
— ,

FOR REFERENCE ONLY |

FOR REFERENCE ONLY

40 0670858 8

ProQuest Number: 10290198

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290198

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

PkD SLC

NEURAL NET ALGORITHMS
For

DYNAMICAL SYSTEMS

Y.M. CHEUNG B.Eng, M.Sc.

This thesis is submitted to the Council for National
Academic Awards in partial fulfilment of the requirements
for degree of Doctor of Philosophy.

Nottingham Polytechnic,
Department Of Computing.
July 1992.

This copy of the thesis has been supplied on condition that
anyone who consults it is understood to recognize that its
copyright rests with its author and that no quotation from
the thesis and no information derived from it may be
published without the author's prior written consent.

NEURAL NET ALGORITHMS
FOR

DYNAMICAL SYSTEMS

Y.M. Cheung

ABSTRACT

A neural net based algorithm is devised as an alternative
to traditional analogue/numerical integration. The new
algorithm consists of a multilayered neural net integrator
model inspired by the neuron organisation of the vertebrate
retina. A mixture of implicit weight setting, supervised
and unsupervised learning is employed. The convergence of
this approach proves to be fast when compared to existing
models producing comparable results.

When the model is operating in a closed loop system it
yields a consistent estimate ■ of the derivatives of
pictorial input profiles.

The mapping Of the resulting neural net models onto single
and multiprocessor systems is examined. A general framework
is formulated to permit arbitrary network definition and
easy alterations of network parameters.

A parallel processing technique for distributed memory
multiprocessor systems is devised. The parallel algorithm
yields a large reduction in processing time.

I

ACKNOWLEDGEMENTS

The author would like to thank Dr. D Al-Dabass for his
guidance and valuable advice throughout the duration of the
research work.

II

CONTENTS Page

Abstract I
Acknowledgements II
Contents III
Figures VII

CHAPTER 1 INTRODUCTION
1.0 Neural Nets 2
1.1 Basic Elements Of The Biological Brain 4
1.2 Characteristics Of Artificial Neural Nets 7
1.3 Artificial Neurons 9
1.4 Network Structures 13
1.5 Learning 16
1.6 Classification Of Models 17
1.7 The Hebbian Rule 19
1.8 Single-Layer Perceptrons 20
1.9 Multi-Layer Perceptrons 24
1.10 The Delta Rule 28
1.11 The Backpropagation Algorithm 29
1.12 The Hopfield Model 34
1.13 The Boltzmann Machine 38
1.14 Competitive Learning 40

CHAPTER 2 NEURAL NETS FOR DYNAMICAL SYSTEMS
2.0 Historical Perspective 44
2.1 Neural Nets For Control 46

2.1.1 Tracking Of Moving Objects 46
2.1.2 Dynamic Neural Controller Model 50

2.1.2.1 Robot Arm Control 53
2.1.2.2 The Pole Balancing Problem 56

2.1.3 State Estimation Of Unknown ForcesActing On Reentry Vehicles 58
2.2 Limitations 64

III

2.3 Feedback 65
2.4 The Pictorial Integration Process 66
2.5 Vertebrate Retina Structure 71

CHAPTER 3 A NEURAL NET INTEGRATOR MODEL
3.0 Basic Objectives Of The Neural Integrator Model 78
3.1 Neural Integrator Model 79
3.2 Functionality Of The Basic Net Model 83
3.3 Weight Adjustment 87

3*3.1 Bipolar Cells 87
3.3.2 Amacrine Cells 88
3.3.3 Output Of Amacrine Cells 89
3.3.4 Adaptation Algorithm 91
3.3.5 Example 92

3.4 Mapping Of Neural Nets On Computer Systems 94
3.4.1 Framework For Programming Neural Nets 96
3.4.2 Data Structures 98

3.4.2.1 NEURON Type 99
3.4.2.2 SYNAPSE Type 99
3.4.2.3 GROUP Type 101

3.5 Neural Nets Simulation Using Multiprocessor
Systems 104

3.5.1 Architecture Of A Target System 106
3.5.2 Simulation Primitives For Multiprocessor

System 110
3.5.3 A Distribution Technique 111
3.5.4 Data Structures For Multiprocessor Systems 112

CHAPTER 4 SOFTWARE IMPLEMENTATION
4.0 Components Of The Simulation Toolbox 116
4.1 Procedural Interface 117

4.1.1 Network Construction Functions 119
4.1.2 Execution Functions 120
4.1.3 Peripheral Functions 121

4.2 Construction Of Simulation 122
IV

4.2.1 A Static Mode Simulation Example 124
4.3 Neural Net Simulation Using Multiprocessor

Systems 126
4.3.1 Emulation Of The Multiprocessor

System 126
4.3.2 Processor Node Emulation 130

CHAPTER 5 SIMULATION AND PERFORMANCE EVALUATION
5.0 Training Data 136

5.0.1 Open Loop Training Data 136
5.0.2 Closed Loop Training Data 140

5.1 Open Loop Simulations 140
5.1.1 Single Layer Perceptron (Delta Rule) 140
5.1.2 Associative Memory Model 144
5.1.3 Multi-Layer Networks Using Backpropagation 147

5.1.3.1 A 3 Layer Net With Restricted
Connections 150

5.1.3.2 A 3 Layer Net With Direct
Input-Output Connections 153

5.1.3.3 A Four Layer Nets With
Restricted Connections 153

5.1.4 The Competitive Model 160
5.1.5 The Kohonen Network 163
5.1.6 The Counterpropagation Model 170
5.1.7 The New Integrator Model 177

5.2 Closed Loop Simulations 181
5.3 Speed Performance Of The Integrator Model 183
5.4 Performance Evaluation Of The Parallel Processing

Algorithm 189

CHAPTER 6 CONCLUSIONS AND FURTHER RESEARCH
6.0 Conclusions 203
6.1 Further Research 205

REFERENCES 207

V

APPENDIX
A.l Associative Memory Model 211
A.2 Backpropagation Or Generalized Delta Rule 213
B.l Data Structures For Mapping Of Arbitrary Networks 216
B.2 Source Code Listing Of Simulation Toolbox 217
C Structure Chart Of NNSim Program 234

VI

Figures Page

CHAPTER 1 INTRODUCTION
1.1 Schematic View Of A Neuron 5
1.2 Connection Junction (Synapse) 5
1.3 Model Of An Artificial Neuron 10
1.4 Common Neuron Output Functions 12
1.5 Single Layer Feed Forward Network 15
1.6 Multilayer Feed Forward Network 15
1.7 Feed-Back Network 16
1.8 A Single Perceptron 21
1.9 A Two Inputs Processing Unit 21
1.10 Geometrical Representation Of The XOR Problem 25
1.11 Decision Regions (b) Formed By Processing

Element (a) 25
1.12 Decision Regions (b) Formed By Topology (a) 27
1.13 Decision Regions (b) Formed By Topology (a) 27
1.14 Backpropagation Architecture 32
1.15 A Simple Hopfield Network 36
1.16 An Energy Function 361.17 Competitive Architecture 42

CHAPTER 2 NEURAL NETS FOR DYNAMIC SYSTEMS
2.1 Neural Net Object Tracking System 48
2.2 Convergence Of Learning 48
2.3 Specialized Learning Architecture 52
2.4 Robot Arm With 2 Degrees Of Freedom Following

An Object 54
2.5 The Pole-Cart System 57
2.6 Off-Line Learning 602.7 On-Line Learning 60
2.8 Neural Nets Based System To Estimate Unknown

Forces 622.9 Dynamic System Architecture Proposed By
[Abutaleb] 632.10(a) A General Scheme Of Feedback Control 672.10(b) Integrator To Estimate Time Derivative 672.11(a) Graphical Representation Of Feedback 692.11(b) Approximation Method Of Integral 692.12 Estimation Of Area Of An Unknown Function 702.13 Vertebrate Retina Structure 732.14 Receptive Regions Influence Firing Of
Ganglion Cell 75

CHAPTER 3 A NEURAL NET INTEGRATOR MODEL
3.1 Cascaded Neural Module 803.2 Basic Network Model 81

VII

3.3 The Neuron Model 81
3.4 Weighted Basic Network Model 84
3.5 Network Construction From Basic Model 86
3.6 The Pictorial Integration Process 93
3.7 NEURON Data Structure 100
3.8 SYNAPSE Data Structure 100
3.9 GROUP Data Structure 102
3.10 Network Representation In Software 103
3.11(a) Group By Layer 105
3.11(b) Group By Sub-dividing Layer 105
3.12 A Target Multiprocessor System 107
3.14 Data Distribution In Each Node 109
3.15 Deviation Of Memory And Transfer Of

Non-Local Data 113

CHAPTER 4 SOFTWARE IMPLEMENTATION
4.1 Generation Of Simulation Program 118
4.2 Example Simulation Code Segment 125
4.3 Memory Contents Of A Processor Node 128
4.4 Emulation Of Multiprocessor System 129
4.5 Operation Of MultiSim.exe 134

CHAPTER 5 SIMULATION AND PERFORMANCE EVALUATION
5.1 No. Of Patterns Versus Pattern Size 1385.2 Example Of Training Pair 1395.3 Error Percent Versus Training Cycle Number 143
5.4(a) Error Percent Versus Training Cycle Number 1515.4 (b) Optimum Hidden Layer Size 152
5.5(a) Error Percent Versus Training Cycle Number 154
5.5(b) Optimum Hidden Layer Size 155
5.6 Error Percent Versus Training Cycle Number 156
5.7 Error Percent Versus Training Cycle Number 158
5.8 Error Percent Versus Training Cycle Number 159
5.9 Typical Shape Of Mexican Hat Function 166
5.10 Closed Loop Operation 182
5.11 Processing Of A Constant Input 184
5.12 Processing Of A Linear Input 1855.13 Processing Of A Quadratic Input 1865.14 Processing Of A Sine Input 187
5.15 Processing Of A Exp(x/2) Input 188
5.16 Computation Speed Of The Pictorial

Integration Process 190
5.17 Size Of Net Versus Pattern Dimension 191
5.18 Speed Performance Of A Single Process 198
5.19 Speed Performance Of Parallel Processing

On A Multiprocessor System 199
6.20 Speed Performance Of Parallel Processing

On A Multiprocessor System 200
APPENDIX (C)
Structure Chart Of NNSim.exe 234-238

VIII

CHAPTER 1 INTRODUCTION

1.0 Neural Nets 2
1.1 Basic Elements Of The Biological Brain 4
1.2 Characteristics Of Artificial Neural Nets 7
1.3 Artificial Neurons 9
1.4 Network Structures 13
1.5 Learning 14
1.6 Classification Of Models 17
1.7 The Hebbian Rule 19
1.8 Single-Layer Perceptrons 20
1.9 Multi-Layer Perceptrons 24
1.10 The Delta Rule 28
1.11 The Backpropagation Algorithm 29
1.12 The Hopfield Model 34
1.13 The Boltzmann Machine 38
1.14 Competitive Learning 40

CHAPTER 1 INTRODUCTION

The accuracy limitations of analogue integration led to the
development of numerical software packages for simulating
dynamical systems during the early 1950s. The speed
limitations of numerical integration packages motivated the
development of hybrid simulators in the late 1950s and
early 1960s. In these simulators the dynamical equations
were set up on analogue integrators while parameter changes
during repeated simulation runs was supervised by digital
machines. The advent of low cost microprocessors in the
early 1970s motivated research into all digital
multiprocessor systems for simulation [Aldabass,1976].
Specialized array machines such as the AP120B were also
introduced with microprogramming facilities to speedup the
execution of given arithmetic strings. The introduction of
transputers and computing surfaces in the early 1980
provided yet another development of digital processors
suitable for computing numerical integration algorithms.

However, despite the availability of such a seemingly wide
range of computing tools no fundamentally different
approach to the traditional twin techniques of analogue and
numerical integration seems to have emerged. The relatively
recent revival of interest in neural nets provided an

1

opportunity to examine their possible utility for computing
dynamical systems problems. In particular to investigate
the capability of neural nets to perform integration, and
consequently through a feedback arrangement to extract the
derivatives of a given input trajectory.

1.0 Neural Nets

Recent progress in computer technology has resulted in
high-performance computer systems which can process
millions of instructions per second, but these 'symbolic'
computer systems are still facing extreme difficulty in
attempting to solve problems that human beings do well.
Digital computers can be programmed for intelligent tasks.
The problem is that the algorithmic solution to many
information processing tasks is generally far too complex
to be programmed. No computer can be programmed to match
human capabilities in applications involving intelligent
information processing such as to recognize, evaluate,
adapt, learn and generalize. Even if they come close to
performing any of these tasks many algorithms are still too
computationally intensive to allow high-performance
computers to find a solution in any reasonable period of
time.

2

On the other hand, computers operating in a symbolic logic
environment are much faster and more reliable at symbolic
processing than the human brain. No human being can
multiply two large numbers, calculate matrices or solve
systems of differential equations at speeds performed by
mini-computers. This indicates that better machines might
be built by incorporating some of the properties of the
biological nervous system/brain into the conventional von
Neumann architecture.

Artificial systems that mimic biological nervous systems
are commonly called Artificial Neural Networks or Neural
Nets. By their very definition neural nets are information
processing systems that have physical structures that
closely parallel those of the biological nervous systems
and are capable of solving problems that humans do well.
Unlike traditional expert systems, where knowledge is made
explicit in the form of rules, neural nets generate their
own rules by learning encounters. [Abu-mos,1986] and
[Arsenau, 1989] have shown that neural nets are capable of
solving any boolean computational problem. On the other
hand, it is likely that this may come at high cost. Neural
nets are not always the best solution for a given problem.
They can handle processes difficult for conventional
computers but performance is poor at precise computation.

3

Problems solved more effectively by the brain typically
have two characteristics [Widrow,1990]: they are generally
ill defined, and usually require an enormous amount of
processing, typical examples are image and speech
processing.

1.1 Basic Elements Of The Biological Brain

The brain is made up of a vast network of nerve cells
called neurons. There are about 1011 neurons, probably more,
in the human brain [Arbib,1989] . The structure of the brain
is highly varied from one individual to another, as well as
from one neuron to another. In fact, there is an enormous
variety of neurons in the brain, with fundamental
differences in structure, patterns of connections and the
way that neurons send and receive signals.

A neuron receives inputs from many other nerve cells, sums
the inputs and generates an output, which it then sends to
another neurons. Figure 1.1 shows the synaptic connection
between one neuron's axon and another neuron's dendrite. A
neuron consists of a cell body with a number of input
fibres called dendrites and a single long output cable-like
extension called an axon [Strange, 1989] [Callatay, 1989] .

4

Direction Of
Signal Flow h ^

Dendrites

Nerve
Terminal

Figure 1.1 Schematic View Of A Neuron

Neurotransmitter

+» SignalSignal

Receptor

Synapse

Figure 1.2 Connection Junction (Synapse)

Neurons are electrically excitable and capable of
generating electrical signals called action potentials
which are propagated down towards the end of the axon
called the nerve terminal. Propagation of the signal occurs
in one direction only, from the cell body to the nerve
terminal. The nerve terminal of the axon is used for
forming connections with the dendrites of other neurons and
the connection junction between neurons is called a
synapse.

The electrical signal generated by a cell body travels
along the axon. When it reaches the nerve terminal a
chemical, known as the neurotransmitter, is released. This
chemical crosses the connection junction, the synapse, and
interacts with specific sites called the receptors on the
other side, as illustrated in Figure 1.2. The combination
of neurotransmitter with receptor causes a change in
electrical activity on the other side which may lead to
continuation of electrical signalling in the next neuron.

There are many different neurotransmitters, but one neuron
releases the same neurotransmitter from all of its nerve
terminals. The amount of neurotransmitter released depends
on the frequency of electrical signal in the axon, thus
signalling at the synapse is in analogue form. This

6

chemical transmission of information is also believed to be
a means of storing information. Information can be stored
between the synaptic junctions. The stronger the junction
the more neurotransmitter is released for a given amplitude
of triggering electrical signal.

The effect of different neurotransmitters on the post
synaptic neuron can be either excitatory (positive) or
inhibitory (negative) so that any particular neuron
receives a mixture of positive and negative inputs. There
are many inputs each with different 'strengths' . The neuron
integrates the strengths and fires accordingly. The pattern
of input strengths is not a fixed one, but is modified with
use and this has relevance to 'learning' and 'storing'
information.

1.2 Characteristics Of Artificial Neural Nets

Neural-style systems that mimic biological nervous systems
are called Artificial Neural Nets. The inspiration for this
approach came from the study of the structure of brain
tissue rather than to emulate the workings of the brain.
Consequently, a neural net is made of many simple
processing elements, commonly refereed to as artificial

7

neurons or simply neurons, which interact in parallel by
means of the signals passing between them. Research in the
field is of a very experimental nature, due to the
mathematical complexity of these parallel non-linear
systems. In general the approach taken is to obtain
possible guidance from analytical methods, and then to
conduct simulation experiments with software on
conventional digital computers. Due to speed limitations,
networks are usually kept relatively small. This vastly
oversimplifies the structure of the real biological
systems. However, even with small size networks some
surprisingly difficult problems have been tackled. Computer
based neural networks, for instance, have learned to speak
[Sejnowk,1987], to detect speech [Newman,1990], to
recognize handwriting [Fukushi,1988] [Yamada,1989]
[lee,1988], to detect undersea objects [Gorman,1988] and
many others listed in the references.

Neural network computer systems possess several useful
features. First, the neural network is inherently parallel
in nature. A parallel architecture provides a dramatic
speed advantage over a conventional computer. Information
is not stored in specific memory locations, but distributed
over the interconnections of the network. Thus, the
computation time for any particular problem, whether

8

complex or small, would be the same. Second, massive
parallelism means that the system is robust, fault-tolerant
and functionally persistent, the loss of a few neurons and
connections has negligible effect on the overall
performance. Third, they are flexible, when confronted with
a novel situation they will attempt to generalize, at worse
returning a 'best fit' solution. Fourth, they have learning
capabilities and can adapt to changes. Fifth, since
conventional programming is not necessary, there is no
requirement to completely understand the domain, thus, can
be employed in poorly understood or experimental
situations.

1.3 Artificial Neurons

Artificial neurons are the basic processing element of
artificial networks, see Figure 1.3. It consists of three
main components: a set of input paths, a transfer function
block and a single output path. These three components are
analogues to the dendrites (inputs), the cell body and the
axon (output) of a biological neuron.

The set of input paths provide connection from other
neurons. Each input is associated with a weight factor

9

[Neuron j]

Summation
W(1J) Unit

1(1)

I (2)

I (3)

I(i-1)

l(i)

Figure 1.3 Model Of An Artifical Neuron

W(i-1,j) \
T ransfer
Function

Block

Activation
Unit

Output

10

which determines the amount of connection strength one
neuron has on the other. The signal received by each input
is multiplied by the corresponding weight factor before
propagating to the next stage.

The transfer function block consists of two units: the
summation and the activation units. The summation unit
performs arithmetic additions with the weighted inputs and
produces an output signal. After summation, the net input
of the neuron is fed to the activation unit to produce a
new activation value. The transfer function of the
activation unit defines how the activation value is output.
In the simplest models, the activation function is simply
a linear function, Figure 1.4(a), - the weighted sum of the
neuron's external inputs. In more complicated models, non­
linear transfer function are used. The binary threshold
function, Figure 1.4(b), is the simplest; if the net inputs
are greater than some fixed level (threshold) the neuron
will output ONE, else it will output a ZERO. Sometimes, the
transfer function is a saturation type function called
Sigmoid function, Figure 1.4(c). It has high and low
saturation limits and a proportionality range in between.
This function is ZERO when the net input is a large
negative number or is ONE when the net input is a large
positive number and make a smooth transition in between.

11

(a) Linear

(b) Binary

(c) Sigmoid

Figure 1.4 Common Neuron Output Functions

12

The characteristics of an artificial neuron can be best
illustrated by the following general equation

n
Output^ - A(Weighti:)Outputi) (1.1)i-i

Outputj represents the output of a neuron, A() represents
the activation transfer function, - a function of the sum
of product of inputs: Output and the corresponding
connection strength, Wi;). The subscripts i and j represent
sending and receiving neurons respectively.

1.4 Network Structures

The behaviour of a neural network depends heavily on the
way neurons are connected. Different neural network models
have different network structures. In most models, the
individual neurons are grouped into layers so the output
from each neuron in one layer is fully interconnected with
the input of all the neurons in the next layer. Similar to
real biological systems, a neural net may include
inhibitory connections from one neuron to another. Neurons
can interact in many ways, by virtue of the manner in which
they are interconnected. Common network configuration
include: feed-forward only, feed-forward with feedback loop

13

and neurons that are sparsely connected to a few other
distant neurons.

Many early models were single layer feed-forward networks,
as shown in Figure 1.5 with the structure consisting of a
single layer of neurons, in which each input is connected
to all neurons but no output feedback. This structure has
been extended in three different ways. Firstly, network
connections can exit from neuron to neuron within a single
layer. Secondly, a network can have multiple feed-forward
layers in which neurons in a middle layer are hidden from
the external inputs and outputs of the network, see Figure
1.6. Thirdly, networks can have feed-backward connections,
Figure 1.7.

1.5 Learning

Neural nets store information by adjusting the connection
strengths, weights, between neurons. Through appropriate
adjustments, a network will be able to perform the input to
output transformation desired. The adjustment process often
refereed to as training or learning process and is governed
by a set of learning rules. These rules can be classified
into two main categories: Supervised and Unsupervised.

14

Neuron

> Outputs

Figure 1.5 Single Layer Feed Forward
Network

Inputs

Neurons

Figure 1.6 Multi-layer Feed Forward
Network

Outputs

15

Feedbacks

Inputs
Outputs

Figure 1.7 Single Layer Feed Backward
Network

16

In supervised learning, the network output is compared to
the ideal response, and any error made by the network is
used to alter the connection strengths; learning is
accomplished by changing the weights so as to reduce the
errors. Rules in this category require a priori knowledge
of what the result should be. Unsupervised learning differs
in that the network must find the error and correct the
network connections itself without making any comparison
with ideal results.

Learning rules vary among different models. The most
commonly known include: Hebbs Rule, Delta Rule,
Backpropagation, Hopfield (Associative Memory), Boltzmann
Machine, Competitive Learning.

1.6 Classification Of Models

Neural network models are distinguished by their learning
strategies and the interconnection structure in which these
strategies are embedded. The models described in this
section can be grouped into four different classes
[Yoon, 1989]: correlational, competitive, error correction
and stochastic.

17

In the 'correlational class', the interconnection strengths
(weights) between neurons are adjusted according to the
Hebbian Rule [Hebb,1949] in which the change in strength
between two neurons is according to the output of the two
neurons. This method is used in many models, both in
supervised and unsupervised learning.

Algorithms in the 'competitive class' are used in
unsupervised learning. The output neurons compete until one
dominates and the weights (connection strengths) that are
connected to the dominant output are altered. The weights
are changed according to the Hebbian Rule or a modification
thereof.

Algorithms in the 'error correction' class are used in
supervised learning. They are used in a variety of models,
including the Perception [Rosenbl, 1962] and Back-
propagation [Rumelbh,1986(a)], [Rumbelbh,198 6(b)] described
later. Errors are computed from the difference between the
network actual outputs and the desired outputs specified
externally. The weights are then altered in an attempt to
minimize the errors.

Algorithms in the 'stochastic class' use a statistical
approach to train a network. Weights are adjusted in order

18

to minimize a statistical quantity similar to the
thermodynamic function. The Boltzman Machine [Hinton,1985]
is one such model in this category.

