
f o b r e fe r e n c e o n ly

The Nottingham Trent University
Library & Information Services
SHORT LOAN COLLECTION

Date Time Date Time

,i i ju'U -
X
X
X

Please return this item to the issuing library.
Fines are payable for late return.

THIS ITEM MAY NOT BE RENEWED

40 0692905 9

ProQuest Number: 10183226

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183226

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

INTEGRATED FAULT TOLERANCE FOR
PACKET-SWITCHED NETWORKS

ROBIN HOTCHKISS

A thesis submitted in partial fulfilment of the
requirements of The Nottingham Trent University

for the degree of Doctor of Philosophy

Department of Electrical and Electronic Engineering
The Nottingham Trent University

Burton Street
Nottingham

United Kingdom
NG1 4BU

October 2000

Abstract

A novel VLSI hardware packet routing switch, integrating fault tolerant mechanisms, has

been developed. The device can be used to construct an embedded parallel or distributed

processing architecture.

A review of packet switched techniques has been carried out, leading to a high-level

specification for a next generation packet switched network. From this specification, an

eight-link router-switch has been implemented in a programmable logic device, which

significantly enhances the primary routing features compared to earlier devices.

The distributed fault tolerance features were implemented in two stages. The first stage is

concerned with critical interruption of the link stability, which has been proven through

simulation and hardware verification. The first stage features detected and localised the

effects of network failure, while supplying features to reduce link activity where required.

The second deals with deadlock detection and recovery, which investigated a detection

method that minimised time and false detections irrespective of network traffic. The

investigative second stage has been verified by simulation.

This work successfully culminated in the production of a fault tolerant hardware routing

switch. All basic routing features of the device operation have been proven through

simulation and hardware testing. Simulations have been used to subject the device to a

range of extended workloads for confidence of operation. The router-switch supports the

network specification for a fault tolerant network, based on a distributed mechanism,

allowing a linear scaling factor for tolerance to failure as the network is modified. This

maximises network availability in the presence of faults. Key features of the design were

compared and contrasted with the current state of the art in the literature.

A c k n o w l e d g e m e n ts

I would like to thank the following people for all the help and support they have

provided over the duration of my studies. My supervisors Prof. BC O’Neill and Dr. S

Clark; my colleagues and friends Dr. GC Coulson, Dr. RH Day, Mr D Downes,

Mr JH Ng, Mr. C Oswald, Dr. RM Ranson, and Dr. KL Wong; all my family and other

friends, but especially to Mr C Dixon, Mr & Mrs Kaveney-Davis, Mr R Harris,

Mr D Moore, and Mrs D Scholey; Mr A Whitehouse who gave me the reference to get me

here in the first place.

Finally, I would like to give special thanks to Mr D Corcoran who taught me a

great deal in the years of our friendship and was always present with a word of

encouragement.

II

T a b le of C o n te n ts

Ab str a c t ... I

Ac k n o w l e d g e m e n t s .. II

T able o f C o n t e n t s ..Ill

L ist o f Ac r o n y m sVI

L ist o f F ig u r e s ... VII

L ist o f T a bles ..IX

1 INTRODUCTION...1
1.1 PARALLEL CONCEPTS.. 1

1.1.1 Parallel Architectures...3
1.2 Effects of Technological Advancements in D igital Sy ste m s 4
1.3 Aims of this Resea rch .. 6
1.4 Breakdown of Th e sis ..7

2 BACKGROUND TECHNIQUES, METHODOLOGY AND TERMINOLOGY................9
2.1 The ISO Open Systems Interconnection Mo d e l ... 9
2.2 Review of the Methodologies of Switched Communication 11

2.2.1 Physical Link Layer Considerations... 11
2.2.2 Data-Link Layer Considerations..14

2.2.2.1 Token Definitions... 14
22.2.2 Flow Control.. 14
2.2.2.3 Data Link Fault Tolerance... 19

2.2.3 Network Layer Considerations...20
2.2.3.1 Switched Architectures... 20
2.2.3.2 Connection Methodologies.. 21
2.2.3.3 Packet Form at..25
2.2.3.4 Adaptive Routing Techniques...26
2.2.3.5 Routing Decisions... 28
2.2.3.6 Fault tolerance - Error detection and recovery... 34
2.23.1 Deadlock...35

2.2.4 Transport Layer Considerations..40

3 REVIEW OF EARLIER RESEARCH... 41
3. l Introduction to Earlier Sy stem s ...41

3.1.1 NTR08.. 41
3.1.2 ICR-C416..43
3.1.3 NTR-M04..................................... 43
3.1.4 Contemporary Devices.. 45

3.1.4.1 STC104... 45
3.1.4.2 Reliable Router.. 46
3.1.4.3 M yrinet... 46

3.2 Physical La yer ... 47
3.3 Data L ink La y e r .. 50

3.3.1 Token Definitions... 50
3.3.2 Flow Control...55
3.3.3 Fault Tolerance.. 58

3.4 Network La y e r .. 61
hi

3.4.1 Switched Architecture...62
3.4.2 Connection Methodology...62
3.4.3 Packet Format...64
3.4.4 Adaptive routing techniques.. 67
3.4.5 Routing Decisions.. 68
3.4.6 Fault tolerance..70
3.4.7 Deadlock.. 72

4 DESIGN DISCUSSION.. 73
4.1 Lessons Learnt from Earlier Resea rch ...73
4.2 Basic Router-switch Defin ition .. 78

4.2.1 Basic Router-switch Physical Layer Protocol Description... 78
4.2.2 Basic Router-switch Data Link Layer Protocol Description... 78
4.2.3 Basic Router-switch Network Layer Protocol Description... 79
4.2.4 Other Router-switch Features and Operation.. 81

4.3 Stage One Development Features..81
4.3.1 Stage One Physical Layer Protocol Enhancements...81
4.3.2 Stage One Data Link Layer Protocol Enhancements...81

4.3.2.1 Link Initialisation Procedure..84
4.3.3 Stage One Network Layer Protocol Enhancements...85

4.3.3.1 Active Packet Recovery...85
4.3.3.2 Link Invalidation..86

4.4 Stage Two Development Fea tu res ... 88
4.4.1 Stage Two Physical Layer Protocol Enhancements...88
4.4.2 Stage Two Data Link Layer Protocol Enhancements...88
4.4.3 Stage Two Network Layer Protocol Enhancements...89

4.4.3.1 Deadlock D etection... 89
4.4.3.2 Deadlock Recovery.. 96

5 DETAILED ROUTER-SWITCH DESIGN...97
5.1 Basic Skeletal Sw itch ...97

5.1.1 Top-Level Router-Switch..97
5.1.2 Link Unit.. 97
5.1.3 Controller.. 101
5.1.4 Exchange... 106

5.2 Fault Tolerance - Stage On e ..107
5.2.1 Stage One Enhancements to the Link Unit..107
5.2.2 Stage One Enhancements to the Controller... 110

5.3 Fault Tolerance - Stage Tw o .. I l l
5.3.1 Stage Two Enhancements to the Link Unit..I l l
5.3.2 Stage Two Enhancements to the Controller... 112

6 DESIGN SYNTHESIS & VERIFICATION... 114
6.1 Preliminary Sim ulations.. 114

6.1.1 Credit-based and Permission-based Flow Control Comparison Analysis..................114
6.1.2 Further Permission-based Flow Control Analysis... 116

6.2 Basic Design Plus Stage One Enhancements... 119
6.2.1 Design Simulation.. 119

6.2.1.1 Verification..119
6.2.1.2 Device Performance......................... 120

6.2.2 Synthesis.. 128
6.2.3 Design Hardware Tests.. 130

6.2.3.1 Verification..130
6.2.3.2 Device Performance... 133

6.3 Stage Two Enhancements... 13 5

IV

6.3.1 Stage Two Simulation...135

7 DISCUSSION, CONCLUSIONS AND FURTHER WORK..138
7.1 Discussion..138

7.1.1 Fault tolerant features... 138
7.1.1.1 Link Fault Detection and Recovery.. 138
7.1.1.2 Deadlock handling procedures..142

7.1.2 Basic Routing Features... 145
7.1.2.1 Flow Control Mechanisms..145
7.1.2.2 Target Technology... 146
7.1.2.3 Connection servicing..146
7.1.2.4 Network Configuration.. 149

7.2 Conclusions...149
7.3 Further Work..152

7.3.1 System Level Work..153
7.3.2 Further Routing Techniques..153

PUBLICATIONS...157

REFERENCES.. 158

APPENDIX A : PRELIMINARY FLOW CONTROL COMPARISON RESULTS............ A-l

APPENDIX B : BASIC STOP/GO ANALYSIS DETAILS...B-l

APPENDIX C : NTR-FTM08 PERFORMANCE RESULTS..C-l

APPENDIX D : ANALYSIS UTILITIES.. D-l

APPENDIX E : HARDWARE TEST DESCRIPTIONS..E-l

APPENDIX F : DEADLOCK DETECTION MECHANISM DETAILS.............................. F-l

V

L ist of A c r o n y m s

ASIC Application Specific Integrated Circuit
CAN Controller Area Network (serial bus-based communication system)
CRC Cyclic Redundancy Check
CSP Communicating Sequential Processes
DSP digital signal processing
FIFO First In First Out
HDL Hardware Description Language
IEEE Institute of Electrical and Electronic Engineers
IP Intellectual Property
ISO International Standards Organisation
LAN Local Area Network
Mb/s Megabits per second
MB/s Megabytes per second
MIMD Multiple Instruction, Multiple Data
NRZ-M Non-Return to Zero Mark (also known as NRZ-I - Invert)
NTR08 A dynamic packet routing device, which resulted from earlier research
NTR-FTM08 The dynamic packet routing device produced by this research
NTR-M04 A dynamic packet routing device, which resulted from earlier research
OSI Open Systems Interconnect
PLD Programmable Logic Device
SAN Small Area Network
SIMD Single Instruction Multiple Data
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
VHDL Very high speed integrated circuit Hardware Description Language
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
WAN Wide Area Network
X-OFF Transmit off (also referred to as STOP)
X-ON Transmit on (also referred to as GO)
XOR exclusive OR

L ist o f F ig u r es

F ig u r e 2 - 1 : A n e x a m pl e o f fiv e t im e s o v e r -s a m p l in g .. 14

F ig u r e 2-2 : D e pic t io n o f t h e ST O P /G O fl o w c o n t r o l m e c h a n is m w it h t h e im p o r t a n t f e a t u r e s
in d ic a t e d t h a t m u s t b e r e g u l a t e d f o r c o r r e c t o p e r a t io n ..16

F ig u r e 2-3 : Re p r e s e n t a t io n o f t h e b u f f e r in g r e q u ir e d f o r t h e S T O P /G O fl o w c o n t r o l m e c h a n is m
........................ 17

F ig u r e 2 -4 : D ep ic t io n o f t h e o p e r a t io n o f a c r e d it b a se d flo w c o n t r o l m e c h a n is m o v e r 10 m e t r e s
a t 20 M b /s (l e f t) a n d o p e r a t io n o v e r 10 m e t r e s a t 100 M b /s (r ig h t) sh o w in g t h e a p pr o pr ia t e
t r a n s m is s io n d e l a y s .. 19

F ig u r e 2-5 : D epic t io n o f t h e in t e r c o n n e c t io n st r u c t u r e of t h e 2D m e s h a n d h y p e r c u b e

t o p o l o g ie s , a n d a n e x a m p l e ir r e g u l a r n e t w o r k ... 21

F ig u r e 2 - 6 : G e n e r ic pa c k e t f o r m a t u s e d a s a b a sis fo r t h e m a jo r it y o f p r o t o c o l s26

F ig u r e 2 -7 : D epic t io n o f a t h e o r e t ic a l n e t w o r k sh o w in g fiv e c o m m u n ic a t in g n o d e s c o n n e c t e d
v ia t w o , f o u r -p o r t s w it c h e s .. 30

F ig u r e 2-8 : d e p ic t io n o f d e a d l o c k in a f o u r n o d e s y s t e m ...35

FIGURE 3-1 : A DIAGRAM OF THE SPLIT LINK OPERATION OF THE N T R -M 0 4 ...49

F ig u r e 3-2 : O S l in k pr o t o c o l b a s e t o k e n s ... 51

F ig u r e 3-3 : F o r m a t o f th e d a t a a n d c o n t r o l t o k e n s o f th e D S p r o t o c o l ...52

F ig u r e 3 -4 : T o k e n f o r m a t u s e d in t h e N T R -M 04 p r o t o c o l ..53

F ig u r e 3-5 : L in k s t a t e m a c h in e f o r t h e IEEE St d . 1355 -1995 ..60

F ig u r e 3-6 : P r e v a l e n t m e s h t o p o l o g y u s e d w it h 4+1 po r t r o u t e r -sw it c h e s f o r h ig h -p e r f o r m a n c e
p a r a l l e l p r o c e s s in g .. 62

F ig u r e 3-7 : D e pic t io n o f a n a l l o c a t io n d e a d l o c k s c e n a r io ... 63

F ig u r e 3-8 : P a c k e t s t r u c t u r e u s e d in t h e h y b r id p r o t o c o l o f t h e N T R 0 8 ...65

F ig u r e 3-9 : P a c k e t f o r m a t f o r t h e f ir s t g e n e r a t io n (l e f t) a n d s e c o n d g e n e r a t io n (r ig h t) o f

M y r in e t .. 67

F ig u r e 4 - 1 : F in it e st a t e m a c h in e f o r t h e N T R -F T M 08 l in k s t a t u s ... 82

F ig u r e 4 -2 : T h e o r e t ic a l n e t w o r k w it h a s in g l e p o in t o f f a il u r e , sh o w in g a l l o c a t e d r e so u r c e s 86

F ig u r e 4-3 : A d e p ic t io n o f a n e x a m p l e n e t w o r k p r io r t o t h e f o r m a t io n o f a d e a d l o c k c y c l e 91

F ig u r e 4 -4 : In t r o d u c t io n o f a f o u r t h pa c k e t in t o a n d e x a m pl e n e t w o r k pr io r t o t h e fo r m a t io n
o f a d e a d l o c k c y c l e ..92

F ig u r e 4-5 : T h e e n t r y o f t h e t h ir d p a c k e t in t h e fo r m a t io n o f a d e a d l o c k c y c l e93

F ig u r e 4 -6 : D e pic t io n o f t h e fin a l s t a g e s o f t h e f o r m a t io n o f a d e a d l o c k c y c l e94

F ig u r e 4 - 7 : T h e c o m pl e t e d e a d l o c k c y c l e .. 95

F ig u r e 5 -1 : B l o c k d ia g r a m o f t h e t o p l e v e l c o m po n e n t s o f t h e N T R -F T M 0 8 ..97

F ig u r e 5-2 : B l o c k d ia g r a m o f t h e l in k u n it o f t h e N T R -F T M 0 8 .. 98

VII

F ig u r e 5-3 : R e c e iv e r c o n t r o l l e r f in it e st a t e m a c h in e 99

F ig u r e 5-4 : B l o c k d ia g r a m o f t h e c o n t r o l l e r o f t h e NTR-FTM08 101

F ig u r e 5-5 : B lo c k d ia g r a m o f t h e e x c h a n g e o f t h e NTR-FTM08 106

F ig u r e 6 - 1 : O ffe r e d l o a d v e r se s a c c e p t e d l o a d fo r a b e h a v io u r a l m o d e l o f a f o u r p o r t r o u t e r -

F ig u r e 6-2 : A c c e pt e d d a t a l o a d v e r s e s a v e r a g e p a c k e t l a t e n c y f o r a b e h a v io u r a l m o d e l o f a

F ig u r e 6-3 : O ffe r e d d a t a l o a d v e r s e s a c c e p t e d d a t a lo a d o v e r a r a n g e o f w o r k l o a d s f o r a
t o r u s a n d m e s h n e t w o r k w it h v a r ia t io n o n th e f l o w c o n t r o l t h r e s h o l d v a l u e d iffe r e n t ia l
...117

F ig u r e 6 -4 : A c c e pt e d d a t a l o a d v e r s e s a v e r a g e p a c k e t l a t e n c y o v e r a r a n g e o f w o r k l o a d s f o r
a t o r u s a n d m e s h n e t w o r k w it h v a r ia t io n o n t h e fl o w c o n t r o l t h r e s h o l d v a lu e
d if f e r e n t ia l ... 118

F ig u r e 6-5 : Sim u l a t io n r e s u l t s f o r r a w b a n d w id t h c o m pa r iso n w it h t h e e a r l ie r d e v ic e s o f a n

UNLOADED NETWORK...121

F ig u r e 6 -6 : U n l o a d e d n e t w o r k , r a w b a n d w id t h c o m pa r iso n o f e f f e c t iv e l in k b a n d w id t h fo r
m u l t ic a s t c o n n e c t io n s ... 122

F ig u r e 6-7 : P a c k e t l a t e n c y v e r s e s r o u t e r -sw it c h h o ps a n d pa c k e t siz e f o r p h y sic a l a d d r e s s e d

PACKETS... 123

F ig u r e 6-8 : P a c k e t l a t e n c y v e r s e s r o u t e r - s w i t c h h o p s a n d p a c k e t s iz e f o r i n t e r v a l a d d r e s s e d
PACKETS... 123

F ig u r e 6-9 : P a c k e t l a t e n c y v e r s e s r o u t e r - s w i t c h h o p s a n d p a c k e t s iz e f o r l o g i c a l a d d r e s s e d
PACKETS... 124

F ig u r e 6 -1 0 : T im e r e so u r c e s a r e h e l d f o r a pa c k e t r e l a t iv e t o th e p a c k e t size f o r a sin g le

ROUTING HEADER FOR INTERVAL, LOGICAL AND PHYSICAL ADDRESSED PACKET IN AN UNLOADED
NETW ORK ... 125

F ig u r e 6 -1 1 : T im e r e so u r c e s th a t a r e field f o r a ph y sic a l l y a d d r e s s e d p a c k e t r e l a t iv e t o th e

PACKET SIZE FOR CONNECTIONS OVER 1 TO 6 ROUTER-SWITCHES IN AN UNLOADED NETWORK..................125

F ig u r e 6-12 : O f f e r e d d a t a l o a d v e r s e s a c c e p t e d d a t a l o a d o v e r a r a n g e o f w o r k l o a d s f o r a
SINGLE ROUTER-SWITCH FOR 16 AND 128 BYTE PACKETS... 127

F ig u r e 6 -1 3 : A c c e p te d d a t a l o a d v e r s e s a v e r a g e p a c k e t tim e o v e r a r a n g e o f w o r k l o a d s f o r a
SINGLE ROUTER-SWITCH FOR 16 AND 128 BYTE PACKETS...128

F ig u r e 6 -14 : A p h o t o g r a ph o f t h e N T R -F T M 08 p r o t o t y pe d e v ic e a n d d r iv e r b o a r d 129

F ig u r e 6 -1 5 : B l o c k d ia g r a m o f t h e h a r d w a r e u s e d fo r v e r ific a t io n t e s t s .. 131

F ig u r e 6-16 : A c a p t u r e d t r a c e f r o m t h e u n l o a d e d r o u t e r - s w i t c h t e s t s f o r a l l t h r e e a d d r e s s in g
MODES FOR UNIDIRECTIONAL DATA FLOW ... 134

F ig u r e 6 -17 : A c a pt u r e d t r a c e fr o m t h e u n l o a d e d r o u t e r -sw it c h t e st s f o r a l l t h r e e a d d r e ssin g

MODES FOR BI-DIRECTIONAL DATA FLOW ...134

F ig u r e 6 -1 8 : H a r d w a r e r e su l t s fo r r a w b a n d w id t h c o m pa r iso n w it h t h e e a r l ie r d e v ic e s o f a n

UNLOADED NETWORK.. 135

F ig u r e 6 -19 : N e t w o r k st r u c t u r e u s e d f o r d e a d l o c k t e s t in g ... 136

s w it c h f o r p e r m iss io n a n d c r e d it b a s e d fl o w c o n t r o l 115

f o u r p o r t r o u t e r -s w it c h f o r p e r m is s io n a n d c r e d it b a se d fl o w c o n t r o l . 116

VIII

L ist of T a b les

T a b l e 2 -1 : C o n fig u r a t io n d e t a il s fo r sw it c h e s A (l e f t) a n d B (r ig h t) in t h e n e t w o r k a s d e p ic t e d
in F ig u r e 2 - 7 .. 31

T a b l e 2-2 : In t e r v a l c o n f ig u r a t io n f o r s w it c h e s A (l e f t) a n d B (r ig h t) in th e n e t w o r k a s

d e pic t e d in F ig u r e 2 -7 ... 33

T a b le 2-3 : V a l id r o u t in g h e a d e r s f o r r e l a t iv e a d d r e s s in g f o r a fo u r -po r t s w it c h34

T a b le 3-1 : L i s t o f a l l t y p e o f t o k e n u s e d in t h e DS l i n k p r o t o c o l .. 52

T a b le 3-2 : L ist o f a l l d e f in e d t y pe s o f t o k e n u s e d in th e n e t w o r k l a y e r o f th e N T R -M 04
PROTOCOL...53

T a b le 3-3 : L ist o f a l l d e f in e d t y pe s o f t o k e n u s e d in th e fir st g e n e r a t io n M y r in e t p r o t o c o l54

T a b le 3 -4 : L is t o f a l l d e f in e d t y pe s o f t o k e n u s e d in th e se c o n d g e n e r a t io n M y r in e t L A N
PROTOCOL...54

T a b l e 3-5 : F r a m e f o r m a t u s e f o r t h e R e l ia b l e R o u t e r a s o n e fl o w c o n t r o l u n it55

Ta b l e 4 -1 : D e f in it io n o f t h e b a sic t o k e n s f o r t h e N T R -F T 0 8 .. 78

T a b le 4-2 : H e a d e r f o r m a t f o r a d d r e s s in g m o d e s ..80

T a b l e 4-3 : D e f in it io n o f t h e e x t r a c o n t r o l to k e n s f o r sta g e o n e o f t h e f a u l t t o l e r a n c e

MECHANISM FOR THE N T R -F T 0 8 82

T a b le 4 -4 : D e f in it io n o f t h e e x t r a c o n t r o l to k e n s f o r sta g e t w o o f t h e fa u l t t o l e r a n c e

MECHANISM FOR THE N T R -F T M 0 8 .. 89

T a b le 5 -1 : A t o m ic in st r u c t io n s f o r t h e c o n f ig u r a t io n p o r t of t h e N T R -F T M 0 8 105

T a b le 5-2 : E x a m pl e pa c k e t f o r c o n f ig u r a t io n o f t h e N T R -F T M 0 8 ... 106

T a b le 5-3 : A d d it io n a l a t o m ic in s t r u c t io n f o r t h e c o n fig u r a t io n po r t of t h e N T R -F T M 0 8 111

T a b le 6 -1 : Sy n t h e sis r e su l t s f o r t h e N T R -F T M 08 r o u t e r -s w it c h ... 130

IX

1 Introduction

1 Introduction
The research detailed within this thesis is the investigation and development of a

communication network for use in a distributed memory, message-passing architecture.

The architecture under consideration is constructed using one or more multiport, dynamic,

packet-routing switches, which have evolved from earlier communication systems

research [1, 2]. The network is targeted towards small to medium scale embedded parallel

or distributed processing systems. The primary aim of the work was to improve the

flexibility and reliability of the network compared to previous implementations from the

earlier research.

1.1 Parallel Concepts
Multiprocessor systems have evolved a great deal since their inception. The

impetus of their development was initially, and continues to be in part, the desire for

increased performance over the limits set by the technology of the time. In the early years

of computing, the cost effectiveness of such systems meant that only large organisations

could afford the associated development costs. Meanwhile, the relative ease of

development of single processor systems, in comparison to that of parallel systems,

reduced costs and allowed a much shorter time to market, which made them much more

accessible to a wider market. The shorter design cycle time and lower costs have resulted

in a continued bias of single processor systems in the mainstream computing market,

compared to the development of multiprocessor systems. This bias of ‘single processor

system’ parts has, in recent years, encouraged research using these low-cost commercial

devices in parallel systems [3, 4, 5, 6]. While these solutions will never produce results

comparable to custom parallel processor systems, their utilisation provided great

improvements over single processor systems. Using microprocessors that were designed

for the single processor market has ensured lower development costs while keeping pace

with the state of the art technology especially for small scale parallel systems.

Despite many parallel systems adopting the use of microprocessors designed for

single processor systems, constant pressure on the manufactures of microprocessors to

supply devices with the greatest performance has seen the adoption of parallel processing

techniques in the processing core. Pipeline techniques were integrated first into

mainstream processors in the mid to late 1980’s. Examples of these were the INTEL

386/486 processors [7]. This was followed by super-scalar architectures that allowed

1

1 Introduction

multiple instruction execution in one cycle, for example the Motorola Power PC family [8].

More recently, Single Instruction Multiple Data (SIMD) units have been integrated to

improve the performance of graphic intensive tasks. SIMD is one of four architectural

definitions of processing systems that define the operation of parallel machines as

described by Flynn [9]. A recent example of utilising parallel structures, such as the

SIMD, is the AMD Athlon processor [10]. Another modern example of the ingress of

parallel techniques in the commercial market of processing devices, is the introduction of

Very Long Instruction Word (VLIW) processors. Examples of these are the Crusoe from

Transmeta [11], and the digital signal processing (DSP) device, TigerSHARC devices from

Analog Devices [12]. A VLIW processor contains a number of parallel execution units.

Each instruction word of a VLIW processor contains many sub-instructions that are

executed by one of the execution units in the same cycle, theoretically similar to vector

processor systems of the 1970’s and early 1980’s. While these processors are not new,

until recently they have remained primarily in the domain of research.

The main aim of multiprocessing or distributed processing is to share a task over a

set of resources. This provides many possible advantages, such as exploiting the natural

parallelism within the task for increased performance, modularisation for cost efficiency

and simplified repair procedures, or replication of system parts for fault tolerance through

redundancy. The system designer must select architectural attributes that suit the

application needs, and it must be ensured that the architecture is flexible enough to cope

with any possible modification that may arise through the development process. Selecting

an inappropriate architecture can place a strain on the communication medium, which

could reduce network performance dramatically and ultimately could cause a critical

failure. It is therefore obvious that the features of the communication medium and the

protocols, which are used for the passage of information between the co-operating parts,

play a major role in the flexibility and capabilities of any parallel system.

Since the earliest implementations of parallel machines, researchers have continued

to attempt to quantify effects of network efficiency. The analysis of network efficiency is

a highly complex problem, and as such, must be simplified by concentrating on specific

architectures and operating modes [5,13, 14, 15]. Such work has provided an insight to the

advantages of certain architectural features which has enabled improvements on older

systems to be made or has helped provide the knowledge for the development of new

systems to keep pace with ever-changing application requirements.

2

1 Introduction

1.1.1 Parallel Architectures
The two main classes of multiprocessor systems are shared memory and distributed

memory architectures. Early shared memory architectures typically used a single high­

speed bus to interface to a unified memory area. This allowed fast transfer of information

between co-operating parties as the memory could be accessed by either party with very

little latency. Although the shared memory architecture provided an obvious ability to

‘share’ information between the entities that were co-operating on a task, there were some

inherent complications of such architectures, such as memory access arbitration, task

synchronisation, and producer-consumer data sharing. In addition to this, scaling of these

architectures was problematic. As entities were added to the system, the share of the

bandwidth of the high-speed bus was proportionally reduced, this formed a natural

bottleneck at the memory interface. Early distributed memory architectures maintained

isolated data areas, which could only be accessed by a single system entity. Distributed

memory architectures primarily relied on data transfers via a global communication

network, which were passed in the form of messages. The nature of the message passing

technique instantly solved many problems faced by shared memory systems, as formally

proven by Hoare [16]. Such techniques also provided better scope for system scaling,

which was controlled ultimately by the structure of the communication medium. However,

the pragmatics of message passing increased the latencies of the data transfer when

compared to the shared memory architecture, thus limiting performance benefits.

The distinct communication aspects of these two architectures saw different

application strategies develop that defined the levels at which parallelism was

implemented. The higher data transfer latencies of the distributed memory architecture

encouraged coarser divisions in the task for parallel execution, whereas the shared memory

architecture operated more effectively with finer divisions. These strategies further

divided the use of the architectures to suitable applications, but it seems apparent that the

evolution of both architectures used lessons learnt by the other. Much work was

concentrated on connectivity and efficiency to increase performance and ability to scale.

An example of this in early development of shared memory systems was segmented

memory. This modification enabled concurrent memory operations, which enabled an

increase in system size, but it only eased the bottleneck and did not solve the problem.

Distributed memory systems saw the development of new topologies and protocols that

reduced message latencies and improved reliability. Although many parallel systems used

3

1 Introduction

the distributed memory architecture, it also began to find success in distributed processing

where low latencies and high reliability were a high priority in system design.

Development continued to push the performance capabilities of the parallel

systems, which have seen the creation of specialist systems formed as hybrids of these first

architectures. Systems, such as the Cray T3D [3], have maintained a logically shared

memory while possessing a distributed memory architecture. A high-speed interconnect,

which uses a popular distributed memory network structure, moves the shared data around

the system in a manner similar to cache or virtual memory operations of recent mainstream

processor systems. In this way, the Cray machines have equalled the ability to scale of

message passing distributed architectures, while maintaining the illusion of a shared

memory organisation to the software designer. Although such systems as the Cray provide

the market with ‘high-end’ products, there is a diverse field of distributed and parallel

processing over a range of applications and requirements, from the distributed processing

systems seen in transport applications, to specialist video editing systems, to the

supercomputers used in many highly mathematical research areas. The smaller scale

distributed and parallel systems possess other priorities than just raw performance

capabilities, such as flexibility, efficiency, reliability, and cost. The work described here

targets small to medium scale systems where the aspects associated to these priorities

formed directional guides.

1.2 Effects of Technological Advancements in Digital Systems
Improvements in semiconductor electronics have produced increased capabilities in

both Application Specific Integrated Circuits (ASICs) and programmable logic devices

(PLDs), which has seen a change in roles for these devices. Previously, custom circuit

design of complex circuits demanded resources that could only be supplied by ASICs.

Programmable Logic Devices (PLD) were not capable of more than simple circuits for

decoding or interfacing between ASICs. Additionally, the costs of ASIC implementation

were relatively high, which restricted the development of custom parts. Although ASICs

have maintained a hold on high volume and high performance products, many low-to-mid

scale applications are now realised with PLDs. The improved PLDs are more cost

effective in low volume production, and development cycle times are much lower when

compared to ASIC designs. This has encouraged manufactures to use PLDs as

development devices and occasionally first role-out devices for an early market advantage.

4

1 Introduction

Continued improvement of silicon fabrication techniques and reduction in die

features sizes have seen increasing integration. While improvements have been made to

the packaging types that hold very large scale integrated (VLSI) devices, the physical

problems of distributing the signals from a highly integrated device create a pin-out

bottleneck. This is compounded by the move from 8-bit data paths in the 1980’s to 64-bit

devices in today’s products. Maintaining several of these high-order parallel connections

places impossible demands on the device packaging. This problem of connection

capabilities has produced a renewed interest in serial communications. By replacing

parallel with serial interconnects a high number of logical connections may be supplied,

while maintaining a low number of physical wire connections. Additionally,

improvements in technology have enabled increased performance levels for serial

communications, extending the range from low bandwidth applications with extended

transmission length. Recent examples of communication systems that are serial based are

Universal Serial Bus (USB) [17] and IEEE Std. 1364 (FIREWIRE) [18]. Both of these

systems maintain a logical bus operation, in which the medium is shared between all

communicating devices but the number of data connections and maximum cable length are

limited.

In conjunction with the renewed interest of serial communication, a proliferation of

switched-based communication systems is also evident. The success of switched wide area

networks (WANs) and the large system data throughput that are possible with these

architectures have raised the interest in switch-based intra-system communications.

Recently, a number of forums have been created to develop new router-switch I/O

communication architectures; examples include Rapid I/O [19] and Next Generation

I/O (NGIO) [20] (which was superseded by InfiniBand [21]). Further discussion of these

systems is beyond the scope of this work, but they aim to use the advantages of switched

communication in a similar manner to this work.

Integration has increased use of reusable design methodologies, which are mostly

based on hardware description languages (HDLs). As the scale of digital designs increase,

it is not cost effective to repeat the design cycle required for common component.

Intellectual Property (IP) is a growing market. By utilising IP and integrating many of the

application components into one device, development times can be reduced, which in turn

reduces costs. In addition to this, IP can increase reliability as the functional blocks are

proven design parts, which can reduce verification time. Unfortunately, the amount of

5

1 Introduction

design effort to integrate an IP design module can be equal to the design effort of a total

development of the functionality [22].

1.3 Aims of this Research
The work described in this thesis is related to the switched communication network

of parallel and distributed systems. Previous research in this area produced dynamic

packet switches, which could be used to construct efficient, low-latency networks for use

in a distributed memory, message-passing architecture [1,2]. Tolerance to network failure

in these earlier systems was limited and was based on a centralised monitoring and

intervention solution. While this solution provided a range of useful features, it possessed

many weaknesses. As the resultant network systems were targeted towards board-level or

rack-level systems, reliability was predicted to be high, which made the utilised fault

tolerance methodology acceptable. Previous work also saw a technology transition from

gate array technology to programmable logic, and a design entry change from schematics

to a hardware description language. With these transitions came many new challenges.

The primary aim of this work was to improve the flexibility and reliability of the

network compared to the previous implementations. The secondary aims were to optimise

the basic router-switch design for operation in the targeted technology and entry method

with the lessons learnt from earlier work. A short list of requirements that encompass

these aims follows:

• Define and supply physical fault detection and recovery procedures

The network must possess an integrated detection method for basic faults,

which will activate a predefined recovery mechanism that will allow the remainder

of the network to operate as normal. Features are required that supply the user with

confidence that in any state of the network a packet may be injected and will not

cause critical failure.

• Maintain or improve same level of support of routing methodologies

The design specifications made in earlier research work had to be reviewed

and followed to maintain the ideals of the system, improving where flaws were

discovered.

6

1 Introduction

• Minimise routing overheads

Cross-switch latencies had to be low to minimise the effects on performance

as the network scaled. The architecture of the target technology (PLD) requires the

design to operate with many levels of pipelining to optimise the routing operation.

• Improve on bi-directional data transfer bandwidth utilisation

A review of low level link protocol was required to analyse the optimal

requirements for use in packet switched network where there is a high proportion of

bi-directional traffic.

1.4 Breakdown of Thesis
A description of the thesis is given chapter by chapter:

• Chapter 2 : Background Techniques, Methodology and Terminology

This chapter begins with an introduction to the Open System Interconnection

model, which is used in the thesis to help describe the network methodologies and

techniques referred to in the thesis. It continues to introduce the techniques, methods and

terminology of packet switched networks.

• Chapter 3 : Review of Earlier Research

A critical breakdown and discussion of earlier research work is provided, which

covers research completed by previous members of the research group and some

comparisons with other contemporary devices.

• Chapter 4 : Design Discussion

An analysis of the review of the previous chapter is presented, from which the

salient design features for the next generation of network are evolved. This is followed by

a high level description of implementation details for the features for the switch, around

which the network is based. The router-switch description is divided into three distinct

parts for implementation; namely the skeletal switch, and two stages of development of

fault tolerant features.

7

1 Introduction

• Chapter 5 : Detailed Router-Switch Design

This chapter is broken into three sections. The first section defines, in detail, the

skeletal router-switch design, which has been defined in the previous chapter. The latter

two sections define the implementation of the fault tolerant aspects of the design, which

was split into two distinct parts in the previous chapter.

• Chapter 6 : Design Synthesis & Verification

The device implementation and operating limits are defined. A description of the

verification is described, and the results from a number of operational tests are provided.

• Chapter 7 : Discussion, Conclusions and Further Work

This chapter discussed the final design and the results that have been derived from

verification. Finally, areas of work that still need to be addressed following this research

are presented.

2 Background Techniques, Methodology and Terminology

2 Background Techniques, Methodology and Terminology
The main aim of multiprocessing or distributed processing is to share a task over a

set of resources. In the target area of this research, the aim of task distribution is to exploit

the natural parallelism within an application for three reasons, they are: to improve

performance or efficiency, to modularise a design for simplified maintenance, or to supply

fault tolerance. The interconnection medium is an area that heavily affects the behaviour

and efficiency of all parallel systems. The features of the communication medium and the

protocols, which are used for the passage of information between the co-operating parts,

play a major role in the flexibility and capabilities of any parallel system. The work

described by this report concentrates on a distributed memory architecture. Data transfer is

achieved using a switched communication network that provides a point to point

connection between all processing nodes. ‘Switched network’ is a high level term which

implies a global communication system constructed of switching nodes. As data arrives at

a node it is routed to one of the other outputs of the node, that is, the node acts as a switch

to form the correct data path.

This work was a progression from earlier research [1, 2]. To help clarify the

techniques used in this earlier work, an overview of methodologies and terms will be

provided in term of the International Standards Organisation (ISO) Open System

Interconnection (OSI) reference model [23]. The OSI is a seven-layer model, which is

used to help modularise the aspects of communication system to simplify their description.

The description of communication techniques and methodologies will be followed up in

chapter 3, with a review of their use in previous research on switched, parallel networks.

2.1 The ISO Open Systems Interconnection Model
The ISO OSI model is constructed of seven layers, which are used to help

modularise communication systems. The layers of the model are presented from the

viewpoint of connection-mode transmission, starting from the interface to the physical

medium. As information is transmitted, it moves down through the layers, being modified

at each transition. Conversely, as information is received, it moves up through the layers,

reversing the modification made as it was transmitted. The modifications at each layer

differ, but normally it includes adding information and formatting to the information to

allow it to be delivered to the correct destination. It is often difficult to define which part

9

2 Background Techniques, Methodology and Terminology

of a system falls into which layer, as implementation often results in features related to two

neighbouring layers.

The layers of the OSI model include:

Application layer

Presentation layer

(layer 7)

(layer 6)

(layer 5)

(layer 4)

(layer 3)

(layer 2)

(layer 1)

Session layer

Transport layer

Network layer

Data-link layer

Physical layer

The work detailed here relates to aspects of the bottom four layers, and therefore

they will be used as a point of reference for the discussion of the reviewed systems.

The physical layer regards all the information related to the physical transmission

medium. In those regards, it covers aspects such as: connectors, cables, signal encoding,

voltage levels, noise margins, data rates, and signalling rates.

The data-link layer interfaces the raw transmission facility and produces an error

free medium, over which data can be passed. This is achieved by introducing the

formatting of the data stream in to transmission units, on which error detection and error

recovery can be based. Additionally, basic arbitration of the medium is specified, and in

the case of point-to-point systems, the operation of the data flow control normally would

be included.

The purpose of the network layer is to provide an end to end communication

circuit. It defines features used for tasks such as routing, switching, and types of

interconnection.

The transport layer is normally the domain of software, as its task is to alter the

data to be suitable for the particular terminal equipment, that is, independent of the

network and type of service. In point-to-point, packet switched systems this includes

packetisation of messages and sharing of the data path with multiple data streams.

Message-level error checking can be implemented at this level also.

10

2 Background Techniques, Methodology and Terminology

2.2 Review of the Methodologies of Switched Communication
This section briefly introduces the concepts and methodologies that have been used

in the devices, which are further documented in the historical review in the following

chapter.

2.2.1 Physical Link Layer Considerations
This section presents some physical connection formats, data rates and

synchronisation techniques that have been used in a number of prominent point-to-point

switched systems.

Physical connections in point-to-point networks are defined by the type and

requirements of the target application. For example, serial connections were chosen for

early system interconnections as single wire signalling could be driven over reasonable

distances at rates that were acceptable for the target technology and application, at a low

cost. Common transmission rates of these early systems were in the order megabits per

second (Mb/s). For the early applications that needed higher transmission rates, parallel

connections were chosen, where multiple bits were transmitted together. However, the

device architectures were limited by high pin count for such interconnections by the

integrated packaging technology. A solution for this limitation was the use of special

encoding techniques that allowed a single set of interconnections for full duplex operation,

that is concurrent transfers in both directions [24]. Other later systems moved to fibre

optics for improved performance, but this demanded integrated optical interfaces or

parallel output from the communicating device to the optical transceiver [25].

Recently, a trend has been to move back towards serial formats, even with intra­

system communication, where the demand for performance commonly resulted in parallel

interconnections. The improvements in data signalling has resulted in high transfer rates

whilst using minimal interconnection resources. The return to serial communication

formats has been helped by the availability of low-cost, high-speed driving circuits that

will drive signals over extended distances. Such is the interest in the latest signalling

technology that it has also been integrated into large scale PLDs, which are targeted

towards communication applications [26].

As parallel systems are constructed from parts that operate autonomously, the

physical medium must include some method to allow the communication to be recoverable

or synchronised from the message source to the destination. In small parallel systems, this

2 Background Techniques, Methodology and Terminology

may be achieved by a single global clocking system, but even this is not a simple solution.

Maintaining low amounts of skew as the clock signal is distributed becomes difficult as

number of connections and distances increase. Therefore, global clocking systems

normally are limited to board-level solutions. For larger parallel systems and distributed

systems, each individual unit normally operates on a local clock, to which the incoming

data stream must be synchronised.

A common solution to clock distribution is to send the transmitter clock with the

data stream either by extra signal wires, which is implemented in some parallel

interconnection systems, or by data encoding, which is favoured in serial interconnection

systems. Signal skew between the data and clock signal is a concern for those systems that

employ extra signal wires, which can result in very expensive cables or severe cable length

limitations. Systems that encode the clock into the data stream suffer less from skew, but

must employ additional circuitry that can recover the clock from the encoding as a useable

signal. One technique utilises a phase-locked-loop (PLL), which demands frequent

transitions on which the PLL can lock. Some examples of encoding used for this purpose

are bit stuffing as used in CAN bus system [27] or Manchester encoding as used in

Ethernet [28]. Additionally, the predictable format of bit streams such as the bit stuffing or

Manchester encoding format are often used as a method of error detection. Unfortunately,

some implementations can be complicated by the encoding mechanism. Research into the

CAN bus implementation of bit stuffing has shown the technique to be detrimental to fault

detection that were employed in the protocol [29].

An alternative approach to using data stream transitions for clock recovery is

technique that has been used with a parallel interconnection system [30]. The physical link

was nine bits wide, which transferred one byte and a control bit in each transmission cycle.

