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NEURAL NET ALGORITHMS 
FOR

DYNAMICAL SYSTEMS

Y.M. Cheung

ABSTRACT

A neural net based algorithm is devised as an alternative 
to traditional analogue/numerical integration. The new 
algorithm consists of a multilayered neural net integrator 
model inspired by the neuron organisation of the vertebrate 
retina. A mixture of implicit weight setting, supervised 
and unsupervised learning is employed. The convergence of 
this approach proves to be fast when compared to existing 
models producing comparable results.

When the model is operating in a closed loop system it 
yields a consistent estimate ■ of the derivatives of 
pictorial input profiles.

The mapping Of the resulting neural net models onto single 
and multiprocessor systems is examined. A general framework 
is formulated to permit arbitrary network definition and 
easy alterations of network parameters.

A parallel processing technique for distributed memory 
multiprocessor systems is devised. The parallel algorithm 
yields a large reduction in processing time.
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CHAPTER 1 INTRODUCTION

The accuracy limitations of analogue integration led to the 
development of numerical software packages for simulating 
dynamical systems during the early 1950s. The speed 
limitations of numerical integration packages motivated the 
development of hybrid simulators in the late 1950s and 
early 1960s. In these simulators the dynamical equations 
were set up on analogue integrators while parameter changes 
during repeated simulation runs was supervised by digital 
machines. The advent of low cost microprocessors in the 
early 1970s motivated research into all digital 
multiprocessor systems for simulation [Aldabass,1976]. 
Specialized array machines such as the AP120B were also 
introduced with microprogramming facilities to speedup the 
execution of given arithmetic strings. The introduction of 
transputers and computing surfaces in the early 1980 
provided yet another development of digital processors 
suitable for computing numerical integration algorithms.

However, despite the availability of such a seemingly wide 
range of computing tools no fundamentally different 
approach to the traditional twin techniques of analogue and 
numerical integration seems to have emerged. The relatively 
recent revival of interest in neural nets provided an
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opportunity to examine their possible utility for computing 
dynamical systems problems. In particular to investigate 
the capability of neural nets to perform integration, and 
consequently through a feedback arrangement to extract the 
derivatives of a given input trajectory.

1.0 Neural Nets

Recent progress in computer technology has resulted in 
high-performance computer systems which can process 
millions of instructions per second, but these 'symbolic' 
computer systems are still facing extreme difficulty in 
attempting to solve problems that human beings do well. 
Digital computers can be programmed for intelligent tasks. 
The problem is that the algorithmic solution to many 
information processing tasks is generally far too complex 
to be programmed. No computer can be programmed to match 
human capabilities in applications involving intelligent 
information processing such as to recognize, evaluate, 
adapt, learn and generalize. Even if they come close to 
performing any of these tasks many algorithms are still too 
computationally intensive to allow high-performance 
computers to find a solution in any reasonable period of 
time.
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On the other hand, computers operating in a symbolic logic 
environment are much faster and more reliable at symbolic 
processing than the human brain. No human being can 
multiply two large numbers, calculate matrices or solve 
systems of differential equations at speeds performed by 
mini-computers. This indicates that better machines might 
be built by incorporating some of the properties of the 
biological nervous system/brain into the conventional von 
Neumann architecture.

Artificial systems that mimic biological nervous systems 
are commonly called Artificial Neural Networks or Neural 
Nets. By their very definition neural nets are information 
processing systems that have physical structures that 
closely parallel those of the biological nervous systems 
and are capable of solving problems that humans do well. 
Unlike traditional expert systems, where knowledge is made 
explicit in the form of rules, neural nets generate their 
own rules by learning encounters. [Abu-mos,1986] and 
[Arsenau, 1989] have shown that neural nets are capable of 
solving any boolean computational problem. On the other 
hand, it is likely that this may come at high cost. Neural 
nets are not always the best solution for a given problem. 
They can handle processes difficult for conventional 
computers but performance is poor at precise computation.
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Problems solved more effectively by the brain typically 
have two characteristics [Widrow,1990]: they are generally 
ill defined, and usually require an enormous amount of 
processing, typical examples are image and speech 
processing.

1.1 Basic Elements Of The Biological Brain

The brain is made up of a vast network of nerve cells 
called neurons. There are about 1011 neurons, probably more, 
in the human brain [Arbib,1989] . The structure of the brain 
is highly varied from one individual to another, as well as 
from one neuron to another. In fact, there is an enormous 
variety of neurons in the brain, with fundamental 
differences in structure, patterns of connections and the 
way that neurons send and receive signals.

A neuron receives inputs from many other nerve cells, sums 
the inputs and generates an output, which it then sends to 
another neurons. Figure 1.1 shows the synaptic connection 
between one neuron's axon and another neuron's dendrite. A 
neuron consists of a cell body with a number of input 
fibres called dendrites and a single long output cable-like 
extension called an axon [Strange, 1989] [Callatay, 1989] .
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Neurons are electrically excitable and capable of 
generating electrical signals called action potentials 
which are propagated down towards the end of the axon 
called the nerve terminal. Propagation of the signal occurs 
in one direction only, from the cell body to the nerve 
terminal. The nerve terminal of the axon is used for 
forming connections with the dendrites of other neurons and 
the connection junction between neurons is called a 
synapse.

The electrical signal generated by a cell body travels 
along the axon. When it reaches the nerve terminal a 
chemical, known as the neurotransmitter, is released. This 
chemical crosses the connection junction, the synapse, and 
interacts with specific sites called the receptors on the 
other side, as illustrated in Figure 1.2. The combination 
of neurotransmitter with receptor causes a change in 
electrical activity on the other side which may lead to 
continuation of electrical signalling in the next neuron.

There are many different neurotransmitters, but one neuron 
releases the same neurotransmitter from all of its nerve 
terminals. The amount of neurotransmitter released depends 
on the frequency of electrical signal in the axon, thus 
signalling at the synapse is in analogue form. This
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chemical transmission of information is also believed to be 
a means of storing information. Information can be stored 
between the synaptic junctions. The stronger the junction 
the more neurotransmitter is released for a given amplitude 
of triggering electrical signal.

The effect of different neurotransmitters on the post 
synaptic neuron can be either excitatory (positive) or 
inhibitory (negative) so that any particular neuron 
receives a mixture of positive and negative inputs. There 
are many inputs each with different 'strengths' . The neuron 
integrates the strengths and fires accordingly. The pattern 
of input strengths is not a fixed one, but is modified with 
use and this has relevance to 'learning' and 'storing' 
information.

1.2 Characteristics Of Artificial Neural Nets

Neural-style systems that mimic biological nervous systems 
are called Artificial Neural Nets. The inspiration for this 
approach came from the study of the structure of brain 
tissue rather than to emulate the workings of the brain. 
Consequently, a neural net is made of many simple 
processing elements, commonly refereed to as artificial
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neurons or simply neurons, which interact in parallel by 
means of the signals passing between them. Research in the 
field is of a very experimental nature, due to the 
mathematical complexity of these parallel non-linear 
systems. In general the approach taken is to obtain 
possible guidance from analytical methods, and then to 
conduct simulation experiments with software on 
conventional digital computers. Due to speed limitations, 
networks are usually kept relatively small. This vastly 
oversimplifies the structure of the real biological 
systems. However, even with small size networks some 
surprisingly difficult problems have been tackled. Computer 
based neural networks, for instance, have learned to speak 
[Sejnowk,1987], to detect speech [Newman,1990], to 
recognize handwriting [Fukushi,1988] [Yamada,1989] 
[lee,1988], to detect undersea objects [Gorman,1988] and 
many others listed in the references.

Neural network computer systems possess several useful 
features. First, the neural network is inherently parallel 
in nature. A parallel architecture provides a dramatic 
speed advantage over a conventional computer. Information 
is not stored in specific memory locations, but distributed 
over the interconnections of the network. Thus, the 
computation time for any particular problem, whether
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complex or small, would be the same. Second, massive 
parallelism means that the system is robust, fault-tolerant 
and functionally persistent, the loss of a few neurons and 
connections has negligible effect on the overall 
performance. Third, they are flexible, when confronted with 
a novel situation they will attempt to generalize, at worse 
returning a 'best fit' solution. Fourth, they have learning 
capabilities and can adapt to changes. Fifth, since 
conventional programming is not necessary, there is no 
requirement to completely understand the domain, thus, can 
be employed in poorly understood or experimental 
situations.

1.3 Artificial Neurons

Artificial neurons are the basic processing element of 
artificial networks, see Figure 1.3. It consists of three 
main components: a set of input paths, a transfer function 
block and a single output path. These three components are 
analogues to the dendrites (inputs), the cell body and the 
axon (output) of a biological neuron.

The set of input paths provide connection from other 
neurons. Each input is associated with a weight factor
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which determines the amount of connection strength one 
neuron has on the other. The signal received by each input 
is multiplied by the corresponding weight factor before 
propagating to the next stage.

The transfer function block consists of two units: the
summation and the activation units. The summation unit 
performs arithmetic additions with the weighted inputs and 
produces an output signal. After summation, the net input 
of the neuron is fed to the activation unit to produce a 
new activation value. The transfer function of the 
activation unit defines how the activation value is output. 
In the simplest models, the activation function is simply 
a linear function, Figure 1.4(a), - the weighted sum of the 
neuron's external inputs. In more complicated models, non­
linear transfer function are used. The binary threshold 
function, Figure 1.4(b), is the simplest; if the net inputs 
are greater than some fixed level (threshold) the neuron 
will output ONE, else it will output a ZERO. Sometimes, the 
transfer function is a saturation type function called 
Sigmoid function, Figure 1.4(c). It has high and low 
saturation limits and a proportionality range in between. 
This function is ZERO when the net input is a large 
negative number or is ONE when the net input is a large 
positive number and make a smooth transition in between.
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The characteristics of an artificial neuron can be best 
illustrated by the following general equation

n
Output^ - A( Weighti:)Outputi ) (1.1)i-i

Outputj represents the output of a neuron, A() represents 
the activation transfer function, - a function of the sum 
of product of inputs: Output and the corresponding
connection strength, Wi;). The subscripts i and j represent 
sending and receiving neurons respectively.

1.4 Network Structures

The behaviour of a neural network depends heavily on the 
way neurons are connected. Different neural network models 
have different network structures. In most models, the 
individual neurons are grouped into layers so the output 
from each neuron in one layer is fully interconnected with 
the input of all the neurons in the next layer. Similar to 
real biological systems, a neural net may include 
inhibitory connections from one neuron to another. Neurons 
can interact in many ways, by virtue of the manner in which 
they are interconnected. Common network configuration 
include: feed-forward only, feed-forward with feedback loop
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and neurons that are sparsely connected to a few other 
distant neurons.

Many early models were single layer feed-forward networks, 
as shown in Figure 1.5 with the structure consisting of a 
single layer of neurons, in which each input is connected 
to all neurons but no output feedback. This structure has 
been extended in three different ways. Firstly, network 
connections can exit from neuron to neuron within a single 
layer. Secondly, a network can have multiple feed-forward 
layers in which neurons in a middle layer are hidden from 
the external inputs and outputs of the network, see Figure 
1.6. Thirdly, networks can have feed-backward connections, 
Figure 1.7.

1.5 Learning

Neural nets store information by adjusting the connection 
strengths, weights, between neurons. Through appropriate 
adjustments, a network will be able to perform the input to 
output transformation desired. The adjustment process often 
refereed to as training or learning process and is governed 
by a set of learning rules. These rules can be classified 
into two main categories: Supervised and Unsupervised.
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In supervised learning, the network output is compared to 
the ideal response, and any error made by the network is 
used to alter the connection strengths; learning is 
accomplished by changing the weights so as to reduce the 
errors. Rules in this category require a priori knowledge 
of what the result should be. Unsupervised learning differs 
in that the network must find the error and correct the 
network connections itself without making any comparison 
with ideal results.

Learning rules vary among different models. The most 
commonly known include: Hebbs Rule, Delta Rule,
Backpropagation, Hopfield (Associative Memory), Boltzmann 
Machine, Competitive Learning.

1.6 Classification Of Models

Neural network models are distinguished by their learning 
strategies and the interconnection structure in which these 
strategies are embedded. The models described in this 
section can be grouped into four different classes 
[Yoon, 1989]: correlational, competitive, error correction 
and stochastic.
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In the 'correlational class', the interconnection strengths 
(weights) between neurons are adjusted according to the 
Hebbian Rule [Hebb,1949] in which the change in strength 
between two neurons is according to the output of the two 
neurons. This method is used in many models, both in 
supervised and unsupervised learning.

Algorithms in the 'competitive class' are used in 
unsupervised learning. The output neurons compete until one 
dominates and the weights (connection strengths) that are 
connected to the dominant output are altered. The weights 
are changed according to the Hebbian Rule or a modification 
thereof.

Algorithms in the 'error correction' class are used in 
supervised learning. They are used in a variety of models, 
including the Perception [Rosenbl, 1962] and Back- 
propagation [Rumelbh,1986(a)], [Rumbelbh,198 6(b)] described 
later. Errors are computed from the difference between the 
network actual outputs and the desired outputs specified 
externally. The weights are then altered in an attempt to 
minimize the errors.

Algorithms in the 'stochastic class' use a statistical 
approach to train a network. Weights are adjusted in order

18



to minimize a statistical quantity similar to the 
thermodynamic function. The Boltzman Machine [Hinton,1985] 
is one such model in this category.

1.7 The Hebbian Rule

The Hebbian Rule [Hebb,1949] is an unsupervised learning 
algorithm. Perhaps because it is a source of many later 
models, it is still one of the most commonly known learning 
algorithms. The original Hebbian Rule was not 
mathematically expressed, but was presented as a statement. 
The Hebbian Rule states that "When an axon of a nerve cell 
A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process 
or metabolic change takes place in one or both cells such 
that A's efficiency, as one of the cells firing B, is 
increased". The following equation, proposed by [Sutton, 
1981], is a widely accepted mathematical approximation of 
the Hebbian Rule

w£{ t + 1 ) -  wi( t) + c x1U)  r ( t )  ( 1 . 2 )

where W^t + l) and W±(t) represent the next and present 
weights between a signalling neuron XL and the receiving

19



neuron Y, C is a positive constant determining the rate of 
learning.

1.8 Single-layer Perceptrons

The Perceptron [Minsky,1969] is one of the first simple 
networks with the ability to recognise simple patterns and 
was originally proposed by [Rosenbl,1962]. It is 
essentially a single-layer network with feed-forward 
interconnections, as illustrated in Figure 1.8.

In this simplified version, the single, neuron like 
processing element computes a weighted sum of the inputs 
and passes the result through a binary valued nonlinearity, 
thus providing two possible output values (generally +1 and 
-1) . Each of the two possible outputs corresponds to a 
different classification response. The properties of this 
model can be expressed mathematically as :-

<1,3)i-1

where Yj is the partial output of the processing element 
which formed a weighted sum of its inputs XL , W1;J is the 
weight for the i-th inputs to the j-th processing element.

20
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The partial result Y is then fed to a threshold device, T, 
so that:-

+ 1 if Yj Z T
-1 if Yj < T

(1.4)

Connection weights and the threshold in a Perceptron are 
typically adapted using the Perceptron Convergence Theorem 
[Rosenbl,1962].

The output of the processing element is computed by 
equations (1.4) and (1.5) . The result is compared with the 
desired response (or target). If the output Oj is correct, 
then no change is made to the connection weights. If the 
output Oj is incorrect then the threshold and the weights 
are modified.

Mathematically, this amounts to the following: the change 
in the threshold, T, is given by

where p indexes the particular pattern being presented, tp 
is the target value indicating the correct classification 
of that input pattern, and 8P is the difference between the 
target and the actual output of the network. Finally the

A r -  - ( tp - Op ) - -6p (1.5)
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change in weights, AWi;) are given by:-

Awdj - n ( tp - op ) x± - 6 ^ (1 .6)

where X± is the input value propagating through the 
connections and T| is the rate of weight change.

In spite of it's simplicity, the Perceptron Convergence 
Theorem guarantees that, if a Perceptron network could 
learn to correctly classify a set of patterns, it could do 
so within a finite number of iterations. In addition, if 
more than one element is used, the Perceptron. Convergence 
Theorem can be applied independently to each of a set of 
processing element. However, this theorem will find the 
correct mapping from a set of inputs onto a set of outputs, 
only if the input classes are linearly separable. This is 
the major problem of the Perceptron Convergence Theorem. 
The classic simple example of a function that cannot be 
computed by the Single-layer Perceptron is the exclusive-OR 
logic function. Consider a two input processing element, as 
illustrated in Figure 1.9, the partial output, Y, can be 
expressed, in terms of weights and inputs as :-

By considering the relationship between and X2 equation

(1.7)
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(1.7) can be arranged so that X2 is a function of X2

IV, - X. ( Ki
IV,

(1 .8)

equation (1.8) is that of a straight line. For the 
exclusive-OR problem, each input can only takes on two 
values (0 or 1) so there are only two corresponding points 
of interest on each axis, as illustrated in Figure 1.10. 
This pinpoints four points in the graph corresponding to 
the four possible input patterns: (0 0), (0 1), (1 0), (1
1). The straight line, defined by equation (1.8), divides 
the graph into two regions. Thus, different input patterns 
can be separated by moving the line to different locations. 
It is obvious that, no matter where the line is placed, it 
can never separate the points which define the exclusive-Or 
function.

1.9 Multi-layer Peroeptrons

These are used to overcome the limitation of Single-layer 
Perceptrons. The additional layer or layers are isolated 
from the external world by the input and output layers. The 
properties, including differences and limitations, of the 
Single-layer and Multi-layer Perceptrons are detailed in
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[Lippman,1987]. They distinguish Single- and Multi-layer 
Perceptron using the theory of linear discriminant 
functions and decision surfaces. Their discussions are 
summarized as :-

1) A Single-layer Perceptron will form two decision regions 
separated by a hyperplane. When a two input processing 
element is used the hyperplane is a straight line, see 
Figure 1.11 (a)(b).

2) In a Two-layer Perceptron, the separating regions are of 
the convex open type, as illustrated in Figure 1.12. It 
is obvious to see that the exclusive-OR function can be 
solved by a Two-lawyer Perceptron.

3) Arbitrary closed regions can be formed by using a Three- 
layer Perceptron. The complexity of the shape of the 
regions is limited by the number of processing units, 
see Figure 1.13.

It is clear that Multi-layer Perceptrons can overcome many 
limitations of the Single-layer Perceptron. It has not been 
used extensively in the past, mainly due to the lack of an 
effective weight adjustment algorithm. However, it has 
significantly affected the development of many later 
models, especially after the introduction of the Back-

26



Processing
Element

(a)

Decision
Regions

(b)

Inputs

Figure 1.12 Decision Regions (b) Formed 
By Topology (a)

Processing
Element

(a)

Inputs

Decision
Regions

(b)

Figure 1.13 Decision Regions (b) Formed 
By Topology (a)

27



propagation learning algorithm [Rumelbh, 1986 (a)], 
[Rumelbh,198 6(b)].

1.10 The Delta Rule

Other efforts to overcome the limitations of the Single­
layer Perceptron model include the learning algorithm by 
Widrow-Hoff or LMS (least mean square) or Delta rule 
[Lippman,1987]. The Delta Rule is an error correction rule 
which minimizes the mean square error between the desired 
and the actual outputs of Perceptron like nets, thus the 
amount of learning is proportional to the error computed.

The basic difference from the classical Perceptron model is 
the use of a linear threshold function instead of the hard- 
limiting output. Mathematically, it can be expressed by the 
following two equations:-

yj -T, wu xi (1-9)

A Ni:j - ( T - Yj ) X± 11 (1.10)

where Yj is the output of the processing elements, Wi:) is the 
connection weight between input XL and the receiving unit 
Yj, rj is the constant of proportionality representing the
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learning rate, AWAj is the weight change and T is the target 
value.

Although the Delta Rule was developed as an improvement of 
the classical Single-layer Perceptron, it is not able to 
solve a number of problems, such as the exclusive-OR.