1.7 The Hebbian Rule

The Hebbian Rule [Hebb,1949] is an unsupervised learning
algorithm. Perhaps because it is a source of many later
models, it is still one of the most commonly known learning
algorithms. The original Hebbian Rule was not
mathematically expressed, but was presented as a statement.
The Hebbian Rule states that "When an axon of a nerve cell
A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such
that A's efficiency, as one of the cells firing B, is
increased". The following equation, proposed by [Sutton,
1981], is a widely accepted mathematical approximation of
the Hebbian Rule

w£{ t + 1) - wi(t) + c x1U) r (t) (1 . 2)

where W^t + l) and W±(t) represent the next and present
weights between a signalling neuron XL and the receiving

19

neuron Y, C is a positive constant determining the rate of
learning.

1.8 Single-layer Perceptrons

The Perceptron [Minsky,1969] is one of the first simple
networks with the ability to recognise simple patterns and
was originally proposed by [Rosenbl,1962]. It is
essentially a single-layer network with feed-forward
interconnections, as illustrated in Figure 1.8.

In this simplified version, the single, neuron like
processing element computes a weighted sum of the inputs
and passes the result through a binary valued nonlinearity,
thus providing two possible output values (generally +1 and
-1) . Each of the two possible outputs corresponds to a
different classification response. The properties of this
model can be expressed mathematically as :-

<1,3)i-1

where Yj is the partial output of the processing element
which formed a weighted sum of its inputs XL , W1;J is the
weight for the i-th inputs to the j-th processing element.

20

ON/OFF
Device Weight

Summing
Device

Partial
Output

+1 —

- t

Output

Threshold
Device

Figure 1.8 A Single Perceptron

W1

X1

W2

\ Summer

1

I +1 r Output

J
X2

Figure 1.9 A Two Inputs Processing
Unit

21

The partial result Y is then fed to a threshold device, T,
so that:-

+ 1 if Yj Z T
-1 if Yj < T

(1.4)

Connection weights and the threshold in a Perceptron are
typically adapted using the Perceptron Convergence Theorem
[Rosenbl,1962].

The output of the processing element is computed by
equations (1.4) and (1.5) . The result is compared with the
desired response (or target). If the output Oj is correct,
then no change is made to the connection weights. If the
output Oj is incorrect then the threshold and the weights
are modified.

Mathematically, this amounts to the following: the change
in the threshold, T, is given by

where p indexes the particular pattern being presented, tp
is the target value indicating the correct classification
of that input pattern, and 8P is the difference between the
target and the actual output of the network. Finally the

A r - - (tp - Op) - -6p (1.5)

22

change in weights, AWi;) are given by:-

Awdj - n (tp - op) x± - 6 ^ (1 .6)

where X± is the input value propagating through the
connections and T| is the rate of weight change.

In spite of it's simplicity, the Perceptron Convergence
Theorem guarantees that, if a Perceptron network could
learn to correctly classify a set of patterns, it could do
so within a finite number of iterations. In addition, if
more than one element is used, the Perceptron. Convergence
Theorem can be applied independently to each of a set of
processing element. However, this theorem will find the
correct mapping from a set of inputs onto a set of outputs,
only if the input classes are linearly separable. This is
the major problem of the Perceptron Convergence Theorem.
The classic simple example of a function that cannot be
computed by the Single-layer Perceptron is the exclusive-OR
logic function. Consider a two input processing element, as
illustrated in Figure 1.9, the partial output, Y, can be
expressed, in terms of weights and inputs as :-

By considering the relationship between and X2 equation

(1.7)

23

(1.7) can be arranged so that X2 is a function of X2

IV, - X. (Ki
IV,

(1 .8)

equation (1.8) is that of a straight line. For the
exclusive-OR problem, each input can only takes on two
values (0 or 1) so there are only two corresponding points
of interest on each axis, as illustrated in Figure 1.10.
This pinpoints four points in the graph corresponding to
the four possible input patterns: (0 0), (0 1), (1 0), (1
1). The straight line, defined by equation (1.8), divides
the graph into two regions. Thus, different input patterns
can be separated by moving the line to different locations.
It is obvious that, no matter where the line is placed, it
can never separate the points which define the exclusive-Or
function.

1.9 Multi-layer Peroeptrons

These are used to overcome the limitation of Single-layer
Perceptrons. The additional layer or layers are isolated
from the external world by the input and output layers. The
properties, including differences and limitations, of the
Single-layer and Multi-layer Perceptrons are detailed in

24

X1

X2=Y/W2-X1 (W1/W2)

Format
[X1.X2]

X2

Figure 1.10 Geometrical Representation Of
The XOR Problem

Processing Decjsjon
Element Regions

Figure 1.11 Decision Regions (b) Formed
By Processing Element (a)

25

[Lippman,1987]. They distinguish Single- and Multi-layer
Perceptron using the theory of linear discriminant
functions and decision surfaces. Their discussions are
summarized as :-

1) A Single-layer Perceptron will form two decision regions
separated by a hyperplane. When a two input processing
element is used the hyperplane is a straight line, see
Figure 1.11 (a)(b).

2) In a Two-layer Perceptron, the separating regions are of
the convex open type, as illustrated in Figure 1.12. It
is obvious to see that the exclusive-OR function can be
solved by a Two-lawyer Perceptron.

3) Arbitrary closed regions can be formed by using a Three-
layer Perceptron. The complexity of the shape of the
regions is limited by the number of processing units,
see Figure 1.13.

It is clear that Multi-layer Perceptrons can overcome many
limitations of the Single-layer Perceptron. It has not been
used extensively in the past, mainly due to the lack of an
effective weight adjustment algorithm. However, it has
significantly affected the development of many later
models, especially after the introduction of the Back-

26

Processing
Element

(a)

Decision
Regions

(b)

Inputs

Figure 1.12 Decision Regions (b) Formed
By Topology (a)

Processing
Element

(a)

Inputs

Decision
Regions

(b)

Figure 1.13 Decision Regions (b) Formed
By Topology (a)

27

propagation learning algorithm [Rumelbh, 1986 (a)],
[Rumelbh,198 6(b)].

1.10 The Delta Rule

Other efforts to overcome the limitations of the Single­
layer Perceptron model include the learning algorithm by
Widrow-Hoff or LMS (least mean square) or Delta rule
[Lippman,1987]. The Delta Rule is an error correction rule
which minimizes the mean square error between the desired
and the actual outputs of Perceptron like nets, thus the
amount of learning is proportional to the error computed.

The basic difference from the classical Perceptron model is
the use of a linear threshold function instead of the hard-
limiting output. Mathematically, it can be expressed by the
following two equations:-

yj -T, wu xi (1-9)

A Ni:j - (T - Yj) X± 11 (1.10)

where Yj is the output of the processing elements, Wi:) is the
connection weight between input XL and the receiving unit
Yj, rj is the constant of proportionality representing the

28

learning rate, AWAj is the weight change and T is the target
value.

Although the Delta Rule was developed as an improvement of
the classical Single-layer Perceptron, it is not able to
solve a number of problems, such as the exclusive-OR.

1.11 The Back-propaqation Algorithm

Functions which are linearly dependent cannot be solved by
single-layer models, see section 1.8. To overcome this
limitation it is necessary to use multi-layer architectures
such as the Multi-layer Perceptron. Such models, however,
were not generally used until the introduction of the Back-
propagation learning algorithm.

The Back-propagation algorithm is currently one of the most
popular algorithms. It employs a supervised error
correction method similar to the Delta Rule. A detailed
mathematical description can be found in [Rumelbh, 1986 (a)],
[Rumelbh,1986(b)] and in appendix (A.2). The basic idea of
the Back-propagation model is to propagate errors back from
the output layer towards the input and use the computed
errors to correct the connection weights. Output units

29

calculate their errors from the differences between the
target and actual outputs. These errors are then back
propagated to the hidden layer and used to evaluate the
corresponding errors of the units in the hidden layer.

In general, there are three sets of equations. One set for
the normal feed-forward propagation of signals from input
to output; one set for the backward propagation of error,
from output to input; and one set for the adjustment of the
connection weights.

The forward motion is governed by equations (1.11) and
(1.12). They represent the characteristics of the
processing units in each layer. The output of each unit is
a Sigmoid function, f(), of the weighted sum, Y.,

O ------- L---- ̂- f (Y,) (1.11)
J 1 + exp (-Yj) J '

A „ (1.12)- E °i wij+ 6ji-l

There are two equations for the error calculations. One for
the units in the output layer, and one for units in the
hidden layer. In the output layer, the calculated output

30

vector, ok is compared with the target output vector, tk.
The difference between these vector components (i.e. tk -
ok) defines the error. In other words, the input(s) of the
output processing units should be corrected by 5 k to provide
the target output vector t

5* - (fc*. - Ou) ff(Yj (1.13)

A detailed proof of the equations described in this section
can be found in appendix (A.2). Introducing equation (1.11)
for the output function, f(), yields the derivative hence
the error

df{Yk)
* dY*---°k ~ °k (1.14)

(1.13) and (1.14) yield the error function for the units in
the output layer.

" (tk °k ̂ °k (1 °k) (1.15)

The error equation for the units in the hidden layer is
more complicated. The error from each output unit is back-
propagated to the connected hidden units, see Figure 1.14,

31

Error(j) = Output(k) [1-Output(k)] SUM[W(j,k)Error(k)]

Outputs
Inputs

Hidden
Layer j

Output
Layer k

Figure 1.14 Backpropagation Architecture

and the error of each hidden unit is then calculated as

E wu - °j <1 - °j > E 6* (i.i6)
Equations (1.15) and (1.16) are used to adjust the
connection weights between hidden-to-output and input-to-
hidden layers. For hidden-to-output, weights are adjusted
by :-

A Wkj " *1 °j (1.17)

For input-to-hidden, weights are adjusted by:-

- r| 6j o± (1.18)

The Back-propagation learning algorithm can be summarized
as : -

1) Initialize all connection weights and the thresholds to
small random values.

2) Present an input from a class and specify the desired
output.

3) Calculate the actual output of all the units using the
present value of weights and inputs by equation (1.12).

33

4) Find the error terms Sj and 8k for all the output and
hidden units by equations (1.15) and (1.16).

5) Adjust weights between hidden-to-output and input-to-
hidden by equations (1.17) and (1.18).

6) Present another input and go back to step (2) until
weights stabilize.

One difficulty with the Back-propagation algorithm is that
many presentations of the training data are frequently
required for weights to converge to an acceptable level
especially when the decision regions, see Figure 1.13, or
the desired mappings are complex. It is a time-consuming
algorithm. Fortunately, this only occurs during learning
and does not affect the response time during normal forward
computation.

1.12 The Hopfield Model

The Hopfield model [Hopfield,1982] is a self-organizing,
associative memory model, see appendix (A.l). A Hopfield
network is composed of a single-layer of neurons that act
as both input and output. The neurons are symmetrically
connected; the connection weight Wi;) from neuron j to neuron
i is the same as the connection weight WAj from neuron

34

i to neuron j (i.e. W±j = Wj±), see Figure 1.15. Hopfield
networks are made of nonlinear binary threshold units which
are capable of producing two output values: -1 (off) and +1
(on), the same type of unit as in the Perceptron.

In the Hopfield model, the connection weights are pre­
calculated and set in advance so a Hopfield network does
not perform any learning. The weight matrix is created by
taking the outer product of each input pattern with itself
and adding all the outer products.

The Hopfield model associates an energy with the states of
a network and once an input pattern is given to a network,
the system seeks an energy minima. The global energy of the
system is defined as:-

b- - £ "u Si a3 * £ e, st (1.19)

A E - W1J S1 ~ 6l (1.20)

where SL is the state of the ith neuron (-1 or +1) , 0± is
the threshold, and AE is the change in energy due to the
unit changing its state.

The Hopfield network is subject to an Updating Rule, as

35

W(i,i)

W(k,0

Neurons Are Symmetrically Connected

Figure 1.15 A Simple Hopfield Net

Local
Minimum

Global
Minimum

Figure 1.16 An Energy Function

36

follows: "Randomly pick a unit, change its state (from -1
to +1 or vice versa) just in case doing so will lower the
energy". Thus the state of the network changes until it
enters a state of minimal energy in the sense that no
change in any one of the variables S will lower the value
of energy E.

In general, in a Hopfield network, certain units are
designated as inputs; their values are clamped so that the
Updating rule is not applied to them. The Updating Rule is
repeatedly applied to all other units until the network
settles; and then read the value of certain designated
output units.

One of the weaknesses of the Hopfield model is that global
minimization is not guaranteed. For example, if Figure 1.16
represents the energy surface of a network, the network
might move to the local minimum rather than the global
minimum location. Secondly, weights in a Hopfield network
are pre-~calculated and set in advance so it does not learn.
Furthermore, the number of patterns that can be recalled
accurately is limited by the number of units in the
network.

In spite of the limitations, Hopfield networks are good at

37

association. They can recognize patterns by matching new
inputs with the closest previously stored patterns and are
especially good for finding the best answer out of many
possibilities.

1.13 The Boltzmann Machine

The Boltzmann Machine [Hinton,1985] is another example of
supervised models. It is a multi-layer model and is an
extension of the Hopfield model described previously. It
was developed to overcome the "local minima" problem of the
Hopfield like net.

The state of units in the Boltzmann Machine is
probabilistically determined. The probability for the ith
unit to be in state 1 is defined as

P i - P(AEd) - ----------------- '

1 + exp (- — — =■)

P (AEJ is a sigmoidal probability function, T is a
parameter analogous to temperature and measures the
noise introduced and AEa is the total input to the i~th
unit, (i.e. Ei ^W^Sj) .

38

In much the same way as the Hopfield model, after
presentation of the input values, if the network is left,
it will settle into a minimum just as if it was being used
to recall stored data. The problem is that this might not
be the global minimum. In order to force the system to
settle into the global minimum a technique called
"Simulated Annealing" [Hinton,1985] is used. The basic
principle of this technique, taken from statistical
mechanics, is that if a sufficient random element is added
to each unit's choice of state, then the network can escape
from local minima. Furthermore, if this randomization is
allowed to persist for long enough time, the system will
reach an equilibrium state. Within this equilibrium state
the network will occupy minima in proportion to the size of
random element, so will spend more time in the global
minimum.

The Boltzmann Machine learning algorithm consists of
learning cycles of two phases and can be summarized as
follows :~

1) The supervised phase. The inputs and outputs are held at
the equilibrium state at a low non-zero temperature. For
the next short period of time the weights are modified
as follow: For each unit of time, the weights between

39

two active units are incremented by a small amount; in
much the same way as in the Hebbian Rule.

2) In the second phase, the inputs are clamped and the
outputs are calculated. The same inputs are used. The
network is again brought to equilibrium and for the same
short time as before, but now decrement the weights
between active units by a small amount.

This process is continued until the average change of
weights becomes zero. The major disadvantage of the
Boltzmann Machine is that because of its probabilistic
character it takes a long time for a network to settle down
to a global minimum.

1.14 Competitive Learning

The models and algorithms that have been described
previously except the Hebbian Rule are supervised learning
techniques. Network models employ supervised learning
technique are common in one point: they all assume that
data for both inputs and outputs of a network are
available. This however, may not necessarily be the case as
with real biological systems. It is true that human beings
or animals learn to react through experience. On the other

40

hand, there is no indication that the brain is functioning
as a supervised learning process. This is perhaps one of
the most important reasons that motivated the introduction
of the Competitive learning models.

The basic architecture of a Competitive learning model is
illustrated in Figure 1.17. It consists of a set of
hierarchically layered units in which each layer connects
via excitatory connections, with the layer immediately
above it, and has inhibitory connections to all units in
its own layer. Within a layer, units are broken into a set
of inhibitory non-overlapping clusters. The clusters behave
in "winner-takes-all" fashion, such that the unit receiving
the largest input is turned on and the other units in the
cluster are turned off.

Each unit has a fixed amount of weight that is distributed
among its input lines. The weight on the line connecting
unit j to unit i is designated Wi3 and the fixed total
amount of weight for unit j is designated E w i j = l . A unit
learns by shifting weights from its inactive to its active
input and wins the competition, then each of its input
lines gives up some portion, g, of its weight and that

41

LAYER 3

Inhibitory
Cluster

LAYER 2

o O o LAYER 1

Figure 1.17 Competitive Architecture

42

weight is then distributed equally among the active input
lines:-

A w ^ - g - M - g W u (122)

where cik is 1 if in stimulus pattern Sk unit i in the lower
layer is active and zero otherwise, and nk is the number of
active units in pattern Sk.

There are many variations on the competitive learning
theme. A number of researchers have developed variants of
competitive learning mechanisms. [Fukushi,1980], [Grossbe,
1987], [Kohonen,1984] among others have developed models
which are competitive learning models or which have many
properties in common with the competitive learning.

43

CHAPTER 2 NEURAL NETS FOR DYNAMICAL SYSTEMS

2.0 Historical Perspective 44
2.1 Neural Nets For Control 46

2.1.1 Tracking Of Moving Objects 46
2.1.2 Dynamic Neural Controller Model 50

2.1.2.1 Robot Arm Control 53
2.1.2.2 The Pole Balancing Problem 56

2.1.3 State Estimation Of Unknown Forces
Acting On Reentry Vehicles 58

2.2 Limitations 64
2.3 Feedback 65
2.4 The Pictorial Integration Process 66
2.5 Vertebrate Retina Structure 71

CHAPTER 2 NEURAL NETS FOR DYNAMICAL SYSTEMS

Neural networks have been applied to the fields of vision,
speech and control. The ability to interact with
environments and to solve problems in real time is
fundamental to the implementation of more advanced control
systems. It is important to investigate how neural nets can
acquire these abilities by means of interaction of many
simple processing elements. This chapter presents a
selected survey of neural net implementation in the field
of control/dynamical system applications.

2.0 Historical Perspective

Research in the field of neural-style computing systems
(neural networks) can be traced back to the early forties
[McCullo,1943]; the same period as the first electronic
special purpose computer [Ashurst, 1983] . With the success
of, and competition from von Neumann computers, interest in
neural networks decreased. Even after the Cybernetic
philosophy (the study of control and communication in
animal and machine) was established many researchers
abandoned the neural-style approach and moved towards the

44

modelling of human mental processes. It is only relatively
recently that research in neural networks has become of
great interest. In part, this is due to the increased
understanding of brain functions, and, in part, due to the
increased availability of computing power for the
evaluation of theoretical models. Another factor
stimulating research in this area, as already mentioned in
chapter 1, is the disappointment with the performance of
current computer technology when trying to solve problems
that humans do well.

Although there is a much better understanding of the
architecture and function of the biological brain,
knowledge of the underlying dynamics that govern the
intrinsic learning mechanisms are still very vague. In
order to uncover this missing piece and increase
understanding of the brain's dynamics, various
architectures of neural-style models have been built and
studied.

The fundamental building block of a neural-type system is
a nerve cell like device, often referee to as artificial
neuron or processing element or unit. In 1943, a model of
such device was proposed by McCulloh and Pitts
[McCullo, 1943] . Under the influence of this model and in

45

the years following the discovery of the Perceptron in 1962
[Rosenb,1962], many new models and sophisticated techniques
were developed. Each offers a different approach to the
problem of learning and adaptation: some are good at
generalization, some can associate better than others.
Currently, there are more than 50 models available.

2.1 Neural Nets For Control

Applications of neural nets to control of dynamical systems
include: tracking of moving objects, robot arm control,
pole balancing and the estimation of forces acting on
reentry vehicles.

2.1.1 Tracking Of Moving objects

The tracking of a moving object belongs to the class of so
called 'difficult' problems for conventional computer
technology [Dobnika,1989]. A system proposed by Dobnika
demonstrates that with the use of a multilayered artificial
neural network the same quality of tracking results could
be achieved as with classical methods.

46

Figure 2.1 shows the organisation of a system for visual
tracking. The system consists of an Input Array (IA) where
the camera's signals are stored and a multilayered neural
network for different types of processing. The neural
network accepts input information from the Input Array,
records it topologically correctly in the first layer,
performs filtering in the second and finds the centre of
mass in the third layer. Each succeeding layer of the
neural network performs specialised operations that
represents higher or more abstract degree of processing.
Its operation is synchronized in such a way that all
processing elements on the same layer act simultaneously,
while succeeding layers are sequentially enabled. The
output of the processing elements of the first layer
follows the well known McCulloch and Pitts equation in
order to make a weighted record of input image from the
input array

11i " f ((2.1)

where W±j denotes the weight from Input Array £ to the first
layer rj. f() is the output nonlinear function.

47

Multilayered Net
Input

Array

Camera

* Synchr.

Finds Centre Of
Object’s Mass

Filtering
Layer

Figure 2.1 Neural Net Object Tracking
System

Distance

1.16

Time (x100)

1 5 20 50 100

Figure 2.2 Convergence Of Learning

48

Processing elements in the second layer j1 perform filtering
operation by following the equation

^(fc+1) * + k (rii (£:) - [^(t))) (2.2)

where k is the gain factor of a dynamic filter of the first
order and is changed according to the equation k =
1/processing steps. The third layer is responsible for
modification of the second layer in order to achieve better
selectivity between elements, which facilitates detection
of the centre point. The difference between the centre of
the objects's mass and the centre of the layers corresponds
to the velocity of the object in the Input Array. According
to that difference, the change of visual data in IA is
activated, which in turn causes registration of new data
into IA, that again starts the processing of all layers.
The function of the third layer is achieved by the
following prgcessing equation :-

Ni

Xd - f(Y, aU(]C8J(d> > > ' i_1 (2.3)
j-1 d

a i;) denotes the weight between i-th element in the third
layer and its neighbourhood Ni, 8j (d) is increment to |ij in
the object, obtained by linear extrapolation of the
object's edges in d direction, dE e (NS, NE-SW, EW, SE-

49

NW) . The centre point is found by locating the maximum
value of processing elements in the third layer. This
multilayer neural network model uses an algorithm similar
to the one described in [Kohonen, 1990] . The results,
illustrated in Figure 2.2 show that the average distance
between the chosen centre of moving objects and the
processed one considerably decreases with increasing number
of learning steps.

2.1.2 Dynamic Neural Controller Model

The basic objective of a controller is to provide the
appropriate input parameters to a physical process in order
to obtain the desired output. In conventional approaches to
process control, a significant amount of time and effort is
spent developing control laws that describe how a process
works and how it can be controlled. It would be interesting
and very useful if the controller could learn to control
the process in an interactive and autonomous way by
observing the behaviour of the system, and by continuous
adaption to the process. [Saevens, 1989] propose a
specialized learning method that allows a neural net to
learn to control a process in an autonomous way, without
specific learning stage.

50

Specialized learning means that the controller learns from
a direct evaluation of the network accuracy with respect to
the output of the plant. Figure 2.3 shows the learning
architecture of this method. The network uses the
difference between the actual and desired output of the
plant to change the weight of connections. Moreover, the
network learns continually and can therefore be used with
processes having time varying characteristics. The
algorithm consists of the following steps :-

(1) The controller receives the actual output state
of the plant and the desired output parameters
that have to be provided by the plant.

(2) The network outputs control parameters X̂ associated
with |j,dj.

(3) Those parameters Xj are input to the plant at time t.
(4) The plant outputs Jli ^ jldi at time (t+At) .
(5) The error is evaluated and back propagated into the

network.

The proposed back-propagation based learning algorithm has
several interesting properties. There is no specific
learning stage, - the system is self tuning. For static
targets, the controller is immediately operational but
requires several steps to reach the target. The system is

51

Desired
Value
----------- ►

U(t+1) Neural Physical
Controller --------------------► Process

— ►

U(t)

Figure 2.3 Specialized Learning Architecture

52

able to perform autonomous on-line learning on dynamic
targets. It differs from conventional back-propagation
learning by the fact that the system learns "by doing" and
not "by example".

This specialized learning control algorithm has been
applied to on-line learning on a dynamic target, namely
robot arm control and the pole-balancing problem. In both
experiments, the controller is a network with four layers
(two hidden layers). Every processing element of each layer
is connected with elements of adjacent layers, and the
controller learns using the back-propagation algorithm with
the learning rate and momentum term fixed to 0.1 and 0.2
respectively.

