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ABSTRACT

Many economists believe that the amount of money in the economy affects either real 

variables like national output or monetary variables like the price level or both. 

Developments in monetary aggregates therefore can provide useful information about 

future price developments. Such a belief has led the European Central Bank to use 

broad monetary aggregate M3 as a compass for monetary policy strategy, which is 

aimed at maintaining price stability in the region.

A few decades ago many countries had put similar faith in monetary aggregates 

to guide their monetary policy strategies. However, a few years later empirical evidence 

began to emerge showing that monetary aggregates were no longer reliable as a tool for 

conducting monetary policy and consequently many countries abandoned monetary 

targeting. A possible reason for the monetary aggregates not being as reliable as 

previously thought is argued, by researchers such as Barnett, to be the simple 

summation technique of constructing official monetary aggregates. In this kind of 

aggregation assets as different as cash and interest bearing time deposits are weighted 

equally. Clearly one hundred pounds in interest bearing time deposits do not provide the 

same level of monetary services as the equivalent amount in currency. Therefore, the 

simple summation aggregation technique produces an unsatisfactory definition of the 

amount of money in the economy.

Divisia aggregates derived from microeconomic theory, aggregation theory and 

index number theory are considered to be a viable alternative to Simple Sum aggregates 

as in their construction assets are given weights according to the level of monetary 

services they provide. Since the derivation of Divisia aggregates a number of studies 

from around the world have compared their empirical performance to their Simple Sum 

counterparts. The results are found to be mixed but leaning slightly in favour of Divisia
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aggregates. Since the Euro area has come into existence only recently not many studies 

exist that compare the relative performance of Simple Sum and Divisia aggregates for 

the Euro area. Hence it is the main objective in this thesis to provide new empirical 

evidence on the relative performance of Simple Sum and Divisia aggregates for the 

Euro area with a view to adding to the literature on the appropriate method of monetary 

aggregation.

The monetary aggregates are compared in three different frameworks, namely, 

cointegrated VAR money demand framework, composite leading indicator of inflation 

turning point framework and inflation forecasting framework. Prior to constructing 

monetary aggregates, however, weak separability tests are carried out to identify assets 

that can be reliably included in a monetary aggregate. Weak Separability tests are 

carried out using the Fleissig and Whitney’s Linear Programming test. The evaluation 

of monetary aggregates in cointegrated VAR money demand framework consists of the 

following steps. Firstly, graphical analysis and unit root tests are carried out to 

investigate the stationarity properties of the series entering the VAR models. Secondly, 

given most of the series were found to be nonstationary, Johansen maximum likelihood 

tests were used for testing for cointegrating relationships. Finally, the long run stability 

of the parameters of the different cointegrating vectors was investigated. The evaluation 

of monetary aggregates in the composite leading indicators of inflation consisted of the 

following steps. Firstly, the cycles of the inflation series and the indicator series are 

extracted and their turning points identified. Fourier analysis is then used to model the 

cycles of the series and lead time of the indicator series over the inflation series are 

identified for constructing a set of short leading indicators and a set of long indicators. 

The individual leading indicators series are then aggregated to form composite leading 

indicators of inflation turning point. Kalman filters are the used to filter out false turning 

points in the composite leading indicators. Evaluation in the inflation forecasting
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framework consists of constructing linear and nonlinear forecasting models. Linear 

models are represented by univariate time series models and multivariate cointegrated 

VAR models. Nonlinear models are represented by neural networks, so called because 

their creation was inspired by the functioning of the brain.

To increase the relevance of this study a few other issues of interest to 

policymakers are also investigated. These additional issues are: (1) whether or not the 

UK should join the Euro area, (2) whether or not central banks should use nonlinear 

models for macroeconomic forecasting, and (3) whether or not Divisia aggregates are 

disadvantaged compared to Simple Sum aggregates when they are tested in a linear 

framework, given the presence of nonlinear structures in Divisia aggregates.

The main findings of the thesis are as follows: (1) As has been found in many 

previous studies, findings regarding the relative performance of Divisia and Simple 

Sum aggregates are mixed, however leaning slightly in favour of weighted Divisia 

aggregates (2) under present circumstances the UK should not join the Euro area, (3) 

nonlinear models provide more accurate forecasts of inflation, (4) Divisia aggregates are 

better modelled in a nonlinear framework. Further work to incorporate the construction 

of a risk-adjusted Euro Divisia and to optimise the weights of Euro Divisia aggregate 

using neural networks.
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CHAPTER 1:

INTRODUCTION

The bulk of this thesis deals with constructing monetary aggregates with solid 

theoretical foundations and analysing their empirical performances against the official 

monetary aggregates for the Euro area. The interest in working with Euro area monetary 

aggregates stems directly from their use in the current monetary policy strategy of the 

European Central Bank (ECB). There is a widely held belief that the amount of money 

in the economy affects either real variables like national output, unemployment or 

monetary variables particularly the price level or both (Mullineux, 1996). Developments 

in monetary aggregates can therefore provide useful information about future price 

developments. Such a belief has led the ECB to use the broad monetary aggregate M3 

as a compass for the conduct of monetary policy, which is aimed at maintaining price 

stability in the region. The prominent role of monetary aggregates was signalled by the 

announcement of a reference value for Simple Sum M3 in the first pillar of the ECB’s 

so-called ‘two pillar’ of monetary policy strategy (see, ECB (1999a, b, 2000)). In the 

second pillar the ECB analyses a broad range of other economic and financial time 

series.

Not in a distant past, in the mid 1970s, many countries had put similar faith in monetary 

aggregates to guide them in their monetary policy strategies. However, a few years later, 

empirical evidence began to accumulate showing monetary aggregates were no longer 

reliable tools for the conduct of monetary policy. Consequently many countries 

abandoned using monetary aggregates for policy purposes. Today, many central banks
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have relegated the role of money to indicator variables for forecasting future changes in 

the price level along with an array of other indicators and do not seem to be regarded as 

more important than others (Drake, Mullineux and Agung, 1997).

A possible reason for the relegation of monetary aggregates was identified by Barnett 

(1980). He voiced objection against the official monetary aggregates of central banks 

which are formed by adding together a group of assets that are considered to be likely 

sources of monetary services. This approach of constructing monetary aggregates is 

referred to as simple summation and the resulting aggregates as Simple Sum aggregates. 

In this form of aggregation all the monetary components are assigned a constant and 

equal (unitary) weight. That is if x, is the ith monetary component for the aggregate M, 

then the latter is given by

M  = j > ,  (1.1)
1=1

This form of aggregation implies perfect substitutability, that is included assets are 

assumed to provide equal levels of monetary services, whether they are cash or savings 

deposits. It is clear that all components of the monetary aggregates do not contribute 

equally to the economy’s monetary flow. Obviously, one hundred Euros currency 

provide greater transactions services than the equivalent value in savings deposits. Thus, 

this form of aggregation is producing a theoretically unsatisfactory definition of the 

economy’s monetary flow.

The fact that simple summation aggregation is unsatisfactory has long been recognized 

and there have been attempts at weakening the perfect substitutability assumption by 

constructing weighted average monetary index (see, for example, Friedman and Swartz 

(1970)). However, the proposed weighted monetary indices lacked solid theoretical
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foundations. Two major developments towards the end of the 1970s paved the way for 

the construction of monetary aggregates with solid theoretical foundations. One was the 

derivation of the price money, also referred to as the user cost, through rigorous 

mathematical calculations by Barnett (1978, 1982). With the derivation of the user cost 

the door was opened for the application of microeconomic theory and aggregation 

theory in the derivation of theoretically consistent monetary aggregates. The real user 

cost of the ith asset at time t is calculated as follows

(R, — r )
x « = —  — (1-2)(1 + i?,) V ;

where ru is the rate of interest on the /th monetary asset and Rt is known as the

benchmark rate which should be the rate of return of return on an asset providing no 

monetary services whatsoever. Obviously no such asset exists on the market and the 

benchmark rate is normally taken to be a long term interest rate, such as a government 

bond. The other significant development which led to the construction of theoretically 

consistent monetaiy aggregates was the merger of index number theory and aggregation 

theory by Diewert (1976, 1978). The derivation of a theoretically appropriate monetary 

index, more specifically the Divisia index, is reviewed in Chapter 2. In doing so, the 

presentation of Barnett, Fisher and Serlettis (1992) is followed. The theory from which 

theoretically consistent monetary aggregates are derived from microeconomic theory, 

aggregation theory and index number theory is known as monetary aggregation theory.

Before any monetary aggregate can be constructed, monetary aggregation theory 

requires that asset components of the aggregate be weakly separable in the consumer’s 

utility function. Though it is possible to check for weak separability of a group of 

monetary assets central banks rarely carry out weak separability tests and the common 

practice is of grouping monetary assets according to subjective judgements about the
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assets’ liquidity (Belongia, 2000). This kind of ad hoc method of aggregation may lead 

to less stable monetary aggregates (Swofford and Whitney, 1987) and consequently 

monetary policy in the area may be unstable (Swofford, 2000). Therefore prior to 

constructing the monetary aggregates in this study weak separability tests are carried out 

in Chapter 3 to identify groups of monetary assets that can be reliably aggregated.

To carry out weak separability tests an improved version of Varian’s (1982, 1983) 

nonparametric test developed by Fleissig and Whitney (2003) is used. The probability 

of rejection of weak separability is quite high with Varian’s (1982, 1983) test for two 

reasons. Firstly, rejection could be due to measurement errors and hence nonsignificant. 

Secondly, rejection could be due to the test procedure returning negative indices which 

have to be positive. Fleissig and Whitney (2003) reformulate Varian’s (1982, 1983) test 

in terms of a linear programming problem which allows for the aforementioned 

problems by making small adjustments to the data whenever required and by forcing the 

indices to be positive.

Since their derivation, a number of studies from around the world have constructed 

Divisia aggregates and compared their empirical performance in a cointegrated money 

demand framework against their Simple Sum counterparts (see, for example, Herrmann, 

Reimers and Toedter (2000) for Germany, Lim and Martin (2000) for Australia, Gaioti

(1996) for Italy, Belongia (1996) for the United States, Drake, Chrystal and Bimier 

(2000) for the UK and Chrystal and MacDonald (1994) for a number of countries, 

including the USA, the UK and Canada). The results from these studies turn out to be 

mixed but leaning in favour of the Divisia index. Given that the Euro area has come into 

existence only recently not many studies exist that investigate the usefulness of Divisia 

monetary aggregates as a policy tool for the Euro area in a money demand framework.
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To the best of my knowledge the existing studies are those of Spencer (1997), Drake, 

Mullineux and Agung (1997), Stracca (2004) and Reimers (2002). Therefore the 

objective in Chapter 4 of this thesis is to provide new empirical evidence on the relative 

performances of Divisia and Simple Sum aggregates in a cointegrated money demand 

framework to supplement the existing ones.

The analysis here will, however, differ from the previous ones in important respects. 

Drake, Mullineux and Agung (1997) and Spencer (1997) use pre ECB formation data 

whereas the data in this study is post ECB formation data. Moreover, their data do not 

encompass data for all the member countries. In this study data are constructed over all 

member countries apart from Greece which has a very small weight in the Euro area 

economy. Though the data here are similar to Stracca (2004), the analysis is different. 

Specifically, weak separability tests are conducted to identify the assets which are 

weakly separable before constructing the monetary aggregates and the period over 

which the assets are weakly separable is also identified. Reimers (2002) on the other 

hand does cany out weak separability tests and investigates the usefulness of Divisia 

aggregates for policy purposes in the Euro area, but the study does not provide any 

comparison between Divisia and Simple Sum indices and hence no conclusion can be 

drawn on whether or not the Divisia aggregates would be better than their Simple Sum 

counterparts in practice. Moreover, Reimers (2002) conducts weak separability and 

money demand analysis over different time periods.

As mentioned earlier there exist many non Euro area studies which compare the 

empirical performances of Simple Sum and Divisia monetary aggregates and the 

findings are mixed but they do lean slightly in favour of Divisia monetary aggregates. 

While the slightly better empirical performance of Divisia monetary aggregates over
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that of Simple Sum aggregates has been able convince some monetary authorities (for 

example, Bank of England, Federal Reserve Bank) to take an active interest in the 

construction of Divisia aggregates it has, so far, not been able to persuade them to 

abandon Simple Sum aggregates and adopt Divisia aggregates for policy purposes. To 

provide an explanation for why Divisia aggregates do not consistently outperform 

Simple Sum aggregates despite their theoretical superiority, some researchers have 

focussed on measurement problems (see, for example, Drake Mullineux and Agung

(1997)). However, except Mullineux (1996) none of them have put the validity of the 

statistical methods used to evaluate them into question. Mullineux (1996) argues that 

most of the studies tend to find out whether Simple Sum aggregates or Divisia 

aggregates have a more stable money demand function. This is usually investigated 

using cointegrated vector autoregressive models. However, it is argued that stability for 

money demand is a side issue with regard to usefulness of monetary aggregates for 

policy purposes (Driscoll and Ford, 1982) and issues like indicator properties of the 

aggregates are of more relevance and should be investigated. Therefore another 

objective in this study is, apart from using the traditional money demand framework to 

compare Simple Sum and Divisia aggregates, to use other frameworks to compare the 

relative indicator properties of the two types of aggregates. The other frameworks used 

are the composite cyclical leading indicator of inflation framework and inflation 

forecasting using linear models and nonlinear neural network models. These 

frameworks have been chosen as, in addition to allowing us to investigate the relative 

performance of the two types of monetary aggregate, they will also allow us to 

investigate other issues of relevance to the monetary policy strategy of the ECB. These 

issues are often overlooked by researchers and therefore such investigations will 

increase the relevance of this study to policymakers such as the ECB. These additional
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issues to be investigated are mentioned in the following paragraphs and fuller 

discussions on them are given in Chapters 5 and 6

In view of the current monetary policy strategy of the ECB, mainly in the second pillar, 

inflation turning point forecasts can also be very helpful. Despite advances in 

mathematical and statistical techniques, a reliable method to forecast inflation turning 

points has continued to evade forecasters. Consequently, interest in the use of composite 

leading indicators (CLIs) of inflation turning points has been heightened. These are 

constructed from a group of time series variables that have cycles which resemble the 

turning points in the inflation cycle but whose turning points precede the turning points 

in the inflation cycle. To the best of my knowledge there exists no study which develops 

CLIs of inflation for the Euro area and therefore, one objective in Chapter 5 will be to 

fill this gap. Monetary variables are often used in the construction of CLIs for inflation 

as they are considered to be good information carriers for future inflation turning points. 

Therefore the CLI framework also makes it possible to compare the empirical 

performance of Simple Sum and Divisia monetary aggregates. Even though the leading 

indicator approach has been rather successful in providing early information about 

future turning points, it is widely believed that the way leading indicators are 

constructed is crude and unsatisfactory on the sort of criteria commonly applied in 

modern econometrics. Another objective in Chapter 5, therefore, is to develop more 

sophisticated CLIs by incorporating Fourier analysis and Kalman filters to the 

prevailing NBER methodology of constructing CLIs.

Also, in Chapter 5, there is an attempt to provide a tentative answer to the issue of 

whether or not the UK should join the Euro area. One of the effects of the UK joining 

the Euro area is that the Bank of England will lose complete control of monetary policy
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for the UK. This would be carried out by policy makers at the ECB. However, measures 

taken by the ECB to combat inflationary pressures might not have the same corrective 

effect on the UK economy if the inflation cycle of the UK is not synchronized with the 

Euro area’s inflation cycle. The issue of whether or not the UK should join the Euro 

area is investigated using graphical analysis and using the CLI framework.

Neural networks (NN) have gained a lot of popularity in recent years, especially in time 

series forecasting. Their popularity comes from the fact that they are nonlinear models 

and as opposed to more conventional nonlinear models like threshold autoregressive 

(TAR) models (Tong, 1990) and the exponential autoregressive model (EXPAR) 

(Haggan and Ozaki, 1981) they do not require the imposition of assumptions concerning 

the precise form of nonlinearity. They are data driven and thus capable of producing 

nonlinear models without prior beliefs about functional forms. Most applications, 

however, are in areas where data are abundant as NN are very data intensive. In 

macroeconomics, due to the scarcity of large data samples, there exist only a few studies 

involving the use of NN. However, there is now growing evidence that macroeconomic 

series contain nonlinearities (see, for example, Tiao and Tsay (1994) and Stanca (1999) 

and thus, though linear models have been reasonably successful as a practical tool for 

analysis and forecasting, they are inherently limited in the presence of nonlinearities in 

data and consequently forecasts, as well as other conclusions drawn from them could be 

misleading. In the second pillar of the ECB’s monetary policy strategy inflation forecast 

plays a very important role, as such information allows the policymakers to redo their 

economic calculations for the forthcoming environment. To the best of my knowledge 

all inflation forecasting studies for the Euro area use linear models (see, for example, 

Drake and Mills (2002)). One objective in Chapter 6 therefore is to investigate the 

usefulness of nonlinear neural network models as forecasting models by comparing
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their performance against linear forecasting models. Given the ubiquitous relationship 

between monetary aggregates and inflation, most inflation forecasting studies use 

monetary variables as a predictor variable. Therefore the inflation forecasting 

framework can be used for evaluating the relative performance of the two types of 

monetary aggregate by specifying the forecasting models alternately with Simple Sum 

and Divisia monetary aggregates.

The above analysis can also be used to provide an insight on a very important issue, 

often overlooked by researchers working with Divisia monetary aggregates- the issue of 

whether Divisia aggregates are disadvantaged by comparing them to Simple Sum 

aggregates in a linear framework. Divisia indices contain nonlinear structures as proved 

by the evidences provided by Barnett and Chen (1986, 1988a, b), Barnett and Hinich 

(1992, 1993), Chen (1988), and DeCoster and Mitchell (1991). In spite of this, as 

mentioned earlier, most of the studies comparing the relative empirical performance of 

Simple Sum and Divisia monetary aggregates do the comparison using the traditional 

cointegrated money demand framework. Such a framework, however, is linear and 

therefore in such circumstances if the empirical performance of a Divisia monetary 

aggregate relative to its Simple Sum counterpart is poor, one cannot say whether the 

Divisia index or the linear model, which may not be able to capture the nonlinear 

behaviour of the Divisia index is responsible for the poor performance. Since the above 

analysis compares the performance of Divisia aggregates in both a linear and nonlinear 

framework, it should provide us with an insight on whether or not nonlinear modelling 

would be more appropriate for the nonlinear structures inherent in Divisia indices.
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A summary of the work carried out and the main findings are given in Chapter 7. The 

findings are drawn together to present an overall conclusion. Suggestions for future 

research are also given in Chapter 7.
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CHAPTER 2:

MONETARY AGGREGATION THEORY

In this chapter the derivation of the theoretically appropriate alternative to Simple Sum 

aggregates- Divisia monetary aggregates is reviewed.

2.1 Microeconomic Foundations

It is assumed that there is one economy in which there is a representative agent whose

utility function, u, is assumed to consist of consumption goods (c), leisure (/) and

services of monetary assets (x), that is,

u = u(c,l,x) (2.1)

The utility in Equation 2.1 can be assumed to be maximised subject to a full income 

constraint of

q'c + n 'x  + wl = y  (2.2)

where y  is full income, q is a vector of the prices of c, it is a vector of the monetary 

asset user costs (rental prices) and w is the wage rate. In order to focus on the details of 

monetary services, ignoring other types of goods, a good starting point is the theory of 

two stage optimisation investigated initially by Strotz (1957, 1959) and Gorman (1959). 

The theory describes a sequential expenditure allocation in which in the first stage the 

consumer allocates his expenditures among broad categories (consumption goods, 

leisure and monetary services) relying on the price indices of these categories and in the 

second stage allocates expenditure within each category. However, decomposition of 

the consumer choice problem along these lines is possible only if the individual’s utility
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function (2.1) is weakly separable in the services of monetary assets (Barnett, Fisher 

and Serlettis, 1992). That is, it must be possible to write the utility function as

where /  defines the monetary subutility function. Whether or not the utility function is 

weakly separable in monetary services is an empirical question. This issue is dealt with 

in greater detail in Chapter 3. Having established that monetary assets are weakly 

separable one can then proceed further in the framework of the following consumer 

problem.

where m is the total expenditure on monetary services, a total that is determined in the 

first stage of the two-level optimising problem.

2.2 Aggregation Theory

In the discussion to this point the steps taken to reduce a general consumer choice 

problem to an asset choice problem have been reviewed. Results from aggregation 

theory can now be used. In aggregation theory the aggregator function (function that 

will add together the monetary assets in our case) has been shown to be the subutility 

function X*)- Thus if x, is the solution to Equation 2.4, then M, -  / ( 3 c , ) is the exact

(monetary) aggregate. The problem with using exact aggregates is that the subutility 

(aggregator) function/is unknown and therefore it must be specified and its parameters 

estimated. The list of functional forms from which a choice can be made is boundless 

and each imposes a set of implicit assumptions on the goods to be aggregated. For 

example, if one chooses to work with a weighted linear aggregator

u = U (c , l , f ( x )) (2.3)

Max f ( x )  subject to n 'x  = m (2.4)

n

/ (* )  = (2.5)
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this would imply perfect substitutability between the goods. The other problem is that 

the unknown parameters (for example, in the case of the above functional form the a, s)

have to be estimated and periodically re-estimated. Exact aggregates are therefore 

specification- and estimation dependent. This kind of dependency is troublesome to 

governmental agencies which have to justify their procedures to people untrained in 

economics. However, index number theory provides a means of avoiding specifying 

functional forms and estimating unknown parameters arising in aggregation theory. This 

is what is discussed next.

2.3 Index Number Theory

In aggregation theory quantity aggregators depend upon the quantities (prices if price 

aggregators) of the component goods and upon unknown functions and parameters. In 

index number theory statistical index numbers do not depend on any unknown functions 

and parameters but (quantity or price) statistical index numbers depend upon component 

prices and component quantities. Examples of such statistical index numbers are the 

Lapesyres, Paasche, Divisia and Tornqvist indices. Until relatively recently the fields of 

aggregation theory and statistical index number theory had been developing 

independently. Diewert (1976, 1978) provided the link between these two theories. 

Diewert (1976, 1978) showed that using a number of well known statistical index 

numbers is equivalent to using a particular aggregator function. Such statistical indices 

are termed ‘exact’. ‘Exactness’ occurs when a specific aggregator function is exactly 

tracked by a particular index number. However, ‘exactness’ is not enough for accepting 

the index number when the particular form of the aggregator function is not known a 

priori. However, in these circumstances it is possible to choose a statistical index 

number that is exact for a flexible function form -  a functional form that can provide a
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second order approximation to any arbitrary unknown aggregator function. Diewert 

(1976, 1978) termed such statistical index numbers superlative. Examples are the Fisher 

ideal index and the Tornqvist discrete time approximation to Divisia index. Following 

Theil (1967), the latter is usually called the Tornqvist index or just the (discrete time) 

Divisia index.

2.3.1 The Divisia Index

Barnett (1980) shows that the selection between reputable index numbers (such as the 

Fisher ideal index or the Tornqvist discrete time approximation to Divisia index) is of 

little empirical importance since the difference between the growth rates are negligible. 

