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Abstract

This research thesis presents a cost effective implementation of Digital Video 
Broadcasting (DVB) based channel encoder, using Field Programmable Gate Array 
(FPGA), for an experimental 42 GHz Multimedia Wireless System (MWS): The 
Nottingham Trent University Campus Network Trial System.

This thesis details investigations and the subsequent design and testing of a channel 
encoder for the 42 GHz MWS network trial. This includes identifying an FPGA as the 
development platform; examining, verifying and implementing off-the-shelf Intellectual 
Property (IP) cores as part of the encoder design. Control algorithms were designed to 
ensure reliability of data-flow processes. The channel encoder also reconditions the 
transport packets, for compatibility between system modules and the IP core. Functional 
modules were coded separately using hardware description language and finally 
integrated as a system aided by Electronics Design Automation.

As this channel encoder is part of the DVB-Satellite (DVB-S) physical layer that can be 
evaluated on the 42 GHz campus network experimented test-bed, standard interfaces 
between systems were used and the encoder specifications were in compliance with the 
DVB-S standard, to work with off-the-shelf DVB-S set-top-boxes (STBs). Device 
input/output electrical characteristics were also investigated and adapted to the system. 
Taking advantage of the flexibility of FPGAs, a combination of Forward Error Correction 
(FEC) coding schemes were made available that can be reconfigured to be applied to 
the radio channel. The final FPGA compilation shows a total of 1,461 logic elements and 
15,616 memory bits being used on the Cyclone EP1C6Q240C6 device.

The hardware was tested, operating at 26.666 Mbaud for an FEC code rate of 3/4 and 
40.000 Mbaud for an FEC code rate of 1/2. The complete end-to-end system was 
verified using both emulated and ‘live’ digital television transport multiplex. The status 
register of a satellite STB was used to confirm its functionality

This research has resulted in an inexpensive implementation of a DVB channel encoder 
for millimetre-wave broadband fixed wireless access offering television broadcasting and 
interactive data services. The channel encoder was programmed onto an FPGA and has 
been effectively tested as part of the campus network trial. Further development 
anticipates dynamic reconfiguration with adaptive capabilities.
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1 Introduction

Telecommunications and broadcasting in the new millennium has emphasised efficient 

transport capacity at acceptable cost for the last mile’ connections: the access network 

[1, 2]. As a result of evolution in on-demand interactive multimedia contents and digital 

broadcasting services, demands for broadband capacity have increased at an incredible 

rate.

Existing service providers facing the broadband requirement issue are quick to improve 

existing technologies and develop new systems to meet the challenges of convergence 

in telecommunication and broadcast services. Broadcast networks are developed to 

have a return link, to facilitate two-way networking. Digital TV services can then offer 

access to the Internet. Concurrently, telecommunication networks are capable of offering 

high-speed Internet services that are capable of streaming ‘live’ broadband internet 

television [3].

Broadband strategies initiated by governments, such as eEurope 2005 [4] within the 

European Union (EU) and UK Online [5] in the United Kingdom (UK), has emphasised 

the digital switchover of television broadcasts and broadband access for all citizens. 

These action plans have stimulated research and development as well as the rapid 

adoption of new technologies. This is especially so in rural areas, where existing 

technologies fail. Emerging technologies, such as Broadband Fixed Wireless Access 

(BFWA), have the biggest impact on extending broadband coverage: besides offering 

flexibility, scalability, fast installation and rollout, BFWA technology can get round the 

distance limitations of Digital Subscriber Line (DSL) and the high costs of cable [6, 7].
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1.1 42 GHz Band

Transmitting at millimetre-wave frequencies, BFWA technology can afford huge amounts 

of bandwidth; allowing data rates in the megabits-per-second range to every user, which 

is not currently possible in lower frequency spectrum. With high bandwidth, multiplexes 

of digital television can be broadcast at the same time as the interactive data services. 

As signals at these frequencies are directional and have a short propagation range, 

potential frequency reuse [8] allows even more efficient use of the frequency band. Cell- 

based deployment of the system makes localisation of services and contents possible, 

as well as increasing the overall capacity of the bandwidth.

In 1998, the European Radiocommunications Committee (ERC) initiated a review on the 

band 40.5 to 42.5 GHz in Europe, which was allocated for the introduction of Multipoint 

Video Distribution Systems (MVDS) back in 1996, to promote the use of digital 

technologies and to provide a viable means of delivering interactive services. At that time, 

MVDS was to provide an alternative method for localised broadcast of television 

programmes, particularly to areas uneconomical to cable [9]. The review followed the 

development of interactive multimedia services, for instance, interactive television and 

broadband internet. Such services demand not just broadcasting channels; but a 

broadband interactive channel. As a result, Multimedia Wireless Systems (MWS) was 

introduced through ERC Decision (ERC/DEC/(99)15) in 1999, for the frequency band of

40.5 to 43.5 GHz [10]. The allocated 3 GHz of bandwidth is larger than that of radio, 

television and cellular telephony combined, at lower frequencies, and is envisaged to 

sustain the convergence of broadcast and telecommunication services [11].

The 42 GHz band is part of Extra-High Frequencies (EHF) that is not yet widely used for 

communication systems. This is due to the huge fade effects due to precipitation in the 

atmosphere. Besides, the signal can only propagate within a limited direct line-of-sight 

range of 1-3 kilometres [12].

1.2 Cost Effective Multimedia Wireless Systems

MWS encompasses all terrestrial multipoint systems, including telecommunications and 

broadcasting technology. The service may behave as an access network, a broadcasting 

service or a combination [13]. The access network is part of Fixed Wireless Access 

(FWA), which maintains wireless transfer of various kinds of information, including 

graphics, text, sound, image data and video [14], while its broadcasting service provides 

delivery of digital TV and radio. When adopting DVB standards, MWS allows network
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data being carried as part of the digital TV and radio transport system over the same 

channel [15].

The Nottingham Trent University (NTU) Campus Network Trial is one such MWS 

deployed in the university that is compliant with the DVB-S standard. The existing 

broadcasting service transmits terrestrial digital TV signal that is re-modulated in DVB-S 

format to enable the use of inexpensive direct-to-home (DTH) satellite set-top-boxes 

(STBs) to decode received signals [16] over the 42 GHz channel. An interactive service 

was also in place for networked data communications between the base-station and its 

clients. The system adopts a return link standard that is designed for cable networks. 

Since the existing system uses professional frequency translation equipment that are 

expensive, a cost effective replacement hardware system could be developed to provide 

an inexpensive and robust broadcasting and interactive service over the 42 GHz MWS 

campus network trial.

This research work is concerned with the implementation of hardware as part of the 

DVB-based physical layer for the campus network trial system. The hardware is 

developed in compliance with the DVB-S standard, to enable transmission of digital TV 

and network data, using the same channel coding scheme and modulation technique. 

This allows a slightly modified satellite STBs to serve as on-site networking equipment, in 

addition to decoding digital TV signals, hence eliminating the use of expensive cable 

networking equipment, to realise a cost-effective MWS at 42 GHz.

As the use of dedicated equipment in the existing system only provides standardised 

configurations, the DVB-based physical layer, developed in this research, could serve as 

a platform for applying various coding schemes to the NTU campus network trial. A fixed 

code rate and Forward Error Correction (FEC) scheme applied means that the link is 

over protected most of the time due to the link margin that has to be reserved for rain 

loss [17,18]. Measurements could be made to characterise a variety of coding methods 

over the 42 GHz link. These results can potentially be used to devise an adaptive system 

that changes correspondingly to meet the variable channel conditions to achieve 

maximum efficiency over the campus network trial [19].

The advancement of programmable devices, such as a Field Programmable Gate Array 

(FPGA) reduces the costs of developing technologies, such as MWS [20]. The device 

can be programmed to replace multiple-chip configurations with a single-chip processing 

solution, making it easily deployable for trials. In the context of this research, expensive 

and bulky equipment are integrated and replaced with minimum hardware both at base-
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station and client-sites. With its re-programmable capabilities, modifications to an FPGA 

design can be quickly made in-house without incurring extra cost [21]. This technology is 

well-suited for this research work as designs can be prototyped and tested on the 

campus network trial. In addition, various combinations of coding schemes can be 

programmed into the device for characterisation work. Newer FPGAs also allow dynamic 

reconfiguration, where a section or the entire design of the FPGA is reconfigured while 

operating [22]. This feature provides a means of realising an adaptive DVB-based 

physical layer for 42 GHz MWS.

1.3 Research Aims

The main focus of this research concentrates on investigations of a hardware system 

that can be used as a generic platform for applying various coding schemes to the NTU 

Campus Network Trial. The device is to be developed in compliance with the DVB-S 

standard adopted by the campus network trial. The development would to take 

advantage of existing in-house development facilities. Working as a channel encoder 

with reconfigurable features, this device is to be implemented as part of the DVB-based 

physical layer that can be evaluated within the campus trial. The objectives are identified 

as follow,

• Investigation on hardware technologies available in-house to identify a suitable 

development platform for this research.

• Examine off-the-shelf Intellectual Property (IP) functional cores, such as a Reed- 

Solomon (RS) encoder and a convolutional interleaver, to identify its suitability for 

this development. Perform functional simulations to recognise the requirements of 

these functional cores.

• Develop strategies to incorporate IP functional cores as part of the design of the 

DVB-S compliant channel encoder.

• Design and develop all modules for DVB-S standard channel encoding processes, 

such as transport multiplex adaptation, randomization, Reed-Solomon encoding, 

convolutional interleaving and puncturing.

• Devise algorithms to apply conditioning on the data stream to integrate all 

modules required by the DVB-S standard on the development platform.

• Perform verification processes to ensure that developed modules are functionally 

corroborated.

• Carry out end-to-end system tests with the designed DVB-S channel encoder as 

part of the prototyped 42 GHz MWS campus trial to validate the operations of the 

completed system.
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1.4 Structure of the Thesis

The organisation and brief description of the chapters of this thesis are as follow,

Chapter 2 covers the underlying technology review of the 42 GHz MWS campus network 

trial, and various services and technologies deployed for the campus trial. An overview of 

the physical layer is presented with descriptions on DVB-S channel encoding and 

decoding. This chapter also details the investigation into cost-effective technologies that 

are involved in the development of the channel encoder, focusing on FPGA technologies 

and EDA design development with IP cores.

Chapter 3 describes the design and implementation stages of the modules for the DVB- 

based channel encoder. Design requirements and solutions are presented. Several 

changes are discussed as modifications were made to the design of the system, such as 

the inclusion of the ‘zero-padding’ frame conditioning module and the bypassable design 

for configurability of the coding processes.

Chapter 4 details the verification processes of the DVB-S channel encoder. The 

completed modules were first verified individually using HDL software simulations. The 

simulations results were then correlated with another result taken from simulation 

software, such as Simulink, that is widely used in the industry. The completed channel 

encoder was also verified on hardware as part of the prototyped campus trial test. 

Configurations and outcome of these tests are also presented.

Chapter 5 summarises the research work undertaken and defines further possible 

research directions.

5



2 Review of Underlying Technology

The use of standard professional equipment as part of a test platform is often faced with 

lack of flexibility as it is built with limited customisation capabilities to conform to one 

existing standard, such as [56]. At the same time, professional equipment built for 

multiple functionalities and standards is expensive. To explore new applications of MWS, 

such as to enable an MPEG-based interactive data service to be tested over the 

relatively new 42 GHz frequency band, a certain level of flexibility is required. Therefore, 

with the aim of developing a cost effective reconfigurable hardware as part of the 

physical layer for the 42 GHz MWS, a review of the technologies underlying the NTU 

campus network trial is given. Details on facilitating technologies, such as FPGA and 

EDA tools, are also presented.
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2.1 Electronic Design Automation

Electronic Design Automation (EDA), also known as electronic computer-aided design 

(ECAD), is a set of computer aided tasks that are used for design and development of 

electronic devices such as integrated circuits (ICs) [23, 45]. It uses the top down design 

approach, where the super ordinate systemic specifications are described on top and 

detailed assembly modules are described further down on the design. EDA can be 

applied to the design of the entire system as defined by specifications, down to 

production of the device, including development of printed circuit boards (PCBs) and the 

embedded system device driver software [24].

Today, the design of an IC can be a complicated task, especially with large scale system 

integration and competitive time to market. The use of EDA significantly shortens the 

development cycle as a computer is used to perform time consuming tasks, such as logic 

synthesis, simulation and timing analysis. By providing comprehensive and accurate 

system simulations, the use of EDA also promotes zero-errors development of the 

hardware. This is important as with a shorter time to market, designs are restricted to the 

number of revisions prior to the manufacturing stages.

EDA not only increases design productivity and precision, it also protects the Intellectual 

Property (IP) of the design. With the integration of multiple design components in a single 

device, such as a full custom Application Specific Integrated Circuit (ASIC), designs are 

better protected compared to separate ICs wired together on a printed circuit board. On 

the other hand, generic functional designs, such as a Reed-Solomon encoder core or a 

microprocessor core, can be designed once and re-used as part of another system. 

These designs can also be fully documented and sold as IP cores.

EDA has come a long way since early 70s. Powered by high-performance modern 

personal computers (PCs), EDA tools allow designers to develop, simulate and verify ICs 

and systems reliably. Besides the traditional graphic-based design entry, the use of 

standardised hardware description languages (HDLs), such as Very High Speed 

Integrated Circuit (VHSIC) Hardware Description Language (VHDL), Verilog HDL and 

embedded ‘C’, as one of the design entry methods is one the best features of EDA that 

has revolutionised design methodology [24]. These description models written in 

Register Transfer Level (RTL) are then being compiled and synthesised. These 

processes translate the description of the design into a gate level netlist. To offer the 

flexibility of transferring design data between different EDA tools, netlists are usually
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presented in Electronic Design Interchange Format (EDIF) as it is one of the world's 

most widely used formats [25].

Design simulation is an important stage of the design flow using EDA. it allows designers 

to simulate and verify systems efficiently and reliably to ensure that the design has zero- 

error, before moving on to the next stages of development [26]. Tapping on the 

computing power of modern PCs, stimuli can be virtually inserted to simulate the design. 

The simulation output obtained can then be analysed to determine if the design has 

operated the correctly. With the high complexity of larger designs, test benches or logic 

waveforms can be applied as a set of stimuli to the system during simulation to test for 

correct responses of the design.

For designs taking the HDL modelling route, such as this research, the synthesis process 

automates the implementation stages beyond RTL after all design errors are rectified. It 

automated processes right down to generating gate-level design files for production of 

target device. During this stage, RTL descriptions are decomposed into Boolean 

equations. Then, the automated placement and routing process uses the equations to 

instantiate logic gates and decide on the location of the blocks based attributes of the 

target device [24]. Interconnection paths are then made between the logic gates. Delays 

along signal paths are then calculated identifying total delays of the design and critical 

paths that limit the performance of the system. Using a computer, static timing analysis 

can be performed quickly and accurately based on target device. This helps determine if 

the design is compliant to timing constraints as well as maximum performance of the 

device. Ultimately, one or more gate-level design files are generated for the target device. 

This design file can be submitted for hardware production. Some proprietary EDA tools 

for Programmable Logic Device (PLD) and Field Programmable Gate Array (FPGA) 

development platform also include a device programming too! to download design 

information into a PLD or FPGA device since programming methods for these devices 

are exclusively associated with technologies used by vendors.

Design re-use has been the basis of system integration and it is made easier by EDA. As 

more logic gates can be produced within the same Silicon area, designs can be 

incorporated into a single ASIC to promote better signal integrity, thus enabling systems 

to operate at higher frequencies. A single design can be added into libraries of an EDA 

tool and re-used in other systems to boosts design productivity especially when 

designing larger systems. Design re-use also allows various commercial IP cores, such 

as Reed-Solomon encoder and convolutional interleaver cores, to integrate as System- 

on-a-chip (SoC).
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2.1.1 Altera Quartus II Web Edition

The Altera Quartus II is one of many software packages used for EDA. The software is a 

comprehensive design environment that features everything needed to start designing 

with Altera devices [27]. This is the latest EDA development software for all of Altera 

devices replacing the older Max+PLUS II software [28]. It integrates RTL synthesis 

support for standard Very-High Speed Integrated Circuit Hardware Description Language 

(VHDL) and Verilog HDL design entry as well as increased design performance for older 

devices. The software is available as part of the Altera subscription program, but a one- 

year non-perpetual license is usually included with development kits. A stripped-down 

version, dubbed Quartus II Web Edition, is available for free with limited support for 

devices, features and third-party tools.

The web edition of Quartus II software is available for free, with its license being 

renewable every 150 days. Recent versions of the software can perform automated 

license renewal over the internet. Although some of the features are disabled, the 

software provides everything needed to design low-cost Altera devices. A detailed 

comparison between the full and web edition of Quartus II software can be found in [29].

Quartus II Web Edition software has been targeted for the development of this research. 

The decision for this software was largely dictated by the targeted hardware, which is the 

Altera Cyclone family FPGA. As mentioned previously, FPGA architectures are very 

much tied with specific development software. This is due to the exclusive algorithms 

and technologies that are used by vendors. With the Altera route, the use of Quartus II 

software is unavoidable.

As a full-scale programmable device development software, Quartus II provides solutions 

to all stages of the design. Figure 2-1 shows the complete design flow of Quartus II 

software as well as its interaction with other third-party EDA tools [30]. The software 

supports both text and symbol based design entry methods. Designs can be entered 

using schematic capture or described in Verilog HDL and VHDL. Designs entered using 

either method can be converted between each other if required. Such flexibility is not 

available when using third-party HDL tools, such as ModelSim, to perform synthesis and 

simulations. For the compilation stages of the design flow, Quartus II is required to 

perform place and route, timing analysis as well as to generate a programming image for 

the Cyclone family FPGA. By default, these procedures are fully automated to take 

advantage of its optimisation algorithms. Each logic function will be assigned to the best 

logic cell location for routing and timing [30].
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Figure 2-1: Quartus II design flow and EDA tool support

Besides offering a full development system and support for the Cyclone family FPGA, the 

Quartus II Web Edition software also offers support for the IP cores provided by Altera 

and its Altera Megafunction Partners Program (AMPP) partners. Its support of the 

OpenCore Plus feature allows time-limited programming files to be generated for 

hardware evaluation of most cores [31]. IP cores such as the Reed-Solomon Encoder 

can be used for rapid prototyping.

2.1.2 Third-party Verification

Although Altera Quartus II software is required at later stages of the design flow for 

hardware designing, third-party verification tools, such as ModelSim [32], can be used at 

early stages of design using HDLs for functional verification. Such an approach could 

potentially improve the HDL coding technique and productivity. As verification of design 

in the early stages is purely functional, issues such as optimisation, and timing delays,
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can be taken out of consideration. In addition, testbenches can be written and used in 

functional simulations to automate the verification process. Even so, a verified design is 

require to be ported into Quartus II software in the later stages for further verification with 

timing delays and compilation.

However, one disadvantage for using a third-party tool is the additional time required to 

spend on familiarisation and learning to use the tool efficiently.

2.2 Very High Speed Integrated Circuit HDL (VHDL)

VHDL is adopted as the method of design entry for this research. It has been widely 

accepted throughout the EDA market as the language to describe and specify a wide 

variety of electronic designs since initial ratification by the Institute of Electrical and 

Electronics Engineering (IEEE) in 1987 [33]. This has revolutionised design methodology 

as traditional schematic-based design used to be part of the design process. Similar to 

most modern programming languages, VHDL can be easily structured into smaller 

modules individually based on top-down system design methodology for better design 

management.

VHDL has been previously the choice of design entry method for FPGA design based 

projects at NTU. Past experiences in these projects have contributed to the know-how of 

this method as well as the supporting tools that are required [34, 35]. As a result, 

facilities and resources within the university are readily available.

One of the advantages of using VHDL design entry methodology for IC design is 

significant reduction of design cycle. When designs are modelled in RTL, VHDL can be 

synthesised to generate a gate level design automatically. This eliminates logic and 

geometrical design tasks when designing an IC as the coded designs are automatically 

converted into Boolean equations, placed and routed on a target device [24, 33]. Unlike 

traditional schematic design entry, previously written generic designs can be re-used and 

implemented as part of another design efficiently using VHDL.

The ability to easily simulate a design is one of the factors VHDL is contributing to overall 

improved design quality. The use of simulation tools have allowed designs to be verified 

before being implemented on target device. Test benches can be written to insert stimuli 

into the design and monitor outputs to verify its operations. Furthermore, with graphical 

and logic design tasks automated, the use of synthesis tools provides a powerful
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capability to optimise a design [33]. Most synthesis tools today are capable of optimising 

designs for speed or for space efficiently.

Designs coded using VHDL is independent of hardware vendor and technology. This is 

because different libraries are provided with synthesis tools used for different hardware 

technology, such as ASIC, PLD and FPGA. Therefore, this makes VHDL design entry 

highly portable. The same VHDL source code written for a design can be synthesised 

and optimised to implement on a PLD or FPGA for rapid prototyping before being 

synthesised and optimised to implement on an ASIC.

As the syntax for VHDL is capable of describing a design at many layers of abstraction, 

designs can be written at the high-level behavioural level, RTL or gate level structures:

• When written at behavioural level, signals such as clocks, or computational 

operations such as ADD, can be used without details of implementation. This level of 

abstraction can be quickly simulated to verify design algorithms prior to detailed 

development and implementation.

• When written at RTL, descriptions of the design goes one step lower from 

behavioural level. Operations are schedule to correspond to certain clock edges. In 

addition, operations are described to specific details such as number of bits assigned 

and Boolean equations. This level of abstraction can provide the greatest gain in 

design productivity. The design file written at RTL can be synthesised by EDA tools 

as it abstracts to the specification level, which is describing the functions of the IC.