2.1.2.1 Robot Arm Control

The first application of the specialized learning scheme
involves a robot arm, with two degrees of freedom which has
to follow a moving target confined in a 2-d space, see
Figure 2.4 for illustration. The control parameters of the
arm are the two angles (3 and a. A camera transmits both the
coordinates of the tip of the arm (xd , yd) and the
object's position (xQ, yD) to the controller. The

53

A 2-D Confined Space
▲ Yd

Arm

OBJECT

XO

Xd

Figure 2.4 Robot Arm With 2 Degrees Of
Freedom Following An Object

54

controller has to supply angles that permit the arm to
reach the target.

Training is performed while the target is moving. With the
network organisation as described above, the reaction time
of the controller is recorded as 0.15 seconds, during which
the target moves.

Two series of simulations were recorded. In the first, the
neural network was given the coordinates of the target
alone. The controller was unable to anticipate the movement
of the target because the controller has no idea of the
target's speed and direction. According to [Saevens,1989]
the average distance between the arm and the target
converges towards the product of arm reaction time and
target velocity; the controller learns to move to the
previous position of the target. During the second series
of experiments, the network was given the difference
between previous position and actual position of the target
in addition to actual position. In this case, the network
learns to anticipate the movement of the target after 8
mins.

55

2.1.2.2 The Pole Balancing Problem

The specialized learning scheme has also been applied to
the Pole Balancing problem. A two-dimensional pole and
wheeled-cart system is show in Figure 2.5. The pole is free
to move only in the vertical plane of the cart and track.
The cart can travel along the track. The goal is to produce
a sequence of forces upon the cart's centre of mass such
that the pole is balanced for as long as possible and the
cart does not hit the end of the track.

Knowledge of the desired equation of motion of the cart-
pole system was not used during learning. The same network
organisation was used as in the case of robot arm
application [Saevens,1989]. Four parameters were given to
the network: the horizontal position of the cart relative
to the track x, the horizontal velocity of the cart, x', the
angle between the pole and vertical, 0, and the angular
velocity of the pole, 0' . The learning algorithm can be
summarized as follows

(1) The network receives the actual state variables (x,
x\ 0, 0') .

(2) The controller back-propagates the error and outputs
a force associated to the state variables. Saevens

56

t
Track

Figure 2.5 The Pole-Cart System

& Soquet have estimated that the transmission of
information and processing takes 50 ms to control the
cart.

(3) State variables are observed and return to step (1).

With the application of this learning algorithm, after
several trials, the controller is able to balance the pole
for more than 15 minutes.

2.1.3 State Estimation Of Unknown Forces Acting On Reentry
Vehicles

The estimation of unknown forces acting on maneuvering
reentry vehicle, MRV, can be thought of as finding the
inverse dynamics model that has as input the observation
and as output the forces. In the past, neural networks have
been successfully used in the estimation of an inverse
dynamics model of systems in robotics, [Jenhwa,1989]
[Miyamoto,1988].

Conventional approaches to developing neural networks that
act as inverse dynamics models can be characterized into
two categories: off-line and on-line training.

In the off-line training category, the neural network is
58

first taught how the forces acting on an MRV are generated.
In the training phase, the network weights are changed to
minimize the error between the true known forces and the
forces estimated from the network. The inputs to the
network are the pre-processed observations and their
history as illustrated in Figure 2.6. After training has
been accomplished with a finite set of data, and weights
have converged, the network now represents the inverse
dynamics model and it is ready to be used with real data.

In the on-line training category, the network is taught as
the data is coming in and being processed. In this
approach, no time is wasted on training, as illustrated in
Figure 2.7. The pre-processed observation is the desired
output and it drives a conventional neural net. The output
of the neural net represents the estimated forces, which is
added to a scaled value of the error to form the input to
the target dynamics. The error signal is used to modify the
estimated weights of the neural net, using, for example,
Back-propagation. [Abutale,1991] points out that a major
problem with these networks is that the form of
nonlinearities are assumed. This issue is important because
this form may not be the best to be used in the task. Also
the size of the network, for any realistic problem, is
sometimes prohibitory large if reasonable results are to be

59

Error

True Forces

Conventional
Neural

Network

Target
Dynamics

Figure 2.6 Off-Line Learning

Noisey
Pre-processed
Observations

Estimated Forces

Error

T arget
Dynamics

Conventional
Neural
Network

Conversion
Scalar

Figure 2.7 On-Line Learning

60

obtained. This is due to the fact that network weights are
assumed to be constant parameters. Furthermore, it is known
that a large number of parameters are needed to represent
any useful primitive, and since the goal is to estimate the
values of the parameters, the computational task becomes
enormous. All these problems motivated [Abutale,1991] to
develop an alternative network.

[Abutale,1991] proposed a hierarchical approach to estimate
the unknown forces acting on a radar target, see Figure
2.8. The neural net based procedure can be summarized as
follows

(1) Obtain an estimate of the target state, position and
velocity, using an extended Kalman Filter method.

(2) Calculate the acceleration or the derivative of the
state using a polynomial fit to the estimated states.

(3) Develop a neural net to estimate the unknown forces.

The proposed network architecture is shown in Figure 2.9.
It is similar to the one described by [Miyamoto, 1988]
except for one fundamental difference; the network
nonlinearities are not assumed, they are estimated
implicity.

61

Derivative Of Estimated State

Noisy

Observations

Neural
Network

Polynormal

Neural

Extended
Kalman

Filter

Forces
Estimates

Figure 2.8 Neural Net Based System To
Estimate Unknown Forces

62

Neural Network Inverse
Dynamics Model

Error

Estimated
Observations Target

Dynamics
Noisy

Pre-processed
Observations

Figure 2.9 Dynamic System Architecture
Proposed By [Abutaleb]

63

The architecture has the advantage that no off-line
teaching is needed. The network learns from the
observations and at the same time generates the estimates
of the unknown forces. The network equations are much
simpler and easier to work with, and its convergence is
fast when proper tuning parameters are used. However, the
usefulness of the present algorithm is limited to
application where system dynamics and the observation
equation are known.

2.2 Limitations

The present understanding of real biological neural
networks in respect to learning dynamics is very sparse.
Neurobiologists may be able to reveal certain properties of
certain type of neurons and the actual physical structures
that these neurons are embedded in but the dynamics which
govern these structures largely remains unknown. Obviously,
it is one thing to model neurons to show that they have
sufficient logical power to perform some computations, it
is quite another to understand how the neurons in actual
biological systems perform their tasks.

With limited knowledge, a precise detailed model is hard to

64

achieve, therefore assumptions have to be made when
modelling neurons and networks. One crude approach is to
assume that the defined models do correspond to real
systems, but only to a subset of them. In fact, no
modelling approach is automatically appropriate, a model
can be regarded valid even when elements of the model
network details are not directly identified with real
biological systems, for example the McCulloch-Pitts neurons
used by many later network models. The most direct approach
seems to be to design the simplest model adequate to
address a given problem and then work backward to justify
the model with real systems.

2.3 Feedback

In controlling interactions of a system with its
environment, it is usually important that information be
continually fed back from receptors/sensors to tell the
controller how effective it is in controlling the
interactions. Feedback is the comparison of actual
performance with some desired performance. It plays an
essential role in the control of an organism or artificial
robot, e.g. movement of four limbs and eye co-ordination.

65

In feedback control, Figure 2.10(a), the actual output is
continuously compared with the desired output to provide
compensation signals so that the output is maintained near
to its desired value.

When a single integrator is used direct feedback from
output to input will provide an estimate of the derivative
of a function. This type of arrangement is commonly used in
electronic equipment for the detection of weak signals
buried in noise. The integral over a time interval will
indicate the percentage of time that the pattern lies along
the trajectory. Thus for noisy data, the magnitude of the
integral of a signal over some interval is much more
reliable than the instantaneous value of the signal itself.
As shown in Figure 2.10(b), with feedback from output added
to the input the new output will follow the input and the
by-product will be the higher state, time derivative, of
the input displacement trajectory, F(t). To adopt this
scheme, a neural network integrator is desired.

2.4 The Pictorial Integration Process

The main component of the neural module is a neural net
which computes the integral of the input displacement-time

66

Feedback

Desired
Output

Actual
Output

Process
Error

Signal

Figure 2.10(a) A General Scheme Of
Feedback Control

F(t)

F(t)

Derivative

F(t)

Integrator

Figure 2.10(b) Integrator To Estimate
Time Derivative

67

pattern. To aid the description of the neural integrator,
the graphical integration process of a pictorial pattern
is described in the following manner.

As illustrated in Figure 2.11 (a) (b) , the definite integral
of a function, f(t), within the limits of a & b, is
equivalent to the area bounded by the graph of the function
f (t) , the horizontal axis and the lines parallel to the
vertical axis at "a" and "b". Using rectangular, or Euler,
integration it is possible to divide the interval into
small sub-intervals of equal width 8ti and select from each
sub-interval a value for the variable f (tj as shown in
Figure 2.11(b) . The total area may be calculated by summing
the area of the rectangles, f(ti)5ti.

Alternatively, if the function f (t) is plotted on an
equally spaced/grid area, see Figure 2.12(a), a more
appropriate way for the neural integrator can be
determinated. Firstly there exists only two possible
shapes: a single rectangle or a combination of a rectangle
and a triangle. Secondly, as the function is plotted on a
1:1 scale, the area of any shape can easily be calculated
by the following simple equation: Half The Distance
Separating The Two Dots Plus The Hight Of The Rectangle,
see Figure 3.12(b).

68

f(t)

ba

Figure 2.11 (a) Graphical Representation Of
Integral

f(t)

a b

Figure 2.11 (b) Approximation Method Of
Integral

69

f(t) 1 Unit

(a)

(b)

8
7

6
5

4f
3

2
1

0
tO t1 t2 t3

-it— (►-

-it— (t

l i
8

7

6
5

4 1

3

2
1

Superimpose

(to.ti)

Time

Integration

f(t)

8
7

6
5

4

3

2
1

0
to t1 t1

Figure 2.12 Estimation Of Area Of An
Unknown Function

70

It is clear with this representation that regardless of
the shape of the rectangle strip, the corresponding value
for the area is the midpoint of the two dots. As an
example, consider a 2-D displacement-time trajectory image.
For each pair of successive input samples to the neural
integrator at tn and tn+1, the resultant pattern is the
pattern at tn superimposed on to the pattern at tn+1. The
neural integrator takes in the superimposed pattern and
produces an output representing the centroid of the two
points, (area or integral between tn and tn+1) .

Although this calculation is trivial using digital
arithmetic units, the problem of scale emerges when
repeating the process millions of times over high
resolution 2-D images. It is therefore justifiable to
explore a non-numeric alternative.

2.5 Vertebrate Retina Structure

As an essential background to the integrator model, a brief
summary of the features of the vertebrate retina is
included. This summary is by no means complete, and it will
necessarily be an oversimplification of many aspects of the
real model and only serves as supportive section. A more

71

detailed description of the retina can be found in
[Dowling,1987].

Living organisms perform visual processing by perception of
light through eyes, recording it onto the retina, and
distributing the signals to different areas of the neural
system in the brain where it is believed that processing
such as object recognition is actually performed. From the
complex anatomical structure of the vertebrate retina, it
is apparent that a great deal of processing of the visual
image must take place inside the neural networks of the
retina.

Figure 2.13 is a schematic drawing of the synaptic contacts
observed in many vertebrate retina. The retina consists of
five types of neurons: photoreceptors, horizontal cells,
bipolar cells, amacrine cells and ganglion cells.

Light absorbed by photoreceptors is converted to electrical
signals. These signals are then transmitted through the
output synaptic cells: bipolar cells which transmit
excitatory information directly from photoreceptors to the
ganglion cells immediately beneath them in the inner
plexiform section of the retina and the horizontal cells
which mediate local lateral interaction in the outer

72

Lights

Optic
Nerves

Eye
Retina

Blind

Spot

Ganglion
Ceils

Cells

Inhibitory
Connection

Excitatory
Connection

I
Bipolar

Cells

Horizontal

Cells Photoreceptors
(Cones & Rods)

Figure 2.13 Vertebrate Retina Structure

73

plexiform section of the retina.

The amacrine cells are also inhibitory cells connected to
bipolar and ganglion cells. Amacrine cells provide
inhibitory input to ganglion cells similar to the
inhibition imparted by the horizontal cells onto the
bipolar cells in the outer plexiform section of the retina.
The amacrine cells therefore can contribute to the centre-
surround response of the ganglion cells. Their response is
transitory in contrast to the continuous response of the
bipolar and horizontal cells. When the photoreceptors are
first stimulated, the amacrine response is intense, but
this response dies away very quickly. This transient
response produces a sensitivity to changing light
intensities.

Ganglion cells receive inputs from bipolar cells and
amacrine cells and send their axons to the brain via the
optic nerves for further processing. The several levels of
processing which culminate in an output ganglion cell can
be best illustrated by the following example.

Figure 2.14 shows the portions of the so called visual
'receptive field' which affect the activity of a typical
output ganglion cell type. This ganglion cell receives

74

Inhibitory Surround Region

Suppresses Firing

Excitatory

Connection

Excitatory
Centre

Facilitaties
Ganglion

Cell
Firing

Inhibitory

Connection

Ganglion
Cel!

*► Optic Nerve

Figure 2.14 Receptive Regions Influence
Firing Of Ganglion Cell

75

excitatory synapses from a small group of photoreceptors in
a central spot (+ve region) and inhibitory synapses from
photoreceptors in a ring surrounding the central spot (-ve
region). When the central spot receives light, it increases
the firing rate of the ganglion cell. When the inhibitory
surround is illuminated, it decreases the output of the
ganglion cell. If the entire 'receptive field' is
illuminated, the excitatory and inhibitory effects tend to
cancel.

The receptive field of ganglion cells are not fixed. In
some of the ganglion cells it is the inverse of the one
above. A structurally similar but functionally inverse set
of interconnections produces 'centre-off surround-on'
response.

Ganglion cells receive direct input from bipolar and
amacrine cells. [Dowling,1987] suggests that the ganglion
cell responses strongly reflect the properties of the input
neurons. Bipolar cells give sustained response to retinal
illumination, whereas many amacrine cells respond with
transient potentials. Some ganglion cells receive most of
their input from bipolar cells; their responses are
sustained and reflect primarily the processing of
information occurring in the outer plexiform section of the

76

retina. Other ganglion cells receive most of their input
from amacrine cells/ their responses are often more
transient and reflect inner plexiform section processing.

Although the synaptic interconnections between different
layers of cells of the retina are still not yet fully
understood, the centre-surround receptive field
characteristic has provided the inspiration for the design
of the neural integrator model.

77

CHAPTER 3 A NEURAL NET INTEGRATOR MODEL

3.0 Basic Objectives Of The Neural Integrator
Model 78

3.1 Neural Integrator Model 79
3.2 Functionality Of The Basic Net Model 83
3.3 Weight Adjustment 87

3.3.1 Bipolar Cells 87
3.3.2 Amacrine Cells 88
3.3.3 Output Of Amacrine Cells 89
3.3.4 Adaptation Algorithm 91
3.3.5 Example 92

3.4 Mapping Of Neural Nets On Computer Systems 94
3.4.1 Framework For Programming Neural Nets 96
3.4.2 Data Structures 98

3.4.2.1 NEURON Type 99
3.4.2.2 SYNAPSE Type 99
3.4.2.3 GROUP Type 101

3.5 Neural Nets Simulation Using Multiprocessor
Systems 104

3.5.1 Architecture Of A Target System 106
3.5.2 Simulation Primitives For

Multiprocessor System 110
3.5.3 A Distribution Technique 111
3.5.4 Data Structures For

Multiprocessor Systems 112

CHAPTER 3 A NEURAL NET INTEGRATOR MODEL

A model for a neural net integrator is put forward as an
alternative to traditional analogue/numerical integration.
The execution of the resulting model on single and
multiprocessor systems is considered.

The model is inspired by the vertebrate retina structure
outlined in chapter 2. Architecture, functionalities and
adaption method of the model are treated in detail.

The mapping of the resulting neural net models onto single
and multiprocessor system is examined. A general framework
is formulated to permit arbitrary network definition and
easy alterations of network parameters. A parallel
processing technique is devised to compute the resulting
algorithms on distributed memory multiprocessor systems.

3.0 Basic Objectives Of The Neural Integrator Model

The neural module has to satisfy four objectives
(1) Provide Integration, e.g. linear ramp output for

constant input, quadratic output for linear input, etc.

78

(2) Provide an automatic matching/filtering function to the
input trajectory profile when used in a closed loop
feedback arrangement, see Figure 3.1, i.e. the output
of the neural module should be the same or a close
approximation of the input.

(2) As a by product of achieving the above two objectives,
the higher state/derivative of the input trajectory
should also be obtained.

(3) Neural modules should be cascadable, as shown in Figure
3.1, such that higher states/derivatives can be
estimated.

3.1 Neural Integrator Model

Consider the neural integrator (NI) model shown in Figure
3.2. It consists of four layers formed by photoreceptors,
horizontal cell, bipolar cells and ganglion cells. Amacrine
cells will be used with this configuration when expanded
horizontally. The input layer consists of two
photoreceptors with output feeding a horizontal and two
bipolar cells in the second and third layers respectively.
Connection between these cells are excitatory connections.

Bipolar cells in the third layer receive direct excitatory

79

F(t)
Displacement

Trajectory
Neural
Integrator

Model

F(t)
Velocity

Trajectory
Neural

Integrator
Mod®

F(t)

► F(t)
Acceleration

Trajectory

Figure 3.1 Cascaded Neural Module

80

Photoreceptors
Horizontal

Bipoler
Cells

Ganglion
Cells

Ceils

Excitatory
Connection

Inhibitory
Connection

Figure 3.2 Basic Network Model

Output=f(Net)=

W1

12

In

1 if Net >=Thresho!d

0 if Net cThreshold

W2
Output

Net

Wn
f(Net)

Net=I1 xW1 +I2xW 2+. JnxW n

Figure 3.3 The Neuron Model

81

connections from photoreceptors as well as inhibitory
connections from the horizontal cell. The horizontal cells
mediate the lateral inhibition, when sufficient inputs are
applied to a horizontal cell it will fire causing
inhibition of the bipolar cells near to it. The output
layer is formed by three ganglion cells with connections
coming from bipolar and horizontal cells directly above.

Neurons in this basic model are identical, having the same
neuron transfer characteristics, see Figure 3.3. A neuron
generates an action potential if the weighted sum of the
inputs is above the neuron threshold value. Mathematically
this can simply be expressed by the following equations

The choice of the above neuronal properties is set by 'two
constraints'. The 'first' was to mimic as closely as
possible the real nature of neurons. The photoreceptors,
react chemically to light and these chemical reactions in
turn lead to generating potential in the neighbouring
neurons. If the light falling upon an array of receptors is
sufficiently strong, then their potential will induce

Net - ixwx + i2w2 + I w Mnr*n
(3.1)

if NET* 1
if NET< 1 (3.2)

82

potential changes sufficiently strong to activate other
cells.

The 'second' constraint is to synthesis the model to enable
the computational steps to be as small as possible; this is
important for simulating networks of a large number of
neurons with limited computer power in a practical
execution times.

3.2 Functionality Of The Basic Net Model

To illustrate the functionality of this basic net model,
consider the weight setting as shown in Figure 3.4
a: As neurons are binary On/Off devices, four possible

input states can exist, 00, 01, 10 and 11.
b: With no light illumination, the 00 condition; none of

the cells are excited by external incident light,
c: In 01 or 10 conditions, the bipolar and ganglion cells

directly beneath will be excited and the rest of the
cells are off.

d: When both photoreceptors are on, the 11 condition, the
horizontal and bipolar cells are initially turned on.
As soon as the output of the horizontal cell is
established (settled) the bipolar cells are

83

Photoreceptors

+1/2 +1/2

Horizontal
Cells

Bipolar
Ceils

Ganglion
Cells

Outputs

Figure 3.4 Weighted Basic Network Model

subsequently turned off due to the lateral inhibitory
connection from the horizontal cell hence turning on
the centre ganglion cell (centroid on).

e: Unlike the biological vertebrate retina where the
stimuli for ganglion cells may be grouped into
'centre-on/surround-off' or 'centre-off/surround-on' ,
the basic net model has only overlapping centre-on
'receptive field' regions. As shown in Figure 3,4,
each region of the 'receptive field' is dedicated to
a photorecptor/ganglion cell. Ganglion cells A and C
are affected by illuminations on region A and C
respectively and region B facilitates ganglion cell B
firing.

This structure forms the basic building block of the neural
integrator model. Depending on the required number of input
and output neurons resolution the basic net model can be
expanded sideways, see Figure 3.5, to form larger networks.
When more than one basic structure is required an extra
layer of amacrine cells is used to maintain the centre-on
response. For example, with 3 photoreceptors (size of two
basic nets) an amacrine cell is needed which receives input
excitatory connection from the farthest bipolar cells, see
Figure 3.5 and have inhibitory and exhibitory connections
feeding the ganglion cells.

85

Basic
Net

Basic
Net

Amacrine
Cell

Receptor
Layer

Exhibitory

Connection

Inhibitory

/ Connection

Ganglion
Cell
Layer

Figure 3.5 Network Construction From
Basic Model

86

3.3 Weight Adjustment

Large networks can be realized from the basic net. Two
phases of weight adjustment take place if more than one
basic net is used: implicit weight setting of the outer
section of the network (photoreceptors - horizontal -
bipolar- ganglion), and synaptic weight adjustment of the
inner section (bipolar - amacrine - ganglion).

The relationship between input and output of the basic
network is that the basic network outputs the centroid of
the inputs. If only one of the photoreceptor is ON then
only the ganglion cell directly beneath will be turned ON.

3.3.1 Bipolar Cells

Each bipolar cell has one excitatory and one inhibitory
input connection. To ensure the above functionality, the
weights of the bipolar connections should be the same in
ratio and in opposite sign to each other so that if the
horizontal cell is active the bipolar cell will stay
inactive. The horizontal cell also has two input
connections. It receives inputs from both photoreceptors
and is only active if both photoreceptors are turned ON.

87

Its connection carry weights such that if the weighted sum
exceed the preset threshold the horizontal cell is ON.

Once the connection weights of the basic net are properly
established (e.g Figure 3.4), the implicit regular weight
setting can be used to define large network by replicating
the structure. When expanding from the basic net structure
a layer of amacrine cells is needed to maintain the centre-
ON operation.

3.3.2 Amacrine Cells

Each amacrine cell receives many inputs from the bipolar
cells layer and has excitatory as well as inhibitory output
connections to the ganglion cell layer. The input and
output weights of the amacrine layer are adjustable. The
amacrine cell layer can be thought of as an unsupervised
layer. When signals are propagated through the amacrine
layer the amacrine neurons compete with each other. The one
with the weights closest to the amacrine layer's input wins
the competition. The connection weight leading to the
winning amacrine neuron can then be adjusted by the

88

following equation (3.3) : -

- Waa(t) + f (fl - Wjult) (3.3)

where B and A denote the activation values of the input
bipolar cell and the winning amacrine neuron respectively
and £ is the rate of weight change between 0 and 1.

Both input and output of the amacrine layer are fully
connected and the weights of these connections are
initially set to small random values thus any one of the
amacrine neuron can win the input.

The number of input patterns that each amacrine cell can
associate is also controllable. The activation of the
amacrine layer is controlled by an additional Selection
Criteria. If an amacrine neuron has been winning more input
than it is allowed its winner status will be disqualified.
When this happen the next neuron satisfying the suppression
condition will take over the association.