A non-return to zero inversion (NRZ-I) code was used, which toggles the signal level on

the transmission of a logic ‘1’, and leaves the signal stable on the transmission of a logic

‘O’. In itself this form of encoding did not provide a minimum number of transitions, but

the parallel nature and token encoding of the protocol ensured that each unit of data

possesses at least one bit set high. This in turn ensured that at least one transition occurred

per unit of information. The guaranteed transition could then be used to trigger latching

circuits to recover the information. The signalling rate of NRZ-I is variable, with a

maximum of the data rate. This is advantageous as lower signalling rates reduces noise

and lowers power requirements. The parallel interconnection system using this method of

12

2 Background Techniques, Methodology and Terminology

data recovery required high quality, matched physical cabling to minimise skew across the

parallel signalling lines.

Another example of using transitions to encode the transmitter clock, is the data

strobe technique where two signalling wires are used, one called the data wire and one

called the strobe wire [31]. Transitions on the data line are caused by change in the binary

value of the data. Transitions on the strobe line occur when no transitions occur on the

data line. These transitions result in the encoding of the transmitter clock within the data

stream, which can be regenerated at the receiver by a logical XOR operation of the two

signals. Unfortunately the data strobe technique also required accurately matched signal

wires, as too much signal skew between the signal lines would make data recovery

impossible.

One final method of data stream synchronisation is over-sampling, which is a tried

and tested technique that has been used in a number of systems. The most common

implementation of over-sampling is the serial communication device in most desktop

computers, namely the RS-232 driven universal asynchronous receiver transmitter

(UART). The receiver circuits of such systems sample the data stream at a rate many

times higher than the signalling rate, which allows them to synchronise to the bit stream.

Basic sampling theory states that a data stream should be sampled at greater than twice the

fundamental frequency signalling rate [32]. Many systems use a higher sampling rate to

ensure correct sampling and to provide suitable tolerance to signal skew, for example the

RS-232 UART used 16 times over-sampling. Figure 2-1 shows the technique utilising

five-times over-sampling, highlighting the areas when the data is sampled. It is evident

that the disadvantage of this technique is the increased rate at which the receiver circuits

must operate, although this can be altered to compromise between skew tolerance and

operating frequency.

2 Background Techniques, Methodology and Terminology

Recovered Bits

Received Signal

Sampling Clock

Sampling Periods

Figure 2-1 : An example of five times over-sampling

2.2.2 Data-Link Layer Considerations
The data-link layer interfaces the raw transmission facility and produces an error

free medium, over which data can be passed. This is achieved by introducing the

formatting of the data stream in to transmission units, on which error detection and error

recovery can be based. Additionally, basic arbitration of the medium is specified, and in

the case of point-to-point systems, the operation of the data flow control will be included.

2.2.2.1 Token Definitions
The data link layer formats the data stream so that it is suitable for transmission

over the physical medium. Thus, the formatting is dependent on the physical layer.

Network control information and data often are transmitted over the same medium in

point-to-point systems, which relies on a low volume of control signalling. Thus, the token

format also may be required to differentiate between control and data.

As highlighted previously, some parallel systems may use a parallel format for the

physical interconnection. Such systems may use the width of the link for a data unit [30],

alternatively multiple transfers of the parallel link may be used [33]. Most serial systems,

however, format the data stream in such a way to aid recovery at the receiver by

encapsulating the data in extra bits, which is known as tokenising, or framing.

2.2.2.2 Flow Control
To provide a system in which data transmission between producer and consumer

occurs, a form of flow control or handshaking is required. This should ensure that link

bandwidth is not wasted due to buffer underrun, and data is not lost due to buffer overflow.

14

A^:+.:/.+/7:4:9..177//^^^

2 Background Techniques, Methodology and Terminology

There are many different schemes to provide this functionality, which are matched to

network structure and application. As data is normally divided into frames or tokens, flow

control mechanisms must operate at this level. Hence, flow control mechanisms are often

described as part of data-link layer.

The method, with which flow control information is passed between

communicating parts, depends on the physical layer of the system. One solution is to use

the data path to relay this information as separate tokens or as part of the data frame.

Alternatively, additional signal wires may be used to reduce the overhead on the data

stream.

This section details two types of flow control mechanisms: permission based

systems and credit based systems. Permission based systems are most prevalent in point-

to-point systems, but earlier work was based on credit based system, thus both system are

presented.

Permission based flow control
Permission based systems inhibit or permit the transmission of data based on the

status of the receiving node. These mechanisms are also known as STOP/GO or X-ON/X-

OFF mechanisms. In all the implementations of permission based flow control

mechanisms, buffer overrun and underrun are the primary areas of concern. This is due to

the controlling factor of the mechanism, which is the time it takes the transmitter to react to

the flow control signalling. The reaction time is related to the signalling rate and them

maximum transmission distances, which both must be limited to define buffering

requirements of a workable system.

There are three areas where permission-based flow control regulates buffering

requirements; the third is only relevant to systems where the flow control mechanism uses

data bandwidth. The three regulatory clauses are:

1. There must enough buffering to ensure that any data in transit can be stored for

a period until the flow control has taken effect following a STOP.

2. There must be enough buffering to store enough data to ensure starvation does

not occur in forwarding the packet following a transition of flow control status

from STOP to GO

15

2 Background Techniques, Methodology and Terminology

3. There must be additional buffering to ensure the flow control mechanism does

not use the majority of the link bandwidth (hysteresis)

Figure 2-2 shows the operation of an example link, which is governed by a

STOP/GO flow control mechanism that uses separate tokens on the data path for control

signalling. The figure highlights the areas, to where the three regulations, defined above,

relate. Clause 1 is the only imperative rule, as it relates to the amount of tokens that can be

accepted after the assertion of the STOP flow control. Without this rule the link is prone to

buffer overrun, and is only valid for a predefined transmission length and data rate. It can

be seen by the simple example of Figure 2-2 that even with a transmission time of

approximately one token, the buffering require an extra four tokens over the limit that

generates the STOP command.

■clause 3-
-clause 1

dTXKXK)-
-< z > —

V
V

t x a — (KXKX

---------------- (JL >

■Vi
-clause 2

< * >

: - - - - - ►
j

A)(£ l)

VHCD-

Example Circuit
long transmission

length
A B

Tx

Rx Tx

R x

CkXKXK)-
Key

< K > Data Token

<D STOP Flow Token

< D GO Flow Token

Figure 2-2 : Depiction of the STOP/GO flow control mechanism with the important
features indicated that must be regulated for correct operation

Clause 2 is required to prevent buffer underrun that could occur from the latency of

the flow control mechanism. In this example, if node B was forwarding the data it was

receiving, it must have sent the GO token before it possesses less than four tokens. If this

is not adhered to, the forwarding bandwidth would be wasted while node B was waiting for

data from node A.

16

2 Background Techniques, Methodology and Terminology

Clause 3 is only necessary to prevent the flow control consuming too much reverse

path bandwidth, and as such, it is more difficult to depict. Clause 3 defines the hysteresis

of the mechanism between the STOP and GO states; thus, it defines the reaction of the

mechanism to the flow of data out of the receiver FIFO. The reaction to network

performance of this value would be dependent on traffic patterns, but optimisation can be

chosen to minimise the effects of the mechanism in worse case scenarios.

Figure 2-3 shows the implementation of buffering required for clause 1, 2 and 3 in

the representation of the receiver FIFO used for the permission based mechanism. It

shows how the clauses map out onto the hardware, and how the state of the buffering

controls the mechanism.

clause 1

clause 3

clause 2

V'. V . . :

H i sllll
FIFO

A lm o s t Full
'

FIFO
Almost Empty

n (full)

STOP level

GO level

0 (empty)

Figure 2-3 : Representation of the buffering required for the STOP/GO flow control
mechanism

Clauses 1 and 2 can be presented as a simple equation in term of the transmission

distance (metres), signalling rate (bits per second), bits per data token, bits per flow control

token, propagation speed (metres per second) and total delay of the interface

circuits (seconds). The bits per unit defines the ratio of data and control bits in the data

stream and therefore converts the total number of bits in transit to total number of tokens.

The propagation speed relates to the speed of a signal travelling down the medium. The

logic delay of the interface circuits should include the worse case time to generate the

control signal, and the worse case time for it to take effect after its receipt. The

transmission of the flow control and data tokens only play a role if the data path is used,

and relate to the worse case delay of the arrival of control information. Equation 1

calculates the minimum buffering for clause 1 and 2. Note that the distance/propagation
17

2 Background Techniques, Methodology and Terminology

speed, which provides the delay of the cable, is doubled. For clause 1 this is due to the fact

that at the point in time when the flow control is triggered the medium may possess back to

back data. The assertion of STOP will take the same delay to propagate to the receiver,

thus the number of back-to-back data tokens will double from the time the STOP was

generated. Clause 2 requires it for the opposite reason, as it will take twice the propagation

delay before the first tokens arrive after the assertion of GO.

Total extra delay = Logic Delay + Tx of Flow Control + Tx of data token

Equation 1 : Equation for minimum buffering requirements of clause 1 and 2 for
permission based flow control

Credit based systems
With a credit based flow control system, the receiver passes a credit to the

transmitter, which allows a predefined amount of data can be transmitted. Without credit

transmission data is inhibited. Credit allocation is based on receiver buffering status,

where the next credit is sent when enough buffering is free for the next set of data units.

The number of tokens that may be sent per credit, which will be referred to as a flow

group, and how many credits the transmitter can hold is defined by the implementation.

Obviously, as the size of the flow group increases, so do the buffering requirements. Thus,

in this respect, smaller flow groups are preferred. The smallest flow group would be a

single token, however, as the right-hand diagram of Figure 2-4 shows, small flow groups

can cause loss of bandwidth when used with large transmission distances or high signalling

rates. The gaps between data tokens on the diagram are losses of link bandwidth.

Therefore, as the flow group increases in size, the mechanism gains more resilience to

longer transmission lengths and higher signalling rates.

Signalling rate.
^ Propagation speed

Distance .2 + Total extra delay

Bits per unit

2 Background Techniques, Methodology and Terminology

Bit Rate at 20 Mb/s

° ~ K D >—
ft----------- 1ft

T x a — &
-

Txb -

R>̂ —H(p X D)—
approx 50ns

Test Circuit

Bit Rate at 100 Mb/s

T x b

R>fe

F ~ > — < D)---------

» 0-

O I > — C eD -

A

approx
10 Metres « ► B

Tx -.. ^ -Rx

Rx ^ -------- Tx

approx 50ns

Key

^ D ^ Data Token

(f) Flow Control Token

Figure 2-4 : Depiction of the operation of a credit based flow control mechanism over
10 metres at 20 Mb/s (left) and operation over 10 metres at 100 Mb/s (right) showing

the appropriate transmission delays
The advantage of the credit based mechanism is that FIFO overrun can never occur

in a fault free environment, as the flow control tokens must be received for further data to

be sent. However, the credit-based systems are penalised by bi-directional data transfers,

as a link that transmits back-to-back data, will use a predefined amount of bandwidth in the

opposite direction for the flow control signalling.

The size of the flow group for any given application can be infinitely extended to

improve resilience to speed and distance and bi-directional transfers, but buffering

resources must be sufficient to cope with the incoming data, which normally provides a

cost-effective limit.

2.2.2.3 Data Link Fault Tolerance
The data link layer is the first layer of the protocol that can perform data and format

checking for fault detection. As the layer defines the smallest unit of data, fault detection

mechanisms operate at this level. Examples of detection mechanisms are parity checking,

data encoding validation, link comiection validation, and synchronisation checking through

encoding or framing checks.

19

2 Background Techniques, Methodology and Terminology

There are a number of different types of parity checks, but they all work on the

same premise. A single bit is added to each unit of data, which is set to a value dependent

on the type of parity. Mark and space parity set the bit to logic ‘I 5 and ‘O’ respectively,

where odd and even parity set the bit to make the total number of logic 41 ’s in the data unit

as odd or even. The use of parity was prolific in earlier communication protocols as line

reliability was low, and it was a cost-effective solution for error detection. The worth of

parity as a fault detection mechanism in modem systems is questionable. Improvements in

reliability have reduced bit error rates that the earlier systems suffered. Additionally, the

single bit overhead per byte has become excessive in systems that transfer large volumes of

data. As such, systems that operate on blocks of information provide a lower overhead and

are therefore a more reasonable solution in these situations.

Other methods of error detection operate on failure of the data stream to conform to

some form of data encoding or the loss of signalling. Systems that operate on encoding

define an alphabet of characters or sequences that are valid, and inverting this premise

forms the method of error detection. While using encoding as a sole fault detection

mechanism would be insufficient in most applications, used with other techniques they can

be useful to supply extra confidence to data link integrity. Synchronisation checks using

encoding or framing checks also falls in to the same category as encoding validation as it

uses the expected format of a data stream to conform to a predefined form. Loss of

signalling is used as a detection method for disconnection or critical failure of the

communicating node. Communication channel initialisation, and connection validation are

used often as a higher level of point-to-point check for the protocol, which form definable

states that aid error detection.

2.2.3 Network Layer Considerations
The network layer provides the functionality for an end-to-end connection, defining

such features as routing, switching and a range of fault tolerance features.

2.2.3.1 Switched Architectures
All communication systems may use varying types of topologies. Dally [34]

defines topology as the interconnection graph of the network. In point-to-point networks,

the different topologies provide distinct system characteristics in regards to types of data

traffic patterns, raw throughput and fault tolerance. These features must be considered

when the topology is selected for an application.

20

2 Background Techniques, Methodology and Terminology

Topologies for switched, point-to-point networks fall into one of two main

categories, regular or irregular. The structure of regular topologies conform to definable

structure, such as the 2D mesh or hypercube shown in Figure 2-5. Much work has been

undertaken to characterise these types of topologies, one example is [35]. The use of

regular networks is common due to their predictable structure. This is their primary

advantage, as it can be used to help optimise the routing algorithms of the lower layers of

the protocol. However, not all applications suit regular topologies, and consequently, their

use can be impractical.

The structure of irregular topologies are not predefined and may take any form,

where interconnections are only limited by the devices, with which the networks are

constructed. By using switching devices with large numbers of ports, the number of

permutations of different network structures increases, and it can reduce the number of

switches between any two communicating nodes, which in turn lowers overheads. The

irregular nature of the topology forces more simple routing schemes, and involves more

complex system design requirements to optimise a system to the application. Figure 2-5

also shows an example of a possible irregular network constructed with a number of

multiport switches.

2D Mesh Hypercube Irregular (example)

Figure 2-5 : Depiction of the interconnection structure of the 2D mesh and hypercube
topologies, and an example irregular network.

2.2.3.2 Connection Methodologies
The connection methodology that is used within a network can be defined by the

type of message and the method with which packets are connected and switched.

Types of Connection - Unicast / Multicast / Broadcast
A message can be described as being transmitted from a single source, to be

received by a single or multiple destinations. If a message possesses only one destination,

21

2 Background Techniques, Methodology and Terminology

it is said to be unicast. Message that are sent from one source to many destinations are said

to be multicast, or broadcasting if sent to all destinations in the system. From hereon,

multicasting will be used as a general term to encompass multicast and broadcast

messaging. This description of the type of connection can also be used to define the type

of message.

It is difficult to place the feature of connection/message types in any specific layer,

especially with regards to multicasting in point-to-point systems. In systems that do not

support multicast communications in the lower layers, it is still possible to implement such

features in the higher layers. Bus based systems can implement multicasting easily, as all

devices receive every message it is just a matter of the lower-levels actioning the receipt.

For example, with bus architectures such as ETHERNET [28] or CAN [36] (Controller

Area Network), the multicasting implementation would fit better in the data-link layer, as

the decision of whether the message is accepted is relative to token level definitions of the

protocols. In contrast, the network resources of point-to-point systems are disjoint for

maximum communication concurrency, and a message only uses certain network resources

if they lie in the route between source and destination. This greatly complicates multicast

solutions.

The first versions of multicast algorithms in point-to-point parallel networks were

software controlled, based on message retransmission in the upper layers of the protocol.

Initially the source was given the task to send all the replicated messages, but such

solutions took up valuable processing resources, which led to hardware implementations of

the replication [37, 38], This did not solve the intrinsic problem with the technique, the

bottleneck of the single message source, especially if the source only possessed a single

link to the network. This led to the development of a technique called tree-based

multicasting, where the task of message replication was distributed over the network and

completed in parallel, which improved all aspects of message replication and delivery [39].

The primary aspect of all the earlier multicasting techniques was that the nodes were using

simple unicast switching to achieve their goal. This allowed the systems to maintain all the

advantages that had evolved from earlier work in unicast networks.

Concurrent to the latter unicast-based solutions, multicast switched-based systems

were developed [40, 41] that aimed to improve on the efficiency over the node-based

systems by automatic replication of the messages on switching. Despite more complex

22

2 Background Techniques, Methodology and Terminology

implementation problems, switched-based multicast algorithms have been shown to be an

effective solution for irregular topologies.

Methods of Switching
A method of switching relates to the manner the resources of the network are

allocated and released, as data is moved from source to destination(s). The earliest systems

used a technique called circuit switching, which formed a path of reserved resources from

source to destination before data transmission was carried out. The main advantage of

circuit switching was the guaranteed bandwidth once a connection was made. The

disadvantage, however, was that other connections could not be made until the resources

were relinquished. This meant a loss of network throughput. Reduction of the maximum

message size lowered the rate of message blocking. Therefore, a compromise between

message blocking and connection overheads had to be made to obtain the optimum

network efficiency.

As the size of networks steadily increased a more co-operative form of sharing

network resources was needed. This brought about the packet switched network, where

connections in the networks were localised which increased the communication

concurrency. There are many flavours of packet-switching techniques, but the majority of

them are based on three main comiection methodologies [42]:

• Store-forward;

• wormhole;

• virtual cut-through.

Store-forward switching - The store-forward methodology receives and stores the

message in its entirety at each switching node before connection resources are allocated.

This technique suits larger networks, or networks with a high volume of traffic, as

switching can be optimised with predefined sizes of data blocks. As messages are disjoint

from the data path, resource sharing can be optimised. If a message is stalled waiting for

connection resources, its disconnection from the data path allows subsequent messages

arriving on the same input to bypass the stalled message. In addition to the performance

benefits of improved sharing, the buffering of the entire message allows error checking to

be used to enable the removal, or localised retransmission, of bad messages. However,

store-forward switching demands a large amount of buffering resources and message

23

2 Background Techniques, Methodology and Terminology

latencies can be high. The latency of any message is directly proportional to the message

size and the number of switching devices between source and destination, plus delays due

to volume of network traffic.

Wormhole switching - Switches using the wormhole methodology connect

messages across the router-switch as soon as enough routing information has been received

and the connection resources are available; minimising switching latencies. In contrast to

the store-forward methodology, wormhole switching can be implemented with minimal

buffering resources at each node as the message effectively is distributed across the

network. Minimal message latencies and minimal buffer requirements are the primary

advantages of this methodology. However, as a message can span many hops, blocked

messages can utilise substantial proportions of localised routing resources, which can

reduce network efficiency as the network approaches saturation. In addition, without

precautions, networks using the wormhole methodology may be prone to deadlock.

Deadlock is discussed in more depth later, but can be simply described as the network

state, in which a number of messages stall and prevent delivery of one another due to

resource contention through cyclic dependency.

Virtual cut-through switching - There have been many variations of the virtual cut-

through routing methodology, but the primary aspect of this technique is the ability to

operate as either wormhole or store and forward system. This provides the advantages of

low latency communications but possesses enough buffering to ensure that blocked

messages can be stored to free up localised routing resources. More advanced versions

allow subsequent messages to bypass the blocked messages by their complete removal

from the normal message path. Such techniques increase the complexity and buffering

requirements of the switching fabric and may impose upper limits on message or packet

sizes.

As stated above, the majority of switched networks operate based on an

implementation of one of these three techniques. However, more recently, research has

been undertaken to emulate high-levels of network protocol, by utilising a hybrid of

switching techniques, which attempt to supply guaranteed quality of service [43, 44].

Quality of service is a term used when referring to the ability to guarantee predefined

levels of network use in terms of bandwidth and reliability. It is an aspect of network

communication that has become prevalent with the increased interest in multimedia

applications. Further discussion of these techniques is beyond the scope of this thesis.
24

2 Background Techniques, Methodology and Terminology

Virtual Channels
Virtual channels allow the multiplexing of one or more messages over a single

physical link such that at a high level it appears that many physical channels exist. This

can be implemented at many levels from token level to message level. Virtual channels

have been shown to substantially increase the utilised throughput of a network [45].

Normally, in a hardware implementation, there are a number of virtual channels associated

with each point-to-point connection. Each virtual channel possesses buffering that allows

a decoupled operation with regard to the other channels associated to the same physical

interconnection. This results in each virtual channel possessing its own control and

connection status. Dally [45] analogises adding virtual channels within a switched

network to adding extra lanes to a town traffic system. A network without virtual channels

is the equivalent to a town with single lane roads. Thus, any obstacle in such a system

would block all traffic attempting to use the same route. By increasing the number of

lanes, that is virtual channels, traffic can bypass blockages that may form. In addition to

such benefits, virtual channels have been used to implement more efficient deadlock free

routing algorithms [46]. Deadlock will be discussed further, in section 2.2.3.7. Dally also

highlights the increased router-switch complexities required for a hardware

implementation of virtual channels. He highlights that virtual channels increase the

number of connections to the core of the switch, which in turn complicates the control and

the switching matrix.

2.2.3.3 Packet Format
As highlighted in section 2.2.1, messages can be divided into smaller units to

provide for better resource sharing across networks. The majority of packet switched

protocols mainly follow a format similar to that shown in Figure 2-6. Normally the packet

has two or three parts. The first part is the header, which contains information relative to

the route through the network and possibly other control information relative to the

network such as packet length, type, or priority. The second part contains the payload of

the message, which was formatted by the preceding protocol layers. The final part is

optional and could be a packet delimiter or contain information relative to an error

detection mechanism. More specific details of the format of the packet depend on the

protocol, for example the size and meaning of the header, type of packet delimitation, or

type of embedded error checks.

25

2 Background Techniques, Methodology and Terminology

■Time'

routing header message payload tail

Figure 2-6 : Generic packet format used as a basis for the majority of protocols

2.2.3.4 Adaptive Routing Techniques
Within an embedded switched point-to-point network the topology is normally

fixed, with only rare applications that may add or subtract from the core architecture. In

such a network, which is non-adaptive, all possible routes must be predefined to allow

passage of information from source to destination(s). Networks such as these are called

‘oblivious’, as the route that the messages take is oblivious to faults or to the dynamic

traffic workload. By supplying flexibility to the routes that a message may take, the

messages may adapt to the state of the network. Implementing adaptively can be

complicated by concerns of deadlock and non-delivery. Deadlock is a network state in

which messages inhibit the progression of one another, and ultimately it can grind the

whole network to a halt. The other danger is that the adaptive features may unacceptably

extend the transmission time of messages as it attempts to circumvent fault or hot spots.

The extreme of this condition results in messages that never reach their destination hence

the term non-delivery. This is sometime referred to message livelock.

Out of order delivery is an additional problem in adaptive packet switched

networks. As the amount of adaptivity increases, the probability of packets arriving out-

of-order also increases. The probability of this increases further with larger buffer sizes in

the nodes, and therefore it is a concern in many adaptive networks. This can be solved

with restrictive measures, such as packet level acknowledgements, which prohibits

transmission until the arrival of previous packet has been confirmed [47]. Alternatively,

control information can be sent with each packet, which allows correct ordering at the

receiving node [48].

Adaptive routing may be implemented in varying levels, which is reflected in the

effects in the implementation of the architecture of the switch. Many systems have been

devised, which normally fall under the categories of minimally adaptive, partially adaptive

or fully adaptive.

Recall that oblivious routing algorithms contain one route between all source and

destination pairs. Minimally adaptive algorithms extend the number of possible routes, by
26

2 Background Techniques, Methodology and Terminology

a finite amount, along which the message may travel to reach its destination. Group

adaptive routing [49] is an example of a minimal adaptive algorithm. This technique

allows a number of point-to-point connections within the network to be logically

associated with one another. Thus, if a message requires the resources of a point-to-point

connection that has been defined as part of any given group, it may use any of those its

associated connections to reach its destination. In this way, group adaptive routing

attempts to distribute messages over many links to maximise link bandwidth, which has

been shown to improve the cross-sectional bandwidth of the network [50]. This in turn

simplified network implementations where more bandwidth was required in localised areas

of the network to ease bottlenecks. This method only allows the redirection of a message

where configuration has made it possible, and therefore a tight control on the routes that a

message may take is maintained. Such control on the routes provides some adaptivity

without interfering with any measures that may have been taken to tackle network

deadlock, but at the price of extra physical links. In addition to these benefits, grouping

also could provide a small level of fault tolerance. By supplying n alternative physical

routes by grouping, the network can tolerate failure n-1 faults between a given source and

destination.

Partially adaptive algorithms attempt to supply more flexibility than minimally

adaptive systems. This is achieved by supplying extended routing freedom but with some

method of limitation to ensure that deadlock or non-delivery does not occur. Virtual

channels are often employed to prevent deadlock, as in systems devised by Dally [51],

Duato [52] and Bolding [53]. Such systems use the virtual channels as escape paths from

deadlock, where a number of channels allow unrestricted progressive routing, but the

remaining channels operate on a deterministic algorithm that could be proven as free from

deadlock or non-delivery. Other partially adaptive systems restrict the routing decisions to

ensure deadlock cannot occur, as with the turn model suggested by Glass [54]. These

mechanisms will be discussed further in their relationship to deadlock in section 2.2.3.7.

Research has shown that partial adaptive algorithms utilise network throughput

more effectively than equivalent oblivious systems [55]. In addition to improving

performance, the adaptivity supplies certain levels of fault tolerance as the dynamic nature

of the routes allow faults to be bypassed. However, many adaptive algorithms use

topology information in their implementation, which restricts their use.

27

2 Background Techniques, Methodology and Terminology

More recently, the limitations of partially adaptive algorithms have been criticised

as being wasteful, as the restriction of routing decisions or reservation of resources may

prohibit the full use of all possible routes for the sake of deadlock freedom. Fully adaptive

algorithms removal all routing restriction from the decision processes, which allows for the

full resources of the network to be utilised. Recent systems by Pinkston [56], Martinez and

Lopez [57] have devised deadlock detection mechanisms, which then trigger recovery

mechanisms. With the use of a detection and removal technique that incurs little

operational overhead, it has been shown that the lost bandwidth due to routing restrictions

can be recovered. These mechanisms will be discussed further in their relationship to

deadlock in section 2.2.3.7.

2.2.3.5 Routing Decisions
For the packets of a message to reach the correct location through a communication

network, they must carry sufficient information for the transfer within the packet header.

There are a number of different methods, with which the information can be formatted,

allowing the routing device to decide which connection should be made. At the highest

level, this can be divided into source routing and network routing. Source routing requires

the source node to inject each packet into the network with a header that dictates the route

through the network by some form of encoding. Conversely, in network routing the source

injects each message with the identifier of the output and route taken is decided by the

network. For switched embedded parallel or distributed systems, source routing is used in

the majority of systems as a preference, as static topologies and source routing requires

lower implementation resource requirements.

In all of the networks that have been review for this work, routing information is

sent as part of the data stream, which compromises the use of data bandwidth for minimal

physical resource requirements. It is interesting to note, however, that some more

specialist, high-performance parallel systems provided routing infonnation by separate

resources to dedicate the data stream for maximum performance; for example the

CRAY T3D [3].

To described the most prevalent methods for route decoding of source-routed

networks five addressing modes have been identified, which are used to encode the path

through the network. They are:

28

2 Background Techniques, Methodology and Terminology

• Physical (Absolute) addressing [1],

• logical addressing [2],

• interval addressing [35],

• relative addressing [58],

• graph addressing [53].

Figure 2-7 will be used as a point of reference for the description of the first four of

the addressing modes, as it depicts a simple connection structure of a theoretical switched

network.

Physical (absolute) Addressing
Physical addressing is the most basic method, with which a message can be

supplied with a route through a network. The size of the header information is directly

proportional to the number of switches between the source and destination nodes, as each

unit of information contained within the message header relates to a routing decision at

each switch. For physical addressing the value of each unit of information directly relates

to the destination port number of the relative switch. For example, for a message to travel

between node 1 and node 2 in Figure 2-7, the routing header must contain one unit of

information with a value of {1}. However, for a message to travel between node 1 and

node 5, the header must contain two units of information, namely {2, 3}. This technique

infers that each unit of information is useless once it has been used as the message

traverses the network. For this reason, this unit of information is normally removed from

the message. This technique of removing the routing information is called header

stripping.

The mechanism for physical addressing decoding is easily implemented in

hardware and requires only a small amount of resources. Additionally the routing decision

can be made very quickly. Such advantages have made this technique popular in small

switched-networks. Hardware support of multicast is possible with this form of

addressing, although its implementation is limiting for the protocol. By using the routing

header as a bit vector for desired outputs, the functionality can be achieved, but once the

specification sets the size of header, the size of router-switch is also limited. Additionally,

the definition of a large header would be detrimental to routing performance.

29

2 Background Techniques, Methodology and Terminology

Node Node
2

...........
3

...

Node

Switch A Switch B

Not
connected

Figure 2-7 : Depiction of a theoretical network showing five communicating nodes
connected via two, four-port switches

The limiting feature of this methodology is the number of intermediate switches

between source and destination, as each router-switch requires its own piece of routing

information. Networks with a high number of switches between communicating nodes

would demand routing information that would make the system impractical.

Logical Addressing
Logical addressing increases the level of encoding that is implemented in the units

of the routing header, and as such, more information can be inferred by each unit of header

information. Through the configuration of the network, each unit of routing header can

specify a single path of definite length through the network, which lowers the routing

header overhead in router-switch networks when compared to physical addressed systems.

Table 2-1 presents the configuration that would be required for the example network of

Figure 2-7. Using this configuration, a message may travel between any source and

destination by using only one unit of routing header information. For example, a message

travelling from node 1 to node 2 requires a single unit header of {2}, and a message

travelling from node 1 to node 5 requires a single unit header of {5}. It must be also noted

that specific headers may also be classed as invalid if the destinations are not in use.

Reaction to these invalid headers must then be defined for a complete decoding strategy.

30

2 Background Techniques, Methodology and Terminology

Table 2-1 : Configuration details for switches A (left) and B (right) in the network as
depicted in Figure 2-7

Switch A Switch B
Header Unit Destination Header Unit Destination
Information Output Information Output

0 invalid 0 invalid
1 0 1 0
2 1 2 0
3 2 3 1
4 2 4 2
5 2 5 3
6 invalid 6 invalid
7 invalid 7 invalid

In the example provided here, the configuration tables, the switches, and the

number of destinations are much simpler than would be found in most applications. To

supply enough routing possibilities for a reasonable sized network two options exist. The

first option is to possess configuration tables that are the same size as the total number of

individual destinations. This demands a high amount of hardware resource at each switch.

The second option is to introduce header stripping as an optional feature on some parts of

the network. In this way, each unit of header information may be used to route within an

area of the network, or cluster. Stripping options can be configured at each router-switch

that is associated to each header (or destination port) to create these areas. As the message

crosses between one cluster and another, the first unit of header is removed. Thus,

multiple clusters may be used to create any size of network, only limited by the similar

constraints associated with physical addressing.

Logical labelling provides more practical support for multicast messages, which

can be implemented using the same method of header decoding, although hardware

resource requirements increase. The large amount of hardware resources is the main

drawback to logical addressing. The configuration tables at each router-switch node must

be of a reasonable size to provide an adequate size of network, even with optional

stripping. In addition to the resource consideration, the decoding of the routing header is

more complex when compared to the physical addressing and the network must be

configured before the system can be used efficiently.

31

2 Background Techniques, Methodology and Terminology

Interval Addressing
Interval addressing allows a less flexible but similar routing operation to logical

addressing. By the use of network configuration, interval addressing is used to define

message routes through a network. To use this technique effectively, a holistic view of the

network must be used. Network nodes that are local to each other with respect to the

physical topology are provided with adjacent address numbers. In this manner, the

network is constructed such that at any point in the network paths will lead to a range of

destinations. Thus, by labelling each output at all switches with a range of address

intervals, all the valid paths for the network can be defined. In this manner, a single unit of

routing information can be used by many if not all switches in the network. The manner in

which the intervals operate may vary slightly from one implementation to the next, but

there are two rules for interval decoding that must be followed to ensure legal operation.

They are:

1. Interval blocks must be disjoint and sequential.

2. Addresses that do not fall into any specific interval must be dealt with in a

predefined manner.

Table 2-2 shows an example configuration for interval decoding for use with the

theoretical network of Figure 2-7. As stated before, complete routes may be defined by a

single unit of header information, thus, for the basic network of the example its operation

would be identical to that if logical addressing was used. Thus, a message travelling from

node 1 to node 2 requires a single unit header of {2}, and a message travelling from node 1

to node 5 requires a single unit header of {5}. Additionally, intervals of invalid headers

within interval addressed networks are marked and must dealt with, as described of the

illegal headers within logical addressed networks.

32

2 Background Techniques, Methodology and Terminology

Table 2-2 : Interval configuration for switches A (left) and B (right) in the network as
depicted in Figure 2-7

Swit
Interval
Limit

ch A
Destination

Output

Swit
Interval
Limit

ch B
Destination

Output
0 invalid 0 invalid
1 0 2 0
2 1 3 1
5 2 4 2
7 invalid 5 3

7 Invalid

Interval addressing possesses all the advantages of logical addressing with the

exception that it is not suitable for switched based multicast routing. However, as the

configuration tables of the logical and interval addressing schemes show, less hardware

resources are required for interval addressing than for logical addressing. The number of

intervals required for each router-switch is normally a small number above the number of

ports. For example, a commercial routing device, the STC104, possesses 32 ports and only

37 intervals that can be used to address a network of 64k destinations before optional

stripping is used [59].

Relative Addressing
Relative addressing operates with a similar technique to physical addressing with

the exception that the decoding of the unit of routing header is effected by the input, at

which the message arrived. In practice, the unit of header is normally a signed binary

value, and the destination is produced by summing the header to the value of the input. As

with physical addressing, each unit of header information is only valid for one router-

switch along the route and therefore must be removed after its use. This technique was

designed to allow a simple calculation of the return route of any possible routes within any

network topology. Due to the relational method of this encoding, the return route may be

calculated by inverting the order of the headers and inverting the sign of each header.

Unfortunately, relative addressing inhibits the use of any dynamic adaptive routing

techniques.

Returning to the example network of Figure 2-7, a message from node 1 to node

two would require a single unit of header information with a value of {1}. To make the

return path the value would be {-1}. For a message from node 1 to node 5, a two unit

2 Background Techniques, Methodology and Terminology

header would be require of {2, 3}, with a return path of {-3, -2}. Table 2-3 contains all the

valid headers for a four-port router-switch that uses relative addressing. Values that do not

conform to those listed would be considered illegal, and recovery procedures would be

required.

Table 2-3 : Valid routing headers for relative addressing for a four-port switch

Incoming
Link ID

Requii
0

*ed Desti
1

nation L
2

nk ID
3

0 0 1 2 3
1 -1 0 1 2
2 -2 -1 0 1
3 -3 -2 -1 0

Graph Addressing
The routing information used in graph addressed switches is presented in the form

of an offset relative to the current location in the network. Thus, this type of routing

demands that such networks must be connected in a specific network topology, such as a

2D mesh network. The routing information is modified as each translation towards the

destination is made.

Knowing the topology permits a more intelligent manner of routing algorithms to

be implemented in hardware, which can supply improved network bandwidth utilisation

and supply fault tolerance by routing messages round faults. However, the restriction of

network topology, which provides these improved routing strategies, does limit the

flexibility and application of the resulting network. In addition, as the routes taken by

messages are controlled by hardware routing algorithms and network loading, only

retransmission based multicast messages can be implemented.

2.2.3.6 Fault tolerance - Error detection and recovery
It is a primary aim of a communication system to supply an error free method to

transfer information from one place to another. The aim of a network layer error detection

mechanism is to flag errors on a packet basis. This normally utilises a block checking

technique. Mechanisms, such as the cyclic redundancy check (CRC), are a popular for

block eiror detection at the network layer [60]. CRC are calculations that are based on a

polynomial equation, on which the data of the message is applied. The result is sent as part

of the message, such that when the whole message has arrived at its destination, the same

calculation may be carried out for comparison with the received value. While such

34

2 Background Techniques, Methodology and Terminology

systems are not infallible, the length of the polynomial can be extended to reduce the

probability of not detecting an error to an acceptable level for the application environment.

The detection of an error usually triggers a recovery mechanism, which may include a

request for the retransmission of the data at fault or inhibit the transmission of a packet

acknowledgement. Such mechanisms are not within the scope of this work, and therefore

will not be addressed further.

2.2.3.7 Deadlock
Deadlock can be simply described as the network state, in which a number of

messages stall and prevent delivery of one another due to resource contention through

cyclic dependency. That is, two or more messages cannot proceed as the required

resources are held by one another. Figure 2-8 shows a simple example of a single cycle

deadlock. Much work has been carried out to analyse deadlocks in switched networks,

providing an insight into how complex the subject area is [61, 62].

Much work has been undertaken to combat deadlock in router-switched networks.

Lopez [57] highlighted three strategies for handling deadlock: prevention, avoidance and

recovery.

Figure 2-8 : Depiction of deadlock in a four node system

Deadlock Prevention
Prevention ensures deadlock freedom by reserving all the resources from source to

destination before transmission is undertaken. This functionality implies some form of

circuit-switching technique. Pipelined circuit switching was devised to provide a fault

tolerant version of a circuit-switched technique [63], which decouples the path set-up and

data transmission stages. This allowed adaptivity, as the routes could be backtracked to

35

2 Background Techniques, Methodology and Terminology

route around faults. Once the path was fully connected, a path acknowledgement was

returned via the reserved path to initiate the transmission of data. However, pipelined

circuit switching was a very conservative mechanism that was comparable to the

techniques that initially encouraged the move from circuit switching to packet switching.

A subsequent mechanism attempted to amalgamate the benefits of pipelined circuit

switching and wormhole routing, which was called Scouting routing [64]. Scouting

routing decoupled path set-up and data transmission, but the path acknowledgement was

generated on a per hop basis and the time of generation was determined by a network

variable. Thus, the network could operate as a wormhole switched network or pipelined

circuit switching network, dependent on the variable. The technique was proposed to

operate with a range of delays that are dependent on routing decisions, which would supply

enough flexibility to backtrack where required.

Deadlock Avoidance
Avoidance techniques use strict rules in the routing algorithms to ensure deadlock-

generating cycles do not form. There are many algorithms for regular topologies, but

irregular topologies are less predictable and therefore the majority of systems operate a

derivative of the same technique. In irregular topologies, source routing networks know all

possible routes and therefore the avoidance algorithm is used to define these predefined

routes. Regular topologies may use oblivious or partially adaptive routing algorithms, thus

the avoidance algorithms normally are part of the network fabric as part of the routing

decisions.

The implementations of avoidance mechanisms on irregular networks

predominately are based on a technique that uses a tree structure of valid routes. If all

messages use the predefined messages, then cycles should not form. Autonet [40], a LAN

replacement for ETHERNET that was devised by Digital Equipment Corporation (DEC),

used a tree based methodology called up/down routing for unicast and multicast

communications. A message was said to be routed ‘up’ if the transition made the message

move closer to the root node of the spanning tree. Conversely, a message that was routed

‘down’ was said to be moving away from the root node. To ensure deadlock freedom, the

message had to adhere to a routing rule that: “A legal route must traverse zero or more

links in the up direction followed by zero or more links in the down direction.” By forcing

the order, in which the transitions are made towards the destination, cycles are prevented

and therefore deadlock is impossible. Unfortunately, this restriction may force the
36

2 Background Techniques, Methodology and Terminology

message to take a non-minimal path, possessing more router-switch transitions than is

necessary. This has stimulated research into improving this algorithm such that minimal

route can be taken advantage of, whilst maintaining deadlock freedom [65].

Regular networks are predictable in their interconnection graphs, thus the

techniques to provide deadlock avoidance has continually evolved. An early solution was

similar to the up/down routing algorithm of the irregular network, where the message

followed a priority based routing algorithm, called dimension order routing. The routing

rule for dimension order routing was as follows (paraphrased from Dally [51]):

A packet is routed along each dimension until it reaches a node whose

address in dimension d matches the address o f the packet destination

node in the same dimension. I f the addresses match, then the packet
continues to route in the next lower dimension where the current channel
address and the destination address differ. This continues until the
packet reaches its destination

Although dimension ordered routing took a minimal path from source to

destination and guaranteed deadlock freedom, the limited path did not consider the

dynamic state of the network. Thus, network resources could be wasted and network faults

could not be circumnavigated. This encouraged the development of partially adaptive

routing algorithms. One of the earliest was the turn model proposed by Glass [54] for

multidimensional mesh and cube networks. The fundamental concept was to prohibit turns

that would cause cycles to be formed, which was an evolution from the dimension ordered

routing algorithm where a maximum number of turns were prohibited. By inhibiting only

one turn per possible cycle, it was possible to supply more adaptivity while preventing the

formation of cycles.

Other methods of partially adaptive, deadlock free algorithms utilised virtual

channels to progressively restrict routing options, to prevent cycles forming [34]. A

number of virtual channels are associated with each physical link, and virtual channels are

ordered, similarly to the dimensions in dimension ordered routing. Thus, routing is

restricted to visit channels in decreasing order to eliminate cycles and therefore prevent

deadlock.

37

2 Background Techniques, Methodology and Terminology

The distinct disadvantage of preventive algorithms is loss of network throughput,

which is caused by the routing limitation. Additionally, many of the techniques are prone

to failure if the data stream introduces bit errors.

Deadlock Detection and Recovery
In recent years, deadlock recovery methods have been shown to be suitable

replacements for earlier preventative and avoidance strategies. Pinkston [66] provided

simulation data showing the performance advantage recovery based systems have over a

number of selected avoidance techniques. The work on these recovery mechanisms

declare that recovery techniques can improve on avoidance and preventive techniques as

the networks can be used more effectively and the cost of the recovery mechanism on the

performance of the network is low if it is executed infrequently. They further state that the

probability of deadlock in a fully adaptive network only approaches unacceptable levels as

network approaches saturation, which can be limited by controlling the volume of traffic.

However, he notes that the efficiency of the detection and recovery algorithm plays an

important role, and in some situations, avoidance will provide better results. This is

because the loss of bandwidth through resolution can be greater than the overall bandwidth

restrictions of preventative and avoidance techniques. Other research undertaken by

Martinez [67] suggested a restricted message injection technique to prevent the network

from becoming saturated. This maintains a low deadlock probability, thus allowing

routing restrictions to be relaxed, with confidence that the recovery-based system will

operate efficiently.