1.11 The Back-propaqation Algorithm

Functions which are linearly dependent cannot be solved by 
single-layer models, see section 1.8. To overcome this 
limitation it is necessary to use multi-layer architectures 
such as the Multi-layer Perceptron. Such models, however, 
were not generally used until the introduction of the Back- 
propagation learning algorithm.

The Back-propagation algorithm is currently one of the most 
popular algorithms. It employs a supervised error 
correction method similar to the Delta Rule. A detailed 
mathematical description can be found in [Rumelbh, 1986 (a)], 
[Rumelbh,1986(b)] and in appendix (A.2). The basic idea of 
the Back-propagation model is to propagate errors back from 
the output layer towards the input and use the computed 
errors to correct the connection weights. Output units
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calculate their errors from the differences between the 
target and actual outputs. These errors are then back 
propagated to the hidden layer and used to evaluate the 
corresponding errors of the units in the hidden layer.

In general, there are three sets of equations. One set for 
the normal feed-forward propagation of signals from input 
to output; one set for the backward propagation of error, 
from output to input; and one set for the adjustment of the 
connection weights.

The forward motion is governed by equations (1.11) and
(1.12). They represent the characteristics of the 
processing units in each layer. The output of each unit is 
a Sigmoid function, f(), of the weighted sum, Y.,

O ------- L----  ̂- f (Y,) (1.11)
J 1 + exp ( -Yj ) J '

A  „ (1.12)- E °i wij+ 6ji-l

There are two equations for the error calculations. One for 
the units in the output layer, and one for units in the 
hidden layer. In the output layer, the calculated output
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vector, ok is compared with the target output vector, tk. 
The difference between these vector components (i.e. tk - 
ok) defines the error. In other words, the input(s) of the 
output processing units should be corrected by 5 k to provide 
the target output vector t

5* - ( fc*. - Ou ) ff(Yj (1.13)

A detailed proof of the equations described in this section 
can be found in appendix (A.2). Introducing equation (1.11) 
for the output function, f(), yields the derivative hence 
the error

df{Yk)
* dY*---°k ~ °k (1.14)

(1.13) and (1.14) yield the error function for the units in 
the output layer.

" ( tk °k ̂ °k ( 1 °k ) (1.15)

The error equation for the units in the hidden layer is 
more complicated. The error from each output unit is back- 
propagated to the connected hidden units, see Figure 1.14,
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and the error of each hidden unit is then calculated as

E wu - °j <1 - °j > E 6* (i.i6)
Equations (1.15) and (1.16) are used to adjust the 
connection weights between hidden-to-output and input-to- 
hidden layers. For hidden-to-output, weights are adjusted 
by :-

A Wkj " *1 °j (1.17)

For input-to-hidden, weights are adjusted by:-

- r| 6j o± (1.18)

The Back-propagation learning algorithm can be summarized 
as : -

1) Initialize all connection weights and the thresholds to 
small random values.

2) Present an input from a class and specify the desired 
output.

3) Calculate the actual output of all the units using the
present value of weights and inputs by equation (1.12).
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4) Find the error terms Sj and 8k for all the output and 
hidden units by equations (1.15) and (1.16).

5) Adjust weights between hidden-to-output and input-to- 
hidden by equations (1.17) and (1.18).

6) Present another input and go back to step (2) until 
weights stabilize.

One difficulty with the Back-propagation algorithm is that 
many presentations of the training data are frequently 
required for weights to converge to an acceptable level 
especially when the decision regions, see Figure 1.13, or 
the desired mappings are complex. It is a time-consuming 
algorithm. Fortunately, this only occurs during learning 
and does not affect the response time during normal forward 
computation.

1.12 The Hopfield Model

The Hopfield model [Hopfield,1982] is a self-organizing, 
associative memory model, see appendix (A.l). A Hopfield 
network is composed of a single-layer of neurons that act 
as both input and output. The neurons are symmetrically 
connected; the connection weight Wi;) from neuron j to neuron 
i is the same as the connection weight WAj from neuron
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i to neuron j ( i.e. W±j = Wj± ), see Figure 1.15. Hopfield 
networks are made of nonlinear binary threshold units which 
are capable of producing two output values: -1 (off) and +1 
(on), the same type of unit as in the Perceptron.

In the Hopfield model, the connection weights are pre­
calculated and set in advance so a Hopfield network does 
not perform any learning. The weight matrix is created by 
taking the outer product of each input pattern with itself 
and adding all the outer products.

The Hopfield model associates an energy with the states of 
a network and once an input pattern is given to a network, 
the system seeks an energy minima. The global energy of the 
system is defined as:-

b- - £  "u Si a3 * £  e, st (1.19)

A E - W1J S1 ~ 6l (1.20)

where SL is the state of the ith neuron ( -1 or +1 ) , 0± is 
the threshold, and AE is the change in energy due to the 
unit changing its state.

The Hopfield network is subject to an Updating Rule, as
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follows: "Randomly pick a unit, change its state ( from -1 
to +1 or vice versa ) just in case doing so will lower the 
energy". Thus the state of the network changes until it 
enters a state of minimal energy in the sense that no 
change in any one of the variables S will lower the value 
of energy E.

In general, in a Hopfield network, certain units are 
designated as inputs; their values are clamped so that the 
Updating rule is not applied to them. The Updating Rule is 
repeatedly applied to all other units until the network 
settles; and then read the value of certain designated 
output units.

One of the weaknesses of the Hopfield model is that global 
minimization is not guaranteed. For example, if Figure 1.16 
represents the energy surface of a network, the network 
might move to the local minimum rather than the global 
minimum location. Secondly, weights in a Hopfield network 
are pre-~calculated and set in advance so it does not learn. 
Furthermore, the number of patterns that can be recalled 
accurately is limited by the number of units in the 
network.

In spite of the limitations, Hopfield networks are good at
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association. They can recognize patterns by matching new 
inputs with the closest previously stored patterns and are 
especially good for finding the best answer out of many 
possibilities.

1.13 The Boltzmann Machine

The Boltzmann Machine [Hinton,1985] is another example of 
supervised models. It is a multi-layer model and is an 
extension of the Hopfield model described previously. It 
was developed to overcome the "local minima" problem of the 
Hopfield like net.

The state of units in the Boltzmann Machine is 
probabilistically determined. The probability for the ith 
unit to be in state 1 is defined as

P i  -  P(AEd) -   ----------------- '

1 + exp ( - — — =■ )

P (AEJ is a sigmoidal probability function, T is a 
parameter analogous to temperature and measures the 
noise introduced and AEa is the total input to the i~th 
unit, (i.e. Ei ^W^Sj) .
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In much the same way as the Hopfield model, after 
presentation of the input values, if the network is left, 
it will settle into a minimum just as if it was being used 
to recall stored data. The problem is that this might not 
be the global minimum. In order to force the system to 
settle into the global minimum a technique called 
"Simulated Annealing" [Hinton,1985] is used. The basic 
principle of this technique, taken from statistical 
mechanics, is that if a sufficient random element is added 
to each unit's choice of state, then the network can escape 
from local minima. Furthermore, if this randomization is 
allowed to persist for long enough time, the system will 
reach an equilibrium state. Within this equilibrium state 
the network will occupy minima in proportion to the size of 
random element, so will spend more time in the global 
minimum.

The Boltzmann Machine learning algorithm consists of 
learning cycles of two phases and can be summarized as 
follows :~

1) The supervised phase. The inputs and outputs are held at 
the equilibrium state at a low non-zero temperature. For 
the next short period of time the weights are modified 
as follow: For each unit of time, the weights between
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two active units are incremented by a small amount; in 
much the same way as in the Hebbian Rule.

2) In the second phase, the inputs are clamped and the 
outputs are calculated. The same inputs are used. The 
network is again brought to equilibrium and for the same 
short time as before, but now decrement the weights 
between active units by a small amount.

This process is continued until the average change of 
weights becomes zero. The major disadvantage of the 
Boltzmann Machine is that because of its probabilistic 
character it takes a long time for a network to settle down 
to a global minimum.

1.14 Competitive Learning

The models and algorithms that have been described 
previously except the Hebbian Rule are supervised learning 
techniques. Network models employ supervised learning 
technique are common in one point: they all assume that 
data for both inputs and outputs of a network are 
available. This however, may not necessarily be the case as 
with real biological systems. It is true that human beings 
or animals learn to react through experience. On the other
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hand, there is no indication that the brain is functioning 
as a supervised learning process. This is perhaps one of 
the most important reasons that motivated the introduction 
of the Competitive learning models.

The basic architecture of a Competitive learning model is 
illustrated in Figure 1.17. It consists of a set of 
hierarchically layered units in which each layer connects 
via excitatory connections, with the layer immediately 
above it, and has inhibitory connections to all units in 
its own layer. Within a layer, units are broken into a set 
of inhibitory non-overlapping clusters. The clusters behave 
in "winner-takes-all" fashion, such that the unit receiving 
the largest input is turned on and the other units in the 
cluster are turned off.

Each unit has a fixed amount of weight that is distributed 
among its input lines. The weight on the line connecting 
unit j to unit i is designated Wi3 and the fixed total 
amount of weight for unit j is designated E w i j = l .  A unit 
learns by shifting weights from its inactive to its active 
input and wins the competition, then each of its input 
lines gives up some portion, g, of its weight and that
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weight is then distributed equally among the active input 
lines:-

A w ^ - g - M - g W u  (122)

where cik is 1 if in stimulus pattern Sk unit i in the lower 
layer is active and zero otherwise, and nk is the number of 
active units in pattern Sk.

There are many variations on the competitive learning 
theme. A number of researchers have developed variants of 
competitive learning mechanisms. [Fukushi,1980], [Grossbe, 
1987], [Kohonen,1984] among others have developed models 
which are competitive learning models or which have many 
properties in common with the competitive learning.
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CHAPTER 2 NEURAL NETS FOR DYNAMICAL SYSTEMS

Neural networks have been applied to the fields of vision, 
speech and control. The ability to interact with 
environments and to solve problems in real time is 
fundamental to the implementation of more advanced control 
systems. It is important to investigate how neural nets can 
acquire these abilities by means of interaction of many 
simple processing elements. This chapter presents a 
selected survey of neural net implementation in the field 
of control/dynamical system applications.

2.0 Historical Perspective

Research in the field of neural-style computing systems 
(neural networks) can be traced back to the early forties 
[McCullo,1943]; the same period as the first electronic 
special purpose computer [Ashurst, 1983] . With the success 
of, and competition from von Neumann computers, interest in 
neural networks decreased. Even after the Cybernetic 
philosophy (the study of control and communication in 
animal and machine) was established many researchers 
abandoned the neural-style approach and moved towards the
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modelling of human mental processes. It is only relatively 
recently that research in neural networks has become of 
great interest. In part, this is due to the increased 
understanding of brain functions, and, in part, due to the 
increased availability of computing power for the 
evaluation of theoretical models. Another factor 
stimulating research in this area, as already mentioned in 
chapter 1, is the disappointment with the performance of 
current computer technology when trying to solve problems 
that humans do well.

Although there is a much better understanding of the 
architecture and function of the biological brain, 
knowledge of the underlying dynamics that govern the 
intrinsic learning mechanisms are still very vague. In 
order to uncover this missing piece and increase 
understanding of the brain's dynamics, various 
architectures of neural-style models have been built and 
studied.

The fundamental building block of a neural-type system is 
a nerve cell like device, often referee to as artificial 
neuron or processing element or unit. In 1943, a model of 
such device was proposed by McCulloh and Pitts 
[McCullo, 1943] . Under the influence of this model and in
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the years following the discovery of the Perceptron in 1962 
[Rosenb,1962], many new models and sophisticated techniques 
were developed. Each offers a different approach to the 
problem of learning and adaptation: some are good at
generalization, some can associate better than others. 
Currently, there are more than 50 models available.

2.1 Neural Nets For Control

Applications of neural nets to control of dynamical systems 
include: tracking of moving objects, robot arm control,
pole balancing and the estimation of forces acting on 
reentry vehicles.

2.1.1 Tracking Of Moving objects

The tracking of a moving object belongs to the class of so 
called 'difficult' problems for conventional computer 
technology [Dobnika,1989]. A system proposed by Dobnika 
demonstrates that with the use of a multilayered artificial 
neural network the same quality of tracking results could 
be achieved as with classical methods.
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Figure 2.1 shows the organisation of a system for visual 
tracking. The system consists of an Input Array (IA) where 
the camera's signals are stored and a multilayered neural 
network for different types of processing. The neural 
network accepts input information from the Input Array, 
records it topologically correctly in the first layer, 
performs filtering in the second and finds the centre of 
mass in the third layer. Each succeeding layer of the 
neural network performs specialised operations that 
represents higher or more abstract degree of processing. 
Its operation is synchronized in such a way that all 
processing elements on the same layer act simultaneously, 
while succeeding layers are sequentially enabled. The 
output of the processing elements of the first layer 
follows the well known McCulloch and Pitts equation in 
order to make a weighted record of input image from the 
input array

11i " f  ( (2.1)

where W±j denotes the weight from Input Array £ to the first 
layer rj. f() is the output nonlinear function.
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Processing elements in the second layer j1 perform filtering 
operation by following the equation

^(fc+1) * + k ( rii (£:) - [^(t))) (2.2)

where k is the gain factor of a dynamic filter of the first 
order and is changed according to the equation k = 
1/processing steps. The third layer is responsible for 
modification of the second layer in order to achieve better 
selectivity between elements, which facilitates detection 
of the centre point. The difference between the centre of 
the objects's mass and the centre of the layers corresponds 
to the velocity of the object in the Input Array. According 
to that difference, the change of visual data in IA is 
activated, which in turn causes registration of new data 
into IA, that again starts the processing of all layers. 
The function of the third layer is achieved by the 
following prgcessing equation :-

Ni

Xd - f( Y, aU( ]C8J(d> > > ' i_1 (2.3)
j-1 d

a i;) denotes the weight between i-th element in the third 
layer and its neighbourhood Ni, 8j (d) is increment to |ij in 
the object, obtained by linear extrapolation of the 
object's edges in d direction, dE e (NS, NE-SW, EW, SE-
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NW ) . The centre point is found by locating the maximum 
value of processing elements in the third layer. This 
multilayer neural network model uses an algorithm similar 
to the one described in [Kohonen, 1990] . The results, 
illustrated in Figure 2.2 show that the average distance 
between the chosen centre of moving objects and the 
processed one considerably decreases with increasing number 
of learning steps.

2.1.2 Dynamic Neural Controller Model

The basic objective of a controller is to provide the 
appropriate input parameters to a physical process in order 
to obtain the desired output. In conventional approaches to 
process control, a significant amount of time and effort is 
spent developing control laws that describe how a process 
works and how it can be controlled. It would be interesting 
and very useful if the controller could learn to control 
the process in an interactive and autonomous way by 
observing the behaviour of the system, and by continuous 
adaption to the process. [Saevens, 1989] propose a 
specialized learning method that allows a neural net to 
learn to control a process in an autonomous way, without 
specific learning stage.

50



Specialized learning means that the controller learns from 
a direct evaluation of the network accuracy with respect to 
the output of the plant. Figure 2.3 shows the learning 
architecture of this method. The network uses the 
difference between the actual and desired output of the 
plant to change the weight of connections. Moreover, the 
network learns continually and can therefore be used with 
processes having time varying characteristics. The 
algorithm consists of the following steps :-

(1) The controller receives the actual output state 
of the plant and the desired output parameters 
that have to be provided by the plant.

(2) The network outputs control parameters X̂  associated 
with |j,dj.

(3) Those parameters Xj are input to the plant at time t.
(4) The plant outputs Jli ^ jldi at time (t+At) .
(5) The error is evaluated and back propagated into the 

network.

The proposed back-propagation based learning algorithm has 
several interesting properties. There is no specific 
learning stage, - the system is self tuning. For static 
targets, the controller is immediately operational but 
requires several steps to reach the target. The system is
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able to perform autonomous on-line learning on dynamic 
targets. It differs from conventional back-propagation 
learning by the fact that the system learns "by doing" and 
not "by example".

This specialized learning control algorithm has been 
applied to on-line learning on a dynamic target, namely 
robot arm control and the pole-balancing problem. In both 
experiments, the controller is a network with four layers 
(two hidden layers). Every processing element of each layer 
is connected with elements of adjacent layers, and the 
controller learns using the back-propagation algorithm with 
the learning rate and momentum term fixed to 0.1 and 0.2 
respectively.

2.1.2.1 Robot Arm Control

The first application of the specialized learning scheme 
involves a robot arm, with two degrees of freedom which has 
to follow a moving target confined in a 2-d space, see 
Figure 2.4 for illustration. The control parameters of the 
arm are the two angles (3 and a. A camera transmits both the 
coordinates of the tip of the arm ( xd , yd ) and the 
object's position ( xQ, yD ) to the controller. The
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controller has to supply angles that permit the arm to 
reach the target.

Training is performed while the target is moving. With the 
network organisation as described above, the reaction time 
of the controller is recorded as 0.15 seconds, during which 
the target moves.

Two series of simulations were recorded. In the first, the 
neural network was given the coordinates of the target 
alone. The controller was unable to anticipate the movement 
of the target because the controller has no idea of the 
target's speed and direction. According to [Saevens,1989] 
the average distance between the arm and the target 
converges towards the product of arm reaction time and 
target velocity; the controller learns to move to the 
previous position of the target. During the second series 
of experiments, the network was given the difference 
between previous position and actual position of the target 
in addition to actual position. In this case, the network 
learns to anticipate the movement of the target after 8 
mins.

55



2.1.2.2 The Pole Balancing Problem

The specialized learning scheme has also been applied to 
the Pole Balancing problem. A two-dimensional pole and 
wheeled-cart system is show in Figure 2.5. The pole is free 
to move only in the vertical plane of the cart and track. 
The cart can travel along the track. The goal is to produce 
a sequence of forces upon the cart's centre of mass such 
that the pole is balanced for as long as possible and the 
cart does not hit the end of the track.

Knowledge of the desired equation of motion of the cart- 
pole system was not used during learning. The same network 
organisation was used as in the case of robot arm 
application [Saevens,1989]. Four parameters were given to 
the network: the horizontal position of the cart relative 
to the track x, the horizontal velocity of the cart, x', the 
angle between the pole and vertical, 0, and the angular 
velocity of the pole, 0' . The learning algorithm can be 
summarized as follows

(1) The network receives the actual state variables ( x, 
x\ 0, 0' ) .

(2) The controller back-propagates the error and outputs 
a force associated to the state variables. Saevens
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& Soquet have estimated that the transmission of 
information and processing takes 50 ms to control the 
cart.

(3) State variables are observed and return to step (1).

With the application of this learning algorithm, after 
several trials, the controller is able to balance the pole 
for more than 15 minutes.

2.1.3 State Estimation Of Unknown Forces Acting On Reentry 
Vehicles

The estimation of unknown forces acting on maneuvering 
reentry vehicle, MRV, can be thought of as finding the 
inverse dynamics model that has as input the observation 
and as output the forces. In the past, neural networks have 
been successfully used in the estimation of an inverse 
dynamics model of systems in robotics, [Jenhwa,1989] 
[Miyamoto,1988].

Conventional approaches to developing neural networks that 
act as inverse dynamics models can be characterized into 
two categories: off-line and on-line training.

In the off-line training category, the neural network is
58



first taught how the forces acting on an MRV are generated. 
In the training phase, the network weights are changed to 
minimize the error between the true known forces and the 
forces estimated from the network. The inputs to the 
network are the pre-processed observations and their 
history as illustrated in Figure 2.6. After training has 
been accomplished with a finite set of data, and weights 
have converged, the network now represents the inverse 
dynamics model and it is ready to be used with real data.