3.3.3 Output Of Amacrine Cells

The output of the amacrine neuron can be expressed by

89

equation (3.4) : -

„ m ^ 4. 4- fl Winner, — <1Amacrine Cell Output - < c
[O Otherwise

Winner - Minimum (B - Wm)2]

where c denote the number of pattern the neuron is allowed
to be associated with and k is the number of times the
neuron has won; i.e. as k increases toward c suppression
increases, when k=c suppression is at maximum and
association of this neuron is saturated.

(3.4)

(3.5)

At the output side of the amacrine layer, weights between
the winning amacrine neuron and the neurons in the ganglion
layer are adjusted so as to provide the desired association
pattern. These connection weights are adjusted according to
equation (3.6) : —

^(fc+1) - WAG + C (G - WAG(t))A {3>6)

where G is the desired ganglion cell output, connections
are strengthened between active amacrine and ganglion cells
only, otherwise weights will be suppressed.

90

3.3.4 Adaptation Algorithm

The adaptation algorithm consists of the following steps

1) Initialize the network by defining the regular weights
of the basic net.

2) Expand from the basic net to the required input and
output neuron organisation.

3) Set up the amacrine layer with size according to: (a)
the number of patterns each amacrine neuron is allowed
to associate, and (b) the number of patterns to be
learned, i.e. Amacrine Layer Size=(integer)[(b)/(a)]+1.

4) Randomize the input and output weight connections of
the amacrine layer to small random values.

5) Apply training data to the input of the network and
activate the ganglion layer according to the desired
output pattern.

6) Calculate the outputs of photoreceptors, horizontal
cells, bipolar cells and amacrine cells layers.

7) Locate the next amacrine winner.
8) Run through the Suppression process to the winning

amacrine neuron/ if the winner satisfies the activation
conditions go to step (9) otherwise repeat (7) and (8).

9) Adjust the input and output weights connections of the
amacrine layer by equation (3.3) and (3.6) respectively.

91

10) Repeat from step (5) for another training pattern.
11) Repeat from step (5) for next cycle.

3.3.5 Example

As an example, Figure 3.6 is a pictorial pattern of a
velocity-time trajectory profile plotted on an equally
spaced area where the velocity and time quantities are
represented by the horizontal and vertical grids. This
graph is divided into equal rectangular stripes and each
stripe is composed of two successive velocities which will
be the input of the NI.

The velocities at t0 and t2 are graphically merged
(superimposing the patterns at t0 and tj and fed to the
input of the integrator, see Figure 3.6, where each grid
value is clamped to on photoreceptor only. Upon receiving
external input, the neurons then perform computation and
produce output according to their connections weights and
neuron transfer characteristics.

At the output, each ganglion cell is clamped to a grid
point on the output plane, separated by 1/2 unit in the
vertical axis, see Figure 3.6. The new active neuron will

92

Velocity

\ /

\

/

/ .
\

\ / N //\ /

\ / \ /

/
s

\ ■ "'

Superimposing Patterns

At t(n) And t(n+1)

S-K

Figure 3.6 The

produce a ”1" at its clamped position which represents the
area (the integral) under the curve between t0 and tx.

By applying the above process to each pair of successive
columns of the input plane, a set of 'local' integrals can
be achieved/ the global output can be obtained by
accumulating the successive 'local' output/integrals.

3.4 Mapping Of Neural Nets On von Neumann Computer Systems

It is evident that current technology is not flexible and
mature enough to allow the implementation of neural net
directly in hardware. For this reason, digital computer
simulations remain the primary method of implementing,
experimenting with and validating neural net models.

One of the most discouraging aspects of simulating neural
networks is that there is no programming language that
generally supports this kind of application. A wide range
of neural network models can be adopted when attempting to
solve a particular problem. Using traditional methods to
assemble networks by manually writing a collection of
software routines is somewhat cumbersome as a change in the
architecture of a network usually necessitates

94

reprogramming to reflect the new architecture and its
simulation actions. This reprogramming is tedious and time-
consuming .

One possible way of avoiding this would be to adopt a
common method or language which can be used to support and
provide easy means of specifying any network configuration
composed of many different neuron types and
interconnections. However, designing a new language from
scratch requires substantial effort. A better approach is
to extend a widely used language to provide some common
tools to simplify the assembly of networks thus reducing
the overheads of developing a new neural network
simulation.

Furthermore, simulating a neural network is extremely
computationally intensive as a high degree of inherent
parallelism is a key feature of efficient neural networks.
Large amounts of computer resources are often required to
teach a moderate-sized network using the standard
sequential and pipeline computer structures.

During the last few years special purpose hardware using
VLSI technology, so called neuro-hardware, to accelerate
the processing of neurons and synapses, has been proposed

95

[Graff,1986] [Lambe,1986] [Sage,1986]. However, these
special purpose hardware designs are specifically built for
certain neural network model thus are deficient in
flexibility for exploring different pattern of
connectivities, neuron models and learning algorithms.

One natural way to overcome the speed limitation of neural
network simulation is to explore the parallel processing
approach. There have been several research efforts,
[Deprit,1989] [Hicklin,1988] [Pomerle,1988], suggesting
processing techniques for commercially available parallel
machines. In the following sections, a general framework
for mapping neural network models onto conventional and
multiprocessor computer systems is described.

3.4.1 Framework For Programming Neural Nets

The underlying design primitive for programming neural
networks can be described by three basic components

1) A set of simple processing elements which can be defined
by a set of transfer functions representing the
processing of inputs to a single output operation.

i2) A connectivity pattern which defines the flow of data

96

between processing elements.
3) A set of learning equations which defines the adaption

dynamics of the network.

From the computational points of view, the modelling of
neurons and learning functions in software are relatively
simple when compared to the associated connectivity
pattern.

Connectivity patterns can be classified into two
categories, regular and irregular. With a regular
connectivity pattern, connections between neurons in
different layers effectively have the same form, that is a
network is formed by layers of neurons with each neuron
connects to every neuron in the next layer. The
representation of this type of network in software is very
straight forward, (e.g. 2-dimensional array of
connection).

Irregular connectivity patterns, however, are more complex
and requires greater attention to the data structures and
software arrangement. This suggests the need of some common
tools to support the definition of arbitrary network
topologies.

97

With standard computer hardware (i.e. serial uniprocessor
systems) these demands can be satisfied with a framework of
data structures and library functions. The framework of
data structures provide a representation of the physical
structure of a network which are manipulated by the library
functions (descriptions of the library functions are given
in chapter 4).

3.4.2 Data Structures

The representation of networks in software may be based on
three fundamental data structures: NEURON, SYNAPSE, and
GROUP.

NEURON and SYNAPSE types correspond to processing elements
(neuron) and weighted connection links (synapse) between
them , GROUP type defines a group of neurons. A complete
network may consist of many different kinds of neurons,
grouped according to their function in the net and the
connections between them.

98

3.4.2.1 Neuron Type

In essence, a Neuron, see Figure 3.7, is defined by five
status parameters, and a synapse pointer namely Neuron Net
Input Value (Net_Val), Activation Value (Act_Val), Output
Value (Out_Val), Error Value (Error_Val) which have special
reserved meanings, and a free status parameter (Reg) which
can be used when necessary (e.g. the desired target value
of the neuron) . Each neuron in a network may be given an
identity. Depending on the network model, the neuron
identity may be ignored, however, it is sometime useful in
situations where specific coordination of neurons or
synapse connections are desired and plays an important part
in supporting the debugging processes. Synapse connections
between neurons are assigned to the receiving neuron. The
connection components (synapse - see below) leading into
each receiving neuron are held in a link list which in turn
is pointed to by the synapse Pointer (Syn_ptr).

3.4.2.2 Synapse Type

A Synapse has three status parameters and one neuron type
pointer, see Figure 3.8, of which the Weight is reserved to
hold the synapse connection strength, the other two being

99

Neuron Identity

Status Parameters

Reserved For Neuron
Transfer Functions

Free Status Parameter

Synape Link

List Pointer

Figure 3.7 NEURON Data Structure

Connection Strength

Free Parameters

Input Neuron

Pointer

Weight

W_RegA

W_RegB

Neuron Ptr

Neuron ID

Net Val

Act_val

Out_Val

Error Val

Reg

Syn_Ptr

Figure 3.8 SYNAPSE Data Structure

100

free parameters, similarly as in the case of neurons, they
may be used when necessary. Each Synapse also points to the
neuron delivering the signal by (Neuron_Ptr).

3.4.2.3 Group Type

The Group concept is used to define groups of neurons
sharing the same input to output transfer characteristics
and which have to be connected to each other or which may
be updated in parallel. In essence, a Group has a Group
Identity (Grpid), see Figure 3.9, three function pointers,
namely neuron Activation Function Pointer (ActFcn_Ptr),
Output Function Pointer (OutFcn_Ptr) and Net Input Function
Pointer (NetFcn_Ptr). These three function pointers are
reserved for the transfer functions of neurons pointed
(i.e. Grouped) to by the Neuron List Pointer
(NeuronListPtr).

Each simulation model consists of a list of groups, Figure
3.10, which contains all of the existing neurons. Each
Group points to a list of neurons and each neuron points to
a list of synapses and each synapse points to a neuron
record. It is by this mechanism arbitrary network
configuration can be dynamically created and altered.

101

Group Identity

Neuron Function

Pointers

Neuron Link
List Pointer

Figure 3.9 GROUP Data Structure

G rpJD

Act Fen Ptr

Out Fen Ptr

Net Fen Ptr

NeuronListPtr

102

Neuron

SynapseSynapse Synapse

Synapse

Synapse Synapse

Synapse

Group

Neuron Neuron

Figure 3.10 Network Representation in
Software

103

Based on this grouping concept, a network with highly
regular connectivity pattern can easily be defined by
grouping neurons by layer and creating connection links
simply by linking the appropriate groups, see Figure
3.11(a), any unwanted connection may be defined by 'ZERO'
weight setting. For irregular connectivity patterns, such
as the one shown in Figure 3.11(b), neurons, alternatively,
may be grouped together according to their connection
destinations. Neurons in a layer connected to the same
neuron in a successive layer may be grouped together. With
this second approach, no memory is wasted on any unwanted
connection as they simply do not exist. In effect, neurons
are grouped by sub-dividing the layer of neurons. Both
approaches are supported by the same data structures, and
are explicitly adaptable.

3.5 Neural Nets Simulation Using Multiprocessor Systems

The virtue of the simulation framework described in the
last section is that it frees the user/programmer from the
need to write code to assemble neural networks and set up
simulation actions. The same mechanism can also be used to
map any network onto multiprocessor systems, without major
alterations and program complication, to achieve processing

104

Destination Group

Source

Figure 3.11 (a) Group By Layer

Destination

Source Group

Figure 3.11 (b) Group By Sub-dividing
Layer

105

Group

Direction Of
Data Flow

speeds which cannot be met by single processors.

The descriptions below concentrate on a category of
multiprocessor systems proposed by [Hammes,1989]. The
target multiprocessor system is a distributed memory type.
The reason behind this choice is that a distributed memory
multiprocessor system can be viewed as having general
purpose parallel architecture with the potential of being
a versatile, multi-purpose machine instead of a highly
specialized ones.

3.5.1 Architecture Of A Target System

T target system falls into the MIMD (multiple instruction,
multiple data) category in which each processor node
executes its own instruction stream on its own data. Each
processor node consists of a processor, local memory and an
inter-processor communication interface chip, see Figure
3.12. Each node stores its program and data in its private
memory so that it is in itself a complete computer.
Processor nodes are connected to communicated with a
global bus and the mode of communication chosen for the
system is that of Associative Addressing.

106

Processors

Memory

Communication

Chip

Communication Global Bus

Figure 3.12 A Target Multiprocessor System

107

In Associative Addressing, each piece of data is placed
onto the global bus with an address to indicate where the
data is coming from. Each node monitors the global bus
constantly, any node recognizing the address will copy the
data simultaneously. The system accomplishes parallelism by
this means of communication technique.

Processor nodes are equipped with a special interface chip
to facilitate the associative addressing communication
mechanism. The interface unit consists of input and output
(data and address) register pairs. The address of each
register is programmable so any one of these inputs can be
programmable to receive data from any of the other nodes
within the system. In addition, the global bus as well as
processor nodes are all controlled by a master node which
performs the management and bus allocation operations. A
node requesting the bus will notify the allocation circuit,
when the bus is free bus control is handed over depending
on the location of the allocation signals. There are two
levels of allocation circuit, thus two levels of allocation
signal, see Figure 3.13. The complete multiprocessor system
consists of 64 nodes. Processor nodes are grouped into
clusters of eight in which each cluster has an allocation
circuit linked to the higher level allocation signal.

108

Master Node

A A a A Processor

KqS • Nodes

Figure 3.13

Passive
Neuron

Data

Passive
Neuron

Data

Synapse

Neuron ID

Synapse
Data

Data Of These

Neurons Are

Located In

Other Processor

Nodes

Active
Neuron

Data

Synapse
Pointer

Active

Figure 3.14 Data Distribution In Each Node

109

3.5.2 Simulation Primitives For Multiprocessor Systems

The most important factors when considering the
construction of neural network simulation on
multiprocessor systems are: the optimal distribution or
allocation of neurons into processor nodes, and the
communication between neurons allocated to different
processor nodes.

Inspection of the most commonly used neural network
architectures and the way they perform computations and
learning reveals several parallel features. Networks are
usually made up of neurons which are grouped in layer(s).
Neurons belonging to the same layer can compute in parallel
their outputs in the normal forward processing phase (i.e.
propagation of signals from input to output). While in the
backward learning phase they compute in parallel the weight
modification process. However, the output of a neuron or
the computation of new weights usually depends on the value
computed by many other neurons. Without careful design, an
implementation of such algorithms on parallel distributed
memory systems can easily spend the majority of its running
time in communication, i.e. sending data where they are
needed rather than performing actual computations.

110

3.5.3 A Distribution Technique

Neurons in the same layer can be partitioned onto different
processors, see Figure 3.14. As the amount of memory
required by a neuron is usually small when compared to that
used by the synapses leading to a neuron, neuron
information exists both in a "Full" and "Redundant"
fashions on each processor node, as described below.

Each processor node carries data for neurons created
locally, the input weights associated with these neurons
and the output values of neurons created in other
processors and connected through these weights. Neurons
assigned to the specific nodes are called active neurons
and are created only on it's "home" processor node so
"full" neuron information is stored. This also applies to
synapse information leading to the active neurons. Neurons
allocated to other nodes that are linked by the synapses
are called passive neurons and only their output status
values are stored.

The memory in each processor node is divided into four
sections: support code area including neuron's and learning
functions, active neurons information section, synapses and
passive neurons sections. This can be best illustrated with

111

Figure 3.15. With this partition strategy active neurons
partitioned on different processors can be updated in
parallel without the need to communicate frequently.

Though this partition scheme results in the duplication of
neuron values, it avoids complex communication
requirements; as the amount of memory required by neurons
is small when compare to that used by weights thus
communication and storage requirements are minimal.
Communication is only necessary to ensure the availability
of updated neuron values. This is done by transferring the
desired neuron parameters from the active neuron area into
the respective passive neuron area whenever an update of a
layer of neurons is made, see Figure 3.15 for illustration.

3.5.4 Data structures For Multiprocessor Systems

Data structures for the multiprocessor system simulation
are similar to those described in section 3.4.2 (for uni­
processor systems). The Neuron Pointer field of the Synapse
is replaced by a Neuron Identity so that each Synapse
contains a weight, two free status parameters and a neuron
identity to indicate the neuron that the synapse is
connected to. Each neuron has a uni-identity, whereby

112

Explicitly

Accessabie

Memory
Transfer

Of Non-Local

Data

Active Neuron

Data Area

Active Neuron

Data Area

Passive Neuron
Data Area Active Neuron

Data AreaSupport Code

Area

Active Neuron
Data Area

Synapse Data
— _ Area Active Neuron

Data Area

Active Neuron

Data Area
Processor

Nodes Active Neuron

Data Area

Figure 3.15 Deviation Of Memory And
Transfer Of Non Local Data

113

following each complete update cycle the output value of
each active neuron is transmitted together with their
identity. Receiving processor nodes will place these data
in their passive neuron areas so that they are ready for
the next cycle. In each update processing, the passive
neuron memory area in each node will be searched and
matched to the associated synapse weight so that active
neuron information can be updated.

114

CHAPTER 4 SOFTWARE IMPLEMENTATION

4.0 Components Of The Simulation Toolbox 116
4.1 Procedural Interface 117

4.1.1 Network Construction Functions 119
4.1.2 Execution Functions 120
4.1.3 Peripheral Functions 121

4.2 Construction Of Simulation 122
4.2.1 A Static Mode Simulation Example 124

4.3 Neural Net Simulation Using
Multiprocessor Systems 126

4.3.1 Emulation Of The Multiprocessor
System 126

4.3.2 Processor Node Emulation 130

CHAPTER 4 SOFTWARE IMPLEMENTATION

Computer simulations need to be employed to study the
essential differences in performance of existing neural
nets and for experimenting with and validating the new
retinal model for the dynamical system integrator.

The simulation framework proposed in chapter 3 will be
refereed to here as toolbox. It is developed in this
chapter to provide the foundation for the implementation of
simulation programs to handle the process of generating
arbitrary network definitions thus simplifying the tedious
task of putting synthesising neural networks. The
simulation toolbox consists of a set of simulation specific
data structures, detailed in section 3.4, to provide a
representation of the physical structure of a network and
a set of procedural functions for the manipulation of the
network data structures.

The simulation toolbox and all simulation programs are
implemented in the 'C' language. The design is based on the
use of records, structures, lists, mapping functions and
dynamic memory operations which are well supported by the
C language.

The implementations of the library functions are described.

115

In the absence of fully operational target hardware, the
target multiprocessor system has been emulated by software.
The implementation of this emulation system is also
described.

4.0 Components Of The Simulation Toolbox

Building a neural network simulation program involves two
main tasks: the Construction of a network including
initialization of network activities and inter-connection
weights, and the Execution of network functions including
normal and learning processes.

The construction of a network in software in each
simulation is based on three fundamental structures, the
NEURON, the SYNAPSE and the GROUP, see section 3.4. These
data structures are used to hold network information i.e.
topology and knowledge (weights).

The data structures are manipulated by a set of functions
in which the construction of a network and the simulation
actions can be defined by function calls to the toolbox.
This makes it possible to specify neural networks
without having to deal with the actual representation of

116

the network architecture. This approach provides
flexibility as the functionality of the simulation toolbox
can be improved incrementally by adding new functions to
the procedural interface to gradually eliminate
functionality limitations of artificial neurons.

A simulation can be created by writing a program in which
the procedural function calls refer to manipulations which
perform the functions in the toolbox. This process is
summarized in Figure 4.1.

4.1 Procedural Interface

The fabrication of a network and simulation actions are
carried out by a collection of functions. These function
are classified into three categories

I) Construction including Initialization,
II) Execution including normal processing and learning,
III) Peripheral functions, including debugging and

data dumping routines.

117

ToolBox
Procedural
Interface
And
Data

Structure

Linker

Executable
Simulation
Program

Figure 4.1 Generation Of Simulation Program

118

4.1.1 Network Construction Functions

There are six standard functions in this category for the
construction and initialization of arbitrary network
architecture. CreateGroup(NetFcnPtr, ActFcnPfcr, OutFcnPtr,
Nofneuron, GroupID) is used to define a group of neurons
having the same common neuron characteristic specified by
three function pointer variables. 'NetFcnPtr' is the neuron
input function pointer, 'ActFcnPtr' the neuron activation
function pointer and 'OutFcnPtr' the neuron output function
pointer.

A group may also be given a name/identity via 'GroupID' and
the number of neurons created by this function will be
according to the variable 'Nofneuron'.

Additional neurons can be added to an existing group by
using CreateUniNeuron(GroupID, NeuronID). This function
takes in two variables: group identity 'GroupID' and the
neuron identity 'Neuronld'. When this function is called,
'Groupld' is used for locating the group that the new
neuron belongs to. Once the specified group is located, a
new NEURON structure with the specified identity will be
added to the end of the neuron link list.

119

Similarly, LinkGroupO and CreateUniLink () are used for
creating multiple or single connections. LinkGroup(
SourceGrp, TargetGrp) creates total connection between
neurons belonging to the two specified groups while
CreatUniLink(SourceNeuronID, TargetNeuronID) creates a
Single connection between two specified neurons.

By the same notation, InitWeight(ValueFcnPtr, GroupID)
initializes all the synapse connections belonging to
neurons in the specified group with certain values. The
connections are initialized according to the value of the
generation function defined by the function pointer
variable 'ValueFcnPtr'. InitUniweight(ValueFcnPtr,
SourceNeuronID, TargetNeuronID) initializes a single
connection between two neurons.

4.1.2 Execution Functions

There are three standard functions in this category for
normal network processing and learning. ActivateGroup(
GroupID) takes in the group identity. The output of each
neuron belonging to 'GroupID' will be computed by
performing operations to the connection weight and input
signal pairs. This is performed according to the predefined

120

neuron transfer functions specified during group/neuron
creation by CreateGroup().

CalculateError() and AdjustWeight() are both used during
learning process. CalculateError(GroupID, ErrorFcnPtr)
calculates the errors generated by each neuron within the
group specified by 'GroupID' according to the given error
calculation function 'ErrorFcnPtr'. AdjustWeight(GroupID,
WgtFcnPtr, LearningRate) is used to adjust the connection
weights leading to each neuron defined by the group
identity according to the specified weight changing
function 'WgtFcnPtr' .

4.1.3 Peripheral Functions

In addition to network Construction and Execution, a set of
peripheral routines is also provided to perform searching
and displaying of groups, neurons, connection weights,
external input or output of whole network and for loading
and saving of network information.

ShowGroupO, ShowNeuron() and ShowWeight() are network
probing routines which display the status of neurons, the
associated connection weights and input signal pairs. A

121

call to the function ShowGroup(GroupID) will cause a
screen dump of all the information contain in the specified
group. ShowNeuron(GroupID, NeuronID) displays individual
neuron and its associated weight values. Similarly
ShowWeight(SourceNeuronID, TargetNeuronID) displays the
weight of a single connection.

SearchNeuron(NeuronID) and SearchLink(SourceNeuronID,
TargetNeuronID) are used for locating specific neuron and
connection, both routines return the memory address of
neuron or connection. LoadNet(Filename) and SaveNet(
Filename) are used for loading and saving network to file
so that retrieval or off-line inspection is made possible.
The source code listing of the above procedures, including
data structures, are enclosed in appendix (B.l) and (B.2).

4.2 Construction Of Simulation

The data structures and the procedural interface are
implemented in standard ANSI-C, transporting from machine
to machine is not a problem as long as the C compiler
supports standard ANSI specifications. The size of the
support code has been deliberately kept as small as
possible. The total size of the toolbox is less than 40

122

kbytes including all the neuron and learning function for
simulating the various net models, i.e. Delta Rule,
Backpropagation, Hopefield, Competitive, Kohonen,
Counterpropagation, and the new retinal model. There are
two alternative modes of operations for constructing a
simulation: static and interactive.

In static mode, a simulation can be constructed by writing
a C program which consists of a sequence of function calls
from the toolbox. Any neuron transfer characteristic and
learning functions can be added simply by writing routines
and recompiling with the user program, see Figure 4.1.
Static mode is more flexible and uses less memory than
interactive mode but recompilation is necessary for each
simulation. It is flexible as any new neuron and learning
function can be added and removed.

