
41 0640151 6

ProQuest Number: 10290197

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290197

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

... T̂HE NOTTINGHAM TRENT
uim/PRSlTY LLR

B h O r t L c a n

j teee

P M .^ C L I (O S

FPGA DESIGN AND DEVELOPMENT OF A

DIGITAL VIDEO BROADCASTING (DVB) BASED

CHANNEL ENCODER USING VHDL

CHUAH, Kao Hsiung

A thesis submitted in partial fulfilment of the requirements of

Nottingham Trent University for the degree of

Master of Philosophy

School of Computing & Informatics

JANUARY 2005

This copy of the thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that no quotation from this thesis and no information

derived from it may be published without the author’s prior written consent.

Abstract

This research thesis presents a cost effective implementation of Digital Video
Broadcasting (DVB) based channel encoder, using Field Programmable Gate Array
(FPGA), for an experimental 42 GHz Multimedia Wireless System (MWS): The
Nottingham Trent University Campus Network Trial System.

This thesis details investigations and the subsequent design and testing of a channel
encoder for the 42 GHz MWS network trial. This includes identifying an FPGA as the
development platform; examining, verifying and implementing off-the-shelf Intellectual
Property (IP) cores as part of the encoder design. Control algorithms were designed to
ensure reliability of data-flow processes. The channel encoder also reconditions the
transport packets, for compatibility between system modules and the IP core. Functional
modules were coded separately using hardware description language and finally
integrated as a system aided by Electronics Design Automation.

As this channel encoder is part of the DVB-Satellite (DVB-S) physical layer that can be
evaluated on the 42 GHz campus network experimented test-bed, standard interfaces
between systems were used and the encoder specifications were in compliance with the
DVB-S standard, to work with off-the-shelf DVB-S set-top-boxes (STBs). Device
input/output electrical characteristics were also investigated and adapted to the system.
Taking advantage of the flexibility of FPGAs, a combination of Forward Error Correction
(FEC) coding schemes were made available that can be reconfigured to be applied to
the radio channel. The final FPGA compilation shows a total of 1,461 logic elements and
15,616 memory bits being used on the Cyclone EP1C6Q240C6 device.

The hardware was tested, operating at 26.666 Mbaud for an FEC code rate of 3/4 and
40.000 Mbaud for an FEC code rate of 1/2. The complete end-to-end system was
verified using both emulated and ‘live’ digital television transport multiplex. The status
register of a satellite STB was used to confirm its functionality

This research has resulted in an inexpensive implementation of a DVB channel encoder
for millimetre-wave broadband fixed wireless access offering television broadcasting and
interactive data services. The channel encoder was programmed onto an FPGA and has
been effectively tested as part of the campus network trial. Further development
anticipates dynamic reconfiguration with adaptive capabilities.

Acknowledgements

This thesis is dedicated to my parents back in Malaysia, for their love, support and

understanding throughout the years. No words could describe my appreciation to them

for having confidence in me to study and manage life in Nottingham. I would also like to

thank my relatives here who have provided me with a sense of security in this foreign

place. And all my love goes to Ms. Sharon Cheang, for her patience and motivations that

helped me through the final stages of this research.

My most sincere gratitude goes to my supervisors, Dr. Richard Germon and Dr. Steve

Clark, for their guidance and encouragement throughout the course of my research,

especially during the writing up phase. Many thanks goes to Professor Brian O'Neill for

his expert advice and my heartfelt appreciation goes to all technicians and member of

staff in the university for their valuable support. Also to my colleagues, Mr. W.Y. Mun, Dr.

E.B. Lam, Mr. K.H. Lee and Mr. P.C. Nyam, who were more than just friends, as they

have always been there to lend a helping hand.

Last but not least, a big thank you to all my dearest friends, Mr. E.H. Yap, Mr. D. Lonjon,

Ms. J.Y. Lee, Mr. K.W. Choy, Ms. J. Wong, and Ms. L.L. Chang, who have been an

important part of my life and brightened it with wonderful ideas and crazy antics.

Table of Content

ABSTRACT.. 1

ACKNOWLEDGEMENTS.............................. II

TABLE OF CONTENT................ Ill

LIST OF ACRONYMS...................... VI

LIST OF FIGURES...................... IX

LIST OF TABLES................................. XI

1 INTRODUCTION 1

1.1 42 GHz Ba n d 2

1.2 Cost Effective Multimedia W ireless Systems................ 2

1.3 Research A im s 4

1.4 Structure of the Thesis..5

2 REVIEW OF UNDERLYING TECHNOLOGY.......................... 6

2.1 E le c tro n ic Design A u tom a tion .. 7

2.1.1 Altera Quartus II Web Edition.................. 9

2.1.2 Third-party Verification.. 10

2.2 V ery High Speed In te g ra te d C irc u it HDL (VHDL)... 11

2.3 In te lle c tu a l P ro p e rty (IP) C o re ... 12

2.3.1 Altera Intellectual Property (IP) Megafunctions 13

2.4 Field Programmable Gate Array (FPGA)... 14

2.5 FLEX1OKE PCI Development B o a rd ..17

2.6 Altera Cyclone fam ily ... 18

2.6.1 Cyclone Development Board............................. 18

2.7 NTU Campus N e tw o rk T r ia l .. 19

2.7.1 Broadcast Service..20

2.7.2 Interactive Service...20

2.7.3 Prototyped Broadcasting and Interactive Service............................. 21

2.8 The DVB Physical Layer .. 22

2.8.1 DVB Synchronous Parallel Interface..24

2 .8.2 DVB-S Channel Coding...25

2.8.3 Energy Dispersal.. 25

2.8.4 Outer Coding...26

2.8.5 Interleaving.. 26

2 .8.6 Inner Coding.. 26

2.8.7 DVB-S Channel Decoding...27

2.9 HUMAX F1-FOX SET-TOP-BOX.. 28

2.9.1 l2C-bus.. 28

3 DESIGN AND IMPLEMENTATION OF DVB-S CHANNEL ENCODER.................. 30

3.1 ‘Zero-padding’ Frame Conditioning ... 31

Altera Dual Clock FIFO Megafunction... 33

3.1.1 Dual Clock FIFO Controller... 33

3.2 System Clock Management.. 36

3.2.1 Phase Locked Loop on Cyclone...36

3.2.2 Clock Divider Module..38

3.3 Transport Multiplex Adaptation ...39

3.4 Random ization ... 39

3.4.1 Randomizer Control Module... 39

3.4.2 8-bit Paraliei-to-Serial and Serial-to-Parallel Converters.......................40

3.5 REED-SOLOMON (204,188) ENCODER..41

3.5.1 Altera Reed-Solomon Encoder IP Megafunction....................................41

3.6 Convolutional Interleaver...42

3.6.1 Interleaver Control.. 43

3.6.2 FIFO Control.. 44

3.6.3 Single Clock FIFO Megafunction..45

3.7 Convolutional Encoder ...46

3.8 Puncturing .. 47

3.8.1 Rate 3/4 Punctured C ode..48

3.9 Configurability.. 49

3.9.1 Module Bypass...49

4 VERIFICATION OF DVB-S CHANNEL ENCODER 51

4.1 MPEG-2 T ransport Stream Emulation ... 52

4.2 ‘Zero-padding ’ Frame Conditioning ... 53

4.3 TRANSPORT MULTIPLEX ADAPTATION..54

IV

4.4 Randomization ...55

4.5 Altera Reed-Solomon (204,188) Encoder IP ...56

4.6 Convolutional Interleaver ...57

4.7 Punctured Convolutional Encoder ... 58

4.7.1 Simulink Simulations...58

4.7.2 Convolutional Encoder... 59

4.7.3 Puncturing...60

4.8 Hardware Verification using Set-Top-Bo x ...61

4.8.1 l2C-bus Data Acquisition Module..62

4.8.2 QPSK Modulation and Hardware Interfacing...63

4.8.3 Verification with Emulated MPEG-2 Transport Stream.........................64

4.8.4 Verification with Digital TV Signal... 65

4.9 MWS Campus Network Trial Concept Te s t ...67

5 CONCLUSIONS AND FURTHER WORK... 70

5.1 S u m m a r y a n d C o n c l u s io n ..71

5.2 Further Research W o r k ..73

REFERENCES

APPENDIX I: I AND Q INTERFACE MODULE PCB DESIGN

APPENDIX II: NTU CAMPUS NETWORK TRIAL - OVERVIEW

APPENDIX III: BLOCK DIAGRAM & SOURCE CODE LISTING

v

List of Acronyms

AMPP Altera Megafunction Partners Program

ATM Asynchronous Transfer Mode

BER Bit Error Rate

BFWA Broadband Fixed Wireless Access

BSG Broadband Stakeholder Group

CAT-5 Category-5

CPLD Complex PLD

DAM Data Acquisition Module

DQPSK Differential QPSK

DSL Digital Subscriber Line

DTH Direct-to-Home

DVB Digital Video Broadcasting

DVB-ENC DVB Channel Encoder

DVB-PHY DVB Physical Layer

DVB-RC DVB Return Channel
DVB-S DVB Satellite

EDA Electronic-Design Automation

EDIF Electronic Design Interchange Format

EEPROM Electrically Erasable Programmable Read-Only Memory
EHF Extra-High Frequencies

ERC European Radiocommunications Committee

EU European Union

FDIL FEC: Deinterleaver locked

FDRL FEC: Derandomizer locked

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FPLD Field PLD

FVL FEC: Viterbi locked

FWA Fixed Wireless Access

GUI Graphical User Interface
HDL Hardware Description Language

HFC Hybrid Fibre Coaxial

1C Integrated Circuit

IEEE Institute of Electrical and Electronics Engineering

IF Intermediate Frequency

INA Interactive Network Adapter

IP Intellectual Property

ISO International Organisation for Standardisation

ITU International Telecommunication Union

LAB Logic Block Array

LCM Least Common Multiple

LE Logic Element

LMDS Local Multipoint Distribution System

LNB Low-Noise Block-downconverter

LPM Library of Parameterised Modules

LSB Least Significant Bit

LUT Lookup Table

MAC Medium Access Control

Mil Media Independent Interface

MPEG Moving Picture Experts Group

MPEG-2 TS MPEG-2 Transport Stream

MVDS Multipoint Video Distribution System

MWS Multimedia Wireless Systems

NIC Network Interface Card
NRE Non-Recurring Engineering

NTU Nottingham Trent University

OSI Open System Interconnection

P2S Parallel to Serial

PCI Peripheral Component Interconnection

PCI Peripheral Component Interconnection

PHY Physical Layer

PLD Programmable Logic Device

PLL Phase Locked Loop

PMC PCI Mezzanine Card

PRBS Pseudo Random Binary Sequence

QPSK Quaternary Phase Shift Keying

RAM Random Access Memory

RF Radio Frequency

RS Reed-Solomon

SDD Satellite Demodulator and Decoder

SMB Subminiature B

SoC System on a Chip

SPI Synchronous Parallel Interface

SRAM Static RAM

STB Set-top box

TCP Transmission Control Protocol

TDM Time Division Multiplexing

UK United Kingdom

VCO Voltage Control Oscillator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XOR Exclusive-OR

List of Figures

Figure 2-1: Quartus II design flow and EDA tool support..10

Figure 2-2: FLEX 10KE PCI Development Board.. 17

Figure 2-3: Broadcast service...20

Figure 2-4: Interactive service...21

Figure 2-5: Prototyped broadcasting and interactive service.. 22

Figure 2-6: The 7 layers of the OSI model.. 23

Figure 2-7: DVB Physical Layer..24

Figure 2-9: DVB-S channel coding functional blocks............... 25

Figure 2-10: Satellite STB front-end block diagram...27

Figure 2-11: Satellite STB front-end and decoding-end... 27

Figure 2-12: Satellite STB architecture block diagram..28

Figure 2-13: l2C bus communication protocol... 29

Figure 3-1: RS encoder output with 188-byte MPEG-2 transport packets.......................31

Figure 3-2: RS encoder output with 204-byte frame conditioned transport packets 31

Figure 3-3: State diagram for FIFO write control...34

Figure 3-4: State diagram of FIFO read control... 35

Figure 3-5: Clock distribution of the channel encoder system..36

Figure 3-6: Randomiser schematic diagram.. 40

Figure 3-7: PRBS generation..40

Figure 3-8: Functional diagram of Reed-Solomon (204,188).. 41

Figure 3-9: RS encoder Megacore parameterization dialog box................................... ...42

Figure 3-10: Functional diagram of convolutional interleaver...43

Figure 3-11: State diagram of interleaver control..44

Figure 3-12: Generic state diagram of FIFO control..44

Figure 3-13: Functional diagram of convolutional encoder... 46

Figure 3-14: Rate 3/4 punctured code pattern... 48

Figure 3-15: Bypass enabling design...49

Figure 4-1: 188 byte MPEG-2 transport stream emulation... 52

Figure 4-2: 188+16 byte transport stream emulation...53

Figure 4-3: Null-bytes insertion for frame conditioning..53

Figure 4-4: Nuil-packet insertion for buffering... 54

Figure 4-5: Simulation of SYNC inversion..55

Figure 4-6: PRBS paused at zero-padding... 56

Figure 4-7: Convolutional interleaver verification configuration..57

IX

Figure 4-8: Convolutional interleaver verification using IP core.. 58

Figure 4-9: Simulation outputs of implemented convolutional encoder............................ 59

Figure 4-10: Simulation output of puncturing..60

Figure 4-11: DAM architecture block diagram... 62

Figure 4-12: Configuration for verification with emulated MPEG-2 TS............................. 65

Figure 4-13: Configuration for verification with digital TV multiplex..................................66

Figure 4-14: Status register values of Philips TDA8044A..67

Figure 4-15: Configuration of prototyped system test..68

x

List of Tables

Table 3-1: Required depth for FIFO... 45

Table 3-2: Punctured code definition................................. 47

Table 4-1: Specification difference between existing and re-modulated signal................65

XI

1 Introduction

Telecommunications and broadcasting in the new millennium has emphasised efficient

transport capacity at acceptable cost for the last mile’ connections: the access network

[1, 2]. As a result of evolution in on-demand interactive multimedia contents and digital

broadcasting services, demands for broadband capacity have increased at an incredible

rate.

Existing service providers facing the broadband requirement issue are quick to improve

existing technologies and develop new systems to meet the challenges of convergence

in telecommunication and broadcast services. Broadcast networks are developed to

have a return link, to facilitate two-way networking. Digital TV services can then offer

access to the Internet. Concurrently, telecommunication networks are capable of offering

high-speed Internet services that are capable of streaming ‘live’ broadband internet

television [3].

Broadband strategies initiated by governments, such as eEurope 2005 [4] within the

European Union (EU) and UK Online [5] in the United Kingdom (UK), has emphasised

the digital switchover of television broadcasts and broadband access for all citizens.

These action plans have stimulated research and development as well as the rapid

adoption of new technologies. This is especially so in rural areas, where existing

technologies fail. Emerging technologies, such as Broadband Fixed Wireless Access

(BFWA), have the biggest impact on extending broadband coverage: besides offering

flexibility, scalability, fast installation and rollout, BFWA technology can get round the

distance limitations of Digital Subscriber Line (DSL) and the high costs of cable [6, 7].

1

1.1 42 GHz Band

Transmitting at millimetre-wave frequencies, BFWA technology can afford huge amounts

of bandwidth; allowing data rates in the megabits-per-second range to every user, which

is not currently possible in lower frequency spectrum. With high bandwidth, multiplexes

of digital television can be broadcast at the same time as the interactive data services.

As signals at these frequencies are directional and have a short propagation range,

potential frequency reuse [8] allows even more efficient use of the frequency band. Cell-

based deployment of the system makes localisation of services and contents possible,

as well as increasing the overall capacity of the bandwidth.

In 1998, the European Radiocommunications Committee (ERC) initiated a review on the

band 40.5 to 42.5 GHz in Europe, which was allocated for the introduction of Multipoint

Video Distribution Systems (MVDS) back in 1996, to promote the use of digital

technologies and to provide a viable means of delivering interactive services. At that time,

MVDS was to provide an alternative method for localised broadcast of television

programmes, particularly to areas uneconomical to cable [9]. The review followed the

development of interactive multimedia services, for instance, interactive television and

broadband internet. Such services demand not just broadcasting channels; but a

broadband interactive channel. As a result, Multimedia Wireless Systems (MWS) was

introduced through ERC Decision (ERC/DEC/(99)15) in 1999, for the frequency band of

40.5 to 43.5 GHz [10]. The allocated 3 GHz of bandwidth is larger than that of radio,

television and cellular telephony combined, at lower frequencies, and is envisaged to

sustain the convergence of broadcast and telecommunication services [11].

The 42 GHz band is part of Extra-High Frequencies (EHF) that is not yet widely used for

communication systems. This is due to the huge fade effects due to precipitation in the

atmosphere. Besides, the signal can only propagate within a limited direct line-of-sight

range of 1-3 kilometres [12].

1.2 Cost Effective Multimedia Wireless Systems

MWS encompasses all terrestrial multipoint systems, including telecommunications and

broadcasting technology. The service may behave as an access network, a broadcasting

service or a combination [13]. The access network is part of Fixed Wireless Access

(FWA), which maintains wireless transfer of various kinds of information, including

graphics, text, sound, image data and video [14], while its broadcasting service provides

delivery of digital TV and radio. When adopting DVB standards, MWS allows network

2

data being carried as part of the digital TV and radio transport system over the same

channel [15].

The Nottingham Trent University (NTU) Campus Network Trial is one such MWS

deployed in the university that is compliant with the DVB-S standard. The existing

broadcasting service transmits terrestrial digital TV signal that is re-modulated in DVB-S

format to enable the use of inexpensive direct-to-home (DTH) satellite set-top-boxes

(STBs) to decode received signals [16] over the 42 GHz channel. An interactive service

was also in place for networked data communications between the base-station and its

clients. The system adopts a return link standard that is designed for cable networks.

Since the existing system uses professional frequency translation equipment that are

expensive, a cost effective replacement hardware system could be developed to provide

an inexpensive and robust broadcasting and interactive service over the 42 GHz MWS

campus network trial.

This research work is concerned with the implementation of hardware as part of the

DVB-based physical layer for the campus network trial system. The hardware is

developed in compliance with the DVB-S standard, to enable transmission of digital TV

and network data, using the same channel coding scheme and modulation technique.

This allows a slightly modified satellite STBs to serve as on-site networking equipment, in

addition to decoding digital TV signals, hence eliminating the use of expensive cable

networking equipment, to realise a cost-effective MWS at 42 GHz.

As the use of dedicated equipment in the existing system only provides standardised

configurations, the DVB-based physical layer, developed in this research, could serve as

a platform for applying various coding schemes to the NTU campus network trial. A fixed

code rate and Forward Error Correction (FEC) scheme applied means that the link is

over protected most of the time due to the link margin that has to be reserved for rain

loss [17,18]. Measurements could be made to characterise a variety of coding methods

over the 42 GHz link. These results can potentially be used to devise an adaptive system

that changes correspondingly to meet the variable channel conditions to achieve

maximum efficiency over the campus network trial [19].

The advancement of programmable devices, such as a Field Programmable Gate Array

(FPGA) reduces the costs of developing technologies, such as MWS [20]. The device

can be programmed to replace multiple-chip configurations with a single-chip processing

solution, making it easily deployable for trials. In the context of this research, expensive

and bulky equipment are integrated and replaced with minimum hardware both at base-

3

station and client-sites. With its re-programmable capabilities, modifications to an FPGA

design can be quickly made in-house without incurring extra cost [21]. This technology is

well-suited for this research work as designs can be prototyped and tested on the

campus network trial. In addition, various combinations of coding schemes can be

programmed into the device for characterisation work. Newer FPGAs also allow dynamic

reconfiguration, where a section or the entire design of the FPGA is reconfigured while

operating [22]. This feature provides a means of realising an adaptive DVB-based

physical layer for 42 GHz MWS.

1.3 Research Aims

The main focus of this research concentrates on investigations of a hardware system

that can be used as a generic platform for applying various coding schemes to the NTU

Campus Network Trial. The device is to be developed in compliance with the DVB-S

standard adopted by the campus network trial. The development would to take

advantage of existing in-house development facilities. Working as a channel encoder

with reconfigurable features, this device is to be implemented as part of the DVB-based

physical layer that can be evaluated within the campus trial. The objectives are identified

as follow,

• Investigation on hardware technologies available in-house to identify a suitable

development platform for this research.

• Examine off-the-shelf Intellectual Property (IP) functional cores, such as a Reed-

Solomon (RS) encoder and a convolutional interleaver, to identify its suitability for

this development. Perform functional simulations to recognise the requirements of

these functional cores.

• Develop strategies to incorporate IP functional cores as part of the design of the

DVB-S compliant channel encoder.

• Design and develop all modules for DVB-S standard channel encoding processes,

such as transport multiplex adaptation, randomization, Reed-Solomon encoding,

convolutional interleaving and puncturing.

• Devise algorithms to apply conditioning on the data stream to integrate all

modules required by the DVB-S standard on the development platform.

• Perform verification processes to ensure that developed modules are functionally

corroborated.

• Carry out end-to-end system tests with the designed DVB-S channel encoder as

part of the prototyped 42 GHz MWS campus trial to validate the operations of the

completed system.

4

1.4 Structure of the Thesis

The organisation and brief description of the chapters of this thesis are as follow,

Chapter 2 covers the underlying technology review of the 42 GHz MWS campus network

trial, and various services and technologies deployed for the campus trial. An overview of

the physical layer is presented with descriptions on DVB-S channel encoding and

decoding. This chapter also details the investigation into cost-effective technologies that

are involved in the development of the channel encoder, focusing on FPGA technologies

and EDA design development with IP cores.

Chapter 3 describes the design and implementation stages of the modules for the DVB-

based channel encoder. Design requirements and solutions are presented. Several

changes are discussed as modifications were made to the design of the system, such as

the inclusion of the ‘zero-padding’ frame conditioning module and the bypassable design

for configurability of the coding processes.

Chapter 4 details the verification processes of the DVB-S channel encoder. The

completed modules were first verified individually using HDL software simulations. The

simulations results were then correlated with another result taken from simulation

software, such as Simulink, that is widely used in the industry. The completed channel

encoder was also verified on hardware as part of the prototyped campus trial test.

Configurations and outcome of these tests are also presented.

Chapter 5 summarises the research work undertaken and defines further possible

research directions.

5

2 Review of Underlying Technology

The use of standard professional equipment as part of a test platform is often faced with

lack of flexibility as it is built with limited customisation capabilities to conform to one

existing standard, such as [56]. At the same time, professional equipment built for

multiple functionalities and standards is expensive. To explore new applications of MWS,

such as to enable an MPEG-based interactive data service to be tested over the

relatively new 42 GHz frequency band, a certain level of flexibility is required. Therefore,

with the aim of developing a cost effective reconfigurable hardware as part of the

physical layer for the 42 GHz MWS, a review of the technologies underlying the NTU

campus network trial is given. Details on facilitating technologies, such as FPGA and

EDA tools, are also presented.

6

2.1 Electronic Design Automation

Electronic Design Automation (EDA), also known as electronic computer-aided design

(ECAD), is a set of computer aided tasks that are used for design and development of

electronic devices such as integrated circuits (ICs) [23, 45]. It uses the top down design

approach, where the super ordinate systemic specifications are described on top and

detailed assembly modules are described further down on the design. EDA can be

applied to the design of the entire system as defined by specifications, down to

production of the device, including development of printed circuit boards (PCBs) and the

embedded system device driver software [24].

Today, the design of an IC can be a complicated task, especially with large scale system

integration and competitive time to market. The use of EDA significantly shortens the

development cycle as a computer is used to perform time consuming tasks, such as logic

synthesis, simulation and timing analysis. By providing comprehensive and accurate

system simulations, the use of EDA also promotes zero-errors development of the

hardware. This is important as with a shorter time to market, designs are restricted to the

number of revisions prior to the manufacturing stages.

EDA not only increases design productivity and precision, it also protects the Intellectual

Property (IP) of the design. With the integration of multiple design components in a single

device, such as a full custom Application Specific Integrated Circuit (ASIC), designs are

better protected compared to separate ICs wired together on a printed circuit board. On

the other hand, generic functional designs, such as a Reed-Solomon encoder core or a

microprocessor core, can be designed once and re-used as part of another system.

These designs can also be fully documented and sold as IP cores.

EDA has come a long way since early 70s. Powered by high-performance modern

personal computers (PCs), EDA tools allow designers to develop, simulate and verify ICs

and systems reliably. Besides the traditional graphic-based design entry, the use of

standardised hardware description languages (HDLs), such as Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (VHDL), Verilog HDL and

embedded ‘C’, as one of the design entry methods is one the best features of EDA that

has revolutionised design methodology [24]. These description models written in

Register Transfer Level (RTL) are then being compiled and synthesised. These

processes translate the description of the design into a gate level netlist. To offer the

flexibility of transferring design data between different EDA tools, netlists are usually

7

presented in Electronic Design Interchange Format (EDIF) as it is one of the world's

most widely used formats [25].

Design simulation is an important stage of the design flow using EDA. it allows designers

to simulate and verify systems efficiently and reliably to ensure that the design has zero-

error, before moving on to the next stages of development [26]. Tapping on the

computing power of modern PCs, stimuli can be virtually inserted to simulate the design.

The simulation output obtained can then be analysed to determine if the design has

operated the correctly. With the high complexity of larger designs, test benches or logic

waveforms can be applied as a set of stimuli to the system during simulation to test for

correct responses of the design.

For designs taking the HDL modelling route, such as this research, the synthesis process

automates the implementation stages beyond RTL after all design errors are rectified. It

automated processes right down to generating gate-level design files for production of

target device. During this stage, RTL descriptions are decomposed into Boolean

equations. Then, the automated placement and routing process uses the equations to

instantiate logic gates and decide on the location of the blocks based attributes of the

target device [24]. Interconnection paths are then made between the logic gates. Delays

along signal paths are then calculated identifying total delays of the design and critical

paths that limit the performance of the system. Using a computer, static timing analysis

can be performed quickly and accurately based on target device. This helps determine if

the design is compliant to timing constraints as well as maximum performance of the

device. Ultimately, one or more gate-level design files are generated for the target device.

This design file can be submitted for hardware production. Some proprietary EDA tools

for Programmable Logic Device (PLD) and Field Programmable Gate Array (FPGA)

development platform also include a device programming too! to download design

information into a PLD or FPGA device since programming methods for these devices

are exclusively associated with technologies used by vendors.