In the on-line training category, the network is taught as 
the data is coming in and being processed. In this 
approach, no time is wasted on training, as illustrated in 
Figure 2.7. The pre-processed observation is the desired 
output and it drives a conventional neural net. The output 
of the neural net represents the estimated forces, which is 
added to a scaled value of the error to form the input to 
the target dynamics. The error signal is used to modify the 
estimated weights of the neural net, using, for example, 
Back-propagation. [Abutale,1991] points out that a major 
problem with these networks is that the form of 
nonlinearities are assumed. This issue is important because 
this form may not be the best to be used in the task. Also 
the size of the network, for any realistic problem, is 
sometimes prohibitory large if reasonable results are to be
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obtained. This is due to the fact that network weights are 
assumed to be constant parameters. Furthermore, it is known 
that a large number of parameters are needed to represent 
any useful primitive, and since the goal is to estimate the 
values of the parameters, the computational task becomes 
enormous. All these problems motivated [Abutale,1991] to 
develop an alternative network.

[Abutale,1991] proposed a hierarchical approach to estimate 
the unknown forces acting on a radar target, see Figure 
2.8. The neural net based procedure can be summarized as 
follows

(1) Obtain an estimate of the target state, position and 
velocity, using an extended Kalman Filter method.

(2) Calculate the acceleration or the derivative of the 
state using a polynomial fit to the estimated states.

(3) Develop a neural net to estimate the unknown forces.

The proposed network architecture is shown in Figure 2.9. 
It is similar to the one described by [Miyamoto, 1988 ] 
except for one fundamental difference; the network 
nonlinearities are not assumed, they are estimated 
implicity.
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The architecture has the advantage that no off-line 
teaching is needed. The network learns from the 
observations and at the same time generates the estimates 
of the unknown forces. The network equations are much 
simpler and easier to work with, and its convergence is 
fast when proper tuning parameters are used. However, the 
usefulness of the present algorithm is limited to 
application where system dynamics and the observation 
equation are known.

2.2 Limitations

The present understanding of real biological neural 
networks in respect to learning dynamics is very sparse. 
Neurobiologists may be able to reveal certain properties of 
certain type of neurons and the actual physical structures 
that these neurons are embedded in but the dynamics which 
govern these structures largely remains unknown. Obviously, 
it is one thing to model neurons to show that they have 
sufficient logical power to perform some computations, it 
is quite another to understand how the neurons in actual 
biological systems perform their tasks.

With limited knowledge, a precise detailed model is hard to
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achieve, therefore assumptions have to be made when 
modelling neurons and networks. One crude approach is to 
assume that the defined models do correspond to real 
systems, but only to a subset of them. In fact, no 
modelling approach is automatically appropriate, a model 
can be regarded valid even when elements of the model 
network details are not directly identified with real 
biological systems, for example the McCulloch-Pitts neurons 
used by many later network models. The most direct approach 
seems to be to design the simplest model adequate to 
address a given problem and then work backward to justify 
the model with real systems.

2.3 Feedback

In controlling interactions of a system with its 
environment, it is usually important that information be 
continually fed back from receptors/sensors to tell the 
controller how effective it is in controlling the 
interactions. Feedback is the comparison of actual 
performance with some desired performance. It plays an 
essential role in the control of an organism or artificial 
robot, e.g. movement of four limbs and eye co-ordination.
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In feedback control, Figure 2.10(a), the actual output is 
continuously compared with the desired output to provide 
compensation signals so that the output is maintained near 
to its desired value.

When a single integrator is used direct feedback from 
output to input will provide an estimate of the derivative 
of a function. This type of arrangement is commonly used in 
electronic equipment for the detection of weak signals 
buried in noise. The integral over a time interval will 
indicate the percentage of time that the pattern lies along 
the trajectory. Thus for noisy data, the magnitude of the 
integral of a signal over some interval is much more 
reliable than the instantaneous value of the signal itself. 
As shown in Figure 2.10(b), with feedback from output added 
to the input the new output will follow the input and the 
by-product will be the higher state, time derivative, of 
the input displacement trajectory, F(t). To adopt this 
scheme, a neural network integrator is desired.

2.4 The Pictorial Integration Process

The main component of the neural module is a neural net 
which computes the integral of the input displacement-time
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pattern. To aid the description of the neural integrator, 
the graphical integration process of a pictorial pattern 
is described in the following manner.

As illustrated in Figure 2.11 (a) (b) , the definite integral 
of a function, f(t), within the limits of a & b, is 
equivalent to the area bounded by the graph of the function 
f (t) , the horizontal axis and the lines parallel to the 
vertical axis at "a" and "b". Using rectangular, or Euler, 
integration it is possible to divide the interval into 
small sub-intervals of equal width 8ti and select from each 
sub-interval a value for the variable f (tj as shown in 
Figure 2.11(b) . The total area may be calculated by summing 
the area of the rectangles, f(ti)5ti.

Alternatively, if the function f (t) is plotted on an 
equally spaced/grid area, see Figure 2.12(a), a more 
appropriate way for the neural integrator can be 
determinated. Firstly there exists only two possible 
shapes: a single rectangle or a combination of a rectangle 
and a triangle. Secondly, as the function is plotted on a 
1:1 scale, the area of any shape can easily be calculated 
by the following simple equation: Half The Distance
Separating The Two Dots Plus The Hight Of The Rectangle, 
see Figure 3.12(b).
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It is clear with this representation that regardless of 
the shape of the rectangle strip, the corresponding value 
for the area is the midpoint of the two dots. As an 
example, consider a 2-D displacement-time trajectory image. 
For each pair of successive input samples to the neural 
integrator at tn and tn+1, the resultant pattern is the 
pattern at tn superimposed on to the pattern at tn+1. The 
neural integrator takes in the superimposed pattern and 
produces an output representing the centroid of the two 
points, (area or integral between tn and tn+1) .

Although this calculation is trivial using digital 
arithmetic units, the problem of scale emerges when 
repeating the process millions of times over high 
resolution 2-D images. It is therefore justifiable to 
explore a non-numeric alternative.

2.5 Vertebrate Retina Structure

As an essential background to the integrator model, a brief 
summary of the features of the vertebrate retina is 
included. This summary is by no means complete, and it will 
necessarily be an oversimplification of many aspects of the 
real model and only serves as supportive section. A more
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detailed description of the retina can be found in 
[Dowling,1987].

Living organisms perform visual processing by perception of 
light through eyes, recording it onto the retina, and 
distributing the signals to different areas of the neural 
system in the brain where it is believed that processing 
such as object recognition is actually performed. From the 
complex anatomical structure of the vertebrate retina, it 
is apparent that a great deal of processing of the visual 
image must take place inside the neural networks of the 
retina.

Figure 2.13 is a schematic drawing of the synaptic contacts 
observed in many vertebrate retina. The retina consists of 
five types of neurons: photoreceptors, horizontal cells, 
bipolar cells, amacrine cells and ganglion cells.

Light absorbed by photoreceptors is converted to electrical 
signals. These signals are then transmitted through the 
output synaptic cells: bipolar cells which transmit
excitatory information directly from photoreceptors to the 
ganglion cells immediately beneath them in the inner 
plexiform section of the retina and the horizontal cells 
which mediate local lateral interaction in the outer
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plexiform section of the retina.

The amacrine cells are also inhibitory cells connected to 
bipolar and ganglion cells. Amacrine cells provide 
inhibitory input to ganglion cells similar to the 
inhibition imparted by the horizontal cells onto the 
bipolar cells in the outer plexiform section of the retina. 
The amacrine cells therefore can contribute to the centre- 
surround response of the ganglion cells. Their response is 
transitory in contrast to the continuous response of the 
bipolar and horizontal cells. When the photoreceptors are 
first stimulated, the amacrine response is intense, but 
this response dies away very quickly. This transient 
response produces a sensitivity to changing light 
intensities.

Ganglion cells receive inputs from bipolar cells and 
amacrine cells and send their axons to the brain via the 
optic nerves for further processing. The several levels of 
processing which culminate in an output ganglion cell can 
be best illustrated by the following example.

Figure 2.14 shows the portions of the so called visual 
'receptive field' which affect the activity of a typical 
output ganglion cell type. This ganglion cell receives
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excitatory synapses from a small group of photoreceptors in 
a central spot (+ve region) and inhibitory synapses from 
photoreceptors in a ring surrounding the central spot (-ve 
region). When the central spot receives light, it increases 
the firing rate of the ganglion cell. When the inhibitory 
surround is illuminated, it decreases the output of the 
ganglion cell. If the entire 'receptive field' is 
illuminated, the excitatory and inhibitory effects tend to 
cancel.

The receptive field of ganglion cells are not fixed. In 
some of the ganglion cells it is the inverse of the one 
above. A structurally similar but functionally inverse set 
of interconnections produces 'centre-off surround-on' 
response.

Ganglion cells receive direct input from bipolar and 
amacrine cells. [Dowling,1987] suggests that the ganglion 
cell responses strongly reflect the properties of the input 
neurons. Bipolar cells give sustained response to retinal 
illumination, whereas many amacrine cells respond with 
transient potentials. Some ganglion cells receive most of 
their input from bipolar cells; their responses are 
sustained and reflect primarily the processing of 
information occurring in the outer plexiform section of the
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retina. Other ganglion cells receive most of their input 
from amacrine cells/ their responses are often more 
transient and reflect inner plexiform section processing.

Although the synaptic interconnections between different 
layers of cells of the retina are still not yet fully 
understood, the centre-surround receptive field 
characteristic has provided the inspiration for the design 
of the neural integrator model.
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CHAPTER 3 A NEURAL NET INTEGRATOR MODEL

A model for a neural net integrator is put forward as an 
alternative to traditional analogue/numerical integration. 
The execution of the resulting model on single and 
multiprocessor systems is considered.

The model is inspired by the vertebrate retina structure 
outlined in chapter 2. Architecture, functionalities and 
adaption method of the model are treated in detail.

The mapping of the resulting neural net models onto single 
and multiprocessor system is examined. A general framework 
is formulated to permit arbitrary network definition and 
easy alterations of network parameters. A parallel 
processing technique is devised to compute the resulting 
algorithms on distributed memory multiprocessor systems.

3.0 Basic Objectives Of The Neural Integrator Model

The neural module has to satisfy four objectives
(1) Provide Integration, e.g. linear ramp output for

constant input, quadratic output for linear input, etc.
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(2) Provide an automatic matching/filtering function to the 
input trajectory profile when used in a closed loop 
feedback arrangement, see Figure 3.1, i.e. the output 
of the neural module should be the same or a close 
approximation of the input.

(2) As a by product of achieving the above two objectives, 
the higher state/derivative of the input trajectory 
should also be obtained.

(3) Neural modules should be cascadable, as shown in Figure 
3.1, such that higher states/derivatives can be 
estimated.

3.1 Neural Integrator Model

Consider the neural integrator (NI) model shown in Figure 
3.2. It consists of four layers formed by photoreceptors, 
horizontal cell, bipolar cells and ganglion cells. Amacrine 
cells will be used with this configuration when expanded 
horizontally. The input layer consists of two 
photoreceptors with output feeding a horizontal and two 
bipolar cells in the second and third layers respectively. 
Connection between these cells are excitatory connections.

Bipolar cells in the third layer receive direct excitatory
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connections from photoreceptors as well as inhibitory 
connections from the horizontal cell. The horizontal cells 
mediate the lateral inhibition, when sufficient inputs are 
applied to a horizontal cell it will fire causing 
inhibition of the bipolar cells near to it. The output 
layer is formed by three ganglion cells with connections 
coming from bipolar and horizontal cells directly above.

Neurons in this basic model are identical, having the same 
neuron transfer characteristics, see Figure 3.3. A neuron 
generates an action potential if the weighted sum of the 
inputs is above the neuron threshold value. Mathematically 
this can simply be expressed by the following equations

The choice of the above neuronal properties is set by 'two 
constraints'. The 'first' was to mimic as closely as 
possible the real nature of neurons. The photoreceptors, 
react chemically to light and these chemical reactions in 
turn lead to generating potential in the neighbouring 
neurons. If the light falling upon an array of receptors is 
sufficiently strong, then their potential will induce

Net - ixwx + i2w2 + I w Mnr*n
(3.1)

if NET* 1 
if NET< 1 (3.2)
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potential changes sufficiently strong to activate other 
cells.

The 'second' constraint is to synthesis the model to enable 
the computational steps to be as small as possible; this is 
important for simulating networks of a large number of 
neurons with limited computer power in a practical 
execution times.

3.2 Functionality Of The Basic Net Model

To illustrate the functionality of this basic net model, 
consider the weight setting as shown in Figure 3.4 
a: As neurons are binary On/Off devices, four possible 

input states can exist, 00, 01, 10 and 11. 
b: With no light illumination, the 00 condition; none of 

the cells are excited by external incident light, 
c: In 01 or 10 conditions, the bipolar and ganglion cells 

directly beneath will be excited and the rest of the 
cells are off.

d: When both photoreceptors are on, the 11 condition, the 
horizontal and bipolar cells are initially turned on. 
As soon as the output of the horizontal cell is 
established (settled) the bipolar cells are
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subsequently turned off due to the lateral inhibitory 
connection from the horizontal cell hence turning on 
the centre ganglion cell (centroid on). 

e: Unlike the biological vertebrate retina where the 
stimuli for ganglion cells may be grouped into 
'centre-on/surround-off' or 'centre-off/surround-on' , 
the basic net model has only overlapping centre-on 
'receptive field' regions. As shown in Figure 3,4, 
each region of the 'receptive field' is dedicated to 
a photorecptor/ganglion cell. Ganglion cells A and C 
are affected by illuminations on region A and C 
respectively and region B facilitates ganglion cell B 
firing.

This structure forms the basic building block of the neural 
integrator model. Depending on the required number of input 
and output neurons resolution the basic net model can be 
expanded sideways, see Figure 3.5, to form larger networks. 
When more than one basic structure is required an extra 
layer of amacrine cells is used to maintain the centre-on 
response. For example, with 3 photoreceptors (size of two 
basic nets) an amacrine cell is needed which receives input 
excitatory connection from the farthest bipolar cells, see 
Figure 3.5 and have inhibitory and exhibitory connections 
feeding the ganglion cells.
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3.3 Weight Adjustment

Large networks can be realized from the basic net. Two 
phases of weight adjustment take place if more than one 
basic net is used: implicit weight setting of the outer
section of the network (photoreceptors - horizontal - 
bipolar- ganglion), and synaptic weight adjustment of the 
inner section (bipolar - amacrine - ganglion).

The relationship between input and output of the basic 
network is that the basic network outputs the centroid of 
the inputs. If only one of the photoreceptor is ON then 
only the ganglion cell directly beneath will be turned ON.

3.3.1 Bipolar Cells

Each bipolar cell has one excitatory and one inhibitory 
input connection. To ensure the above functionality, the 
weights of the bipolar connections should be the same in 
ratio and in opposite sign to each other so that if the 
horizontal cell is active the bipolar cell will stay 
inactive. The horizontal cell also has two input 
connections. It receives inputs from both photoreceptors 
and is only active if both photoreceptors are turned ON.
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Its connection carry weights such that if the weighted sum 
exceed the preset threshold the horizontal cell is ON.

Once the connection weights of the basic net are properly 
established (e.g Figure 3.4), the implicit regular weight 
setting can be used to define large network by replicating 
the structure. When expanding from the basic net structure 
a layer of amacrine cells is needed to maintain the centre- 
ON operation.

3.3.2 Amacrine Cells

Each amacrine cell receives many inputs from the bipolar 
cells layer and has excitatory as well as inhibitory output 
connections to the ganglion cell layer. The input and 
output weights of the amacrine layer are adjustable. The 
amacrine cell layer can be thought of as an unsupervised 
layer. When signals are propagated through the amacrine 
layer the amacrine neurons compete with each other. The one 
with the weights closest to the amacrine layer's input wins 
the competition. The connection weight leading to the 
winning amacrine neuron can then be adjusted by the
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following equation (3.3) : -

- Waa(t) + f ( fl - Wjult) (3.3)

where B and A denote the activation values of the input 
bipolar cell and the winning amacrine neuron respectively 
and £ is the rate of weight change between 0 and 1.

Both input and output of the amacrine layer are fully 
connected and the weights of these connections are 
initially set to small random values thus any one of the 
amacrine neuron can win the input.

The number of input patterns that each amacrine cell can 
associate is also controllable. The activation of the 
amacrine layer is controlled by an additional Selection 
Criteria. If an amacrine neuron has been winning more input 
than it is allowed its winner status will be disqualified. 
When this happen the next neuron satisfying the suppression 
condition will take over the association.

3.3.3 Output Of Amacrine Cells

The output of the amacrine neuron can be expressed by
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equation (3.4) : -

„ m  ^ 4. 4- fl Winner, — <1Amacrine Cell Output - < c
[ O Otherwise 

Winner - Minimum ( B - Wm  )2]

where c denote the number of pattern the neuron is allowed 
to be associated with and k is the number of times the 
neuron has won; i.e. as k increases toward c suppression 
increases, when k=c suppression is at maximum and 
association of this neuron is saturated.

(3.4)

(3.5)

At the output side of the amacrine layer, weights between 
the winning amacrine neuron and the neurons in the ganglion 
layer are adjusted so as to provide the desired association 
pattern. These connection weights are adjusted according to 
equation (3.6) : —

^(fc+1) - WAG + C ( G - WAG(t) )A {3>6)

where G is the desired ganglion cell output, connections 
are strengthened between active amacrine and ganglion cells 
only, otherwise weights will be suppressed.
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3.3.4 Adaptation Algorithm

The adaptation algorithm consists of the following steps

1) Initialize the network by defining the regular weights 
of the basic net.

2) Expand from the basic net to the required input and 
output neuron organisation.

3) Set up the amacrine layer with size according to: (a)
the number of patterns each amacrine neuron is allowed
to associate, and (b) the number of patterns to be 
learned, i.e. Amacrine Layer Size=(integer)[(b)/(a)]+1.

4) Randomize the input and output weight connections of 
the amacrine layer to small random values.

5) Apply training data to the input of the network and 
activate the ganglion layer according to the desired 
output pattern.

6) Calculate the outputs of photoreceptors, horizontal 
cells, bipolar cells and amacrine cells layers.

7) Locate the next amacrine winner.
8) Run through the Suppression process to the winning

amacrine neuron/ if the winner satisfies the activation 
conditions go to step (9) otherwise repeat (7) and (8).

9) Adjust the input and output weights connections of the 
amacrine layer by equation (3.3) and (3.6) respectively.
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10) Repeat from step (5) for another training pattern.
11) Repeat from step (5) for next cycle.

3.3.5 Example

As an example, Figure 3.6 is a pictorial pattern of a 
velocity-time trajectory profile plotted on an equally 
spaced area where the velocity and time quantities are 
represented by the horizontal and vertical grids. This 
graph is divided into equal rectangular stripes and each 
stripe is composed of two successive velocities which will 
be the input of the NI.

The velocities at t0 and t2 are graphically merged 
(superimposing the patterns at t0 and tj and fed to the 
input of the integrator, see Figure 3.6, where each grid 
value is clamped to on photoreceptor only. Upon receiving 
external input, the neurons then perform computation and 
produce output according to their connections weights and 
neuron transfer characteristics.

At the output, each ganglion cell is clamped to a grid
point on the output plane, separated by 1/2 unit in the
vertical axis, see Figure 3.6. The new active neuron will
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produce a ”1" at its clamped position which represents the 
area (the integral) under the curve between t0 and tx.

By applying the above process to each pair of successive 
columns of the input plane, a set of 'local' integrals can 
be achieved/ the global output can be obtained by 
accumulating the successive 'local' output/integrals.

3.4 Mapping Of Neural Nets On von Neumann Computer Systems

It is evident that current technology is not flexible and 
mature enough to allow the implementation of neural net 
directly in hardware. For this reason, digital computer 
simulations remain the primary method of implementing, 
experimenting with and validating neural net models.

One of the most discouraging aspects of simulating neural 
networks is that there is no programming language that 
generally supports this kind of application. A wide range 
of neural network models can be adopted when attempting to 
solve a particular problem. Using traditional methods to 
assemble networks by manually writing a collection of 
software routines is somewhat cumbersome as a change in the 
architecture of a network usually necessitates
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reprogramming to reflect the new architecture and its 
simulation actions. This reprogramming is tedious and time- 
consuming .

One possible way of avoiding this would be to adopt a 
common method or language which can be used to support and 
provide easy means of specifying any network configuration 
composed of many different neuron types and 
interconnections. However, designing a new language from 
scratch requires substantial effort. A better approach is 
to extend a widely used language to provide some common 
tools to simplify the assembly of networks thus reducing 
the overheads of developing a new neural network 
simulation.