Interactive mode is achieved by running a simulator program
called NNSim.exe. This program, in addition to the standard
toolbox functions, is also equipped with a collection of
predefined neuron and learning functions. In interactive
mode, a network can be dynamically created or altered on­
line. Network construction and simulation is performed by
means of a menu-driven user interface in which function
calls are performed by selecting the appropriate item in a

123

pop-up menu. In this mode of operation, simulation runs can
be suspensed at any time so that network characteristics or
topology can be changed and simulation resumed without
recompilation. The major disadvantage of this mode of
operation is that the size of the network that can be
simulated is limited as all the necessary functions
including unused routines are carried onboard. For this
reason, static mode is more favourable when memory is a
limitation; for example only 640 kbytes is available with
an IBM compatible PC running in standard MSDOS environment
(real mode). The structure chart of NNSim.exe is enclosed
in appendix (C).

4.2.1 A Static Mode Simulation Example

The example code segments shown in Figure 4.2(b) for a
simple Perceptron network simulation should give an idea of
the programming style supported by the simulation toolbox.
The network shown in Figure 4.2(a), consists of an input
and output layers which the network learns using the Delta
Rule, as has been described in chapter 1. In Figure 4.2(b),
the first three lines are used for network construction
including initialization and the rest are for teaching the
network. SetDataPattern(GroupID, DataFileName, DataType)

124

/

In pu t

D a taP a tte rn [2]

D a ta P a tte rn h]

Lea rns By DELTA RULE O u tp u t
(Target)

n pu tL aye r

T a rg e tP a tte rn [2]

-►
TargetP atte rn [1]

O u tp u tL a ye r

(a)

/* Network Construction */
CreateGroup (Ramp,Ramp,Ramp, 3,"Input1ayer") ;
CreateGroup (Soma, Binary, Ramp, 2, "Outputlayer11) ;
LinkGroup ("Inputlayer","Outputlayer");
InitWeight(RamdomFcn,"Outputlayer") ;
/* Network Training Process */
for (i=0; i<nofcycle; i++)
for (j=0; j<nofpattern; j++)
{SetDataPattern ("Inputlayer",Datafile[j] , INTYPE);
SetDataPattern("Outputlayer",Targetfile C j],TARGETTYPE);
ActivateGroup("Inputlayer");
ActivateGroup("Outputlayer")/
CalculateError("Outputlayer",DeltaErrorFon);
AdjustWeight ("Outputlayer",DeltalearnFon,learnRate)/}

Note:-

Ramp, Soma, Binary, DeltaErrorFon, DeltaLearnFon are neuron
transfer functions and Delta Rule learning functions
respectively.

(b)

Figure 4.2 Example Simulation Code Segment
125

is one of the peripheral functions in the toolbox. It loads
data into the neurons within 'GroupID' from a data file
specified by 'DataFileName'. The variable 'DataType'
indicates where data should be loaded to; INTYPE indicates
external network input, and TARGETTYPE indicates desired
network output. Both INTYPE and TARGETTYPE can be found
in the toolbox header file toolbox.h.

4.3 Neural Net Simulation Using Multiprocessor Systems

A prototype of the target multiprocessor system with eight
processor nodes on board is available. However, as a
prototype, the present system has several weaknesses: lack
of basic operating system, limited node memory to 4 kbytes,
and lack of language support. Due to these problems, the
prototype can not provide a suitable environment for
conducting experiments with the new concepts. In order to
carry out performance evaluation the target hardware has
been realized by software.

4.3.1 Emulation Of The Multiprocessor System

Processor nodes are emulated by blocks of memory. Each

126

memory block is divided into two areas. One for network
storage containing active neurons, weights and passive
neurons data/ and one for storing processor node data:
containing input/output interface registers and global bus
control and communication registers, see Figure 4.3. In
real world situations each node would contain a set of
support functions handling the creation, updating, and
transferring of neurons or connections; however, for the
purpose of simulation only one set is needed as the actual
processing is still sequential.

As illustrated in Figure 4.4, memory blocks are chained
together (as a Linked List). Working alongside with the
memory blocks is a Data-Buffer register representing the
global bus of the target system. Individual 'processor
nodes' can read the contents of this register at any time,
but loading of data from node to Data-Buffer depends on the
individual local Bus-Request register; its boolean value
indicates whether data is ready to be transmitted or not.

In order to maintain consistency of neuron values, all
processors must finish their neuron updating process
before communication can commence. After each complete
neuron update (completing all neuron calculations within a
layer), the Bus-Request register of each processor is

127

Active Neurons

Weights

Passive Neurons

Bus Request Register

input Registers

Output Register

Active Neuron Pointers

Group Pointer

Passive Neuron Pointer

Node Identity

Network
Data
Area

Processor

Node

Data

Area

Figure 4.3 Memory Contents Of A Processor Node

128

Data Buffer
(Global Bus)

Start

• • •

(Processors)

End

Memory
Blocks

Figure 4.4 Emulation Of Multiprocessor
System

129

compared one by one along the Linked List. If the test is
positive, data will be transmitted and carried to other
nodes by the Data-Buffer register.

The Data-Buffer carries two pieces of information: neuron
value and neuron identity. The neuron identity in the Data-
Buffer is compared by the passive neuron identity in each
processor in turns. If a match is found the neuron value in
the Data-Buffer will be copied to the corresponding memory
location. This comparison process continues with the next
processor block until all the processors have been visited.
This 'communication' process will continue until all the
Bus-Request registers are FALSE. The Bus-Request register
will be set to FALSE if (1) the active neuron updating
process has not been completed, or, (2) all the updated
neuron values have been transmitted.

4.3.2 Processor Node Emulation

To enable the implementation of the distribution and
communication concepts described in section 3.5, a set of
mapping functions is provided. Similar to the case of
uniprocessor systems these functions can be used by user
programs not only to define arbitrary network

130

architectures, neuron models and learning functions but
also to automate the distribution and communication
methods. The majority of support functions are very similar
to those of uniprocessor machine, the prototype of these
standard functions are shown in Table 4.1.

A new structure is used for emulating processor nodes, see
Figure 4.3. It consists of node identity (NodelD), active
neuron pointer (ActNeuronPtr) , passive neuron pointer
(PasNeuronPtr) and a Bus_Request register.

User programs use EmulateNode(NodelD) to initialize a
processor node. For each processor node, the active
neurons, the associated synapses and passive neurons are
created by calling CreateNeuron(NodelD, NeuronID,
NeuronType) and CreateLink(NodelD, SourceNeuronID,
TargetNeuronID) . Depending on the emulated node number
each processor node has the same number of input address
register (containing the identity of other nodes) so for
each transmition of data every node in the system makes a
copy of it. Once data is loaded SearchPasive (NodelD,
NeuronID) routine is used to check if the data belongs to
any of the passive neurons defined within the node and
places the data accordingly if identification is positive.

131

Neuron information is transported from node to node using
SendNeuron(NodelD, NeuronID, NeuronType). Each time this
function is called the specified neuron will be located and
its identity and output value loaded into the output
registers. When the Data-Buffer is ready the content of the
output register is transferred to the Data-Buffer and
copied by other nodes.

The main simulation routine acts as the master control and
handles the monitoring and control of communications by
probing the Data-Buffer register and moving it from node to
node, Figure 4.4. Any node needing the bus will enable the
local Bus-Request line, and on the arrival of data it
gains control of the register. To ensure proper operation,
passive neuron transfers occur only after each complete
cycle of all neuron updates.

The operation of the multiprocessor emulation program is
illustrated by the flow chart in Figure 4.5.

132

EmulatedNode(NodelD)
CreateNeuron (NodelD, GroupID, Neuron ID, NeuronType)
CreateLink(NodelD,GroupID,SourceNeuronID,TargetNeuronID)
SearchPassive(NodelD, NeuronID)
SendNeuron(NodelD, GroupID, NeuronID, NeuronType)
ActivateNeuron(NodelD, GroupID)
CreateGroup(NodelD, NetFcnPtr, ActFcnPtr, OutFcnPtr,

GroupID, NofNeuron, NeuronType)

Table 4.1 Sample Of Functions For multiprocessor Simulation

133

letwoik Parameter 7
Partition Of Network

Input Process Data

Update Next Group

Of Neurons in Blocks

Yes
Next '

Group

Transmission Of Updated

Neuron Values From

Block to Blocks
No

YesNo
Learn Show Network

More
Data Output

Data

Yes

Update Next Group
Of Weights In Blocks

Save Network

Yes

NoMore Next

GroupData

No
Yes

Save Network

Transmission Of Updated

Neuron/Weight Values

In Each Block

Figure 4.5 Operation Of MultiSim.exe

134

9

CHAPTER 5 SIMULATION AND PERFORMANCE EVALUATION

5.0 Training Data 136
5.0.1 Open Loop Training Data 136
5.0.2 Closed Loop Training Data 140

5.1 Open Loop Simulations 140
5.1.1 Single Layer Perceptron (Delta Rule) 140
5.1.2 Associative Memory Model 144
5.1.3 Multi“Layer Networks Using

Backpropagation 147
5.1.3.1 A 3 Layer Net With Restricted

Connections 150
5.1.3.2 A 3 Layer Net With Direct

Input-Output Connections 153
5.1.3.3 A Four Layer Nets With

Restricted Connections 153
5.1.4 The Competitive Model 160
5.1.5 The Kohonen Network 163
5.1.6 The Counterpropagation Model 170
5.1.7 The New Integrator Model 177

5.2 Closed Loop Simulations 181
5.3 Speed Performance Of The Integrator Model 183
5.4 Performance Evaluation Of The Parallel

Processing Algorithm 189

CHAPTER 5 SIMULATION AND PERFORMANCE EVALUATION

The new network performance need to be compared with that
of several current networks. Their performance in respect
to the dynamics of computations, learning and response are
compared and presented in the following sections.

All simulations are generated using the same simulation
tools, described in chapter 4, and the same sets of
learning data.

There are two main stages of simulations: open loop and
closed loop. In the open loop case, networks are trained to
behave as systems that compute the output representing the
area bounded by two successive points on a trajectory image
plane and the boundary of the time axis.

In the closed loop case, the output of a trained neural
network are fed back and combined with the input vector to
form a first order system so that any difference (error)
generated is fed to the neural integrator and the by­
product representing the derivative of the input is then
extracted.

135

5.0 Training Data

In both open and closed loop stages the input and output
neuron organisation of networks are fixed. This is because
the training or learning data sets have a pre-defined
format. Each set of training data consists of pairs of
binary input and target output patterns; networks are
trained as integrators and are expected to convert a
distributed representation of patterns with (n) bits into
a local representation over (2*n-l) bits.

5.0.1 Open Loop Training Data

A set of training data in the open loop case consists of
pairs of binary pattern. Each input pattern has either one
or two 'ON' bits representing the superimposed amplitude
samples (representing position, velocity, acceleration,
etc.) at two successive time instances. The length of each
input pattern (n) is equal to the number of grid points
used for the amplitude axis of the image plane.

The number of pattern pairs in each set of training data is
varied according to the length of each input pattern. For
an image plane with n*t grid positions, where t and n
denote the horizontal time and vertical amplitude axis, the
number of bits in each training pattern is (n) and the

136

total number of pattern pairs within the training set is

n
Number Of Pattern Pairs - K (5.1)

k-l

Figure 5.1 shows that as the number of bits in each pattern
increases so does rapidly the number of training pattern
pairs. For this reason, the size of simulated nets have
been kept to a minimum - typically 15 and 2 9 neurons in the
input and output layers respectively.

Associated with each input training pattern is the target
pattern. Each target pattern contains only one 'ON' bit. It
represents the mid-point of the two 'ON' bits of an input
pattern, this is illustrated by the example shown in Figure
5.2.

Table 5.1 is an example of a set of 4 bit training pairs.
It is clear that the similarity structure of the
distributed input pattern is simply not preserved in the
output representation. No similar input patterns are
associated with the same output and those input patterns
sharing the same output response are non-orthogonal, this
kind of problem has been regarded as 'difficult' for neural
network models [Minsky, 1969] [Aleksander, 1990] .

137

Number Of Patterns

140

120

100

80

40

20

0 &__ dr"— 1_____ 1____ i___ i____ i___ i___ i____ i_____1__i____i____i____i____i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number Of Neurons

Figure 5.1 Number Of Patterns
Versus Pattern Size

138

T rajectory
Profile Image

Table 5.1

Input Output

0000 0000000
0001 0000001
0010 0000100
0100 0010000
1000 1000000
0011 0000010
0101 0000100
1001 0001000
0110 0001000
1010 0010000
1100 0100000

 ► 0 0 0 1 0 0 0

Superimposing

 ► 0 0 1 0 0 0 0

Input Pattern 0 0 1 1 0 0 0

Output (Target) 0000010000000

Figure 5.2 Example Of Training Pair

139

The Nottingham Trent University Library & Infom

NON STANDARD LOAN F
pl ease c o mp l e t e using BLOCK C l

Author
V /
\J

}!i '■f'̂ /;i *■ I

Title
iMt c, a^f rT M *V\ C
T\̂ i<\ | Cxrwi .■

\ \ g t v i — i ' • v , % s~\J e ~ f p v y \ ct -a* * f »

Barcode number
' A l \ \
2

i Q / v *? S u

Date issued_
Date due backNameJCSB̂

/Y

Membership ni

Shelf number
a £? . « i I? A

Course < f\0M
tk I ** \s/m a ^ Nf #•* >* *.«• \s --5 ?/ _c *J

5.0.2 Closed Loop Simulation Data

Network models that have successfully learnt the open loop
representation are subjected to the closed loop simulation
tests. In this stage, each network is simply tested with
several different functions: constant, linear, quadratic,
exponential and trigonometric sine functions. In each test,
the derivative of the input function is read off and
compared to calculated values.

5.1 Open Loop Network Simulations

Current networks that have been simulated and used for
comparison consists of Single Layer Perceptron with Delta
Rule, Multi-layer Perceptrons with Backpropagation
Algorithm, Associative Memory, Competitive, Kohonen,
Counter-propagation and the new Retinal networks.

5.1.1 Single Laver Perceptron (Delta Rule)

Delta Rule or Window training scheme is a supervised
training algorithm employed by networks with single layer
of binary neurons and more commonly known as Single Layer
Perceptron. Computation in the perceptron is synchronous
and feedforward type so that all neurons within the single

140

layer network are updated simultaneously. The activation
rule of each neuron when it responds to an input pattern
is : -

W±j X±) (5.2)i-i

where a() is binary with domain [0,1].

In the simulations an extra static layer has been
introduced to the network to act as the fan-in of the
network. During training each neuron in the static layer is
clamped to a single bit of the input pattern and does not
perform any computation except for holding and distributing
the bit value. The simulated network is a fully connected
type, weights between neurons are initially set to small
random values between +1 and -1. Training is carried out as
following

1) A training pattern is selected from the training set and
the appropriate neuron in the static layer is set
according to the clamped value.

2) The static input neurons activate the processing
layer's neuron and the output of each neuron is
calculated using equation (5.2).

3) The error for each neuron is computed by subtracting
the actual output from the corresponding desired output
pattern.

141

4) New weights are calculated with the following weight
changing equation (5.3) : -

Wy(t+1) - W±j(t) + (5.3)

where £ is the learning rate, 5j the calculated error and
X± is the binary value of the i-th static input neuron.

5) Another pattern pair is selected from the training set
and the procedure is repeated to reduce output errors.

6) The above steps are repeated for another cycle.

To produce representative performance a network with 15
neurons in the static layer and 2 9 neurons in the
processing layer were used; the number of training pairs is
thus 120. Various values of £, ranging from 0.1 to 0.5, are
used during training. The graph shown in Figure 5.3
represents the average learning performance of the above
network model. The result shows that none of the simulated
single layer networks have been able to learn the open loop
representation. Using larger training cycles and smaller
values of £ have no effect on the learning performance. In
all cases, the high error level remained unchanged. The
results show that networks of this type are simply not
capable of representing integration.

142

Error Percent

100

80

60

40

20

0

-a g-

Average Of 5

(Learning Rate 0.1 To 0.5)

j i i i i i i i i

0 3 6 9 12 15 18 21 24 27 30

Training Cycle (x100)

Figure 5.3 Error Percent Versus Training

143

DX
1

Page count

Batch num ber

C7\ . «>■*=*•

. '1 \A
Com m ents:

INSTITUTION COPY

In s titu tio n C l n S G a q -t T P o i- i~ T g O - lM \e)

Thesis by __________ C. t A € ̂ A Q « W '_____________________

W e have assigned this thesis the num ber given at the top o f this
sheet.
C N A A has been no tified ,and w il l pass the in fo rm a tio n on to A S LIB
on yo u r beha lf so that i t can be published w ith the relevant abstract
in th e ir Index to Theses with Abstracts.

THE BRITISH LIBRARY
DOCUMENT SUPPLY CENTRE

British Thesis Acquisitions

T3-I6B

5.1.2 Associative Memory Model

An associative memory model stores and recalls association
of patterns learned by summing correlation matrices.

Hopfield and Bidirectional Associative Memory (BAM) are
examples of associative memory models. In associative
memory neural networks, each neuron is connected to other
neurons through a connection strength matrix T. Each neuron
is a simple non-linear function and transfers the sum of
weighted input signals into a single output signal. The
main difference between Hopfield and BAM is that Hopfield
nets are auto-associative memory type while BAMs are
hetero-associative memory models, see appendix (A.l) for
more detailed description.

A network of associative memory can be constructed by
specifying the connection strength matrix T. If a pattern
Y is to be associated with pattern X, T is constructed by
finding the outer product of these two vectors

T - YtX (5.4)

Where ' t' denotes the transpose of a column vector. If
there are K patterns to be stored in the memory, then Ti;)

144

can be derived by

T1} - Y, (if) "Uj’) (5.5)
P-l

that is by adding the outer product of all the individual
memory vectors.

The simulated network models were hetero-associative memory
type (BAM) because for representing integration Y and X are
different and have different dimensions, (fields) , so the
connection matrices are asymmetric, Yp & Xp.

The following procedure was used to simulate the hetero-
associative memory (BAM) model :-

To construct the network, step (1) and (2) are used:-
1) For each pair of patterns in the training set, convert

the binary patterns to bipolar format such that 1 to +1
and 0 to -1.

2) Calculate the correlation matrix for each association
pattern pair and then add up the correlation matrices as
given by equation (5.5).

To activate the network, the following steps are used
3) Neurons in the input field are forced to the values of

the input pattern; either ON or OFF according to whether
the corresponding binary values are 1 or 0.

145

4) Calculate the neurons outputs in the output field
according to equation (5.6):-

Oi(t+1) - f(J2 > (5,6)

where f() is a binary function; if the inputs sum of a
neuron is larger than 0 set it to 1; if the inputs sum
is below 0 set it to 0; and state of neuron is unchanged
if the inputs sum is equal to zero, 0(t) and 0(t+l)
represent the current and next state of the network.

5) Calculate the outputs of neurons in the input field.
6) Repeat (4) to (6) until the outputs of neurons in the

input and output fields stabilize (i.e. stop changing).

Following procedures (1) and (2) , networks of BAM models
with an input size rising up to 15 neurons have been
constructed. Simulation results have shown that the
reliability of this type of model is very low. The average
reliable retrieval of associations is less than 15%. The
only exceptional case is a small 2 by 3 network where all
the stored associations were successfully retrieved. As the
network size is increased so does the number of
associations. For a 3 by 5 network there are 6
associations, and in this case less than 72% of association
were successful.

Single pattern simulations were also carried out. Using

146

this approach all the simulated networks can retrieve the
single association reliably. The results indicated that,
for any network size, as more patterns were added to a
connection matrix the network's association degraded. Fewer
patterns were able to be recalled as more matrices were
added. Such misclassification reflects that the connection
matrix can be overcrowded.

For representing integration, it is difficult to determine
the relationship between the network reliability and the
number of associations. This is because the number of
patterns needed to be stored is always larger than the size
of the input field (i.e. neurons clamped to input) and the
degradation of reliability is not constant. From the
simulation results it is clear that high reliability can
only be obtained if the number of associations is less than
or equal to the higher of the two-pattern dimensions.

5.1.3 Multi-Laver Networks Using Backpropaaation

Both Associative Memory and Single Layer Perceptron have
serious storage limitations; when more data is stored in
the networks adaptation degrades and unlearning start to
occur. The limitations of these networks can be overcomed
by Multi-Layer networks using a nonlinear neuron
activation rule.

147

In this section, the simulation results of three multi­
layer networks using the Error Backpropagation algorithm
are described. The simulated networks architectures
include: a four layer network with two hidden layers of
neurons, and two three-layer networks with a single layer
of hidden neurons.

The two three-layer networks have different connections
arrangements; one with restricted connections between
successive layers only and the other with additional direct
connections between input and output layers. All multi­
layer networks have the same 15 input and 2 9 output neuron
organisations.

The simulation procedures are the same for all the multi­
layer networks and are as follows :-

1) Initialize all weights to small random values within
the range of +1 and -1.

2) Select a pair of training patterns and feed the input
pattern to the network.

3) Calculate the outputs of neuron in each layer according
to equation (5.7).

148

OA fc+1) - --------- ----------A (5.7)1 + exp (- V Ŵ Oj, (t))i-i

4) Calculate the error of neurons in each layer except the
input layer as follows
I) Calculate neurons error in the output layer with

equation (5.8).

5̂ - Oj{ 1 - Oj) (Tj - Ij) (5.8)

where T.J and 03 represent the desired target and the
actual output values.

II) Calculate neuron errors in the hidden layer (s) with
equation (5.9)

" °i(1 * °i > (5,9)> i

5) Adjust all the weights leading to each neuron with
equation (5.10)

W±j(t+1) - ^ (t) + C5JOi(t) (5.10)

6) Repeat (2) - (5) for other training pattern pairs.
7) Repeat (6) for another cycle until error levels are

acceptable.

Each simulated network was trained with >3000 cycles.
Though it may seem more reasonable to allow the network to
run freely and make the stopping criterion controlled by
error level, however, as can be seen in Figure 5.4, in some

149

cases particularly with small size of hidden layer learning
can take quit a long time. Where the network fails to
achieve the required error level, the learning process is
forced to stop.

5.1.3.1 A 3 Laver Net With Restricted Connections

Simulation results for this case are as summarized in
Figure 5.4(a). The input and output layers consist of 15
and 2 9 neurons respectively. During simulation £=0.1 was
used to enable fine adjustment of weights. The number of
hidden neuron was varied from 5 to 40. From Figure
5.4(a)(b) it is clear that as the number of hidden neurons
is increased the corresponding percentage error decreases
rapidly. With smaller sizes of the hidden layer the network
learned much slower and became unreliable when the hidden
layer size was too small. Increasing the size of the hidden
layer did not improve performance. In fact in this
particular case the percentage error declined much slower
as the hidden layer size was increased from 19. The best
result (the fastest decline in error) was recorded with 19
hidden neurons where the error reaches 5% after 990
training cycles, no further improvement was observed, see
Figure 5.4 (b) .

150

Error Percent

40

30

No. Of Hidden Neurons

40

12 15 18 21 24 27 300 3 6 9

No. Of Training Cycle (x100)

Figure 5.4(a) Error Percent Versus
Training Cycle Number

151

% Error

16

14

12

10

8

6

4

2

0
0 2010 30 40 50

Number Of Hidden Neurons

Figure 5.4(b) Optimum Hidden Layer
Size

152

5 .1.3 . 2 A 3 Laver Net With Direct Input-Output Connections

The set of simulation results for this case are summarized
in Figure 5.5(a) . The same procedures were used to simulate
this network. With this architecture the network
performance is degraded. The time it takes the network to
learn is longer. Slight improvement in terms of the rate of
learning has been observed. The best result gives an error
percentage of <10% after 1980 training cycles with 19
hidden neurons. A degradation of performance is noticeable,
see Figure 5.5(b).

5.1.3.3 A Four Laver Net with Restricted Connections

To improve the classification capability, simulations were
also carried out with a four-layer architecture. The input
and output neuron organisations are the same as before (15
and 2 9 respectively) but two hidden layers with various
sizes were used. Results are presented according to the
sizes of hidden layers, see Figure 5.6 to Figure 5.8.