Design re-use has been the basis of system integration and it is made easier by EDA. As

more logic gates can be produced within the same Silicon area, designs can be

incorporated into a single ASIC to promote better signal integrity, thus enabling systems

to operate at higher frequencies. A single design can be added into libraries of an EDA

tool and re-used in other systems to boosts design productivity especially when

designing larger systems. Design re-use also allows various commercial IP cores, such

as Reed-Solomon encoder and convolutional interleaver cores, to integrate as System-

on-a-chip (SoC).

8

2.1.1 Altera Quartus II Web Edition

The Altera Quartus II is one of many software packages used for EDA. The software is a

comprehensive design environment that features everything needed to start designing

with Altera devices [27]. This is the latest EDA development software for all of Altera

devices replacing the older Max+PLUS II software [28]. It integrates RTL synthesis

support for standard Very-High Speed Integrated Circuit Hardware Description Language

(VHDL) and Verilog HDL design entry as well as increased design performance for older

devices. The software is available as part of the Altera subscription program, but a one-

year non-perpetual license is usually included with development kits. A stripped-down

version, dubbed Quartus II Web Edition, is available for free with limited support for

devices, features and third-party tools.

The web edition of Quartus II software is available for free, with its license being

renewable every 150 days. Recent versions of the software can perform automated

license renewal over the internet. Although some of the features are disabled, the

software provides everything needed to design low-cost Altera devices. A detailed

comparison between the full and web edition of Quartus II software can be found in [29].

Quartus II Web Edition software has been targeted for the development of this research.

The decision for this software was largely dictated by the targeted hardware, which is the

Altera Cyclone family FPGA. As mentioned previously, FPGA architectures are very

much tied with specific development software. This is due to the exclusive algorithms

and technologies that are used by vendors. With the Altera route, the use of Quartus II

software is unavoidable.

As a full-scale programmable device development software, Quartus II provides solutions

to all stages of the design. Figure 2-1 shows the complete design flow of Quartus II

software as well as its interaction with other third-party EDA tools [30]. The software

supports both text and symbol based design entry methods. Designs can be entered

using schematic capture or described in Verilog HDL and VHDL. Designs entered using

either method can be converted between each other if required. Such flexibility is not

available when using third-party HDL tools, such as ModelSim, to perform synthesis and

simulations. For the compilation stages of the design flow, Quartus II is required to

perform place and route, timing analysis as well as to generate a programming image for

the Cyclone family FPGA. By default, these procedures are fully automated to take

advantage of its optimisation algorithms. Each logic function will be assigned to the best

logic cell location for routing and timing [30].

r — Sour ce design files .
^ including VHDL Design

^ Files (. vhd) & Verilog
Design Files (.v)

Quartus H
Analysis &
Synthesis

EDA Synthesis
Tool

EDA Physical
Synthesis Tool

Quartus II Fitter

Quartus II
Timing Analyzer

EDIF net lis t
files (.ed fl o r Verilog
Quartus Mapping Files (.vgm)

Quartus II
Simulator

EDA Timing
Analysis Tool

Quartus II
EDA Netlist Writer

EDA Simulation

EDA Board-Level
Verification Tool

EDA Formal
Verification Tool

Quartus II Quartus H
Assembler Programmer

Output files fo r EDA tools,
includ ing Verilog Output
Files (.vol. VHDL Output
Files (.vhol. VQM Files. Standard
Delay Form at Output Files t.sdoK
testbench files, symbol files. Tel
script files (.tel). IBIS O utput Files
(.ibs) & STAMP model files (.data
.mod. o r .lib)

Figure 2-1: Quartus II design flow and EDA tool support

Besides offering a full development system and support for the Cyclone family FPGA, the

Quartus II Web Edition software also offers support for the IP cores provided by Altera

and its Altera Megafunction Partners Program (AMPP) partners. Its support of the

OpenCore Plus feature allows time-limited programming files to be generated for

hardware evaluation of most cores [31]. IP cores such as the Reed-Solomon Encoder

can be used for rapid prototyping.

2.1.2 Third-party Verification

Although Altera Quartus II software is required at later stages of the design flow for

hardware designing, third-party verification tools, such as ModelSim [32], can be used at

early stages of design using HDLs for functional verification. Such an approach could

potentially improve the HDL coding technique and productivity. As verification of design

in the early stages is purely functional, issues such as optimisation, and timing delays,

10

can be taken out of consideration. In addition, testbenches can be written and used in

functional simulations to automate the verification process. Even so, a verified design is

require to be ported into Quartus II software in the later stages for further verification with

timing delays and compilation.

However, one disadvantage for using a third-party tool is the additional time required to

spend on familiarisation and learning to use the tool efficiently.

2.2 Very High Speed Integrated Circuit HDL (VHDL)

VHDL is adopted as the method of design entry for this research. It has been widely

accepted throughout the EDA market as the language to describe and specify a wide

variety of electronic designs since initial ratification by the Institute of Electrical and

Electronics Engineering (IEEE) in 1987 [33]. This has revolutionised design methodology

as traditional schematic-based design used to be part of the design process. Similar to

most modern programming languages, VHDL can be easily structured into smaller

modules individually based on top-down system design methodology for better design

management.

VHDL has been previously the choice of design entry method for FPGA design based

projects at NTU. Past experiences in these projects have contributed to the know-how of

this method as well as the supporting tools that are required [34, 35]. As a result,

facilities and resources within the university are readily available.

One of the advantages of using VHDL design entry methodology for IC design is

significant reduction of design cycle. When designs are modelled in RTL, VHDL can be

synthesised to generate a gate level design automatically. This eliminates logic and

geometrical design tasks when designing an IC as the coded designs are automatically

converted into Boolean equations, placed and routed on a target device [24, 33]. Unlike

traditional schematic design entry, previously written generic designs can be re-used and

implemented as part of another design efficiently using VHDL.

The ability to easily simulate a design is one of the factors VHDL is contributing to overall

improved design quality. The use of simulation tools have allowed designs to be verified

before being implemented on target device. Test benches can be written to insert stimuli

into the design and monitor outputs to verify its operations. Furthermore, with graphical

and logic design tasks automated, the use of synthesis tools provides a powerful

11

capability to optimise a design [33]. Most synthesis tools today are capable of optimising

designs for speed or for space efficiently.

Designs coded using VHDL is independent of hardware vendor and technology. This is

because different libraries are provided with synthesis tools used for different hardware

technology, such as ASIC, PLD and FPGA. Therefore, this makes VHDL design entry

highly portable. The same VHDL source code written for a design can be synthesised

and optimised to implement on a PLD or FPGA for rapid prototyping before being

synthesised and optimised to implement on an ASIC.

As the syntax for VHDL is capable of describing a design at many layers of abstraction,

designs can be written at the high-level behavioural level, RTL or gate level structures:

• When written at behavioural level, signals such as clocks, or computational

operations such as ADD, can be used without details of implementation. This level of

abstraction can be quickly simulated to verify design algorithms prior to detailed

development and implementation.

• When written at RTL, descriptions of the design goes one step lower from

behavioural level. Operations are schedule to correspond to certain clock edges. In

addition, operations are described to specific details such as number of bits assigned

and Boolean equations. This level of abstraction can provide the greatest gain in

design productivity. The design file written at RTL can be synthesised by EDA tools

as it abstracts to the specification level, which is describing the functions of the IC.

• When written at gate level, descriptions of the design consist of components and

interconnecting signals that are mapped between them. These components can be

made up of basic gates, flip-flops or a combination of both. This level of abstraction is

analogous to schematic representation of a design, which describes the functions of

the design and how it does it.

2.3 Intellectual Property (IP) Core

One of the advantages of designing with EDA tools is that it is not limited to

implementing own designs. Most hardware vendors such as Altera and Xilinx have also

developed logic designs with specific functions that are optimised for the target device. In

the context of Altera, they are called megafunctions. While some of these basic

megafunctions are provided for free as part of the Quartus II megafunction plug-in

12

libraries, other highly specialised IP cores, such as the RS encoder, are sold or licensed

with a price tag.

Two main reasons for the rising popularity of using IP cores in designs are reduction in

design time and overall cost saving. As chip design is expensive and demands for

shorter time-to-market grow, the use of IP cores in designs is essential [36]. Although the

use of IP cores involves additional costs for licensing, the resulting reduction in design

time can lead to lower overall costs [37]. In addition, purchased IP cores are usually

licensed for a long period of time with unlimited use. For example, the Altera’s RS

encoder megafunction would be licensed for 30 years with unlimited number of times it

can be used [42].

As most IP cores in the market are designed to facilitate drop-in instantiation, the design

source codes are typically encrypted. Modifications of the design source code are not

possible should there be slight changes in design constraints and parameters. For that

reason, the IP cores need to be evaluated thoroughly using features such as OpenCore

Plus by Altera megafunctions to ensure a careful selection from the start [38].

2.3.1 Altera Intellectual Property (IP) Megafunctions
Altera and AMPP partners offer a wide selection of parameterised megafunctions that

are optimised for Altera devices [39]. Working with Quartus II software, the optimisation

process usually involves setting compilation and synthesis options to maximise density

and performance of the IP core. They are also fine tuned to be as fast and as small as

possible [36]. These IP megafunctions are tested to ensure flawless implementation and

dependability based on Altera’s “AMPP Approved” qualification process [40].

Altera’s IP megafunctions were targeted following the Altera approach for design

software and FPGA device. Together with Quartus II software, one of the main benefits

of using the IP megafunctions is the OpenCore Plus feature. This feature allows the

megafunction to be simulated with the rest of the design to verify the overall functionality

of the design. In addition, time-limited programming files for the design, including the

megafunction, can be generated to be programmed into a device for hardware

verification [41]. This feature is available for most megafunctions offered by Altera and

AMPP partners to facilitate hardware evaluation to perform board level design verification

before deciding to purchase a license [31]. Under the Altera University Program, the RS

encoder can be licensed at a special price of US$199.50, which is 90% cheaper than the

13

regular price [42]. When purchased, the megafunction will be licensed for 30 years and

no limit to the number of times it is used.

In the context of this research, the megafunction provides a quick and dependable

design solution for standard functional blocks, such as the RS encoder. The ability to

have a complete design with the megafunction programmed into a prototype device,

without having to purchase a license for the megafunctions, has allowed the system to

be tested from end to end. With the megafunction capable of running up to

30,000,000,000 clock cycles, enough time is granted to perform several tests on the

system. Therefore, purchase of license for the RS encoder megafunction is not required

throughout the period of this research.

2.4 Field Programmable Gate Array (FPGA)

FPGAs started off as ‘glue-logic’, a simple device that is used to connect other complex

logic circuits together. The programmable device integrates several logic devices to

reduce chip count and therefore simplifying board design. Today, the role of FPGAs has

evolved to implementing complex functional systems such as embedded

microprocessors [43]. Static random-access memory (SRAM) FPGAs and complex

programmable logic devices (CPLDs) are two of the most common programmable

application-specific integrated circuits (ASICs) available on the market, but other FPGA

technology such as non-volatile FPGAs and antifuse FPGAs are increasingly popular

and contributing to the diversity of programmable ASICs [44].

The smallest unit of logic in an SRAM FPGA is the logic element (LE). It consists of a

lookup table (LUT) and a programmable register in the SRAM cells. Usually, multiple LEs

are combined to form a configurable logic block, also known as logic block array (LAB).

Unlike a CPLD that programs on electrically erasable programmable read-only memory

(EEPROM) transistors, the FPGA uses the SRAM that is volatile, thus making it easily

reconfigurable. However, with the line between CPLDs and FPGAs blurring in recent

years, both types of programmable ASICs are grouped together as FPGAs [45]. Latest

CPLDs have dropped the traditional macrocell architecture and opted for LUT

configuration, whilst new generation FPGAs now offer non-volatile, instant-on

reconfigurable logic [46].These devices keep on increasing in speed and density, while

decreasing in manufacturing cost.

The advancement of today’s FPGAs can provide high performance data processing

capability required in digital signal processing (DSP) applications and high-speed data

14

transfers [47]. With the flexibility to reconfigure, FPGAs are the best target device for

development of next generation applications [48]. The advantages of system

development on FPGAs include:

Low-cost by design

No Non-Recurring Engineering (NRE) charges are required for development of systems

targeting FPGAs. NRE charges are the cost of work done by vendors, including logic

design support, chip layout, mask generation, test generation and other services, that a

full custom ASIC development requires. On the contrary, a design is programmed into an

FPGA via a low cost programming device, which can be performed in-house. Eliminating

such costs with FPGA development therefore eliminates the risks of a custom IC

development.

Flexibility

Design modifications on FPGAs can be made quickly and without incurring penalty

charges. Instead of being custom manufactured as a full custom ASICs, FPGAs are

programmed electrically. Modifications on design can be performed in-house, within

seconds, using a programming device. In contrast, every design change on a full custom

ASIC would incur hefty charges and delays as the process involves manufacturing of a

new custom mask. Avoiding such development spending therefore reduces the

expenses of developing a custom IC.

Reconfigurability

The FPGA development platform has low inventory risk as the device is only considered

to be manufactured when it is programmed with the design. Further to that, the device

can be reconfigured for different functionalities and designs [43] whereas the functionality

and design for a full custom ASIC is permanent once manufactured at the vendor. In

terms of design, generic designs and algorithms can be reused and re-implemented to a

new application. With such low inventory risk and reusability, the FPGA platform makes a

suitable prototyping tool.

Fast design verification

Designs on FPGAs can quickly have their functionality verified and timing characteristics

known, as timing models for a specific FPGA are usually known in advance as timing

analysers are included modern synthesis tools. FPGAs are manufactured as soon as

they are programmed in-house, while full custom ASICs require manufacturing

processes that take weeks or months. With the capability of instant hardware verification,

modifications to correct a design flaw can be quickly and easily done. The short turn

15

around time for design modification processes makes the FPGA platform most suitable

for rapid prototyping that leads to a shorter time-to-market.

With respect to this research, the aim of developing a generic DVB-S channel encoder

can be achieved by using an FPGA. A small quantity of the channel encoder could aiso

be easily reproduced for deployment to client-sites without incurring additional costs

except to purchase the FPGAs. With the recent launch of inexpensive FPGAs, such as

the Altera Cyclone and Cyclone II family, better performance and higher density FPGAs

are offered at lower cost.

From the flexibility attained by targeting the development on an FPGA, another aim of

the research can be achieved. Besides being programmed as a completed product, the

same FPGA device is a prototyping tool in its own rights. Designs of the system can be

altered and programmed onto FPGAs for experimentation. Such flexibility allows

standardised configurations to be manipulated and tested on the system to explore new

schemes and functions, something not possible on a standard device, such as the

Newtec NTC/2080 DVB Modulator [49].

Reuse of modules and systems designed using EDA tools can offer high level of system

integration. For example, integration of an Ethernet data adapter module with a DVB-S

channel encoder in a single device can offer encapsulation of Ethernet data stream for

transmission over a DVB-S channel. Such integration not only provides better overall

system performance but also reduces its cost.

The use of EDA tools for FPGA development not only provides synthesis, compilation

and simulation with accurate timing characteristics, it also supports the use of IP cores

as part of the encoder system design. Highly complicated functional modules, such as

the Reed-Solomon encoder can be implemented for rapid prototyping. Although these IP

cores can be expensive to use, the development cycle of the system is effectively

shortens.

In today’s market, Altera and Xilinx are two leading competitors for SRAM FPGA devices,

each offering different architectures and advantages. Other vendors such as Actel and

Lattice are more popular with non-voiatile and antifuse FPGAs [44]. However, the choice

of solution is determined by the availability of in-house hardware and software. The

Altera route was the most feasible approach, as the university is part of the Aitera

University Program [50]. In-house availability of Altera’s Quartus II EDA software and

Altera’s FLEX10KE PCI Development Board was already known at the start of this

16

research and further acquisition of Altera Cyclone family FPGAs was made during the

course of this research. One of the advantages being part of Altera’s university program

is the special purchase of Altera devices, design software and IP cores at very low prices.

For example, licensing prices for several IP cores were quoted at 90% discount off

published price when enquiries were made under the university program.

2.5 FLEX10KE PCI Development Board

The FLEX10KE peripheral component interconnection (PCI) development board was

used at the start of this research for prototyping purposes as it was available in-house.

The board uses the Altera FLEX10KE family CPLD device. Although this device is

referred as a CPLD, it is a volatile SRAM-based device and must be re-programmed at

power-up, as the configured data is lost when power is switched off. The board, as

featured in Figure 2-2, is well equipped for PCI-based development, especially with a

computer. It provides PCI front-end reference design in the form of Altera’s megafunction.

Besides, the board also comes with additional memory modules [51]. Although the

FLEX10KE development board presents all the advantages for PCI prototyping, several

shortcomings prevented further development of this research on this platform.

L cGStf-SMe Glee# fnpvt

G em af Pwposemi fifl
r i i * oO O Q O O Coooood

o o o o o o
o o o o o c
o o o o o o
o o o o o o
o o o o o o

o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

I/O 1-64
o o o o
o o o o
o o o o
o o o o

o o o o o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

t r t m a i P a w r

o o o o
o o o o Headero o o o o o o o o o o o o o
o o o o Mmo o o o o o o o o c o o o o

o o o o o o o o o
O O O O O O O o o o o o o o ■IHHIMll—

iD R A f^ S O C K E 'f lM
o o o o o o o o o o o o o o
O O O O O O O O O C O Q O O
o o o o o o o o o o
o o o o o o o o o o o o o o
o o o o o o o o o o
Q O O O O O Q O O C
o o o o o o o o o o

o o o o o c
o o cQ-Q-C

o o o o

OsOiiaterDefeated
Snput 1 111 I 11 I

EPF 10K200S*5 0 V
3 3 V

□ uo o o o o o
Prato 1-20

rrrn
JLJ V— I L - « r ?

RS-232Header EPC2

Figure 2-2: FLEX 10KE PCI Development Board

The development board was not supplied with an on-board oscillator, although the solder

pads are available. Further investigation revealed that the clocking option for the

17

oscillator was disabled and clocking sources were limited to a system clock via PCI port

and external clock via snap-mount Subminiature B connector (SMB). Both sources were

found to have limited feasiblity as the design is not PCI-based, and SMB connectors

were rare, expensive and not available in-house.

The development board also provided limited on-board input/output (I/O) pins for

prototyping. An expansion of its prototyping capabilities can be done by using an

additional board using PMC connectors. However, it was found to be not feasible as

PMC connectors were rare, expensive and would not be obtained at unit quantity.

2.6 Altera Cyclone family

Introduced in December 2002, the Altera Cyclone family has since been the lowest-

priced FPGA family in its class. Targeted for cost-conscious hardware development

projects such as this research work, the FPGA family offers almost half the cost of

competing low-cost FPGAs per 1000 LEs [52]. Benchmark results also showed that the

Cyclone family FPGAs outperform Xilinx Spartan-3 family by an average of 70.2%, when

comparing the fastest speed grade devices [53]. Moreover, the web edition of Quartus II

software supports the FPGA family at no cost.

One of the strongest features of Altera’s Cyclone family is the facility to implement up to

two phase-locked loops (PLLs) per device. The full-featured PLLs can be used for on

and off-chip timing management. By using the Altera Quartus II software, the PLLs and

their features can be enabled on Cyclone family FPGAs without using any external

devices [54].

2.6.1 Cyclone Development Board

The Cyclone development board was acquired by the research group to upgrade its in-

house prototyping facilities. Produced by JOP Design, the development board is built for

system-on-a-programmable-chip (SOPC) solutions using a Cyclone family FPGA. This

mean that the development board is capable of implementing processor core, logic and

memory in one device. Extending the memory capabilities of the Cyclone device, this

board is built with 512 kilo-byte Flash memory for FPGA configuration and application

code, 1 mega-byte (MB) of fast SRAM memory as main memory and up to 128 MB of

NAND Flash memory for solid state storage.

18

Amongst the list of best features, the on-board 20 MHz crystal clock makes this

development board an important upgrade, eliminating the use of an external oscillator for

improved clock management. The clock signal is connected directly to the clock input of

the Cyclone PLL as well as the dedicated clock input of the FPGA. The development

board is also built with an Altera MAX7000 device to code the FPGA with programming

information from a Flash memory moments after power-up. Alternatively, the FPGA can

be programmed manually from a PC via the parallel-port using a ByteBlaster

communications cable. As shown in Picture 2-1, the 56 general purpose constellation I/O

pins around the board can also be used as probing points for prototyping purposes.

Equipped with other supporting components such as watchdog and serial interface driver,

the board can therefore be used as an FPGA prototyping platform as well as a ready-to-

use module for various applications, such as the DVB-based channel encoder [55].

Reuse and migration of designed modules to target the Cyclone FPGA requires

minimum effort when using electronic-design automation (EDA) tools, such as the Altera

Quartus II software. The design files can be re-synthesised and verified by simulations

with Cyclone device settings. Full compilation can then be performed after the I/O pins

are re-assigned.

Picture 2-1: Cyclone Development Kit

2.7 NTU Campus Network Trial

The campus network trial has been implemented at Nottingham Trent University (NTU) in

collaboration with MMRadioLink Limited (Phillips UK) to provide a platform for network

performance evaluation and exploration of new applications on 42 GHz MWS [16]. The

trial was set up to serve as an experimental test-bed towards providing a robust channel

to deliver broadcast and interactive services as provisioned in the ERC Decision [10],

19

2.7.1 Broadcast Service
The broadcast service of the NTU campus network trial adopted the DVB Satellite (DVB-

S) standard that is used to provide DTH digital TV [56]. Historically, the 42 GHz band

was designated for MVDS, for both analogue and digital TV [9]. Proven in previous trials

[57], the adoption of DVB-S compliant configuration not only provides a robust channel, it

also enables the use of off-the-shelf satellite STBs at receiver sites for reception of the

broadcast services.

Two digital TV multiplexes were re-transmitted over the campus trial. As depicted in

Figure 2-3, off-air terrestrial digital TV channels were demodulated into an MPEG-2 TS

[58], which is then re-modulated in DVB-S. Each of the digital TV multiplex are

transmitted over the campus trial using QPSK modulation, a symbol rate of 17.5 MBaud,

and a 3/4 FEC code rate [59]. As both systems are DVB compliant and share the

common MPEG-2 TS format, interoperability between the terrestrial and satellite TV

signals are conveniently seamless.

Off-air DVB-T
Transmission

DVB-S
Transmission

DVB-T TS DVB-S Signal Radio
Receiver Modulator Receiver d / \ A

Base-station

TV
Radio

Receiver
Satellite

STB

Client-site

IF Signal AV Signal

Figure 2-3: Broadcast service

At the client site, the configuration for receive-only broadcast service system is simple.

From the millimetre-wave radio receiver, the intermediate frequency (IF) signals are fed

directly into a satellite STB. The digital TV multiplex are then demodulated and viewed

on a TV set, as depicted in Figure 2-3.

2.7.2 Interactive Service

The interactive service of the NTU campus network trial adopts DVB Return Channel

(DVB-RC) [60]. This standard is designed for Hybrid Fibre Coaxial (HFC) networks to

20

provide a return channel for interactivity [59, 61]. At the base-station of the system, an

Interactive Network Adapter (INA) is used to control data communications between all

connected cable modems in the access network. Network data packets are transported

in Asynchronous Transfer Mode (ATM) cells that are encapsulated in MPEG-2 TS

frames [62]. Downlink capacity at 13.8 Mbps is shared between all users using time

division multiplexing (TDM). The operating frequency of the INA is translated to match

the higher IF of the radio transceiver using an interface unit.

University Network

A A
A A

A A
A A

PC

INA

PCHub

Hub

Cable
Modem

TVSatellite
STB

Interface
Unit

Switch

Linux Router Interface
Unit

DVB-T
Receiver

DVB-T
Receiver

CombinerDVB-S
Modulator

DVB-S
Modulator

Radio
Tranceiver

Radio
Tranceiver

Management PC

Cllent-site

Figure 2-4: Interactive service

At the client location, the uplink data is carried over a 2 MHz channel using differential

QPSK (DQPSK). As depicted in Figure 2-4, a cable modem is used to realise the

bidirectional broadband data communication. The resulting return capacity of 3 Mbps is

shared between users on a time division multiple access (TDMA) basis [59]. Once again,

frequency translation is performed between the IF and the operating band of the cable

modem.

2.7.3 Prototyped Broadcasting and Interactive Service

The convergence of broadcasting and interactive services is made possible by

introduction of a network adapter that encapsulates Ethernet network data transports in

21

MPEG-2 packets [63, 64]. This is currently being developed at NTU. The combined

development of this channel encoder and the network adapter gives rise to changes to

the configuration of the interactive service. Such a development would allow the HFC-

based interactive link to be replaced by two-way DVB-S links. Implementation of the

DVB-S channel coding into re-programmable hardware, such as an FPGA would enable

the device to be conveniently deployed at client-sites to provide channel coding of the

return link. Frequency Translation between cable equipment and radio system is no

longer required.

Internet

LAN

STBMil Ethernet
Adapter

STB

PC

QPSK

TV

DVB-ENC Radio
Tranceiver

r l

Base-station

AA
AA

DVB-ENCQPSK

MilEthernet
Adapter PC

TV

STBRadio
Tranceiver

Client-site

Figure 2-5: Prototyped broadcasting and interactive service

At the base-station, a bi-directional DVB-S link also helps eliminate the use of the INA.

The use of a unified standard for both broadcasting and interactive services cuts down

instrumentation costs at the base-station as well as at client-sites. The packets are then

multiplexed as a part of the MPEG-2 TS and modulated. As depicted in Figure 2-5, the

demodulated MPEG-2 TS is connected to a network adapter where the network data is

extracted.

2.8 The DVB Physical Layer

The Physical Layer (PHY) provides the physical communication path between two nodes

by directly interfacing through the transmission medium [65]. As depicted in Figure 2-6, it

22

is the first layer of the layered protocol model devised by the International Organisation

for Standardisation (ISO) for Open System Interconnection (OSI), on which modern

network architectures are based. The PHY defines the electrical and mechanical aspects

between devices [66]; electrically, they include power characteristics, channel coding and

modulation, and mechanically, they include cables, connectors and connector pin

assignments.

OSI layer number

7 Application Application

6 Presentation Presentation

5 Session Session

4 Transport Transport

3 Network Network

2 Data link Data link

1 Physical Physical

Figure 2-6: The 7 layers of the OSI model

The DVB Project [67] was founded in 1992 to establish the framework for the introduction

of MPEG-2 based digital television services. Standards developed by DVB use the

MPEG-2 packets as “data containers” to carry various digital contents. These are called

packetised elementary streams (PES). As a result of multiplexing, the standard exploits

the flexibility of the transport multiplex to offer a variety of TV service configurations,

including sound and data services. The transport multiplex, also known as the MPEG-2

transport stream (TS), is then coded and modulated prior to transmission.