Furthermore, simulating a neural network is extremely 
computationally intensive as a high degree of inherent 
parallelism is a key feature of efficient neural networks. 
Large amounts of computer resources are often required to 
teach a moderate-sized network using the standard 
sequential and pipeline computer structures.

During the last few years special purpose hardware using 
VLSI technology, so called neuro-hardware, to accelerate 
the processing of neurons and synapses, has been proposed

95



[Graff,1986] [Lambe,1986] [Sage,1986]. However, these
special purpose hardware designs are specifically built for 
certain neural network model thus are deficient in 
flexibility for exploring different pattern of 
connectivities, neuron models and learning algorithms.

One natural way to overcome the speed limitation of neural 
network simulation is to explore the parallel processing 
approach. There have been several research efforts, 
[Deprit,1989] [Hicklin,1988] [Pomerle,1988], suggesting 
processing techniques for commercially available parallel 
machines. In the following sections, a general framework 
for mapping neural network models onto conventional and 
multiprocessor computer systems is described.

3.4.1 Framework For Programming Neural Nets

The underlying design primitive for programming neural 
networks can be described by three basic components

1) A set of simple processing elements which can be defined 
by a set of transfer functions representing the 
processing of inputs to a single output operation.

i2) A connectivity pattern which defines the flow of data
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between processing elements.
3) A set of learning equations which defines the adaption 

dynamics of the network.

From the computational points of view, the modelling of 
neurons and learning functions in software are relatively 
simple when compared to the associated connectivity 
pattern.

Connectivity patterns can be classified into two 
categories, regular and irregular. With a regular 
connectivity pattern, connections between neurons in 
different layers effectively have the same form, that is a 
network is formed by layers of neurons with each neuron 
connects to every neuron in the next layer. The 
representation of this type of network in software is very 
straight forward, (e.g. 2-dimensional array of
connection).

Irregular connectivity patterns, however, are more complex 
and requires greater attention to the data structures and 
software arrangement. This suggests the need of some common 
tools to support the definition of arbitrary network 
topologies.
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With standard computer hardware (i.e. serial uniprocessor 
systems) these demands can be satisfied with a framework of 
data structures and library functions. The framework of 
data structures provide a representation of the physical 
structure of a network which are manipulated by the library 
functions (descriptions of the library functions are given 
in chapter 4).

3.4.2 Data Structures

The representation of networks in software may be based on 
three fundamental data structures: NEURON, SYNAPSE, and
GROUP.

NEURON and SYNAPSE types correspond to processing elements 
(neuron) and weighted connection links (synapse) between 
them , GROUP type defines a group of neurons. A complete 
network may consist of many different kinds of neurons, 
grouped according to their function in the net and the 
connections between them.
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3.4.2.1 Neuron Type

In essence, a Neuron, see Figure 3.7, is defined by five 
status parameters, and a synapse pointer namely Neuron Net 
Input Value (Net_Val), Activation Value (Act_Val), Output 
Value (Out_Val), Error Value (Error_Val) which have special 
reserved meanings, and a free status parameter (Reg) which 
can be used when necessary (e.g. the desired target value 
of the neuron) . Each neuron in a network may be given an 
identity. Depending on the network model, the neuron 
identity may be ignored, however, it is sometime useful in 
situations where specific coordination of neurons or 
synapse connections are desired and plays an important part 
in supporting the debugging processes. Synapse connections 
between neurons are assigned to the receiving neuron. The 
connection components (synapse - see below) leading into 
each receiving neuron are held in a link list which in turn 
is pointed to by the synapse Pointer (Syn_ptr).

3.4.2.2 Synapse Type

A Synapse has three status parameters and one neuron type 
pointer, see Figure 3.8, of which the Weight is reserved to 
hold the synapse connection strength, the other two being

99



Neuron Identity

Status Parameters 

Reserved For Neuron 
Transfer Functions

Free Status Parameter

Synape Link 

List Pointer

Figure 3.7 NEURON Data Structure

Connection Strength

Free Parameters

Input Neuron 

Pointer

Weight

W_RegA

W_RegB

Neuron Ptr

Neuron ID

Net Val

Act_val

Out_Val

Error Val

Reg

Syn_Ptr

Figure 3.8 SYNAPSE Data Structure 

100



free parameters, similarly as in the case of neurons, they 
may be used when necessary. Each Synapse also points to the 
neuron delivering the signal by (Neuron_Ptr).

3.4.2.3 Group Type

The Group concept is used to define groups of neurons 
sharing the same input to output transfer characteristics 
and which have to be connected to each other or which may 
be updated in parallel. In essence, a Group has a Group 
Identity (Grpid), see Figure 3.9, three function pointers, 
namely neuron Activation Function Pointer (ActFcn_Ptr), 
Output Function Pointer (OutFcn_Ptr) and Net Input Function 
Pointer (NetFcn_Ptr). These three function pointers are 
reserved for the transfer functions of neurons pointed 
(i.e. Grouped) to by the Neuron List Pointer 
(NeuronListPtr).

Each simulation model consists of a list of groups, Figure 
3.10, which contains all of the existing neurons. Each 
Group points to a list of neurons and each neuron points to 
a list of synapses and each synapse points to a neuron 
record. It is by this mechanism arbitrary network 
configuration can be dynamically created and altered.
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Based on this grouping concept, a network with highly 
regular connectivity pattern can easily be defined by 
grouping neurons by layer and creating connection links 
simply by linking the appropriate groups, see Figure 
3.11(a), any unwanted connection may be defined by 'ZERO' 
weight setting. For irregular connectivity patterns, such 
as the one shown in Figure 3.11(b), neurons, alternatively, 
may be grouped together according to their connection 
destinations. Neurons in a layer connected to the same 
neuron in a successive layer may be grouped together. With 
this second approach, no memory is wasted on any unwanted 
connection as they simply do not exist. In effect, neurons 
are grouped by sub-dividing the layer of neurons. Both 
approaches are supported by the same data structures, and 
are explicitly adaptable.

3.5 Neural Nets Simulation Using Multiprocessor Systems

The virtue of the simulation framework described in the 
last section is that it frees the user/programmer from the 
need to write code to assemble neural networks and set up 
simulation actions. The same mechanism can also be used to 
map any network onto multiprocessor systems, without major 
alterations and program complication, to achieve processing
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speeds which cannot be met by single processors.

The descriptions below concentrate on a category of 
multiprocessor systems proposed by [Hammes,1989]. The 
target multiprocessor system is a distributed memory type. 
The reason behind this choice is that a distributed memory 
multiprocessor system can be viewed as having general 
purpose parallel architecture with the potential of being 
a versatile, multi-purpose machine instead of a highly 
specialized ones.

3.5.1 Architecture Of A Target System

T target system falls into the MIMD (multiple instruction, 
multiple data) category in which each processor node 
executes its own instruction stream on its own data. Each 
processor node consists of a processor, local memory and an 
inter-processor communication interface chip, see Figure 
3.12. Each node stores its program and data in its private 
memory so that it is in itself a complete computer. 
Processor nodes are connected to communicated with a 
global bus and the mode of communication chosen for the 
system is that of Associative Addressing.

106



Processors

Memory

Communication

Chip

Communication Global Bus

Figure 3.12 A Target Multiprocessor System

107



In Associative Addressing, each piece of data is placed 
onto the global bus with an address to indicate where the 
data is coming from. Each node monitors the global bus 
constantly, any node recognizing the address will copy the 
data simultaneously. The system accomplishes parallelism by 
this means of communication technique.

Processor nodes are equipped with a special interface chip 
to facilitate the associative addressing communication 
mechanism. The interface unit consists of input and output 
(data and address) register pairs. The address of each 
register is programmable so any one of these inputs can be 
programmable to receive data from any of the other nodes 
within the system. In addition, the global bus as well as 
processor nodes are all controlled by a master node which 
performs the management and bus allocation operations. A 
node requesting the bus will notify the allocation circuit, 
when the bus is free bus control is handed over depending 
on the location of the allocation signals. There are two 
levels of allocation circuit, thus two levels of allocation 
signal, see Figure 3.13. The complete multiprocessor system 
consists of 64 nodes. Processor nodes are grouped into 
clusters of eight in which each cluster has an allocation 
circuit linked to the higher level allocation signal.
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3.5.2 Simulation Primitives For Multiprocessor Systems

The most important factors when considering the 
construction of neural network simulation on 
multiprocessor systems are: the optimal distribution or
allocation of neurons into processor nodes, and the 
communication between neurons allocated to different 
processor nodes.

Inspection of the most commonly used neural network 
architectures and the way they perform computations and 
learning reveals several parallel features. Networks are 
usually made up of neurons which are grouped in layer(s). 
Neurons belonging to the same layer can compute in parallel 
their outputs in the normal forward processing phase (i.e. 
propagation of signals from input to output). While in the 
backward learning phase they compute in parallel the weight 
modification process. However, the output of a neuron or 
the computation of new weights usually depends on the value 
computed by many other neurons. Without careful design, an 
implementation of such algorithms on parallel distributed 
memory systems can easily spend the majority of its running 
time in communication, i.e. sending data where they are 
needed rather than performing actual computations.
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3.5.3 A Distribution Technique

Neurons in the same layer can be partitioned onto different 
processors, see Figure 3.14. As the amount of memory 
required by a neuron is usually small when compared to that 
used by the synapses leading to a neuron, neuron 
information exists both in a "Full" and "Redundant" 
fashions on each processor node, as described below.

Each processor node carries data for neurons created 
locally, the input weights associated with these neurons 
and the output values of neurons created in other 
processors and connected through these weights. Neurons 
assigned to the specific nodes are called active neurons 
and are created only on it's "home" processor node so 
"full" neuron information is stored. This also applies to 
synapse information leading to the active neurons. Neurons 
allocated to other nodes that are linked by the synapses 
are called passive neurons and only their output status 
values are stored.

The memory in each processor node is divided into four 
sections: support code area including neuron's and learning 
functions, active neurons information section, synapses and 
passive neurons sections. This can be best illustrated with
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Figure 3.15. With this partition strategy active neurons 
partitioned on different processors can be updated in 
parallel without the need to communicate frequently.

Though this partition scheme results in the duplication of 
neuron values, it avoids complex communication 
requirements; as the amount of memory required by neurons 
is small when compare to that used by weights thus 
communication and storage requirements are minimal. 
Communication is only necessary to ensure the availability 
of updated neuron values. This is done by transferring the 
desired neuron parameters from the active neuron area into 
the respective passive neuron area whenever an update of a 
layer of neurons is made, see Figure 3.15 for illustration.

3.5.4 Data structures For Multiprocessor Systems

Data structures for the multiprocessor system simulation 
are similar to those described in section 3.4.2 (for uni­
processor systems). The Neuron Pointer field of the Synapse 
is replaced by a Neuron Identity so that each Synapse 
contains a weight, two free status parameters and a neuron 
identity to indicate the neuron that the synapse is 
connected to. Each neuron has a uni-identity, whereby
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following each complete update cycle the output value of 
each active neuron is transmitted together with their 
identity. Receiving processor nodes will place these data 
in their passive neuron areas so that they are ready for 
the next cycle. In each update processing, the passive 
neuron memory area in each node will be searched and 
matched to the associated synapse weight so that active 
neuron information can be updated.

114



CHAPTER 4 SOFTWARE IMPLEMENTATION

4.0 Components Of The Simulation Toolbox 116
4.1 Procedural Interface 117

4.1.1 Network Construction Functions 119
4.1.2 Execution Functions 120
4.1.3 Peripheral Functions 121

4.2 Construction Of Simulation 122
4.2.1 A Static Mode Simulation Example 124

4.3 Neural Net Simulation Using 
Multiprocessor Systems 126

4.3.1 Emulation Of The Multiprocessor
System 126

4.3.2 Processor Node Emulation 130



CHAPTER 4 SOFTWARE IMPLEMENTATION

Computer simulations need to be employed to study the 
essential differences in performance of existing neural 
nets and for experimenting with and validating the new 
retinal model for the dynamical system integrator.

The simulation framework proposed in chapter 3 will be 
refereed to here as toolbox. It is developed in this 
chapter to provide the foundation for the implementation of 
simulation programs to handle the process of generating 
arbitrary network definitions thus simplifying the tedious 
task of putting synthesising neural networks. The 
simulation toolbox consists of a set of simulation specific 
data structures, detailed in section 3.4, to provide a 
representation of the physical structure of a network and 
a set of procedural functions for the manipulation of the 
network data structures.

The simulation toolbox and all simulation programs are 
implemented in the 'C' language. The design is based on the 
use of records, structures, lists, mapping functions and 
dynamic memory operations which are well supported by the 
C language.

The implementations of the library functions are described.
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In the absence of fully operational target hardware, the 
target multiprocessor system has been emulated by software. 
The implementation of this emulation system is also 
described.

4.0 Components Of The Simulation Toolbox

Building a neural network simulation program involves two 
main tasks: the Construction of a network including
initialization of network activities and inter-connection 
weights, and the Execution of network functions including 
normal and learning processes.

The construction of a network in software in each 
simulation is based on three fundamental structures, the 
NEURON, the SYNAPSE and the GROUP, see section 3.4. These 
data structures are used to hold network information i.e. 
topology and knowledge (weights).

The data structures are manipulated by a set of functions 
in which the construction of a network and the simulation 
actions can be defined by function calls to the toolbox. 
This makes it possible to specify neural networks 
without having to deal with the actual representation of
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the network architecture. This approach provides
flexibility as the functionality of the simulation toolbox 
can be improved incrementally by adding new functions to 
the procedural interface to gradually eliminate
functionality limitations of artificial neurons.

A simulation can be created by writing a program in which 
the procedural function calls refer to manipulations which 
perform the functions in the toolbox. This process is 
summarized in Figure 4.1.

4.1 Procedural Interface

The fabrication of a network and simulation actions are 
carried out by a collection of functions. These function 
are classified into three categories

I) Construction including Initialization,
II) Execution including normal processing and learning,
III) Peripheral functions, including debugging and 

data dumping routines.
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4.1.1 Network Construction Functions

There are six standard functions in this category for the 
construction and initialization of arbitrary network 
architecture. CreateGroup( NetFcnPtr, ActFcnPfcr, OutFcnPtr, 
Nofneuron, GroupID ) is used to define a group of neurons 
having the same common neuron characteristic specified by 
three function pointer variables. 'NetFcnPtr' is the neuron 
input function pointer, 'ActFcnPtr' the neuron activation 
function pointer and 'OutFcnPtr' the neuron output function 
pointer.

A group may also be given a name/identity via 'GroupID' and 
the number of neurons created by this function will be 
according to the variable 'Nofneuron'.

Additional neurons can be added to an existing group by 
using CreateUniNeuron( GroupID, NeuronID ). This function 
takes in two variables: group identity 'GroupID' and the 
neuron identity 'Neuronld'. When this function is called, 
'Groupld' is used for locating the group that the new 
neuron belongs to. Once the specified group is located, a 
new NEURON structure with the specified identity will be 
added to the end of the neuron link list.
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Similarly, LinkGroupO and CreateUniLink () are used for 
creating multiple or single connections. LinkGroup( 
SourceGrp, TargetGrp ) creates total connection between 
neurons belonging to the two specified groups while 
CreatUniLink( SourceNeuronID, TargetNeuronID ) creates a 
Single connection between two specified neurons.

By the same notation, InitWeight( ValueFcnPtr, GroupID )
initializes all the synapse connections belonging to 
neurons in the specified group with certain values. The 
connections are initialized according to the value of the 
generation function defined by the function pointer 
variable 'ValueFcnPtr'. InitUniweight( ValueFcnPtr, 
SourceNeuronID, TargetNeuronID ) initializes a single 
connection between two neurons.

4.1.2 Execution Functions

There are three standard functions in this category for 
normal network processing and learning. ActivateGroup( 
GroupID ) takes in the group identity. The output of each 
neuron belonging to 'GroupID' will be computed by 
performing operations to the connection weight and input 
signal pairs. This is performed according to the predefined

120



neuron transfer functions specified during group/neuron 
creation by CreateGroup().

CalculateError() and AdjustWeight() are both used during 
learning process. CalculateError( GroupID, ErrorFcnPtr )
calculates the errors generated by each neuron within the 
group specified by 'GroupID' according to the given error 
calculation function 'ErrorFcnPtr'. AdjustWeight( GroupID, 
WgtFcnPtr, LearningRate ) is used to adjust the connection 
weights leading to each neuron defined by the group 
identity according to the specified weight changing 
function 'WgtFcnPtr' .

4.1.3 Peripheral Functions

In addition to network Construction and Execution, a set of 
peripheral routines is also provided to perform searching 
and displaying of groups, neurons, connection weights, 
external input or output of whole network and for loading 
and saving of network information.

ShowGroupO, ShowNeuron() and ShowWeight() are network 
probing routines which display the status of neurons, the 
associated connection weights and input signal pairs. A
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call to the function ShowGroup( GroupID ) will cause a 
screen dump of all the information contain in the specified 
group. ShowNeuron( GroupID, NeuronID ) displays individual 
neuron and its associated weight values. Similarly 
ShowWeight( SourceNeuronID, TargetNeuronID ) displays the 
weight of a single connection.

SearchNeuron( NeuronID ) and SearchLink( SourceNeuronID, 
TargetNeuronID ) are used for locating specific neuron and 
connection, both routines return the memory address of 
neuron or connection. LoadNet( Filename ) and SaveNet( 
Filename ) are used for loading and saving network to file 
so that retrieval or off-line inspection is made possible. 
The source code listing of the above procedures, including 
data structures, are enclosed in appendix (B.l) and (B.2).

4.2 Construction Of Simulation

The data structures and the procedural interface are 
implemented in standard ANSI-C, transporting from machine 
to machine is not a problem as long as the C compiler 
supports standard ANSI specifications. The size of the 
support code has been deliberately kept as small as 
possible. The total size of the toolbox is less than 40
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kbytes including all the neuron and learning function for 
simulating the various net models, i.e. Delta Rule, 
Backpropagation, Hopefield, Competitive, Kohonen, 
Counterpropagation, and the new retinal model. There are 
two alternative modes of operations for constructing a 
simulation: static and interactive.

In static mode, a simulation can be constructed by writing 
a C program which consists of a sequence of function calls 
from the toolbox. Any neuron transfer characteristic and 
learning functions can be added simply by writing routines 
and recompiling with the user program, see Figure 4.1. 
Static mode is more flexible and uses less memory than 
interactive mode but recompilation is necessary for each 
simulation. It is flexible as any new neuron and learning 
function can be added and removed.

Interactive mode is achieved by running a simulator program 
called NNSim.exe. This program, in addition to the standard 
toolbox functions, is also equipped with a collection of 
predefined neuron and learning functions. In interactive 
mode, a network can be dynamically created or altered on­
line. Network construction and simulation is performed by 
means of a menu-driven user interface in which function 
calls are performed by selecting the appropriate item in a
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pop-up menu. In this mode of operation, simulation runs can 
be suspensed at any time so that network characteristics or 
topology can be changed and simulation resumed without 
recompilation. The major disadvantage of this mode of 
operation is that the size of the network that can be 
simulated is limited as all the necessary functions 
including unused routines are carried onboard. For this 
reason, static mode is more favourable when memory is a 
limitation; for example only 640 kbytes is available with 
an IBM compatible PC running in standard MSDOS environment 
(real mode). The structure chart of NNSim.exe is enclosed 
in appendix (C).