• When written at gate level, descriptions of the design consist of components and 

interconnecting signals that are mapped between them. These components can be 

made up of basic gates, flip-flops or a combination of both. This level of abstraction is 

analogous to schematic representation of a design, which describes the functions of 

the design and how it does it.

2.3 Intellectual Property (IP) Core

One of the advantages of designing with EDA tools is that it is not limited to 

implementing own designs. Most hardware vendors such as Altera and Xilinx have also 

developed logic designs with specific functions that are optimised for the target device. In 

the context of Altera, they are called megafunctions. While some of these basic 

megafunctions are provided for free as part of the Quartus II megafunction plug-in
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libraries, other highly specialised IP cores, such as the RS encoder, are sold or licensed 

with a price tag.

Two main reasons for the rising popularity of using IP cores in designs are reduction in 

design time and overall cost saving. As chip design is expensive and demands for 

shorter time-to-market grow, the use of IP cores in designs is essential [36]. Although the 

use of IP cores involves additional costs for licensing, the resulting reduction in design 

time can lead to lower overall costs [37]. In addition, purchased IP cores are usually 

licensed for a long period of time with unlimited use. For example, the Altera’s RS 

encoder megafunction would be licensed for 30 years with unlimited number of times it 

can be used [42].

As most IP cores in the market are designed to facilitate drop-in instantiation, the design 

source codes are typically encrypted. Modifications of the design source code are not 

possible should there be slight changes in design constraints and parameters. For that 

reason, the IP cores need to be evaluated thoroughly using features such as OpenCore 

Plus by Altera megafunctions to ensure a careful selection from the start [38].

2.3.1 Altera Intellectual Property (IP) Megafunctions
Altera and AMPP partners offer a wide selection of parameterised megafunctions that 

are optimised for Altera devices [39]. Working with Quartus II software, the optimisation 

process usually involves setting compilation and synthesis options to maximise density 

and performance of the IP core. They are also fine tuned to be as fast and as small as 

possible [36]. These IP megafunctions are tested to ensure flawless implementation and 

dependability based on Altera’s “AMPP Approved” qualification process [40].

Altera’s IP megafunctions were targeted following the Altera approach for design 

software and FPGA device. Together with Quartus II software, one of the main benefits 

of using the IP megafunctions is the OpenCore Plus feature. This feature allows the 

megafunction to be simulated with the rest of the design to verify the overall functionality 

of the design. In addition, time-limited programming files for the design, including the 

megafunction, can be generated to be programmed into a device for hardware 

verification [41]. This feature is available for most megafunctions offered by Altera and 

AMPP partners to facilitate hardware evaluation to perform board level design verification 

before deciding to purchase a license [31]. Under the Altera University Program, the RS 

encoder can be licensed at a special price of US$199.50, which is 90% cheaper than the
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regular price [42]. When purchased, the megafunction will be licensed for 30 years and 

no limit to the number of times it is used.

In the context of this research, the megafunction provides a quick and dependable 

design solution for standard functional blocks, such as the RS encoder. The ability to 

have a complete design with the megafunction programmed into a prototype device, 

without having to purchase a license for the megafunctions, has allowed the system to 

be tested from end to end. With the megafunction capable of running up to 

30,000,000,000 clock cycles, enough time is granted to perform several tests on the 

system. Therefore, purchase of license for the RS encoder megafunction is not required 

throughout the period of this research.

2.4 Field Programmable Gate Array (FPGA)

FPGAs started off as ‘glue-logic’, a simple device that is used to connect other complex 

logic circuits together. The programmable device integrates several logic devices to 

reduce chip count and therefore simplifying board design. Today, the role of FPGAs has 

evolved to implementing complex functional systems such as embedded 

microprocessors [43]. Static random-access memory (SRAM) FPGAs and complex 

programmable logic devices (CPLDs) are two of the most common programmable 

application-specific integrated circuits (ASICs) available on the market, but other FPGA 

technology such as non-volatile FPGAs and antifuse FPGAs are increasingly popular 

and contributing to the diversity of programmable ASICs [44].

The smallest unit of logic in an SRAM FPGA is the logic element (LE). It consists of a 

lookup table (LUT) and a programmable register in the SRAM cells. Usually, multiple LEs 

are combined to form a configurable logic block, also known as logic block array (LAB). 

Unlike a CPLD that programs on electrically erasable programmable read-only memory 

(EEPROM) transistors, the FPGA uses the SRAM that is volatile, thus making it easily 

reconfigurable. However, with the line between CPLDs and FPGAs blurring in recent 

years, both types of programmable ASICs are grouped together as FPGAs [45]. Latest 

CPLDs have dropped the traditional macrocell architecture and opted for LUT 

configuration, whilst new generation FPGAs now offer non-volatile, instant-on 

reconfigurable logic [46].These devices keep on increasing in speed and density, while 

decreasing in manufacturing cost.

The advancement of today’s FPGAs can provide high performance data processing 

capability required in digital signal processing (DSP) applications and high-speed data
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transfers [47]. With the flexibility to reconfigure, FPGAs are the best target device for 

development of next generation applications [ 48 ]. The advantages of system 

development on FPGAs include:

Low-cost by design

No Non-Recurring Engineering (NRE) charges are required for development of systems 

targeting FPGAs. NRE charges are the cost of work done by vendors, including logic 

design support, chip layout, mask generation, test generation and other services, that a 

full custom ASIC development requires. On the contrary, a design is programmed into an 

FPGA via a low cost programming device, which can be performed in-house. Eliminating 

such costs with FPGA development therefore eliminates the risks of a custom IC 

development.

Flexibility

Design modifications on FPGAs can be made quickly and without incurring penalty 

charges. Instead of being custom manufactured as a full custom ASICs, FPGAs are 

programmed electrically. Modifications on design can be performed in-house, within 

seconds, using a programming device. In contrast, every design change on a full custom 

ASIC would incur hefty charges and delays as the process involves manufacturing of a 

new custom mask. Avoiding such development spending therefore reduces the 

expenses of developing a custom IC.

Reconfigurability

The FPGA development platform has low inventory risk as the device is only considered 

to be manufactured when it is programmed with the design. Further to that, the device 

can be reconfigured for different functionalities and designs [43] whereas the functionality 

and design for a full custom ASIC is permanent once manufactured at the vendor. In 

terms of design, generic designs and algorithms can be reused and re-implemented to a 

new application. With such low inventory risk and reusability, the FPGA platform makes a 

suitable prototyping tool.

Fast design verification

Designs on FPGAs can quickly have their functionality verified and timing characteristics 

known, as timing models for a specific FPGA are usually known in advance as timing 

analysers are included modern synthesis tools. FPGAs are manufactured as soon as 

they are programmed in-house, while full custom ASICs require manufacturing 

processes that take weeks or months. With the capability of instant hardware verification, 

modifications to correct a design flaw can be quickly and easily done. The short turn
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around time for design modification processes makes the FPGA platform most suitable 

for rapid prototyping that leads to a shorter time-to-market.

With respect to this research, the aim of developing a generic DVB-S channel encoder 

can be achieved by using an FPGA. A small quantity of the channel encoder could aiso 

be easily reproduced for deployment to client-sites without incurring additional costs 

except to purchase the FPGAs. With the recent launch of inexpensive FPGAs, such as 

the Altera Cyclone and Cyclone II family, better performance and higher density FPGAs 

are offered at lower cost.

From the flexibility attained by targeting the development on an FPGA, another aim of 

the research can be achieved. Besides being programmed as a completed product, the 

same FPGA device is a prototyping tool in its own rights. Designs of the system can be 

altered and programmed onto FPGAs for experimentation. Such flexibility allows 

standardised configurations to be manipulated and tested on the system to explore new 

schemes and functions, something not possible on a standard device, such as the 

Newtec NTC/2080 DVB Modulator [49].

Reuse of modules and systems designed using EDA tools can offer high level of system 

integration. For example, integration of an Ethernet data adapter module with a DVB-S 

channel encoder in a single device can offer encapsulation of Ethernet data stream for 

transmission over a DVB-S channel. Such integration not only provides better overall 

system performance but also reduces its cost.

The use of EDA tools for FPGA development not only provides synthesis, compilation 

and simulation with accurate timing characteristics, it also supports the use of IP cores 

as part of the encoder system design. Highly complicated functional modules, such as 

the Reed-Solomon encoder can be implemented for rapid prototyping. Although these IP 

cores can be expensive to use, the development cycle of the system is effectively 

shortens.

In today’s market, Altera and Xilinx are two leading competitors for SRAM FPGA devices, 

each offering different architectures and advantages. Other vendors such as Actel and 

Lattice are more popular with non-voiatile and antifuse FPGAs [44]. However, the choice 

of solution is determined by the availability of in-house hardware and software. The 

Altera route was the most feasible approach, as the university is part of the Aitera 

University Program [50]. In-house availability of Altera’s Quartus II EDA software and 

Altera’s FLEX10KE PCI Development Board was already known at the start of this
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research and further acquisition of Altera Cyclone family FPGAs was made during the 

course of this research. One of the advantages being part of Altera’s university program 

is the special purchase of Altera devices, design software and IP cores at very low prices. 

For example, licensing prices for several IP cores were quoted at 90% discount off 

published price when enquiries were made under the university program.

2.5 FLEX10KE PCI Development Board

The FLEX10KE peripheral component interconnection (PCI) development board was 

used at the start of this research for prototyping purposes as it was available in-house. 

The board uses the Altera FLEX10KE family CPLD device. Although this device is 

referred as a CPLD, it is a volatile SRAM-based device and must be re-programmed at 

power-up, as the configured data is lost when power is switched off. The board, as 

featured in Figure 2-2, is well equipped for PCI-based development, especially with a 

computer. It provides PCI front-end reference design in the form of Altera’s megafunction. 

Besides, the board also comes with additional memory modules [51]. Although the 

FLEX10KE development board presents all the advantages for PCI prototyping, several 

shortcomings prevented further development of this research on this platform.
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Figure 2-2: FLEX 10KE PCI Development Board

The development board was not supplied with an on-board oscillator, although the solder 

pads are available. Further investigation revealed that the clocking option for the
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oscillator was disabled and clocking sources were limited to a system clock via PCI port 

and external clock via snap-mount Subminiature B connector (SMB). Both sources were 

found to have limited feasiblity as the design is not PCI-based, and SMB connectors 

were rare, expensive and not available in-house.

The development board also provided limited on-board input/output (I/O) pins for 

prototyping. An expansion of its prototyping capabilities can be done by using an 

additional board using PMC connectors. However, it was found to be not feasible as 

PMC connectors were rare, expensive and would not be obtained at unit quantity.

2.6 Altera Cyclone family

Introduced in December 2002, the Altera Cyclone family has since been the lowest- 

priced FPGA family in its class. Targeted for cost-conscious hardware development 

projects such as this research work, the FPGA family offers almost half the cost of 

competing low-cost FPGAs per 1000 LEs [52]. Benchmark results also showed that the 

Cyclone family FPGAs outperform Xilinx Spartan-3 family by an average of 70.2%, when 

comparing the fastest speed grade devices [53]. Moreover, the web edition of Quartus II 

software supports the FPGA family at no cost.

One of the strongest features of Altera’s Cyclone family is the facility to implement up to 

two phase-locked loops (PLLs) per device. The full-featured PLLs can be used for on 

and off-chip timing management. By using the Altera Quartus II software, the PLLs and 

their features can be enabled on Cyclone family FPGAs without using any external 

devices [54].

2.6.1 Cyclone Development Board

The Cyclone development board was acquired by the research group to upgrade its in- 

house prototyping facilities. Produced by JOP Design, the development board is built for 

system-on-a-programmable-chip (SOPC) solutions using a Cyclone family FPGA. This 

mean that the development board is capable of implementing processor core, logic and 

memory in one device. Extending the memory capabilities of the Cyclone device, this 

board is built with 512 kilo-byte Flash memory for FPGA configuration and application 

code, 1 mega-byte (MB) of fast SRAM memory as main memory and up to 128 MB of 

NAND Flash memory for solid state storage.
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Amongst the list of best features, the on-board 20 MHz crystal clock makes this 

development board an important upgrade, eliminating the use of an external oscillator for 

improved clock management. The clock signal is connected directly to the clock input of 

the Cyclone PLL as well as the dedicated clock input of the FPGA. The development 

board is also built with an Altera MAX7000 device to code the FPGA with programming 

information from a Flash memory moments after power-up. Alternatively, the FPGA can 

be programmed manually from a PC via the parallel-port using a ByteBlaster 

communications cable. As shown in Picture 2-1, the 56 general purpose constellation I/O 

pins around the board can also be used as probing points for prototyping purposes. 

Equipped with other supporting components such as watchdog and serial interface driver, 

the board can therefore be used as an FPGA prototyping platform as well as a ready-to- 

use module for various applications, such as the DVB-based channel encoder [55].

Reuse and migration of designed modules to target the Cyclone FPGA requires 

minimum effort when using electronic-design automation (EDA) tools, such as the Altera 

Quartus II software. The design files can be re-synthesised and verified by simulations 

with Cyclone device settings. Full compilation can then be performed after the I/O pins 

are re-assigned.

Picture 2-1: Cyclone Development Kit

2.7 NTU Campus Network Trial

The campus network trial has been implemented at Nottingham Trent University (NTU) in 

collaboration with MMRadioLink Limited (Phillips UK) to provide a platform for network 

performance evaluation and exploration of new applications on 42 GHz MWS [16]. The 

trial was set up to serve as an experimental test-bed towards providing a robust channel 

to deliver broadcast and interactive services as provisioned in the ERC Decision [10],
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2.7.1 Broadcast Service
The broadcast service of the NTU campus network trial adopted the DVB Satellite (DVB- 

S) standard that is used to provide DTH digital TV [56]. Historically, the 42 GHz band 

was designated for MVDS, for both analogue and digital TV [9]. Proven in previous trials

[57], the adoption of DVB-S compliant configuration not only provides a robust channel, it 

also enables the use of off-the-shelf satellite STBs at receiver sites for reception of the 

broadcast services.

Two digital TV multiplexes were re-transmitted over the campus trial. As depicted in 

Figure 2-3, off-air terrestrial digital TV channels were demodulated into an MPEG-2 TS

[58], which is then re-modulated in DVB-S. Each of the digital TV multiplex are 

transmitted over the campus trial using QPSK modulation, a symbol rate of 17.5 MBaud, 

and a 3/4 FEC code rate [59]. As both systems are DVB compliant and share the 

common MPEG-2 TS format, interoperability between the terrestrial and satellite TV 

signals are conveniently seamless.
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Figure 2-3: Broadcast service

At the client site, the configuration for receive-only broadcast service system is simple. 

From the millimetre-wave radio receiver, the intermediate frequency (IF) signals are fed 

directly into a satellite STB. The digital TV multiplex are then demodulated and viewed 

on a TV set, as depicted in Figure 2-3.

2.7.2 Interactive Service

The interactive service of the NTU campus network trial adopts DVB Return Channel 

(DVB-RC) [60]. This standard is designed for Hybrid Fibre Coaxial (HFC) networks to
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provide a return channel for interactivity [59, 61]. At the base-station of the system, an 

Interactive Network Adapter (INA) is used to control data communications between all 

connected cable modems in the access network. Network data packets are transported 

in Asynchronous Transfer Mode (ATM) cells that are encapsulated in MPEG-2 TS 

frames [62]. Downlink capacity at 13.8 Mbps is shared between all users using time 

division multiplexing (TDM). The operating frequency of the INA is translated to match 

the higher IF of the radio transceiver using an interface unit.
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Figure 2-4: Interactive service

At the client location, the uplink data is carried over a 2 MHz channel using differential 

QPSK (DQPSK). As depicted in Figure 2-4, a cable modem is used to realise the 

bidirectional broadband data communication. The resulting return capacity of 3 Mbps is 

shared between users on a time division multiple access (TDMA) basis [59]. Once again, 

frequency translation is performed between the IF and the operating band of the cable 

modem.

2.7.3 Prototyped Broadcasting and Interactive Service

The convergence of broadcasting and interactive services is made possible by 

introduction of a network adapter that encapsulates Ethernet network data transports in
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MPEG-2 packets [63, 64]. This is currently being developed at NTU. The combined 

development of this channel encoder and the network adapter gives rise to changes to 

the configuration of the interactive service. Such a development would allow the HFC- 

based interactive link to be replaced by two-way DVB-S links. Implementation of the 

DVB-S channel coding into re-programmable hardware, such as an FPGA would enable 

the device to be conveniently deployed at client-sites to provide channel coding of the 

return link. Frequency Translation between cable equipment and radio system is no 

longer required.
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Figure 2-5: Prototyped broadcasting and interactive service

At the base-station, a bi-directional DVB-S link also helps eliminate the use of the INA. 

The use of a unified standard for both broadcasting and interactive services cuts down 

instrumentation costs at the base-station as well as at client-sites. The packets are then 

multiplexed as a part of the MPEG-2 TS and modulated. As depicted in Figure 2-5, the 

demodulated MPEG-2 TS is connected to a network adapter where the network data is 

extracted.

2.8 The DVB Physical Layer

The Physical Layer (PHY) provides the physical communication path between two nodes 

by directly interfacing through the transmission medium [65]. As depicted in Figure 2-6, it
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is the first layer of the layered protocol model devised by the International Organisation 

for Standardisation (ISO) for Open System Interconnection (OSI), on which modern 

network architectures are based. The PHY defines the electrical and mechanical aspects 

between devices [66]; electrically, they include power characteristics, channel coding and 

modulation, and mechanically, they include cables, connectors and connector pin 

assignments.

OSI layer number

7 Application Application

6 Presentation Presentation

5 Session Session

4 Transport Transport

3 Network Network

2 Data link Data link

1 Physical Physical

Figure 2-6: The 7 layers of the OSI model

The DVB Project [67] was founded in 1992 to establish the framework for the introduction 

of MPEG-2 based digital television services. Standards developed by DVB use the 

MPEG-2 packets as “data containers” to carry various digital contents. These are called 

packetised elementary streams (PES). As a result of multiplexing, the standard exploits 

the flexibility of the transport multiplex to offer a variety of TV service configurations, 

including sound and data services. The transport multiplex, also known as the MPEG-2 

transport stream (TS), is then coded and modulated prior to transmission.

The DVB PHY is adopted in this research work on 42 GHz MWS for its robustness and 

reliability. Such robustness is necessary because Internet data that uses standard 

Transmission Control Protocol (TCP) is very sensitive to packet loss and non-congestive 

delays. TCP throughput can drop to between 20%-50% with Internet Protocol packet 

losses of only 2%, making it almost useless [68, 69]. However, with the large available 

bandwidths in the 42 GHz frequency band, the system can afford to adopt aggressive 

channel coding schemes. As with delivering digital broadcasting contents, the DVB PHY 

employs FEC blocks, such as Reed-Solomon encoder and Convolutional Interleaver, to 

the network data. These FEC schemes are essentially invisible for TCP.
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The DVB-S PHY uses Quaternary Phase Shift Keying (QPSK) modulation. It has the 

advantage of implementation of existing technologies, particularly chips developed for 

digital television [12, 56]. With slight modification, it allows the use of commercially 

available STBs as part of the hardware set-up to get on the network. Such adoption 

enables services of digital TV as well as broadband network access across 42 GHz 

MWS using the same set of cost effective hardware.

2.8.1 DVB Synchronous Parallel Interface

Interfaces for devices using MPEG-2 transport packets are defined in [70]. This allows 

system integration for different applications and interoperability of equipment. An MPEG- 

2 transport packet usually consists of one MPEG-2 synchronisation (SYNC) byte and 

187 data bytes. The MPEG-2 SYNC byte is the first byte of each MPEG-2 transport 

packet to signal the start of the packet. It carries the value of 4 7 H e x -  When the MPEG-2 

packet is protected using Reed-Solomon (RS) encoding, the RS protected transport 

packet would have 16 bytes of additional RS codes concatenated at after the data byte 

making it a 204-byte packet.

For short distance interfacing, the synchronous parallel interface (SPI) is specified. Two 

flags were introduced to distinguish 188-byte packets from 204-byte packets, and to 

signal for valid RS-bytes. With reference to Figure 2-7, data transfer is synchronised to 

the byte clock. The 8-bit data bus carries the MPEG-2 Transport Steam (TS), while 

PSYNC signals the beginning of a packet, and DVALID signals valid data bytes.

CLOCK

DVALID
RF

PSYNC

DATA

QPSK
Modulator

DVB-S 
Channel Coder

Figure 2-7: DVB Physical Layer

With conventional Gray-coded QPSK modulation employed for DVB-S system, absolute 

mapping is used [56]. With I and Q, being the in-phase and quadrature channels, the 

constellation points are simply I, Q, -I, and -Q, corresponding to symbols 00, 01, 11, and 

10 [71]. This also corresponds to the output of the puncturing module of the inner coder. 

Therefore, the I and Q signals can be directly filtered and QPSK modulated.
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2.8.2 DVB-S Channel Coding
Channel coding, also referred as error control coding, is used to detect and also correct 

symbols received in error. Typically, FEC is being coded to incorporate the source signal 

with additional information to the transmitted data. This information can be used to detect 

errors and recover the original data when it occurs [65]. A combination of coding 

algorithms can be applied to minimise the effects of channel noise. For a 

telecommunication system, these schemes must be standardised to ensure that data can 

be conveyed over the channel.

EN 300 421 [56] is the standard for satellite services, which employs randomization of 

the transport stream for energy dispersal, Reed-Solomon encoding for outer coder, 

convolutional interleaving, and punctured convolutional encoding as inner coder. Figure 

2-8 illustrates the channel coding algorithms that are employed by DVB-S standard. The 

outputs of the channel coder, I and Q, are then QPSK modulated with a carrier signal.

