorld test-bed is a well established test-bed for multi-agent systems. The 

original TileWorld introduced by Pollack and Ringuette was a single agent TileWorld 

test-bed [87]. Later, Ephrati et al. introduced a multi-agent TileW orld called MA- 

TileW orld which is what multi-agent systems researchers now use as their TileWorld 

test-bed [88]. From here onwards, MA-TileWorld will simply be referred to as 

TileWorld. The TileW orld test-bed is a two dimensional grid world with objects in it. 

There are agents, holes, obstacles and tiles in the TileWorld. The objective of the agents 

is to score as many points as possible. They score points by moving around the 

TileWorld to find and pick up tiles which they then put into holes. The agents have a
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limited view of the TileWorld. The viewing radius is a variable that can be set by the 

designer of the TileWorld. Each cell can only be occupied by one agent at a time. Agents 

cannot move to a cell with an obstacle in it. An example of a 10 x 10 TileW orld is 

shown in Figure 11.
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Figure 11. A 10 x 10 TileWorld

The holes, obstacles and tiles in the TileW orld can change dynamically, i.e. they can 

appear and disappear at different locations in the TileWorld. The rate of change is set by 

a variable, and this can be used to reflect the dynamically changing real-world 

environment. The TileW orld test-bed has been widely used to test the behaviour and 

interaction of multiple agents in a dynamic environment [89] [90]. There is also a variant 

of the original TileW orld test-bed that includes “gas station” objects to top up the 

resources of the agents [91]. In this variant, the agent’s resource-management skill is 

investigated by making each move consume fuel. Carrying a tile would cause the agent 

to consume more fuel. Therefore the agent would need to balance the consumption of 

resources with scoring points. However, for the sake of simplicity and due to the time 

limitation of this research, this variant was not used.
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3.2 Design

This section will discuss the design of the TileWorld test-bed on the distributed 

blackboard system, DARBS. A detailed technical background on DARBS must first be 

explained before the actual design of TileW orld on DARBS can be understood.

3.2.1 Technical background on DARBS

DARBS (Distributed Algorithmic and Rule-based Blackboard System) [59] is the 

distributed version of ARBS (Algorithmic and Rule-based Blackboard System) [53]. 

DARBS, being a distributed blackboard system, has all its KSs and BB running as 

separate processes. The general structure of DARBS can be seen in Figure 12.

R u l e - b a s e d  K S s  
I n f e r e n c e  m o d e  

#1

R u l e - b a s e d  K S s  
I n f e r e n c e  m o d e  

#2

R u l e - b a s e d  K S s  h  
I n f e r e n c e  m o d e

#3
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i k J
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G e n e t i c  a l g o r i t h mP r o c e d u r a l  K S s N e u r a l  n e t w o r k  >

Figure 12. General DARBS structure
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The main parts of DARBS that were important to this research are: DARBS data 

structure and command statements on the BB, and DARBS classes and Inter-Process 

Communication (IPC) model.

3.2.1.1 Data structure and command statements on the blackboard 
Information on the BB is organised into partitions. The order in which the information is

organised is entirely up to the designer. However, poor organisation of the information

will slow down the BB’s search for particular information. For example, putting all the

information in one partition would make it slow to search for particular information in

the partition. On the other hand, having too many partitions will slow down the search

for particular partitions. Therefore, a balance between the number of partitions and the

amount of information stored in the partitions was required.

DARBS’s BB stores both the partitions and the information in the partitions in the form 

of strings, i.e. a list of characters. The naming of partitions and the information structure 

in each partition are entirely up to the designer. Ideally, the information stored on the BB 

should be as intelligible and informative as possible. This would make it easier for other 

KS designers to develop newer KSs for the problem on BB. Intelligible and informative 

information would also aid in debugging of the system. However, putting too much 

information on the BB will increase the communication overhead (i.e. longer messages 

take longer time to be sent to and from the BB). An example of how information is 

stored on the BB is as shown in Figure 13.
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BLACKBOARD

[Control status partition] .....p. [Initiator KS h as started]

p [I Jltrasnnio se n so r  KS has started]

____ p. [Environment checking h as started]

____ p. [Timer interrupt h as occured]

[Current enviuDnment partition]
____ p. [The environm ent h as ob stac le  at

location 23 ,24]

____ ► [Environment tem perature is at
25.5°C]

p [distance tn targetl is 24.5m]

.....p. [M easured altitude is 2000m ]

Figure 13. Example of data structure on DARBS’s blackboard

DARBS command statements inherits most of ARBS command statements. The general 

command statement for DARBS is as follows:

DARBS_command [ c o n t e n t ]  [ p a r t i t i o n ]

An example of adding information to a partition is as follows:

add [Obstacle is at location 23/40] [Current Environment]

The BB would create a new partition called [Current Environment] if it does not

already exist and then put the information [Obstacle is at location 23,40]

in it. The BB also has commands to add multiple contents to the same partition. For 

example:

add_mult‘i [Obstacle is at location 2,41] [Target is at
location 4,10] [Water is at location 11,2] [Current
Environment]
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This command will add three more contents to the [ C u r r e n t  E n v i r o n m e n t ]  

partition. To retrieve the information in a partition, the command to use and the reply 

from the BB is as follows:

get_contents [Current Environment]
BB reply: [Obstacle is at location 23,40][Obstacle is at
location 2,41][Target is at location 4,10][Water is at 
location 11,2]

The information on the BB can also be queried with r e t _ a l l  (return all) command to 

match certain patterns, for example:

ret_all [? is at location 23,40] [Current Environment]
BB reply: true [ [ Obstacle ] ]

The BB replies t r u e  (as there is a match for that pattern) followed by the word that

matches that string. The following command would return false:

ret__all [? is at location 40,10] [Current Environment]
BB r e p l y :  f a l s e

The ? symbol matches a word and the ? ? symbol matches one or more words in that 

position of the string. For example:

ret_all [Target is at ?] [Current Environment]
BB r e p l y :  f a l s e

ret_all [Target is at ??] [Current Environment]
BB reply: true [ [ [ location 4,10 ] ] ]
ret_all [Target is at location ?] [Current Environment]
BB reply: true [ [ 4,10 ] ]

The == symbol functions the same as ??  except that it does not return the matched

t words. This is useful for “don’t care” conditions. For example:
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ret_all [== is at location ?] [Current Environment]
BB reply: true [ [ 23,40 ] [ 2,41 ] [ 4,10 ] [ 11,2 ] ]
The full list of DARBS commands and an explanation of how to use them are in the 

DARBSCmd.h header file of the source code. A section of this header file can be seen in 

Appendix B. The full source code for the TileWorld implementation on DARBS is 

supplied in the CD-ROM attached to the back of this thesis in Appendix J.

3.2.1.2 DARBS classes and Inter-Process Communication (IPC) model
The design of DARBS is based on the client/server model where the BB is the server and

the KSs are the clients. The KS clients are required to register themselves with the BB 

server by connecting to it. The KS clients can then send commands and wait for a reply 

from the BB server. When a KS client changes the contents of a partition, the BB server 

would broadcast a message informing the other registered KS clients that the partition 

has changed. It is then up to the individual KS clients to react to the changes on the 

partition.

The communication protocol that DARBS uses is TCP/IP. DARBS runs on a PC-based 

Linux operating system and each process can be run on a different PC that is networked 

together via TCP/IP communication protocol. Currently, DARBS has been implemented 

to solve the original ARBS problem of interpreting ultrasonic images of welds [51].

For each one of the DARBS processes (i.e. the BB server and each KS client) there is a 

communication module and a tokenizer module. The tokenizer module consists of only 

one class which is called L n T o k e n iz e r .  This class is used to break down the message 

that is received into small tokens of one word each to be interpreted by the main program.
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The communication module on the other hand consists of two classes: the base class

LnSignalHandler and the derived class LnTcpServer (for the BB server) or

LnTcpClient (for the KS client). A unified modelling language (UML) [92] diagram

is shown in Figure 14 to illustrate these classes.

Communication Module Tokenizer Module

LnTcpServerLnTcpClient

LnTokenizer
LnSignalHandler

Figure 14. DARBS communication and tokenizer module

The LnSignalHandler class is a pure virtual class that is used to store all the 

pointers to the communication interrupt handlers (called signals in the UNIX 

environment) [93]. The LnTcpServer class is a derived class from the 

LnSignalHandler class that handles the server side of the TCP/IP communications. 

This class provides all the necessary functions for opening and closing a listening port, 

sending and broadcasting messages, and setting up the receiving message intemipt 

function. The LnTcpClient class is the client side equivalent of LnTcpServer class. 

The only difference being that LnTcpClient does not have the broadcast function and 

has a connect-to-server and close-connection-from-server instead of opening and closing 

listening port.

For the BB server, there is a LnBlackboard class that handles storage creation and 

deletion. It also manages the searching for data items on the BB. On the KS client side 

there are two main modules: the core KS client module and the graphical user interface
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(GUI) module. Only the main classes of the most common KS client modules are 

explained here as a full description of all KS client modules will be too long for this 

thesis.

The main KS client module consists of the pwCClient class that handles the 

initialisation of the client, reading the KS file (to determine what type of KS this instance 

of the client is), setting up the connection to the BB server, creating the KS, and finally 

executing the KS. All this is done with the help of the LnTcpClient class and the 

pwCKnowledgeSource class. The pwCKnowledgeSource class is the base class 

for the different types of derived KS classes that are supported by DARBS. Currently, 

the supported KS classes are rule-based KS (pwCRuleKS class) and procedural KS 

(pwCProceduralKS class). Work is in progress to implement neural network KS 

(pwCANNKS class). Figure 15 illustrates the core KS client’s classes in UML standard.

pwCANNKSpwCRuleKS

pwCClient LnTcpClient

pwCProceduralKS

pw C K now ledgeSource

Figure 15. Core KS client classes

DARBS’s communication module uses the Linux operating system’s IPC model; 

therefore, Linux IPC needs to be explained in a bit more detail. The Linux operating 

system uses signals as a form of interrupts. Each process in the Linux operating system 

can register its interrupt service routine or function to be called when a particular 

interrupt/signal is generated [93]. For example, the signal that is generated when a
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message is received on the Linux’s IPC model is SIGIO [93]. So by registering a 

function that is triggered by a message from the communication channel to the SIGIO 

signal, would allow this function to be called whenever a message is received on the 

Linux’s IPC model. Linux’s IPC also provides a listen to port function for the server. 

Basically in the client/server model, the server initiates a service on a port and listens on 

that port for possible clients. Once the server has started to listen on a port, the client can 

make a call to connect to that port and it would be automatically passed to the server. 

The server can then register the client’s file descriptor and start to provide services to it. 

Linux’s IPC also provides a function call to send data to a process (client or server) by 

using the process’s file descriptor. DARBS’s LnTcpServer and LnTcpClient 

classes make use of these functions provided by Linux to implement the client/server 

model. LnTcpServer class has an extra broadcast function that sends a message to all 

the clients except for the current client (i.e. the client that last sent a message to the 

server).

3.2.2 Designing TileWorld on DARBS

The natural way the TileW orld fits in a blackboard system made it the ideal choice for 

implementing it in DARBS. The TileWorld environment is the environment where all 

the agents and other objects interact with each other. Therefore, this made it suitable to 

implement the agents as KS clients and storing information of the TileW orld 

environment on the BB. This would give all the agents in the TileW orld equal access to 

see and change the world. The set-up of TileWorld with five agents on DARBS is as 

shown in Figure 16.
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Agent4 KS

Agentl KSInitiator KS

Agent2 KS

AgentS KS

Agent5 KS BLACKBOARD

Display 
TileWorld KS

Figure 16. Five agents TileWorld set-up on DARBS

The Initiator KS is the KS that sets up the TileWorld with its parameters and generates 

the actual TileWorld. The Initiator KS is only needed in the beginning, after setting up 

the TileW orld environment, it terminates. The Display TileWorld KS is the KS that 

displays the TileW orld and its contents in a graphical format. This makes it easier for 

users to follow the changes on the TileWorld. To do this, the Display TileWorld KS 

needs to keep track of the changes on the TileWorld environment (stored on the BB) and 

make sure that the graphical representation of the TileWorld is as up-to-date as possible. 

The Agent KSs are the actual agents. They control their respective agents on the 

TileW orld and make changes to the TileW orld environment on the BB accordingly. For 

the sake of simplicity of design and time limitations, the objects in the TileWorld (i.e. 

tiles, holes, and obstacles) are all static and do not appear and disappear with time. 

However, it would be possible to make the objects in the TileW orld dynamic, i.e. appear 

and disappear with time. This could be done by simply adding another KS that uses a 

probability to change the number and position of the tiles, holes, and obstacles in the 

TileWorld.
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Careful organisation of the information on the blackboard was required to make sure that 

the agents and all other KSs could interact with each other properly through the 

blackboard. The organisation of the information also needed to minimise the number of 

partitions that a particular KS was working with in order to reduce the number of times 

the KSs needed to restart. A KS would restart when a partition that it was working with 

had changed. The format of the information on the blackboard also needed to be 

carefully constructed so that queries from the KS clients were as easy and efficient as 

possible. Finally, the overall information organisation and format construction needed to 

be easily understandable in order to permit other users to easily understand and modify 

the TileWorld. With all these in mind, the following partitioning of the blackboard was 

designed (see Figure 17).
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General contents of partition
General control status of KSs in TileWorld

Overall parameters of TileWorld 

The actual contents of the TileWorld

BLACKBOARD PARTITIONS
TileWorld Control Status

TileWorld Param eters

TileWorld Environment

Access by

A c c e ss  by al 
KSs

List of objects that the display KS is 
currently displaying

O bjects display in TileWorld

Overall status of Agentl — A gen tl sta te  of mind ■N

Contents of what Agentl can see on the ^ __
TileWorld

A gentl view

List of possible and valid moves of agent — A gen tl p ossib le m oves

List of tiles within agentl’s view and its ^ __
location & distance

A gen tl tile calculation

List of holes within agentl's view and its ^ __
location & distance

A gen tl hole calculation J

A c c e ss  by 
Display 
TileWorld KS

A gentl

Overall status of Agent*

Contents of what Agentx can see on the 
TileWorld

List of possible and valid moves of agent

List of tiles within agentXs view and its 
location & distance 

List of holes within agentXs view and its 
location & distance

Figure 17. Partitions on blackboard, its general contents and KSs that access them

As can be seen in Figure 17, all Agent KSs can access the TileWorld Environment 

partition and, in theory, can see the whole TileWorld. This could be argued to be an 

incorrect implementation of the TileW orld test-bed, but it was assumed that all agents 

are benevolent and will only access those areas of the TileWorld Environment partition 

that they are intended to.

There are too many information strings on the blackboard to explain each in detail but 

the most important information string format is that on the TileWorld Environment

A gen tx  state of mind - \

A gentx view

A gentx possib le m oves

A gentx tile calculation

A gentx hole calculation
J

A c c e ss  by
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partition. The information string format on the TileWorld Environment partition is as 

follows:

[Location x , y contains NO AGENT , NO HOLE , NO O BSTACLE , 

NO T I LE ]

The order of objects is important as this allows easy query by the KSs. The order is 

Agent—>Hole—>Obstacle—>Tile. If the location contains an agent then Agent x  (where x  is 

the agent number) replaces NO AGENT  and the same goes for holes, obstacles and tiles. 

Examples of these are as follows:

[Location 1 , 4 contains Agent 3 , NO HOLE , NO OBSTACLE ,
NO TILE ]
[Location 1 , 5 contains NO AGENT , Hole 21 , NO OBSTACLE ,
NO TILE ]
[Location 1 , 6 contains NO AGENT , NO HOLE , Obstacle 18 ,
NO TILE ]
[Location 2 , 4 contains NO AGENT , NO HOLE , NO OBSTACLE ,
Tile 2 ]
[Location 10 , 2 contains Agent 5 , NO HOLE , NO OBSTACLE , 
Tile 4 ]

This information string format allows easy queries to be made to check if an agent, hole, 

obstacle or tile is present in a specific location in the TileWorld. An example to check if 

an agent is present in location 1 , 4 is as follows:

ret_all [Location 1 , 4 contains Agent ? , NO HOLE , NO 
OBSTACLE , NO TILE] [TileWorld Environment]

The reply from the BB would be true if an agent exists in location 1 , 4 otherwise a false 

would be returned. In this example, the following reply could be received:
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BB reply: true [ [ 3 ] ]
This reply means that there was an agent present in location 1 , 4 and that that agent is 

Agent 3. This information string format also allows searching for the location of a 

specific agent, hole, obstacle or tile. An example of searching for the location of 

Obstacle 18 is as follows:

ret_all [Location ? , ? contains NO AGENT , NO HOLE ,
Obstacle 18 , NO TILE] [TileWorld Environment]
BB reply: true [ [ 1 6 ]  ]

The reply here means that Obstacle 18 was found in location I , 6. The full contents 

of a specific location could also be queried using the following example: 

ret__all [Location 2 , 4 contains ??] [TileWorld Environment] 
BB reply: true [ [ [ NO AGENT , NO HOLE , NO OBSTACLE ,
Tile 2 ] ] ]

For the Display TileWorld KS, an important search facility would be to search for the 

locations of all the agents, holes, obstacles, and tiles in the TileWorld. An example to
i

search for the locations of all the agents is as follows:

ret_all [Location ? , ? contains Agent ? , == ] [TileWorld
Environment]
BB reply: true [ [ 1 4 3 ]  [ 1 0 2 5 ]  ]

The reply here means that Agent 3 was at location 1 , 4 and Agent 5 was at location

10 , 2. As can be seen here, this information string format has provided an intelligible,

easy to query, and efficient way of storing the TileWorld environment information.

As the ultimate aim of this implementation was to run the TileW orld in a distributed 

* processing network, there was a risk of data inconsistency when objects in the TileWorld
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environment were moving from one location to another. To move objects from one 

location to another, the object must first be removed from one location and then added to 

another location. This could have been accomplished in four primitive DARBS 

commands, i.e.:

del_all [Location 1 , 4 contains Agent 3 , NO HOLE , NO
OBSTACLE , NO TILE] [TileWorld Environment]
add [Location 1 , 4 contains NO AGENT , NO HOLE , NO
OBSTACLE , NO TILE] [TileWorld Environment]
del_all [Location 2 , 4 contains NO AGENT , NO HOLE , NO
OBSTACLE , Tile 2] [TileWorld Environment]
add [Location 2 , 4 contains Agent 3 , NO HOLE , NO
OBSTACLE , Tile 2] [TileWorld Environment]
However, during the time between these four instructions, other KSs may accidentally 

read the contents of the TileWorld Environment partition. This would cause the KSs to 

have inconsistent data as the data is currently changing. Therefore, three new DARBS

commands were added to solve this problem: add_multi, replace and

replace_multi. The add_multi command has already been explained in section 

3.2.1.1. The replace command is a combination of delete and add commands. So the 

above instructions to move Agent 3 to location 2 , 4 could be reduced to the following: 

replace [Location 1 , 4 contains Agent 3 , NO HOLE , NO
OBSTACLE , NO TILE] [TileWorld Environment] [Location 1 , 4
contains NO AGENT , NO HOLE , NO OBSTACLE , NO TILE]
replace [Location 2 , 4 contains NO AGENT , NO HOLE , NO
OBSTACLE ,Tile 2] [TileWorld Environment] [Location 2 , 4
contains Agent 3 , NO HOLE , NO OBSTACLE , Tile 2]
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This instruction is useful for replacing one item in a partition but moving agents in the 

TileW orld requires two replace commands. Therefore, the replace_multi 

command was introduced to do multiple replacements in one instruction. The following 

shows how replace_multi can be used to move Agent 3 to location 2 , 4: 

replace_multi [Location 1 , 4 contains Agent 3 , NO HOLE ,
NO OBSTACLE , NO TILE] [TileWorld Environment] [Location 1 , 
4 contains NO AGENT , NO HOLE , NO OBSTACLE , NO TILE] 
[Location 2 , 4 contains NO AGENT , NO HOLE , NO
OBSTACLE ,Tile 2] [TileWorld Environment] [Location 2 , 4

contains Agent 3 , NO HOLE , NO OBSTACLE , Tile 2]

As can be seen here, the data inconsistency problem does not occur when using 

replace_multi command.

3.3 Implementation

There are three types of KSs in this TileW orld implementation. They are: Initiator KS, 

Display TileWorld KS and Agent KS. These KSs were all implemented as rule-based KSs 

and the following sections will explain their implementation in detail.

3.3.1 Initiator KS

The main purpose of the Initiator KS is to set up the parameters of the TileWorld and to 

generate the actual TileW orld from these parameters. These parameters are set in the 

rules of the KS and they include: the size of the TileWorld and the number of agents, 

holes, obstacles and tiles in the TileWorld. These parameters are stored on the TileWorld 

Parameters partition. Once these parameters have been set up on the BB, the Initiator
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KS can create the TileW orld and randomly place the agents, holes, obstacles and tiles in 

the TileWorld. This was done by using the standard C++’s r a n d  () [94] function with a 

user define random seed number. Once the TileWorld with all its objects has been 

created and stored on the BB, the Initiator KS will terminate. Figure 18 shows the flow 

chart of the Initiator KS. A detailed list of Initiator KS rules and their functions can be 

seen in Appendix C.

Start

Clear BB

Store TileW orld parameters on to TileWorld Parameters
partition

Create TileWorld and randomly place the required numbers of agents, holes, 
obstacles and tiles. Store the TileW orld in TileWorld Environment partition. 

Put “TileWorld is created” information on the TileW orld Control Status
partition.

Terminate

Figure 18. Initiator KS function flow diagram

3.3.2 Display TileWorld KS

The main purpose of the Display TileWorld KS is to display the contents of the 

TileW orld in a graphical form. This was done with the help of the Qt library from 

Trolltech [95]. Qt is a platform-independent C++ class library that provides easy-to-use 

graphical function calls for drawing and updating the graphical user interface. The Qt 

library runs on UNIX, Windows and MacOS operating systems. It is extensively used in
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KDE, a Linux graphical desktop environment [96]. As DARBS was written in C++ and 

implemented in Linux, this makes Qt library an ideal graphical library to use for 

displaying the TileW orld with its agents, holes, obstacles and tiles.

The Display TileWorld KS starts as soon as the TileW orld is created by the Initiator KS. 

The first thing that the Display TileWorld KS does is to draw a TileWorld of the size 

specified in the TileWorld Parameters partition. This TileWorld is drawn in a new GUI 

(Graphical User Interface) window. It then looks for the position of all the agents, holes, 

obstacles and tiles in the TileWorld Environment partition and updates the GUI window 

accordingly. Finally, it checks and deletes tiles that are on the TileW orld GUI but no 

longer on the TileWorld Environment partition. This is because those tiles must have 

been picked up by agents. This final check could have also included holes and obstacles 

if they were dynamic objects. The Display TileWorld KS then remains dormant until a 

change in the TileWorld Environment partition has occurred. This is when the BB 

broadcasts a change in the TileWorld Environment partition. The Display TileWorld KS 

can be interrupted whenever the BB broadcasts that a change in TileWorld Environment 

partition has occurred. Figure 19 shows the flow chart of the Display TileWorld KS. A 

detailed list of rules and their description for the Display TileWorld KS is in Appendix C.
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TileWorld Environment partition.

Update the graphical 
representation of all agents, holes, 

obstacles and tiles according to 
their new locations.

1r

Store the number of tiles 
currently displayed in the GUI 

window on the Objects Display in 
TileWorld partition.

r

Check to see if the tiles in Object 
Display in TileWorld partition 

exist on the TileW orld 
Environment partition.

If not, delete the corresponding 
tile from the GUI window.

Broadcast m e s s a g e  /  
from BB / s i

On receiving a broadcast 
message from the BB that 

the TileWorld 
Environment has changed, 

reset KS and start again.

Suspend and wait for 
message from BB.

Figure 19. Display TileWorld KS function flow diagram

3.3.3 Agent KS

Each Agent KS represents one agent in the TileWorld. As the objectives of every agent in 

the TileWorld are identical, the rules of each Agent KS are identical as well. The only 

difference being that the rules act on different partitions depending on the agent it is
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controlling. For example, A gentl KS represents agentl in the TileW orld and would act 

on A gentl state o f  mind  partition, A gentl view partition, etc. (see Figure 17).

The general algorithm of an Agent KS is as follows:

1. Initialise and reset Agent K S ’ s working memory

2. View the surrounding area of agent based on the viewing range limit defined in 

the agent’s working memory.

3. Check to see what state the agent is in based on the following conditions:

a. If agent is not currently carrying a tile AND there is no tile in vicinity OR 

if agent is carrying a tile AND there is no hole is in vicinity, then agent is 

in E x p l o r i n g  S t a t e .

b. If agent is not currently carrying a tile AND there is a tile in the vicinity 

AND there is no tile in the cell that agent is currently occupying, then 

agent is in Moving To Tile State.

c. If agent is currently carrying a tile AND is occupying a cell with a hole, 

then agent is in Hole Filling State.

d. If agent is currently carrying a tile AND there is a hole in vicinity AND 

there is no hole in the cell that agent is currently occupying, then agent is 

in Moving To Hole State.

e. If agent is not currently carrying a tile AND the cell that it is occupying 

has a tile, then agent is in Picking Up Tile State.

4. If agent is in E x p l o r i n g  S t a t e ,  then generate and make a random move.

5. If agent is in Moving To Tile State, then make a move towards the 

closest tile from the current position.
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6. If agent is in Moving To Hole State, then make a move towards the 

closest hole from the current position.

7. If agent is in Picking Up Tile State, then pick tile up.

8. If agent is in Hole Filling State, then drop tile in hole and calculate 

score.

9. Go back to step 2.

The following flow chart (Figure 20) shows how the general algorithm above is 

implemented as the Agent KS’s rules.
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S et agen t’s  sta te  to Hole 
Filling State

S et agen t’s  sta te  to 
Moving To Tile S tate

G enerate the p ossib le  m oves from agen t’s  current 
position and store it in Agent p ossib le m o v es partition

If position to the north h as ob stac le  or another agent, then se t  m ove to the north 
a s  not valid, otherw ise north m ove is valid.

If position to the ea s t  h as ob stac le  or another agent, then se t  m ove to the ea st  
a s not valid, otherw ise ea s t  m ove is valid.
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If position to the south h as ob stac le  or another agent, then s e t  m ove to the  
south a s  not valid, otherw ise south m ove is valid.

If agen t is in Pick Up Tile S tate, then rem ove tile from TileWorld Environment 
partition and p lace it in Agent sta te of mind partition.

If position to the w est h a s o b sta c le  or another agent, then s e t  m ove to the w est  
a s  not valid, otherw ise w est m ove is valid.