4.2.1 A Static Mode Simulation Example

The example code segments shown in Figure 4.2(b) for a 
simple Perceptron network simulation should give an idea of 
the programming style supported by the simulation toolbox. 
The network shown in Figure 4.2(a), consists of an input 
and output layers which the network learns using the Delta 
Rule, as has been described in chapter 1. In Figure 4.2(b), 
the first three lines are used for network construction 
including initialization and the rest are for teaching the 
network. SetDataPattern( GroupID, DataFileName, DataType )
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(a)

/* Network Construction */
CreateGroup ( Ramp,Ramp,Ramp, 3,"Input1ayer") ;
CreateGroup (Soma, Binary, Ramp, 2, "Outputlayer11) ;
LinkGroup ("Inputlayer","Outputlayer");
InitWeight(RamdomFcn,"Outputlayer") ;
/* Network Training Process */
for (i=0; i<nofcycle; i++) 
for ( j=0; j<nofpattern; j++)
{SetDataPattern ("Inputlayer",Datafile[j] , INTYPE); 
SetDataPattern("Outputlayer",Targetfile C j],TARGETTYPE); 
ActivateGroup("Inputlayer");
ActivateGroup("Outputlayer")/
CalculateError("Outputlayer",DeltaErrorFon); 
AdjustWeight ("Outputlayer",DeltalearnFon,learnRate)/}

Note:-

Ramp, Soma, Binary, DeltaErrorFon, DeltaLearnFon are neuron 
transfer functions and Delta Rule learning functions 
respectively.

(b)

Figure 4.2 Example Simulation Code Segment
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is one of the peripheral functions in the toolbox. It loads 
data into the neurons within 'GroupID' from a data file 
specified by 'DataFileName'. The variable 'DataType' 
indicates where data should be loaded to; INTYPE indicates 
external network input, and TARGETTYPE indicates desired 
network output. Both INTYPE and TARGETTYPE can be found 
in the toolbox header file toolbox.h.

4.3 Neural Net Simulation Using Multiprocessor Systems

A prototype of the target multiprocessor system with eight 
processor nodes on board is available. However, as a 
prototype, the present system has several weaknesses: lack 
of basic operating system, limited node memory to 4 kbytes, 
and lack of language support. Due to these problems, the 
prototype can not provide a suitable environment for 
conducting experiments with the new concepts. In order to 
carry out performance evaluation the target hardware has 
been realized by software.

4.3.1 Emulation Of The Multiprocessor System

Processor nodes are emulated by blocks of memory. Each
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memory block is divided into two areas. One for network 
storage containing active neurons, weights and passive 
neurons data/ and one for storing processor node data: 
containing input/output interface registers and global bus 
control and communication registers, see Figure 4.3. In 
real world situations each node would contain a set of 
support functions handling the creation, updating, and 
transferring of neurons or connections; however, for the 
purpose of simulation only one set is needed as the actual 
processing is still sequential.

As illustrated in Figure 4.4, memory blocks are chained 
together (as a Linked List). Working alongside with the 
memory blocks is a Data-Buffer register representing the 
global bus of the target system. Individual 'processor 
nodes' can read the contents of this register at any time, 
but loading of data from node to Data-Buffer depends on the 
individual local Bus-Request register; its boolean value 
indicates whether data is ready to be transmitted or not.

In order to maintain consistency of neuron values, all 
processors must finish their neuron updating process 
before communication can commence. After each complete 
neuron update (completing all neuron calculations within a 
layer), the Bus-Request register of each processor is
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compared one by one along the Linked List. If the test is 
positive, data will be transmitted and carried to other 
nodes by the Data-Buffer register.

The Data-Buffer carries two pieces of information: neuron 
value and neuron identity. The neuron identity in the Data- 
Buffer is compared by the passive neuron identity in each 
processor in turns. If a match is found the neuron value in 
the Data-Buffer will be copied to the corresponding memory 
location. This comparison process continues with the next 
processor block until all the processors have been visited. 
This 'communication' process will continue until all the 
Bus-Request registers are FALSE. The Bus-Request register 
will be set to FALSE if (1) the active neuron updating 
process has not been completed, or, (2) all the updated 
neuron values have been transmitted.

4.3.2 Processor Node Emulation

To enable the implementation of the distribution and 
communication concepts described in section 3.5, a set of 
mapping functions is provided. Similar to the case of 
uniprocessor systems these functions can be used by user 
programs not only to define arbitrary network
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architectures, neuron models and learning functions but 
also to automate the distribution and communication 
methods. The majority of support functions are very similar 
to those of uniprocessor machine, the prototype of these 
standard functions are shown in Table 4.1.

A new structure is used for emulating processor nodes, see 
Figure 4.3. It consists of node identity (NodelD), active 
neuron pointer (ActNeuronPtr) , passive neuron pointer 
(PasNeuronPtr) and a Bus_Request register.

User programs use EmulateNode( NodelD ) to initialize a 
processor node. For each processor node, the active 
neurons, the associated synapses and passive neurons are 
created by calling CreateNeuron( NodelD, NeuronID, 
NeuronType ) and CreateLink( NodelD, SourceNeuronID, 
TargetNeuronID ) . Depending on the emulated node number 
each processor node has the same number of input address 
register (containing the identity of other nodes) so for 
each transmition of data every node in the system makes a 
copy of it. Once data is loaded SearchPasive ( NodelD, 
NeuronID ) routine is used to check if the data belongs to 
any of the passive neurons defined within the node and 
places the data accordingly if identification is positive.
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Neuron information is transported from node to node using 
SendNeuron( NodelD, NeuronID, NeuronType ). Each time this 
function is called the specified neuron will be located and 
its identity and output value loaded into the output 
registers. When the Data-Buffer is ready the content of the 
output register is transferred to the Data-Buffer and 
copied by other nodes.

The main simulation routine acts as the master control and 
handles the monitoring and control of communications by 
probing the Data-Buffer register and moving it from node to 
node, Figure 4.4. Any node needing the bus will enable the 
local Bus-Request line, and on the arrival of data it 
gains control of the register. To ensure proper operation, 
passive neuron transfers occur only after each complete 
cycle of all neuron updates.

The operation of the multiprocessor emulation program is 
illustrated by the flow chart in Figure 4.5.
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EmulatedNode(NodelD)
CreateNeuron (NodelD, GroupID, Neuron ID, NeuronType) 
CreateLink(NodelD,GroupID,SourceNeuronID,TargetNeuronID) 
SearchPassive(NodelD, NeuronID)
SendNeuron(NodelD, GroupID, NeuronID, NeuronType) 
ActivateNeuron(NodelD, GroupID)
CreateGroup(NodelD, NetFcnPtr, ActFcnPtr, OutFcnPtr, 

GroupID, NofNeuron, NeuronType)

Table 4.1 Sample Of Functions For multiprocessor Simulation
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CHAPTER 5 SIMULATION AND PERFORMANCE EVALUATION

The new network performance need to be compared with that 
of several current networks. Their performance in respect 
to the dynamics of computations, learning and response are 
compared and presented in the following sections.

All simulations are generated using the same simulation 
tools, described in chapter 4, and the same sets of 
learning data.

There are two main stages of simulations: open loop and
closed loop. In the open loop case, networks are trained to 
behave as systems that compute the output representing the 
area bounded by two successive points on a trajectory image 
plane and the boundary of the time axis.

In the closed loop case, the output of a trained neural 
network are fed back and combined with the input vector to 
form a first order system so that any difference (error) 
generated is fed to the neural integrator and the by­
product representing the derivative of the input is then 
extracted.
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5.0 Training Data

In both open and closed loop stages the input and output 
neuron organisation of networks are fixed. This is because 
the training or learning data sets have a pre-defined 
format. Each set of training data consists of pairs of 
binary input and target output patterns; networks are 
trained as integrators and are expected to convert a 
distributed representation of patterns with (n) bits into 
a local representation over (2*n-l) bits.

5.0.1 Open Loop Training Data

A set of training data in the open loop case consists of 
pairs of binary pattern. Each input pattern has either one 
or two 'ON' bits representing the superimposed amplitude 
samples (representing position, velocity, acceleration, 
etc.) at two successive time instances. The length of each 
input pattern (n) is equal to the number of grid points 
used for the amplitude axis of the image plane.

The number of pattern pairs in each set of training data is 
varied according to the length of each input pattern. For 
an image plane with n*t grid positions, where t and n 
denote the horizontal time and vertical amplitude axis, the 
number of bits in each training pattern is (n) and the

136



total number of pattern pairs within the training set is

n
Number Of Pattern Pairs - K (5.1)

k-l

Figure 5.1 shows that as the number of bits in each pattern 
increases so does rapidly the number of training pattern 
pairs. For this reason, the size of simulated nets have 
been kept to a minimum - typically 15 and 2 9 neurons in the 
input and output layers respectively.

Associated with each input training pattern is the target 
pattern. Each target pattern contains only one 'ON' bit. It 
represents the mid-point of the two 'ON' bits of an input 
pattern, this is illustrated by the example shown in Figure 
5.2.

Table 5.1 is an example of a set of 4 bit training pairs. 
It is clear that the similarity structure of the 
distributed input pattern is simply not preserved in the 
output representation. No similar input patterns are 
associated with the same output and those input patterns 
sharing the same output response are non-orthogonal, this 
kind of problem has been regarded as 'difficult' for neural 
network models [Minsky, 1969] [Aleksander, 1990] .
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T rajectory 
Profile Image

Table 5.1

Input Output

0000 0000000 
0001 0000001 
0010 0000100 
0100 0010000 
1000 1000000 
0011 0000010 
0101 0000100 
1001 0001000 
0110 0001000 
1010 0010000 
1100 0100000

 ► 0 0 0  1 0 0 0

Superimposing

 ► 0 0 1 0 0 0 0

Input Pattern 0 0 1 1 0 0 0

Output (Target) 0000010000000

Figure 5.2 Example Of Training Pair
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5.0.2 Closed Loop Simulation Data

Network models that have successfully learnt the open loop 
representation are subjected to the closed loop simulation 
tests. In this stage, each network is simply tested with 
several different functions: constant, linear, quadratic, 
exponential and trigonometric sine functions. In each test, 
the derivative of the input function is read off and 
compared to calculated values.

5.1 Open Loop Network Simulations

Current networks that have been simulated and used for 
comparison consists of Single Layer Perceptron with Delta 
Rule, Multi-layer Perceptrons with Backpropagation 
Algorithm, Associative Memory, Competitive, Kohonen, 
Counter-propagation and the new Retinal networks.

5.1.1 Single Laver Perceptron ( Delta Rule )

Delta Rule or Window training scheme is a supervised 
training algorithm employed by networks with single layer 
of binary neurons and more commonly known as Single Layer 
Perceptron. Computation in the perceptron is synchronous 
and feedforward type so that all neurons within the single
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layer network are updated simultaneously. The activation 
rule of each neuron when it responds to an input pattern 
is : -

W±j X±) (5.2)i-i

where a() is binary with domain [0,1].

In the simulations an extra static layer has been 
introduced to the network to act as the fan-in of the 
network. During training each neuron in the static layer is 
clamped to a single bit of the input pattern and does not 
perform any computation except for holding and distributing 
the bit value. The simulated network is a fully connected 
type, weights between neurons are initially set to small 
random values between +1 and -1. Training is carried out as 
following

1) A training pattern is selected from the training set and 
the appropriate neuron in the static layer is set 
according to the clamped value.

2) The static input neurons activate the processing 
layer's neuron and the output of each neuron is 
calculated using equation (5.2).

3) The error for each neuron is computed by subtracting 
the actual output from the corresponding desired output 
pattern.
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4) New weights are calculated with the following weight 
changing equation (5.3) : -

Wy( t+1) - W±j(t) + (5.3)

where £ is the learning rate, 5j the calculated error and 
X± is the binary value of the i-th static input neuron.

5) Another pattern pair is selected from the training set 
and the procedure is repeated to reduce output errors.

6) The above steps are repeated for another cycle.

To produce representative performance a network with 15 
neurons in the static layer and 2 9 neurons in the 
processing layer were used; the number of training pairs is 
thus 120. Various values of £, ranging from 0.1 to 0.5, are 
used during training. The graph shown in Figure 5.3 
represents the average learning performance of the above 
network model. The result shows that none of the simulated 
single layer networks have been able to learn the open loop 
representation. Using larger training cycles and smaller 
values of £ have no effect on the learning performance. In 
all cases, the high error level remained unchanged. The 
results show that networks of this type are simply not 
capable of representing integration.
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5.1.2 Associative Memory Model

An associative memory model stores and recalls association 
of patterns learned by summing correlation matrices.

Hopfield and Bidirectional Associative Memory (BAM) are 
examples of associative memory models. In associative 
memory neural networks, each neuron is connected to other 
neurons through a connection strength matrix T. Each neuron 
is a simple non-linear function and transfers the sum of 
weighted input signals into a single output signal. The 
main difference between Hopfield and BAM is that Hopfield 
nets are auto-associative memory type while BAMs are 
hetero-associative memory models, see appendix (A.l) for 
more detailed description.

A network of associative memory can be constructed by 
specifying the connection strength matrix T. If a pattern 
Y is to be associated with pattern X, T is constructed by 
finding the outer product of these two vectors

T - YtX (5.4)

Where ' t' denotes the transpose of a column vector. If 
there are K patterns to be stored in the memory, then Ti;)
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can be derived by

T1} - Y, (if) "Uj’) (5.5)
P-l

that is by adding the outer product of all the individual 
memory vectors.

The simulated network models were hetero-associative memory 
type (BAM) because for representing integration Y and X are 
different and have different dimensions, (fields) , so the 
connection matrices are asymmetric, Yp & Xp.

The following procedure was used to simulate the hetero- 
associative memory (BAM) model :-

To construct the network, step (1) and (2) are used:-
1) For each pair of patterns in the training set, convert 

the binary patterns to bipolar format such that 1 to +1 
and 0 to -1.

2) Calculate the correlation matrix for each association 
pattern pair and then add up the correlation matrices as 
given by equation (5.5).

To activate the network, the following steps are used
3) Neurons in the input field are forced to the values of 

the input pattern; either ON or OFF according to whether 
the corresponding binary values are 1 or 0.
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4) Calculate the neurons outputs in the output field
according to equation (5.6):-

Oi(t+1) - f(J2 > (5,6)

where f() is a binary function; if the inputs sum of a
neuron is larger than 0 set it to 1; if the inputs sum
is below 0 set it to 0; and state of neuron is unchanged 
if the inputs sum is equal to zero, 0(t) and 0(t+l) 
represent the current and next state of the network.

5) Calculate the outputs of neurons in the input field.
6) Repeat (4) to (6) until the outputs of neurons in the 

input and output fields stabilize (i.e. stop changing).

Following procedures (1) and (2) , networks of BAM models 
with an input size rising up to 15 neurons have been 
constructed. Simulation results have shown that the 
reliability of this type of model is very low. The average 
reliable retrieval of associations is less than 15%. The 
only exceptional case is a small 2 by 3 network where all 
the stored associations were successfully retrieved. As the 
network size is increased so does the number of 
associations. For a 3 by 5 network there are 6 
associations, and in this case less than 72% of association 
were successful.

Single pattern simulations were also carried out. Using
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this approach all the simulated networks can retrieve the 
single association reliably. The results indicated that, 
for any network size, as more patterns were added to a 
connection matrix the network's association degraded. Fewer 
patterns were able to be recalled as more matrices were 
added. Such misclassification reflects that the connection 
matrix can be overcrowded.

For representing integration, it is difficult to determine 
the relationship between the network reliability and the 
number of associations. This is because the number of 
patterns needed to be stored is always larger than the size 
of the input field (i.e. neurons clamped to input) and the 
degradation of reliability is not constant. From the 
simulation results it is clear that high reliability can 
only be obtained if the number of associations is less than 
or equal to the higher of the two-pattern dimensions.

5.1.3 Multi-Laver Networks Using Backpropaaation

Both Associative Memory and Single Layer Perceptron have 
serious storage limitations; when more data is stored in 
the networks adaptation degrades and unlearning start to 
occur. The limitations of these networks can be overcomed 
by Multi-Layer networks using a nonlinear neuron 
activation rule.
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In this section, the simulation results of three multi­
layer networks using the Error Backpropagation algorithm 
are described. The simulated networks architectures 
include: a four layer network with two hidden layers of
neurons, and two three-layer networks with a single layer 
of hidden neurons.

The two three-layer networks have different connections 
arrangements; one with restricted connections between 
successive layers only and the other with additional direct 
connections between input and output layers. All multi­
layer networks have the same 15 input and 2 9 output neuron 
organisations.

The simulation procedures are the same for all the multi­
layer networks and are as follows :-

1) Initialize all weights to small random values within 
the range of +1 and -1.

2) Select a pair of training patterns and feed the input 
pattern to the network.

3) Calculate the outputs of neuron in each layer according 
to equation (5.7).
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OA fc+1) - --------- ----------A  (5.7)1 + exp ( - V  Ŵ Oj, (t) )i-i

4) Calculate the error of neurons in each layer except the 
input layer as follows
I) Calculate neurons error in the output layer with 

equation (5.8).

5̂  - Oj{ 1 - Oj ) ( Tj - Ij ) (5.8)

where T.J and 03 represent the desired target and the 
actual output values.

II) Calculate neuron errors in the hidden layer (s) with 
equation (5.9)

" °i( 1 * °i > (5,9)> i

5) Adjust all the weights leading to each neuron with 
equation (5.10)

W±j(t+1) - ^  (t) + C5JOi(t) (5.10)

6) Repeat (2) - (5) for other training pattern pairs.
7) Repeat (6) for another cycle until error levels are 

acceptable.

Each simulated network was trained with >3000 cycles. 
Though it may seem more reasonable to allow the network to 
run freely and make the stopping criterion controlled by 
error level, however, as can be seen in Figure 5.4, in some
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cases particularly with small size of hidden layer learning 
can take quit a long time. Where the network fails to 
achieve the required error level, the learning process is 
forced to stop.

5.1.3.1 A 3 Laver Net With Restricted Connections

Simulation results for this case are as summarized in 
Figure 5.4(a). The input and output layers consist of 15 
and 2 9 neurons respectively. During simulation £=0.1 was 
used to enable fine adjustment of weights. The number of 
hidden neuron was varied from 5 to 40. From Figure 
5.4(a)(b) it is clear that as the number of hidden neurons 
is increased the corresponding percentage error decreases 
rapidly. With smaller sizes of the hidden layer the network 
learned much slower and became unreliable when the hidden 
layer size was too small. Increasing the size of the hidden 
layer did not improve performance. In fact in this 
particular case the percentage error declined much slower 
as the hidden layer size was increased from 19. The best 
result (the fastest decline in error) was recorded with 19 
hidden neurons where the error reaches 5% after 990 
training cycles, no further improvement was observed, see 
Figure 5.4 (b) .
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5 .1.3 . 2 A 3 Laver Net With Direct Input-Output Connections

The set of simulation results for this case are summarized 
in Figure 5.5(a) . The same procedures were used to simulate 
this network. With this architecture the network 
performance is degraded. The time it takes the network to 
learn is longer. Slight improvement in terms of the rate of 
learning has been observed. The best result gives an error 
percentage of <10% after 1980 training cycles with 19 
hidden neurons. A degradation of performance is noticeable, 
see Figure 5.5(b).

5.1.3.3 A Four Laver Net with Restricted Connections

To improve the classification capability, simulations were 
also carried out with a four-layer architecture. The input 
and output neuron organisations are the same as before (15 
and 2 9 respectively) but two hidden layers with various 
sizes were used. Results are presented according to the 
sizes of hidden layers, see Figure 5.6 to Figure 5.8.

Figure 5.6 shows error percentage graphs for networks with 
fixed 30 neurons in the first hidden layer. Using 40 
neurons in the second layer the network reached <1% error 
in 693 cycles. Experiments have shown that decreasing the 
size in the second hidden layer will lead to a longer
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training time for the network to reach the same results. 
With 10 neurons in the second hidden layer it took the 
network 2475 cycles to reach 1% error.

Very similar results were also obtained with fixed sizes, 
20 and 10, of neurons in the first hidden layer, presented 
in Figure 5.7 and figure 5.8 respectively. On average, as 
long as the size of the second layer is not less than 15
(the size of the input layer) the network will learn all
the associations. The only draw back is that longer 
training time is needed when using small sizes of hidden 
layers.