All the systems used for deadlock detection, which have been reviewed, utilise

some form of time related function. Deadlocks are flagged when data transfer has not

taken place, or delivery has not been completed in a predefined time-period. The most

basic systems work purely the on the progress of data through the network and the time-

period. If no progress is made within a specified time limit, the message is flagged as

locked, and the recovery procedure is executed [68, 69]. While these systems can provide

guaranteed detection of deadlock conditions, thus ultimately providing the functionality

required, they must be optimised to suit the network parameters; such as, network

topology/diameter/throughput, and packet sizes. Without optimisation, time-based

mechanisms loose efficiency either by using time-outs that are too short or too long. Short

time-out periods cause higher numbers of false detections, which forces wasteful use of

38

2 Background Techniques, Methodology and Terminology

resolution procedures. Conversely, long time-out periods allow the networks to stall for

long periods, which lowers network availability.

Lopez and Martinez devised mechanisms that attempted to minimise the number of

false detections whilst identifying true deadlock conditions as quickly as possible, without

dependency on network traffic patterns or workloads [57]. This is achieved by the

identification of the root of the cyclic dependency of the deadlock tree and execution of the

recovery mechanism on that node. The root of a cyclic dependency tree is a single node,

where if the message is removed from the cycle all other message will be able to continue

along their route unhindered. Although Lopez stated that “a deadlock mechanism should

propagate information along the branches of the tree of blocked messages indicating there

is no deadlock”, he maintained that information provided by the flow-control mechanism

was adequate for deadlock detection. In practice, his deadlock detection mechanism used

‘data flow’ status flags and timers that were local to each switch. The deadlock recovery

mechanism was invoked when the timer, which being monitored by the message marked as

root, elapsed. Lopez used a single premise to identify a root, which was: “A message shall

only be flagged as a possible root of a deadlock cycle if the message blocks whilst waiting

for resources occupied by a non-blocked message that later becomes blocked”. While this

mechanism still relied on the expiry of a time-out, the action of minimising the number of

messages flagged for recovery, improved the effectiveness of the mechanism to that of

basic time-outs. . Their results showed that with the timers set to an optimum threshold to

suit predefined network traffic, low false detection rates could be maintained.

Pinkston [70] quantifies three procedures for deadlock recovery: deflective,

progressive and regressive. Deflective methods encompass the systems that route a

message out of the dependency cycle effectively moving it away from its destination.

Martinez [67] uses an example of deflective recovery, where selected messages are

redirected to the processing node local to the router-switch. Progressive methods are

similar to deflective methods, where messages are removed from the cycle, but the selected

message still moves towards its destination. Pinkston presents his mechanism,

DISH A [68], as progressive. This mechanism implements a by-pass route and extra

buffering at each router-switch, which supplies a minimal deadlock-free path to the

destination. Finally, regressive methods remove the selected message from the

dependency tree by deletion of the messages from the network. Following deletion, the

messages must be transmitted again by the source.

39

2 Background Techniques, Methodology and Terminology

2.2.4 Transport Layer Considerations
The transport layer would not be normally associated with a hardware mechanism.

However, certain aspects of the transport layer affect the lower levels such that it cannot be

ignored. These aspects are the segmentation of the data to suit the lower level, message

level error detection. Segmentation of the data, or packetisation, is a common theme in the

majority of communication protocols. In earlier point-to-point systems, the devices would

establish a connection between source and destination, after which the entire message

would be transferred. Modem systems maintain the connection based system, although the

physical connection has been replaced by virtual connections. The abstraction of the

middle layers gives the appearance that a permanent connection exists to the higher layers.

In reality, many devices may be sharing the same network resources, and thus the

communication must be split into smaller parts of a predefined size to suit the network.

The aim of a transport layer error detection mechanism is similar to that of the network

layer error detection procedures, but the detection mechanism is carried out on the message

as a whole. Again, as in the network layer, the transport layer normally utilises a block

checking technique.

40

3 Review of Earlier Research

3 Review of Earlier Research
A critical breakdown and discussion of earlier research work is provided, which

covers research completed by previous members of the research group and some

comparisons with other contemporary devices. These topics will be address in terms of the

lower three layers of OSI model; the transport layer of these systems will not be addressed.

3.1 Introduction to Earlier Systems
To aid the reader, this section provides a brief overview of the systems under

review, which discusses grounds for development and target applications.

3.1.1 NTR08
The first router-switch design was the NTR08 [1]. The device was an eight-port

dynamic packet routing switch targeted for use in building parallel processing networks

using the Transputer microprocessor. The research concentrated on solving a

communication bottleneck suffered by the first generation transputers. Transputers were

produced by INMOS and later by SGS-Thompson, they first appeared on the market in

1985. They employed integrated serial communication links that enabled them to be used

as building blocks for constructing parallel systems. This serial communication link was

based on an over-sampled asynchronous protocol that will be referred to as the ‘OS link’

from hereon [71].

Transputers were revolutionary for that period, due to their architecture and

operational methodology, which followed the communicating sequential processes (CSP)

model as expounded by Hoare [16]. Simply, the CSP model operates on the premise that

any task can be broken down into smaller tasks (or processes) that synchronise and pass

information in the form of messages. Transputers supported the CSP model in hardware,

which meant that the first programming language, OCCAM, formally complied with the

methodology and systems could be mathematically proven. Sharing data by self­

synchronising channels, as specified by CSP, removed the need for extra mechanisms for

mutual exclusion, such as monitors and semaphores, thus reducing software requirements.

In the transputer family the OS links directly supported the self-synchronising channels of

the software model, and provided one-to-one logical to physical mappings for off-chip

communication channels. As such, at the user-level, there was no difference in

41

3 Review of Earlier Research

communication between local or remote processes, which meant that a system could be

executed on one or more transputers without further software development.

The main design premise of the transputer family was the minimisation of the

board-level component count, as it increased reliability and reduced production costs. As

such, many transputer family members integrated standard parts with the transputer

communication system. These devices allowed the construction of systems that were

much simpler in structure and therefore much easier to design and build. The OS links

provided an efficient system to connect transputers, like building blocks, to create systems

of any size. INMOS claimed that any system could be expressed using the range of

transputer products by localising closely related tasks to overcome physical

communication limitations. Using such a localised design methodology theoretically

supplied a flexible distributed processing topology where processing power could be

supplied to areas that required it.

Using task localisation with the transputer was very efficient in many applications,

particularly those that were naturally parallel, but many other application areas required

more inter-processor connections than were available. As system complexities and system

sizes increased, interconnection requirements also became more elaborate, which could not

be supported by the simple logical to physical one-to-one mapping communication

methodology of the transputer. Early research into the physical limitations of the

transputer brought about two solutions; programmable crossbar switches and software

routing mechanisms. INMOS developed a programmable crossbar switch the C004 [72],

which was designed to be used statically. In the standard operation of networks

constructed with the C004, the connection topology was set before running a statically

configured program. Independent research was carried out using the C004 for dynamic

switching [73, 74]. This demanded high system complexity to ensure communication

integrity, which made such solutions impractical in most applications. The other solution

of using software routing algorithms utilised processing time to redirect messages towards

their destination, such that many CSP channels could be multiplexed on a physical

link [75]. For networks that contained low volumes of messages, this solution was

acceptable but as the message workload increased, the routing began to affect the

efficiency of the network to unacceptable levels. Clearly, these two methods for message

distribution were problematic.

42

3 Review of Earlier Research

Research resulting in the NTR08 device proved the feasibility of networks

constructed with a multi-channel hardware message routing device, which combined ideas

from both earlier solutions. This was demonstrated to provide more efficient

implementations than many software-based equivalents [76].

3.1.2 ICR-C416
The ICR-C416 [77] was a commercial development based on the research of the

NTR08. The device is an industrial standard, sixteen-port hardware packet routing switch,

which possessed all the routing features developed from the NTR08 research.

3.1.3 NTR-M04
Development of the NTR-M04 [2] followed the completion of the NTR08. The

NTR-M04 was a prototype four-port packet routing switch that investigated hardware

support for multicast connections.

The NTR08 proved successful in improving network efficiency for the first

generation transputer networks. During the period of the development of the NTR08, the

second-generation transputer, the T9000, and C l04 packet routing switch were produced.

Unfortunately, there was limited interest in the T9000 and as support for the first-

generation transputer dwindled, the use of both generations declined. Initially the

NTR-M04 was targeted towards the second generation of transputers, which was based on

the DS link protocol [80]. Its main aims were to improve certain design aspects of the

NTR08. During the early stages of project development, a decision was made to take a

step away from transputer systems and concentrate on improving the routing devices for

the target applications of embedded and distributed processing. This decision produced a

modified list of aims, which included protocol modifications, hardware support of

multicast messaging, review of device configuration, change of design entry techniques,

change of target technology and preliminary investigation of embedded fault tolerant

features.

By moving away from supporting transputer products, the NTR-M04 could

customise the network protocol to suit system ideals. The NTR08 had to create a hybrid

protocol such that it could operate with transputers. This introduced limitations in the

system, as the OS protocol was not designed for such use. Similarly, the DS protocol was

initially designed for use with the T9000, which supplied rigid compliance to the lower

four layers of the protocol via hardware and configuration software. As the NTR-M04 was
43

3 Review of Earlier Research

targeted towards a heterogeneous switched environment, the networking protocols were

defined with system and router-switch considerations at the fore, which included

alterations at all of the lower layers.

Multicast messaging was always problematic in switched networks as they are

constructed using a disjoint set of resources and messages only use the resources that are

necessary. While this is a disadvantage for multicasting, it allows for concurrent

communication increasing the network throughput many times over the basic bandwidth

figures. Section 2.2.3.2, highlighted research related to multicast messaging on point-to-

point systems. The NTR-M04 aimed to improve the network operation through hardware

support of multicast connections, which effectively removed hot spots from the network

ingress points over unicast derived solutions.

The review of device configuration targeted features that supplied flexibility in the

configuration of the network. The earlier NTR08 possessed a range of comprehensive

configuration, monitoring and intervention features that were available through a single

connection that was removed from the data network. The resulting consequences of this

architectural decision were considered and an alternate solution was presented.

With the progression of semiconductor technology, many systems have been

devised to improve the speed of implementation and reusability of proven design

structures. The NTR08 was implemented using an accepted design flow that included

schematic design entry. At the commencement of the NTR08 project, hardware

description languages (HDLs) were starting to become industrially accepted, although tool

availability, support and reliability were low. HDLs could be compared to parallel

programming languages that allow the definition of system or device operation at many

levels of abstraction. This allows the language to be used at more levels of the design flow

and quick re-targeting of technologies, but for hardware implementation the technique

relies on the abilities of the tool-set for optimisation and correct synthesis. With effective

tools, the design cycle of a project can be dramatically speeded up with the use of HDLs

when compared to schematic entry techniques. The change in design entry also arrived

with a change in target technology. The NTR08 was implemented in a gate array

technology, which incurs high non-recurring engineering costs, but low manufacturing

costs for high volumes. This made development of niche products, like the router-switch,

an expensive exercise. For lower initial costs and small volume products, programmable

logic devices would have been more suitable, but early products were too basic to be used
44

3 Review of Earlier Research

for any reasonably complex task. The last five years has seen significant improvements in

this technology, which has seen them move from being used as small decode or interface

logic to the main application devices. Whilst the unit cost is relatively high for the larger

PLDs, the overall cost saving in prototyping, and in some areas full scale production, has

seen them take a large proportion of the ASIC market. The improvements of HDL design

tools and PLD technologies allowed a new design flow to be tested within the development

cycle of the NTR-M04.

Finally, the NTR-M04 work included a preliminary investigation of embedded fault

tolerance. It was recognised that the monitor and intervention techniques of the NTR08,

whilst effective, could result in complex and expensive system solutions. It was the aim of

the project to highlight areas of development to supply a more resource effective solution.

3.1.4 Contemporary Devices
Throughout the development of both projects of the NTR08 and NTR-M04 there

was much research into switching networks for parallel and distributed applications. To

reflect other aspects of network design in these areas are introduced briefly. They are; the

STC104 32 port router-switch [78], the 4+1 port Reliable Router-switch [79], and Myrinet

a workstation clustering network system [30, 58].

3.1.4.1 STC104
INMOS (later SGS Thompson) during the period of the development of the

NTR08, released the second generation transputer, the T9000, and some time later the

STC104 (formerly the IMS C l04) packet routing switch. INMOS had recognised the

limitation of the localised processing methodology and included the STC104, which

allowed a modified communication system structure for their second-generation devices.

This saw the move away from dedicated point-to-point systems to switched, virtual point-

to-point systems.

The STC104 operated with an upgraded DS link protocol that replaced OS link

protocol of the first generation of transputers. The DS link, so called due to the data-strobe

data recovery technique, on which it was based, operated using a four-wire, self­

synchronising protocol. The DS link was specified to operate at a variable bit rate up to

200 Mb/s [80]. The system protocol was later formalised by the Institute of Electrical and

Electronic Engineers into the IEEE 1355 standard [81].

45

3 Review of Earlier Research

Although the T9000 never saw the popularity of its predecessor, the STC104

maintained a position in the market, which saw it accepted as a device disjoint from

Transputer systems, through the IEEE standard.

3.1.4.2 Reliable Router
In addition to the work centred around distributed systems, there were a number of

switches that were designed specifically for use in high-performance parallel systems only

examples include the Reliable Router [79], Chaos router [82] and the WARRP [25]. The

Reliable Router is a typical example of such switches; it saw most of its development in

the early to mid 1990’s. The target applications of the resulting networks were dissimilar

to those constructed with the NTR08 and the C l04, but some overlapping of ideals

occurred. The primary difference between switches such as the NTR08 and the Reliable

Router was one of evolution. As the Reliable Router and its brethren were designed for

high performance parallel processing, their functionality was refined, restricted and

optimised. The removal of extraneous features refined the devices; for example, they

include enough communication links to suit the system, in which they operated.

Restrictions were imposed that simplified aspects of their operation, which in turn

improved their efficiency.

3.1.4.3 Myrinet
Myrinet [30,58] was designed to operate as a point-to-point, switched,

interconnection system for clusters of workstations, PCs, or single-board computers of

irregular or regular topologies. Other systems have been used to cluster workstations,

Ethernet being the most obvious example. In this role, the demands on the communication

system are large, as they must provide high data rates with low latencies. Myrinet claims

to achieve both these aims with built in fault tolerance to detect and isolate faults.

As a commercial product, all components for the Myrinet system are available for

purchase. It was first shipped late 1994 and since then has gained wide support and may

be used with a number of operating systems. Since this first shipment, the Myrinet system

specification has been updated, although the primary aspects remained the same.

3 Review of Earlier Research

3.2 Physical Layer
To provide a valid solution for use with transputers, the NTR08 protocol had to be

defined to be compatible to the physical asynchronous serial communication system and

allow for a scaleable, flexible connection topology. This was the first project challenge, as

the protocol was designed for reliable single point-to-point communication. The OS link

protocol defined two serial lines, which were used as a co-operating pair that transmit both

data and control information to form one full-duplex communication link. The OS link

specification was primarily a board-level protocol, or board-to-board connection via a

backplane, and as such was designed to operate in a low noise environment. However, the

OS link was not limited to board level implementations. For off-board applications,

INMOS recommended the use of additional drivers. Recent research based on a CPLD

implementation of an OS link has shown that the technology can be used up to 100 metres

with suitable driver circuits, even at over double the originally specified bit rates [6]. The

asynchronous nature suited the embedded applications based around the communicating

sequential process model. The asynchronous serial aspect of the protocol was a popular

for the era in which it was developed. It operated at similar* bit rate to the RS422 but

utilising a point-to-point nature similar to the RS232. The over-sampling technique was

favoured as it simplified synchronisation at the receiver. Although in present terms the

link bit rate is considered to be slow, the implementation resource requirements are low

whilst supplying a very reliable physical layer.

In contrast to the NTR08, the STC104 operated with the DS link protocol. Each

link was bi-directional, using two wires for each direction. The line encoding of the data-

strobe was introduced in section 2 .2 .1, which highlighted that the transmitter clock was

embedded into the signalling. A negative aspect of this method was that the link had to

operate continuously to maintain synchronisation, which could demand large power

requirements for large networks, even if communication was infrequent. Additionally, the

wire pairs had to be accurately matched for off board transmission, as too much signal

skew between the signal lines would make data recovery impossible. The DS links were

specified for use at distances up to 1 metre without additional drivers, up to 10 metres with

differential drivers and up to 500 metres using fibre optics.

The Reliable Router took a greatly different approach to that used by either the

NTR08 or STC104. Since the primary aim of a parallel processing network was the

overall speed-up of task execution, the network had to be able to move data as quickly as
47

3 Review of Earlier Research

possible with least amount of delay at each intermediate step. The Reliable Router

achieved this by streamlining the switch to maximise throughput. The links of the Reliable

Router was specified to operate at a bit rate of 3.2 Gb/s. The high link transfer rates were

achieved using parallel links, as the Reliable Router used twenty-eight separate lines per

bi-directional link. These links included eight control lines, sixteen data lines and four

clocking lines. Such parallel links were a problem in these types of switches, as the

number of available pins on the device packaging was limited. As a high-performance

parallel processing system, the physical links of the Reliable Router were defined for

board-level or backplane use. The Reliable Router used plesiochronous data recovery [83].

This is where two communicating devices operate with separate nominal free running

clocks. The transmitting clock was sent along with the data, and was used to read the

received data. The data was then synchronised across the receiver and core clock domains.

Specific details of this technique are beyond the scope of this work. In addition to this

recovery procedure, the Reliable Router also used bi-directional signalling on a single line

to reduce the high pin demanded by the link [24].

The development of the NTR-M04 saw the move away from the transputer

protocols. In this way, it was possible to devise a protocol that could use the best features

from the techniques that were already known. The over sampled technique of data

recovery was proven to be a reliable technique that was suitable for distributed networks

from the earlier work of the NTR08. Over-sampling forces a higher sampling rate than the

bit rate. Thus, this lowers the bit rate by the multiple of over-sampling rate, which is

governed ultimately by the limitations of the implementation technology. To redress this,

the NTR-M04 protocol included a second optional signal line per physical link. The

second line on the link was optional as, if at reset the second line was disabled, the link

would operate with just one line. This differed from previous implementations of parallel

links, as bits were not transferred in parallel, but separate data words were sent. Figure 3-1

depicts this operation. The system could be otherwise described as two links co-operating

in the transfer of a single message. This had the benefit that the skew tolerance between

the lines was much greater than that of the DS protocol, for example. With the DS

protocol, it is stated that up to one bit of skew can be tolerated. In contrast, with the NTR-

M04 only byte order was imperative, which provided a skew tolerance of half a data token

between the two signal wires. This meant that non match cabling could be used, reducing

the cost of implementation. However, the cost of implementation in silicon for the

48

3 Review of Earlier Research

NTR-M04 dual wire link was higher than first predicted. This form of link effectively

used four receiver circuits and four transmitter circuits per physical link, plus additional

control logic to share the data between the two parts. This aspect of the design is an

optional method to double the link bandwidth, but at a higher design cost.

Node A Node B

Top Rx £-------------Line 1 -------------- Top Tx
Bottom Rx i-------------Line 2 -------------- Bottom Tx

Top Tx --------------Line 3 -------------* Top Rx
Bottom Tx --------------Line 4 ------------- 5 Bottom Rx

Line 1 1a > ^ 3 a X 5^ X ^ X 1b X 3b > -

□ne 2 — ̂2a x 4a 6a 8a "x 2b y—
Line 3 FCT (b))>---

Line 4 <(FCT (c)

Figure 3-1 : A diagram of the split link operation of the NTR-M04

Similar to the Reliable Router, the Myrinet system [30, 58] also utilised a parallel

connection over which bits of the same token were transmitted in parallel. The first

generation of Myrinet [30] specified a nine-wire, parallel, physical link per direction,

which comprised of eight data bits and a type bit. The second generation of the

Myrinet [58] system contained two types of interconnect, which only differed slightly in

the physical layer of the protocol. The two types were referred to as the SAN (system area

network) and LAN (local area network) interconnects. The SAN interconnect was

constructed of two, ten-wire physical links per direction, which included an additional

dedicated line for permission based flow control. Whereas the LAN physical interconnect

matched the specification of the first generation.

The first generation Myrinet protocol was specified with a data rate of 80 MB/s at a

maximum transmission length of 25 metres. The second generation was specified at range

of operating limitations. LANs are specified to operate at a data rate of 80 MB/s at a

maximum length of 25 metres, and at a data rate of 160 MB/s to a maximum length of

49

3 Review of Earlier Research

10 metres. SANs are specified to operate at either 160 MB/s or 320 MB/s at lengths of up

to 10 feet (approx. 3 metres). The alterations to the specification in the physical layer

showed a desire for improved raw bandwidth in localised regions. This appears to be an

obvious step taken from feed back from customers.

The physical medium of both Myrinet specifications used non-retum-to-zero, mark

(NRZ-M) encoding. However, the exception to this encoding was the flow control line of

the SAN link, which was level encoded as it reflected the status of the receiver buffering.

This NRZ-M encoding was covered in section 2.2.1. The receiver operated

asynchronously, and a sampling window was triggered with the first detected transition on

the link, per token. Each token was guaranteed to possess at least one transition by the

valid token definitions, this will be discussed later in section 3.3.1. As the data recovery

mechanism was triggered on the first transition per data transfer, the Myrinet specification

called for a maximum skew limit of 40% of the character period between the first and last

transitions of a token. It was further specified that cable skew should be no greater than

25% of the character period. These requirements equated to a skew limitation of between

781.25 ps and 1.5625 ns for SAN cables, and between 1.5625 ns and 3.125 ns for 25 metre

LAN cables.

3.3 Data Link Layer
This section covers the data-link layer aspects of the devices and systems that are

under review, considering basic units of information, data flow control and fault tolerance.

3.3.1 Token Definitions
The NTR08 link had to comply with the asynchronous, serial OS link of the

transputer. The asynchronous bit-stream formed tokens that provided a means, to

synchronise the data at the receiver. The receiver resynchronised to each token, which

resulted in the full amount of skew tolerance provided by the over-sampling technique per

token. Two tokens were defined; the data token and the flow control token. Figure 3-2

shows examples of these tokens. A data token encapsulated eight data bits within an

eleven-bit token, and the flow control token was formed with just a start and stop bit.

Using these two tokens, the protocol operated using a form of credit-based, back-pressure

flow control, where the state of buffers upstream controlled the flow of data by

propagating control information downstream, as described in section 2.22.2.

50

3 Review of Earlier Research

The OS protocol was designed for single point-to-point connections, with a one-to-

one mapping of software to physical channels.

Time
 ►

Data Token

Start
Bit

T y p e
Bit

-----------------,~
1
i
iB it | B it ! B it ! Bit Bit Bit | B it B it j

i

1

o

t ! 2 !
i i

3 4 i
1i

5 1 6
i

7 j

bit time

S to p
Bit

Flow Control Token

Start
Bit

S top
Bit

bit time

Figure 3-2 : OS link protocol base tokens

No fault tolerance aspects were defined as part of the data-link layer of the OS link

protocol. However, token framing could be used to check synchronisation, but the NTR08

did not attempt to use this, as the bit error rates of the technology at board level and rack-

level solutions were exceptionally low.

The communication methodology of the second-generation transputers saw

differences between the OS and DS protocols. The limitations of the OS protocol resulted

in the DS protocol supporting physical resource sharing through packetisation. This was

implemented at the data link layer by extending the scope of the control tokens. The

extended control token was four bits in length, including one control bit, a parity bit and

two identifying bits. The data token was constructed of eight data bits, a parity bit and

control bit, which resulted in a token one bit smaller than the OS protocol. This was

possible with the alteration in the synchronisation technique, which reduced the protocol

overhead at the expense of continual transmission to maintain a valid connection. Figure

3-3 shows the format of these two tokens back-to-back. The parity bit was used as a form

of low-level fault detection. While the applicability of parity in modem communications is

questionable as discussed in section 2.2.2.3, its use in the DS link protocol helped verify

link synchronisation, thus making it integral to the solution.

51

3 Review of Earlier Research

data token Control token

r Y
p 0 Do D, d 2 d 3 D4 d5 d6 d 7 p 1 C0 Cl

Parity bit

Control bit

Y
Scope of parity bit in second token

J

Figure 3-3 : Format of the data and control tokens of the DS protocol

The extended format of the DS link control token provided support for

synchronisation support, flow control and packetisation, at the expense of increased

overheads for control-signalling. Table 3-1 lists all token that were defined for use in the

DS link protocol. In an idea similar to the ASCII escape code used in terminal

communication, one control token was defined as an escape symbol. Although the escape

symbol was only specified for use in one control token, namely the NUL token, this

allowed scope for future additions or modifications to the protocol while minimising the

control-signalling overhead for the basic control symbols. The NUL token was used to

maintain synchronisation while there was no data to transmit.

Table 3-1 : List of all type of token used in the DS link protocol

Token Identifier Abbreviation Coding [Parity, Type,LSB ...M SB!
Flow control FCT P 1 0 0
End of packet EOP P 1 0 1

End of message EOM P 1 1 0

Escape ESC P 1 1 1

Null NUL E S C P 1 0 0

Data DATA P 0 Do D i d 2 d 3 d 4 D5 D6 d 7

With the move away from the transputer architecture, the NTR-M04 protocol could

be developed from the ground up for virtual point-to-point connections over a scaleable,

switched network, unlike the hybrid protocol of the NTR08. This was reflected in the

token definitions, which involved aspects of both the DS and OS protocols. The over-

sampling, asynchronous features of the NTR-M04 link required a similar formatting to the

OS protocol to support data recovery. Figure 3-4 shows the low-level formatting, where

the primary differences between the OS protocol and the NTR-M04 is the position and

value of the type bit in the token, and the length of the data token.

52

3 Review of Earlier Research

Time

Data Token

Start i B it Bit Bit Bit Bit Bit Bit Bit :
Bit I 0

i
1 2 3 4 6 6 7 j

T y p e Stop
Bit Bit

bit tim e

Control Token

Start
Bit

! Bit Bit Bit Bit Bit Bit Bit Bit :
I 0 1 1 2 3 4 5 0 7 ;

Typ e
Bit

Stop
Bit

Figure 3-4 : Token format used in the NTR-M04 protocol

The eleven-bit control token provided scope for 256 unique tokens. Although it is

unlikely that such a number would be used in any protocol, it supplied more flexibility and

scope for protocol refinements, without complicating the receiver circuits. The similarities

of the NTR-M04 protocol to the DS protocol were primarily related to the control tokens,

as both systems were designed for packet based communication. Table 3-2 lists all of the

tokens that were defined for use with the NTR-M04 switch. The function of all these

tokens will be discussed in section 3.4.

Table 3-2 : List of all defined types of token used in the network layer of the NTR-
M04 protocol

Token Identifier Abbreviation Coding fLSB ... MSB, Typel
Flow control FCT 0 0 0 0 0 0 0 0 1
End of packet EOP 1 0 0 0 0 0 0 0 1
End of message EOM 0 1 0 0 0 0 0 0 1
End of block EOB 1 1 0 0 0 0 0 0 1
Forward reset FRES 0 0 0 0 0 0 0 1 1
Data DATA Do D i d 2 D3 d 4 d 5 D6 D7 0

Myrinet and the Reliable Router shifted multiple data bits in parallel for high data

rates thus, the data formatting had to adhere to that. Myrinet possessed physical links that

were nine bits wide. Comparing to the previous serial based systems, this relates to the

eight data bits and one control bit, but as the bits are transferred in parallel, no further

formatting bits were required. The synchronisation was based on the idea that all tokens of

information would contain at least one logic ‘1’ value. Table 3-3 lists all the tokens that

53

3 Review of Earlier Research

were specified in the first generation of the Myrinet system. The table shows that only the

IDLE token contains all zeros, which ensures that each token of information will generate

a transition with the NRZ-M encoding. The tokens marked with * were defined in the first

Myrinet specification, but they were not implemented in any of the devices.

Table 3-3 : List of all defined types of token used in the first generation Myrinet
protocol

Token Identifier Abbreviation Coding [Type, MSB • • • LSB1
Flow control (tx off) STOP 0 0 0 0 0 1 1 1 1
Flow control (tx on) GO 0 0 0 0 0 0 0 1 1
Idle IDLE 0 0 0 0 0 0 0 0 0
Packet gap GAP 0 0 0 0 0 1 1 0 0
Forward reset * FRES 0 0 0 1 1 0 0 1 1
Backward reset * BRES 0 0 0 1 1 1 1 0 0
Over run alarm * ORUN 0 0 0 1 1 0 0 0 0
Probe nnn * PRB 0 1 1 0 0 0 n n n
Reply to probe xxxx * REPL 0 1 1 1 1 X X X X

Data DATA 1 d 7 d 6 D5 d 4 D3 d 2 Di Do

In 1998, the second version of the Myrinet specification was released. Table 3-4

shows the modified list of defined tokens after the alterations to the specification. Most

obvious is the removal of all the tokens that were not implemented in the first devices.

Another omission to the specification of the second generation is the IDLE token. It is

supposed that the definition of the token was superfluous, as the format of the IDLE meant

no change to the receiver circuits, thus no actual transfer or event to record.

Table 3-4 : List of all defined types of token used in the second generation Myrinet
LAN protocol

Token Identifier Abbreviation Coding [Type, MSB • • • LSB]
Packet gap GAP 0 0 0 0 0 1 1 0 0
Flow control (tx on) GO 0 0 0 0 0 0 0 1 1

Flow control (tx off) STOP 0 0 0 0 0 1 1 1 1

Beat symbol BEAT 0 1 1 1 1 1 1 1 1
Data DATA 1 d 7 D6 D5 d 4 D3 d 2 D i Do

The data format of the Reliable Router also reflected the parallel physical

interconnection, but multiple transfers were used to construct a single data unit. Four

block transfers, called ‘frames’, were used to transfer seventy-five bits of information. The

seventy-five bits were comprised of sixty-four data bits, eight parity bits and three bits of

54

3 Review of Earlier Research

type information. Table 3-5 shows the format of the four frames that were transferred as a

single unit where ‘BPx’ are the parity bits for each data word and ‘Kind’ is the type

information. Other areas of the frames include virtual channel information (VCI), the flow

control information (Copied kind, Copied VCI and Freed), link status information (U/D

and PE bits), and user bits (USRO, USR1). In addition to these fields, each frame was also

accompanied with an extra parity bit. The format of the data unit shows the complexity

required for very high bandwidth systems, which is in direct opposition to those systems

previously addressed. Eight additional bits per frame, making a thirty-two bit overhead per

64 bits of data, is high, but allows the maximum signalling rate for the technology without

bandwidth loss for control signalling.

Table 3-5 : Frame format use for the Reliable Router as one flow control unit

Bit Field 22 21 20:18 17 16 15:0
Frame 0 PE USRO VCI BP1 BPO Data[15:0]
Frame 1 Copied kind Copied VCI BP3 BP2 Data[31:16]
Frame 2 U/D USR1 Kind BPS BP4 Data[47:32]
Frame 3 Freed BP7 BP6 Data[63:48]

3.3.2 Flow Control
Prominent examples of flow control were the OS and DS protocols that were used

in the first and second generations of transputers [72, 84]. The acknowledgement aspect of

the mechanism suits the operation of the transputer as the system model operates on

synchronising communicating channels. The target interconnection models and target bit

rates of these two protocols are reflected in the specification of the mechanisms. In the OS

link model, link usage was highly variable on application, but most would display low

workloads, which would result in low amounts of bi-directional traffic. Consequently, the

OS protocol used one flow control unit per data unit. In implementation, the flow control

token (FCT) was sent soon after the receipt of the start of the incoming data token, which

allowed back-to-back data transfers where required. This is depicted in the left-hand

diagram of Figure 2-4, which is based on the observation of transmission on circuits

implemented in programmable logic, which returned a flow control token after the receipt

of 3 bits of a data token.

The specifications of the DS protocol differed slightly from the OS protocol, as the

system model used a many-to-one logical to physical channel mapping and was defined to

work over distinctively larger distances. The limitation of the earlier protocol was evident

55

3 Review of Earlier Research

with the high use of software routing algorithms in the first generation transputer systems.

With this change in system model came more demands on the communication system. The

crux of the demands was the increase of traffic on each link, which would increase the

probability of bi-directional traffic and would demand a high data rate to share between all

communicating channels. As these systems also used the data path for control signalling,

the bi-directional transfers would effectively reduce the available unidirectional data

bandwidth in proportion to the data to control signalling ratio. Hence, the DS protocol

increased the number of tokens that could be transmitted under the credit of a single flow

control token. This reduced flow control signalling, which resulted to an improvement in

the bi-directional transfer rates. The term ‘flow group’ is used to refer to the variable

number of tokens within credit-based flow control protocols. The DS protocol defined

eight data tokens per flow group, which provides adequate time for the return of the flow

control token at the high data rates and larger transmission distances.

As part of the task of the data link layer to supply a low-level data connection,

regulation must be included to ensure data is not lost. In point-to-point systems this is

provided by a flow control mechanism, which ensures that data is only moved when the

receiving party is ready. Section 22.22 highlighted two main mechanisms that are used in

point-to-point systems. All the systems under review use one of these techniques.

The NTR08 implemented a credit based flow control mechanism, which conformed

to the OS protocol mechanism of one data token per flow group, which helped to minimise

buffering requirements. Both the STC104 and the NTR-M04 also used a credit based

mechanism, but with eight tokens per flow group. Larger flow groups provide more

tolerance for transmission length vs. speed conditions, which ensure bandwidth is not lost.

The DS protocol of the STC104 was designed to operate at up to 200 MB/s and up to

transmission distances of 500 metres. Although, larger flow groups minimise bandwidth

loss on bi-directional transfer on bi-directional links, the larger flow groups demand a

proportionally larger amount of buffering. It is reported that a single path across the

STC104 contained seventy tokens of buffering [85], where the equivalent path in the

NTR08 contained only three tokens of buffering [1]. The NTR-M04 used twenty-two

tokens of buffering; this was the limiting factor of the number of ports on the device [2].

Both Myrinet specifications utilised the permission based flow control mechanism.

The first generation and second generation LAN specifications used the data path to pass

flow control information with STOP and GO tokens, where the SAN specification used an
56

3 Review of Earlier Research

extra level-sensitive signal line per direction. Permission based flow control requires

certain buffering requirements, which are tied into the maximum transmission distance and

speeds. The specification of the first generation Myrinet inferred a receiver buffering

capacity of fifty-nine, nine-bit tokens. From Figure 2-2 and Figure 2-3 this is composed of

clause 1 and 2 requiring twenty-three tokens, and clause 3 requiring sixteen with a

maximum cable length of twenty-five metres at a data rate of 80 MB/s. The Myrinet

second-generation specification did not specify the buffering requirements. However, it

did indicate that the clause 1 should be calculated to a formula similar to that described in

section 22.2.2, and clause 2 should be twice the amount of that, which is required to

prevent data starvation. This amount of buffering requested for clause 2 seems excessive,

as a figure similar to clause 1 should be adequate. The second specification does not

dictate the size required for clause 3.

The parallel interface of the Reliable Router transmitted a data unit in four frames,

on which the flow control operated. The flow control mechanism was complicated, as

aspects of the fault tolerance was integrated into its operation. Each receiver possessed

five, sixteen deep, seventy-five bits wide buffers. Five buffers were used as the Reliable

Router implemented five virtual channels per physical link. The basic principle of the

mechanism operated on a permission to release buffering, as each allocated buffer had to

be maintained until the data had been successfully transferred ahead. This technique

ensured that retransmission of data could take place in event of failure. This fault tolerant

mechanism called the Unique Token Protocol, will be briefly discussed in the subsequent

section.

As the flow control mechanism for the NTR08, NTR-M04, STC104 and Myrinet

utilised data bandwidth for control signalling, it is possible to analyse the overheads of

their operation (the complex nature of the Reliable Router mechanism makes a similar

analysis impossible given the available information). It is easy to define the percentage of

bandwidth used by flow control in the credit-based systems, as flow control credits must be

sent.

The OS protocol defined the transfer of a two-bit flow control token for each eleven

bit data token. Thus, in ideal operation of a bi-directional link, control signalling

consumes 2/13ths (15.4%) of available bandwidth, of which only 8/13ths (61.5%) is data.

Practical implementations have shown that this figure is very optimistic, in reality the

utilisation of the bandwidth can drop to 8/17ths (47.1%) [6]. This figure is highly
57

3 Review of Earlier Research

dependent on implementation, but the granularity of the flow control mechanism does play

some part to this inefficiency.

The NTR-M04 uses an eleven bit flow control token, but it was valid for eight,

eleven bit data tokens. Thus, l/9tlls (11.1%) of the bi-directional bandwidth, which results

in the 64/99ths (64.6%) used for data. The larger flow group allows better utilisation of

physical bandwidth, so the practical figures do closely match the theoretical ones. The

difference between the OS protocol and NTR-M04 protocol is low due to the size of the

control token; a price paid for control signalling flexibility.

The DS protocol shows a dramatic improvement on both these systems, as the data

token is only ten bits in length and the control token is only four bits. Thus, the ideal

operation of the flow control would utilise 1/21th (4.8%), which results in 16/21st (76.2%)

utilisation for data. Again, the larger flow group supplies better utilisation of the

bandwidth, which maintains these figures in practical implementations.

Permission based system are more difficult to analyse as flow control is only used

when traffic conditions demand it. Thus, the best case would be 0% usage of the

bandwidth. When the mechanism must operate, it is clause 3, which dictates the behaviour

of the flow control mechanism. The first generation of Myrinet defined a value of sixteen

to clause 3, which, the specification stated, would make a worse case bandwidth utilisation

figure of about 6%. Independent tests carried out earlier in this project showed an average

of an 8% improvement of bandwidth utilisation between the NTR-M04 protocol and an

equivalent permission based implementation under extreme workload conditions (see

section 6 .1).

3.3.3 Fault Tolerance
The OS protocol of the first-generation transputers did not integrate any form of

error detection within the token format of the data stream. The only possible method of

providing confidence of the data link was to check the data stream against token format.

The NTR08 also omitted link error detection as the reliability of the link was said to be

extremely high, which would make any implementation wasteful. The same premise was

accepted in the design of the NTR-M04, which saw no implementation of parity or frame

checking. In contrast, the STC104 implemented two mechanisms for the detection of

disconnection errors and parity errors. As the DS link protocol operated continuously to

maintain synchronisation by transmitting data or IDLE tokens, this was used to detect link

3 Review of Earlier Research

disconnection. In implementation, a lack of activity on the incoming transmission line for

850 ns is deemed as a disconnection error. This figure equates to a maximum figure of

170 bits or 17 data tokens at 200 Mb/s. Additionally, as highlighted earlier, the DS

protocol utilised odd parity checking, which also aided holistically in synchronisation

checking. For the DS link to safely operate using these error detection mechanisms, a

controlling state machine was implemented. The mechanism operated with nine states,

which covered link initialisation procedures and recovery procedures on error detection.

Figure 3-5 shows the controlling state machine for the standardised DS protocol link,

which was taken from the IEEE Std. 1355-1995 [81]. The figure shows the transitions

from the state of a reset link (Ready), to an active link (Run). It also shows the steps taken

to recover from a parity or disconnection error.

A notable characteristic of the DS protocol is the dependence of its operation on

link integrity. In many aspects, this can be seen as advantageous, as differing levels can

provide confidence in the link operation from physical to network layers. This confidence

is vital to a fault tolerant system. However, reference material [86], which appeared after

the development of the STC104, presented additional precautions to supply further fault

protection. This indicates that there can be problems if one device is expected to supply a

catch all solution, and as such, systems should be devised holistically.

Unfortunately, the DS controlling state machine was shown to be flawed by a

standard that was derived from the IEEE 1355, which is currently under development for

use in space applications [87]. These flaws centred round the initialisation procedure,

which could result in the state machine locking, thus disabling the link. The derived

specification reviewed the IEEE 1355 specification and simplified the mechanism to a six

state system, which solved the problems contained in the system.

59

3 Review of Earlier Research

ErrorWait
hold outputs low

Started
send nulls

Ready

Nulls
receivederror

ErrorReset
reset input and

output

WaitOutStop
halt output

WaitlnStop
halt output

output
stopped

disconnect

All states

Figure 3-5 : Link state machine for the IEEE Std. 1355-1995

Similar to the STC104, the first generation of the Myrinet devices used a time-out

feature to detect disconnection errors. In contrast, the specification indicated that the flow

control tokens or GAP tokens could be used in the absence of data. The choice between

the two would be dependent on the network layer status; that is if a packet was active

across the link. This will be clarified further in the next section. Also similar to the

STC104, the time-out period for disconnection was sixteen tokens, or 0.2 ps. The Myrinet

second generation operated slightly differently. Firstly, an optional token was specified for

transmission in the absence of data, namely, the BEAT token. Additionally the GAP for

SAN and LAN devices and the flow control tokens for SAN devices could also be

transmitted in the absence of data. The specification stated that if the BEAT token was to

be used it had to be transmitted approximately every 10 ps, and any time-out period was

left to the discretion of the implementation. This was a distinct alteration from the earlier

version, as due to the increased data rate, the 10 ps interval for the SAN was equivalent to

either 1600 or 3200 tokens, compared to either 800 or 1600 for the LAN.

The Reliable Routers reliance on parity may seem excessive given the comments

made in section 2.2.2.3, but the bit rates and synchronisation techniques of this system

were pushing technology limits at the time of development. Another technique utilised by

60

3 Review of Earlier Research

the Reliable Router was the Unique Token Protocol (UTP). This technique operated in co­

operation with the flow control system, which utilised a data acknowledgement structure at

the data link level. This removed the need for end-to-end acknowledgements, which

lowered buffering requirements at the source for retransmission and removed the need of

message replication checking at the destination node. As the system confirmed every

transfer between switching nodes, the resultant mechanism was distributed and the

resources, therefore scaled linearly with the network. In practice, the mechanism injected

packets in to the network, and the flow control system ensured that each flow group of the

packet had been transferred completely between neighbouring nodes before releasing the

resources. This resulted in two copies of each flow group in the network. A special

character called the ‘token’ was injected after the packet, which helped ensure the integrity

of the mechanism. Each ‘token’ was unique, and its arrival at the destination, guaranteed

that the message had been completely delivered. If a packet arrived at a node with a failed

output, network layer fault tolerance would route round the error. However, if a failure

occurred mid-message, each part of the severed packet could continue to its destination,

with a modified ‘token’ to highlight the error. This required that each router needed to

store the routing header for the duration a packet was active. The arrival of the severed

parts of the packet at the destination with the modified ‘token’ and other information

known about the packet, the message could be reconstructed. The complex nature of this

flow control based fault tolerance mechanism minimises the overheads of fault recovery at

the cost of performance. The work presented did not show the probability of failure [79],

but the high levels of parity and the UTP mechanism indicate that it was significantly high

to warrant mechanisms to improve the efficiency of the recovery mechanism. This

operates on the same premise as the deadlock detection and recovery mechanisms

reviewed in section 2.2.3.7, where the overhead of the detection and recovery mechanisms

is less than the penalty imposed by the avoidance routing restrictions.