However, Barnett and Spindt (1982) suggests the use of the Tornqvist discrete time 

approximation to Divisia index since its superior properties have been fully explored in 

more than a half century of extensive research. In addition, its construction and 

behaviour are easily understood. Therefore the Tornqvist discrete time approximation to 

Divisia index, henceforth the Divisia index, is the index chosen to work with in this 

thesis. Let xu be the quantity of the i ,h asset during period 1 and ttu given by Equation

1.2 be the user cost (rental price) for that good during period t. Then the discrete time 

Divisia index, Q? , during period t is given by

n D
— = nn D

where

x

VX'V-i j
(2.6)

^ 1 1  X ll~ ——   (2.7)

I 7 T . .Xkt kt

Taking the logarithms on both sides of (2.6), we obtain
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n

log Q f  -  log QZx = Yu si< (lo§ x u ~ lo§ ) (2.8)

where

(2.9)

This index simply defines the single period growth rate of the aggregate as a weighted 

average of the growth rate of the component quantities. The weights are the 

corresponding value shares, computed with user cost as prices. Since the value shares 

represent the contribution of each component to expenditure on the services of all of the 

components, use of those shares as weights for the growth rates for the corresponding 

components implies that assets with higher liquidity will have higher weights and assets 

which are less liquid will have lower weights. As follows this index will produce a 

better definition of economy’s monetary service flow than its Simple Sum counterpart.

Simple Sum aggregates are a special case of Divisia aggregates. If all own rates of 

return on the all monetary assets are the same, then the growth rate of the Divisia index 

reduces to the corresponding growth rate of the Simple Sum index. The current official 

Simple Sum aggregates implicitly assume that all own rates of return are equal. The 

assumption of equal own rates could be justified if all component monetary assets were 

perfect substitutes. However, empirical research shows that substitutability among 

different assets is low (see, for example, Drake (1992)).

2.4 Construction of Monetary Aggregates

Since the proposal for a common currency area first arose, a number of researchers have 

sought to determine how to measure monetary services flow aggregated over the 

proposed Euro area in a manner that would be consistent with aggregation theory. Two

26



approaches have been proposed. One has been called the direct approach and the other 

the indirect approach. Under the direct approach assets of each type are first aggregated 

by simple summation. Divisia aggregation is then used to aggregate over each 

internationally aggregated asset type (see, for example, Stracca (2004)). The direct 

approach however, assumes there is a unilateral representative agent who considers the 

same goods in different countries regardless of the country of residence of the purchaser 

or the country within which the good or asset is acquired. Without a homogeneous 

culture within the Euro area the assumption of a unilateral representative agent will not 

apply. The alternative indirect approach uses Divisia aggregation within each country 

and then uses within-in country indexes to aggregate over countries. Aggregation over 

countries uses weights comprising of exchange rates of individual countries relative to a 

market basket of currencies, such as the European currency unit (see Barnett (2003)). 

The indirect approach does not assume there is a unilateral representative agent and 

hence is based on more reasonable assumptions and therefore is a more ideal way of 

constructing aggregates. Such an approach requires data 011 all asset types from every 

member country of the Euro area. Because we encountered data limitations in this study 

we use the direct approach to construct our aggregates.

Before aggregating the assets, however, some important issues have to be resolved. 

Firstly, how does one satisfactorily aggregate each type of assets when pre-Euro area 

currencies have varying exchange rates? Prior to the monetary union, a considerable 

amount of work has been carried by EU national central banks of re-denominating 

individual country data sets into Euro area data. For the period before the monetary 

union, the figures for the individual countries are aggregated on the basis of the 

irrevocable exchange rates of January 1999. Since the January 1, 1999 exchange rates 

among the members of the Eurosystem have been irrevocably fixed. Before that date,
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exchange rates could change. The ECB (1999) suggests using fixed exchange rates to 

combine national data for the Euro area data. Volatile movements in exchange rates 

could potentially affect weak separability tests, as an exchange rate change may look 

like a change in money holding when it is not. Subsequently the money demand 

functions of monetary aggregates resulting from weakly separable asset groupings 

might seem to be unstable when in fact they are not. The use of fixed exchange rates is 

aimed at avoiding such problems. An alternative method of aggregation is based on real 

GDP weights at the purchasing power purity (PPP) exchange rates of 1995 (see, 

Coennen and Vega (2001), Stracca (2003)). Stracca (2004) did not find significant 

differences between the figures resulting from the use of fixed exchange rates and use of 

the PPP exchange rates and hence current evidence suggests that the empirical 

performance of monetary aggregates resulting from these techniques are likely to be 

similar. The study by Reimers (2002) assumes different exchange rates regimes to 

calculate aggregates. His settings result in one Divisia aggregate of national monetary 

components with fixed exchange rates and one aggregate with monetary components 

with variable exchange rates. He finds none of the aggregates dominates the other. 

Nevertheless, the aggregate with fixed exchange rate effect seems to have stronger 

connections with output gap and price changes.

Secondly, there is the question of what assets to aggregate over as different countries 

possess different types of assets over different historical periods? Because, not all 

central banks had the same amount of historical series data and type of monetary assets, 

they firstly had to agree on a minimal set of monetary harmonized assets. Four assets 

were used in the construction of monetary aggregates, specifically, currency in 

circulation (CC), overnight deposits (OD), short term deposits other than overnight 

deposits (SD) and marketable instruments (MI), where existing data could be used to
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estimate these broad categories of assets over a sufficiently long historical period. The 

same procedure has been used in calculating the interest rates of the four categories of 

monetary assets. It has to be acknowledged, however, that due to different institutional, 

social, tax and legal differences and the range of available alternatives, the deposit and 

savings instruments being aggregated across countries are almost certainly not strictly 

comparable and therefore the resulting aggregates can only be considered as 

approximations to ‘true’ Euro area aggregates. However, as the Euro area convergence 

proceeds there could be some evolution towards greater homogeneity in tastes, 

institutions and laws. Such an evolution would lead to construction of monetary 

aggregates more representative of ‘true’ Euro area aggregates.

Thirdly, while different monetary types of monetary assets can be considered to be 

perfect substitutes, they are not perfect substitutes. Therefore, how much substitution is 

there between the four categories of assets under consideration? The degree of 

substitution between the different assets is an empirical issue which can be investigated 

from, for example, an asymptotically ideal model (AIM) (see, Drake, Fleissig and 

Mullineux, 1999). However, since it is beyond the scope of this thesis, the degree of 

substitution will not be investigated here and will be considered for future work. It tends 

to be the case that only central banks and large firms hold OD, however, in the case of 

the Euro area, OD are mainly held by households. The decision of an agent to hold a 

particular type of, say, short-term deposits over another depends mainly on the 

characteristics of the short-term deposits. The characteristics include (a) checkability, 

(b) liquidity/term structure, (c) yield, (d) minimum deposit and even possibly risk to a 

small degree. In the US, for example, demand deposits do not earn interests but have 

unlimited check writing. Overnight deposits have unlimited check writing and earns 

minimal interest that depends on minimum balance. Savings deposits have limited
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checking but higher yields depend on minimal balance. Certificates of deposits (CDs) 

are non-negotiable time deposits. They do not have check writing, but can be cashed out 

at a penalty. Negotiable CDs are time deposits over 100, 000 dollars that can be traded 

on a secondary market. Money market funds essentially earn the Treasury bill rate and 

may have some check writing. Even though the assets are different in the Euro area, 

same concepts apply. The decision of an economic agent to hold a particular type of 

asset over another is affected by many factors such as the economic situation of the 

person, whether the person is rich or poor; transaction costs over alternative assets. The 

decision of the agent can also be affected by the general uncertainty in the economy. For 

example, an increase in interest rate risk, in the form of volatility, also increases the risk 

of bearing fixed-term interest-paying securities. Economic agents in this environment 

substitute these securities for monetary assets.

Fourth, regards the choice of the benchmark rate -  how should this instrument or basket 

of instruments be selected. As discussed in Chapter 1 the benchmark rate has should be 

the rate of return on an asset providing no monetary services whatsoever but no such 

asset exists on the market. It was also mentioned that a long term rate of return is 

usually used as the benchmark rate. However, it is often the case that capital certain 

assets in some periods have a higher return than long term interest rates. An alternative, 

therefore, is to use an envelope method which amounts to searching across the range of 

assets to find the highest rate of return in each period. The highest return, usually with a 

small increment to avoid negative user costs, then becomes the benchmark rate. In this 

thesis, a long term interest rate is used as the benchmark rate over the period of study 

(1980 -2000) as in general the rates of return on capital certain assets are lower than the 

long term interest rate. Different assets within each category of assets bear different 

rates of return. However, the difference between the rates of return is likely to be small.
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For example, the Bank of England uses a single interest rate for the different categories 

of assets within a particular asset-type. Therefore an average of the different rates of 

return could be used as an estimate for the rate of return for the category as whole. An 

alternative would be to construct a weighted interest rate where the highest rate of return 

gets the highest weight.

Previous research (see, for example, Belongia and Chrystal (1991), Drake and Chrystal 

(1994)) has indicated that there may be significant differences between the demand for 

money across sectors. Drake and Chrystal (1994), for example, indicate that the money 

demand function estimated for the corporate sector differed markedly from the money 

demand functions estimated from official monetary data. The differences are likely to 

emerge from the fact that official monetary aggregates have no economic interpretation 

in the sense that they attempt to combine two entirely sets of demands. This would 

suggest that disaggregated studies on sectoral demands for various categories of 

monetary aggregates would be more insightful than the more usual aggregate studies. In 

this study we are unable to test weak separability and estimate money demand functions 

for the two different sectors due to the lack of availability of breakdown data.

In testing for weak separability of asset groupings, data on consumption and leisure 

which enter the consumer’s utility function are also required as illustrated by Equation 

2.3. However, given that the euro area has only recently come into existence such data 

are not available and hence we are forced to assume that the monetary data is weakly 

separable from consumption and leisure in the consumer’s utility function and we focus 

on testing for weakly separable asset subgroupings. Also, given the increase in liquidity 

of risky assets like bonds and equities, if such data were available we would have 

subjected them to weak separability tests along with capital certain assets. If groups of
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assets consisting of both capital certain and risky assets were found to be weakly 

separable, these groups would have been used to construct monetary aggregates (see, for 

example, Eiger and Bimier (2004)).

The monetary data for the Euro area data have been provided to us by Mr Livio Stracca 

at the ECB. The data are harmonized data from 1980Q1 to 2000Q4 and as mentioned 

earlier, consist of currency in circulation, overnight deposits, short term deposits other 

than overnight deposits and marketable instruments. In October 2004, currency in 

circulation was 446 Euro billion, overnight deposits 2434 Euro billion, other short term 

deposits 2644 Euro billion and marketable instruments 940 Euro billion for a total of 

6464 M3 Euro billion. In this current study we are forced to employ Mr Stracca’s data 

set as data over individual member countries over a sufficiently long historical period 

are not available on Datastream. I had even contacted some central banks such as Bank 

de France and Deutsche Bundesbank but was not provided with sufficient data for the 

analysis. Individual member countries have provided their data to the European Central 

Bank only a confidential basis and are not disseminated to the general public.
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CHAPTER 3:

WEAK SEPARABILITY

In this chapter weak separability tests are carried out to identify groups of monetary 

assets that can be reliably aggregated to form monetary aggregates. Nonparametric tests 

of weak separability derived by Fleissig and Whitney (2003) are used for that purpose. 

These tests are an improved version of the traditionally used weak separability tests 

derived by Varian (1982, 1983).

3.1 Introduction

As discussed in Chapter 2, in monetary aggregation theory, monetary assets enter as a 

component in the utility function of the consumer. In order to construct a monetary 

aggregate over a group of assets, the group must be weakly separable from all other 

assets, goods and leisure in the consumer’s utility function. Swofford (2000) less 

formally argues that the weak seperability criterion for aggregation is a way to identify 

what people view as money, that is, to identify what assets have to be included in a 

monetary aggregate. This issue has received even less attention than the one on the 

appropriate aggregation formula. Though it is possible to check for weak separability of 

a group of monetary assets, central banks rarely carry out weak separability tests and the 

common practice is of grouping monetary assets according to subjective judgements 

about the assets’ liquidity (Belongia, 2000).

In this chapter, therefore, the objective is to carry out tests to identify groups of

monetary assets which are weakly separable for the Euro area. Studies on the issue of

weak separability involving the search for admissible monetary aggregates include that
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of Swofford and Whitney (1987, 1988) for the US, Belongia and Chrystal (1991), Drake 

and Chrystal (1994, 1997), Drake (1996, 1997), Patterson (1991) for the UK, Belongia 

(2000) for US, Germany and Japan. Weak separability studies for the Euro area also 

have been earned out by Spencer (1997), Swofford (2000) and Reimers (2002). Spencer 

(1997) uses monthly data for the period 1985 to 1990. For the pre German Monetary 

Union (GMU) period (January 1985- June 1990) no weakly separable group of 

monetary assets was found, however for the post GMU period (July 1990- January 

1995) one group of monetary asset (non interest bearing assets) was found to be weakly 

separable. Swofford (2000) using annual data for the period 1987 to 1997 found that the 

monetary assets for the Euro area were not weakly separable. Reimers (2002) uses post 

ECB formation data for the period 1997 to 2000 and finds the whole data, that is, all the 

components of official Simple Sum M3, and the components of M l to be weakly 

separable. The present analysis differs in a significant manner from the previous Euro 

area studies in that an improved version of Varian’s (1982, 1983) nonparametric weak 

separability tests derived by Fleissig and Whitney (2003) is used.

3.2 Weak Separability Tests for the Identification of 

Admissible Groups of Monetary Assets

Two types of test that can be used to check for weak separability are parametric and 

nonparametric tests. The parametric test requires the specification and estimation of a 

particular functional form for the utility function. However, as Varian (1983) points out 

such a parametric test is necessarily a joint test of consumer theory and the particular 

functional form chosen. Thus, when the collection of assets fails the weak separability 

test, one cannot say whether it is consumer theory or the particular functional form of 

the model being rejected. In contrast the nonparametric test (Varian, 1982, 1983) is not
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dependent on a particular form of the utility function. This feature makes it more 

attractive among researchers (Swofford and Whitney (1987, 1988), Patterson (1991), 

Belongia and Chrystal (1991), Drake (1994), Drake and Chrystal (1994, 1997), Eiger, 

Binner and Jones (2003)) and therefore is the preferred choice in this thesis. However, 

the nonparametric test also has some shortcomings. The chief one is that the probability 

of rejecting weak separability is high. Two distinct reasons can be given for this. The 

first one is theoretical and lies in the fact that the test is nonstochastic, meaning that a 

single violation of the test leads to rejection of the hypothesis. But violations of the test 

may be due to purely stochastic causes such as measurement error and are therefore 

should be ignored. The second reason is related to the test procedure itself which may 

return negative indices (also called Afriat numbers, discussed in Section 3.3) instead of 

positive indices when there are large fluctuations in the data, leading to the rejection of 

weak separability. In view of these problems Fleissig and Whitney (2003) have 

developed an improved version of Varian’s (1982, 1983) test which allows for the 

above mentioned problems.

3.3 Nonparametric Weak Separability Tests

While testing for weak separability using Varian’s (1982, 1983) nonparametric 

approach one checks if the necessary and sufficient conditions for weak separability are 

satisfied. Before looking at these conditions a theorem and some conditions on which 

the weak separability conditions are based are reviewed.

Afriat’s Theorem (Afriat, 1967)

This theorem allows us to verify whether the prices and quantities of a particular data

set are consistent with the maximisation of a well-behaved nontrivial utility function.

That is it allows us to check if the data are consistent with a nontrivial utility function
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that is nonsatiated, continuous, concave and monotonic. If we let x' = (x(, •••, x'k) be a 

k x  1 vector of goods quantities and p' = be the associated prices and

D = {x' ,p ' )  e R 2k z = 1 • • •« be the data set containing n observations of x' andp ' , then 

the Afriat conditions are given as follows

The following conditions are equivalent:

(1) There exists a nonsatiated utility function that rationalises the data.

(2) The data satisfy the “cyclical consistency”; that is,

p rx r > p rx s, p sx s > p sx ‘, ••*, p qx q > p qx r (3.1)

implies

p ' x r = p ' x \  p sx s = p sx ' , •••, p qx q = p qx r (3.2)

(3) There exist numbers U 1, X  > 0, i = 1,• • •, n such that satisfy:

U' < U J + AJ p J (x‘ -  x J) for i , j  = 1, ••*,«. (3.3)

(4) There exists a nonsatiated, continuous, concave, monotonic utility function that 

rationalizes the data.

The implication of the above theorem is that if the data set satisfies any of the first three 

conditions then the fourth condition would automatically hold, i.e., there will exist a 

well behaved function that is nonsatiated, continuous, concave, monotonic utility 

function that rationalizes the data. Despite the fact that conditions (2) and (3) offer a 

more sympathetic approach to testing for the existence of a well behaved utility function 

that rationalizes the data, they are still very burdensome computationally. However, 

Varian (1982) developed an equivalent formulation of condition (2) which is easier to

36



test. He called his condition the generalised axiom of revealed preference (GARP). In 

order to describe this formulation (GARP) the following definitions adapted from 

Varian (1982, pg 947) must first be considered.

Definitions: For a given observation x' and a bundle x :

(1) x' is directly revealed preferred to x, written x'R°x,  if p  'x' > p'x.

(2) x 'is  strictly directly revealed preferred to x, written x 'P °x ,if p'x '  > p'x.

(3) x' is revealed preferred to x, written x'Rx,  if p ' x 1 > p ' x \ p Jx j > p Jx 

p"'xm > p"'x for some sequence of observations (x ',x y,-*-,x"').

Definition:

A set of data satisfies the General Axiom of Revealed Preference (GARP) if x 'R x1 

implies not x JP°x'.

Varian (1982) proves that a set of data satisfies cyclical consistency if and only if it 

satisfies GARP. Thus if some data satisfy GARP, the data are consistent with the 

maximisation of a well-behaved nontrivial utility function. If the data contain a 

violation of GARP, then there does not exist a nonsatiated utility function that will 

rationalize the data. Checking for consistency with GARP becomes straight forward if, 

using the above definitions, GARP is reformulated as: if x 'RxJ then p Jx J < p Jx' for 

i ,7 = l , •••,«. Hence verifying that some data satisfy GARP is quite easy once the 

relation 7?-the transitive closure of the direct revealed preference relation r  0 is known.
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The relation R can be constructed using the following steps: First an n by n matrix M  is 

constructed, whose ij,h entry is given by:

fl if p 'x '  > p 1 x J ,thatis,x' R°xJ ^
m , = \  F F (3.4)

0 otherwise

The matrix M  summarise the relation R°. Appling Warshalfs algorithm (see Varian 

1982, p. 972) to M  creates a matrix MT  which represents the relation R, where

1 if x 'RxJ
mty = <! (3.5)

0 otherwise

If mt^ = 1 and p Jx J > p  ' x 1 for some i and /', there is a violation of GARP.

With these definitions and the ability to check for GARP violations it is now possible to 

look at the conditions for weak separability. If a data set is partitioned into two sets of 

goods and associated prices ( p l ,x '),(q' , z ' )  i —l,***,w, where x and z are goods and p  

and q are the corresponding prices then as discussed in section 2.1 of Chapter 2 a utility 

function U is weakly separable in z goods, if the utility function U (x, z) can be written 

as

U (x, z ) - U  (x, V (z)) (3.6)

where V(z) is the subutility function ( Blackorby, Primont and Russel, 1978). In this 

vein Varian (1983) showed that the following conditions are equivalent:

(1) There exists a weakly separable concave, monotonic, continous nonsatiated utility 

funtion that rationalises the data.

(2) There exist numbers U ' , V , X >0,p '  > 0 / = 1, • • •,n that satisfy the following 

Afriat inequalities:
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U 1 < U J +AJp J(x‘ - x J) + (AJ tMJW i - v j ) (3.7)

V* < V J +jUJq J(zt - z J) (3.8)

for i , j  = 1,•••,??;

(3) The data (q' , z ' )  and (/> ',(//' )_1;x ' , V ' ) satisfy GARP for some choice of (//' , V ) , 

called Afriat numbers, that satisfy the Afriat inequalities.

To check for weak separability the one type of condition that can be tested is Condition 

3, which calculates indices that satisfy the inequality constraint (3.8). To meet 

Condition 3 the entire data set and the hypothesized weakly separable subgroup (z in 

this case) must satisfy GARP. These are the necessary conditions for weak separability. 

The sufficient condition of weak separability is that aggregate of the hypothesized 

weakly separable subgroup (the Afriat numbers) together with the remainder of goods, 

that is, ( / ? ' , ( / / ' , V )  satisfy GARP for some choice of ( / / ', V ) . The program to

test for the necessary and sufficient conditions of weak separability is given in

Appendix A. It involves calculating the Afriat numbers and checking the different 

groups for consistency with GARP. The program is written in GAUSS mathematical 

software.

3.3.1 Fleissig and Whitney Test

Varian’s (1982, 1983) algorithm for calculating the Afriat numbers //' and V  places no 

other constraints than / i ' and V  should be positive. However, it is not unusual to obtain 

negative values for V , implying rejection of weak separability for the group being 

tested. Given that that V  can be interpreted as a utility function, Fleissig and Whitney

39



(2003) use this property to calculate //' and V  alternately. As discussed in Section 2.3 

of Chapter 2, using a statistical index number is equivalent to using a particular 

aggregator function (utility function) and an index number can be considered 

superlative if it can provide a second order approximation to the unknown aggregator 

function (Diewert, 1976, 1978). Fleissig and Whitney (2003) use this property to obtain 

estimates for V , using a superlative index number (the Tornqvist discrete time 

approximation to Divisia index) and a corresponding range of values of / / '.  Let the 

superlative index number be QV' -  f {q , z )  which is a function of the goods and prices 

of z, be an estimate for V  in Equation 3.8. If the estimates give positive values for 

//'the  superlative index number solves the Afriat inequalities. The superlative index 

number may fail to give a range of //' that satisfies the Afriat inequalities because of the 

possibility of third or higher order approximation errors to the unknown aggregator 

function. Moreover, factors such as measurement error may result in the superlative 

index number Q V  failing to give a solution to Afriat inequalities. A small adjustment to 

QV'  may be required to obtain a solution. Thus by adding a positive number (q ‘p > o) 

or a negative amount (~Q'„ < o) to Q V , the superlative index number with error QV*1

QV*< = Q V  + Q‘p - Q ;  (3.9)

will provide a solution if one exists. If Q'p -  0 and Q'n = 0 for i = 1, • • •, ny then the 

superlative index without error provides a solution. Assuming that the superlative index 

number with error QV*1 gives a solution to the separability inequalities, Equation 3.8 

can be written as

QV*' < Q V * j +jUJqJ( z ' - z ' )  (3.10)

Substituting Equation 3.9 in 3.10 gives
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Q V  +Q'p - Q ; <  QVj +QJp - Q Jp + MJqJ(z' - z J) (3.11)

//' can be obtained from the following equation

ju' -  QV' ! inciy (3.12)

where inc'y is the expenditure on>> goods in period i. Let a positive number (ju'p > o) or 

a negative amount (-//,' < o) be adjustments that may be required to make //'satisfy 

the Afriat inequalities. // ' can then be written as

= Q V i Hnciy +ju'p -ju'n (3.13)

If ju'p = Oor //' = 0 then //'w ithout adjustment provides a solution to the Afriat

inequalities. To preserve the economic interpretation of the solution other constraints 

are

//' > 0 (3.14)

QV*'> 0 (3.15)

Q V + Q ; - Q : >  0 (3.16)

The goal is to minimise the adjustments Q'p,Q'n,ju'pifi'n subject to the constraints 3.11,

3.13, 3.14, 3.15 and 3.16. This problem can be formulated as a linear programming 

(LP) problem as follows

Minimise Z = £ Qp + £ Q' + ]T ̂  + £ /u‘„
/=1 /= !  /= 1  (=1

Subject to

q v + e ;  -  q ; < q v j + q ’p-  q jp + » j qj {z‘ -  z j ) (3 .1 1>
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(3.13)

M > £ u (3-17)

(3.18)

where the constraints (3.14) and (3.15) have been transformed to weak inequalities as 

required by LP problems and which are as follows

The above problem is a linear programming (LP) problem but is in nonstandard form. 