Figure 5.6 shows error percentage graphs for networks with
fixed 30 neurons in the first hidden layer. Using 40
neurons in the second layer the network reached <1% error
in 693 cycles. Experiments have shown that decreasing the
size in the second hidden layer will lead to a longer

153

Error Percent

No. Of Hidden Neurons

30

20

0 6 12 15 18 21 24 27 303 9

No. Of Training Cycles (x100)

Figure 5.5(a) Error Percent Versus Training
Cycle Number

154

% Error

25

20

15

10

5

0
0 10 20 30 40 50

No. Of Hidden Neurons

Figure 5.5(b) Optimum Hidden Layer Size

155

Error Percent

50

No. Of Neurons In
The Second Hidden Layer

Is Fixed At 30

30

No. Of Neurons In
The First Hidden Layer

30

No. Of Training Cycles (x100)

Figure 5.6 Error Percent Versus Number
Of Training Cycles

156

training time for the network to reach the same results.
With 10 neurons in the second hidden layer it took the
network 2475 cycles to reach 1% error.

Very similar results were also obtained with fixed sizes,
20 and 10, of neurons in the first hidden layer, presented
in Figure 5.7 and figure 5.8 respectively. On average, as
long as the size of the second layer is not less than 15
(the size of the input layer) the network will learn all
the associations. The only draw back is that longer
training time is needed when using small sizes of hidden
layers.

From this results it is deduced that for the integrator
model, with n input and 2*n-l output neurons, the minimum
number of neurons required for the two hidden layers are
2*n/3 and 4*n/3 respectively. Using this result a network
with n=20 was tested (the size of the hidden layers were 15
and 20 respectively) . The network learned all the
associations within 1089 cycles with a learning rate of
0.2, (a small learning rate enables fine weight
adjustment).

157

Error Percent
40

No. Of Neurons In The
Second Hidden Layer Is

Is Fixed At 20

30
No. Of Neurons In The

First Hidden Layer

20

30

24 27

No. Of Training Cycles (x100)

Figure 5.7 Error Percent Versus Training
Cycle Number

158

Error Percent

No. Of Neurons In The
Second Hidden Layer Is

Fixed At 10

30

No. Of Neurons In The
First Hidden Layer

40'

24 27 30
No. Of Training Cycles (x100)

Figure 5.8 Error Percent Versus Training
Cycle Number

159

5.1.4 The Competitive Model

The previously simulated networks were of the supervised
type, which assumes that inputs and desired outputs are
available. In this section the simulations of unsupervised
networks are described. In the simplest, the weights are
adjusted according to the inputs such that only one
population of neurons, may be only one or a group of
neurons, will respond to a particular pattern, or a class
of patterns.

The simulated networks have two layers of neurons, a layer
of static (input) neurons and a layer of competition
neurons. Similar to the case of the Perceptron model the
static layer does not actually perform any computation, it
is used primarily for holding and distributing the inputs.

The competition layer consists of identical neurons with
connections from the static layer and inhibitory
connections from neighbour neurons in the competition
layer.

The computation of a competitive network is very straight
forward. Each neuron in the competition layer calculates
the sum of the weighted inputs. Neurons within a predefined
population then compete with each other, and the one with
the largest input sum is activated and the others

160

suppressed.

Weights leading to the active neuron(s) are adjusted by
shifting weight from inactive input connections to the
active connections. The rest of the weights leading to
inactive neurons remain unchanged. The procedure for
simulating such networks is as follows :-

1) Initially randomize all weights so that the sum of
weights of a neuron is equal to 1.

2) Select a pattern from the training set and feed to the
static input layer. The sum of weighted inputs of
neurons in the competition layer is then calculated.

3) Activate (set output to 1) neurons with the largest sum
of inputs within a predefined population in the
competition layer and set the outputs of the rest to 0.

4) Adjust the weights leading to the active neuron with
equation (5.11) :-

W1}{ t+1) - W±J (fc) + [-22 - gWJ;)(t)] (5.11)

where n is the number of 'ON' neurons in the static
input layer; c is the value of the input static neuron
so that if c is 'Zero' the weight is reduced by the gain
factor g, and if c is 'one' a small amount proportional
to g will be shifted to the active connections, i.e.
moving weights from the inactive to active input paths.

161

5) Repeat (2) to (5) for another pattern.
6) Repeat (2) to (5) until the output stabilizes.

In the first set of simulations, each simulated network has
a layer of 15 input neurons and a single competition
cluster of various sizes.

Using the competitive learning algorithm it is expected
that the competition layer will tend to group similar
patterns together. However, the integrator application
requires each competition neuron to group non-similar
patterns. Simulations have shown that this is very
difficult with this model. In many cases, with learning
gain of 0.5, the outputs of the simulated networks
stabilized within a few hundred cycles, using smaller
learning gain would merely increase the time it takes the
networks to stabilize and has no effect on the final
output.

Depending on the size of the single competition cluster the
size of the divided, or grouped, input patterns, changed
inversely; better isolation can usually be obtained when a
larger competition cluster is used.

With 15 components in each input pattern there are 12 0
patterns to be isolated. Various sizes of the single
competition cluster ranging from 120 to 1000 were used. A

162

base size of 120 was used to ensure that the network has
sufficient neurons to choose from. Table 5.2 summarizes the
simulation results.

The results show a slight increase in isolation with a
large increase in the competition cluster size. With 1000
neurons in the single competition cluster approximately 26%
isolation was obtained. Larger competition layer size was
not simulated as it would take a very impractical
processing time; it took nearly 40 hours to train the 15 by
1000 network on the VAX with learning gain of 0.3!

In the second set of simulations a fixed size of 200
neurons with various number of clusters were used. Networks
with a number of clusters ranging from 2 to 20 were
simulated. In all cases the use of a new number of clusters
would change the output of the competition layer; changing
the network dimension would change the activation of
neurons. However, no significant improvement in terms of
input isolation was observed. The results are effectively
the same as when using a single competition cluster.

5.1.5 The Kohonen Network

The architecture of Kohonen networks is exactly the same as
the competitive model and consists of two layers of

163

Size Of Cluster Average Number
Of Patterns

Associated With a Neuron
120 -31
200 ~31
300 ~31
500 -28
750 COCMI

1000 -26

Table 5.2 Average Number Of Pattern Grouped By Neuron

164

neurons: a static and a Kohonen layer. Neurons in the
Kohonen layer are competition neurons. During adaptation
the neuron with the largest output and its lateral
neighbouring neurons are declared as the winner population
and weights leading to neurons in the winning population
are adjusted.

There are two type of connections in a Kohonen network: the
external weighted input connections (the static layer
connections), and the lateral feedback connections from
other neighbouring neuron. The external weighted input
connections are adjustable while the weights of the lateral
feedback connections are determined by the lateral
interaction function. The lateral interaction function is
a function of the lateral physical distance between
neurons. A typical lateral distance function is shown in
Figure 5.9, commonly called the "Mexican Hat" function. The
updating of the Kohonen neuron can be described by equation
(5.12) : -

Ok(t+1) - (5.12)

where F() is a measure of distance between the connection
weights Wi;} and the signals 0* from the static layer. The
activation function G() may be of the logistic type or

165

t=2

t=1

t=0

Spatial Distance

Figure 5.9 Typical Shape Of Mexican Hat
Function

166

linear or binary activation function, thus : -
\

O . (t+1) *■ 1 (t) “inin [(Wkk-i ~ @k-i ̂ ̂ /c io* [a otherwise K ' ’

Computation of the simulated Kohonen network differ
slightly from other neural network models (but functionally
the same) . When an external input is applied to the
network, the complete input is presented to each Kohonen
neuron through the static layer. Each Kohonen neuron sets
its output according to the sum of it's measure of distance
between the input signals and it's corresponding connection
weight given by :-

E < ^*-1 - o*-! >2 (5-14)
Jc«i

where p is the length of the external input or the number
of neurons in the static layer.

The output of the Kohonen neuron with connection weights
closest to the external input values is activated. The size
of the winning population is then determined by the lateral
interaction function. During the learning process the size
of the lateral "Mexican Hat" function varies and shrinks as
learning progresses such that as the network learns the
number of neurons associated with an input pattern is
reduced. The size of the lateral function changes according
to the learning interaction and eventually only one neuron

167

is allowed to associate to an input or a group of inputs.
The simulation procedure is summarized by the following
steps

1) Initially randomize all weights to be within 0 and +1.
2) Normalize the weights by dividing each weight component

by the length of the weight vector. The length is found
by taking the square root of the sum of the squares of
all the weight components leading to a neuron, i.e

3) Select a pattern from the input set, normalize the input
as above and apply the normalized version to the static
layer.

4) Calculate the output of each neuron in the Kohonen layer
using equation (5.14) .

5) Calculate the radius size of the winning population with
equation (5.16) : -

Radius - Number Of Kohonen Neuron TrainingCycle ^
2 Step Size

6) Select the neuron that produces the smallest output and
it's neighbouring neurons according to the radius size
calculated in step (5) and set their output to 1
(activate them).

7) Alter the weights leading to the active neurons with
equation (5.17) : -

(5.15)

168

^(fc+l) - Wkj(t) + C(Xj - Wkj (t)) (5.17)

8) Repeat from step (2) for the rest of the training data.
9) Repeat step (8) for the next training cycle.

Kohonen networks of various input and output dimensions
were simulated. The performance of small networks suggested
that the size of the Kohonen layer must be at least several
times larger than the number of patterns to be learned if
total isolation is desirable; each kohonen neuron points to
a specific pattern.

Using an unsupervised network, it is expected that the
network either groups similar patterns together or
completely isolates all input patterns. For the integrator
application complete isolation is desirable as Kohonen
neurons are required to point (or to group) selectively
non-orthogonal inputs together. In order to achieve this,
the size of the Kohonen layer must be at least many times
larger than the number of patterns.

As the size of the network grows so does the number of
patterns, and it becomes increasingly difficult to predict
the suitable Kohonen layer size. Experiments show that when
a small layer of Kohonen neurons is used the network will
always isolate uncorrelated inputs. When the size of the
Kohonen layer is increased the isolation capability will

169

follow; the correlated patterns will further be arranged
into smaller groups. Experiments show no clear relationship
between the size of the Kohonen layer and the number of
patterns to be learned.

The outcome of the Kohonen and the competitive models are
very similar. Both models will tend to group data according
to their correlations. However, higher isolation is
obtainable with the kohonen model using the lateral
neighbouring interaction. Though, with the lateral
interaction function it would seem that some of the weights
may not be adjusted at all (weights leading to neurons
which are never active) but inspections have shown that
weights do all change in time. Some neurons may not be
winners at all during the early stage of the learning
process but as learning progresses the lateral interaction
will alter the situation by distributing the weights evenly
thereby increasing the degree of isolation.

5.1.6 The Counter-propagation network

This network is a hybrid combining Kohonen and Grossberg
learning methods. During learning, pairs of vectors (say
[X, Y]) are presented to the network, these vectors then
propagate through the network in a counterflow manner to
yield a pair of output vectors which are an approximation

170

to the input vector pair. After learning, if only one of
the learned vector or a pair having some components of both
X and Y zeroed out is entered, the network will complete
the vector pair and the output will be approximately the
same as the best matching input vectors. Thus the network
functions as a lookup table.

There are many variants of the counter-propagation network.
The type described in this section is a three layer
feedforward only version in which only transformation from
one vector to another are of interest. The network
architecture consists of three layers of neurons. Neurons
in the first layer serve only as fan-in of the network and
perform no computation. The second layer is the Kohonen
layer where competition of neurons is performed. Neurons in
this layer are fully connected to the input and the
Grossberg layers. The network architecture is very much the
same as the three layer perceptron described earlier, the
differences lie in the processing performed by the Kohonen
and Grossberg layers.

Neurons in the counter-propagation network perform the
calculation of their sum of weighted inputs. When an input
is applied to the network neurons in the Kohonen layer
compete with each other; their weighted inputs are summed
and the neuron with the largest sum is set to one, all
others are set to zero. Neurons in the Grossberg layer then

171

sum the weights connecting to the winning Kohonen neuron to
yield the desired vector.

When learning is performed for a given input vector, each
weight associated with the winning Kohonen neuron is
changed by an amount proportional to the difference between
its weight value and the value of the input to which it
connects. Weights between a winning Kohonen neuron and
Grossberg layer neurons are adjusted by an amount
proportional to the difference between target and actual
output vectors. Simulations were performed as follows

1) Initialize connection weights of the Grossberg layer to
small random values.

2) Initialize connection weights of the Kohonen layer by
one of the following methods : -
(a) By Convex Combination Method - set all weights to

the same value 1/Vn where n is the number of input
components.

(b) By Lateral Neighbouring Interaction Method - set all
weights to a small random value.

3) Normalize connection weights of the Kohonen layer by
dividing each weight component by the length of the
weight vector. The length is calculated by taking the
square root of the sum of the square of all the weight
components leading to a neuron.

4) Apply an external input vector to the network; if using
172

the convex combination method coincide each input
component with the weight vectors by giving each input
component, X, the value

Xt - + [-T (1 - C)] (5.18)
v/H

where n is the number of input components of the input
vector. Initially, the convex combination method start
off with £ near zero. This forces all input vectors
to be close to weight vectors. As time goes on the
value of £ is raised slowly to one. As this happens, the
weight vectors are 'peeled' off and follow the input
vector as they move away from l/Vn.

5) Calculate the output of each Kohonen neuron by summing
the weighted inputs. If using lateral neighbouring
interaction set the neuron with the largest value and
it's neighbouring neurons (determinated by the lateral
function, see the Kohonen network in section 5.1.5) to
one and set all other neurons to zero. With the convex
combination method simply set the neuron with the
largest sum of inputs to one.

6) Adjust weights of the active Kohonen neurons with
equation (5.19)

RTy(t+l) - JVy(t) + c (Oj -W±j{ t)) (5 .19)

where Wij(t+1) denotes the next weight value between the
active i-th Kohonen neuron and the input Oj, £ is the
learning rate and should start out with a value close to

173

1 and reduced gradually as learning progresses.
7) Calculate the Grossberg layer output by summing the

weighted input of each neuron.
8) Adjust the connection weights of the Grossberg layer by

equation (5.20) :-

^(fc+l) - wgk(t) + C(Tg +Og)Ok (5.20)

where Wgk is the weight between the active Kohonen and
Grossberg neurons, £ is the learning rate and starts out
at around 0.1 and reduced as learning progresses, Tg is
the target value of the Grossberg neuron and Ok is the
output value of the Kohonen neuron such that if the
Kohonen neuron is not active then the weight is
unchanged.

9) Repeat from (3) to (8) for the rest of the training
inputs.

Simulations show that the accuracy of the counter­
propagation network depends on the performance of the
Kohonen layer. The only action of each neuron in the
Grossberg layer is to output the value of the weights that
connects it to the single non-zero Kohonen neuron.

Networks trained by the lateral neighbouring interaction
method and by the convex combination methods vary little in
performance. Both techniques lead networks to separate
dissimilar input patterns. When the number of patterns to

174

be learned is small, < 21, it is possible to predict and
start off with the correct size of the Kohonen layer and
train the network to meet 100% input to output
associations, Table 5.3. As the network size grows it
becomes difficult to maintain this level of accuracy. The
Grossberg layer has very little influence on the final
network outcome. Among all the simulated network
configurations the Kohonen layer always manage to isolate
groups of patterns but fails to respond to single
individual pattern. Due to this problem the output of the
Grossberg layer is unstable; swinging from one desired
output to another as training progresses.

Experiments have shown that the counterpropagation model is
not suitable for representing integration. However, due to
its flexible basic architecture, there is another learning
method to ensure 100% associations for any size of input-
output neuron organisation. An experiment was carried out
using the same basic architecture but a new method as
described below.

A New Method:

Each set of weights leading to each kohonen neuron were
initialized to the input values so that there are equal
number of Kohonen neurons and number of patterns to be

175

Size Of input
Layer Neurons
Organisation

Number Of
Patterns

Size Of Output
to Obtain 100%

Isolation

4 10 20
5 15 50
6 21 160

Table 5.3

176

learned. With this arrangement all the input patterns are
automatically isolated and all that remains is to train the
weights of the Grossberg layer to match the desired output.
Simulations have shown that if the learning equation (5.19)
is used through out the training process and the size of
the Kohonen layer is made equal to the number of training
patterns the Kohonen layer can be trained with only one
calculation per weight with a learning rate of 1. The
advantages, of this method include: short learning time,
easily obtained total association, and predictability of
Kohonen layer size. The main draw back is that if the
number of patterns to be associated is large the size of
the network would be unpractically large.

5.1.7 The New Integrator Model

The architecture of the new integrator model consists of
five layers of neurons, see chapter 3. The regular synaptic
connections of the outer section of the network contains
four layers and are presetable in a manner that if two
adjoined photoreceptors are both activated by external
inputs then the active bipolar cell directly beneath the
photoreceptors will be turned off by the inhibitory
connections coming from the horizontal cell. Thus
triggering the middle ganglion cell in between the signal
pathway of the bipolar cells.

177

The amacrine cell layer mediates the lateral interaction of
the outer section of the network and the input and output
connections of the amacrine layer are adjustable. The
learning process of the amacrine layer is similar to the
counter-propagation model, weights leading into the
amacrine cell layer are adjusted according to the
competition process and weights connecting the output of
the amacrine and the ganglion layers are adjusted by a
supervised learning method.

When signals arrive to the amacrine layer neurons with
weights closest to the input win the competition. A winning
neuron then undergoes a suppression test; if it has been
winning more input patterns than it is allowed it's output
will be suppressed and the next runner up neuron will be
the winner if it survives the suppression test. The weights
leading to the winner are adjusted by moving weights closer
to the input signals.

Weights between the output of the amacrine and ganglion
layers are adjusted such that the weights connecting the
active ganglion and amacrine neurons are strengthen and the
rest of weights are unchanged, (i.e. the Hebb's law). The
simulation procedure consists of the following steps

1) Initialize the weights of the basic net such that the
middle ganglion cell will be activated if both adjoint

178

photoreceptors are turned 'ON'/ if only one
photoreceptor is turned 'ON' then the ganglion cell
directly beneath the bipolar cell along the signal path
will be turned 'ON' .

2) Initialize the input and output synaptic connections of
the amacrine layer to small random values.

3) Normalize the input and output weights of the amacrine
layer, see Kohonen or counter-propagation network
simulations.

4) Apply an external input to the network.
5) Calculate the output of the- horizontal and bipolar

layers by equation (5.21) : -

6) Calculate the output of the amacrine layer according to
equation (5.22) : -

7) Locate the (next) amacrine neuron with the minimum
value.

8) Calculate the suppression criteria by k/c where k is the
number of times the winning neuron has been activated
and c is the maximum number of times it is allowed; if
the suppression criteria is <1 then activate it else
repeat step (7).

9) Adjust the input weight leading to the active amacrine

(5.21)

O u t p u t ^ - £ { x ± - u (5.22)i-i

179

neuron by equation (5.23) : -

W^fc+l) - ^(t) + C(Oa Ob - W^ct)) (5.23)

10) Activate the ganglion cell layer according to the
desired output pattern.

11) Adjust the output weights of the amacrine layer
according to equation (5.24) : -

W^(t+1) - Wag(t) + C(Targetg - Wag{ t)) Oa (5.24)

12) Repeat from step (3) for another data pattern pair from
the training set.

13) Reset the parameters of the suppression criteria.
14) Repeat from step (3) for next learning cycle.

Several simulation runs of the retinal model were made with
input dimension rising up to 15 neurons. In all cases the
same set of weight ratios was used for the basic building
nets (weights between receptors, horizontal cells, bipolar
and ganglion cells, see chapter (3) . And the input and
output connections of the amacrine cell layer were adjusted
according to equation (5.23) and (5.24). In all cases total
associations were achieved.

Simulations also showed that altering the learning gain
merely changes the time for a network to reach satisfactory
response and has no effect on the final outcome. With a
learning gain £ (equation (5.23) and (5.24)) of 1, the
amacrine layer achieves coincidence with inputs in one

180

pattern per cycle. The ' c' parameter of the suppression
criteria was set to 1 in all simulations, thus each
amacrine neuron responds to an unique input pattern. These
settings provided faster speed for networks to reach total
associations.

5.2 Closed Loop Simulations

Neural networks that were successfully trained in the open
loop stage were used for the closed loop simulation. In the
closed loop test each network is placed inside the forward
path of a feedback system as shown in Figure 5.10.

To process a complete time related trajectory profile the
input profile image is segmented into equal strips to
simulate the time axis. Before data is fed into the system,
each pattern is first converted to binary. At each
processing time step two successive binary patterns are
first superimposed together before being applied to the
system, see Figure 5.10 for illustration. At the output
side, successive outputs are fed back to the input. The
resultant effect is two profiles one produced at the output
of the system and the other produced at the forward path
representing the corresponding derivative.

Neural networks based on the backpropagation and the new
181

In
pu

t
Tr

aj
ec

to
ry

O

ut
pu

t
Tr

aj
ec

to
ry

Q.

CD8.

c_o
asi_
CDOLo
Q_OO_l
CD
CDO
O
o
LD
CD
v_Z3O)

CO

182

retinal models were used for simulations. Both network
models produced the same results as they were successfully
trained to provide total associations to represent
integration.

For each model, five different input functions (Constant,
Linear, Quadratic, Exponential and Sine) were applied.
Figures 5.11 to 5.15 show the responses of networks to
these functions, including the corresponding estimated
derivatives. The results show that the system is capable
of: following the input profile, and producing the
corresponding derivative shape of the input profile.

5.3 Speed Performance Of The Integrator Model

The pictorial integration process involves computation
steps which are suitable for conventional programming.

With the conventional programming approach, the main
computation involves scanning and comparing arrays of
elements where data are stored. The computation speed thus
depends on the size of the arrays (i.e. the size of the
input patterns) , the larger the arrays the longer the
computation. In the ideal neural network approach, the
computation speed would be constant as all inputs are
processed in parallel. In reality, this depends on the

183

System Input System Output

i i ! i i i

X - > < X ■■■>< X X X X X X

: : : : : :

Derivative Output

Figure 5.11 Processing Of A Constant
Input

184

System Input System Output

9

8
7

6
5

4

3

2
1

Derivative Output

1 2 3 4 5 6 7

2.0
Numerical

Method
1.5

1.0

0.5

• New
Method

Figure 5.12 Processing Of A Linear input

185

System Input8.0
7.5

7.0
6.5

6.0
5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0
1.5

1.0

0.5

System Output

Derivative Output

3.5

Numerical
Method3.0

2.5

2.0 New
Method

1.5

1.0

0.5

Figure 5.13 Processing Of A Quadratic Input

186

System Input System Output

180

Derivative Output

0.3

0.2
0.1
0

-0.1
-0.2
-0.3

0 90 180

Figure 5.14 Processing Of A Sine Input

187

System Input System Output
7.5

7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0

2.5
2.0
1.5

1.0
0.5

Derivative Output

3.5

3.0

2.5

2.0

1.5

0.5

Numerical Method

m «■ New Method

Figure 5.15 Processing Of An Exp(x/2) Input

188

hardware platform the neural network is running on.

Typical computation speeds of the pictorial integration
process by these two approaches running on single processor
machines are illustrated in Figure 5.16. For input pattern
sizes less than 10 the neural network approach, on average,
is roughly 160mS faster. As the pattern dimension is
increased to 10 bits, the conventional approach gives a
shorter computation speed.

Using a single processor the speed of the neural network
approach is limited by the size of the input. This is due
to the increasing number of neurons needed to be processed
in serial. Figure 5.17 shows that the number of neuron
increases non linearly with the dimension of the input
patterns. In order to overcome this limitation, parallel
processing of neural networks is desirable.