If agent is in Finding C lo sest Hole State, then find the c lo se s t  hole from the 
Agent hole calculation partition and store the result in A gent sta te  of mind 

partition. S et a g en t’s  sta te  to G enerate Step  C loser To Hole State.

If agent is in Finding C lo sest Tile State, then find the c lo se s t  tile from the Agent 
tile calculation partition and store the result in Agent sta te  of mind partition. S et  

agen t’s  sta te  to G enerate Step  C loser To Tile State.

If agen t is in Exploring S tate, gen era te  a  random m ove b a sed  on valid m oves  
and previous m ove. S tore the m ove in A gent state of mind partition. C hange  

ag en t’s  sta te  to Making A M ove State.

If agent is in Moving To Tile S tate, clear the Agent tile calculation partition. Get 
the position of all the tiles in the vicinity and calculate their d istan ce from 

a gen t’s  current position. S tore the results in Agent tile calculation partition. Set  
agen t’s  sta te  to Finding C losest Tile State.

If agen t is in Moving To H ole State, clear the Agent hole calculation partition. 
Get the position of all the h o les  in the vicinity and calcu late their d istance from 

a gen t’s  current position. Store the results in Agent hole calculation partition. S et  
a g en t’s  sta te  to Finding C lo sest Hole State.

If agen t is in G enerate S tep  C loser To Tile State, then get the location of the 
c lo se st  tile and gen era te  a  random m ove closer to it b a sed  on the valid m oves  
and previous m ove information. Store the m ove in Agent sta te  of mind partition 

and ch a n g e  a g en t’s  sta te  to Making A M ove State.

If agent is in G enerate S tep  C loser To Hole State, then get the location of the 
c lo se st  hole and gen era te  a random m ove c loser to it b a sed  on the valid m oves  
and previous m ove information. Store the m ove in Agent sta te  of mind partition 

and ch a n g e  a g en t’s  state to Making A M ove State.

61



Kum Wah CHOY
Implementing a test application on a distributed blackboard system
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the TileW orld 
Environment has changed, 

reset KS and start again.

If agent is in Hole Filling S tate, then rem ove tile from Agent sta te  of mind 
partition and calcu late sc o re  for filling hole with this tile. Store the sc o re  in Agent

sta te  of mind partition.

If agen t is in Making A M ove State, then get the current location of agen t and 
the con ten ts in that location. G et the position the agen t is trying to m ove to from 
the Agent state of mind partition. C han ge the position of agen t in the TileWorld 

Environment partition to the new  location.

Figure 20. Agent KS function flow diagram

As can be seen in Figure 20, the flow of the functions is sequential and does not branch 

off. This is because DARBS’s current inference engine was designed to test all the rules 

in sequential order. Therefore, the agent current state was introduced to control the rules 

that are fired. For example, by setting the agent current state to Exploring State, 

the rule to generate a random move would be fired. If the agent current state was set to 

Pick Up Tile State, then generating a random move rule would not be fired,
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instead picking up the tile rule would be fired. A detailed list of rules and their 

explanation for the Agent KS can be found in Appendix C.

The DARBS inference engine allows external functions to be called from within the rule. 

These functions can be compiled together with the inference engine or can be linked 

from a dynamic link library. Two examples of external functions called from within the 

rule are Generate Random Move function and Generate Random Move 

Closer To Tile/Hole function. These two functions are important to the Agent KS 

and will be explained in detail in the following sub-sections.

3.3.3.1 Generate random move
The Generate Random Move function generates a random move based on the valid 

moves (i.e. North, East, South and West) and the previous move the agent made. A valid 

move is into a position that does not have an agent or obstacle in it. The reason the 

previous move is taken into account is so that the agent would not move back to the cell 

it just came from unless it is in a dead end. The function first calculates possible moves, 

i.e. moves that are valid and is not the previous move. If this is the first move, then the 

agent will not have any previous move, and therefore, would have four possible moves 

to choose from, assuming that all four moves are valid. In this case, there is a 25% 

probability of choosing either one of the four possible moves. After this move, all other 

moves would have zero to three possible moves because of the previous move and the 

number of obstacles in its path. All possible moves are given equal probability to be 

chosen except when there are zero possible moves, in which case, the previous move 

would be chosen.
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 03 02 1 03 02 1 03 A1 02 1 03 02

2 01 2 01 A1 2 01 2 01 A1

3 A1 3 3 3

4 4 4 4

(a) (b) (c) (d)

Figure 21. Example of random moves

Figure 21 shows an example of random moves. Agentl starts in cell(3,3) and has four 

possible moves to choose from, i.e. cell(3,2), cell(4,3), cell(3,4) and cell(2,3) (Figure 21 

(a)). With a probability of 25%, cell(3,2) was chosen. At cell(3,2), Agentl has two 

possible moves to choose from, i.e. cell(3 ,l) and cell(4,2) (Figure 21 (b)). With a 

probability of 50%, cell(3 ,l) was chosen. At cell(3,l), Agentl has zero possible moves to 

choose from (Figure 21 (c)). Therefore, it chose to take its previous move back to 

cell(3,2) (Figure 21 (d)).

3.3.3.2 Generate random move closer to tile/hole
The Generate Random Move Closer To Tile/Hole function generates a 

random move closer to a cell location from the current cell location. This move also 

takes into account the previous move and the valid moves. The first thing this function 

does is to calculate the distance from the current location to the target cell location. As 

the TileW orld is made up of grid cells and the agents cannot move diagonally, summing 

the absolute values of the difference from the current and target location for both the x 

and y-coordinates would give the distance. This is done using the following equation: 

dist = | ( from X -  toX  ) | + 1 ( from Y - t o Y )  | (Equation 1)

where dist is the distance to target cell

from X  is the x-coordinate of the current location
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from Y  is the y-coordinate of the current location 

toX  is the x-coordinate of the target location 

toY  is the y-coordinate of the target location 

After calculating the distance, the function then checks for possible moves, i.e. moves 

that are valid and not the previous move. For each possible move, the distance from the 

possible move to the target location is calculated. If this new distance is less than the 

current distance to target, then this possible move is marked as a good move. Because of 

the grid nature of the TileWorld, there can only be zero, one or two good moves. The 

random move closer to target is then chosen from the possible moves taking into 

consideration good moves. The following explains how the move will be selected for 

each set of possible moves.

• Zero possible moves

o Select the previous move as the agent is stuck in a dead end. If this is the 

first move and there is no previous move, then this agent is boxed in by 

other agents and/or obstacles. In this case, the only thing the agent can do 

is to remain in the same cell (i.e. new_move = current_location).

• One possible move

o As there is only one possible move, this move will be selected as the new 

move to take.

• Two possible moves

o If there is one good move out of these two possible moves, then the good 

move will be selected as the new move to take.

o Else, there are two good moves or no good moves. Either way, each move 

will have a 50% probability of being chosen as the new move.

65



Kum Wah CHOY
Implementing a test application on a distributed blackboard system

• Three possible moves

o If there is one good move out of these three possible moves, then the

good move will be selected as the new move to take, 

o If there are two good moves out of these three possible moves, then each

good move will have a 50% probability of being chosen as the new move, 

o Else, there are no good moves. In this case, each possible move will have 

about 33.33% probability of being chosen as the new move to take.

• Four possible moves

o If there is one good move out of these four possible moves, then the good

move will be selected as the new move to take, 

o If there are two good moves out of these four possible moves, then each

good move will have a 50% probability of being chosen as the new move, 

o Else, this is an error as there cannot be no good moves out of four 

possible moves.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 T1 02 1 T1 02 1 T1 A1 02 1 A1 02

2 01 2 01 A1 2 01 2 01

3 A1 3 3 3

4 4 4 4

(a) (b) (c) (d)

Figure 22. Example of random move closer to tile

Figure 22 shows an example of how random move closer to tile would function. Agentl 

starts from cell(3,3) and finds the closest tile to be T ilel at cell(2 ,l) (Figure 22 (a)). 

A gentl calculates the distance to T ilel to be 3 (i.e. | (3 — 2) | H-1 ( 3 - l )  |). At cell(3,3),

A gentl has four possible moves and two good moves (cell(3,2) and cell(2,3)). So the two 

good moves have 50% probability of being chosen as the next move to take. In this
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example, cell(3,2) would be chosen as the next move to take (Figure 22 (b)). At cell(3,2), 

A gentl has two possible moves and one good move (i.e. cell(3,l)). Therefore, A gentl 

moves to cell(3 ,l) (Figure 22 (c)). At cell(3 ,l), Agentl has one possible move of which it 

is a good move (i.e. cell(2,l)). Therefore, Agentl moves to cell(2,l) and picks up T ilel.

3.4 Test and validation

The TileW orld implementation was validated by testing the functionality of each KS on 

its own and working together. This is known as modular testing and was easily done in 

DARBS because of its distributed blackboard architecture. The first KS to be tested was 

the Initiator KS. The test for the Initiator KS was to make sure that it could set up the 

TileWorld parameters and generate the TileW orld according to the parameters correctly. 

To do this test, the BB server was run first followed by the Initiator KS. The rules from 

the Initiator KS were all tested and fired by DARBS’s inference engine. The Initiator KS 

first cleared the BB and then the parameters of the TileWorld were stored on the 

TileWorld Parameters partition. The TileW orld was then created based on the 

parameters and the objects in the TileW orld were randomly placed in the TileWorld. The 

generated TileW orld information was then sent to the BB to be stored in the TileWorld 

Environment partition. The first TileW orld generated was a small 5 x 5  TileWorld. This 

TileW orld was generated and sent to the BB without any problems. However, when a 20 

x 20 TileWorld was generated and sent to the BB, the BB’s communication layer could 

not handle the large message size (i.e. 20 x 20 = 400 location information sent to the 

BB). Because of this, the Initiator KS was modified to send the generated TileWorld 

information in four parts (i.e. a limit of 100 location information per message). The
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Initiator KS could now set up the parameters on the BB, generate the TileWorld 

accordingly and finally, terminate without any problems.

The Display TileWorld KS was the next KS to be tested. The first test for the Display 

TileWorld KS was to make sure that it could display the TileWorld with all its objects in 

a GUI window correctly. The second test was to make sure that the Display TileWorld 

KS was able to update the GUI window correctly as and when the TileWorld 

Environment partition changes. For the first test, the BB server was run first followed by 

the Initiator KS. When the Initiator KS finished setting up the TileW orld and terminated, 

the Display TileWorld KS was then started. The Display TileWorld KS correctly 

displayed the TileW orld and all its objects in a GUI window. For the second test, a 

terminal client was used to connect to the BB server after the TileW orld has been 

displayed on the GUI window. Commands were manually sent to the BB via the 

terminal client to change the location of the agents in the TileWorld Environment 

partition. The Display TileWorld KS  automatically responded to the change in TileWorld 

Environment partition and updated the GUI window accordingly. The terminal client 

was then used to send multiple commands to change the locations of the agents in the 

TileWorld Environment partition. It was then observed that although the Display 

TileWorld KS eventually managed to update the GUI window correctly, there was a 

delay in the update. This delay was due to the broadcasted “partition TileWorld 

Environment changed!” message from the BB that constantly restarted the 

Display TileWorld KS. However, this delay was relatively small and was acceptable as 

the Display TileWorld KS did not have a strict timing requirement. Finally, manual 

commands were sent to the BB via the terminal client to remove tiles from the TileWorld 

► Environment partition. The Display TileWorld KS initially had a problem removing the
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tiles from the GUI window. This was due to a programming error in the use of the Qt 

library. This problem was fixed and the Display TileWorld KS could now remove tiles 

from the GUI window correctly.

The last KS to be tested was the Agent KS. The first test for the Agent KS was to make 

sure that the Agent KS functioned on its own according to the design specification. The 

BB server and Initiator KS were run first and then after the Initiator KS had terminated, 

one Agent KS was run. The Agent KS  was run with debug statements printed out on 

another text window. This showed the progress of the Agent KS. The Agent KS 

functioned according to the design specification, exploring the TileW orld looking for a 

tile, move towards a tile when it has found one, picking up the tile when it was over one, 

exploring the TileWorld looking for a hole, moving towards a hole when it has found 

one, and dropping a tile in a hole when it was over a hole. The whole process was 

observed on the debug statements. It was also observed that the whole process was 

relatively slow (i.e. in terms of minutes per cycle) and this was due to the large amount 

of debug statements.

The second test for the Agent KS was the same as the first test except that the Agent KS 

was run together with the Display TileWorld KS. The debug statements from the Agent 

KS were reduced to a minimum as the progress of the Agent KS could now be displayed 

graphically by the Display TileWorld KS. In this test, the Agent KS  functioned faster than 

the first test and according to the design specification. The Display TileWorld KS also 

correctly displayed the progress of the Agent KS. The third test was run similar to the 

second test except that two Agent KSs were run together. This test was to test the 

interaction between Agent KSs and to make sure that they function correctly with other
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Agent KSs. In this test, the size of the TileWorld was reduced to 5 x 5 to increase the

interaction between the Agent KSs. In this test, the Agent KSs functioned according to 

their design specification. W hen one Agent KS changed the TileWorld Environment 

partition, the other Agent KS would restart. This guaranteed that the Agent KS worked 

with as up-to-date information as possible.

For the fourth test, three Agent KSs were run together with the Display TileWorld KS. 

During this test, an error occurred that caused the third Agent KS to hang half-way. After 

further investigation, it was discovered that the third Agent KS was stuck in a deadlock 

[97]. This occurred when the main Agent KS process was interrupted by a SIGIO signal 

from the kernel while accessing a shared resource. As explained in section 3.2.1.2, when 

a message is received from the BB, the main process is interrupted and control is passed 

to the registered signal handler function. The Agent KS’s signal handler function 

accesses the same shared resources as the main Agent KS process, therefore, a deadlock 

occurred when the main process has locked out the shared resource that the signal 

handler function tried to access. Examples of these shared resources are the heap 

memory and the standard output device (STDOUT). So for example, a deadlock occurs 

when the main process is interrupted while trying to print out a message on the standard 

output device and the signal handler function then tries to print out a message on the 

standard output device. The reason why this deadlock did not occur in the earlier test 

was because, when there are three Agent KSs running together, the number of broadcast 

messages from the BB increases thus increasing the chances of interrupting the main 

process while accessing a shared resource.
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This problem was solved by changing the way the signal handler function handles 

signals. The signal handler function now starts a new thread to service the signal and 

returns control back to the main process to continue its task. By having separate threads 

running, internal variables that both the signal handler thread and the main process 

thread access need to be mutually exclusive. This was accomplished by using the POSIX  

Thread ( p t h r e a d . h )  library [98]. This library contains all the necessary thread 

creating/deleting and mutex locking/unlocking mechanisms. After implementing this 

new threading signal handler, the fourth test was rerun. This time all three Agent KSs and 

the Display TileWorld KS functioned correctly and according to the designed 

specification. The overall performance of the Agent KSs was also observed to have 

speeded up slightly due to the new signal handler thread.

3.5 Summary

One of the aims of this work was to investigate the performance of a distributed 

blackboard system in a distributed processing network. To do this, a distributed 

blackboard system and an application to run on it needed to be chosen. DARBS was 

chosen as the distributed blackboard system to be used and the TileW orld test-bed was 

chosen as the application to be run on DARBS [59]. TileWorld test-bed is a well- 

established multi-agent system test-bed for testing the behaviour of multi-agent systems 

[87][88]. It is a two dimensional grid world with agents, holes, obstacles, and tiles in it. 

The objective of the agents is to move around the TileWorld looking for tiles, picking up 

the tiles and dropping the tiles into holes to score points. The TileWorld was 

implemented in DARBS by having the agents as KSs and storing the TileWorld 

environment contents on the BB. The way information was stored on the BB is 

important as this ultimately affects the performance of the system and intelligibility of
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the information on the system. The actual contents of the TileW orld are stored in the 

TileWorld Environment partition on the BB. The information string format for the 

TileWorld Environment partition has been structured in such a way that it enables easy 

querying of information by the KSs.

There are three types of rule-based KSs that were implemented, they are: Initiator KS, 

Display TileWorld KS, and Agent KS. The Initiator KS sets up the parameters of the 

TileW orld on the BB and generates the TileW orld based on these parameters. It also 

randomly places the agents, holes, obstacles, and tiles in the TileWorld. After setting up 

the TileWorld, the Initiator KS terminates. The Display TileWorld KS displays the 

TileWorld and its contents in a GUI (Graphical User Interface) window. This helps users 

to easily follow the changes in the TileWorld. The Display TileWorld KS uses the Qt 

library from Trolltech for drawing and updating the graphical user interface [95]. The 

Display TileWorld KS starts by drawing the TileW orld according to the parameters set 

on the BB. It then searches the TileWorld Environment partition for the agents, holes, 

obstacles and tiles and updates the GUI window accordingly. The Display TileWorld KS 

then suspends itself until the BB informs it that the TileWorld Environment partition has 

changed. W henever the Display TileWorld KS receives a “partition TileWorld 

Environment changed!” broadcast message from the BB, it restarts itself and 

updates the GUI window according to the changes in the TileWorld Environment 

partition.

Each Agent KS controls its corresponding agent in the TileWorld. The function and rules 

of each Agent KS are the same. The Agent KS starts by examining its surrounding area. If 

the Agent KS is not carrying a tile, then it will look for a tile in the surrounding area. If
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there is a tile in the vicinity, it will move towards the tile and pick it up. If there are no 

tiles in the vicinity, then the agent will randomly explore the surrounding area until it 

finds a tile. If the agent is already carrying a tile, then it will look for a hole. If the 

surrounding area has a hole, it will move towards the hole and drop the tile into the hole 

to score points. If there is no hole in the vicinity, then it will randomly explore the 

suiTounding area until a hole is found. Once the tile has been dropped into the hole and 

the scores have been calculated, the agent starts looking for another tile again. Whenever 

the Agent KS receives a “partition TileWorld Environment changed!” 

broadcast message from the BB, it will restart itself and check the TileWorld 

Environment partition again. This ensures that all Agent KSs are working with the latest 

TileWorld Environment partition information.

After implementing the three KSs, all three KSs were subjected to a functionality test. 

The Initiator KS was the first KS to be tested. A maximum transmitting message size 

limit was set to overcome the error that occurred when large messages were transmitted 

to the BB. The second KS to be tested was the Display TileWorld KS. Overall, this KS 

functioned according to the design specification. However, it was noted that there was a 

slight delay in the graphical update when many changes occur rapidly. This delay was 

deemed acceptable as there was no strict timing requirement for this KS. The last KS to 

be tested was the Agent KS. Overall, the Agent KS functioned according to design 

specification. However, a deadlock occurred when there were three Agent KSs running 

simultaneously. This was not an error in the Agent K S’s design but an error in DARBS’s 

communication model. This deadlock was solved by changing DARBS’s inter-process 

communication (IPC) model to multithreading. With this new IPC model, the test was 

II rerun and the Agent KSs all functioned according to the designed specification.
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4. Performance of distributed blackboard systems in 
distributed processing networks

This chapter explains in detail the main experiments that were carried out on a 

distributed processing network running a distributed blackboard system. The general aim 

and set-up of these experiments will first be explained followed by a detailed description 

of the experiments and summary of the results.

4.1 General aim and set-up of experiments

The general aim of the following experiments is to investigate the suitability, potential 

and characteristics of distributed blackboard systems on distributed processing networks. 

The results of these experiments would be the basis for determining the suitability of 

distributed blackboard systems in distributed embedded processing networks. The 

following general set-up applies to all the experiments carried out in this chapter. The 

distributed blackboard system used is DARBS running the TileW orld test-bed as 

explained in chapter 3. From here onwards, TileW orld running on DARBS will be called 

TileWorld-DARBS. A computer lab with eighteen personal computers (PCs) networked 

together via an Ethernet 100Mbps switch is used as the distributed processing network 

for these experiments (see Figure 23).
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Figure 23. Computer lab running TileWorld-DARBS

All the PCs used are AMD Athlon 1.67GHz processors with 224 megabytes (MB) of 

random access memory (RAM) running Red Hat 9 operating system with Linux kernel 

2.4. The network layout of the PCs is as shown in Figure 24.

PCI PC 18PC3PC2

Ethernet 100Mbps switch

Figure 24. General network layout of experiment PCs

A 20 x 20 TileWorld was created with 40 tiles, 20 holes and 40 obstacles. The position 

of the tiles, holes, obstacles and the initial positions of the agents were all randomly
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generated using the C++ standard random number generator function, r a n d  () with a 

seed of 8. The number of active agents in the TileWorld varied from one to sixteen 

depending on the experiment. Figure 25 shows the initial layout of the TileWorld used 

for the experiments.
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Figure 2 5 . A  2 0  x 2 0  TileWorld generated with random seed 8

4.2 Comparing distributed and non-distributed performance

This is the first experiment earned out on TileWorld-DARBS. In this section, the aims 

and set-up of the experiment will first be explained. Then the results will be discussed 

and a conclusion reached.
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4.2.1 Aims of experiment

The aims of this experiment are to investigate the performance of distributed blackboard 

systems running in non-distributed set-up and in distributed set-up. To run in non­

distributed set-up, TileWorld-DARBS is run on a single processor. To run in distributed 

set-up, TileWorld-DARBS is run on multi processors (i.e. one processor for the 

blackboard and one processor for each KS). The distributed set-up will be run in an ideal 

case, i.e. one processor per process. The parallelism granularity is set to KS level as this 

will allow the KS programmer to concentrate more on knowledge implementation and 

ignore fine-grain parallelism issues. Another aim of this experiment is to investigate the 

effects of adding more KSs to the performance of the distributed blackboard system for 

both single and multi processors set-up.

4.2.2 Experiment set-up

This experiment is run in two set-ups. In the first set-up, TileWorld-DARBS is run with 

one to sixteen agents on a single processor. In the second set-up, TileWorld-DARBS is 

run with one to sixteen agents on multi processors (i.e. a new processor is added to the 

network for every new agent KS). Figure 26 illustrates the single processor set-up with 

different number of agents.
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PC1

Blackboard 
Display KS 
Agentl KS

PC1

Blackboard 
Display KS 
Agentt KS 
Agent2 KS

•  •  •  •

3C1_________

Blackboard 
Display KS 
Agentl KS

Agentl 6 KS

1 agent run 2 agents run 16 agents run

Figure 26. Single processor set-up for different number of agents

Figure 27 shows the multi processors set-up with different number of agents. For every 

run of the experiment, each agent’s average time per move is calculated over 50 moves. 

The overall mean time per move for each run is then calculated as the average of all the 

agents’ mean times per move. The time per move is calculated by subtracting the time of 

an agent’s move from the time of its subsequent move. An agent is considered to have 

made a move when it has changed the TileW orld environment (i.e. moved to another cell, 

picked up a tile, or dropped a tile into a hole). Restarts due to other agents changing the 

TileW orld are not considered as moves.

►
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PC3

A gen tl KSDisplay KS

PC1 Blackboard

1 agent run

PC2 PC3

Display KS A gentl KS

PC1 Blackboard

PC4

A gent2 KS

2 agents run

PC2 PC3

Display KS A gen tl KS

PC6

PC1 A gent4 KSBlackboard

PC4 PC5

Agent2 KS A gent3 KS

4 agents run

PC2 PC3

Display KS A gen tl KS

PC1 Blackboard

PC5PC4

A gent2 KS A gent3 KS

3 agents run

PC2

Display KS

PC1

Blackboard

PC3 PC4 PC18

A gen tl KS A gent2 KS A gentl 6 KS

16 agents run

Figure 27. Multi processors set-up for different number of agents
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4.2.3 Results and discussion

Figure 28 shows the results of the single processor set-up of the experiment. A 

polynomial function is fitted onto the results to show the general trend of the results. The 

polynomial function is used instead of a linear function because the coefficient of 

determination ( R 2) [99] for the linear function is 0.9806 (see Appendix D) whereas the 

coefficient of determination ( R 2) for the polynomial function is 0.9981. The error bars 

show the standard error of mean [100] for each run.

A v e r a g e  t im e  p e r  m o v e  o n  a  s in g le  p r o c e s s o r

40.00

35.00
R2 = 0.9981

30.00

-  25.00

20.00

1“  15.00

10.00

5.00

0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N um ber of a g e n t KS

Figure 28. Average time per move for different number of agent KSs on a single processor

From Figure 28, it can be seen that the average time per move increases slightly more 

than linearly as the number of agent KSs increases. This is as expected, as the number of 

agent KSs increases, the single processor needs to time-slice [101] between more 

processes. For each time-slice, the processor needs to save the current process’s context

80



Kum W ah CHOY

Performance of distributed blackboard system s in distributed processing networks

before switching to the next process’s context. This is called context-switching [102] and 

this takes up processing time. A detailed table of the results can be seen in Appendix E.

The standard error of mean [100] is calculated as:

crM = (Equation 2)
■yJN

where a M is the standard error of mean 

a  is the standard deviation 

N  is the sample size (in this case it is 50)

The standard error of mean also increases as the number of agent KSs increases although 

this is not clear in Figure 28 due to the scale of the graph. The exact values can be seen 

in the table of results in Appendix E. The increase in standard error of mean is due to the 

increase in the standard deviation. This increase was observed to be because of the 

interaction between the agent KSs. As the number of agent KSs increases, the agent KSs 

start to compete among themselves. Take Figure 29 for example, where A gentl and 

Agent2 are competing to get T ilel. A gentl takes a step closer to T ilel by moving to 

cell(2,2). Agent2 has two possible moves (cell(2,2) or cell(3,l)) that will bring it closer 

to T ilel and has decided randomly to move to cell(2,2) only to discover that A gentl is 

already in that cell (Figure 29 (b)). Agent2 now has to restart and think again where to

move. Agent2 then decides to move to cell(3 ,l) (Figure 29 (c)). A gentl now moves to

cell(3,2) to pick up T ilel. Agent2 tries to move to cell(3,2) to pick up T ilel but discovers 

A gentl is already in that cell. Agent2 now has to restart and think again. As restarts do 

not count as moves, Agent2 has taken a long time to make its move (i.e. from cell(2 ,l) to 

cell(3,l)). This competition only occurs occasionally when the agent KSs are close to
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each other. Most of the time they are apart as the TileWorld is relatively large compared 

to the number of agents in the TileWorld.

1 2 3 1 2 3 1 2 3 1 2 3

1 A2 1 A2 1 A2 1 A2

2 A1 T1 ------- >  2 A1 T1 ------- >  2 A1 T1 ------- >  2 A1

3 3 3 3

(a) (b) (c) (d)

Figure 29. Example of competing agent KSs

Figure 30 shows the results of the multi processors set-up of the experiment. A linear 

function is fitted onto the results to simplify and show the general trend of the results. 