The standard form of an LP model is

min{c'x | Ax <b,x>  0}

LP problem into a standard one.

3.4 Data for Weak Separability Testing

The data on monetary assets and their corresponding rates of return have been provided 

by Mr Livio Stracca at the ECB, taken from his study (see, Stracca (2004)). The data are 

quarterly harmonised from 1980Q1 to 2000Q4 for the Euro-11, that is, Euro area

ju > s  t

Substituting Equation 3.13 into equations 3.11 and 3.17 will transform the nonstandard
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excluding Greece. Due to the small weight of Greece in the Euro area economy, the 

exclusion of Greece is unlikely to affect the main results of this thesis in a significant 

maimer. In this thesis the Euro -11 area will be referred to as the Euro area. The four 

components of the official monetary aggregate (Simple Sum) M3 are taken into 

consideration and which are given in Table 3.1 below with the definition of Simple Sum 

aggregates that can be constructed using them

Table 3.1: Definition of the asset components of M3 and the monetary aggregates that

can be constructed from them.

Monetary Aggregates 

Monetary Assets M l M2 M3

Currency in circulation (CC) X X X

Overnight deposits (OD) X X X

Short term deposits other 
than overnight deposits (SD) X X

Marketable instruments (MI) X

Note: x means the corresponding monetary asset is included in the construction of the monetary 

aggregate.

The asset components are in levels and have been seasonally adjusted using the X-12 

ARIMA procedure. Let rcc, rOD> rSD and rMI be the rate of return on CC, OD, SD and

MI respectively. Obviously rcc = 0, Stracca (2004) has derived rOD and rSD using

estimates of the own rate of return of M l ( t™") and the own rate of return of M3 ( r°™)
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which have been respectively derived by Stracca (2003) and Calza, Gerdesmeier and 

Levy (2001). rOD is derived on the basis of the following formula

CC OD
'b e  + r0D = C 7  (3.19)M l Ml

and hence

(3-20)

since rcc = 0. Regarding rSD, this can be obtained by means of a similar procedure to 

derive rOD by extending Equation 3.19 above to include the SD and using a 

combination of the own rate of M l and M3 to obtain an estimate of the own rate of M2. 

Finally rMI is proxied with a short term interest rate.

Data on the population of the Euro area is required to transform the quantities to a per 

capita scale. The population data for the Euro area are only collected on an annual basis 

on DataStream and therefore a spline technique has been used to transform the data to a 

quarterly basis. The GDP deflator for the Euro area, also provided by Stracca (2004), is 

used to deflate the quantities. The prices of the monetary assets are also required to 

cany out weak separability tests and following Eiger and Binner (2004) these are taken 

to be the nominal user costs of monetary assets, that is, the nominal user cost multiplied 

by a price index which is taken to be the GDP deflator in this study. The nominal user 

cost of an asset i at time t can be represented as follows

x , , = p , ~ ~ (3.21)
(1  +  -K ,)

where p  is the price level. Data on nondurable goods and services are required to carry

out weak separability tests (see, for example, Swofford and Whitney (1987)). However,
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given that the Euro area has recently come into existence it is very difficult to obtain 

such data over long historical periods. Therefore, following the common practice in 

such circumstances (see, for example, Barnett (1980), Spencer (1997) and Belongia 

(2000)), it is assumed that the monetary assets used in this study are weakly separable 

from the nondurable goods and services. Also, ideally, given that financial innovation 

has increased the liquidity of risky assets, such as equities, bonds and mutual funds (see, 

for example, Eiger, Binner and Jones (2003)), they should have also been included in 

the analysis to determine whether they could be incorporated along with the capital 

certain assets, that is CC, OD, SD and MI, to construct monetary aggregates for guiding 

the monetary policy strategy in the Euro area. However, due to data limitations, it was 

not possible to do so.

3.5 Results for Weak Separability Tests

On testing for consistency of the full data set with GARP, two violations are noted. 

While testing for weak separability of asset components for the Euro area, Spencer 

(1997) splits his data set to allow for the German monetary union (GMU) which had 

caused high fluctuations in the German data. The fact that Germany has a big weight in 

the Euro area economy makes it highly likely it would affect the weak separability 

results. Following Spencer’s (1997) procedure the data set is divided into two sub

samples. One of the sub-samples, 1980Q1-1991Q1, contains the GMU and the second 

one, 1991Q2-2000Q4, is post a GMU period sample. On testing for consistency with 

GARP for the different samples, two violations are noted for the first sub-sample but no 

violations are observed for the second sub-sample, as shown in Table 3.2
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Table 3.2: Consistency of full data set with GARP

Time Period 1980Q1-2000Q4 1980Q1-1991Q1 1991Q2-2000Q4

No. of Violations 2 2 0

Given that the full data set is consistent with GARP for the period 1991Q2-2000Q4, 

identification of weakly separable groups of monetary assets is confined to that data 

period. Weak separability results, given in Table 3.3, suggest all asset groups 

considered are weakly separable and can be used to form meaningful monetary 

aggregates.

Table 3.3: Weak separability tests (1991Q2-2000Q4)

Subsets of monetary assets GARP Weak Separability

CC Y Not applicable

(CC, OD) Y Y

(CC, OD, SD) Y Y

(CC, OD, SD, MI) Y Y by assumption

Notes: Y indicates consistency with GARP and weak separability, respectively whereas N 

indicates inconsistency.

It should be noted that apart from the incremental groups of monetary assets, other 

groups of assets could be formed and subjected to weak separability. However, since it 

is generally held that any economically meaningful aggregate cannot be constructed 

without the inclusion of assets with high liquidity, the analysis has been confined to the 

groups of assets given in Table 3.3.
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Small adjustments were required for the superlative index and /a, for the groups of 

assets that were found to be weakly separable. The superlative index used here is the 

Divisia index. In line with Fleissig and Whitney (2003) the PRMSE, given below, is 

used to measure by how much the adjusted superlative index and adjusted {.i differ 

from the corresponding values calculated from the data.

adjusted data -  dataPRMSE (.) = J - V  7 (3.22)
w ™ data

where n is the number of data points. Table 3.4 shows how large the adjustments are for 

the different weakly separable groups.

Table 3.4: Magnitudes of adjustments required to make asset groups weakly separable.

Weakly separable PRMSE (TV) PRMSE (MU)

Groups

(CC, OD) 0.00157741 0.04836028

(CC, OD, SD) 0.00175990 0.06968298

Note: TV = superlative index and MU= /u

Adjustment of similar magnitudes were required in Fleissig and Whitney (2003) to 

make the superlative index and // satisfy weak separability and have been considered to 

be very small. Hence, in line with Fleissig and Whitney (2003), the adjustments here 

can also be considered to be very small and hence the groups of assets in Table 3.3 are 

weakly separable.
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3.6 Summary and Conclusions

In this chapter weak separability tests are carried out to identify groups of monetary 

assets that can be reliably used to construct monetary aggregates for monetary policy 

purposes in the Euro area. The tests used are those developed by Fleissig and Whitney 

(2003) which are an improved version of Variants (1982, 1983) nonparametric tests. 

More specifically, the probability of rejection of weak separability using Varian’s 

(1982, 1983) procedure is quite high for two reasons. Firstly, Varian’s (1982, 1983) 

procedure is nonstochastic and hence a single violation will lead to rejection of weak 

separability. But violations can be purely due to measurement errors and hence not 

significant. Secondly, Varian’s (1982, 1983) procedure sometimes produces negative 

Afriat indices which should be positive and hence leading to rejection of weak 

separability. Fleissig and Whitney (2003) allow for these problems by reformulating 

Varian’s (1982, 1983) procedure into a linear programming problem where the 

constraints force the Afriat indices to be positive and small adjustments are made 

wherever required.

On subjecting the data set in this study to the weak separability test, the whole data set 

was not found to be consistent with GARP, possibly due to GMU. Hence the data were 

divided into two sub-samples- one consisting of the GMU and the other a post GMU 

sample. As expected two violations were obtained for the first sample and no GARP 

violations for the second sample. Therefore, identification of weakly separable 

subgroups was confined to the post GMU period. All the groups of assets considered 

were found to be weakly separable. This result is slightly different to previous such 

Euro area studies in the sense that previous studies do not find many weakly separable 

asset groups (see, for example, Spencer (1997)). One of the reasons could be that a
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slightly different data set over a different time period has been considered. However, the 

main reason for such discrepancies could be due to the fact that a slightly different weak 

separability test has been used. As expected the rejection rate of weak separability is 

higher in the other studies which use the traditional Varian (1982, 1983) approach. 

Whereas by accounting for problems like measurement error and negative Afriat indices 

the Fleissig and Whitney (2003) approach used in this chapter reduces the chances of 

wrongly rejecting weak separability and hence it is strongly recommended that further 

weak separability studies use the improved version of Varian’s (1982, 1983) 

nonparametric tests.
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CHAPTER 4:

MONEY DEMAND ANALYSIS

In this chapter the weakly separable groups of monetary assets are used for constructing 

Simple Sum and Divisia monetary aggregates. However, given that at low levels of 

aggregation the behaviour of Simple Sum and Divisia aggregates tend to be very 

similar, only the broader groups of weakly separable assets, that is, (CC, OD, SD) and 

(CC, OD, SD and MI), are considered to construct the monetary aggregates. The 

relative empirical performances of the monetary aggregates are then compared in a 

cointegration money demand framework with a view to advising the ECB on the use of 

the appropriate monetary aggregate for policy purposes.

4.1 Introduction

Money demand studies that compare Simple Sum and Divisia monetary aggregates for 

the Euro area are very limited. Therefore the main objective of this chapter is to provide 

new empirical evidence on the relative performances of Divisia and Simple Sum 

aggregates to supplement the existing ones. Among the very few existing studies are 

those of by Drake, Mullineux and Agung (1997), Spencer (1997), Stracca (2004) and 

Renners (2002). All these studies differ from the present one in important respects. 

Drake, Mullineux and Agung (1997) and Spencer (1997) use pre ECB formation data 

whereas the data in this study are post ECB formation data. Moreover, the data in these 

studies are not constructed over all the member countries, whereas the data here apart 

from Greece, which has a very small weight in the Euro area economy, are constructed 

over all member countries. Though the data here are similar to Stracca (2004), the
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analysis has been carried out differently. Specifically, weak separability tests are 

conducted (carried out in the previous chapter) to identify the assets which are weakly 

separable before constructing monetary aggregates and the period over which the assets 

are weakly separable is also identified. Reimers (2002) on the other hand does carry out 

weak separability tests and investigates the usefulness of Divisia aggregates for policy 

purposes in the Euro area, but the study does not provide any comparison between 

Divisia and Simple Sum indices and hence no conclusion can be drawn on whether the 

Divisia aggregates would be better than their Simple Sum counterparts in practice. 

Moreover, Reimers (2002) conducts weak separability and money demand analysis over 

different time periods.

The overwhelming majority of studies involving evaluation of monetary aggregates

carry out the evaluation in a money demand framework (see for example, Lutkephol and

Wolters (1998) for Germany, Belongia and Chystal (1991) for the UK). The studies

often focus on establishing whether there exists a stable relationship in terms of

parameter stability between monetary aggregates and a set of economic variables

usually consisting of GDP, inflation and interest rate. There is no general agreement,

however, that a stable money demand is an important prerequisite for usefulness of

monetary aggregates for policy puiposes. For example Lutkephol and Wolters (1998, pg

371) note, “A stable money demand is an important prerequisite for such a policy

[monetary policy].” On the other hand Driscoll and Ford (1982) take the view that a

stable money demand is a side issue with regards to usefulness of monetary aggregates

for policy purposes. The latter opinion is supported by Mullineux (1996) who suggests

that issues like indicator properties of the aggregates are of more relevance and should

be investigated. The debate on whether or not stability of money demand is an

important issue with respect to usefulness of monetary aggregates for monetary policy
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purposes is beyond the scope of this thesis. The approach here is to consider both views 

and therefore the empirical performance of the monetary aggregates is evaluated using a 

money demand framework as well as using other frameworks, considered in later 

chapters, that enable us to evaluate the indicator properties of the monetary aggregates.

4.2 Money Demand Theory

Most theories of money demand lead to a long run specification of the following form 

for cointegration analysis (Hendry and Ericsson, 1991)

= g(S,,R,) (4.1)
I

where M, is the nominal quantity of money demanded, Pt is some price variable, S, is

some scale variable such as GDP and Rt represents the opportunity cost of holding

money. The opportunity cost variable may be represented in the form of a vector of 

interest rates (see, for example, Eiger and Binner (2004)) or dual user cost indices (see, 

for example, Stracca (2004)). Many economists have suggested including inflation in 

(4.1) (see, for example, Goldfeld and Sichel (1987)) as it may represent partial 

adjustment or it may be viewed as on opportunity cost variable. In applied work it is 

common to use the following log-linear specification of (4.1)

ln(M ,/P,) = S0+Si ln(S,) + S2Ap, + S3 ln(Rl) + p  (4.2)

where g  has been extended to include the quarterly inflation rate and <?, is the

equilibrium error at time t. In this thesis the opportunity cost variables are taken to be

dual user cost indices as they have been argued to be the appropriate opportunity cost 

variables (Mullineux, 1996). For Simple Sum indices the procedure of Lutkepohl and 

Wolters (1998) is followed in calculating the dual user cost as
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own (4.3)

where R 1' is a long term interest rate and R"w" a weighted average of the interest rates

calculated as

R o m  = £ (4.4)

where xu is the zth monetary asset at time t and ru is the con'esponding rate of return

and M t is the sum of all monetary assets. For the Divisia indices the dual user cost, PtD, 

is calculated as (see, for example, Stracca (2004))

Economic theory suggests that Sx > 0 (=1 if the relationship is to be interpreted as a 

velocity relationship), S3 < 0(Doornik, Nielsen and Hendry, 1998). There is, however, 

some ambiguity concerning the expected sign of S2. Partial adjustment models suggest

should be negative.

4.3 Cointegration Analysis

Regression analysis is very likely to produce reliable results when the variables are 

stationary, that is, when the mean, variance and covariance of the variables are constant 

over time and the value of the covariance depends only on the distance or lag between 

the two time periods and not on the actual time at which the covariance is computed.

n

iogp° - l o g # ;  = 2 > ;o o g * »  -  log *■„_,) (4.5)

where s,

that it should be positive while if inflation is viewed as an opportunity cost variable it
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When this is not the case, that is, when the variables are nonstationary, the results are 

very likely to be spurious (Granger and Newbold, 1974). That is regression results will 

look good in the sense of having high R 2 values and significant t statistics, but which in 

fact have no real meaning. A good example is provided by Hendry (1980) who shows 

the strong but spurious relationship between rainfall and the UK inflation rate. Granger 

(1981) identifies a situation when regression between nonstationary variables produces 

results which are not spurious. This occurs when the nonstationary variables are 

cointegrated. Cointegration occurs when a linear combination of nonstationary variables 

results in a stationary process. A number of methods for estimating cointegration 

relations have been proposed; see for example, Engle and Granger (1987), Stock and 

Watson (1998), Bossaert (1988), Johansen (1988, 1992, 1995), Johanssen and Juselius 

(1990). In this study, the maximum likelihood procedure developed by Johansen and 

Juselius (1990) will be used as it is the most commonly used technique in empirical 

studies. Consider the vector z, = (mu,m2ti---,mpt) consisting o fp  variables. The vector

zt can be formulated as vector autoregressive (VAR) model of order k:

z, = rijZ ^  + n ^ z ^  + ■ * • + U kz,_k + p  + st + (/>Dt + s, (4-6)

where p  is a constant and the error term, s t , is independently and normally distributed

and n , ,n 2,---,n,_/t are coefficient matrices. The variables Dt are dummy variables.

The variables of z, have to be at most I( l)1 as the statistical procedures derived by

Johansen and Juselius (1990) are based on that assumption. Expressing the VAR in first 

differences leads to the following short run vector error correction model (VECM):

Az, = TjAz,^ +**- + r*_1Az,_(it_1) +Xlz,_k + p  + St + </>D, + s t (4.7)

where Az, is stationary and the coefficient matrices are defined as

1 An 1(d) variable, where d>0, is a nonstationary variable that has to be differenced d times to become 
stationary.
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r, — — i +ri| + • • • + n ; and. n  — —/ + +  • • • + ( 4 - 8 )

where /  is the identity matrix and the matrix n  contains information about long-run 

relationships between the variables in the data vector z ,. Equation 4.7 shows that the

matrix n  determines how the levels of the process z, enter the system. If n  = 0 , the

dynamic evolution does not depend on the levels. This indicates the importance of the 

rank of II in the analysis. If the rank (II) =p,  then the process z, is stationary. Whereas 

if rank(II) = r , where 0 < r < p , implies existence of p x r  matrices a  and (3 such 

that Tl = a(3' and (3' z t is 1(0) (Johansen and Juselius, 1990). r is the number of 

cointegrating relationships and each column of (3 is the cointegrating vector. The order 

of the rank can be determined by the use of the trace test (see, Johansen (1995)).

In testing for cointegration, the question of whether a constant and trend should enter 

the long run relationship also arises. There are in general 5 possible ways of 

incorporating these deterministic components into the analysis (see Johansen 1992, 

Hansen and Juselius, 1995). Following Hansen and Juselius (1995) 8  and p  from 

Equation 4.7 are decomposed into:

8  = aS} + (4.9)

p  — a p x + a Lp 2 (4.10)

where

8 2  -  {cc\aL) 1 cc]8 is a ^-/'-dimensional vector of quadratic trend coefficients in the 

data;
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S{ = (a ] a  ) 1 a TS  is an /--dimensional vector of linear trend coefficients in the 

cointegration space;

f i2 -  {o' j  a ±) a \ n  is a //-/"-dimensional vector of linear trend slopes in the data

jux = (a1 a  ) 1 a 1 ju is an r dimensional vector of intercepts in the cointegrating 

relations.

And using the above decompositions, (4.7) can now be reformulated as

A Zt — Tj A Z,_, +... + Tk_]AZt_k+l + a A] (4.11)

where Z, = [Z,,l,f],

The five different models that arise when the deterministic components in (4.11) are 

restricted are now discussed.

Model 1

5 — 0, fj. -  0. This model corresponds to the case where there are no deterministic 

components in the data and all intercepts in the cointegration relations equal zero.

Model 2

5  = 0, / /2 = 0, //, unrestricted. In this case the model does not allow for linear trends in 

the data. The only deterministic components in the model are the intercepts in the 

cointegration relations.
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Model 3

8  = 0, jux, /u2 uni'estricted. If 8  = 0 but /i2 & 0 , the model allows for linear trends in 

the data through //2, but it is assumed that there are no trends in the cointegration 

relations. The effect of having //, ^  0 is that the cointegration relations have a non-zero 

intercept.

Model 4

8 2  -  0, c),, / / j , ju2 unrestricted. When 82 is restricted to 0 in Equation 4.11 the model is 

restricted to exclude quadratic trends. But having 8] ^  0 means that the cointegration 

space has a linear trend.

Model 5

No restrictions on 5, ju . The parameters being unrestricted imply the model allows for 

linear trends in the differenced series Az t thus allowing for quadratic trends in z , .

In empirical analysis the first and the last models are generally ruled out (see for

example, Drake (1996)). This is because the first is too restrictive in the sense that it

does not even allow for an intercept, which is generally needed in such relationships and

the last model is too unrestricted in the sense that it allows for a nonlinear trend in the

levels of the data. Economists usually reject nonlinear trends in money demand

relationships because they can improve in sample fit but provide very poor out of

sample forecasts (Hansen and Juselius, 1995). In order to determine which of the

different possible deterministic specifications is the most appropriate in the

cointegration, Johansen (1992) suggests applying the Pantula (1989) principle. In so

doing, the rank order and the presence of the deterministic components are jointly

determined. In practice this involves estimating all the three models of interest outlined
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above (Model 2 -  Model 4) and conducting the trace test to determine the cointegration 

rank sequentially from the most restrictive to the least restrictive specification. The first 

time the null hypothesis of r cointegrating vectors is not rejected indicates both the 

cointegration rank and the appropriate specification for the deterministic components.

4.4 Unit Root Testing

Prior to testing for cointegrating relationships it is important to check the order of 

integration of the variables, since, as mentioned earlier in the preceding section, the 

cointegration analysis is valid for at most 1(1) variables. To check the stationarity 

properties of the series the most commonly used Augmented Dickey Fuller (1979) unit 

root test is used. To perform a unit root test on a variable y t we employ the following 

model

m
A t = A + Pit + 8y,_x + cct ]T AT-, + A, (4.12)

/ '= !

where /?, and /?2 are constants and r is the trend variable. When the series does not 

seem to exhibit any trend and it is fluctuating around a zero mean, then /?, and fi2 are 

restricted to 0. If the series does not contain any trend but has a non zero mean then 

p 2 is set to 0. If the series contains a trend then no restrictions are imposed on and 

P 2. The appropriate lag order m of the Dickey Fuller (1979) test is chosen in such a 

way to ensure that the errors are serially uncorrelated. The process is stationary if 

8  < 0 and if 8 = 0, y, is nonstationary. Thus the Dickey Fuller test considers the null

hypothesis H 0: 8 = 0 against the one sided alternative H ,: 8  < 0 .

58



4.5 Data and Preliminary Analysis

Given that the monetary assets were found to be weakly separable for period the 

1991Q2 to 2000Q4, money demand analysis is also confined to that period and the 

definitions of the monetary aggregates constructed are as follows:

Monetary Assets Simple Sum Aggregates Divisia Aggregates

CC, OD, SD SM2 DM2

CC, OD, SD, MI SM3 DM3

The GDP deflator is used as the price variable, the scale variable is the real GDP as this 

variable is used in the very large majority of money demand studies (for the Euro area, 

see, for example, Calza, Gerdesmeier and Levy (2001), Stracca (2004)). The long term 

interest rate is a 10 year government bond yield. These data are also taken from the 

study of Stracca (2004). The definitions of the variables used are as follows:

sm2, is the log of real SM2 

sm3t is the log of real SM3, 

dm2t is the log of real DM2 

dm3t is the log of real DM3 

y, is the log of real GDP

dualsm.2, is the log of the opportunity cost variable of real SM2

dualsm3f is the log of the opportunity cost variable of real SM3
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dualdml, is log of the opportunity cost variable of real DM2 

dualdm3, is the log of the opportunity cost variable of real DM3

sm2t is contrasted to dm2t and sm3t is contrasted Xodm3t in Figure 4.1a and Figure

4.1b respectively . sm2t and dm2, are almost identical up to 1997 and the difference

afterwards is also minuscule. However, sm3, begins to increase faster than dm3l and

diverges afterwards. As expected larger differences between the two measures of the 

money stock arise when the monetary aggregates are broadened. The other series are 

plotted in Figure 4.2.