From this results it is deduced that for the integrator 
model, with n input and 2*n-l output neurons, the minimum 
number of neurons required for the two hidden layers are 
2*n/3 and 4*n/3 respectively. Using this result a network 
with n=20 was tested (the size of the hidden layers were 15
and 20 respectively) . The network learned all the
associations within 1089 cycles with a learning rate of 
0.2, (a small learning rate enables fine weight 
adjustment).
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5.1.4 The Competitive Model

The previously simulated networks were of the supervised 
type, which assumes that inputs and desired outputs are 
available. In this section the simulations of unsupervised 
networks are described. In the simplest, the weights are 
adjusted according to the inputs such that only one 
population of neurons, may be only one or a group of 
neurons, will respond to a particular pattern, or a class 
of patterns.

The simulated networks have two layers of neurons, a layer 
of static (input) neurons and a layer of competition 
neurons. Similar to the case of the Perceptron model the 
static layer does not actually perform any computation, it 
is used primarily for holding and distributing the inputs.

The competition layer consists of identical neurons with 
connections from the static layer and inhibitory
connections from neighbour neurons in the competition 
layer.

The computation of a competitive network is very straight 
forward. Each neuron in the competition layer calculates
the sum of the weighted inputs. Neurons within a predefined
population then compete with each other, and the one with 
the largest input sum is activated and the others
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suppressed.

Weights leading to the active neuron(s) are adjusted by 
shifting weight from inactive input connections to the 
active connections. The rest of the weights leading to 
inactive neurons remain unchanged. The procedure for 
simulating such networks is as follows :-

1) Initially randomize all weights so that the sum of 
weights of a neuron is equal to 1.

2) Select a pattern from the training set and feed to the 
static input layer. The sum of weighted inputs of 
neurons in the competition layer is then calculated.

3) Activate (set output to 1) neurons with the largest sum 
of inputs within a predefined population in the 
competition layer and set the outputs of the rest to 0.

4) Adjust the weights leading to the active neuron with 
equation (5.11) :-

W1}{ t+1) - W±J (fc) + [-22 - gWJ;)(t)] (5.11)

where n is the number of 'ON' neurons in the static 
input layer; c is the value of the input static neuron 
so that if c is 'Zero' the weight is reduced by the gain 
factor g, and if c is 'one' a small amount proportional 
to g will be shifted to the active connections, i.e. 
moving weights from the inactive to active input paths.
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5) Repeat (2) to (5) for another pattern.
6) Repeat (2) to (5) until the output stabilizes.

In the first set of simulations, each simulated network has 
a layer of 15 input neurons and a single competition 
cluster of various sizes.

Using the competitive learning algorithm it is expected 
that the competition layer will tend to group similar 
patterns together. However, the integrator application 
requires each competition neuron to group non-similar 
patterns. Simulations have shown that this is very 
difficult with this model. In many cases, with learning 
gain of 0.5, the outputs of the simulated networks 
stabilized within a few hundred cycles, using smaller 
learning gain would merely increase the time it takes the 
networks to stabilize and has no effect on the final 
output.

Depending on the size of the single competition cluster the 
size of the divided, or grouped, input patterns, changed 
inversely; better isolation can usually be obtained when a 
larger competition cluster is used.

With 15 components in each input pattern there are 12 0 
patterns to be isolated. Various sizes of the single 
competition cluster ranging from 120 to 1000 were used. A
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base size of 120 was used to ensure that the network has 
sufficient neurons to choose from. Table 5.2 summarizes the 
simulation results.

The results show a slight increase in isolation with a 
large increase in the competition cluster size. With 1000 
neurons in the single competition cluster approximately 26% 
isolation was obtained. Larger competition layer size was 
not simulated as it would take a very impractical 
processing time; it took nearly 40 hours to train the 15 by 
1000 network on the VAX with learning gain of 0.3!

In the second set of simulations a fixed size of 200 
neurons with various number of clusters were used. Networks 
with a number of clusters ranging from 2 to 20 were 
simulated. In all cases the use of a new number of clusters 
would change the output of the competition layer; changing 
the network dimension would change the activation of 
neurons. However, no significant improvement in terms of 
input isolation was observed. The results are effectively 
the same as when using a single competition cluster.

5.1.5 The Kohonen Network

The architecture of Kohonen networks is exactly the same as 
the competitive model and consists of two layers of
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Size Of Cluster Average Number 
Of Patterns 

Associated With a Neuron
120 -31
200 ~31
300 ~31
500 -28
750 COCMI

1000 -26

Table 5.2 Average Number Of Pattern Grouped By Neuron
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neurons: a static and a Kohonen layer. Neurons in the
Kohonen layer are competition neurons. During adaptation 
the neuron with the largest output and its lateral 
neighbouring neurons are declared as the winner population 
and weights leading to neurons in the winning population 
are adjusted.

There are two type of connections in a Kohonen network: the 
external weighted input connections (the static layer 
connections), and the lateral feedback connections from 
other neighbouring neuron. The external weighted input 
connections are adjustable while the weights of the lateral 
feedback connections are determined by the lateral 
interaction function. The lateral interaction function is 
a function of the lateral physical distance between 
neurons. A typical lateral distance function is shown in 
Figure 5.9, commonly called the "Mexican Hat" function. The 
updating of the Kohonen neuron can be described by equation 
(5.12) : -

Ok(t+1) - (5.12)

where F() is a measure of distance between the connection 
weights Wi;} and the signals 0* from the static layer. The 
activation function G() may be of the logistic type or
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Figure 5.9 Typical Shape Of Mexican Hat 
Function
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linear or binary activation function, thus : -
\

O . (t+1) *■ 1 (t) “inin [ ( Wkk-i ~ @k-i  ̂  ̂ /c io\* [a otherwise K ' ’

Computation of the simulated Kohonen network differ
slightly from other neural network models (but functionally 
the same) . When an external input is applied to the
network, the complete input is presented to each Kohonen 
neuron through the static layer. Each Kohonen neuron sets 
its output according to the sum of it's measure of distance 
between the input signals and it's corresponding connection 
weight given by :-

E  < ^*-1 - o*-! >2 (5-14)
Jc«i

where p is the length of the external input or the number 
of neurons in the static layer.

The output of the Kohonen neuron with connection weights 
closest to the external input values is activated. The size 
of the winning population is then determined by the lateral 
interaction function. During the learning process the size 
of the lateral "Mexican Hat" function varies and shrinks as 
learning progresses such that as the network learns the 
number of neurons associated with an input pattern is 
reduced. The size of the lateral function changes according 
to the learning interaction and eventually only one neuron
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is allowed to associate to an input or a group of inputs. 
The simulation procedure is summarized by the following 
steps

1) Initially randomize all weights to be within 0 and +1.
2) Normalize the weights by dividing each weight component 

by the length of the weight vector. The length is found 
by taking the square root of the sum of the squares of 
all the weight components leading to a neuron, i.e

3) Select a pattern from the input set, normalize the input 
as above and apply the normalized version to the static 
layer.

4) Calculate the output of each neuron in the Kohonen layer 
using equation (5.14) .

5) Calculate the radius size of the winning population with 
equation (5.16) : -

Radius - Number Of Kohonen Neuron TrainingCycle ^
2 Step Size

6) Select the neuron that produces the smallest output and 
it's neighbouring neurons according to the radius size 
calculated in step (5) and set their output to 1 
(activate them).

7) Alter the weights leading to the active neurons with 
equation (5.17) : -

(5.15)
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^(fc+l) - Wkj(t) + C( Xj - Wkj (t) ) (5.17)

8) Repeat from step (2) for the rest of the training data.
9) Repeat step (8) for the next training cycle.

Kohonen networks of various input and output dimensions 
were simulated. The performance of small networks suggested 
that the size of the Kohonen layer must be at least several 
times larger than the number of patterns to be learned if 
total isolation is desirable; each kohonen neuron points to 
a specific pattern.

Using an unsupervised network, it is expected that the 
network either groups similar patterns together or 
completely isolates all input patterns. For the integrator 
application complete isolation is desirable as Kohonen 
neurons are required to point (or to group) selectively 
non-orthogonal inputs together. In order to achieve this, 
the size of the Kohonen layer must be at least many times 
larger than the number of patterns.

As the size of the network grows so does the number of 
patterns, and it becomes increasingly difficult to predict 
the suitable Kohonen layer size. Experiments show that when 
a small layer of Kohonen neurons is used the network will 
always isolate uncorrelated inputs. When the size of the 
Kohonen layer is increased the isolation capability will
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follow; the correlated patterns will further be arranged 
into smaller groups. Experiments show no clear relationship 
between the size of the Kohonen layer and the number of 
patterns to be learned.

The outcome of the Kohonen and the competitive models are 
very similar. Both models will tend to group data according 
to their correlations. However, higher isolation is 
obtainable with the kohonen model using the lateral 
neighbouring interaction. Though, with the lateral 
interaction function it would seem that some of the weights 
may not be adjusted at all (weights leading to neurons 
which are never active) but inspections have shown that 
weights do all change in time. Some neurons may not be 
winners at all during the early stage of the learning 
process but as learning progresses the lateral interaction 
will alter the situation by distributing the weights evenly 
thereby increasing the degree of isolation.

5.1.6 The Counter-propagation network

This network is a hybrid combining Kohonen and Grossberg 
learning methods. During learning, pairs of vectors (say 
[ X, Y ]) are presented to the network, these vectors then 
propagate through the network in a counterflow manner to 
yield a pair of output vectors which are an approximation
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to the input vector pair. After learning, if only one of 
the learned vector or a pair having some components of both 
X and Y zeroed out is entered, the network will complete 
the vector pair and the output will be approximately the 
same as the best matching input vectors. Thus the network 
functions as a lookup table.

There are many variants of the counter-propagation network. 
The type described in this section is a three layer 
feedforward only version in which only transformation from 
one vector to another are of interest. The network 
architecture consists of three layers of neurons. Neurons 
in the first layer serve only as fan-in of the network and 
perform no computation. The second layer is the Kohonen 
layer where competition of neurons is performed. Neurons in 
this layer are fully connected to the input and the 
Grossberg layers. The network architecture is very much the 
same as the three layer perceptron described earlier, the 
differences lie in the processing performed by the Kohonen 
and Grossberg layers.

Neurons in the counter-propagation network perform the 
calculation of their sum of weighted inputs. When an input 
is applied to the network neurons in the Kohonen layer 
compete with each other; their weighted inputs are summed 
and the neuron with the largest sum is set to one, all 
others are set to zero. Neurons in the Grossberg layer then
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sum the weights connecting to the winning Kohonen neuron to 
yield the desired vector.

When learning is performed for a given input vector, each 
weight associated with the winning Kohonen neuron is 
changed by an amount proportional to the difference between 
its weight value and the value of the input to which it 
connects. Weights between a winning Kohonen neuron and 
Grossberg layer neurons are adjusted by an amount 
proportional to the difference between target and actual 
output vectors. Simulations were performed as follows

1) Initialize connection weights of the Grossberg layer to 
small random values.

2) Initialize connection weights of the Kohonen layer by 
one of the following methods : -
(a) By Convex Combination Method - set all weights to 

the same value 1/Vn where n is the number of input 
components.

(b) By Lateral Neighbouring Interaction Method - set all
weights to a small random value.

3) Normalize connection weights of the Kohonen layer by 
dividing each weight component by the length of the 
weight vector. The length is calculated by taking the 
square root of the sum of the square of all the weight 
components leading to a neuron.

4) Apply an external input vector to the network; if using
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the convex combination method coincide each input 
component with the weight vectors by giving each input 
component, X, the value

Xt - + [ -T ( 1 - C ) ] (5.18)
v/H

where n is the number of input components of the input 
vector. Initially, the convex combination method start 
off with £ near zero. This forces all input vectors 
to be close to weight vectors. As time goes on the 
value of £ is raised slowly to one. As this happens, the 
weight vectors are 'peeled' off and follow the input 
vector as they move away from l/Vn.

5) Calculate the output of each Kohonen neuron by summing 
the weighted inputs. If using lateral neighbouring 
interaction set the neuron with the largest value and 
it's neighbouring neurons (determinated by the lateral 
function, see the Kohonen network in section 5.1.5) to 
one and set all other neurons to zero. With the convex 
combination method simply set the neuron with the 
largest sum of inputs to one.

6) Adjust weights of the active Kohonen neurons with 
equation (5.19)

RTy(t+l) - JVy( t) + c ( Oj -W±j{ t) ) (5 .19)

where Wij(t+1) denotes the next weight value between the 
active i-th Kohonen neuron and the input Oj, £ is the 
learning rate and should start out with a value close to
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1 and reduced gradually as learning progresses.
7) Calculate the Grossberg layer output by summing the 

weighted input of each neuron.
8) Adjust the connection weights of the Grossberg layer by 

equation ( 5.20 ) :-

^(fc+l) - wgk(t) + C( Tg +Og )Ok (5.20)

where Wgk is the weight between the active Kohonen and 
Grossberg neurons, £ is the learning rate and starts out 
at around 0.1 and reduced as learning progresses, Tg is 
the target value of the Grossberg neuron and Ok is the 
output value of the Kohonen neuron such that if the 
Kohonen neuron is not active then the weight is 
unchanged.

9) Repeat from (3) to (8) for the rest of the training 
inputs.

Simulations show that the accuracy of the counter­
propagation network depends on the performance of the 
Kohonen layer. The only action of each neuron in the 
Grossberg layer is to output the value of the weights that 
connects it to the single non-zero Kohonen neuron.

Networks trained by the lateral neighbouring interaction 
method and by the convex combination methods vary little in 
performance. Both techniques lead networks to separate 
dissimilar input patterns. When the number of patterns to
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be learned is small, < 21, it is possible to predict and 
start off with the correct size of the Kohonen layer and 
train the network to meet 100% input to output 
associations, Table 5.3. As the network size grows it 
becomes difficult to maintain this level of accuracy. The 
Grossberg layer has very little influence on the final 
network outcome. Among all the simulated network 
configurations the Kohonen layer always manage to isolate 
groups of patterns but fails to respond to single 
individual pattern. Due to this problem the output of the 
Grossberg layer is unstable; swinging from one desired 
output to another as training progresses.

Experiments have shown that the counterpropagation model is 
not suitable for representing integration. However, due to 
its flexible basic architecture, there is another learning 
method to ensure 100% associations for any size of input- 
output neuron organisation. An experiment was carried out 
using the same basic architecture but a new method as 
described below.

A New Method:

Each set of weights leading to each kohonen neuron were 
initialized to the input values so that there are equal 
number of Kohonen neurons and number of patterns to be
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Size Of input 
Layer Neurons 
Organisation

Number Of 
Patterns

Size Of Output 
to Obtain 100% 

Isolation

4 10 20
5 15 50
6 21 160

Table 5.3
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learned. With this arrangement all the input patterns are 
automatically isolated and all that remains is to train the 
weights of the Grossberg layer to match the desired output. 
Simulations have shown that if the learning equation (5.19) 
is used through out the training process and the size of 
the Kohonen layer is made equal to the number of training 
patterns the Kohonen layer can be trained with only one 
calculation per weight with a learning rate of 1. The 
advantages, of this method include: short learning time,
easily obtained total association, and predictability of 
Kohonen layer size. The main draw back is that if the 
number of patterns to be associated is large the size of 
the network would be unpractically large.

5.1.7 The New Integrator Model

The architecture of the new integrator model consists of 
five layers of neurons, see chapter 3. The regular synaptic 
connections of the outer section of the network contains 
four layers and are presetable in a manner that if two 
adjoined photoreceptors are both activated by external 
inputs then the active bipolar cell directly beneath the 
photoreceptors will be turned off by the inhibitory 
connections coming from the horizontal cell. Thus 
triggering the middle ganglion cell in between the signal 
pathway of the bipolar cells.
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The amacrine cell layer mediates the lateral interaction of 
the outer section of the network and the input and output 
connections of the amacrine layer are adjustable. The 
learning process of the amacrine layer is similar to the 
counter-propagation model, weights leading into the 
amacrine cell layer are adjusted according to the 
competition process and weights connecting the output of 
the amacrine and the ganglion layers are adjusted by a 
supervised learning method.

When signals arrive to the amacrine layer neurons with 
weights closest to the input win the competition. A winning 
neuron then undergoes a suppression test; if it has been 
winning more input patterns than it is allowed it's output 
will be suppressed and the next runner up neuron will be 
the winner if it survives the suppression test. The weights 
leading to the winner are adjusted by moving weights closer 
to the input signals.

Weights between the output of the amacrine and ganglion 
layers are adjusted such that the weights connecting the 
active ganglion and amacrine neurons are strengthen and the 
rest of weights are unchanged, (i.e. the Hebb's law). The 
simulation procedure consists of the following steps

1) Initialize the weights of the basic net such that the 
middle ganglion cell will be activated if both adjoint
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photoreceptors are turned 'ON'/ if only one 
photoreceptor is turned 'ON' then the ganglion cell 
directly beneath the bipolar cell along the signal path 
will be turned 'ON' .

2) Initialize the input and output synaptic connections of 
the amacrine layer to small random values.

3) Normalize the input and output weights of the amacrine 
layer, see Kohonen or counter-propagation network 
simulations.

4) Apply an external input to the network.
5) Calculate the output of the- horizontal and bipolar 

layers by equation (5.21) : -

6) Calculate the output of the amacrine layer according to 
equation (5.22) : -

7) Locate the (next) amacrine neuron with the minimum 
value.

8) Calculate the suppression criteria by k/c where k is the 
number of times the winning neuron has been activated 
and c is the maximum number of times it is allowed; if 
the suppression criteria is <1 then activate it else 
repeat step (7).

9) Adjust the input weight leading to the active amacrine

(5.21)

O u t p u t ^  - £  { x ± - u (5.22)i-i
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neuron by equation (5.23) : -

W^fc+l) - ^(t) + C( Oa Ob - W^ct) ) (5.23)

10) Activate the ganglion cell layer according to the 
desired output pattern.

11) Adjust the output weights of the amacrine layer 
according to equation (5.24) : -

W^(t+1) - Wag(t) + C( Targetg - Wag{ t) ) Oa (5.24)

12) Repeat from step (3) for another data pattern pair from 
the training set.

13) Reset the parameters of the suppression criteria.
14) Repeat from step (3) for next learning cycle.

Several simulation runs of the retinal model were made with 
input dimension rising up to 15 neurons. In all cases the 
same set of weight ratios was used for the basic building 
nets (weights between receptors, horizontal cells, bipolar 
and ganglion cells, see chapter (3) . And the input and 
output connections of the amacrine cell layer were adjusted 
according to equation (5.23) and (5.24). In all cases total 
associations were achieved.

Simulations also showed that altering the learning gain 
merely changes the time for a network to reach satisfactory 
response and has no effect on the final outcome. With a
learning gain £ (equation (5.23) and (5.24)) of 1, the
amacrine layer achieves coincidence with inputs in one
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pattern per cycle. The ' c' parameter of the suppression 
criteria was set to 1 in all simulations, thus each 
amacrine neuron responds to an unique input pattern. These 
settings provided faster speed for networks to reach total 
associations.

5.2 Closed Loop Simulations

Neural networks that were successfully trained in the open 
loop stage were used for the closed loop simulation. In the 
closed loop test each network is placed inside the forward 
path of a feedback system as shown in Figure 5.10.

To process a complete time related trajectory profile the 
input profile image is segmented into equal strips to 
simulate the time axis. Before data is fed into the system, 
each pattern is first converted to binary. At each 
processing time step two successive binary patterns are 
first superimposed together before being applied to the 
system, see Figure 5.10 for illustration. At the output 
side, successive outputs are fed back to the input. The 
resultant effect is two profiles one produced at the output 
of the system and the other produced at the forward path 
representing the corresponding derivative.

Neural networks based on the backpropagation and the new
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retinal models were used for simulations. Both network 
models produced the same results as they were successfully 
trained to provide total associations to represent 
integration.

For each model, five different input functions (Constant, 
Linear, Quadratic, Exponential and Sine) were applied. 
Figures 5.11 to 5.15 show the responses of networks to 
these functions, including the corresponding estimated 
derivatives. The results show that the system is capable 
of: following the input profile, and producing the
corresponding derivative shape of the input profile.

5.3 Speed Performance Of The Integrator Model

The pictorial integration process involves computation 
steps which are suitable for conventional programming.