The DVB PHY is adopted in this research work on 42 GHz MWS for its robustness and

reliability. Such robustness is necessary because Internet data that uses standard

Transmission Control Protocol (TCP) is very sensitive to packet loss and non-congestive

delays. TCP throughput can drop to between 20%-50% with Internet Protocol packet

losses of only 2%, making it almost useless [68, 69]. However, with the large available

bandwidths in the 42 GHz frequency band, the system can afford to adopt aggressive

channel coding schemes. As with delivering digital broadcasting contents, the DVB PHY

employs FEC blocks, such as Reed-Solomon encoder and Convolutional Interleaver, to

the network data. These FEC schemes are essentially invisible for TCP.

23

The DVB-S PHY uses Quaternary Phase Shift Keying (QPSK) modulation. It has the

advantage of implementation of existing technologies, particularly chips developed for

digital television [12, 56]. With slight modification, it allows the use of commercially

available STBs as part of the hardware set-up to get on the network. Such adoption

enables services of digital TV as well as broadband network access across 42 GHz

MWS using the same set of cost effective hardware.

2.8.1 DVB Synchronous Parallel Interface

Interfaces for devices using MPEG-2 transport packets are defined in [70]. This allows

system integration for different applications and interoperability of equipment. An MPEG-

2 transport packet usually consists of one MPEG-2 synchronisation (SYNC) byte and

187 data bytes. The MPEG-2 SYNC byte is the first byte of each MPEG-2 transport

packet to signal the start of the packet. It carries the value of 4 7 H e x - When the MPEG-2

packet is protected using Reed-Solomon (RS) encoding, the RS protected transport

packet would have 16 bytes of additional RS codes concatenated at after the data byte

making it a 204-byte packet.

For short distance interfacing, the synchronous parallel interface (SPI) is specified. Two

flags were introduced to distinguish 188-byte packets from 204-byte packets, and to

signal for valid RS-bytes. With reference to Figure 2-7, data transfer is synchronised to

the byte clock. The 8-bit data bus carries the MPEG-2 Transport Steam (TS), while

PSYNC signals the beginning of a packet, and DVALID signals valid data bytes.

CLOCK

DVALID
RF

PSYNC

DATA

QPSK
Modulator

DVB-S
Channel Coder

Figure 2-7: DVB Physical Layer

With conventional Gray-coded QPSK modulation employed for DVB-S system, absolute

mapping is used [56]. With I and Q, being the in-phase and quadrature channels, the

constellation points are simply I, Q, -I, and -Q, corresponding to symbols 00, 01, 11, and

10 [71]. This also corresponds to the output of the puncturing module of the inner coder.

Therefore, the I and Q signals can be directly filtered and QPSK modulated.

24

2.8.2 DVB-S Channel Coding
Channel coding, also referred as error control coding, is used to detect and also correct

symbols received in error. Typically, FEC is being coded to incorporate the source signal

with additional information to the transmitted data. This information can be used to detect

errors and recover the original data when it occurs [65]. A combination of coding

algorithms can be applied to minimise the effects of channel noise. For a

telecommunication system, these schemes must be standardised to ensure that data can

be conveyed over the channel.

EN 300 421 [56] is the standard for satellite services, which employs randomization of

the transport stream for energy dispersal, Reed-Solomon encoding for outer coder,

convolutional interleaving, and punctured convolutional encoding as inner coder. Figure

2-8 illustrates the channel coding algorithms that are employed by DVB-S standard. The

outputs of the channel coder, I and Q, are then QPSK modulated with a carrier signal.

MPEG-2 TS
Convolutional

Interleaver

Punctured
Convolutional

Coder

Reed-Solomon
(204,188)► MUX adaptation &

randomizer

Energy Dispersal Outer Coding Interleaving Inner Coding

Figure 2-8: DVB-S channel coding functional blocks

2.8.3 Energy Dispersal

In compliance with radio regulations for spectrum occupancy and to ensure adequate

binary transitions, the data at the output of MPEG-2 multiplex is randomised. The

randomization process, also known as scrambling, spreads any possible concentration of

energy at specific frequencies, by applying a Pseudo Random Binary Sequence (PRBS)

over the transport packets except at every first byte of the packet, which is the MPEG-2

SYNC bytes [72]. This is to maintain the initiation word to mark the start of the packet. A

loading sequence of “100101010 000000” is initialised every eighth packet into a

PRBS generator that is based on the following polynomial defined in [56]:

J + x 14+ x ' 5 [2-1]

To provide an initialisation signal for the descrambler, the MPEG-2 SYNC byte of the first

in every eight transport packet is bit-wise inverted from 4 7 H e x to B 8 H e x - This process is

referred to as “Transport Multiplex Adaptation” or SYNC inversion.

25

2.8.4 Outer Coding
Outer coding is applied at the extreme input and output ends of the transmission chain.

The Read-Soiomon (RS) code, RS(204,188), which is shortened from the original

RS(255,239), is then applied to every randomised transport packet to generate an error

protected packet. Each transport packet is fed through the coder byte-wise until the end

of the packet is reached. At the same time the values of the RS codes are calculated

using coefficients derived from the code generator polynomial, g(x) [56]:

g(x) = (x+A°)(x+A1)(x+A2) ... (x+A]5), where A-0 2 hex [2-2]

The RS redundancy bytes concatenated at the end of each transport packet provide

protection against burst errors. The code is capable of correcting up to 8 bytes of errors

as it adds 16 redundancy bytes at the end of the 188-byte transport packet.

2.8.5 Interleaving

The purpose of interleaving is to increase the efficiency of the RS coding. This is due to

the fact that a long burst of errors in transmission can exceed the correction capacity of

the RS code. This will cause a failure of RS code to recover the original transport data.

The convolutional interleaver is usually an array of buffers where each byte of data is

being delayed when read out. As a result of the interleaving process, a long burst of

errors during transmission will become scarcely spaced when the stream is de

interleaved at the receiving end [72, 73].

2.8.6 Inner Coding

Inner coding is applied just before the transmission signal is modulated. In the context of

DVB-S channel coding, a punctured convolutional code is used. With this coding scheme,

signals can be transmitted with at least 5 dB less power than without it, when using

QPSK modulation [74]. This reduces transmitter cost and allows increased data rates at

the same transmitter power. Based on a rate 1/2 convolutional code, the data stream is

fed into a shift register bit-wise. The transmitted signal is obtained by combining various

taps at the shift register, based on the constraint length, K=7, with generator polynomials

coefficients [56, 75]:

X = = 171 o c t = 1111001
Y - g 2 = 133oct = 1011011

26

Puncturing refers to deleting certain bits off the transmission stream in order to raise the

overall code rate. This must be done according to the specific pattern standardised in

[56]. Several code rates are defined: 1/2, 2/3, 3/4, 5/6 and 7/8, to allow selection of the

most suitable level of error correction for a given service.

2.8.7 DVB-S Channel Decoding

One of the main reasons for adopting DVB-PHY for 42 GHz MWS is to enable the use of

commercially available STBs in the system. A typical front-end of a STB is made up of a

tuner module and the satellite demodulator and decoder (SDD) integrated circuit (IC) [76].

The SDD IC performs demodulation and FEC on the received signal to regain the

MPEG-TS data. The FEC algorithms are opposite to that of coding processes and are

employed in reverse sequence in relation to the coding scheme. QPSK demodulated I

and Q signals provide information to the inner decoder. The signals are de-punctured

and decoded by the Viterbi decoder, then de-interleaved, and RS decoded by the outer

decoder, as depicted in Figure 2-9. The randomising energy dispersal pattern is removed

and the inverted MPEG-2 SYNC bytes are reverted to recover the user data [56].

DVB-SPIQPSK
demodulator

Reed-Solomon
decoder

Convolutional
de-interleaver

Depuncture &
Viterbi decoder

Synd inversion
& derandomizer

Inner decoder Interleaver Outer decoder Energy disposal
removal

Figure 2-9: Satellite STB front-end block diagram

At the decoding-end, the recovered MPEG-2 TS is then de-multiplexed and de

scrambled by the MPEG-2 source decoder IC into MPEG-2 PESs, as shown in Figure

2-10. A typical digital TV PES is then further decoded into video and audio signals.

Audio and
video signal

MPEG-2
TS

MPEG-2
PESIF Signal MPEG-2 TS

decoder

MPEG-2
audio video

decoder
Tuner model

Satellite
demodulator
and decoder

Front-end Decoding-end

Figure 2-10: Satellite STB front-end and decoding-end

27

2.9 Humax F1-FOX Set-Top-Box

The satellite STB receiver used in the campus network trial is the Humax F1 satellite

STB, which is reasonably priced at about £70. Besides the cost criteria, the STB also

allows manual configuration of the reception signal transmission parameters [77]. Such

capability is an important factor as this allows the STB to lock on to DVB-S signals

modulated at different frequencies, symbol rates and FEC rates to recover the original

data stream.

This satellite STB uses the Philips Semiconductor TDA8044A SDD chip. The chip

communicates with the rest of the system using an inter-IC bus, l2C-bus. Figure 2-11

shows a typical satellite STB design, where modules in the front-end and decoding-end

of system communicate with each other using the l2C-bus. Various controls and status

registers can be accessed via the l2C-bus [78]. The chip also conforms to the DVB-SPI

for data interfacing and the de-modulated MPEG-2 TS can be extracted from the STB by

performing slight modifications. The STB has previously been successfully modified to

perform on-site data logging [59]. In this research, this hardware is used as a

demodulation hardware and verification tool. It is also used as a verification tool by

accessing the status register of the STB using in-house l2C compatible data acquisition

module (DAM) that taps into the l2C-bus of the satellite STB [59].

I2C bus

Audio and
video signal

MPEG-2
TS

MPEG-2
PESIF Signal MPEG-2 TS

decoder
Tuner model

Satellite
demodulator
and decoder

MPEG-2
audio video

decoder

Figure 2-11: Satellite STB architecture block diagram

2.9.1 l2C-bus

The l2C-bus is a simple bi-directional 2-wire bus inter-IC control developed by Philips [79],

The two bus lines are made up of serial data line (SDA) and serial clock line (SCL). It is

developed to provide simple operation with extremely broad range of l2C compatible

devices from Philips and other suppliers. One of such device is the Philips TDA8044A

DVB-S decoder chip mentioned. As a multi-master bus, more than one device that is

capable of initiating a data transfer can be connected to the bus. Connection to each

device is software addressable, via the bus, by a unique address using a standard l2C

protocol.

28

When transmitting or receiving on an l2C bus, a device that initiates the data transfer is a

master. It also generates the clock signals to enable the transfer. At the same time, the

device that is addressed is a slave. With both lines, SDA and SCL, maintaining at HIGH

state when the bus is free, a transition of HIGH to LOW on the SDA line while SCL is

HIGH signals a START condition, while a LOW to HIGH transition on the SDA line while

SCL is HIGH indicates a STOP condition. The START and STOP conditions are always

generated by the master device to initiate and terminate a transaction on the l2C bus.

Every byte on the SDA line is 8-bit long and each byte must be followed by an

acknowledgement bit. During acknowledgement, the SDA line is submitted to the

receiver device. At this condition, the receiver holds the line at LOW state while a HIGH

period for SCL is generated by the master device. The first byte after START condition is

used to address the device. 7-bit addressing is used, while the least significant bit (LSB)

is used to indicate READ or WRITE operation with HIGH or LOW state respectively.

Figure 2-12 depicts the access protocol on the l2C bus.

Write data

s State Address /W A Data A Data A P

Read data

S State Address R A Data A Data /A P

Last data byte
S = Start condition
P = Stop condition
R = Read
AA/ = Write
A = Acknowledgement
/A = Not acknowledged

Figure 2-12: l2C bus communication protocol

29

3 Design and Implementation of DVB-S Channel
Encoder

Using a top-down design approach, the DVB-S channel encoder is broken into smaller

groups of designs based on their functions. This approach provides a clear definition of

the overall system and how information flows between the processes. Generally, the

encoder system performs four main functions, that is energy dispersal, outer coding,

interleaving and inner coding, as described in section 2.8.2. Design requirements of the

processes within these functions are examined prior to implementation.

The process of ‘zero-padding’ frame-conditioning was added in the encoder design to

insert 16 bytes of separation in between the 188-byte MPEG-2 transport stream. This is

to enable concatenation of the Reed-Solomon codes. As a result of the additional null-

bytes inserted, processes such as the randomizer are slightly modified from the

conventional design to accommodate the changes and still conforming to the DVB-S

standard. Each function is also designed to be bypassable to allow each function to be

capable of being individually enabled.

30

3.1 ‘Zero-padding’ Frame Conditioning

The Reed-Solomon encoder, RS(204,188), error protected packets offers recovery of the

original code words should an error of up to 8 bytes occur during transmission. However,

the concatenation of 16 bytes of RS code at the end of every 188th byte of every

transport packet changes the packet structures. The basic MPEG-2 transport multiplex

packet stream of 188 bytes requires 16 bytes to be added to form a 204-byte stream.

Such occurrence suggests that pre-conditioning of transport frames is required to allow

the application of the RS encoder.

A simple experiment that involved simulation of Altera’s RS encoder IP core was

performed. In the experiment, two types of data stream were processed by the RS

encoder and its outputs were examined. One of the data stream resembles a 188-byte

MPEG-2 transport stream, while the other represents a stream of conditioned 204-byte

transport packets. For both data streams, 4 7 H e x with PSYNC were used for

synchronisation, signalling the beginning of a new packet.

Name
2.42 us 2.44 us 2.46 us 2.48 us 2.5j us 2.52 us 2.54 us 2.56 us 2.58 us 2.6 us 2.62 us 2.64 us

mr
mr
3 *

clock

en

reset

0 rsout

i J n j n _ n L r T _ r i _ n _ r i _ r L T i _ r L J i _ r L r T T i _ n ^ T T i _ i T j n _ r i T T _ r i T T _ n

i t x 3 6 Y 3 r y i r xtdcwywx r r twx~43Y44~

|p> 0 data

1— 1p psync

altera reser.,p

Figure 3-1: RS encoder output with 188-byte MPEG-2 transport packets

Name
2.54 us 2.58 us 2.62 us 2.66 us 2.7 us 2.74 us

UP
UP

u p

clock

en

reset

0 rsout

0 data

p

p
3 lY 3 2 Y 3 3 - f3 4 ^ l5 Y 3 6 Y 7 g T F r) t ^ P Y 0 B x T B Y 4 A ~ X A p T c T ^ lF f lF X T Z W X A T X lB T S

>: 32 xmm 35 X ^ K ' ■ 00 X 47 x 48 X 49 f t
p psync m .
p dvbspisourc

altera_reser...
i ... ■ i

p

Figure 3-2: RS encoder output with 204-byte frame conditioned transport packets

31

The RS encoder failed to concatenate the 16 bytes of RS code to the packets when

processing a standard MPEG-2 data stream. As depicted in Figure 3-1, a second

transport packet carrying the PSYNC synchronisation bit has signalled the start of the

packet before the RS codes of the previous packet were completely delivered. However,

the following simulation shows a MPEG-2 data stream with 16 null-bytes between the

end and the start of the next packet. A full set of RS codes can be generated before the

start of the next packet, as shown in Figure 3-2. These experimental results have

therefore confirmed that pre-conditioning of an MPEG-2 transport stream is required to

conform to the use of RS(204,188) encoder.

Equation [3-1] defines the relationship between the interface rate and symbol rate for a

generic DVB-S channel encoder [80]. The value for RS-rate for external MPEG framing

with 188-byte frames indicated a change of data rate with the adoption of RS(204,188).

Symbol rate = Interface b it rate

x Fram ing overhead

[3 ' 1]

1
X -------------------

FEC - rate
x M odulation fa c to r

where,

Fram ing overhead = 1 fo r external MPEG fram ing

188
RS - rate = f o r external MPEG fram ing w ith 188 byte frames

r r r , 1 2 3 5 7FEC - rate = o r —
2 3 4 6 8

M odulation Index — fo r QPSK

The process of frame conditioning is confirmed to involve changing the data rate of the

transport stream, where the output data rate would have to be theoretically more than

204/188 (1.085) times faster than the input data rate. This would then enable 16 null

bytes to be inserted at the end of each packet. As the transport packets are streamed

back-to-back against one another, the packets will have to be paused while the insertion

occurs. Such operation requires a First-ln-First-Out (FIFO) memory function, where data

can be temporarily written and read, in the sequence of it being written, when required.

As the rate of which the data is written differs from the rate of reading, a dual clock FIFO

is required.

32

Altera Dual Clock FIFO Megafunction

The Altera dual clock FIFO megafunction [81] is provided with the Altera Quartus II

software. It is capable of using two independent clocks for writing and reading. This

megafunction can be parameterised to implement any width or depth combination, where

the only limitation is the available memory space in the device itself. To help eliminate

the effects of metastability on this complex megafunction, six status signals were

supplied to indicate empty, full or the number of words stored at both write and read side

of the FIFO. The metastable state is a quasi stable state where the output of the FIFO is

unpredictable. It usually occurs when the data input violates the setup or hold time and is

marginally triggered [82].

In this design, the dual clock megafunction was implemented to have memory capacity of

8 bits x 256 words. As the depth of the FIFO must be a power of two, 256 words of

memory capacity would easily buffer one 188-byte MPEG-2 packet. The status signal

rdusedw was configured to show the amount of data that was ready to be read. With

the system requiring an output data rate that is faster than the input data rate, it is more

important to be monitoring the words that are ready to be read. The megafunction is

configured in Legacy mode, which means that the requested data would be made

available on the first clock cycle after a read request, rdreq, is asserted [81].

3.1.1 Dual Clock FIFO Controller
The dual clock FIFO controller is one of the most important modules designed in this

research. It manages the operations of the FIFO that enables major encoding processes

of the channel encoder, such as the Reed-Solomon encoding. Running at different clock

frequencies, the dual clock FIFO was controlled using two different control algorithms,

one to manage data writing into the FIFO and the other to manage data read from the

FIFO.

FIFO Write Control

The FIFO write clock, wrclk, was made synchronous with the interface clock of the

system as data packets are streamed directly into its data input ports, data [7 . . 0]. As

shown in Figure 3-3, data is buffered into the FIFO on the first rising clock edge after

write request, wrreq, is asserted. At power up, the FIFO write control mechanism would

remain in reset status, IN_RESET. During this state, a simple reset sequence is

performed to the FIFO; wrreq is set high for a period of one clock cycle, to ensure that

its registers’ values are set to 0 0 H e x -

33

psync_sig = 1
da ta jn = B8hex/47hex

IN RESET . A IN_GO
“ reset = 0

reset = 0 reset = 1

Figure 3-3: State diagram for FIFO write control

While remaining at IN__RESET state, the FIFO write control would monitor for the

MPEG-2 synchronisation (SYNC) byte, which is 4 7 H e x , accompanied by a PSYNC bit.

These conditions would trigger a state change from IN_RESET to in_GO. At the same

time, the transition would signal the FIFO to start buffering data streams by setting the

wrreq to high. Valid MPEG-2 packets, signalled ‘high’ on the data-valid (DVALID) line,

would be captured into the buffer. This is done in compliance with DVB-SPI standard [70].

FIFO Read Control

The FIFO read clock is asynchronous with the interface clock. Theoretically, the data

from the buffer should be read 204/188 times faster than it being written into. As with

wrreq, the requested data is made available on the first rising clock edge after rdreq
is raised to high [81]. Remaining at reset status, CTRL_RESET, from power up, the FIFO

read control would monitor the number of words buffered in the FIFO. The registers on

this side of the FIFO were also reset by the sequence identical to the one described in

FIFO write control. To avoid the issue of metastability, rdusedw is chosen in the design

as it shows the number of words ready to be read from the FIFO. As soon as 188 bytes

of a packet are readily available, the state machine would trigger a change of state from

CTRL_RESET to ctrl_read. At the same time, the change of state also changes the

signal for rdreq to start reading from the FIFO.

A counter tracking the number of words read from the FIFO would prompt for a change

of state from CTRL_READ to CTRL_STOP when the 188th word is being read, rdreq
would be set to low and the counter reset. At this stage, 16 null bytes would be introduced

to the output. Just as the 16th null byte is clocked, the CTRL_STOP state would change

back to ctrl_read, indicating rdreq to start reading the next packet. As the read

control mechanism monitors the rdusedw for the amount of words available in the FIFO,

CTRL_STOP state would change to ctrl_fill state if the content of the FIFO is near

empty. The output stream would then be filled-in with a null packet while the content of

34

the FIFO is being replenished, as depicted in Figure 3-4. Complete block diagram and

VHDL source code listing are presented in Appendix III.

usedw 1 188

I out_count = 0 '
• rdreq = 0

CTRL RESET

usedw - 188

rdreq = 1
out_sig = fifo_out

CTRL READ
out_count * 188 |

usedw > 25
stop_count = 16 out count = 188

stop_count = 0 |
out_sig = OOhex |
rdreq = 0 |

I out_count = 0
I out_sig = 00HE
I rdreq = 0

CTRL STOP stop_count 1 16

usedw < 25

1 stop_count = 0
[out_sig = OOhex

rdreq = 0

out count = 188

1 out_count = 0
[out_sig = 00he

rdreq = 0

out_count # 188
CTRL FILL

out_count + 1 |
out_sig = OOhex I
rdreq = 0 I

out_count + 1
out_sig = fifo_out
rdreq = 1 ,

out_count = 0
stop_count + 1
out_sig = OOhex
rdreq = 0

Figure 3-4: State diagram of FIFO read control

35

3.2 System Clock Management

In order to satisfy the clocking requirements of the system in general, and the functions

of each module, the 20 MHz on board clock is supplied to a PLL and a clock divider

modules to generate various clock frequencies. Figure 3-5 shows how the various clocks

are distributed throughout the entire system. The 20 MHz clock is supplied to a PLL to

generate a slower interface clock and the faster system clock. The clocks are then

further divided down to supply the modules. Generally, all functional blocks of the DVB-S

channel encoder are working on clocks derived from the faster clock.

4.375 MHz ^

Zero-padding SYNC Randomisation RS(204.188)Inversion

Interface
Clock

Clock
Divider

Interface Clock

20 MHz
Oscillator

Clock
Divider - — “ t

N ■ N
X . X5 , 5

t|r i r \ t r

System Clock

< W
Puncturing Convolutional Convolutional

Q
Encoding Interleaving

Figure 3-5: Clock distribution of the channel encoder system

3.2.1 Phase Locked Loop on Cyclone

Phase locked loops (PLLs) are used in designs to synchronise internal clocks with

external clocks, run internal clocks at higher frequencies than external clocks, and to

minimise clock delay and clock skew [54]. The Altera Cyclone allows implementation of

up to two PLLs on an FPGA. The PLLs are enabled by a Megacore function, exactly as

the other Megacores provided with Quartus II software. Likewise, the Megacore function

is highly parameterized. The Cyclone PLLs are capable of performing multiplication,

division and phase shifting. Both internal and external clock outputs are supported with

programmable duty cycle. In the context of this research, the PLL is used to exploit the

on-board 20 MHz clock. The 20 MHz clock can be multiplied to supply faster interface

and system clocks that are required by the system.

36

Clock Multiplication and Division

Scaling factors are used to generate the output of the Cyclone PLLs. The relationship

between the frequency of the voltage control oscillator (VCO), f vco, the reference

frequency, f ref., pre-scale divider, N, feedback factor, M, input frequency, f in, output

frequency, f out, and post-scale counters, GO and G l, are given in Equations [3-2] [54]:

Each Cyclone PLL can support up to two outputs. When the output frequencies are

different, the VCO frequency will be set to a value that is the least common multiple

(LCM) of the VCO frequencies required by the output frequencies. Equations [3-2] can

be used to evaluate the output frequencies that are required. The VCO frequency must

also be within its operating range, which is from 500 MHz to 1000 MHz. Hence, the

Cyclone PLL is not capable of generating outputs for combination of frequencies that are

not within the limits of its VCO.

Although the difference between the output frequencies can be more than (204/188)

1.085 times apart, they are ideally 1.085 times apart or as near to it as possible.

Efficiency of the dual clock FIFO is optimised when the clock frequencies are ideally set

as underrun of the buffer is least to occur. A packet of null bytes is added to the transport

stream every time re-buffering occurs, affecting overall transmission efficiency. In the

design of this channel encoder, output frequencies of 80 MHz and 70 MHz were

generated by the Cyclone PLL, with clock ratios 4/1 and 7/2 respectively to the 20 MHz

on-board clock. Although this combination of frequencies is 1.143 times apart, which is

5.3% outside of the theoretical value, the values are within the operating limits of the PLL

and therefore can be generated.

[3-2]

37

3.2.2 Clock Divider Module
A clock divider circuit was implemented to produce clock rates that are suited for the

individual modules. As the basic clocks generated by the PLLs are the fastest clocks in

the system, the following clock specifications are required,

• 1/2 of System Clock (40 MHz) is required for randomizer, convolutional encoder,

and puncturing as the load signal is required for 2-bit Parallel-to Serial (P2S)

conversion.

• 1/8 of System Clock (5 MHz) is required for most functional blocks processing in

bytes, including reading from the dual clock buffer, SYNC inversion,

randomization, RS(204,188), Convolutional interleaving and convolutional

encoding.

• 1/8 of Interface Clock (4.375 MHz) is required for the writing into the dual clock

buffer in bytes.

• Load signal is required for 8-bit P2S converter in randomization process and

convolutional encoding.

PROCESS (load_clk, load_reset)
VARIABLE clk_count : INTEGER RANGE 0 TO 7;

BEGIN
IF (load_reset = '0') THEN

clk_count := 0;
ELSIF (load_clk'EVENT AND load_clk = '1’) THEN

clk_count := clk_count + 1;
IF (clk_count = 3) THEN

load_sig <= '1';
ELSE

load_sig <= ’O';
END IF;

END IF;

IF (load_reset = ’O') THEN
load_out <= 'O';

ELSIF (load_clk'EVENT AND load_clk = ‘0 ’) THEN
load_out <= load_sig;

END IF;
END PROCESS;

Listing 3-1: Generation of load signal

Implementation of the clock divider module involved a counter from the Library of

Parameterised Modules (LPM). The LPM provides a library of logic functions that are

parameterised. As these modules are architecture-independent, the LPM modules are

supported by various vendors [83]. Just as a Megafunction, the LPM is enabled and

parameterised using a dialog window in Quartus II software. After customising its

features, such as setting the number of bits and counting up or down, the module for the

counter is generated. In this design, two 5-bit counters were generated, one for dividing

System Clock and the other for Interface Clock. Outputs form these counters were

connected to corresponding output pins representing different clock speeds. Output of

38

the least significant bit (LSB) of the counter is 1/2 of the input clock, while, output of the

next pin is 1/4, 1/8 and so on. As for the load signal, a counter was defined in VHDL as a

reference and a HIGH state was sent to the output was after every eight clock pulses.