MPEG-2 TS
Convolutional

Interleaver

Punctured
Convolutional

Coder

Reed-Solomon
(204,188)► MUX adaptation & 

randomizer

Energy Dispersal Outer Coding Interleaving Inner Coding

Figure 2-8: DVB-S channel coding functional blocks

2.8.3 Energy Dispersal

In compliance with radio regulations for spectrum occupancy and to ensure adequate 

binary transitions, the data at the output of MPEG-2 multiplex is randomised. The 

randomization process, also known as scrambling, spreads any possible concentration of 

energy at specific frequencies, by applying a Pseudo Random Binary Sequence (PRBS) 

over the transport packets except at every first byte of the packet, which is the MPEG-2 

SYNC bytes [72]. This is to maintain the initiation word to mark the start of the packet. A 

loading sequence of “100101010 000000” is initialised every eighth packet into a 

PRBS generator that is based on the following polynomial defined in [56]:

J + x 14+ x ' 5 [2-1]

To provide an initialisation signal for the descrambler, the MPEG-2 SYNC byte of the first 

in every eight transport packet is bit-wise inverted from 4 7 H e x  to B 8 H e x -  This process is 

referred to as “Transport Multiplex Adaptation” or SYNC inversion.
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2.8.4 Outer Coding
Outer coding is applied at the extreme input and output ends of the transmission chain. 

The Read-Soiomon (RS) code, RS(204,188), which is shortened from the original 

RS(255,239), is then applied to every randomised transport packet to generate an error 

protected packet. Each transport packet is fed through the coder byte-wise until the end 

of the packet is reached. At the same time the values of the RS codes are calculated 

using coefficients derived from the code generator polynomial, g(x) [56]:

g(x) = (x+A°)(x+A1 )(x+A2) ... (x+A ]5), where A-0 2 hex [2-2]

The RS redundancy bytes concatenated at the end of each transport packet provide 

protection against burst errors. The code is capable of correcting up to 8 bytes of errors 

as it adds 16 redundancy bytes at the end of the 188-byte transport packet.

2.8.5 Interleaving

The purpose of interleaving is to increase the efficiency of the RS coding. This is due to 

the fact that a long burst of errors in transmission can exceed the correction capacity of 

the RS code. This will cause a failure of RS code to recover the original transport data. 

The convolutional interleaver is usually an array of buffers where each byte of data is 

being delayed when read out. As a result of the interleaving process, a long burst of 

errors during transmission will become scarcely spaced when the stream is de

interleaved at the receiving end [72, 73].

2.8.6 Inner Coding

Inner coding is applied just before the transmission signal is modulated. In the context of 

DVB-S channel coding, a punctured convolutional code is used. With this coding scheme, 

signals can be transmitted with at least 5 dB less power than without it, when using 

QPSK modulation [74]. This reduces transmitter cost and allows increased data rates at 

the same transmitter power. Based on a rate 1/2 convolutional code, the data stream is 

fed into a shift register bit-wise. The transmitted signal is obtained by combining various 

taps at the shift register, based on the constraint length, K=7, with generator polynomials 

coefficients [56, 75]:

X = = 171 o c t  = 1111001
Y - g 2 = 133oct = 1011011
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Puncturing refers to deleting certain bits off the transmission stream in order to raise the 

overall code rate. This must be done according to the specific pattern standardised in 

[56]. Several code rates are defined: 1/2, 2/3, 3/4, 5/6 and 7/8, to allow selection of the 

most suitable level of error correction for a given service.

2.8.7 DVB-S Channel Decoding

One of the main reasons for adopting DVB-PHY for 42 GHz MWS is to enable the use of 

commercially available STBs in the system. A typical front-end of a STB is made up of a 

tuner module and the satellite demodulator and decoder (SDD) integrated circuit (IC) [76]. 

The SDD IC performs demodulation and FEC on the received signal to regain the 

MPEG-TS data. The FEC algorithms are opposite to that of coding processes and are 

employed in reverse sequence in relation to the coding scheme. QPSK demodulated I 

and Q signals provide information to the inner decoder. The signals are de-punctured 

and decoded by the Viterbi decoder, then de-interleaved, and RS decoded by the outer 

decoder, as depicted in Figure 2-9. The randomising energy dispersal pattern is removed 

and the inverted MPEG-2 SYNC bytes are reverted to recover the user data [56].

DVB-SPIQPSK
demodulator

Reed-Solomon
decoder

Convolutional
de-interleaver

Depuncture & 
Viterbi decoder

Synd inversion 
& derandomizer

Inner decoder Interleaver Outer decoder Energy disposal
removal

Figure 2-9: Satellite STB front-end block diagram

At the decoding-end, the recovered MPEG-2 TS is then de-multiplexed and de

scrambled by the MPEG-2 source decoder IC into MPEG-2 PESs, as shown in Figure 

2-10. A typical digital TV PES is then further decoded into video and audio signals.

Audio and 
video signal

MPEG-2
TS

MPEG-2
PESIF Signal MPEG-2 TS 

decoder

MPEG-2 
audio video 

decoder
Tuner model

Satellite 
demodulator 
and decoder

Front-end Decoding-end

Figure 2-10: Satellite STB front-end and decoding-end
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2.9 Humax F1-FOX Set-Top-Box

The satellite STB receiver used in the campus network trial is the Humax F1 satellite 

STB, which is reasonably priced at about £70. Besides the cost criteria, the STB also 

allows manual configuration of the reception signal transmission parameters [77]. Such 

capability is an important factor as this allows the STB to lock on to DVB-S signals 

modulated at different frequencies, symbol rates and FEC rates to recover the original 

data stream.

This satellite STB uses the Philips Semiconductor TDA8044A SDD chip. The chip 

communicates with the rest of the system using an inter-IC bus, l2C-bus. Figure 2-11 

shows a typical satellite STB design, where modules in the front-end and decoding-end 

of system communicate with each other using the l2C-bus. Various controls and status 

registers can be accessed via the l2C-bus [78]. The chip also conforms to the DVB-SPI 

for data interfacing and the de-modulated MPEG-2 TS can be extracted from the STB by 

performing slight modifications. The STB has previously been successfully modified to 

perform on-site data logging [59]. In this research, this hardware is used as a 

demodulation hardware and verification tool. It is also used as a verification tool by 

accessing the status register of the STB using in-house l2C compatible data acquisition 

module (DAM) that taps into the l2C-bus of the satellite STB [59].

I2C bus

Audio and 
video signal

MPEG-2
TS

MPEG-2
PESIF Signal MPEG-2 TS 

decoder
Tuner model

Satellite 
demodulator 
and decoder

MPEG-2 
audio video 

decoder

Figure 2-11: Satellite STB architecture block diagram

2.9.1 l2C-bus

The l2C-bus is a simple bi-directional 2-wire bus inter-IC control developed by Philips [79], 

The two bus lines are made up of serial data line (SDA) and serial clock line (SCL). It is 

developed to provide simple operation with extremely broad range of l2C compatible 

devices from Philips and other suppliers. One of such device is the Philips TDA8044A 

DVB-S decoder chip mentioned. As a multi-master bus, more than one device that is 

capable of initiating a data transfer can be connected to the bus. Connection to each 

device is software addressable, via the bus, by a unique address using a standard l2C 

protocol.
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When transmitting or receiving on an l2C bus, a device that initiates the data transfer is a 

master. It also generates the clock signals to enable the transfer. At the same time, the 

device that is addressed is a slave. With both lines, SDA and SCL, maintaining at HIGH 

state when the bus is free, a transition of HIGH to LOW on the SDA line while SCL is 

HIGH signals a START condition, while a LOW to HIGH transition on the SDA line while 

SCL is HIGH indicates a STOP condition. The START and STOP conditions are always 

generated by the master device to initiate and terminate a transaction on the l2C bus. 

Every byte on the SDA line is 8-bit long and each byte must be followed by an 

acknowledgement bit. During acknowledgement, the SDA line is submitted to the 

receiver device. At this condition, the receiver holds the line at LOW state while a HIGH 

period for SCL is generated by the master device. The first byte after START condition is 

used to address the device. 7-bit addressing is used, while the least significant bit (LSB) 

is used to indicate READ or WRITE operation with HIGH or LOW state respectively. 

Figure 2-12 depicts the access protocol on the l2C bus.

Write data

s State Address /W A Data A Data A P

Read data

S State Address R A Data A Data /A P

Last data byte
S = Start condition 
P = Stop condition 
R = Read 
AA/ = Write
A = Acknowledgement 
/A = Not acknowledged

Figure 2-12: l2C bus communication protocol
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3 Design and Implementation of DVB-S Channel 
Encoder

Using a top-down design approach, the DVB-S channel encoder is broken into smaller 

groups of designs based on their functions. This approach provides a clear definition of 

the overall system and how information flows between the processes. Generally, the 

encoder system performs four main functions, that is energy dispersal, outer coding, 

interleaving and inner coding, as described in section 2.8.2. Design requirements of the 

processes within these functions are examined prior to implementation.

The process of ‘zero-padding’ frame-conditioning was added in the encoder design to 

insert 16 bytes of separation in between the 188-byte MPEG-2 transport stream. This is 

to enable concatenation of the Reed-Solomon codes. As a result of the additional null- 

bytes inserted, processes such as the randomizer are slightly modified from the 

conventional design to accommodate the changes and still conforming to the DVB-S 

standard. Each function is also designed to be bypassable to allow each function to be 

capable of being individually enabled.
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3.1 ‘Zero-padding’ Frame Conditioning

The Reed-Solomon encoder, RS(204,188), error protected packets offers recovery of the 

original code words should an error of up to 8 bytes occur during transmission. However, 

the concatenation of 16 bytes of RS code at the end of every 188th byte of every 

transport packet changes the packet structures. The basic MPEG-2 transport multiplex 

packet stream of 188 bytes requires 16 bytes to be added to form a 204-byte stream. 

Such occurrence suggests that pre-conditioning of transport frames is required to allow 

the application of the RS encoder.

A simple experiment that involved simulation of Altera’s RS encoder IP core was 

performed. In the experiment, two types of data stream were processed by the RS 

encoder and its outputs were examined. One of the data stream resembles a 188-byte 

MPEG-2 transport stream, while the other represents a stream of conditioned 204-byte 

transport packets. For both data streams, 4 7 H e x  with PSYNC were used for 

synchronisation, signalling the beginning of a new packet.

Name
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Figure 3-1: RS encoder output with 188-byte MPEG-2 transport packets
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Figure 3-2: RS encoder output with 204-byte frame conditioned transport packets
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The RS encoder failed to concatenate the 16 bytes of RS code to the packets when 

processing a standard MPEG-2 data stream. As depicted in Figure 3-1, a second 

transport packet carrying the PSYNC synchronisation bit has signalled the start of the 

packet before the RS codes of the previous packet were completely delivered. However, 

the following simulation shows a MPEG-2 data stream with 16 null-bytes between the 

end and the start of the next packet. A full set of RS codes can be generated before the 

start of the next packet, as shown in Figure 3-2. These experimental results have 

therefore confirmed that pre-conditioning of an MPEG-2 transport stream is required to 

conform to the use of RS(204,188) encoder.

Equation [3-1] defines the relationship between the interface rate and symbol rate for a 

generic DVB-S channel encoder [80]. The value for RS-rate for external MPEG framing 

with 188-byte frames indicated a change of data rate with the adoption of RS(204,188).

Symbol rate = Interface b it rate

x Fram ing overhead

[ 3 ' 1 ]

1
X -------------------

FEC  - rate 
x M odulation fa c to r

where,

Fram ing overhead = 1 fo r  external MPEG fram ing  

188
RS - rate = f o r external MPEG fram ing  w ith 188 byte frames

r r r  , 1 2  3 5 7FEC  - rate = o r —
2 3 4 6 8

M odulation Index — fo r  QPSK

The process of frame conditioning is confirmed to involve changing the data rate of the 

transport stream, where the output data rate would have to be theoretically more than 

204/188 (1.085) times faster than the input data rate. This would then enable 16 null 

bytes to be inserted at the end of each packet. As the transport packets are streamed 

back-to-back against one another, the packets will have to be paused while the insertion 

occurs. Such operation requires a First-ln-First-Out (FIFO) memory function, where data 

can be temporarily written and read, in the sequence of it being written, when required. 

As the rate of which the data is written differs from the rate of reading, a dual clock FIFO 

is required.
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Altera Dual Clock FIFO Megafunction

The Altera dual clock FIFO megafunction [81] is provided with the Altera Quartus II 

software. It is capable of using two independent clocks for writing and reading. This 

megafunction can be parameterised to implement any width or depth combination, where 

the only limitation is the available memory space in the device itself. To help eliminate 

the effects of metastability on this complex megafunction, six status signals were 

supplied to indicate empty, full or the number of words stored at both write and read side 

of the FIFO. The metastable state is a quasi stable state where the output of the FIFO is 

unpredictable. It usually occurs when the data input violates the setup or hold time and is 

marginally triggered [82].

In this design, the dual clock megafunction was implemented to have memory capacity of 

8 bits x 256 words. As the depth of the FIFO must be a power of two, 256 words of 

memory capacity would easily buffer one 188-byte MPEG-2 packet. The status signal 

rdusedw was configured to show the amount of data that was ready to be read. With 

the system requiring an output data rate that is faster than the input data rate, it is more 

important to be monitoring the words that are ready to be read. The megafunction is 

configured in Legacy mode, which means that the requested data would be made 

available on the first clock cycle after a read request, rdreq, is asserted [81].

3.1.1 Dual Clock FIFO Controller
The dual clock FIFO controller is one of the most important modules designed in this 

research. It manages the operations of the FIFO that enables major encoding processes 

of the channel encoder, such as the Reed-Solomon encoding. Running at different clock 

frequencies, the dual clock FIFO was controlled using two different control algorithms, 

one to manage data writing into the FIFO and the other to manage data read from the 

FIFO.

FIFO Write Control

The FIFO write clock, wrclk, was made synchronous with the interface clock of the 

system as data packets are streamed directly into its data input ports, data [7 . . 0]. As 

shown in Figure 3-3, data is buffered into the FIFO on the first rising clock edge after 

write request, wrreq, is asserted. At power up, the FIFO write control mechanism would 

remain in reset status, IN_RESET. During this state, a simple reset sequence is 

performed to the FIFO; wrreq is set high for a period of one clock cycle, to ensure that 

its registers’ values are set to 0 0 H e x -
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psync_sig = 1 
da ta jn  = B8hex/47hex

IN RESET . A IN_GO
“  reset = 0

reset = 0 reset = 1

Figure 3-3: State diagram for FIFO write control

While remaining at IN__RESET state, the FIFO write control would monitor for the 

MPEG-2 synchronisation (SYNC) byte, which is 4 7 H e x ,  accompanied by a PSYNC bit. 

These conditions would trigger a state change from IN_RESET to in_GO. At the same 

time, the transition would signal the FIFO to start buffering data streams by setting the 

wrreq to high. Valid MPEG-2 packets, signalled ‘high’ on the data-valid (DVALID) line, 

would be captured into the buffer. This is done in compliance with DVB-SPI standard [70].

FIFO Read Control

The FIFO read clock is asynchronous with the interface clock. Theoretically, the data 

from the buffer should be read 204/188 times faster than it being written into. As with 

wrreq, the requested data is made available on the first rising clock edge after rdreq 
is raised to high [81]. Remaining at reset status, CTRL_RESET, from power up, the FIFO 

read control would monitor the number of words buffered in the FIFO. The registers on 

this side of the FIFO were also reset by the sequence identical to the one described in 

FIFO write control. To avoid the issue of metastability, rdusedw is chosen in the design 

as it shows the number of words ready to be read from the FIFO. As soon as 188 bytes 

of a packet are readily available, the state machine would trigger a change of state from 

CTRL_RESET to ctrl_read. At the same time, the change of state also changes the 

signal for rdreq to start reading from the FIFO.

A counter tracking the number of words read from the FIFO would prompt for a change 

of state from CTRL_READ to CTRL_STOP when the 188th word is being read, rdreq 
would be set to low and the counter reset. At this stage, 16 null bytes would be introduced 

to the output. Just as the 16th null byte is clocked, the CTRL_STOP state would change 

back to ctrl_read, indicating rdreq to start reading the next packet. As the read 

control mechanism monitors the rdusedw for the amount of words available in the FIFO, 

CTRL_STOP state would change to ctrl_fill state if the content of the FIFO is near 

empty. The output stream would then be filled-in with a null packet while the content of
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the FIFO is being replenished, as depicted in Figure 3-4. Complete block diagram and 

VHDL source code listing are presented in Appendix III.

usedw 1 188

I out_count = 0 ' 
• rdreq = 0
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usedw -  188 
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CTRL READ
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Figure 3-4: State diagram of FIFO read control
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3.2 System Clock Management

In order to satisfy the clocking requirements of the system in general, and the functions 

of each module, the 20 MHz on board clock is supplied to a PLL and a clock divider 

modules to generate various clock frequencies. Figure 3-5 shows how the various clocks 

are distributed throughout the entire system. The 20 MHz clock is supplied to a PLL to 

generate a slower interface clock and the faster system clock. The clocks are then 

further divided down to supply the modules. Generally, all functional blocks of the DVB-S 

channel encoder are working on clocks derived from the faster clock.
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Interface
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Figure 3-5: Clock distribution of the channel encoder system

3.2.1 Phase Locked Loop on Cyclone

Phase locked loops (PLLs) are used in designs to synchronise internal clocks with 

external clocks, run internal clocks at higher frequencies than external clocks, and to 

minimise clock delay and clock skew [54]. The Altera Cyclone allows implementation of 

up to two PLLs on an FPGA. The PLLs are enabled by a Megacore function, exactly as 

the other Megacores provided with Quartus II software. Likewise, the Megacore function 

is highly parameterized. The Cyclone PLLs are capable of performing multiplication, 

division and phase shifting. Both internal and external clock outputs are supported with 

programmable duty cycle. In the context of this research, the PLL is used to exploit the 

on-board 20 MHz clock. The 20 MHz clock can be multiplied to supply faster interface 

and system clocks that are required by the system.
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Clock Multiplication and Division

Scaling factors are used to generate the output of the Cyclone PLLs. The relationship 

between the frequency of the voltage control oscillator (VCO), f vco, the reference 

frequency, f ref., pre-scale divider, N, feedback factor, M, input frequency, f in, output 

frequency, f out, and post-scale counters, GO and G l,  are given in Equations [3-2] [54]:

Each Cyclone PLL can support up to two outputs. When the output frequencies are 

different, the VCO frequency will be set to a value that is the least common multiple 

(LCM) of the VCO frequencies required by the output frequencies. Equations [3-2] can 

be used to evaluate the output frequencies that are required. The VCO frequency must 

also be within its operating range, which is from 500 MHz to 1000 MHz. Hence, the 

Cyclone PLL is not capable of generating outputs for combination of frequencies that are 

not within the limits of its VCO.

Although the difference between the output frequencies can be more than (204/188) 

1.085 times apart, they are ideally 1.085 times apart or as near to it as possible. 

Efficiency of the dual clock FIFO is optimised when the clock frequencies are ideally set 

as underrun of the buffer is least to occur. A packet of null bytes is added to the transport 

stream every time re-buffering occurs, affecting overall transmission efficiency. In the 

design of this channel encoder, output frequencies of 80 MHz and 70 MHz were 

generated by the Cyclone PLL, with clock ratios 4/1 and 7/2 respectively to the 20 MHz 

on-board clock. Although this combination of frequencies is 1.143 times apart, which is 

5.3% outside of the theoretical value, the values are within the operating limits of the PLL 

and therefore can be generated.

[3-2]
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3.2.2 Clock Divider Module
A clock divider circuit was implemented to produce clock rates that are suited for the 

individual modules. As the basic clocks generated by the PLLs are the fastest clocks in 

the system, the following clock specifications are required,

• 1/2 of System Clock (40 MHz) is required for randomizer, convolutional encoder, 

and puncturing as the load signal is required for 2-bit Parallel-to Serial (P2S) 

conversion.

• 1/8 of System Clock (5 MHz) is required for most functional blocks processing in 

bytes, including reading from the dual clock buffer, SYNC inversion, 

randomization, RS(204,188), Convolutional interleaving and convolutional 

encoding.

• 1/8 of Interface Clock (4.375 MHz) is required for the writing into the dual clock 

buffer in bytes.

• Load signal is required for 8-bit P2S converter in randomization process and 

convolutional encoding.

PROCESS (load_clk, load_reset)
VARIABLE clk_count : INTEGER RANGE 0 TO 7;

BEGIN
IF (load_reset = '0') THEN 

clk_count := 0;
ELSIF (load_clk'EVENT AND load_clk = '1’) THEN 

clk_count := clk_count + 1;
IF (clk_count = 3) THEN 

load_sig <= '1';
ELSE

load_sig <= ’O';
END IF;

END IF;

IF (load_reset = ’O') THEN 
load_out <= 'O';

ELSIF (load_clk'EVENT AND load_clk = ‘0 ’) THEN 
load_out <= load_sig;

END IF;
END PROCESS;

Listing 3-1: Generation of load signal

Implementation of the clock divider module involved a counter from the Library of 

Parameterised Modules (LPM). The LPM provides a library of logic functions that are 

parameterised. As these modules are architecture-independent, the LPM modules are 

supported by various vendors [83]. Just as a Megafunction, the LPM is enabled and 

parameterised using a dialog window in Quartus II software. After customising its 

features, such as setting the number of bits and counting up or down, the module for the 

counter is generated. In this design, two 5-bit counters were generated, one for dividing 

System Clock and the other for Interface Clock. Outputs form these counters were 

connected to corresponding output pins representing different clock speeds. Output of
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the least significant bit (LSB) of the counter is 1/2 of the input clock, while, output of the 

next pin is 1/4, 1/8 and so on. As for the load signal, a counter was defined in VHDL as a 

reference and a HIGH state was sent to the output was after every eight clock pulses. 