With the conventional programming approach, the main 
computation involves scanning and comparing arrays of 
elements where data are stored. The computation speed thus 
depends on the size of the arrays (i.e. the size of the 
input patterns) , the larger the arrays the longer the 
computation. In the ideal neural network approach, the 
computation speed would be constant as all inputs are 
processed in parallel. In reality, this depends on the
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hardware platform the neural network is running on.

Typical computation speeds of the pictorial integration 
process by these two approaches running on single processor 
machines are illustrated in Figure 5.16. For input pattern 
sizes less than 10 the neural network approach, on average, 
is roughly 160mS faster. As the pattern dimension is 
increased to 10 bits, the conventional approach gives a 
shorter computation speed.

Using a single processor the speed of the neural network 
approach is limited by the size of the input. This is due 
to the increasing number of neurons needed to be processed 
in serial. Figure 5.17 shows that the number of neuron 
increases non linearly with the dimension of the input 
patterns. In order to overcome this limitation, parallel 
processing of neural networks is desirable.

5.4 Performance Evaluation Of The Parallel Algorithm

Parallel processing and direct hardware implementation of 
neural networks can significantly reduce processing time. 
A parallel processing method for a distributed memory 
multiprocessor system was proposed in chapter 3. Software 
simulation of this algorithm is possible with a general 
purpose single processor machine. However, without actually
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implementing the algorithm on the target hardware it is 
impractical to measure the performance of this algorithm by 
software simulation.

In order to provide a better method for evaluating the 
performance of the proposed technique a performance model 
is proposed. Developing a performance model yields several 
important benefits. Execution times for different 
topologies and learning algorithms can be estimated without 
having to execute the programs on the target hardware. The 
performance model can also predict the optimal number of 
processors to use for a given problem and reveal the 
importance of specific machine features. From such analysis 
it would be possible to identify the areas where further 
improvements could be made.

Using the proposed parallel processing algorithm the total 
time to compute all the outputs of a two layers network on 
the target multiprocessor system is calculated as follow :-

Total-Time - Total-Communication-Time +

MAX[ Node-Computation-Time ] (5.29)

The total-Communication-Time is equal to the time it takes 
to copy neuron outputs from active to passive nodes. The 
MAX[Node-Computation-Time] denotes the computation time on
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weights and. on neurons of a processor node housing the 
maximum number of neurons.

Neurons within the same layer are partitioned into 
different processor nodes. If the number of neurons (n) is 
less than or equal to the number of processor nodes (p) 
then the total time to complete one updating process in 
each processor is the same. On the other hand, if n is 
larger than p and n/p is not a integer value then the 
number of neurons partitioned into p processor nodes will 
not be equal. One of the processor nodes will contain 
[integer (n/p) + 1] neurons while all other nodes contain
[integer (n/p)] neurons.

In order to ensure correct operation, processor nodes must 
finish all their updating processes before communication is 
allowed, equation (5.29) should therefore either contain 
the term [integer (n/p) ] or [integer (n/p) + 1] when the
number of neuron is larger than the number of available 
processor nodes.

In the case of single processor systems the total time 
to compute all (n) neuron outputs of a two layer network
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may be expressed as

n
Total-Time - (Weightxlnput + Neuron-Time) (5.30)

i

As an example, for a two layer fully connected network with 
ng and ng+1 neurons in each successive layer mapped on to p 
processors, ng denotes neurons from the lower layer and ng+1 
neurons from the higher layer. The total forward execution 
time can be expressed as 
if ng+1 <= p

- (n„-l) tM + n„tm + tf + n„t„nmm (5.31)

if ng+1 > p

rtocai- I integer +l] [ (ng-l) ta+ngtm+tf+ngtcomml

where ta denotes time to add two floating point numbers, tm
denotes time to multiply two numbers, tf denotes time to 
compute a neuron output function (s) and tcomm denotes time 
needed to transfer one floating point number from one 
processor to another.

The performance model for the forward computation is
applicable to most of the commonly used networks. The
majority of commonly used neural network models consist of 
forward computation as well as backward learning phases.

194



The best way to demonstrate the general method to calculate 
the learning time is by an example. In the following 
example the backpropagation model is considered. The 
architecture of the network consists of 3 layers with ng/ 
ng+if ng+2 neurons in each successive layer. The layer ng is 
the first input layer, neurons in this layer perform no 
computation and are used for holding input data only, p 
processors are available in the system.

Forward Computation Phase

Tforward " Total Neuron Computation Time Of Layer g+l, g+2

Case I: nA > p
Let k = integer (n^p)+1

tg+1 - ktf + ngtjc + (ng-l) kta + ngt{g'-'coim

tg+ 2 * ktf + n^tjc + (ng+1-l)kta + ng+11,

Tforw&rd “ 2iC ( tf-ta) + ( tjz* tcomn,+kta) (5.33)

Case II: <= p

- tf + n„tm + (n„-l) ta+n„tr gm ' g ’ a g>•ĝ comm

tg+2 ”  +  ^g+l^m  +  ^^g* 1  ^ a + ^ s r + l  ^comm

rforward ~ 2 Uf* t4> *( t„+ Cc<mm+C,)comm (5.34)
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Backward Computation Phase

Timê ckiard ■ Time For Errors + Time For Weight Changes

Case III: >  p

“ n g-+2 ̂ coirn + ( *̂y+i+ 4 ) k t m + tak(72g+2 + 2)

TtackwardT  ̂2^y+l+4 ) + 2-^y+2^ ̂ ̂ m+ ̂ a^ + 2̂ +-̂ y+l ̂ +-̂ y+ 2 ̂ cotm (5 . 35 )

Case IV: n± <= p

t* " ̂gr+2 t’comm + ŷ+l+4> *» + M * W 2)
“ ( ta+2 tjn,) (Uflr+1+23g.+2)

Tbackward'm tm (3/2flr+1+4 ) +2ng+z ( tm+ ta) + ta (2 +i7fir+1) +I3sr+2 tcowm (5.36)

FOR UNIPROCESSOR SYSTEMS

Forward Computation Phase

f-nt-j* 7 (5.37)
Tforward*" (-̂ y+i+-̂ y+2̂  + ^ y  + ^y+2^ ̂ sr+l ̂ ̂ \m+ ̂ â  ~ 2 ̂ a
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Backward Computation Phase

'̂ backward'"fiff+2 ̂ ̂ m (2 + 3/2y+1) + 2 ta (l+/3y+1) ) +2 tin+ (2 tm+ fca)

(5.38)

Using the above performance equations for a given network 
topology, ng, ng+1, and ng+2, the performance of the parallel 
processing algorithm can be evaluated, as the parameters tm, 
ta, tf, and tcomm, of the target hardware are constant and can 
be measured independently. The theoretical forward and 
backward computation speed of various sizes of network are 
shown in Figure 5.18 to 5.20. In all cases the performances 
are calculated under the same assumptions, where ng, ng+1, 
and ng+2 are equal and their sum is represented by (n) , and 
the target hardware is assumed to have the following 
computation time units: ta=l, tm=2, tf=3, and tcomm=4.

The forward and backward computation speed performance of 
the parallel processing algorithm are shown separately, 
Figure 5.19 and 5.20. This is because once learning 
(backward computation) is complete for a specific 
application, the application can be hard-wired, and the 
network may execute only the forward computation.

For the distributed simulation of multilayered neural nets,
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it is seen from Figure 5.19 and 5.20 that there is a 
' diminishing return' effect as more processors are used due 
to inter-processor communication, nL x tcomm, such that 
though more processors are added to the simulation, the 
computation speed performance is not improved by a great 
deal. The speed performance of a network with 500 neurons 
running on different hardware platform is summarized in 
Table 5.4 for illustration.

Different network models have different learning 
mechanisms, thus the performance evaluation method of the 
learning process may vary. Whichever network model is used 
the same approach can still be adopted. The parallel 
processing algorithm and the equations for the speed 
performance evaluations provide convenient means for 
studying the effect of different number of neurons in the 
network, the communication and computational costs.
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p = No Of Processor 
Time Unit x 1000

P Forward Backward
Computation Computation

1 150 3250
8 140 70
16 80 30
32 40 25
64 20 15

Table 5.4 Speed Comparisions
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CHAPTER 6 CONCLUSIONS AND FURTHER RESEARCH

6.0 Conclusions

A neural network based algorithm to perform integration was 
presented. The new algorithm consists of a neural net model 
inspired by the vertebrate retina neuron organisation. The 
task under consideration is that of generating the integral 
of a given time trajectory, where the neural network model 
behave as a pictorial integrator operating within a closed 
loop system. The architecture of the neural integrator 
model is that of a multilayer feedforward type. Adaption 
techniques employed in the model include a mixture of 
implicit weight setting, supervised and unsupervised 
learning processes.

Simulation results showed that this multilayer neural net 
algorithm is capable of estimating the derivative of a 
continuous input profile pictorially even when no explicit 
formulation of the input profile is known. The work also 
showed that although the same quality of integration 
results can also be achieved by networks employing the 
Backpropagation algorithm, the new retinal neural net model 
has an advantage in that network convergence is much 
faster. The proposed neural net algorithm seems to offer
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the following characteristics :-

(1) It's real time closed loop structure yields consistent 
estimates of the derivatives of unknown input profiles. 
It provides accurate estimation for constant and 
linear inputs. Quadratic and exponential inputs are 
also acceptable. Sinusoidal input, however, did not 
produce such accurate results.

(2) The network equations are much simpler than other 
networks and easier to work with.

(3) Its convergence is fast when compared to existing model 
producing compatible results.

(4) When a general purpose single processor machine is 
used, the execution speed of the new model is several 
times faster than conventional numerical methods but 
limited by the input/output neuron dimensions. This is 
due to the additional components (neurons and 
connections) of the network as its dimensions are 
increased.

In order to reduce processing time and maintain the speed 
advantage over numerical methods a parallel processing 
algorithm for executing neural nets on a distributed memory 
multiprocessor system was devised and its performance 
evaluated. The speed up factor of this parallel algorithm
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seems very favourable when compared to general purpose 
single processor machines.

All the algorithms described were implemented in software. 
A software neural network simulation tool was developed to 
automatically handle the process of generating arbitrary 
network definitions thus simplifying the tedious task of 
synthesising neural networks. The simulation toolbox 
consists of a set of simulation specific data structures to 
provide a representation of the physical structure of a 
network and a set of procedural functions for the 
manipulation of the network data structures. Due to its 
transparency it is also useful as a network debuger and as 
an educational tool.

6.1 Further Research

Suggestions for further research may be summarized as 
follows :-

(1) One of the limitations of the new neural network
algorithm is that it consists of off-line supervised 
learning. There is therefore a need to investigate the 

formulation of unsupervised learning paradigms to 
eliminate the off-line processing burden.

(2) Higher order integration/quadrature formulae, e.g. 4th
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order Runge-Kutta and 5th order Gaussian, need to be 
considered for the new neural integrator to provide 
high accuracy integration and derivative estimation.

(3) Extensions to the proposed neural architecture need to 
be evaluated for more accurate integration and 
derivative estimation of trigonometric and exponential 
functions.

(4) The speed performance of the parallel processing 
algorithm is mainly limited by the performance of the 
target hardware. Special neural net coprocessors 
[Vindlacher, 1992] need to be assessed for executing the 
relevant algorithms.

(5) The developed software simulation tool can be enhanced 
by encoperating a graphical interface. This is
desirable not only because it increases the 
efficiency of creating more complex topologies by 
graphical drawing but more importantly to provide a 
visual representation of activities in the network. 
Such a presentation of the functioning of a neural 
net permits visual diagnoses of the behaviour of large 
network which is particularly useful for network 
development, debugging, and may provide valuable 
contributions for educational and commercial purposes.
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Appendix (A.l) Associative Memory Models

The connection matrix of a typical associative memory model 
is derived from a set of vectors to be memorized. When 
given an input, such a network will evolve and become 
stable at the nearest memory vector from the input. 
Hopfield and Bidirectional Associative Memory (BAM) are 
models of associative memory.

The Hopfield model is a recurrent non-layer type in which 
the outputs of neurons are either +1 or -1 according to the 
threshold law. For example, if the input to a neuron is 
positive its output is +1 and if negative its output is -1. 
When the input equals zero (threshold) the neuron maintains 
its current state. In the case of BAM, neuron outputs are 
either +1 or 0. A BAM uses two fields of neurons. Neurons 
in both fields are both input and output neurons. The main 
difference between Hopfield and BAM models is that Hopfield 
Models are autoassociative memory type while BAMs are 
heteroassociative memory models.

The main evolution rule for a Hopfield memory is

N
01(t+1) - sgnij^ TtjOji t)) (a.l)

where Ti;) is the N x N connection matrix.
The connection of Ti;) is a learning process. If vector Y is
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to be associated with vector X, the connection matrix is 
constructed by finding the outer product of these two 
vectors :-

T - Yt X (a.2)

where ' t' denotes the transpose of a column vector. If X 
and Y are the same then it is an autoassociative memory 
model (Hopfield) and if X ^ Y then it is a 
heteroassociative memory (BAM).

If there are k patterns (vectors) to be stored in the
matrix, then T±j can be derived by adding the outer product 
of all the individual memory vectors

T±j - X) (Xf> <a-3)
P-l

In both cases, once the connection matrix is determined, 
the network may be used to produce the desired output 
vector, even when given an input that may be partially
correct. To do this, the outputs of the network are 
initially set to the values of an input vector. Next the 
input is removed and the network is allowed to run freely 
until there are no changes in the network (outputs
stablized).
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Appendix (A.2) Backpropagation Or Generalized Delta Rule

Backpropagation probably represents the most widely used 
learning algorithm. It applies to feedforward networks with 
three type of neurons: input neurons, hidden neurons
carrying an internal representation, and output neurons. 
The description here follows the version given by 
[Rumelbh,1988]. The dynamics of a network is determined by 
a local update rule

S1(t+l) - f (V WySjit) ) (a.4)
J

where S denotes the state of a neuron and f() is a 
nonlinear activation function.

Neural networks learn from examples which are presented 
many times, and learning procedure can be viewed as a 
strategy to minimize a suitably defined error function E. 
In this case it is a gradient decent method, each weight is 
changed by an amount proportional to the respective 
gradient of E

(a-5)

and the procedure is repeated for a new learning example 
until E is minimized to a satisfactory level.
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In its original form :

(a.6)

For a weight Wi;j from a (input or hidden) neuron j to an 
output neurin i : —

where f'() is the derivative of the nonlinear activation 
function, and for weights which do not connect to an output 
neuron, the gradient can successively be determined by 
applying the chain rule of differentiation.

Thus for output neurons the error signal is

where net^EWijOj..

Finally the error signal for hidden neurons for which there 
is no specified target is determined recursively in terms 
of the error signals of neurons to which it directly 
connects and the weights of those connections. For hidden 
neurons

For nonlinear logistic neuron output function of the form:-

dE - (r, - (a.l)
k

- (tj - Oj) f'j (netj) (a.8)

5j - f'^ne (a.9)
k
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°i------ (a.io)
1 + e- WV°J>

The error signal for an output neuron is

- (tj - Oj) Oj (1 - Oj) (a. 11)

and the error signal for arbitrary hidden neuron is given 
by : -

- Oj (1 - 0 , ) £ 5 ^  (a. 12)
k
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Appendix (B.l) Data Structures For Mapping Of Arbitrary. 
Network

Struct SYNAPE{
float weight; 
float reg;
struct SYNAPE *nexsynape; 
struct NEURON *fromneuron; 
};

struct NEURON{
int neuronid; 
float netval; 
float outval; 
float actval; 
float error; 
float reg;
struct SYNAPE *firsynape; 
struct NEURON *nexneuron; 
In­

struct GROUP{
char grpid[10];
int nofneuron;
float (*actfcn){);
float (*outfcn)();
float (*netfcn) () ;
struct NEURON *firsneuron;
struct GROUP *nexgroup;
} ;
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Appendix (B.2) Source Code Listing Of Simulation Toolbox
#include "neurotoo.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <alloc.h>
float crate;
int nactive,nofinput;
struct GROUP *firsgroup=(struct GROUP *)NULL;
/* Standard Support Code Mapping Of Network */
void quit(void)
{
printf("Not Enough Memory - Process Terminated !!!"); 
exit(0);

}

void CreateGroup (int nofcell,char *name,float 
(*fcnact) (),float (*fcnout) 0 ,float (*fcnnet) ())
{
struct GROUP *thisgroup;
if (firsgroup==(struct GROUP *)NULL)
{
thisgroup=firsgroup=NewGroup(nofcell,name, fcnact, 
fcnout,fcnnet);
thisgroup->firsneuron=NeuronList(thisgroup);
}else
{
thisgroup=firsgroup;
while (thisgroup->nexgroup1=(struct GROUP *)NULL) 

thisgroup=thisgroup->nexgroup; 
thisgroup->nexgroup=NewGroup(nofcell,name,fcnact, 
fcnout,fcnnet);
thisgroup=thisgroup->nexgroup; 
thisgroup->firsneuron=NeuronList(thisgroup);
}

struct GROUP *NewGroup(int nofcell,char *name,float 
(*fcnact) (),float (*fcnout) (),float (*fcnnet) ())
{struct GROUP *newgpptr;
if ((newgpptr=(struct GROUP *)malloc(sizeof(struct 

GROUP)))!=NULL)
{ newgpptr->nofneuron=nofcell; 
newgpptr->actfcn=fenact; 
newgpptr->outfcn=fcnout; 
newgpptr->netfcn=fennet; 
strcpy (newgpptr->grpid,name);
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newgpptr->firsneuron=(struct NEURON *)NULL; 
newgpptr->nexgroup=(struct GROUP *)NULL;

}else 
quit () ;

struct NEURON *NeuronList(struct GROUP *gptr)
{int in­
struct NEURON *thisneuron;
for (i=0; i<gptr->nofneuron; i++)
{if (gptr->firsneuron=~ (struct NEURON *)NULL)
{ thisneuron=gptr->firsneuron=CreateNeuron(i+1);
}else
{thisneuron=gptr->firsneuron;
while (thisneuron->nexneuron!=(struct NEURON *)NULL) 

thisneuron=thisneuron-->nexneuron; 
thisneuron->nexneuron=CreateNeuron(i+1);
}
}
return ( (struct NEURON *)gptr->firsneuron);

struct NEURON *CreateNeuron(int id)
{
float outval;
struct NEURON *newcellptr;
if ((newcellptr=(struct NEURON *)malloc(sizeof(struct 
NEURON)))!=NULL)
{
newcellptr->firsynape=(struct SYNAPE *)NULL;
newcellptr->nexneuron= (struct NEURON *)NULL;
newcellptr->actval=-l.0;
newcellptr->outval=-l.0;
newcellptr->netval=-l.0;
newcellptr->error=0.0;
newcellptr~>reg=0.0;
newcellptr->neuronid=id;
return((struct NEURON *)newcellptr);

}else
quit () ;

struct SYNAPE *CreateSynape(void)
{struct SYNAPE *newsyptr;
if ((newsyptr=(struct SYNAPE *)malloc( sizeof(struct
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SYNAPE)))!=NULL)
{newsyptr->weight=0.0 ; 
newsyptr->reg=0.0;
newsyptr->nexsynape=(struct SYNAPE *)NULL; 
newsyptr->fromneuron=(struct NEURON *)NULL; 
return((struct SYNAPE *)newsyptr);
}else 
quit () ;

}
struct GROUP *SearchGrp(char *grpname)
{struct GROUP *thisgptr; 
thisgptr=firsgroup;
while(thisgptr!=(struct GROUP *)NULL)
{
if (strcmp(thisgptr->grpid,grpname)==0) 

return ( (struct GROUP *)thisgptr); 
thisgptr=thisgptr->nexgroup;
}
return ( (struct GROUP *)NULL);
}
struct NEURON *SearchNeuron(char *grpname,int cellid) 
{
struct GROUP *grp; 
struct NEURON *thecell;
if ( (grp=SearchGrp(grpname))!=(struct GROUP *)NULL)
{
thecell=grp->firsneuron;
while(thecell!=(struct NEURON *)NULL)
{
if (thecell->neuronid==cellid)

return( (struct NEURON *)thecell); 
thecell=thecell->nexneuron;
}
printf("\nCell Not Found \n"); 
runterror();