The source code for generation of the load signal is presented in Listing 3-1.

3.3 Transport Multiplex Adaptation

The transport multiplex adaptation is also a pre-conditioning process that involves

inverting the first MPEG-2 SYNC byte of every eight packets, from 47Hex to B8Hex- The

process is also known as SYNC inversion. It is used for synchronisation purposes to

scramble and de-scramble at transmitting and receiving ends of the DVB-S system

respectively.

Each of the input data and its PSYNC state were sampled and checked to identify the

MPEG-2 synchronisation byte, 47Hex* The MPEG-2 SYNC byte will occur when a 47Hex

word is detected with a HIGH state for PSYNC signal. When this occurs for the first time,

SYNC byte 47Hex, 0 1 0 0 0 1 1 1 , would be inverted bit-wise to B8Hex, 1 0 1 1 1 0 0 0 . After

the SYNC byte, the other data bytes will be ignored and no changes will be done until the

next SYNC byte. The following SYNC bytes were counted, but ignored as they would not

be inverted until after the seventh SYNC byte.

3.4 Randomization

Randomization is used to comply with international Telecommunication Union (ITU)

Radio Regulations and to ensure adequate binary transitions. It is used not only to

prevent strings of all 0s and all 1s, but also short repetitive sequences. A typical

randomizer operates bit wise. Input data bits are shifted in stages while feedback taps

are taken and exclusive-ORed [84]. The result of this exclusive-OR is then exclusive-

ORed with the input to generate the randomized output. The design of this functional

module is greatly aided by a schematic diagram of the randomizer presented in [56], as

shown in Figure 3-6. Nevertheless, an 8-bit parallel-to-serial (P2S) converter, a serial-to-

parallel (S2P) converter and a control module are required as part of the system.

3.4.1 Randomizer Control Module

The randomizer control module was designed to ensure that data was randomized

conforming to the standard. Randomization would only be applied to the first MSB of the

first byte following the inverted MPEG-2 SYNC byte. The standard prescribes that PRBS

39

generation shall continue during the MPEG-2 SYNC bytes of the subsequent seven

transport packets, but with its output disabled to leave those bytes unrandomized.

However, with the ‘zero-padding’ pre-conditioned packets, a new control was added to

retain transparency. The PRBS generation was paused, after the last bit of the 188th byte,

for a period of 16 bytes. This algorithm not only ignored the added 16 null-bytes but also

maintained the period of PRBS at 1503 bytes. Figure 3-7 shows the generation of PRBS

with the pre-conditioned packets. The randomization process was paused, indicated by

‘P’, to ensure that the additional null-bytes are transparent and hence conforming to the

DVB-S standard.

3.4.2 8-bit Parallel-to-Serial and Serial-to-Parallel Converters

The reason a P2S converter is required in the design is due to the fact that the

randomiser proposed in EN 300 421 processes the packets in bits. As the standard

specified that the PRBS generator shall be applied from the most significant bit (MSB)

first, the P2S converter was designed to ensure that data bytes are converted

conforming to that requirement. The randomized single bit output was then re-converted

back to parallel byte stream. Conforming to the standard, the bits were converted to byte

with the first bit as the MSB.

1 0 0 1 0 1 0 1 0 0 0 0 0 0 0

EX-OR

AND

Enable Data Output

Data Input

Figure 3-6: Randomiser schematic diagram

PRBS period = 1503 bytes

-H p
+

- /H
+

-H p
+

Syncl 187 Bytes Sync2 187 Bytes

7<h

Sync8 187 Bytes Syncl 187 Bytes

~H~

— Inserted 16 NULL bytes

Figure 3-7: PRBS generation

40

3.5 Reed-Solomon (204,188) Encoder

Reed-Solomon codes are used for forward error correction. The Reed-Solomon encoder

is capable of correcting burst errors in extreme-sensitivity compressed data streams,

such as in DVB MPEG-2 transmissions. In the case of RS (204, 188), 16 bytes parity

symbols are being concatenated at the end of each packet, providing capability of

correcting up to 8 bytes of errors.

Initially, all registers in the encoder are set to zero and the switch is set to stream out the

input data. The input data are also fed into the encoder one-by-one byte until the end of

the frame. During this process, the input data that go into to encoder is multiplied with the

coefficients of the generator polynomial, g0 to g15, as shown in Figure 3-8 [85]. The

products are then added as they are being loaded into the registers.

—►(X) 91 — 9a —*(X)

RS Codes

Data Output
Data Input -K>

Figure 3-8: Functional diagram of Reed-Solomon (204,188)

After the last bit of the last data byte is received, the switch is toggled to begin

transmitting the computed Reed-Solomon parity symbols. Simultaneously, the

computation circuits are being cleared by inserting bytes of zeros.

3.5.1 Altera Reed-Solomon Encoder IP Megafunction

The Reed-Solomon encoder megafunction, IP-RSENC, is produced by Altera

Corporation. It provides full support for Cyclone family FPGAs and the most of the other

Altera devices. The megafunction is fully parameterised with preset values that ensures

compliance with DVB standard.

41

As explained in section 2.3.1, this IP core has Altera’s free OpenCore Plus evaluation

features, that allows not only behavioural simulation of the Megacore function on the

system, but also allows programming of the Megacore to a device for verification within a

period of time. With a 20 MHz system clock, the megacore is expected to be able to run

for 13500 seconds before it expires.

Newer versions of the Megacore package included an RS Compiler IP Toolbench. It

provides a one-stop toolbar within the Quartus II software to view documentation, specify

parameters and generate all files necessary for the Megacore. A full functional

description and timing diagrams of the RS encoder Megacore are presented in the user

guides where, in newer documentations, the issue of frame conditioning is addressed

[86]. There must be some space between the end and the beginning of the next packet

for the check symbols. Similar to the other Megacores, setting up the parameters of the

RS encoder is done by means of a guided dialog box. In the case of a DVB standard

RS(204,188), the module can be generated with the preset values, as shown in Figure

3-9.

Num ber of bits per symbol 8

Num ber of symbols per codeword ^204

Num ber of check symbols per codeword 16

Field Polynomial S285

First Root of Polynomial Generator 0

Root spacing in generator polynomial 1

Preset Values

DVB Standard CCSDS Standard

Cancel Prev Next Finish

Figure 3-9: RS encoder Megacore parameterization dialog box

3.6 Convolutional Interleaver

The convolutional interleaver is used to distribute errors that occur in bursts more evenly

between the packets. It rearranges the sequence of the symbols in a pattern that can be

inversely rearranged at the de-interleaver to restore the sequence. Usually used with the

RS encoder, the convolutional interleaver can enhance the protection against longer

burst errors. As the RS(204,188) encoder can recover up to 8 bytes of errors per packet,

42

this interleaving scheme can handle burst errors of up to 8x12=96 bytes or 384 QPSK

symbols [87].

The operation of a convolutional interleaver is straightforward. Based on Forney’s

proposal, each word of the MPEG-2 TS is cyclically connected to the input of a branch of

the interleaver [88]. In turns, the branches input a word while shifting out the oldest word,

as illustrated in Figure 3-10. The input and output switches are synchronised. According

to the DVB-S standard, the convolutional interleaver may be composed of 1-12

branches, with depth of M j, where M = 1 7 and j= b ranch index [56].

Sync word route

1 byte per
position.

FIFO shift register

Figure 3-10: Functional diagram of convolutional interleaver

3.6.1 Interleaver Control

The interleaver control module can be represented by the input and output selector pins

pictured in Figure 3-10. At every clock cycle, the selectors would synchronously connect

to one branch following the sequence. Simultaneously, as one byte of data is sent into

the buffer on the branch, one byte of data is being read out. Functioning as the selector

pins, the design of this control mechanism involves sending and retrieving one byte of

data on one branch at a time.

As illustrated in Figure 3-11, 11 states were assigned on the state diagram. This is to

allow one branch of the convolutional interleaver to be represented as one state.

Although this technique seems inefficient, it simplifies its functions and implementation.

The design would change a state for every clock cycle. Therefore, one byte of data

would be sent and retrieved from the branch.

43

Figure 3-11: State diagram of interleaver control

3.6.2 FIFO Control
The control module is designed to manage the inputs and outputs of a synchronous

buffer. A general algorithm is devised for the first FIFO, that is branch index, j = l , as

depicted in Figure 3-12. The algorithm is reused to control the rest of the FIFOs by

changing the number of clock cycles the control module remained in the state of

ENABLE.

This general algorithm allows the FIFOs implemented as the branches of the interleaver

to behave like a byte-wise shift register. At the start, the algorithm waits for the enable

signal from the interleaver control module. During the ENABLE state, data is input and

stored into the FIFO. Based on the depth of the each branch, M j, the state is changed to

FULL, when the FIFO is filled to required depth. During the ful l state data can be

f1_en = 1
f1 count = 0

ENABLE

FULL

f1_en = 1
f1 count =18+1

J f1_en = 1
f1 count <=17+1

f1 on = 1

Figure 3-12: Generic state diagram of FIFO control

written into and read from the FIFO. At this stage, the FIFO synchronously inputs a new

word while the oldest word stored is shifted out at the output and hence, this is the

operation of a FIFO shift register. Listing 3-2 presents the VHDL source code for branch

index 1 of the FIFO shift register controller. A slight change was made to the binary value

of fx„usedw to correspond to shift register depth of the other branch index.

PROCESS (fl_clr, fl_en, fl._usedw)
BEGIN

IF (fl_clr = 10') THEN
fl_aclr <= 1' ;
£l_rdreq <= ' 0 ' ;
fl_wrreq <= ’ 0 1 ;

ELSIF (CONV_STD_LOGIC_VECTOR(fl_usedw, 5) >= "10000" THEN
£l_rdreq <= fl_en;
fl_wrreq <= fl_en;
fl_aclr <= 'O';

ELSE
fl_wrreq <= fl_en;
fl_rdreq <= ’ O' ;
fl_aclr <= ' 0 ' ;

END IF;
END PROCESS;

Listing 3-2: FIFO shift register controller for branch index 1

3.6.3 Single Clock FIFO Megafunction
As with the dual clock FIFO megafunction, the Altera single clock FIFO megafunction [81]

is also provided with the Aitera Quartus II software. The writing and reading operations

are synchronous. Similarly, this megafunction can be parameterised to implement a

variety of width or depth combination; the only limitation is the available memory space in

the device itself. Such flexibility is useful as the single clock FIFO is used in this design to

implement the 11 branches of the interleaver with different sizes. As described in [56],

the branches are FIFOs with depth M j cells. Table 3-1 shows the actual size of the

buffers on each of the branches and the corresponding size of the FIFO used.

j _______ M j___________ FIFO size
1 1 x 1 7 = 17 32
2 2 x 1 7 = 34 64
3 3 x 1 7 = 51 64
4 4 x 1 7 = 68 128
5 5 x 1 7 = 85 128
6 6 x 1 7 = 102 128
7 7 x 1 7 = 119 128
8 8 x 1 7 = 136 256
9 9 x 1 7 = 153 256
10 1 0 x 1 7 = 170 256
11 1 1x1 7 = 187 256

Table 3-1: Required depth for FIFO

45

3.7 Convolutional Encoder

The convolutional encoder processes data bits serially and continuously. It is a type of

discrete convolutional code generator using modulo-2 arithmetic [89]. Known for its high

redundancy encoding, convolutional coding provides high rates of error correction, yet is

simple to design and requires minimum circuitry [84].

As introduced in section 2.8.6, the DVB-S standard used a rate 1/2 convolutional code

with constraint length, K = 7 [56]. This means that the convolutional encoder consists of a

7-stage shift register. With rate 1/2, there would be two modulo-2 outputs for each

information symbol [90]. The operations of the modulo-2 adders are defined by the binary

equivalent of polynomials given in [56]:

X = g j = 171 ocj = 1111001
Y = g2 = 1330c t= 1011011

With reference to the 7-bit binary equivalent values of the polynomials, the shift registers

are connected to the modulo-2 adders where the bits are represented by ‘1’ and no

connections for bits that are represented by ‘O’.

Output X

Input

-T " > Output Y

Figure 3-13: Functional diagram of convolutional encoder

As the convolutional encoder processes in continuous serial bits, an 8-bit P2S converter

is required. The 8-bit P2S converter module coded as part of the randomizer was re

used in the design of this convolutional encoder. The coded module is placed in the

functional block library and implemented as part of the design.

46

PROCESS (cnv_clk, cnv_clr)
BEGIN

IF (cnv_clr = ’O') THEN
in_latch <= "0000000";

ELSE
IF (cnv_clk'EVENT AND cnv_clk = 1 1} THEN

in_latch(6) <= cnv_in;
in_latch(5 downto 0) <= in_latch (6 downto 1);
x_out <= in_latch(6) XOR in_latch(5) XOR in_latch(4) XOR

in_latch(3) XOR in_latch(0);
y_out <= in_latch(6) XOR in_latch(4) XOR in_latch(3) XOR

in_latch(l) XOR in_latch{0);
END IF;

END IF;
END PROCESS;

Listing 3-3: Convolutional Encoder

Figure 3-13 shows the simple design of the rate 1/2 convolutional encoder.

Implementation of the design was coded using VHDL, where the input signals are shifted

in a 7-bit bus signal to represent the workings of a shift register, as presented as Listing

3-3. The modulo-2 adders were represented by the Exclusive-OR operation [85]. The

signals were described using the XOR operator already defined in the VHDL library.

3.8 Puncturing

The added redundancy due to convolutional coding has reduced the code rate by 1/2.

This means that every bit data is being represented by 2 data bits. The efficiency of

convolutional encoding can be increased by not transmitting every bit of data across the

medium. This process is called puncturing. Based on a pattern standardised for DVB-S

systems, some bits of the encoded data can be excluded from being transmitted. The

puncturing process for DVB-S systems is capable of increasing up to 7/8 of the overall

code rate. The process of puncturing must be applied conforming to the punctured code

definition, where the puncturing patterns are specified.

________________________ Code rates_______________________
1/2________ 2J3_________ 3/4________ 5/6_________ 7/8

Puncturing X : 1 X : 10 X : 101 X : 10101 X : 1000101
Code Y: 1 Y: 11 Y: 1 10 Y: 11010 Y: 1111010

Output I= X] I= X jY2Y3 I= X jY2 I= X ,Y 2Y4 l^ X l Y2Y4Y6
Q =Y] Q =Y jX3Y4 Q =Y iX3 Q =YjX3X5 Q =Y}Y3X5X 7

Table 3-2: Punctured code definition

Table 3-2 shows the puncturing patterns as defined by DVB for code rates 1/2, 2/3, 3/4,

5/6, and 7/8 [56]. The puncturing codes can be analogous to a mask that is filtering the

data bits received from the convolutional encoder output, X and Y, where T represents

47

transmitted bit, and ‘O’ represents punctured bit. The bits that are being punctured are

the ones that are not transmitted. The punctured code definition also describes the

pattern which the punctured data bits are being sent at the output, I and Q.

3.8.1 Rate 3/4 Punctured Code

Rate 3/4 puncturing was chosen to be designed and implemented as it was already

adopted by the NTU campus network trial system. Signal measurements and analysis of

the campus trial system were based on rate 3/4 DVB-S encoding [59]. According to the

punctured code definition, one of the methods to achieve the output pattern, / and Q, of

rate 3/4 puncturing is by converting the two inputs into a one-bit data stream. As depicted

in Figure 3-14, the inputs, Xn and Y„, are interlaced to form a continuous bit stream. As

with the inputs, the puncturing code is also interlaced to form a single bit masking pattern.

When the rate 3/4 punctured code is applied to the stream, every third bit of the data

stream will be deleted and therefore not transmitted. During this clock cycle, the two bits

of data that were not deleted are clocked to generate the I and Q outputs that is

compliant to the DVB-S standard.

Clock pulse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X, Y, x2 y 2 x3 y 3 x4 Y„ x5 Ys x6 Ye x7 y 7 Xe Ye

I Output >| X, j I j->| Y; | l —j—>| X„ j ---------- j->| Ys |

Q Output >| Y, | L->| X3 | >| Y„ | >| X6 |

Figure 3-14: Rate 3/4 punctured code pattern

A 2-bit P2S converter was coded based on the source codes of the 8-bit P2S converter

designed as part of the randomization module. At the very core of this rate 3/4 puncturing

design is a modified S2P converter with a sampler. The sampler would operate with a

controller that counts the clock pulse in a 3-bit cycle. At every third bit, a signal would be

sent to the S2P converter, as shown in Figure 3-14. This signal would have a 37% duty

ratio. When the signal goes HIGH, the values sampled in the S2P converter is then

latched to the I and Q outputs. Designs for the puncturing module are presented in

Appendix III.

> x7

> Y7

48

3.9 Configurability

With the aim of realising a hardware system that is reconfigurable to allow changeable

coding schemes to be tested over the university campus network trial, each module in

the coding process of the DVB-S channel encoder is modified to allow itself to be

switched on or off. As shown in Figure 2-8, the DVB-S coding algorithms are performed

in a sequence, where energy dispersal is performed first, followed by outer coding,

interleaving and finally inner coding. This means that when the modules are integrated

as a system, data must be passed between the modules in the way defined by [56].

To facilitate the flexibility of disabling a particular coding module, each module is

designed with a bypass channel that is controlled by an enable input-pin. To alternate

between 1/2 rate and 3/4 rate punctured convolutional encoding, a simple switching

design was employed to connect the I and Q outputs with data from the convolutional

encoder for 1/2 rate coding and the puncturing module for 3/4 rate coding.

3.9.1 Module Bypass

The module bypass design is applied at the inputs and outputs of a module. The inputs

and outputs are connected to avoid the data from being coded by the module, when

required. The decision to bypass is controlled by changing the value of the enable input-

pin, en, as depicted in Figure 3-15, where X represents the coding modules of the

system.

en

Data outputData input

Bypass

Figure 3-15: Bypass enabling design

This design was applied to modules performing SYNC inversion, RS(204,188) encoder,

and convolutional interleaver. Listing 3-4 presents the source code of the module bypass

design written and implemented as part of the RS(204,188) encoder to enable the

module to be switched on or off. As for the randomizer, the enable pin was already a

standard feature of the randomizer module. As shown in Figure 3-6, the enable pin was

connected to allow disabling of the randomization process on the data.

49

PROCESS (en_clk, en_in)
BEGIN

IF (en_clk'EVENT AND en_clk =
IF (en_in = ’O') THEN

en„dataout <=
en_syncout <=
en__dataenin <=
en_syncenin <=

ELSE
en_dataout <=
en_syncout <=
en_dataenin <=
en_syncenin <=

END IF;
END IF;

END PROCESS;

: ‘1') THEN

en_datain;
en__syncin;
: "0 0 0 0 0 0 0 0 ";
= ' 0 ' ;

en_dataenout;
en_syncenout;
• en_datain;
= en_syncin;

Listing 3-4: Module Bypass

4 Verification of DVB-S Channel Encoder

Verification of the designed modules was performed individually using HDL software

simulation. This ensures that the modules are functionally verified prior to system

integration. A data source that emulated the MPEG-2 TS was specially coded for this

purpose. Simulation results obtained were analysed and correlated against output of

simulation tools used in the industry, such as Simulink.

Hardware verification was also performed on a systemic level. This completed system is

prototyped on the FPGA development board and tested as part of the 42 GHz MWS

campus network trial. Hardware verification methods also included accessing status

register of an STB as well as the use of ‘live’ digital TV signals. A PCB was also

designed to ensure maximum l/Q power transmission and signal integrity during

interfacing with external devices.

51

4.1 MPEG-2 Transport Stream Emulation

MPEG-2 Transport Stream (MPEG-2 TS) emulation is the most important entity in the

verification processes of the DVB-S channel encoder. A single continuous stream of

MPEG-2 packets is required as an input at almost every stage of the simulation. As the

system is designed to conform to the DVB Synchronous Parallel Interface (DVB-SPI) [70],

the emulated MPEG-2 TS is synchronised with a supplied clock, and accompanied with a

PSYNC signal to flag at the start of a packet and DVALID to signal for a valid packet.

The design for MPEG-2 TS emulation involved an 8-bit count-up counter, enabled from

the LPM [83], and a control mechanism. The counter output is used here to generate the

emulated MPEG-2 data stream. To conform to MPEG-2 framing standard, 4 7 H e x and a

PSYNC signal are used at the start of a packet. This is achieved by referring the output

of the counter; as the counter counts up, the control module outputs a PSYNC when it

reaches 4 7 H e x - The control module then resets the counter when it reaches 6 C H e x to

restart counting from 0 0 H e x on to 4 6 H e x - This count cycle would generate a 188-byte

packet.

Figure 4-1 shows a section of the output of the MPEG-2 TS emulator. The data output,

data, is a stream of changing code words as a result of the count-up counter output.

The 188-byte packet ended at the code word 4 6 H e x and the start of the following packet

continued on with 4 7 H e x accompanying a PSYNC signal at its output, psync.

Name
2.33 us 2.37 us 2.41 us 2.45 us 2.49 us 2.53 us 2.57 us 2.G1 us

is * byteclk

j T J i n j i r L J i r L r L r L r i j r L j m j i r L r L n j m ^

n

I P
clock

0 data

psync

dvalid4 p

Figure 4-1: 188 byte MPEG-2 transport stream emulation

When required, this emulator design can be altered to generate 188+16-byte transport

packets. Instead of 6CHex, the counter is reset when it counts to CChex to generate 204

bytes of data. The DVALID signal is switched off for the last 16 bytes of the packet as

they are not valid RS codes concatenated to the packet [70]. The 16 extra bytes added

to packets are output as null bytes, 00Hex-

52

Name
2.53 us 2.55 us 2.57 us 2.59 us 2.61 us 2.63 us 2.65 us 2.67 us 2.69 us 2.71 us 2.73 us 2.75 us 277 us 2.79 us

jn jn jn jiJ T jn jn jiT L n jT ru T rL rL J T T U ijn jn _ P U T T iT iJ T jn _ rL rL
I P

byteclk

clock

0 data

psync

dvalid

30 X 31X32 X 33 X 34 X 35 X 3GX 00)(47XMX1XMM
n

Figure 4-2: 188+16 byte transport stream emulation

A section of the simulation output of the MPEG-2 TS emulator is presented in Figure 4-2.

It shows the end of a packet with the 16 null-bytes added. As described, DVALID output,

dvalid, is switched off for the additional null-bytes. A new packet then follows on.

4.2 ‘Zero-padding’ Frame Conditioning

As previously described in section 3.1, in order to allow application of RS coding, frame

conditioning is employed to the MPEG-2 transport multiplex. Before coding processes

begin, the 188-byte MPEG-2 TS have 16 null-bytes added at the end of every packet.

The design of this functional block included a dual-clock FIFO with a controlling module.

Name
6.35 us 6.39 us 6.43 us 6.47 us 6.51 us 6.55 us 6.59 us 6.63 us

12#*
1#

pad_reset

inclk i i i r " i i i i— i i 1 ft i 1 1 1 r
tap*

■s#
0 pad_datain

pad_psyncin m
I P 0 pad dataout i)(4~1 "X42X 43 X44 a 45 X 46 X 00 X 47X48X49X4A#

t # pad_psyncout n
I P 0 pad_usedw A8 X A7 XA8XA9XAAX AB XACXADXAE X'AFXBO'XBI X B2 XB3 XB4 X B$

byteclk

pad_fastclk

zero pad:inst|... ctrlstate ctrl_read X ctrlstate.ctrl_stop X ctrtstate. Ctrl read

Figure 4-3: Null-bytes insertion for frame conditioning

During verification, the functional block uses the MPEG-2 TS emulation output as data

source. A PLL was used to generate clock rates that are identical to the system’s clock

rates; pad_slowclk was connected to the 70 MHz clock while pad_fastclk was

supplied with 80 MHz clock. Figure 4-3 shows a section of the simulation output of the

frame conditioning process. Emulated MPEG-2 TS entered the module via input port,

pad_datain, at its interface rate. Zero-padded transport packets are output via

53

pad_dataout output port at a faster rate to accommodate the 16 additional null-bytes.

PSYNC signals were generated to accompany the SYNC bytes to provide

synchronisation of the TS.

As anticipated, the amount of data buffered in the FIFO decreases as the zero-padding

process is performed. The gradual reduction of data in the FIFO is due to the difference

between the interface clock and the system clock. Bigger difference from the theoretical

204/188 rate would result to faster reduction of the buffered data. However, as the

amount of data buffered is almost empty, in which less than 25 bytes left, the

CTRL_STOP state changes to CTRL_FILL to stop the output of data for as long as 188

byte to top up the amount of data stored. Figure 4-4 presents the inserted null-packet

when the FIFO is being re-buffered. For the purpose of identification the null-packet was

set to output BBhex words.

Name
41 Bus 42.24 us 42.88 us 43.52us 44.16 us 44.8 us

J #

■ti#

pad_reset

inclk

0 pad_datain

pad_psyncin
S B B

I P 0 pad_dataout M N M r o n r ' ..; ' » ------------------------ x » n u t

•fc# pad_psyncout 11 1

IP 0 pad_usedw
& byteclk
4 # pad_fastclk
4§|> zero pad:inst|... ctrlstate. ctrl_read;(ate. ctrlY ctrlstate. ctrl_f ill Xste. ctrfYtate. ctrl

Figure 4-4: Null-packet insertion for buffering

4.3 Transport Multiplex Adaptation

The transport multiplex adaptation was designed to bit-wise invert MPEG-2 SYNC bytes

from 47Hex to B8Hex for synchronisation. Only the first of every eight SYNC bytes are

inverted. During simulations, the MPEG-2 TS emulation module can be used to provide

MPEG-2 packets into the SYNC inverter module. However, the simulation can be

simplified by shortening the input packets into the test module. Complete MPEG-2

packets are not required to verify the SYNC inversion process that occurred once in

every eight packets. Therefore, as shown in Figure 4-5, a simulation of the SYNC

inversion module was performed using 4-bytes per packet stream.