This is because the polynomial function trend line produces an equation and R 2 value 

(see Appendix D) that is very similar to the linear function. The error bars show the 

standard error of mean for each run. The results on multi processors show a more linear 

trend compared to the single processor. This is because on multi processors there is no 

time-slicing between the processes. The increase in average time per move is mainly due 

to the communication time between the processors (a more detailed explanation can be 

found in section 4.3.3). The standard error of mean also increases as the number of agent 

KSs increases and this is due to the same reason as that on the single processor. A 

detailed table of the results can be seen in Appendix E.
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Average time per move on multi processors

2.50
y = 0 .111x + 0.2542 
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N u m b e r  o f  a g e n t  K S

Figure 30. Average time per move for different number of agent KSs on multi processors

To illustrate the effects of adding KSs further, the average time per move for each run is 

normalised to the average time per move for one agent KS for both the single and multi 

processors experiments. This will show the affects of adding new agent KSs to the 

system. The normalised value is calculated as:

_ NAgentTime
OneAgentTime 

where NAgentTime

OneAgentTime

tN

(Equation 3)

is the mean time per move for N agent KSs 

is the mean time per move for 1 agent KS 

is the normalised time
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Normalised average time per move for single
processor
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Figure 31. Normalised time for single processor

Figure 31 shows the normalised time with increasing number of agent KSs on a single 

processor. A second order polynomial function is fitted onto the normalised values. The 

effects of adding more agent KSs on a single processor can clearly be seen in Figure 31. 

The slow-down as the number of agent KSs increases is approximately linear until four 

agent KSs. By adding four agent KSs in the TileWorld, the average time per move is 

approximately five times slower than one agent KS in the TileWorld. This increase in 

time is not linear and at sixteen agent KSs, the slow-down is close to 30. The gradient of 

the polynomial function can be calculated by differentiating it as follows:

y = 0.058.x2 + 0.7944* + 0.3678

^  = 0.116*+ 0.7944
dx

The derivative here shows roughly the rate of slow-down as the number of agent KSs 

increases up to sixteen agent KSs. In the ideal case this slow-down should be linear as
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the single processor would spend equal amount of processing time for every agent KS in 

the TileWorld. However, because of the large context-switching overhead and an 

inefficient scheduling algorithm of the kernel, this slow-down is a polynomial function. 

The Linux kernel5s scheduling algorithm dynamically recalculates each process's 

priority every epoch and as the number of processes increases, this recalculation 

becomes a burden [103]. A detailed table of results can be seen in Appendix E.

Normalised average time per move for multi 
processors

y = 0.2379x + 0.5446  
5.00 y

|  4.00
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N u m b e r  o f  a g e n t  K S
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—  Linear (Multi processors) - - - • Linear (Ideal case)

Figure 32. Normalised time for multi processors

Figure 32 shows the normalised time for the multi processors set-up with a linear 

function fitted onto the normalised values. The reason why a linear function is used is 

the same as the reason given for Figure 30. An ideal case is also plotted as a straight line

with a normalised time value of 1. In the ideal case, there should not be any slow-down

as a new processor is assigned to every new agent KS in the TileWorld. From the 

experiment, the first two values are relatively close to the ideal case. However, from

R = 0 .9932
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three agent KSs onwards, the slow-down is approximately linear with a gradient of about 

0.238. This slow-down is mainly due to the communication overhead and the serial 

access to the blackboard. The communication overhead is mainly caused by the extra 

messages that the blackboard needs to send out during a broadcast message. This is 

because DARBS accomplishes a broadcast message by sending the same message to all 

the KSs in turn. The blackboard serial access slow-down, on the other hand, is caused by 

the increase in queuing time needed to access the blackboard that results from the 

increase in the number of agent KSs. Compared with a single processor with up to 

sixteen agent KSs, the rate of slow-down on multi processors is a lot less. This is shown

by the gradient of the two trend lines ( —  = 0.116x + 0.7944 and 0.238 respectively). At
dx

sixteen agent KSs, the difference between the measured time and the ideal time is;

For multi processors:

4.3214 -  1.0000 = 3.3214

For single processor:

28.9718 -  16.0000 = 12.9718
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This shows that at sixteen agent KSs, the results on the single processor is a lot further 

from the ideal case than that of the multi processors. A detailed table of results can be 

seen in Appendix E.

Comparing average time per move
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Figure 33. Single and multi processors average time per move

Figure 33 compares the average time per move on a single and multi processors. A 

polynomial function and a linear function are fitted to the results of the single processor
i

and multi processors respectively. It can clearly be seen that as the number of agent KSs 

increases, the difference in time between single and multi processors increases. For 

example, at one agent KS, the difference is:

1.183 -  0.467 = 0.716 minutes; 

and at sixteen agent KSs, the difference is:

34.283 -  2.017 = 32.266 minutes
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This shows that the overhead from context-switching on the single processor is more 

than the communication and serial access overhead on the multi processors as the 

number of agent KSs increases. For one agent KS, the ratio between single and multi 

processors is:

1.183
0.467

and for sixteen agent KSs, the ratio is:

34.283
2.017

2.533

16.997

This means that with one agent KS, the multi processors set-up is about two and a half 

times faster than the single processor set-up and this continues to increase up to 

approximately seventeen times faster with sixteen agent KSs (as can be seen in Figure 

33). A detailed table of results can be seen in Appendix E.

4.2.4 Conclusion

From this experiment, it is evident that the performance of the distributed blackboard 

system in a distributed set-up is better than on a non-distributed set-up. The performance 

of both distributed and non-distributed set-ups are far from their ideal case. For the 

distributed set-up, this is because of the communication and serial access overheads. For 

the non-distributed set-up, this is because of the context switching overhead and the 

kernel’s inefficient scheduling algorithm. Although the scheduling algorithm can be 

improved, the performance of the non-distributed set-up would still be far from the ideal 

case as context switching between processes takes up relatively large amount of 

processing time. Comparing the difference between the actual performance results and 

the ideal case, the distributed set-up has a smaller difference compared to the non- 

distributed set-up. This is true for up to sixteen agent KSs. However, there will be a
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point when the blackboard saturates. This will be when the number of requests from KSs 

is more than the blackboard can handle. The performance at and beyond this point will 

be difficult to predict without further experiments (see future work section 6.3), however, 

the third experiment in section 4.4.3 identifies the saturation point for this particular 

system set-up.

The standard deviation of the results increases as the number of agent KSs increases. 

This was observed to be due to the increase in number of restarts. The restarts were 

caused by the competitive interaction between agent KSs. This means that as the number 

of agent KSs increases, the variation in the readings increases. The restart algorithm can 

be optimised but this will only speed up the restart algorithm. A better way to overcome 

this is to change the behaviour of the agent KSs to cooperative but this will be the 

subject of agent behaviour research. Currently, agent behaviour is the subject of 

numerous researches [104] [105][106] [107] and this is beyond the scope of this thesis.

The effects of adding agent KSs to the TileWorld in the non-distributed set-up is a 

polynomial slow-down function. In the distributed set-up on the other hand, the slow­

down is approximately a linear function. The rate of slow-down of up to sixteen agent

KSs for the non-distributed set-up is approximately —  ~ 0 .116x + 0.7944 and for the
dx

distributed set-up, it is approximately 0.238. This means that by adding more agent KSs 

to the non-distributed set-up, the slow-down increases linearly but for the distributed set­

up, the slow-down remains constant at 0.238. This shows that for a large number of 

agent KSs, it is better to run in the distributed set-up. However, the down side of the 

distributed set-up is that there is an assumption of unlimited processor resource. In 

practical application cases, there is a limited processor resource. Therefore, the KS
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processes need to be shared among the available processor resource. The next sets of 

experiments investigate the speedup and efficiency of sharing the KS processes among 

varying number of processors.

4.3 Speedup and efficiency of varying number of agent 
processors

This is the second experiment earned out on TileWorld-DARBS. In this section, the 

aims and set-up of the experiment will first be explained. Then the results will be 

discussed and finally a conclusion of the results will be presented.

4.3.1 Aims of experiment

The aims of this experiment are to investigate the speedup factor and efficiency of 

varying number of agent processors. An agent processor (AP) is a processor dedicated to 

run one or more agent KSs. The reason for not considering the Display KS is because it 

is only there to display the contents of the TileWorld; without it the TileWorld would 

still function. In general, speedup is a measure of the speed improvement of parallel 

processing over sequential processing [108] and it is calculated as: 

time
Speedup =    (Equation 4)

timen

where times is the execution time on a single processor

time„ is the execution time on N  processors

Speedup is the speedup factor

There are different sub-categories of speedup and relative speedup [108] is used here as 

the interest is in the speed increase using the same distributed blackboard system. 

Relative speedup is defined as the speed improvement of running a parallel algorithm in
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parallel over running the same parallel algorithm in sequential [71]. For simplicity, 

relative speedup will just be referred to as speedup from here onwards. Efficiency is the 

measure of the amount of speedup gain per processor used [109] and it is calculated as:

Efficiency -  (Equation 5)
processor

where Speedup is the speedup factor

Nprocessor is the number of processors used

Efficiency is the efficiency

The optimal distribution of KSs and its scalability will also be investigated using these 

two performance metrics. The speedup obtained will also be compared with the 

suggested speedup in [11].

4.3.2 Experiment set-up

► This experiment is run in seven different set-ups. For the first set-up, ten agent KSs are

run in one to ten numbers of agent processors (APs). The average time per move is 

calculated for each run. The speedups and efficiencies are then calculated from the 

average time per move. For the second set-up, eleven agent KSs are run in one to eleven 

numbers of APs and their speedups and efficiencies are calculated. This is repeated for 

all the other set-ups until sixteen agent KSs in one to sixteen numbers of APs. As the 

parallelism granularity is set at KS process level, the maximum number of APs that can 

be used is the number of agent KSs being run. This can be clearly seen in Figure 34.
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Figure 34. Ten agent KSs set-up with diffirent numbers of APs

Figure 34 shows how ten agent KSs set-up is run in one to sixteen APs. As can be seen 

also, the available agent KSs are distributed as evenly as possible across the available 

APs.
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4.3.3 Results and discussion

Figure 35 to Figure 41 show the results of the ten to sixteen agent KSs set-ups in two y- 

axis charts respectively. For each chart, a polynomial function is fitted on to the speedup 

results to show the trend of the results (dotted line). Another polynomial function is 

fitted on to the efficiency results to show the trend of the efficiency results (solid line). 

The speedup values for the dotted line are shown on the left y-axis and the efficiency 

values for the solid line are on the right y-axis.
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Figure 35. Speedup and efficiency for 10 agent KSs set-up
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Figure 36. Speedup and efficiency for 11 agent KSs set-up
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Figure 37. Speedup and efficiency for 12 agent KSs set-up
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Figure 38. Speedup and efficiency for 13 agent KSs set-up
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Figure 39. Speedup and efficiency for 14 agent KSs set-up
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Figure 40. Speedup and efficiency for 15 agent KSs set-up
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Figure 41. Speedup and efficiency for 16 agent KSs set-up

The results for all the different agent KSs set-ups show that the speedup increases as the 

number of APs increases up to a peak after which the speedup slowly levels off. For ten
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agent KSs set-up (Figure 35), the peak is at five APs with a value of about 3.59 after 

which it levels off to about 3.18. For eleven and twelve agent KSs set-ups (Figure 36 and 

Figure 37), the peaks are at six APs with a value of about 3.30 and 3.45 respectively. 

After the peak, both speedups level off to about 3.10 (eleven agent KSs set-up) and 3.17 

(twelve agent KSs set-up). However, for thirteen and fourteen agent KSs set-ups (Figure 

38 and Figure 39), the peak is at five and seven APs respectively with a value of about 

3.36. Both set-ups then level off to about 3.17 and 3.03 respectively. Finally for fifteen 

and sixteen agent KSs set-ups (Figure 40 and Figure 41), the peaks are at six and eight 

APs with a value of about 3.32 and 3.40 respectively. After the peak, both speedups level 

off to about 2.96 and 2.92 respectively.

The small oscillated results after the peaks as the speedups level off are due to the high 

standard deviation as explained in section 4.2.3. The initial increase in speedup before 

the peak is because of the reduced number of KS processes that each AP needs to 

process. However, after the peak (maximum point), further increase of APs reduces and 

levels off the speedup. This is because as more APs are connected to the BB, the query 

requests to the BB become more frequent. The BB is interrupted by each query request 

to put that query request on to a queue. As the query requests become more frequent, the 

interrupts become more frequent. Just after the peak, the interrupt overheads start to 

counteract the gains from distributing the agent KSs, thus causing a decrease in the 

speedup. This speedup then starts to level off as more APs are connected because the 

next interrupt from the same agent KS will not occur until its current query is replied.

For all the different agent KSs set-ups, the peaks occur at even distribution or close to 

even distribution. Even distribution is when there is an equal number of agent KSs
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running in each of the available AP. For ten, twelve, fourteen, and sixteen agent KSs set­

ups, the peaks are at even distribution, i.e. with two agent KSs per AP. For eleven agent 

KSs set-up, the peak is at six APs which is close to even distribution (i.e. five APs with 

two agent KSs each and one AP with one agent KS). The peak for thirteen agent KSs 

set-up is at five APs with a value of about 3.36 but this is really close to six APs which 

has a value of about 3.35. The distribution of agent KSs for five APs is: two APs with 

two agent KSs each and three APs with three agent KSs each. The distribution of agent 

KSs for six APs is: one AP with three agent KSs and five APs with two agent KSs each. 

Therefore, the distribution of agent KSs at the peak for thirteen agent KSs set-up is really 

close to even distribution. The same is true for fifteen agent KSs set-up. The peak for 

fifteen agent KSs set-up is at six APs with a value of about 3.32, but this is really close 

to five APs which has a value of about 3.31. The distribution of agent KSs at the peak is: 

three APs with two agent KSs each and three APs with three agent KSs each. However, 

the distribution of agent KSs at five APs is even, i.e. three agent KSs per AP. Therefore, 

the distribution of agent KSs for fifteen agent KSs set-up at the peak is also really close 

to even distribution. The experiment in section 4.4.3 will discuss further about even 

distribution.

From thirteen agent KSs set-up onwards, there is a small increase in speedup at the end 

of the speedup curve. This slight increase at the end is due to the poor scheduling 

algorithm of the Linux kernel to handle large number of processes on a single processor 

[103]. This is also shown in the previous experiment and explained in section 4.2.3. This 

increase at the end can be seen more clearly as the number of agent KSs used in the set­

up increases (e.g. in sixteen agent KSs set-up).
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The efficiency results for all the agent KSs set-ups show a steady decline in efficiency as 

the number of APs increases. The efficiencies at the peak of the speedup for ten, eleven, 

twelve, fourteen, and sixteen agent KSs set-ups are about 71.8%, 55.0%, 57.5%, 48.1%, 

and 42.5% respectively. These efficiencies then end at about 31.8%, 28.2%, 26.4%, 

21.6%, and 18.3% respectively. For thirteen agent KSs set-up, the efficiency at the peak 

speedup is about 67.2%, but at six APs (as the speedup value is very close to five APs), 

the efficiency is only about 55.8%. The efficiency then ends at about 24.4%. However, 

for fifteen agent KSs set-up, the efficiency at the peak speedup is about 55.4% but at five 

APs (as the speedup value is very close to six APs), the efficiency is about 66.2%. This 

efficiency then ends at about 20.0%. As can be seen the efficiency is inversely 

proportional to the speedup obtained. The efficiency’s rate of drop decreases as the 

speedup’s rate of climb increases.

The decrease in efficiency as the number of APs increases shows that the extra APs in 

the system is not being fully utilised. This is expected as only very specific parallel 

problems running on specific hardware can achieve and maintain full utilisation (i.e. 

efficiency of 1 as the hardware is scaled) [71]. The under-utilisation was observed to be 

due to waiting for a reply from the BB. This means that as the number of agent KSs per 

AP decreases, the less processing and more waiting each AP will do, thus reducing the 

efficiency. Detail tables of results for all the agent KSs set-ups in this experiment can be 

seen in Appendix F.

4.3.4 Conclusion

The general speedup trend as the number of APs increases is shown in Figure 42. In the 

beginning, the speedup increases quickly to a maximum point, after which it drops a bit

99



Kum W ah CHOY

Performance of distributed blackboard system s in distributed processing networks 

and slowly levels off. For larger number of APs (at the end), the speedup will start to 

increase slightly again.

increasing
S p eed u p  ▲

Increasing number of
Agent P rocessors

Figure 42. General speedup trend for increasing number of agent processors

The initial speedup increase is due to the reduced number of agent KS processes that 

each AP needs to time-slice between. This increase continues until the maximum point, 

after which the gains from distributing the processes are counteracted by the interrupt 

overheads and serial access to the blackboard. This means that the blackboard becomes 

the bottleneck for large number of APs. The small increase in speedup at the end (at 

large number of APs) is not due to the characteristics of the distributed blackboard 

system in the distributed processing network. This increase is caused by poor scheduling 

algorithm of the kernel for large number of processes [103]. Different operating systems 

with more efficient scheduling algorithms would most likely not show this increase.

In general, the distribution of agent KSs also needs to be even or close to even (for odd 

numbers of agent KSs) to be able to obtain an optimum speedup. The maximum speedup 

is generally obtained with two agent KSs per AP distribution. However, with fifteen
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agent KSs set-up, the maximum speedup was obtained close to three agent KSs per AP 

distribution.

This shows that the maximum speedup is not only governed by the distribution of agent 

KSs but also the number of APs used. This is because large numbers of APs create large 

interrupt overheads for the blackboard thus reducing the speedup. These overheads 

saturate the BB and slow-down the BB’s reply to requests from agent KSs. Therefore, to 

obtain maximum speedup for a given number of agent KSs, an even distribution of agent 

KS processes across the maximum number of APs that does not saturate the BB is 

required. The saturation point for the BB is when the BB cannot reply requests faster 

than the incoming requests rate.

Across the different number of agent KSs set-ups, the maximum speedup achieved is 

about 3.59 with five APs in the ten agent KSs set-up. This is still far from the suggested 

5 or 10-fold speedup that is potentially possible [11]. This means that there is still plenty 

of room for optimising the agent KSs. For example, the structure of the rules in the agent 

KS can be rearrange to reduce the communication between the agent KS and the BB. 

The amount of data stored on the BB can also be reduced or compressed in order to 

reduce the amount of data sent per transmission. However, too little data stored on the 

BB defeats the puipose of using the blackboard architecture to share information 

between KSs. Therefore, a balance is required between storing information on the BB 

and the communication overheads. Another possible improvement is on the BB side, i.e. 

to enable concurrent access to different partitions on the BB. This would dramatically 

increase the maximum speedup. With these improvements it is possible to push the 

maximum speedup to nearly 10-fold [11]. However further gains in speedup will only be
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possible if the parallelism granularity is finer, i.e. below KS process level. By reducing 

the granularity to many sub-KSs and for highly parallel problems it is possible to obtain 

speedup of up to 21-fold [6]. However, fine grain parallelism distracts the KS 

programmer with parallelism issues instead of concentrating on knowledge 

implementation.

Figure 43 shows the general efficiency trend as the number of APs increases. In general, 

the efficiency decreases slowly as the number of APs increases. This is because only 

very specific parallel problems on specific hardware can achieve and maintain efficiency 

of 1 as the hardware is scaled. Most general distributed processing would have some 

inefficiency. This inefficiency would accumulate as the number of processors increases. 

Thus, this is exactly what Figure 43 shows. This inefficiency is due to the under­

utilisation of each AP. From observation, this under-utilisation is due to the idling time 

of each AP while it waits for a reply from the BB. As the number of APs increases, the 

less time each AP spends processing and the more time it spends idling waiting for the 

BB. Therefore the efficiency can be improved by processing more complex/processor 

intensive agent KSs.

I
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Figure 43. General efficiency trend for increasing number of agent processors

The efficiency trend also reflects the speedup obtained. The efficiency decreases slowly 

as the speedup reaches near the maximum point. After that, the efficiency starts to 

decrease steeply as the speedup starts to level off. Finally, the rate of decrease slows 

down as the speedup increases slightly at the end. In general, across all the agent KSs 

set-ups, the efficiencies at the maximum speedup point and at the last speedup point 

decrease as the number of agent KSs set-up increases. This is probably because the agent 

KSs are not processor intensive enough and do not make full use of the extra AP 

resources. More processor-intensive agent KSs would improve the efficiencies but 

another reason for the inefficiency is the saturation on the BB. Therefore, the efficiency 

(and therefore scalability) of a distributed blackboard system depends on the processor 

intensiveness of the KSs and the saturation point of the BB. To have good scalability, 

processor intensive KSs and high saturation point BB are required. The next experiment 

will investigate the optimum number of agents KSs to run for different numbers of APs 

with a given K S’s processor intensiveness and BB saturation point.
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4.4 Speedup and efficiency of varying number of agents

This is the third experiment earned out on TileWorld-DARBS. In this section, the aims 

and set-up of the experiment will first be explained. Then the results will be discussed 

and finally a conclusion of the results.

4.4.1 Aims of experiment

The aims of this experiment are to investigate the optimum number of agent KSs to run 

on a given number of APs and to evaluate its performance. Similar to the previous 

experiment, the performance is measured using speedup and efficiency. This experiment 

will also investigate the effects of limited processor resources on increasing number of 

agent KSs as would be the case in most distributed embedded processing networks 

running AI applications. The possibility of identifying the BB’s saturation point and the 

processor intensiveness of the agent KSs will also be investigated in this experiment.

4.4.2 Experiment set-up

This experiment is run in eleven different set-ups. In the first set-up, one to sixteen agent 

KSs are run on one AP. The average time per move, speedup, and efficiency are 

calculated for each run. The second set-up is the same as the first except that two to 

sixteen agent KSs are run on two APs. The third set-up is also the same as the first set-up 

except that three to sixteen agent KSs are run on three APs. The same applies to the rest 

of the set-ups except that the starting number of agent KSs and number of APs used 

increases until eleven agent KSs running on eleven APs.
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Figure 44. Three APs set-up with different number of agent KSs
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Figure 44 shows an example o f how three APs set-up with different number o f agent 

KSs will run. As the number o f agent KSs increases, they are distributed across the three 

APs as evenly as possible. The same applies for the rest o f the set-ups.

4.4.3 Results and discussion

Figure 45 shows the speedup obtained for the different number o f APs set-ups. Each APs 

set-up is colour coded as shown in the legend. A red dotted line is drawn to link the 

starting points o f the different APs set-ups together.
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Figure 45. Speedup for different number of APs with varying number of agent KSs
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The results in Figure 45 show that the speedup for each AP set-up peaks at multiples of 

the number of APs used. For example, two APs set-up peaks at four, six, eight and ten 

number of agent KSs whereas three APs set-up peaks at six, nine and twelve number of 

agent KSs. The reason for this was observed to be because when there is uneven 

distribution of agent KSs (Figure 46 (a)), the AP with the least agent KSs (AP3 in Figure 

46 (a)) will be able to process faster, therefore, sending requests to the BB more 

frequently. This eventually hogs most of the BB’s attention thus slowing down the B B ’s 

reply to the other agent KSs (API and AP2 in Figure 46 (a)). In an even distribution 

(Figure 46 (b)), all APs have equal number of agent KSs to process, therefore, requests 

sent to the BB will have equal frequency.

AP1 AP2

AP3

Blackboard A gent3 KS 
A gent6 KS

A gent2 KS 
A gent5 KS 
A gent8 KS

A gen tl KS 
A gent4 KS 
A gent7 KS

AP1 AP2

A gent2 KS 
A gent5 KS

A gentl KS 
A gent4 KS

AP3

A gent3 KS 
A gent6 KSBlackboard

(a) Uneven agent KS distribution with (b) Even agent KS distribution with equal
unequal access to the B B  access to the B B

Figure 46. Example of equal and unequal access to the blackboard based on agent KS distribution

The peak at each multiple reduces as the number of agent KSs increases. This is because 

each AP needs to time-slice between more agent KSs as the number of agent KSs 

increases. The speedup eventually starts to decrease as the number of agent KSs per AP 

reaches four or five agents. This is because of the increase in context switching overhead.

For the two to eight APs set-ups, the highest peak achieved for each APs set-up is at two 

agent KSs per AP distribution. For the nine, ten and eleven APs set-ups, the results are
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inconclusive as the maximum number of agent KSs used was sixteen. However, it is >

reasonable to speculate that the same would occur for the nine, ten and eleven APs set- 

ups. I

The red dotted line shows the starting speedup trend as the number of APs set-up \

increases. The point when this trend line starts to cross the speedup of other APs set-up f

is in between seven to eight APs. At this point, further increase in number of APs does 

not guarantee further speedup. For example, the starting speedup for eight APs set-up is 

less than the speedup of eight agent KSs running on four APs. This is because by eight 

APs set-up, the BB is close to its saturation point. Therefore there is a higher speedup on 

less number of APs. However, the nine APs set-up is the only set-up where the start-up 

speedup is higher than its two KS per AP equivalent (i.e. five APs set-up with two KSs 

on four APs and one KS on one AP). Another reason for this is because the BB has only l

just started to reach its saturation point, therefore the BB’s actual saturation point is 

around eight to nine APs. The reduced start-up speedup for the ten and eleven APs set­

ups show clearly that the BB has gone beyond its saturation point. A detailed speedup 

results for all APs set-ups can be seen in Appendix G. ;•

Figure 47 shows the efficiencies of the different numbers of APs set-ups. Each APs set­

up is colour coded as shown in the legend. A red dotted line is drawn connecting the 

starting points of all APs set-ups. As can be seen, the efficiency of each APs set-up 

reflects the speedup obtained. The efficiency for each APs set-up reaches a peak at 

multiples of the number of APs used. The efficiency for four agent KSs running on two \

APs is about 1.03. This is most likely an error as the efficiency is not expected to exceed 

1.00. This error can be explained to be due to the standard deviation and the low
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resolution of the timer used. The resolution of the timer used was one second. The 

measured time for four agent KSs on one AP was 1 minute 55 seconds and on two APs 

was 56 seconds. Therefore if each of these measurements deviated by one second each, 

the results will be:

1:54  min
------------- --  l.uspeeaup
0: 57 min ---------------

2.0speedup . n _  .
---------------- = Inefficiency
2 processor -----------------

This means that four agent KSs running on two APs have maximum efficiency. However, 

the efficiency starts to drop as the number of agent KSs increases. This is due to the 

increase context switching overhead.