3.4 Network Layer
Within point-to-point switched networks, features such as routing, switching and

packet-level fault tolerance features are suited best to the network layer. These aspects of

the devices and systems under review are now presented.

3 Review of Earlier Research

3.4.1 Switched Architecture
The majority of devices under review were designed to support irregular topologies

to provide flexibility in application implementation. The NTR08 and STC104 were

developed for use in transputer networks, which saw most systems implemented for

distributed processing or control. The NTR-M04 was based on the ideals of the NTR08,

and therefore followed suit. Myrinet was also designed for irregular networks, in contrast

to the systems like the Reliable Router. The Myrinet system originated as a LAN

replacement for high-performance networks of workstations, or clusters. Point-to-point

LAN replacements, like Myrinet [88] or the earlier Autonet [40], selected the flexibility of

irregular networks as they suited the dynamics of the application. Whereas systems like

the Reliable Router were designed to be implemented in a rack system, to which

processing problems would be sent. The 4+1 port architecture was a common

configuration for systems like the Reliable Router, and as such many were connected in

mesh topologies as depicted in Figure 3-6. By fixing the topology, system optimisations

could be made by utilising routing and fault tolerance.

Sw itch Switch

Switch Switch Switch

Switch Switch

Figure 3-6 : Prevalent mesh topology used with 4+1 port router-switches for high-
performance parallel processing

3.4.2 Connection Methodology
Section 2.2.3.2 highlighted that the majority of early devices for switched networks

supported unicast messaging only. The distributed nature of the architecture provided

greater message concurrency than shared mediums, but did not supply simple methods to

support multicast messaging. The point-to-point CSP methodology of the transputers was

based on one-to-one connection model. This coupled with the added complexity and the

62

3 Review of Earlier Research

software based multicast algorithms, led to hardware support of multicast being omitted

from the NTR08 and STC104 specifications. Similarly, the Myrinet systems omitted

hardware multicast support, but independent research was undertaken to supply it in

firmware within the network interface [37, 89]. The fixed topology of the Reliable Router

allowed for more flexible routing algorithms, but prohibited the use of hardware support

for multicasting. The NTR-M04 was designed from the outset to support multicast

switching, by using multi-destinational routing headers similar to other concurrent

research [90]. Stunkel [41] highlighted two connection methodologies for use with multi-

destinational headers, namely synchronous and asynchronous:

• Synchronous systems require that the packet be forwarded to all required

outputs simultaneously, which can degrade network performance if one or more

destination links stall.

• Asynchronous systems allow for separate delivery, but this can increase

complexity and increase local buffering requirements while restricting

maximum packet sizes.

Although switch-based solutions have been shown to improve multicast messaging,

steps must be taken to ensure deadlock allocation is impossible. Deadlock allocation is

when two or more messages hold resources that others need to proceed with the

connection, as shown in Figure 3-7. As asynchronous systems may break down a multicast

connection into multiple cycles, which do not require all outputs to be available, thus

allocation deadlock is prevented. Only synchronous systems must implement further

preventive methods. As the NTR-M04 supported unlimited packet sizes, it implemented a

synchronous multicast mechanism. To prevent allocation deadlock a compromise was

selected to only allow one multicast message to be serviced at one time.

Pkt 1 1

Pkt 2

Key

■Pktx1

‘ P k t x

Resource reserved
by packet x

Resource required
by packet x

Figure 3-7 : Depiction of an allocation deadlock scenario

63

3 Review of Earlier Research

Wormhole routing has been the most prevalent switching technique in distributed

and embedded processing due to the low switching latencies and low buffering

requirements. The demand has increased for larger transfer rates, which has modified

switching techniques and flow control mechanism that have required larger amounts of

buffering. All of the devices under review claimed to implement a wormhole routing

methodology, but each implement more buffering than the technique dictates. More

recently, research has seen real-time and multimedia considerations factoring into the

router-switch design. Interest in wormhole techniques has waned in preference to

switching methodologies that can provide a more deterministic operation [43, 91].

The Reliable Router is the only device under review that implemented virtual

channels. The 4+1 port architecture of the Reliable Router could easily implement the

control for the twenty-five virtual channels, which is still smaller than the thirty-two

channels of the STC104. Virtual channels were also popular for deadlock avoidance

mechanisms and adaptive routing algorithms of the fixed topology systems. The additional

complexity ruled out the use of virtual channels in the NTR08 and NTR-M04.

3.4.3 Packet Format
The use of the OS link within a pure transputer application was designed to be an

exclusive physical link to software channel mapping. These strict programming ideals of

the transputers meant that data, which was transmitted via an OS link, conformed to rigid

formatting. For the NTR08 to operate efficiently, it was necessary to create a hybrid of the

OS link protocol that would allow for global routing through a scaleable, switched

network. As the OS link protocol was based on byte-sized tokens, the hybrid router-switch

protocol used the tokens as atomic units. The operation and meaning of a data token

depended on the state of the receiving unit when a token arrived.

In normal operation, the device started in the idle state, thus the first token is

assumed to be a header token. After the routing header tokens, a single token was used to

define the size of the message payload, which was then followed by the payload. Figure

3-8 shows the packet format that was defined. The figure shows that the most significant

bit was used to delimit the end of the routing headers and the position of the size byte.

This format limited the maximum packet size to 256 bytes. While this limitation was

suitable for many control applications, which normally use small packets of information,

large data streams could become inefficient.

64

3 Review of Earlier Research

MSB Source
Route

Packet Size

Header

V
A

Data
Payload

Figure 3-8 : Packet structure used in the hybrid protocol of the NTR08

The STC104 operated without regulation on maximum packet or message size. As

presented earlier, the DS protocol possessed end of packet, and end of message control

tokens. This allowed the STC104 to operate with a packet similar to the generic structure

presented in section 2.2.3.3: one or more routing headers followed by a variable sized

payload and terminated by a predefined tail, namely, either of the EOM or EOP control

tokens. When INMOS created the T9000, they set a packet size limitation to 32 bytes [92],

and each packet was acknowledge by the receiving device. This was to supply better

resource sharing, minimise buffering requirements and provide data acknowledgement for

synchronised process communication. However, this additionally showed a clear aim of

targeting control system applications, as the packet size limitation would degrade

applications with greater volumes of data signalling. The T9000 enforced stricter transport

and network layer rules than the DS protocol. Upon standardisation of the DS protocol,

some changes were made to close loopholes within the DS protocol that were covered by

the higher layers of the T9000 communication model. This included the reclassification of

the packet termination control tokens. The T9000 used the tokens as presented in section

3.3.1. The strict operation of communication was statically defined, where message size

and number of packets were known at run time. Thus, any deviation in message format

would highlight an error in the transmission medium. The STC104 used the EOM token to

terminate messages that were active when the data link layer error detection mechanisms

were triggered. Thus network errors were detected and recovery procedures could be taken

within the T9000. The IEEE 1355-1995 standard reclassified the end of packet token to

the ‘normal end of packet’ token (EOP_l), and the end of message token to the

‘exceptional end of packet’ token (EOP_2). Thus, the new network model used multiple

65

3 Review of Earlier Research

packets to form a message, but the last packet was not specially marked, thus leaving the

pragmatics of the message delivery to the high levels of the communication system. This

left the operational implementation of the STC104 valid within the standardised protocol.

Although this has provided a workable solution, it is not a normal procedure to make

modifications to maintain hardware compatibility, as it often can result in less efficient

system implementations. Inefficiencies resulting from hardware backward compatibility

were evident in the NTR08 protocol, as mentioned previously.

The packet format used by the Reliable Router also conforms to the generic packet

format of routing header, payload and tail, as did the DS protocol and the NTR-M04. The

unrestricted packet size is the primary motivation for this format. The NTR-M04 supplied

three packet termination tokens in contrast the two defined in the IEEE 1355-1995.

Following the mechanism of the DS protocol, packet and message formats could be

supported with the EOP and EOM tokens. The third termination token, the end of block

token, was included to operate at a layer above the involvement to the router-switch; that

is, the router-switch was oblivious to this token. This meant that a unicast or multicast

connection could be foimed that could remain allocated, while blocks of data could be

delimited by the communicating entities. The connection that was formed was still

temporary, as it still could be relinquished by either the EOP token, or EOM token. This

technique effectively altered the connection methodology of the switched network, and it

was designed to provide a guaranteed constant bandwidth between any given points in the

network. At the time of the development of the NTR-M04 much research was

concentrating on quality of service that had stemmed from the increase popularity of

multimedia applications. Quality of service permeated many levels of computing and it

was a simple premise that a connection must be able to guarantee a predefined level of

bandwidth [93]. The implementation of the end of block token in the NTR-M04 protocol

was a simple solution for a useful service guarantee. Additionally, as it was not restricted

to unicast messaging, the scope of its use in parallel applications; for example, for

synchronisation techniques, made the mechanism attractive. Unfortunately, if the feature

was used, it could penalise the operation of the rest of the network if special considerations

in network topology were not made. By semi-permanently allocating resources in a

dynamic network, the advantages of the packet switched network were negated.

Both specifications of Myrinet used a packet format close to the generic definition

as defined in section 2.2.3.3, but the packet termination token was not specified as part of

3 Review of Earlier Research

the packet, although the GAP token had to be transmitted to delimit packets. As described

earlier, to maintain synchronisation, a constant stream of characters was transmitted, which

included the possibility of multiple GAP tokens between packets. Figure 3-9 shows the

packet format for both Myrinet specifications. Similar to the NTR08, the most significant

bit was used as a delimiter of the header. The GAP tokens are shown in grey to signify

that they may appear more than once outside of the packet format. The only difference

that separates the first and second-generation specifications is the inclusion of the packet

type field, which must conform to the specification and the packet’s function. Some

examples of packet types are route mapping packets, data packets or special traffic types

defined for application use [94].

MSB

“ G A P

Header

^ Payload ^
CRC-8

G A P

A

Header

Data
Payload

Trailer

MSB

Source
Route

Packet
ZlXypfiL.™

^ Payload ^

C RC- 8"
G A P t

Header

Data
Payload

Trailer

Figure 3-9 : Packet format for the first generation (left) and second generation (right)
of Myrinet

3.4.4 Adaptive routing techniques
The NTR08, STC104, and NTR-M04 were all designed for irregular networks,

which limited the choices of adaptive techniques. Thus, each device employed group

adaptive. The STC104 also implemented a two stage routing procedure that was designed

to distribute the network traffic. Universal routing, as INMOS called it, could include an

additional header, which was chosen at random from a predefined range. The header

would route the message to an intermediary location in the network, where the random

header was stripped. The message could then proceed to its destination. This technique

improved network throughput as the load was distributed better. However, the effect of

including a random header negated any avoidance technique for deadlock. An expensive

solution was suggested [95], which solved the deadlock problem by providing completely

separate routing resources for the first stage of routing.
67

3 Review of Earlier Research

In contrast to the group adaptive algorithm, Myrinet, which also was designed for

irregular networks, used firmware self-mapping algorithms to plot paths through the

network. While this technique did not react dynamically to the network traffic load, it

could update the routing tables as the topology changed through faults or user alterations.

The Reliable Router, through its restriction of topologies, implemented three routing

algorithms to supply flexibility. In conjunction with virtual channels, dimension-ordered

routing, minimally adaptive and partially adaptive routing algorithms were used as part of

the routing decision. The minimally adaptive algorithm would take any port that would

advance the message, but was oblivious to deadlock concerns. The partially adaptive

algorithm was based on the turn model suggested by Glass and Ni [54]. The operation of

this algorithm will be covered in the next section.

3.4.5 Routing Decisions
The main purpose of the NTR08 was to provide efficient routing utilising the

selected gate array technology. The gate array design demanded that gate count and

operational speed were primary concerns. Keeping to the ideal of minimal hardware

resource requirements, the NTR08 was implemented using physical address decoding.

This technique forced automatic header stripping of the source routing information. As the

target networks were normally small to medium scale, the extra header byte per router-

switch transit was deemed to be an acceptable overhead.

The STC104 was targeted at slightly larger networks, with the T9000 as the

processing device. This led to the use of interval routing that could use one or two bytes as

a single routing header. This provided up to 65,536 individual possible destinations with a

single routing header, plus possible expansion of this with optional header stripping.

The NTR-M04 was realised in a PLD, which possessed embedded memory blocks,

which made it feasible to implement logical addressing. However, the routing algorithm

automatically stripped the routing byte for unicast messages, thus the device operated with

the same overhead as a physically addressed device. Multicast headers, however, operated

without header stripping. As the NTR-M04 was a prototype device, only sixteen entries in

the look-up table were included. This allowed the proof of concept of the techniques

employed.

Myrinet utilised firmware within the network interface to map the network to

maintain a valid list of all possible routes. For this to be possible, Myrinet utilised relative

68

3 Review of Earlier Research

addressing, which is an absolute addressing mode. Relative addressing required a header

per switch. The interface would inject a number of ‘mapping packets’ that possessed

different header permutations in to the network hoping to reach another interface. By

using relative addressing, the interface could also include the return route with the mapping

packet so the receiving node would know how to find the source. By mapping the

network, multiple paths could be constructed that used the network in the most effective

way. Some work has been undertaken to optimise the mapping algorithms of networks

using relative addressing [96].

The Reliable Router utilised a graph routing scheme, as this could supply adaptive

routing features over the fixed mesh network. In conjunction with virtual channels, the

Reliable Router supplied three disjoint routing techniques, which were a collaboration of

previous methods of various earlier devices. The three algorithms, described below, were

used to maximise resource utilisation through adaptive routing, but also to supply a method

to circumnavigate faults that could have occurred within the network.

In the first algorithm, the Reliable Router attempted to choose a minimal adaptive

route for the packet. A minimal adaptive route in this type of network is one that selects

any direction that will bring the message closer to its destination. The second algorithm

occurred if no such route was available: a specially selected channel was requested that

conformed to a dimensional ordered routing algorithm as described in section 2.2.3.7. If

the selected dimension ordered routing channel was busy, the packet was stalled and the

mechanism returned to check the adaptive routing options in the following routing cycle.

The third algorithm was used when the dimension ordered selection was found to be faulty:

the packet was then routed to a fault-handling channel. This third method used a partially

adaptive algorithm, where any free output could be taken with the exception of the input;

that is, a 180-degree turn. After the packet was forwarded to the next router-switch using

this method, the packet possibly could be allowed to revert to use the previous method of

route selection. The decision on this was dependent on guidelines based on the to n model

theory, as described in section 2.2.3.7. Two virtual channels were used for the dimension

ordered algorithm, two for the minimally adaptive algorithm, and one for the fault-

handling algorithm. This ensured that all the algorithms were logically separate, and the

system could be proved as deadlock free.

69

3 Review of Earlier Research

3.4.6 Fault tolerance
The NTR08 did not contain any automatic integrated fault tolerance in the network

layer protocol, but fault monitoring and intervention was supplied by a control port. This

feature was implemented by an additional block that could be accessed by an additional

serial connection, separate from the data path, which conformed to the OS link protocol.

The control port allowed a network controller to configure, monitor and control the

operation of the device. As the control could be used to monitor and manipulate

connections on the device, a basic fault tolerant system was possible. A network

implementation could provide a monitoring system that detected stalled messages, which

could then use a holistic approach to resolve the problem. The negative aspect of this was

there was no simple scaleable solution for the monitoring and recovery system. Firstly, the

control port connection was not designed to work in collaboration with other router-

switches. Therefore, each router-switch would require a dedicated connection to the

controller, as it did not utilise a packet format for the interface. A simple wired-OR and

decode and multiplexer system could be used to reduce these requirements. However, as a

network scaled, the implementation overheads and mechanism complexity also would

increase, which prevented such a solution for a large numbers of switches. Additionally,

as a central controller must monitor all devices in the network, as the number of switches

increased the reaction time for detection, and intervention would scale proportionally. It

must be conceded that the NTR08 was targeted towards small to medium size networks,

and therefore this solution was adequate for the specification.

The C l04 contained some fault tolerant features, which could be configured to

operate automatically. This was regulated by a configuration setting called ‘localise error’.

By enabling this feature, the link was reset and the active packets were truncated if a data

link error was reported. This action allowed corrupted packet to be removed from the

network, without affecting the remaining network operation. A configuration setting,

which is called ‘discard if inactive’, is associated with each output, to ensure that packets

without active destinations will not remain in the network. Thus, if a packet is destined for

an inactive output and the ‘discard if inactive’ flag is set, the packet is deleted. While this

ensures that the network will never deadlock due to undeliverable packets, documentation

implies this procedure is irrespective of any grouping configuration. This negates the extra

route availability that is supplied by group adaptive routing. Without either of these

configuration settings, the device would have to wait until the error was cleared by a

70

3 Review of Earlier Research

command from the device control port. The control port operated on a similar premise as

implemented in the NTR08, but the interface was a daisy-chained connection, which would

allow the devices in the network to be connected by a single serial link. The daisy-chained

link operated on its own fault tolerant protocol, which allowed each device to be addressed

separately for configuration or management procedures [97].

The forward reset token (FRES) of the NTR-M04 was designed to supply a basic

recovery mechanism within the switched network. Its function was identical to that of the

token suggested for use in the Myrinet system. The FRES was designed for situations of

link failure, and was specified to clear the path it traversed of resources. It was sent after a

predefined fault detection mechanism was triggered. As the FRES was specified to be

transparent to the data link layer, it was not restricted by the flow control mechanism. On

recognition of a FRES at the receiver of link, the contents of the buffering were cleared

and it was transferred across the crossbar of the router-switch over any comiections that

were formed with that receiver. By forwarding the token to the relevant transmitters, all of

the connections would be released and the FRES would continue to any other connected

device. The FRES would continue in this manner until it exited the network or reached a

router-switch that was not connected via its arriving link. The effect of the FRES could

remove many messages from the network, making it a complicated and a highly regressive

recovery mechanism, while the extra resources for its implementation made it an expensive

addition.

The Myrinet system specified additional control tokens for use in the fault tolerance

mechanism of the first specification. These tokens were never implemented in any

Myrinet devices, possibly due to complexity of their intended operation. The extra tokens

were: forward reset (FRES), backward reset (BRES), over run alarm (ORUN), probe

(PRB) and probe reply (REPL). The FRES was just described as part of the NTR-M04.

The BRES was similar to the FRES, but its specified operation was vague. The BRES

function would have been initiated in a similar way to the to the FRES. The difference

being that when BRES symbol was received, it was reported on its control interface, and

the interface control circuit would have initiated a FRES. The overrun alarm symbol was

defined to flag a breakdown of the flow control mechanism, from which the STOP/GO

may suffer due to loss of flow control data or transmission delay exceeding the predefined

limits. The probe and reply symbols would have supplied the functionality for the network

status monitoring and control features over the system architecture.

71

3 Review of Earlier Research

The fault tolerance aspects of the Reliable Router have already been addressed

within the description of the routing decisions of section 3.4.5, which involved fault

tolerant routing algorithms.

3.4.7 Deadlock
The NTR08, STC104 and NTR-M04 used source routing, and therefore had to

employ deadlock avoidance techniques to ensure problem free operation, which trade a

little network performance. As presented in section 3.4.5, the Reliable Router used three

routing algorithms, which when used in the overall routing strategy, also provided a

deadlock avoidance mechanism.

Similar to these other systems, the Myrinet system also implemented an avoidance

mechanism, namely the up/down routing algorithm, which is recalculated as the topology

changes. However, in addition to this technique, Myrinet also operated a form of detection

and recovery mechanism. The second generation of the specification stated that a time-out

mechanism may be used, but the time-out is in the order of one second in duration. This

displayed characteristics of a backup mechanism, for the cases where the avoidance

technique failed for some reason.

72

4 Design Discussion

4 Design Discussion
The earlier research supplied a number of development aims, which were used as a

guide at the start of this research. A primary aim was to ensure the same routing

methodology was maintained or improved. Earlier devices have been shown to supply

effective solutions for embedded parallel and distributed systems, and this had to be

maintained. For such an effective system, communication switching and protocol

overheads must be as low as possible. The earlier research showed that bi-directional data

transfers were a weak aspect of the physical link. To improve data bandwidth utilisation at

the data link layer, the protocol had to be reworked. Fault tolerance was another area,

towards which the research was targeted. A review of techniques and concepts of fault

tolerance were required, targeting the types of faults, the main areas that help maintain

operability in the presence of faults, and fault recovery techniques.

This chapter will describe the features, resulting from the review, which were

chosen for implementation in a new router-switch device. This is then followed by a high-

level functional description of this device, the NTR-FTM08 emphasising features targeted

for implementation.

4.1 Lessons Learnt from Earlier Research
Considering the physical link, an increase in bandwidth over the previous

implementations was desired but within a reasonable implementation cost. Parallel links,

while providing greater data rates, as with Myrinet, can require expensive multi-core

cables for meeting the low skew requirements, in addition to increased device pin count.

These concerns were tackled by the NTR-M04 by increasing the granularity of the

parallelism of the links. However, the logic implementation costs were higher than

predicted. Although the implementation consequences of a single serial line result in lower

bandwidth figures, transmission distances and implementation costs make it the most cost-

effective solution. It has shown that the over-sampling technique was capable of double

the bandwidth figures of previous implementations in the technology targeted for this

work. Additionally, over-sampling has been shown to be a resilient recovery technique

even at these higher signalling speeds and large distances, with the latest differential

drivers [6]. The data-strobe technique used by the IEEE Std. 1355-1995 initially appears

as an attractive system, but the requirements of skew tolerance and wire count could

increase implementation costs for similar reasons to the parallel implementations.

73

4 Design Discussion

The review of the control signalling of the previous protocols showed a distinct

improvement of the DS protocol over the earlier over-sampling protocols, which was

mainly due to the token formats. Reducing the data token to ten bits and the control

characters to four bits resulted in a theoretical improvement of 11.6% over the protocol

used by the NTR-M04 and a 14.7% over the NTR08 packet data rate. Further modifying

token format to improve the control bit / data bit ratio would improve data signalling

utilisation of the link bandwidth. Unfortunately, if an over-sampling technique was

utilised, increasing the number of bits per token would have a detrimental effect on the

skew tolerance, which would reduce the signalling speed and transmission distance

capabilities of the system. The current eleven-bit tokens of the NTR08 and NTR-M04

allow the sampling circuits to recover at each token; with three times over-sampling this

results in the skew tolerance being a third of a bit over the token. Thus, if the token was

extended this l/3rd of a bit tolerance would be stretched over the new greater length of

token.

The data line based flow control mechanism also was shown to degrade the data

rate of the signal on the co-operative full duplex link of the earlier systems. In contrast, the

SAN specification of Myrinet used a separate signal line to overcome this, which resulted

in a theoretical maximum data bandwidth utilisation when flow control was not in effect.

While the earlier implementation of Myrinet, which also used the data line for flow control

signalling, claimed a maximum worse case loss of only 6% of data bandwidth due to the

permission based flow control. Although, the transition from credit-based control to

permission-based control produces problems with buffer overrun and confidence in link

validity, the figures show the adoption of such a technique would match or reduce control

signalling relative to message patterns.

Aiming to maintain or improve on the earlier routing methodology limits the design

choices to be made at the network layer. A major network feature of earlier work was the

support of irregular networks, which indicated the use of some form of source routing.

Additionally, the NTR-M04 supplied hardware support for multicast messaging; thus, this

feature also had to be maintained. To support multicasting, the review of addressing

modes indicated that either physical or logical addressing had to be used. A physical

addressing based implementation would limit the number of ports per switch, which would

be detrimental to the scaling of the network, plus it would possess the negative aspects of

the routing overheads associated with it. Although the target PLD technology currently

74

4 Design Discussion

limits the size of the device, by choosing a physical addressing mode for future

implementations, limitations would also be imposed. Logical addressing would remove

this limitation, but it possesses other implementation problems. Analysis of the NTR-M04

implementation, which also used logical addressing, showed that the main bottleneck in

connection latency was the decoding, queuing and allocation mechanisms, due to the

limited resources in the target technology. Additionally, the NTR-M04 allowed only one

multicast connection-request to be serviced at once, which prevented allocation deadlock.

An ideal solution would be to have a decoding unit, for each input, which could then be

queued and allocated in parallel, with the queuing technique ensuring freedom of

allocation deadlock. This would form a natural pipeline for the servicing of messages. A

logical addressed system would demand a massive amount of resources to implement this,

whereas a physical addressing scheme would require a relatively small amount. The target

architecture for this work, resulting in the NTR-FTM08 design, possesses a large amount

of embedded memory. This could make a parallel implementation of logical addressing

possible, but the whole design must be considered, as the router-switch also requires

significant levels of data buffering. The amount of buffering that is required, depends on

the flow control mechanism and physical link requirements.

The most prevalent form of connection methodology in earlier systems was a

buffered form of wormhole routing, best suited to small, embedded control and distributed

systems as the switching latencies are minimised. The introduction of multimedia and

other real-time data streams has encouraged the investigation of other methodologies. The

review showed that the buffered wormhole methodology is still the most appropriate

technique for the target applications.

The choices for adaptivity within source routed irregular networks are limited. The

use of group adaptive routing in the past has shown that this technique can be used to

implement a flexible system, which can supply varying amounts of bandwidth under

control of the application implementation. The group-adaptive-routing implementation of

the NTR08 operated at the connection-request queuing stage, as did the NTR-M04. As the

act of queuing in the earlier implementations effectively fixed the output, this reduced the

effectiveness of the adaptivity as the status of the output could change over the time that

the packet was waiting. By delaying the grouping decision later, more adaptiveness may

be maintained.

75

4 Design Discussion

The monitoring and intervention features of the control port, as implemented in the

NTR08 and STC104, supplied all the features that would be required to support fault

tolerance in software. The STC104 also possessed some ability to react to faults

autonomously with configuration settings. While a monitoring and intervention technique

can supply all the functionality required, the interfacing control possesses the problems.

Firstly, the controlling system must be centralised to maintain a unified and co-operative

mechanism, which if it fails removes all system fault tolerance, termed a ‘single point

failure’. Additionally, a centralised controller may not scale efficiently. For example, as

highlighted earlier, the physical interface of the NTR08 does not lend well to a centralised

control system. While the implementation is improved in the STC104, the operation the

system is still prone to single point failure. The implementation of the NTR-M04 further

improved on this by using the data network to supply more flexibility to the control

network. Therefore, the reliability of the data network can also be attributed to the control

network. However, if the network operates on a monitoring and intervention technique,

the use of the data network may not be feasible, through either critical network failure or

loss of network performance through excessive network-control related communications.

Despite this, the advantages of using the data network show the basis for an improved

system.

In an improved connection model, the centralised monitoring and intervention

mechanism would demand extra resources within the system. The controlling mechanism

would increase in size and complexity as the network scaled, which would reduce reaction

time to faults. Additionally, the system would have to be specifically design for each

system, and would not be transferable between one system and another. Although the

operation of the unique token protocol of the Reliable Router was complex, the distributed

nature of the mechanism allowed the system to scale linearly with the network, without

additional software overheads. The autonomous features of the STC104 also introduced a

rapid response to faults, but recovery was limited to packet truncation or deletion. While

this solution would demand extra functionality in the higher layers for message delivery

verification, it also ensured that a message would not block the operation of the network

and prevent critical failure.

All the devices under review utilised some form of avoidance technique as the

primary mechanism against deadlock. This is the most popular technique for use with

virtual cut-through or wormhole routing devices. It is only recently that other devices have

76

4 Design Discussion

turned to recovery techniques [57, 70, 98], and returned to developing preventive [43]

algorithms. Avoidance techniques are most prevalent in source routed based devices, for

irregular networks, as the techniques require no implementation considerations in the

router-switch architecture and therefore are the cheapest to implement. Unfortunately,

avoidance techniques can be prone to errors, as corruption of the data stream, on which the

mechanism operates, could circumnavigate the protection offered. This implies that a

detection and recovery mechanism should be used as either a primary mechanism, or a last

resort mechanism. The cheapest detection solution is a simple time out mechanism,

although the time-out is normally very large to ensure heavy network traffic does not

falsely trigger the recovery mechanism. Such a solution is suitable for a last resort

mechanism, as suggested in the Myrinet system which implements an avoidance technique

as the primary mechanism. Although in this case the deadlock recovery mechanism would

be triggered infrequently, the long time-out, on which it is based, could cause critical

application failure. A system that relies wholly on time for deadlock detection cannot

maintain implementation flexibility and provide a workable solution. To maintain

implementation flexibility and to remove false deadlock detection, the detection

mechanism needs to propagate status information along the branches of the tree structure,

as stated by Lopez [57]. Folkestad [62] suggests such a technique in his work on deadlock

probabilities, which describes a system that propagates deadlock notification messages

around the network containing the ID of the source router-switch. He states a notification

message should be sent back towards the tail of the blocked message and along any

blocked routes that form part of the dependency tree. If the source router-switch receives a

deadlock notification message with its own ID then a cyclic route has been detected and a

deadlock condition is flagged. There are two obvious problems with such a system. The

first being cyclic non-deadlock conditions, as described by Pinkston [66]. Non-deadlock

cycles can exist in systems where messages have many possible routes created by the

functionality of the routing architecture. Examples of this are multiple paths from virtual

channels or grouped physical channels. Cyclic paths would return the deadlock

notification message to the originating node while an ‘exit path’ still exists, and therefore a

false deadlock detection occurs. The second problem is based on the router-switch ID. As

the notification message must carry the router-switch ID, the router-switch architecture

must provide extra hardware resource to allow injection and extraction of small control

messages, separate to the data path. In addition, the physical aspect of forcing each router-

switch to identify itself ultimately limits the network size. If a deadlock condition occurs
77

4 Design Discussion

due to the formation of a cyclic dependency, it is reasonable to use the cycle for detection

as Folkestad suggested. However, to overcome the problems of Folkstad’s solution,

information needs to be passed both up and down the dependency tree.

4.2 Basic Router-switch Definition

4.2.1 Basic Router-switch Physical Layer Protocol Description
The over-sampling technique, which was used in the earlier NTR08 and NTR-M04

devices, was selected for the synchronisation technique for the physical link. The

technique has been shown to operate reliably with the target application area, and recent

research has shown that it possesses scope for higher signalling rates and greater

transmission distances than has been previously implemented. The link will maintain the

two wire, full duplex format as implemented in the NTR08 operating with TTL logic levels

at board level. However, differential signalling was targeted for off-board connections up

to a range of 100 metres. The link has been targeted to operate at above 30 Mb/s.

4.2.2 Basic Router-switch Data Link Layer Protocol Description
The physical layer specification of the NTR-FTM08 was similar to the NTR08 and

NTR-M04 for data recovery. Table 4-1 lists all the tokens that were defined for use with

the basic router-switch model. This specification has taken the eight bit control token

format from the NTR-M04, but the bit ordering from the NTR08.

Table 4-1 : Definition of the basic tokens for the NTR-FT08

Token Identifier Abbreviation Coding [Type, LSB ...M SB]
Permit transmission XON 0 0 1 1 0 0 0 0 0
Inhibit transmission XOFF 0 0 1 0 0 0 0 0 0
End of message EOM 0 1 1 0 0 0 0 0 0
End of packet EOP 0 1 0 0 0 0 0 0 0
Data DATA 1 Do Di d 2 d 3 d 4 D5 Dg d 7

Note that the end of block token of the NTR-M04 protocol has been omitted. The

value of this token was questionable, however, as its operation was transparent to the

switched network, it could be included later. Two new types of control token are defined,

namely data path visible and data path invisible. All tokens that are invisible to the data

path are localised to a single point to point link. These tokens have the LSB set to a value

of ‘O’. Visible tokens have the LSB set to a value o f e V. This simplifies control logic and

provides an easy method to ensure backward compatibility for future specifications.
78

4 Design Discussion

The data link layer of the NTR-FTM08 operates on a permission-based flow

control mechanism that utilises the data path for control signalling, as discussed in

section 22.2.2. The flow control tokens possess a higher priority than the data tokens, thus

worse case transmission delay for a flow control would be a whole data token. To conform

to the physical layer specification, the mechanism must be able to operate at a maximum

range of 100 metres and at bit rates above 30 Mb/s. To supply additional leeway the

operational parameters will be calculated for 110 metres and 50 Mb/s. Clauses 1 and 2

need a value of at least nine buffer entries, and on the recommendation of Myrinet, clause

three should be at least twelve buffer entries.

The basic router-switch definition possesses no error detection or recovery

mechanism at the data link layer.

4.2.3 Basic Router-switch Network Layer Protocol Description
As with the previous devices, the NTR-FTM08 is targeted for use in irregular and

regular networks. This will include hardware support for unicast and multicast messaging

based on a buffered wormhole routing algorithm. Routing adaptivity will be supplied by

group adaptive routing, which will be configured via a configuration port that is accessible

via the data path. The NTR-FTM08 will use the same message format as the NTR-M04,

which specifies a message being divided by multiple packets. Individual packets are not

limited in size by the specification.

To support multicast messaging, logical addressing is the most suitable technique.

However, to supply enough entries for the entire address range would demand a high

amount of resources. In addition to this, the majority of messages will not require

multicasting abilities. For these reasons, multiple addressing modes are implemented.

Interval addressing is implemented as it allows for efficient routing after configuration at a

low hardware overhead. Physical addressing is also included so that a default routing

mechanism is provided irrespective of configuration. Physical addressing performs

unconditional header stripping, as required, but additionally, optional header stripping can

be configured on an output basis for logical and interval addressing via the configuration

port.

Table 4-2 details the format of the legal routing headers. The table shows that the

routing headers are divided into four parts, three for the three different addressing modes

and one part that should be used for connection to the configuration port. The upper two

79

4 Design Discussion

bits are used for decoding of the headers, which provides sixty-four valid entries for the

three addressing modes. Thus without stripping, sixty-four unicast and sixty-four multicast

message destinations can be defined. Although sixty-four entries for the physical decoding

mode seems wasteful for an eight port device, this allows for the construction of larger

devices whilst maintaining the protocol format.

Table 4-2 : Header format for addressing modes

Type of addressing Coding [Type, LSB ... MSI1 L
Interval addressed 1 Ao Ai A2 A3 A4 A5 0 0

Logical addressed 1 A0 A i a 2 a 3 a 4 As 0 1
Physical addressed 1 Ao A i a 2 a 3 a 4 As 1 0
Connect to the configuration port 1 X X X X X X 1 1

The interval addressing mode includes a total of ten definable intervals. This

number supplies an interval for each output plus an additional two for definition flexibility.

The logical addressing mode operates as defined in section 2.2.3.5, but includes slightly

modified operation for multicast packets. For such packets, the configuration is defined as

a multicast connection-group. Thus if any packet arrives at the switch, it is forwarded to

all the outputs defined by the configuration unless the input port (or a group associated

link) is included in the connection-group, where it is to be omitted from the connection.

Thus multicast packets used to synchronise a number of processes require only one logical

address definition, which all processes may use, thus reducing the requirement for

multicast message headers.

In adherence to the operation of logical and interval addressing, the network layer

of the basic device specifies that messages with unrecognised message headers should be

flushed. This will ensure that the network will remain operational in the presence of illegal

messages. No other error detection or error recovery is defined for fault tolerance in the

basic definition of the NTR-FTM08.

80

4 Design Discussion

4.2.4 Other Router-switch Features and Operation
As stated previously, the configuration port for the NTR-FTM08 should be

accessible via the data path. The configuration port should contain all the registers for

addressing, stripping and grouping, these are:

• eleven, five-bit registers for interval port information;

• ten, six-bit registers for interval limit information;

• a sixty-four entry, ten-bit look-up table for logical addressing;

• eight, three-bit registers for grouping information;

• one, eight-bit register for stripping information.

4.3 Stage One Development Features
The stage one developments of the router-switch definition are based around the

premise of fault detection and recovery through localisation. Fault localisation restricts the

effects of hardware failure to the failed links and supports a local method of recovery that

prevents the failure from effecting neighbouring network entities, similar to the ‘localise

error’ feature of the STC104. This should ensure that any given messages that are injected

into the network would not cause the system to deadlock through physical failure.

Additionally, features are included that supply a verifiable connection, but with optional

mechanism that will automatically inhibit wasteful verification handshaking procedures in

periods of extended packet inactivity.

4.3.1 Stage One Physical Layer Protocol Enhancements
There are no modifications to the physical layer, although over-voltage and over­

current protection mechanisms could be included to suit application requirements.

4.3.2 Stage One Data Link Layer Protocol Enhancements
Stage one of the fault tolerance modification includes two additional tokens. Table

4-3 provides the details of these two control tokens, the addition of which provides link

initialisation, and link failure isolation support for the communication protocol. The

‘connection request’ token was included to provide functionality for link initialisation, but

also operates as a link reset token. The ‘bad end of packet’ token was included for corrupt

message truncation for failure isolation, similar to the ‘exceptional end of packet’ token of

81

4 Design Discussion

the IEEE Std. 1355-1995. However, by introducing an extra termination token, full

support of the message format can be maintained, which was a mechanism that was

compromised by the standardisation of the DS protocol to the IEEE Std. 1355-1995.

Table 4-3 : Definition of the extra control tokens for stage one of the fault tolerance
mechanism for the NTR-FT08

Token Identifier Abbreviation Coding [Type, LSB ... MSB]
Connection Request CONREQ 0 0 0 0 0 0 0 0 0
Bad end of packet BEOP 0 1 0 1 0 0 0 0 0

Fault detection and isolation mechanisms of the state one modifications operate

based on a state machine shown in Figure 4-1. By defining legal link activity for each

state, any non-conforming activity flags an error. The state machine shows that all errors

result in the state returning to a single state, namely the ‘reset’ state. This ensures that each

error state attempts to recover by link initialisation. The two steady states of the

mechanism are ‘asleep’ and ‘awake’. Whilst in the ‘awake’ state the link operates as a

standard flow controlled point-to-point link. As transmission of data tokens is inhibited in

both the ‘waking’ and ‘asleep’ states, any receipt of data in these states will return the link

into the ‘reset’ state. The link is also forced into the ‘reset’ state if a kick-start request is

made whilst in the ‘asleep’ state; the action of this event will be addressed below.

re se t

L in k S l e e p T im e o u tawake asleep&& L in k D o r m a n t

® %

waking

Figure 4-1 : Finite state machine for the NTR-FTM08 link status

82

4 Design Discussion

A failure in the ‘awake’ state is detected in one of four ways, as described in the

four paragraphs below. These four methods concentrate on critical failures of the

associated interconnection, and not errors in the bit stream.

The first failure detection is based on synchronisation. As previously described, the

format of each token includes a logic ‘1’ start and a logic ‘0’ stop bit. If the sampling

circuits detect an incorrect frame, the synchronisation error is flagged.

The second method of failure detection is the monitoring of the receiver FIFO for

an overflow condition. Although the flow control mechanism should prevent such a

situation from occurring, a buffer overflow indicates the corruption of the data link or its

operation outside of its specified parameters.

The third trigger for failure detection is a link activity time-out. Each side of the

point-to-point link monitors the link for activity, and if no activity occurs within a

predefined period, the connection is said to be lost and the error is flagged.

The final error detection method is triggered on the receipt of a CONREQ token

while the link is in the ‘awake’ state. As recovery of an error state involves reinitialising

the link, CONREQ token will be transmitted. Therefore, the receipt of a CONREQ token

indicates an error condition at the other side of the point-to-point link, which thus

invalidates the current link status.

A similar disconnection feature to the third trigger of failure detection was

implemented in the IEEE Std. 1355-1995 standard, which was fundamentally supported

within the protocol, as constant transmission was required to maintain synchronisation.

While this enabled the implementation of the disconnection error, continual data

transmission was unattractive, especially to systems where data transmission was

infrequent. The over-sampling technique chosen for the NTR-FTM08 does not require

back-to-back transmission for maintenance of synchronisation, but occasional transmission

is desired for connection confirmation. To supply a reasonable reaction time to

disconnection, the activity time-out must be selected to suit signalling rates, transmission

distances, and packet sizes. To ensure link activity, the mechanism transmits flow control

tokens when no data is available, which are sent at periods less than the activity time-out.

Using the flow control tokens to produce link activity is valid in this specification, as it

acts as a reaffirmation of the permission based flow control mechanism. A similar

technique is used in the Myrinet system as highlighted in section 3.3.3. Although this

83

4 Design Discussion

solution transmits with less frequency when compared to the IEEE Std. 1355-1995,

transmitting at this reduced rate may still be to often for some systems. This fact

encouraged the development of a configurable feature on each link that allowed each link

to fall asleep after a predefined time of message inactivity on the link. This feature was

called link dormancy. In practice, the link moves from the ‘awake’ state directly to the

‘asleep’ state. In addition, allowing the link to return to the ‘asleep’ state also required

methods, with which to kick the sleeping link back awake (kick-start command), and

remain asleep while not required. This aspect of the operation will be discussed as part of

the description of the link initialisation procedure.

4.3.2.1 Link Initialisation Procedure
Link initialisation defines a safe procedure that can supply confidence that both

sides of the connection are ready to transfer data. As Figure 4-1 shows, from the power on

condition, the link state machine enters the ‘reset’ state. In this state, the receiver is

enabled to listen to activity on the link, but data connections are prohibited. The link will

remain in this state until a CONREQ token is either detected by the receiver, or sent by the

transmitter. Control logic will order the transmission of a CONREQ token after a period of

time in the ‘reset’ state. The disconnected or dormant link may remain in the ‘asleep’ state

indefinitely, during which time it will be unavailable. Link dormancy is a configurable

setting that allows the link to return to the ‘asleep’ state. The receipt of any other token in

this state will force the link back into the ‘reset’ state. If the link is configured as non-

dormant, during the ‘asleep’ state, XOFF tokens will be occasionally transmitted.