54

Name
30 0 ns 70.0 ns 110.0 ns 150.0 ns 190.0 ns 230.0 ns 270.0 ns 310.0 ns 350.0 ns

IS*
m -
i #

i^>
u p

>

mux reset

mux_en

mux_clk
0 muxjn

mux_psync
0 mux_out

mux_syncout

0 pack_count 0 X 1 X 2 X 3 x 4 y 5 X 6 x 7 X o X 1

Figure 4-5: Simulation of SYNC inversion

A continuous stream of packets entered the module at mux_in input port, where the

SYNC bytes were identified by the accompanying PSYNC signals. At the output,

mux_out, the first SYNC byte was inverted and the number of packets was counted,

pack_count. After the 8th packet, the following SYNC byte was again inverted, as

indicated on the figure.

4.4 Randomization

The randomization process is used in the transmission to facilitate energy dispersal in

compliance with radio regulations. Details and design of this functional block were

described in section 3.4. Although the DVB-S [56] publication has provided schematics of

the PRBS generator, designs were implemented for serial-parallel conversions and a

specially devised control mechanism.

Verifications on the functionality of the control mechanism are important to ensure that

changes to the frame conditioned transport stream are transparent to the randomization

process. With the added null-bytes, PRBS generation is required to be temporarily

paused, to avoid scrambling of the null-bytes, and continued from the following SYNC

byte. Scrambling of the additional data bytes would cause corruption of the entire

transmission as the PRBS period would run for more than the specified 1504 bytes [56].

The data source used for simulation of the randomizer module is the emulated MPEG-2

TS. The SYNC inversion module was used on the TS prior to randomization. The data

source was then supplied to the randomization module and was first converted to a serial

bit stream. Output of the parallel-to-serial conversion can be probed at P_Sout. Figure

4-6 presents a snapshot of the simulation of the randomizer module, where the PRBS

generator is paused for the null-bytes. The signal bitclk_ctrl was coded at the

55

control instructions as an enable switch for the PRBS generator. Therefore, the signal

was disabled for the entire duration of the additional null-bytes.

41.17 us
Name

41.81 us 42.451 43.09) 43.73 us 44 £,

HP*
S#
&

jj>

sysclk

slowbyte

slowbit

slowload

S3 datain

psyncin

P_Sou)

rand_en

bitclk_ctrl

prbs_load

0 dataout

psyncout

Figure 4-6: PRBS paused at zero-padding

The general functions of the control mechanism were also verified by ensuring that the

prbs_load signal is initiated when an inverted SYNC byte occurs. This signal would

reset the PRBS generator to have its initial sequence “10010101000000 0” loaded.

Another signal verified during simulations was the enable signal for randomization,

rand_en. This signal is used to ensure that the MPEG-2 SYNC byte of the TS

remained unrandomized, although the PRBS generation continued [56]. Therefore, as

observed in Figure 4-6, the rand_en signal was disabled as the serialised SYNC byte

“010 00111” entered the PRBS generator and remained unrandomized.

4.5 Altera Reed-Solomon (204,188) Encoder IP

The Reed-Solomon (204,188) encoder was implemented using Altera’s megafunction IP

core. It adds 16 extra redundancy bytes at the end of each 188-byte MPEG-2 packets to

provide error recovery of up to 8 bytes long during transmission. Several simulations

were performed prior to using this IP core to investigate its input requirements. One such

simulation involved inputs from the MPEG-2 TS emulator which were set to generate

188-byte MPEG-2 packets with 16 additional null-bytes. As shown in Figure 3-2, full 16-

byte RS codes were successfully concatenated at the end of each transmission packet,

when the null-bytes were included as part of the input transport stream.

m i i n i fi i n
ilCTilTifiliflillilil J L T I J U I J I J I U M M J

y

y47YD7W;ff

56

4.6 Convolutional Interleaver

The convolutional interleaver is made up of an array of FIFO shift registers with different

capacities. With a control algorithm, data was distributed over 12 branches of FIFO shift

registers to increase the efficiency of the RS(204,188) encoder. A longer burst of error in

transmission can be sustained by the RS encoder. A description of the design of the

convolutional interleaver module can be found in section 3.6.

Verification of the implemented module was performed with the use of Altera’s

convolutional interleaver megafunction. Functional simulation output of the implemented

module was correlated against output of the IP core using the same set of input data.

The module and the IP core were configured to connect to the emulated MPEG-2 TS

generator, as illustrated in Figure 4-7. The functionality of an IP core made for

commercial licensing is guaranteed as its developer must ensure that the IP core was

built in compliance with industrial standards. An IP core can be simulated and its output

is reliable unless the core in incorrectly parameterised.

dataout

lnt_out

DVB-SPI
Source

Convolutional
Interleaver

Altera Convolutional
Interleaver

Figure 4-7: Convolutional interleaver verification configuration

A section of the simulation output of the convolutional interleaver is presented in Figure

4-8. Simulation output dataout is the output of the IP core, while output port int_out
is the output of the module implemented in the system. The modules were connected to

the same emulated MPEG-2 TS used for other tests. This simulation successfully

validated functionality of the implemented convolutional interleaver module as the output

values of int_out matched the output value of data_out. However, the delay of one

clock cycle was observed between the outputs. Optimisation of the commercial IP

megafunction design has resulted in the timing difference against the output of the

implemented module.

57

Name
17.59 us 17.B3 us 17.87 us 17.71 us 17.75us 17.79us 17.83us

J T J T J T J T J T J T J T J 3 J T J T J T J T J T J T J T j T J T J T J T J T J T J T J n J T J T J T J T _ r L _ rsys_clk

en

sync in

EB datain
& psyncn
e y EB dataout i r m ^ S E Y T R T " 0 0 0 0 ' ' y 5 Y T O 5 Y 2 5 Y T 7 Y 0 S y B 5 W ^

m [3 int_out lft&bXACX9bX8EX7FX oo X'47 X 38'X29‘X1A X'0B XB3XA9X9AX8B X 00 X 53 X44 X 35 X 26X 17 X 08 XB5 XA6

Figure 4-8: Convolutional interleaver verification using IP core

4.7 Punctured Convolutional Encoder

As the punctured convolutional encoder was implemented in two separate parts, namely

convolutional encoder and puncturing modules, the verification results are also

presented separately. Verification of these modules was carried out by correlation of

VHDL simulation traces with results of Simulink simulations.

4.7.1 Simulink Simulations

MATLAB is a high-level technical computing language. It features an interactive

environment for algorithm development and data analysis [91]. Simulink is an extension

to MATLAB that allows block diagrams representing system models to be created and

edited in a graphical environment. It provides a graphical user interface to accurately

design, simulate, implement, and test control, signal processing, communications, and

other time-varying systems [92], Add ons, such as the communications blockset, extend

the Simulink environment for simulation of the physical layer of communication systems

and components.

With the communications blockset installed, Simulink was used to simulate the

convolutional encoder and the puncturing process. These processes were parameterised

in the Simulink environment to comply with DVB-S standard published in [56]. With a

known set of input data, the Simulink blocks were simulated and outputs were recorded.

With Simulink being used in the industry to design and simulate commercial

communication models, the Simulink component blocks are in compliance with industry

standards to provide accurate representation of its functionalities. Therefore, verification

of the convolutional encoder and puncturing module can be performed by correlating

Simulink simulation results against simulation outputs of the VHDL coded modules, using

the same set of input data.

58

4.7.2 Convolutional Encoder
The convolutional encoder is a simple channel coding technique that adds a large

amount of redundancy for error correction [84]. Its simple design performs modulo-

addition to the input data bits continuously based on polynomials described in section 3.7.

Although verification of this module can be performed manually using pen and paper, a

Simulink simulation was used to correlate against the output of HDL simulation to ensure

validity. HDL simulation output of the implemented convolutional encoder was obtained

by input of a short sequence of incrementing data starting from 47Hex to 52Hex to emulate

the start of a MPEG-2 packet, as presented in Figure 4-9(a). Similarly, the Simulink

convolutional encoder block was simulated using identical input data, as presented in

Figure 4-9(b).

(a) HDL Simulation Output

11.52 us11.44 us 11.6 us 11 76 us 11.52 us 12.0 us
Name

reset

sysclk

bit elk

bytedk

load

ED datain

P_Sout

a XY

L n jijijy TrLnTLrmrLiijm Tu^

J L i n __ n r i_ u ru - rL _ n n _ n
y n m m m m

(b) Simulink SimulatibnJOlitput

0.6

0.4

Figure 4-9: Simulation outputs of implemented convolutional encoder

By associating the serial output, XY, on Figure 4-9(a) and the Simulink simulation output

of a DVB-S standard convolutional encoder on Figure 4-9(b), the output of the designed

convolutional encoder is exactly as the same as the output of a DVB-S standard

convolutional encoder, as guided by the dotted lines, when the same input values are

used. Therefore, this correlation process had successfully verified the functionality of the

designed convolutional encoder.

59

4.7.3 Puncturing
The puncturing process involves deletion of data bits in a pattern that conforms to the

DVB-S standard. Puncturing is performed to increase overall code rate of the system and

increase FEC efficiency after the large amount of redundancy that was added into the

encoding by the convolutional encoder. The punctured code definitions for all levels of

efficiency are presented in section 3.8.

A rate 3/4 puncturing module was designed and developed as part of the DVB channel

encoder. Verification on this module was performed by correlating the HDL simulation

output against Simulink simulation output of a DVB-S standard puncturing. A two-bit

counter was used to generate loops of incrementing binary values, 0 0 Bin , 01 b in , 1 0 b in and

11 b in , as inputs to the puncturing module. Figure 4-10 shows the HDL simulation output

of the designed puncturing module. Using identical input data, the Simulink puncturing

block was also simulated and its simulation result is presented as Figure 4-10(b).

(a) HDL Simulation Output

15?

&
I#

370.0 ns
Name

h

punc_bitclk

punc_byteclk

punc_clr

□ IQ

-puncjout

-punc_Qout

puncjoad

puncjdreq

punc_wrreq

punc_Xin

punc_Yin

P_Sout

punc_sel0

0 x 01

530.0 ns €50.0 ns 850.0 ns 1.01 us 1.17 us 1.33 us

...i I.., .I. t I. i

i J L in u u u j f W t ^

ir L o n jir im r ir L n n n n n n ^ ^
■ i _ ^ ^ J 1 L n m n ^ r L r u x n j ^ ^

iiT_r[rTTin-JirLJTifrT-r)rL4irLJirL^ir^Tir^TirLJirLTiri_ru~L

(b) Simulink Simulation Output

Figure 4-10: Simulation output of puncturing

60

As shown in Figure 4-10(a), serial output of the designed puncturing module, IQ, is used

to correlate with the output of the Simulink simulation, Figure 4-10(b). As guided by the

dotted-lines, the simulation output of the designed puncturing module is exactly the same

as the simulation output of the DVB-S standard puncturing when the same input values

are used. Therefore, the functionality of the designed puncturing module was

successfully verified by this matching correlation.

4.8 Hardware Verification using Set-Top-Box

One verification process that can validate the operations of the implemented DVB-S

channel encoder on a systemic level is by using a satellite STB. As the satellite STB is

the receiving-end of the transmission link, it demodulates and decodes the received

signal to remove the redundancy that was included during the encoding process

conforming to DVB-S standard. The original stream of information is then recovered. A

brief walkthrough of the decoding process is described in section 2.8.7.

The instant prototyping capability of FPGAs played an important role in this systemic

hardware verification process. The designed channel encoder system can be

programmed onto the FPGA on the spot for hardware testing. Important probe points and

status flags of the designed system are described within the codes of the modules. By

probing these points and the output of the module, functional faults and defects of the

system can be quickly identified on a signal analyser.

Software simulation can be performed on a systemic level by providing a testbench to

supply input stimulus to the design. In most cases of a VHDL based design, HDL

testbenches are coded to monitor the characteristics of the signals within the design. As

the Altera Quartus II software does not support HDL testbench, verification of the

simulation output waveform alone is not feasible on a systemic level.

Verification using a STB involves programming the design onto an FPGA. A set of

devices including the STB is required to be configured to facilitate the verification

process. Sections 4.8.3 and 4.8.4 will describe the configurations and results of

verification in entirety.

The first of two methods used to verify the design of the encoder system are by probing

the output of the decoded signal. This method requires a known set of transport packets

being encoded by the implemented DVB-S channel encoder (DVB-ENC) and sent to the

STB. The decoded transport packets are then obtained from the STB and examined,

61

where the DVB-ENC can only be proven to function correctly if the original and the

decoded packets are identical. Typically, DVB-based channel decoder chip interfaces

with an MPEG-2 decoder chip using DVB-SPI [93]. By tapping into the SPI, traces of the

output of the channel encoder were obtained using a logic analyser.

The second method used is more technical. It is done by examining the status registers

of the decoder chip in the STB. With the register indicating a lock on the demodulator,

decoder clock and the rest of the FEC processes, the DVB-ENC is certain to be

functioning correctly. As shown in Figure 2-11, modules in the front-end and decoding-

end of a typical satellite STB system communicate with each other using a common

inter-IC bus, the l2C-bus. Various controls and status registers can be accessed via the

l2C-bus [94]. As the Humax F1-FOX satellite STB uses the Philips TDA8044A DVB-S

decoder chip, which is an l2C compliant device [95], the status register is accessed using

a PC via a serial link to an in-house l2C compatible data acquisition module (DAM) that

taps into the l2C-bus of the satellite STB [59].

4.8.1 l2C-bus Data Acquisition Module

The DAM was originally designed to facilitate measurement of the 42 GHz wideband

millimetre-wave signal using an inexpensive satellite STB [59]. The module can be

attached to a Humax F1-FOX satellite STB to tap on its l2C-bus. The module, reused in

these verification processes, provides an interface with the l2C-bus via a PC COM port.

As mentioned, by having a means to access the l2C-bus in the STB, the status registers

of the Philips TDA8044A DVB-S decoder chip can confirm the functionality of DVB-ENC.

> STB l2C BusController
RS-232
driver Microcontroller

Figure 4-11: DAM architecture block diagram

The DAM architecture consists of an l2C controller, RS-232 communication port, and a

microcontroller. All tasks related to data acquisition are performed by the microcontroller.

It acts as a transceiver that allows communication via a PC COM port in American

Standard Code for Information Interchange (ASCII) format. With the l2C controller,

parallel communication can occur bi-directionally between microcontroller and l2C bus.

As explained, communication between with the l2C bus is carried out on a byte-wise

using polled handshake. The l2C controller manages all the l2C protocols to allow

passive monitoring of the l2C bus traffic on a PC. A utility shareware, Serial Device

62

Tester, is used to monitor serial communication at the PC COM port. Data in both ASCII

and Hex format can be displayed simultaneously on a Graphical User Interface (GUI).

4.8.2 QPSK Modulation and Hardware Interfacing

QPSK modulation is required at the I and Q outputs of the DVB-ENC to enable the use of

a satellite STB. As an off-the-shelf consumer product, the STB is manufactured with a

standard Satellite-Input. It is designed to receive signal that has been downconverted to

an intermediate frequency (IF) signal by a low-noise biock-downconverter (LNB) at the

satellite-dish. The IF signal is then converted into an MPEG-2 TS by performing

demodulation and forward error correction decoding as described in section 2.8.7.

During the verification process, QPSK modulation was performed using the Agilent

Technologies ESG family signal generator to produce the IF signal that can be received

by the STB. The signal generator was first used to condition the modulated signal. A

negative offset of 25% were set to mimic a bipolar baseband signal for QPSK modulation.

The signal is then modulated with carrier frequency of 1000 MHz and output at amplitude

of -40 dBm.

Prior to using the signal generator, the equipment was fully investigated. The maximum

input power into the device was found to be 1.0 Watt with input impedance of 50 Q at

each input. For external I and Q source, the recommended signal level is [96]:

An I and Q output interface module was developed to match the input requirements of

the signal generator. The module is positioned between the I and Q outputs of the DVB-

ENC and inputs of the signal generator. As shown in Appendix I, a fully customised PCB

was designed using Protei PCB design software. Several Gerber formatted files is then

generated to plot and produce the PCB. The Gerber Format is also known as RS-274-D

as the industry standard photo plotting language [97]. The interface module was

designed to include a SN74LS126A bus buffers to reduce the power load on the I and Q

output port of the FPGA. Using a simple parallel termination scheme, the line impedance

was matched with a termination resistor of an equal value. Two 52 Q resistors were used

at each output as they were the nearest match available in-house. The scheme not only

diminishes the first reflection, it also ensures maximum current loading at a HIGH output

state [98]. To match match the power limitation at the input of the signal generator, a

voltage divider circuit was used at both I and Q outputs.

[4-1]

63

Picture 4-1: I and Q Output interfacing module

With interface rate of more than 26 mega-symbols per second, the fast slew rate can

contribute to noise generation, signal reflection, cross-talk and ground bounce. As

mentioned earlier, a simple parallel termination scheme was used to avoid signal

reflection. As shown in Picture 4-1, a 100 pF electrolytic capacitor was also placed

adjacent to where the power supply enters the circuit board to filter low-frequency noise

from the power supply [98], To avoid occurrence of ground bounce and VCc sag, surface

mount decoupling capacitors of 0.01 pF and 0.1 pF in parallel were also used.

4.8.3 Verification with Emulated MPEG-2 Transport Stream
Probing the output of the decoded signal is one of two methods mentioned earlier to

verify the system using a STB. The configuration for this verification process can be

separated into transmitting-end and receiving-end, as pictured in Figure 4-12. At the

transmitting-end, the process involves insertion of a MPEG-2 TS into the DVB-ENC.

Insertion of the MPEG-2 TS is done by re-using the MPEG-2 TS emulation module. The

emulation module was applied and connected to the inputs and programmed on the

FPGA as part of the hardware. The I and Q output signals of the DVB-ENC is QPSK

modulated using the Agilent Technologies ESG signal generator. Configuration at the

receiving-end includes STB2, a TV to set-up the STB and a logic analyser to display

traces of the decoded MPEG-2 TS. The probes were connected to the DVB-SPI data-

bus of STB2.

64

26,666 Baud
1,000 MHz

RF

DVB-SPI

MPEG-2
TS

QPSK
modulator STB2

Logic
Analyser

TVDVB-ENC

FPGA

Figure 4-12: Configuration for verification with emulated MPEG-2 TS

Prior to running the verification process, STB2 is required to have the L-Band frequency,

symbol rate of the input signal and the FEC mode locked to the specification that is

matching the transmitting-end. As the STB requires ‘live’ digital TV reception to lock and

save a setting, a ‘live’ feed was re-modulated using Newtec NTC2063 professional DVB

modulator. The re-modulated IF signal is then sent to tune STB2. Table 4-1 shows

matching the specification of the transmitting-end compared to the existing specifications.

The verification process is then performed as depicted in Figure 4-12.

Specification________ Exis ting______ Re-m odulated
L-B and Frequency 1270 M H z 1000 M H z

Symbol Rate 17500 Baud 26666 Baud
F E C M ode 3/4 3/4

Table 4-1: Specification difference between existing and re-modulated signal

This verification process has successfully proven the operations of the DVB-ENC with

STB2 effectively decoding the encoded source signal. The decoded data-bus traced at

DVB-SPI of STB2 was identical to the emulated MPEG-2 TS.

4.8.4 Verification with Digital TV Signal

As an extension to the previous verification test, a similar configuration of hardware can

be used to verify the DVB-ENC using a ‘live’ digital TV multiplex. Similarly, the

arrangement of hardware can be separated into transmitting-end and receiving-end. As

shown in Figure 4-13, the I and Q output signals of the DVB-ENC is QPSK modulated

prior to transmission. To facilitate the use of a ‘live’ digital TV multiplex, an IF signal from

the university campus trial is demodulated and decoded by STB, to be re-modulated to

match the requirements of the DVB-ENC. The ‘live’ multiplex stream is then connected

into the DVB-ENC by tapping the DVB-SPI of STB3, where the re-modulated signal was

recovered.

65

17,500 Baud
1,270 MHz

DVB-
SPI

26,666 Baud
1,000 MHz

26,666 Baud
1,000 MHz

RFRF DVB-
SPI

ESG

PC

Newtec STB2 TV

STB.

DVB-ENC

Figure 4-13: Configuration for verification with digital TV multiplex

At the receiving-end, the DAM is connected to STB2 to allow monitoring of the status

registers in the Philips TDA8044A DVB-S decoder chip at the l2C-bus of the decoder

system. A TV is used to set-up the STBs as well as displaying the decoded TV

programme. At the same time, monitoring of the l2C-bus is done on a PC using the serial

COM port.

Accessing the PC serial COM port using Serial Device Tester software as a user

interface, a total of 11 status-bytes were returned by the DAM. These data was identified

as useful status flags and accessed via the l2C-bus based on information and addresses

published in [95]. One of the status addressed at 02Hex, was identified as FEC locks

status. This 8-bit flag registers a binary ‘1’ to indicate different stages of the FEC are

locked. Amongst the stages that can be monitored are Viterbi locked (FVL), de

interleaver locked (FDIL) and de-randomizer locked (FDRL) [95]. The output value of

1FHex is expected at this location under normal working conditions when all FEC stages

are locked.

Figure 4-14 shows the output of 11 status flags accessed from the l2C-bus via the DAM

during the verification process. With 1 F He x confirming that all the FEC stages are locked,

the channel coding processes in the DVB-ENC were proven to conform to DVB-S

standard and therefore demonstrated a successful development of the DVB-S channel

encoder on an FPGA. Only one status register indicates FEC lock status, other status

flags can be used to analyse characteristics of a channel. Estimated values for signal-to-

noise ratio, automatic gain control, and number of channel bit errors can be obtained.

66

"c3 Jt3l
File £d* Comm Port Send Help

Data to send (Hex and Decimal values must be separated by a space between each byte)

T reat Input Data As:
C Text
r ' Decimal
<'» Hexadecimal L.Li I

Transmitted Data History

Received Data History in ASCII Received Data History in Hexadecimal
FllBTiCE H6na6F||0ai€E llfia i E llfiil .€E llftaa 4B 1F 07 DF EE EF 80 00 02 00 00

45 IF 07 DF FI E1 80 00 01 00 00
46 1F 07 DF E2 EF 80 00 02 00 00
451F 07 DF E2EF A0 00 00 00 00
451F 07 DF DA EF 80 00 01 00 00
45 IF 07 DF E2E1 A0 00 00 00 00

Log File (None)

Data Logg ing is O FF (F12 to start)

Figure 4-14: Status register values of Philips TDA8044A

Besides the technical approach to acquire evidence that proves the conformity of the

DVB-S channel encoder, a TV set can also be used. As this verification process uses

‘live’ digital TV multiplex, TV programmes can be decoded and displayed on the TV

screen if the encoding standard is conformed to. Therefore, with the TV screen showing

decoded digital TV programmes during the process, the designed channel encoder is

validated.

4.9 MWS Campus Network Trial Concept Test

The MWS campus network trial is a 42 GHz test platform deployed in the university to

explore new applications for 42 GHz MWS. At present, the existing interactive service

uses cable technology that is readily available as return channel. A prototyped

broadband access network is being developed at NTU to replace it with a new system

configuration that is based on encapsulation of Ethernet network data in MPEG-2 TS

with the introduction of an Ethernet adapter [64]. A trial was performed based on the

conceptual configuration using the DVB-ENC.

r Ptefix Data with Saved Headei Auto Response Settings
r Add Footer after Data % " eV" Sen? n ,
r Append Carriage Return (cht$(13)) 118 ")e
T Append Lme Feed (ehSH 0)) , P Send Eve'V Trre

67

Base-station

Internet

LAN

MilPC
Ethernet
Adaptor

STB

Newtec DVB
Modulator

1000 GHz
26.666 MBaud \

PC Mil

DVB
Encoder

Ethernet
Adaptor

STB

QPSK
modulator

Client-site

Figure 4-15: Configuration of prototyped system test

As illustrated in Figure 4-15, the set-up can be separated into base-station and client-site.

At the base-station, Ethernet network data from the university network was bridged into

the trial network using a PC with two network interface cards (NICs). A Media

Independent Interface (Mil) module was used to connect the network data to the

Ethernet adapter. The Newtec DVB-S modulator was used to encode and modulate the

MPEG-2 transport multiplex output from the Ethernet adapter. At the client-site, a STB

was used to demodulate and recover the MPEG-2 transport multiplex. At the DVB-SPI of

the STB, the MPEG-2 TS was tapped to the Ethernet adapter module. Through a Mil

module, Ethernet network data is connected to NIC of a client PC using Category-5

(CAT-5) cable. Aiming for an inexpensive system, the DVB-ENC was used to encode the

MPEG-2 transport multiplex output of the return channel from the Ethernet adapter, the I

and Q signals were QPSK modulated with a 1000 MHz carrier.

With DVB-ENC successfully encoding at 26.666 MBaud with an FEC code rate of 3/4,

this test has demonstrated one of the aims of the research by replacing the bulky and

expensive Newtec DVB-S modulator. At such symbol rate, the DVB-ENC is capable of

supporting network data rate of up to 36 Mbps. It can be set up as part of either the

transmitting-path or returning-path of the system to provide channel coding prior to

transmission. Being cost effective and having a small footprint, the DVB-ENC can

potentially be deployed as part of the returning-path of a client system. The system can

then be easily deployed at more trial sites within the coverage cell. The success of this

experiment has therefore demonstrated a novel MPEG-2 based data communications

system designed, developed and implemented on an FPGA using VHDL.

68

NEWTEC

E T H A D P 1

DVB-EHC

STB 1 & 2 = Humax F1-FOX Set-Top-Box
Mil 1 & 2 = Media Independent Interface
ETHADP 1 & 2 = Ethernet Adapter module
NEWTEC = Newtec NTC2063 professional DVB modulator
ESG = Agilent Technologies ESG family signal generator
DVB-ENC & l-Q = Designed DVB-S channel encoder with I and Q output interface module

Picture 4-2: Set up of prototyped system test

69

5 Conclusions and Further Work

This research thesis concludes with summary of the work done. Issues worthy of further

study and work are also indicated.

70

5.1 Summary and Conclusion

This thesis has documented a research about FPGA design and development of a DVB

based channel encoder using VHDL for 42 GHz MWS. This research work has focused

on investigations into a hardware system that can be used as a generic platform for

applying coding schemes to the MWS campus network trial system set up in the

university.

This research has achieved its main aims. The research started by investigating on

various hardware technology that is available in-house and in the market as well as

identifying a suitable development platform to prototype a flexible hardware that can be

used to apply a range of channel coding schemes for the NTU Campus Network Trial. As

a result, FPGA development was singled out as the best approach due to legacy support

and facilities that are already available in the university and its suitability for rapid

prototyping. A selection of commercial IP cores was also examined. They were simulated

with stimuli to identify requirements and suitability for the channel encoder. The Reed-

Solomon encoder IP core was implemented as part of the system with a ‘zero-adding’

algorithm that was designed to re-condition the MPEG-2 data stream. All modules

required by the DVB-S standard channel encoding except the Reed-Solomon encoder

were successfully design and developed using Altera Quartus II EDA software. They

include the transport multiplex adaptor, randomizer and punctured convolutional encoder.