5.4 Performance Evaluation Of The Parallel Algorithm

Parallel processing and direct hardware implementation of
neural networks can significantly reduce processing time.
A parallel processing method for a distributed memory
multiprocessor system was proposed in chapter 3. Software
simulation of this algorithm is possible with a general
purpose single processor machine. However, without actually

189

Execution Speed/Pattern (mS)

500 i

Conventional
Method400 -

300 -

200 -

New
Model

100 -

0 2 8 10 124 6
Length Of Patterns

New Model —f— Conventional Method

Figure 5.16 Computation Speed Of The
Pictorial Integration Process

190

No. Of Neurons
In The Network

100

60

40

20 6 8 12104

Length Of Input Patterns

Figure 5.17 Size Of Net Versus Pattern
Dimension

191

implementing the algorithm on the target hardware it is
impractical to measure the performance of this algorithm by
software simulation.

In order to provide a better method for evaluating the
performance of the proposed technique a performance model
is proposed. Developing a performance model yields several
important benefits. Execution times for different
topologies and learning algorithms can be estimated without
having to execute the programs on the target hardware. The
performance model can also predict the optimal number of
processors to use for a given problem and reveal the
importance of specific machine features. From such analysis
it would be possible to identify the areas where further
improvements could be made.

Using the proposed parallel processing algorithm the total
time to compute all the outputs of a two layers network on
the target multiprocessor system is calculated as follow :-

Total-Time - Total-Communication-Time +

MAX[Node-Computation-Time] (5.29)

The total-Communication-Time is equal to the time it takes
to copy neuron outputs from active to passive nodes. The
MAX[Node-Computation-Time] denotes the computation time on

192

weights and. on neurons of a processor node housing the
maximum number of neurons.

Neurons within the same layer are partitioned into
different processor nodes. If the number of neurons (n) is
less than or equal to the number of processor nodes (p)
then the total time to complete one updating process in
each processor is the same. On the other hand, if n is
larger than p and n/p is not a integer value then the
number of neurons partitioned into p processor nodes will
not be equal. One of the processor nodes will contain
[integer (n/p) + 1] neurons while all other nodes contain
[integer (n/p)] neurons.

In order to ensure correct operation, processor nodes must
finish all their updating processes before communication is
allowed, equation (5.29) should therefore either contain
the term [integer (n/p)] or [integer (n/p) + 1] when the
number of neuron is larger than the number of available
processor nodes.

In the case of single processor systems the total time
to compute all (n) neuron outputs of a two layer network

193

may be expressed as

n
Total-Time - (Weightxlnput + Neuron-Time) (5.30)

i

As an example, for a two layer fully connected network with
ng and ng+1 neurons in each successive layer mapped on to p
processors, ng denotes neurons from the lower layer and ng+1
neurons from the higher layer. The total forward execution
time can be expressed as
if ng+1 <= p

- (n„-l) tM + n„tm + tf + n„t„nmm (5.31)

if ng+1 > p

rtocai- I integer +l] [(ng-l) ta+ngtm+tf+ngtcomml

where ta denotes time to add two floating point numbers, tm
denotes time to multiply two numbers, tf denotes time to
compute a neuron output function (s) and tcomm denotes time
needed to transfer one floating point number from one
processor to another.

The performance model for the forward computation is
applicable to most of the commonly used networks. The
majority of commonly used neural network models consist of
forward computation as well as backward learning phases.

194

The best way to demonstrate the general method to calculate
the learning time is by an example. In the following
example the backpropagation model is considered. The
architecture of the network consists of 3 layers with ng/
ng+if ng+2 neurons in each successive layer. The layer ng is
the first input layer, neurons in this layer perform no
computation and are used for holding input data only, p
processors are available in the system.

Forward Computation Phase

Tforward " Total Neuron Computation Time Of Layer g+l, g+2

Case I: nA > p
Let k = integer (n^p)+1

tg+1 - ktf + ngtjc + (ng-l) kta + ngt{g'-'coim

tg+ 2 * ktf + n^tjc + (ng+1-l)kta + ng+11,

Tforw&rd “ 2iC (tf-ta) + (tjz* tcomn,+kta) (5.33)

Case II: <= p

- tf + n„tm + (n„-l) ta+n„tr gm ' g ’ a g>•ĝ comm

tg+2 ” + ^g+l^m + ^^g* 1 ^ a + ^ s r + l ^comm

rforward ~ 2 Uf* t4> *(t„+ Cc<mm+C,)comm (5.34)

195

Backward Computation Phase

Timê ckiard ■ Time For Errors + Time For Weight Changes

Case III: > p

“ n g-+2 ̂ coirn + (*̂y+i+ 4) k t m + tak(72g+2 + 2)

TtackwardT ̂2^y+l+4) + 2-^y+2^ ̂ ̂ m+ ̂ a^ + 2̂ +-̂ y+l ̂ +-̂ y+ 2 ̂ cotm (5 . 35)

Case IV: n± <= p

t* " ̂gr+2 t’comm + ŷ+l+4> *» + M * W 2)
“ (ta+2 tjn,) (Uflr+1+23g.+2)

Tbackward'm tm (3/2flr+1+4) +2ng+z (tm+ ta) + ta (2 +i7fir+1) +I3sr+2 tcowm (5.36)

FOR UNIPROCESSOR SYSTEMS

Forward Computation Phase

f-nt-j* 7 (5.37)
Tforward*" (-̂ y+i+-̂ y+2̂ + ^ y + ^y+2^ ̂ sr+l ̂ ̂ \m+ ̂ â ~ 2 ̂ a

196

Backward Computation Phase

'̂ backward'"fiff+2 ̂ ̂ m (2 + 3/2y+1) + 2 ta (l+/3y+1)) +2 tin+ (2 tm+ fca)

(5.38)

Using the above performance equations for a given network
topology, ng, ng+1, and ng+2, the performance of the parallel
processing algorithm can be evaluated, as the parameters tm,
ta, tf, and tcomm, of the target hardware are constant and can
be measured independently. The theoretical forward and
backward computation speed of various sizes of network are
shown in Figure 5.18 to 5.20. In all cases the performances
are calculated under the same assumptions, where ng, ng+1,
and ng+2 are equal and their sum is represented by (n) , and
the target hardware is assumed to have the following
computation time units: ta=l, tm=2, tf=3, and tcomm=4.

The forward and backward computation speed performance of
the parallel processing algorithm are shown separately,
Figure 5.19 and 5.20. This is because once learning
(backward computation) is complete for a specific
application, the application can be hard-wired, and the
network may execute only the forward computation.

For the distributed simulation of multilayered neural nets,

197

Execution Speed Unit (x1000)
3500

3000

2500 Backward
Computation

2000
Forward

Computation

1500

1000

500

500200 300 6000 100 400
No. Of Neurons

Figure 5.18 Speed Performance Of A
Single Processor

198

Execution Speed Unit (x100)

3000

p = No. Of Processor

2500

Backward
Computation2000

1500

1000

p=8

500 p=16

100 200 400 5000 300 600

No. Of Neurons

Figure 5.19 Speed Performance Of Parallel
Processing On A Multiprocessor System

199

Execution Speed Unit (x100)

1600

p=81400 p = No. Of Processors

1200

1000 Forward
Computation

800

600

p=32
400

p=64200

300 5000 100 200 400 600

No. Of Neurons

Figure 5.20 Speed Performance Of Parallel
Processing On A Multiprocessor System

200

it is seen from Figure 5.19 and 5.20 that there is a
' diminishing return' effect as more processors are used due
to inter-processor communication, nL x tcomm, such that
though more processors are added to the simulation, the
computation speed performance is not improved by a great
deal. The speed performance of a network with 500 neurons
running on different hardware platform is summarized in
Table 5.4 for illustration.

Different network models have different learning
mechanisms, thus the performance evaluation method of the
learning process may vary. Whichever network model is used
the same approach can still be adopted. The parallel
processing algorithm and the equations for the speed
performance evaluations provide convenient means for
studying the effect of different number of neurons in the
network, the communication and computational costs.

201

p = No Of Processor
Time Unit x 1000

P Forward Backward
Computation Computation

1 150 3250
8 140 70
16 80 30
32 40 25
64 20 15

Table 5.4 Speed Comparisions

202

CHAPTER 6 CONCLUSIONS AND FURTHER RESEARCH

6.0 Conclusions 203
6.1 Further Research 205

CHAPTER 6 CONCLUSIONS AND FURTHER RESEARCH

6.0 Conclusions

A neural network based algorithm to perform integration was
presented. The new algorithm consists of a neural net model
inspired by the vertebrate retina neuron organisation. The
task under consideration is that of generating the integral
of a given time trajectory, where the neural network model
behave as a pictorial integrator operating within a closed
loop system. The architecture of the neural integrator
model is that of a multilayer feedforward type. Adaption
techniques employed in the model include a mixture of
implicit weight setting, supervised and unsupervised
learning processes.

Simulation results showed that this multilayer neural net
algorithm is capable of estimating the derivative of a
continuous input profile pictorially even when no explicit
formulation of the input profile is known. The work also
showed that although the same quality of integration
results can also be achieved by networks employing the
Backpropagation algorithm, the new retinal neural net model
has an advantage in that network convergence is much
faster. The proposed neural net algorithm seems to offer

203

the following characteristics :-

(1) It's real time closed loop structure yields consistent
estimates of the derivatives of unknown input profiles.
It provides accurate estimation for constant and
linear inputs. Quadratic and exponential inputs are
also acceptable. Sinusoidal input, however, did not
produce such accurate results.

(2) The network equations are much simpler than other
networks and easier to work with.

(3) Its convergence is fast when compared to existing model
producing compatible results.

(4) When a general purpose single processor machine is
used, the execution speed of the new model is several
times faster than conventional numerical methods but
limited by the input/output neuron dimensions. This is
due to the additional components (neurons and
connections) of the network as its dimensions are
increased.

In order to reduce processing time and maintain the speed
advantage over numerical methods a parallel processing
algorithm for executing neural nets on a distributed memory
multiprocessor system was devised and its performance
evaluated. The speed up factor of this parallel algorithm

204

seems very favourable when compared to general purpose
single processor machines.

All the algorithms described were implemented in software.
A software neural network simulation tool was developed to
automatically handle the process of generating arbitrary
network definitions thus simplifying the tedious task of
synthesising neural networks. The simulation toolbox
consists of a set of simulation specific data structures to
provide a representation of the physical structure of a
network and a set of procedural functions for the
manipulation of the network data structures. Due to its
transparency it is also useful as a network debuger and as
an educational tool.

6.1 Further Research

Suggestions for further research may be summarized as
follows :-

(1) One of the limitations of the new neural network
algorithm is that it consists of off-line supervised
learning. There is therefore a need to investigate the

formulation of unsupervised learning paradigms to
eliminate the off-line processing burden.

(2) Higher order integration/quadrature formulae, e.g. 4th

205

order Runge-Kutta and 5th order Gaussian, need to be
considered for the new neural integrator to provide
high accuracy integration and derivative estimation.

(3) Extensions to the proposed neural architecture need to
be evaluated for more accurate integration and
derivative estimation of trigonometric and exponential
functions.

(4) The speed performance of the parallel processing
algorithm is mainly limited by the performance of the
target hardware. Special neural net coprocessors
[Vindlacher, 1992] need to be assessed for executing the
relevant algorithms.

(5) The developed software simulation tool can be enhanced
by encoperating a graphical interface. This is
desirable not only because it increases the
efficiency of creating more complex topologies by
graphical drawing but more importantly to provide a
visual representation of activities in the network.
Such a presentation of the functioning of a neural
net permits visual diagnoses of the behaviour of large
network which is particularly useful for network
development, debugging, and may provide valuable
contributions for educational and commercial purposes.

206

REFERENCES

[Aldabass, 1976] ; D Al-Dabass.
"Parallel Processors In The Design And Simulation Of
Dynamical Systems", Ph.D. Thesis, Department Of Electrical
Engineering And Electronics, North Staffordshire
Polytechnic, Stafford, England, 1976.
[Arsenault,1989]/ H H Arsenault.
"Neural Network Model For Fast Learning And Retrieval,"
Optical Engineering, May 1989, Vol 28 No5, 1989.
[Arbib,198 9]; M A Arbib.
"The Metaphorical Brain 2 Neural Networks And Beyond,"
Wiley Interscience, 1989.
[Abu-Mostafa,1986]/ Y S Abu-Mostafa.
"Neural Networks For Computing," American Institute Of
Physics. 1986.
[Abutaleb,1991]; A S Abutaleb.
"A Neural Network For Estimation Of Forces Acting On Radar
Targets," Neural Networks, Vol. 4 pp667-678, 1991.
[Aleksander,1990]; I Aleksander, H Morton
"An Introduction To Neural Computing", Chapman And Hall
1990.
[Ashurst,1983]/ F G Ashurst.
"Pioneers Of Computing," Frederick Muller. 1983.
[Callatay,1989]; A de Callatay.
"Biological Aspects Of Neural Networks," ppl-15 1989.
[Deprit,1989]; E Deprit.
"Implementating Recurrent Backpropagation On The Connection
Machine," Neural Network 2, 1989 pp 295-314.
[Dobnikar,1989]/ A Dobnikar, D Podbregar,
"Optimal Visual Tracking With Artifical Neural
Network,"IEEE International Conference On Neural Networks.
Vol II San Diego, 1989 pp275-279.
[Dowling,1987]; J E Dowling.
"The Retina: An Approachable Part Of The Brain," Cambridge:
Harvard University Press, 1987, Chapter 3.
[Gorman,1988]; R P Gormann And T J Sejnowski.
"Analysis Of Hidden Units In a Layered Network Trained To
Classify Sonar Targets. Neural Networks 1, pp75-89 1988.
[Graff, 1986]; H P Graf, L D Jackel, R E Howard, and B L
Straughn, "VLSI Implementation Of A Neural Network Memory

207

With Several Hundred Neurons," Proc. Of Conf. On Neural
Networks For Computing, 1986.
[Grossberg,1987]; S Grossberg, A Carpenter.
"Self-organization Of Stable Category Recognition Codes For
Analog Input Patterns," Applied Optics, Vol 26, No 23, 1
Dec 1987.
[Hammes,1989]; M R Hames.
"A Node Interface For Parallel Processing,"Ph.D Thesis,
Nottingham Polytechnic 1989.
[Hebb,1949];
The Organisation•Of Behavior, Wiley, N.Y.,1949.
[Hicklin,1988]; J Hicklin And H Demuth.
"Modeling Neural Networks On The MPP," Proc. 2nd Symp.
Frontiers Of Massively Parallel Computation 1988 pp39-42.
[Hinton,1986]; G E Hinton And T Sejnowski.
"Learning And Relearning in Boltzmann Machines," Chapter 7,
Parallel Distributed Processing Cambridge, MA: MIT Press,
1986.
[Hopfield,1982]/ J J Hopfield.
"Neural Network And Physical Systems With Emergent
Collective Computational Abilities," Proc. Natl. Acad. Sci.
USA, Vol.79, pp2554-2558, April 1982.
[Jenhwa,1989]; G Jenhwa, C Vladimir.
"A Solution To The Inverse Kinematic Problem In Robotics
Using Neural Network Processing," IEEE International
Conference On Neural Networks. Vol II San Diego, 1989.
[Kohonen,1990]/ T Kohonen.
"The Self-organizing Map", Proc. Of The IEEE, Vol. 78. No. 9
September 1990.
[Lambe,1986]; J Lambe, A. Moopenn, and A P Thakoor.
"Error Correction And Asymmetry In A Binary Memory Matrix,"
Proc. Of Conf. On Neural Networks For Computing, 1986.
[Lee,1988]; K Lee.
"Neural Network Applications In Handwritten Symbol
Understanding," SPIE Vol. 1002 Intelligent Robots And
Computer Vision: Seventh In A Series 1988.
[Lippmann,1987]; R P Lippmann.
"An Introduction To Computing With Neural Network," IEEE
ASSP Magazine, Vol. 4, April 1987.
[McCulloch,1943]; W S McCulloch and W Pitts.
"A Logical Calculus Of The Ideas Immanent In Nervous
Activity," Bull. Math. Biophys., 5, ppll5-133 1943.
[Minsky,1968]; M Minsky and S Papert, Perceptrons

208

(Cambridge, MA: MIT Press, 1968).
[Miyamoto,1988]; H Miyamoto, M Kawato, T Setoyama, and R
Suzuki, "Feedback Error Learning Neural Network For
Trajectory Control Of a Robotic Manipulator," Neural
Networks, 1(3), 251-265, 1988.
[Newman,19 90]; W C Newman.
"Detecting Speech With An Adaptive Neural Network,"
Electronic Design pp79-89 March 22, 1990.
[Pomerleau,1988]; D A Pomerleau et al.
"Neural Network Simulation At Warp Speed: How We Got 17
Million Connections Per Second," Proc. IEEE 2nd Internat.
Conf. Neural Networks II 1988 ppl43-150.
[Rosenblatt,1962]; F Rosenblatt.
"Principle Of Neuro- Dynamics". Spartan, 1962.
[Rumelh,1986(a)]/ D E Rumelhart, G E Hinton, And R J
Williams, "Learning Internal Representation By Error
Propagation" Parallel Distributed Processing: Exploration
In The Microstructure Of Cognition. Vol. 1: Foundations.
MIT Press, 1986.
[Rumelhart,1986(b)]; D E Rumelhart, G E Hinton, and R J
Williams, "Learning Internal Representations By Back
Propagating Errors," Nature, 323,533-536, 1988.
[Saerens,1989]; M Saerens, A Soquet.
"A Neural Controller," IEEE International Conference On
Neural Networks. San Diego, 1989.
[Sage,1986]/ J P Sage, K. Thompson, And R S Withers.
"A Neural Network Integrated Circuit With Synapses Based On
CCD/NMOS Technology," Proc. Of Conf. OnNeural Networks For
Computing, 1986.
[Sejnowski,1987]; T J Sejnowski, C R Rosenberg.
"NET talk: A Parallel Network That Learns To Read Aloud,"
Complex Systems Vol.l, ppl45-168,1987.
[Strange,1989]; P G Strange.
"Basic Brain Mechanisms: A Biologist's View Of Neural
Networks": IEE Colloquim 18 May 1989.
[Sutton, 1981]/ R S Sutton, A G Barto.
"Toward A Modern Theory Of Adaptive Networks: Expectation
And Prediction. Psychol. Rev 99: 135-170, 1981.
[Vindlachenuvu,1992]; P Vindlachenuvu.
"Simulation Of A Neural Node coprocessor,"Ph.D Thesis,
Department Of Computing. Nottingham Polytechnic,19 92.

209

[Widrow,1990]; B Widrow.
"30 Years Of Adaptive Neural Networks: Perceptron,
Madaline, And Backpropagation," Proc. Of The IEEE, Vol. 78,
No.9 September 1990.

[Yamada, 1989] ; K Yamada, H Kami, J Tsukumo, and T Temma,
"Handwritten Neural Recognition By Multi-layered Neural
Network With Improved Learning Algorithm, 11 IEEE
International Conference On Neural Networks. Vol II San
Diego, 1989.
[Yoon,1989]; B L Yoon.
"Artifical Neural Network Technology" pp4-16 1989.

210

APPENDIX

Appendix (A.l) Associative Memory Model 211
Appendix (A.2) Backpropagation Or

Generalized Delta Rule 213
Appendix (B.1) Data Structures For Mapping

Of Arbitrary Networks 216
Appendix (B.2) Source Code Listing Of

Simulation Toolbox 217
Appendix (C) Structure Chart Of NNSim

Program 234

Appendix (A.l) Associative Memory Models

The connection matrix of a typical associative memory model
is derived from a set of vectors to be memorized. When
given an input, such a network will evolve and become
stable at the nearest memory vector from the input.
Hopfield and Bidirectional Associative Memory (BAM) are
models of associative memory.

The Hopfield model is a recurrent non-layer type in which
the outputs of neurons are either +1 or -1 according to the
threshold law. For example, if the input to a neuron is
positive its output is +1 and if negative its output is -1.
When the input equals zero (threshold) the neuron maintains
its current state. In the case of BAM, neuron outputs are
either +1 or 0. A BAM uses two fields of neurons. Neurons
in both fields are both input and output neurons. The main
difference between Hopfield and BAM models is that Hopfield
Models are autoassociative memory type while BAMs are
heteroassociative memory models.

The main evolution rule for a Hopfield memory is

N
01(t+1) - sgnij^ TtjOji t)) (a.l)

where Ti;) is the N x N connection matrix.
The connection of Ti;) is a learning process. If vector Y is

211

to be associated with vector X, the connection matrix is
constructed by finding the outer product of these two
vectors :-

T - Yt X (a.2)

where ' t' denotes the transpose of a column vector. If X
and Y are the same then it is an autoassociative memory
model (Hopfield) and if X ^ Y then it is a
heteroassociative memory (BAM).

If there are k patterns (vectors) to be stored in the
matrix, then T±j can be derived by adding the outer product
of all the individual memory vectors

T±j - X) (Xf> <a-3)
P-l

In both cases, once the connection matrix is determined,
the network may be used to produce the desired output
vector, even when given an input that may be partially
correct. To do this, the outputs of the network are
initially set to the values of an input vector. Next the
input is removed and the network is allowed to run freely
until there are no changes in the network (outputs
stablized).

212

Appendix (A.2) Backpropagation Or Generalized Delta Rule

Backpropagation probably represents the most widely used
learning algorithm. It applies to feedforward networks with
three type of neurons: input neurons, hidden neurons
carrying an internal representation, and output neurons.
The description here follows the version given by
[Rumelbh,1988]. The dynamics of a network is determined by
a local update rule

S1(t+l) - f (V WySjit)) (a.4)
J

where S denotes the state of a neuron and f() is a
nonlinear activation function.

Neural networks learn from examples which are presented
many times, and learning procedure can be viewed as a
strategy to minimize a suitably defined error function E.
In this case it is a gradient decent method, each weight is
changed by an amount proportional to the respective
gradient of E

(a-5)

and the procedure is repeated for a new learning example
until E is minimized to a satisfactory level.

213

In its original form :

(a.6)

For a weight Wi;j from a (input or hidden) neuron j to an
output neurin i : —

where f'() is the derivative of the nonlinear activation
function, and for weights which do not connect to an output
neuron, the gradient can successively be determined by
applying the chain rule of differentiation.

Thus for output neurons the error signal is

where net^EWijOj..