Therefore, if two devices are connected after both have entered the ‘asleep’ state, the

transmission of the XOFF token will be received by the other side and initialisation will be

triggered. In contrast, if both ends of the link are configured as dormant, the transmitters

will remain silent, thus allowing both devices to remain in the ‘asleep’ state. Only a kick

start command from the higher layers is able to reinitialise the link from this state,

returning the link into the ‘reset’ state. The reasons for the generation of the kick-start

command is related to the network layer, which will be addressed in the next section.

Once in the ‘asleep’ mode, a CONREQ token will only be sent after the receipt of a

CONREQ token. Once the CONREQ token has been flagged as sent in the ‘asleep’ state,

the link moves to the ‘waking’ state. The ‘waking’ state is the only state that may move to

any of the three other states. A legal completion of the handshake will move the link in to

the ‘awake’ state, which is the receipt of either of the flow control tokens or a CONREQ
84

4 Design Discussion

token. The receipt of any other token results in the link moving to the reset state. The

other possibility is no further activity on the link. Without activity within a specified time­

out the link returns to the ‘asleep’ state. As the operation of the initialisation procedure is

dependent on time, the mechanism will only function correctly within operational limits of

signalling rate and transmission distance. This is acceptable, as the flow control

mechanism also imposes these limits. Therefore, for a workable solution, both

mechanisms must meet acceptable limits of signalling rates and transmission distances.

4.3.3 Stage One Network Layer Protocol Enhancements
The network layer modifications to the NTR-FTM08 implement the fault isolation

features. The main aim of isolation is to maintain the appearance of network operation to

the rest of the network. The enhancements achieve this using two techniques, namely:

active packet recovery and link invalidation. Active packet recovery removes packets

from the network that have been corrupted by failure. Link invalidation prevents the use of

disabled links and uses redirection through group adaptive routing or removes

undeliverable packets once all possible outputs have been confirmed as unavailable.

4.3.3.1 Active Packet Recovery
The NTR-FTM08 has been specified to implement a buffered form of wormhole

routing, which results in active packets holding resources across several switches. The

detection mechanism operates on critical failure of the interconnection, thus failures can be

considered as localised to the physical medium. As the system does not implement virtual

channels, the worse case scenario of failure would be two packets active across a single

link. Figure 4-2 depicts this worse case scenario in an example network with a failure that

would have been flagged from one of the four methods described previously. Two packets

are active across multiple router-switches, which has resulted in one interconnection with

bi-directional data flow. A fault on this link would cause the two packets to be divided,

which, without the isolation mechanism, would result in the related resources being held

indefinitely. The shaded links on Figure 4-2 show the allocated resources for each packet.

The data link layer specified the definition of the BEOP token, which is used for

message truncation, similar to the EOP_2 of the IEEE Std. 1355-1995. For a packet to free

the resources it has been allocated, a termination token must be allowed to travel to its

destination. In the example of Figure 4-2, each message has been divided into two by the

failure; therefore the isolation procedure for each message must operate in two parts. The

85

4 Design Discussion

first stage of the mechanism must free resources held by the head of the message, that is

the path between the fault and the message destination. This is achieved by terminating

any active message at the receiver of the failure point by the BEOP token. Referring back

to the example of Figure 4-2, points x and z are effectively the receivers of that link on

router-switches 3 and 2, and must carry out this function. To reiterate, this will allow the

rest of the network to operate as normal as the truncated packet continues to its destination,

and the arrival of the BEOP token at the destination flags a fault in transmission.

Point of
failure

R outer sw itch

S o u r c e n od e

D estination n o d e

U nreserved link

R eserved link for packet 1

t e s J R eserved link for p ack et 2

Figure 4-2 : Theoretical network with a single point of failure, showing allocated
resources

The second part of the mechanism must remove the tail of the packet from between

the source and the point of failure. Effectively, point w and point y are the transmitters of

the failed link, and thus are now the new destinations of the tails of these corrupted

packets. By spilling packets one and two at points w and y respectively, the tail of the

packets behave normally with respect to the rest of the network.

4.3.3.2 Link Invalidation
Once active packets have been dealt with by the isolation procedure, further steps

must be taken to attempt to deliver subsequent packets that require the failed link.

Alternatively, a link may have never successfully entered the ‘awake’ state, or a link was

configured as dormant and it has returned to the ‘asleep’ state. The description of the

detection mechanism showed how the link should attempt to re-establish a connection if an

error is raised. In the interim, or failing a re-establishment of the connection, a procedure

86

4 Design Discussion

is required to govern other pending connection-requests. There are three situations that

must be handled:

1. connection-requests are pending and the output is not grouped and the output is

not ‘awake’;

2 . connection-requests are pending and the output is grouped but none of the

outputs are ‘awake’;

3. connection-requests are pending and the output is grouped with alternative

routes available.

The first and second situations must follow the same steps, that is attempt to re­

establish a connection on the target link(s), and wait for a period of time. If, after the

period of time, the connection is still unavailable, the packet that made the request should

be removed. This should be performed for each subsequent packet, to ensure that each is

give the same chance to be delivered. This is called the kick-start procedure, and is evident

in the link state machine shown in Figure 4-1, as the kick-start command. Irrespective of

the configured dormancy setting of the link, the kick-start procedure is used on each

unavailable link that is required. This standardises the procedure for the availability of the

link, which simplifies implementation.

Removal of the undeliverable packet is achieved by using the functionality of the

isolation procedure. Following the time-out of the kick-start procedure, the allocation is

enabled that will connect the undeliverable packet to the ‘asleep’ output. This will spill the

packet as if it was active on the occurrence of the failure. Following the removal of the

packet, the circuits are reset, which ensures that the router-switch returns to normal

operation.

The third situation must utilise the other available routes, thus allowing the use of

redundancy through group adaptive routing, for operation in the presence of faults. If

some members of the group are shown to be inactive, they should still follow the kick-start

procedure described above. If a suitable link is ‘awake’, but busy, the recovery of the

other link would improve throughput. Packets that can be routed via alternative paths will

never be removed from the network

87

4 Design Discussion

4.4 Stage Two Development Features
Deadlock in wormhole routed networks is a major concern. As the review of

section 2.2.3.7 showed, there have been many solutions, the most prevalent for irregular

network being avoidance based source routing. Myrinet implements two stages of

deadlock protection, namely avoidance and recovery mechanisms. This is sensible as bit

errors in the data stream may negate the precautions of many avoidance systems. The aim

of the stage two development was to investigate whether a more responsive deadlock

detection and recovery mechanism than the basic time-out system was feasible.

The stage two enhancements evolved from work by Lopez and Martinez [57, 67].

Their heuristic approach allowed the detection of potential deadlock conditions by using

information local to routing nodes. Their implementation, whilst still operating a time-out

system, reduced messages marked for recovery, thus lowering false detection rates. This

was achieved by following the premise that a tree structure of blocked messages forms

while waiting for resources occupied by a single message that is advancing. The message

that is advancing is known as the root and freeing the resources held by the root will allow

the remaining messages to be delivered.

To maintain implementation flexibility and to minimise false deadlock detection,

the detection mechanism, devised for the stage two modifications, propagates additional

status information up and down the branches of the tree structure of reserved resources. In

this way, possible deadlock conditions can be validated, which minimises false detection

on non-deadlock cycles and heavy traffic patterns with minimal time-out requirements and

without any limitations on packet size.

4.4.1 Stage Two Physical Layer Protocol Enhancements
Similar to stage one of the enhancements, there are no modifications to the physical

layer.

4.4.2 Stage Two Data Link Layer Protocol Enhancements
The mechanism suggested here uses additional control tokens in the deadlock

detection process to allow a bi-directional transfer of control information. By defining new

control tokens, the passage of information relevant to the deadlock condition can be passed

transparently to the data path. For this mechanism, three extra control tokens are defined

as shown in Table 4-4. The data link layer implementation of these tokens relates to only

transmission and receipt, which is controlled from the network layer implementation.

88

4 Design Discussion

Table 4-4 : Definition of the extra control tokens for stage two of the fault tolerance
mechanism for the NTR-FTM08

Token Identifier Abbreviation Coding [Type, LSB ...MSB]
Deadlock probe DLPRB 0 0 0 1 0 0 0 0 0
Deadlock path clear DLCLR 0 0 0 1 1 0 0 0 0
Data movement DLMOV 0 0 0 1 1 1 0 0 0

4.4.3 Stage Two Network Layer Protocol Enhancements
The network layer of the second stage implementations governs the transmission

and effects of receipt of the three extra tokens that were defined in the data link layer. The

operation of the second stage enhancements is constructed of two parts: deadlock

detection, and deadlock recovery.

4.4.3.1 Deadlock Detection
The deadlock detection mechanism uses the flow control information possessed by

each link and the additional control tokens. The mechanism operates by sending the

deadlock probe token up the path of stalled reserved resources to query the status of the

path ahead. Thus if a cycle (deadlock or otherwise) is present, the original node will

receive a DLPRB. However, the path clear token will be returned down the path of

reserved resources, following a deadlock probe, if a valid exit path exists. The data

movement token is used to enhance the information supplied by the data flow-eontrol

mechanism, as the hysteresis of the permission based system effects the information that it

provides.

To control the distributed detection mechanism, each receiver at each port in the

network possesses five flags, namely:

• targetStalled - the state of the flow control of the target output;

The targetStalled flag is asserted when the required resources of the packet

queued at the receiver have been stalled by the flow control mechanism.

• iAmRoot - the status of the packet at the receiver, whether it is the source of a

deadlock;

The iAmRoot flag is asserted when a packet is queued for an output and the

targetStalled flag changes from false to true. Additionally, the iAmRoot can

89

4 Design Discussion

be asserted if the targetStalled flag is true and a DLMOV token is received

at the output.

The iAmRoot signal is de-asserted if the targetStalled becomes false or the

target output receives a DLCLR token.

• sentProbe - whether the receiver requested the transmission of a DLPRB token

at the output;

The sentProbe flag is asserted when the receiver raises a request for its

target output to generate a DLPRB token. It is de-asserted when a DLCLR

token is received at the respective target output or if targetStalled becomes

false.

• gotProbe - whether the receiver has received a DLPRB token;

The gotProbe flag is asserted when the receiver link has detected the arrival

of a DLPRB. It is de-asserted if the targetStalled is false.

• cycleTimeout - whether a timer has elapsed, which is started when a root node

has generated a DLPRB token.

The cycleTimeout is asserted after a timer has elapsed. The timer is started

when iAmRoot is true and sentProbe is true.

The assertion of the cycleTimeout and the gotProbe flags triggers the operation of

the recovery mechanism. Additional to the removal of the packet from the cycle, the

execution of the recovery mechanism also resets all five flags to false.

The generation of the three control tokens is governed by these status signals. The

rules for generation of each token are as follows:

• DLPRB token generation:

1. if iAmRoot is true and sentProbe is false;

2. if gotProbe is true and sentProbe is false and iAmRoot is false.

• DLCLR token generation:

1. if gotProbe is true and the target output is not stalled;

2. if gotProbe and the target output receives a DLCLR token.

90

4 Design Discussion

• DLMOV token generation:

1. if data is taken from the receiver FIFO, but not enough to trigger the

flow control.

Using these five receiver flags and the rules for control token generation, a

description of the mechanism operation, as a simple deadlock cycle is formed, can now be

provided. To aid this further the diagrams from Figure 4-3 to Figure 4-7 will be used for

reference.

Referring to Figure 4-3, the diagram depicts three packets in an example of a

simple network. This state shows a number of connections that possess no obvious

problems. Packet 1 entered the network first, and has connected across router-switches 1,

2 and 4. Thus, the five receiver flags for each link that are reserved by this packet would

be all false.

pkt2 i/p pkt2 — pktl -W pkt3

pktl i/p 1 pktl

Key
R o u ter sw itch X U n r e s e r v e d linkR x

Q R1 2

-4 -p k tx — Link r e s e r v e d for p a c k e t X

Figure 4-3 : A depiction of an example network prior to the formation of a deadlock
cycle

Packets 2 and 3 entered subsequently and stalled at router-switch 1 and 4

respectively waiting for the resources held by packet 1. Although the packets are stalled

while queuing for their outputs, the packet holding their target outputs is not stalled.

Therefore, the receiver flags for packet 2 and 3 at link 0 of router-switch 1 and link 3 of

router-switch 4 respectively also would be all false.

91

4 Design Discussion

The fourth packet to enter the network does so by link 2 of router-switch 3 as

shown in Figure 4-4. Uncontended, packet 4 connects to output 0 and is queued at input 2

of router-switch 4. The receiver flags of packet 4 at router-switch 3 are all false, as the

packet has established a connection. The receiver flags of input 2 of router-switch 4 are

configured as the flags associated with packet 1 and 2. Packet 4 is stalled waiting for

resources held by packet 1, and packet one is not stalled, therefore all the flags also are set

to false.

— pktl

pktl

Key
Router switch X Unreserved linkRX

pktl i/p

p k t3 o /p

< — pkt4 — pkt4 i/p

pkt2 i/p pkt2

pkt4 —

“1
0 R3 2

0 R2 20 R1 2

•^-pkix— Link reserved for packet X

Figure 4-4 : Introduction of a fourth packet into and example network prior to the
formation of a deadlock cycle

Figure 4-5 depicts two main changes in the status of the network. The first is the

entry of the fifth packet on input 1 of router-switch 2, which connects across router-switch

2 to output 3 and is queued at router-switch 3 waiting for output 0. The flags of input 1 of

router-switch 2 are set all false as the packet has formed a connection. However, the

targetStalled flag of input 1 of router-switch 3 is true, as packet 4, which hold the

resources of output 0 in router-switch 3, stalled whilst queuing for output 1 of router-

switch 4. The remaining flags remain false, as the target output was stalled as the packet

was queued. In this state the receiver flags are set thus - {targetStalled, !iAmRoot,

IsentProbe, ! gotProbe, !cycleTimeout}. Although this inhibits packet 5 generating a

92

4 Design Discussion

DLPRB token, it is permitted to forward one if the status does not change and DLPRB

token is received at input 1.

The second modification to the network state, is the release of some network

resources. Packet 1 has release all resources associated with router-switch 4, which has

allowed packet three to connect across router-switch 4 to output 1. This action has not

changed the state of any flags as packet 2 is still waiting for output 2 of router-switch 1,

and packet 4 is still waiting for output 1 of router-switch 1, both of which are still not

stalled.

pkt2 i/p pkt2 •

<--------

Q . CL
O

5
CL

£
Q .

1 >
0 R1 2

3

1
CO£Q.

1 >r
pktl i/p

p k t5 o /p

-p k tl
0 R2

-pkt4 ■

pk t3 o /p

On'
-pkt4 — pkt4 i/p

Key
RX Router switch X Unreserved link

<-pk\x— Link reserved for packet X

Figure 4-5 : The entry of the third packet in the formation of a deadlock cycle

The state of the network is progressed further in Figure 4-6, as packet 3 is queued

for output 2 of router-switch 1. Additionally, packet 2 connects across router-switch 1 and

arrives at router-switch 2. As packet 3 stalls at router-switch 1 and head of packet 2 is

transmitted to router-switch 2, the mechanism remains dormant in router-switch 1.

However, as the link flow control mechanism between router-switch 4 and router-switch 1

comes into effect the status of packet 4 changes. As the state of the target output changes

to stalled, the deadlock mechanism triggers, which flags packet 4 as a possible root of a

deadlock cycle. This forces the generation of a DLPRB token which is sent from router-

93

4 Design Discussion

switch 4 to router-switch 1. As highlighted above, packet 2 has not been stalled, therefore,

as yet, no deadlock cycle exists. This allows the input 3 of router-switch 1 to send a

DLCLR token back to router-switch 4, the receipt of which returns packet 4 back into the

Iroot status. Therefore, the receiver flags at router-switch 4, input 2 and router-switch 3,

input 1 are the same, that is {targetStalled, !iAmRoot, !sentProbe, !gotProbe,

!cycleTimeout}. The receiver flags associated with packet 2 and packet 3 are all set to

false, as the packet is connected over the respective router-switch or the target output is

waiting for a non-stalled output.

p k t4 ------ •pkt4

Key
Router switch X Unreserved linkR X

p k t3 o /p

pkt4 i/p

pkt2 i/p — pkt2

p ktl i/p

p k t5 o /p

— pkt2

•<—pktx-— Link reserved for packet X

Figure 4-6 : Depiction of the final stages of the formation of a deadlock cycle

Figure 4-7 shows packet 1 completely removed from the network, and the

completion of the deadlock cycle by packet 2. As packet 2 queues for output 3 on router-

switch 2, the packet stalls. As the target output of the packet 2 was already stalled as it

was queued the receiver flags are set thus - {targetStalled, !iAmRoot, !sentProbe,

! gotProbe, !cycleTimeout}. Recall that the receiver flags for packet three at router-switch

1, input 3 were all set to false. As packet 2 stalls on router-switch 1, output 2 these flags

change. As the state of the target output of packet 2 changed to stalled, this makes packet

3 a possible root of a deadlock cycle. Therefore iAmRoot and targetStalled are set to true.

94

4 Design Discussion

This generates a DLPRB token for output 2 of router-switch 1, which also sets sentProbe

to true. Thus the receiver flags for packet 3 at input 3 of router-switch 1 are set

{targetStalled, iAmRoot, sentProbe, ! gotProbe, !cycleTimeout}.

pkt2 pkt2

p k t5 o /p < ■

Key
Router switch X Unreserved linkR X

pkt2 i/p p k t3 o /p

pkt4 — pkt4 i/ppkt4 —
0 R 4V

•<—pktx— Link reserved for packet X

Figure 4-7 : The complete deadlock cycle

The arrival of the DLPRB token at input 0 of router-switch 2 is forwarded on to

output 3, as 3 is the stalled target output of packet2 and it is not flagged as root or hasn’t

sent a probe. This sets the sentProbe and gotProbe flag to true. A similar action

propagates the DLPRB token from router-switch 3 to switch4, and from router-switch 4 to

router-switch 1. The receipt of the DLPRB token at input 3 of router-switch 1 sets the

gotProbe to true. This receipt of the deadlock probe has highlighted a possible cycle. This

is where the cycle timer is used. It is possible that traffic loading under normal operating

condition may have created many possible root nodes, each of which would have generated

DLPRB tokens. To ensure that there is enough time to allow any DLCLR tokens to return

to the root node, the timer is used. As the deadlock control tokens are transparent to the

data stream, this timer can be significantly smaller to those of a pure timer based system.

The time-out is based on the diameter of the network and the bit-rate of the physical

medium. If a DLCLR token does not arrive back at the node before the time-out, the

95

4 Design Discussion

recovery mechanism will be triggered. In this example, a DLCLR token will not return as

no escape path exists.

4.4.3.2 Deadlock Recovery
Once a deadlock condition has been detected, a recovery mechanism must be

initiated to resolve the cyclic dependency problem. Resolution can only be achieved by

removing a message from the cycle, therefore relinquishing the resources held by it.

This forces extra functionality at the source node to detect packet loss so that

retransmission can take place. Although this is not the most favourable solution, it is the

simplest to implement on the router-switch architecture used in this work. For that reason,

at this stage of development, message deletion was chosen for the recovery method.

To cleanly delete a message from the network, three steps must be taken. First, all

reserved output port resources must be relinquished, second, any pending connection-

requests should be cancelled and finally, the message should be removed from the

receiving FIFO.

96

5 Detailed Router-Switch Design

5 Detailed Router-Switch Design
This chapter details the implementation of the NTR-FTM08 in three stages. The

first stage describes the core routing features of the design. This is followed by the details

of the stage one developments that incorporated the fault tolerant mechanisms. Finally, the

implementation of the deadlock detection and recovery mechanism is presented, which

were part of the stage two developments.

5.1 Basic Skeletal Switch
This section presents all basic routing functions, but omits any of the implemented

fault tolerant features, which are left for the subsequent sections.

5.1.1 Top-Level Router-Switch
The top-level module, illustrated in Figure 5-1, is constructed from three main

components, namely the link unit, controller and exchange. This module connects these

blocks together and distributes the clock and reset signals.

Serial link Data path Control signals

Figure 5-1 : Block diagram of the top level components of the NTR-FTM08

5.1.2 Link Unit
The link unit is a modular block that contains four sub-blocks, which provide the

interface to a single link of the asynchronous transmission medium, in addition to unicast

97

5 Detailed Router-Switch Design

decoding and connection-requests, which are directed to the controller. The module, as

shown in Figure 5-2, is constructed from four blocks, namely the buffered link, receiver

controller, interval decoder and transmitter buffer.

To
Controller

To
Exchange

Serial Out «=
From

Exchange

| Control signals Q] Data path

Figure 5-2 : Block diagram of the link unit of the NTR-FTM08

Buffered Link Interface
The buffered link interface possesses the functionality of an enhanced buffered

UART. The module contains four sub-blocks, receiver, transmitter, receiver FIFO and

synchroniser, in addition to control logic which implements the data link layer fault

tolerance features as described in section 4.3.2. The receiver module synchronises the

asynchronous serial bit-stream and converts it to a parallel byte-stream. The transmitter

converts a parallel byte-stream into the serial bit stream of the asynchronous protocol. The

receiver and transmitter modules work co-operatively to form a fully flow controlled link.

The receiver FIFO provides buffering for the incoming data stream, the size of which has

been set to thirty-one bytes with an ‘almost-full’ value of twenty and an ‘almost-empty’

value of ten. The synchroniser module interfaces the necessary control signals between the

sampling and core clocks at the input of the receiver FIFO and the output of the transmitter

FIFO. By synchronising at these points, the latency of the link can mask the

synchronisation delays. Synchronisation is required as the bulk of the buffered link

operates using the sampling clock, whereas the remaining functionality of the router-switch

operates using the core clock.

Receiver Controller
The receiver controller operates based on the state machine shown in Figure 5-3,

which ultimately controls the network layer status of the receiving link. After a device

reset and before a packet arrives, the state machine is in the idle state. The placement of
98

5 Detailed Router-Switch Design

data into the receiver FIFO moves the controller through the header decode and decode

select states. These two states provide the clock cycles required by the interval decoder

block to decode the lead packet header. The result provided by the interval decoder block

controls which state is entered next. If an illegal header is decoded, the receiver will enter

the flush state. If a valid interval header or physical header is found, the queue request

state is entered. Finally, if a logical addressing header is detected, the receiver enters the

logical decode request state.

Idle

Data
Transfer

H eader
Decode

Flush

Logical
Decode
R e q u est

Decode
S elect

Queue
R equest

Figure 5-3 : Receiver controller finite state machine

Whilst in the queue request state, the decoded unicast connection-request is

asserted which is produced from the decoding cycles. The controller will wait for a

connection-request acknowledgement, which moves the receiver into the data transfer

state. The logical decode request state produces a decode request, which is directed,

together with the address header byte, to the logical address decoder within the router-

switch controller block. The decode acknowledgement from the logical address decoder

also validates the header. If an illegal header is flagged with the acknowledgement, the

receiver enters the flush state. Otherwise, the acknowledgement signifies that the header

has been decoded and the connection-request has been queued and the receiver moves into

the data transfer state. Once in the data transfer state, the receiver unmasks the receiver

FIFO control signals, which are connected to the exchange block. The receiver continues

99

5 Detailed Router-Switch Design

to monitor the head of the receiver FIFO whilst in the data transfer state and flags a

disconnection-request to the router-switch controller when the packet delimiter token is

detected. This detection also moves the receiver back to the idle state, where the whole

cycle may repeat.

The flush state operates similarly to the data transfer state, where the controller

monitors the head of the receiver FIFO for the packet delimiter token and returns to the

idle state when it is detected. In addition to this, the controller also generates receiver

FIFO read commands to remove the invalid packet from the receiver FIFO. Therefore, any

packets that possess an illegal header are removed from the system, thus freeing the

resources. Illegal headers are detected by the interval decoder and logical address decoder

unit (discussed in section 5.1.3).

Interval Decoder
The interval decoder reads the head of the receiver FIFO and provides decoding

information. The module decodes physical and interval addresses, and flags the presence

of logical addressed headers to the receiver controller. As the routing headers are spilt into

four blocks of sixty-four, the operation of the interval decoder is defined by the upper two

bits of a routing header. “00” defines an interval address. “01” defines a logical address.

“10” defines a physical address. “11” defines a connection to the configuration port.

An interval addressed packet is decoded using information passed from the

configuration port from the router-switch controller module to all link units. The interval

information is presented as a six-bit value and a corresponding five-bit destination port.

The header is passed in parallel to ten, six-bit comparators; the result of which is used to

select the correct interval. The corresponding interval five-bit destination port information

is a four-bit binary-coded decimal value of the destination port and an interval validity bit.

If a physical address is detected the three lower bits are used as a binary-code decimal

value to define the required destination, and the header is always valid. Similarly, if the

header defines a connection to the configuration port, the header is marked as valid and the

configuration port is selected as the destination port. Any logical addressed header is

flagged to the receiver controller, which then generates a logical decode request.

Finally, an overriding feature of the interval decoder is the detection of a control

token at the head of any packet, which is indicated by a ‘0 ’ at bit zero of the nine-bit token.

100

5 Detailed Router-Switch Design

Such a condition is illegal and indicates a bad packet format, which overrides all other

operations to flag an illegal header.

Transmitter Buffer
The transmitter buffer implements a two-token FIFO buffer to conceal both the

latency of the exchange and the change of connections, enabling back-to-back data

transfers out of the link transmitter block. The module also performs header stripping, and

generates the transmitter disconnection-request. Both optional and mandatory header

stripping is performed by the module, which also allows multicast headers to be stripped

on selected outputs. The FIFO buffer block has been implemented in logic, as there are

insufficient embedded memory blocks in the target device.

5.1.3 Controller
The controller contains the system blocks that regulate the connections of the

router-switch. As shown in Figure 5-4, the module is comprised of the following blocks:

connection-request queue, link allocater, logical address decoder, logical connections

status register and configuration port.

From the
Link Units

From the Link
Units

From the
Link Units

To the
Exchange

To the
Link Units

From the
Exchange

| Control signals

]] Data path

Figure 5-4 : Block diagram of the controller of the NTR-FTM08

101

5 Detailed Router-Switch Design

Connection-request Queue
As packets arrive at the receiver ports, the link unit block generates a connection-

request for interval and physical addressed packets. Logical decode requests are directed

to the logical decoder, which also creates connection-requests. The connection-request

queue utilises a unified request selector, which places the requests on to one or more of the

nine separate, FIFO queues. Each FIFO queue, which are associated with an output,

contains three entries and stores the input code of the pending request. Logical requests

are given a higher priority for queuing than inteival and physical addressed packets, as

logical packets may form multicast comiections. By providing a higher priority, the

request is presented for allocation sooner, which reduces the delay on multicast

connections. As only one logical request is queued at a time, allocation deadlock of

multicast connections cannot occur.

Once a connection queue is full of requests, further requests for that output are

ignored until a space on the queue is freed. A cyclic priority is used to prevent connection

starvation due to the limited queuing entries. The term cyclic priority refers to the priority

selection technique if two or more requests are made concurrently. The technique uses the

last selection to set the point of priority. For example, if the last selection was number 4

out a choice of 1 to 8, then for the next selection the priority would be

{5, 6, 7, 8, 1, 2, 3, 4} (in decreasing order of priority). Although the cyclic priority does

not guarantee connection starvation, its use makes such occurrences improbable.

The implementation of the connection FIFO queue has been realised in logic, as

there is an insufficient number of embedded memory blocks within the target device.

Link Allocater
The link allocater sequentially forms the connections between input and output

ports across the exchange. As part of this task, the module maintains the status of the

output and input links and the exchange configuration, which the exchange uses to control

data transfers across the connections.

The operation of the allocation block works on a priority scheme, such that requests

on the lower order queues are serviced before one on the higher ordered queues. This form

of priority is permissible as allocation starvation is made improbable by the connection-

request queuing stage. The configuration port supplies output grouping information, which

is used in the allocation process, together with pending requests from the connection-

102

5 Detailed Router-Switch Design

request queues. Allocation operates using a ‘last minute’ grouping technique, which

ensures that any pending request for a grouped output is connected to an unconnected

group output irrespective on which output queue the request is held. Once an output is

reserved for a connection, the status of the output is flagged as in use. This status flag can

only be reset with a disconnection-request from the respective output port. If the

connection is flagged as a logically addressed packet, the allocation unit must wait for an

activation signal from the logical connection status register before the connection can be

enabled. If it is not a logically addressed packet, once the output has been flagged, the

connection can be activated. The activation of the connection permits the exchange to

transfer data between the input and output ports. Each connection active flag is reset by a

disconnection-request from the input link unit.

Logical Address Decoder
The logical address decoder module receives address decode requests from the link

unit modules, which it prioritises and sequentially services. The logical address decoding

follow a four state process, namely ‘selection’, ‘decode’, ‘queue request’ and

‘acknowledgement’. The first state selects the decode request to service, the result of

which is used in the ‘decode’ state. Logical address decoding is achieved by using the

header associated with the request, to address a sixty-four entry, ten-bit wide RAM. The

ten-bits of the RAM entry consist of a header validity bit, and a nine-bit, bit vector that

relates to the destination outputs required for the connection. Following the address look­

up, the resultant bit-vector is masked to remove the source link from the vector and any

grouped outputs associated with the source link. This has been implemented so that a

multicast group could be defined, and any member could use the header without causing

packet livelock or avalanche packet replication. The servicing state machine then moves

either to the ‘acknowledgement’ state or ‘queue request’ state. The ‘acknowledgement’

state is entered if an invalid header has been decoded. A header is deemed invalid for one

of two reasons: firstly, if the address validity bit is set to ‘false’, or secondly if the masked

bit-vector contained zero valid destinations. The service acknowledgement is asserted with

an invalid address flag, which instructs the receiver controller of the link unit to spill the

invalid packet. If the ‘queue request’ state is entered, the masked bit vector is used to raise

a connection-request, and this state is maintained until the connection-request queue

acknowledges the request. The connection-request is also passed to the logical connection

status register, to aid connection allocation of multicast packets.

103

5 Detailed Router-Switch Design

The logical address decoder also includes a memory interface that allows control

signals from the configuration port to configure the look-up table.

Logical Connection Status Register
As logical addressed headers can be used to implement multicast connections, a

method was required to ensure that all required outputs are reserved before the connection

was enabled for data transfer. To allow multiple logical requests to be serviced

concurrently, the logical connections status register has been implemented, such that

normal connection-request queuing could be utilised. Each input port has a status register

associated with it, which maintains the state of any logical connection it may make. This

information is supplied as the logical address decoder raises a connection queue request.

As the link allocater reserves outputs for connections, the information is also sent to the

logical connection status register. Once all the outputs of a request have been made, a

signal is sent to the link allocater to activate the connection.

Configuration Port
As stated previously, the configuration port for the NTR-FTM08 is accessible via

the data path. To achieve this, the configuration port acts as a valid output port, which

provides access via any input port, through the exchange. Thus, configuration information

takes the same form as normal system packets; that is, a routing header, payload and

termination token. With future design implementations in mind, a scaleable programming

method has been implemented that is based on the byte-stream supplied by the exchange.

The specification of the NTR-FTM08 contains the registers for addressing, stripping and

grouping configuration, namely:

• eleven, five-bit registers for interval port information;

• ten, six-bit registers for interval limit information;

• eight, three-bit registers for grouping information;

• one, eight-bit register for stripping information.

Additionally, the configuration port possesses an interface to configuration the

look-up table used for logical address decoding.

By using the byte stream from the exchange as a stream of atomic instructions, as

listed in Table 5-1, all these registers can be configured in a standardised method. Using

104

5 Detailed Router-Switch Design

these instructions, each configuration register within the configuration port is accessible by

a data register, and for multiple registers, an address register. The data register is ten bits

long, which is equal to the longest configuration feature, namely the logical look-up table.

The address register is six bits long to support the greatest address range, namely the

logical address register. The data register is used to store the configuration data before it is

transferred to the correct configuration register. The address register is used if an offset is

required into a group of configuration registers; namely, the interval registers, the logical

address look-up table and the grouping registers.

Table 5-1 : Atomic instructions for the configuration port of the NTR-FTM08

Token Identifier Abbr. Coding [MSB LSB, Type
Load address register CLAR 0 0 0 0 Ao A i a 2 A 3 1
Load data register CLDR 0 0 0 1 Do Di d 2 d 3 1
Write interval port register CWIP 0 1 0 0 X X X X 1
Write interval limit register CWIR 0 1 0 1 X X X X 1
Write logical lookup table CWLR 0 1 1 1 X X X X 1
Write stripping register CWSR 0 1 1 0 X X X X 1
Write grouping register CWGR 1 0 0 0 X X X X 1

Configuration data and the offset address are loaded into the associated register

using the CLDR and CLAR commands respectively. The configuration data is then

latched to the correct configuration register by the associated instructions. Each load

instruction carries four bits of information, which means that multiple CLAR and CLDR

instructions are required to carry all the information required to configure many of the

registers. The nibble carried with the load instruction is pushed into the least significant

bits of the relevant register, thus longer words of information must be sent with the most

significant bits first. Table 5-2 shows an example packet that would configure entry ‘53’

(110101 binary) of the logical addressing lookup table, with a broadcast header. Note that

the routing header and end of packet token are included, to show the packet construction.

The configuration unit inhibits all address decoding, queue requests and connection

allocations while the configuration unit is connected, but established connections are

unaffected. Additionally, the control port initially delays the processing of configuration

data to ensure that all servicing has ceased.

105

5 D etailed R outer-Sw itch D esign

Table 5-2 : Example packet for configuration of the NTR-FTM08

Instruction Coding [MSB • • LSB, Type]
Connect to control port 1 1 0 0 0 0 0 0 1
Load address register with 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 (b in a ry) 0 0 0 0 0 1 0 1 1
Load data register with 0 0 0 1 0 0 1 1 1

‘ 1 1 1 1 1 1 1 1 1 1 7 (b in a ry) 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1

Write to logical lookup table 0 1 1 1 0 0 0 0 1
Disconnect from control port 0 0 0 0 0 0 0 1 0

5.1.4 Exchange
The exchange forms the connection between the receiver and transmitter(s). In this

role, the module actively transfers data between the receiver and transmitter FIFOs. Figure

5-5 shows the basic structure of the exchange, which delivers the data to the correct output

with the use of the exchange unit sub-modules and control signals derived from status

information. The exchange forms a non-blocking crossbar; that is, up to eight connections

can transfer data concurrently. The nine-bit transfers operate over four clock cycles, which

results in an effective maximum throughput of eighteen bits per clock cycle.

From
Controller

From Receiver FIFO

From Transmitter FIFO

From
Receiver

FIFOs

►j Read & Writ
Control

Exchange
Unit 7

change
Unit CP

To Receiver FIFO

To Transmitter FIFO

= | b To Transmitter FIFOt e w

To Transmitter FIFO

From
Controller

To Transmitter FIFO

, . To Conf port FIFO

| Control signals

] Data path

Figure 5-5 : Block diagram of the exchange of the NTR-FTM08

106

5 Detailed Router-Switch Design

As multicast connections can be formed, the movement of data across the exchange

is synchronised between the input and all the outputs. This is achieved by the control logic

for the read signal for each receiver to be dependent on all transmitter FIFO full flags and

output status flags that are associated with the connection. Comiection information is

provided by the link allocater from within the router-switch controller. A transfer is made

if the connection is enabled and the receiver FIFO is not empty and all of the target

transmitter FIFOs are not full.

Exchange Unit
The exchange unit module operates as a three-bit multiplexor, which provides data

to a nine-bit shift register. The exchange transfers a nine-bit token over four clock cycles.

The first cycle is used to check the associated receiver and transmitter FIFO buffers were

ready, and the remaining cycles are used to transfer the data. In this way, on the third

transfer cycle the data is ready to be latched into the target transmitter FIFO.

5.2 Fault Tolerance - Stage One
The stage one fault tolerance modifications concentrated on features for fault

detection and localisation. This limited alterations to two areas, namely the link unit and

the controller.

5.2.1 Stage One Enhancements to the Link Unit
The enhancements to the link unit are centred on error detection and isolation based

on the truncation and removal of corrupted packets. The enhancements are focused on the

lower levels of data transfer, that is the physical link operation and packet format.

Alterations to the Buffered link
As described earlier in section 4.3, fault detection is based on link status and

expected operational procedures. The enhancements of the basic functionality include

features for the transmission and recognition of the additional control tokens specified in

section 4.3.2. This allows the implementation of the initialisation and link status state

machine, which operates with the control signalling of the link described in 4.3.2.

The operation of the error detection and the link initialisation procedure depends on

two periodic control signals, namely heartbeat and check-pulse. These signals are used for

all states of the link, as they supply triggers for initialisation and disconnection detection

107

5 Detailed Router-Switch Design

procedures. The signals are created by a centralised counter to minimise logic

requirements. The current implementation generates a check-pulse once every 511 sample

clock cycles, which is approximately equivalent to the transmission of 31 tokens, where

the heartbeat is generated once every 255 sample clock cycles, which is approximately

equivalent to the transmission of 15 tokens.

For the disconnection detection mechanism, the heartbeat signal is used to create

link activity and the check-pulse signal is used to verify link activity, while the link is

‘awake’. Link activity is achieved by the periodic transmission of idle tokens. Idle tokens

were defined in the specification as flow control token relative to the flow state; that is GO

tokens when the link is free, and STOP tokens when the link is stalled. Verification of link

activity is achieved by logging the arrival of any token, which is recorded by the ‘link

activity’ flag. If the ‘link activity’ flag is not asserted on the occurrence of the check-pulse

signal, a disconnection error is flagged. The check-pulse also resets the ‘link activity’ flag,

to restart the verification procedure. The synchronisation error is flagged by the sampling

circuits, which check the token framing to ensure a valid stop token is received after the

assumed start token. The receiver circuits also provide a flag, which indicates the receipt

of a ‘connection-request’ control token. An overflow error is detected by a small control

circuit, which monitors the state of the receiver FIFO and the write signal.

The triggering of any error detection mechanisms moves the link state machine to

the ‘reset’ state. This results in the truncation of any incoming packet that is active and

invalidates the receipt of any further tokens until the link has been successfully initialised

to maintain packet integrity. For truncation, a ‘receiver packet status’ flag monitors the

receiver data stream to flag receiver packet activity. On the event of a reset, if the

‘receiver packet status’ flag is true, a BEOP token is written to the receiver FIFO buffer,

effectively truncating the corrupted packet.

The final modification to the buffered link is the support of link dormancy. This

configuration setting allows a link, which has been idle for a predetermined time, to return

to the ‘asleep’ state. To achieve this functionality, an inactivity counter and a ‘transmitter

packet activity’ flag have been included. The ‘transmitter packet activity’ flag monitors

the transmitter data stream, and indicates a packet is active across the transmitter link. The

‘packet inactivity’ counter is incremented at the occurrence of the check-pulse signal if the

both the transmitter and receiver packet activity flag are false. The ‘packet inactivity’

counter is reset if either activity flag are true. If the inactivity counter reaches a predefined
108

5 Detailed Router-Switch Design

value, the transmission of idle tokens is inhibited, which results in a disconnection error.

However, the activity and link dormancy status information are used to ensure that the link

safely returns to the ‘asleep’ state as opposed to raising an error flag. Whilst in the ‘asleep’

state, the dormancy feature inhibits further transmission of idle tokens. The packet

inactivity counter is set to a maximum of four in the prototype NTR-FTM08, although it is

suggested that this value would be much larger in a final implementation to suit application

needs.

If the dormant link is required following a return to the ‘asleep’ state, a kick-start

request can be used to restart the link. The kick-start request forces the link from the

‘asleep’ state to the ‘reset’ state, which initiates the initialisation procedure. The kick-start

request is generated by the controller if the link status makes the link unavailable and the

output is required. In addition to the function of waking a dormant link, the kick-start also

doubles as a request for the confirmation of the link status. The possible responses to this

request are either the link moving to the ‘awake’ state, and therefore becoming available,

or the assertion of the still-dead signal. The still-dead signal is asserted if the link has not

returned to the ‘awake’ state after an appropriate time has elapsed since the kick-start

request. In the current implementation, this period equates to three occurrences of the

check-pulse signal, which equates in time to between 93 and 124 tokens. This period was

arbitrarily chosen, but could be easily altered to a more appropriate value for application

requirements.

Alterations to the Transmitter FIFO
The transmitter FIFO buffer needed packet removal functionality for the isolation

procedure of the stage one mechanism, which involves the removal of the tail of severed

packets. The mechanism operates on the status of the ‘link active’ flag in conjunction with

an ‘active packet’ status flag. The ‘active packet’ status flag monitors the transmitter data

stream for active packets across the link. If the ‘active packet’ status flag is true and the

associated output is inactive, the remaining part of the packet is spilt. The packet removal

is controlled by a ‘spill’ flag, which is reset on the arrival of the packet termination token.

This ensures that the whole packet is removed from the data path, and each packet is spilt

according to the link status as it moves through the transmitter FIFO. The remaining

operation of the transmitter is unaffected, and a disconnection-request is raised as the

packet termination token is latched in the transmitter FIFO.

109

5 Detailed Router-Switch Design

5.2.2 Stage One Enhancements to the Controller
The enhancements to the controller are centred on error isolation, which ensured

that packets were given a suitable chance to be delivered, but any undeliverable packets

were removed to provide maximum network availability.

Alterations to the Link Allocater
Fault isolation procedures within the controller involve the connection of

undeliverable packets to the target outputs that are unavailable, which will result in the

removal of the packet from the system via the transmitter buffer. However, the main aim

of the link allocater is to ensure that each packet should be given adequate chance to

establish a connection to its required destination before isolation procedures are initiated.

Thus, for each connection-request that requires an unavailable output, the output must be

queried to confirm its status before any further action is taken. As described in the

previous section, the buffered link is involved in this procedure with the use of the kick-

start, still-dead and link availability signals. The link allocater generates kick-start requests

based on grouping configuration, output availability states and pending connection-

requests. After a kick-start request is generated, the link allocater ignores the associated

connection-requests until either a link becomes available or the still-dead confirmation

signal returns. The still-dead signal allows a connection-request for the associated output

to be serviced to remove a single packet. Thus, subsequent connection-requests for the

same output also must validate the destination output by the use of the same procedure.

For fault tolerance through redundancy, group adaptive routing may be used to

supply more routes in the network. For this reason, the link allocater considers the status

of all the outputs that may be grouped. Similarly, with grouped outputs, the kick-start is

generated if a connection-request is pending for an output, which is in a group with

unavailable links. This ensures that all routing possibilities are verified for use when

required to maximise concurrency. Packets are only connected for removal if all outputs

within the group have been confirmed as unavailable, then the packet marked for removal

is spilt through the output for which it is queued. This simplifies the validation and

removal selection mechanism, and allows subsequent packets the same chance for a

connection.