Additional modules were designed to improve configurability of the channel encoder to

allow each module to be bypass-able. Each module was simulated to verify its

operations. The modules were then integrated, synthesised and programmed onto an

Altera Cyclone family FPGA. The completed hardware was connected as part of the 42

GHz MWS campus network trial and successfully tested to operate as part of the end-to-

end system.

Investigations were made into FPGA hardware technology that offers low-cost hardware

development, as no NRE costs are involved. The reconfigurable capabilities of an FPGA

made it an ideal development platform as it allows system designs to be programmed

into the hardware. Changes to the designs can be reprogrammed easily. The

development of the channel encoder is based on DVB-S standard published by ETSI.

The standard was identified for its robustness and reliability. Using a top-down design

approach, the system was broken into separate blocks with distinctive functionalities.

The IP core development route was decided for the Reed-Solomon encoder to reduce

the development cycle. The rest of the functional blocks were successfully designed and

implemented using VHDL. Each functional block in the system was coded to be bypass

71

able itself, including the RS encoder IP core. This allows each coding process to be

selectively switched on or off in order to alter the coding scheme.

Each functional block was verified using HDL simulation on the Altera Quartus II software.

On occasions, Simulink modelled simulation outputs were correlated with traces of the

simulated modules. The complete system was integrated and compiled, targeting the

Altera Cyclone EP1C6Q240C6 FPGA device. A total of 1,461 LEs and 15,616 memory

bits were used, utilising 24% and 40% of the resources respectively. One of the two

PLLs was also applied.

The implemented channel encoder was connected as part of the complete end-to-end

campus network trial broadcasting configuration to perform various verification tests. An

emulated MPEG transport stream and ‘live’ digital TV multiplex extracted from digital TV

transmission in real-time were successfully re-transmitted over the modelled MWS. The

status register output from the Philips TDA8044A decoder chip in the satellite STB was

used as evidence to confirm that all stages of FEC were locked.

The prototyped MWS campus network trial system was set up to incorporate the

implemented channel encoder as part of the concept test. The return channel of the

MPEG based interactive service was encoded by the channel encoder interfacing with an

Ethernet adapter module. The test has successfully demonstrated its operation,

encoding at the rate of 26.666 MBaud with an FEC code rate of 3/4, supporting a

network data rate of up to 36 Mbps.

Besides operating at an FEC code rate of 3/4, the system can also be configured to

encode at 1/2 rate with the symbol rate of 40.000 MBaud using the same PLL output

clock frequencies. As the receiver STB is only capable of decoding at a maximum

symbol rate of 32.767 MBaud [77], a system wide test was not performed. Based on the

current implementation that uses one PLL to generate the interface and system clocks,

the ideal 1.085 (204/188) times difference between the clock frequencies cannot be

achieved. This is due to requirements for the Cyclone PLL to generate the output

frequencies that are not met as the VCO of the Cyclone PLL would be operating outside

of its capacities.

The success in the development of the FPGA hardware has cemented the realisation of

an inexpensive DVB based channel encoder. Existing expensive professional frequency

translation equipment deployed at trial sites can be replaced and the number of sites can

be increased. The system can also provide a good test platform for establishing an

72

optimised coding scheme for an improved terrestrial broadband fixed wireless access.

The level of flexibility allows customisation of all the functional blocks, where they can be

independently disabled. The FPGA system has also proven to be more compact

compared to the existing channel coding devices, which ensures easy deployment of the

system to new client sites.

5.2 Further Research Work

The 3/4 rate puncture code was implemented to improve efficiency of the coding scheme,

instead of simply convolutional encoded. The puncturing module was designed to allow

its puncturing rate to be changed from 1/2 to 3/4 as proof of concept towards developing

a reconfigurable channel coder for 42 GHz MWS. The 3/4 rate puncture code was

implemented first due to its simplicity and as it was the setting used for the existing

campus network trial. As presented in Table 3-2, puncturing patterns are defined by DVB

for the code rates 1/2, 2/3, 3/4, 5/6, and 7/8 [56]. An efficient puncturing algorithm can

potentially be designed to allow variable code rates, with minimum complexity and space

used on an FPGA. Therefore, further design work is suggested for the implementation of

the rest of the puncturing scheme to enable maximum rate efficiency and flexibility of the

channel coder.

In view of the effects of changing weather patterns on 42 GHz MWS links, further work

can be done on developing algorithms to adapt to changes in attenuation levels by

changes in encoding schemes, such as puncturing rate. The Phillips TDA8044A chip [76]

that is used by the Humax F1-FOX satellite STB [77] provides a rough estimation of bit

error rate (BER) to the STB and can be read via the l2C-bus. Previous research work has

successfully acquired these values for BER measurements [59] and hence can be further

explored to potentially develop an adaptive system that changes the FEC by changing

the puncturing rate to achieve a minimum BER at any given time.

With the BER estimations, the level of FEC can be evaluated. Using the return link,

requests of change of FEC rate can be sent to the base-station. Information on the new

FEC setting can be integrated into the header of data packets at the transmitting-end. At

the receiving-end, modifications can potentially be done to enable detection of the

embedded information to match the requested FEC setting.

Development of this system in VHDL enables the DVB-S channel encoder system to be

integrated into devices, with systems such as the Ethernet adapter, as long as its timing,

I/O ports and space requirements are satisfied. System integration with a medium

73

access control (MAC) layer is a provision towards realising an adaptive encoder for 42

GHz MWS. Besides, using a single device would eliminate the use of some interfacing

and reduce the size of the system.

Further work on hardware could potentially tap the full capabilities of the Cyclone family

FPGA. Instead of using the Cyclone development board, a fully customised PCB could

be developed for the FPGA device to increase its resources, such as additional I/O pins,

and global clock inputs. An additional global clock input could allow further exploitation of

the Cyclone PLL. The interface clock can be synchronised with interfacing external

systems. This potentially allows the interface clock to be changed with the adaptive FEC

rate and also allows the channel encoder to interface with other systems more effectively.

One of such systems is the Ethernet adapter. Integration of such system could pave the

way towards an inexpensive wireless access network SoC.

One of the advantages of targeting an FPGA device is its ability to be re-configured on-

the-fly. This can be done by having the entire designed system and all of its possible

options programmed onto the FPGA with the controls to change the inactive options to

active dynamically. This technique is referred to as Multiple-context Configuration

Memory [99]. This technique is fast to switch between the options, but with all possible

options implemented, it requires a large silicon area. Besides that, another way for

dynamic re-configuration is to have the FPGA partitioned, separating the standard

system and the variable section. This is made possible with the Partial Configuration

technique [99]. With the different options stored in memory, the variable section of the

FPGA can be re-configured with the selected option. Although this technique is more

space optimised, the speed of re-configuration of the variable section is directly

proportional to the size to be re-configured. In-depth investigation into these dynamic re

configuration techniques and FPGA partitioning is suggested to fully exploit the

capabilities of an FPGA.

74

References

[1] Nordbotten, “LMDS Systems and their Application,” IEEE Communications

Magazine, pp. 150-154, Jun. 2000.

[2] Smith, LMDS, McGraw-Hill Professional Telecom Publication, Aug. 2000.

[3] Communications Liberalisation in the UK. London: Department of Trade and

Industry, 2001.

[4] eEurope 2005: An information society for all. Serville: European Council, 2002.

[5] UK online: the broadband future. London: Cabinet Office, 2001.

[6] Broadband Stakeholder Group, Broadband in Rural Areas - Broadband

Stakeholder Group Submission to EFRA Committee, Apr. 2003,

http://www.broadbanduk.org/ [Accessed 25 Aug. 2004]

[7] A.J. Paulraj, et al., “Fixed Broadband Wireless Access: State of the Art, Challenges,

and Future Directions,” IEEE Communications Magazine, pp. 100-108, Jan. 2001

[8] V.l. Roman, “Frequency Reuse and System Deployment in Local Multipoint

Distribution Service,” IEEE Personal Communications, pp. 20-27, Dec. 1999.

[9] European Radiocommunications Committee, (ERC/DEC/(99)/16), ERC Decision

(99)16 of 1 June 1999 on the withdrawal of the ERC Decision (96)05 “Decision on

the harmonised frequency band to be designated for the introduction of the

Multipoint Video Distribution Systems (MVDS)”, Jun. 1999.

[10] European Radiocommunications Committee, (ERC/DEC/(99)/15), ERC Decision

(99)15 of 1 June 1999 on designation of the harmonised frequency band of the

40.5 to 43.5 GHz for the introduction of Multimedia Wireless Systems (MWS)

including Multipoint Video Distribution Systems (MVDS)”, Jun. 1999.

[11] V.l. Mostovoy, “Cellular Television - A High Technology of Broadband Wireless

Access,” in 12th International Crimean Confrernce for Microwave &

Telecommunications Technology (CriMiCo’2002), pp. 3-8, Sep 2002.

[12] P. Mahonen, T. Saarinen and Z. Shelby, ‘Wireless Internet over LMDS:

Architecture and Experimental Implementation,” IEEE Communications Magazine,

pp. 126-132, May 2001.

[13] European Telecommunications Standards Institute, ETSI EN 301 997-1,

Transmission and Multiplexing (TM); Multipoint equipment; Radio equipment for

75

http://www.broadbanduk.org/

use in Multimedia Wireless Systems (MWS) in frequency hand 40,5 GHz to 43,5

GHz; Part 1: General requirements, Sept. 2003

[14] [S.A. Kravchuk and M.E. Ilchenko, “Broadband Wireless Access Systems; Terms

and Definitions,” in 12th International Crimean Confrernce for Microwave &

Telecommunications Technology (CriMiCo’2002), pp. 55, Sep 2002.

[15] H. Linder, H.D. Clausen and B. Coliini-Nocker, “Satellite Internet Services Using

DVB/MPEG-2 and Multicast Web Caching,” IEEE Communications Magazine, pp.

156-161, Jun. 2000.

[16] R. Germon, et.al., “42 GHz Multimedia Wireless System Campus Trial,” in IEE

Seminar for New Access Network Technologies, pp. 6/1-6/5, 2000.

[17] IEEE Computer Society, IEEE Std 802.16.2-2001, IEEE Recommended Practise

for Local and Metropolitan Area Networks: Coexistence of Fixed Broadband

Wireless Access Systems, 2001.

[18] G. Fairhurst, S.L. Pang and P.S. Wan, “Smart Codec: An Adaptive Packet Data

Link,” in IEE Proceedings: Communications, vol. 145, no. 3, pp. 180-185, Jun 1998.

[19] W. Webb, “Broadband Fixed Wireless Access as a Key Component of the Future

Integrated Communications Environment,” IEEE Communications Magazine, vol.

39, no. 9, pp. 115-121, Sep 2002.

[20] Altera Corporation, “Broadband Fixed Wireless Applications in Cyclone Devices,”

http://www.altera.com/products/devices/cvclone/features/cvc-fixed wireless.html

[Accessed 7 Sep. 2004]

[21] R.H. Day, R. Germon and B.C. O’Neill, “A Real Time Digital Signal Processing

Solution for Radar Pulse Compression,” in Proceedings of IEE Colloquium on

Digital Filters: An Enabling Technology, vol. 252, pp. 6/1-6/5, 1998.

[22] M. Cummings and S. Haruyama, “FPGA in the Software Radio,” IEEE

Communications Magazine, vol. 37, no. 2, pp. 108-112, Feb 1999.

[23] Wikipedia, “Electronic Design Automation”,

htto://en. wikipedia.org/wiki/Electronic design automation [Accessed on 15 Nov

2004].

[24] Jansen, et al., The Electronic Design Automation Handbook, Boston: Kluwer

Academic Publisher, 2003.

[25] Electronic Industries Alliance, “EDIF Introduction,”

http://www. edif. org/introduction.html [Accessed on 15 Nov 2005].

76

http://www.altera.com/products/devices/cvclone/features/cvc-fixed
http://www

[26] M.N. Cirstea, “Modern Electronic Design Automation Techniques (based on

Hardware Description Languages) Applied to Power Electronic Systems Holistic

Modelling,” in Tutorials Volume of IEEE International Symposium on Industrial

Electronics (ISIE’2003), pp. 23-52, Jun 2003.

[27] Altera Corporation, “Quartus II Software - Design to Win,”

htto://www.altera.com/products/software/products/guai1us2/\Accessed on 15 Nov

2004].

[28] Altera data sheet, MAX+PLUSII Programmable Logic Development System &

Software Data Sheet, A-DS-MPLUS2-08, ver. 8.0, Altera Corporation, Jan1998,

http://www.altera.com/literature/ds/dsmii.pdf [Accessed on 16 Nov 2004].

[29] Altera Corporation, “Quartus II Software & Quartus II Web Edition Software Feature

Comparison,”

http://www.altera.com/products/software/products/guartus2web/features/sof~

guarweb features.html. [Accessed on 17 Nov 2004].

[30] Altera user guide, Introduction to Quartus II Manual, version 4.1, Altera Corporation,

Jun 2004, http://www.altera.com/literature/manual/intro to quartus2.pdf.

[Accessed on 17 Nov 2004].

[31] Altera literature, Intellectual Property Selector Guide, SG-IP-3.0, ver. 3.0, Altera

Corporation, Mar 2003, http://www.altera.com/literature/sq/sq ip.pdf [Accessed 26

Sep 2004].

[32] Mentor Graphics Corporation, “ModelSim,” http://www.modelsim.com/r Accessed

on 20 Nov 2004].

[33] D.E. Ott and T.J. Wilderotter, A Designer’s Guide To VHDL Synthesis,

Massachusetts: Kluwer Academic Publishers, 1994.

[34] R. Day, A DSP Controller for a Low Cost Radar Interface, Ph.D Thesis, Nottingham

Trent University, 1999.

[35] J.H. Ng, Message Routing Interface for Multiprocessor Networks, Ph.D Thesis,

Nottingham Trent University, 2001.

[36] M. Whitbread, “IP for FPGA - Where, What and How Much?” Embedded System

Engineering, pp. 36-42, vol. 12.6, Sep 2004.

[37] Edwards, “Bug to Basics,” IEE Review, pp. 38-41, vol. 50, no. 3, Mar 2004.

[38] P. Lindermann and B. Finch, “IP Cores for FPGAs,” Embedded System

Engineering, pp. 49-50, vol. 12.6, Sep 2004.

77

http://www.altera.com/products/software/products/guai1us2//Accessed
http://www.altera.com/literature/ds/dsmii.pdf
http://www.altera.com/products/software/products/guartus2web/features/sof~
http://www.altera.com/literature/manual/intro
http://www.altera.com/literature/sq/sq
http://www.modelsim.com/r

[39] Altera Corporation, “Designing with Altera Intellectual Property Megafunctions,”

http://www. altera, com/oroducts/io/desian/ipm-design. html [Accessed on 20 Nov

2004].

[40] Altera Corporation, “AMPP IP Providers,”

http://www. altera.com/products/ip/ampp/ampp 1.html [Accessed on 20 Nov 2004].

[41] Altera application note, OpenCore Plus Evaluation of Megafunctions, AN-320, ver.

1.2, Altera Corporation, June 2004, http://www.altera.com/literature/an/an320.pdf

[Accessed on 20 Nov 2004].

[42] Email from R. Marcoccia, Altera University Program, Altera Corporation,

RMARCOCC@altera.com. 10 May 2005.

[43] Z. Salcic and A. Smailagic, Digital Systems Design and Prototyping using Field

Programmable Logic. USA: Kluwer Academic Publishers, 1997

[44] K. Morris, “All is Not SRAM - A survey of flash, antifuse, and EE programmable

logic,” FPGA and Programmable Logic Journal, Feb 2004,

http://www.fpqaiournal.com/articles/sram.htm [Accessed on 10 Nov 2005].

[45] M.J.S. Smith, Application-Specific Integrated Circuits. USA: Addision-Wesley, 1997.

[46] R. Ball, “Shifting architectures: CPLDs versus FPGAs,” Electronics Weekly, pp. 20,

no. 2162, 15 Sep 2004.

[47] S. Bremec, R. Ursic and U. Mavric, “Advantages of Implementing Digital Receivers

in Field Programmable Gate Arrays (FPGA),” 6th European Workshop on Beam

Diagnostics and Instrumentation for Particle Accelerators, 2003, http://www.i-

tech.si/support-conference.html [Accessed on 10 Nov 2004].

[48] Altera Corporation, “Cyclone: The Lowest-Cost FPGA Ever,”

http://www.altera.com/products/devices/cvclone/cvc-index.iso [Accessed on 7 Sep.

2004]

[49] Newtec application note, NTC/2080/APN03 Application Note: Choice of QPSK -

8PSK or 16QAM in DVB Satellite Links, Newtec, Jul 1999,

http://www.newtec.be/appnotes/ntc.2080.apn03.pdf [Accessed on 8 Sep 2004]

[50] Altera Corporation, “Altera University Program,”

htto://www.altera.com/education/univ/unv-index.html. [Accessed in 8 Sep 2004]

[51] Altera data sheet, FLEX 10KE PCI Development Board, A-DS-PCI-1.2 Altera

Corporation, Nov 2001.

[52] Altera press release, “Altera's Cyclone FPGAs Take the Industry by Storm,” Altera

Corporation, Sep 2002,

78

http://www
http://www
http://www.altera.com/literature/an/an320.pdf
mailto:RMARCOCC@altera.com
http://www.fpqaiournal.com/articles/sram.htm
http://www.i-
http://www.altera.com/products/devices/cvclone/cvc-index.iso
http://www.newtec.be/appnotes/ntc.2080.apn03.pdf
http://www.altera.com/education/univ/unv-index.html

htto://www. altera, com/coroorate/news room/releases/releases archive/2002/produ

cts/nr-cvclone.html. [Accessed on 15 Nov 2004]

[53] Altera white paper, Cyclone vs. Spartan-3 Performance Analysis, Altera

Corporation, http://www.altera,com/literature/wp/wpcvcsptn3pa.pdf [Accessed on

26 Sep 2004]

[54] Altera literature, Using PLLs in Cyclone devices, C51006-1.2, ver. 1.2, Altera

Corpration, Oct. 2003, http://www.altera.com/literature/hb/cvc/cvc c51006.pdf

[Accessed on 26 Sep 2004]

[55] M. Schoeberl, “Cyclone FPGA Board,” JOP Design,

http'J/www.iopdesicm.com/cvclone/index.iso [Accessed on 10 Nov 2004].

[56] European Telecommunications Standards Institute, ETSl, EN 300 421, Digital

Video Broadcasting (DVB); Framing structure, channel coding and modulation for

11/12 GHz satellite services, Aug. 1997.

[57] Grondalen, AC215/TEL/RD/R/P/D4P4/b1, Interactive Broadband Technology Trials,

ACTS Project 215 deliverable report D4P4, Jan. 1999.

[58] International Organisation for Standardization, ISO/IEC DIS 13818-1, Generic

Coding of Moving Picture and Associated Audio Information Systems. Jun. 1994.

[59] E.B. Lam, 42 GHz Multimedia Wireless System - Measurement and Analysis, Ph.D.

thesis, Nottingham Trent University, 2001.

[60] European Telecommunications Standards Institute, ETSl, EN 300 800, Digital

Video Broadcasting (DVB); Interaction channel for Cable TV distribution systems

(CATV), Jul. 1998.

[61] European Telecommunications Standards Institute, ETSl EN 301 199, Digital

Video Broadcasting (DVB); Interaction channel for Local Multi-point Distribution

Systems (LMDS), Jun. 1999.

[62] COCOM A/S, INA HFC head-end CC1014 - Operator and service manual, 1999.

[63] W.Y. Mun and R. Germon, “Data interface for 42 GHz DVB Multimedia Wirelss

Systems (MWS),” PREP2003 Postgraduate Research Conference, 2003.

[64] W.Y. Mun and R. Germon, "An Efficient Ethernet over DVB Encapsulation

Technique for MWS," in Proceedings of the 5th Annual PostGraduate Symposium

on The Convergence of Telecommunications, Networking and Broadcasting, PG

Net 2004, pp. 285-290, Jun 2004.

[65] I.A. Glover and P.M. Grant, Digital Communications, 2nd Edition. UK: Pearson

Education Limited, 2004.

79

http://www.altera,com/literature/wp/wpcvcsptn3pa.pdf
http://www.altera.com/literature/hb/cvc/cvc
http://www.iopdesicm.com/cvclone/index.iso

[66] G. Held, Data Communications Networking Devices: Operation, Utilization and

LAN and WAN Internetworking, 4th Edition, UK: John Wiley & Sons Limited, 1999.

[67] Digital Video Broadcasting (DVB) Project, http://www.dvb.org.

[68] G. Xylomenos and G.C. Polyzos. “TCP and UDP performance over a wireless

LAN,” in Proceedings of the 18th Annual Joint Conference of the IEEE Computer

and Communications Societies, INFOCOM '99, vol. 2, pp. 439-446, Mar. 1999.

[69] Amir, et.al., “Efficient TCP over networks with wireless links,” in Proceedings of the

5th Workshop on Hot Topics in Operating Systems, HotOS-V, pp. 35-40, May 1995.

[70] European Committee for Electrotechnical Standardization, CENELEC, EN 50083-9,

Cable networks for television signals, sound signals and interactive services; Part 9:

Interfaces for CATV/SMATV headends and similar professional equipment for

DVB/MPEG-2 transport streams, Jun 1998.

[71] S. Jayasimha, “Pragmatic TCM Using 8-PSK in Satellite Communications,”

TechOnLine, Apr 2002,

http://www.techonline.com/communitv/ed resource/feature article/20514

[Accessed on 20 Nov 2004]

[72] M Cominettti and A. Morello, “Digital Video Broadcasting over Satellite (DVB-S): A

system for broadcasting and contribution applications,” International Journal of

Satellite Communications, vol, 18, pp. 393-410, 2000.

[73] P. Fen, “Digital Television Terrestrial Broadcasting Primer, ” Online Symposium for

Electronics Engineers, Oct. 2001, TechOnLine:

http://www.techonline.com/communitv/ed resource/feature article/14706

[Accessed on 10 Sep. 2004]

[74] C. Fleming, “A Tutorial on Convolutional Coding with Viterbi Decoding,” Spectrm

Applications, Jan 2003, http://home.netcom.eom/~chip.f/viterbi/tutorial.html

[Accessed on 20 No 2004].

[75] T. Kratochvil, “Digital Video Broadcasting channel encoding and decoding

simulation,” in 4th EURASIP Conference on Video/Image Processing and

Multimedia Communications, pp. 851-856, Jul. 2003

[76] Philips Semiconductors product specification, STB5660 (set-top-box) STB concept,

OM5721, Philips, May 1999.

[77] Humax user manual, Humax F1-FOX Operating Manual, HUMAX Electronics Co.

Ltd., http://www.humaxdiqital.com/HCSA/usersmanual.asp [Accessed 15 Oct 2004].

[78] Fujitsu data sheet, QPSK Silicon Tuner, MB86A15, ed. 4.1, Fujitsu Limited, 2002

80

http://www.dvb.org
http://www.techonline.com/communitv/ed
http://www.techonline.com/communitv/ed
http://home.netcom.eom/~chip.f/viterbi/tutorial.html
http://www.humaxdiqital.com/HCSA/usersmanual.asp

[79] Philips literature, The l2C-bus specification version 2.1, Philips Semiconductor, Jan

2000, http://www.semiconductors.philips.com/buses/i2c/ [Accessed 15 Oct 2004].

[80] Newtec user manual, Determining the Maximum Datarates in (De)Modulaters,

NTC/2063/APN04, Newtec, Jul 1998,

http://www.newtec.be/appnotes/ntc.2063.apn04.pdf [Accessed 21 Sep. 2004]

[81] Altera Megafunctions user guide, Single & Dual-Clock FIFO Megafunctions User

Guide, UG-MFNALT_FIFO--2.0, Altera Corporation, Sep 2004,

http://www.altera.com/literature/ua/ug fifo.pdf [Accessed on 5 Oct 2004].

[82] Altera application note, Metastability in Altera Devices, AN-42, ver. 4, Altera

Corporation, May 1999, http://www.altera.com/literature/an/an042.pdf. [Accessed

on 7 Dec 2004].

[83] Altera Corporation, “Library of Parameterised Modules (LPM),”

http://www.alter a. com/Droducts/software/Droducts/leaacv/maxplus2/sfw-lDm. html

[Accesed on 7 Oct 2004].

[84] C.C. Bissell and D.A. Chapman, Digital Signal Transmission. UK: Cambridge

University Press, 1992.

[85] S. Lin and D.J. Costello, Error Control Coding: Fundamentals and Applications.

USA: Prentice-Hall, 1983.

[86] Altera Megafunctions user guide, Reed-Solomon Compiler User Guide, UG-

RSCOMPILER-3.9, ver. 3.6, Altera Corporation, Jul 2004,

http://www.altera.com/literature/uq/rs-compiler ug.pdf [Accessed on 5 Oct 2004].

[87] H. Sari, “Some Design Issues in Local Multipoint Distribution Systems,” 1998 URSI

International Symposium on Signals, Systems, and Electronics, ISSSE 98, pp. 13-

19, Sep 1998.

[88] G.C. Clark, Jr and J.B. Cain, Error-Correction Coding for Digital Communications.

USA: Plenum Press, 1981.

[89] S. Haykin, Digital Communications. USA: John Wiley & Sons, 1998.

[90] G.C. Clark, Jr., and J.B. Cain, Error-Correction Coding for Digital Communications.

USA: Plenum Press, 1981.

[91] The Mathworks, http://www.mathworks.com [Accessed on 1 Nov 2004].

[92] R.H. Bishop, Modern Control Systems Analysis and Design using MATLAB and

Simulink. USA: Addison Wesley Longman, 1997.[

[93] STMicroeletronics data sheet, QPSK/BPSK Link, STV0299, STMicroelectronics,

Nov 1999.

81

http://www.semiconductors.philips.com/buses/i2c/
http://www.newtec.be/appnotes/ntc.2063.apn04.pdf
http://www.altera.com/literature/ua/ug
http://www.altera.com/literature/an/an042.pdf
http://www.alter
http://www.altera.com/literature/uq/rs-compiler
http://www.mathworks.com

[94] Fujitsu data sheet, QPSK Silicon Tuner, MB86A15, ed. 4.1, Fujitsu Limited, 2002

[95] Philips data sheet, Satellite Demodulator and Decoder, TDA8044/TDA8044A,

Philips Semiconductor, Feb 1998.