The source code for generation of the load signal is presented in Listing 3-1.

3.3 Transport Multiplex Adaptation

The transport multiplex adaptation is also a pre-conditioning process that involves 

inverting the first MPEG-2 SYNC byte of every eight packets, from 47Hex to B8Hex- The 

process is also known as SYNC inversion. It is used for synchronisation purposes to 

scramble and de-scramble at transmitting and receiving ends of the DVB-S system 

respectively.

Each of the input data and its PSYNC state were sampled and checked to identify the 

MPEG-2 synchronisation byte, 47Hex* The MPEG-2 SYNC byte will occur when a 47Hex 

word is detected with a HIGH state for PSYNC signal. When this occurs for the first time, 

SYNC byte 47Hex, 0 1 0 0 0 1 1 1 , would be inverted bit-wise to B8Hex, 1 0 1 1 1 0 0 0 . After 

the SYNC byte, the other data bytes will be ignored and no changes will be done until the 

next SYNC byte. The following SYNC bytes were counted, but ignored as they would not 

be inverted until after the seventh SYNC byte.

3.4 Randomization

Randomization is used to comply with international Telecommunication Union (ITU) 

Radio Regulations and to ensure adequate binary transitions. It is used not only to 

prevent strings of all 0s and all 1s, but also short repetitive sequences. A typical 

randomizer operates bit wise. Input data bits are shifted in stages while feedback taps 

are taken and exclusive-ORed [84]. The result of this exclusive-OR is then exclusive- 

ORed with the input to generate the randomized output. The design of this functional 

module is greatly aided by a schematic diagram of the randomizer presented in [56], as 

shown in Figure 3-6. Nevertheless, an 8-bit parallel-to-serial (P2S) converter, a serial-to- 

parallel (S2P) converter and a control module are required as part of the system.

3.4.1 Randomizer Control Module

The randomizer control module was designed to ensure that data was randomized 

conforming to the standard. Randomization would only be applied to the first MSB of the 

first byte following the inverted MPEG-2 SYNC byte. The standard prescribes that PRBS
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generation shall continue during the MPEG-2 SYNC bytes of the subsequent seven 

transport packets, but with its output disabled to leave those bytes unrandomized. 

However, with the ‘zero-padding’ pre-conditioned packets, a new control was added to 

retain transparency. The PRBS generation was paused, after the last bit of the 188th byte, 

for a period of 16 bytes. This algorithm not only ignored the added 16 null-bytes but also 

maintained the period of PRBS at 1503 bytes. Figure 3-7 shows the generation of PRBS 

with the pre-conditioned packets. The randomization process was paused, indicated by 

‘P’, to ensure that the additional null-bytes are transparent and hence conforming to the 

DVB-S standard.

3.4.2 8-bit Parallel-to-Serial and Serial-to-Parallel Converters

The reason a P2S converter is required in the design is due to the fact that the 

randomiser proposed in EN 300 421 processes the packets in bits. As the standard 

specified that the PRBS generator shall be applied from the most significant bit (MSB) 

first, the P2S converter was designed to ensure that data bytes are converted 

conforming to that requirement. The randomized single bit output was then re-converted 

back to parallel byte stream. Conforming to the standard, the bits were converted to byte 

with the first bit as the MSB.

1 0 0 1 0 1 0 1 0 0 0 0 0 0 0

EX-OR

AND

Enable Data Output

Data Input

Figure 3-6: Randomiser schematic diagram

PRBS period = 1503 bytes

-H p
+

- /H
+

-H p
+

Syncl 187 Bytes Sync2 187 Bytes

7<h

Sync8 187 Bytes Syncl 187 Bytes

~H~

—  Inserted 16 NULL bytes

Figure 3-7: PRBS generation
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3.5 Reed-Solomon (204,188) Encoder

Reed-Solomon codes are used for forward error correction. The Reed-Solomon encoder 

is capable of correcting burst errors in extreme-sensitivity compressed data streams, 

such as in DVB MPEG-2 transmissions. In the case of RS (204, 188), 16 bytes parity 

symbols are being concatenated at the end of each packet, providing capability of 

correcting up to 8 bytes of errors.

Initially, all registers in the encoder are set to zero and the switch is set to stream out the 

input data. The input data are also fed into the encoder one-by-one byte until the end of 

the frame. During this process, the input data that go into to encoder is multiplied with the 

coefficients of the generator polynomial, g0 to g15, as shown in Figure 3-8 [85]. The 

products are then added as they are being loaded into the registers.

—►(X) 91 — 9a —*(X)

RS Codes

Data Output
Data Input -K>

Figure 3-8: Functional diagram of Reed-Solomon (204,188)

After the last bit of the last data byte is received, the switch is toggled to begin 

transmitting the computed Reed-Solomon parity symbols. Simultaneously, the 

computation circuits are being cleared by inserting bytes of zeros.

3.5.1 Altera Reed-Solomon Encoder IP Megafunction

The Reed-Solomon encoder megafunction, IP-RSENC, is produced by Altera 

Corporation. It provides full support for Cyclone family FPGAs and the most of the other 

Altera devices. The megafunction is fully parameterised with preset values that ensures 

compliance with DVB standard.
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As explained in section 2.3.1, this IP core has Altera’s free OpenCore Plus evaluation 

features, that allows not only behavioural simulation of the Megacore function on the 

system, but also allows programming of the Megacore to a device for verification within a 

period of time. With a 20 MHz system clock, the megacore is expected to be able to run 

for 13500 seconds before it expires.

Newer versions of the Megacore package included an RS Compiler IP Toolbench. It 

provides a one-stop toolbar within the Quartus II software to view documentation, specify 

parameters and generate all files necessary for the Megacore. A full functional 

description and timing diagrams of the RS encoder Megacore are presented in the user 

guides where, in newer documentations, the issue of frame conditioning is addressed 

[86]. There must be some space between the end and the beginning of the next packet 

for the check symbols. Similar to the other Megacores, setting up the parameters of the 

RS encoder is done by means of a guided dialog box. In the case of a DVB standard 

RS(204,188), the module can be generated with the preset values, as shown in Figure

3-9.

Num ber of bits per symbol 8

Num ber of symbols per codeword ^204

Num ber of check symbols per codeword 16

Field Polynomial S285

First Root of Polynomial Generator 0

Root spacing in generator polynomial 1

Preset Values

DVB Standard CCSDS Standard

Cancel Prev Next Finish

Figure 3-9: RS encoder Megacore parameterization dialog box

3.6 Convolutional Interleaver

The convolutional interleaver is used to distribute errors that occur in bursts more evenly 

between the packets. It rearranges the sequence of the symbols in a pattern that can be 

inversely rearranged at the de-interleaver to restore the sequence. Usually used with the 

RS encoder, the convolutional interleaver can enhance the protection against longer 

burst errors. As the RS(204,188) encoder can recover up to 8 bytes of errors per packet,
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this interleaving scheme can handle burst errors of up to 8x12=96 bytes or 384 QPSK 

symbols [87].

The operation of a convolutional interleaver is straightforward. Based on Forney’s 

proposal, each word of the MPEG-2 TS is cyclically connected to the input of a branch of 

the interleaver [88]. In turns, the branches input a word while shifting out the oldest word, 

as illustrated in Figure 3-10. The input and output switches are synchronised. According 

to the DVB-S standard, the convolutional interleaver may be composed of 1-12  

branches, with depth of M j, where M = 1 7  and j= b ranch  index [56].

Sync word route

1 byte per 
position.

FIFO shift register

Figure 3-10: Functional diagram of convolutional interleaver

3.6.1 Interleaver Control

The interleaver control module can be represented by the input and output selector pins 

pictured in Figure 3-10. At every clock cycle, the selectors would synchronously connect 

to one branch following the sequence. Simultaneously, as one byte of data is sent into 

the buffer on the branch, one byte of data is being read out. Functioning as the selector 

pins, the design of this control mechanism involves sending and retrieving one byte of 

data on one branch at a time.

As illustrated in Figure 3-11, 11 states were assigned on the state diagram. This is to 

allow one branch of the convolutional interleaver to be represented as one state. 

Although this technique seems inefficient, it simplifies its functions and implementation. 

The design would change a state for every clock cycle. Therefore, one byte of data 

would be sent and retrieved from the branch.
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Figure 3-11: State diagram of interleaver control

3.6.2 FIFO Control
The control module is designed to manage the inputs and outputs of a synchronous 

buffer. A general algorithm is devised for the first FIFO, that is branch index, j = l ,  as 

depicted in Figure 3-12. The algorithm is reused to control the rest of the FIFOs by 

changing the number of clock cycles the control module remained in the state of

ENABLE.

This general algorithm allows the FIFOs implemented as the branches of the interleaver 

to behave like a byte-wise shift register. At the start, the algorithm waits for the enable 

signal from the interleaver control module. During the ENABLE state, data is input and 

stored into the FIFO. Based on the depth of the each branch, M j, the state is changed to 

FULL, when the FIFO is filled to required depth. During the ful l state data can be

f1_en = 1 
f1 count = 0

ENABLE

FULL

f1_en = 1 
f1 count =18+1

J  f1_en = 1 
f1 count <=17+1

f1 on = 1

Figure 3-12: Generic state diagram of FIFO control



written into and read from the FIFO. At this stage, the FIFO synchronously inputs a new 

word while the oldest word stored is shifted out at the output and hence, this is the 

operation of a FIFO shift register. Listing 3-2 presents the VHDL source code for branch 

index 1 of the FIFO shift register controller. A slight change was made to the binary value 

of fx„usedw to correspond to shift register depth of the other branch index.

PROCESS (fl_clr, fl_en, fl._usedw)
BEGIN

IF (fl_clr = 10') THEN
fl_aclr <= 1' ;
£l_rdreq <= ' 0 ' ;
fl_wrreq <= ’ 0 1 ;

ELSIF (CONV_STD_LOGIC_VECTOR(fl_usedw, 5) >= "10000" THEN
£l_rdreq <= fl_en;
fl_wrreq <= fl_en;
fl_aclr <= 'O';

ELSE
fl_wrreq <= fl_en;
fl_rdreq <= ’ O' ;
fl_aclr <= ' 0 ' ;

END IF;
END PROCESS;

Listing 3-2: FIFO shift register controller for branch index 1

3.6.3 Single Clock FIFO Megafunction
As with the dual clock FIFO megafunction, the Altera single clock FIFO megafunction [81] 

is also provided with the Aitera Quartus II software. The writing and reading operations 

are synchronous. Similarly, this megafunction can be parameterised to implement a 

variety of width or depth combination; the only limitation is the available memory space in 

the device itself. Such flexibility is useful as the single clock FIFO is used in this design to 

implement the 11 branches of the interleaver with different sizes. As described in [56], 

the branches are FIFOs with depth M j cells. Table 3-1 shows the actual size of the 

buffers on each of the branches and the corresponding size of the FIFO used.

j _______  M j___________ FIFO  size
1 1 x 1 7  = 17 32
2 2 x 1 7  = 34 64
3 3 x 1 7  = 51 64
4 4 x 1 7  = 68 128
5 5 x 1 7  = 85 128
6 6 x 1 7  = 102 128
7 7 x 1 7  = 119 128
8 8 x 1 7  = 136 256
9 9 x 1 7  = 153 256
10 1 0 x 1 7  = 170 256
11 1 1x1 7  =  187 256

Table 3-1: Required depth for FIFO
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3.7 Convolutional Encoder

The convolutional encoder processes data bits serially and continuously. It is a type of

discrete convolutional code generator using modulo-2 arithmetic [89]. Known for its high

redundancy encoding, convolutional coding provides high rates of error correction, yet is 

simple to design and requires minimum circuitry [84].

As introduced in section 2.8.6, the DVB-S standard used a rate 1/2 convolutional code 

with constraint length, K = 7  [56]. This means that the convolutional encoder consists of a 

7-stage shift register. With rate 1/2, there would be two modulo-2 outputs for each 

information symbol [90]. The operations of the modulo-2 adders are defined by the binary 

equivalent of polynomials given in [56]:

X  = g j = 171 ocj = 1111001
Y = g2 = 1330c t= 1011011

With reference to the 7-bit binary equivalent values of the polynomials, the shift registers 

are connected to the modulo-2 adders where the bits are represented by ‘1’ and no 

connections for bits that are represented by ‘O’.

Output X

Input

-T "  >  Output Y

Figure 3-13: Functional diagram of convolutional encoder

As the convolutional encoder processes in continuous serial bits, an 8-bit P2S converter 

is required. The 8-bit P2S converter module coded as part of the randomizer was re

used in the design of this convolutional encoder. The coded module is placed in the 

functional block library and implemented as part of the design.
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PROCESS (cnv_clk, cnv_clr)
BEGIN

IF (cnv_clr = ’O') THEN
in_latch <= "0000000";

ELSE
IF (cnv_clk'EVENT AND cnv_clk = 1 1} THEN

in_latch(6) <= cnv_in;
in_latch(5 downto 0) <= in_latch (6 downto 1);
x_out <= in_latch(6) XOR in_latch(5) XOR in_latch(4) XOR

in_latch(3) XOR in_latch(0);
y_out <= in_latch(6) XOR in_latch(4) XOR in_latch(3) XOR

in_latch(l) XOR in_latch{0);
END IF;

END IF;
END PROCESS;

Listing 3-3: Convolutional Encoder

Figure 3-13 shows the simple design of the rate 1/2 convolutional encoder. 

Implementation of the design was coded using VHDL, where the input signals are shifted 

in a 7-bit bus signal to represent the workings of a shift register, as presented as Listing

3-3. The modulo-2 adders were represented by the Exclusive-OR operation [85]. The 

signals were described using the XOR operator already defined in the VHDL library.

3.8 Puncturing

The added redundancy due to convolutional coding has reduced the code rate by 1/2. 

This means that every bit data is being represented by 2 data bits. The efficiency of 

convolutional encoding can be increased by not transmitting every bit of data across the 

medium. This process is called puncturing. Based on a pattern standardised for DVB-S 

systems, some bits of the encoded data can be excluded from being transmitted. The 

puncturing process for DVB-S systems is capable of increasing up to 7/8 of the overall 

code rate. The process of puncturing must be applied conforming to the punctured code 

definition, where the puncturing patterns are specified.

________________________ Code rates_______________________
1/2________ 2J3_________ 3/4________ 5/6_________ 7/8

Puncturing X : 1 X : 10  X : 101  X : 10101 X : 1000101
Code Y: 1 Y: 11 Y: 1 10  Y: 11010 Y: 1111010

Output I= X ] I= X jY2Y3 I= X jY2 I= X ,Y 2Y4 l^ X l Y2Y4Y6 
Q =Y] Q =Y jX3Y4 Q =Y iX3 Q =YjX3X5 Q =Y}Y3X5X 7

Table 3-2: Punctured code definition

Table 3-2 shows the puncturing patterns as defined by DVB for code rates 1/2, 2/3, 3/4, 

5/6, and 7/8 [56]. The puncturing codes can be analogous to a mask that is filtering the 

data bits received from the convolutional encoder output, X  and Y, where T  represents
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transmitted bit, and ‘O’ represents punctured bit. The bits that are being punctured are 

the ones that are not transmitted. The punctured code definition also describes the 

pattern which the punctured data bits are being sent at the output, I  and Q.

3.8.1 Rate 3/4 Punctured Code

Rate 3/4 puncturing was chosen to be designed and implemented as it was already 

adopted by the NTU campus network trial system. Signal measurements and analysis of 

the campus trial system were based on rate 3/4 DVB-S encoding [59]. According to the 

punctured code definition, one of the methods to achieve the output pattern, / and Q, of 

rate 3/4 puncturing is by converting the two inputs into a one-bit data stream. As depicted 

in Figure 3-14, the inputs, Xn and Y„, are interlaced to form a continuous bit stream. As 

with the inputs, the puncturing code is also interlaced to form a single bit masking pattern. 

When the rate 3/4 punctured code is applied to the stream, every third bit of the data 

stream will be deleted and therefore not transmitted. During this clock cycle, the two bits 

of data that were not deleted are clocked to generate the I and Q outputs that is 

compliant to the DVB-S standard.

Clock pulse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X, Y, x2 y 2 x3 y 3 x4 Y„ x5 Ys x6 Ye x7 y 7 Xe Ye

I Output >| X, j I j->| Y; | l  —j—>| X„ j ---------- j->| Ys |

Q Output >| Y, | L->| X3 | >| Y„ | >| X6 |

Figure 3-14: Rate 3/4 punctured code pattern

A 2-bit P2S converter was coded based on the source codes of the 8-bit P2S converter 

designed as part of the randomization module. At the very core of this rate 3/4 puncturing 

design is a modified S2P converter with a sampler. The sampler would operate with a 

controller that counts the clock pulse in a 3-bit cycle. At every third bit, a signal would be 

sent to the S2P converter, as shown in Figure 3-14. This signal would have a 37% duty 

ratio. When the signal goes HIGH, the values sampled in the S2P converter is then 

latched to the I and Q outputs. Designs for the puncturing module are presented in 

Appendix III.

> x7

> Y7
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3.9 Configurability

With the aim of realising a hardware system that is reconfigurable to allow changeable 

coding schemes to be tested over the university campus network trial, each module in 

the coding process of the DVB-S channel encoder is modified to allow itself to be 

switched on or off. As shown in Figure 2-8, the DVB-S coding algorithms are performed 

in a sequence, where energy dispersal is performed first, followed by outer coding, 

interleaving and finally inner coding. This means that when the modules are integrated 

as a system, data must be passed between the modules in the way defined by [56].

To facilitate the flexibility of disabling a particular coding module, each module is 

designed with a bypass channel that is controlled by an enable input-pin. To alternate 

between 1/2 rate and 3/4 rate punctured convolutional encoding, a simple switching 

design was employed to connect the I and Q outputs with data from the convolutional 

encoder for 1/2 rate coding and the puncturing module for 3/4 rate coding.

3.9.1 Module Bypass

The module bypass design is applied at the inputs and outputs of a module. The inputs 

and outputs are connected to avoid the data from being coded by the module, when 

required. The decision to bypass is controlled by changing the value of the enable input- 

pin, en, as depicted in Figure 3-15, where X represents the coding modules of the 

system.

en

Data outputData input

Bypass

Figure 3-15: Bypass enabling design

This design was applied to modules performing SYNC inversion, RS(204,188) encoder, 

and convolutional interleaver. Listing 3-4 presents the source code of the module bypass 

design written and implemented as part of the RS(204,188) encoder to enable the 

module to be switched on or off. As for the randomizer, the enable pin was already a 

standard feature of the randomizer module. As shown in Figure 3-6, the enable pin was 

connected to allow disabling of the randomization process on the data.
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PROCESS (en_clk, en_in)
BEGIN

IF (en_clk'EVENT AND en_clk =
IF (en_in = ’O') THEN 

en„dataout <= 
en_syncout <= 
en__dataenin <= 
en_syncenin <=

ELSE
en_dataout <= 
en_syncout <= 
en_dataenin <= 
en_syncenin <=

END IF;
END IF;

END PROCESS;

: ‘1') THEN

en_datain;
en__syncin;
: "0 0 0 0 0 0 0 0 ";
= ' 0 ' ;

en_dataenout; 
en_syncenout; 
• en_datain;
= en_syncin;

Listing 3-4: Module Bypass



4 Verification of DVB-S Channel Encoder

Verification of the designed modules was performed individually using HDL software 

simulation. This ensures that the modules are functionally verified prior to system 

integration. A data source that emulated the MPEG-2 TS was specially coded for this 

purpose. Simulation results obtained were analysed and correlated against output of 

simulation tools used in the industry, such as Simulink.

Hardware verification was also performed on a systemic level. This completed system is 

prototyped on the FPGA development board and tested as part of the 42 GHz MWS 

campus network trial. Hardware verification methods also included accessing status 

register of an STB as well as the use of ‘live’ digital TV signals. A PCB was also 

designed to ensure maximum l/Q power transmission and signal integrity during 

interfacing with external devices.
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4.1 MPEG-2 Transport Stream Emulation

MPEG-2 Transport Stream (MPEG-2 TS) emulation is the most important entity in the 

verification processes of the DVB-S channel encoder. A single continuous stream of 

MPEG-2 packets is required as an input at almost every stage of the simulation. As the 

system is designed to conform to the DVB Synchronous Parallel Interface (DVB-SPI) [70], 

the emulated MPEG-2 TS is synchronised with a supplied clock, and accompanied with a 

PSYNC signal to flag at the start of a packet and DVALID to signal for a valid packet.

The design for MPEG-2 TS emulation involved an 8-bit count-up counter, enabled from 

the LPM [83], and a control mechanism. The counter output is used here to generate the 

emulated MPEG-2 data stream. To conform to MPEG-2 framing standard, 4 7 H e x  and a 

PSYNC signal are used at the start of a packet. This is achieved by referring the output 

of the counter; as the counter counts up, the control module outputs a PSYNC when it 

reaches 4 7 H e x - The control module then resets the counter when it reaches 6 C H e x  to 

restart counting from 0 0 H e x  on to 4 6 H e x - This count cycle would generate a 188-byte 

packet.

Figure 4-1 shows a section of the output of the MPEG-2 TS emulator. The data output, 

data, is a stream of changing code words as a result of the count-up counter output. 

The 188-byte packet ended at the code word 4 6 H e x  and the start of the following packet 

continued on with 4 7 H e x  accompanying a PSYNC signal at its output, psync.