109



Kum Wah CHOY
Performance of distributed blackboard system s in distributed processing networks

Efficiency of different number of APs

1.20

1.00  <►

0.80

.2 0.60

LU

0.40

0.20

0.00

Number of agent KSs

1 Agent Processor —• — 2 Agent Processors
■X— 4 Agent Processors —* — 5 Agent Processors
-I— 7 Agent Processors —A— 8 Agent Processors — 9 Agent Processors
■e—  10 Agent Processors —*— 11 Agent Processors - - - - Starting point trend

3 Agent Processors 
6 Agent Processors

Figure 47. Efficiency for different number of APs with varying number of agent KSs

The efficiency also starts to decrease as the number o f APs increases. This can be clearly 

seen with the red dotted line. This is expected because o f the wasted processing 

resources. The extra processor added as the number o f APs increases is not fully utilised 

by the current agent KSs. More processor-intensive agent KSs would provide better 

efficiency. It can also be seen that the efficiency for each APs set-up does not cross other 

APs set-up’s efficiency. This means that in order to get the best efficiency for a given 

number o f agent KSs o f this processor intensiveness, it is best to use the smallest 

possible number o f APs.
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By the eight APs set-up, the efficiency line does not deviate greatly from their starting 

efficiency as the number of agent KSs increases. This is because by eight APs set-up, the 

BB’s saturation point is close. This saturation point is the bottleneck for the performance. 

Therefore further increase in agent KSs will only show small if not zero efficiency gain. 

This is evident in the ten and eleven APs set-ups where the difference in efficiencies as 

the number of agent KSs increases is only about 0.02. A detailed table of efficiency 

results for all the APs set-ups can be seen in Appendix G.

4.4.4 Conclusion

From this experiment, the optimum number of agent KSs to run for a given number of 

APs is two agent KSs per AP. This will give maximum speedup and efficiency for this 

given number of APs. The speedup will peak at multiples of the given number of APs. 

However, each peak will be less than the previous peak until four to five agent KSs per 

AP. At this point further increase in agent KSs will decrease the speedup. This is because 

of the increase in context switching overhead.

From the speedup results in general, it can be seen that the speedup will initially peak at 

multiples of the number of processors used but will gradually decline as the number of 

KSs increases. This means that for limited processor resources, it is better to have the 

smallest possible multiple numbers of agent KSs. For example, if there is a limit of three 

APs, then the best number of agent KSs to run will be six.

The processor intensiveness for the agent KSs cannot be clearly identified in this 

experiment but from the efficiency results, it can be seen that the processor intensiveness
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of two agent KSs can fully utilised the processing power of one AP. Further experiments 

will be required to clearly identify the processor intensiveness of these agent KSs. The 

saturation point of the BB was identified to begin at eight APs as it is the first speedup 

starting point that was not the highest speedup (see Figure 45). This saturation point can 

be identified on other similar distributed blackboard systems by running similar 

experiments to plot the starting speedup points of the different APs set-ups. The 

saturation point would be around the area when the starting speedup trend line starts to 

level out. This can be confirmed by checking other lower number APs set-ups running 

the corresponding number of KSs.

In general, the efficiency decreases as the number of APs increases. This is because the 

current agent KSs do not fully utilise the extra processor power available. More 

processor-intensive agent KSs would provide better efficiency. The efficiency also 

decreases as the number of agent KSs increases. This is because of the increase in 

context switching overhead. In general, the best efficiency is obtained by running on 

minimum number of APs with evenly distributed agent KSs.

4.5 Summary

The general aim of the experiments earned out on TileWorld-DARBS was to investigate 

the suitability, potential and characteristics of distributed blackboard systems on 

distributed processing networks. The results of these experiments would be the basis for 

determining the suitability of distributed blackboard systems in distributed embedded 

processing networks.
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The first experiment earned out on TileWorld-DARBS proved that there are significant 

performance improvements running on distributed processing networks compared to 

running on a single processor. Although both distributed and non-distributed set-ups did 

not perform close to their respective ideal cases, the distributed set-up was far closer to 

its ideal case. For the non-distributed set-up, the overhead of context switching was 

identified as the main cause of slow-down. For the distributed set-up, an assumption of 

unlimited processor resources was made. However, most practical engineering 

applications will have limited processor resources. Therefore, the second experiment was 

carried out to investigate the speedup and efficiency of sharing the KS processes among 

varying number of processors.

The second experiment shows that the speedup increases rapidly as the number of APs 

increases up to a maximum point after which the speedup slowly levels off. The initial 

increase is due to the lesser number of agent KS processes that each AP needs to time 

slice between. After the maximum point, the interrupt overheads and the serial access to 

the BB start to counter the gains from distributing the processes. This decreases the 

speedup until a point where it levels off. This is basically the maximum speedup level of 

the BB as all the agent KSs will spend most of their time waiting on the BB. In general, 

good speedup is obtained with an even or close to even (for odd numbers of agent KSs) 

distribution, i.e. an equal amount of agent KSs running on each AP. The maximum 

speedup was observed to be influenced by the distribution of agent KSs and the amount 

of APs used. Therefore, to obtain maximum speedup for a given number of agent KSs, 

an even distribution of agent KS processes across the maximum number of APs that does 

not saturate the BB is required. The saturation point for the BB is when the BB cannot 

reply requests faster than the incoming requests rate.
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The speedup results from the second experiment also show that it is far from the 

suggested 5 to 10-fold speedup [11]. This means that there is still plenty of room for 

optimising the KSs and the BB. One way of improving the BB’s saturation point is to 

enable concurrent access to different partitions. In general, the efficiency decreases as 

the number of APs increases. This is mainly due to the idling time on the agent KSs 

while waiting for a reply from the BB. Therefore, the efficiency can be improved by 

having more processor-intensive KSs. From the second experiment, the scalability of a 

distributed blackboard system is influenced by the processor-intensiveness of the KSs 

and the saturation point of the BB. To have good scalability, processor-intensive KSs 

and high saturation point BBs are required.

The third experiment was carried out to find the optimum number of agent KSs to run 

for a given number of APs. It was found for TileWorld-DARBS that evenly distributing 

two agent KSs per AP gave the maximum speedup and efficiency. The peaks in the 

speedup and efficiency were found to be at multiples of the number of APs used. For 

example, with two APs the peaks are at four, six and eight number of agent KSs. The 

peaks decrease as the number of agent KSs increases until about four to five agent KSs 

per AP at which point the context switching overhead starts to cover the gain. Therefore, 

to have good speedup for limited processor resources, it is better to have the smallest 

possible multiple numbers of agent KSs. For example, if there is a limit of four APs, 

then the best number of agent KSs to run will be eight. The saturation point of the BB 

for TileWorld-DARBS was identified to begin at eight APs. Similar experiment can be 

run to plot out the starting points of the different number of APs set-ups to find the 

saturation point of other similar distributed blackboard systems. The saturation point
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would be around the area when the starting speedup trend line starts to level out. This 

can be confirmed by checking other lower number APs set-up running the corresponding 

number of KSs.

As a whole, the results of these experiments show that distributed blackboard systems 

show performance increases when run on a distributed processing network and as such, 

are suitable for implementation in a distributed embedded processing network. To 

summarise the experiments, the first experiment proved that a distributed blackboard 

system running on a distributed processing network has better performance than on a 

non-distributed system. The second experiment shows that the speedup and efficiency 

characteristics of a set number of KSs running on increasing numbers of processors is 

maximised for even distributions of KSs among the processors. Finally, the third 

experiment shows the speedup and efficiency characteristics of a set number of 

processors running an increasing number of KSs is maximised when there are two KSs 

per AP.
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5. Implementing an embedded distributed blackboard 
system

The results from the experiments in chapter 4 show that distributed blackboard systems 

have potential in distributed embedded processing networks. Therefore, this chapter 

concentrates on implementing the distributed blackboard system in a distributed 

embedded processing network. The resulting blackboard system is called embedded 

distributed blackboard system. This implementation took about eighteen months to 

implement due to the complexity of programming the SARNet system and the fact that 

there were also many hidden bugs in the SARNUX operating system.

5.1 Aims and requirements

One of the aims of this research was to implement a distributed blackboard system on a 

distributed embedded processing network. The choice of distributed processing hardware 

is not important as long as the behaviour of the distributed blackboard system can be 

investigated on a truly parallel platform. The choice of distributed blackboard system 

was already selected to be DARBS in section 3.1.1. Another aim of this research is to 

explore the challenges that arise from implementing a distributed blackboard system in a 

distributed embedded processing network. The knowledge and experience gained from 

this will help guide similar implementations in the future.

The distributed embedded processing network to be chosen should have a 

communications link that is sufficiently fast so that it does not cause a communication 

bottleneck during high communications periods. This is especially important if this 

system is to be run in an embedded system. The distributed embedded processing
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network chosen should also be scalable and suitable for embedded systems. There should 

be appropriate underlying support (e.g. operating system and debugging facility) for the 

development of the blackboard system. There should also be appropriate access to the 

hardware so as to permit modification to the hardware if required to suit the research 

needs.

5.2 Design

This section will first discuss about selecting a suitable distributed embedded processing 

network based on the requirements stated in section 5.1. After which, some technical 

background on the selected distributed embedded processing network will be explained. 

The embedded implementation of DARBS will be called emDARBS from here onwards. 

The final part of this section will explain the actual designs of emDARBS.

5.2.1 Selecting a distributed embedded processing network

The choice of a distributed embedded-processing network is not important as the main 

aim of this research is to investigate the suitability, characteristics and potential of the 

distributed blackboard system. However, a brief review of distributed processing 

networks is appropriate. Commercial distributed processing networks that are currently 

available in the market include the nCUBE [73]. The nCUBE is a specific-purpose 

distributed embedded processing network designed for video streaming and editing. As 

such it is not suitable for implementing the distributed blackboard system. In general, 

commercial distributed embedded processing networks incur high cost and are very 

specific-puiposed designed, therefore they are not considered. The more research-based 

t  distributed processing networks include Intel’s iPSC/860 [75], GMD FIRST’S
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PowerMANNA [110], and transputers [78]. The iPSC/860 is extensively used in 

numerical intensive parallel and distributed processing research. It consists of a 

hypercube network of i860 processors. Unfortunately Intel has ceased support and 

production of the iPSC/860.

The PowerMANNA node is made up of dual PowerPC MPC620 processors. Each node 

can have up to 1Gbyte of DRAM  (8 x 128Mbytes). PowerMANNA uses a hierarchy of 

16 x 16 crossbars to form a network of PowerMANNA nodes. The communication link 

is a synchronous, byte-parallel, bi-directional point-to-point connection operating at 

60MHz. As the communication link is synchronous and parallel, many physical 

connections are required for each communication link. This increases the transmission 

speed but also increases the chances of fault occurring on the transmission lines and 

increases the cost of the network as it scales up. The maximum electrical power 

consumption of a PowerMANNA node is 70 Watts which is unacceptable for embedded 

systems as generally, embedded systems have a electrical power consumption constraint.

Transputers were formerly used in distributed processing network research. There were 

two types of transputers, INMOS transputers and Meiko transputers. Research at the 

University of Edinburgh used the Meiko multi-transputer system [6]. On the other hand, 

the INMOS transputers have been used in distributed audio video streaming research 

[111]. Unfortunately both the INMOS transputers and Meiko transputers have ceased 

production [112]. Nottingham Trent University’s Parallel Processing Research group has 

developed SARNode as a replacement for the transputers and have used the ICR C416 

router to link the SARNodes together to form the SARNets [113].
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As the SARNet is located within the same institution, full access to the SARNet 

hardware has been granted. This means that, if necessary, modifications to the SARNet 

hardware can be made to suit the requirements of the research. This is essential to being 

able to successfully implement DARBS on the SARNet. The SARNet also provides the 

necessary underlying support for application development such as a real-time multi­

threaded operating system for the SARNode called SARNUX [114]. The operating 

system is written in ANSI C and DARBS is written in C++. This makes it easier to 

implement DARBS on the SARNet. The SARNode also provides a debug UART 

(Universal Asynchronous Receiver/Transmitter) port for allowing the application 

program to send out debug messages [113]. This debug UART port can be connected to 

a standard personal computer (PC) serial port and using a simple terminal program on 

the PC (e.g. Hyperterminal), the debugging messages from the SARNode can be read. 

The SARNet’s research group is currently researching implementation of the whole 

SARNode in a single chip design (System-On-a-Chip) [ 115][ 116]. This would allow the 

SARNet to be implemented more easily in an embedded system. A successful 

implementation of DARBS on the SARNet would pave the way for future use of 

distributed blackboard system in intelligent embedded systems. Because of the 

suitability of the SARNet for the implementation of DARBS and the convenience of 

being able to use the SARNet, the distributed processing network that is chosen is the 

SARNet.

5.2.2 Technical background on SARNet

The SARNet has been developed by the Parallel Processing Research Group of 

Nottingham Trent University as a replacement for the transputers [113]. The SARNet 

consists of a network of SARNodes connected together via an ICR C416 router [79].
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The SARNode is designed with the embedded system in mind and each SARNode 

consists of a low power consumption 32-bit 200MHz StrongARM SA-110 RISC 

processor [20], 8 megabytes SDRAM, a 32-bit timer, I/O and UART debug port, and an 

OS-Link (over sampling link) [79] communication module. The ICR C416 router uses 

OS-Link communication protocol that uses the wormhole routing strategy, which has a 

low communication overhead [81][117]. The SARNet can have many different switch 

network configurations, one of which is shown in Figure 10 (page 29). Each ICR C416 

router can be connected to other routers using any one or more of its OS-Link channels 

to make up a bigger network. A PC can also be connected to the SARNet via an interface 

card [118] as shown in Figure 10.

.
/  t i t  / t / / / f  r f f t t » t t i  •

Figure 48. SARNode
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Figure 48 shows a picture of a SARNode and Figure 49 shows a picture of the SARNet 

with four SARNodes connected together.

w aw ac . .  x;

Figure 49. SARNet with four SARNodes

The operating system for the SARNode is SARNUX, which is designed for use in an 

embedded system [114]. The SARNUX is a pre-emptive real-time multi-thread operating 

system. It contains a process manager, transmitting manager, receiving manager, 

software channel manager, exception handler, timer manager, heap manager, semaphore 

manager, UART driver, and a stack walkback manager. The process manager handles 

process scheduling and queuing, while the transmitting and receiving managers provide 

an inter-process communication interface for application programs to use external OS- 

Link to communicate with other SARNodes. The software channel manager on the other 

hand provides the equivalent inter-process communication interface but for processes
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within the same SARNode (i.e. internal communication). The exception handler handles 

interrupts and errors generated by the SARNode and the timer manager handles timer 

events and generates timer interrupts. The heap manager is used to manage the dynamic 

allocation and de-allocation of heap memory and the semaphore manager provides 

semaphores for concurrent processes to guard access to shared resources. The UART 

driver on the other hand provides low-level software support for sending out messages 

through the SARNode’s UART debug port. Lastly, the stack walkback manager provides 

a means of using the debugging facility supported by Free Software Foundation’s GNU 

project [119][120]. SARNUX has been successfully implemented in Quantel L td’s 

distributed control system for real-time audio and video editing system (CLIPBOX) 

[121].

In SARNUX, the communication model is based on the communicating sequential 

process (CSP) model [122], In the CSP model, the passing of messages between 

processes is through channels. The processes can be internal (within the same processor) 

or external (on a different processor). Each channel is a dedicated single direction 

communication link between two processes. If a bi-directional link is required between 

two processes then two separate channels would need to be declared. Communication 

between two processes would only take place when both the sender and the receiver of 

the channel are ready. Otherwise, the first process (either the sender or the receiver) 

would be blocked to wait for the other process to be ready. This is also used as a 

synchronisation method.

The SARNUX however has employed buffers in the external receiver link side of the 

communication channels to prevent link blocking. This is because the SARNode has two

122



Kum Wah CHOY
Implementing an embedded distributed blackboard system

physical OS-Link links and they operate on the send-and-acknowledge protocol [123]. If 

a process is not ready to receive and there is a message waiting for it to receive on the 

physical link then that physical link would be blocked. Other processes that are ready to 

receive or transmit cannot use that link. Thus, it can be seen that a deadlock can easily 

happen in this situation [124]. To prevent this, receiving buffers are used. However, if 

the receiving buffers are full then the link would be blocked. It is up to the application 

designer to make sure that this does not happen

5.2.3 emDARBS network layout and routing

The first thing that is required to implement emDARBS is to have an overall network 

layout. In order for communication to take place in SARNet, every message must 

contain a routing header and a unique message ID (MID). The routing header must 

contain the receiving port number, i.e. the destination SARNode’s port number. The 

SARNet was designed to run as an embedded system and therefore all the network 

layout and settings are static and are known on compile time. The layout of the SARNet 

network for emDARBS to run on is as shown in Figure 50. The reason for choosing such 

a layout is to maximise the parallelism of the system as, at the moment, there are only 

four available SARNodes.
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Figure 50. emDARBS network layout

The port number associated with each SARNode is also shown in Figure 50 along with 

the message ID (MID) used for each communication channel. The MID is only required 

to be a unique number for each communication channel and is therefore arbitrarily 

chosen to start from 10, i.e. OxA in hex. The port number of the sender of a message is 

not important as the transmitting port is assigned dynamically. This means that every 

message could originate from either one of the two ports (except KS 3, which has only 

one port 14) available on the SARNode. For simplicity, Figure 50 only shows one of the 

ports that could originate a message. So for example, the BB server can transmit a 

message to KS1 via its transmitting channel using MID OxA (in hex) to K S l’s port 10. 

This message can originate from either port 8 or port 9 depending on which port is 

available at that time.

5.2.4 emDARBS inter-process communication model

After selecting the overall network layout for emDARBS, the next task to do was to 

design an inter-process communication (IPC) model. As already mentioned, DARBS
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uses Linux’s IPC model that uses the TCP/IP communication protocol (see section 

3.2.1.2) while the SARNet uses SARNUX’s CSP based communication model that uses 

the OS-Link communication protocol (see section 5.2.2). These communication models 

are not directly compatible. Therefore, an interface layer is required. From here onwards, 

references to TCP/IP communication protocol will refer to the Linux’s IPC model that 

uses TCP/IP communication protocol and references to OS-Link communication 

protocol will refer to SARNUX’s CSP based communication model that uses OS-Link 

communication protocol. DARBS already has a communication module and the core KS 

client and BB server are written to use the function calls provided by the communication 

module (see Figure 14, page 44). Therefore, to reduce the amount of changes required to 

the emDARBS code and to provide portability, the interface layer should provide the 

same function calls as the original DARBS communication module.

To do this, four new communication classes (two for the server side and two for the 

client side) were introduced. These classes act as wrapper classes for the original 

DARBS communication classes. Hence, no changes to the core DARBS are required, 

just the communication classes need to be redesigned. Thus, the new IPC model for 

emDARBS is as shown in Figure 51.
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Figure 51. Classes in emDARBS IPC

As can be seen in Figure 51, the four new classes are: OSLinkToTcpClient and 

OSLinkClientHandler for the client side and OSLinkToTcpServer and 

OSLinkServerHandler for the server side. Since the original DARBS 

communication classes are replaced by wrapper classes, the functions of the original 

communication classes would be there but those functions would now be redirected to 

call the equivalent functions in the OS-Link communication protocol. This will be 

handled by OSLinkToTcpClient and OSLinkToTcpServer classes respectively. 

These two classes will then call the actual lower level OS-Link communication functions 

via OSLinkClientHandler and OSLinkServerHandler classes respectively. In 

this case, OSLinkClientHandler and OSLinkServerHandler are the actual 

classes that deal with the OS-Link communication and the OSLinkToTcpClient and
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O SL inkT oT cpServer classes are the interface classes to the original L n T cp C lien t  

and L n T cp S erver classes.

5.2.5 emDARBS client side IPC

From Figure 51, it can be seen that the client side of emDARBS IPC consists of the 

LnTcpClient class, OSLinkToTcpClient class and the 

OSLinkClientHandler class. The SARNUX provides communication functions 

that are of the block receive and block transmit types. This means that the thread that 

calls a receive or transmit function will be blocked until the other end is ready to 

transmit or receive. So in order for the main KS client program to go on running and still 

have the communication running in the background, separate threads for receiving and 

transmitting must be used. With multiple threads running, some form of 

coordination/communication is required between the threads. The design of the KS client 

side of emDARBS that solves this problem is shown in Figure 52.
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Figure 52. emDARBS IPC for KS client

As can be seen in Figure 52, there are three threads running concurrently: they are 

T x H a n d l e r  thread, R x H a n d l e r  thread, and the main KS client program thread. 

Communications between threads are accomplished via internal channels as can seen 

between s e n d M e s s a g e  () function of main KS client program thread and 

T x H a n d l e r  thread. The R x H a n d l e r  thread would wait for a message to be received 

from the BB and then pass that message on to o n R e c e iv e d M s g  () function and then 

to the actual call back function of the main KS client. It is up to the main KS client and 

its call back function to arrange how they are going to pass information between them. 

One way would be to have shared variables and that the main KS client can monitor the 

shared variables for changes made by the call back function. The classes where each of
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the function belongs can also be seen in Figure 52 and this gives an overview of how the 

layouts of the classes are in the client side of the emDARBS IPC.

5.2.6 emDARBS server side IPC

For the server side, the communication model is a bit more complicated than the client’s 

IPC model as the server has to deal with multiple transmissions coming from different 

clients at the same time. The transmitting part of the server’s IPC model will be 

explained first. Figure 53 shows the overview of the function of the transmitting side of 

the BB server.
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External
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Calls
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Figure 53. emDARBS IPC for transmitting side of BB server
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As can be seen in Figure 53, there is a T x H a n d l e r  thread dedicated for each KS client 

in the system. It is implemented this way so that KSs on the top cannot block or slow 

down KSs on the bottom from receiving a broadcast message. For example KS3 and 

below would not be blocked from receiving a broadcast message when KS2 is not ready 

to receive a message from the BB. The reason for this is that all the T x H a n d l e r  threads 

are executed concurrently and are independent from the other T x H a n d l e r  threads. 

Also shown in Figure 53 are the classes where each of the functions belongs.

For the receiver side, the server needs to make sure that the messages coming from each 

of the KS clients are not missed, and at the same time, has to make sure that the integrity 

of the data on the BB server are not compromised. To do this, access to the BB server 

has to be mutually exclusive [125], meaning that only one of the KS clients can access 

the BB server at any one time. Figure 54 shows how this is accomplished in the 

emDARBS IPC model.

I
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Figure 54. emDARBS IPC for receiving side of BB server

As can be seen in Figure 54, there is a R x H a n d l e r  thread allocated for each KS in the 

system. Each one of the R x H a n d l e r  threads is dedicated to monitor messages coming 

from its own KS client. When a message is received, the R x H a n d l e r  thread then tries 

to wait on the semaphore [125]. If there is another thread already accessing the critical 

area (in this case o n R e c e i v e d M s g  () function) then the R x H a n d l e r  will have to 

wait until the thread using the critical area has signalled the semaphore. Once the thread 

has access to the o n R e c e i v e d M s g  () function, the other R x H a n d l e r  threads are 

blocked from accessing the o n R e c e i v e d M s g  () function until the thread has finished 

accessing the function. The rest of the function from o n R e c e i v e d M s g  () function 

onwards is similar to the client’s receiver side. By using the semaphore on the receiver

131



Kum Wah CHOY
Implementing an embedded distributed blackboard system

side, mutual exclusion access to the BB is guaranteed and at the same time, the multiple 

R x H a n d le r  threads that are executing guarantees that the BB server does not miss any 

messages coming from the KS clients.

5.2.7 emDARBS external communication

After designing the inter-process communication, there was another communication 

issue that needed to be tackled: the external communication issue. An overview of how 

the whole system is set-up is required to illustrate this external communication issue and 

this is shown in Figure 55.
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Figure 55. emDARBS system set-up

As can be seen in Figure 55, PC 1 is connected to the SARNet via the ICR C416 router. 

PC 1 starts the SARNet by downloading emDARBS onto the respective SARNode. Each 

SARNode has a UART debug port that is connected to one of the two available serial 

ports on a PC. This is for debugging purposes to show how emDARBS is running. The 

original DARBS KS client loads up files to determine what type of KS it is and to load
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data to the blackboard. SARNUX, being designed for an embedded system, does not 

have a file structure and therefore needs a way to download this file to emDARBS at the 

start up of emDARBS. There are two ways of accomplishing this; one is to download the 

file via the UART debug port and the other is to download the file via the OS-Link. The 

speed of the UART debug port is 9600 bps and the OS-Link is 10 or 20Mbits/s. 

Therefore, after considering the size of the file to be downloaded, the speed of the 

communication link, and the purpose of the link, it was decided to use the OS-Link as 

the means of downloading the files to emDARBS.

To use the OS-Link for the download of the file would require the addition of a new 

external communication class in SARNUX. This class is called E x t e r n a l C o m m s  and 

it will be used by emDARBS to receive the file via the OS-Link. As there are two types 

of files to be downloaded (*.dkf and *.drf) an arbitrary choice of MID 0x5 for *.dkf files 

and MID 0x6 for *.drf files are used.

5.3 Implementation

A detailed list of all emDARBS IPC classes and its corresponding functions is in 

Appendix H. The full source code of emDARBS is in the CD-ROM attached to the back 

of this thesis in Appendix J. The rest of this section describes the challenges that were 

experienced during the implementation of emDARBS.

5.3.1 Challenges encountered

During the implementation of emDARBS, numerous challenging problems were 

encountered. These challenges were not encountered when DARBS was implemented on
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a PC. Instead, these challenges are more specific to implementing DARBS in an 

embedded system environment. The first challenge was the cross-compiler. The original 

cross-compiler that was used to compile the SARNUX operating system was too old and 

does not support the new C++ STL (Standard Template Library) [126]. This meant that a 

new C++ cross-compiler was required. The other challenge encountered was that the 

SARNUX operating system was not 100% tested as is it not possible for a single 

developer (a previous research student) to fully test a complex operating system like the 

SARNUX operating system. Therefore, bugs in SARNUX were occasionally 

encountered and needed to be fixed. The following sections describe each of these 

challenges and explain how these challenges were solved.

5.3,1.1 Building cross compiler
The SARNode uses the StrongARM RISC processor which has a completely different 

instruction set than the normal PC-based processor. The programmer’s editing 

environment is on a PC while the actual program has to be run in the StrongARM RISC 

processor which means that a cross-compiler is required. A cross-compiler is a compiler 

that runs on one type of machine (in this case the PC-based processor) and compiles the 

program for another type of machine (in this case the StrongARM RISC processor). The 

original C++ cross-compiler that was used to compile the SARNUX operating system is 

old and does not support the new C++ STL [126]. DARBS extensively uses STL 

therefore a new C++ cross-compiler was required.