[96] Agilent Technologies user’s guide, Agilent Technologies ESG Family Signal

Generators, part no. E4400-90323, Agilent Technologies, Apr 2000.

[97] Wikipedia, http://en.wikipedia.org/wiki/Gerber File [Accessed on 20 Oct 2005].

[98] Altera application note, High-Speed Board Designs, A-AN-75-4.0, ver. 4.0, Altera

Corporation, Nov 2001.

[99] Anon, Dynamically Reconfigurable Devices & Technology, Bournemouth

University's DRHW WWW Library, Dec 2000,

http://dec.bournemouth.ac.uk/drhw lib/technoloqy.html [Accessed on 16 Nov 2005].

82

http://en.wikipedia.org/wiki/Gerber
http://dec.bournemouth.ac.uk/drhw

Appendix I: I and Q Interface Module PCB Design

Top Layer:

H H o I n t e r f a c e !
r ■ 2 0 M a y > 2 0 0 j

Bottom Layer:

Appendix II: NTU Campus Network Trial - Overview

E x
,S£

£
! !

XdOM13N SndlNVO
SS300V SS3133IM 03X13 ONVaQVOdd

Su
pe

r
JA

N
ET

/
Fi

re
w

al
l

Ne
tw

or
k

M
an

ag
em

en
t

Appendix III: Block Diagram & Source Code ListingAppendix Ill: Block Diagram & Source Code Listing

j
l
i

J

Module: dvbenc_burn
Description: DVB Encoder top-level interface design

i gi
I I 'M;

m u

m n w w
" i

hiliSSiiilih

"T r f
' M l

'b
:! liH :

QlDQ:

Pa
ge

1

of
1

Module: clkdiv
Description: System clock division

zs
JO

o'c
0
-Q>"O
O
(1)
'S'a

0
JO

01
c Q)

JO >
c
.2
£2>0a

TO
JO
>

TO

o

TO

O

0D)0a

CO
oO
CM

CO
CM
JOo
0

0 old

0
0
a

Date: March 23, 2006 ./clkdiv/load count.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 17/06/2003
-- filename: load_count.vhd
-- description: this generates the load signal for

parallel to serial converter
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY load_count IS

PORT
(

load_clk
load_reset
load_out

) ;
END load_count;

ARCHITECTURE rtl OF load_count IS
SIGNAL load_sig : STD_LOGIC;

BEGIN
PROCESS (load_clk, load_reset)

VARIABLE clk_count : INTEGER RANGE 0 TO 7;
BEGIN

IF (load_reset = '0') THEN
clk_count := 0;

ELSIF (load_clk'EVENT AND load_clk = '1') THEN
clk_count := clk_count + 1;
-- generate load signal load signal
-- change elk count value to control output timing
IF (clk_count = 4) THEN

load_sig <= 11';
ELSE

load_sig <= '01;
END IF;

END IF;
IF (load_reset = '0') THEN

load_out <= 'O';
ELSIF (load_clk'EVENT AND load_clk = '0') THEN

load_out <= load_sig;
END IF;

END PROCESS;
END rtl;

IN STD_LOGIC;
IN STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../clkdiv/load scount.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 17/06/2003
-- filename: load_scount.vhd
-- description: this generates the load signal for

parallel to serial converter

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY load_scount IS

PORT
(

load_clk : IN STD_LOGIC;
load_reset : IN STD_LOGIC;
load_out : OUT STD_LOGIC

) ;
END load_scount;
ARCHITECTURE rtl OF load_scount IS

SIGNAL load_sig : STD_LOGIC;
BEGIN

PROCESS (load_clk, load_reset)
VARIABLE clk_count : INTEGER RANGE 0 TO 7;

BEGIN
IF (load_reset = '0') THEN

clk_count := 0;
ELSIF (load_clk'EVENT AND load_clk = '1') THEN

clk_count := clk_count + 1;
— generate load signal load signal
— change elk_count value to control output
IF (clk_count = 3) THEN

load_sig <= '1';
ELSE

load_sig <= 'O';
END IF;

END IF;
IF (load_reset = '0') THEN

load_out <= 'O';
ELSIF (load_clk'EVENT AND load_clk = '0') THEN

load_out <= load_sig;
END IF;

END PROCESS;
END rtl;

t iming

Page 1 of 1

Module: dvbenc_sys
Description: DVB-S encoding module integration

Da
te

:
Ma

rch

23
, 2

00
6

dv
be

nc
_s

ys
.b

df
*

Pr
oje

ct:
 d

vb
en

c_
bu

rn

; i |a;ij! 11lllll

I &
X

ill

B

a k Y11

Pa
ge

1

of
1

Module: zero__pad
Description: MPEG packet reconditioning to add 16 null-bytes for

Reed-Solomon encoding

Da
te

:
Ma

rch

23
,

20
06

,./

ze
ro

_p
ad

/z
er

o_
pa

d.
bd

f*
Pr

oje
ct:

 d
vb

en
c_

bu
rn

tL
E

_ l

fc, "H E

o. o. a. c. a

XXX

O I O O O I O I O

Pa
ge

1

of
1

Re
vis

io
n:

 d
vb

en
c_

bu
rn

Date: March 25, 2006 ./zero_pad/fifo_ctrl.vhcf Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 14/08/2003
-- filename: fifo Ctrl.vhd
-- description: this controls asynchronous fifo for zero-padding by

waiting for a sync byte to start
buffering 1 packet into fifo before reading out at
faster clock rate
when fifo is empty, reading is paused for buffering

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY fifo_ctrl IS

PORT
(

pad_slowclk
pad_fastclk
pad_reset
pad_psyncin
pad_dvalid
pad_datain
fifo_datafrom
fi fo_usedw
fill_light
pad_psyncout
fifo_wrreq
fifo_rdreq
fifo_datato
pad_dataout

(7 DOWNTO 0) ;
(7 DOWNTO 0) ;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR
IN STD_LOGIC_VECTOR
IN UNSIGNED (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
OUT STD LOGIC VECTOR (7 DOWNTO 0)

) ;
END fifo Ctrl;

ARCHITECTURE rtl OF fifo_ctrl IS
TYPE IN_STATE IS (IN_RESET, IN_GO);
TYPE CTRL_STATE IS (CTRL RESET, CTRL READ, CTRL STOP, CTRL FILL)

ZERO
PAD
SYNC
I SYNC
EMPTY
MPEGPACK
MPEGPAK

instate
ctrlstate
reset_wrlatch,
psync_insig
psync_outsig, wrreq_sig
data_insig, data_outsig

:= " 0 0 0 0 0 0 0 0 ";ST D_LOGIC_VECTOR
INTEGER : = 15;
STD_LOGIC_VECTOR := "01000111";
STD LOGIC VECTOR := "10111000";
UNSIGNED :=
UNSIGNED :=
INTEGER :=
IN_STATE;
CTRL_STATE;

reset rdlatch

' 0 0 1 0 1 1 1 1 ’

' 1 0 1 1 1 1 0 1 '

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

DOWNTO 0);
SIGNAL fifo_fromsig, fifo_tosig, usedw_sig : STD_LOGIC_VECTOR(7

downto 0);
BEGIN

-- sampling input slowclk data stream and psync
PROCESS (pad_siowclk)
BEGIN

IF (pad_slowclk1 EVENT AND pad_slowclk = ’1 ’) THEN
data_insig <= pad_datain;
psync_insig <= pad_psyncin;

END IF;

rdreq_sig
STD
STD’
s t d '
s t d ’

LOGIC;
LOGIC;
LOGIC;
LOGIC V E C T O R (7

Page 1 of 4

Date: March 25, 2006 ,./zero_pad/fifo_ctrl.vhd* Project: dvbenc_burn

END PROCESS;
--sampling output fastclk data stream and psync
PROCESS (pad_fastclk)
BEGIN

IF (pad_fastclk'EVENT AND pad_fastclk = '1') THEN
pad_dataout <= data_outsig;
fifo_fromsig <= fifo_datafrom;

END IF;
END PROCESS;

-- state machine for fifo to start writing after sync byte
PROCESS (pad_slowclk, pad__reset)
BEGIN

IF (pad_reset = '0') THEN
instate <= IN_RESET;
fifo_wrreq <= 'O';
reset_wrlatch <= 'O';

ELSIF (pad_slowclk'EVENT AND pad_slowclk = '1') THEN
CASE instate IS

WHEN IN_RESET =>
-- check if sync byte and psync in data stream
IF (pad_psyncin = '1' AND (pad_datain = SYNC OR

pad_datain = ISYNC)) THEN
-- start writing into fifo
instate <= IN_GO;
fifo_datato <= pad_datain;
fifo_wrreq <= '1';

ELSE
instate <= IN_RESET;
fifo_wrreq <= 'O';
fifo_datato <= ZERO;
-- load first data to set input of fifo
IF (CONV_STD_LOGIC_VECTOR(fifo_usedw,8) = "0

0 0 0 0 0 0 0 "

AND reset_wrlatch = '0') THEN
fifo_wrreq <= '1';
reset_wrlatch <= ' 1 ' ;

ELSE
fifo_wrreq <= 'O';

END IF;
END IF;

WHEN IN_GO =>
-- continue writting data until reset
IF (pad_reset = '0') THEN

instate <= IN_RESET;
ELSE

instate <= IN_GO;
-- write data into fifo
fifo_datato <= pad_datain;
IF (paddvalid = '0') THEN

fifo_wrreq <= 'O';
ELSE

fifo_wrreq <= '1' ;
END IF;

END IF;
END CASE;

END IF;
END PROCESS;

- - f i f o c o n t r o .1

Page 2 of 4

Date: March 25, 2006 . ./zero_pad/fifo_ctrl. vhd* Project: dvbenc_burn

PROCESS (pad_fastclk, pad_reset)
VARIABLE outcount : INTEGER RANGE 0 TO 255;
VARIABLE stopcount : INTEGER RANGE 0 TO 255;

BEGIN
-- generate psync
-- change outcount value to sync with sync byte
IF (outcount = 3) THEN

pad_psyncout <= 11';
ELSE

pad_psyncout <= 'O';
END IF;

-- State machine for F I F O Control
IF (pad_reset = '0') THEN

ctrlstate <= CTRL_RESET;
reset_rdlatch <= 'O';
fifo_rdreq <= 'O';

ELSIF (pad_fastclk'EVENT AND pad_fastclk = '1') THEN
CASE ctrlstate IS

WHEN CTRL_RESET =>
-- check if fifo is full
IF (fifo_usedw = MPEGPACK) THEN

ctrlstate <= CTRL_READ;
fifo_rdreq <= '1';

ELSE
ctrlstate <= CTRL_RESET;
outcount := 0;
stopcount := 0;
data_outsig <= ZERO;
-- load first data to set output of fifo
IF (CONV_STD_LOGIC_VECTOR(fifo_usedw,8) = "0

0000111"
AND reset_rdlatch = '0') THEN
fifo_rdreq <= '1';
reset_rdlatch <= '1';

ELSE
fifo_rdreq <= 'O';

END IF;
END IF;

WHEN CTRL_READ =>
— check if 188 bytes are read
IF (outcount = MPEGPAK) THEN

ctrlstate <= CTRL_STOP;
outcount := 0;
fifo_rdreq <= 'O';
data_outsig <= fifo_datafrom;

ELSE
ctrlstate <= CTRL_READ;
outcount := outcount + 1;
data_outsig <= fifo_datafrom;
fifo_rdreq <= '1';

END IF;
WHEN CTRL_STOP =>

-- check if 16 null bytes added
IF (stopcount = PAD) THEN

-- check if fifo is near empty
-- change empty value if required
IF (fifo^usedw <= EMPTY) THEN

ctrlstate<= CTRL_FILL;
outcount := outcount + 1;

ELSE

Page 3 of 4

Date: March 25, 2006 ../zero_pad/fifo_ctrl.vhd* Project: dvbenc_burn

ctrlstate <= CTRL_READ;
stopcount := 0;
outcount := outcount + 1;
data_outsig <= ZERO;
fifo_rdreq <= '1';

END IF;
ELSE

ctrlstate <= CTRL_STOP;
data_outsig <= ZERO;
fifo_rdreq <= 'O';
stopcount := stopcount + 1;
outcount := 0;

END IF;
WHEN CTRL_FILL =>

-- check if 188 null bytes are read
-- while fifo is refilled
IF (outcount = MPEGPAK) THEN

ctrlstate <= CTRL_STOP;
outcount := 0;
fifo_rdreq <= 'O';
fill_light <= 'O';

ELSE
fill_light <= '1';
ctrlstate <= CTRL_FILL;
outcount := outcount + 1;
stopcount := 0;
fifo_rdreq <= 'O';
— output sync byte at start of packet
— output null bytes for the rest of packet
IF (outcount = 2) THEN

data_outsig <= "01000111";
ELSE

data_outsig <= "10111011";
END IF;

END IF;
END CASE;

END IF;
END PROCESS;

END rtl;

Page 4 of 4

Module: mux_ad
Description: SYNC byte inversion

Date: March 23, 2006 ../mux ad/mux ad.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 10/05/2002
-- filename: mux ad.vhd
-- description: this inverts value of a sync byte after every 7
-- 31/07/2002 : input interface re-examined
-- 26/05/2004 : new simple design with enable switch.

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY mux_ad IS

PORT
(

mux_clk
mux_psync
mux_reset
mux_en
mux_in
mux_syncout
mux_out

) ;
END mux_ad;
ARCHITECTURE synth

SIGNAL psync_si
SIGNAL en_insig
SIGNAL out_sig
CONSTANT SYNC
CONSTANT ISYNC

BEGIN
-- count packet
PROCESS (mux_cl
VARIABLE pack_count : INTEGER RANGE 0 TO 7;
BEGIN

IF (mux_en = '0') THEN
out_sig <= en_insig;

ELSIF (mux_clk'EVENT AND mux_clk = ’I 1) THEN
IF (mux_reset = '0') THEN

pack_count : = 0;
ELSIF (mux_psync = '1' AND mux_in = SYNC) THEN

IF (pack_count = 0) THEN
-- output inverted sync
pack_count := pack_count + 1;
out_sig <= ISYNC;

ELSE
pack_count := pack_count + 1;
out_sig <= mux_in;

END IF;
ELSE

out_sig <= mux_in;
END IF;

END IF;
END PROCESS;
-- samples input and output
PROCESS (mux_clk, mux_reset)
BEGIN

IF (mux reset = '0') THEN

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR(7 DOWNTO 0),
OUT STD_LOGIC;
OUT STD LOGIC V E C T O R (7 DOWNTO 0'

OF mux ad IS
STD_LOGIC;
STD_LOGIC_VECTOR(7 DOWNTO 0);
STD_LOGIC_VECTOR(7 DOWNTO 0);
STD_LOGIC_VECTOR := ”01000111'
STD LOGIC VECTOR := "1011.1000'

s, output isync after every 7 packet,
k, mux_en, mux_in, en insig)

Page 1 of 2

Date: March 23, 2006 ./mux ad/mux ad.vhd Project: dvbenc_burn

mux_out <= "00000000";
ELSIF (mux_clk'EVENT AND mux_clk = '1') THEN

en_insig <= mux_in;
psync_sig <= mux_psync;
mux_out <= out_sig;
mux_syncout <= psync_sig;

END IF;
END PROCESS;

END synth;

Page 2 of 2

Module: randomizer
Description: Randomization of MPEG packets

Da
te

:
Ma

rch

23
,

20
06

../

ra
nd

om
ize

r/r
an

do
m

ize
r.b

df
*

Pr
oje

ct
dv

be
nc

_b
ur

n

&

Q

I!

I

I I I
B.S

m

Pa
ge

1

of
1

Da
te

:
Ma

rch

25
, 2

00
6

../r
an

do
m

ize
r/r

an
d.

bd
f*

Pr
oje

ct:
 d

vb
en

c_
bu

rn

'm &

Pa
ge

1

of
1

Re
vis

io
n:

 d
vb

en
c_

bu
rn

Date: March 23, 2006 ./randomizer/rand Ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 17/11/2003
-- filename: randomizer.vhd
-- description: this controls the workings of randomiser

prbs_ld reloads the prbs generator
rand_en for on/off .randomisation
bitclk_ctrl start/pause prbs generation

-- Revised 15/06/2004: rand_enable added.
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY rand_ctrl IS

PORT
(

randctrl_psync
rand_byteclk
rand_bitclk
rand_enable
randctrl_datain
prbs_ld
rand_en
bitclk_ctrl
randctrl_dataout

) ;
END rand Ctrl;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR
OUT STD_LOGIC,
OUT STD_LOGIC
OUT STD_LOGIC,
OUT STD LOGIC VECTOR

7 DOWNTO 0);

(7 DOWNTO 0)

ARCHITECTURE synth OF rand C tr l IS
CONSTANT ISYNC
CONSTANT SYNC
SIGNAL datain_sig
SIGNAL psync_sig
SIGNAL randctrl state

std_logic_vector
std_logic_vector
STD_LOGIC_VECTOR
STD_LOGIC;
STD LOGIC VECTOR

(7
” 1 0 1 1 1 0 0 0 '

"010001111
DOWNTO 0),

(1 DOWNTO 0)
BEGIN

-- sampling data and psync signal at rising edge
PROCESS (rand_byteclk)
BEGIN

IF (rand_byteclk'EVENT AND rand_byteclk = '1') THEN
datain_sig <= randctrl_datain;
psync_sig <= randctrl_psync;

END IF;
END PROCESS;

-- control for randomiser
PROCESS (rand_byteclk, rand_enable)
BEGIN

randctrl_dataout <= datain_sig;
IF (rand_enable = '0') THEN

prbs_ld <= 'O';
rand_en <= '0';

ELSIF (rand_byteclk'EVENT AND rand_byteclk = '1') THEN
IF (datain_sig = ISYNC AND psync_sig = '1') THEN

prbs_ld <= '11;
rand_en <= 'O';

ELSIF (datain_sig = SYNC AND psync_sig = '1') THEN
prbs_ld <= 'O';
rand_en <= 'O';

ELSE
prbs_ld <= '0';
rand en <= '1';

Page 1 of 2

Date: March 23, 2006 ../randomizer/rand_ctrl.vhd Project: dvbenc_burn

END IF;
END IF;

END PROCESS;

-- additional control to accomodate additional 16 rs-bytes
PROCESS (rand_bitclk)

VARIABLE prbs_count : INTEGER RANGE 0 TO 204 7;
BEGIN

IF (rand_bitclk'EVENT AND rand_bitclk = ’1') THEN
IF (psync_sig = '1') THEN

prbs_count := 0;
bitclk_ctrl <= '1';

ELSIF (prbs_count = 1496) THEN
-- pause randomisation during 16 rs-byt.es
bitclk_ctrl <= 'O';
prbs_count := 0;

ELSE
prbs_count := prbs_count + 1;

END IF;
END IF;

END PROCESS;
END synth;

Page 2 of 2

Date: March 23, 2006 ../par_ser8/par_ser8.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 24/03/2003
-- filename: par serB.vhd
-- description: this is a 8-bit parallel-serial converter

P_Sload is 1 to load codeword
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY par_ser8 IS

PORT
(

P_Sclk
P_Sclr
P_Sload
P_Sin
P_Sout

) ;
END par ser8;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR(7 DOWNTO 0);
OUT STD LOGIC

ARCHITECTURE rtl OF par_ser8 IS
SIGNAL in_sig : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (P_Sclk, in_sig, P_Sclr)
BEGIN

P_Sout <= in_sig(7);
IF (P_Sclr = '0') THEN

in_sig <= "00 000000";
ELSE

IF (P_Sclk1 EVENT AND P_Sclk = '1') THEN
I.F (P_Sload = ' 1 ') THEN

-- load codeword
in_sig <= P_Sin;

ELSE
in_sig(7 downto 1) <= in_sig(6 downto 0);

END IF;
END IF;

END IF;
END PROCESS;

END rtl;

Page 1 of 1

Date: March 23, 2006 ./ser_par8/ser_par8.vhd Project: dvbenc_bum

-- author: kaohsiung chuah
-- date: 21/05/2003
-- filename: ser_par8.vhd
-- description: this is a 8-bit serial-parallel converter

S_Pbitclk connects to bit-rate clock
A_Pbyteclk connects to byte-rate clock

LIBRARY ieee;
USE i eee.std_logic_l164.ALL;
ENTITY ser_par8 IS

PORT
(

S_Pbitclk
S_Pclr
S_Pin
S_Pbyteclk
S_Pout

) ;
END ser_par8;

ARCHITECTURE rtl OF ser_par8 IS
SIGNAL in_sig : STD_LOGIC;
SIGNAL outsig : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL S_Poutsig : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (S_Pbitclk, S_Pbyteclk, S_Pclr)
BEGIN

IF (S_Pclr = '0') THEN
outsig <= "0000000";

ELSIF (S_Pbitclk'EVENT AND S_Pbitclk = '1') THEN
in_sig <= S_Pin;
-- shift in serial bit
outsig (0) <= in_sig;
outsig (6 downto 1) <= outsig (5 downto 0);

END IF;
IF (S_Pbyteclk'EVENT AND S_Pbyteclk = '1 *) THEN

-- output codeword
S_Pout(7 downto 1) <= outsig;
S_Pout(0) <= in_sig;

END IF;
END PROCESS;

END rtl;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

Page 1 of 1

Module: rsenc
Description: Reed-Solomon (204,188) encoding

Da
te

:
Ma

rch

23
, 2

00
6

../
rs

en
c/

rs
en

c.
bd

f*
Pr

oje
ct:

 d
vb

en
c_

bu
rn

> !z

m

Pa
ge

1

of
1

Re
vis

io
n:

 d
vb

en
c_

bu
rn

Date: March 23, 2006 ../enabler/enabler.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 24/06/2004*
-- filename: enabler.vhd
-- description: this enables a functional module to switch on/off

when en_in is 0 module is bypassed,
when en_in is 1 module is in operation.
en_syncin,en_datain input codeword
en syncenin,en dataenin input codeword to module
en syncout,en dataout output cordword
en_syncenout,en_dataenout output processed codeword
from module

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY enabler IS

PORT
(

en_in
en_clk
en_syncin
en_syncenout
en_datain
en_dataenout
en_syncout
en_syncenin
en_dataout
en_dataenin

) ;
END enabler;
ARCHITECTURE synth OF enabler IS
BEGIN

PROCESS (en_clk, en_in)
BEGIN

IF (en_clk'EVENT AND en_clk = * 1 *) THEN
IF (en_in = '0') THEN

-- bypass process, direct input/ouput
en_dataout <= en_datain;
en_syncout <= en_syncin;
en_dataenin <= "00000000";
en_syncenin <= 'O';

ELSE
-- enable process, input/output to/from module
en_dataout <= en_dataenout;
en_syncout <= en_syncenout;
en_dataenin <= en_datain;
en_syncenin <= en_syncin;

END IF;
END IF;

END PROCESS;
END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR (7 DOWNTO 0);
IN STD_LOGIC_VECTOR (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
OUT STD LOGIC VECTOR (7 DOWNTO 0)

Page 1 of 1

Module: interleaver
Description: Convolutional interleaving

Date: March 23, 2006 ../interleaver/interleaver.bdf* Project: dvbenc_burn

- r ra r r
!?' w '.5!