Name
2.33 us 2.37 us 2.41 us 2.45 us 2.49 us 2.53 us 2.57 us 2.G1 us

is * byteclk

j T J i n j i r L J i r L r L r L r i j r L j m j i r L r L n j m ^

n

I P
clock 

0  data 

psync 

dvalid4 p

Figure 4-1: 188 byte MPEG-2 transport stream emulation

When required, this emulator design can be altered to generate 188+16-byte transport 

packets. Instead of 6CHex, the counter is reset when it counts to CChex to generate 204 

bytes of data. The DVALID signal is switched off for the last 16 bytes of the packet as 

they are not valid RS codes concatenated to the packet [70]. The 16 extra bytes added 

to packets are output as null bytes, 00Hex-
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Name
2.53 us 2.55 us 2.57 us 2.59 us 2.61 us 2.63 us 2.65 us 2.67 us 2.69 us 2.71 us 2.73 us 2.75 us 277 us 2.79 us

jn jn jn jiJ T jn jn jiT L n jT ru T rL rL J T T U ijn jn _ P U T T iT iJ T jn _ rL rL
I P

byteclk 

clock 

0  data 

psync 

dvalid

30 X 31X32 X 33 X 34 X 35 X 3GX 00 )(47XMX1XMM
n

Figure 4-2: 188+16 byte transport stream emulation

A section of the simulation output of the MPEG-2 TS emulator is presented in Figure 4-2. 

It shows the end of a packet with the 16 null-bytes added. As described, DVALID output, 

dvalid, is switched off for the additional null-bytes. A new packet then follows on.

4.2 ‘Zero-padding’ Frame Conditioning

As previously described in section 3.1, in order to allow application of RS coding, frame 

conditioning is employed to the MPEG-2 transport multiplex. Before coding processes 

begin, the 188-byte MPEG-2 TS have 16 null-bytes added at the end of every packet. 

The design of this functional block included a dual-clock FIFO with a controlling module.

Name
6.35 us 6.39 us 6.43 us 6.47 us 6.51 us 6.55 us 6.59 us 6.63 us

12#*
1#

pad_reset

inclk i  i i r " i i ...... i i— i i 1 ft i 1 1 1 r
tap*

■s#
0  pad_datain 

pad_psyncin m
I P 0  pad dataout i)(4~1 "X42X 43 X44 a 45 X 46 X 00 X 47X48X49X4A#

t # pad_psyncout . . .................... . . n
I P 0  pad_usedw A8 X A7 XA8XA9XAAX AB XACXADXAE X'AFXBO'XBI X B2 XB3 XB4 X B$

byteclk

pad_fastclk

zero pad:inst|... ctrlstate ctrl_read X ctrlstate.ctrl_stop X ctrtstate. Ctrl read

Figure 4-3: Null-bytes insertion for frame conditioning

During verification, the functional block uses the MPEG-2 TS emulation output as data 

source. A PLL was used to generate clock rates that are identical to the system’s clock 

rates; pad_slowclk was connected to the 70 MHz clock while pad_fastclk was 

supplied with 80 MHz clock. Figure 4-3 shows a section of the simulation output of the 

frame conditioning process. Emulated MPEG-2 TS entered the module via input port, 

pad_datain, at its interface rate. Zero-padded transport packets are output via
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pad_dataout output port at a faster rate to accommodate the 16 additional null-bytes. 

PSYNC signals were generated to accompany the SYNC bytes to provide 

synchronisation of the TS.

As anticipated, the amount of data buffered in the FIFO decreases as the zero-padding 

process is performed. The gradual reduction of data in the FIFO is due to the difference 

between the interface clock and the system clock. Bigger difference from the theoretical 

204/188 rate would result to faster reduction of the buffered data. However, as the 

amount of data buffered is almost empty, in which less than 25 bytes left, the 

CTRL_STOP state changes to CTRL_FILL to stop the output of data for as long as 188 

byte to top up the amount of data stored. Figure 4-4 presents the inserted null-packet 

when the FIFO is being re-buffered. For the purpose of identification the null-packet was 

set to output BBhex words.

Name
41 Bus 42.24 us 42.88 us 43.52us 44.16 us 44.8 us

J #

■ti#

pad_reset 

inclk 

0  pad_datain 

pad_psyncin
S B B

I P 0  pad_dataout M N M r o n r  ' ..........................................;  ' »  ------------------------  x » n u t
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Figure 4-4: Null-packet insertion for buffering

4.3 Transport Multiplex Adaptation

The transport multiplex adaptation was designed to bit-wise invert MPEG-2 SYNC bytes 

from 47Hex to B8Hex for synchronisation. Only the first of every eight SYNC bytes are 

inverted. During simulations, the MPEG-2 TS emulation module can be used to provide 

MPEG-2 packets into the SYNC inverter module. However, the simulation can be 

simplified by shortening the input packets into the test module. Complete MPEG-2 

packets are not required to verify the SYNC inversion process that occurred once in 

every eight packets. Therefore, as shown in Figure 4-5, a simulation of the SYNC 

inversion module was performed using 4-bytes per packet stream.
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Figure 4-5: Simulation of SYNC inversion

A continuous stream of packets entered the module at mux_in input port, where the 

SYNC bytes were identified by the accompanying PSYNC signals. At the output, 

mux_out, the first SYNC byte was inverted and the number of packets was counted, 

pack_count. After the 8th packet, the following SYNC byte was again inverted, as 

indicated on the figure.

4.4 Randomization

The randomization process is used in the transmission to facilitate energy dispersal in 

compliance with radio regulations. Details and design of this functional block were 

described in section 3.4. Although the DVB-S [56] publication has provided schematics of 

the PRBS generator, designs were implemented for serial-parallel conversions and a 

specially devised control mechanism.

Verifications on the functionality of the control mechanism are important to ensure that 

changes to the frame conditioned transport stream are transparent to the randomization 

process. With the added null-bytes, PRBS generation is required to be temporarily 

paused, to avoid scrambling of the null-bytes, and continued from the following SYNC 

byte. Scrambling of the additional data bytes would cause corruption of the entire 

transmission as the PRBS period would run for more than the specified 1504 bytes [56].

The data source used for simulation of the randomizer module is the emulated MPEG-2 

TS. The SYNC inversion module was used on the TS prior to randomization. The data 

source was then supplied to the randomization module and was first converted to a serial 

bit stream. Output of the parallel-to-serial conversion can be probed at P_Sout. Figure

4-6 presents a snapshot of the simulation of the randomizer module, where the PRBS 

generator is paused for the null-bytes. The signal bitclk_ctrl was coded at the
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control instructions as an enable switch for the PRBS generator. Therefore, the signal 

was disabled for the entire duration of the additional null-bytes.

41.17 us
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slowbit 
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S3 datain 
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bitclk_ctrl 

prbs_load 

0  dataout 

psyncout

Figure 4-6: PRBS paused at zero-padding

The general functions of the control mechanism were also verified by ensuring that the 

prbs_load signal is initiated when an inverted SYNC byte occurs. This signal would 

reset the PRBS generator to have its initial sequence “10010101000000 0” loaded. 

Another signal verified during simulations was the enable signal for randomization, 

rand_en. This signal is used to ensure that the MPEG-2 SYNC byte of the TS 

remained unrandomized, although the PRBS generation continued [56]. Therefore, as 

observed in Figure 4-6, the rand_en signal was disabled as the serialised SYNC byte 

“010 00111” entered the PRBS generator and remained unrandomized.

4.5 Altera Reed-Solomon (204,188) Encoder IP

The Reed-Solomon (204,188) encoder was implemented using Altera’s megafunction IP 

core. It adds 16 extra redundancy bytes at the end of each 188-byte MPEG-2 packets to 

provide error recovery of up to 8 bytes long during transmission. Several simulations 

were performed prior to using this IP core to investigate its input requirements. One such 

simulation involved inputs from the MPEG-2 TS emulator which were set to generate 

188-byte MPEG-2 packets with 16 additional null-bytes. As shown in Figure 3-2, full 16- 

byte RS codes were successfully concatenated at the end of each transmission packet, 

when the null-bytes were included as part of the input transport stream.
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4.6 Convolutional Interleaver

The convolutional interleaver is made up of an array of FIFO shift registers with different 

capacities. With a control algorithm, data was distributed over 12 branches of FIFO shift 

registers to increase the efficiency of the RS(204,188) encoder. A longer burst of error in 

transmission can be sustained by the RS encoder. A description of the design of the 

convolutional interleaver module can be found in section 3.6.

Verification of the implemented module was performed with the use of Altera’s 

convolutional interleaver megafunction. Functional simulation output of the implemented 

module was correlated against output of the IP core using the same set of input data. 

The module and the IP core were configured to connect to the emulated MPEG-2 TS 

generator, as illustrated in Figure 4-7. The functionality of an IP core made for 

commercial licensing is guaranteed as its developer must ensure that the IP core was 

built in compliance with industrial standards. An IP core can be simulated and its output 

is reliable unless the core in incorrectly parameterised.

dataout

lnt_out

DVB-SPI
Source

Convolutional
Interleaver

Altera Convolutional 
Interleaver

Figure 4-7: Convolutional interleaver verification configuration

A section of the simulation output of the convolutional interleaver is presented in Figure

4-8. Simulation output dataout is the output of the IP core, while output port int_out 
is the output of the module implemented in the system. The modules were connected to 

the same emulated MPEG-2 TS used for other tests. This simulation successfully 

validated functionality of the implemented convolutional interleaver module as the output 

values of int_out matched the output value of data_out. However, the delay of one 

clock cycle was observed between the outputs. Optimisation of the commercial IP 

megafunction design has resulted in the timing difference against the output of the 

implemented module.
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Figure 4-8: Convolutional interleaver verification using IP core

4.7 Punctured Convolutional Encoder

As the punctured convolutional encoder was implemented in two separate parts, namely 

convolutional encoder and puncturing modules, the verification results are also 

presented separately. Verification of these modules was carried out by correlation of 

VHDL simulation traces with results of Simulink simulations.

4.7.1 Simulink Simulations

MATLAB is a high-level technical computing language. It features an interactive 

environment for algorithm development and data analysis [91]. Simulink is an extension 

to MATLAB that allows block diagrams representing system models to be created and 

edited in a graphical environment. It provides a graphical user interface to accurately 

design, simulate, implement, and test control, signal processing, communications, and 

other time-varying systems [92], Add ons, such as the communications blockset, extend 

the Simulink environment for simulation of the physical layer of communication systems 

and components.

With the communications blockset installed, Simulink was used to simulate the 

convolutional encoder and the puncturing process. These processes were parameterised 

in the Simulink environment to comply with DVB-S standard published in [56]. With a 

known set of input data, the Simulink blocks were simulated and outputs were recorded. 

With Simulink being used in the industry to design and simulate commercial 

communication models, the Simulink component blocks are in compliance with industry 

standards to provide accurate representation of its functionalities. Therefore, verification 

of the convolutional encoder and puncturing module can be performed by correlating 

Simulink simulation results against simulation outputs of the VHDL coded modules, using 

the same set of input data.
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4.7.2 Convolutional Encoder
The convolutional encoder is a simple channel coding technique that adds a large 

amount of redundancy for error correction [84]. Its simple design performs modulo- 

addition to the input data bits continuously based on polynomials described in section 3.7.

Although verification of this module can be performed manually using pen and paper, a 

Simulink simulation was used to correlate against the output of HDL simulation to ensure 

validity. HDL simulation output of the implemented convolutional encoder was obtained 

by input of a short sequence of incrementing data starting from 47Hex to 52Hex to emulate 

the start of a MPEG-2 packet, as presented in Figure 4-9(a). Similarly, the Simulink 

convolutional encoder block was simulated using identical input data, as presented in 

Figure 4-9(b).

(a) HDL Simulation Output
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Figure 4-9: Simulation outputs of implemented convolutional encoder

By associating the serial output, XY, on Figure 4-9(a) and the Simulink simulation output 

of a DVB-S standard convolutional encoder on Figure 4-9(b), the output of the designed 

convolutional encoder is exactly as the same as the output of a DVB-S standard 

convolutional encoder, as guided by the dotted lines, when the same input values are 

used. Therefore, this correlation process had successfully verified the functionality of the 

designed convolutional encoder.
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4.7.3 Puncturing
The puncturing process involves deletion of data bits in a pattern that conforms to the 

DVB-S standard. Puncturing is performed to increase overall code rate of the system and 

increase FEC efficiency after the large amount of redundancy that was added into the 

encoding by the convolutional encoder. The punctured code definitions for all levels of 

efficiency are presented in section 3.8.

A rate 3/4 puncturing module was designed and developed as part of the DVB channel 

encoder. Verification on this module was performed by correlating the HDL simulation 

output against Simulink simulation output of a DVB-S standard puncturing. A two-bit 

counter was used to generate loops of incrementing binary values, 0 0 Bin , 01 b in , 1 0 b in  and 

11 b in ,  as inputs to the puncturing module. Figure 4-10 shows the HDL simulation output 

of the designed puncturing module. Using identical input data, the Simulink puncturing 

block was also simulated and its simulation result is presented as Figure 4-10(b).
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(b) Simulink Simulation Output

Figure 4-10: Simulation output of puncturing
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As shown in Figure 4-10(a), serial output of the designed puncturing module, IQ, is used 

to correlate with the output of the Simulink simulation, Figure 4-10(b). As guided by the 

dotted-lines, the simulation output of the designed puncturing module is exactly the same 

as the simulation output of the DVB-S standard puncturing when the same input values 

are used. Therefore, the functionality of the designed puncturing module was 

successfully verified by this matching correlation.

4.8 Hardware Verification using Set-Top-Box

One verification process that can validate the operations of the implemented DVB-S 

channel encoder on a systemic level is by using a satellite STB. As the satellite STB is 

the receiving-end of the transmission link, it demodulates and decodes the received 

signal to remove the redundancy that was included during the encoding process 

conforming to DVB-S standard. The original stream of information is then recovered. A 

brief walkthrough of the decoding process is described in section 2.8.7.

The instant prototyping capability of FPGAs played an important role in this systemic 

hardware verification process. The designed channel encoder system can be 

programmed onto the FPGA on the spot for hardware testing. Important probe points and 

status flags of the designed system are described within the codes of the modules. By 

probing these points and the output of the module, functional faults and defects of the 

system can be quickly identified on a signal analyser.

Software simulation can be performed on a systemic level by providing a testbench to 

supply input stimulus to the design. In most cases of a VHDL based design, HDL 

testbenches are coded to monitor the characteristics of the signals within the design. As 

the Altera Quartus II software does not support HDL testbench, verification of the 

simulation output waveform alone is not feasible on a systemic level.

Verification using a STB involves programming the design onto an FPGA. A set of 

devices including the STB is required to be configured to facilitate the verification 

process. Sections 4.8.3 and 4.8.4 will describe the configurations and results of 

verification in entirety.

The first of two methods used to verify the design of the encoder system are by probing 

the output of the decoded signal. This method requires a known set of transport packets 

being encoded by the implemented DVB-S channel encoder (DVB-ENC) and sent to the 

STB. The decoded transport packets are then obtained from the STB and examined,
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where the DVB-ENC can only be proven to function correctly if the original and the 

decoded packets are identical. Typically, DVB-based channel decoder chip interfaces 

with an MPEG-2 decoder chip using DVB-SPI [93]. By tapping into the SPI, traces of the 

output of the channel encoder were obtained using a logic analyser.

The second method used is more technical. It is done by examining the status registers 

of the decoder chip in the STB. With the register indicating a lock on the demodulator, 

decoder clock and the rest of the FEC processes, the DVB-ENC is certain to be 

functioning correctly. As shown in Figure 2-11, modules in the front-end and decoding- 

end of a typical satellite STB system communicate with each other using a common 

inter-IC bus, the l2C-bus. Various controls and status registers can be accessed via the 

l2C-bus [94]. As the Humax F1-FOX satellite STB uses the Philips TDA8044A DVB-S 

decoder chip, which is an l2C compliant device [95], the status register is accessed using 

a PC via a serial link to an in-house l2C compatible data acquisition module (DAM) that 

taps into the l2C-bus of the satellite STB [59].

4.8.1 l2C-bus Data Acquisition Module

The DAM was originally designed to facilitate measurement of the 42 GHz wideband 

millimetre-wave signal using an inexpensive satellite STB [59]. The module can be 

attached to a Humax F1-FOX satellite STB to tap on its l2C-bus. The module, reused in 

these verification processes, provides an interface with the l2C-bus via a PC COM port. 

As mentioned, by having a means to access the l2C-bus in the STB, the status registers 

of the Philips TDA8044A DVB-S decoder chip can confirm the functionality of DVB-ENC.

>  STB l2C BusController
RS-232
driver Microcontroller

Figure 4-11: DAM architecture block diagram

The DAM architecture consists of an l2C controller, RS-232 communication port, and a 

microcontroller. All tasks related to data acquisition are performed by the microcontroller. 

It acts as a transceiver that allows communication via a PC COM port in American 

Standard Code for Information Interchange (ASCII) format. With the l2C controller, 

parallel communication can occur bi-directionally between microcontroller and l2C bus. 

As explained, communication between with the l2C bus is carried out on a byte-wise 

using polled handshake. The l2C controller manages all the l2C protocols to allow 

passive monitoring of the l2C bus traffic on a PC. A utility shareware, Serial Device
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Tester, is used to monitor serial communication at the PC COM port. Data in both ASCII 

and Hex format can be displayed simultaneously on a Graphical User Interface (GUI).

4.8.2 QPSK Modulation and Hardware Interfacing

QPSK modulation is required at the I and Q outputs of the DVB-ENC to enable the use of 

a satellite STB. As an off-the-shelf consumer product, the STB is manufactured with a 

standard Satellite-Input. It is designed to receive signal that has been downconverted to 

an intermediate frequency (IF) signal by a low-noise biock-downconverter (LNB) at the 

satellite-dish. The IF signal is then converted into an MPEG-2 TS by performing 

demodulation and forward error correction decoding as described in section 2.8.7.

During the verification process, QPSK modulation was performed using the Agilent 

Technologies ESG family signal generator to produce the IF signal that can be received 

by the STB. The signal generator was first used to condition the modulated signal. A 

negative offset of 25% were set to mimic a bipolar baseband signal for QPSK modulation. 

The signal is then modulated with carrier frequency of 1000 MHz and output at amplitude 

of -40 dBm.

Prior to using the signal generator, the equipment was fully investigated. The maximum 

input power into the device was found to be 1.0 Watt with input impedance of 50 Q at 

each input. For external I and Q source, the recommended signal level is [96]:

An I and Q output interface module was developed to match the input requirements of 

the signal generator. The module is positioned between the I and Q outputs of the DVB- 

ENC and inputs of the signal generator. As shown in Appendix I, a fully customised PCB 

was designed using Protei PCB design software. Several Gerber formatted files is then 

generated to plot and produce the PCB. The Gerber Format is also known as RS-274-D 

as the industry standard photo plotting language [97]. The interface module was 

designed to include a SN74LS126A bus buffers to reduce the power load on the I and Q 

output port of the FPGA. Using a simple parallel termination scheme, the line impedance 

was matched with a termination resistor of an equal value. Two 52 Q resistors were used 

at each output as they were the nearest match available in-house. The scheme not only 

diminishes the first reflection, it also ensures maximum current loading at a HIGH output 

state [98]. To match match the power limitation at the input of the signal generator, a 

voltage divider circuit was used at both I and Q outputs.

[4-1]

63



Picture 4-1: I and Q Output interfacing module

With interface rate of more than 26 mega-symbols per second, the fast slew rate can 

contribute to noise generation, signal reflection, cross-talk and ground bounce. As 

mentioned earlier, a simple parallel termination scheme was used to avoid signal 

reflection. As shown in Picture 4-1, a 100 pF electrolytic capacitor was also placed 

adjacent to where the power supply enters the circuit board to filter low-frequency noise 

from the power supply [98], To avoid occurrence of ground bounce and VCc sag, surface 

mount decoupling capacitors of 0.01 pF and 0.1 pF in parallel were also used.

4.8.3 Verification with Emulated MPEG-2 Transport Stream
Probing the output of the decoded signal is one of two methods mentioned earlier to 

verify the system using a STB. The configuration for this verification process can be 

separated into transmitting-end and receiving-end, as pictured in Figure 4-12. At the 

transmitting-end, the process involves insertion of a MPEG-2 TS into the DVB-ENC. 

Insertion of the MPEG-2 TS is done by re-using the MPEG-2 TS emulation module. The 

emulation module was applied and connected to the inputs and programmed on the 

FPGA as part of the hardware. The I and Q output signals of the DVB-ENC is QPSK 

modulated using the Agilent Technologies ESG signal generator. Configuration at the 

receiving-end includes STB2, a TV to set-up the STB and a logic analyser to display 

traces of the decoded MPEG-2 TS. The probes were connected to the DVB-SPI data- 

bus of STB2.
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Figure 4-12: Configuration for verification with emulated MPEG-2 TS

Prior to running the verification process, STB2 is required to have the L-Band frequency, 

symbol rate of the input signal and the FEC mode locked to the specification that is 

matching the transmitting-end. As the STB requires ‘live’ digital TV reception to lock and 

save a setting, a ‘live’ feed was re-modulated using Newtec NTC2063 professional DVB 

modulator. The re-modulated IF signal is then sent to tune STB2. Table 4-1 shows 

matching the specification of the transmitting-end compared to the existing specifications. 

The verification process is then performed as depicted in Figure 4-12.

Specification________ Exis ting______ Re-m odulated
L-B and  Frequency 1270 M H z 1000 M H z

Symbol Rate 17500 Baud 26666 Baud
F E C  M ode 3/4 3/4

Table 4-1: Specification difference between existing and re-modulated signal

This verification process has successfully proven the operations of the DVB-ENC with 

STB2 effectively decoding the encoded source signal. The decoded data-bus traced at 

DVB-SPI of STB2 was identical to the emulated MPEG-2 TS.