There are commercially available PC-based-to-StrongARM-processor C++ cross- 

compilers but they require some form of licensing fee. There are also open source C++ 

ft cross-compilers that are available freely but because they are only available in source
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code format, manually building the cross-compiler is required. In keeping with the future 

intention of being able to release the DARBS software as open source, the open source 

C++ cross-compiler was chosen as the cross-compiler. Another reason for choosing the 

open source C++ cross-compiler was to make sure that the software developed is free 

from any proprietary feature of the commercial C++ cross-compiler. This will make it 

easier for other future developers to pick up emDARBS or SARNet to use with their 

system.

In building the C++ cross-compiler, a certain sequence of build steps need to be 

followed. At each step of the build, the correct switch options need to be specified. 

Getting this sequence and switch options correct proved to be a challenging task as 

finding full up-to-date documentation of the open source cross-compiler is difficult. The 

low level functions of the cross-compiler also needed modification to suit SARNUX 

running on the SARNode. Emails were sent to cross-compiler newsgroups to seek advice 

from peers who had built cross-compilers before.

After about six months of trial and error and research reading on the Internet, the C++ 

cross-compiler was built and tested with the SARNUX test program. After successfully 

testing the cross-compiler, additional low level functions were developed to help support 

emDARBS such as the c o u t  and c i n  functions. Because the SARNode is just a 

processor node and does not have any display monitor attached to it, the c o u t  and c i n  

functions were deemed unnecessary in SARNUX. However, because DARBS 

extensively uses c o u t  and c i n  functions for debugging puipose, the c o u t  function 

was implemented as writing output through the SARNode’s UART debug port and the

135



Kum Wah CHOY
Implementing an embedded distributed blackboard system

c i n  function was implemented as reading information from the SARNode’s UART 

debug port.

5.3.1.2 Debugging in SARNUX and emDARBS
As emDARBS was being implemented on the SARNUX operating system in small 

sections, bugs in SARNUX started to appear. This was expected as it was not possible to 

100% test a complex operating system like SARNUX. In a typical embedded system, 

when a program crashes, especially when due to an operating system failure, it is not 

possible to break out of the program and debug the system. To overcome this, debugging 

messages were put into the code of the emDARBS program and the SARNUX operating 

system so that the last debugging message received could indicate roughly where the 

program crashed. Sections of the program code were also commented out and tested to 

slowly pin point the exact cause of the crash.

This technique is fine for simple bugs in the code but for complex bugs where the bug 

only appears when a sequence of events happen, this technique is not suitable. Instead 

sections of the code were ported back to the PC-based version and run using a PC-based 

debugger (GNU GDB [127] was used) to step through the program. This gave an insight 

of how the multi-threaded program was supposed to run. Often the bug would not appear 

in the PC-based version but because the PC-based debugger showed how the program 

should work, it helped to pin point where the bug might be in the SARNUX version of 

the program.

Another debugging tool that was available was the stack walkback feature that is 

supported by SARNUX. When compiling the source code of emDARBS, the debugging
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option can be selected to put a table of the source code information (STAB) into the 

compiled executable. This would make the overall program very large but for the initial 

implementation stage, it is useful to have this type of information. When the program 

crashes with this table compiled in the executable, SARNUX would try to trace back the 

stack pointers to the program counter that causes the crash. SARNUX would then look it 

up in STAB to determine the exact line number of which file that caused the crash. This 

stack walkback feature is very useful provided that the crash is not fatal, i.e. the 

operating system can recover from it.

All in all, it took about twelve months to debug and fix the many bugs in the SARNUX 

operating system and the emDARBS implementation. Being multithreaded meant that 

most of the bugs only occurred with very specific sequence of events. Adding debugging 

statements to the code would change this sequence causing a different error to occur. 

Only through extensive trial and error were the bugs found and fixed.

5.4 Test and validation

After implementing emDARBS on the SARNet, tests were carried out to prove that 

emDARBS was working as it was designed to. The test plan was earned out in three 

phases. The first phase was to test that emDARBS IPC could send and receive messages. 

The second phase was to test the BB to make sure that it could handle multiple KS 

clients transmitting messages to it simultaneously. The third phase was to test that 

emDARBS could run a rule-based KS and perform the same functions as DARBS 

running the same rule-based KS.
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For the first and second phase of the test, the original DARBS terminal program was 

used. The KS clients in the DARBS terminal program are just simple terminal clients. 

The KS clients take commands from the user and transmit them to the BB server. The 

BB server is the full running BB server used in DARBS.

For the first phase, one KS client and one BB server were run on two SARNodes 

respectively (SARNode 4 and SARNode 3 of Figure 50). The result from this test was 

positive as the new IPC functioned as it was designed to. A partition could be created 

and things could be added to the partition on the BB via the terminal client. Also the BB 

could transmit back to the terminal client the contents of the partition. This proved that 

the emDARBS IPC can transmit and receive messages.

In the first part of the second phase test, all four SARNodes were used, i.e. one BB 

server, and three terminal clients (SARNode 1, SARNode 2, SARNode 3, and SARNode 

4 of Figure 50). Unfortunately, the clients crashed when the BB server was trying to 

broadcast a message to them. Investigation found that a deadlock occurred when the 

clients are trying to print out debugging messages on the UART debug port. This is 

because there are multiple threads running in a SARNode and each one of them are 

trying to access the single UART debug port concurrently. This problem was rectified by 

running the print out of debugging messages function with the interrupts masked. This 

guaranteed the print out of debugging messages function was mutually exclusive and 

therefore other threads would not be time-sliced in between access to the UART debug 

port. The test was rerun and this time the system worked. All the KS clients received the 

broadcasted message from the BB server correctly and could issue commands to the BB 

server correctly.
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In the second part of the second phase, all three KS clients were programmed to 

automatically send requests to create a partition each and add 50 different data items to 

their partition. The KS clients were started off simultaneously and the BB server started 

to handle the multiple requests from the clients. The results of this test were compared to 

the expected results and found to be the same indicating that the BB server handled all 

the requests properly and as designed. This proved that the semaphore worked and that 

the data integrity of the BB server was not compromised.

In the third test phase, the TestCompare KS of the original DARBS was run on 

emDARBS. TestCompare KS  is a simple rule-based KS that consists of two rules. The 

first rule is to add data sets to a partition and the second rule is to look through the data 

sets to find data that are more than a certain value and report them. emDARBS started up 

correctly and requested the KS file ( t e s t c o m p a r e . d k f ) to be downloaded to the KS 

client via the OS-Link. T e s t c o m p a r e . d k f  was sent to the KS client with MID 0x5 

and was received correctly by the KS client (checked by the debug message coming 

from the UART debug port). Next the KS client requested the 

s e t d a t a c o m p a r e . d r f  rule file followed by t e s t c o m p a r e . d r f  rule file. This 

| was also sent to the KS client via the OS-Link (with MED 0x6) and checked using the

UART debug port. As soon as the KS client received the last t e s t c o m p a r e . d r f  rule 

s file, the whole emDARBS started to work. Rules were created and fired. The test data

were added to the BB and later compared for values that were more than 10 and reported 

them. The function of TestCompare KS in emDARBS was compared with the 

TestCompare KS in DARBS and deemed to be the same as they produced identical 

* debug messages (a full listing of the T e s t c o m p a r e . d k f  file,
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s e t d a t a c o m p a r e  . d r f  and t e s t c o m p a r e . d r f  rule files, and the debug messages 

produced can be seen in Appendix I). This proved that emDARBS has been successfully 

implemented in SARNet, and that it is working as it was designed to.

After successfully testing emDARBS, the TileWorld test-bed application was ported 

over to emDARBS but due to memory constraint issues on the SARNet, this porting was 

not successful. Currently, each SARNode has 8 megabytes of memory. The current 

emDARBS implementation of the BB server occupies slightly more than 2 megabytes of 

memory space. The remaining 6 megabytes is then used for the OS-Link communication 

module’s DMA engines, stack, page table, STAB information, and heap memory. As 

emDARBS uses STL [126], the heap memory consumption is relatively large. SARNUX 

also uses the heap memory to create control and stack space for each thread and because 

emDARBS extensively uses multiple threads at any one time, the heap memory 

consumption is also relatively large. The TileWorld-DARBS software running on the PC 

currently occupies about 7.1 megabytes of memory space but a large portion of this code 

is to do with graphical user interface. The emDARBS version would not have this 

graphical user interface code but even so, the remaining code generates large heap 

memory usage and as such is not possible to be implemented in the current SARNet. The 

next generation of the SARNet, XaNet is currently being developed which has 128 

megabytes of memory capacity [116]. The XaNet will overcome the memory constraint 

issues on the SARNet and enable successful porting of the TileWorld test-bed 

application. Future works would include running the same performance experiments on 

the XaNet and comparing it with the TileWorld-DARBS results (see section 6.3).
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5.5 Summary

One of the aims of this research was to implement a distributed blackboard system on a 

distributed embedded processing network. DARBS was selected as the distributed 

blackboard system and SARNet was selected as the distributed embedded processing 

network. DARBS uses Linux’s DPC model that uses TCP/IP communication protocol 

(see section 3.2.1.2) while the SARNet uses SARNUX’s CSP based communication 

model that uses OS-Link communication protocol (see section 5.2.2). These 

communication models are not directly compatible and therefore an interface IPC layer 

was designed and implemented to enable DARBS to run on the SARNet. During the 

implementation of emDARBS, many challenges were encountered. These challenges 

were not encountered when DARBS was implemented on a PC. Instead, these challenges 

are more specific to implementing DARBS in an embedded system environment. The 

two main challenges were the building of the cross-compiler and the debugging of 

SARNUX and emDARBS together. These two challenges took nearly eighteen months 

to overcome due to the complexity of programming the SARNet system and the 

limitations of the available debugging facilities.

After implementing emDARBS, tests were earned out in three phases to validate that 

emDARBS functions the same on the SARNet as DARBS functions on the PCs. The 

first phase was to test that emDARBS IPC could send and receive messages. The second 

phase was to test the BB to make sure that it could handle multiple KS clients 

transmitting messages to it simultaneously. The third phase was to test that emDARBS 

could run rule-based KS and perform the same functions as DARBS running the same 

rule-based KS. A deadlock problem was discovered during the tests and SARNUX was 

patched to correct this problem. On the whole, emDARBS passed all these tests and
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proved that DARBS has been successfully implemented in a distributed embedded 

processing network. The TileW orld test-bed application was not successfully 

implemented on emDARBS due to memory constraint issues on the SARNet. It is 

planned for future work to implement TileWorld test-bed on the next generation of 

SARNet, XaNet which has larger memory capacity.
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6. Discussion, conclusion and future work

This final chapter will first discuss and evaluate the work done in this research. It will 

then present a conclusion and, lastly, a discussion about possible future work.

6.1 Discussion

This section will discuss and evaluate the pros and cons of the TileWorld-DARBS 

implementation, the performance experiments carried out on TileWorld-DARBS, and the 

emDARBS implementation.

6.1.1 Pros and cons of TileWorld-DARBS

The TileWorld-DARBS implementation has shown that a distributed blackboard 

architecture is suitable for multi-agent systems. The individual agents can be suitably 

represented as an individual KS and, as DARBS does not have a control module, true 

opportunism and independence can be achieved by each Agent KS. The flexibility of 

DARBS also permits different implementation for each Agent KS. For example, there 

can be a neural network Agent K S , a genetic algorithm Agent KS, a rule-based Agent KS, 

and a conventional programmed Agent KS all working together through the BB. Mixed 

Agent KS implementations are ideal for solving complex real world problems.

The current implementation of TileWorld-DARBS uses rule-based Agent KSs. These 

agents are reactive agents [128]. Although reactive agents are more primitive and do not 

have forward planning, they are a lot easier to implement as rule-based KSs than 

cognitive agents [129]. The reactive agents in TileWorld-DARBS use random exploring
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moves to guarantee that eventually, after some time, the entire TileWorld will be 

explored. This is not the most efficient way of exploring the entire TileW orld but it is the 

simplest. To explore the entire TileW orld more efficiently, cognitive agents with forward 

planning are required. Implementing cognitive agents as rule-based Agent KSs in 

DARBS is possible but it will require a lot more rules. The current inference engine used 

in DARBS is slow and inefficient at interpreting the rules. It breaks down each rule into 

all possible instantiations based on the number of variables in the rule. It also tests all the 

rules in sequential order and within each rule, checks each and every condition. These 

inefficiencies can be improved on as discussed in section 6.3.

The restart algorithm used in TileWorld-DARBS is also very primitive and inefficient.

For the sake of ease of implementation, the restart algorithm is used to restart the KS 

every time a change in a relevant partition occurs. This is to make sure that the KS works 

with as up-to-date information as possible. This restart algorithm is easy to implement 

but causes the KS to slow-down as the number of changes to relevant partitions increases.

Possible improvements to overcome this slow and inefficient restart algorithm will be 

discussed in section 6.3. However, even with improvements to the restart algorithm, 

there would still be some performance degradation. A better way to improve the 

performance is to change the agents’ behaviour to cooperative and this is the subject of 

numerous agent behaviour research [104][105][106][107].

The objects in TileWorld-DARBS (i.e. the holes, obstacles, and tiles) are not dynamic.

This can be argued to be not a complete TileW orld as the original TileW orld test-bed has 

dynamic objects. However, for the sake of simplicity, dynamic objects were not 

implemented. Dynamic objects are objects that can appear and disappear at different
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places in the TileW orld over a period of time. This is to mimic the ever-changing real 

world environment. TileWorld-DARBS can easily implement dynamic objects by adding 

another KS that randomly moves the objects in the TileWorld. The rate of change for 

each type of object can be set by a user defined probability rate. This new KS will not 

require changes to be made to the other KSs as the restart algorithm will make sure that 

all relevant KSs start again whenever the TileWorld Environment partition changes. The 

only modification required is to add extra rules in the Display TileWorld KS to check for 

the movements of holes and obstacles.

As a whole, the TileWorld-DARBS implementation has resulted in improvements in 

DARBS, as one of the expectations when DARBS was selected for this research was to 

further improve it. DARBS has not been fully tested in a distributed processing network 

environment before and during the course of this implementation, faults were discovered 

when running DARBS in a distributed processing network. One such fault occurred 

during heavy communications when a deadlock occurred in one of the Agent KS. After 

further investigation, it was discovered that there was a fundamental flaw in the design 

of DARBS’s inter-process communication model. This flaw would only show up during 

heavy communications and a detailed explanation of this can be found in section 3.4. 

This flaw was fixed by redesigning the inter-process communication model to use 

separate threads to service the incoming messages.

Another expectation for DARBS during the course of this research was to resolve any 

data inconsistency issues that arise from parallelising DARBS. The issues of data 

inconsistency were overcome by introducing the r e p l a c e  and r e p l a c e _ m u l t i  

commands. These commands together with the unique information string format (see
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section 3.2.2) made sure that the information on the BB is consistent. This is because the 

r e p l a c e  and r e p l a c e _ m u l t i  commands change the information on the BB in one 

atomic instruction. This guarantees that no other KSs can interrupt the BB while these 

changes are going on.

Finally, the flexibility of TileWorld-DARBS at adding and removing Agent KSs in the 

system shows that it is possible to use DARBS to implement redundant KSs. This is 

particularly useful in an embedded system that requires high reliability. Redundant KSs 

can be use to monitor the failure of a KS and automatically pick up where the original 

KS failed based on the information stored on the BB. This means that the information 

stored on the BB needs to be sufficient so that the redundant KS knows when a KS has 

failed and can easily pick up from where the original KS failed. However, a 

consideration needs to be taken when deciding the amount of information to store on the 

BB as storing too much information on the BB would result in a performance slow-down.

6.1.2 Pros and cons of the performance experiments

Detailed discussions of the individual experiments can be found in sections 4.2.3, 4.3.3, 

and 4.4.3 respectively. This section will only discuss about the overall pros and cons of 

all the experiments.

As a whole, there is a performance increase distributing TileWorld-DARBS across many 

processors but this increase is limited. The limited increase in performance is mainly due 

to the BB saturating. This is when the rate of requests to the BB is faster than the rate the 

BB can service the requests. There are two simple ways to overcome this: one is to 

increase the BB’s processing power and the other is to reduce the amount of information
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stored on the BB. However, having too little information on the BB defeats the purpose 

of a blackboard system. The purpose of having a blackboard system is so that the 

different KSs can make use of the information produced by other KSs to deduce newer 

information. This information may be useless to one KS but maybe useful to another KS 

later on. Therefore, there is a tendency to keep as much information as possible on the 

BB. Unfortunately, in distributed blackboard systems, too much information on the BB 

will result in performance degradation.

A more complex way of overcoming the BB saturation is to distribute the BB across a 

few processors. This has been done before in Knowledge Technologies International’s 

NetGBB [62]. However, distributing the BB across different processors introduces more 

data consistency problems. NetGBB uses a control module and a defined blackboard 

language to maintain data consistency. DARBS on the other hand, does not have a 

control module and as such has more difficulties to maintain data consistency. There is a 

trade-off between central control KSs and fully autonomous KSs.

From the experiments, it was shown that distributing the KSs evenly across the available 

processors produces the best performance. This means that future implementation of 

intelligent embedded systems that use distributed blackboard systems need to have 

evenly distributed KSs across the available processors. If the available processors in the 

system have unequal processing power, then the most powerful processor in the system 

should be allocated to the BB and the rest of the processors should be evenly distributed 

among the KSs based on the processor’s processing power. Another consideration when 

implementing distributed blackboard systems is to have a good balance of information 

that is stored on the BB.
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The efficiency measurements from the experiments also showed that there is a 

considerable amount of idling time not utilised by the KSs of each processor. This 

further emphasizes the importance of choosing the right processor power for the task. As 

some embedded systems have processing power constraints, choosing the lowest 

processing power that can do the job is very important. Measuring the efficiency of each 

processor can show whether the processor is suitable for the job or not. These 

experiments have shown that running individual KSs does not require large processing 

power but having a group of KSs running together can require large processing power.

From the experiments, it was also noted that the measurements taken have a large 

standard deviation. This is especially prominent when large numbers of KSs are used. 

This is due to the poor restart algorithm used in TileWorld-DARBS. The restart 

algorithm was chosen for its ease of implementation and if TileWorld-DARBS was not 

used for performance test, this restart algorithm would be fine. However, this restart 

algorithm was used for performance tests and the result was a large standard deviation. A 

simple way of increasing the accuracy of the reading would be to take more samples and 

over more runs of the experiments. However, because each run of the experiments takes 

a very long time, this was not an option. Instead, the standard error of the mean is taken 

over a larger number of samples. This produced better measurements without the need to 

increase the number of runs for each experiment.

Unfortunately, the experiments earned out so far cannot really be generalised to all 

distributed blackboard systems as there are still many other criteria that need to be taken 

into account, for example, processor power and KS’s processor intensiveness.
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Experiments need to be earned out running TileWorld-DARBS on different processors 

to see the effects of lower and higher processing power. Experiments also need to be 

carried out to see the effects of KSs with different processor intensiveness on the overall 

system. Also more KSs on more processors need to be run to be able to plot the results 

better and to give a better trend line. Even with all these experiments, it is only possible 

to make some generalisations based on a distributed blackboard system with all identical 

KSs. It is quite impossible to run experiments with different KSs as there are endless 

combination possibilities. However, there may be a possibility to generalise the 

performance of a distributed blackboard system based on the processor intensiveness of 

the KSs.

6.1.3 Pros and cons of emDARBS

The successful implementation of emDARBS has proved that a distributed blackboard 

system with no centralised control module can be implemented in a distributed 

embedded processing network. During the course of this implementation, a software 

development tool-chain [130] which consists of an assembler, C/C++ compiler, linker, 

and downloader for the SARNUX was developed. This software development tool-chain 

is free from any proprietary features of commercial software development tool-chain and 

because it uses GNU General Public License [131], this tool-chain is free. This will 

greatly help future software development on the SARNUX and because it is free, it will 

also reduce the overall software development cost of embedded systems (ideal for cost 

constrained embedded systems).

The novel emDARBS IPC developed minimised the changes required to the core 

DARBS source code. This was proven in the testing phase of the emDARBS
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development. This IPC can also be made more general and thus can be a standard 

interface for emulating Linux’s communication model over SARNUX’s CSP based 

communication model. With this general IPC, Linux based applications can be easily 

polled to SARNUX. However, on the down side, this type of emulating is not ideal for 

embedded systems as it introduces extra overheads, thus, slowing down the overall 

system performance. Ideally for embedded systems, the application program should be 

as efficient and small as possible. Unfortunately, there is a trade off between ease of 

portability and coding for efficiency. Future performance tests could be carried out to see 

if this extra overhead is still within the acceptable tolerance of an embedded system.

There is a memory constraint on the SARNode. As emDARBS was being developed, it 

was observed that the memory usage is quite large (slightly more than 2 megabytes for 

the BB server). Because SARNodes were developed for the embedded system the 

available memory capacity is only 8 megabytes per node. After splitting up the memory 

for the OS-Link communication module’s DMA engines, stack, page table, and STAB 

information, only about 6 megabytes of memory capacity is left. The remaining 6 

megabytes of memory is then shared between the application code and the heap memory 

space. As emDARBS uses STL [126], the heap memory consumption is relatively large. 

STL is useful for programming as it reduces the amount of coding required but it 

produces large executables and uses large amount of memory capacity. At the moment 

the basic emDARBS is still within the 8 megabytes memory space but any larger 

application would have a memory capacity issue. For example, the PC-based TileWorld- 

DARBS application currently occupies about 7.1 megabytes of memory space. A large 

portion of this code is to do with graphical user interface which emDARBS would not 

use but because the core code generates huge heap memory usage, TileWorld-DARBS
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would not fit in the current version of SARNet. On the other hand, because emDARBS 

is ported from DARBS (which is not coded with memory capacity constraint in mind), 

there is a lot of redundant code in emDARBS. Therefore, removing this redundant code 

in emDARBS would help reduce the overall memory consumption and possibly speed 

up the overall program. Alternately, research work is being done on the next generation 

of SARNode which would be implemented on a single System-On-a-Chip [115] solution. 

This new generation of the SARNet is called XaNet and it consists of Excalibur 

processors which are based on the ARM922T architecture [116]. Each Excalibur 

processor has a UART, dual channel 32-bit timer, and 128 megabytes of SDRAM.

There were also weaknesses on both the SARNode and SARNUX in terms of its 

debugging facilities. The SARNUX operating system only uses the UART to transmit 

debugging information as the SARNode hardware only provides a UART port for 

debugging puiposes. This is suitable for debugging small programs on the SARNUX but 

is not suitable for debugging large programs that run as multiple threads. The SARNUX 

operating system tries to compensate this by providing a stack walkback feature for 

tracing back to the crash point of an application. However, this is only good if the crash 

is not fatal and if the operating system is able to recover from the crash. It would be 

better if the SARNode and SARNUX supported program could be stepped through and 

runtime variables watched. The XaNet provides IEEE Standard 1149.1 (JTAG) [132] 

connector that can support runtime debugging. However, the supporting JTAG 

debugging software that is currently available is costly. There is GNU GPL JTAG 

debugging software but some work is required to configure and build it to work with the 

XaNet.
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At the moment, emDARBS does not take into consideration real-time constraints such 

as guaranteeing a response in a given time frame. Some embedded systems have real­

time constraints and in order for emDARBS to be used in future intelligent embedded 

systems, it needs to have features that take into account real-time constraints. emDARBS 

is currently too slow for many practical real-time embedded systems and one way of 

speeding it up is to strip down its code to use only Embedded C++ [133][134J. 

Embedded C++ is a subset of C++ that is specially catered for embedded systems. In 

Embedded C++, exception handling is not permitted and because DARBS uses 

exception handling, future version of emDARBS should remove all these exception 

handling. In the future, emDARBS should be a subset version of DARBS that is 

specially designed to cater for implementation in embedded systems.

As a whole, emDARBS is a good architecture for intelligent embedded systems as it 

provides the means for implementing distributed knowledge sources in a system. It is 

good for a complex real world environment where it is not possible to code for all the 

possible situations that can occur. Using knowledge sources, the general “common 

sense” knowledge can be coded into the system and different combination of the 

knowledge sources would then work out what to do based on the changing environment. 

This research has put emDARBS one step closer to the implementation of intelligent 

embedded systems.

6.2 Conclusion

The future of embedded systems lies in its intelligence. Future intelligent embedded 

systems will need suitable software and hardware architectures to support their complex 

artificial intelligence software. Distributed blackboard systems are suitable software

152



Kum Wah CHOY
Discussion, conclusion and future work

support architectures and distributed embedded processing networks are suitable 

hardware support architectures. DARBS is a distributed blackboard system developed by 

the Open University and Nottingham Trent University [59]. It was chosen as a suitable 

distributed blackboard system for this research because it does not contain a control 

module. This means that DARBS permits truly opportunistic KSs to be implemented. 

Another reason for choosing DARBS is because it is written in C++ which is a suitable 

language for embedded systems and full access to the source code is also available. The 

focus of this research was to investigate the suitability, potential and characteristics of a 

distributed blackboard system in a distributed embedded processing network. This has 

been accomplished by running performance experiments with the distributed blackboard 

system and implementing the distributed blackboard system in a distributed embedded 

processing network.

The TileWorld test-bed was selected as the application to run on DARBS for the 

performance experiments. The TileW orld test-bed is a well established multi-agent 

system test-bed developed by Pollack et al [87][88]. The TileWorld test-bed was 

implemented on DARBS with the agents implemented as KSs and the contents of the 

TileWorld stored on the BB. The Agent KSs were implemented as reactive agents that 

use randomly generated moves to explore the TileWorld. The TileWorld implementation 

on DARBS is called TileWorld-DARBS. During the course of implementing TileWorld- 

DARBS, some design flaws in DARBS were discovered. These flaws include the inter­

process communication module flaw which causes a deadlock to occur during intensive 

communications. This flaw was rectified by changing the inter-process communication 

module to use threads to service incoming messages.
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Performance experiments were earned out to investigate the suitability, potential and 

characteristics of distributed blackboard systems on distributed processing networks. The 

results for TileWorld-DARBS on distributed PCs show that there is a performance 

increase when distributing the processes across different processors but the performance 

increase is limited. This is mainly due to the BB’s saturation. The performance can be 

increased further by changing to fine grain parallelism but this will distract the KS 

designer with fine grain parallelism issues instead of concentrating on knowledge 

implementation. Therefore, this research focused on parallelism at KS level granularity.