—

o| -

Page 1 of 1

Date: March 25, 2006 ../interleaver/int_ctrl.vhd* Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 29/03/200 4
-- filename: int__ctrl.vhd
-- description: this controls the interleaver by

intctrl_in inputs the codewords
■ -- f0_in -> fll_in inputs codewords from fifos

fl_en -> fll_en enables the fifos
fl_out -> fll_out outputs codewords to fifos
intctrl out outputs interleaved codewords
state machine waits for psync to initiate
state machine changes states in at every clock cycle
at each state codewords are sent to and from fifo

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY int_ctrl IS

PORT
(

intctrl elk IN STD LOGIC;
intctrl clr IN STD LOGIC;
intctrl syncin IN STD LOGIC;
intctrl in IN STD LOGIC VECTOR 7 DOWNTO 0)
f0 in IN STD LOGIC VECTOR 7 DOWNTO 0)
fl_in IN STD LOGIC VECTOR 7 DOWNTO 0)
f2 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f3 in IN STD_LOGIC_VECTOR 7 DOWNTO 0)
f 4_in IN STD LOGIC VECTOR 7 DOWNTO 0)
f5 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f6 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f7 in IN STD_LOGIC_VECTOR 7 DOWNTO 0)
f8 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f9 in IN STD_LOGIC VECTOR 7 DOWNTO 0)
flO in IN STD LOGIC VECTOR 7 DOWNTO 0)
fll_in IN STD LOGIC VECTOR 7 DOWNTO 0)
f 1 en OUT STD LOGIC
f2 en OUT STD LOGIC
f3 en OUT STD LOGIC
f4 en OUT STD LOGIC
f5 en OUT STD LOGIC
f6 en OUT STD LOGIC
f7 en OUT STD LOGIC
f8 en OUT STD LOGIC
f9 en OUT STD LOGIC
f 10 en OUT STD LOGIC
f 11 en OUT STD LOGIC
f0 out OUT STD LOGIC VECTOR (7 DOWNTO 0)
f 1 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f2 out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
f3 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f4 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f5 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f6 out OUT STD LOGIC’’VECTOR (7 DOWNTO 0)
f7 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f8 out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
f9 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
flO out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
fll out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
intctrl out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)

) ;
END int Ctrl;

Page 1 of 3

Date: March 25, 2006 ../interleaver/int ctrl.vhd* Project: dvbenc_burn

ARCHITECTURE synth OF int_ctrl IS
TYPE STATE_TYPE IS (RESET, INIT, ZERO, ONE, TWO, THREE, FOUR, FI

VE,
SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN);

STATE_TYPE;
STD_LOGIC_VECTOR (7 DOWNTO 0);
STD_LOGIC_VECTOR (7 DOWNTO 0);
STD_LOGIC;
STD LOGIC;

SIGNAL intstate
SIGNAL in_sig
SIGNAL get_sig
SIGNAL get_sync
SIGNAL clrlatch

BEGIN
-- Sampling input word
PROCESS (intctrl_clk, intctrl_clr)
BEGIN

IF (intctrl_clr = '0') THEN
get_sig <= "00000000";

ELSIF (intctrl_clk'EVENT AND intctrl_clk = '1')
get_sync <= intctrl_syncin;
get_sig <= intctrl_in;
in_sig <= get_sig;

END IF;
END PROCESS;

THEN

-- State machine for Interleaver Control
-- 12 states for 12 branch + reset and initiate
PROCESS (intctrl_clk, intctrl_clr)
BEGIN

IF (intctrl_clr = '0') THEN
intstate <= RESET;
clrlatch <= 'O';

ELSIF (intctrl__clk'EVENT and intctrl_clk = '1') THEN
CASE intstate IS

WHEN RESET =>
intstate <= INIT;

WHEN INIT =>
IF (get_sync = '1' AND (get_sig = "01000111" OR

get_sig = "10111000")) THEN
intstate <= ZERO;

ELSE
intstate <= INIT;
IF (clrlatch = '0') THEN

clrlatch <= '1';
END IF;

END IF;
WHEN ZERO =>

intstate <= ONE;
WHEN ONE =>

intstate <= TWO;
WHEN TWO =>

intstate <= THREE
WHEN THREE =>

intstate <= FOUR;
WHEN FOUR =>

intstate <= FIVE;
WHEN FIVE =>

intstate <= SIX;
WHEN SIX =>

intstate <= SEVEN
WHEN SEVEN =>

intstate <= EIGHT
WHEN EIGHT =>

Page 2 of 3

Date: March 25, 2006 ./interleaver/int ctrl.vhd* Project: dvbenc burn

intstate <= NINE;
WHEN NINE =>

intstate <= TEN;
WHEN TEN =>

intstate <= ELEVEN;
WHEN ELEVEN =>

intstate <= ZERO;
END CASE;

END IF;
END PROCESS;
-- sen d enabl e signal to cor responding f i f o
fl en <= ' 1 ' WHEN (intstate = ONE) ELSE •O’;
f 2 en <= ' 1 ' WHEN (intstate = TWO) ELSE ' 0 ' ;
f 3 en <= ' 1 ' WHEN intstate = THREE ELSE '0' ;
f 4 en <= ' 1 ' WHEN intstate = FOUR ELSE •O';
f 5 en <= ' 1 ' WHEN intstate = FIVE ELSE •O';
f 6 en <= ' 1' WHEN intstate = SIX ELSE 'O';
f 7 en <= ' 1 ' WHEN intstate = SEVEN ELSE •O';
f 8 en <= ' 1 ' WHEN intstate = EIGHT ELSE ' O' ;
f 9 en <= ' 1' WHEN intstate = NINE ELSE •O';
f 10 en <= ' 1 ' WHEN intstate = TEN ELSE 'O’;
f 11 en <= ' 1' WHEN intstate = ELEVEN ELSE '0
-- send input codeword to corresponding fifo
fO out <= in sig WHEN intstate - ZERO ELSE "00000000"
fl out <= in sig WHEN intstate = ONE ELSE "00000000";
f 2 out <= in sig WHEN intstate = TWO ELSE "00000000";
f 3 out <= in sig WHEN intstate = THREE ELSE "00000000
f 4 out <= in sig WHEN intstate = FOUR ELSE "00000000"
f 5 out <= in sig WHEN intstate = FIVE ELSE "00000000"
f 6 out <= in sig WHEN intstate = SIX ELSE "00000000";
f l out <= in sig WHEN intstate = SEVEN ELSE "00000000
f 8 out <= in sig WHEN intstate = EIGHT ELSE "00000000
f 9 out <= in sig WHEN intstate = NINE ELSE "00000000"
flO out <=: in_sig WHEN intstate = TEN ELSE "00000000"
f11 out <= in_sig WHEN intstate = ELEVEN ELSE "00000000";
-- interleaved output from fifos at corresponding state
WITH intstate SELECT

intctrl_out <= f0_in WHEN ZERO,
fl_in WHEN ONE,
f2_in WHEN TWO,
f3_in WHEN THREE,
f4_in WHEN FOUR,
f5_in WHEN FIVE,
f6_in WHEN SIX,
f7_in WHEN SEVEN,
f8_in WHEN EIGHT,
f9_in WHEN NINE,
f10_in WHEN TEN,
f1l_in WHEN ELEVEN,
"00000000" WHEN OTHERS;

END synth;

Page 3 of 3

Date: March 23, 2006 ./interleaver/f1 ctrl.vhd Project: dvbenc_burn

— author: kaohsiung chtaah
-- date: 01/04/2004
-- filename: flctrl.vhd
— description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY flctrl IS

PORT
(

fl_clk
f l_en
fl_clr
fl_usedw
fl_wrreq
fl_rdreq
fl_aclr

) ;
END flctrl;
ARCHITECTURE synth OF flctrl IS
BEGIN

PROCESS (fl_clr, fl_en, fl_usedw)
BEGIN

IF (fl_clr = '0') THEN
fl_aclr <= '1';
fl_rdreq <= 'O';
fl_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(fl^usedw,5) >= "10000") THEN
-- perform as shift register
fl_rdreq <= fl_en;
fl_wrreq <= fl_en;
fl_aclr <= 'O';

ELSE
-- buffering fifo
fl_wrreq <= fl_en;
fl_rdreq <= 'O';
fl_aclr <= '01;

END IF;
END PROCESS;

END synth;

I N STD_LOGIC;
I N STD_LOGIC;
I N STD_LOGIC;
I N UNSIGNED (4 D O W N T O 0);
O U T STD_LOGIC;
O U T STD_LOGIC;
O U T STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../interleaver/f2ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f2ctrl.vhd
-- description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY f2ctrl IS

PORT
(

);
END f2ctrl;
ARCHITECTURE synth OF f2ctrl IS
BEGIN

PROCESS (f2_clr, f2_en, f2_usedw)
BEGIN

IF (f2_clr = '0') THEN
f2_aclr <= ' 1 ' ;
f2_rdreq <= 'O';
f2_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f2_usedw,6) >= "100001") THEN
-- perform as shift register
f2_rdreq <= f2_en;
f2_wrreq <= f2_en;
f2_aclr <= 'O';

ELSE
-- buffering fifo
f2_wrreq <= f2_en;
f2_rdreq <= 'O';
f2 aclr <= 'O';

f2_clk
f 2_en
f2 clr

IN STD_LOGIC
IN STD_LOGIC
IN STD LOGIC

f2_usedw
f2_wrreq
f2_rdreq
f2 aclr

IN UNSIGNED (5 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

END IF;
END PROCESS;

END synth;

Page 1 of 1

Date: March 23, 2006 ,/interleaver/f3ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004'
-- filename: f3ctrl.vhd
-- description: this controls fifo to perform as shift register

by buffering fifo until required length
f -- then allow fifo to read and write at the same time

to function as shift register
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f3ctrl IS

PORT
(

f3_clk
f 3_en
f3_clr
f3_usedw
f3_wrreq
f3_rdreq
f3_aclr

) ;
END f3ctrl;
ARCHITECTURE synth OF f3ctrl IS
BEGIN

PROCESS (f3_clr, f3_en, f3_usedw)
BEGIN

IF (f3_clr = '0') THEN
f3_aclr <= '1';
f3_rdreq <= ' 0 ' ;
f3_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f3_usedw,6) >= "110010") THEN
-- perform as shift register
f3_rdreq <= f3_en;
f3_wrreq <= f3_en;
f3_aclr <= 'O';

ELSE
-- buffering fifo
f3_wrreq <= f3_en;
f3_rdreq <= 10';
f3_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (5 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ./interleaver/f4ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f4ctrl.vhd
-- description: this controls fifo to perform as shift register

by buffering fifo until required length,
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY f4ctrl IS

PORT
(

f4_clk
f 4_en
f 4_clr
f4_usedw
f4_wrreq
f4_rdreq
f4_aclr

) ;
END f4ctrl;
ARCHITECTURE synth OF f4ctrl IS
BEGIN

PROCESS (f4_clr, f4_en, f4_usedw)
BEGIN

IF (f4_clr = '0') THEN
f4_aclr <= ' 1 ' ;
f4_rdreq <= 'O';
f4_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC__VECTOR(f4_usedw,7) >= "1000011") THEN
-- perform as shift register
f4_rdreq <= f4_en;
f4_wrreq <= f4_en;
f4_aclr <= 'O';

ELSE
-- buffering fifo
f4_wrreq <= f4_en;
f4_rdreq <= 'O';
f4_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../interleaver/f5ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004'
-- filename: fSctrl.vhd
— description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f5ctrl IS

PORT
(

f5_clk
f 5_en
f5_clr
f5_usedw
f5_wrreq
f5_rdreq
f5_aclr

) ;
END f5ctrl;

ARCHITECTURE synth OF f5ctrl IS
BEGIN

PROCESS (f5_clr, f5_en, f5_usedw)
BEGIN

IF (f5_clr = '0') THEN
f5_aclr <= ' 1 ' ;
f5_rdreq <= 'O';
f5__wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f5_usedw,7) >= "1010100") THEN
-- perform as shift register
f5_rdreq <= f5_en;
f5_wrreq <= f5_en;
f5_aclr <= 'O';

ELSE
- - bu f f e .r i ng f i f o
f5_wrreq <= f5_en;
f5_rdreq <= 'O';
f5_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD__LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../interleaver/f6ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f6ct.rl.vhd
-- description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f6ctrl IS

PORT
(

f 6_clk
f 6_en
f 6_clr
f 6_usedw
f 6_wrreq
f 6_rdreq
f 6_aclr

) ;
END f6ctr1;
ARCHITECTURE synth OF f6ctrl IS
BEGIN

PROCESS (f6_clr, f6_en, f6_usedw)
BEGIN

IF (f 6_clr = '0') THEN
f6_aclr <= '11;
f6_rdreq <= 'O';
f6_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f6_usedw,7) >= "1100101") THEN
-- perform as shift register
f6_rdreq <= f6_en;
f6_wrreq <= f6_en;
f6_aclr <= 'O';

ELSE
-- buffering fifo
f6_wrreq <= f6_en;
f6_rdreq <= 'O';
f6_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../interleaver/f7ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f7ct.rl.vhd
— description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f7ctrl IS

PORT
(

f7_clk
f 7_en
f7_clr
f7_usedw
f7_wrreq
f7_rdreq
f7_aclr

) ;
END f7ctrl;
ARCHITECTURE synth OF f7ctrl IS
BEGIN

PROCESS (f7_clr, f7_en, f7_usedw)
BEGIN

IF (f7_clr = '0') THEN
f7_aclr <= ' 1 ' ;
f7_rdreq <= 'O';
f7_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f7_usedw,7) >= "1110110") THEN
-- perform as shift register
f7_rdreq <= f7_en;
f7_wrreq <= f7_en;
f7_aclr <= '0';

ELSE
-- buffering fifo
f7_wrreq <= f7_en;
f7_rdreq <= 'O';
f7_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ,/interleaver/f8ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: fSctrl.vhd
— description: this controls fifo to perform as shift regi ster

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f8ctrl IS

PORT
(

f8_clk
f 8_en
f8_clr
f8_usedw
f8_wrreq
f8_rdreq
f8_aclr

) ;
END f8ctrl;
ARCHITECTURE synth OF f8ctrl IS
BEGIN

PROCESS (f8_clr, f8_en, f8_usedw)
BEGIN

IF (f8_clr = '0') THEN
f8_aclr <= '1';
f8_rdreq <= ' 0 ' ;
f8_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f8_usedw,8) >= "10000111") THEN
-- performing as shift register
f8_rdreq <= f8_en;
f8_wrreq <= f8_en;
f8_aclr <= '0';

ELSE
-- buffering fifo
f8_wrreq <= f8_en;
f8_rdreq <= 'O';
f8_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ./interleaver/f9ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f'Octrl.vhd
-- description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f9ctrl IS

PORT
(

f9_clk
f 9_en
f 9_clr
f9_usedw
f9_wrreq
f 9_rdreq
f9_aclr

) ;
END f9ctrl;
ARCHITECTURE synth OF f9ctrl IS
BEGIN

PROCESS (f9_clr, f9_en, f9_usedw)
BEGIN

IF (f9_clr = '0') THEN
f9_aclr <= '1';
f9_rdreq <= 'O';
f9_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f9_usedw,8) >= "10011000") THEN
-- performing as shift register
f9_rdreq <= f9_en;
f9_wrreq <= f9_en;
f9_aclr <= 'O';

ELSE
-- buffering fifo
f9_wrreq <= f9_en;
f 9_rdreq <= 'O';
f9_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ,/interleaver/f1 Octrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: flOctrl.vhd
— description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY f1 Octrl IS

PORT
(

f10_clk
f10_en
f10_clr
f10_usedw
f10_wrreq
f10_rdreq
f10_aclr

) ;
END flOctrl;
ARCHITECTURE synth OF flOctrl IS
BEGIN

PROCESS (fl0_clr, fl0_en, fl0_usedw)
BEGIN

IF (f10_clr = '0') THEN
f10_aclr <= '1';
fl0_rdreq <= 'O';
fl0_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f10_usedw,8) >= "10101001") THE
N

-- performing as shift register
fl0_rdreq <= fl0_en;
fl0_wrreq <= fl0_en;
f10_aclr <= '0';“

ELSE
-- buffering fifo
fl0_wrreq <= fl0_en;
fl0_rdreq <= 'O';
f10_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;

: OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../interleaver/f11 ctrl.vhd Project: dvbenc_bum

-- author: kaohsiung chuah
-- date: 01/04/2004’
-- filename: fllctrl.vhd
— description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY fllctrl IS

PORT
(

f1l_clk
f1l_en
f1l_clr
fll_usedw
f1l_wrreq
f1l_rdreq
f1l_aclr

) ;
END fllctrl;
ARCHITECTURE synth OF fllctrl IS
BEGIN

PROCESS (fll_clr, fll_en, fll_usedw)
BEGIN

IF (fll_clr = ’O ’) THEN
f1l_aclr <= '11;
fll_rdreq <= 'O';
f1l_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(fll_usedw,8) >= "10111010") THE
N

- - perf o rming as sh .1 f t r egis t. e r
fll_rdreq <= fll_en;
fll_wrreq <= fll_en;
fll_aclr <= 'O';

ELSE
-- buffering fifo
fll_wrreq <= fll_en;
fll_rdreq <= 'O';
f1l_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;

: OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ../enabler/enabler.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 24/06/2004
-- filename: enabler.vhd
-- description: this enables a functional module to switch on/off

when en_in is 0 module is bypassed,
when en_in is 1 module is in operation.
en_syncin,en_datain input codeword
en syncenin,en dataenin input codeword to module
en syncout,en dataout output cordword
en_syncenout,en_dataenout output processed codeword
from module

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY enabler IS

PORT
(

en_in
en_clk
en_syncin
en_syncenout
en_datain
en_dataenout
en_syncout
en_syncenin
en_dataout
en_dataenin

) ;
END enabler;
ARCHITECTURE synth OF enabler IS
BEGIN

PROCESS (en_clk, en_in)
BEGIN

IF (en_clk'EVENT AND en_clk = '1 *) THEN
IF (en_in = '0') THEN

-- bypass process, direct input/ouput
en_dataout <= en_datain;
en_syncout <= en_syncin;
en_dataenin <= "00000000";
en_syncenin <= 'O';

ELSE
-- enable process, input/output to/from module
en_dataout <= en_dataenout;
en_syncout <= en_syncenout;
en_dataenin <= en_datain;
en_syncenin <= en_syncin;

END IF;
END IF;

END PROCESS;
END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR (7 DOWNTO 0);
IN STD_LOGIC_VECTOR (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
OUT STD LOGIC VECTOR (7 DOWNTO 0)

Page 1 of 1

Module: conv_enc
Description: Convolutional encoding

rj

o'c
(D

JO>-o
o<D'o'i—

CL

t-TJJO
dc:
CD
>'
Coo
'dc
:■coo

1 s

**

Pa
ge

1

of
1

Date: March 23, 2006 ../cnv enc/cnv enc.vhd* Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 25/0 3/2 003
-- filename: cnv enc.vhd

4 -- description: this is a convolutional encoder
cnv_in shifts input bits
x_out and y_out are X and Y encoded output

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY cnv_enc IS

PORT
(

cnv_in
cnv_clk
cnv_clr
x_out
y_out

) ;
END cnv_enc;
ARCHITECTURE rtl OF cnv_enc IS

SIGNAL in_latch : STD_LOGIC_VECTOR(6 DOWNTO 0);
BEGIN

PROCESS (cnv_clk, cnv_clr)
BEGIN

IF (cnv_clr = '0') THEN
in_latch <= "0000000";

ELSE
IF (cnv_clk'EVENT AND cnv_clk = '1') THEN

in_latch(6) <= cnv_in;
in_latch(5 downto 0) <= in_latch (6 downto 1);
-- x = 171 OCT = 1111001 BIN
x_out <= in_latch(6) XOR in_latch(5) XOR in_latch(4)

XOR in_latch(3) XOR in_latch(0);
-- y = 133 OCT = 1011011 BIN
y_out <= in_latch(6) XOR in_latch(4) XOR in_latch(3)

XOR in_latch(l) XOR in_latch(0);
END IF;

END IF;
END PROCESS;

END rtl;

IN std_logic;
IN std_logic;
IN std_logic;
OUT std_logic;
OUT std_logic

Page 1 of 1

Date: March 23, 2006 ../par_ser8/par_ser8.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 24/03/2003
-- filename: par serS.vhd
-- description: this is a 8-bit parallel-serial converter

P_Sload is 1 to load codeword
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY par_ser8 IS

PORT
(

P_Sclk : IN STD_LOGIC;
P_Sclr : IN STD_LOGIC;
P_Sload : IN STD_LOGIC;
P_Sin : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
P_Sout : OUT STD_LOGIC

) ;
END par_ser8;
ARCHITECTURE rtl OF par_ser8 IS

SIGNAL in_sig : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN

PROCESS (P_Sclk, in_sig, P_Sclr)
BEGIN

P_Sout <= in_sig(7);
IF (P_Sclr = '0') THEN

in_sig <= "00000000";
ELSE

IF (P_Sclk'EVENT AND P_Sclk = '1') THEN
IF (P_Sload = '1') THEN

-- load codeword
in_sig <= P_Sin;

ELSE
in_sig(7 downto 1) <= in_sig(6 downto 0);

END IF;
END IF;

END IF;
END PROCESS;

END rtl;

Page 1 of 1

Module: puncture
Description: Puncturing

Da
te

:
Ma

rch

25
,

20
06

../

pu
nc

tu
re

/p
un

ct
ur

e.
bd

f*
Pr

oj
ec

t:
dv

be
nc

_b
ur

n

f l
I t

1 1 1
II

QD

X X i t

i

X X

i s
I I I'I

Q.
X X X X

I I

ST

X x

X X X

I I I ,

Ill‘i

1 ,I I
II

Pa
ge

1

of
1

Re
vis

io
n:

 d
vb

en
c_

bu
rn

Date: March 23, 2006 ,/par_ser2/par_ser2.vhd Project: dvbenc_bum

-- author: kaohsiung chuah
-- date: 21/03/2003

.< -- filename: par ser2.vhd
-- description: this is a 2-bit parallel-serial converter

P_Sload is 1 to load codeword
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY par_ser2 IS

PORT
(

P_Sclk
P_Sclr
P_Sload
P_Sin
P_Sout

) ;
END par_ser2;
ARCHITECTURE rtl OF par_ser2 IS

SIGNAL in_sig : STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN

PROCESS (P_Sclk, in_sig, P_Sclr)
BEGIN

P_Sout <= in_sig(0);
IF (P_Sclr = '0') THEN

in_sig <= "00";
ELSE

IF (P_Sclk'EVENT AND P_Sclk = '1') THEN
IF (P_Sload = '1') THEN

-- load codeword
in_sig <= P_Sin;

ELSE
-- shift bits
in_sig(0) <= in_sig(l);

END IF;
END IF;

END IF;
END PROCESS;

END rtl;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR(1 DOWNTO 0);
OUT STD LOGIC

Page 1 of 1

Date: March 23, 2006 ./puncture/punc_ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 05/02/2004
-- filename: punc_ctrl.vhd
-- description: this controls puncturing process by

punc_wrreq sending 0s to puncture bits
punc_count to label clock cycles
punc_load is not in use

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY punc_ctrl IS

PORT
(

punc_bitclk
punc_clr
punc_wrreq
punc_load

) ;
END punc_ctrl;
ARCHITECTURE rtl OF punc_ctrl IS
BEGIN

PROCESS (punc_bitclk, punc_clr)
punc_count to label clock cycles

VARIABLE punc_count : INTEGER RANGE 0 TO 3
BEGIN

IF (punc_clr = ’O') THEN
punc_count := 0;

ELSIF (punc_bitclk1 EVENT AND punc_bitclk = '1'
punc_count := punc_count + 1;
IF (punc__count = 3) THEN

punc_count := 0;
punc_load <= '11;
punc_wrreq <= 'O';

ELSE
punc_load <= '0';
punc_wrreq <='1';

END IF;
END IF;

END PROCESS;
END rtl;

IN STD_LOGIC;
IN STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

THEN

Page 1 of 1

Date: March 23, 2006 ../ser_par2_ctrl/ser_par2_ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 05/02/2004
-- filename: ser par2 ct.rl.vhd

4 -- description: this serial-parallel converter punctures when
S_Pctrl is 0, as it stops shifting input bits

6 -- S_Pout load its values as I and Q
: -- bits that were not shifted into the converter is pun
ctured
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY ser_par2_ctrl

PORT
(

S_Pbitclk
S_Pclr
S_Pin
S_Pctrl
S_Pout

) ;
END ser_par2 Ctrl;

IS

IN
IN
IN
IN

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD LOGIC;

OUT STD LOGIC VECTOR(1 DOWNTO 0)

ARCHITECTURE rtl OF ser_par2_ctrl IS
SIGNAL in_sig : STD_LOGIC;
SIGNAL outsig : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
PROCESS (S_Pbitclk, S_Pctrl)
BEGIN

-- S._ Pout <= outsig;
IF (S_Pclr = '0') THEN

outsig <= "00";
in_sig <= 'O';

ELSIF (S_Pctrl = '1') THEN
IF (S_Pbitclk'EVENT AND S_Pbitclk = '11) THEN

in_sig <= S_Pin;
-- shifting .input bits
outsig(0) <= in_sig;
outsig (1) <= S_Pin;

END IF;
ELSIF (S Petrl = '0') THEN

IF (S_Pbitclk'EVENT AND
S Pout load its \

S_Pout <= outsig;
END IF;

END IF;
PROCESS;

S_Pbitclk = '1
ralues as I and

) THEN

END
END
rtl;

Page 1 of 1

Date: March 23, 2006 ./selector/selector, vhd Project: dvbenc_burn

-- author: kaohsiung chuah
-- date: 25/06/2004*
-- filename: selector.vhd
-- description: this enables bypass of puncturing process

to switch between 1/2 and. 3/4 rate
when sel_en is 0, X and Y is connected to I and Q
when sel_en is 1, I and Q is punctured output

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY selector IS

PORT
(

sel en IN STD LOGIC
sel Xin IN STD "l o g i c
sel _Yin IN STD "l o g i c
sel I in IN STD "l o g i c
sel Qin IN STD "l o g i c
sel lout : OUT STD LOGIC;
sel_Qout : OUT STD_LOGIC

) ;
END selector;
ARCHITECTURE synth OF selector IS
BEGIN

PROCESS (sel_en)
BEGIN

IF (sel_en = '0') THEN
-- select X and Y input
sel_Iout <= sel_Xin;
sel_Qout <= sel_Yin;

ELSE
-- select punctured I and Q
sel_Iout <= sel_Iin;
sel_Qout <= sel_Qin;

END IF;
END PROCESS;

END synth;

Page 1 of 1

Module: dvbspisource_v2
Description: Generates DVB SPI MPEG source for testing

Da
te

:
Ma

rch

25
,

20
06

dv

bs
pi

so
ur

ce
_v

2.
bd

f*
Pr

oje
ct:

 d
vb

sp
iso

ur
ce

_v
2

„ !o rg
O If 11 If
O ; Q . ; T 3 ;T 3

i I ys.; ys,

Pa
ge

1

of
1

Re
vis

ion
:

dv
bs

pi
so

ur
ce

_v
2

Date: March 25, 2006 dvbspi_ctrl.vhd* Project: dvbspisource_v2

-- author: kaohsiung chuah
-- date: 19/03/2004
-- filename: dvbspi_Ctrl.vhd
-- description: this generates 188-byte mpeg packets with

the last .1.6 nu 1.1-bytes
LIBRARY ieee;
USE ieee.std_logic_l164.all;
ENTITY dvbspi_ctrl

PORT
(

q
sys_clk
data
psync
dvalid
sclr
clock

) ;
END dvbspi_ctrl;
ARCHITECTURE dvbspi_ctrl_architecture OF dvbspi Ctrl IS

CONSTANT SYNC :
CONSTANT BYTE187 :
CONSTANT BYTE203 :
SIGNAL out_sig :
SIGNAL psync_sig :
SIGNAL zero_out :

BEGIN
clock <= sys_clk;
out_sig <= q;
-- detect clock at 71
PROCESS (sys_clk)
BEGIN

IF (sys_clk1 EVENT
IF (q = SYNC)

psync_sig
sclr <= 'O';
--out sig <= "01000111";

ELSIF (q = BYTE187) THEN
psync_sig <= 'O';
sclr <= '1';

ELSIF (q = BYTE20 3) THEN
sclr <= 'O';
psync_sig <= 'O';

ELSE
psync_sig <= 'O';
sclr <= 'O';

END IF;

-- null-bytes flag controls
IF (q = "00110110") THEN

zero_out <= '1';
ELSIF (q = "01000110") THEN

zero_out <= 'O';
ELSE

zero_out <= zero_out;
END IF;

ST D_LOGIC_VECTOR := "01000110"
STD_LOGIC_VECTOR := "10.111010"
STD_LOGIC_VECTOR := "11001010"
STD__LOGIC_VECTOR (7 DOWNTO 0);
STD_LOGIC;
STD LOGIC;

and 187, to output psync and reset

AND sys_clk = '1') THEN
THEN
< = ' 1 ' ;

IN STD_LOGIC_VECTOR(7 downto 0);
IN STD_LOGIC;
OUT STD_LOGIC_VECTOR(7 downto 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
INOUT STD LOGIC

counter

Page 1 of 2

Date: March 25, 2006 dvbspi_ctrl.vhd* Project: dvbspisource_v2

END IF;
IF (sys_clk'EVENT AND sys_clk = ’O') THEN

-- un-comment this section to enable nul1-bytes
-- data o= ”01000111";
— IF (zero_out = ’1 *) THEN
-- data <• "00000000";

d v a l i d <= ' O ' ;
— ELSE

data <= out_sig;
psync <= psync_sig;
dvalid <= '1';

--END IF;
END IF;

END PROCESS;
END dvbspi_ctrl_architecture;

Page 2 of 2