Figure 4.1a : log real Simple Sum M2 and log real Divisia M2
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Figure 4.1b : log real Simple Sum M3 and log real Divisia M3
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The stationarity properties of the series based on the Augmented Dickey and Fuller 

(1979) unit root test are reported in Table 4.1. Except for inflation which seems to be 

marginally stationary at the 10% significance level, results from the unit root test 

suggest that the remaining variables are not stationary. The first difference of the series 

appear to be 1(0) at the 5% level but at the 1% level they appear to indicate the presence 

of nonstationarity, with Asm3( not even stationary at the 10% level. An inspection of

the graphs of sm3f, however, reveals that there appeal's to be a structural break around 

1993. Perron (1989) shows that in the presence of such breaks, conventional unit root 

tests have low power and tend to indicate nonstationarity instead of stationarity. The 

first difference of sm3t and the other series, presented in Figures 4.3a and 4.3b, in fact,

appear to be stationary and hence for further analysis it is assumed that the variables are 

1( 1).
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Figure 4.2: Other time series used
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Table 4.1: ADF unit root tests (1991:2-2000:4)

Variable ADF test statistics Specification

sm2t -1.997 [T ,l]
Asm2, -3.262** [C, 0]
sm3, -1.720 [T, 1]
Asm3, -2.568 [C, 0]
A2sm3t -6.189*** [C, 0]
dm2t -1.951 [T, 1]
Adm2t -3.307** [C, 0]
dm3t -1.550 [T, 1]
Adm3t -2.872* [C, 1]
dualsm2t -3.134 [T ,l]
Adualsm2, -3.352** [C, 0]
dualsm3t -2.937 [T, 1]
Adualsm3t -3.438** [C, 0]
dualdm2t -3.077 [T, 1]
Adualdm2, -3.371** [C, 0]
dualdm3t -2.803 [T, 1]
Adualdm3t -3.509** [C, 0]

y, -1.364 [T, 1]
Ay, -3.841*** [C, 0]
Apr, -3.758* [T, 0]

A V , -5.872*** [C, 1]

Notes:

T: constant and trend, C: represents constant 

[, n], n: the number of lags used

***: significant at 1%, **: significant at 5%, *: significant at 10% 

Critical values are from MacKinnon (1991)
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Figure 4.3a : First difference of time series
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Figure 4.3b: First difference of time series
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4.6 Further Empirical Analysis

4.6.1 Model Specification

Hall (1991) points out that the Johansen maximum likelihood test for the number of 

cointegrating relationships is sensitive to the VAR lag length. The lag length can be 

determined by some of the many information criteria procedures, such as Akaike 

Information Criterion (Akaike, 1973) and the Schwarz Criterion (Schwarz, 1978).
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However, different criteria often suggest different orders. A more appropriate method is 

to combine this with misspeciflcation tests by choosing the lag length to ensure that the 

underlying assumptions of the VAR model are satisfied (Johansen, 1995). More 

specifically, one checks whether the residuals in the Johansen VAR are free from serial 

correlation and the distribution of the residuals is normal. On this basis, a VAR of lag 

length 4 has been used for each system. Results from the multivariate Lagrange 

multiplier, LM(&), representing the test for autocorrelation of order k and Jarque-Bera 

(JB), representing the test for normality conducted on the above VAR systems are 

reported in Table 4.2. The tests do not suggest any major misspeciflcation as the models 

seem to be well specified.

Table 4.2: Multivariate autocorrelation and normality tests (1991:2-2000:4)

sm2t sm3t dm2, dm3,

Autocorrelation test: 
LM(1) 16.02 16.11 15.78 14.49

(0.45) (0.45) (0.47) (0.56)

LM(4) 19.24 22.58 15.28 18.34
(0.26) (0.13) (0.50) (0.30)

JB normality test 4.92 5.04 4.47 7.69
(0.77) (0.75) (0.81) (0.46)

Note: Values in parenthesis are p-values. The LM-tests are asymptotically distributed 
y?(16), whilst the normality test is asymptotically distributed ̂ (8).

In this chapter instead of applying the Pantula (1989) principle for identifying the 

appropriate deterministic components for cointegration analysis, following Eiger and 

Binner (2004) the same deterministic components for every system are consistently 

used. More specifically Model 4 described in Section 4.3 is adopted. Such an approach
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can be justified on two grounds, firstly to treat all the systems on an equal footing and 

secondly it is very common to find that that the Pantula (1989) principle suggests using 

Model 3 or 4. Doomik, Nielsen and Hendry (1998) show that Model 4 can be used 

instead Model 3 at a low cost.

Based on the aforementioned specifications the trace test statistics for the null 

hypothesis that r < 0,1,23 for each system are given in Table 4.3. The trace test 

suggests that the rank, that is the number of cointegrating vectors, is three for the 

Simple Sum M2 system. The rank is found to be four for the Simple Sum M3 system, 

which implies that the variables in its cointegrating vectors, that is, sm3n

dualsm3t, y, and Apn  are all stationary. However, from the unit root tests in Section

4.4, the variables are clearly nonstationary and therefore it can be concluded that 

cointegration analysis will not provide sensible results for the Simple Sum M3 system 

and hence no further analysis is carried out in this chapter for it. For the Divisia M2 and 

M3 systems the rank is found to be borderline two and three. However, to maintain 

consistency with the Simple Sum M2 system their ranks are set at 3.

Table 4.3 : Number of cointegrating vectors (r)

sm2t sm3, dm2t dm3t

r Trace Statistics 90% quartile of 
Trace distribution

0 99.41 104.48 101.01 92.85 58.96
1 49.84 51.50 49.71 46.99 39.08
2 23.16 28.31 22.89 22.05 22.95
3 9.66 12.34 8.80 8.87 10.56
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As it is usually the case the number of cointegrating vectors is found to be greater than 

one for the different models. In such circumstances there are two common approaches 

to proceed further with the cointegration analysis. The first and the most common 

approach is to select from the cointegrating vectors the one which is consistent with 

economic theory in terms of correct signs and magnitudes of the coefficients of the 

variables in the cointegrating vectors (see, for example, Drake, Chrystal and Binner 

(2000)). The second approach is to impose identifying restrictions to the different 

cointegrating vectors (see, for example, Johanssen and Juselius (1994), Eiger and 

Binner (2004)), that search for stationary relationships supported by the data by 

imposing restrictions on the parameters of the cointegrating vectors. In this chapter, the 

second approach is adopted.

4.6.2 Identification of Stationary Relationships

In this section stationary relationships supported by the data are searched for from a 

variety of economic hypotheses. These are formulated by imposing restrictions on the 

parameters of the cointegrating vectors. For cointegration vectors of the following form

(monetary variable, opportunity cost variable, scale variable, inflation, trend)

the hypotheses that are tested are given in Table 4.4.

Table 4.4: Economic hypotheses tested

Null Hypothesis 

Hf (1,0, -1 , 0 ,  *)

H ” ( 0 , 0 , 1 , * , * )

h ; (0,»,  1, 0, «)______________________________________________________

Note: Using these restrictions 1 forces the coefficient to be 1, while 1 and -1 forces the

coefficients to be equal to 1 but of different signs. 0 forces the coefficient to be 0 while * means 

the coefficient is unrestricted.
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The strategy here is to model money demand in terms of as few variables as possible 

and hence the first hypothesis can be interpreted as a money demand function from 

which the inflation and opportunity cost variables have been excluded. As noted earlier 

the inclusion of inflation in the money demand relationships is not unequivocal and 

hence is among the first ones to be removed. We also try to exclude the opportunity cost 

valuable. The second hypothesis relates GDP to inflation and opportunity cost and the 

third equation relates GDP to opportunity cost and the trend.

For the Simple Sum M2 system the above restrictions are supported by the data as 

indicated by standard errors of the coefficients of the cointegrating vectors and the 

likelihood ratio (LR) test and its corresponding p-value in the j 2 (1) distribution.

sm2t - y t -0.00377 = sh 
(0.001)

y, -21.795Ap, -0 .0 0 6T = s2l 
(2.789) + (0.001)

y, + 0.058dualsm2l -0 .007T = e3l 
(0.015) (0.001)

(4.13)

(4.14)

(4.15)

LR = 3.64 p-value = 0.06

The loading coefficient associated with Equation 4.13 in the short run money demand 

function is equal to -0.092 [-1.158]. Though it carries the correct sign, it is not 

statistically significant as indicated by the /-statistics in the square brackets.

For the Divisia M2 system, the p-value of the LR test is only marginally not significant 

and hence the hypotheses can be considered to be largely supported by the data.
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dm2. —y. -0.004T = s u
/ \ (4.16)
(O.OOl)

v, -28.901Ap, -0.007r = s„
(3.485) + (O.OOl) (4' 17)

v, + 0.058dualdm2. -0 .007T — s%,
(0 .012) (0.000) (4 ‘18)

LR = 4.65 /7-value = 0.03

The loading coefficient associated with Equation 4.16 in the short run money function is 

equal to -0.049 [-0.624]. Similar to its Simple Sum counterpart though it carries the 

correct sign it is not statistically significant.

The economic hypotheses are also supported by the data in the case of the Divisia M3 

system.

dm3, ~ y t -O.OOOT' = sXt 
(0.002)

y t +<d.026dualdm3, -0.01071 = s3l 
(0.008) (0.001)

(4.19)

y. +17.836A,p, -0 .018T = s 2t
(2.507) + (0.005) (4'20)

(4.21)

LR = 3.69 p -value = 0.05

The loading coefficient associated with Equation 4.19 in the short run money demand 

function is -0.160 [-2.769]. In addition to carrying the correct sign it is also statistically 

significant.
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4.6.3 Constancy of the Parameters of the Cointegrating Vectors

In this section further analysis is carried out to investigate the suitability of the 

cointegration results after imposing the restrictions on them. Specifically, the constancy 

of the parameters of the cointegration vectors for the period 1999Q1 to 2000Q4 (see, 

Hansen and Juselius, 1995) is investigated. The LR statistics obtained are shown in 

Figure 4.4 for the different systems. They are all asymptotically distributed a s j 2. The 

test statistic has been scaled by the 95% quantile in the distribution such that unity 

corresponds to a test with 5% significance level. As evident from Figure 4.4 the null of 

constancy cannot be rejected as the test statistics are all below one.

Figure 4.4: Test of constancy of cointegration vector parameters

SM2
DM2
DM3
critical va lue

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1999 2000

4.7 Summary and Conclusions

In this chapter monetary aggregates are constructed from the two broadest groups of 

assets that were found to be weakly separable in the previous chapter. The monetary 

aggregates constructed are SM2, DM2, SM3 and DM3. SM2 and DM2 consist of the
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same assets. SM3 and DM3 consist of the same assets. SM2 and SM3 are constructed 

using Simple Sum aggregation whereas DM2 and DM3 are constructed using Divisia 

aggregation. The empirical performances of the different monetary aggregates are 

evaluated in a cointegrated money demand framework. Given that the number of 

cointegrating vectors is found be greater than one for every system, restrictions are 

imposed on the parameters of the cointegrating vectors to identify stationary economic 

relationships.

The empirical performance of Simple Sum and Divisia M2 are almost similar and hence 

it is very difficult to differentiate between them. This result, however, is not surprising 

as graphical comparison of SM2 and DM2 suggests that their behaviour is very similar. 

This is because at low levels of aggregation Simple Sum and Divisia monetary 

aggregates tend to move closely.

The empirical performance of Divisia M3 is found to be very sensible and stable. In 

contrast to SM2 and DM2 the loading coefficient associated with its short run money 

demand function is found to be both negative and significant. On the other hand, the 

money demand relationship of Simple Sum M3 is not modelled as in its case the 

number of cointegrating vectors is found to be four, which implies that the variables in 

its system are all stationary. This implication however is contradictory to the unit root 

tests which suggest otherwise. Such an observation suggests that cointegration analysis 

will not yield sensible results for Simple Sum M3 and therefore no further analysis is 

carried out for SM3 in this chapter.
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In sum the results in this chapter suggest there is little difference between Simple Sum 

and Divisia aggregates in the Euro area at low levels of aggregation. On the other hand 

at higher levels of aggregation Divisia aggregates clearly outperform their Simple Sum 

counterparts and therefore should be considered more by policymakers and academics. 

Such a result is consistent with earlier evidence on the performance of Simple Sum and 

Divisia aggregates for the Euro area (see, for example, Drake, Mullineux and Agung 

(1997)).
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CHAPTER 5: 

SIMPLE SUM AND DIVISIA MONETARY 

AGGREGATES IN COMPOSITE LEADING 

INDICATOR OF INFLATION

111 this chapter the empirical performances of Euro area Simple Sum and Divisia 

monetary aggregates are compared in a composite leading indicator of inflation turning 

point framework. Additional aims are to construct sophisticated composite leading 

indicators using the techniques of Fourier analysis and Kalman filters and to provide a 

tentative answer to the issue of whether or not the UK should join the Euro area.

Given that in the previous chapter not much difference was found between Simple Sum 

M2 and its Divisia M2 counterpart, in this chapter and the following one, only the 

broadest monetary aggregates, that is, SM3 and DM3, will be considered. Also, given 

that present analysis and the one in the following chapter require data over long 

historical periods to yield sensible results the whole data sample, that is, from 1980Q1 

to 2000Q4, will be considered.

5.1 Introduction

Financial market participants and policymakers such as the European Central Bank

(ECB) are heavily dependent on forecasts of the rate of inflation and its turning points

as such information allows them to adjust their calculations of the future economic

environment. In this chapter the focus will be on inflation turning point forecasts for the
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Euro area; inflation forecasts are looked at in the following chapter. Despite advances in 

mathematical and statistical techniques, a reliable method to forecast inflation turning 

points has continued to evade forecasters. Consequently, interest in the use of composite 

leading indicators (CLIs) of inflation turning points has been heightened. These are 

constructed from a group of time series variables which have cycles which resemble the 

turning points in the inflation cycle but whose turning points precede the turning points 

in the inflation cycle.

The leading indicator approach was developed by the National Bureau of Economic 

Research (NBER) and was popularised by the work of Burns and Mitchell (1946) in the 

US. This approach has since been utilised in a number of studies, but mostly applied to 

business cycles. Application to the inflation cycle is relatively new and much of the 

literature is related to the US (see, for example, Roth (1991), Boughton and Branson 

(1991)). A few European studies exist (see, for example, Artis, et al., (1995) and 

Binner, Fielding and Mullineux (1999) for the UK and Biklcer and Kennedy (1999) for 

seven EU countries) but to the best of my knowledge no study has been carried out to 

develop CLIs of inflation for the Euro area. One of the objectives of this chapter, 

therefore, is to develop CLIs of inflation for the Euro area and to assess their forecasting 

performance.

Even though the leading indicator approach has been rather successful in providing 

early information about future turning points, it is widely believed that the way leading 

indicators are constructed is crude and does not look rigorous in terms of criteria 

commonly applied in modem econometrics. For example in the UK, a recent research 

project supported jointly by the Central Statistics Office and HM treasury was designed 

to investigate possible alternatives to the existing methods of constructing leading
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indicators which form the basis of most official published leading indicators (Salazar et 

al.9 1995). Recently, time series techniques of Fourier analysis and Kalman filters have 

been used in the construction of CLIs and the resulting CLIs were found to offer 

considerable improvement over the traditionally constructed indicators (see, (Binner and 

Wattam (2003)). Therefore, following the seminal work of Binner and Wattam (2003), 

Fourier analysis and Kalman filters are used to develop more sophisticated CLIs of 

inflation turning points for the Euro area.

There are two additional aims in the chapter. The first one is the comparison of the 

performances of Euro area Simple Sum and Divisia monetary aggregates in a CLI of 

inflation framework. A few Euro studies exist which compare the empirical 

performances of the Simple Sum and Divisia aggregates, (see, for example, Drake, 

Mullineux and Agung (1997) and Stracca (2004)), but in most cases the monetary 

indices are compared in a money demand framework. It has however been argued that 

stability of money demand is a side issue with regards to usefulness of monetary 

aggregates for policy purposes and of more relevance is the comparison of the indicator 

properties of the aggregates (Mullineux, 1996). The CLI of inflation framework 

provides us with an opportune way of investigating the indicator properties of the 

monetary aggregates, given that the latter are considered as good information carriers of 

future inflation and are often included in the construction of CLIs of inflation. To the 

best of my knowledge, no study exists for the Euro area which compares the Simple 

Sum and Divisia indices in a CLI of inflation turning points framework. Hence, the 

motivation to perform such a comparison. The second additional aim is to provide a 

tentative answer to the issue of whether or not the UK should join the Euro area. This 

investigation is based on graphical analysis and the CLI of inflation framework. For the 

CLI framework, first, UK CLIs are constructed with economic series considered to have
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ample information for future UK inflation turning points. Then Euro-based UK CLIs, 

are constructed, that is, indicators constructed with Euro area inflation cycle turning 

point CLI as a component, in addition to component series of UK CLIs. Graphical 

analysis and comparison of the correlations of the aforementioned CLIS with the UK 

inflation cycle will be used to provide a tentative answer to the issue of whether or not 

the UK should join the Euro area.

5.2 Methodology and Data

The prevailing methodology used in constructing leading indicators for economic 

activity is still very similar to that established by the NBER in the 1930s and 1940s. 

Applied to inflation cycles it consists of the following major steps:

(1) Firstly the turning points of the inflation cycle are identified.

(2) Secondly appropriate economic and financial variables which contain information 

about future inflation turning points are selected. This is normally done in two stages. In 

the first stage, a large number of series are chosen which are thought to have a 

theoretical leading relationship with the inflation series2. In the second step, only those 

series are chosen whose turning points predate those of the inflation series.

(3) Thirdly composite leading indicators are constructed and their performances 

evaluated.

For the construction of Euro CLIs of inflation it is, however, not possible to proceed 

exactly in the above described traditional manner. More specifically, instead of 

choosing the component series of the CLI as described in step 2, a more subjective

2 Other criteria in selecting component series are that they should also be quickly and regularly available 
and not be subject to major revisions (Neftci, 1991)
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technique is used. This is because the Euro area has come into existence only recently 

and therefore the set of component series from which a selection can be made is very 

limited. Moreover, some of the series that do exist are available for a limited historical 

period. Therefore, instead, the series that are used are those that are both available and 

that have been very successfully used in previous studies for constructing CLIs of 

inflation for European countries (see for example, Biklcer and Kennedy (1999), Binner 

and Wattam (2003), Artis et al., (1995)). For the UK, the series are those used by 

Binner and Wattam (2003), most of which have been previously identified as leading 

indicators of inflation turning point by Ait is et al., (1995) using the criteria described in 

step 2 above. Tables 5.1 and 5.2 contain the list of series used in the construction of 

CLIs, for the period 1980 to 1998, for the Euro area and the UK respectively. The 

starting and ending periods of the data sample are constrained by the availability of 

Euro area data taken from the Euro area studies of Stracca (2004) and Fagan, Henry and 

Mestre (2001). Monthly data are preferred in the construction of CLIs and this is often a 

criterion for selecting component series of CLIs. This is because the more data points 

are observed, the closer the cycle can be captured and the better the possibilities of 

dating the turning points. However, some of the data are only available as quarterly 

series and the Euro area data made available to me were quarterly data. In these cases, 

the quarterly data are converted into monthly data using linear interpolation following 

the Organisation for Economic Co-operation and Development (OECD) which does so 

while constructing leading indicators of business cycles for its member countries. For 

the construction of the inflation series3, the GDP deflator is used for the Euro area while 

RPI is used for the UK.

3 Following Artis et al. (1995) we use ‘headline inflation’ which is the annual percentage change in the 
seasonally unadjusted Retail Price index for the UK or GDP deflator for the Euro Area.
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In addition to the slightly different approach for constructing CLIs, value is added to 

NBER methodology by using Fourier analysis and Kalman filters. Fourier analysis is 

used for modelling the cyclical components of the series under investigation while the 

Kalman filter algorithm is used to extract the inflation turning point signal from ‘crude’ 

forms of CLIs which are constructed by aggregating the modelled individual cyclical 

components. These techniques have been previously used in constructing CLIs by 

Binner and Wattam (2003) and the resulting CLIs were found considerably to 

outperform traditionally constructed CLIs.

Table 5.1: Data definitions and sources for the Euro Area

Variable Original Series Frequency Seasonally 
adjusted at 
source

Source

DM3 Real Divisia M3 Quarterly Yes Stracca (2004) ECB working 
paper no. 79

SM3 Real Simple Sum M3 Quarterly Yes Stracca (2004) ECB working 
paper no. 79

GDPDEF GDP deflator Quarterly Yes Stracca (2004) ECB Working 
paper no. 79

ENN Effective Exchange Rate Quarterly Yes Fagan, Henry and Mestre (2001) 
ECB Working Paper no. 42

UNN Unemployment Quarterly Yes Fagan Henry and Mestre (2001) 
ECB Working Paper no. 42

ULC Unit Labour Costs Quarterly Yes Fagan Henry and Mestre (2001) 
ECB Working Paper no.42

COMPR Commodity Prices Quarterly Yes Fagan Henry and Mestre (2001) 
ECB Working Paper no.42
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Table 5.2: Data definitions and sources for the UK

Variable Original Series Frequency Seasonally 
adjusted at 
source

Source

DM44 Real Divisia M4 Quarterly No Bank of England
SM4 Real Simple Sum M4 Quarterly No Bank of England
RPI Retail Price Index Monthly No Datastream
IUV Import Unit Value Index Monthly No Datastream
UNE Adult Unemployment Monthly No Employment Gazette/Labour 

Market Trends
VAC Vacancies at Job 

Centres
Monthly Yes Datastream

RSI Retail Sales Index Monthly No Datastream
IIP Index of Industrial 

Production
Monthly Yes Datastream

GCP Global Commodity 
Price Index

Monthly No Datastream

5.2.1 Derivation of Cycles

Cycles are an abstract concept and are not observable in reality. Therefore, to measure 

cycles, they must first be defined. In general, cycles are defined in two ways- classical 

cycles and deviation from trend cycles. Classical cycles refer to declines and rebounds 

in the level of economic series, whereas deviation cycles refer to deseasonalized, 

smoothed series expressed as the deviation from its long term trend. Most leading 

indicators are based on deviation cycles, as classical cycles are sometimes very difficult 

to identify because the fluctuations in many economic series appear to be dominated by 

strong trends. Therefore, in this study deviation cycles are used to construct the leading 

indicators.

4 For the UK SM4 and DM4 monetary aggregates the asset components and their corresponding rates are 
obtained from the Bank of England website (http://www.bankofendand.co.uk/Links/setframe.htmO. The 
asset components are notes and coins, non-interest-bearing deposits, interest-bearing bank sight deposits, 
interest-bearing bank time deposits and building society deposits. The benchmark rate used in the 
construction of the Divisia index is a three month local government deposit rate to which 2% points have 
been added to avoid obtaining negative user costs.
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Generally, it may be assumed that an observed univariate additive5 time series y, is the 

sum of four unobserved components, namely the cycle ( C,), seasonal ( S , ), trend ( Tt ), 

and irregular components ( I ,), i.e, can be represented as

y, -  C, + S, + Tt + / ,  for f = 1,**',72 (5.1)

Adopting the deviation cycle approach, the cyclical components can be obtained by 

subtracting the seasonal, trend and irregular components from y , .