Finally the error signal for hidden neurons for which there
is no specified target is determined recursively in terms
of the error signals of neurons to which it directly
connects and the weights of those connections. For hidden
neurons

For nonlinear logistic neuron output function of the form:-

dE - (r, - (a.l)
k

- (tj - Oj) f'j (netj) (a.8)

5j - f'^ne (a.9)
k

214

°i------ (a.io)
1 + e- WV°J>

The error signal for an output neuron is

- (tj - Oj) Oj (1 - Oj) (a. 11)

and the error signal for arbitrary hidden neuron is given
by : -

- Oj (1 - 0 ,) £ 5 ^ (a. 12)
k

215

Appendix (B.l) Data Structures For Mapping Of Arbitrary.
Network

Struct SYNAPE{
float weight;
float reg;
struct SYNAPE *nexsynape;
struct NEURON *fromneuron;
};

struct NEURON{
int neuronid;
float netval;
float outval;
float actval;
float error;
float reg;
struct SYNAPE *firsynape;
struct NEURON *nexneuron;
In­

struct GROUP{
char grpid[10];
int nofneuron;
float (*actfcn){);
float (*outfcn)();
float (*netfcn) () ;
struct NEURON *firsneuron;
struct GROUP *nexgroup;
} ;

216

Appendix (B.2) Source Code Listing Of Simulation Toolbox
#include "neurotoo.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <alloc.h>
float crate;
int nactive,nofinput;
struct GROUP *firsgroup=(struct GROUP *)NULL;
/* Standard Support Code Mapping Of Network */
void quit(void)
{
printf("Not Enough Memory - Process Terminated !!!");
exit(0);

}

void CreateGroup (int nofcell,char *name,float
(*fcnact) (),float (*fcnout) 0 ,float (*fcnnet) ())
{
struct GROUP *thisgroup;
if (firsgroup==(struct GROUP *)NULL)
{
thisgroup=firsgroup=NewGroup(nofcell,name, fcnact,
fcnout,fcnnet);
thisgroup->firsneuron=NeuronList(thisgroup);
}else
{
thisgroup=firsgroup;
while (thisgroup->nexgroup1=(struct GROUP *)NULL)

thisgroup=thisgroup->nexgroup;
thisgroup->nexgroup=NewGroup(nofcell,name,fcnact,
fcnout,fcnnet);
thisgroup=thisgroup->nexgroup;
thisgroup->firsneuron=NeuronList(thisgroup);
}

struct GROUP *NewGroup(int nofcell,char *name,float
(*fcnact) (),float (*fcnout) (),float (*fcnnet) ())
{struct GROUP *newgpptr;
if ((newgpptr=(struct GROUP *)malloc(sizeof(struct

GROUP)))!=NULL)
{ newgpptr->nofneuron=nofcell;
newgpptr->actfcn=fenact;
newgpptr->outfcn=fcnout;
newgpptr->netfcn=fennet;
strcpy (newgpptr->grpid,name);

217

newgpptr->firsneuron=(struct NEURON *)NULL;
newgpptr->nexgroup=(struct GROUP *)NULL;

}else
quit () ;

struct NEURON *NeuronList(struct GROUP *gptr)
{int in­
struct NEURON *thisneuron;
for (i=0; i<gptr->nofneuron; i++)
{if (gptr->firsneuron=~ (struct NEURON *)NULL)
{ thisneuron=gptr->firsneuron=CreateNeuron(i+1);
}else
{thisneuron=gptr->firsneuron;
while (thisneuron->nexneuron!=(struct NEURON *)NULL)

thisneuron=thisneuron-->nexneuron;
thisneuron->nexneuron=CreateNeuron(i+1);
}
}
return ((struct NEURON *)gptr->firsneuron);

struct NEURON *CreateNeuron(int id)
{
float outval;
struct NEURON *newcellptr;
if ((newcellptr=(struct NEURON *)malloc(sizeof(struct
NEURON)))!=NULL)
{
newcellptr->firsynape=(struct SYNAPE *)NULL;
newcellptr->nexneuron= (struct NEURON *)NULL;
newcellptr->actval=-l.0;
newcellptr->outval=-l.0;
newcellptr->netval=-l.0;
newcellptr->error=0.0;
newcellptr~>reg=0.0;
newcellptr->neuronid=id;
return((struct NEURON *)newcellptr);

}else
quit () ;

struct SYNAPE *CreateSynape(void)
{struct SYNAPE *newsyptr;
if ((newsyptr=(struct SYNAPE *)malloc(sizeof(struct

218

SYNAPE)))!=NULL)
{newsyptr->weight=0.0 ;
newsyptr->reg=0.0;
newsyptr->nexsynape=(struct SYNAPE *)NULL;
newsyptr->fromneuron=(struct NEURON *)NULL;
return((struct SYNAPE *)newsyptr);
}else
quit () ;

}
struct GROUP *SearchGrp(char *grpname)
{struct GROUP *thisgptr;
thisgptr=firsgroup;
while(thisgptr!=(struct GROUP *)NULL)
{
if (strcmp(thisgptr->grpid,grpname)==0)

return ((struct GROUP *)thisgptr);
thisgptr=thisgptr->nexgroup;
}
return ((struct GROUP *)NULL);
}
struct NEURON *SearchNeuron(char *grpname,int cellid)
{
struct GROUP *grp;
struct NEURON *thecell;
if ((grp=SearchGrp(grpname))!=(struct GROUP *)NULL)
{
thecell=grp->firsneuron;
while(thecell!=(struct NEURON *)NULL)
{
if (thecell->neuronid==cellid)

return((struct NEURON *)thecell);
thecell=thecell->nexneuron;
}
printf("\nCell Not Found \n");
runterror();

}
else
runterror () ;

void runterror(void)
{
printf("Run Time Error !!");
exit (0);
}
void LinkGroup(char *from,char *to)
{
struct NEURON *fromneuron,*toneuron;

219

struct GROUP *fromgrp,*togrp;
struct SYNAPE *newsynape,*thissynape;
randomize();
if ((fromgrp=SearchGrp(from))==(struct GROUP *)NULL ||
(togrp=SearchGrp(to))==(struct GROUP *)NULL)

runterror() ;
fromneuron=fromgrp->firsneuron;
toneuron=togrp->firsneuron;
if (toneuron==(struct NEURON *)NULL | 1 fromneuron== (struct
NEURON *)NULL)

runterror () ;
while(toneuron!=(struct NEURON *)NULL)
{while(fromneuron!=(struct NEURON *)NULL)
{ if (toneuron->firsynape== (struct SYNAPE *)NULL)

thissynape=toneuron->firsynape=CreateSynape();
else
{thissynape=toneuron->firsynape;
while(thissynape->nexsynape! = (struct SYNAPE *)NULL)
thissynape=thissynape->nexsynape;

thissynape->nexsynape=CreateSynape();
thissynape=thissynape->nexsynape;
}thissynape->fromneuron=fromneuron;
fromneuron=fromneuron->nexneuron;

}fromneuron==fromgrp~>f irsneuron ;
toneuron=toneuron->nexneuron;
}

void InitWeight(float (*initwgtfen)(),char *grpname)
{
struct SYNAPE *thesynap;
struct GROUP *thisgroup;
struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL
&& thisgroup->firsneuron!=(struct NEURON *)NULL)
{thisneuron=thisgroup->firsneuron;
while (thisneuron!= (struct NEURON *)NULL)
{thesynap=thisneuron->firsynape;
NofInputData(thesynap) ;
while(thesynap!=(struct SYNAPE *)NULL)
{thesynap->weight=(*initwgtfcn)(thisneuron,thesynap);
thesynap=thesynap->nexsynape;
}thisneuron=thisneuron~>nexneuron;

}
}

220

else
runterror();

}
void ActivateGroup(char *grpname)
{struct GROUP *thisgroup;
struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL
&& thisgroup->firsneuron!=(struct NEURON *)NULL)
{
thisneuron=thisgroup->firsneuron;
while(thisneuron!=(struct NEURON *)NULL)
{thisneuron->netval= (*thisgroup->netfcn) (thisneuron) ;
thisneuron->actval=(*thisgroup->actfcn)(thisneuron->
netval);
thisneuron->outval=(*thisgroup->outfcn)(thisneuron->
actval);
thisneuron=thisneuron->nexneuron;
}
}else
runterror();

}
void CalculateError(char *grpname,char *soursegrp,float
(*errfcn) ())
{static struct GROUP *thisgroup;
static struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))==(struct GROUP *)NULL
|| thisgroup->firsneuron==(struct NEURON *)NULL)

runterror () ;
thisneuron=thisgroup->firsneuron;
while (thisneuron!=(struct NEURON *)NULL)
{thisneuron->error= (*errfcn) (thisneuron,soursegrp);
thisneuron=thisneuron->nexneuron;
}
}
void AdjustWeight(float learnrate,char *grpname,float
(*learnfcn) (),int learntype)
{
struct GROUP *thisgroup;
struct NEURON *thisneuron;
struct SYNAPE *thissynape;
if ((thisgroup=SearchGrp (grpname))=== (struct GROUP *)NULL
|| thisgroup->firsneuron==(struct NEURON *)NULL)

runterror();
thisneuron=thisgroup->firsneuron;
while (thisneuroni= (struct NEURON *)NULL)

221

{if (learntype==TEACHER)
{if ((thissynape=thisneuron->firsynape)==(struct SYNAPE
*)NULL)

runterror();
while(thissynape!=(struct SYNAPE *)NULL)
{thissynape->weight=(*learnfcn)(&learnrate,thisneuron,
thissynape) /
thissynape=thissynape~>nexsynape;
}}

else
{
if (learntype==SELFORGANISE)
{if (thisneuron->outval==l.0)
{if ((thissynape=thisneuron->firsynape) === (struct SYNAPE

*)NULL)
runterror();
{
while(thissynape!=(struct SYNAPE *)NULL)
{thissynape->weight=(*learnfcn)(&learnrate,
thisneuron, thissynape);
thissynape=thissynape->nexsynape;
}
}return;
}
}
}thisneuron=thisneuron->nexneuron;

}
}

void SetDataPattern(char *grpname,char *datafname,int
datatype)
{struct GROUP *thisgroup;
struct NEURON ^thisneuron;
FILE *dfptr;
int data;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{ thisneuron=thisgroup->firsneuron ;
if ((dfptr=fopen(datafname,"rb"))!=NULL &&
thisneuron!=(struct NEURON *)NULL)
{ while(thisneuron!=(struct NEURON *)NULL &&
fread(Sdata, sizeof(int),1,dfptr) !=0)
{ if (datatype==INTYPE)

222

thisneuron->outval=data;
else

thisneuron->reg=data;
thisneuron=thisneuron->nexneuron;

}fclose(dfptr);
}else

runterror () ;
}
else runterror()/
}
void AdjustNeuronWgt(float learnrate,struct NEURON
*fromneuron,struct NEURON *toneuron,float (*learnfcn)())
{
struct SYNAPE ^thissynape;
while (fromneuron!=toneuron)
{
thissynape=fromneuron->firsynape;
while (thissynape! = (struct SYNAPE *)NULL)
{
thissynape->weight=(*learnfcn) (Slearnrate,
fromneuron,thissynape);
thissynape=thissynape->nexsynape;
}
fromneuron=fromneuron->nexneuron;

}
thissynape=toneuron->firsynape;
while(thissynape!=(struct SYNAPE *)NULL)
{
thissynape->weight=(*learnfcn)(slearnrate,
toneuron,thissynape);
thissynape=thissynape->nexsynape;
}
}
void Normalizelnput(char *grpname)
{struct GROUP *thisgroup;
struct NEURON *thisneuron;
float denomin;
denomin=0.0;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{thisneuron=thisgroup->f irsneuron^-
while (thisneuron! = (struct NEURON *)NULL)
{denomin+=thisneuron-->outval*thisneuron->outval;
thisneuron=thisneuron->nexneuron;
}
denomin=(float)sqrt((double)denomin);
thisneuron=thisgroup->firsneuron;
while(thisneuron!=(struct NEURON *)NULL)
{

223

thisneuron->outval=thisneuron->outval/denomin;
thisneuron=thisneuron->nexneuron;
}
}else
runterror();

void NormalizeWgt(char *grpname)
{struct GROUP *thisgroup;
struct NEURON *thisneuron;
struct SYNAPE ^thissynape;
float denomin;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{thisneuron=thisgroup->f irsneuron^-
while (thisneuron! = (struct NEURON *)NULL)
{
denomin=0.0;
thissynape=thisneuron~>f irsynapê -
while (thissynape! = (struct SYNAPE *)NULL)
{
denomin+=thissynape->weight*thissynape->weight;
thissynape=thissynape->nexsynape;
}
denomin=(float)sqrt((double)denomin);
thissynape=thisneuron->firsynape;
while(thissynape! = (struct SYNAPE *)NULL)
{
thissynape->weight=thissynape->weight/denomin;
thissynape=thissynape->nexsynape;
}thisneuron=thisneuron~>nexneuron;

}
} ,else
runterror();

}

float RandomValue(struct NEURON *aneuron,struct SYNAPE
*asynape)
{return((float)random(5)*0.1+(float)random(16)*0.01+
(float)random(16)*0.001);

}
void SaveLoadNet(char *fname,int proctype)
{struct GROUP *grp;
struct NEURON *cell;
struct SYNAPE *synp;
FILE *fptr;

224

if (proctype==SAVE)
if ((fptr=fopen(fname,"wb"))==NULL) runterror();

if (proctype==LOAD)
if ((fptr=fopen(fname,"rb"))==NULL) runterror();

grp=firsgroup;
while (grp! = (struct GROUP *)NULL)
{cell=grp->firsneuron;
while(cell!=(struct NEURON *)NULL)
{synp=cell->firsynape;
while (synp! = (struct SYNAPE *)NULL)
{if (proctype==SAVE)

fwrite(&synp->weight,sizeof(synp->weight) , 1,fptr);
else

fread(&synp->weight,sizeof(synp->weight),1,fptr);
synp=synp->nexsynape;
}cell=cell->nexneuron;

}
grp=grp->nexgroup;
}
fclose (fptr);
}
FILE *LoadGrpData(struct NEURON *cellfFILE *fptr,int
datatype)
{
int dot;
while(cell!= (struct NEURON *)NULL)
{
fread(&dot,sizeof(dot),1,fptr);
if (datatype==INTYPE)

cell~>outval=dot;
else
{

if (dot==l.0)
cell->reg=l.0;
else
cell->reg=0.0;

}
cell=cell->nexneuron;
}
return(fptr);
}
void ShowGroup(char *gpname)
{
struct NEURON *thisneuron;
struct GROUP *thisgroup;
struct SYNAPE *thissynp;
if ((thisgroup=SearchGrp(gpname))==(struct GROUP *)NULL)

runterror();
printf ("group %s nofneuron %d\n",thisgroup->grpid,

225

thisgroup->nofneuron);
thisneuron=thisgroup->firsneuron;
while(thisneuron!=(struct NEURON *)NULL)
{printf("neuron %d outval %f netval %f reg %f err
%f\n",thisneuron->neuronid, thisneuron~>outval,
thisneuron->netval, thisneuron-~>reg,thisneuron->error);
thissynp=thisneuron->firsynape;
while (thissynp!=(struct SYNAPE *)NULL)
{printf("->weight = %f from neuron outval %f\n",
thissynp->weight,thissynp->fromneuron->outval);
thissynp=thissynp->nexsynape;
}thisneuron=thisneuron->nexneuron;
getch () ;
}
}
void A_ShowGroup(char *gpname)
{struct NEURON *thisneuron;
struct GROUP *thisgroup;
if ((thisgroup=SearchGrp(gpname))== (struct GROUP *) NULL)

runterror();
thisneuron=thisgroup->firsneuron;
if (strcmp(thisgroup->grpid,"INLAYER")!=0)
while(thisneuron!=(struct NEURON *)NULL)
{
if (thisneuron->outval>0.69)

printf("1");
else

printf ("0");
thisneuron=thisneuron->nexneuron;

}
else
while(thisneuron!=(struct NEURON *)NULL)
{
if (thisneuron->outval>0.69)

printf("1 ");
else

printf("0 ");
thisneuron=thisneuron->nexneuron;

}
printf("\n");
}

/* Neuron Functions */
float InputNOptn(struct NEURON *cell)
{return(cell->outval);
}

226

float Suma(struct NEURON *cell)
{struct SYNAPE *thislink;
float sum;
sum=0.0;
thislink=cell->firsynape;
while(thislink!=(struct SYNAPE *)NULL)
{
sum+=thislink->weight*thislink->fromneuron->outval;
thislink=thislink->nexsynape;
}return(sum) ;

}
float Logistic(float invalue)
{if (invalue>14 && invalue<-14)
{if (invalue>14) return (0.9);
else return (0.0);
}else
{
invalue=(float)(1/(1+(float)exp(-(double)invalue)));
if (invalue>0 . 8895) return (0.9);
if (invalue<0.0000001) return(O.O);
if (invalue>0.0000001 && invalue<0.8895) return(invalue);
}

float Binary(float invalue)
{if (invalue>0.8)

return (1.0);
else

return (0.0);
}
float Ramp(float invalue)
{
return(invalue);
}

/* The procedures below are support code for simulating:
Single Layer Perceptrons, Multi-layer Nets, Hopfield Nets,
Competitive Nets, Kohonen Nets, and Counter-propagation
Nets. */

float InitHopeWgt(struct NEURON *aneuron,struct SYNAPE
*asynape)
{

227

if (aneuron->neuronid!=asynape->fromneuron->neuronid)
return(asynape->weight+asynape->fromneuron->outval*
aneuron->reg) ;

else
return (0.0);

float DeltaError(struct NEURON *theneuron,char *soursegrp)
{
if (theneuron! = (struct NEURON *)NULL)

return(theneuron->reg-theneuron->outval);
else
runterror();

}
float Back_0_Error(struct NEURON *theneuron,char
*soursegrp)
{
if (theneuron!=(struct NEURON *)NULL)

return(theneuron->outval*(theneuron->reg-
theneuron->outval)*(l-theneuron->outval));

else
runterror() ;

}
float Back_H_Error(struct NEURON *theneuron,char
*soursegrp)
{
struct GROUP *thisgroup;
struct SYNAPE *thesynape;
struct NEURON *s_neuron;
int synapflag;
theneuron->error=0.0/
if ((thisgroup=SearchGrp(soursegrp))! = (struct GROUP
*)NULL)
{s_neuron=thisgroup->firsneuron;
while (s_neuron!=(struct NEURON *)NULL)
{synapflag=0;
thesynape=s_neuron->firsynape;
while (thesynape! = (struct SYNAPE *)NULL | i synapflag!=1)
{if (thesynape->fromneuron==theneuron)
{theneuron->error+=thesynape->weight*s_neuron->error;
synapflag=l;
}thesynape=thesynape->nexsynape;

}s__neuron=s_neuron->nexneuron;
}return(theneuron->outval*(l-theneuron->outval)*
theneuron->error);
}

228

else
runterror () ;

}
float DeltaLearn(float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{return(thesynape->weight+*rate*thesynape->fromneuron->
outval*theneuron->error) /
}
float Norm_BackLearn (float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{return(thesynape->weight+*rate*thesynape->fromneuron->
outval*theneuron->error) ;
}
float Mome__BackLearn (float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{
float t_weight;
t_weight=crate*(thesynape->weight-thesynape->reg);
thesynape->reg=thesynape->weight;
return(thesynape->reg+*rate*thesynape->
fromneuron->outval*theneuron->error+t_weight);

}
float ProcessRate(int ratetype,float norminator,float
denorminator)
{
if (ratetype==KOH_IN)

return(0.99*(norminator+1)/denorminator);
if (ratetype==GROSS)

return (0.1*(1-norminator/denorminator));
if (ratetype==KOHON)

return(0.7*(1-norminator/denorminator));

void FindDistance(char *grpname)
{struct SYNAPE *thislink;
struct GROUP *thisgrp;
struct NEURON *thiscell;
float sum;
if ((thisgrp=SearchGrp(grpname))!=(struct GROUP *)NULL)
{thiscell=thisgrp->firsneuron;
while (thiscell!= (struct NEURON *)NULL)
{
sum=0.0;
thislink=thiscell->firsynape;
while(thislink!=(struct SYNAPE *)NULL)

229

{sum+=(this1ink->fromneuron->outval-thislink->
weight)*(thislink->fromneuron->outval-
thislink->weight);
thislink=thislink->nexsynape;

}thiscell->reg=sum;
thiscell=thiscell->nexneuron;

}
}
}
int FindRadius(char *grpname,int cyclenum)
{struct GROUP *thisgroup;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)

return ((int) (thisgroup->nofneuron/(2+cyclenum/500)));
else

runterror ();
}

float GrossLearn (float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{
return(thesynape->weight+*rate*(theneuron->reg-thesynape
->weight)*thesynape->fromneuron->outval);}

void SetKonPattern(char *grpname,float alpha)
{
struct GROUP *thisgroup;
struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{thisneuron=thisgroup->firsneuron;
while(thisneuron!=(struct NEURON *)NULL)
{thisneuron->outval=alpha*thisneuron->outval+
((1/(float)sqrt((double)nofinput))*(1-alpha));
thi sneuronsthi sneuron->nexneuron/
}
}else
runterror();

}

float KohonLearn(float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{return(thesynape->weight+*rate*(thesynape->fromneuron->
outval-thesynape->weight));

}
float KohoWgt(struct NEURON *aneuron,struct SYNAPE

230

*asynape)
{return((float)random(16)*0.01+
1/((float)sqrt((double)nofinput)));
}
void CompInitWgt(char *grpname)
{struct SYNAPE *thesynape;
struct GROUP *thegroup;
struct NEURON *theneuron;
float nofsynape;
float accwgt,basewgt;
if ((thegroup=SearchGrp(grpname))! = (struct GROUP *) NULL
&& thegroup->firsneuron!=(struct NEURON *)NULL)
{
randomize();
theneuron=thegroup->firsneuron;
while(theneuron!=(struct NEURON *)NULL)
{nofsynape=0; accwgt=0.0;
thesynape=theneuron->firsynape;
while (thesynape!=(struct SYNAPE *)NULL)
{ nofsynape++; thesynape=thesynape->nexsynape; }
basewgt=l/(nofsynape);
thesynape=theneuron->firsynape;
while(thesynape->nexsynape!=(struct SYNAPE *)NULL)
{
thesynape->weight=basewgt-random(9)*
(1/ (100*nofsynape));
accwgt+=thesynape->weight;
thesynape=thesynape->nexsynape;

}
thesynape->weight=l-accwgt;
theneuron=theneuron->nexneuron;

}} else runterror ();
}
struct NEURON *SetWinner(char *grpname,int nettype)
{
struct GROUP *thegroup;
struct NEURON *theneuron, *winner;
if ((thegroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{theneuron=thegroup->firsneuron;
winner=theneuron;
while (theneuron!=(struct NEURON *)NULL)
{if (nettype==CNT_KON)
{if (theneuron->netval>winner->netval i I
theneuron->netval==winner->netval)
{

231

winner“>outval=0.0;
winner=theneuron;
winner->outval=l.0;
}else
theneuron->outval=0.0;

}else
{if (theneuron->reg<winner->reg j |
theneuron->reg==winner->reg)
{winner->outval=0.0;
winner=theneuron;
winner->outval=l.0;
}else
theneuron->outval=0.0;

}theneuron=theneuron->nexneuron;
}theneuron==thegroup->f irsneuron;
while(theneuron!=(struct NEURON *)NULL)
{
if (theneuron->outval==l.G)

return((struct NEURON *)theneuron);
theneuron=theneuron->nexneuron;

}
}
else runterror();

}

float CompetLearn (f1oat *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{return (thesynape->weight+*rate*(thesynape->fromneuron->
outval/nactive)-*rate*thesynape->weight);

}

int NofActivelnput(struct SYNAPE *thesynape)
{
int nofactive;
nofactive=0;
while (thesynape!=(struct SYNAPE *)NULL)
{if (thesynape->fromneuron->outval==l.0)

nofactive++;
thesynape=thesynape->nexsynape;
}return(nofactive);

}
void NoflnputData(struct SYNAPE *thesynape)
{nofinput=0;

232

while (thesynape!=(struct SYNAPE *)NULL)
{nofinput++;
thesynape=thesynape->nexsynape;

}
}

233

Appendix (c) Structure Chart Of NNSim.exe

Monitor Activities
Network

Definition

NNSim Program

Initialization

234

N
et

w
or

k
D

ef
in

iti
on

a

a> c c p'® 2 a CD

a.

CDQ CD
o> a.

® CD .£ .Na5 c/5

O CD

T3

m C Cc 2 .2
=3 O% S c=Q Z 3

Li.

235
*

I

r>

.£*♦— c ® 3

Q 0
«r 3 © © Q Z

© CL

c u) © o ©

T>
T 3

236

O)
«= s. nj =
Q) c Q Li.

CD CD

~ 2 Q-'m Q- 1 |T CL

237

M
on

ito
r

0 Q.
0 m

0) Q.
0 0

> . {/}
■|

nJ 0
Q. =>
.<2 0 d
Q > :£

238