}
else 
runterror () ;

void runterror(void)
{
printf("Run Time Error !!"); 
exit (0);
}
void LinkGroup(char *from,char *to)
{
struct NEURON *fromneuron,*toneuron;
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struct GROUP *fromgrp,*togrp; 
struct SYNAPE *newsynape,*thissynape;
randomize();
if ((fromgrp=SearchGrp(from))==(struct GROUP *)NULL || 
(togrp=SearchGrp(to))==(struct GROUP *)NULL) 

runterror() ; 
fromneuron=fromgrp->firsneuron; 
toneuron=togrp->firsneuron;
if (toneuron==(struct NEURON *)NULL | 1 fromneuron== (struct 
NEURON *)NULL) 

runterror () ; 
while(toneuron!=(struct NEURON *)NULL)
{while(fromneuron!=(struct NEURON *)NULL)
{ if (toneuron->firsynape== (struct SYNAPE *)NULL) 

thissynape=toneuron->firsynape=CreateSynape(); 
else 
{thissynape=toneuron->firsynape;
while(thissynape->nexsynape! = (struct SYNAPE *)NULL) 
thissynape=thissynape->nexsynape; 

thissynape->nexsynape=CreateSynape(); 
thissynape=thissynape->nexsynape;
}thissynape->fromneuron=fromneuron;
fromneuron=fromneuron->nexneuron;

}fromneuron==fromgrp~>f irsneuron ; 
toneuron=toneuron->nexneuron;
}

void InitWeight(float (*initwgtfen)(),char *grpname)
{
struct SYNAPE *thesynap; 
struct GROUP *thisgroup; 
struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL 
&& thisgroup->firsneuron!=(struct NEURON *)NULL)
{thisneuron=thisgroup->firsneuron; 
while (thisneuron!= (struct NEURON *)NULL)
{thesynap=thisneuron->firsynape;
NofInputData(thesynap) ;
while(thesynap!=(struct SYNAPE *)NULL)
{thesynap->weight=(*initwgtfcn)(thisneuron,thesynap); 
thesynap=thesynap->nexsynape;
}thisneuron=thisneuron~>nexneuron;

}
}
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else 
runterror();

}
void ActivateGroup(char *grpname)
{struct GROUP *thisgroup; 
struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL 
&& thisgroup->firsneuron!=(struct NEURON *)NULL)
{
thisneuron=thisgroup->firsneuron; 
while(thisneuron!=(struct NEURON *)NULL)
{thisneuron->netval= (*thisgroup->netfcn) (thisneuron) ; 
thisneuron->actval=(*thisgroup->actfcn)(thisneuron-> 
netval);
thisneuron->outval=(*thisgroup->outfcn)(thisneuron-> 
actval);
thisneuron=thisneuron->nexneuron;
}
}else 
runterror();

}
void CalculateError(char *grpname,char *soursegrp,float 
(*errfcn) () )
{static struct GROUP *thisgroup; 
static struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))==(struct GROUP *)NULL 
|| thisgroup->firsneuron==(struct NEURON *)NULL) 

runterror () ; 
thisneuron=thisgroup->firsneuron; 
while (thisneuron!=(struct NEURON *)NULL)
{thisneuron->error= (*errfcn) (thisneuron,soursegrp); 
thisneuron=thisneuron->nexneuron;
}
}
void AdjustWeight(float learnrate,char *grpname,float 
(*learnfcn) (),int learntype)
{
struct GROUP *thisgroup; 
struct NEURON *thisneuron; 
struct SYNAPE *thissynape;
if ( (thisgroup=SearchGrp (grpname) )=== (struct GROUP *)NULL 
|| thisgroup->firsneuron==(struct NEURON *)NULL) 

runterror(); 
thisneuron=thisgroup->firsneuron; 
while (thisneuroni= (struct NEURON *)NULL)
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{if (learntype==TEACHER)
{if ( (thissynape=thisneuron->firsynape)==(struct SYNAPE 
*)NULL)

runterror(); 
while(thissynape!=(struct SYNAPE *)NULL)
{thissynape->weight=(*learnfcn)(&learnrate,thisneuron, 
thissynape) /
thissynape=thissynape~>nexsynape;
}}

else
{
if (learntype==SELFORGANISE)
{if (thisneuron->outval==l.0)
{if ( (thissynape=thisneuron->firsynape) === (struct SYNAPE 

*)NULL) 
runterror();
{
while(thissynape!=(struct SYNAPE *)NULL)
{thissynape->weight=(*learnfcn)(&learnrate, 
thisneuron, thissynape); 
thissynape=thissynape->nexsynape;
}
}return;
}
}
}thisneuron=thisneuron->nexneuron;

}
}

void SetDataPattern(char *grpname,char *datafname,int 
datatype)
{struct GROUP *thisgroup; 
struct NEURON ^thisneuron;
FILE *dfptr; 
int data;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL) 
{ thisneuron=thisgroup->firsneuron ;
if ((dfptr=fopen(datafname,"rb"))!=NULL &&
thisneuron!=(struct NEURON *)NULL)
{ while(thisneuron!=(struct NEURON *)NULL && 
fread(Sdata, sizeof(int),1,dfptr) !=0)
{ if (datatype==INTYPE)
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thisneuron->outval=data;
else

thisneuron->reg=data;
thisneuron=thisneuron->nexneuron;

}fclose(dfptr);
}else

runterror () ;
}
else runterror()/
}
void AdjustNeuronWgt(float learnrate,struct NEURON 
*fromneuron,struct NEURON *toneuron,float (*learnfcn)())
{
struct SYNAPE ^thissynape; 
while (fromneuron!=toneuron)
{
thissynape=fromneuron->firsynape; 
while (thissynape! = (struct SYNAPE *)NULL)
{
thissynape->weight=(*learnfcn) (Slearnrate, 
fromneuron,thissynape); 
thissynape=thissynape->nexsynape;
}
fromneuron=fromneuron->nexneuron;

}
thissynape=toneuron->firsynape;
while(thissynape!=(struct SYNAPE *)NULL)
{
thissynape->weight=(*learnfcn)(slearnrate, 
toneuron,thissynape); 
thissynape=thissynape->nexsynape;
}
}
void Normalizelnput(char *grpname)
{struct GROUP *thisgroup; 
struct NEURON *thisneuron; 
float denomin;
denomin=0.0;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{thisneuron=thisgroup->f irsneuron^- 
while (thisneuron! = (struct NEURON *)NULL)
{denomin+=thisneuron-->outval*thisneuron->outval;
thisneuron=thisneuron->nexneuron;
}
denomin=(float)sqrt((double)denomin); 
thisneuron=thisgroup->firsneuron; 
while(thisneuron!=(struct NEURON *)NULL)
{
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thisneuron->outval=thisneuron->outval/denomin; 
thisneuron=thisneuron->nexneuron;
}
}else
runterror();

void NormalizeWgt(char *grpname)
{struct GROUP *thisgroup; 
struct NEURON *thisneuron; 
struct SYNAPE ^thissynape; 
float denomin;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL) 
{thisneuron=thisgroup->f irsneuron^- 
while (thisneuron! = (struct NEURON *)NULL)
{
denomin=0.0;
thissynape=thisneuron~>f irsynapê - 
while (thissynape! = (struct SYNAPE *)NULL)
{
denomin+=thissynape->weight*thissynape->weight;
thissynape=thissynape->nexsynape;
}
denomin=(float)sqrt((double)denomin); 
thissynape=thisneuron->firsynape; 
while(thissynape! = (struct SYNAPE *)NULL)
{
thissynape->weight=thissynape->weight/denomin; 
thissynape=thissynape->nexsynape;
}thisneuron=thisneuron~>nexneuron;

}
} ,else
runterror();

}

float RandomValue(struct NEURON *aneuron,struct SYNAPE 
*asynape)
{return((float)random(5)*0.1+(float)random(16)*0.01+ 
(float)random(16)*0.001);

}
void SaveLoadNet(char *fname,int proctype)
{struct GROUP *grp; 
struct NEURON *cell; 
struct SYNAPE *synp;
FILE *fptr;
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if (proctype==SAVE)
if ((fptr=fopen(fname,"wb"))==NULL) runterror(); 

if (proctype==LOAD)
if ((fptr=fopen(fname,"rb"))==NULL) runterror(); 

grp=firsgroup;
while (grp! = (struct GROUP *)NULL)
{cell=grp->firsneuron;
while(cell!=(struct NEURON *)NULL)
{synp=cell->firsynape;
while (synp! = (struct SYNAPE *)NULL)
{if (proctype==SAVE)

fwrite(&synp->weight,sizeof(synp->weight) , 1,fptr); 
else

fread(&synp->weight,sizeof(synp->weight),1,fptr); 
synp=synp->nexsynape;
}cell=cell->nexneuron;

}
grp=grp->nexgroup;
}
fclose (fptr);
}
FILE *LoadGrpData(struct NEURON *cellfFILE *fptr,int 
datatype)
{
int dot;
while(cell!= (struct NEURON *)NULL)
{
fread(&dot,sizeof(dot),1,fptr); 
if (datatype==INTYPE) 

cell~>outval=dot; 
else 
{

if (dot==l.0) 
cell->reg=l.0; 
else
cell->reg=0.0;

}
cell=cell->nexneuron;
}
return(fptr);
}
void ShowGroup(char *gpname)
{
struct NEURON *thisneuron; 
struct GROUP *thisgroup; 
struct SYNAPE *thissynp;
if ((thisgroup=SearchGrp(gpname))==(struct GROUP *)NULL) 

runterror();
printf ("group %s nofneuron %d\n",thisgroup->grpid,
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thisgroup->nofneuron); 
thisneuron=thisgroup->firsneuron; 
while(thisneuron!=(struct NEURON *)NULL)
{printf("neuron %d outval %f netval %f reg %f err 
%f\n",thisneuron->neuronid, thisneuron~>outval, 
thisneuron->netval, thisneuron-~>reg,thisneuron->error); 
thissynp=thisneuron->firsynape; 
while (thissynp!=(struct SYNAPE *)NULL)
{printf("->weight = %f from neuron outval %f\n", 
thissynp->weight,thissynp->fromneuron->outval); 
thissynp=thissynp->nexsynape;
}thisneuron=thisneuron->nexneuron; 
getch () ;
}
}
void A_ShowGroup(char *gpname)
{struct NEURON *thisneuron; 
struct GROUP *thisgroup;
if ((thisgroup=SearchGrp(gpname))== (struct GROUP *) NULL) 

runterror(); 
thisneuron=thisgroup->firsneuron; 
if (strcmp(thisgroup->grpid,"INLAYER")!=0) 
while(thisneuron!=(struct NEURON *)NULL)
{
if (thisneuron->outval>0.69) 

printf("1"); 
else

printf ("0"); 
thisneuron=thisneuron->nexneuron;

}
else
while(thisneuron!=(struct NEURON *)NULL)
{
if (thisneuron->outval>0.69) 

printf("1 "); 
else

printf("0 "); 
thisneuron=thisneuron->nexneuron;

}
printf("\n");
}

/* Neuron Functions */
float InputNOptn(struct NEURON *cell) 
{return(cell->outval);
}
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float Suma(struct NEURON *cell)
{struct SYNAPE *thislink; 
float sum;
sum=0.0;
thislink=cell->firsynape;
while(thislink!=(struct SYNAPE *)NULL)
{
sum+=thislink->weight*thislink->fromneuron->outval; 
thislink=thislink->nexsynape;
}return(sum) ;

}
float Logistic(float invalue)
{if (invalue>14 && invalue<-14)
{if (invalue>14) return (0.9); 
else return (0.0);
}else
{
invalue=(float)(1/(1+(float)exp(-(double)invalue))); 
if (invalue>0 . 8895) return (0.9); 
if (invalue<0.0000001) return(O.O);
if (invalue>0.0000001 && invalue<0.8895) return(invalue);
}

float Binary(float invalue) 
{if (invalue>0.8) 

return (1.0); 
else

return (0.0);
}
float Ramp(float invalue)
{
return(invalue);
}

/* The procedures below are support code for simulating: 
Single Layer Perceptrons, Multi-layer Nets, Hopfield Nets, 
Competitive Nets, Kohonen Nets, and Counter-propagation 
Nets. */

float InitHopeWgt(struct NEURON *aneuron,struct SYNAPE 
*asynape)
{
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if (aneuron->neuronid!=asynape->fromneuron->neuronid) 
return(asynape->weight+asynape->fromneuron->outval* 
aneuron->reg) ; 

else
return (0.0);

float DeltaError(struct NEURON *theneuron,char *soursegrp)
{
if (theneuron! = (struct NEURON *)NULL)

return(theneuron->reg-theneuron->outval); 
else 
runterror();

}
float Back_0_Error(struct NEURON *theneuron,char
*soursegrp)
{
if (theneuron!=(struct NEURON *)NULL)

return(theneuron->outval*(theneuron->reg- 
theneuron->outval)*(l-theneuron->outval)); 

else 
runterror() ;

}
float Back_H_Error(struct NEURON *theneuron,char
*soursegrp)
{
struct GROUP *thisgroup; 
struct SYNAPE *thesynape; 
struct NEURON *s_neuron; 
int synapflag;
theneuron->error=0.0/
if ( (thisgroup=SearchGrp(soursegrp))! = (struct GROUP 
*)NULL)
{s_neuron=thisgroup->firsneuron; 
while (s_neuron!=(struct NEURON *)NULL)
{synapflag=0;
thesynape=s_neuron->firsynape;
while (thesynape! = (struct SYNAPE *)NULL | i synapflag!=1)
{if (thesynape->fromneuron==theneuron)
{theneuron->error+=thesynape->weight*s_neuron->error; 
synapflag=l;
}thesynape=thesynape->nexsynape;

}s__neuron=s_neuron->nexneuron;
}return(theneuron->outval*(l-theneuron->outval)* 
theneuron->error);
}
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else 
runterror () ;

}
float DeltaLearn(float *rate,struct NEURON 
*theneuron,struct SYNAPE *thesynape)
{return(thesynape->weight+*rate*thesynape->fromneuron-> 
outval*theneuron->error) /
}
float Norm_BackLearn (float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{return(thesynape->weight+*rate*thesynape->fromneuron-> 
outval*theneuron->error) ;
}
float Mome__BackLearn (float *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{
float t_weight;
t_weight=crate*(thesynape->weight-thesynape->reg); 
thesynape->reg=thesynape->weight; 
return(thesynape->reg+*rate*thesynape-> 
fromneuron->outval*theneuron->error+t_weight);

}
float ProcessRate(int ratetype,float norminator,float 
denorminator)
{
if (ratetype==KOH_IN)

return(0.99*(norminator+1)/denorminator); 
if (ratetype==GROSS)

return (0.1*(1-norminator/denorminator)); 
if (ratetype==KOHON)

return(0.7*(1-norminator/denorminator));

void FindDistance(char *grpname)
{struct SYNAPE *thislink; 
struct GROUP *thisgrp; 
struct NEURON *thiscell; 
float sum;
if ((thisgrp=SearchGrp(grpname))!=(struct GROUP *)NULL) 
{thiscell=thisgrp->firsneuron;
while (thiscell!= (struct NEURON *)NULL)
{
sum=0.0;
thislink=thiscell->firsynape;
while(thislink!=(struct SYNAPE *)NULL)
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{sum+=(this1ink->fromneuron->outval-thislink-> 
weight)*(thislink->fromneuron->outval- 
thislink->weight); 
thislink=thislink->nexsynape;

}thiscell->reg=sum;
thiscell=thiscell->nexneuron;

}
}
}
int FindRadius(char *grpname,int cyclenum)
{struct GROUP *thisgroup;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL) 

return ( (int) (thisgroup->nofneuron/(2+cyclenum/500))); 
else

runterror ();
}

float GrossLearn (float *rate,struct NEURON 
*theneuron,struct SYNAPE *thesynape)
{
return(thesynape->weight+*rate*(theneuron->reg-thesynape 
->weight)*thesynape->fromneuron->outval);}

void SetKonPattern(char *grpname,float alpha)
{
struct GROUP *thisgroup; 
struct NEURON *thisneuron;
if ((thisgroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{thisneuron=thisgroup->firsneuron; 
while(thisneuron!=(struct NEURON *)NULL)
{thisneuron->outval=alpha*thisneuron->outval+
((1/(float)sqrt((double)nofinput))*(1-alpha)); 
thi sneuronsthi sneuron->nexneuron/
}
}else 
runterror();

}

float KohonLearn(float *rate,struct NEURON 
*theneuron,struct SYNAPE *thesynape)
{return(thesynape->weight+*rate*(thesynape->fromneuron-> 
outval-thesynape->weight));

}
float KohoWgt(struct NEURON *aneuron,struct SYNAPE
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*asynape)
{return((float)random(16)*0.01+
1/((float)sqrt((double)nofinput)));
}
void CompInitWgt(char *grpname)
{struct SYNAPE *thesynape; 
struct GROUP *thegroup; 
struct NEURON *theneuron; 
float nofsynape; 
float accwgt,basewgt;
if ( (thegroup=SearchGrp(grpname))! = (struct GROUP *) NULL 
&& thegroup->firsneuron!=(struct NEURON *)NULL)
{
randomize();
theneuron=thegroup->firsneuron; 
while(theneuron!=(struct NEURON *)NULL)
{nofsynape=0; accwgt=0.0;
thesynape=theneuron->firsynape;
while (thesynape!=(struct SYNAPE *)NULL)
{ nofsynape++; thesynape=thesynape->nexsynape; } 
basewgt=l/(nofsynape); 
thesynape=theneuron->firsynape;
while(thesynape->nexsynape!=(struct SYNAPE *)NULL)
{
thesynape->weight=basewgt-random(9)*
(1/ (100*nofsynape)); 
accwgt+=thesynape->weight; 
thesynape=thesynape->nexsynape;

}
thesynape->weight=l-accwgt; 
theneuron=theneuron->nexneuron;

}} else runterror ();
}
struct NEURON *SetWinner(char *grpname,int nettype)
{
struct GROUP *thegroup;
struct NEURON *theneuron, *winner;
if ((thegroup=SearchGrp(grpname))!=(struct GROUP *)NULL)
{theneuron=thegroup->firsneuron; 
winner=theneuron;
while (theneuron!=(struct NEURON *)NULL)
{if (nettype==CNT_KON)
{if (theneuron->netval>winner->netval i I 
theneuron->netval==winner->netval)
{
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winner“>outval=0.0; 
winner=theneuron; 
winner->outval=l.0;
}else
theneuron->outval=0.0;

}else
{if (theneuron->reg<winner->reg j | 
theneuron->reg==winner->reg)
{winner->outval=0.0; 
winner=theneuron; 
winner->outval=l.0;
}else
theneuron->outval=0.0;

}theneuron=theneuron->nexneuron;
}theneuron==thegroup->f irsneuron; 
while(theneuron!=(struct NEURON *)NULL)
{
if (theneuron->outval==l.G)

return((struct NEURON *)theneuron); 
theneuron=theneuron->nexneuron;

}
}
else runterror();

}

float CompetLearn ( f1oat *rate,struct NEURON
*theneuron,struct SYNAPE *thesynape)
{return (thesynape->weight+*rate*(thesynape->fromneuron-> 
outval/nactive)-*rate*thesynape->weight);

}

int NofActivelnput(struct SYNAPE *thesynape)
{
int nofactive; 
nofactive=0;
while (thesynape!=(struct SYNAPE *)NULL)
{if (thesynape->fromneuron->outval==l.0) 

nofactive++; 
thesynape=thesynape->nexsynape;
}return(nofactive);

}
void NoflnputData(struct SYNAPE *thesynape)
{nofinput=0;
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while (thesynape!=(struct SYNAPE *)NULL) 
{nofinput++;
thesynape=thesynape->nexsynape;

}
}
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Appendix (c) Structure Chart Of NNSim.exe

Monitor Activities
Network

Definition

NNSim Program

Initialization
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