The seasonal and irregular components do not permit a clear vision of the cyclical 

behaviour and are normally filtered out first. The very commonly used Census X-12 

procedure, developed by the US Bureau of Census, is used to capture these 

components6. The Census X-12 procedure is essentially a combination of moving 

averages. Many detrending techniques exist to remove the trend, however, it is very 

difficult to know which one is the most appropriate. Each one is relevant in certain 

circumstances and has its own implications. Canova (1999) examines the sensitivity of 

the turning points classification to different detrending methods and the ability of each 

to replicate the NBER dating of business cycles. The Hodrick-Prescott filter (HP) 

(Hodrick and Prescott (1997)) and the frequency domain filters (see,for example, Baxter 

and King (1999)) methods are found to be the most reliable methods to reproduce 

closely the NBER classifications. However, empirically, HP is the most extensively 

used technique and hence it is opted for use. Our description of the HP filter follows the 

exposition of Hodrick and Precott (1997). Let y , be the series resulting from removing

the irregular and seasonal component of y , , that is, y, = y t -  (<S, + 1,) . This means that

y , is the sum of the trend and cyclical components, that is,

5 A multiplicative model is essentially the same as (5.1) on taking logs.
6 In cases where the series have been seasonally adjusted at source only the irregular components are 
captured using the Census X-12 program.
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y ,= C ,+ T i; for t = (5.2)

The measure of smoothness of the trend component Tt is the sum of squares of its 

second difference. The cyclical components C, are deviations from the trend and it is 

assumed that over long periods their average mean is near zero. These considerations 

lead to the following programming problem for determining the components of Tt

where C, = y t - T t . The parameter X is a positive number which controls the variability

of the trend component. The larger the value of X the smoother is the solution series. In 

the extreme case as X °o, the trend approaches a linear time trend. The optimal value

prediction error decomposition’ technique (see, den Butter, Coenen and van de Gervel 

(1985) for more information on this technique). Most empirical work, however, simply 

assume a particular value for X equal for all series under consideration. For quarterly 

data X is usually set to 1600 and for monthly data to 14400. However, following a 

suggestion of Serletis and Kraus (1996) Xis set to 129600 in this study as this value 

approximately averages to the quarterly components defined by 2  = 1600 which is 

commonly used to define business cycle fluctuations in the research literature. 

According to the derivation of Ravn and Uhlig (2002) the HP parameter X should be

adjusted to with the fourth power of the frequency change that is XN = Xa where N

represents new frequency and O represents old frequency. Thus for a frequency change 

from quarterly, where X = 1600, to monthly, the new X is calculated as 1600/(l/3)4 = 

129600. It can be noticed from Figures 5.1a,b and Figures 5.2a,b, for the Euro area and

mm (5.3)

of X depends on the time series and may be derived by means of a ‘signal extraction-
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UK respectively, that the application of the HP filter results in nonlinear trends for all 

series under investigation.

Figure 5.1a: Graphs of sum of trend and cyclical components and trend components for

the Euro area

Inflation

IQ-

80 82 84 86 88 90 92 94 96

3.4
Real Divisia M3

3.2-

3.0-

2 .8 -

2 .6 -

2.4-

2 .2 -

2.0
80 82 84 86 88 90 92 94 96

 T C  T  T C -------T

1.4-,
Effective Exchange Rate

1.3-

0.9
80 82 84 86 88 90 92 94 96

4.0
Real Simple Sum M3

3.6-

3.2-

2,4-

2.0
92 94

T C  T

TC represents the sum of trend and cyclical components 

T represents the trend component obtained using the HP filter



Figure 5.1b: Graphs of sum of trend and cyclical components and trend components for

the Euro area
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Figure 5.2a: Graphs of sum of trend and cyclical components and trend components for

the UK
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Figure 5.2b: Graphs of sum of trend and cyclical components and trend components for

the UK
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5.2.2 Dating Cyclical Turning Points

The next issue is what criteria to use to date the turning points of the cyclical 

components. Bodies like the NBER and the Central Statistics Office provide reference 

chronologies for business cycles but no reference chronologies exist for inflation cycles. 

Artis et al. (1995), however, have devised some ground rules for dating inflation turning 

points and despite their simplicity, they seem to capture well the turning points of



inflation in studies where they have been used (see, for example, Binner, Fielding and 

Mullineux (1999)). Therefore in this study also the rules devised by Artis et a l (1995) 

are used which are as follows. First is the obvious requirement that peaks will always 

follow troughs and vice versa. Second, the duration of an upswing or downswing 

regime should be at least nine months in order to capture satisfactorily medium term 

movements in inflation. Third, a turning point is the most extreme value between two 

adjacent regimes and fourth, if there are two or more equal values satisfying the first 

three requirements, the most recent one is chosen as the turning point of the regime. 

The same rules are applied in dating the turning points in the cycles of the inflation 

series and each of the indicator series. The number of cycles identified in each case is 

given in Tables 5.3 and 5.4 for the Euro area and the UK respectively.

Table 5.3: Number of cycles found in Euro Area data

Series Number of Cycles

Real Simple Sum M3 4.5
Real Divisia M3 4.5
Inflation 4.5
Effective Exchange Rate 5

Unemployment 3.5
Unit Labour Costs 3.5
Commodity Prices 4

Table 5.4: Number of cycles found in UK data

Series Number of Cycles

Real Simple Sum M4 2
Real Divisia M4 2
Inflation 3.5
Import Unit Value Index 2.5
Adult Unemployment 4
Vacancies at Job Centres 3.5
Retail Sales Index 4.5
Index of Industrial Production

Global Commodity Price Index 3
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5.2.3 Fourier Analysis of Cyclical Components and Timing 

Classification of Indicators

In this section the cyclical components are modelled using Fourier analysis. The 

mathematical Fourier Theorem states that periodic data, like cyclical components of 

time series, can be expressed as the sum of a series of sine or cosine terms. If it is 

assumed that the periodic data consist of a single cosine wave, like in Binner and

Wattam (2003), then they can be represented as

C, = p  + Rcos(cot + (/>) + s, , / = 0,1,•••,«-1, (5.4)

where n is the number of observation, //is  a constant, R the amplitude, co — 2np / n, is 

the frequency, where p  is the number of cycles and (j) is the phase of the wave and s t is 

the /th residual. The unknown parameters here are //, R, and (j) and their estimation 

becomes less cumbersome if Equation 5.4 is reformulated as

C, = ju + A cos cot + B sin cot + s, (5.5)

where A -  R<zos(f> and B = -R  c o s^ . Estimates of p , A, and B can be obtained from 

the following equations (Bloomfield, 1976).

M = C = (l I n j ^ C ,

A = (2 /« )^ (C , -C)cos(Ot (5.6)

B = (2/n)Ĵ(C,-C )s in  

Given the estimates of A and B, R and (j) may be solved for. The basic equation for (j) is 

tan<  ̂ -~B!A. However, the solution (f) = tan-1 -B/A is incorrect as it gives the same 

values for -A  and - B as for A and B. The full solution is obtained from the solution set 

(Bloomfield, 1976) given in Appendix B l. The estimates of p,(f),A,B and R for the 

different series are given in Tables B2.1and B2.2, for the Euro area and the UK 

respectively, in Appendix B2.



After the cyclical components of the different series have been modelled using Fourier 

analysis, the modelled cycles are normalized to make them comparable and to avoid the 

series with the greatest amplitudes in their cycles exerting too much influence on the 

composite indicator. Normalization involves setting the means of the Fourier generated 

cycles to zero and their standard deviations to one. The series are then expressed in the 

index-number form by adding 100 to them. The graphs of these series are given in 

Figures 5.3 and 5.4 for the Euro area and the UK respectively.

Figure 5.3: Normalised Euro area series
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Figure 5.4: Normalised UK series
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The modelled cycles of the indicator series are then compared to that of the inflation 

series. The resulting lead times in months were calculated by visual inspection and 

subsequently the standard deviations were also calculated. These values are given in 

Tables 5.5 and 5.6 for the Euro area and the UK respectively. For example, Real Simple 

Sum M3, in Table 5.5, gives a three months warning of the next turning point (either 

peak or trough) in the inflation series; the standard deviation around this mean is 0.4 

months. From Tables 5.5 and 5.6 it can be seen that 20 months is a natural borderline 

between the various lead times achieved. Hence 20 months and below were chosen to 

represent short leading indicators, whilst leads above 20 months were assumed to be 

longer leading indicators.
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Table 5.5: Average lead times for the leading indicators versus inflation reference series

for the Euro Area

Series Lead

Months

Standard

Deviation

Indicator

Classification

Real Simple Sum M3 3 0.387 Both
Real Divisia M3 48 0.354 Both
Effective Exchange Rate 10 0.268 Short
Unemployment 21 2.40 Long
Unit Labour Costs 24 3.51 Long
Commodity Prices 27 1.57 Long

Table 5.6: Average lead times for the leading indicators versus inflation reference series

for the UK

Series Lead

Months

Standard

Deviation

Indicator

Classification

Real Simple Sum M4 31 23.5 Both
Real Divisia M4 35 23.5 Both
Import Unit Value Index 35 0.5 Long
Adult Unemployment 36 0.35 Long
Vacancies at Job Centres 20 0 Short
Retail Sales Index 17 0 Short
Index of Industrial Production 18 0 Short
Global Commodity Price Index 9 5 Short

From the tables above the average lead for composite short term and long term 

indicators were set at 15 and 29 months respectively, whilst Divisia and Simple Sum 

indices were classified as both short and long term indicators for experimental purposes. 

Before constructing composite leading indicators the individual leading indicators are 

lagged according to the average lead times.

There are various ways of combining the leading indicator series into a composite 

leading indicator. One of the simplest techniques, as used in, for example, Artis et al.
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(1995) is by simple averaging. It has been argued that such a method, however, is 

essentially arbitrary as it is neither data driven nor theory driven (Binner, Fielding and 

Mullineux, 1999). For this reason, Binner, Fielding and Mullineux (1999) have derived 

the appropriate weight for each component using the principal components method, 

which assumes that the first principal component of the leading indicator series, which 

explains as much as possible of the variation of the leading indicator series, may be 

taken to represent the inflation series (see, for example, Biklcer and Kennedy (1999)). In 

this study for every CLI, the component series are aggregated using both simple 

averaging (that is giving equal weights (of unity) to each of the component series) and 

weights derived from principal component analysis. However, only the CLIs resulting 

from whichever aggregation technique showing a closer relationship with the inflation 

cycles are presented.

When the individual leading indicator series are combined, the CLIs do not closely 

resemble the inflation cycle and in some cases there are false signals of turning points. 

The different CLIs are plotted against the inflation cycle of the Euro area and the UK in 

Figures 5.5a,b and 5.6a,b respectively. The disagreement between the CLIs and the 

inflation cycle is due to the undue influences of some turning points from some of the 

individual leading indicator series. Therefore, the ‘true’ signal for inflation turning 

points has to be separated from unwanted information. For this purpose State Space 

models and Kalman filters can be used (see, for example, Harvey, (1989), Chatfield

(1996)), to which attention is turned to in the next section. These techniques have been 

very successfully applied in extracting the inflation cycle turning points from the 

‘crude’ form of CLIs by Binner and Wattam (2003).
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Figure 5.5 a: Crude form of Euro short CLIs
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Figure 5.5b: Crude form of Euro long CLIs

101.5- 

101 , 0 -

100.5- 

100 . 0 -

99.5- 

99.0-

98.5-
80 82 84 86 88 90 92 94 96

Euro inflation cycle 
SM3 Long 
DM3 Long

93



Figure 5.6a: Crude form of UK short CLIs
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5.2.4 State Space Models

Generally when scientists try to measure any sort of signal it is contaminated by noise, 

so that the actual observation x, is given by

Observation = signal + noise (5.7)

In state space models the signal is taken to be a linear combination of a set of variables, 

called state variables, which constitute what is called the state vector at time t. This 

vector describes the state of the system at time t. Denoting the (m x l) state vector by 

0 ,, Equation 5.7 can be written as

x, = h  f O , + 77, (5.8)

where h, is an (in x l) vector assumed to be known and tjf denotes the observation

error. The state vector 0, which is of prime importance cannot be observed (i.e., is

unobservable) and so we wish to use the observations on x, to make inferences about

0,. Although not directly observable, it can be assumed that how 0, changes through

time is known (see, for example, Chatfield (1996)), and the updating equation can be 

denoted by

0, = G,0,_! + w, (5.9)

where the (m xm ) matrix G, is assumed known and w, is a vector of residuals. The 

two equations constitute the general form of the state space model. Equation 5.8 is 

called the observation (or measurement) equation, while Equation 5.9 is called the 

transition equation.

The errors in the observation and transition equations are generally assumed to be 

uncorrelated with each other at all time periods, and also to be serially uncorrelated. It
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may further be assumed that that i)t is N (o, a ] ) while w, can be assumed multivariate 

nomial with zero mean vector and known variance-covariance matrix denoted by W ,.

5.2.5 Kalman Filters

In state space modelling, the prime objective is to estimate the signal in the presence of 

noise, that is, we want to estimate 0,. The Kalman filter can be used for this purpose. It

consists of a set of equations which updates the estimate of 0, when a new observation

becomes available. The updating procedure has two stages, called the prediction stage 

and updating stage.

Suppose a time series is observed up to time t - l  and 0,_j is the ‘best’7 estimator for 

0M based on the information up to this time. Further suppose that the variance- 

covariance matrix of 0,_, which we denote by P,_, may have been evaluated. The first

stage, the prediction stage, is concerned with forecasting 0, from time l - 1, and the

resulting estimator is denoted by 0/|M. Considering Equation 5.9 where w, is still 

unknown at time t - l ,  the estimator for 0, is given by

e,1 , - 1  =G,e,_, (5.10)

with the variance-covariance matrix

P,IM= G , P MG r + W ,  (5.11)

Equations 5.10 and 5.11 are the prediction equations. When new observations become 

available, the estimator of 0, can be modified to take into account this extra 

information. The prediction error is then given by

7 By best we mean that it is the minimum mean square error estimator
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(5.12)

and the updating equations are given by

0, -  0,|M +K,et (5.13)

and

P = P -  K  h T Pr i *- t \ t - \  J V i 1 1 1 r t |i t 1 r|?-l (5.14)

where

K, -  P,|/_]h, /[hf P,!Mh, + er] (5.15)

K t is called the Kalman gain matrix and Equations 5.13 and 5.14 constitute the second 

stage of the Kalman filter and are the updating equations.

5.3 Performance of Composite Leading Indicators and 

Discussions

The correlations of the Kalman generated Euro CLIs against the inflation reference 

cycle are given in Table 5.7. It can be seen from these results that on the whole the 

cyclical patterns of the different CLIs are rather similar and closely reflect the cycles in 

the inflation series. These findings demonstrate that CLI are a useful and powerful 

alternative to statistical methods for forecasting turning points of inflation. Implicit in 

the findings is the fact that techniques like Fourier analysis and Kalman filters can be 

used for constructing very sophisticated CLIs of inflation.

When the results are examined in greater detail, firstly, the longer CLIs are found to be 

more closely related to the inflation cycle. Secondly, CLIs that incorporate Divisia 

monetary indices show a stronger relationship to the inflation cycle than CLIs based on 

Simple Sum monetary indices. This result suggests that Divisia monetary indices would
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provide earlier warning of impending inflation than their Simple Sum counterparts. It 

may also be concluded that the simple summation way of constructing aggregates is 

flawed and therefore the Divisia aggregates should be taken more seriously by policy 

makers and academics.

Table 5.7: Correlations of CLIs with inflation reference cycle for the Euro Area

CLIs Correlation with Inflation Cycle Weight8

SM3 Short 0.99997636 P

DM3 Short 0.99997902 P

SM3 Long 0.99999548 P

DM3 Long 0.99999567 P

Under the heading ‘Weight’, P indicates the component series of the CLI were 

aggregated using principal components weights, while E indicates equal (unity) weights 

were used in the aggregation.

The difference between the Kalman generated Euro CLIs and the inflation reference 

cycle was compared and checked for residual autocorrelation, results are presented in 

Table 5.8. The Durbin Watson test appeal's to indicate that autocorrelation is present in 

the residuals, which suggests that observed time series have more periodic features in 

them than can be detected by the dating rules employed here and the equation used to 

model them in this study. It might also suggest that the phase of the CLIs are out of 

synchronisation with the inflation reference cycle. However, graphical inspection of the 

CLIs plotted against the inflation reference cycle, in Figures 5.7a-5.7d suggests that the 

cycles are very closely synchronised9. Moreover, the prediction error covariance, of 

every model decreases asymptotically rapidly, as exemplified by that of the SM3 Short 

model in Figure 5.8. This is indicative of the adequacy of Kalman generated CLIs.

8 The weights obtained from principal component analysis are given in Appendix B3
9 The long and short term leading indicators are lagged by their average lag and plotted against inflation
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Figure 5.7a Simple Sum as Short Leading Indicator
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Figure 5.7b Divisia as Short Leading Indicator 

Inflation reference cycle against Divisia short
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Figure 5.7c Simple Sum as Long Leading Indicator

Inflation reference cycle against Simple Sum Long
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Figure 5.7d Divisia as Long Leading Indicator 
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Figure 5.8: Prediction error covariance for SM3 Short
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Table 5.8: Residual analysis between inflation reference cycle and CLIs for the Euro

Area

SM3 Short DM3 Short SM3 Long DM3 Long

Durbin Watson 0.025392 0.016368 0.000085 0.000087
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5.3.1 Whether or not the UK should join the Euro Area

There is an ongoing debate on whether or not the UK should join the Euro area. The 

opinions of the public, businesses and professional economists are divided on this issue. 

However, at present it seems that joining the Euro area does not seem to be a very 

popular action. From an economist’s perspective, one of the major concerns is 

membership to the Euro area would most probably deprive the UK of an independent 

monetary policy, that is, the Bank of England will have almost no say in the monetary 

policy, which will be carried out by policymakers at the ECB. The problem for many 

economists is the lack of credibility of the ECB. In contrast to the Bank of England 

which has become very credible because of its record on inflation, the procedures of the 

ECB are much less transparent and its objective less clear and the ECB is felt not to 

have performed so well. This results in a lack of confidence in the Euro in comparison 

with Sterling. Many economists also allude to the experience of Britain in the Exchange 

Rate Mechanism (ERM). During its ERM membership, October 1990 to September 

1992, when Britain had contracted out its monetary policy to Europe, it suffered its 

worst recession, as measured by total output lost, in sixty years, unemployment 

doubled, three-quarter million homes were thrown into negative equity and 100,000 

businesses went bankrupt. But once the UK left the ERM, its economy recovered 

immediately. Leaving the ERM proved to be a blessing for the UK, however, Euro 

membership is irrevocable and there is no guarantee of success. Therefore the UK, 

which is the world’s fifth largest economy, has to be extremely cautious for every step it 

takes towards the Euro. It seems to be the case at the moment, given that the UK has not 

joined the Euro area yet as four of the five tests, introduced by the Chancellor of the 

Exchequer of Britain to analyse the possibility of Britain joining the Euro, have failed. 

In this chapter some further tentative evidence on whether or not the UK should join the 

Euro area is provided.

102



Firstly on comparing the number of cycles in Tables 5.3 and 5.4, it can be noticed that 

in the majority of cases, the number of cycles in the Euro area series is higher than in 

their UK counterparts, implying that the UK economic cycles will be out of phase with 

those of the Euro area. This finding is consistent with those of studies like Artis and 

Zhang (1999), Artis, Krolzig and Toro (1999) and Barrios, Brulhart and Elliot (2002). 

The UK inflation series being out of phase with the Euro area inflation series, as shown 

in Figure 5.9, is of even greater interest from a monetary-policy viewpoint. It can be 

seen that there are times when the UK economy enters recession the Euro area economy 

enters recovery and vice versa. If the UK unites with the Euro area and such 

divergences were to occur in the future, the UK would have to endure interest rates that 

are quite inappropriate to the phase of the UK economic cycle. More specifically, if for 

example the UK is still in recession but the Euro area economy is growing, the ECB 

would certainly want to raise interest rates, to slow down the Euro area boom. Such an 

action could bring the UK economy further down. On the other hand if the UK 

economy is growing fast while the Euro area economy is in recession, the ECB might 

want to cut interest rates. Such an action could have a disastrous effect on the British 

economy- for example this could fuel a house price explosion. Therefore, the initial 

conclusion is that the UK should not join the Euro area. However, the diverging 

behaviour of UK and Euro inflation cycles could be due to different macroeconomic 

policies. Membership of the UK to the Euro area might force the cycles to converge.
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Figure 5.9: UK and Euro inflation Cycle
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The CLIs in Table 5.9 consists of economic series which are considered to have UK 

inflation information content and will be referred to as UK CLIs. The CLIs in Table 

5.10, in addition to containing the component series of their UK CLIs counterparts, also 

consist of appropriate CLIs of the inflation turning point for the Euro area10, these CLIs 

will be referred to as Euro-based UK CLIs. The residual tests are given in Table 5.11 

and 5.12 based on residuals obtained from models in Tables 5.9 and 5.10 respectively. 

Here also the residual tests indicate the presence of autocorrelation, but a graphical 

inspection suggests that the cycles of the indicators and that of inflation are not out of 

synchronisation, as exemplified by that SM4 Long in Figure 5.10, and the prediction 

error covariance of each model decreases asymptotically, as exemplified by the 

prediction error covariance of SM4 Long in Figure 5.11. On comparing the 

corresponding CLIs (for example, SM4 Short from Table 5.9 is compared to SM4 Short 

in Table 5.10), it is found that all the CLIs from Table 5.9 show a closer relationship to

10 The component CLI of, for example, UK SM4 Short CLI is Euro SM3 Short CLI and so on.
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the inflation cycle than those in Table 5.10. Such a finding suggests that Euro area 

series with information content about the Euro area inflation do not help in constructing 

superior CLIs for UK inflation. Therefore the conclusion that can be drawn from this 

finding is that, if the UK unites with the Euro area, ECB measures to combat 

inflationary pressures might not have the same corrective effect on the UK as would 

measures taken based on future UK inflation information. Therefore it can be tentatively 

concluded that the UK would be better off on its own as long as it pursues a sensible 

monetary policy strategy. This reinforces the initial conclusion based 011 graphical 

inspection.

Figure 5.10 UK inflation and SM4 Long indicator
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Figure 5.11: Prediction error covariance of SM4 Long
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Table 5.9: Correlations of UK CLIs with inflation reference cycle for the UK

CLIs Correlation with Inflation Cycle Weights

SM4 Short 0.99998924 E

DM4 Short 0.99998926 E

SM4 Long 0.99999046 E

DM4 Long 0.99998906 E

Under the heading ‘Weight’, P indicates the component series of the CLI were 

aggregated using principal components weights, while E indicates equal (unity) weights 

were used in the aggregation.
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Table 5.10: Correlations of Euro-based UK CLIs with inflation reference cycle for the

UK

CLIs Correlation with Inflation Cycle Weights

SM4 Short 0.99998879 E

DM4 Short 0.99998890 E

SM4 Long 0.99998754 E

DM4 Long 0.99998674 E

Under the heading ‘Weight’, P indicates the component series of the CLI were 

aggregated using principal components weights, while E indicates equal (unity) weights 

were used in the aggregation.

Table 5.11: Residual analysis between UK inflation reference cycle and UK CLIs

SM4 Short DM4 Short SM4 Long DM4 Long

Durbin Watson 0.000066 0.000066 0.000260 0.000280

Table 12: Residual analysis between UK inflation reference cycle and Euro-based UK

CLIs

SM4 Short DM4 Short SM4 Long DM4 Long

Durbin Watson 0.000063 0.000062 0.000357 0.000370

5.4 Summary and Conclusions

In this chapter short and long composite leading indicators of the inflation turning 

points for the Euro Area are constructed using Fourier analysis and Kalman filters. 