4.8.4 Verification with Digital TV Signal

As an extension to the previous verification test, a similar configuration of hardware can 

be used to verify the DVB-ENC using a ‘live’ digital TV multiplex. Similarly, the 

arrangement of hardware can be separated into transmitting-end and receiving-end. As 

shown in Figure 4-13, the I and Q output signals of the DVB-ENC is QPSK modulated 

prior to transmission. To facilitate the use of a ‘live’ digital TV multiplex, an IF signal from 

the university campus trial is demodulated and decoded by STB, to be re-modulated to 

match the requirements of the DVB-ENC. The ‘live’ multiplex stream is then connected 

into the DVB-ENC by tapping the DVB-SPI of STB3, where the re-modulated signal was 

recovered.
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Figure 4-13: Configuration for verification with digital TV multiplex

At the receiving-end, the DAM is connected to STB2 to allow monitoring of the status 

registers in the Philips TDA8044A DVB-S decoder chip at the l2C-bus of the decoder 

system. A TV is used to set-up the STBs as well as displaying the decoded TV 

programme. At the same time, monitoring of the l2C-bus is done on a PC using the serial 

COM port.

Accessing the PC serial COM port using Serial Device Tester software as a user 

interface, a total of 11 status-bytes were returned by the DAM. These data was identified 

as useful status flags and accessed via the l2C-bus based on information and addresses 

published in [95]. One of the status addressed at 02Hex, was identified as FEC locks 

status. This 8-bit flag registers a binary ‘1’ to indicate different stages of the FEC are 

locked. Amongst the stages that can be monitored are Viterbi locked (FVL), de

interleaver locked (FDIL) and de-randomizer locked (FDRL) [95]. The output value of 

1FHex is expected at this location under normal working conditions when all FEC stages 

are locked.

Figure 4-14 shows the output of 11 status flags accessed from the l2C-bus via the DAM 

during the verification process. With 1 F He x  confirming that all the FEC stages are locked, 

the channel coding processes in the DVB-ENC were proven to conform to DVB-S 

standard and therefore demonstrated a successful development of the DVB-S channel 

encoder on an FPGA. Only one status register indicates FEC lock status, other status 

flags can be used to analyse characteristics of a channel. Estimated values for signal-to- 

noise ratio, automatic gain control, and number of channel bit errors can be obtained.
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Figure 4-14: Status register values of Philips TDA8044A

Besides the technical approach to acquire evidence that proves the conformity of the 

DVB-S channel encoder, a TV set can also be used. As this verification process uses 

‘live’ digital TV multiplex, TV programmes can be decoded and displayed on the TV 

screen if the encoding standard is conformed to. Therefore, with the TV screen showing 

decoded digital TV programmes during the process, the designed channel encoder is 

validated.

4.9 MWS Campus Network Trial Concept Test

The MWS campus network trial is a 42 GHz test platform deployed in the university to 

explore new applications for 42 GHz MWS. At present, the existing interactive service 

uses cable technology that is readily available as return channel. A prototyped 

broadband access network is being developed at NTU to replace it with a new system 

configuration that is based on encapsulation of Ethernet network data in MPEG-2 TS 

with the introduction of an Ethernet adapter [64]. A trial was performed based on the 

conceptual configuration using the DVB-ENC.

r  Ptefix Data with Saved Headei Auto Response Settings
r Add Footer after Data % " eV" Sen? n ,
r  Append Carriage Return (cht$(13)) 118 ")e
T  Append Lme Feed (ehSH 0)) , P  Send Eve'V Trre

67



Base-station

Internet

LAN

MilPC
Ethernet
Adaptor

STB

Newtec DVB 
Modulator

1000 GHz 
26.666 MBaud \

PC Mil

DVB
Encoder

Ethernet
Adaptor

STB

QPSK
modulator

Client-site

Figure 4-15: Configuration of prototyped system test

As illustrated in Figure 4-15, the set-up can be separated into base-station and client-site. 

At the base-station, Ethernet network data from the university network was bridged into 

the trial network using a PC with two network interface cards (NICs). A Media 

Independent Interface (Mil) module was used to connect the network data to the 

Ethernet adapter. The Newtec DVB-S modulator was used to encode and modulate the 

MPEG-2 transport multiplex output from the Ethernet adapter. At the client-site, a STB 

was used to demodulate and recover the MPEG-2 transport multiplex. At the DVB-SPI of 

the STB, the MPEG-2 TS was tapped to the Ethernet adapter module. Through a Mil 

module, Ethernet network data is connected to NIC of a client PC using Category-5 

(CAT-5) cable. Aiming for an inexpensive system, the DVB-ENC was used to encode the 

MPEG-2 transport multiplex output of the return channel from the Ethernet adapter, the I 

and Q signals were QPSK modulated with a 1000 MHz carrier.

With DVB-ENC successfully encoding at 26.666 MBaud with an FEC code rate of 3/4, 

this test has demonstrated one of the aims of the research by replacing the bulky and 

expensive Newtec DVB-S modulator. At such symbol rate, the DVB-ENC is capable of 

supporting network data rate of up to 36 Mbps. It can be set up as part of either the 

transmitting-path or returning-path of the system to provide channel coding prior to 

transmission. Being cost effective and having a small footprint, the DVB-ENC can 

potentially be deployed as part of the returning-path of a client system. The system can 

then be easily deployed at more trial sites within the coverage cell. The success of this 

experiment has therefore demonstrated a novel MPEG-2 based data communications 

system designed, developed and implemented on an FPGA using VHDL.
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NEWTEC

E T H A D P  1

DVB-EHC

STB 1 & 2 = Humax F1-FOX Set-Top-Box
Mil 1 & 2 = Media Independent Interface
ETHADP 1 & 2 = Ethernet Adapter module
NEWTEC = Newtec NTC2063 professional DVB modulator
ESG = Agilent Technologies ESG family signal generator
DVB-ENC & l-Q = Designed DVB-S channel encoder with I and Q output interface module

Picture 4-2: Set up of prototyped system test
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5 Conclusions and Further Work

This research thesis concludes with summary of the work done. Issues worthy of further 

study and work are also indicated.

70



5.1 Summary and Conclusion

This thesis has documented a research about FPGA design and development of a DVB 

based channel encoder using VHDL for 42 GHz MWS. This research work has focused 

on investigations into a hardware system that can be used as a generic platform for 

applying coding schemes to the MWS campus network trial system set up in the 

university.

This research has achieved its main aims. The research started by investigating on 

various hardware technology that is available in-house and in the market as well as 

identifying a suitable development platform to prototype a flexible hardware that can be 

used to apply a range of channel coding schemes for the NTU Campus Network Trial. As 

a result, FPGA development was singled out as the best approach due to legacy support 

and facilities that are already available in the university and its suitability for rapid 

prototyping. A selection of commercial IP cores was also examined. They were simulated 

with stimuli to identify requirements and suitability for the channel encoder. The Reed- 

Solomon encoder IP core was implemented as part of the system with a ‘zero-adding’ 

algorithm that was designed to re-condition the MPEG-2 data stream. All modules 

required by the DVB-S standard channel encoding except the Reed-Solomon encoder 

were successfully design and developed using Altera Quartus II EDA software. They 

include the transport multiplex adaptor, randomizer and punctured convolutional encoder. 

Additional modules were designed to improve configurability of the channel encoder to 

allow each module to be bypass-able. Each module was simulated to verify its 

operations. The modules were then integrated, synthesised and programmed onto an 

Altera Cyclone family FPGA. The completed hardware was connected as part of the 42 

GHz MWS campus network trial and successfully tested to operate as part of the end-to- 

end system.

Investigations were made into FPGA hardware technology that offers low-cost hardware 

development, as no NRE costs are involved. The reconfigurable capabilities of an FPGA 

made it an ideal development platform as it allows system designs to be programmed 

into the hardware. Changes to the designs can be reprogrammed easily. The 

development of the channel encoder is based on DVB-S standard published by ETSI. 

The standard was identified for its robustness and reliability. Using a top-down design 

approach, the system was broken into separate blocks with distinctive functionalities. 

The IP core development route was decided for the Reed-Solomon encoder to reduce 

the development cycle. The rest of the functional blocks were successfully designed and 

implemented using VHDL. Each functional block in the system was coded to be bypass
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able itself, including the RS encoder IP core. This allows each coding process to be 

selectively switched on or off in order to alter the coding scheme.

Each functional block was verified using HDL simulation on the Altera Quartus II software. 

On occasions, Simulink modelled simulation outputs were correlated with traces of the 

simulated modules. The complete system was integrated and compiled, targeting the 

Altera Cyclone EP1C6Q240C6 FPGA device. A total of 1,461 LEs and 15,616 memory 

bits were used, utilising 24% and 40% of the resources respectively. One of the two 

PLLs was also applied.

The implemented channel encoder was connected as part of the complete end-to-end 

campus network trial broadcasting configuration to perform various verification tests. An 

emulated MPEG transport stream and ‘live’ digital TV multiplex extracted from digital TV 

transmission in real-time were successfully re-transmitted over the modelled MWS. The 

status register output from the Philips TDA8044A decoder chip in the satellite STB was 

used as evidence to confirm that all stages of FEC were locked.

The prototyped MWS campus network trial system was set up to incorporate the 

implemented channel encoder as part of the concept test. The return channel of the 

MPEG based interactive service was encoded by the channel encoder interfacing with an 

Ethernet adapter module. The test has successfully demonstrated its operation, 

encoding at the rate of 26.666 MBaud with an FEC code rate of 3/4, supporting a 

network data rate of up to 36 Mbps.

Besides operating at an FEC code rate of 3/4, the system can also be configured to 

encode at 1/2 rate with the symbol rate of 40.000 MBaud using the same PLL output 

clock frequencies. As the receiver STB is only capable of decoding at a maximum 

symbol rate of 32.767 MBaud [77], a system wide test was not performed. Based on the 

current implementation that uses one PLL to generate the interface and system clocks, 

the ideal 1.085 (204/188) times difference between the clock frequencies cannot be 

achieved. This is due to requirements for the Cyclone PLL to generate the output 

frequencies that are not met as the VCO of the Cyclone PLL would be operating outside 

of its capacities.

The success in the development of the FPGA hardware has cemented the realisation of 

an inexpensive DVB based channel encoder. Existing expensive professional frequency 

translation equipment deployed at trial sites can be replaced and the number of sites can 

be increased. The system can also provide a good test platform for establishing an
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optimised coding scheme for an improved terrestrial broadband fixed wireless access. 

The level of flexibility allows customisation of all the functional blocks, where they can be 

independently disabled. The FPGA system has also proven to be more compact 

compared to the existing channel coding devices, which ensures easy deployment of the 

system to new client sites.

5.2 Further Research Work

The 3/4 rate puncture code was implemented to improve efficiency of the coding scheme, 

instead of simply convolutional encoded. The puncturing module was designed to allow 

its puncturing rate to be changed from 1/2 to 3/4 as proof of concept towards developing 

a reconfigurable channel coder for 42 GHz MWS. The 3/4 rate puncture code was 

implemented first due to its simplicity and as it was the setting used for the existing 

campus network trial. As presented in Table 3-2, puncturing patterns are defined by DVB 

for the code rates 1/2, 2/3, 3/4, 5/6, and 7/8 [56]. An efficient puncturing algorithm can 

potentially be designed to allow variable code rates, with minimum complexity and space 

used on an FPGA. Therefore, further design work is suggested for the implementation of 

the rest of the puncturing scheme to enable maximum rate efficiency and flexibility of the 

channel coder.

In view of the effects of changing weather patterns on 42 GHz MWS links, further work 

can be done on developing algorithms to adapt to changes in attenuation levels by 

changes in encoding schemes, such as puncturing rate. The Phillips TDA8044A chip [76] 

that is used by the Humax F1-FOX satellite STB [77] provides a rough estimation of bit 

error rate (BER) to the STB and can be read via the l2C-bus. Previous research work has 

successfully acquired these values for BER measurements [59] and hence can be further 

explored to potentially develop an adaptive system that changes the FEC by changing 

the puncturing rate to achieve a minimum BER at any given time.

With the BER estimations, the level of FEC can be evaluated. Using the return link, 

requests of change of FEC rate can be sent to the base-station. Information on the new 

FEC setting can be integrated into the header of data packets at the transmitting-end. At 

the receiving-end, modifications can potentially be done to enable detection of the 

embedded information to match the requested FEC setting.

Development of this system in VHDL enables the DVB-S channel encoder system to be 

integrated into devices, with systems such as the Ethernet adapter, as long as its timing, 

I/O ports and space requirements are satisfied. System integration with a medium
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access control (MAC) layer is a provision towards realising an adaptive encoder for 42 

GHz MWS. Besides, using a single device would eliminate the use of some interfacing 

and reduce the size of the system.

Further work on hardware could potentially tap the full capabilities of the Cyclone family 

FPGA. Instead of using the Cyclone development board, a fully customised PCB could 

be developed for the FPGA device to increase its resources, such as additional I/O pins, 

and global clock inputs. An additional global clock input could allow further exploitation of 

the Cyclone PLL. The interface clock can be synchronised with interfacing external 

systems. This potentially allows the interface clock to be changed with the adaptive FEC 

rate and also allows the channel encoder to interface with other systems more effectively. 

One of such systems is the Ethernet adapter. Integration of such system could pave the 

way towards an inexpensive wireless access network SoC.

One of the advantages of targeting an FPGA device is its ability to be re-configured on- 

the-fly. This can be done by having the entire designed system and all of its possible 

options programmed onto the FPGA with the controls to change the inactive options to 

active dynamically. This technique is referred to as Multiple-context Configuration 

Memory [99]. This technique is fast to switch between the options, but with all possible 

options implemented, it requires a large silicon area. Besides that, another way for 

dynamic re-configuration is to have the FPGA partitioned, separating the standard 

system and the variable section. This is made possible with the Partial Configuration 

technique [99]. With the different options stored in memory, the variable section of the 

FPGA can be re-configured with the selected option. Although this technique is more 

space optimised, the speed of re-configuration of the variable section is directly 

proportional to the size to be re-configured. In-depth investigation into these dynamic re

configuration techniques and FPGA partitioning is suggested to fully exploit the 

capabilities of an FPGA.
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Appendix I: I and Q Interface Module PCB Design

Top Layer:
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Appendix II: NTU Campus Network Trial - Overview
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Appendix III: Block Diagram & Source Code ListingAppendix Ill: Block Diagram & Source Code Listing 
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Module: dvbenc_burn
Description: DVB Encoder top-level interface design
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Module: clkdiv
Description: System clock division
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Date: March 23, 2006 ./clkdiv/load count.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 17/06/2003 
-- filename: load_count.vhd
-- description: this generates the load signal for 

parallel to serial converter
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY load_count IS 

PORT 
(

load_clk 
load_reset 
load_out

) ;
END load_count;

ARCHITECTURE rtl OF load_count IS 
SIGNAL load_sig : STD_LOGIC;

BEGIN
PROCESS (load_clk, load_reset)

VARIABLE clk_count : INTEGER RANGE 0 TO 7;
BEGIN

IF (load_reset = '0') THEN 
clk_count := 0;

ELSIF (load_clk'EVENT AND load_clk = '1') THEN 
clk_count := clk_count + 1;
-- generate load signal load signal 
-- change elk count value to control output timing 
IF (clk_count = 4) THEN 

load_sig <= 11';
ELSE

load_sig <= '01;
END IF;

END IF;
IF (load_reset = '0') THEN 

load_out <= 'O';
ELSIF (load_clk'EVENT AND load_clk = '0') THEN 

load_out <= load_sig;
END IF;

END PROCESS;
END rtl;

IN STD_LOGIC; 
IN STD_LOGIC; 
OUT STD LOGIC
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Date: March 23, 2006 ../clkdiv/load scount.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 17/06/2003 
-- filename: load_scount.vhd
-- description: this generates the load signal for 

parallel to serial converter

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY load_scount IS 

PORT 
(

load_clk : IN STD_LOGIC;
load_reset : IN STD_LOGIC;
load_out : OUT STD_LOGIC

) ;
END load_scount;
ARCHITECTURE rtl OF load_scount IS 

SIGNAL load_sig : STD_LOGIC;
BEGIN

PROCESS (load_clk, load_reset)
VARIABLE clk_count : INTEGER RANGE 0 TO 7;

BEGIN
IF (load_reset = '0') THEN 

clk_count := 0;
ELSIF (load_clk'EVENT AND load_clk = '1') THEN 

clk_count := clk_count + 1;
—  generate load signal load signal
—  change elk_count value to control output 
IF (clk_count = 3) THEN

load_sig <= '1';
ELSE

load_sig <= 'O';
END IF;

END IF;
IF (load_reset = '0') THEN 

load_out <= 'O';
ELSIF (load_clk'EVENT AND load_clk = '0') THEN 

load_out <= load_sig;
END IF;

END PROCESS;
END rtl;

t iming
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Module: dvbenc_sys
Description: DVB-S encoding module integration
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Module: zero__pad
Description: MPEG packet reconditioning to add 16 null-bytes for 

Reed-Solomon encoding
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Date: March 25, 2006 ./zero_pad/fifo_ctrl.vhcf Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 14/08/2003 
-- filename: fifo Ctrl.vhd
-- description: this controls asynchronous fifo for zero-padding by 

waiting for a sync byte to start
buffering 1 packet into fifo before reading out at 
faster clock rate
when fifo is empty, reading is paused for buffering

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY fifo_ctrl IS 

PORT 
(

pad_slowclk 
pad_fastclk 
pad_reset 
pad_psyncin 
pad_dvalid 
pad_datain 
fifo_datafrom 
fi fo_usedw 
fill_light 
pad_psyncout 
fifo_wrreq 
fifo_rdreq 
fifo_datato 
pad_dataout

(7 DOWNTO 0) ; 
( 7 DOWNTO 0) ;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR 
IN STD_LOGIC_VECTOR 
IN UNSIGNED (7 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (7 DOWNTO 0) 
OUT STD LOGIC VECTOR (7 DOWNTO 0)

) ;
END fifo Ctrl;

ARCHITECTURE rtl OF fifo_ctrl IS
TYPE IN_STATE IS (IN_RESET, IN_GO);
TYPE CTRL_STATE IS (CTRL RESET, CTRL READ, CTRL STOP, CTRL FILL)

ZERO 
PAD 
SYNC 
I SYNC 
EMPTY 
MPEGPACK 
MPEGPAK 

instate 
ctrlstate 
reset_wrlatch, 
psync_insig
psync_outsig, wrreq_sig 
data_insig, data_outsig

:= " 0 0 0 0 0 0 0 0 ";ST D_LOGIC_VECTOR 
INTEGER : = 15;
STD_LOGIC_VECTOR := "01000111"; 
STD LOGIC VECTOR := "10111000";
UNSIGNED := 
UNSIGNED := 
INTEGER := 
IN_STATE; 
CTRL_STATE; 

reset rdlatch

' 0 0 1 0 1 1 1 1 ’

' 1 0 1 1 1 1 0 1 '

CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
SIGNAL 
SIGNAL 
SIGNAL 
SIGNAL 
SIGNAL 
SIGNAL 

DOWNTO 0);
SIGNAL fifo_fromsig, fifo_tosig, usedw_sig : STD_LOGIC_VECTOR(7 

downto 0);
BEGIN

-- sampling input slowclk data stream and psync 
PROCESS (pad_siowclk)
BEGIN

IF (pad_slowclk1 EVENT AND pad_slowclk = ’1 ’) THEN 
data_insig <= pad_datain; 
psync_insig <= pad_psyncin;

END IF;

rdreq_sig
STD
STD’
s t d '
s t d ’

LOGIC;
LOGIC;
LOGIC;
LOGIC V E C T O R (7
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Date: March 25, 2006 ,./zero_pad/fifo_ctrl.vhd* Project: dvbenc_burn

END PROCESS;
--sampling output fastclk data stream and psync 
PROCESS (pad_fastclk)
BEGIN

IF (pad_fastclk'EVENT AND pad_fastclk = '1') THEN 
pad_dataout <= data_outsig; 
fifo_fromsig <= fifo_datafrom;

END IF;
END PROCESS;

-- state machine for fifo to start writing after sync byte 
PROCESS (pad_slowclk, pad__reset)
BEGIN

IF (pad_reset = '0') THEN 
instate <= IN_RESET; 
fifo_wrreq <= 'O'; 
reset_wrlatch <= 'O';

ELSIF (pad_slowclk'EVENT AND pad_slowclk = '1') THEN 
CASE instate IS

WHEN IN_RESET =>
-- check if sync byte and psync in data stream 
IF (pad_psyncin = '1' AND (pad_datain = SYNC OR 

pad_datain = ISYNC)) THEN
-- start writing into fifo 
instate <= IN_GO; 
fifo_datato <= pad_datain; 
fifo_wrreq <= '1';

ELSE
instate <= IN_RESET; 
fifo_wrreq <= 'O'; 
fifo_datato <= ZERO;
-- load first data to set input of fifo 
IF (CONV_STD_LOGIC_VECTOR(fifo_usedw,8) = "0

0 0 0 0 0 0 0 "

AND reset_wrlatch = '0') THEN 
fifo_wrreq <= '1'; 
reset_wrlatch <= ' 1 ' ;

ELSE
fifo_wrreq <= 'O';

END IF;
END IF;

WHEN IN_GO =>
-- continue writting data until reset 
IF (pad_reset = '0') THEN 

instate <= IN_RESET;
ELSE

instate <= IN_GO;
-- write data into fifo 
fifo_datato <= pad_datain;
IF (paddvalid = '0') THEN 

fifo_wrreq <= 'O';
ELSE

fifo_wrreq <= '1' ;
END IF;

END IF;
END CASE;

END IF;
END PROCESS;

- - f i f o c o n t r o .1
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Date: March 25, 2006 . ./zero_pad/fifo_ctrl. vhd* Project: dvbenc_burn