In general, the results of the performance experiments show that if the number of KSs is 

set, then increasing the number of processors will increase the performance up to a point 

where the communication frequency is too high (i.e. when the BB saturates and cannot 

handle the rate of incoming requests). After this point, any further increases in the 

number of processors will result in degradation or no improvement in performance. 

Conversely, if the number of processors is set, then evenly distributing the number of 

KSs among the available processors will generally increase the performance of the 

system (e.g. for three processors system, the peaks are at three, six, and nine KSs). 

However, this increase in performance will start to decline when the context-switching 

overhead is more than the gain in distributing the KSs. On the other hand, if both the 

number of processors and KSs are increased at the same time, then the performance 

increase is limited by the saturation of the BB. The experiments also show that 

distributed blackboard systems can be suitable architectures to implement multi-agent 

systems. These agents can be implemented on separate processors thus, making them 

truly autonomous and independent agents.
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DARBS has also been implemented in a distributed embedded processing network. The 

distributed embedded processing network that was chosen is the SARNet [113]. The 

SARNet is a network of SARNodes developed by Nottingham Trent University’s 

Parallel Processing Research group as a replacement for the transputers. The 

implemented DARBS on the SARNet is called emDARBS. During the implementation 

of emDARBS, many challenges were encountered. It was leamt from these challenges 

that building complex software for embedded systems requires a proper software 

development tool-chain.

The success of emDARBS shows that as a whole, emDARBS is suitable for future 

intelligent embedded systems, but more work is required to reduce the memory 

consumption of emDARBS. Work is also required to include real-time features in 

emDARBS. In general, the architecture of distributed blackboard systems enables easy 

implementation of redundant KSs as backups for the system. This is particularly useful 

for reliability constraint embedded systems. To tackle the problem of memory 

consumption, it is suggested that future versions of emDARBS are to be written in 

Embedded C++. Embedded C++ is a subset of the Standard C++ that is specially catered 

for embedded systems. With this, future versions of emDARBS will be a subset of 

DARBS that specially caters for embedded systems. Similar performance experiments 

could then be earned out to compare the difference in performance between the PC- 

based DARBS and the SARNet-based Embedded C++ emDARBS.

As for the SARNet, it is just sufficient for emDARBS, any increase in software 

complexity will cause the SARNet to run out of memory capacity. Therefore, it is 

suggested that the next generation of SARNet is to have bigger memory capacity. The
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newly developed XaNet is the next generation of SARNet and it contains a 128 

megabyte SDRAM. The SARNet also has a poor hardware support for advance software 

debugging. The XaNet has improved on this by adding hardware JTAG debugging 

support but some work is still required to develop the debugging software that uses the 

JTAG on the XaNet. As for the SARNUX operating system, it is good in terms of its 

memory footprint (the whole SARNUX executable only occupies about 64 kilobytes) 

[124], but it lacks advance debugging facilities. Future versions of the SARNUX would 

need to improve on its debugging facilities.

As mentioned earlier, the challenges encountered during the implementation of 

emDARBS showed that developing complex software for embedded systems requires a 

proper software development tool-chain that includes an advance debugging software. 

Without this tool-chain, it would be nearly impossible to develop complex software and 

trace down any error that is in the software. There are commercially available software 

development tool-chains but they usually require expensive licensing fees. Also, some 

tweaking is still required to customise such commercial tool-chains for the SARNet. 

Alternatively, open source software development tool-chains can be used but a lot of 

work is required to configure and build the tool-chain for the SARNet. However, open 

source software development tool-chain is free and once customised for the SARNet, it 

can be used freely without the constraint of licensing fees.

Distributed blackboard systems are feasible in practical embedded systems but the 

effectiveness of the system would greatly depend on how the KSs and the information 

stored on the BB are implemented. Poorly distributing the problem onto the KSs would 

result in an ineffective system due to poor performance. For example, distributing the
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problem onto too many KSs will cause an increase in unnecessary communications 

while distributing the problem onto too few KSs will increase the processing load of 

each KS. Poorly organising the information stored on the BB would also result in poor 

performance. For example, storing too much information on the BB would increase the 

communication load, thus reducing the performance of the overall system. Conversely, 

storing too little information on the BB defeats the purpose of using a distributed 

blackboard system and makes it more difficult for redundant KSs to quickly pick up 

from where a KS has failed. Finally, distributed blackboard systems also need to have 

real-time capabilities for them to be feasible with real-time embedded systems.

6.3 Future work

As discussed in section 6.1.1, DARBS’s rule-based system is currently inefficient and as 

such there are possible future works for improving the rule-based system. One such work 

involves implementing a rule dependency table [52]. As many rules in the system 

depend on the condition of other rules, it is therefore possible to build up a table of all 

these dependency before runtime and have the inference engine select rules to be tested 

based on this table. For example, if rule B cannot fire unless rule A has fired (i.e. rule B 

is dependent on rule A), then there is no point in checking rule B until rule A has fired. 

Another possible improvement to the rule-based system is to have runtime evaluation of 

the composite condition in a rule. The current inference engine checks every sub­

condition of a rule before evaluating whether the composite condition is true. This can 

be improved on by evaluating the composite condition as it checks each sub-condition. 

Consider the following example in Figure 56.
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i
IF
[ I

c o n d i t i o n l
AND
c o n d i t i o n 2 i
AND \
c o n d i t i o n 3

] >
THEN
[

a c t i o n s v
3 ■I

Figure 56. KS rule example

The inference engine can stop checking c o n d i t i o n 2 and c o n d i t i o n 3  if 

co n d i  t i o n l  is false because the composite condition will be false. This type of 

runtime evaluating would reduce the number of messages sent to the BB as each 

condition-check requires the KS to send a message to the BB. The use of runtime 

evaluation can dramatically reduce the communication traffic, thus allowing other KSs 

to send and receive messages faster.

The current restart algorithm of the KSs is also relatively slow and inefficient. At the 

moment, each KS will restart on a change in any partition that is in its working partitions 

list. This is inefficient as most of the time KSs only need to restart on a subset of the 

working partitions list. Therefore, this can be improved by having KSs selecting 

particular partitions within the working partitions list to restart on. Another improvement 

to the restart algorithm is to have the KS check the BB for the specific changes and then 

decide whether the changes have affected the K S’s current evaluation. If the changes do 

affect the current evaluation, then the KS should restart, otherwise, it can continue
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evaluating its current evaluation. These improvements to the restart algorithm will 

provide some increase in performance.

Another possible future work for the Agent KSs is to change the agent’s behaviour from 

reactive to cooperative. Cooperative agents can perform more efficiently at clearing all 

the tiles in the TileWorld. The agents can share their viewing range with other agents so 

that together they can get a bigger view of the TileWorld. They can also inform other 

agents of their target tile so that no two agents will move towards the same tile. This way, 

the agents can have better forward planning and can clear the tiles in the TileWorld 

efficiently. However, care must be taken to make sure that the planning time does not 

take too long as the TileW orld may change. If the TileWorld changes faster than the time 

taken for the agents to plan, then the agents will end up doing nothing as they will spend 

all their time planning. The current TileWorld-DARBS implementation does not have 

dynamic objects and as such, the TileW orld will not change, thus, giving the agents 

plenty of time to do their planning. However, future work on TileWorld-DARBS can 

introduce dynamic objects.

Dynamic objects can be easily implemented in the current TileWorld-DARBS by having 

another KS that randomly moves, creates, and deletes holes, obstacles and tiles. The rate 

and probability of change can be determined by user defined variables. Adding dynamic 

objects to TileWorld-DARBS does not require any changes to be made to the KSs except 

to the Display TileWorld KS. The only change required for the Display TileWorld KS  is 

to add rules to check and update the GUI window for changes to the holes and obstacles 

in the TileWorld. This dynamic TileW orld adds more realism to the TileWorld and
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enables further experiments to be carried out on the agents’ behaviour in a dynamic 

environment.

A new experiment can also be earned out on TileWorld-DARBS to see how long it takes 

to clear up all the tiles in a static TileWorld. The experiments earned out so far showed 

the performance increase for each Agent KS as the Agent KSs are distributed across 

different number of processors. The new experiment will show the performance increase 

for solving a problem with different number of agents distributed across different 

processors. For example, the experiment can show how much faster ten Agent KSs on ten 

separate processors can clear up all the tiles in a static TileW orld compared to one Agent 

KS. This can also be used to show how efficient the agent rules are compared to other 

agent rules and can also be used to compare the characteristics of reactive agents with 

cooperative agents. Another future work experiment is to investigate the performance of 

the distributed blackboard system as the number of agents and APs increases after the 

B B ’s saturation point. This experiment would require a large number of Agent KSs and 

APs, probably around twenty to thirty Agent KSs and APs. The results of this experiment 

would help better understand the effects of the BB’s saturation point as the number of 

agents and APs increases. Further improvements to the BB can then be tested with the 

same experiment to show the effects of the improvements on the BB’s saturation point. 

One such BB improvement would be to parallelise access to the BB by allowing 

concurrent access to different partitions on the BB.

As for emDARBS, similar performance experiments could be carried out to show the 

effects of different hardware architectures and operating systems on the performance of a 

distributed blackboard system. Unfortunately, due to memory constraint issues on the
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SARNet, the TileWorld test-bed could not be implemented in emDARBS. The next 

generation of SARNet, XaNet is currently being developed and has 128 megabytes of 

memory on each node. Future work would be to implement TileWorld-emDARBS on 

the XaNet and rerun the performance experiments. The results of the performance 

experiments on TileWorld-emDARBS are expected to be similar to the PC-based 

performance experiments. However, the actual results of the emDARBS performance 

experiments can help better characterise and guide future implementation of distributed 

blackboard systems in intelligent embedded systems.

As for the SARNUX operating system, future works include porting the operating 

system to the XaNet. This requires changing some of the low level function calls as the 

hardware layer has changed. However, the first thing that needs to be done is to 

reconfigure and rebuild the software development tool-chain. Only with a proper 

software development tool-chain can SARNUX be successfully ported to the XaNet. 

After porting SARNUX, work should be carried out to develop the advance debugging 

software that uses the JTAG. Advance debugging that includes runtime watches, 

program step through, and breakpoints are crucial in being able to develop complex 

software in an embedded system. This type of advance debugging can be accomplished 

by using In-Circuit Emulation (ICE) [135] or remote serial debugging with GNU GDB

[136]. In-Circuit Emulation (ICE) requires some additional hardware support but offers 

more flexible debugging, whereas, remote serial debugging only requires a RS232 serial 

link but would require operating system support on the target (in this case, GDB support 

from the SARNUX).



Kum Wah CHOY
Discussion, conclusion and future work

Future works for emDARBS include reworking emDARBS to comply fully with the 

Embedded C++ working standard. This will make emDARBS a subset of DARBS that 

specially caters for embedded systems. This way, emDARBS application will be able to 

function in DARBS provided that there is no hardware dependent code and DARBS 

application can be ported to emDARBS by replacing non-Embedded C++ compliant 

codes with Embedded C++ compliant codes. The current emDARBS IPC layer that was 

created to mimic TCP/IP communication calls can be made more generalised to become 

a standard interface layer for Linux’s TCP/IP applications to run on SARNUX. However, 

this is not ideal for processor intensive applications as the communication interface layer 

would add more overhead to the applications. A better way would be to change the 

applications’ communication model to use SARNUX’s CSP communication model.

Another future work for emDARBS is to add real-time features to the system. This is 

essential for real-time embedded systems. Examples of real-time features that can be 

added to emDARBS are information time-stamping and time deadline. The BB can add a 

time-stamp to the information that is added onto the BB to show when the information 

was added. This can help late KSs to pick up information that they missed or to pick the 

latest information and ignore the old information. The KSs can also add a time deadline 

to certain information that needs to be used before a certain deadline and to show when 

the information is no longer valid. This information can help other KSs to prioritise their 

tasks to process information that has the shortest time deadline first. The BB can also 

benefit from the time deadline information as the BB can perform periodic clean up on 

expired information to conserve memory capacity.

162



Kum Wah CHOY
Discussion, conclusion and future work 

Another area that can be improved on is to introduce raw binary data on the BB. At the 

moment, only ASCII [137] string data can be stored on the BB. There can be occasions 

when large amounts of raw data need to be stored on the BB and converting all the raw 

data to ASCII string format can be time-consuming and will result in an enormous 

amount of data. This is impractical and a better way to store this information would be 

either to store the data on the BB in raw binary format or to compress the data and store 

it on the BB. If the data is really large, then a better solution would be to store the data in 

a separate location and only store the pointer to the data on the BB.

All these future works will bring emDARBS closer to the possibility of being 

implemented in future intelligent embedded systems. An example of how emDARBS 

may be implemented in future intelligent embedded systems is as shown in Figure 57.

Left Arm Body Right Arm

Left Elbow Right Elbow 
KS

Planner KS1 Vision KS Planner KS2

A ctio n s
Feedback

KS1

Left Arm 
Sensor KSs

Right Ann 
Sensor KSs

Left Arm BB Main BB Right Arm BB

Action & 
Feedback 

KS2

Right WristPlanner KS3 Planner KS4

Left Leg 
Sensor KSs

Right Leg 
S ensor KSs

Left Leg BB Right Leg BB

O)
CQ

(O
Right Ankle Right Knee

Left Knee KS Left Ankle KS

Figure 57. Example of distributed blackboard systems implementation in a robot
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The example in Figure 57 shows how distributed blackboard systems can be 

implemented on an intelligent embedded system such as a robot. There are five BBs in 

this example; one for each limb of the robot and one more for the main body. The Main 

BB will store information regarding the overall goals of the robot and the top level status 

of the robot and its surroundings. The Vision KS will store high level visual information 

of the environment onto the Main BB. The Planner KSs will make plans on how to 

achieve the overall goals of the robot and store that information on the Main BB. The 

corresponding Action & Feedback KSs will then pick up the relevant plans and create an 

actions list and store that onto the corresponding limb BB (e.g. Left Arm BB, Right Leg 

BB, etc.). The corresponding KSs in that limb will control their respective motors to 

move the limb according to the actions list on the limb BB. The Sensor KSs in each limb 

will store sensor readings of the environment onto the limb BB and the corresponding 

Action & Feedback KSs will process the sensor readings and store the high level 

environment status onto the Main BB. The limb KSs (e.g. Right Knee KS, Left Wrist KS, 

etc.) will also have some basic reactions that do not need to go through the Planner KSs. 

For example, if the left wrist’s temperature sensor detects high temperature from one 

direction, then the Left Wrist KS and possibly the whole aim KSs (depending on the 

amount of heat detected) will automatically react to that by quickly moving the wrist or 

the whole aim away from the source of the high temperature. This type of basic reaction 

will ensure that the robot can react in real-time. Although this robot example is still far 

from being a reality, the work earned out in this research has made a small step in 

realising the actual implementation of this robot.
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///////////////////////////////////////////////////////////
// DARBS return commands
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
II This commands are returned by the blackboard server.
// The return commands are self-explanatory.
//------------------------------------------------------------------
II
#define P A R T IT IO N ^O T JFO U N D  "partition not found!"
#define DARBS_NO_NAMES_DEFINED "no partitions defined!"
#define DARBSJERROR "error"
#define DARBS_ERROR_INSUFFICIENT_ARG "error, insufficient arguments" 
#define D ARB S_CONFIRM "okay"
#define DARBS_COMMAND_NOT_FOUND "command not found"
#define DARBS_FALSE "false"
#define DARBS_TRUE "true"
#define DARBS_NO_MATCH_FOUND "no match found"
// This is a special marker on return string to give the caller 
// additional information on the success/failure of the command 
#define ADDITIONAL_INFO_STRING "{*:*:EXTRA_INFO}"
// Gives info to the user of where the error occured in the 
// command.
#define ERROR_AT " @"
II
//------------------------------------------------------------------

IIIIIIIIIIIIIIIIIIIIIIIIIH IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II ARB S/D ARBS commands
IIIIIIIIIIIIIIIIIIIIIIIIIH IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II These are commands that are sent to the blackboard
// from the client.
// General info: Pattern and partitions can contain 
// spaces as long as they are enclosed in [], or (),
// or {} brackets. The word brackets from here onwards 
// refer to [], (), or {}. Brackets can be interpreted as 
// a list of items separated by spaces or an item that 
// contain spaces depending on the command being used.
//------------------------------------------------------------------
II

#define DARBS_ADD "add"
// To add a pattern to a particular partition. Using []
// would mean that the pattern or partition contain spaces.
// Usage: add <pattern> <partition>
// Return: On success - okay
// partition <partition> changed! (broadcasted)
// On failure - error
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#define D ARB S_ADD_MULTI "add_multi"
// To add multiple patterns to a particular partition. Using []
// would mean that the pattern or partition contain spaces. Each 
// pattern is separated by a space
// Usage: add_multi <pattem l>  <pattem2> ... <pattemN> <partition>
// Return: On success - okay
// partition <partition> changed! (broadcasted)
// On failure - error

#define DARBS_DEL "deLfirst"
//T o  delete the first occurance of a pattern in a partition 
// Usage: del_first <pattem> <partition>
// Return: On success - okay
// partition <partition> changed! (broadcasted)
// On failure - error

#define DARBS_DEL_ALL "del_aH"
// To delete the all occurances of a pattern in a partition 
// Usage: del_all <pattem> <partition>
// Return: On success - okay
// partition <partition> changed! (broadcasted)
// On failure - error

#define DARBS_CLR "clr_partition"
// To clear everything in a partition but not remove the partition 
// Usage: clr_partition <partition>
// Return: On success - okay
// partition <partition> changed! (broadcasted)
// On failure - error

#define D ARB S_CLR_ ALL "clr_board"
//T o  clear everything on the blackboard (all partitions removed)
// Usage: clipboard
// Return: On success - okay
// partition changed! (broadcasted)
// On failure - error

#define DARBS_RET "ret„first"
// To return the first occurances of a pattern in a partition.
// Pattern are match with ? and must be exactly the same pattern 
// as the data pattern on the blackboard. There can also be a ??
// query which return the rest of the string.
// eg. on partition parti
// [This is data 1] [This is data 2] [This 1 data 2]
// ret_first [This ? data 2] parti
// -> true [ [ is ] ]
// ret_first [This ?? ] parti
// -> true [ [ is data 1 ] ]
//
// Usage: ret_first <pattern with ?> <partition>
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// Return: On success - true [ cm atching word for ?> ]
// On failure - false

#define D ARB S_RET_ALL Mret_allM
// To return all the occurances of a pattern in a partition.
// Pattern are match with ? and must be exactly the same pattern 
// as the data pattern on the blackboard. There can also be a ??
// query which return the rest of the string.
// eg. on partition parti
// [This is data l][This is data 2J[This 1 data 2]
// ret_all [This ? data 2] parti
// -> true [ [ is ] [ 1 ] ]
// ret„all [This ?? j parti
// -> true [ [ is data 1 ] [ is data 2 ] [ 1 data 2 ] ]
//
// Usage: ret_all <pattern with ?> <partition>
// Return: On success - true [ cm atching word for ?> ]
// On failure - false

#define DARBS_GET "get_contentsM
//T o  list all the contents of a partition 
// Usage: get_contents <partition>
// Return: On success - ccontents in partition>
// On failure - error

#define DARBS_SETUP_BLACKBOARD Msetup_blackboard".
//T o  clear the blackboard and put a new partition or 
// a list of new partitions onto the blackboard. The list 
// of partitions can be stored in [], (), or {}.
// This does not permit partition name with spaces in 
// between. However, ’add’command allows spaces in partition 
// name by using the [], (), or {} brackets.
// Note: An ambiguity occurs to differentiate partition name
// with spaces in them and without spaces on the broadcasted message
// Usage: setup_blackboard cpartition or list of partitions>
// Return: On success - okay
// partition cpartition or list of partitions> changed! (broadcasted)
// On failure - error

#define DARBS_ADDJPARTITIONS "add_partitions"
// To add a list of new partitions to the blackboard. The 
// list of partitions must be enclosed in [], (), or {}.
// This does not permit partition name with spaces in 
// between. However, ’add’ command allows spaces in partition 
// name by using the [], (), or {} brackets.
// Note: An ambiguity occurs to differentiate partition name
// with spaces in them and without spaces on the broadcasted message
// Usage: add_partitions cpartition or list of partitions>
// Return: On success - okay
// partition cpartition or list of partitions> changed! (broadcasted)
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11 On failure - error

#define DARBS_GET_PARTITIONS "get_partitions"
//T o  list all the partitions in the blackboard 
// Usage: get_partitions
// Return: On success - clist of partitions in blackboard>
// On failure - error

#define D ARB S_P ARTITION_EXIST "partitionexist"
// To check if a partition exist on the blackboard.
// Usage: partition_exist <partition>
// Return: On success - true (partition exist)
// On failure - false (partition does not exist)

#define DARBS_PARTITION_NOT_EXIST "partition_not_exist" 
// To check if a partition does not exist on the blackboard.
// Usage: partition_not_exist <partition>
// Return: On success - true (partition does not exist)
// On failure - false (partition exist)

#define DARBS_ON_PARTITION "on_partition"
// To check if a pattern is on a partition or not.
// Partition name can contain space as long as it is enclosed 
// in brackets.
// Note: There is a bug on this pattern checking if the 
// patterns on the partition is not separated by brackets.
// Usage: on_partition <pattern> <partition>
// Return: On success - true (pattern exist on partition)
// On failure - false (pattern or partition does not exist)

#define DARBS_NOT_ON_PARTITION "not_on_partition"
// To check if a pattern does not exist on a partition or not.
// Partition name can contain space as long as it is enclosed 
// in brackets.
// Note: There is a bug on this pattern checking if the 
// patterns on the partition is not separated by brackets.
// Usage: not_on_partition <pattern> <partition>
// Return: On success - true (pattern or partition does not exist)
// On failure - false (pattern exist on partition)

#define DARBS_ON_BLACKBOARD "on_blackboardM 
//T o  check if a pattern is on the blackboard or not.
// It checks all the partitions in the blackboard for the 
// pattern. Partition name can contain space as long as 
// it is enclosed in brackets.
// Note: There is a bug on this pattern checking if the 
// patterns on the partition is not separated by brackets.
// Usage: on_blackboard <pattem>
// Return: On success - true (pattern exist on the blackboard)
// On failure - false (pattern does not exist on the blackboard)
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#define DARBS_NOT_ON_BLACKBOARD "not_on_blackboard" 
/ /T o  check if a pattern does not exist on the blackboard.
// It checks all the partitions in the blackboard for the 
// pattern. Partition name can contain space as long as 
// it is enclosed in brackets.
// Note: There is a bug on this pattern checking if the 
// patterns on the partition is not separated by brackets.
// Usage: not_on_blackboard <pattem>
// Return: On success - true (pattern does not exist on the blackboard)
// On failure - false (pattern exist on the blackboard)

#define DARBS_REPLACE "replace"
//T o  replace a pattern in a particular partition with another pattern.
// Using [] would mean that the pattern or partition contain spaces.
// Usage: replace <pattern to be replace> <in partition> creplace pattem> 
// Return: On success - okay
// partition <partition> changed! (broadcasted)
// On failure - no match found
// when the pattern to be replace cannot be found
// partition not found!
// when the partition is not found

#define DARBS_REPLACE_MULTI "replace_multi"
// CHANGED COMMAND - This command would now only perform the replace when 
// all the pattern is a match. Changed on 17/11/03, KW Choy. The 
// ADDITIONAL_INFO_STRING marker is not used anymore. Instead the ERROR_AT 
// marker is used on the return message of an error, to show where the 
// error was.
//
// To do multiple replace in one go. Function the same as DARBS_REPLACE but 
// can do multiple. A special ADDITIONAL_INFO_STRING marker is added to the 
// end of an error message to indicate which partition was successfully 
// changed. For example if pattern 1 on partition 1 was successfully replaced 
// but pattem2 cannot be found on partition2 then the return error message 
// would be :-
// no match found {*:*:EXTRA__INFO} [partition 1 ]
// If there is no ADDITIONAL_INFO_STRING marker on the error message meaning 
// nothing was changed.
// Using [] would mean that the pattern or partition contain spaces.
// Usage: replace <patternl to be replace> <in partition 1> <replace pattern 1> \
// <pattem2 to be replace> <in partition2> creplace pattem2> ...
// Return: On success - okay
// partition cpartition 1> changed! (broadcasted)
// partition cpartition2> changed! (broadcasted)...
// On failure - no match found 
// when at least one of the pattern to be
// replace cannot be found
// partition not found!
// when at least one of the partition is not found
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Appendix C : TileWorid KSs’ rules

Initiator KS

• Clear_Blackboard
o Clear the entire blackboard

• Ini t_Til eWorld
o Set the size of the TileW orid
o Set the number of agents in the TileWorid
o Set the number of holes in the TileWorid
o Set the number of obstacles in the TileWorid
o Set the number of tiles in the TileWorid

• Create„TileW odd
o Generate a random position within the size of the TileWorid for each of 

the agents, holes, obstacles, and tiles in the TileWorid. 
o Store this information on the Blackboard.

Display TileWorid KS

• Display_Initial_Screen
o Draw the grids in the TileW orid and label it

• Update_Agent_Display
o Find the location of all the agents in the TileW orid from the Blackboard 

and display them accordingly.
• Update_Hole_Display

o Find the location of all the holes in the TileWorid from the Blackboard 
and display them accordingly.

• Update_Obstacle_Di splay
o Find the location of all the obstacles in the TileWorid from the 

Blackboard and display them accordingly.
• Update_Tile_Display

o Find the location of all the tiles in the TileWorid from the Blackboard and 
display them accordingly.

• Update_Total_Objects_Display
o Find out the objects that are currently being display in the TileWorid.

• Update_Deleted_Tile
o Delete the objects that are no longer on the Blackboard from the 

displayed TileWorid.

Agent KS

• Initialise_Agent
o Setup the viewing range the agent can see 
o Initialise the internal state of mind of the agent 
o Start the agent in Generate SearchSpace State.
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• Update_Intemal_Status
o Reset back the agent’s internal state of mind to the start state. This is 

required when the agent is interrupted and restarts itself.
o Start the agent in Generate SearchSpace State.

• Generate_SearchSpace_State
o Find out the coordinates that the agent can see based on the viewing range 

parameter that has been setup.
o Find out the last coordinates that can be seen.
o Set the agent to Look At Environment state

• Look_At_Environment_Statel
o Look at the contents of the environment that the agent can view and place 

that information into the agent’s view partition
• Look_At_Environment_State2

o Change the agent state to Thinking state as soon as the last coordinates 
that can be view by the agent is viewed.

• I s_It JEx p 1 ori n g_S tate
o Change the agent state to Exploring state if the agent is in Thinking state 

and the agent is currently carrying no tile and there is no tile within the 
viewing range OR

o Change the agent state to Exploring state if the agent is in Thinking state 
and the agent is currently carrying a tile and there is no hole within the 
viewing range.