Empirical performances of Simple Sum and Divisia aggregates are also compared in the 

composite leading indicator framework. The same framework and graphical analysis are
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also used to provide a tentative answer to the issue of whether or not the UK should join 

the Euro area.

On the whole the cyclical patterns of the different CLIs are rather similar and closely 

reflect the cycles of the inflation series. Such a finding demonstrates that CLIs are a 

useful and powerful alternative to statistical methods for forecasting turning points of 

inflation. It also suggests that Fourier analysis and Kalman filters can be combined with 

the traditional NBER methodology to construct sophisticated CLIs. The finding also 

lends support to the similar seminal study for the UK carried out by Bimier and Wattam 

(2003). It is also of some significance to policymakers and should form the basis of 

future research for constructing leading indicators of inflation cycle or business cycles.

Regarding the relative performance of Divisia and Simple Sum monetary aggregates in 

the Euro area, the results suggest that the Divisia indices appear to offer advantages 

over simple sum indices as macroeconomic indicators. The Divisia based CLIs are 

found to be more closely related to the inflation cycle than Simple Sum based CLIs. 

This finding is consistent with earlier evidence provided by Binner, Fielding and 

Mullineux (1999) and Bimier and Wattam (2003). These findings therefore suggest that 

the behaviour of the Divisia monetary aggregate should be taken more seriously by both 

policymakers and academics. It may be concluded that a money stock mismeasurement 

problem exists and that the technique of simply summing assets in the formation of 

monetary aggregates is inherently flawed.

Based on findings from graphical analysis and CLI analysis it might also be concluded 

that the UK is better out of the Euro area as the monetary policy strategy of the ECB to 

maintain price stability in the Euro area might not be stabilising for the UK. However,
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UK membership of the Euro area might lead to converging behaviour of inflation cycles 

and economic cycles and hence ECB’s monetary policy strategy would have the desired 

effect on the UK economy.
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CHAPTER 6: 

NEURAL NETWORKS VERSUS ECONOMETRIC 

MODELLING IN INFLATION FORECASTING11

In line with the argument in the previous chapter the focus in this chapter will be on 

comparing the indicator properties of Simple Sum and Divisia indices. The monetary 

indices are compared in an inflation forecasting framework. Additional aims in this 

chapter are to investigate, firstly, whether the ECB is justified in using linear models for 

forecasting inflation and, secondly, whether Divisia aggregates are disadvantaged with 

respect to Simple Sum aggregates when comparison between them is made using a 

linear framework.

6.1 Introduction

In the second pillar of the ECB’s monetary policy strategy inflation forecasts play a 

very important role. In order to enable the monetary authorities to tackle appropriately 

inflationary pressures that may arise in the future it is necessary and crucial to produce 

accurate and reliable forecasts of inflation. A large body of research is devoted to 

inflation forecasting (see, for example, De Brouwer and Ericsson (1998) for Australia, 

Stock and Watson (1999) for the US, Drake and Mills (2002) for the Euro area). One 

question that lies in the heart of every forecasting exercise is which forecasting method 

to use? The overwhelming majority of studies on inflation forecasting divide forecasts 

into two main categories:

(1) forecasts from time series models such as ARIMA models and

11 Part of this chapter has been published as a journal paper entitled A Comparison of 
Linear Forecasting Models and Neural Networks: An Application to Euro inflation and 
Euro Divisia and is forthcoming in Applied Economics.
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(2) forecasts from econometric models such as VAR models.

However, such models are based on the assumption of linearity in the data and there is 

now growing evidence that macroeconomic series contain nonlinearities (see, for 

example, Tiao and Tsay (1994) and Stanca (1999)) and thus, though linear models have 

been reasonably successful as a practical tool for analysis and forecasting, they are 

inherently limited in the presence of nonlinearities in data and consequently forecasts, 

as well as other conclusions drawn from them, could be misleading. In view of the 

limitations of linear models, nonlinear time series have gained much attention in the 

recent decades. Several nonlinear models, such as the threshold autoregressive (TAR) 

models (Tong, 1990) and the exponential autoregressive model (EXPAR) (ITaggan and 

Ozaki, 1981), have been developed. However, an immediate problem encountered while 

opting for such nonlinear models in preference to linear models is that there exists no 

unified theory that can be applied to all such nonlinear models as they require the 

imposition of assumptions concerning the precise form of nonlinearity. But there are too 

many possible nonlinear patterns in a particular data set and the prespecified nonlinear 

model may not be broad enough to capture all essential characteristics. An alternative 

way to deal with nonlinearities in data is to use neural networks (NN). In contrast to the 

above model-based nonlinear methods, NN are data driven and are thus capable of 

producing nonlinear models without prior beliefs about the functional forms. NN are 

also highly flexible as they can approximate any continuous function to any degree of 

accuracy (Hornik, Stinchcombe and White, 1989). Thus from a statistical viewpoint the 

nonlinear NN would be expected to perform better than the linear models in inflation 

forecasting and since no such work has been carried out for the Euro area one of the 

main objectives of this chapter is to investigate the performance of NN vis a vis linear 

models in forecasting Euro inflation.
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As it is the case while constructing CLIs, monetary variables are considered to be good 

information carriers for future inflation and hence are often used as predictor variables 

in inflation forecasting models. This feature makes it possible to use the inflation 

forecasting framework to compare the indicator properties of the two monetary 

variables. More specifically, every multivariate inflation forecasting model is specified 

in turn with Simple Sum and Divisia monetary aggregates as monetary variables and 

ultimately their inflation forecasting ability are compared.

As mentioned in the introductory chapter there have been numerous studies comparing 

the empirical performance of Simple Sum and Divisia monetary aggregates. And the 

results have been mixed but leaning in favour of Divisia monetary aggregates. While 

such results have been strong enough to satisfy those already persuaded of the practical 

usefulness of the Divisia monetary aggregates and convince some central banks (Bank 

of England, Federal Reserve Bank, USA) to take an active interest in the construction of 

Divisia monetary aggregates, they have not been successful in persuading central banks 

to abandon Simple Sum monetary aggregates. This leads us to asking the question why 

Divisia aggregates do not always outperform their Simple Sum counterparts given their 

theoretical superiority. Some researchers argue that some measurement problems (such 

as choice of appropriate benchmark rate) have to be overcome before the true Divisia 

index can be calculated (see, for example, Drake, Mullineux and Agung (1997)) for a 

more detailed description of measurement problems). However, one important issue has 

been overlooked by researchers working with monetary aggregates. The issue of the 

presence of nonlinear structures in Divisia aggregates, as evidenced by Barnett and 

Chen (1986, 1988a, b), Barnett and Hinich (1992, 1993), Chen (1988), and DeCoster 

and Mitchell (1991). In the overwhelming majority of cases the comparison of Simple 

Sum to Divisia aggregates is done using linear models. In the event that Divisia perform
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poorly with respect to Simple Sum aggregates when compared using linear models, one 

cannot conclude that the Divisia aggregates are not suitable for monetary policy as it 

may well be that the linear techniques used may not be able to capture the nonlinear 

behaviour of Divisia aggregates, thus undermining their empirical performance. To shed 

some light on this issue the analysis to be earned out, described above, can be very 

readily used. More specifically, by analysing the performance of Divisia aggregates 

relative to Simple Sum aggregates in both linear and nonlinear frameworks it is possible 

to get an idea on whether future research on Divisia aggregates should be conducted in a 

nonlinear framework.

6.2 Literature Comparing Forecasting Method Effectiveness

This section provides a brief review of recent research on comparing linear models, like 

ARIMA and VAR models to nonlinear NN, but makes no attempt to be exhaustive.

NN have gained enormous popularity in the recent years, especially in time series

forecasting. Most applications, however, are in areas where data are abundant as NN are

very data intensive. In macroeconomics, due to the scarcity of large data samples, there

exist only a few studies involving the use of NN that can be used to gauge their

usefulness in the field. Recent studies include that of Johnes (2000) and Moshiri and

Cameron (2000). Johnes (2000) contrasts models of the UK economy constructed using

NN and a variety of econometric models. Moshiri and Cameron (2000) use NN to

forecast Canadian inflation and compare the results to those from time series and

econometric models. The results in these studies, based on out-of-sample forecasts, do

not permit a demarcation between the linear models and NN as the latter are able to

justify their theoretical superiority in only some of the cases. In fact, these observations

reflect the results of quite a large number of such comparative studies across different
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fields. This has led to questions being raised on whether studies implement NN in such 

a way that they stand a reasonable chance of performing well (Adya and Callopy, 1998). 

Indeed, the risks of making bad decisions are extremely high while building NN as there 

are no established procedures available to decide 011 the choices of the parameters of the 

NN, which basically are problem dependent. Although there have been attempts in 

several studies to develop guidelines in making these choices (see, for example, Balkin 

and Ord (2000), Gorr, Nagin and Szcypula (1994)), so far this matter is still subject to 

trial and error. Thus, despite the many satisfactory characteristics of NN, building NN 

for forecasting a particular problem is a nontrivial task. Consequently, tedious 

experiments and time-consuming trial and error procedures are inevitable. However, 

this has not been the case in most of the comparative studies as, in the absence of any a 

priori information about the parameters of the NN, their choice has involved a lot of 

subjectivity (Nag and Mitra, 2002). Such an approach considerably reduces the 

possibilities of exploiting the true potential of the NN and ultimately leads to results 

from a large number of studies being dubious. For example, Moshiri and Cameron 

(2000) perform some experimentation in finding the optimum number of hidden units, 

however their choice for the amount of training required, another equally critical 

parameter, is rather subjective, thereby limiting the power of the NN. In this study, it is 

endeavoured to keep the level of subjectivity to a minimum and appropriately deal with 

other issues prone to affect the performance of NN in an attempt to obtain the best 

possible NN models. Since it is beyond the reach of this chapter to evaluate the 

performance of NN against the entire class of linear models, the well-established and 

extensively used ARIMA and VAR models are chosen as representatives for linear 

models in recognition of their ability to produce reliable forecasts.
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6.3 Data and Preliminary Analysis

Many economic indicators help predict inflation. For example Stock and Watson (1999) 

show 168 variables can be used to forecast US inflation. In this study, instead of using 

so many variables, the list is limited to those that are more closely linked to inflation by 

economic theory or that have been regularly used in previous empirical studies. Thus, in 

keeping with previous studies such as Hendry and Doornik (1994), the variables 

required for multivariate forecasting are: inflation, monetary aggregates- Simple Sum 

M3 and Divisia M3, GDP, GDP deflator and the opportunity cost variables of the 

corresponding Simple Sum and Divisia aggregates. These are quarterly seasonally 

adjusted data for the period 1980Q1 to 2000Q4, defined by the availability of the Euro 

area data. Data on monetary assets, their respective rates of return, GDP and GDP 

deflator have been obtained from Stracca (2004). After allowing for lags and 

transformations estimation is conducted using data from 1981Q2 to 1998Q2, while the 

remaining 10 observations (1998Q3 to 2000Q4) are kept for forecast evaluation 

(testing). The log of all variables has been taken and thus

sm3t is the log of real Simple Sum M3, 

dm3, is log of real real Divisia M3, 

y t is the log of real GDP,

dualsm3t is the log of the opportunity cost variable for Simple Sum M3 and 

dualdm3t is the log of the opportunity cost variable for Divisia M3. 

p, is the logarithm of the GDP deflator and Ap, = p t -  p t_} is the quarterly inflation 

rate.
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Figure 6.1: Simple Sum M3 index versus Divisia M3 index
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sm3t and dm3I are contrasted in Figure 6.1. The Simple Sum aggregate begins to

increase faster than its Divisia counterpart in 1980 and diverges significantly afterwards. 

To check the stationarity properties of the series the Augmented Dickey and Fuller 

(1979) unit root test, described in Section 4.4 Chapter 4, is used. The results reported in 

Table 6.1 show that for the majority of the variables the null hypothesis of unit root and 

hence nonstationarity in the levels cannot be rejected i.e., most variables are not 1(0). 

The variables dualsm3t and dualdm3, are marginally stationary, as the hypothesis of 

stationarity in levels is not rejected at 5% level but rejected at the 1% level. Unit root 

tests on the first differences of the variable reveal that all of them are stationary. Hence 

all variables appear to be 1(1) with the exception of dualsm3t and dualdm3t which may 

be borderline I(0)/I(1) variables .
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Table 6.1: ADF unit root tests (1980:1-1998:2)

Variable ADF Test Statistics Specification

sm 3 -1.503 [T, 1]
Asm3, -4.834*** [C, 0]
dm3, -2.288 [T, 1)
Adm3t -5.151*** [C, 0]

y, -2.280 [T, 4]
Ay, -6.932*** [C, 0]

Pt -2.451 [T, 2]

Ap, -2.785 [T, 1]

A 2p, -14.316 [C, 0]
dualsm3t -3.825** [T, 1]
Adualsm3, -5.680*** [C, 1]
dualdm.3, -3.781** [T, 1]
Adualdm3, -5.760*** [C, 1]

Notes:

T: constant and trend, C: represents constant 

[, n], n: the number of lags used 

* * *: significant at 1%, **: significant at 5%

Critical values are from MacKinnon (1991)

6.4 Model Specification and Estimation

In this section the main decisions regarding the specification and estimation of the three 

classes of model (univariate ARIMA, multivariate VAR and NN) are presented. While 

the ARIMA and VAR methods are widely used, the NN method is a relatively new 

method in Economics. Thus, only brief accounts for the ARIMA and VAR methods are 

presented and a more detailed account for the NN method is given.
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6.4.1 Univariate Time Series Model

The ARIMA is a general class of univariate time series models which represents current 

values of a time series by past values of itself (autoregressive term (AR)) and past 

values of stochastic errors (moving average terms (MA)). The acronym I refers to the 

number of times (d) the time series has to be differenced to render it stationary. A 

nonseasonal ARIMA(/?,t/,g) process can be represented as

<f>{L){\-L)dxt =0(L)eal (6.1)

where s at is independently and normally distributed with zero mean and constant 

variance. <f>(L) and 0{L) are the AR and MA polynomials, respectively with orders p

and q such that <j>(L) = 1 -<f)xL  (f)pLp and 6{L) = 1 - 6]L  0qLq, where L

represents the backshift operator such that U y t -  y t_s . A  slightly modified Box and

Jenkins approach (Box and Jenkins, 1970) is used for identifying the best model for 

ARIMA forecasting. Thus, instead of inspecting the autocorrelation function (ACF) and 

partial ACF (PACF) in the identification stage a range of models, represented in Table 

6.2, is estimated with d - 2  (for p t from Section 6.3 and since Ax, = (1 -  L)x, ,

(1 - L ) 2p, = A2p t ) and values o fp  and q varying from 0 to 3 in a first step and retain

the models which pass the diagnostic tests (such as, no autocorrelation and conditional 

heteroscedasticity, significance of parameters). In a second step the best ARIMA model 

is chosen to be the one which provides the best out-of-sample forecasts. An ARIMA 

model with the orders of p  and q equal to 6 is also estimated. We then use Hendry’s 

(1993) general-to-specific methodology to obtain a more parsimonious model.

12 The reason for using nonseasonal ARIMA models is that the data provided to me had already been 
seasonally adjusted.
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Table 6.2: ARIMA models considered. Y represents Yes and N represents N (1980:1-
1998:2)

Models Retained
ARIMA(0,2,1) Y
ARIMA(0,2,2) N
ARIMA(0,2,3) N
ARIMA(1,2,0) Y
ARIMA( 1,2,1) N
ARIMA(1,2,2) Y
ARIMA(1,2,3) N
ARIMA(2,2,0) N
ARIMA(2,2,1) N
ARIMA(2,2,2) N
ARIMA(2,2,3) N
ARIMA(3,2,0) N
ARIMA(3,2,1) N
ARIMA(3,2,2) N
ARIMA(3,2,3) N
ARIMA(6,2,6) Y

After the first step only 4 ARIMA models were retained as the others exhibit 

insignificant parameters and out of the 4 remaining models the ARIMA(0,2,1) is the 

preferred ARIMA specification because it outperforms the others in terms of out-of- 

sample forecasting accuracy. Such an approach is adopted in choosing the ARIMA for 

forecasting so as to ensure that the performance of NN is not overstated. The estimated 

model is given below and the test statistics given are computed from the residuals of the 

estimated models. JB represents the Jarque-Bera test for normality, LM(&), represents 

the test for autocorrelation of order k, and ARCH(£) represents the test for conditional 

heteroscedasticity of order k (for more details on this tests, see for example, Hendry 

(1995)). None of the diagnostic tests is significant at conventional levels and, hence, the 

residuals appear to be normally distributed and free from autocorrelation and 

autoregressive conditional heteroscedasticity.
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A2/?, = -0.510£-„_,
(0.102) (6'2)

Sample: 1981Q2-1998Q2

R 2 = 0.23 J.B  = 0.16 [0.92] S.E. of regression = 0.002525

LM(1) = 0.00 [1.00] LM (4) =1.61 [0.81] LM (8) = 4.91 [0.77]

ARCH (1) = 0.40 [0.52] ARCH (4) = 7.28 [0.12] ARCH (8) = 10.81[0.21]

Values in parentheses under the estimated coefficients are standard errors and values in square 

brackets after the values of the test statistics are the corresponding values.

6.4.2 Multivariate Vector Autoregressive (VAR) Models

The advantage of VAR models over ARIMA models is that they can incorporate more 

information in terms of other time series instead of just past observations and errors of 

the series to be forecast. Having established in Section 6.3 that the variables entering the 

VAR are 1(1), investigation is carried out to determine whether they are cointegrated, 

that is, verify whether some linear combination of these nonstationary variables is 

stationary. In the absence of cointegration between the variables a common forecasting 

procedure would be to conduct a VAR on the first differences. However, if 

cointegrating relationships can be established between the variables, the VAR should 

also include the lagged cointegrating error term (vector error correction models 

(VECM)) (Granger, 1981). This prevents neglecting long run information contained in 

the levels of the variables and it has been shown that such an approach leads to 

improved forecasting accuracy (Lesage(1990), Shoesmith (1992, 1995)).

6.4.2.1 Testing for Cointegration

To check for cointegration, the Johansen and Juselius (1990) procedure, described in 

Section 4.3 of Chapter 4, is used. Here zt = (M  n y,,R °pp ,/S.p,)1 where
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M, = sm3, and dm3t and R°pp = dualsm3t and dualdm3t . As mentioned earlier 

cointegration results are sensitive to the choice of the lag length (k) of the VAR model. 

Therefore, in line with the discussion on this issue in chapter 4, the choice of the 

appropriate lag length is combined with misspecification tests to ensure that the 

underlying assumptions of the VAR model are satisfied (Johansen, 1995). The 

experimentation uses VAR lag lengths of 1 to 8 and for VARs of order 6 for each 

system, the LM and JB tests, represented in Table 6.3, do not suggest any 

misspecification and hence is the preferred lag length.

Table 6.3: Multivariate Autocorrelation and Normality Tests (1980:1-1998:2)

Simple Sum Divisia

Autocorrelation test: 

LM (1) 15.04 21.92

(0.52) (0.15)

LM (4) 22.09 17.80

(0.14) (0.34)

Jarque Bera Normality test 7.47 11.22

(0.49) (0.19)

Note: Values in parenthesis are p-values. The LM-tests are asymptotically distributed 
(16), whilst the normality test is asymptotically distiibuted ̂ (8).

To determine the appropriate deterministic components for the VAR models, the 

Pantula (1989) principle is applied to Model 2, Model 3 and Model 4 described in 

Section 4.3 of Chapter 4. Results from the application of the Pantula (1989) principle, 

reported in Table 6.4, suggest that Model 3 should be used for the Simple Sum system 

and the rank is two whereas Model 3 should be used and the rank is three for the Divisia 

system.
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Table 6.4: Simultaneous choice of rank and deterministic components (1980:1-1998:2)

p-r r

Simple Sum Divisia

Model 2 Model 3 Model 4 Model 2 Model 3 Model 4

80.30 58.65 65.81 81.13 56.86 66.78

4 0 49.92 43.84 58.96 49.92 43.84 58.96

49.19 33.46 39.26 48.05 33.56 43.38

3 1 31.88 26.70 39.08 31.88 26.70 39.08

24.00 9.96 14.08 28.49 16.42 24.34

2 2 17.79 13.31 22.95 17.79 13.31 22.95

7.41 2.34 3.57 11.88 0.36 7.82

1 3 7.50 2 .71 10.56 7.50 2.71 10.56

Note: Numbers in italics are 90 percent quantiles o f the trace test tabulated in Johansen 
(1995)

Here also the number of cointegrating vectors is found to be greater than one in each 

case. The cointegrating vectors for both systems are presented in Table 6.5. However 

for further analysis, in this chapter, the most common approach of selecting the one 

cointegrating vector which is consistent with economic theory in terms of the signs and 

magnitude of the coefficients of its parameters is chosen (see, for example, Drake, 

Chrystal and Binner (2000)). On this basis the second cointegrating vector in each case 

is selected.

Table 6.5: Cointegration vectors (1980:1-1998:2)

Money GDP Inflation Opp. cost Trend

Simple Sum -1 1.181 -40.345 0.633
-1 1.451 -1.809 -0.055 -

Divisia -1 2.596 45.946 -0.232
-1 1.220 -2.054 -0.032 -

-1 1.304 -3.186 0.111 -
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6.4.2.2 Short-run Equations for Inflation

In this section estimation results for single error correction equations of inflation are 

presented. For both Simple Sum and Divisia, the corresponding second cointegrating 

vector is used for specifying their short-run equations of the form of Equation 4.7 for 

inflation. Money affects prices with long lags, approximately two years and hence 7
n

lags of each of the independent variables have been used. Following the general to 

specific methodology (Hendry, 1993), parameters insignificant at the 5% significance 

level are deleted and the equations rerun, using the ordinary least squares method, until 

just significant parameters remain. The error correction terms are kept in the equations 

at all times and eliminated in the final stage if they were not significant. This strategy 

eventually results in the equations given by Equations 6.4 and 6.5 for the Simple Sum 

M3 and Divisia M3 respectively. Here also the diagnostic tests do not show any signs of 

misspecification.

Simple Sum

A2p t = 0.121A.sw3,_2 -  0.533A2/?f_] + 0.000062Res 1,_, + s1(
(0.054) (0.102) (0.000026)

Resl are the residuals from 2nd cointegrating vector of Simple Sum M3 system 

Sample: 1981Q2-1998Q2

R 2 = 0.30 J.B  = 0.41 [0.81] S.E. of regression = 0.002454

LM (1) = 0.38 [0.54] LM(4)=1.61 [0.81] LM(8) = 8.61 [0.38]

ARCH (1) = 1.70 [0.19] ARCH (4) = 1.61 [0.81] ARCH (8) = 2.22 [0.97]

Values in parentheses under the estimated coefficients are standard errors and values in square 

brackets after the values of the test statistics are the corresponding p-values.