110

5 Detailed Router-Switch Design

Alterations to the Configuration port
There are no enhancements to the configuration port which relate to the fault

detection or isolation procedure, but the additional link dormancy feature requires

configuration registers. The dormancy configuration register is eight bits in length, each

bit is associated with an individual link. To configure this register, an additional

configuration register command was defined. Table 5-3 shows the format of this

additional write command.

Table 5-3 : Additional atomic instruction for the configuration port of the
NTR-FTM08

Token Identifier Abbr. Coding [Type, LSB ... MSB]
Write dormancy register CWDR 1 0 0 0 0 1 0 0 1

5.3 Fault Tolerance - Stage Two
The primary aim of the second stage of research was the investigation of a deadlock

handling procedure. The implementation only deals with basic unicast messaging.

5.3.1 Stage Two Enhancements to the Link Unit

Alterations to the Buffered Link
The bulk of deadlock detection algorithm operates within the higher levels of

router-switch operation. This minimises the involvement of the link to injection and

extraction of extra control tokens; namely the ‘deadlock probe’ (DLPRB), ‘deadlock path

clear’ (DLCLR), data movement (DLMOV) tokens, which were defined in section 4.4.2.

Transmission of DLPRB and DLCLR only occurs after a request from the controller. The

DLMOV token is an autonomous operation that is triggered if data is removed from the

associated receiver FIFO, which has been stalled. The transmission of the DLMOV is

restricted, such that it is sent only after a certain time has elapsed after data is removed.

This ensures that it is sent only if the movement out of the receiver FIFO is not sufficient

to trigger the flow control mechanism. The time equates to the time it would take to

transmit the number of tokens equal to the difference of the full capacity of the FIFO and

activity of the ‘almost-empty’ flag. This equates to the approximate transmission time of

twenty-four tokens in the simulation implementation as, the total capacity was thirty-one

tokens, and ‘almost-empty’ was asserted when the FIFO contained less than eight tokens.

i l l

5 Detailed Router-Switch Design

Alterations to the Receiver Controller
The remaining enhancements within the link unit module are involved in the

recovery mechanism of the deadlock procedure. Once a packet has been flagged as the

root of a deadlock by the procedure, that packet is marked for removal from the network.

This decision for removal is made in the controller, but a command signal has been

integrated into the receiver controller that removes a packet from the receiver FIFO and

resets the receiver. The implementation is a reuse of the packet flushing functionality as

defined in the skeletal router-switch is section 5.1.2.

5.3.2 Stage Two Enhancements to the Controller

Deadlock Detection Unit
The deadlock detection unit (DDU) is an additional modular block that had been

included to supply the functionality for the deadlock detection procedure. The DDU is

constructed using modular sub-block, each of which is associated with an input link. The

sub-blocks contain the five status flags and associated control logic as described in section

4.4.3.1 (namely, targetStalled, iAmRoot, sentProbe, gotProbe and cycleTimeout). The

receipt of deadlock control tokens is reported to the DDU and it generates requests for the

transmission of deadlock control tokens based on requests from the sub-blocks. The

queuing and connection status of each input is maintained by monitoring the connection

queue requests and input status flags. Although, this includes replication of status

information, it allows an isolated operation that required minimal modification to the

remaining parts of the switch. Implementation details operate as governed by the detection

mechanism as described in section 4.4.3.1.

Once a packet has been flagged as the root of a deadlock cycle, the removal

mechanism is initiated. As discussed earlier, the DDU sends a request to the associated

link unit, at which the packet arrived, to flush the packet at the receiver FIFO. In addition

to this, the connection-request must also be removed from the system to maintain

connection integrity. The DDU is responsible for generating the control signals for this

removal, which involves halting the link allocation operation, and supplying the relevant

information to the connection-request queue to target the correct request for removal.

The deadlock time-out value used is an equivalent time of approximately 23 tokens.

This figure should be proportional to the diameter of the network, which would then allow

a DLCLR token to propagate over the maximum number of hops. By using a value close

112

5 Detailed Router-Switch Design

to twenty-three tokens, it is estimated that networks with a diameter of eight router-

switches could be supported (due to transmission time and worse case delays). However,

further testing in larger networks is required to validate this premise.

Alterations to the Connection-request Queue
The connection-request queue is based on a FIFO storage structure as described in

section 5.1.3, so the removal of entries that may not be at the head of queues dramatically

alters the operation of the module. As described earlier, the implementation of the

connection queue was realised in logic rather than with an embedded memory block. The

read and write control logic for each entry is controlled by register status flags. Thus,

additional logic allows entry comparison, which generates localised read and write signals,

which are used to remove the request from the queue.

Alterations to the Link Allocater
Features are included in the link allocater to stall its operation. This is to ensure

that the removal of the connection-request does not interfere with the integrity of

connection servicing. Early simulations of the implementation showed that certain

network states could generate multiple root nodes in deadlock cycles, which were

problematic in connection integrity without with this precaution. The implementation of

the stalling functionality includes stalling the earlier stages of allocation. Thus,

connections that are in the final stages of completion are allowed to finish, after which the

DDU initiates the removal of the packet from the network.

113

6 Design Synthesis & Verification

6 Design Synthesis & Verification
This chapter details the simulation and hardware results from the implementation of

the specification described in chapters 4 and 5. All data presented here have been

normalised to show the true operation of the device relative to the calculated ideal values.

The normalisation enables a clearer analysis of the device operation and allows

comparisons with systems that operate at different transfer rates. The raw figures and

calculations for each data set within this chapter are included in appendices A, B, C and F

for completeness.

6.1 Preliminary Simulations

6.1.1 Credit-based and Permission-based Flow Control Comparison Analysis
The first simulations were based on a four-port model of an earlier device that was

derived from the NTR-M04. Minor modifications were made to the device, which

included the option to use the original credit-based flow control mechanism or a

permission-based STOP/GO mechanism, both of which operated with a twenty-byte

receiver FIFO. The credit-based mechanism set an ‘almost-full’ threshold of twelve bytes,

whereas the permission-based mechanism used an ‘almost-full’ threshold of sixteen bytes

and an ‘almost-empty’ threshold of four bytes. A single device was simulated with a range

of workloads based on a random (uniform) destination and injection rate. Random test

vectors were used to provide a view of the behaviour of the device under a varying load.

Although the random nature of the packets may not have matched the traffic pattern of any

one application, it did subject the network to load conditions that involve contention

between packets within the network. Each set of test vectors was generated statically

before each simulation, which allowed the same sets to be used for both flow control

mechanisms. Each simulation injected 8000, 32-byte packets into the network, which

equated to 2000 packets from each source. The ‘start of transmission’ time and ‘end of

receipt’ time was recorded and stored for each packet by a VHDL test bench. This

information was then processed and analysed following the completion of the simulation.

Figure 6-1 shows the effective data throughput of the four-port router-switch

against an increasing offered data load, which reveals the that the device reached saturation

at an accepted load of between 60% and 70% of the calculated ideal throughput. The

difference in throughput between the two flow control mechanisms under saturated

conditions is shown to reach approximately 6%. This is primarily due to the higher levels
114

6 Design Synthesis & Verification

of guaranteed control signalling of the credit-based mechanism. As the applied workload

increases, so does the chance of bi-directional data. Thus, the guaranteed loss of

bandwidth of the credit-based mechanism affects the performance of the device as a whole.

-O— Credit based (8 flow group)___________ -a- Permission based (stop/go) j
8 0 %

7 0 %

6 0 %

Q.
3 0 %

20%

10%

0%
0% 10% 20% 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 100%

Offered data load

Figure 6-1 : Offered load verses accepted load for a behavioural model of a four port
router-switch for permission and credit based flow control

From the results of Figure 6-1, the limiting effects of the credit-based mechanism

do not significantly affect the throughput when the network operates below the level of

saturation. However, there are sub-saturation differences between the mechanisms; packet

latency is increased with the use of the credit-based mechanism. Figure 6-2 displays the

average packet latency against the accepted data load, showing obvious differences in

network behaviour when the device was subjected to sub-saturation conditions. Ideally,

the average packet latency should remain constant as the applied workload increases.

However, the contention in packet connection-requests as the workload rises, makes the

ideal case impossible. Figure 6-2 reveals that the flow control mechanisms do affect the

operational characteristic of the device even below the saturated workload conditions. The

tabular form of these results is included in appendix A.

115

6 Design Synthesis & Verification

--0-C redit based (8 flow group)__________________ -B - Permission based (stop/go)

«£• 1.5

Q.
O)

0% 10% 20% 30% 40% 60%50% 70% 80%

Accepted data load

Figure 6-2 : Accepted data load verses average packet latency for a behavioural
model of a four port router-switch for permission and credit based flow control

Following the development of the first behavioural model of the skeletal

NTR-FTM08 router-switch, further simulations were earned out that concentrated on the

permission-based flow control mechanism. This basic analysis centred on the effects of

the ‘almost-full’ and ‘almost-empty’ thresholds within the mechanism. As discussed in

section 22.2.2, the minimum value of the ‘almost-full’ threshold is defined by the network

operational parameters. Alteration of the ‘almost-full’ figure from the recommended value

would either result in flow control failure or wasted buffering resources. Similarly, the

‘almost-empty’ threshold also requires a minimum value to prevent data starvation.

However, by increasing the value of the ‘almost-empty’ flag, the differential value between

the two thresholds decreases and alters the behaviour of the device. This results in

increased levels of control signalling in most situations, but as the flow control mechanism

is more responsive to the network state, it should also provide better utilisation of

buffering.

6.1.2 Further Permission-based Flow Control Analysis
Two regular, multiple router-switch networks were used for the threshold analysis

simulations, as opposed to a single device of the earlier simulations. The primary reason

for using multiple router-switch networks was to place greater strain on the flow control

mechanism. The more complex routes within the networks increased the levels of bi-

116

6 Design Synthesis & Verification

directional data transfers and packet contention. Regular topologies were chosen as

deadlock free configurations could be quickly generated, and results could be contrasted

with previous research to validate the trend of the network response. The two topologies

included a four-switch, 2-D mesh and an eight-switch, 2D torus. Both test networks

included sixteen nodes that transmitted and received packets to and from the network. The

diagrams and configuration details for these networks are provided in appendix B.

The tests vectors were generated statically, containing 16000 packets, which

equated to 1000 packets from each node. Each set of test vectors conformed to a workload

rating, which related to the rate of packet injection. The packet destinations and injection

intervals were based on a random (uniform) destination and injection rate. The VHDL test

bench monitored and recorded the transmission and receipt of all packets to allow post­

simulation analysis. Each router-switch contained a larger amount of buffering than used

previously, to allow larger threshold differentials to be investigated. Each receiver FIFO

contained forty-eight bytes with the ‘almost-full’ threshold remaining constant at forty

bytes. Three differentials were simulated; namely eight, sixteen and thirty-two. Figure 6-3

and Figure 6-4 present the results of the analysis. Full results in tabular form can be found

in appendix B.

-E h d=32 (2D-torus)
d=32 (2D-mesh)

- h -d = 1 6 (2D-torus)
-& -d= 16 (2D-mesh)

-X -d = 8 (2D-torus)
-Q - d=8 (2D-mesh)

60%

50%
■o
nso
to
(0
T3
T5Q)+■»

40%

Q.(1)Oo<
30%

20%
20% 30% 40% 50% 60% 70% 80%

Offered data load

Figure 6-3 : Offered data load verses accepted data load over a range of workloads
for a torus and mesh network with variation on the flow control threshold value

differential

117

6 Design Synthesis & Verification

Figure 6-3 reveals that the value of the differential had little effect to the overall

throughput figures, as devices saturated around the same level of accepted throughput, with

a maximum variance of approximately one percent between the different thresholds. The

small size and irregular nature of the variances indicate that the differences seen in the

results are most probably due to an insufficient quantity of test vectors. To validate this

assumption and to see the true effect of the variations of differentials, larger test vector sets

would be required. Nevertheless, the trend of these results does show that the effects of the

varying the threshold values are insignificant when compared to the network topological

effects.

-O- d=32 (2D-torus) -<3-d=16 (2D-torus) -X~d=8 (2D-torus)
-3f-d=32 (2D-mesh) -A-d=16 (2D-mesh) —©~ d—8 (2D-mesh)

3 6.0

32 4.0

t 3-0a
O)as
fe 2.0

20% 25% 30% 35% 40% 45% 50% 55% 60%
Accepted data load

Figure 6-4 : Accepted data load verses average packet latency over a range of
workloads for a torus and mesh network with variation on the flow control threshold

value differential

In contrast to Figure 6-3, the analysis presented in Figure 6-4 does display a trend

in the results, which show that the differential value d=16 provided the best characteristic

as the network approached saturation. Although d=32 resulted in similar and occasionally

smaller average packet latencies to that of d=16, the comparable saturation level was

smaller. This is the result of packet injection throttling, which reduces the level of

saturation, and therefore improves packet latencies at the cost of network throughput.

Although the range of these simulations was small, the results of Figure 6-4 imply that

there is an optimum settings for the ‘almost-empty’ threshold, which can not be assumed to

118

6 Design Synthesis & Verification

be the same as the operational limits defined in section 2.22.2. Future research based on

more complex networks, where variations occur in packet size, topology, traffic patterns

and node behaviour, may provided the required insight in this subject.

6.2 Basic Design Plus Stage One Enhancements
This section details the simulations, synthesis, and hardware tests that were carried

out during the development cycle of the stage one NTR-FTM08. Performance test results

are presented from both simulation and hardware implementations.

6.2.1 Design Simulation
Simulation of the router-switch design was carried out for the verification of device

operation and preliminary performance analysis. In this way, the device operation could

be analysed at each stage of connection servicing.

6.2.1.1 Verification
Functional simulations were carried out to prove the design before synthesis was

performed. A brief description is now provided for each test bench that was produced.

Sampling tests
The NTR-FTM08 operates using an over-sampling circuit to recover the data from

the incoming asynchronous data-stream. These tests validated the interface circuits,

verifying the operation of both the transmitter and receiver circuits.

Device testing
Following basic module verification, a number of simulations were produced to

verify the device operation as a whole. The test benches were written in VHDL, and were

based on a standard single controlling process model. To minimise the length of the

simulation, a number of architectures were implemented that each dealt with a different

aspect of the design and could be executed independently.

• Testbench 1 : Unconfigured router-switch tests

This architecture operated using physical addressed packets and no

configuration was sent to the device. The test concentrated on areas such as

connection, disconnection, valid routing, valid delivery, flow control

operation (back pressure across router-switch), concurrent contentious/non-

119

6 Design Synthesis & Verification

contentious connections, and multiple contentious connection-request

integrity.

• Testbench 2 : Grouping tests

This test used physical addressed packets, and various forms of output

grouping, which required configuration of the router-switch. Thus, the test

verified all major routing functions, as described above in testbench 1, but

with grouping applied.

• Testbench 3 : Interval tests

This was a basic repetition of testbench 1, but with the physical addressed

packets being replaced by interval addressing. The tests also proved the

operation of the configuration procedure of the interval addressing registers.

• Testbench 4 : Logical tests

In addition to the equivalent unicast tests of testbench 1, this test included

multicast connection, grouping and multiple packets with mixed addressing,

invalid packet recovery, and configuration of the logical address look-up

table.

• Testbench 5 : Fault detection tests

Testbench 5 verified that the detection and recovery procedures of the fault

tolerance specification operated as expected. This included receiver

overflow, synchronisation errors, link resets, and disconnection errors at the

link level, and the operation of the allocation for disabled links for grouped

and non-grouped outputs.

• Testbench 6 : link dormancy tests

As link dormancy was a configurable option, this testbench was

implemented to proved its operation, which involved a range of conditions,

such as grouping, multicast and unavailable links.

6.2.1.2 Device Performance
The following sub-section presents the simulation based performance analysis of

the NTR-FTM08. The analysis was derived from both unloaded and synthetically loaded

network simulations.

120

6 Design Synthesis & Verification

Unloaded Network
Although point-to-point bandwidth measurements of an unloaded network show

little of the router-switch behaviour, these figures have been produced to allow a basic

comparison with the devices produced by the earlier research. In these simulations a

number of packets were monitored as they were sent across the router-switch. The average

packet latency was recorded for a range of packet sizes, which were used to calculate the

average data bandwidth figures. The results are presented as a percentage of raw bit rate to

allow direct comparisons with earlier devices. Figure 6-5 presents five plots that depict the

data bandwidth utilisation against packet size. The shape of the plot is governed by the

packet overheads and switching latencies, which remain constant as the packet size

increases, thus lessening their effect. The maximum level of data bandwidth is restricted

ultimately by the data-link protocol overhead, which governs the token format and flow

control mechanism. Figure 6-5 presents the physical addressed result for the NTR-FTM08

only, to aid clarity, as the difference in performance between the addressing modes is

small, and physical addressing mode was the closest to the switching operation of the

earlier devices.

- a - N T R 0 8 10 M b /s U n id irec tio n a l — h — N T R _M 04 2 0 M b /s U n id irec tiona l

—0 — N T R 0 8 10 M b /s B i-d irec tio n a l - X - N T R _M 04 2 0 M b /s B i-d irec tiona l

—© — N T R -F T M 0 8 U n id irec tio n a l (P h y s ic a l a d d re s s e d)

75%

70%

65%

60%

55%

50%
m
CO
S 45%ra
Q

40%

35%

30%

25%
0 32 64 96 128 192160 224 256

Packet Size

Figure 6-5 : Simulation results for raw bandwidth comparison with the earlier
devices of an unloaded network

Figure 6-5 shows that the NTR-FTM08 operates marginally more efficiently than

the NTR-M04 but less efficiently than the NTR08 at 10 Mb/s. This was due to the

121

6 Design Synthesis & Verification

differences in the switching latencies of the individual router-switches when compared to

their link data rate. The lower core clock rate of the NTR-FTM08 penalised the switching

efficiency of the device, but the improved pipelined architecture of the controller still

provided a slight improvement on the earlier PLD-based NTR-M04. The alteration of the

flow control mechanism for the NTR-M04, which increased the flow group to eight,

provided a distinct improvement on the NTR08. Figure 6-5 does not present the results of

a bi-directional transfer for the NTR-FTM08, as contention-free bi-directional transfers do

not require any control signalling, and are therefore equal to unidirectional transfers. All

the results for these tests are shown in tabular form in appendix C.

Although the unicast connection latencies for the three addressing modes of the

NTR-FTM08 are very similar, the multicast latencies increase linearly with the number of

outputs due to the sequential operation of connection allocation. Figure 6-6 shows the

small linear decrease in effective bandwidth as the number of output increases. The link

bandwidth is degraded by 2 % with a packet payload of four compared to a unicast logical

connection and that of a multicast connection with seven outputs. This figure decreases to

0. 2 % with a packet payload of two hundred and fifty-two.

Target
destinations

75%

70%

65%

60%

55%

50% Effective link
4 5 o/o bandwidth

40%

35%

30%1

25%

20%

64

Packet size

Figure 6-6 : Unloaded network, raw bandwidth comparison of effective link
bandwidth for multicast connections

Only a small number of applications would use only a single router-switch. The

effects of switching latencies and small packet sizes become even more prominent in

122

6 Design Synthesis & Verification

multiple router-switch networks. As the distance between source and destination

increases, so does the overall packet latency, due to the switching latency incurred at each

router-switch. This effect is shown clearly in the small packet sizes of Figure 6-7, Figure

6-8, and Figure 6-9.

hops

Figure 6-7 : Packet latency verses router-switch hops and packet size for physical
addressed packets

Packet latency
(normalised)

Router hops64Packet size
128

252 1

Figure 6-8 : Packet latency verses router-switch hops and packet size for interval
addressed packets

5
Packet latency
(normalised) 4

16
32

Packet size 64

6
5

4
3 Router

123

6 Design Synthesis & Verification

Packet latency
(normalised)

Packet size Router hops
252

Figure 6-9 : Packet latency verses router-switch hops and packet size for logical
addressed packets

The main aim of using configurable headers is to reduce the routing overheads for

networks with multiple router-switches. However, these results show the logical addressed

packets incur a marginal increase in latency over the physically addressed packets, which

in turn incur a marginal increase in latency over the interval addressed packet. This is a

feature of wormhole routing, which minimises the transmission latencies by effectively

pipelining the switching of the packet across the network. This has the effect of

obfuscating the routing overhead in physical addressed packets, as routing bytes are

removed as the packet traverses the network. However, these results are misleading as

they display little of the effect of the packet on the rest of the network. As wormhole

routing allows a packet to connect across a router-switch before the entire packet has

arrived, the tail of the packet may span one or more devices, which may result in other

packets stalling until the resources are freed. Figure 6-10 shows the normalised time for

which resources are held by a connection relative to its data packet size. As the figure

shows, there is little or no difference between the addressing modes if a single header is

considered. However, a single header for logical and interval addressed packets may be

valid for many router-switches, where a single header for physical addressing would be

only valid for a single router-switch. Figure 6-11 shows the linear increase of the time that

resources are held as the number of router-switches in the transmission path increases.

124

6 Design Synthesis & Verification

P h y s ic a l —0 — In te rv a l —A — L ogical

2 .5 0

s 2 25

2.00

.7 5

.5 0

.2 5

.00
0 3 2 6 4 9 6 1 2 8 1 9 21 6 0 2 2 4 2 5 6

Packet size

Figure 6-10 : Time resources are held for a packet relative to the packet size for a
single routing header for interval, logical and physical addressed packet in an

unloaded network

Time resource
held

(normalised)

4.0

3.5

3.0

2.5

2.0

1/6
1/5

1/4 Switch in
connection

Packet size 1/3
128 1/2252 1/1

Figure 6-11 : Time resources that are held for a physically addressed packet relative
to the packet size for connections over 1 to 6 router-switches in an unloaded network

125

6 Design Synthesis & Verification

Network Under a Synthetic Load
A number of performance simulations were carried out to investigate the behaviour

of the device under a synthetic load. This allowed a further analysis of the differences

between the three addressing methods under load conditions, which take into account the

contention between packets within the network. A number of test vectors were generated,

each of which injected packets into the network at varying load. Seven workloads were

generated for each addressing type each with four different packet sizes. The workloads

varied at intervals of 10% from 30% to 100%, with packet sizes of sixteen, thirty-two,

sixty-four and one hundred and twenty-eight. Each packet was injected at an interval that

was relative to the target workload and packet size. The interval was varied using a

Poisson distribution, which ensured that 70% of the packets were within 30% of the target

injection interval. Packet destinations were uniformly selected, but with a governing factor

that a two consecutive packets only had a 30% chance of being sent to the same

destination. The source code for the program that generated the test vectors can be found

in appendix D. The test bench recorded the transmission and receipt times of the packets,

which were then used for post-simulation analysis. The source code for the program that

performed the post-simulation analysis can also be found in appendix D. Header stripping

is mandatory for physical addressing, but not so for interval and logical. For these

simulations, header stripping was omitted for the two configurable addressing modes.

Figure 6-12 and Figure 6-13 present the results of the analysis from the load

simulations for all addressing methods for the tests with sixteen bytes per packet and one-

hundred and twenty-eight bytes per packet. The full results for these simulations can be

foimd in appendix C. Figure 6-12 shows the accepted load against the offered load, which

clearly depicts the differences in the addressing algorithms with small packet sizes, due to

the differences in switching latencies whereas differences are less significant with large

packet sizes. Figure 6-13 also displays these effects in the differences of the switching

latencies. The distances between the plots of the smaller packet sizes display the

significance of the switching latency in comparison to the transmission time. The effect of

the switching latency lessens as the packet size increases as displayed in the plots for the

larger packet sizes. The switching latencies across the device creates a two percent

difference in bandwidth between the logical and interval addressing methods, and the byte

stripping creates a two percent difference between the physical and interval addressed

packets. If saturation points of the NTR-FTM08 and the STOP/GO modified version of

the NTR-M04 from the results in section 6.1 are compared, the NTR-FTM08 appears to
126

6 Design Synthesis & Verification

8 % lower than the NTR-M04. Although some of the difference in bandwidth could be

due to a disparity in the test vector traffic patterns, it is conjectured that it is primarily due

to the bottleneck of the servicing mechanism. The NTR-M04 possessed four links, which

could concurrently generate connection-requests, whereas the NTR-FTM08 had to deal

with eight. As the servicing mechanism in both devices was effectively sequential,

concurrent connection-request had to time-share the functionality. The only solution to

this problem is to implement more concurrency within the servicing algorithms as the

router-switch scales.

-^-Physical (16 Bpp) -B-lnteval (16 Bpp) - 6 r - Logical (16 Bpp)
—f - Physical (128 Bpp)________ -SK-Interval (128 Bpp)_________ - e - Logical (128 Bpp)

7 0 % T

60%

~ 50%

o 40%

30%

20%
20% 30% 40% 50% 60% 70% 80% 90 % 100%

Offered data load

Figure 6-12 : Offered data load verses accepted data load over a range of workloads
for a single router-switch for 16 and 128 byte packets

127

6 Design Synthesis & Verification

Physical (16 Bpp) - a - Interval (16 Bpp) -A - Logical (16 Bpp)
Physical (128 Bpp)______________ Interval (128 Bpp)___________ -e -L og ica l (128 Bpp)

3.0

2.0

Q.

1.5O)

1.0
20% 30% 40% 50% 60% 70%

Accepted data load

Figure 6-13 : Accepted data load verses average packet time over a range of
workloads for a single router-switch for 16 and 128 byte packets

6.2.2 Synthesis
The design of the router-switch was targeted to an Altera EPF10K130EQC240-2

device. This device was selected due to its amount of logic resources and embedded

memory, and based on the research groups’ familiarity with the FLEX 10K product

family [99]. The FLEX 10K family is based on a SRAM technology, which requires the

device to be programmed following power up. This suits a prototyping design flow as the

reprogrammability allows hardware verification to supplant timing-based simulation work,

which greatly reduces the design cycle time. Figure 6-14 is a photograph of the device and

driver board that was developed to allow for hardware performance and operational

verification.

128

6 Design Synthesis & Verification

Figure 6-14 : A photograph of the NTR-FTM08 prototype device and driver board

One of the device design aims was improve data bandwidth figures. The

NTR-FTM08 was designed to operate with two clock domains, which allowed the link

interface to be optimised to operate at the high rate, whilst the timing restraints on the core

of the device could be less stringent. As Table 6-1 shows, the final synthesis provided a

device that could operate at up to 51 MHz and 33 MHz for the sampling and core clocks

respectively. These figures produced a link bit rate of 34 Mb/s. As the table shows, each

part of the design can operate at higher operating frequencies than the overall device; for

example, all modules for the sampling clock will operate at a frequency of at least 60 MHz.

However, as part of the synthesis stage of the development flow, the design as a whole is

routed and placed, which results in each part of the design competing for resources. If the

design requirements are too great, the limited signal routing resources on the

programmable architecture can result in a reduction in operating performance. For this

reason, most designs are recommended to use less than 80% of the device. The

NTR-FTM08 design has not been fully optimised, and with the device utilisation at 84%,

improvements could be made on size and speed of the device.

129

6 Design Synthesis & Verification

Table 6-1 : Synthesis results for the NTR-FTM08 router-switch

Module Name Module Size
(in logic cells)

Sampling Clock
(MHz)

Core Clock
(MHz)

Link Unit 429 61.72 45.24
Receiver Controller 51 N/A 84.03
Interval Decoder 130 N/A 63.69
Transmitter Buffer 43 N/A 75.75
Buffered Link 221 60.97 84.74

Receiver Block 43 94.33 N/A
Transmitter Block 45 60.97 N/A
Synchroniser Block 42 200 200

Controller 1729 N/A 36.90
Link Allocater 585 N/A 42.73
Configuration Port 349 N/A 46.66
Logical Address Decoder 167 N/A 44.44
Logical Connection Register 215 N/A 117.11
Connection-request Queue 435 N/A 43.29

Queue FIFO 19 N/A 142.85
Exchange 506 N/A 57.47

Exchange Unit 21 N/A 163.00
Router-switch 5649 51.54 33.44

6.2.3 Design Hardware Tests

6.2.3.1 Verification
A number of hardware tests were devised to test the operation of the router-switch

for extended periods. Figure 6-15 shows a block diagram that depicts the hardware that

was used for all of the verification tests. Each test repeated a sequence of operations,

which were designed to test a single primary function of the switch continually in a

repeating loop until an error occurred. Errors included the arrival of incorrect data at the

receiving node, link stability failure, and test inactivity. All the tests have been

successfully executed over extended periods with the sampling and core clocks operating

at 48 MHz and 30 MHz respectively. These clocking frequencies provided a 32 Mb/s raw

bit rate. The areas that each hardware test verified now will be summarised. However,

further description of each test is provided in appendix E.

6 Design Synthesis & Verification

Hardware Testbench
Generic CPLD Test Board II

Configuration
C o n n e cto r to PC

Config
EPRO M Link

C o n n e ctio n s

D e v ic e R e s e t

D e d ica ted C lo ck 1

D ed ica ted C lo ck 2

Prototype Router
Generic CPLD Test Board

EPROM

C onfiguration
C o n n e cto r to PC

D e v ic e R e s e t

D e d ica ted C lo ck 1

D e d ica ted C lo ck 2

Figure 6-15 : Block diagram of the hardware used for verification tests

Sampling test
The sampling test used eight buffered link modules to verify the sampling, link

status and flow-control mechanisms.

HW test 1 - Physical addressed test
The physical addressed test was performed on an unconfigured NTR-FTM08.

Thus, all interval or logical addressed headers were illegal, no links were grouped, and no

links were dormant. The test verified the operation of sampling, flow control, service

requesting, handling of contentious queuing requests, connection allocation, disconnection,

and illegal packet spillage.

HW test 2 - Grouped physical addressed test
This test was the first to include configuration, which required a configuration

packet to be sent to the router-switch before the start of the test. Thus, in addition to the

features tested by HW test 1, this test verified the operation of the link allocation with

grouped outputs under contentious conditions and the basic operation of the configuration

port. The functionality verified within the configuration port were connection,

disconnection, operation of the data and address register and the write command for the

grouping registers.

131

6 Design Synthesis & Verification

HW test 3 - Logical addressed test (unicast)
HW test 3 verified the use of each logical address header, which proved the logical

decoding, queuing and allocation mechanisms under contentious conditions. Further

functionality of the configuration port was verified, including the configuration of the

logical address look-up table.

HW test 4 - Interval addressed test
This test repeated the verification of the standard operation of packet transfer as

described with the HW test 1, but included the verification of interval decoding, and the

relevant features of the configuration port. Interval addressed packets employ the same

queuing and allocation stages as physical addressed packets, although header decoding

differs.

HW test 5 - Broadcast test
The broadcast test verified the same features as the FIW test 3, but with multiple

destinations. This ensured that all required destinations were allocated and the packet was

not sent back to the originating link.

HW test 6 - Disconnection time-out test
HW test 6 was the first of three tests that verified an aspect of the fault tolerance

mechanism. This test verified that the disconnection detection mechanism and recovery

procedure operated successfully and switching functions were not compromised.

HW test 7 - Overflow reset test
This test was only performed on the buffered link module, and validated the

overflow detection mechanism and correct operation of the subsequent recovery procedure.

Overflow was achieved by modifying the receiver FIFO ‘almost-full’ flags such that the

link delay forced a failure in the flow control mechanism.

HW test 8 - Link Dormancy test
Dormancy allowed the configured links to return to the ‘asleep’ state following a

period of inactivity. This test verified that this procedure operated successfully, and that

links could be ‘woken’ when required. This test also verified the operation of parts of the

configuration port, link allocation and buffered link.

132

6 Design Synthesis & Verification

6.2.3.2 Device Performance
To provide a comparison with the earlier simulation based results, unloaded

bandwidth measurements were carried out on the physical device. The router-switch

operated with a 48 MHz sampling clock, and a 30 MHz core clock. The test measurements

were taken at the interface of the NTR-FTM08 using a logic analyser, where the figures

were taken from the average of ten packets for each packet size. Figure 6-16 and Figure

6-17 show traces captured from the logic analyser of the eight-byte packets for all three

addressing modes. Figure 6-16 shows the test with unidirectional data flow and Figure

6-17 shows the test with bi-directional data flow.

The waveforms in Figure 6-16 and Figure 6-17 are labelled by link number and

mode, that is either receiver or transmitter. For example, the receiver and transmitter of

link 0 are labelled R0 and TO respectively. Links that are used to transfer a test packet are

further labelled with three letters. The first letter denotes the type of addressing; P -

physical, I - interval, and L - logical. The second two letters denote the direction; that is

RX - arriving and TX - departing. For example, the links for the physical addressed

packet are marked as PRX and PTX for the arriving and departing link respectively.

All measurements were recorded, and the effective percentage of the raw bit rate

was calculated. Figure 6-18 shows both the simulated and measured results from the

device. The hardware results show an improvement on the simulation results, but the

overall trend is identical. The differences arose due to an improved switching latency

because of the clock frequencies used in the hardware test. As the design was targeted to

operate with a core frequency of half the sampling clock, the simulations were

implemented as such. As stated above, the sampling and core clocks operated at 48 MHz

and 30 MHz respectively. These result in the core operating 5/8ths of the sampling rate,

thus providing the better results shown. A full tabular form of the results can be found in

appendix C.

133

6 Design Synthesis & Verification

W a v e f o r m n.-v r , < :

Figure 6-16 : A captured trace from the unloaded router-switch tests for all three
addressing modes for unidirectional data flow

w a v e f o r m MACHINE i

Figure 6-17 : A captured trace from the unloaded router-switch tests for all three
addressing modes for bi-directional data flow

134

6 Design Synthesis & Verification

— 0 — P hysical (hardware) — X — Interval (hardware) — A — Logical (hardware)

p h ysica l (sim ulation) •• •><•• Interval (simulation) • - A - • Logical (sim ulation)

70.00%

60.00%

t 5 50.00%
%

■o

40.00%

30.00%
0 16 32 48 6 4 80 96 112 128

Packet size

Figure 6-18 : Hardware results for raw bandwidth comparison with the earlier
devices of an unloaded network

6.3 Stage Two Enhancements

6.3.1 Stage Two Simulation
The deadlock detection mechanism, which was devised as part of the second stage

of enhancements to the skeletal NTR-FTM08, was implemented in behavioural level

VHDL to enable concept validation. A simple four router-switch network was

implemented in a mesh format with sixteen communicating nodes, as depicted in Figure

6-19. A deadlock prone router-switch configuration was used, which guaranteed the

occurrence of a single cycle deadlock in a certain position of the network. The test-bench

was designed to monitor for the deadlock cycle, so network status and the operation of the

mechanism could be easily documented and verified. As documented by Pinkston [66],

the probability of deadlock increases with the saturation level of the network. To create

‘worse case’ conditions, the network configuration created network hot spots on the path of

the deadlock cycle. Additionally, to increase the amount of stalling, each communicating

entity stalled the egress link shortly after receiving the start of each packet, which was

equivalent to approximately five tokens.

135

6 Design Synthesis & Verification

Node Node

Node Node

Node Node.

4 t
Node

Node
Node

Node Node Node

Unused bi-directional links <----- ► Active bi-directional link

• • ^ Deadlock cycle

Figure 6-19 : Network structure used for deadlock testing

The network was injected with packets as defined by statically generated test

vectors, which varied with workload and packet size. The test vectors were generated

using the same software that was used for the performance analysis (as described in section

6.2.1.2); the listing of which can be found in appendix D. Each set of test vectors

contained 8000 packets of either 16, 32, 64 or 128 bytes. Interval addressing was used to

configure the network to be prone to the deadlock cycle shown Figure 6-19. The

configuration information for the network can be found in appendix F. The NTR-FTM08

used slightly different receiver FIFO settings than the performance tests, which set the

STOP and GO values at 24 and 8 respectively.

The test bench generated monitoring information, on which post-simulation

analysis was performed. Software was written that parsed the monitoring information, and

136

6 Design Synthesis & Verification

collated all the details relevant to the deadlock conditions. The source code for the

software is listed in appendix F. The collated results provided information based on

number of deadlock cycles, number of non-deadlock cycles, and number of removed

packets due to the recovery mechanism. The complete results from this analysis in tabular

form can be found in appendix F. As the meaning of the results cannot be represented

easily in graphical form, the following salient points can be produced from their analysis:

• all deadlocks were successfully detected;

• no false detections were recorded, even in the presence of non-deadlock

cycles;

• the packet size or workload did not affect the rate of false detections, but

had an affect on number of packets marked for removal.

As the time-out was used to provide a period of grace for the return of a ‘path clear’

control token, the relatively short period, supplied a quick detection and recovery

mechanism irrespective of workload and packet sizes. The results show that an average of

17.6% of the packets was removed from the network. While this figure may appear high,

the workload configuration and network topology was designed to produce a highly

saturated and congested network. This increased the chance of deadlock and created worse

case conditions. Proof of extreme saturation was evident in the number of deadlock cycles

in each test. Following Pinkston [66], the results from this test analysis demonstrated

saturation since they showed no significant increase in the number of deadlocks with the

increasing injected workload. However, the results showed that a lower number of

deadlock cycles formed with the smaller packet sizes. This finding also complies with

Pinkston’s analysis [66], where the amount of buffering and the ratio between buffering

and packet sizes affect deadlock probability. The number of packets that were removed

with each deadlock cycle decreased as packet sizes increased, which related to the way

deadlocks were formed in these tests. The large packets would cause links to be stalled for

longer, which therefore gave the mechanism more chance to validate waiting packets, thus

a higher probability that a single packet would be highlighted as root.

137

7 Discussion, Conclusions and Further Work

7 Discussion, Conclusions and Further Work

7.1 Discussion
Much of recent research regarding switched networks has been based around fault

tolerance and quality of service. The work on fault tolerance for parallel processing

systems has concentrated on network adaptivity to bypass permanently disabled links in

regular” topologies. Most of such research has ignored the recovery aspect of the network

and focused on ensuring the network can operate in a degraded state. Little or nothing is

said about the unreachable devices in the network. In contrast, fault tolerance in

distributed processing or LAN replacement systems, which are predominantly irregular

topology systems, have focused on detection and recovery in addition to the maintenance

of network operability. The research detailed in this thesis has concentrated on fault

handling procedures, while supplying some fairness in packet servicing, but without

additional features for providing bandwidth guarantees.

The remaining part of this section discusses points regarding the fault tolerance

features investigated by this work, followed by some more general points regarding

switched communications in small area networks.

7.1.1 Fault tolerant features
This research is aimed at supplying a network into which the user can inject a

packet with the confidence that it will not critically hinder the delivery of any other packet.

To achieve this aim two areas were investigated, firstly critical fault detection and

recovery, and secondly deadlock handling procedures.

7.1.1.1 Link Fault Detection and Recovery

Distributed Architecture
The NTR-FTM08 has been designed to operate as a building block for an irregular-

topology communication network of a distributed or embedded processing system. A

primary aim of the design was to supply maximum network availability (not to supply an

error free medium). This was achieved by implementation of distributed critical link

failure detection and recovery procedures that localised the corruption caused by a fault.

This method has been carried out in many other systems over the last decade, such as

Autonet [40], STC104 [78], Myrinet [88] and EtheReal [100]. A distributed

implementation is a primary feature possessed by all of these fault tolerant networks. A

138

7 Discussion, Conclusions and Further Work

distributed model allows the fault tolerant mechanism to scale linearly with the network,

although the recovery latencies of some systems increase with system size. In contrast, the

NTR08, which relied on additional resources for monitoring and intervention, required a

centralised fault handling mechanism, which became more complex and increased resource

requirements above a linear rate as the network scaled.

The majority of the distributed fault handling systems based their recovery on

network reconfiguration, which reduced the responsiveness of the network to failure and

did not guarantee an improvement in the network connection graph. However, automatic

reconfiguration provided a flexible method for a dynamic network, where devices could be

added or removed from the system with no adverse effect. In contrast, the technique used

by the STC104 and the NTR-FTM08 negated the need for reconfiguration by allowing

redundancy to be built in at design time, although the features were a configurable option

in the STC104. Both of these devices detected and isolated failures through features that

identified incorrect link operation, and removed or truncated corrupt packets.

Unrecoverable failures caused links to become disabled and only could be reused if the

link was successfully reinitialised. Subsequent packets were automatically removed if the

packet was undeliverable due to the failure.

Although the basic operation of the recovery mechanism of the NTR-FTM08 and

STC104 resulted in a much-improved response to failure, without some form of path

redundancy, areas of the network could become disjoint. The implementation of group

adaptive routing provided the required redundancy, which improved network throughput in

error-free conditions and allowed a rapid response to network failure. This quick response

to failure minimised traffic corruption while the network still offered a degraded but

operational level of service without the need to wait for reconfiguration. As such, this

technique better suited static applications, such as embedded or distributed systems.

Modified Protocol
The similarities of the fault handling procedures in the NTR-FTM08 and the

STC104 were separated by differing protocol choices. The NTR-FTM08 improved some

aspects of link operation. The first improvement was the additional packet delimiter token.

The inclusion of three packet delimiter tokens supported an identifiable message format

that simplified requirements of the interface for message packetisation and corrupt packet

detection. Additionally, the data recovery technique of over-sampling allowed the link to

139

7 Discussion, Conclusions and Further Work

be asynchronous, which permitted the link dormancy feature of the NTR-FTM08. Link

dormancy was intended for use in distributed control systems where communication would

be infrequent. Thus, to minimise power requirements and to minimise signalling activity,

allowing an idle link to return to the dormant state seemed the most suitable solution. This

feature also required that each connection-request was given a suitable chance to form a

connection if the desired link was initially unavailable. While this could reduce the

network throughput, it was greatly advantageous for networks with low traffic volumes.

Finally, the use of the STOP/GO flow control mechanism improved the bi-directional data

transfers in comparison to the credit-based mechanism of the previous devices. In

addition, the re-use of the flow control tokens as idle token allows reaffirmation of the flow

control status. This, in conjunction with the receiver overflow recovery, provided

guaranteed recovery of flow control failure.