• Is_It_Moving_To_Tile_State
o Change the agent state to Moving To Tile state if the agent is in Thinking

state and the agent is not carrying a tile and there is a tile within the 
viewing range and the tile is not on the same grid as the agent.

• Is_It_Hole_Filling_State
o Change the agent state to Hole Filling state if the agent is in Thinking 

state and the agent is carrying a tile and the agent is standing on a grid 
with a hole.

• Is_It_Moving_T o_Hole_State
o Change the agent state to Moving To Hole state if the agent is in Thinking

state and the agent is carrying a tile and there is a hole within the viewing 
range and the hole is not on the same grid as the agent.

• Is_It_Picking_Up_Tile_State
o Change the agent state to Picking Up Tile state if the agent is in Thinking 

state and the agent is not carrying a tile and the agent is standing on a grid 
with a tile.

• Generate_Possible_Moves
o Generate the 4 or less possible moves that the agent can make and store 

those moves in the agent’s possible moves partition provided that the 
agent is in Exploring state or Moving To Tile state or Moving To Hole 
state. Finally added Check North Move Validity flag to the possible 
moves partition.

• Is_North_Move_Valid
o If Check North Move Validity flag is set and the north move is valid then 

set the result on the possible moves partition. Change the Check North 
Move Validity flag to Check East Move Validity flag.

• Is_North_Move_NotValid
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o If Check North Move Validity flag is set and the north move is not valid 
then set the result on the possible moves partition. Change the Check 
North Move Validity flag to Check East Move Validity flag.

• Is_East_Move_Valid
o If Check East Move Validity flag is set and the east move is valid then set 

the result on the possible moves partition. Change the Check East Move 
Validity flag to Check South Move Validity flag.

• Is_East_Move_NotValid
o If Check East Move Validity flag is set and the east move is not valid 

then set the result on the possible moves partition. Change the Check East 
Move Validity flag to Check South Move Validity flag.

• Is_South_Move_Valid
o If Check South Move Validity flag is set and the south move is valid then 

set the result on the possible moves partition. Change the Check South 
Move Validity flag to Check W est Move Validity flag.

• Is_South_Move_Not Valid
o If Check South Move Validity flag is set and the south move is not valid 

then set the result on the possible moves partition. Change the Check 
South Move Validity flag to Check West Move Validity flag.

• Is_W est_M ove„Valid
o If Check W est Move Validity flag is set and the west move is valid then 

set the result on the possible moves partition. Change the Check West 
Move Validity flag to Finish Checking Moves flag.

• Is_West_Move_Not Valid
o If Check West Move Validity flag is set and the west move is not valid 

then set the result on the possible moves partition. Change the Check 
West Move Validity flag to Finish Checking Moves flag.

• Exploring_State
o If agent is in Exploring state, generate a random step based on the 

possible moves and the last made move. Store the random generated step 
on the agent’s state of mind partition. Change agent’s Exploring state to 
Making A Move state.

• Moving_To_Tile_State
o If agent is in Moving To Tile state, clear the current closest tile 

information from the tile calculation partition. Change the agent’s state to 
Get Tile Distance state.

• Moving_To_Hole_State
o If agent is in Moving To Hole state, clear the current closest hole 

information from the hole calculation partition. Change the agent’s state 
to Get Hole Distance state.

• Get_Tile_Distance_State
o If agent is in Get Tile Distance state, calculate the distance of all the tiles 

within the agent’s viewing range and store that information onto the 
agent’s tile calculation partition. Change the agent’s state to Finding 
Closest Tile state.

•  Get_Hole_Distance_State
o If agent is in Get Hole Distance state, calculate the distance of all the 

holes within the agent’s viewing range and store that information onto the
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agent’s hole calculation partition. Change the agent’s state to Finding 
Closest Hole state.

Find_Closest_Tile_State
o If agent is in Finding Closest Tile state, pick the closest tile in the tile 

calculation partition and store that in the agent’s state of mind partition. 
Change agent’s state to Generate Step Closer To Tile state.

Find_Closest_Hole_State
o If agent is in Finding Closest Hole state, pick the closest hole in the hole 

calculation partition and store that in the agent’s state of mind partition. 
Change agent’s state to Generate Step Closer To Hole state.

Generate_Step_Closer_To_Tile_State
o If agent is in Generate Step Closer To Tile state, generate a random step 

closer to the closest tile based on the possible moves, last move made, 
and the coordinates of the closest tile. Store the random generated step on 
the agent’s state of mind partition. Change the agent’s state to Making A 
Move state.

Generate_Step_Closer_To_Hole_State
o If agent is in Generate Step Closer To Hole state, generate a random step 

closer to the closest hole based on the possible moves, last move made, 
and the coordinates of the closest hole. Store the random generated step 
on the agent’s state of mind partition. Change the agent’s state to Making 
A Move state.

Pick_Up_Tile_State
o If agent is in Picking Up Tile state, pick up the tile from the same grid 

and change state back to Generate Searchspace state.
Hole_Filling_State

o If agent is in Hole Filling state, drop the tile it is carrying into the hole it 
is standing on and add up the current score of the agent with the score it 
made from filling the hole with a tile. Change agent’s state back to 
Generate Searchspace state.

Making_Move_State
o If agent is in Making A Move state, record the current position of the 

agent as the last move and move the agent to the new location as stored in 
the agent’s state of mind. Change agent’s state back to Generate 
Searchspace state.
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Appendix D : Alternative trend line graphs

Average time per move on a single processor
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Figure 58. Average time per move on a single processor with linear function trend line

Average time per move on multi processors
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Figure 59. Average time per move on multi processors with polynomial function trend line
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Appendix F : Table of results for speedup and efficiency 
of varying number of agent processors

Num ber of 
p rocessors

10 a g e n ts  s e tu p

S p eed u p

. ■ f ■ fie* R& ■ • ■ ■ V- ■

Efficiency
1 1 .00000 1.00000
2 1 .85166 0 .92583
3 2 .5 1 5 3 5 0 .83845
4 2 .9 8 9 5 8 0 .74740
5 3 .5 9 1 6 8 0 .71834
6 3 .3 8 7 8 0 0 .5 6 4 6 3
7 3 .2 7 1 7 8 0 .4 6 7 4 0
8 3 .2 0 8 8 3 0 .40110
9 3 .2 6 4 1 8 0 .36269
10 3 .1 7 6 5 4 0 .31765

11 a g e n ts  s e tu p
Num ber of 
p rocessors S p eed u p Efficiency

1 1 .00000 1.00000
2 1 .71690 0 .85845
3 2 .4 6 5 2 4 0 .82175
4 3 .0 5 6 7 0 0 .76417
5 3.29491 0 .65898
6 3 .2 9 9 2 4 0 .54987
7 3 .2 9 7 3 3 0 .47105
8 3 .1 5 1 4 6 0 .39393
9 3 .1 0 2 2 8 0 .3 4 4 7 0

10 3 .0 8 8 7 8 0 .30888
11 3 .1 0 2 0 9 0.28201

.....................
12 a g e n ts  s e tu p

Num ber of 
p rocessors S p eed u p Efficiency

1 1 .00000 1.00000
2 1 .70365 0 .85182
3 2 .4 9 3 1 3 0 .83104
4 3 .1 0 9 4 6 0 .77737
5 3 .3 0 4 1 4 0 .66083
6 3 .4 5 2 0 4 0 .57534
7 3 .3 1 5 8 3 0 .47369
8 3 .0 8 1 6 6 0.38521
9 3.02821 0 .33647

10 3 .0 4 7 8 0 0 .30478
11 3 .0 7 4 5 6 0.27951
12 3 .1 6 5 6 2 0 .26380
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13 agents setup
Num ber of 
p rocessors S p eed u p Efficiency

1 1 .00000 1.00000
2 1 .68368 0 .84184
3 2 .3 1 5 2 7 0 .7 7 1 7 6
4 3 .0 1 9 6 0 0 .7 5 4 9 0
5 3 .3 6 1 3 9 0 .6 7 2 2 8
6 3 .3 4 9 8 0 0 .5 5 8 3 0
7 3 .2 2 1 8 0 0 .4 6 0 2 6
8 3 .1 4 1 7 9 0 .3 9 2 7 2
9 2 .8 8 6 5 3 0 .3 2 0 7 3
10 3 .0 5 4 7 9 0 .3 0 5 4 8
11 2 .9 7 2 8 0 0 .2 7 0 2 5
12 2 .9 8 5 7 9 0 .24882
13 3 .1 6 5 5 9 0.24351

14 a g e n ts  s e tu p
Num ber of 
p rocessors S p eed u p Efficiency

1 1 .00000 1 .00000
2 1 .63738 0 .81869
3 2 .2 6 3 4 2 0 .7 5 4 4 7
4 2 .7 0 8 4 5 0.67711
5 3 .2 1 4 2 4 0 .6 4 2 8 5
6 3 .1 6 1 8 0 0 .5 2 6 9 7
7 3 .3 6 3 9 8 0 .4 8 0 5 7
8 3 .1 8 3 2 8 0.39791
9 3 .0 5 6 7 6 0 .33964
10 3 .1 4 2 2 9 0 .31423
11 2 .8 1 9 1 9 0 .25629
12 2 .8 8 5 2 0 0 .24043
13 2 .8 9 8 8 5 0 .22299
14 3 .0 2 5 5 0 0.21611
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processors
-------------------- —

Num ber of 
p rocessors

1*5 fld fin ts Qptun* “ oyciia aolur

S p eed u p
1 1.00000 1 .00000
2 1 .57294 0 .7 8 6 4 7
3 2.25261 0 .7 5 0 8 7
4 2 .7 9 5 5 0 0 .6 9 8 8 8
5 3 .3 1 0 5 5 0.66211
6 3 .3 2 3 5 0 0 .5 5 3 9 2
7 3 .2 5 9 0 0 0 .4 6 5 5 7
8 3 .2 6 4 7 7 0 .4 0 8 1 0
9 2 .9 6 9 6 0 0 .3 2 9 9 6
10 2.89461 0 .2 8 9 4 6
11 2 .9 0 0 7 8 0.26371
12 2 .8 4 5 5 6 0 .2 3 7 1 3
13 2 .8 7 5 6 4 0 .2 2 1 2 0
14 2.90441 0 .2 0 7 4 6
15 2.96471 0 .1 9 7 6 5

16 a g e n ts  s e tu p
Num ber of 
p rocessors S p eed u p Efficiency

1 1 .00000 1.00000
2 1 .55449 0 .7 7 7 2 5
3 2 .1 5 6 0 4 0 .7 1 8 6 8
4 2 .8 2 9 8 9 0 .7 0 7 4 7
5 3 .1 4 8 6 0 0 .62972
6 3 .3 9 4 8 2 0 .5 6 5 8 0
7 3 .3 0 9 1 8 0 .4 7 2 7 4
8 3 .3 9 8 2 9 0 .4 2 4 7 9
9 3 .0 2 4 5 3 0 .3 3 6 0 6

10 2 .8 1 4 5 0 0 .2 8 1 4 5
11 2 .7 5 3 5 4 0 .2 5 0 3 2
12 2 .7 4 6 1 8 0 .2 2 8 8 5
13 2 .7 5 2 3 8 0 .2 1 1 7 2
14 2.82771 0 .2 0 1 9 8
15 2 .9 6 9 0 7 0 .1 9 7 9 4
16 2 .92251 0 .1 8 2 6 6
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Appendix G : Table of results for speedup and efficiency 
of varying number of agents

Number 
of agent 

K Ss 
setu p

*

A verage tim e 
per m ove on  
1 p rocessor

A verage time 
per m ove on 
1 p rocessor

r o c e s s o r
S p eed u p  for 1 
p rocessors = 1 

p rocessor tim e /1  
p rocessor time

S p eed u p  factor / 
num ber of 

p rocessor u sed
1 00:00:27 00:00:27 1 .00000 1 .00000
2 00:00:56 00:00:56 1 .00000 1 .00000
3 00:01:24 00:01:24 1 .00000 1 .00000
4 00:01:55 00:01:55 1 .00000 1 .00000
5 00:02:11 00:02:11 1 .00000 1 .00000
6 00:02:40 00:02:40 1 .00000 1.00000
7 00:03:00 00:03:00 1 .00000 1.00000
8 00:03:23 00:03:23 1 .00000 1 .00000
9 00:03:45 00:03:45 1 .00000 1 .00000
10 00:04:13 00:04:13 1 .00000 1 .00000
11 00:04:30 00:04:30 1 .00000 1 .00000
12 00:04:49 00:04:49 1 .00000 1 .00000
13 00:05:05 00:05:05 1 .00000 1.00000
14 00:05:19 00:05:19 1 .00000 1 .00000
15 00:05:32 00:05:32 1 .00000 1.00000
16 00:05:53 00:05:53 1 .00000 1.00000

■.. . . .... . ,,n
r o c e s s o r s

Number 
of agen t  

KSs

A verage time 
per m ove on  
1 p rocessor

A verage time 
per m ove on 
2 p rocessors

S p eed u p  for 2  
p rocessors = 1 

p rocessor tim e / 2  
p rocessors time

Efficiency = 
S p eed u p  factor /  

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DIV/0! #DIV/0!
2 00:00:56 00:00:31 1 .77756 0 .8 8 8 7 8
3 00:01:24 00:00:49 1 .70778 0 .8 5 3 8 9
4 00:01:55 00:00:56 2 .0 5 1 5 5 1 .02577
5 00:02:11 00:01:10 1 .87230 0 .9 3 6 1 5
6 00:02:40 00:01:22 1 .94533 0 .9 7 2 6 6
7 00:03:00 00:01:40 1 .79799 0 .8 9 9 0 0
8 00:03:23 00:01:49 1 .86662 0.93331
9 00:03:45 00:02:02 1 .84008 0 .9 2 0 0 4
10 00:04:13 00:02:17 1 .85166 0 .9 2 5 8 3
11 00:04:30 00:02:37 1 .71690 0 .8 5 8 4 5
12 00:04:49 00:02:50 1 .70365 0 .8 5 1 8 2
13 00:05:05 00:03:01 1 .68368 0 .8 4 1 8 4
14 00:05:19 00:03:15 1.63738 0 .8 1 8 6 9
15 00:05:32 00:03:31 1.57294 0 .7 8 6 4 7
16 00:05:53 00:03:47 1.55449 0 .7 7 7 2 5
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Num ber 
of agent  

KSs

T-.'TrT'■ :N-k' ;

A verage tim e 
per m ove on  
1 p rocessor

3 A g en t P

A verage time 
per m ove on  
3 p rocessors

ro c e s s o r s
S p eed u p  for 3  
p rocessors = 1 

p rocessor tim e / 3

Efficiency = 
S p eed u p  factor / 

num ber of 
processor u sed

1 00:00:27 00:00:00 #DIV/0! #DIV/0!
2 00:00:56 00:00:00 #DIV/0! #DIV/0!
3 00:01:24 00:00:37 2.26541 0 .7 5 5 1 4
4 00:01:55 00:00:48 2 .3 9 7 4 3 0 .79914
5 00:02:11 00:00:55 2 .4 0 1 3 5 0 .8 0 0 4 5
6 00:02:40 00:00:59 2 .7 2 3 2 6 0 .9 0 7 7 5
7 00:03:00 00:01:12 2 .5 0 5 8 2 0 .8 3 5 2 7
8 00:03:23 00:01:21 2 .5 2 0 7 0 0 .8 4 0 2 3
9 00:03:45 00:01:23 2 .6 9 3 7 2 0.89791
10 00:04:13 00:01:41 2 .5 1 5 3 5 0 .83845
11 00:04:30 00:01:49 2 .4 6 5 2 4 0 .8 2 1 7 5
12 00:04:49 00:01:56 2 .4 9 3 1 3 0 .83104
13 00:05:05 00:02:12 2 .3 1 5 2 7 0 .7 7 1 7 6
14 00:05:19 00:02:21 2 .2 6 3 4 2 0 .7 5 4 4 7
15 00:05:32 00:02:27 2 .25261 0 .7 5 0 8 7
16 00:05:53 00:02:44 2 .1 5 6 0 4 0 .7 1 8 6 8

Num ber 
of agent 

KSs 
setu p

A verage tim e 
per m ove on 
1 p rocessor

4 A g en t P

A verage time 
per m ove on 
4 p rocessors

S p eed u p  for 4  
p rocessors = 1 

p rocessor time /  4  
p rocessors time

Efficiency = 
S p eed u p  factor /  

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DIV/0! #DIV/0!
2 00:00:56 00:00:00 #DIV/0! #DIV/0!
3 00:01:24 00:00:00 #DIV/0! #DIV/0!
4 00:01:55 00:00:42 2 .7 0 9 1 0 0 .67727
5 00:02:11 00:00:49 2 .6 5 5 9 8 0 .6 6 4 0 0
6 00:02:40 00:00:58 2 .7 5 3 0 0 0 .6 8 8 2 5
7 00:03:00 00:01:02 2 .9 0 6 8 0 0 .7 2 6 7 0
8 00:03:23 00:01:03 3 .2 4 6 5 9 0 .8 1 1 6 5
9 00:03:45 00:01:13 3 .0 5 7 6 7 0 .76442
10 00:04:13 00:01:25 2 .9 8 9 5 8 0 .7 4 7 4 0
11 00:04:30 00:01:28 3 .0 5 6 7 0 0 .7 6 4 1 7
12 00:04:49 00:01:33 3 .1 0 9 4 6 0 .7 7 7 3 7
13 00:05:05 00:01:41 3 .0 1 9 6 0 0 .7 5 4 9 0
14 00:05:19 00:01:58 2 .7 0 8 4 5 0.67711
15 00:05:32 00:01:59 2 .7 9 5 5 0 0 .6 9 8 8 8
16 00:05:53 00:02:05 2 .8 2 9 8 9 0 .7 0 7 4 7
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5 A g en t P ro c e s s o r s
Number 
of agen t  

K Ss 
setup

A verage tim e 
per m ove on 
1 p rocessor

A verage tim e 
per m ove on 
5 p rocessors

S p eed u p  for 5 
p rocessors = 1 

p rocessor time /  5  
p rocessors tim e

Efficiency = 
S p eed u p  factor / 

num ber of

1 00:00:27 00:00:00 #DIV/0! #DIV/0!
2 00:00:56 00:00:00 #DIV/0! #DIV/0!
3 00:01:24 00:00:00 #DIV/0! #DIV/0!
4 00:01:55 00:00:00 #DIV/0! #DIV/0!
5 00:02:11 00:00:48 2 .7 6 2 6 5 0 .5 5 2 5 3
6 00:02:40 00:00:56 2 .84389 0 .5 6 8 7 8
7 00:03:00 00:01:01 2 .9 4 1 0 6 0.58821
8 00:03:23 00:01:08 2 .9 8 2 2 6 0 .5 9 6 4 5
9 00:03:45 00:01:10 3 .21845 0 .6 4 3 6 9

10 00:04:13 00:01:10 3 .59168 0 .7 1 8 3 4
11 00:04:30 00:01:22 3.29491 0 .6 5 8 9 8
12 00:04:49 00:01:27 3 .30414 0 .6 6 0 8 3
13 00:05:05 00:01:31 3 .36139 0 .6 7 2 2 8
14 00:05:19 00:01:39 3 .21424 0 .6 4 2 8 5
15 00:05:32 00:01:40 3 .31055 0.66211
16 00:05:53 00:01:52 3 .14860 0 .6 2 9 7 2

............... —...... . 1 --- ----- ------ ---------------
6 A g en t P ro c e s s o r s

--  ,

Num ber 
of agen t 

K Ss 
setu p

A verage time 
per m ove on 
1 p rocessor

A verage time 
per m ove on 
6 p rocessors

S p eed u p  for 6  
p rocessors = 1 

p rocessor time / 6  
p rocessors time

Efficiency = 
S p eed u p  factor / 

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DIV/0! #DIV/0!
2 00:00:56 00:00:00 #DIV/0! #DIV/0!
3 00:01:24 00:00:00 #DIV/0! #DIV/0!
4 00:01:55 00:00:00 #DIV/0! #DIV/0!
5 00:02:11 00:00:00 #DIV/0! #DIV/0!
6 00:02:40 00:00:51 3 .10436 0 .51739
7 00:03:00 00:01:00 2 .9 9 6 2 0 0 .4 9 9 3 7
8 00:03:23 00:01:03 3.23961 0 .5 3 9 9 3
9 00:03:45 00:01:09 3 .27410 0 .5 4 5 6 8
10 00:04:13 00:01:15 3 .38780 0 .5 6 4 6 3
11 00:04:30 00:01:22 3 .29924 0 .5 4 9 8 7
12 00:04:49 00:01:24 3 .45204 0 .5 7 5 3 4
13 00:05:05 00:01:31 3 .34980 0 .5 5 8 3 0
14 00:05:19 00:01:41 3 .1 6 1 8 0 0 .5 2 6 9 7
15 00:05:32 00:01:40 3 .3 2 3 5 0 0 .5 5 3 9 2
16 00:05:53 00:01:44 3 .39482 0 .5 6 5 8 0
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Num ber 
of agen t

sefup

A verage time 
per m ove on 
1 p rocessor

7  A g en t P

A verage tim e 
per m ove on 
7  p ro cesso rs

S p eed u p  for 7  
p rocessors = 1 

p rocessor tim e / 7 
p rocessors tim e

Efficiency = 
S p eed u p  factor / 

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DIV/0! #DIV/0!
2 00:00:56 00:00:00 #DIV/0! #DIV/0!
3 00:01:24 00:00:00 #DIV/0! #DIV/0!
4 00:01:55 00:00:00 #DIV/0! #DIV/0!
5 00:02:11 00:00:00 #DIV/0! #DI V/0!
6 00:02:40 00:00:00 #DIV/0! #DIV/0!
7 00:03:00 00:00:58 3 .12929 0 .4 4 7 0 4
8 00:03:23 00:01:03 3 .2 1 9 7 3 0 .4 5 9 9 6
9 00:03:45 00:01:12 3 .1 3 4 9 3 0 .4 4 7 8 5

10 00:04:13 00:01:17 3 .27178 0 .4 6 7 4 0
11 00:04:30 00:01:22 3 .29733 0 .4 7 1 0 5
12 00:04:49 00:01:27 3 .31583 0 .47369
13 00:05:05 00:01:35 3 .22180 0 .4 6 0 2 6
14 00:05:19 00:01:35 3 .3 6 3 9 8 0 .4 8 0 5 7
15 00:05:32 00:01:42 3 .2 5 9 0 0 0 .4 6 5 5 7
16 00:05:53 00:01:47 3 .3 0 9 1 8 0 .47274

Number 
of agent 

K Ss 
setup

A verage time 
per m ove on 
1 p rocessor

8 A g en t P

A verage time 
per m ove on 
8 p ro cesso rs

r o c e s s o r s
S p eed u p  for 8 
p rocessors = 1 

p rocessor time /  8

Efficiency = 
S p eed u p  factor / 

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DI V/0! #DI V/0!
2 00:00:56 00:00:00 #DI V/0! #DI V/0!
3 00:01:24 00:00:00 #DI V/0! #DI V/0!
4 00:01:55 00:00:00 #DI V/0! #DI V/0!
5 00:02:11 00:00:00 #DI V/0! #DI V/0!
6 00:02:40 00:00:00 #DI V/0! #DI V/0!
7 00:03:00 00:00:00 #DI V/0! #DI V/0!
8 00:03:23 00:01:05 3 .1 1 2 0 8 0.38901
9 00:03:45 00:01:13 3 .09520 0 .3 8 6 9 0
10 00:04:13 00:01:19 3 .20883 0 .4 0 1 1 0
11 00:04:30 00:01:26 3 .1 5 1 4 6 0 .39393
12 00:04:49 00:01:34 3 .0 8 1 6 6 0.38521
13 00:05:05 00:01:37 3 .1 4 1 7 9 0 .3 9 2 7 2
14 00:05:19 00:01:40 3 .18328 0.39791
15 00:05:32 00:01:42 3 .2 6 4 7 7 0 .40810
16 00:05:53 00:01:44 3 .39829 0 .42479
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---------------

Num ber 
of agen t  

KSs 
setu p

A verage time 
per m ove on  
1 p rocessor

9 A g en t P

A verage tim e 
per m ove on 
9 p rocessors

S p eed u p  for 9  
p rocessors = 1 

p rocessor tim e /  9

Efficiency = 
S p eed u p  factor /  

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DI V/0! #DI V/0!
2 00:00:56 00:00:00 #DI V/0! #DI V/0!
3 00:01:24 00:00:00 #DI V/0! #DI V/0!
4 00:01:55 00:00:00 #DI V/0! #DI V/0!
5 00:02:11 00:00:00 #DI V/0! #DI V/0!
6 00:02:40 00:00:00 #DI V/0! #DI V/0!
7 00:03:00 00:00:00 #DI V/0! #DIV/0!
8 00:03:23 00:00:00 #DI V/0! #DI V/0!
9 00:03:45 00:01:08 3 .3 2 5 3 5 0 .3 6 9 4 8
10 00:04:13 00:01:18 3 .2 6 4 1 8 0 .3 6 2 6 9
11 00:04:30 00:01:27 3 .10228 0 .3 4 4 7 0
12 00:04:49 00:01:35 3.02821 0 .3 3 6 4 7
13 00:05:05 00:01:46 2 .8 8 6 5 3 0 .3 2 0 7 3
14 00:05:19 00:01:44 3 .05676 0 .3 3 9 6 4
15 00:05:32 00:01:52 2 .9 6 9 6 0 0 .3 2 9 9 6
16 00:05:53 00:01:57 3 .02453 0 .3 3 6 0 6

.......... '
10  A g en t FP ro cesso rs

Num ber 
of agent 

K Ss 
setup

A verage tim e 
per m ove on  
1 p rocessor

A verage tim e 
per m ove on 

10

S p eed u p  for 10 
p rocessors = 1 

p rocessor tim e / 1 0  
p rocessors time

Efficiency = 
S p eed u p  factor / 

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DI V/0! #DI V/0!
2 00:00:56 00:00:00 #DI V/0! #DI V/0!
3 00:01:24 00:00:00 #DI V/0! #DI V/0!
4 00:01:55 00:00:00 #DI V/0! #DI V/0!
5 00:02:11 00:00:00 #DI V/0! #DI V/0!
6 00:02:40 00:00:00 #DI V/0! #DI V/0!
7 00:03:00 00:00:00 #DI V/0! #DI V/0!
8 00:03:23 00:00:00 #DI V/0! #DI V/0!
9 00:03:45 00:00:00 #DI V/0! #DI V/0!