13 The computations reported in this section were carried out on Eviews 4.0
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Divisia

A2p, = 0.141AJw3,_3 -  0.537A2p t_x + 0.000070Res2,_] + s31
(0.054) (0.102) (0.000027)

Res2 are the residuals from 2nd cointegrating vector of Divisia M3 system 

Sample: 1981Q2-1998Q2

R 2 — 0.32 J.B  = 0.24(0.88) S.E. of regression = 0.002908

LM (1) = 1.34 (0.25) LM (4) = 3.18 (0.53) LM (8) = 5.94(0.65)

ARCH (1) = 0.05 (0.83) ARCH (4) = 5.64 (0.23) ARCH (8) = 8.81 (0.36)

Values in parentheses under the estimated coefficients are standard errors and values in square 

brackets after the values of the test statistics are the corresponding /7-values.

6.4.3 Nonlinear Models: Neural Networks (NN)

Neural networks are composed of highly interconnected processing elements (nodes) 

that work simultaneously to solve specific problems. In time series analysis they are 

used as nonlinear function approximators. They take in a set of inputs and produce a set 

of outputs according to some mapping rules predetermined in their structure.

Figure 6.2: NN model

Input Layer Hidden Layer Output Layer
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In this chapter the most popular form of NN called the feedforward network is 

considered. Figure 6.2 depicts such a network that consists of layers of nodes. The input 

layer and output layer represent the input and output variables of the model. Between 

them lie one or more hidden layers that progressively transform the original input 

stimuli to final output and hold the networks ability to learn nonlinear relationships. For 

a feedforward NN with one hidden layer, the general prediction equation, given by 

Faraway and Chatfield (1998), for computing a forecast of y, using an input vector

(x,, x2 , • • •, xm ) may be written in the form

y, = /0„ + + £  w » x , ) ) (6.6)
h i

where wch denote the weights for the connections between a constant input, usually 

taken as 1, and the hidden nodes and wcn denotes the weight of the direct connection 

between the constant input and the output. The weights wih and who denote the weights 

for the other connections between the input and hidden nodes and between hidden and 

the output nodes respectively. The two functions /  and g  denote the activation 

functions used in the hidden layer and the output layer respectively.

NN have to be trained in order to be able to use them to perform certain tasks like 

predicting a response corresponding to a new input pattern. The training procedure 

involves iteratively modifying the randomly initialised weights of the NN to minimise 

some kind of error function usually the mean square error (MSE), E O', ~ y , ) 2 1n •

Various standard optimisation techniques such as the conjugate gradient and quasi- 

Newton methods exist for minimising the error function, however, in application 

studies, the backpropagation algorithm (Rumelhart, Hinton and Williams, 1986) 

developed by the neural network community is the most popular training algorithm
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used. Standard optimisation techniques tend to converge faster than the backpropagation 

algorithm but this advantage is overshadowed by the fact that the latter is 

computationally more efficient (Monterola et al., 2002). Moreover, the backpropagation 

algorithm generally has better generalisation (performs well on unseen data) than 

standard optimisation techniques (Cubiles-de-la-Vega et al., 2002), hence is the 

preferred algorithm despite the greater time required for convergence.

However, it is well known that the backpropagation algorithm used for training suffers 

from local minimum problem (see for example, Faraway and Chatfield (1998)). 

Randomly selecting initial weights for training is a common approach, however, if these 

initial weights are located close to local minima, the algorithm is likely to converge to a 

local minimum. Some researchers have tried to overcome this problem by, for example, 

using genetic algorithms (Shazly and Shazly, 1999) or simulated annealing (Masters, 

1993). Even then there is no assurance that such measures will help the optimisation 

algorithm to converge to a global minimum. The most commonly used method to find 

the best local minimum or even the global minimum is followed, more specifically, 

training is restarted with different weights. The actual number of restarts employed in 

practice is generally limited by the computing time required to train a NN (Plasmans, 

Verkooijen and Daniels, 1998).Therefore in this work 10 restarts are used.

6.4.3.1 Designing the Neural Networks

Apart from the weights of the NN, there are many other parameters, like the number of 

input variables, the combination of input variables, the number of hidden layers and 

hidden nodes, the types of activation functions in the hidden and output layers, the value 

of the learning rate and the momentum rate and the amount of training which are also 

unknown. As mentioned earlier there are no established rules that can be used to choose
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the appropriate values of these parameters and trial and error has to be used to obtain 

their appropriate values. Clearly, experimenting over the whole parameter space of the 

parameters is beyond the scope of this chapter. In this study, therefore, the focus will be 

on experimenting with different values of key parameters like initial weights, the 

number of hidden nodes, amount of training required, different sets of input variables 

and we attention is drawn to the other issues that need to be considered while making 

the choices for the remaining parameters of the NN.

The common practice has been to construct NN using the same input variables as in 

VAR models to allow direct comparison between them. However, such a procedure is 

biased towards the linear model as the regressors from the linear equation tell us about 

linear correlation and this is not appropriate for nonlinear relationships modelled by the 

NN (Zhang, Patuwo and Hu, 1998). For these reasons, in this chapter the ‘best’ set of 

input variables for the NN is used. A modified version of the preferred model of the 

relationship between inflation and money of Binner, Gazely and Chen, (2002) adapted 

originally from Dorsey (2000, pp.34) given by Equation 6.7 below is used. However, 

for comparative purposes NN are constructed using the set of input variables of the 

VAR models and using the set of input variables of the VAR models from which the 

error correction term has been excluded.

A2 P, = /(A M ,.,, A M,_2 ,A M , , AM,_„, A ) + (6.7)

Hidden layers play a very important role for the successful applications of the NN as 

they allow NN to perform nonlinear mapping between the input and the output. Without 

hidden nodes, NN are equivalent to linear statistical models (see, for example, Warner 

and Misra (1996)). It has been shown that a 3 layer NN, i.e., a NN with only one hidden 

layer can approximate any function to any degree of accuracy (Homik, Stinchcombe
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and White, 1989). Two hidden layer NN could be more beneficial to certain problems 

(Barron, 1994), however, given the relatively small sample and the fact that the number 

of parameters increases rapidly with each layer (Tkacz, 2001), the focus is on 3 layer 

NN in the present study.

The choice of the number of hidden nodes is more complicated. Usually few hidden 

nodes are preferred as there is less likelihood of overfitting, i.e. encountering problems 

of drawing too many characteristics from the data used for training, and a higher 

tendency to yield better generalisation. But NN with too few hidden nodes may not have 

enough power to model and learn the richness of the data (Church and Curram, 1996). 

Similar problems are encountered if NN are not trained to the right degree. Inadequately 

training NN will lead to missing patterns in the data while excessive training will result 

in overfitting. A grid search is used to jointly determine the appropriate number of 

hidden nodes and the amount of training required (Gorr, Nagin and Szcypula, 1994). 

Five networks with hidden units between 1 and the number of input variables (Balkin 

and Ord, 2000) that is five here are considered. Preliminary investigation over the 

amount of training ranging from 10,000 to 50,000, suggested that better results are 

obtained in the range 15000 to 20000 for the Simple Sum NN models and in the range 

10000 to 15000 for the Divisia NN models. Therefore, extensive experimentation is 

constrained to these ranges with increments of 1000. Since 10 restarts were performed 

for each point in our grid, this means that 300 NN for each set of input variables and 

monetary aggregate are investigated, i.e. a total of 1800 NN are run in this investigation.

The logistic function f ( x )  = l/( l + e~A ) is the most popular activation function among

researchers for the hidden layer. However, the hyperbolic tangent (tank) function,

f { x )  = (ex - e~ x)/(ex + e~x) is used as it has been used very successfully in inflation
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forecasting experiments (see, for example, Binner, Gazely and Chen, (2002)). It is also 

generally held that tanh gives rise to faster convergence of training algorithms than 

logistic functions (Bishop, 1995). For the output layer, the recommendation of 

Rumelhart et al. (1995) is followed who suggest the use of the linear function f ( x )  = x 

for time series prediction with continuous output. The remaining parameters for the NN, 

the learning and momentum rates for the backpropagation algorithm are set as the 

default values of Matlab 6.0, i.e. 0.01 and 0.9 respectively (see, for example, Bishop 

(1995), for more details on these parameters).

In addition to the parameters of the NN, there are some other factors such as the data 

normalisation and performance measures that affect the performance of NN (Zhang, 

Patuwo and Hu, 1998). In practice NN training can be made more efficient by 

preprocessing the data as this enables the network to extract valuable information 

(Gately, 1996) and to significantly reduce the time necessary to complete training 

(Krunic, Krcmar and Rajakovic., 2000). In this chapter one of the most common forms 

of preprocessing which consists of rescaling the data in the range [-1, 1] so that they 

have similar values is used. This choice is motivated by the fact that the input variables 

used for NN modelling differ by several orders of magnitude and the sizes of variables 

do not necessarily reflect their relative importance in finding out the required outputs 

(Bishop, 1995). Another issue of concern is related to performance measures. There are 

several measures of accuracy but each of them has advantages and limitations 

(Makridakis, Wheelright and McGee, 1983). For this reason none of them is universally 

accepted as the best measure of accuracy and hence in this study a number of 

performance measures will be used.
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6.5 Predictive Performance Assessment

NN should be tested on a validation set after they have been trained. The NN leading to 

the minimum forecast error in the validation set should provide the best generalisation 

and are normally retained to evaluate their forecasting performance on a test sample. 

However, one of the main disadvantages of NN, as mentioned above, is that they 

require an enormous amount of data, if the series are short or not representative of the 

process being modelled NN might not perform well (Balkin and Ord, 2000). Thus in 

studies with small data sets it is common to use the test set for both validation and 

testing purposes (Zhang, Patuwo and Hu, 1998). That is the route followed in this 

chapter given that the data set available to me is quite modest by the standards of NN 

analysis.

Three traditional performance measures are first used to compare the fit and forecasting 

accuracy of alternative models: root mean square error (RMSE), mean absolute error 

(MAE), and mean absolute percentage error (MAPE). Before calculating these measures 

the NN forecasts are backtransformed to the same units as their actual values to make 

them comparable.

Figures 6.3a, 6.3b and 6.3c show the within-sample RMSE, MAE and MAPE

performances respectively and Figures 6.3d, 6.3e and 6.3f show the corresponding out-

of-sample performances of the Simple Sum NN constructed with the set of input

variables as in Equation 6.7. The corresponding patterns shown by the RMSE, MAE

and MAPE, within-sample and out-of sample, for different number of hidden nodes and

amount of training across different sets of input variables are in general similar. A

comparison of the within-sample RMSE to that of the out-of-sample RMSE reveals that

as the number of hidden nodes and amount of training are increased the within-sample
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forecast error decreases but, as expected, the reversed pattern is observed with the out- 

of-sample forecasts. This clearly demonstrates that with too many hidden nodes and 

excessive training, poor generalisation will occur and hence the need to appropriately 

choose these parameters. The MAE shows a similar pattern to that of the RMSE, 

however, the movement across both surfaces is not always in congruence. The 

discrepancies in the performance measures become more apparent as the RMSE and 

MAE are compared to the MAPE. The differences are apparently due to the inherent 

limitations in each of the performance measures. Therefore, these observations show 

that choosing the best model on the basis of just one performance measure would be 

misleading and thus in the current study the best model is chosen to be the one which 

consistently shows small forecast errors across each of the three performance measures 

and which also provides the best trade-offs between within-sample and out-of-sample 

forecast errors. On this basis, the amount of training and hidden nodes chosen are 

reported in Table 6.6 for each set of input variables (sets A, B and C also defined Table 

in 6.6) for each monetary aggregate. One noticeable pattern in these values is that the 

amount of training or number of hidden nodes or both increase as the number of input 

variables increases. This could be due to the fact that the higher the number of input 

variables, the higher the level of complexity of the NN and hence more hidden nodes 

or/and training are required to learn the relationship between input and output variables. 

The static forecasting performance of the ARIMA and VAR models are reported in 

Tables 6.7 and 6.8 respectively, while those of the NN based on the three different sets 

of input variables are reported in Tables 6.9, 6.10 and 6.11.
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Figure 6.3a: Within-sample
RMSE performance of NN for the
Simple Sum M3

Figure 6.3d: Out-of-sample RMSE
performance of NN for the Simple Sum M3

No. of iterations

Figure 6.3b: Within-sample MAE 
performance of NN for the Simple 
Sum M3

Figure 6. 3e: Out-of-sample MAE 
performance of NN for the Simple Sum M3

No, of iterations

Figure 6.3c: Within-sample Figure 6.3f: Out-of-sample MAPE
MAPE performance of NN for the performance of NN for the Simple Sum M3
Simple Sum M3

of hidden

of hidden

of hidden
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Table 6.6: Amount of training and hidden nodes used for the different networks

Simple Sum Divisia

Input Variables Amount of 
training

No. of hidden 
nodes

Amount of 
training

No. of hidden 
nodes

Set A:
Am3,_2 / Ad3,_2, 

A2 TV!

15000 2 10000 2

Set B:
Am3t_2 / Ad3,_2, 
A2p l̂ ,R es,_]

16000 4 10000 4

SetC:
AM t_x, AM t_2,
a m ,_3,a m ,_4,

a2/v ,

18000 5 12000 2

Table 6.7: Within-sample and out-of-sample fit measures using the best ARIMA

model for inflation

Within-Sample Out-of-Sample
RMSE 0.002502 0.001601
MAE 0.002070 0.001145
MAPE 139.7463 103.6850

Table 6.8: Within-sample and out-of-sample fit measures using VAR model

Simple Sum Divisia
Within-
sample

Out-of-sample Within-
sample

Out-of-sample

RMSE
MAE
MAPE

0.002383
0.001906
168.24%

0.001456
0.001113
157.34%

RMSE
MAE
MAPE

0.002334
0.001814
166.48%

0.001495
0.001164
166.62%
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Table 6.9: Within-sample and out-of-sample fit measures using NN constructed using
the variables in set A

Simple Sum Divisia
Within-
sample

Out-of-sample Within-
sample

Out-of-sample

RMSE
MAE
MAPE

0.002381
0.001935
166.04%

0.001455
0.001112
153.69%

RMSE
MAE
MAPE

0.002383
0.001854
164.56%

0.001466
0.001147
144.46%

Table 6.10: Within-sample and out-of-sample fit measures using NN constructed
using the variables in set B

Simple Sum Divisia
Within-
sample

Out-of-sample Within-
sample

Out-of-sample

RMSE
MAE
MAPE

0.002412
0.001924
157.06%

0.001179
0.000983
153.84%

RMSE
MAE
MAPE

0.002416
0.001865
154.53%

0.001807
0.001324
161.21%

Table 6.11: Within-sample and out-of-sample fit measures using NN constructed
using the variables in set C

Simple Sum Divisia
Within-
sample

Out-of-sample Within-
sample

Out-of-sample

RMSE
MAE
MAPE

0.002050
0.001585
152.41%

0.001345
0.001071
150.62%

RMSE
MAE
MAPE

0.002192
0.001689
142.19%

0.001316
0.000999
111.61%
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A comparison of the results from the ARIMA and VAR forecasts suggest the 

multivariate models provide more accurate forecasts of Euro inflation. Looking at 

RMSE for example, the out-of-sample forecasting accuracy increases by about 9% 

with VAR models when compared to ARIMA models and hence the VAR models are 

retained as representatives for linear- models for comparison with nonlinear- NN. On 

comparing the results from VAR modelling and NN constructed with the same input 

variables as in the VAR models (set B), it is not possible to discriminate between 

them as both of perform equally well in twelve comparisons of the within-sample and 

out-of-sample forecasts of the two monetary indices. NN constructed with the input 

variables from set A show a better performance but are still outperformed by the 

linear models in a few cases. However, a comparison of the results from the VAR 

modelling to those from NN constructed input variables from set C, reveals that 

superior inflation forecasts are achieved using NN, both within-sample and out-of- 

sample, in every case examined. Looking again at the RMSE, for example, out-of- 

sample forecasting accuracy increases by approximately 10% with NN over VAR 

models. These results demonstrate the sensitivity of the NN to the choice of input 

variables and reveal that input variables used for building the linear models are not 

necessarily the most appropriate ones for the nonlinear models.

The relative forecasting potential of the VAR and NN models are also evaluated using 

a simple encompassing test (Fair and Shiller, 1990). Such a test has some advantages 

over the other performance measures (RMSE, MAE, MAPE) to compare the 

forecasts. Firstly, it can differentiate between competing forecasting models even if 

there are no big differences in the performance measures. Secondly, it helps to 

discriminate between models in cases where the performance measures are in favour
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of a particular model while despite having larger performance measures other 

competing models might contain vital information unique to them. Thirdly, such a test 

gives some statistical meaning to the forecasts of the NN relative to those of the linear 

models. The test is earned out by regressing the actual values of the changes in 

inflation on a constant, linear model forecasts ( f L) and NN forecasts ( / N). If the t 

tests show that the coefficients of the forecasts of both models are significantly 

different from zero, then both models contain independent information that have 

power in forecasting the changes in inflation. If one of the coefficients of the 

forecasting models is significantly different from zero and the other one is not then 

the latter is just a subset of the former. In addition, the model with the significant 

coefficient contains further relevant information. Finally, if none of the coefficients 

are significantly different from zero then neither model is useful in forecasting the 

changes in inflation. The best NN forecasts obtained by using the input variables in C, 

are evaluated against the VAR forecasts. The results from the encompassing tests 

carried out for within-sample and out-of-sample forecasts are given below. The JB, 

LM and ARCH tests do not show any signs of misspecification. The results reveal 

that in every case only the coefficient of the NN forecast is significant at the 

conventional 5% significance level which implies that that NN forecasts are 

statistically superior to the linear models forecasts and hence VAR forecasts are 

simply a subset of the NN. These results further confirm that better macroeconomic 

forecasts can be achieved with the use of nonlinear NN.
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Simple Sum

Within-sample

A 2p, = 0.0000007- 0 .1 6 5 /L +1.128 f N +£.
(0.000253) (0.287) (0.232)

Sample: 1981Q2-1998Q2

R 2 = 0.49 J. B ~ 2.40 [0.30] S.E. of regression = 0.002090

LM (1) -  2.47 [0.12] LM (4) = 5.35 [0.25] LM (8) = 12.30 [0.14]

ARCH (1) -  0.26 [0.62] ARCH (4) = 0.63 [0.96] ARCH (8) = 3.80 [0.88]

Values in parentheses under the estimated coefficients are standard errors and values in 

square brackets after the values of the test statistics are the corresponding /7-values.

Out-of-sample

A 2p,  =-0.000615-0.0933 f L +1.349f N + s 5t 
(0.0006) (1.005) (0.689)

Sample: 1998Q3-2000Q4

R 2 = 0.41 J.B  = 0.67[0.72] S.E. of regression = 0.001375

LM (1) = 0.25 [0.62] LM(2) -  0.53 [0.77] LM (4) = 3.60 [0.46]

ARCH (1) = 1.46 [0.23] ARCH(2) = 2.84 [0.24] ARCH (4) = 5.82 [0.21]

Values in parentheses under the estimated coefficients are standard errors and values in 

square brackets after the values of the test statistics are the corresponding /7-values.

137



Divisia

Within-sample

A2p, =0.00000268 + 0.0647f L +0.960f N +e{
(0.000272) (0.361) (0.323) ('6' 1°''

Sample: 1981Q2-1998Q2

R 2 = 0.42 J.B  = 0.40 [0.82] S.E. of regression = 0.002241

LM (1) = 3.80 [0.15] LM (4) = 3.83 [0.43] LM (8) = 10.39 [0.24]

ARCH (1) = 0.14 [0.71] ARCH (4) = 3.69 [0.45] ARCH (8) = 7.87 [0.45]

Values in parentheses under the estimated coefficients are standard errors and values in 

square brackets after the values of the test statistics are the corresponding /^-values.

Out-of-sample

A2p, = -0.00041 1 -0 .9 6 9 /l +1.633/*  + s.
(0.000551) (0.925) (0.830)

Sample: 1998Q3-2000Q4

i?2 =0.42 J.B = 0.16[0.92] S.E. of regression = 0.001365

LM (1) = 0.74 [0.39] LM(2) = 0.77 [0.68] LM (4) = 6.26 [0.18]

ARCH (1) = 0.47 [0.49] ARCH(2) = 1.79 [0.41] ARCH (4) = 5.93 [0.20]

Values in parentheses under the estimated coefficients are standard errors and values in 

square brackets after the values of the test statistics are the corresponding -values.

Finally, on comparing the inflation forecasting performance of the two monetary 

indices firstly within a linear framework, it is found that Divisia M3 has better within-
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sample convergence than its Simple Sum counterpart. However, the main property 

sought here is better generalisation, i.e. better out-of-sample performance that 

apparently Divisia fails to provide. When the impact of the two monetary indices on 

the prediction accuracy is evaluated in a nonlinear framework, overall the Simple 

Sum index has better within-sample convergence, however, the Divisia index clearly 

outperforms it in terms of out-of-sample convergence. These results do seem to 

suggest that one of the reasons for the poor historical performance of the Divisia 

index against the Simple Sum index could be attributed to incorrectly choosing linear 

models to evaluate the two monetary indices. These results corroborate the findings of 

Binner and Gazely (1999), Binner, Gazely and Chen (2002), Binner et al., (2003) and 

Gazely and Binner (1998, 2000) who have consistently found that the Divisia index 

outperforms its Simple Sum counterpart when evaluated using NN.

6.6 Summary and Conclusions

There is growing evidence that macroeconomic series contain nonlinearities but linear 

models such as ARIMA and VAR models are widely used for forecasting such series, 

despite the inability of linear models to cope with nonlinearities. In this chapter new 

empirical evidence on the relative Euro inflation forecasting performance of linear 

ARIMA and VAR models and the nonlinear NN is provided. Also investigated is the 

relative empirical performance of Simple Sum and Divisia indices and whether the 

historically poor performance of the theoretically superior measure of monetary 

services, Divisia, relative to its Simple Sum counterpart could be attributed partly to 

the incorrect choice of linear models used to evaluate them.
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A considerable amount of research has been carried out in the recent years on NN. 