PROCESS (pad_fastclk, pad_reset)
VARIABLE outcount : INTEGER RANGE 0 TO 255;
VARIABLE stopcount : INTEGER RANGE 0 TO 255;

BEGIN
-- generate psync
-- change outcount value to sync with sync byte 
IF (outcount = 3) THEN 

pad_psyncout <= 11';
ELSE

pad_psyncout <= 'O';
END IF;

-- State machine for F I F O  Control 
IF (pad_reset = '0') THEN

ctrlstate <= CTRL_RESET; 
reset_rdlatch <= 'O'; 
fifo_rdreq <= 'O';

ELSIF (pad_fastclk'EVENT AND pad_fastclk = '1') THEN 
CASE ctrlstate IS

WHEN CTRL_RESET =>
-- check if fifo is full 
IF (fifo_usedw = MPEGPACK) THEN 

ctrlstate <= CTRL_READ; 
fifo_rdreq <= '1';

ELSE
ctrlstate <= CTRL_RESET; 
outcount := 0; 
stopcount := 0; 
data_outsig <= ZERO;
-- load first data to set output of fifo 
IF (CONV_STD_LOGIC_VECTOR(fifo_usedw,8) = "0

0000111"
AND reset_rdlatch = '0') THEN 
fifo_rdreq <= '1'; 
reset_rdlatch <= '1';

ELSE
fifo_rdreq <= 'O';

END IF;
END IF;

WHEN CTRL_READ =>
—  check if 188 bytes are read 
IF (outcount = MPEGPAK) THEN 

ctrlstate <= CTRL_STOP; 
outcount := 0; 
fifo_rdreq <= 'O'; 
data_outsig <= fifo_datafrom;

ELSE
ctrlstate <= CTRL_READ; 
outcount := outcount + 1; 
data_outsig <= fifo_datafrom; 
fifo_rdreq <= '1';

END IF;
WHEN CTRL_STOP =>

-- check if 16 null bytes added 
IF (stopcount = PAD) THEN

-- check if fifo is near empty 
-- change empty value if required 
IF (fifo^usedw <= EMPTY) THEN 

ctrlstate<= CTRL_FILL; 
outcount := outcount + 1;

ELSE

Page 3 of 4



Date: March 25, 2006 ../zero_pad/fifo_ctrl.vhd* Project: dvbenc_burn

ctrlstate <= CTRL_READ; 
stopcount := 0; 
outcount := outcount + 1; 
data_outsig <= ZERO; 
fifo_rdreq <= '1';

END IF;
ELSE

ctrlstate <= CTRL_STOP; 
data_outsig <= ZERO; 
fifo_rdreq <= 'O'; 
stopcount := stopcount + 1; 
outcount := 0;

END IF;
WHEN CTRL_FILL =>

-- check if 188 null bytes are read 
-- while fifo is refilled 
IF (outcount = MPEGPAK) THEN 

ctrlstate <= CTRL_STOP; 
outcount := 0; 
fifo_rdreq <= 'O'; 
fill_light <= 'O';

ELSE
fill_light <= '1'; 
ctrlstate <= CTRL_FILL; 
outcount := outcount + 1; 
stopcount := 0; 
fifo_rdreq <= 'O';
—  output sync byte at start of packet
—  output null bytes for the rest of packet 
IF (outcount = 2) THEN

data_outsig <= "01000111";
ELSE

data_outsig <= "10111011";
END IF;

END IF;
END CASE;

END IF;
END PROCESS;

END rtl;
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Module: mux_ad
Description: SYNC byte inversion



Date: March 23, 2006 ../mux ad/mux ad.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 10/05/2002 
-- filename: mux ad.vhd
-- description: this inverts value of a sync byte after every 7 
-- 31/07/2002 : input interface re-examined 
-- 26/05/2004 : new simple design with enable switch.

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY mux_ad IS 

PORT 
(

mux_clk 
mux_psync 
mux_reset 
mux_en 
mux_in 
mux_syncout 
mux_out

) ;
END mux_ad;
ARCHITECTURE synth 

SIGNAL psync_si 
SIGNAL en_insig 
SIGNAL out_sig 
CONSTANT SYNC 
CONSTANT ISYNC

BEGIN
-- count packet 
PROCESS (mux_cl
VARIABLE pack_count : INTEGER RANGE 0 TO 7;
BEGIN

IF (mux_en = '0') THEN
out_sig <= en_insig;

ELSIF (mux_clk'EVENT AND mux_clk = ’I 1) THEN 
IF (mux_reset = '0') THEN 

pack_count : = 0;
ELSIF (mux_psync = '1' AND mux_in = SYNC) THEN

IF (pack_count = 0) THEN
-- output inverted sync 
pack_count := pack_count + 1; 
out_sig <= ISYNC;

ELSE
pack_count := pack_count + 1; 
out_sig <= mux_in;

END IF;
ELSE

out_sig <= mux_in;
END IF;

END IF;
END PROCESS;
-- samples input and output 
PROCESS (mux_clk, mux_reset)
BEGIN

IF (mux reset = '0') THEN

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR(7 DOWNTO 0), 
OUT STD_LOGIC;
OUT STD LOGIC V E C T O R (7 DOWNTO 0'

OF mux ad IS
STD_LOGIC;
STD_LOGIC_VECTOR(7 DOWNTO 0); 
STD_LOGIC_VECTOR(7 DOWNTO 0); 
STD_LOGIC_VECTOR := ”01000111' 
STD LOGIC VECTOR := "1011.1000'

s, output isync after every 7 packet, 
k, mux_en, mux_in, en insig)
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Date: March 23, 2006 ./mux ad/mux ad.vhd Project: dvbenc_burn

mux_out <= "00000000";
ELSIF (mux_clk'EVENT AND mux_clk = '1') THEN 

en_insig <= mux_in; 
psync_sig <= mux_psync; 
mux_out <= out_sig; 
mux_syncout <= psync_sig;

END IF;
END PROCESS;

END synth;
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Module: randomizer
Description: Randomization of MPEG packets
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Date: March 23, 2006 ./randomizer/rand Ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 17/11/2003 
-- filename: randomizer.vhd
-- description: this controls the workings of randomiser 

prbs_ld reloads the prbs generator 
rand_en for on/off .randomisation 
bitclk_ctrl start/pause prbs generation 

-- Revised 15/06/2004: rand_enable added.
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY rand_ctrl IS 

PORT 
(

randctrl_psync
rand_byteclk
rand_bitclk
rand_enable
randctrl_datain
prbs_ld
rand_en
bitclk_ctrl
randctrl_dataout

) ;
END rand Ctrl;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR 
OUT STD_LOGIC,
OUT STD_LOGIC 
OUT STD_LOGIC,
OUT STD LOGIC VECTOR

7 DOWNTO 0);

(7 DOWNTO 0)

ARCHITECTURE synth OF rand C tr l IS
CONSTANT ISYNC 
CONSTANT SYNC 
SIGNAL datain_sig 
SIGNAL psync_sig 
SIGNAL randctrl state

std_logic_vector 
std_logic_vector 
STD_LOGIC_VECTOR 
STD_LOGIC;
STD LOGIC VECTOR

(7
” 1 0 1 1 1 0 0 0 ' 

"010001111 
DOWNTO 0),

(1 DOWNTO 0)
BEGIN

-- sampling data and psync signal at rising edge 
PROCESS (rand_byteclk)
BEGIN

IF (rand_byteclk'EVENT AND rand_byteclk = '1') THEN 
datain_sig <= randctrl_datain; 
psync_sig <= randctrl_psync;

END IF;
END PROCESS;

-- control for randomiser
PROCESS (rand_byteclk, rand_enable)
BEGIN

randctrl_dataout <= datain_sig;
IF (rand_enable = '0') THEN 

prbs_ld <= 'O'; 
rand_en <= '0';

ELSIF (rand_byteclk'EVENT AND rand_byteclk = '1') THEN 
IF (datain_sig = ISYNC AND psync_sig = '1') THEN 

prbs_ld <= '11; 
rand_en <= 'O';

ELSIF (datain_sig = SYNC AND psync_sig = '1') THEN 
prbs_ld <= 'O'; 
rand_en <= 'O';

ELSE
prbs_ld <= '0'; 
rand en <= '1';

Page 1 of 2



Date: March 23, 2006 ../randomizer/rand_ctrl.vhd Project: dvbenc_burn

END IF;
END IF;

END PROCESS;

-- additional control to accomodate additional 16 rs-bytes 
PROCESS (rand_bitclk)

VARIABLE prbs_count : INTEGER RANGE 0 TO 204 7;
BEGIN

IF (rand_bitclk'EVENT AND rand_bitclk = ’1') THEN 
IF (psync_sig = '1') THEN 

prbs_count := 0; 
bitclk_ctrl <= '1';

ELSIF (prbs_count = 1496) THEN
-- pause randomisation during 16 rs-byt.es 
bitclk_ctrl <= 'O'; 
prbs_count := 0;

ELSE
prbs_count := prbs_count + 1;

END IF;
END IF;

END PROCESS;
END synth;
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Date: March 23, 2006 ../par_ser8/par_ser8.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 24/03/2003 
-- filename: par serB.vhd
-- description: this is a 8-bit parallel-serial converter 

P_Sload is 1 to load codeword
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY par_ser8 IS 

PORT 
(

P_Sclk
P_Sclr
P_Sload
P_Sin
P_Sout

) ;
END par ser8;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR(7 DOWNTO 0); 
OUT STD LOGIC

ARCHITECTURE rtl OF par_ser8 IS
SIGNAL in_sig : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (P_Sclk, in_sig, P_Sclr)
BEGIN

P_Sout <= in_sig(7);
IF (P_Sclr = '0') THEN

in_sig <= "00 000000";
ELSE

IF (P_Sclk1 EVENT AND P_Sclk = '1') THEN 
I.F (P_Sload = ' 1 ' ) THEN

-- load codeword 
in_sig <= P_Sin;

ELSE
in_sig(7 downto 1) <= in_sig(6 downto 0); 

END IF;
END IF;

END IF;
END PROCESS;

END rtl;
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Date: March 23, 2006 ./ser_par8/ser_par8.vhd Project: dvbenc_bum

-- author: kaohsiung chuah 
-- date: 21/05/2003 
-- filename: ser_par8.vhd
-- description: this is a 8-bit serial-parallel converter 

S_Pbitclk connects to bit-rate clock 
A_Pbyteclk connects to byte-rate clock

LIBRARY ieee;
USE i eee.std_logic_l164.ALL;
ENTITY ser_par8 IS 

PORT 
(

S_Pbitclk 
S_Pclr 
S_Pin
S_Pbyteclk 
S_Pout

) ;
END ser_par8;

ARCHITECTURE rtl OF ser_par8 IS
SIGNAL in_sig : STD_LOGIC;
SIGNAL outsig : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL S_Poutsig : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (S_Pbitclk, S_Pbyteclk, S_Pclr)
BEGIN

IF (S_Pclr = '0') THEN 
outsig <= "0000000";

ELSIF (S_Pbitclk'EVENT AND S_Pbitclk = '1') THEN 
in_sig <= S_Pin;
-- shift in serial bit 
outsig (0) <= in_sig;
outsig (6 downto 1) <= outsig (5 downto 0);

END IF;
IF (S_Pbyteclk'EVENT AND S_Pbyteclk = '1 *) THEN 

-- output codeword 
S_Pout(7 downto 1) <= outsig;
S_Pout(0) <= in_sig;

END IF;
END PROCESS;

END rtl;

IN  STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

Page 1 of 1



Module: rsenc
Description: Reed-Solomon (204,188) encoding
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Date: March 23, 2006 ../enabler/enabler.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 24/06/2004*
-- filename: enabler.vhd
-- description: this enables a functional module to switch on/off 

when en_in is 0 module is bypassed, 
when en_in is 1 module is in operation. 
en_syncin,en_datain input codeword 
en syncenin,en dataenin input codeword to module 
en syncout,en dataout output cordword 
en_syncenout,en_dataenout output processed codeword 
from module

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY enabler IS 

PORT 
(

en_in 
en_clk 
en_syncin 
en_syncenout 
en_datain 
en_dataenout 
en_syncout 
en_syncenin 
en_dataout 
en_dataenin

) ;
END enabler;
ARCHITECTURE synth OF enabler IS
BEGIN

PROCESS (en_clk, en_in)
BEGIN

IF (en_clk'EVENT AND en_clk = * 1 *) THEN
IF (en_in = '0') THEN

-- bypass process, direct input/ouput 
en_dataout <= en_datain; 
en_syncout <= en_syncin; 
en_dataenin <= "00000000"; 
en_syncenin <= 'O';

ELSE
-- enable process, input/output to/from module 
en_dataout <= en_dataenout; 
en_syncout <= en_syncenout; 
en_dataenin <= en_datain; 
en_syncenin <= en_syncin;

END IF;
END IF;

END PROCESS;
END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (7 DOWNTO 0); 
OUT STD LOGIC VECTOR (7 DOWNTO 0)
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-- author: kaohsiung chuah
-- date: 29/03/200 4
-- filename: int__ctrl.vhd
-- description: this controls the interleaver by 

intctrl_in inputs the codewords 
■ -- f0_in -> fll_in inputs codewords from fifos

fl_en -> fll_en enables the fifos 
fl_out -> fll_out outputs codewords to fifos 
intctrl out outputs interleaved codewords 
state machine waits for psync to initiate 
state machine changes states in at every clock cycle 
at each state codewords are sent to and from fifo

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY int_ctrl IS 

PORT 
(

intctrl elk IN STD LOGIC;
intctrl clr IN STD LOGIC;
intctrl syncin IN STD LOGIC;
intctrl in IN STD LOGIC VECTOR 7 DOWNTO 0)
f0 in IN STD LOGIC VECTOR 7 DOWNTO 0)
fl_in IN STD LOGIC VECTOR 7 DOWNTO 0)
f2 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f3 in IN STD_LOGIC_VECTOR 7 DOWNTO 0)
f 4_in IN STD LOGIC VECTOR 7 DOWNTO 0)
f5 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f6 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f7 in IN STD_LOGIC_VECTOR 7 DOWNTO 0)
f8 in IN STD LOGIC VECTOR 7 DOWNTO 0)
f9 in IN STD_LOGIC VECTOR 7 DOWNTO 0)
flO in IN STD LOGIC VECTOR 7 DOWNTO 0)
fll_in IN STD LOGIC VECTOR 7 DOWNTO 0)
f 1 en OUT STD LOGIC
f2 en OUT STD LOGIC
f3 en OUT STD LOGIC
f4 en OUT STD LOGIC
f5 en OUT STD LOGIC
f6 en OUT STD LOGIC
f7 en OUT STD LOGIC
f8 en OUT STD LOGIC
f9 en OUT STD LOGIC
f 10 en OUT STD LOGIC
f 11 en OUT STD LOGIC
f0 out OUT STD LOGIC VECTOR (7 DOWNTO 0)
f 1 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f2 out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
f3 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f4 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f5 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f6 out OUT STD LOGIC’’VECTOR (7 DOWNTO 0)
f7 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
f8 out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
f9 out OUT STD LOGIC’VECTOR (7 DOWNTO 0)
flO out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
fll out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)
intctrl out OUT STD LOGIC’’v e c t o r (7 DOWNTO 0)

) ;
END int Ctrl;
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ARCHITECTURE synth OF int_ctrl IS
TYPE STATE_TYPE IS (RESET, INIT, ZERO, ONE, TWO, THREE, FOUR, FI

VE,
SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN); 

STATE_TYPE;
STD_LOGIC_VECTOR (7 DOWNTO 0); 
STD_LOGIC_VECTOR (7 DOWNTO 0); 
STD_LOGIC;
STD LOGIC;

SIGNAL intstate 
SIGNAL in_sig 
SIGNAL get_sig 
SIGNAL get_sync 
SIGNAL clrlatch 

BEGIN
-- Sampling input word
PROCESS (intctrl_clk, intctrl_clr)
BEGIN

IF (intctrl_clr = '0') THEN 
get_sig <= "00000000";

ELSIF (intctrl_clk'EVENT AND intctrl_clk = '1') 
get_sync <= intctrl_syncin; 
get_sig <= intctrl_in; 
in_sig <= get_sig;

END IF;
END PROCESS;

THEN

-- State machine for Interleaver Control
-- 12 states for 12 branch + reset and initiate
PROCESS (intctrl_clk, intctrl_clr)
BEGIN

IF (intctrl_clr = '0') THEN 
intstate <= RESET; 
clrlatch <= 'O';

ELSIF (intctrl__clk'EVENT and intctrl_clk = '1') THEN 
CASE intstate IS 

WHEN RESET =>
intstate <= INIT;

WHEN INIT =>
IF (get_sync = '1' AND (get_sig = "01000111" OR 

get_sig = "10111000")) THEN
intstate <= ZERO;

ELSE
intstate <= INIT;
IF (clrlatch = '0') THEN 

clrlatch <= '1';
END IF;

END IF;
WHEN ZERO =>

intstate <= ONE;
WHEN ONE =>

intstate <= TWO;
WHEN TWO =>

intstate <= THREE
WHEN THREE =>

intstate <= FOUR;
WHEN FOUR =>

intstate <= FIVE;
WHEN FIVE =>

intstate <= SIX;
WHEN SIX =>

intstate <= SEVEN
WHEN SEVEN =>

intstate <= EIGHT
WHEN EIGHT =>
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intstate <= NINE;
WHEN NINE =>

intstate <= TEN;
WHEN TEN =>

intstate <= ELEVEN;
WHEN ELEVEN =>

intstate <= ZERO;
END CASE;

END IF;
END PROCESS;
-- sen d enabl e signal to cor responding f i f o
fl en <= ' 1 ' WHEN (intstate = ONE) ELSE •O’;
f 2 en <= ' 1 ' WHEN (intstate = TWO) ELSE ' 0 ' ;
f 3 en <= ' 1 ' WHEN intstate = THREE ELSE '0' ;
f 4 en <= ' 1 ' WHEN intstate = FOUR ELSE •O';
f 5 en <= ' 1 ' WHEN intstate = FIVE ELSE •O';
f 6 en <= ' 1' WHEN intstate = SIX ELSE 'O';
f 7 en <= ' 1 ' WHEN intstate = SEVEN ELSE •O';
f 8 en <= ' 1 ' WHEN intstate = EIGHT ELSE ' O' ;
f 9 en <= ' 1' WHEN intstate = NINE ELSE •O';
f 10 en <= ' 1 ' WHEN intstate = TEN ELSE 'O’;
f 11 en <= ' 1' WHEN intstate = ELEVEN ELSE '0
-- send input codeword to corresponding fifo
fO out <= in sig WHEN intstate - ZERO ELSE "00000000"
fl out <= in sig WHEN intstate = ONE ELSE "00000000";
f 2 out <= in sig WHEN intstate = TWO ELSE "00000000";
f 3 out <= in sig WHEN intstate = THREE ELSE "00000000
f 4 out <= in sig WHEN intstate = FOUR ELSE "00000000"
f 5 out <= in sig WHEN intstate = FIVE ELSE "00000000"
f 6 out <= in sig WHEN intstate = SIX ELSE "00000000";
f l out <= in sig WHEN intstate = SEVEN ELSE "00000000
f 8 out <= in sig WHEN intstate = EIGHT ELSE "00000000
f 9 out <= in sig WHEN intstate = NINE ELSE "00000000"
flO out <=: in_sig WHEN intstate = TEN ELSE "00000000"
f11 out <= in_sig WHEN intstate = ELEVEN ELSE "00000000";
-- interleaved output from fifos at corresponding state 
WITH intstate SELECT

intctrl_out <= f0_in WHEN ZERO, 
fl_in WHEN ONE, 
f2_in WHEN TWO, 
f3_in WHEN THREE, 
f4_in WHEN FOUR, 
f5_in WHEN FIVE, 
f6_in WHEN SIX, 
f7_in WHEN SEVEN, 
f8_in WHEN EIGHT, 
f9_in WHEN NINE, 
f10_in WHEN TEN, 
f1l_in WHEN ELEVEN,
"00000000" WHEN OTHERS;

END synth;
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—  author: kaohsiung chtaah 
-- date: 01/04/2004
-- filename: flctrl.vhd
—  description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY flctrl IS

PORT
(

fl_clk 
f l_en 
fl_clr 
fl_usedw 
fl_wrreq 
fl_rdreq 
fl_aclr

) ;
END flctrl;
ARCHITECTURE synth OF flctrl IS
BEGIN

PROCESS (fl_clr, fl_en, fl_usedw)
BEGIN

IF (fl_clr = '0') THEN 
fl_aclr <= '1'; 
fl_rdreq <= 'O'; 
fl_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(fl^usedw,5) >= "10000") THEN 
-- perform as shift register 
fl_rdreq <= fl_en; 
fl_wrreq <= fl_en; 
fl_aclr <= 'O';

ELSE
-- buffering fifo 
fl_wrreq <= fl_en; 
fl_rdreq <= 'O'; 
fl_aclr <= '01;

END IF;
END PROCESS;

END synth;

I N  STD_LOGIC;
I N  STD_LOGIC;
I N  STD_LOGIC;
I N  UNSIGNED (4 D O W N T O  0); 
O U T  STD_LOGIC;
O U T  STD_LOGIC;
O U T  STD LOGIC
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-- author: kaohsiung chuah 
-- date: 01/04/2004 
-- filename: f2ctrl.vhd
-- description: this controls fifo to perform as shift register

by buffering fifo until required length
then allow fifo to read and write at the same time
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL; 
USE ieee.std_logic_arith.ALL;
ENTITY f2ctrl IS 