10 00:04:13 00:01:20 3 .17654 0 .3 1 7 6 5
11 00:04:30 00:01:27 3 .0 8 8 7 8 0 .3 0 8 8 8
12 00:04:49 00:01:35 3 .0 4 7 8 0 0 .3 0 4 7 8
13 00:05:05 00:01:40 3 .05479 0 .3 0 5 4 8
14 00:05:19 00:01:41 3 .14229 0 .3 1 4 2 3
15 00:05:32 00:01:55 2.89461 0 .2 8 9 4 6
16 00:05:53 00:02:06 2 .8 1 4 5 0 0 .2 8 1 4 5
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Num ber 
of agen t  

K Ss 
setu p

H  I M M B j l l l
A verage time 
per m ove on  
1 p rocessor

11 A g e n tF
A verage tim e 
per m ove on

p rocessors

~ ...... ' ....................r o c e s s o r s
S p eed u p  for 11 
p rocessors = 1 

p rocessor tim e /1 1

Efficiency = 
S p eed u p  factor / 

num ber of 
p rocessor u sed

1 00:00:27 00:00:00 #DIV/0! #DI V/0!
2 00:00:56 00:00:00 #DI V/0! #DI V/0!
3 00:01:24 00:00:00 #DI V/0! #DI V/0!
4 00:01:55 00:00:00 #DI V/0! #DI V/0!
5 00:02:11 00:00:00 #DI V/0! #DI V/0!
6 00:02:40 00:00:00 #DI V/0! #DI V/0!
7 00:03:00 00:00:00 #DI V/0! #DI V/0!
8 00:03:23 00:00:00 #DI V/0! #DI V/0!
9 00:03:45 00:00:00 #DI V/0! #DI V/0!
10 00:04:13 00:00:00 #DI V/0! #DI V/0!
11 00:04:30 00:01:27 3 .10209 0.28201
12 00:04:49 00:01:34 3 .0 7 4 5 6 0.27951
13 00:05:05 00:01:43 2 .9 7 2 8 0 0 .2 7 0 2 5
14 00:05:19 00:01:53 2 .8 1 9 1 9 0 .2 5 6 2 9
15 00:05:32 00:01:54 2 .9 0 0 7 8 0.26371
16 00:05:53 00:02:08 2 .7 5 3 5 4 0 .2 5 0 3 2

i
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Appendix H : emDARBS IPC implementation

In the following sections, the implementation of each of the classes in emDARBS IPC is 
explained along with its functions.

CkwSignalHandler Class
As explained earlier, SARNUX does not have communication interrupts in the form of 
signals as found in Linux and because of this, there is no need for a signal handler class. 
Therefore all the functions that are in the original LnSignalHandler class are now just 
empty functions. The reason for keeping this class is just for the sake of backward 
compatibility.

LnTcpClient Class (W rapper Class)
This class is from original DARBS and is used by the KS clients to connect to the server 
and to transmit and receive messages from the server. The structure of the class (i.e. its 
member functions and member data) is kept the same just that there is a new 
implementation file for this class which is in CkwTcpClient.cpp file. The functions in 
this class and their description are explained as follows:

void LnTcpClient: :LnTcpClient(void)
This is the constructor for the LnTcpClient class. The first thing that is done is to create 
an OSLinkToTcpClient class object and store the pointer to that object in m_arg member 
data. The last thing it does is to set the m_onSigIO and m_onSigPIPE member data to 
point to NULL.

void LnTcpClient::~LnTcpClient(void)
There is nothing done for the destructor of the LnTcpClient class as the SARNode is 
targeted to run in an embedded system and an embedded system usually runs indefinitely 
and should never stop. Therefore the destructor should never be called.

int LnTcpClient::connectTo(string address, int port)
This function is called by the KS client to make a connection to the BB server. The 
address and port number of the server to connect to is pass in as parameters to the 
function but this is not used. All that is done in this function is to pass control to 
OSLinkToTcpClient::StartOSLinkClient(). There was a change to the original DARBS 
source code that required this function to return the error value of the call to connect. So 
to match up with the new source code, this function now always returns the value 0 for a 
successful connection.

void LnTcpClient: :closeConnection(void)
Like the destructor, this function is not intended to be called at all in emDARBS. 
Therefore this function does nothing.

void LnTcpClient::setCallback(int signo, void(*func)(void*,string,void*), void* arg)
This is actually an overloaded function as there are two function declarations for this 
function. In DARBS they are both used for setting the call back function to call when a 
signal (either SIGIO or SIGPIPE) has been triggered. But in SARNUX there is no signal
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as such, so the SIGIO version of this function is used only (as this is the signal that 
would trigger when something is received from the TCP/IP socket). The other SIGPIPE 
signal is ignore and thus that function does nothing. In the SIGIO version of this function, 
the pointer to the call back function and the argument to be passed back to the call back 
function is pass down to OSLinkToTcpClient::setCallbackFunction() function.

void LnTcpClient::removeCallback(int signo)
Like the destructor, this function is not intended to be called at all in emDARBS. 
Therefore this function does nothing.

void LnTcpClient: :sendData(string data)
This function is called to transmit a message/data to the server. The string of data to be 
transmitted is passed into this function as a parameter. This function would call the 
OSLinkToTcpClient::sendMessage() function passing in to it the pointer to the string of 
data. Only the pointer is passed in to sendMessage() function as this reduces the usage of 
memory and thus more efficient and faster.

void LnTcpClient::onSigio(int fd)
This is a virtual function from the derived LnSignalHandler class and is called from the 
LnSignalHandler class when a SIGIO signal has occurred. However as this does not 
apply in SARNUX case, this function is just a blank function. It is only here for the sake 
of backward compatibility.

void LnTcpClient: :onSigpipe(int fd)
This function is the same as LnTcpClient::onSigio() function as is only here for 
backward compatibility. This is just a blank function.

OSLinkToTcpClient Class
This is a new class created as an interface between the LnTcpClient class and the 
OSLinkClientHandler class. As such there is an object of OSLinkClientHandler class 
created as a private member data of OSLinkToTcpClient class. Also created in this class 
is an object of CHAN (communication channel in SARNUX) which is used as an 
internal channel to transmit messages between the main KS client thread and the 
transmitting thread. Other static private member data of the OSLinkToTcpClient class 
are used to hold information on the status of the communication link. The 
OSLinkToTcpClient class contains similar functions like that of in LnTcpClient class 
except that they are implemented differently. The description of the functions in this 
class is as follows:

void OSLinkToTcpClient::OSLinkToTcpClient(void)
This constructor just call OSLinkToTcpClient::Initialise() which is a private function of 
this class.

void OSLinkToTcpClient::~OSLinkToTcpClient(void)
As this system is designed to be run on an embedded system, the destructor for this class 
should not be call. Therefore this is a blank function.

void OSLinkToTcpClient: :Initialise(void)
This function is only called from the constructor of this class. This function just initialise 
the static private member data of this class to NULL and allocate a new string object and
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storing the address of this object to the static private member, pMsgBuffer. The reason 
this initialisation is done in this function instead of in the constructor is because the 
constructor cannot initialise static private member data.

void OSLinkToTcpClient: :StartOSLinkClient(void *LnTcpClientobi)
This function is called from LnTcpClient::connectTo(). The first thing that this function 
does is to store the pointer of the calling class (LnTcpClient) to a local private member 
data. Then it calls the OSLinkClientHandler::SetOnReceivedMsgFunction() to let the 
OSLinkClientHandler know which function to call when it receives a message from the 
BB. The parameter pass to the OSLinkClientHandler::SetOnReceivedMsgFunction() 
function is the address of OSLinkToTcpClient: :onReceivedMsg() function. Therefore on 
receiving a message from the BB, the OSLinkToTcpClient::onReceivedMsg() function 
would be called. There are two reasons why this function is used instead of the function 
set in the setCallbackFunction(), one is because the required parameter passed to 
onReceivedMsg() function is different than the function set in setCallbackFunction(). 
The second reason is that there is no guarantee that the main KS client program would 
call the LnTcpClient::setCallback() function before calling the connectTo() function. 
This is to cover the small time frame of starting the receiver without the receiving 
function being set. This is thought to be important in an embedded system. Finally this 
OSLinkToTcpClient: :StartOSLinkClient() function tries to start the transmitter and 
receiver handler in the OSLinkClientHandler class. This is done by calling the 
OSLinkClientHandler::StartRxTxHandler() function with the pointer to the CHAN 
object. The CHAN object would be used to communicate with the TxHandler thread.

void OSLinkToTcpClient: :sendMessage(string *pMessage)
This function is called from LnTcpClient::sendData() and it is use to send a message to 
the TxHandler thread to transmit the message to the BB server. So this function just 
passes the message to be transmitted to the BB server to the TxHandler thread via the 
KS_To_TxHandler CHAN object. This is done in two steps, the first is to transmit the 
length of the message to the TxHandler thread, then only transmit the actual message to 
the TxHandler thread.

void OSLinkToTcpClient::setCallbackFunction(void(*pFunc)(void*, string.void*), void 
*passBackArg)
This function is called from the LnTcpClient: :setCallback() and all this function does is 
to store the pointer to the call back function and the argument to be pass back to the call 
back function in the local static private member data.

string OSLinkToTcpClient:dastMessagefvoid)
This is more of a debug function and it is used to return the message that was last 
received to the calling function. At the moment this function is not use.

void OSLinkToTcpClient: :onReceivedMsg(word *pRxMsg)
This function is called when the RxHandler thread receives a message from the BB 
server. The first thing that this function does is to convert the received message into a 
string object and the store it in the static private member data, pMsgBuffer. The next 
thing it does is to check if the call back function has been set-up or not. If it has been set­
up, then it calls the call back function passing to it the pointer to the LnTcpClient object, 
the string of the message received and the user argument that was set-up earlier in the
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setCallbackFunction(). If there has been no call back function set-up then an error would 
be generated.

OSLinkClientHandler Class
This is the actual class created to handle the communications of SARNode. This class 
contains the low level functions to do with communications and the starting up of the 
TxHandler and RxHandler threads. It also contains the implementation of both the 
TxHandler and RxHandler threads. The description of the functions in this class is as 
follows:

void OSLinkClientHandler: :OSLinkClientHandler(void)
This constructor just call OSLinkClientHandler::Initialise() function which is a private 
function of this class.

void OSLinkClientHandler: :~OSLinkClientHandler(void)
As this system is designed to be run on an embedded system, the destructor for this class 
should not be call. Therefore this is a blank function.

void OSLinkClientHandler::Initialise(void)
This function is only called from the constructor of this class. The only thing that this 
function does is to set the static private member data, onReceivedMsg to NULL. The 
onReceivedMsg member data is used to hold the address of the function to call when a 
message is receive from the BB.

bool OSLinkClientHandler::StartRxTxHandler(CHAN *KS_To_Tx)
This function is called from OSLinkToTcpClient::StartOSLinkClient(). This function 
will start the RxHandler thread and the TxHandler thread. The first thread it creates is 
the TxHandler thread passing to it the pointer to the internal channel to use to 
communicate with the main KS client thread. The next thread it creates is the RxHandler 
thread. Failure to create either one of these threads would cause this function to return a 
false; otherwise a true is return on the success of creating both this thread.

void OSLinkClientHandler: :SetOnReceivedMsgFunction(void(*pFunction)( word 
*pRxMsg))
This function is used to set the pointer to the function to call when a message is receive 
from the BB. This pointer is stored in the static private member data, onReceivedMsg.

void OSLinkClientHandler: :RxHandler(void)
This function is the start of the RxHandler thread. The purpose of this thread is to 
monitor the OS-Link receiver indefinitely for a message from the BB and when a 
message is received, it calls the onReceivedMsg function (if it is set-up). The first thing 
that this function does is to allocate a message buffer area of MAX_RX_SIZE. Then it 
initialises the OS-Link receiving channel to the message ID (MID) set in SARNet map 
table, SARNet_Map_KS. Finally it goes into a forever loop, waiting for a message from 
the BB and when a message is received from the BB, it calls the onReceivedMsg 
function and then it goes back to wait for the next message from the BB.

void OSLinkClientHandler::TxHandler(CHAN ^internal KS TO TX)
This function is the start of the TxHandler thread. The main purpose of this thread is to 
sit forever waiting for a message to be transmitted to the BB from the main KS client
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thread. The main KS client thread will pass the message to be transmitted to the BB to 
this TxHandler thread and it will then transmit this message to the BB via the OS-Link 
transmitter channel. The first thing that this function does is to allocate a message buffer 
of MAX_TX_SIZE. Then it initialises the OS-Link transmitter channel with the routing 
header set in the SARNet map table, SARNet_Map_KS. It then goes into a forever loop. 
In this loop, the first thing it does is to wait for a message length to be transmitted to it 
from the main KS client thread. The length of a message is set to be four bytes long, i.e. 
from 1 to 232 long (zero is not a valid length to be transmitted). With the length known, 
the TxHandler would check to make sure that the length received is not zero and less 
than MAX_TX_SIZE, otherwise an error would be thrown. With the length known to be 
within the acceptable limits, the next thing that the TxHandler does is to receive the 
actual message from the main KS client thread and store it in the message buffer 
allocated earlier. Finally it transmits this message to the BB and goes back to listening 
for a message length from the main KS client thread.

LnTcpServer Class (W rapper Class)
This class is from original DARBS and is used by the BB server to start up the server to 
listen and wait for a transmission from the KS clients. The structure of the class (i.e. its 
member functions and member data) is kept the same just that there is a new 
implementation file for this class which is in CkwTcpServer.cpp file. The functions in 
this class and their description are explained as follows:

void LnTcpServer: :LnTcpServer(void)
This is the constructor for the LnTcpServer class. The first thing that is done is to create 
an OSLinkToTcpServer class object and store the pointer to that object in m_arg 
member data. The last thing it does is to set the m_onSigIO and m_onSigPIPE member 
data to point to NULL.

voi d LnT cpS erver:: ~LnT cpServer( void)
This destructor is an empty function as in an embedded system this function should 
never be call.

void LnTcpServer: :openPort(int port)
This function is called to start the server up and make it ready to receive transmission 
from the clients. As this function was initially designed to work on TCP/IP protocol, the 
control is now pass to OSLinkToTcpServer: :StartOSLinkServer() function instead.

void LnTcpServer::closePort(void)
This function was initially used to close the BB server down but in an embedded system 
this would not happen and therefore this function is just a blank function.

string LnTcpServer::getBufferfvoid)
This is a debugging function used to return the last message received by the server. In 
this function, the control is pass to OSLinkToTcpServer::lastMessage() function.

void LnTcpServer::setCallback(int signo, void(*func)(void*,string,void*), void* arg) 
This is actually an overloaded function as there are two function declarations for this 
function. In the original DARBS software they are both used for setting the call back 
function to call when a signal (either SIGIO or SIGPIPE) has been triggered. But in 
SARNUX there is no signal as such, so the SIGIO version of this function is used only

2 0 2



Kum Wah CHOY
Appendix H : emDARBS IPC implementation

(as this is the signal that would trigger when something is received from the TCP/IP 
socket). The other SIGPIPE signal is ignore and thus that function does nothing. In the 
SIGIO version of this function, the pointer to the call back function and the argument to 
be passed back to the call back function is pass down to 
OSLinkToTcpServer::setCallbackFunction() function.

void LnTcpServer::removeCallback(int signo)
As in an embedded system it is assumed that the call back function once registered 
would never be removed and therefore this function is a blank function.

void LnTcpServer: :onSigio(int fd)
The description is the same as LnTcpClient: :onSigio().

void LnTcpServer: :sendData(string message)
This function is called by the BB to transmit a message back to the current calling client 
(i.e. the sender of the last received message). To do this the 
OSLinkToTcpServer::sendMessage() function is called with the pointer to the message 
to be transmitted.

void LnTcpServer: :broadcastMessage(string message)
This function is called by the BB to broadcast a message to all the KS clients except the 
current calling client (i.e. the sender of the last received message). This is done by 
calling the OSLinkToTcpServer::broadcastMessage() function.

void LnTcpServer::onSigpipe(int fd)
The description is the same as LnTcpClient::onSigpipe().

OSLinkToTcpServer Class
This class acts as an interface between the LnTcpServer class and the 
OSLinkServerHandler class. As such there is an object of OSLinkServerHandler class in 
this interface class as was shown in Figure 51. Similar to the OSLinkToTcpClient class, 
this class uses static private member data to hold the status of the current communication 
link. However unlike the OSLinkToTcpClient, this class has an array of internal 
communication channels for communicating with the TxHandler threads. It also has a 
SEMA pointer object (a semaphore provided by SARNUX) which is used to make sure 
that the access to the BB is done with mutual exclusion, i.e. only one KS client can 
access the BB at a time and there rest is queued on a first in first out (FIFO) basis. The 
description of the functions in this class is as follows:

void OSLinkToTcpServer: :OSLinkToTcpServer(void)
In this constructor, the first thing that is done is to set the SEMA pointer object to NULL 
and then to call the OSLinkToTcpServer::Initialise() function.

void OSLinkToTcpServer: :~OSLinkToTcpServer(void)
As the destructor is not meant to be used in an embedded system, therefore this is a 
blank function.

void OSLinkToTcpServer::Initialise(void)
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This function is only called from the constructor and it is used to set all the static private 
member data to NULL and to allocate a string class object for use later. Static private 
member data, pMsgBuffer is used to store the pointer to the string object.

void OSLinkToTcpServer: :StartOSLinkServer(void *LnTcpServerobi)
This function is called from LnTcpServer: :openPort() function and it is used to start all 
RxHandler threads and TxHandler threads. The first thing that this function does is to 
store the pointer to the calling LnTcpServer class object in a private member data. Then 
it allocates a semaphore (SEMA object) and tries to initialise it. This semaphore is used 
to provide mutual exclusion access to the BB from the RxHandler threads. This means 
that only one RxHandler thread can call the BB server services at any one time. Then it 
sets up the call back function to call when any one of the RxHandler thread receives a 
message. Finally, it calls the OSLinkServerHandler::StartRxTxHandler() function n 
times, where n is the number of KS client in the system. This means that there would be 
a pair of RxHandler and TxHandler thread for each of the KS client in the system.

void OSLinkToTcpServer: :sendMessage(string *pMessage)
This function is call from LnTcpServer::sendData() and it is used by the BB to send a 
message back to the current calling client. This function would transmit to the 
TxHandler thread of the current calling client the length of the message and then the 
actual message via the internal communication channel.

void OSLinkToTcpServer: :broadcastMessage(string *pMessage)
This function is call from LnTcpServer::broadcastMessage() and it is used by the BB to 
send a message to all the KS clients in the system except the current calling client. The 
workings of this function is similar to sendMessage() except that this is done in a loop of 
n times, where n is the number of KS in the system and with the exception of not 
transmitting to the current calling client.

void OSLinkToTcpServer: :setCallbackFunction(void(*pFunc)(void*. string, void*), void 
*passBackArg)
This function is used to set the pointer to the call back function to call when a message is 
received from any one of the KS clients.

string OSLinkToTcpServer::lastMessage(void)
This is a debug function and it is used to return the last received message which is from 
the current calling client.

void OSLinkToTcpServer::onReceivedMsg!word *pRxMsg, int KS)
This is the call back function that would be call when a messaged is received from a KS. 
This function is called with the assumption that the semaphore (SEMA object) is used to 
guarantee mutual exclusion access of this function. The first thing that this function does 
is to store a copy of the message received to the private member data so that the 
lastMessage() function can use it when called. The next thing to do is to store the KS 
client number of the sender of the message. This is the current calling client number. 
Then it checks to see if the call back function has been set or not, if set it will call the 
call back function otherwise it will throw up an error.
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OSLinkServerHandler Class
This is the actual class that handles the OS-Link communications for the BB server. The 
overall function of this class is similar to OSLinkClientHandler class except that this 
class expects the creation of a set of RxHandler and TxHandler threads for each KS 
client in the system. The description of the functions in this class is as follows:

void OSLinkServerHandler: :OSLinkServerHandler(void)
This is the constructor of the OSLinkServerHandler class and all it does is to call the 
Initialise() function to initialise the private member data.

void OSLinkServerHandler: :~OSLinkServerHandler(void)
As this system is targeted for the embedded system, there should not be a call for the 
destructor of this class. As such, this function is a blank function.

void OSLinkServerHandler::Initialise(void)
This function is only called from the constructor and its function is to initialise the call 
back function pointer to NULL.

bool OSLinkServerHandler: :StartRxTxHandler(SEMA *pRxSemaphore, CHAN 
*BB To Tx, int KS)
This function is called from OSLinkToTcpServer::StartOSLinkServer() and is used to 
start a pair of RxHandler and TxHandler threads. It will try to start TxHandler thread and 
then RxHandler thread, if either one of these threads fails to start, then a FALSE is 
returned from this function, otherwise a TRUE is returned. For the TxHandler thread, 
two parameters are passed to it on start up, which are the KS number and the pointer to 
the internal channel to use for receiving messages from the BB. For the RxHandler 
thread, another two parameters are passed to it on start up, which are the KS number and 
the pointer to the semaphore to use before calling the call back function.

void OSLinkServerHandler: :SetOnReceivedMsgFunction(void(*pFunction)( word 
*pRxMsg, int KS))
This function is used to set the pointer to the call back function to use when a message is 
received from the KS client.

void OSLinkServerHandler::RxHandler(int KS, SEMA *pSemaphore)
This function is the start of the RxHandler thread. The purpose of this thread is to 
monitor the OS-Link receiver indefinitely for a message from the KS client that this 
particular RxHandler thread is suppose to handle. The KS client that a particular 
RxHandler thread is supposed to handle is passed in to this thread as a parameter called 
KS. When a message is received from the KS client that the RxHandler is monitoring, it 
calls and waits on the semaphore. On returning from the semaphore (this means that the 
critical resource is free), the onReceivedMsg function (if it is set-up) is called. On the 
start of this thread, the first thing that it does is to allocate a message buffer area of 
MAX_RX_SIZE. Then it initialises the OS-Link receiving channel to the message ID 
(MID) of this particular KS number set in SARNet map table, SARNet_Map_BB. 
Finally it goes into a forever loop, waiting for a message from the KS client and when a 
message is received from the KS client, it waits for the semaphore and then calls the 
onReceivedMsg function. Coming back from the onReceivedMsg function, the 
RxHandler goes back to wait for the next message from the KS client.
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void OSLinkServerHandler: :TxHandler(int KS, CHAN ^internal BB TO TX)
This function is the start of the TxHandler thread. The main purpose of this thread is to 
sit forever waiting for a message to be transmitted to the particular KS client (KS 
number is passed in as a parameter on the start of the TxHandler thread) that it is 
handling from the BB. The main BB thread will pass the message to be transmitted to 
the KS client to this TxHandler thread. The TxHandler thread will then transmit this 
message to the KS client via the OS-Link transmitter channel. The first thing that this 
function does is to allocate a message buffer of MAX_TX_SIZE. Then it initialises the 
OS-Link transmitter channel with the routing header set in the SARNet map table, 
SARNet_Map„BB. It then goes into a forever loop. In this loop, the first thing it does is 
to wait for a message length to be transmitted to it from the BB thread. The length of a 
message is set to be four bytes long, i.e. from 1 to 232 long (zero is not a valid length to 
be transmitted). With the length known, the TxHandler would check to make sure that 
the length received is not zero and less than MAX_TX_SIZE, otherwise an error would 
be thrown. With the length known to be within the acceptable limits, the next thing that 
the TxHandler does is to receive the actual message from the BB thread and store it in 
the message buffer allocated earlier. Finally it transmits this message to the KS and goes 
back to listening for a message length from the BB thread.
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Appendix I : emDARBS TestCompare KS and output 
listing

T estCompare.dkf
/* max file size is 64K */
KS KS_Test_Compare

KS_TYPE rule_based_KS

INFERENCE_MODE MI_Forwardchain

RULES
[

SetDataCompare
AND
TestCompare

]

FIRABILITY_FLAG true
IF
[

[not_on_partition [KS_Test_Compare is fired] ControlChars]
]

THEN
[

[add [KS_Test_Compare is fired] ControlChars]
]

END

SetDataCom pare.drf
RULE SetDataCompare

IF
[

[not_onjpartition [Set Data Compare Rule is fired] 
ControlChars]

]

THEN
[

[add [Test is 1] pari]
AND
[add [Test is 3] pari]
AND
[add [Test is 5] pari]
AND
[add [Test is 10] pari]
AND
[add [Test is 15] pari]
AND
[add [Set Data Compare Rule is fired] ControlChars]

]
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BECAUSE
[Set Data Compare Rule is not fired]

END

TestCom pare.drf
RULE TestCompare

I F
[

[not_on_partition [TestCompare Rule is fired] ControlChars] 
AND 
[
[on_partition [Test is ?num] pari]
AND
[compare [~num LessThan 10] ]
]

THEN
[

[report [~num LessThan 10]]
AND
[add [TestCompare Rule is fired] ControlChars]

]

BECAUSE
[TestCompare Rule is not fired]

END

O utput from blackboard server

DARBS Blackboard Server version 2.70 
Compiled on Mar 23 2004 at 11:55:13 
IP: 127.0.0.1 at Port: 9734

server received : not_on_partition [KS_Test_Compare is fired]
ControlChars
answer from board : true

server received : not_on_partition [Set Data Compare Rule is fired]
ControlChars
answer from board : true
server received :: add [Test is 1 ] pari
answer from board :: partition pari changed!

server received :: add [Test is 3 ] pari
answer from board :: partition pari changed!

server received :: add [Test is 5 ] pari
answer from board :: partition pari changed!
server received :: add [Test is 10] pari
answer from board :: partition pari changed!
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server received 
answer from board

server received 
answer from board

server received 
ControlChars 
answer from board

add [Test is 15] pari 
partition pari changed!

add [Set Data Compare Rule is fired] ControlChars 
partition ControlChars changed!

: not_on_partition [TestCompare Rule is fired]

true
server received 
answer from board

ret_all [Test is ?num] pari 
true [ [ 1 ] [ 3 ] [ 5 ] [10 15 ] ]

server received 
answer from board

server received 
answer from board

server received 
answer from board

server received 
answer from board

add [TestCompare Rule is fired] ControlChars 
partition ControlChars changed!

add [TestCompare Rule is fired] ControlChars 
partition ControlChars changed!

add [TestCompare Rule is fired] ControlChars 
partition ControlChars changed!
add [KS„Test__Compare is fired] ControlChars 
partition ControlChars changed!

O utput from KS client
[1 LessThan 10]

[3 LessThan 10]

[5 LessThan 10]

ft
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