However, despite their ability to capture nonlinear relationships, findings generally do 

not allow any discrimination between conventional linear statistical techniques and 

NN. One of the main reasons for this is that there are no well defined guidelines to 

build NN for solving a particular task and then construction has involved a lot of 

subjectivity on the part of researchers, thereby considerably restricting the power of 

NN and ultimately leading to the results of many studies being dubious. In this study 

it has been tried to keep the level of subjectivity to a minimum in order to obtain the 

best possible NN forecasting models and some other issues likely to affect the 

performance of NN are also considered. The best NN models in this study outperform 

the traditionally used linear ARIMA and VAR models in macroeconomic forecasting 

and are also statistically superior to them. The gain in forecasting accuracy in the NN 

is very likely to have emerged from the capability of NN to capture nonlinear 

relationships between macroeconomic variables. The first conclusion to be drawn 

from this result is that despite being constrained by the lack of large data samples in 

macroeconomics, NN can be successfully applied in the field, provided extreme care 

is taken in designing the NN. However, at this stage policymakers, such as the ECB 

who require inflation forecasts, would not be recommended to abandon the use of 

conventional statistical techniques in favour of NN. The latter still have some very 

serious limitations, e.g., particularly time consuming trial and error procedures and 

the lack of available statistical techniques for analyzing the relationship between input 

and output variables. However, until such problems are overcome, it is 

macroeconomic forecasters can use NN as a complementary tool for forecasting.
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It is widely accepted that the Simple Sum procedure is inappropriate and the weighted 

Divisia index is a superior measure of monetary services flow. However, the Divisia 

index does not always outperform its Simple Sum counterpart in empirical studies, 

explaining the reluctance of the ECB to use the weighted monetary aggregate instead 

of Simple Sum M3. The results of this study suggest that the poor performance of the 

Divisia index can be attributed to a certain extent to the incorrect choice of linear 

statistical methods used to evaluate its performance relative to the Simple Sum index, 

as the Divisia clearly outperforms the Simple Sum index when evaluated in a 

nonlinear framework but not in a linear' framework. Thus the recommendation to the 

ECB would be to at least pay more serious attention to the behaviour of the Divisia 

monetary aggregate.
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CHAPTER 7:

SUMMARY, CONCLUSIONS AND FUTURE 

WORK

7.1 Summary and Conclusions

The thesis focuses mainly on comparing the empirical performances of Simple Sum 

and Divisia monetary aggregates for the Euro area. The motivation to work with 

monetary aggregates comes from the fact that they have been given a prominent role 

in the current monetary policy strategy of the ECB, which is aimed at maintaining 

price stability in the Euro area. Simple Sum monetary aggregates have long been 

recognised to be incorrect as in their construction assets as different as cash and 

interest bearing time deposits are weighted linearly and equally. Divisia aggregates, 

on the other hand, are based on more solid theoretical foundations. As reviewed in 

Chapter 2, Divisia monetary aggregates are derived from microeconomic theory, 

aggregation theory and statistical index number theory and they are considered to be a 

viable alternative to Simple Sum aggregates for the conduct of monetary policy at 

central banks where monetary aggregates are used for such purposes. Since the 

derivation of Divisia aggregates a number of studies from all over the world have 

compared the empirical performance of Simple Sum and Divisia monetary 

aggregates. Though the results are found to be mixed, there is a general consensus that 

the results lean in favour of Divisia monetary aggregates. Studies comparing Simple 

Sum and Divisia aggregates for the Euro area are very limited and half or more of 

them are pre-ECB formation studies and can be only considered as indicative. Hence,
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the principal aim in this thesis is to provide new empirical evidence on the 

performance of Simple Sum and Divisia monetary aggregates for the Euro area, with 

a view of supplementing the small existing literature.

Before any monetary aggregate can be constructed monetary aggregation theory 

requires that the asset components of the aggregate be weakly separable, as discussed 

in Chapter 2. Therefore, weakly separable groups of monetary assets that can be 

reliably aggregated are first identified in Chapter 3. The tests used are nonparametric 

weak separability tests, originally derived by Varian (1982, 1983) and recently 

improved by Fleissig and Whitney (2003). The rate of rejection of weak separability 

is usually very high using the original Varian (1982, 1983) test. Firstly, because of the 

fact that the test is nonstochastic, a single violation of the test would lead to rejection 

of weak separability. However, sometimes, violations of the test can be due to 

measurement errors in the data and are therefore not significant. Secondly, because of 

the test procedure itself, which sometimes return negative indices that should be 

positive. Fleissig and Whitney (2003) reformulate Varian’s (1982, 1983) test in terms 

of a linear programming problem which forces the indices to be positive and makes 

small adjustments to the data to allow for measurement errors.

In the first stage of testing for weak separability, consistency of the whole data set 

with GARP was checked. Two violations were noted and hence the data set was 

divided into two subsamples to allow for GMU, which is thought to be the possible 

cause of the violations. As expected two violations were noted for the first subsample 

which consists of the GMU and no violations were noted for the post GMU
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subsample. Therefore the tests in the later stages for testing for weak separability were 

confined to the post GMU period. All the groups of assets considered were found to 

be weakly separable. However, small adjustments were required, due to measurement 

errors in the data, to make the different groups pass the weak separability test. The 

fact that all groups we subjected to weak separability tests passed the tests and that 

most previous weak separability studies find very few weakly separable groups, 

suggest that a large number of weakly separable groups have wrongly failed weak 

separability because of deficiency in the original Varian (1982, 1983) test. The 

Fleissig and Whitney (2003) improved version of the test is a more reliable 

alternative.

Given that at low levels of aggregation there tends to be very little difference in the 

behaviour of Simple Sum and Divisia monetary aggregates, the broadest two groups 

of assets from the three that were found to be weakly separable are used to construct 

monetary aggregates for cointegrated money demand analysis for the period the assets 

were found to be weakly separable (post GMU period) in Chapter 4. The 

performances of Simple Sum and Divisia aggregates from the less broad of the two 

groups are almost similar which is not surprising because as mentioned earlier the 

behaviour of the two types of monetary aggregates tend to be similar at low levels of 

aggregation. However, considerable differences emerge between Simple Sum and 

Divisia aggregates constructed from the broader group of assets. The money demand 

relationship of Divisia was found to be very stable and sensible. On the other hand, 

the number of cointegrating vectors of the Simple Sum system is found to be equal to 

the number of variables in its system. This implies that all the variables in its system 

are stationary. However, the unit root tests clearly show that none of the variables is
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stationary. Such a contradiction in the results, especially the cointegration result, 

suggests that cointegration analysis will not yield sensible results for Simple Sum M3 

and hence no further money demand modelling was earned for it. In sum the results 

corroborate the findings of a large number of previous studies from around the world 

on these aggregates. At low levels of aggregation there is not much difference 

between Simple Sum and Divisia aggregates, however, at higher levels of aggregation 

Divisia aggregates outperform their Simple Sum counterparts.

It has been argued that stability of money demand functions is a side issue with 

regards to usefulness of monetary aggregates for monetary purposes and of more 

relevance is the comparison of the indicator properties of monetary aggregates. 

Therefore, such properties of the Simple Sum and Divisia aggregates are also 

investigated using the CLI of inflation turning point framework and inflation 

forecasting framework. Given that the abovementioned frameworks require large data 

samples, that is, data over a long historical period, to yield sensible results, the full 

data sample, that is, from 1980Q1 to 2000Q4, is considered. Moreover, given very 

little difference was found between SM2 and DM2, only SM3 and DM3 which are 

constructed from the broadest group of weakly separable assets are considered for 

further analysis analyses.

In chapter 5, CLIs of inflation turning point for the Euro area are developed to 

compare the relative performance of the Simple Sum and Divisia monetary 

aggregates. CLIs of inflation turning points themselves could be of some interest to 

policymakers as they would allow them to adjust their economic calculations for the
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forthcoming economic environment. A great deal of interest is being shown in CLIs 

as traditional statistical forecasting models have not proved to be very successful in 

forecasting turning points. To the best of my knowledge no CLI of inflation turning 

point for the Euro area has been developed and hence the incentive to work with such 

a framework. It is acknowledged that the way leading indicators are constructed does 

not look rigorous in terms of criteria commonly used in econometrics and there have 

been incentives to develop more sophisticated CLIs. To this end, time series 

techniques of Fourier analysis and Kalman filters have been used in this study. CLIs 

constructed with these techniques have been shown to considerably outperform 

traditionally constructed CLIs. Comparison of Simple Sum and Divisia monetary 

aggregates in such a framework is possible because monetary aggregates are 

considered to be good information carriers of future inflation and hence are often used 

in the construction of CLIs of inflation turning points. A further aim in the chapter is 

to provide a tentative answer to the issue of whether or not the UK should join the 

Euro area. For this purpose graphical analysis and the CLI of inflation turning point 

framework are used.

The CLIs developed appear to be very closely related to the inflation cycle, as 

indicated by the correlations between the variables, and hence are a powerful 

alternative to traditional statistical methods for forecasting turning points. Implicit in 

this finding is the fact that time series techniques such as Fourier analysis and Kalman 

filters can be used to construct sophisticated CLIs. A comparison of the Simple Sum 

and Divisia aggregates in the CLI framework suggests that Divisia aggregates are 

more closely related to Euro area inflation cycle over the time period considered. On 

the issue of whether or not the UK should join the Euro area, the UK and Euro area
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inflation cycles are found to be out of synchronisation, which suggests that measures 

taken by the ECB would not have the same stabilising effect on the UK economy as 

would measures taken by the Bank of England. A similar conclusion emerges on 

using the CLI of inflation tinning point framework.

In Chapter 6, the Euro area inflation forecasting framework is used to compare the 

relative empirical performance of the Simple Sum and Divisia indices. Inflation 

forecasts play an important role in the second pillar of the ECB’s monetary policy 

strategy. However, most inflation forecasting models used are linear, but now there is 

growing evidence of nonlinearity in macroeconomic data. Therefore, linear models 

might not be able to capture all nonlinear characteristics in the data and not be able to 

produce reliable forecasts. In view of such limitations of linear models, nonlinear 

statistical models have been developed but these models require the imposition of 

assumptions regarding the precise form of nonlinearity in the data. However, there 

might be too many nonlinear patterns in the data and the prespecified nonlinear model 

may not be able to capture all the nonlinear characteristics.

An alternative nonlinear model is neural networks model. Neural networks do not 

require the imposition of any assumption as they are data driven. From a 

mathematical point of view neural networks would be expected to forecast inflation 

more accurately than linear models and since these models have not been compared in 

Euro area inflation forecasting, such an investigation is carried out. Again, it is 

possible to compare Simple Sum and Divisia monetary aggregates in such a 

framework as monetary aggregates are considered to be good information carriers for
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future inflation and hence are often used in constructing inflation forecasting models. 

It has been shown that Divisia aggregates consist of nonlinear structures and despite 

this they continue to be modelled and compared to their Simple Sum counterpails in 

linear frameworks. In the event that Divisia aggregates perform poorly relative to 

their Simple Sum counterparts one camiot say Divisia aggregates are inferior to 

Simple Sum aggregates as indicator variables. As it is highly likely that linear models 

are not able to capture all essential characteristics, more specifically nonlinear 

structures, in Divisia aggregates and therefore undermining the performance of 

Divisia aggregates. However, only rarely have the limitations of linear models been 

questioned in such circumstances.

The analysis in Chapter 6 can be very conveniently used to shed some light on the 

issue of whether Divisia aggregates are disadvantaged to their Simple Sum 

counterparts when compared in linear frameworks. More specifically, the inflation 

forecasting performance of the Euro Divisia aggregate is compared to its Simple Sum 

counterpart in both linear and nonlinear frameworks.

The main results in Chapter 6 are as follows. Firstly, nonlinear neural networks are 

found to perform better than linear ARIMA and YAR models in forecasting Euro 

inflation. Such a result confirms the hypothesis that macroeconomic data which are 

being shown to consist of nonlinearity are better modelled using nonlinear models like 

neural networks. However for such models to be successful they have to be very 

carefully designed. Based on the findings in this thesis it is suggested that the ECB 

uses neural networks as a complementary tool for inflation forecasting. Secondly, the
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Simple Sum aggregate is found to perform better than the Divisia aggregate in 

forecasting Euro inflation in a linear framework. However, in a nonlinear’ framework 

the converse is observed, that is, Divisia performs better than Simple Sum. Based on 

these observations, it can therefore be concluded that in certain cases where Divisia 

aggregates have underperformed relative to Simple Sum aggregates, the poor 

performance may be attributed to using linear models for the comparison, which are 

not able to capture all essential characteristics in the Divisia aggregates.

Findings regarding the relative performance of Divisia and Simple Sum aggregates 

are found to be mixed; however lean slightly in favour of weighted Divisia 

aggregates. It may be concluded that a money stock mismeasurement problem exists 

and that the technique of simply summing assets in the formation of monetary 

aggregates is inherently flawed. Divisia aggregates should, therefore, be taken more 

seriously by the policymakers at the ECB and academics around the world.

7.2 Future Work

Although noncapital certain risky assets such as mutual funds and bonds have existed 

since a long time now, their growth has been quite recent. For example, in the United 

States, in the early 1970s, there were about 400 bond and mutual funds; today this 

figure has increased by ten times. The growth of such risky assets may be attributed, 

in part, to declining transaction costs when investing in such assets. Another 

innovation that may have contributed to the growth is that die balances held in such 

assets can be used more readily as a means of payment in the purchase of goods and 

services (Orphanides, Reid and Small, 1994). The increased liquidity of such funds
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leads us to ask whether risky assets are substitutes for capital certain monetary assets. 

If the answer is yes, then these risky assets should be included in the monetary 

aggregates used as indicators for guiding the conduct of monetary policy. Such 

analysis has already been conducted in the US in response to the breakdown of stable 

relationship between money, interest rates, prices and a few other variables in the 

early 1990s, the so called ‘missing M2 episode’, (see for example Duca (1995), 

Orphanides, Reid and Small (1994)) and recently in the UK by Drake, Flessig and 

Mullineux (1999) and Eiger and Bimier (2004).

Whether or not risky assets should be included in the monetary aggregates is an 

empirical question. When the data on risky assets for the Euro area becomes available 

an interesting avenue for research would be to use monetary aggregation theory to 

determine whether risky assets can be incorporated with the capital certain assets of 

the Euro area for monetary policy purposes. More specifically, weak separability tests 

should be conducted to determine whether or not risky assets can be added to capital 

certain assets. If it is found that risky assets are substitutes for capital certain assets 

then these assets can be aggregated together using Divisia aggregation and ultimately 

the empirical performance of such aggregates can be evaluated against the official 

aggregates. Bamett (2004) has recently found and improved way of deriving risk 

adjusted user costs for the construction of Divisia aggregates which could be used in 

the construction the aggregates.

It is argued that the weights of Divisia monetary aggregates have not been fully 

optimised yet and once this problem is overcome, Divisia aggregates would be far 

superior to Simple Sum aggregates. Recently neural networks have been used in
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finding the ‘optimal’ weights for Divisia type aggregates and their inflation 

forecasting performance has been found to be superior to conventional Divisia 

aggregates (see Gazely and Binner (2000)). Such a technique could be applied to 

construct Divisia type monetary aggregates which can be subsequently used for 

building more accurate inflation forecasting models.
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APPENDICES

APPENDIX A
This program verifies the necessary and sufficient condition for weak 
separability (Varian, 1982,1983).

#include maxelm2;

#include min;
#include vecmul;
#include viol;
proc(4)=afriatmo(&maxelm2,&min,&vecmul,p,q);
local maxehn2:proc,min:proc,vecmul:proc,n,k,kl,count,i,U,B,II,E,
mx,Lamda,qd,pqd,temp 1 ,temp2,ud,pq,qdl ,umx,lm,mt,tv; 
{mt,tv}=viol(&garpl,&garp2,&gaxp3,&garp4,q,p); 
n=TOWs(mt);
B=zeros(n,l);
U=zeros(n,l);
Lamda=zeros(n, 1);
II=ones(n,l);
count=0;
k=sumc(ii);
kl=sumc(B);

do while k>0; 
count=count+l;
mx=maxelm2(&min,mt,II); /* maxelm2 is a subroutine that computes the maximal 
element of the set indexed by II*/

E=zeros(n,l); 
fori (l,n ,l);

if  I I [ i]= l;
if mt[i,mx]==:l;

E[i]=l;
endif;

endif;
endfor;

if kl==0;
U [mx] =vecmul(q [mx,.] ,p [mx,. ]); 
Lamda[mx]=l; 

endif; 
if kl/=0; 

umx= 1000000000; 
for j (l,n ,l);

if B [j]= l;
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if UO]<umx;
umx=U[j]; 

endif; 
endif; 

endfor; 
fori (l,n ,l);

for j (l,n ,l);
if E[i]==l and B [ j]= l ;  
qd=q[i,.]-q[j9.];
pqd=vecmul(p[j,.],qd); /*vecmul is a subroutine which computes 

the dot product of 2 rows*/

temp 1 -U  [j ]+(Lamda[j ] *pqd); 
iftempl<umx; 
umx=templ; 
endif; 

endif; 
endfor; 

endfor;
U[mx]=umx;

lm=l;
for i(l,n ,l);

forj(l,n ,l); 
if E [ i]= l  and B[j]“ l; 

ud=U[j]-U[mx]; 
qdl=q[],.]-q[i,.]; 
pq=vecmul(p[i,.],qdl); 
temp2=ud/pq;

if temp2>lm and temp2>l; 
lm=temp2;

endif;
endif;

endfor;
endfor;

Lamda[mx|=lm;

endif;

for i (l,n ,l); 
if E [ i]= l;
U[i]=U[mx]; 
Lamda[i]=Lamda[mx]; 

endif; 
endfor; 
for i (l,n ,l);
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if E [i]= l;
II[i]=0;
B[i]=l;
endif;
endfor;

k=sumc(ii);
kl==sumc(B);

endo;

retp(U,Lamda,tv,count); 
endp;
Subroutines for the above program
Subroutine 1

#include tes5;
proc( 1 )=maxelm2(&min,mt,II); 
local i,j,n,mx,min:proc;

n=rows(mt);
j=min(II);

mx=j;

for i (l,n ,l);

if i i [ i ]= l ;  
if m t[ij]==l;
j=i; _
mx=i;
endif;
endif;
endfor;
retp(mx);
endp;

Subroutine 2

/*this program finds the minimum index */
procfl^minCe);
local i,counter;
i=l;
counter=0; 
do while e[i]<l; 
counter=i; 
i=i+l; 
endo;
counter=counter+l;
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retp(counter);
endp;

Subroutine 3

/*this program multiplies any two rows of a matrix (x'y) */

proc(l) =vecmul(x,y); 
local k,nn,xy; 
nn=cols(x); 
xy=0;
for k(l,nn,l); 
xy=xy+x[k] *y [k]; 
endfor; 
retp(xy); 
endp;

Subroutine 4 
#include garpl 
#include garp2 
#include garp3 
#include garp4
proc(2)=viol(&garp 1 ,&garp2,&garp3 ,&garp4,q 1 ,p 1);
local gaipl:proc,garp2:proc,garp3:proc,garp4:proc,ml ,m tl,pq l,v l,tv l;
m l=garpl(ql,pl);
mtl=garp2(ml);
pq 1 ~garp3 (q 1 ,p 1);
v 1 =gaip4(mt 1 ,pq 1);
tv 1 =sumc(sumc(v 1));
retp(mtl,tvl);
endp;

Subroutine 5
/^This program constructs the matrix m of varian’s algorithm-pg 949*/

/*the columns of matrix q are the quantities of the monetary assets*/

/*the columns of matrix p are the prices corresponding quantities of monetary assets*/

proc (1) = garpl(q,p);

local pxii,pxij 5smn,suml ,n,m,nn,Lj ,k;

n=rows(q);

nn=cols(q);

m=zeros(n,n);

fori ( l 5n,l);

sum=0;

for k (l,nn,l); 

sum=sum+p [i,k] * q[i,k];
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endfor;

pxii=sum;

for j (l,n ,l); 

suml=0;

for k(l,nn,l); 

sum 1 =sum 1 +p [i,k] * q [j ,k]; 

endfor; 

pxij=suml; 

if pxii >= pxij;

m [ij]= l;

else;

m[i,j]=0;

endif;

endfor;

endfor;

retp(m);

endp;

Subroutine 6

/*This program computes the matrix MT of varian's algorithm- pg 949*/
/* The matrix M computed in a previous step (GARP1) will be also used*/ 
proc( 1 )=garp2 (m);

local i,j,k,n;

n=rows(m); 
for k (l,n ,l); 
fori (l,n ,l); 
for j (l,n ,l);

if m [i,k]=0 or m[k,j]==0; 
m[i,j]=m[i,j];
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else;

endif;

endfor;
endfor;

endfor;

retp(m);
endp;

Subroutine 7

/*This program computes the matrix PQ*/
/*Results from garpl and garp2 will be used*/

proc(l)=garp3(q,p); 
local iJ ,k, pq,n,nn; 
n=rows(p); 
nn=cols(p); 
pq=zeros(n,n); 
for i( l ,n ,l) ; 
for j (l,n ,l);
pq[ij]=0;
for k (1 ,1111,1);
P q [ij]=Pq[bj]+p[i,k]*q[j,k];
endfor;
endfor;
endfor;
retp(pq);
endp;

Subroutine 8
/* this prog tests for GARP and returns the number of violations*/ 
/*this prog uses value from garpl,garp2 and garp3*/

proc( 1 )=garp4(mt, pq);
local i,j,n,v;
n=rows(mt);
v=zeros(n,n);
for i (l,n ,l);
for j (l,n ,l);
if m t[ij]— 1 and (pqO,j]>pqOd]);
v[ij]= l;
else;
v[ij]=v[ij];
endif;
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endfor;
endfor;
retp(v);
endp;



APPENDIX B1

r tan l (~BI A), 4̂ > 0,

tan ~l( -B  / A ) - n , 4̂ <0,i? > 0,

tan-l(-Z? / A) + k  , >4 < 0 ,5  < 0,
0 = \ -flr/2 , A = 0,B>0,

7T / 2, A = 0,B < 0,

-
arbitrary, A = 0,B = 0.
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APPENDIX B2

Table B2.1 Approximate values of j l i , ( / ) , A J 3  and R for the Euro Area

DM3 SM3 INF ENN UNN ULC COMPR

/J, eA-7 0.0001 0.0001 0.0001 0.0000 0.4476 0.0000 0.0032

A -0.0047 -0.0048 -0.1548 -0.0206 -214.63 -0.0025 0.2832

B 0.0025 0.0067 0.1075 0.0016 -268.48 0.0022 1.2752

R 0.0054 0.0082 0.1885 0.0206 343.72 0.0033 1.3062

<t> -2.6526 -2.1876 -2.5346 -3.0619 2.2452 -2.4164 -1.3522

Table B2.2 Approximate values of jLi,(f),A,B and R phi for the UK

DM4 SM4 INF IUV UNE VAC RSI IIP GCP

fl eA-8 0.0009 0.0009 0.0016 0.0274 0.6667 0.0635 0.0208 0.0311 0.0636

A 0.0916 0.1083 1.4139 0.8346 -111.94 -2.4487 -0.1450 -1.0180 0.2445

B 0.0354 0.0727 0.1746 -0.1464 -104.16 -9.4506 0.2589 -0.1524 -9.5480

R 0.0982 0.1304 1.4246 0.8473 152.91 9.7626 0.2968 1.0294 9.5511

<t> -0.3693 -0.5908 -0.1228 0.1736 2.3922 1.8243 -2.0812 2.9929 1.5452
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APPENDIX B3
Tables B3.1 -  B3.4 show the factor loadings of the first principal component of the 
leading indicator series. The weights are directly proportional to the size of the factor 
loadings. For example in table B3.1, given that the sum of the factor loadings is 1.56, 
the weight of Real Simple Sum M3 is calculated as 0.78/(1.56)=0.5.

Table B3.1 Factor loadings derived from principal component analysis and weights of 
leading indicators for the Euro Area for short CLI for Simple Sum_________________
Leading indicators Factor loadings Weights in leading indicators

Real Simple Sum M3 0.780 0.5
Effective Exchange Rate 0.780 0.5

Table B3.2 Factor loadings derived from principal component analysis and weights of 
leading indicators for the Euro Area for short CLI for Divisia_____________________
Leading indicators Factor loadings Weights in leading indicators

Real Divisia M3 0.663 0.5
Effective Exchange Rate 0.663 0.5

Table B3.3 Factor loadings derived from principal component analysis and weights of 
leading indicators for the Euro Area for long CLI for Simple Sum_________________
Leading indicators Factor loadings Weights in leading indicators

Real Simple Sum M3 0.498 0.163
Unemployment 0.958 0.313
Unit Labour Costs 0.656 0.214
Commodity Prices 0.950 0.310

Table B3.4 Factor loadings derived from principal component analysis and weights of 
leading indicators for the Euro Area for long CLI for Divisia______________________
Leading indicators Factor loadings Weights in leading indicators

Real Divisia M3 0.534 0.171
Unemployment 0.844 0.271
Unit Labour Costs 0.769 0.246
Commodity Prices 0.973 0.312
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