PORT 
(

);
END f2ctrl;
ARCHITECTURE synth OF f2ctrl IS 
BEGIN

PROCESS (f2_clr, f2_en, f2_usedw)
BEGIN

IF (f2_clr = '0') THEN 
f2_aclr <= ' 1 ' ; 
f2_rdreq <= 'O'; 
f2_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f2_usedw,6) >= "100001") THEN 
-- perform as shift register 
f2_rdreq <= f2_en; 
f2_wrreq <= f2_en; 
f2_aclr <= 'O';

ELSE
-- buffering fifo 
f2_wrreq <= f2_en; 
f2_rdreq <= 'O'; 
f2 aclr <= 'O';

f2_clk 
f 2_en 
f2 clr

IN STD_LOGIC 
IN STD_LOGIC 
IN STD LOGIC

f2_usedw 
f2_wrreq 
f2_rdreq 
f2 aclr

IN UNSIGNED (5 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC

END IF; 
END PROCESS; 

END synth;
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-- author: kaohsiung chuah
-- date: 01/04/2004'
-- filename: f3ctrl.vhd
-- description: this controls fifo to perform as shift register 

by buffering fifo until required length 
f -- then allow fifo to read and write at the same time

to function as shift register
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f3ctrl IS

PORT
(

f3_clk 
f 3_en 
f3_clr 
f3_usedw 
f3_wrreq 
f3_rdreq 
f3_aclr

) ;
END f3ctrl;
ARCHITECTURE synth OF f3ctrl IS
BEGIN

PROCESS (f3_clr, f3_en, f3_usedw)
BEGIN

IF (f3_clr = '0') THEN 
f3_aclr <= '1'; 
f3_rdreq <= ' 0 ' ; 
f3_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f3_usedw,6) >= "110010") THEN 
-- perform as shift register 
f3_rdreq <= f3_en; 
f3_wrreq <= f3_en; 
f3_aclr <= 'O';

ELSE
-- buffering fifo 
f3_wrreq <= f3_en; 
f3_rdreq <= 10'; 
f3_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (5 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f4ctrl.vhd
-- description: this controls fifo to perform as shift register 

by buffering fifo until required length, 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY f4ctrl IS

PORT
(

f4_clk 
f 4_en 
f 4_clr 
f4_usedw 
f4_wrreq 
f4_rdreq 
f4_aclr

) ;
END f4ctrl;
ARCHITECTURE synth OF f4ctrl IS
BEGIN

PROCESS (f4_clr, f4_en, f4_usedw)
BEGIN

IF ( f4_clr = '0') THEN 
f4_aclr <= ' 1 ' ; 
f4_rdreq <= 'O'; 
f4_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC__VECTOR(f4_usedw,7) >= "1000011") THEN
-- perform as shift register 
f4_rdreq <= f4_en; 
f4_wrreq <= f4_en; 
f4_aclr <= 'O';

ELSE
-- buffering fifo 
f4_wrreq <= f4_en; 
f4_rdreq <= 'O'; 
f4_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 01/04/2004'
-- filename: fSctrl.vhd
—  description: this controls fifo to perform as shift register 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f5ctrl IS

PORT
(

f5_clk 
f 5_en 
f5_clr 
f5_usedw 
f5_wrreq 
f5_rdreq 
f5_aclr

) ;
END f5ctrl;

ARCHITECTURE synth OF f5ctrl IS
BEGIN

PROCESS (f5_clr, f5_en, f5_usedw)
BEGIN

IF (f5_clr = '0') THEN 
f5_aclr <= ' 1 ' ; 
f5_rdreq <= 'O'; 
f5__wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f5_usedw,7) >= "1010100") THEN
-- perform as shift register 
f5_rdreq <= f5_en; 
f5_wrreq <= f5_en; 
f5_aclr <= 'O';

ELSE
- - bu f f e .r i ng f i f o 
f5_wrreq <= f5_en; 
f5_rdreq <= 'O'; 
f5_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD__LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f6ct.rl.vhd
-- description: this controls fifo to perform as shift register 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f6ctrl IS

PORT
(

f 6_clk 
f 6_en 
f 6_clr 
f 6_usedw 
f 6_wrreq 
f 6_rdreq 
f 6_aclr

) ;
END f6ctr1;
ARCHITECTURE synth OF f6ctrl IS
BEGIN

PROCESS (f6_clr, f6_en, f6_usedw)
BEGIN

IF (f 6_clr = '0') THEN 
f6_aclr <= '11; 
f6_rdreq <= 'O'; 
f6_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f6_usedw,7) >= "1100101") THEN 
-- perform as shift register 
f6_rdreq <= f6_en; 
f6_wrreq <= f6_en; 
f6_aclr <= 'O';

ELSE
-- buffering fifo 
f6_wrreq <= f6_en; 
f6_rdreq <= 'O'; 
f6_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f7ct.rl.vhd
—  description: this controls fifo to perform as shift register 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f7ctrl IS

PORT
(

f7_clk 
f 7_en 
f7_clr 
f7_usedw 
f7_wrreq 
f7_rdreq 
f7_aclr

) ;
END f7ctrl;
ARCHITECTURE synth OF f7ctrl IS
BEGIN

PROCESS (f7_clr, f7_en, f7_usedw)
BEGIN

IF (f7_clr = '0') THEN 
f7_aclr <= ' 1 ' ; 
f7_rdreq <= 'O'; 
f7_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f7_usedw,7) >= "1110110") THEN 
-- perform as shift register 
f7_rdreq <= f7_en; 
f7_wrreq <= f7_en; 
f7_aclr <= '0';

ELSE
-- buffering fifo 
f7_wrreq <= f7_en; 
f7_rdreq <= 'O'; 
f7_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (6 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: fSctrl.vhd
—  description: this controls fifo to perform as shift regi ster 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f8ctrl IS

PORT
(

f8_clk 
f 8_en 
f8_clr 
f8_usedw 
f8_wrreq 
f8_rdreq 
f8_aclr

) ;
END f8ctrl;
ARCHITECTURE synth OF f8ctrl IS
BEGIN

PROCESS (f8_clr, f8_en, f8_usedw)
BEGIN

IF (f8_clr = '0') THEN 
f8_aclr <= '1'; 
f8_rdreq <= ' 0 ' ; 
f8_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f8_usedw,8) >= "10000111") THEN 
-- performing as shift register 
f8_rdreq <= f8_en; 
f8_wrreq <= f8_en; 
f8_aclr <= '0';

ELSE
-- buffering fifo 
f8_wrreq <= f8_en; 
f8_rdreq <= 'O'; 
f8_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 01/04/2004
-- filename: f'Octrl.vhd
-- description: this controls fifo to perform as shift register 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic arith.ALL;
ENTITY f9ctrl IS

PORT
(

f9_clk 
f 9_en 
f 9_clr 
f9_usedw 
f9_wrreq 
f 9_rdreq 
f9_aclr

) ;
END f9ctrl;
ARCHITECTURE synth OF f9ctrl IS
BEGIN

PROCESS (f9_clr, f9_en, f9_usedw)
BEGIN

IF (f9_clr = '0') THEN 
f9_aclr <= '1'; 
f9_rdreq <= 'O'; 
f9_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f9_usedw,8) >= "10011000") THEN 
-- performing as shift register 
f9_rdreq <= f9_en; 
f9_wrreq <= f9_en; 
f9_aclr <= 'O';

ELSE
-- buffering fifo 
f9_wrreq <= f9_en; 
f 9_rdreq <= 'O'; 
f9_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD LOGIC
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-- author: kaohsiung chuah 
-- date: 01/04/2004 
-- filename: flOctrl.vhd
—  description: this controls fifo to perform as shift register 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY f1 Octrl IS 

PORT 
(

f10_clk 
f10_en 
f10_clr 
f10_usedw 
f10_wrreq 
f10_rdreq 
f10_aclr

) ;
END flOctrl;
ARCHITECTURE synth OF flOctrl IS 
BEGIN

PROCESS (fl0_clr, fl0_en, fl0_usedw)
BEGIN

IF (f10_clr = '0') THEN 
f10_aclr <= '1'; 
fl0_rdreq <= 'O'; 
fl0_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(f10_usedw,8) >= "10101001") THE
N

-- performing as shift register 
fl0_rdreq <= fl0_en; 
fl0_wrreq <= fl0_en; 
f10_aclr <= '0';“

ELSE
-- buffering fifo 
fl0_wrreq <= fl0_en; 
fl0_rdreq <= 'O'; 
f10_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;

: OUT STD LOGIC
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-- author: kaohsiung chuah 
-- date: 01/04/2004’
-- filename: fllctrl.vhd
—  description: this controls fifo to perform as shift register 

by buffering fifo until required length 
then allow fifo to read and write at the same time 
to function as shift register

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY fllctrl IS 

PORT 
(

f1l_clk 
f1l_en 
f1l_clr 
fll_usedw 
f1l_wrreq 
f1l_rdreq 
f1l_aclr

) ;
END fllctrl;
ARCHITECTURE synth OF fllctrl IS 
BEGIN

PROCESS (fll_clr, fll_en, fll_usedw)
BEGIN

IF (fll_clr = ’O ’) THEN 
f1l_aclr <= '11; 
fll_rdreq <= 'O'; 
f1l_wrreq <= 'O';

ELSIF (CONV_STD_LOGIC_VECTOR(fll_usedw,8) >= "10111010") THE
N

- - perf o rming as sh .1 f t r egis t. e r 
fll_rdreq <= fll_en; 
fll_wrreq <= fll_en; 
fll_aclr <= 'O';

ELSE
-- buffering fifo 
fll_wrreq <= fll_en; 
fll_rdreq <= 'O'; 
f1l_aclr <= 'O';

END IF;
END PROCESS;

END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN UNSIGNED (7 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;

: OUT STD LOGIC
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-- author: kaohsiung chuah
-- date: 24/06/2004
-- filename: enabler.vhd
-- description: this enables a functional module to switch on/off 

when en_in is 0 module is bypassed, 
when en_in is 1 module is in operation. 
en_syncin,en_datain input codeword 
en syncenin,en dataenin input codeword to module 
en syncout,en dataout output cordword 
en_syncenout,en_dataenout output processed codeword 
from module

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY enabler IS

PORT
(

en_in 
en_clk 
en_syncin 
en_syncenout 
en_datain 
en_dataenout 
en_syncout 
en_syncenin 
en_dataout 
en_dataenin

) ;
END enabler;
ARCHITECTURE synth OF enabler IS
BEGIN

PROCESS (en_clk, en_in)
BEGIN

IF (en_clk'EVENT AND en_clk = '1 *) THEN
IF (en_in = '0') THEN

-- bypass process, direct input/ouput 
en_dataout <= en_datain; 
en_syncout <= en_syncin; 
en_dataenin <= "00000000"; 
en_syncenin <= 'O';

ELSE
-- enable process, input/output to/from module 
en_dataout <= en_dataenout; 
en_syncout <= en_syncenout; 
en_dataenin <= en_datain; 
en_syncenin <= en_syncin;

END IF;
END IF;

END PROCESS;
END synth;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (7 DOWNTO 0); 
OUT STD LOGIC VECTOR (7 DOWNTO 0)
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Module: conv_enc
Description: Convolutional encoding
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Date: March 23, 2006 ../cnv enc/cnv enc.vhd* Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 25/0 3/2 003 
-- filename: cnv enc.vhd

4 -- description: this is a convolutional encoder 
cnv_in shifts input bits
x_out and y_out are X and Y encoded output

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY cnv_enc IS 

PORT 
(

cnv_in 
cnv_clk 
cnv_clr 
x_out 
y_out

) ;
END cnv_enc;
ARCHITECTURE rtl OF cnv_enc IS

SIGNAL in_latch : STD_LOGIC_VECTOR(6 DOWNTO 0);
BEGIN

PROCESS (cnv_clk, cnv_clr)
BEGIN

IF (cnv_clr = '0') THEN
in_latch <= "0000000";

ELSE
IF (cnv_clk'EVENT AND cnv_clk = '1') THEN 

in_latch(6) <= cnv_in;
in_latch(5 downto 0) <= in_latch (6 downto 1);
-- x = 171 OCT = 1111001 BIN
x_out <= in_latch(6) XOR in_latch(5) XOR in_latch(4) 

XOR in_latch(3) XOR in_latch(0);
-- y = 133 OCT = 1011011 BIN
y_out <= in_latch(6) XOR in_latch(4) XOR in_latch(3) 

XOR in_latch(l) XOR in_latch(0);
END IF;

END IF;
END PROCESS;

END rtl;

IN std_logic; 
IN std_logic; 
IN std_logic; 
OUT std_logic; 
OUT std_logic
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Date: March 23, 2006 ../par_ser8/par_ser8.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 24/03/2003 
-- filename: par serS.vhd
-- description: this is a 8-bit parallel-serial converter 

P_Sload is 1 to load codeword
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY par_ser8 IS 

PORT 
(

P_Sclk : IN STD_LOGIC;
P_Sclr : IN STD_LOGIC;
P_Sload : IN STD_LOGIC;
P_Sin : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
P_Sout : OUT STD_LOGIC

) ;
END par_ser8;
ARCHITECTURE rtl OF par_ser8 IS

SIGNAL in_sig : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN

PROCESS (P_Sclk, in_sig, P_Sclr)
BEGIN

P_Sout <= in_sig(7);
IF (P_Sclr = '0') THEN

in_sig <= "00000000";
ELSE

IF (P_Sclk'EVENT AND P_Sclk = '1') THEN 
IF (P_Sload = '1') THEN

-- load codeword 
in_sig <= P_Sin;

ELSE
in_sig(7 downto 1) <= in_sig(6 downto 0); 

END IF;
END IF;

END IF;
END PROCESS;

END rtl;

Page 1 of 1



Module: puncture
Description: Puncturing
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Date: March 23, 2006 ,/par_ser2/par_ser2.vhd Project: dvbenc_bum

-- author: kaohsiung chuah 
-- date: 21/03/2003 

.< -- filename: par ser2.vhd
-- description: this is a 2-bit parallel-serial converter 

P_Sload is 1 to load codeword
LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY par_ser2 IS 

PORT 
(

P_Sclk 
P_Sclr 
P_Sload 
P_Sin 
P_Sout

) ;
END par_ser2;
ARCHITECTURE rtl OF par_ser2 IS

SIGNAL in_sig : STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN

PROCESS (P_Sclk, in_sig, P_Sclr)
BEGIN

P_Sout <= in_sig(0);
IF (P_Sclr = '0') THEN 

in_sig <= "00";
ELSE

IF (P_Sclk'EVENT AND P_Sclk = '1') THEN 
IF (P_Sload = '1') THEN

-- load codeword 
in_sig <= P_Sin;

ELSE
-- shift bits 
in_sig(0) <= in_sig(l);

END IF;
END IF;

END IF;
END PROCESS;

END rtl;

IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC;
IN STD_LOGIC_VECTOR(1 DOWNTO 0); 
OUT STD LOGIC
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Date: March 23, 2006 ./puncture/punc_ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 05/02/2004 
-- filename: punc_ctrl.vhd
-- description: this controls puncturing process by

punc_wrreq sending 0s to puncture bits 
punc_count to label clock cycles 
punc_load is not in use

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
USE ieee.std_logic_arith.ALL;
ENTITY punc_ctrl IS 

PORT 
(

punc_bitclk 
punc_clr 
punc_wrreq 
punc_load

) ;
END punc_ctrl;
ARCHITECTURE rtl OF punc_ctrl IS 
BEGIN

PROCESS (punc_bitclk, punc_clr)
punc_count to label clock cycles 

VARIABLE punc_count : INTEGER RANGE 0 TO 3
BEGIN

IF (punc_clr = ’O') THEN 
punc_count := 0;

ELSIF (punc_bitclk1 EVENT AND punc_bitclk = '1' 
punc_count := punc_count + 1;
IF (punc__count = 3) THEN 

punc_count := 0; 
punc_load <= '11; 
punc_wrreq <= 'O';

ELSE
punc_load <= '0'; 
punc_wrreq <='1';

END IF;
END IF;

END PROCESS;
END rtl;

IN STD_LOGIC; 
IN STD_LOGIC; 
OUT STD_LOGIC; 
OUT STD LOGIC

THEN
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Date: March 23, 2006 ../ser_par2_ctrl/ser_par2_ctrl.vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 05/02/2004 
-- filename: ser par2 ct.rl.vhd 

4 -- description: this serial-parallel converter punctures when 
S_Pctrl is 0, as it stops shifting input bits 

6 -- S_Pout load its values as I and Q
: -- bits that were not shifted into the converter is pun
ctured
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY ser_par2_ctrl 

PORT 
(

S_Pbitclk 
S_Pclr 
S_Pin 
S_Pctrl 
S_Pout

) ;
END ser_par2 Ctrl;

IS

IN
IN
IN
IN

STD_LOGIC; 
STD_LOGIC; 
STD_LOGIC; 
STD LOGIC;

OUT STD LOGIC VECTOR(1 DOWNTO 0)

ARCHITECTURE rtl OF ser_par2_ctrl IS 
SIGNAL in_sig : STD_LOGIC;
SIGNAL outsig : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
PROCESS (S_Pbitclk, S_Pctrl)
BEGIN

-- S._ Pout <= outsig;
IF (S_Pclr = '0') THEN 

outsig <= "00"; 
in_sig <= 'O';

ELSIF (S_Pctrl = '1') THEN
IF (S_Pbitclk'EVENT AND S_Pbitclk = '11) THEN 

in_sig <= S_Pin;
-- shifting .input bits 
outsig(0) <= in_sig;
outsig (1) <= S_Pin;

END IF;
ELSIF (S Petrl = '0') THEN 

IF (S_Pbitclk'EVENT AND 
S Pout load its \

S_Pout <= outsig;
END IF;

END IF;
PROCESS;

S_Pbitclk = '1
ralues as I and

) THEN

END
END
rtl;
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Date: March 23, 2006 ./selector/selector, vhd Project: dvbenc_burn

-- author: kaohsiung chuah 
-- date: 25/06/2004*
-- filename: selector.vhd
-- description: this enables bypass of puncturing process 

to switch between 1/2 and. 3/4 rate 
when sel_en is 0, X and Y is connected to I and Q 
when sel_en is 1, I and Q is punctured output

LIBRARY ieee;
USE ieee.std_logic_l164.ALL;
ENTITY selector IS 

PORT 
(

sel en IN STD LOGIC
sel Xin IN STD "l o g i c
sel _Yin IN STD "l o g i c
sel I in IN STD "l o g i c
sel Qin IN STD "l o g i c
sel lout : OUT STD LOGIC;
sel_Qout : OUT STD_LOGIC

) ;
END selector;
ARCHITECTURE synth OF selector IS 
BEGIN

PROCESS (sel_en)
BEGIN

IF (sel_en = '0') THEN
-- select X and Y input 
sel_Iout <= sel_Xin; 
sel_Qout <= sel_Yin;

ELSE
-- select punctured I and Q 
sel_Iout <= sel_Iin; 
sel_Qout <= sel_Qin;

END IF;
END PROCESS;

END synth;
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Module: dvbspisource_v2
Description: Generates DVB SPI MPEG source for testing
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Date: March 25, 2006 dvbspi_ctrl.vhd* Project: dvbspisource_v2

-- author: kaohsiung chuah 
-- date: 19/03/2004 
-- filename: dvbspi_Ctrl.vhd
-- description: this generates 188-byte mpeg packets with 

the last .1.6 nu 1.1-bytes
LIBRARY ieee;
USE ieee.std_logic_l164.all;
ENTITY dvbspi_ctrl 

PORT 
(

q
sys_clk 
data 
psync 
dvalid 
sclr 
clock

) ;
END dvbspi_ctrl;
ARCHITECTURE dvbspi_ctrl_architecture OF dvbspi Ctrl IS 

CONSTANT SYNC :
CONSTANT BYTE187 :
CONSTANT BYTE203 :
SIGNAL out_sig :
SIGNAL psync_sig :
SIGNAL zero_out :

BEGIN
clock <= sys_clk; 
out_sig <= q;
-- detect clock at 71 
PROCESS (sys_clk)
BEGIN

IF (sys_clk1 EVENT 
IF (q = SYNC) 

psync_sig 
sclr <= 'O';
--out sig <= "01000111";

ELSIF (q = BYTE187) THEN 
psync_sig <= 'O'; 
sclr <= '1';

ELSIF (q = BYTE20 3) THEN 
sclr <= 'O'; 
psync_sig <= 'O';

ELSE
psync_sig <= 'O'; 
sclr <= 'O';

END IF;

-- null-bytes flag controls 
IF (q = "00110110") THEN 

zero_out <= '1';
ELSIF (q = "01000110") THEN 

zero_out <= 'O';
ELSE

zero_out <= zero_out;
END IF;

ST D_LOGIC_VECTOR := "01000110" 
STD_LOGIC_VECTOR := "10.111010" 
STD_LOGIC_VECTOR := "11001010" 
STD__LOGIC_VECTOR (7 DOWNTO 0); 
STD_LOGIC;
STD LOGIC;

and 187, to output psync and reset

AND sys_clk = '1') THEN
THEN
< =  ' 1 ' ;

IN STD_LOGIC_VECTOR(7 downto 0); 
IN STD_LOGIC;
OUT STD_LOGIC_VECTOR(7 downto 0); 
OUT STD_LOGIC;
OUT STD_LOGIC;
OUT STD_LOGIC;
INOUT STD LOGIC

counter
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Date: March 25, 2006 dvbspi_ctrl.vhd* Project: dvbspisource_v2

END IF;
IF (sys_clk'EVENT AND sys_clk = ’O') THEN

-- un-comment this section to enable nul1-bytes 
-- data o= ”01000111";
—  IF ( zero_out = ’1 *) THEN 
-- data <• "00000000";

d v a l i d  <= ' O ' ;
—  ELSE

data <= out_sig; 
psync <= psync_sig; 
dvalid <= '1';

--END IF;
END IF;

END PROCESS;
END dvbspi_ctrl_architecture;
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