Reliance on Time-outs
All of the fault tolerant features that have been implemented in the NTR-FTM08

have some dependence on time. This can introduce difficulties in the mechanism, as time­

out periods must be long enough to tolerate network latencies, but not too long to make the

mechanisms unresponsive. There were two intervals chosen from which all other features

were derived, namely ‘heartbeat’ and ‘check-pulse’. The heartbeat signal occurred once

every 256 sample clock cycles, which equated to an approximate transmission time of 15.5

tokens. The check-pulse signal occurred at half the rate of the heartbeat signal, at 512

sample clock cycles. The detection of disconnection was based on this longer interval,

which equated to an approximate transmission time of 31 tokens. As the performance

results showed, average packet sizes of 32 tokens provided a reasonable amount of

efficiency, thus the time-out was set approximately to this figure. However, there is a

distinct danger that an invalid link could be used by multiple small packets before the

disconnection is detected. Fortunately, the concept of bad packet removal or truncation

requires further support in the upper layers of the protocol, which covers the shortcomings

of the disconnection detection resolution. The design centralised the timer from which all

parts of the detection and recovery mechanism operated. While this minimised logic

requirements, the lockstep operation of each link was detrimental to the device as a whole,

as it caused large amounts of switching at periodic intervals. Thus, as the operating

frequency increased, electrical noise would also increase, which could degrade reliability.

140

7 Discussion, Conclusions and Further Work

Redundancy
The concept of fault tolerance can be vague. The technique here was designed to

use redundancy to improve the network availability of resultant systems. Thus, if one or

more point-to-point connections failed, the extra lines in the circuit would supply alternate

paths. Although this method was dependent on the topology used and the network

configuration, some statements can be made about the abilities of the device.

The NTR-FTM08 was an eight-port router-switch and, in theory, each port could be

grouped with one another. This is impractical as this would mean that they would all be

connected to the same location. Similarly, two groups of four would also be impractical as

it could be replaced by four wires. Thus, to make the design features useful, the device

must operate with three or more groups. With the eight-port device the maximum number

of groups are four; that is, four groups of two. If all configurations are considered that

ensure that each direction possesses some redundancy; that is, where each port is part of a

group, there are only three possibilities; they are:

{2,2 ,2,2}

{3,3,2}

{4,2,2}

Obviously, other configurations exist where some links are not grouped but these

are discounted, as they will not supply resilience against faults for those routes. While

route redundancy may not always be required, this shows that to construct networks of

reasonable sizes, the eight port router-switch with this form of grouping seems inadequate.

Two solutions are evident; the first is to increase the number of ports per router-

switch. This would increase the number of possible configurations and therefore improve

the scope of topologies. The second solution is to modify how redundancy is implemented

into the network. A limiting factor of the current implementation is the basic form of

group adaptive routing, which minimises resource requirements by offering alternative

paths by associated outputs and not by header information.

With the improvement of technology, more flexible route decoding methods have

evolved, which have provided more flexibility on the way routing headers operate. Many

networks possess a large number of valid routes between two points. Thus, if technique

141

7 Discussion, Conclusions and Further Work

could be devised that operated individually on each header by considering the arrival port

and the target address, it is possible that more route flexibility could be found. This has

two obvious problems, the first being implementation costs. The more complex the

solution the more expensive it will be to implement. Deadlock is the second consideration,

as any solution should ensure that the increase in network availability does not

detrimentally affect the network procedures for avoiding, preventing or recovering from

deadlock.

7.1.1.2 Deadlock handling procedures
The review of deadlock handling procedures showed the majority of switched

point-to-point systems rely on avoidance schemes. Deadlock avoidance schemes restrict

the routes that packets may take, this ensures that deadlock-cycles cannot form. However,

the routing restrictions limit network utilisation, which provoked research in less restrictive

algorithms or removal of all restrictions while relying on deadlock detection and recovery

mechanisms. The investigative work on deadlock detection and recovery included in this

research was based on providing a resilient network, not to improve adaptivity. It is

obvious that to reduce the requirements of user intervention for a distributed or embedded

system, some form of deadlock detection and recovery would be valuable, even for

systems that implement an avoidance mechanism. The major drawback with basic time­

out solutions, is the low level of responsiveness inherent in the implementation that is

necessary to minimise false detection. As discussed earlier, some work has attempted to

alleviate this problem by increasing the complexity of the detection mechanism [57].

While these results showed improvements on basic time-outs, the operations of the time­

out still the determining factor on the length of time for which a link was blocked. Thus,

packet size and routing algorithms still had to be considered for the selection of a suitable

time-out period. In contrast, the work described here targeted a system that was designed

to operate with unrestricted packet sizes, thus a mechanism that determined the time-out

period from the network diameter was more suitable. To achieve this, control signalling

was used to verify network conditions. The fact that the control signalling carried no

detailed information meant that no buffering was required to forward the query. However,

the localised mechanism could not identify a deadlock probe token that it had generated,

from that of any other part of the mechanism. Therefore, the mechanism did not remove

the chance of multiple packet removal for a single deadlock cycle. As the control

signalling was transparent to the flow control mechanism, the control signalling could

142

7 Discussion, Conclusions and Further Work

travel on stalled links and possessed a higher priority than data traffic, providing an

optimum propagation time for detection resolution. The simulation results of section 6.3

showed that the relationship between packet size and network receiver buffering affected

the number of packets removed per cycle, but did not affect false deadlock detection.

Hence, as the size of a network increases and the size of possible deadlock cycles

increases, the incremental amount of buffering per link would also increase the number of

removed packets. Although increased buffering should decrease the probability of

deadlock, it means more packets may be present in the network, which can result in

cascaded deadlock cycles. That is, after a deadlock cycle is cleared, another may form

immediately due to the network saturation. However, in the preliminary simulations, even

with the packet sizes at half the size of the receiver FIFO buffer, the average loss per cycle

was less than 1.3 packets. If such figures could be maintained in larger networks, this

packet loss ratio would be a good compromise to obtain a quick resolution to a critical

network state.

Other areas of the simulation results were also veiy promising, as all deadlocks

were detected with zero false detection. This included the correct validation of non­

deadlock cycles. It is difficult to compare this mechanism with the systems from which it

evolved, as previously published results were based on more complex regular networks

that operated with various traffic patterns. An aim of the previous work was to show how

infrequently deadlocks occurred within an unrestricted network and how a deadlock

recovery could improve on avoidance techniques. In contrast, the tests performed within

this research, as detailed in section 6.3, were designed to create an abnormally high

number of deadlocks to prove the mechanism under extreme conditions. Unlike the work

described in this thesis, much of the previously published results do not provide a

percentage of false detection.

Similar to the earlier systems, the response to deadlock cycles within the

NTR-FTM08 solution was a short time-out. However, this system used the time-out to

wait for validation of an exit path. This was in contrast to the earlier systems, which

waited for the exit to clear. Due to the control signalling validation, a basic time-out

system would require time-outs of much greater values to attain the zero false detection

rate achieved by this mechanism.

The NTR-FTM08 mechanism needs no prior knowledge about network layout and

the mechanism should be effective irrespective of the traffic pattern, as the control

7 Discussion, Conclusions and Further Work

signalling follows the path of stalled resources. However, if the mechanism was

implemented in an irregular topology, the network may or may not possess possible

connections that could form cyclic paths. This oblivious mechanism treats each link with a

standard procedure, which could result in loss of bandwidth due to unnecessary control

signalling. Even in networks with possible deadlock cycles, the ‘path clear’ and ‘data

movement’ tokens are sent on the return path of the stalled resources. These return paths

may not be stalled, hence, the control tokens may utilise available data bandwidth.

Logically, as the network approaches saturation, more deadlock queries would be made.

Thus, the operation of the mechanism could produce a lower saturation point due to the

percentage of data bandwidth used for control signalling. However, the strict creation

rules of the tokens maintained a low volume of control signalling, which minimised these

effects. A more complete analysis would be required to verify how greatly the utilisation

of the validation signalling degrades the operation of the network.

Although the deadlock detection mechanism operated well under simulation

conditions, meeting the requirements, it is unfortunate that the control mechanism would

require a significant amount of resource if synthesised for implementation. As previously

stated, for an effective fault tolerant switch, more than eight ports would be preferred, and

this would worsen resource requirements as the deadlock detection mechanism would scale

greater than linearly. Extra ports would also increase the requirements for the support of

group adaptive routing and multicast connections. This is because the mechanism would

be required to monitor all possible permutations of connections and routes to correctly

query and validate possible deadlock paths. These factors, in addition to the fact that this

mechanism was supposed to be a secondary fail-safe system, make it impracticable for the

networks targeted for this work. A back-up system should not utilise such significant

resources, however, it could be suitable for use in the parallel 4+1 networks that use fully

adaptive routing algorithms and a detection mechanism as the primary defence against

deadlock. As the primary mechanism, the resource requirement would be acceptable and

the lower number of ports would simplify the implementation, although virtual channels

would have to be supported.

144

7 Discussion, Conclusions and Further Work

7.1.2 Basic Routing Features

7.1.2.1 Flow Control Mechanisms
The earlier research, from which this work developed, was designed to remedy

communication bottlenecks of the first generation transputers. The OS-link used a credit

based flow control mechanism with a single token flow group as a compromise between

buffering requirements and bandwidth, as embedded memory in the ASIC technology of

the time was very expensive. The modifications of the transputer communication model,

which allowed the inclusion of a router-switch, altered the types of traffic that utilised the

OS-links. Although the volume of traffic and chance of bi-directional transfer increased,

and therefore reduced data bandwidth due to the high level of flow control signalling, the

increased connectivity of the network lowered software overheads and improved system

performance in most cases. The second-generation transputers recognised the

communication problems and altered the communication model to operate with virtual

comiections. As this modified connection model increased communication traffic on the

links and increased the bit rate, the single token flow group was increased to an eight token

flow group. While this improved the overall transfer performance of the link, the larger

flow group demanded larger amounts of buffering.

As the work of this research group moved away from the transputer family,

restrictions on the communication model were lifted. Although the communication model

was very attractive for embedded and distributed applications, the flow control mechanism

was one area that possessed some redundant features. The simulation results documented

in section 6.1 showed the performance was increased by switching from a credit-based

flow control mechanism to a permission-based STOP/GO system. Additionally, as no fault

detection mechanism was based on the information provided by the credit-based flow

control systems, there was no basis for maintaining the system. The decision to change to

the new flow control mechanism was supported further by the improved fault tolerant

capabilities. For example, the worse case failure scenario for a STOP/GO system would be

buffer overrun, which can be detected easily, and immediately recovered. As the flow

control information simply implies flow status, the mechanism can be used as

reaffirmation of the flow control state. In contrast, the worse case failure scenario for a

credit-based system would be the loss of credit, which could result in an indefinite stall.

Solutions for this problem can be produced, but at the cost of increased complexity and

significant robustness to remove all chances of false operation.

145

7 Discussion, Conclusions and Further Work

7.1.2.2 Target Technology
As the research moved away from the transputer families, a change of target

technology to PLDs was made. Although memory is still a relatively expensive

commodity in semi-custom ASIC technology, its integration has become prolific as

application devices become more complex, especially in communication applications.

Many PLD families include large amounts of embedded memory to target communication

applications. The increasing amounts of memory within these devices has had a significant

positive effect on the use of PLDs in many systems, especially in prototype systems. In

this research, PLDs have made buffering requirements a minor concern. This is evident if

the NTR-M04 and NTR-FTM08 devices are compared. The skeletal router-switch of the

NTR-FTM08 utilised approximately the same logic resources as the NTR-M04, which is

due to the replacement of buffering logic by embedded memory. The amount of embedded

memory within PLDs continues to rise with the latest families, this will certainly introduce

new possibilities in future switched network research.

7.1.2.3 Connection servicing
Connection servicing is one of the most critical operations of a router-switch, as it

is the major influence on the latencies incurred by the packet. The comparable differences

between the three NTR devices have shown how switching latencies can affect the

performance of a system, and how a sequential mechanism can form a bottleneck, which

can degrade the device throughput. Servicing includes destination decoding and

allocation, both of which can vary greatly between implementations.

The NTR-FTM08 servicing differed from the earlier devices, as three addressing

modes were supported. While the support of all three modes would not be useful in a

practical system, the implementation of it in this research allowed a brief analysis of

absolute and configurable schemes. The results show that configurable systems can be

used to improve system efficiency with small packet sizes or in larger systems. However,

absolute systems, in conjunction with wormhole routing, can be equally effective in small

networks or with large packet sizes. From this finding, the choice of utilising a

configurable addressing mode would seem to be the better selection, as the scope of

application networks is much greater. However, the inclusion of an absolute addressing

mode would be advisable for implementation of a reliable default routing system. Two

obvious reasons for this, highlighted by this research, are the configuration and mapping of

the network. The NTR-M04 supported just logical addressing, but the reset state emulated

146

7 Discussion, Conclusions and Further Work

physical addressing to supply a functional network after reset. However, following

configuration this default mode would be overwritten, thus any problems could make the

network unusable. In such cases, using the data network for configuration becomes a

problem and to recover from any configuration problems a system wide reset would be

required. Network mapping was used in Myrinet, which implemented relative addressing.

This scheme allowed a mapping packet to be sent into the network that could help

construct the connection model dynamically, irrespective of the connection topology.

As the NTR-FTM08 implemented two configurable modes, the features of these

modes could be analysed further. Interval address decoding was a parallel implementation,

which unified the servicing of physical and interval addressed packets for connection-

request queuing. In contrast, the logical address decoding was implemented as a

centralised structure, which minimised resources and helped prevent allocation deadlock

with multicast connections (but with increased servicing latencies). Working with both the

interval and logical addressing modes provided an insight to their most appropriate use. It

was found that interval addressing should be used in devices with large address ranges, or

if total concurrent servicing is to be employed. The parallel implementation of the interval

address decoding provides a compact solution, which an equivalent logical addressed

system could not supply. The embedded and distributed applications, for which this

research was targeted, would consider a 16-bit address as large. In contrast, logical

addressing should be used for support of multicast packets, or for systems with small

address ranges. The definition of small address ranges depends on the target technology,

but for the PLDs used here, an 8-bit header would be a suitable limit. Obviously, any

configurable headers could extend their scope by cascading headers to multiply possible

destinations.

The second stage in connection servicing is allocation, which includes selecting a

connection-request and forming the connection. The order in which connections are made

depends on the servicing method used. All the router-switches produced in the

Nottingham Trent University have employed some form of FIFO queuing. The use of

request queuing in the NTR08 allowed the separation of address decoding and connection

allocation. This introduced concurrency in the pipeline, in addition to providing fairness in

allocation and reduction of switching latencies in times of resource contention. Although

the NTR-M04 also used a request queue primarily to maintain some allocation fairness, its

secondary function was to supply a mutually exclusive connection between its decoding

147

7 Discussion, Conclusions and Further Work

and servicing stages. The unified decoding and allocation structure was a compromise

made due to the limited resources imposed by buffering requirements. The NTR-FTM08

maintained a FIFO queue for connection-request, and returned to a separate output queue

structure similar to the NTR08. This structure permitted concurrent servicing of multiple

multicast connection-requests, which was prohibited by the unified queue of the NTR-M04

due to allocation deadlock concerns. However, concurrency was limited, as request

queuing and allocation was performed sequentially, due to resource restrictions. As the

allocation cycle was sequential, and the probability of concurrent connection-requests was

predicted to be low, the sequential form of queuing was used to reduce resource

requirements. Request selection operated on a cyclic priority structure to ensure allocation

starvation would not occur. The allocation stage was made sequential to allow for the

support of ‘last minute’ group adaptive routing, which attempted to supply improved

functionality to the mechanism. In contrast, the NTR08 implemented group adaptive

routing at the connection-request queuing stage, which allowed parallel allocation.

However, this could result in detrimental output allocation as the decision was made at one

instance of time, and the conditions on which that choice was made, could alter with the

dynamics of the network. Implementation of a parallel form of last minute group adaptive

routing would have required large amounts of resources, and as the predicted probability of

concurrent allocation was deemed low, the choice was acceptable. The differences in the

effect on the network behaviour between the earlier implementations and the last minute

mechanism have not been investigated in this work, and should be targeted for future

research.

The primary reason for use of a connection-request queue was to provide allocation

fairness when two or more sources request a single resource. The aim of allocation

fairness is to prevent allocation starvation and to minimise average packet times. This was

produced by both the unified and parallel implementations of the request queue. However,

all three router-switch implementations have shown weaknesses, which implies there is

much research required to develop the most suitable solution. This future research could

include the investigation of other selection servicing mechanisms. Only network analysis,

which is based on typical application architecture and traffic patterns, can identify the most

suitable service algorithms.

148

7 Discussion, Conclusions and Further Work

7.1.2.4 Network Configuration
A final concern with the operation of the network is the validation of configuration

data. The operation of the fault tolerance within the network does not concentrate on

identifying bit errors, it only deals with critical failure. Block checking techniques can be

used in the upper layers of the protocol to locate data errors in the point-to-point data

stream between communicating entities. However, the current NTR-FTM08 specification

does not include any such support for the verification of configuration data. A solution to

this could be the use of parity, which could be included in each token instruction.

However, to maintain support for the current configuration-port instructions and to support

future additions, the inclusion of parity would require the reduction from four to three data

bits per load data or address instruction. Alternatively, configuration packets could be

limited in size, which could then allow block-checking features to be added to the

configuration port to validate the data. While neither of these solutions is infallible, their

inclusion would increase configuration confidence, although they do not contain a recovery

mechanism. As the configuration network is integrated into the data network, it would be

impossible to say where the configuration commands have come from, which makes it

impossible to send an error message. The simplest solution is to clear all configuration

registers to the power-on reset default. A more proactive option would be the inclusion of

an additional control token that is propagated across the network to all nodes, which

highlights a configuration failure. This would simplify the problem, and allow the

reconfiguration procedure to be triggered. In addition, such a token could halt all data

transmissions until the situation had been rectified, which might degrade the network

operation but would help with communication integrity.

7.2 Conclusions
This thesis has described the development of a novel VLSI hardware packet routing

switch. It has detailed the implementation of distributed fault tolerance features that were

implemented in two stages. The first stage was concerned with critical interruption of the

link stability, validated through simulation and hardware verification: these features

detected and localised the effects of network failure, while supplying reduced link activity.

The second stage dealt with deadlock detection and recovery, including investigation of a

detection mechanism, which minimised time and false detections irrespective of network

traffic.

149

7 Discussion, Conclusions and Further Work

Previous research in embedded parallel or distributed systems has seen the

production of many dynamic packet router-switches, which could be used to construct

efficient, low-latency networks for use in distributed architectures. Tolerance to network

failure in these earlier systems was limited as the resultant network systems were targeted

towards board-level or rack-level systems, which possessed very high reliability figures.

This resulted in systems relying on system-wide reset recovery techniques or complicated

mechanisms of network monitoring and recovery techniques that became more complex as

the system scaled. The work described in this thesis has remodelled the system

methodology with respect to network faults by turning to a distributed detection and

recovery approach. By supplying a holistic automated fault tolerant mechanism, systems

can be constructed where network availability gracefully degrades in the presence of faults

and that scales without added complexity. This research has maintained the aspects of the

connection-switching model of earlier research, whilst contributing to improvements in

fault tolerance and core switching, which is concentrated in the following key elements:

Fault tolerance
• Integrated a critical link failure detection mechanism for disconnection,

synchronisation, and buffer overrun.

• Developed a recovery mechanism which attempts to re-establish valid

connection where possible.

• Allowed isolation of critical faults through packet truncation or spillage whilst

allowing the remainder of the network to maintain normal operation.

• Investigated deadlock detection and recovery, including implementation of a

simulation based mechanism that experimentally supplied 0% false detections

whilst minimising the recovery latencies.

Core Router-switch Design
• Implemented a dormant mode and the features to re-establish connections,

which allowed the links to return to an inactive state, to stop link activity on

unused links.

• Implemented three addressing modes.

• Implemented a ‘last minute’ group adaptive routing algorithm.

150

7 Discussion, Conclusions and Further Work

• Implemented concurrent servicing of multicast connections.

• Maintained switching overheads whilst using multiple clock domains to

improve link speed.

• Changed the flow control mechanism to improve on bi-directional data

transfers.

The implementation of the design specification has been demonstrated to operate

successfully in simulation and extended hardware tests. The resilience of the fault

detection, recovery and isolation mechanism has been informally verified in extended

hardware tests, which show no user intervention is required in network recovery.

Increased network availability has been supported through ‘last minute’ group adaptive

routing. This technique allows the optimum use of valid links, and maintains a last option

of packet deletion to ensure undeliverable packets do not further reduce network

availability.

Analysis of the simulation based deadlock detection mechanism has shown it to be

an effective solution that minimises recovery latencies whilst prohibiting false detection.

Through the discussion, the deadlock detection mechanism that was developed was

presented as being too complex for a back-up support for avoidance network-

configuration. However, the low latency and 0% false detections make it suitable for

further investigation as a primary mechanism within parallel processing networks that use

smaller router-switches.

The core operation of the router-switch has been improved compared to earlier

research devices, through a number of alterations to the basic operation. Link dormancy

was included to reduce link activity on devices with low traffic requirements, yet

maintaining coherence with the fault tolerant methodology. The technique allows each

connection to be given sufficient chance to be made, in networks with disabled links,

whilst taking advantage of the ‘last minute’ group adaptive routing algorithm where

network configuration permits.

Three addressing modes were implemented which included absolute and

configurable systems. The discussion presented the appropriateness of introducing

multiple addressing modes for a flexible network. Additionally, the research helped

validate the use of configurable addressing modes, and target their appropriate use.

151

7 Discussion, Conclusions and Further Work

The basic operation of earlier forms of group adaptive routing was analysed, which

led to the development of last minute group adaptive routing. This form of the mechanism

operates more dynamically with the state of the network, improving on some limitations of

earlier implementations. It is also required to support the fault tolerant aspects of

connection allocation, which ensures that network availability is optimally utilised, where

the configuration permitted.

The centralised mechanism for logical address decoding and subsequent operation

of connection-request queuing did not differentiate between unicast and multicast

connections. The use of a parallel request queue and sequential decoding mechanism

allowed concurrent servicing of all logical addressed connections, which contrasted with

the sequential multicasting servicing algorithm of the NTR-M04.

The servicing model effectively formed a three-stage pipeline, which reduced the

number of core cycles for packet switching compared to the NTR-M04 implementation.

Much of the improvement in clocking rates was based on the up-to-date PLD technology,

however, the pipelined decode-queue-allocate structure of the NTR-FTM08 did supply an

improvement even with the dual clock domains. This was shown in the comparison of the

normalised unloaded network bandwidth figures. The primary aim was to minimise the

number of core cycles but to maintain a reasonable clock rate. A second clock domain for

the sampling circuits allowed optimisation to increase the link speed, without increased

design effort in the core. The overall effect maintained similar switching latencies when

the normalised figures were compared to the NTR-M04, where the core was clocked at

half the rate of the sampling circuits.

Analysis of basic network models was used to select an optimum flow control

mechanism, which improved the throughput of the device by 6% in a synthetically loaded

environment of a single router-switch. The STOP/GO flow control mechanism, which

replaced the credit-based mechanism, was also shown to improve average packet latencies

in relation to the network load. The alteration to the flow control mechanism also aided in

the operation of the fault detection mechanism, as the control tokens were re-used as idle

tokens, which also reaffirmed flow status.

7.3 Further Work
There are two main areas of research that need to be further addressed to continue

to progress the switched network architecture for use in embedded and distributed systems.

152

7 Discussion, Conclusions and Further Work

7.3.1 System Level Work
Throughout this research project, much has changed in technology and application

requirements. In order to aid further research in this area, up-to-data application studies

are necessary that will identify the operational requirements of current target systems.

However, the immediate work that needs to be carried out includes the integration of this

and other collaborative research into an operational system. This will allow more subtle

research into the effectiveness that each area of the system contributes. The increased

interest of digital communications in consumer markets has led to increased levels of

multimedia traffic with embedded and distributed systems. The effects of multimedia

traffic and their requirements need to be investigated to help evolve network strategies to

maintain an effective solution.

7.3.2 Further Routing Techniques

Further Flow Control Investigation
The results of the preliminary investigation into the permission-based STOP/GO

flow control implied that optimum settings existed for the threshold values of the

mechanism. To provide a clearer insight into the effects of the flow control mechanism,

further research is required that investigates more complex networks in detail. Areas of

investigation should include networks with variations in buffering capacity, threshold

values, packet size, topology, traffic patterns, and node behaviour.

Link Dormancy
The current link dormancy feature of the NTR-FTM08 operates as designed when

both ends of the link are set to the dormant mode. However, if the configuration settings

are contrary, it results in intermittent link activity as one side attempts to return to the sleep

state, while the other attempts to maintain a connection. Future work could include

modification of the link dormancy feature to allow a non-dormant link to be connected to a

dormant link, which would allow the dominant configuration to supersede initial

configuration settings.

Configuration Considerations
As discussed in section 7.1.1.1, the current implementation does not possess any

protection against data errors in a configuration data packet. The discussion suggested

including some form of error detection within the data stream, such as parity or block

153

7 Discussion, Conclusions and Further Work

checking, and a predefined recovery procedure on the event of error detection. As the

configuration network is integrated into the data network to improve connection

availability to the configuration port of each switch, it would be impossible to say where

the configuration commands have come from, which complicates the recovery mechanism.

Additional research is required to identify a suitable solution to this problem, and integrate

it in to an operational system for validation.

Network Interface Considerations
This work has not undertaken any steps to integrate the required functionality to

any network interface device (a hardware device that links a switched network to a

processing unit that does not support the communications protocol [6]). This will be

required to support the fault tolerant methodology presented in this thesis. The network

interface device would require all the features that the individual link units possess.

Additionally, features related to delivery verification would be required. The NTR-FTM08

can cause packets to be removed from the network or truncated, which must be detected to

trigger the appropriate recovery mechanism.

Another concern is the order in which packets are delivered. With the inclusion of

group adaptive routing and large amounts of buffering within networks, it is possible that

consecutive packets of a single message could arrive at the destination out of order. A

simple solution would be to acknowledge packets as they arrive, which would permit the

transmission of subsequent packets (as implemented in the second generation of

transputers). This solution could be implemented in hardware or software, but this would

require analysis to provide an effective solution.

Group Adaptive Routing
As described in section 7.1.1.1, the current implementation of group adaptive

routing provides little advantage within small router-switches. An evolution of this

technique would be required that extends the routing flexibility without massive costs in

implementation. Such mechanisms would provide improved adaptivity and availability,

which would aid both performance and the fault tolerant aspects of resulting networks.

Additionally the advantages of ‘last minute’ grouping compared to the earlier queuing

stage mechanisms should be investigated, to discover whether the increased resource

overhead is worth the improvements gained.

154

7 Discussion, Conclusions and Further Work

Multicast Implementation
Hardware support of multicast connections complicated the NTR-M04 and

NTR-FTM08 designs. In fact, the complications were not concentrated solely in the

controller as the crossbar suffers also. Following allocation of all the associated outputs,

the data transfer across the crossbar had to be in lockstep to ensure the whole packet was

delivered to each destination output. This synchronous nature increased hardware resource

requirements dramatically. Such synchronisation meant that a blockage at a single output

would inhibit the progression of the whole packet, and therefore degrade the operation of

the device. Although some interface-based multicast implementations have been shown to

improve the latencies for the delivery of multicast packets, the synchronous based

implementations of the NTR-M04 and NTR-FTM08 could cause greater latencies in other

traffic patterns. As the emphasis within embedded and distributed systems is on low

latency, efficient communication, the implementation of synchronous hardware support for

multicast may be an unwise selection. A study of the use of multicast communications in

the target applications should be undertaken, providing an analytical comparison between

an interface-based solution and the switched based solution. Supplying other routing

options within the switch, such as priority, may help interface-based solutions that could

result in overall improvements in communication efficiency.

Connection Servicing
The NTR08, NTR-M04, and NTR-FTM08 all implemented FIFO buffering based

connection-request queuing to supply a form of first-come-first-served service ordering, as

discussed previously in section 7.1.2. This servicing methodology can greatly affect the

behaviour of the router-switch, which is evident in the response to traffic patterns and

workloads. Based on the application review, research needs to be earned out that

investigates the effectiveness of the first-come-first-served servicing mechanism and

compares it with other techniques within example application networks with realistic target

traffic patterns and workloads. Additionally, the comparison of the results from sections

6.1 and 6.2.1.2 stated that sequential servicing algorithms may form a bottleneck that

reduces device throughput under loaded conditions. This implies that as the number of

links on the router-switch scales, more concurrency should be implemented within the

connection servicing mechanism to ease the bottleneck. This should be investigated

further to ascertain how the bottleneck affects the device throughput as the device scales.

7 Discussion, Conclusions and Further Work

System Throughput
The results showed that with the selected PLD technology the maximum operating

frequency of the link interface was around 60 MHz, which equated to 45 Mb/s rate link

rate. Complete optimisation of the design and removal of superfluous features could allow

the design to reach this operating rate. Improvement on this figure could be simply

achieved by changing technology, but the limiting factor always would be the physical

encoding technique. Differential signal drivers were used in the physical implementation

of this work for basic line drivers, and have been shown to be capable of long transmission

distances at high transmission rates in other collaborative work [6]. Some PLD vendors

are now offering low voltage differential signal driver circuits as optional integrated 10

circuits for their devices, which provide recoverable data streams that operate up to bit

rates of 624 Mb/s in a synchronous mode [26]. The feasibility of this or similar technology

for use in embedded and distributed system needs to be investigated, concentrating on cost

effectiveness and suitability to target applications.

In addition to the link bit rate, switching latencies also must be reduced. The

results showed that the current implementation lost up to 19 % of the effective data

bandwidth with a payload size of four bytes. It is possible that many embedded and

distributed systems may use small packets, which would result is severe loss of network

bandwidth. Therefore, to support small packet sizes, switching latencies should be no

greater than the time for the transmission of a single token.

Low Power Implementations
A major concern in most consumer products is the use of power. The current PLD

implementation technology may provide excellent prototyping attributes, but at the cost of

power consumption. This situation could be eased by selecting another technology after

prototyping, such as a compatible fuse-based architecture. Alternatively, the design could

be remodelled to reduce power by either the use of asynchronous design techniques or

systems that implement stoppable clocks.

156

Publications
R.Hotchkiss, B.C.O’Neill, S.Clark

“Fault Tolerance for an Embedded Wormhole Switched Network

PARLEC 2000 Conference, Trois-Rivieres, Canada, August 2000, ISBN 0-7695-0759-X

R.Hotchkiss, B.C.O’Neill, S.Clark

“A Fault Tolerant Router for Parallel Networks”

PREP 2000 Conference, Nottingham, UK, April 2000, ISBN 0-86341-3218

R.Hotchkiss, B.C.O'Neill, K.L.Wong, G.C.Coulson, S.Clark & P.D.Thomas

uThe Building Blocks for a Parallel Network Incorporating the StrongARM
Microprocessor”

PDPTA Conference, Las Vegas, USA, July 1998, ISBN 1-892512-08-4

157

References

[1] J.W.ELLIS; “A hardware routing device for transputer arraysPh.D. Thesis, The
Nottingham Trent University, UK; Oct 1995

[2] G.C.COULSON; “An ASIC implementation of a multicast message routing switch for
interprocessor communications”; Ph.D. Thesis, The Nottingham Trent University, UK;
Sept 1998

[3] CRAY RESEARCH INC.; “The Cray T3D System Architecture Overview”; Cray Research
Inc.; Technical document HR-04033; 1993

[4] D.RIDGE, D.BECKER, P.MERKEY, T.STERLING; “Beowulf; harnessing the power of
parallelism in apile-of-PCs”; 1997 IEEE Aerospace Conference. Proceedings (Cat.
No.97CH36020). IEEE. Part vol.2, vol.2. New York, USA, 1997, pp 79-91

[5] G.R.HENDRY; “Standard ETHERNET as an Embedded Communication Network”; MSc
Thesis; Dept, of Electrical and Computer Engineering, Carnegie Mellon University; April
1999

[6] KL.WONG; “A message controller for distributed processing systems”; Ph.D. Thesis, The
Nottingham Trent University, UK; June 2000

[7] INTEL CORPORATION; “Intel Architecture Software Developer’s Manual Volume 1:
Basic Architecture”, Order Number 243190; Intel Corporation, 1997, pp 2.2-2.4

[8] M.C. BECKER, M.S.ALLEN, C.R.MOORE, J.S.MUHICH, D.P.TUTTLE; “The Power
PC 601 Microprocessor”, IEEE Micro, vol. 13 no. 5, Oct 1993, pp 54-68

[9] M.FLYNN; “Some computer organizations and their effectiveness”; IEEE Trans.
Computers,Vol. 21; 1972, pp. 948-960

[10] AMD INC.; “AMD Athlon Processor. Technical Brief \ Publication Number 22054,
Revision D, AMD Inc., Dec 1999

[11] TRANSMETA CORP.; “Crusoe Processor Model TM3120 Data Sheet”, Transmeta Corp,
Data Sheet TM3120, Jan 2000

[12] ANALOG DEVICES INC; “TigerSHARC DSP Microcomputer. Preliminary Technical
Data ADSP-TSOOl”, Analog Devices Inc., Preliminary Data Sheet ADSP-TS001, Rev PrC,
Dec 1999

[13] X.ZHANG; “System Effects of Interprocessor Communication Latency in
Multicomputers”; IEEE Micro, April 1991; pp 12-15, 52-55

[14] A.C.DORING, G.LUSTIG, W.OBELOER; “The Impact of Routing Decision Time on
Network Latency”; Proceedings of the 4th PASA Workshop on Parallel Systems and
Algorithms; 1997; pp 67-83

[15] M.PIRVU, L.BHUYAN, N.NI; “The Impact of Link Arbitration on Switch Performance”;
Proceedings of HPCA-5, 5th Int. Conference on High Performance Computer Architecture;
IEEE Computer Soc.; Orlando, USA; January 1999; pp 228-235

158

[16] C.A.R. HO ARE: 44Communicating Sequential Processes”, Hemel Hempstead : Prentice-
Hall International, 1985

[17] R.A.QUINNELL; “USB: a neat package with a few loose ends”; EDN, Vol. 41, No. 22;
October 1996; pp 38-46, 48, 50, 52

[18] I.J.WICKELGREN; “The facts about FireWire serial communication bus”; IEEE
Spectrum, Vol. 34, No. 4; April 1997; pp 19-25

[19] C.EDWARDS; “Big three backing for switch fabric”; Electronics Times, No. 984; 6th Mar
2000; pp 6

[20] J.CHILD; “Get ready for channel-based links in I/O subsystems”; Electronic Design,
Vol. 47, No. 9; Penton Publishing, USA ;May 1999; pp 65-66, 68, 70, 72

[21] T.FOREMSKI; “InfiniBand is new name for future server design standard’; Electronics
Weekly Archive, Online at http://www.electronicsweekly.co.uk; 28th Oct 1999

[22] R.BALL; lIP and trendy’; Electronics Weekly, No. 1915; 23rd June 1999; pp 18

[23] I.A.GLOVER, P.M.GRANT; “Digital Communications”; Prentice Hall, Europe 1998;
ISBN 0 13 565391 6; 1998; pp 670-673

[24] L.R.DENNISON, W.S.LEE, W.J.DALLY; 44High-performance bidirectional signalling in
VLSI systems”; 1993 Symposium on Research on integrated systems; Seattle, USA; 1993

[25] T.M.PINKSTON, Y.CHOI, M.RAKSAPATCHARAWONG; “Architecture and
Optoelectronic Implementation of the WARRP Router”; Proceedings, 5th High performance
Interconnects, (Hot interconnects V); Palo Alto, CA, USA.; 1997; pp ??

[26] ALTERA CORPORATION; “APEX2OK. Programmable Logic Device Family”; Data
Sheet A-DS-APEX20K-02.06; Ver. 2.06; March 2000

[27] B.VOM BERG, P.GROPPE; “The CAN bus, intelligent, decentralized, data
communications. Part 2”; Elektor Electronics, No. 280; September 1999; pp 39

[28] G.HELD; “Data Communications Networking Devices”; Wiley 1999, Fourth Edition;
ISBN 0-471-97515; pp 303-327

[29] E.TRAN; 4Multi-bit Error Vulnerabilities in the Controller Area Network Protocol’; M.Sc.
Thesis, Carnegie Mellon University, Pittsburgh, USA; May 1999

[30] VITA STANDARDS ORGANISATION;tMyrinet-on-VME. Protocol Specification Draft
Standard’; VITA 26-199x Draft 1.1; VITA Standards Organisation, August 1998; pp 27

[31] M.D.MAY, P.W.THOMPSON, P.H.WELCH; 4Networks, routers & transputers: Function,
performance and application*; IOS Press; ISBN 90 5199 129 0; 1993; pp 40

[32] I.A.GLOVER, P.M.GRANT; “Digital Communications”; Prentice Hall, Europe 1998;
ISBN 0 13 565391 6; 1998; pp 45-48

159

http://www.electronicsweekly.co.uk

[33] W.J.DALLY, L.R.DENNISON, D.HARRIS, K.KAN, T.XANTHOPOULOS; “The
Reliable Router: A Reliable and High Performance Communication Substrate for Parallel
Computers”; 1st Int. Parallel Computer Routing & Communication Workshop; Seattle,
USA, May 1994; pp 241-255

[34] W.J.DALLY, H.AOKI; “Deadlock-free adaptive routing in multicomputer networks using
virtual channels”, IEEE Trans. Parallel and Distributed Systems; Vol. 4, No. 4; April 1993

[35] A.M.JONES, N.J.DAVIES, M.A.FIRTH, C.J.WRIGHT; “PACT The Network Designer ”s
HandbookIOS Press, Ohmsha, Concurrent systems engineering series, Vol. 51;
ISSN 1383-7575; 1997; pp 51-211

[36] B.VOM BERG, P.GROPPE; “The CAN bus, intelligent, decentralized, data
communications. Part 1 & 2”; Elektor Electronics, No. 280; September 1999; pp 24-
29, 36-41

[37] M.GERLA, P.PALNATI, S.WALTON; ‘Multicasting in Myrinet - A high speed,
wormhole-routing network'; IEEE GLOBECOM 1996. Communications: The key to
global prosperity; IEEE. Part Vol. 2, ISBN 0 7803 3336 5; New York, USA; pp 1064-1068

[38] R.SIVARAM, R.KESAVAN, D.K.PANDA, C.B.STUNKEL; “Where to provide support
for efficient multicasting in irregular networks: Network interface or switch?”; IEEE
Computer Soc. 27th Int. Conference on Parallel Processing; Ohio, USA; Aug 1998; pp 452-
459

[39] P.K.MCKINLEY, H.XU, A.H.ESFAHANIAN, L.M.NI; “Unicast-BasedMulticast
Communication in Wormhole-Routed Networks”; IEEE Trans. Parallel and Distributed
Systems, Vol. 5, No. 12, Dec 1994; pp 1252-1265

[40] M.D.SCHROEDER, A.D.BIRRELL, M.BURROWS, H.MURRAY, R.M.NEEDHAM,
T.L.RODEHEFFER, E.H.SATTERTHWAITE, C.P.THACKER; “Autonet: a high-speed
self-configuring local area network using point-to-point links”; Digital Equipment
Corporation, SRC Research Report 59, April 1990

[41] C.B.STUNKEL, R.SIVARAM, D.K.PANDA; ‘Implementing multidestination worms in
switch-based parallel systems: architectural alternatives and their impacf; Computer
Architecture News, Vol. 25, No. 2; ACM, USA; May 1997; pp 50-61

[42] L.M.NI, P.K.MCKINLEY; “A Survey of Wormhole Routing Techniques in Direct
Networks”; IEEE Computer, Vol. 26, No 2; February 1993; pp 62-76

[43] J.DUATO, S.YALAMACHILI, M.C.CAMINERO, D.LOVE, F.J.QUILES: “MMR: A
high-performance multimedia router - architecture and design trade-offs”, Proceedings of
the 5th Symposium on High-performance computer architecture, 1999, Los Alamitos, CA,
USA, pp 300-309

[44] S.W.DANIEL, K.G.SHIN, S.K.YUN; “A router architecture for flexible routing and
switching in multihop point-to-point networks”; IEEE Trans. Parallel and Distributed
Systems, Vol. 10, No. 1, Jan 1999, pp 62,75

[45] W.J.DALLY; “Virtual-channel Flow Control”, IEEE Trans. Parallel and Distributed
Systems, Vol. 3, No. 2; March 1992, pp 194-204

160

[46] C.C.SU, K.G.SH1N; Adaptive Deadlock-Free Routing in Multicomputers Using Only One
Extra Virtual ChannelIEEE Transactions on Computers, vol.45, no.6, June 1996,
pp.666-683

[47] M.D.MAY, P.W.THOMPSON, P.H.WELCH; 4Networks, routers & transputers: Function,
performance and application’; IOS Press; ISBN 90 5199 129 0; 1993; pp 21

[48] N.R.MCKENZIE, K.BOLDING, C.EBELING, L. SNYDER; “Cranium: An Interface for
Message Passing on Adaptive Packet Routing Networks”; Proceedings of the 1994 Parallel
Computer Routing and Communication Workshop; Seattle, USA; May 1994; pp ??

[49] A.M JONES, N.J.DAVIES, M.A.FIRTH, CJ.WRIGHT; “PACT The Network Designer ”s
Handbook', IOS Press, Ohmsha, Concurrent systems engineering series, Vol. 51;
ISSN 1383-7575; 1997; pp 17-18

[50] H.J.LEE, B.Y.SONG; “Performance of multiple links over single link in STC104
networks”; Proceedings. 1997 Int. Conference on Parallel and Distributed Systems, (CAT.
No. 97TB100215); Los Alamitos, CA, USA; 1997; pp 196-202

[51] W.J.DALLY, C.L.SEITZ; Deadlock-free message routing in multiprocessor
interconnection networks.”', IEEE Transactions on Computers, Vol. C-36, No. 5; May
1987; pp 547-533

[52] J.DUATO; “A New Theory of Deadlock-free Adaptive Routing in Wormhole Networks”',
IEEE Transactions on Parallel & Distributed Systems, Vol. 4, No. 12; December 1993;
pp 1320-1331

[53] K.BOLDING; “Chaotic Routing - Design and Implementation of an Adaptive
Multicomputer Network Router”; Ph.D. Thesis, University of Washington, USA; 1993

[54] C.J.GLASS, L.M.NI; “Fault tolerant wormhole routing in meshes without virtual
channels”; IEEE Trans. Parallel and Distributed Systems, Vol. 7, No. 6; June 1996;
pp 620-636

[55] T.D .NGUYEN, L.SNYDER; “Performance Analysis of a Minimal Adaptive Router”;
Proceedings of the 1994 Parallel computer routing and communication workshop; Seattle,
USA; May 1996; pp 31-44

[56] K.V.ANJAN; T.M.PINKSTON; J.DUATO; “Generalized Therory for Deadlock-Free
Adaptive Wormhole Routing and its Application to Disha Concurrent”; IPPS 96;

[57] LOPEZ P., MARTINEZ J.M., DUATO J.: “A Very Efficient Distributed Deadlock
Detection Mechanism for Wormhole Networks”; Proceedings of the 4th International
Symposium on High-Performance Computer Architecture. IEEE Computer Soc. (1998)
57-66

[58] MYRICOM, INC.;iMyrinet Link Specification’’; Archived specification of specification
available from Myricom Inc. USA. Also available
http://www.myri.com/scs/documentation/link/index.html (as of July 2000)

[59] SGS-THOMPSON MICROELECTRONICS; “Cl04 Asynchronous Packet Switch
Engineering Data”; Document No. 42 1470 06; April 1995; pp 8-11

161

http://www.myri.com/scs/documentation/link/index.html

[60] G.HELD; Data Communications Networking Devices”; Wiley 1999, Fourth Edition;
ISBN 0-471-97515; pp 54-58

[61] S.WARNAKULASURIYA, T.M.PINKSTON; “Characterization of deadlocks in
interconnection networks”; Proceedings, 11th Int. Parallel processing symposium; IEEE
Computer Soc. Press 1997; Los Alamitos, CA, USA; April 1997; pp 80-86

[62] A.FOLKESTAD, C.ROCHE; “Deadlock probability in unrestricted wormhole routing
networks”; IEEE Int. Conference on Communications, Vol.3; Montreal, Canada; 1997;
pp 1401-1405

[63] P.T.GAUGHAN, S.YALAMANCHILI; “Pipelined circuit switching: A fault-tolerant
variant of wormhole routing”; Proceedings, IEEE symposium on Parallel and distributed
processing; ISBN 0 8186 3200 3; 1992; pp 148-155

[64] B.V.DAO, J.DUATO, S.YALAMANCHILI; “Configurable flow control mechanisms for
fault-tolerant routing”; Proceedings, 22nd Annual Int. Symposium on Computer
Architecture; 1995; pp 220-229

[65] J.FLICH, M.P.MALUMBRES, P.LOPEZ, J.DUATO; “Performance evaluation of a new
routing strategy for irregular networks with source routing”; Proceedings, Int. conference
on supercomputing; ACM Press, ISBN 1 58113 270 0; May 2000; pp 34-43

[66] T.M.PINKSTON, S.WARNAKULASURIYA; “On Deadlocks in Interconnection
Networks” Computer Architecture News. Vol. 25, No. 2; 1997; pp 38-49

[67] MARTINEZ J.M, LOPEZ P., DUATO J , PINKSTON T.M.; “Software-Based Deadlock
Recovery Techniques for True Fully Adaptive Routing in Wormhole Networks”;
proceedings, 1997 Int. Conference on Parallel Processing; 1997; pp 182-189

[68] K.V.ANJAN, T.M.PINKSTON; “An efficient, fully adaptive deadlock recovery scheme:
DISHA”; Proceedings, 22nd Int. symposium on Computer architecture;
ISBN 0 89791 698 0; New York, USA; June 1995; pp 201-210

[69] VITA STANDARDS ORGANISATION; ‘Myrinet-on-VME. Protocol Specification Draft
Standard"; VITA 26-199x Draft 1.1; VITA Standards Organisation, August 1998; pp 21

[70] T.M.PINKSTON; “Flexible and Efficient Routing Based on Progressive Deadlock
Recovery”; IEEE Transactions on Computers; Vol. 48, No. 7; 1999; pp 649-669

[71] INMOS LTD.: “The Transputer Databook” (INMOS document number: 72 TRN 203 02,
1992) 3rd edn; pp 208-209

[72] INMOS LTD.: “The Transputer DatabooD’ (INMOS document number: 72 TRN 203 02,
1992) 3rd edn; pp. 397-407

[73] J.Y. LEE, S.J. JEONG, W.M. JANG: “An Implementation of a Dynamic Reconfiguration
in POP A (POhang PArallel) Computer”, Applications of Transputers 3, (IOS Press,
Ohmsha, 1991) Vol. 1, Proceedings of the 3rd International Conference on Applications of
Transputers; August 1991; Glasgow, UK, pp. 38-47

162

[74] L.W. WIGGERS, J.C. VERMEULEN: “The application of transputers in High-Energy
Physics”, Applications of Transputers 2, (IOS Press, Ohmsha, 1990), Proceedings of the 2nd
International Conference on Application of Transputers; July 1990; Southampton, UK;
pp. 34-39

[75] P.A.SHALLOW: Processor Independent and Extendable Routing System using a Cyclic
Routing Algorithm”, OCCAM and The Transputer - Current Developments, (IOS Press,
1991), proceedings of the 14th World OCCAM and Transputer User Group Technical
Meeting, Sept. 1991, Loughborough, UK, pp 225-233

[76] G.C. COULSON, B.C. 0 ”NEILL, J.W. ELLIS, S. CLARK; “Optimisation of a Processor
Farm using Hardware Routing”; Transputer Applications and Systems ed. B M Cook, M R
Jane, P Nixon & P M Welch; IOS Press, Vol 46; ISSN: 1383-7575; 1995; pp 70-77.

[77] IC-ROUTING Ltd.; “16-port Dynamic Routing Switch for Transputer Link’’-, Company
data sheet; Ver. 1.3; 1996

[78] SGS-THOMPSON MICROELECTRONICS; “Cl04 Asynchronous Packet Switch
Engineering Data”; ; 42 1470 06; April 1995

[79] W.J.DALLY, L.R.DENNISON, D.HARRIS, K.KAN, T.WANTHOPOLOUS;
“Architecture and Implementation of the Reliable Router”; Proceedings of Hot
Interconnects II, Stanford, USA, Aug 1994; pp 122-133

[80] A.M.JONES, N.J.DAVIES, M.A.FIRTH, C.J.WRIGHT; “PACT The Network Designer’s
HandbookP; IOS Press, Ohmsha, Concurrent systems engineering series, Vol. 51;
ISSN 1383-7575; 1997; pp 7-8

[81] INSTITUTE ELECTRICAL AND ELECTRONIC ENGINEERS, INC.; “IEEE Standard
for Heterogeneous Interconnects (HIC) (Lost-Cost, Low-Latency Scaleable Serial
Interconnect for Parallel System Construction)”-, IEEE Std 1355-1995, SH94378; IEEE,
NY, USA; June 1996; pp 25-32

[82] K.BOLDING, W.YOST; “Design of a Router for Fault-tolerant Networks”; Proceedings
of the 1994 Computer Routing and Communication Workshop; May 1994; pp 226-240

[83] L.R.DENNISON, W.J.DALLY, D.XANTHOPOULOS; “Low-latencyplesiochronous data
retiming”; 1995 Conference on Advanced Research in VLSI; Chapel Hill NC, March 1995;
(Available ftp://ftp.ai.mit.edu/pub/cva/plesio.ps.Z - June 2000)

[84] M.D.MAY, P.W.THOMPSON, P.H.WELCH; ‘Networks, routers & transputers: Function,
performance and application’; IOS Press; ISBN 90 5199 129 0; 1993

[85] A.M.JONES, N.J.DAVIES, M.A.FIRTH, C.J.WRIGHT; “PACT The Network Designer ”s
Handbook”; IOS Press, Ohmsha, Concurrent systems engineering series, Vol. 51;
ISSN 1383-7575; 1997; pp 260

[86] A.M.JONES, N.J.DAVIES, M.A.FIRTH, C.J.WRIGHT; “PACT The Network Designer’s
Handbook’; IOS Press, Ohmsha, Concurrent systems engineering series, Vol. 51;
ISSN 1383-7575; 1997; pp 45-48

163

ftp://ftp.ai.mit.edu/pub/cva/plesio.ps.Z

[87] SPACEWIRE WORKING GROUP, S.M.PARKES; ‘ECSS-E-50-12 Space Engineering.
SpaceWire: Links, nodes, routers and networks. Draff', Document No. UoD-DICE-TN-
9201, Issue D; ESA Contract 12693/97/NL/FM; June 2000; pp 96-97;
(http://www.estec.esa.nl/tech/spacewire/ - July 2000)

[88] N.J.BODEN, D.COHEN, R.E.FELDERMAN, A.E.KULAWIK, C.L.SEITZ,
J.N.SEIZOVIC, W.SU; “Myrinet -A Gigabit-per-Second Local Area Network”; IEEE
Micros, Vol. 15, No. 1; February 1995; pp 29-36

[89] K.VERSTOEP, K.LANGEDOEN, H.BAL; ‘Efficient reliable multicast on Myrinef;
Proceedings, 1996 Int. Conference on Parallel processing, Vol. 3 software; IEEE Computer
Soc. Press; ISBN 0 8186 7623 X; Los Alamitos, USA; pp 156-165

[90] R.SIVARAM, D.K.PANDA, C.B.STUNKEL; ‘Efficient broadcast and multicast on
multistage interconnection networks using multiport encoding’; IEEE Transactions on
Parallel and Distributed Systems; Vol. 9, No. 10; Oct 1998; pp 1004-1028

[91] J.REXFORD, J.HALL, K.G.SHIN; ‘A router architecture for real-time communication in
multicomputer networks'1’, IEEE Transactions on Computers, Vol. 47, No. 10; Oct 1998;
pp 1088-1101

[92] M.D.MAY, P.W.THOMPSON, P.H.WELCH; ‘Networks, routers & transputers: Function,
performance and application’; IOS Press; ISBN 90 5199 129 0; 1993; pp 21

[93] K.G.SHIN, S.HAN; “FastLow-Cost Recovery for Reliable Real-Time Multimedia
Communication”; IEEE Network, Vol. 12, No. 6; November-December 1998; pp 56-63

[94] VITA STANDARDS ORGANISATION; ‘Myrinet-on-- VME. Protocol Specification Draft
Standard’; VITA 26-199x Draft 1.1; VITA Standards Organisation, August 1998; pp 45
(or online - http://www.myri.com/myri-types.html - July 2000)

[95] A.M.JONES, N.J.DAVIES, M.A.FIRTH, C.J.WRIGHT; “PACT The Network Designer ”s
Handbook’’, IOS Press, Ohmsha, Concurrent systems engineering series, Vol. 51;
ISSN 1383-7575; 1997; pp 18-19

[96] J.FLICH, M.P.MALUMBRES, P.LOPEZ, J.DUATO; “Improving Routing Performance in
Myrinet Networks”', Proceedings. 14th Int. Parallel and Distributed Processing Symposium;
IEEE Computer Soc.; ISBN 0-7695-0574-0; May 2000; pp 27-32

[97] SGS-THOMPSON MICROELECTRONICS; “Cl04 Asynchronous Packet Switch
Engineering Data”’, ; 42 1470 06; April 1995; pp 22-38

[98] F.PETRINI, M.VANNESCHI; “Performance Analysis of Minimal Adaptive Wormhole
Routing with Time-Dependent Deadlock Recovery”', Proceedings, 11th Int. Parallel
processing symposium; Genva, Switzerland; April 1997; pp 587-595

[99] ALTERA CORPORATION; “FLEX 10KE Embedded Programmable Logic Family”', Data
sheet A-DS-F10KE-01.01; Version 1.01; November 1998

[100] S.VARADARAJAN, T.CHIEUH; “Automatic Fault Detection and Recovery in Real Time
Switched Ethernet”; Proceedings of INFOCOM’99, Conference on Computer
Communications, IEEE Computer Soc.; New York, USA; March 1999; pp 21-25

164

http://www.estec.esa.nl/tech/spacewire/
http://www.myri.com/myri-types.html

Appendix A: Preliminary Flow Control Comparison Results

Appendix A : Preliminary Flow Control Comparison Results

This appendix contains the results of preliminary simulations of the flow control

comparisons on a synthetically loaded router switch.

The estimated workloads were based on the average rate of packets that were

injected into the network. The test vectors were statically defined before the tests.

Average packet time was the observed time taken from post simulation analysis of the test

results. Normalised average packet time was calculated thus:

.. , . A . average packet timenormalised packet time = -------------- --------------------------
calculated minimum packet time

where the calculated minimum packet time was derived from the operational parameters of

the system thus :

bits per packet = (packet overhead + tokens per packet) x bits per token

calculated mimimum packet time = bits per packet x (sample clock period x 1.5)

The throughput figures where produced by the division of the number of

transmitted bits by the duration of the test. The percentage throughput was equal to the

percentage of the observed throughput of the calculated maximum system throughput,

which was calculated thus:

link data rate = ----------------
Sample Clock Period x 1.5

calculated system maximum throughput = link data rate x number of links

The data throughput and percentage data throughput were calculated similarly to

the basic throughput figures, but only data bits were included in the calculation. The

calculated maximum system data throughput was calculated thus:

g
calculated maximum system data throughput = link data rate x — x number of links

A-l

Appendix A: Preliminary Flow Control Comparison Results

Results for the STOP/GO permission based flow control.

Estimated Workload
(%)

Average Packet Time
(seconds)

Normalised Average
Packet time

100.00% 27.194E-6 1.717
90.00% 27.160E-6 1.715
80.00% 27.216E-6 1.718
70.00% 25.998E-6 1.641
50.00% 21.174E-6 1.337
30.00% 18.833E-6 1.189
10.00% 17.468E-6 1.103

Estimated Workload
(%)

Test Duration
(seconds)

Throughput
(bits per second)

Percentage
Throughput

100.00% 108.894E-3 64.65E+6 72.73%
90.00% 108.690E-3 64.77E+6 72.87%
80.00% 108.519E-3 64.87E+6 72.98%
70.00% 114.784E-3 61.33E+6 69.00%
50.00% 160.782E-3 43.79E+6 49.26%
30.00% 268.008E-3 26.27E+6 29.55%
10.00% 804.138E-3 8.75E+6 9.85%

Estimated
Workload (%)

100 .00%

90.00%
80.00%
70.00%
50.00%
30.00%
10.00%

Data Throughput
(bit per second)

Percentage Data
Throughput

44.08E+6 68.19%
44.16E+6 68.31%
44.23E+6 68.42%
41.82E+6 64.69%
29.85E+6 46.18%
17.91 E+6 27.70%
5.97E+6 9.23%

Number of messages 20000
Packet overhead 2
Tokens per message 30
Bit per token 11
Number of bits per test 7040000
Data bits per test 4800000

Sample Clock Period 30.00E-9
Single packet tx time (s) 14.850E-6
Number of links 4
System Throughput 88.89E+6
System Data Throughput 64.65E+6
Calculated Min Packet Time 15.840E-6

Appendix A: Preliminary Flow Control Comparison Results

Results for the credit based flow control (flow group = 8).

Estimated
Workload (%)

Average Packet Time
(seconds)

Normalised Average
Packet time

100.00% 26.017E-6 1.642
90.00% 26.163E-6 1.652
80.00% 26.063E-6 1.645
70.00% 25.984E-6 1.640
50.00% 22.459E-6 1.418
30.00% 19.732E-6 1.246
10.00% 17.784E-6 1.123

Estimated
Workload (%)

Test Duration
(seconds)

Throughput
(bits per second)

Percentage
Throughput

100.00% 118.590E-3 59.36E+6 66.78%
90.00% 118.027E-3 59.65E+6 67.10%
80.00% 118.046E-3 59.64E+6 67.09%
70.00% 118.230E-3 59.55E+6 66.99%
50.00% 160.782E-3 43.79E+6 49.26%
30.00% 268.008E-3 26.27E+6 29.55%
10.00% 804.138E-3 8.75E+6 9.85%

Estimated
Workload (%)

100.00%
90.00%
80.00%
70.00%
50.00%
30.00%
10.00%

Number of messages 20000
Packet overhead 2
Tokens per message 30
Bit per token 11
Number of bits per test 7040000
Data bits per test 4800000

Data Throughput
(bits per second)

Percentage Data
Throughput

40.48E+6 62.61%
40.67E+6 62.91%
40.66E+6 62.90%
40.60E+6 62.80%
29.85E+6 46.18%
17.91 E+6 27.70%
5.97E+6 9.23%

Sample Clock Period 30.00E-9
Single packet tx time (s) 14.850E-6
Number of links 4
System Throughput 88.89E+6
System Data Throughput 64.65E+6
Calculated Min Packet Time 15.840E-6

A-3

Appendix B : Basic STOP/GO Analysis

Appendix B : Basic STOP/GO A nalysis Details

This appendix contains the configuration settings, network diagrams and simulation

results for the STOP/GO flow control analysis. Two small regular networks were used

within these simulations, as opposed to a single router switch, to provide increased levels

of bi-directional data. Both test networks were set-up with a deadlock avoidance

configuration.

To help clarify how the results were calculated from the test results, please refer to

Appendix A. Although the operational parameters of the test networks are different

between the two tests, the same terms of reference and calculations were used.

Mesh Network

Test Configuration Set-up of the Mesh Network
The mesh network test used the connection topology as shown in Figure B-l. The

device configuration for this mesh network follows the diagram.

N o d e

N o d e
1 5

N o d e
1 4

R o u t e r
S w itc h 4

N o d e
10

N o d e
11

& Grouped bi-directional links <----- ► Active bi-directional link

Figure B-l : Four router switch mesh network used within the STOP/GO flow control
analysis simulations

B - l

Appendix B : Basic STOP/GO Analysis

Router switch 1

Interval Interval Limit
Register

Interval Port
Register

0 0 0
1 1 1
2 2 2
3 3 3
4 11 4
5 15 6
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 2

Interval Interval Limit
Register

Interval Port
Register

0 3 4
1 4 0
2 5 1
3 6 2
4 7 3
5 11 6
6 15 4
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 3

Interval Interval Limit Interval Port
Register Register

0 3 4
1 7 6
2 8 0
3 9 1
4 10 2
5 11 3
6 15 4
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 4

Interval Interval Limit Interval Port
Register Register

0 3 6
1 11 4
2 12 0
3 13 1
4 14 2
5 15 3
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Each router switch within the mesh network was configured with same group

adaptive routing settings; namely, group 0 = 4 & 5, group 1 = 6 & 7

The operational parameters used for these simulations and the analysis were as

follows:

Number of messages 8000
Packet overhead 3
Tokens per packet 32
Bit per token 11
Number of bits per test 3080000
Data bits per test 2048000

Sample Clock Period 16.00E-9
Single packet tx time (s) 8.448E-6
Number of links 16
System Throughput 666.67E+6
System Data Throughput 484.85E+6
Calculated Min Packet Time 9.240E-6

B-2

Appendix B : Basic STOP/GO Analysis

Test Results for the Mesh Network

Average packet time (seconds)
Estimated Threshold Differential

Workload (%) 8 16 32
80 62.871 E-6 59.148E-6 63.992E-6
70 62.627E-6 58.412E-6 63.934E-6
60 61.187E-6 57.929E-6 63.556E-6
50 58.818E-6 55.488E-6 62.532E-6
40 28.132E-6 27.240E-6 27.763E-6
30 17.985E-6 18.003E-6 17.990E-6

Normalised average packet time
Estimated Threshold Differential

Workload (%) 8 16 32
80 6.81 6.40 6.40
70 6.78 6.32 6.32
60 6.62 6.27 6.27
50 6.37 6.01 6.01
40 3.05 2.95 2.95
30 1.95 1.95 1.95

Test duration (seconds)
Estimated Threshold Differential

Workload (%) 8 16 32
80 9.476E-3 9.702E-3 9.639E-3
70 9.549E-3 9.676E-3 9.629E-3
60 9.578E-3 9.524E-3 9.640E-3
50 9.551 E-3 9.704E-3 9.712E-3
40 11.557E-3 11.557E-3 11.557E-3
30 15.407E-3 15.407E-3 15.407E-3

Observed Throughput (bits per second)
Estimated Threshold Differential

Workload (%) 8 16 32
80 325.04E+6 317.46E+6 319.53E+6
70 322.56E+6 318.33E+6 319.86E+6
60 321.56E+6 323.40E+6 319.50E+6
50 322.47E+6 317.41 E+6 317.14E+6
40 266.52E+6 266.52E+6 266.51 E+6
30 199.91 E+6 199.91 E+6 199.91E+6

Percentage Throughput
Estimated Threshold Differential

Workload (%) 8 16 32
80 48.76% 47.62% 47.93%
70 48.38% 47.75% 47.98%
60 48.23% 48.51% 47.93%
50 48.37% 47.61% 47.57%
40 39.98% 39.98% 39.98%
30 29.99% 29.99% 29.99%

B-3

Appendix B : Basic STOP/GO Analysis

Data Throughput (bits per second)
Estimated

Workload (%) 8
Threshold Differential

16 32
80 216.13E+6 211.09E+6 212.46E+6
70 214.48E+6 211.67E+6 212.68E+6
60 213.82E+6 215.04E+6 212.45E+6
50 214.42E+6 211.05E+6 210.88E+6
40 177.22E+6 177.22E+6 177.21 E+6
30 132.93E+6 132.93E+6 132.93E+6

Percentage Data Throughput
Estimated

Workload (%) 8
Threshold Differential

16 32
80 44.58% 43.54% 43.82%
70 44.24% 43.66% 43.87%
60 44.10% 44.35% 43.82%
50 44.22% 43.53% 43.49%
40 36.55% 36.55% 36.55%
30 27.42% 27.42% 27.42%

Torus Network

Test Configuration Set-up of the Torus Network
The torus network test used the connection topology as shown in Figure B-2. The

device configuration for this torus network follows the diagram.

N o d e N o d e N o d e N o d e N o d e N o d e N o d e N o d e
0 1 2 3 4 5 6 7

12
3£\

RouterRouter

N o d e N o d e N o d e N o d e N o d e N o d e N o d e N o d e
| ' 8 9 1 0 11 1 2 1 3 1 4 1 5

Grouped bi-directional links <-----► Active bi-directional link

Figure B-2 : Eight router-switch torus network used within the STOP/GO analysis
simulations

B-4

Appendix B : Basic STOP/GO Analysis

Router switch 1

Interval Interval Limit Interval Port
Register Register

0 0 0
1 1 1
2 5 2
3 7 6
4 15 4
5 63 invalid
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 2

Interval Interval Limit
Register

Interval Port
Register

0 1 6
1 2 0
2 3 1
3 5 2
4 7 6
5 15 4
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 3

Interval Interval Limit
Register

Interval Port
Register

0 3 6
1 4 0
2 5~ 1
3 7 2
4 15 4
5 63 invalid
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 4

Interval Interval Limit
Register

Interval Port
Register

0 3 2
1 5 6
2 6 0
3 7 1
4 15 4
5 63 invalid
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 5

Interval Interval Limit
Register

Interval Port
Register

0 7 4
1 8 0
2 9 I
3 13 2
4 15 6
5 63 invalid
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 6

Interval Interval Limit
Register

Interval Port
Register

0 7 4
1 9 6
2 10 0
3 11 1
4 13 2
5 15 6
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

B-5

Appendix B : Basic STOP/GO Analysis

Router switch 7

Interval Interval Limit
Register

Interval Port
Register

0 7 4
1 11 6
2 12 0
3 13 1
4 15 2
5 63 invalid
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 8

Interval Interval Limit
Register

Interval Port
Register

0 7 4
1 11 2
2 13 6
3 14 0
4 15 1
5 63 invalid
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Each router switch within the toms network was configured with same group

adaptive routing settings; namely, group 0 = 2 & 3, group 1 = 4 & 5, group 2 = 6 & 7

The operational parameters used for these simulations and the analysis were as

follows:

Number of messages 8000
Packet overhead 3
Tokens per packet 32
Bit per token 11
Number of bits per test 3080000
Data bits per test 2048000

Sample Clock Period 16.00E-9
Single packet tx time (s) 8.448E-6
Number of links 16
System Throughput 666.67E+6
System Data Throughput 484.85E+6
Calculated Min Packet Time 9.240E-6

Test Results for the Torus Network

Average packet time (seconds)
Estimated

Workload (%) 8
Threshold Differential

16 32
80 61.495E-6 57.833E-6 51.573E-6
70 60.423E-6 56.932E-6 51.088E-6
60 57.502E-6 54.026E-6 49.505E-6
50 28.082E-6 28.483E-6 30.435E-6
40 19.956E-6 19.920E-6 19.934E-6
30 16.656E-6 16.739E-6 16.632E-6

Normalised average packet time
Estimated

Workload (%) 8
Threshold Differential

16 32
80 6.66 6.26 5.58
70 6.54 6.16 5.53
60 6.22 5.85 5.36
50 3.04 3.08 3.29
40 2.16 2.16 2.16
30 1.80 1.81 1.80

B-6

Appendix B : Basic STOP/GO Analysis

Test duration (seconds)
Estimated

Workload (%) 8
Threshold Differential

16 32
80 8.311E-3 8.162E-3 8.375E-3
70 8.121 E-3 8.234E-3 8.394E-3
60 8.354E-3 8.308E-3 8.246E-3
50 9.246E-3 9.246E-3 9.246E-3
40 11.557E-3 11.557E-3 11.557E-3
30 15.407E-3 15.407E-3 15.407E-3

Observed Throughput (bits per second)
Estimated

Workload (%) 8
Threshold Differential

16 32
80 370.57E+6 377.38E+6 367.74E+6
70 379.25E+6 374.04E+6 366.93E+6
60 368.70E+6 370.74E+6 373.53E+6
50 333.12E+6 333.13E+6 333.12E+6
40 266.51 E+6 266.52E+6 266.52E+6
30 199.91 E+6 199.91 E+6 199.91 E+6

Percentage Throughput
Estimated Threshold Differential

Workload (%) 8 16 32
80 55.59% 56.61% 55.16%
70 56.89% 56.11% 55.04%
60 55.30% 55.61% 56.03%
50 49.97% 49.97% 49.97%
40 39.98% 39.98% 39.98%
30 29.99% 29.99% 29.99%

Data Throughput (bits per second)
Estimated

Workload (%) 8
Threshold Differential

16 32
80 246.41 E+6 250.93E+6 244.53E+6
70 252.18E+6 248.71 E+6 243.99E+6
60 245.16E+6 246.52E+6 248.37E+6
50 221.50E+6 221.51 E+6 221.50E+6
40 177.21E+6 177.22E+6 177.22E+6
30 132.93E+6 132.93E+6 132.93E+6

Percentage Data Throughput
Estimated

Workload (%) 8
Threshold Differential

16 32
80 50.82% 51.75% 50.43%
70 52.01% 51.30% 50.32%
60 50.56% 50.84% 51.23%
50 45.69% 45.69% 45.69%
40 36.55% 36.55% 36.55%
30 27.42% 27.42% 27.42%

B-7

Appendix C : NTR-FTM08 Performance Results

Appendix C : NTR-FTM08 Performance Results
This appendix contains the results for the unloaded device simulations and

hardware tests, and synthetically loaded simulations.

Simulation based unloaded network

Unidirectional
The following operational parameters were used in the unidirectional simulations

on the unloaded router switch.

Bit rate 41.67E+6
Packet overhead 2
Bit per token 11
Data bits per token 8

Sampling Clock period 16.00E-9
Core clock period 32.00E-9

The following tables contain the observed results for physical, interval, and logical

addressed packets. The interval and logical addressed packets did not strip the header.

Payload Packet
Size

(bytes)

Calculated
Minimum

Packet Time
(seconds)

Measu
Physical

(unidirectional)

red Packet Time (se
Interval

(unidirectional)

conds)
Logical

(unidirectional)

4 1.584E-6 2.376E-6 2.51 E-6 2.70E-6
8 2.640E-6 3.432E-6 3.57E-6 3.76 E-6
16 4.752E-6 5.544E-6 5.68E-6 5.87E-6
32 8.976E-6 9.768E-6 9.90 E-6 10.10E-6
64 17.424E-6 18.216E-6 18.35E-6 18.54E-6
128 34.320E-6 35.112E-6 35.25E-6 35.44E-6
252 67.056E-6 67.848E-6 67.98E-6 68.18E-6

Payload Packet
Size

(bytes)

Maximum
Effective Data

Bandwidth
(bits per second)

Effective D
Physical

(unidirectional)

ata Bandwidth (bits
Interval

(unidirectional)

per second)
Logical

(unidirectional)

4 20.20E+6 13.47E+6 12.74E+6 11.83E+6
8 24.24E+6 18.65E+6 17.94E+6 17.02E+6
16 26.94E+6 23.09E+6 22.54E+6 21.80E+6
32 28.52E+6 26.21 E+6 25.85E+6 25.36E+6
64 29.38E+6 28.11 E+6 27.90E+6 27.61 E+6
128 29.84E+6 29.16E+6 29.05E+6 28.89E+6
252 30.06E+6 29.71 E+6 29.65E+6 29.57E+6

C-l

Appendix C : NTR-FTM08 Performance Results

Payload Packet
Size

(bytes)

% Maximum
Effective Data

Bandwidth

Percenta
Physical

(unidirectional)

ie Effective Data B
Interval

(unidirectional)

mdwidth
Logical

(unidirectional)
4 48.48% 32.32% 30.57% 28.40%
8 58.18% 44.76% 43.05% 40.85%
16 64.65% 55.41% 54.08% 52.32%
32 68.45% 62.90% 62.04% 60.86%
64 70.52% 67.46% 66.96% 66.26%
128 71.61% 69.99% 69.72% 69.34%
252 72.15% 71.31% 71.17% 70.97%

The following tables contain the observed results of an unloaded network with

logical addressed packets for multicast connections, for all ranges of target addresses.

Packet size = 4 (bytes)
Target Packet duration Data bandwidth % Effective data
outputs (seconds) (bits per second) bandwidth

1 2.70E-6 11.83E+6 28.40%
2 2.74E-6 11.70E+6 28.07%
3 2.77 E-6 11.56E+6 27.75%
4 2.80E-6 11.43E+6 27.43%
5 2.83E-6 11.30E+6 27.12%
6 2.86 E-6 11.17E+6 26.82%
7 2.90E-6 11.04E+6 26.50%

Packet size = 8 (bytes)
Target Packet Duration Data bandwidth % Effective
outputs (bits per second) (bits per second) data bandwidth

1 3.76E-6 17.02E+6 40.85%
2 3.79E-6 16.88E+6 40.51%
3 3.82 E-6 16.74E+6 40.17%
4 3.86 E-6 16.60E+6 39.83%
5 3.89E-6 16.46E+6 39.51%
6 3.92 E-6 16.33E+6 39.18%
7 3.95E-6 16.19E+6 38.87%

Packet size = 16 (bytes)
Target Packet duration Data bandwidth % Effective
outputs (seconds) (bits per second) data bandwidth

1 5.87 E-6 21.80E+6 52.32%
2 5.90E-6 21.68E+6 52.03%
3 5.94 E-6 21.56E+6 51.75%
4 5.97E-6 21.45E+6 51.47%
5 6.00E-6 21.33E+6 51.20%
6 6.03 E-6 21.22E+6 50.93%
7 6.06E-6 21.11 E+6 50.66%

c - 2

Appendix C : NTR-FTM08 Performance Results

Packet size = 32 (bytes)
Target Packet duration Data bandwidth % Effective
outputs (seconds) (seconds) data bandwidth

1 10.10E-6 25.36E+6 60.86%
2 10.13E-6 25.28E+6 60.66%
3 10.16E-6 25.20E+6 60.47%
4 10.19E-6 25.12E+6 60.28%
5 10.22E-6 25.04E+6 60.09%
6 10.26E-6 24.96E+6 59.91%
7 10.29E-6 24.88E+6 59.71%

Packet size = 64 (bytes)
Target Packet duration Data bandwidth % Effective
outputs (seconds) (bits per second) data bandwidth

1 18.54E-6 27.61 E+6 66.26%
2 18.58E-6 27.56E+6 66.15%
3 18.61 E-6 27.52E+6 66.04%
4 18.64E-6 27.47E+6 65.92%
5 18.67E-6 27.42E+6 65.81%
6 18.70E-6 27.37E+6 65.70%
7 18.74E-6 27.33E+6 65.58%

Packet size = 128 (bytes)
Target Packet duration Data bandwidth % Effective
outputs (seconds) (bits per second) data bandwidth

1 35.44E-6 28.89E+6 69.34%
2 35.47E-6 28.87E+6 69.28%
3 35.50E-6 28.84E+6 69.22%
4 35.54E-6 28.82E+6 69.16%
5 35.57E-6 28.79E+6 69.10%
6 35.60E-6 28.76E+6 69.03%
7 35.63E-6 28.74E+6 68.97%

Packet size = 252 (bytes)
Target Packet duration Data bandwidth % Effective
outputs (seconds) (bits per second) data bandwidth

1 68.18E-6 29.57E+6 70.97%
2 68.21 E-6 29.56E+6 70.93%
3 68.24E-6 29.54E+6 70.90%
4 68.27E-6 29.53E+6 70.87%
5 68.30E-6 29.52E+6 70.84%
6 68.34E-6 29.50E+6 70.80%
7 68.37E-6 29.49E+6 70.77%

C-3

Appendix C : NTR-FTM08 Performance Results

Hardware based unloaded network
The following operational parameters were used in the both hardware tests on the

unloaded router switch.

Bit rate 32.00E+6
Packet overhead 2
Bit per token 11
Data bits per token 8

Sampling Clock period 20.08E-9
Core clock period 33.33E-9

Unidirectional
The following tables contain the observed results for physical, interval, and logical

addressed packets. The interval and logical addressed packets did not strip the header.

Packet Size
Calculated

minimum packet
Time (seconds)

Measu
Physical

(unidirectional)

red Packet Time (se
Interval

(unidirectional)

conds)
Logical

(unidirectional)
4 2.063E-6 2.970E-6 3.170E-6 3.350E-6
8 3.438E-6 4.320E-6 4.540E-6 4.740E-6
16 6.188E-6 7.080E-6 7.280E-6 7.470E-6
32 11.688E-6 12.560E-6 12.790E-6 12.980E-6
64 22.688E-6 23.570E-6 23.780E-6 24.000E-6
128 44.688E-6 45.570E-6 45.790E-6 46.000E-6

Packet Size
Maximum
Bandwidth

(bits per second)

Effective L:
Physical

(unidirectional)

nk Bandwidth (bits
Interval

(unidirectional)

per second)
Logical

(unidirectional)
4 15.515E+6 10.774E+6 10.095E+6 9.552E+6
8 18.618E+6 14.815E+6 14.097E+6 13.502E+6
16 20.687E+6 18.079E+6 17.582E+6 17.135E+6
32 21.904E+6 20.382E+6 20.016E+6 19.723E+6
64 22.567E+6 21.723E+6 21.531 E+6 21.333E+6
128 22.915E+6 22.471 E+6 22.363E+6 22.261 E+6

Packet Size Maximum
Bandwidth

Percenta
Physical

(unidirectional)

®e Effective Link Bi
Interval

(unidirectional)

mdwidth
Logical

(unidirectional)
4 48.48% 33.67% 31.55% 29.85%
8 58.18% 46.30% 44.05% 42.19%
16 64.65% 56.50% 54.95% 53.55%
32 68.45% 63.69% 62.55% 61.63%
64 70.52% 67.88% 67.28% 66.67%
128 71.61% 70.22% 69.88% 69.57%

C-4

Appendix C : NTR-FTM08 Performance Results

Bi-directional
The following tables contain the observed results for physical, interval, and logical

addressed packets under bi-directional transfer conditions. The interval and logical

addressed packets did not strip the header.

Packet Size
Calculated

minimum packet
time (seconds)

Measu
Physical

(bi-directional)

red Packet Time (se
Interval

(bi-directional)

conds)
Logical

(bi-directional)
4 2.063E-6 2.970E-6 3.160 E-6 3.370E-6
8 3.438E-6 4.320E-6 4.540E-6 4.740E-6
16 6.188E-6 7.080E-6 7.290E-6 7.480E-6
32 11.688E-6 12.560E-6 12.780E-6 12.980E-6
64 22.688E-6 23.570E-6 23.800E-6 24.000E-6
128 44.688E-6 45.570E-6 45.800E-6 45.990E-6

Packet Size
Maximum
Bandwidth

(bits per second)

Effective L:
Physical

(bi-directional)

nk Bandwidth (bits
Interval

(bi-directional)

per second)
Logical

(bi-directional)
4 15.515E+6 10.774E+6 10.127E+6 9.496E+6
8 18.618E+6 14.815E+6 14.097E+6 13.502E+6
16 20.687E+6 18.079E+6 17.558E+6 17.112E+6
32 21.904E+6 20.382E+6 20.031 E+6 19.723E+6
64 22.567E+6 21.723E+6 21.513E+6 21.333E+6
128 22.915E+6 22.471 E+6 22.358E+6 22.266E+6

Packet Size Maximum
Bandwidth

Percenta
Physical

(bi-directional)

IQ Effective Link B
Interval

(bi-directional)

mdwidth
Logical

(bi-directional)
4 48.48% 33.67% 31.65% 29.67%
8 58.18% 46.30% 44.05% 42.19%
16 64.65% 56.50% 54.87% 53.48%
32 68.45% 63.69% 62.60% 61.63%
64 70.52% 67.88% 67.23% 66.67%
128 71.61% 70.22% 69.87% 69.58%

Appendix C : NTR-FTM08 Performance Results

Simulation based synthetically loaded network
The following tables contain the observed results for physical, interval, and logical

addressed packets for a synthetically loaded router switch. The interval and logical

addressed packets did not strip the header.

Physical - 16 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 4.35E-3 364.14E+6 235.41 E+6 97.11%
90 4.82E-3 328.35E+6 212.27E+6 87.56%
80 5.47E-3 289.82E+6 187.36E+6 77.29%
70 6.23E-3 254.36E+6 164.43E+6 67.83%
60 7.24E-3 218.68E+6 141.37E+6 58.31%
50 8.59E-3 184.32E+6 119.16E+6 49.15%
40 10.73E-3 147.66E+6 95.46E+6 39.38%
30 14.28E-3 110.89E+6 71.69E+6 29.57%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 12.737E-6 7.335E-3 215.94E+6 139.60E+6
90 12.756E-6 7.295E-3 217.14E+6 140.38E+6
80 12.638E-6 7.292E-3 217.23E+6 140.43E+6
70 12.767E-6 7.398E-3 214.11 E+6 138.42E+6
60 12.145E-6 7.279E-3 217.61 E+6 140.68E+6
50 8.057E-6 8.566E-3 184.93E+6 119.55E+6
40 6.919E-6 10.726E-3 147.68E+6 95.47E+6
30 6.387E-6 14.282E-3 110.91E+6 71.70E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 3.015 64.78% 57.58%
90 3.020 65.14% 57.90%
80 2.992 65.17% 57.93%
70 3.023 64.23% 57.10%
60 2.875 65.28% 58.03%
50 1.907 55.48% 49.31%
40 1.638 44.31% 39.38%
30 1.512 33.27% 29.58%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 4.224E-6

Number of messages 8000
Packet overhead 2
Tokens per message 16
Bit per token 11
Number of bits per test 1584000
Data bits per test 1024000

C-6

Appendix C : NTR-FTM08 Performance Results

Physical - 32 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 8.65 E-3 345.95E+6 236.80E+6 97.68%
90 9.61 E-3 311.36E+6 213.12E+6 87.91%
80 10.71 E-3 279.43E+6 191.27E+6 78.90%
70 12.22E-3 244.78E+6 167.55E+6 69.12%
60 14.24E-3 210.05E+6 143.78E+6 59.31%
50 17.07E-3 175.31E+6 120.00E+6 49.50%
40 21.31 E-3 140.40E+6 96.10E+6 39.64%
30 28.38E-3 105.41 E+6 72.15E+6 29.76%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 16.938E-6 14.100E-3 212.20E+6 145.25E+6
90 16.743E-6 13.857E-3 215.92E+6 147.80E+6
80 16.905E-6 14.256E-3 209.88E+6 143.66E+6
70 16.922E-6 14.024E-3 213.34E+6 146.03E+6
60 16.404E-6 14.271 E-3 209.66E+6 143.51 E+6
50 13.600E-6 17.073E-3 175.25E+6 119.96E+6
40 12.106E-6 21.317E-3 140.36E+6 96.08E+6
30 11.302E-6 28.390E-3 105.39E+6 72.14E+6

Workload
<%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 2.005 63.66% 59.91%
90 1.982 64.78% 60.97%
80 2.001 62.96% 59.26%
70 2.003 64.00% 60.24%
60 1.942 62.90% 59.20%
50 1.610 52.57% 49.48%
40 1.433 42.11% 39.63%
30 1.338 31.62% 29.76%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 8.448E-6

Number of messages 8000
Packet overhead 2
Tokens per message 32
Bit per token 11
Number of bits per test 2992000
Data bits per test 2048000

Appendix C : NTR-FTM08 Performance Results

Physical - 64 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 17.20E-3 337.62E+6 238.10E+6 98.22%
90 19.08E-3 304.34E+6 214.63E+6 88.54%
80 21.38E-3 271.69E+6 191.60E+6 79.04%
70 24.40E-3 238.03E+6 167.87E+6 69.25%
60 28.66E-3 202.67E+6 142.93E+6 58.96%
50 34.30E-3 169.33E+6 119.42E+6 49.26%
40 42.61 E-3 136.32E+6 96.14E+6 39.66%
30 56.71 E-3 102.41 E+6 72.22E+6 29.79%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 29.951 E-6 27.215E-3 213.41 E+6 150.50E+6
90 30.099E-6 27.368E-3 212.22E+6 149.67E+6
80 29.966E-6 27.504E-3 211.17E+6 148.92E+6
70 29.745E-6 27.391 E-3 212.04E+6 149.54E+6
60 28.739E-6 28.659E-3 202.66E+6 142.92E+6
50 24.951 E-6 34.301 E-3 169.32E+6 119.41 E+6
40 22.802E-6 42.607E-3 136.31E+6 96.13E+6
30 21.248E-6 56.713E-3 102.41 E+6 72.22E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 1.773 64.02% 62.08%
90 1.781 63.67% 61.74%
80 1.774 63.35% 61.43%
70 1.760 63.61% 61.68%
60 1.701 60.80% 58.96%
50 1.477 50.80% 49.26%
40 1.350 40.89% 39.66%
30 1.258 30.72% 29.79%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 16.896E-6

Number of messages 8000
Packet overhead 2
Tokens per message 128
Bit per token 11
Number of bits per test 5808000
Data bits per test 4096000

C-8

Appendix C : NTR-FTM08 Performance Results

Physical - 128 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 34.27E-3 333.84E+6 239.06E+6 98.61%
90 38.36E-3 298.24E+6 213.56E+6 88.10%
80 43.05E-3 265.71 E+6 190.27E+6 78.49%
70 49.08E-3 233.08E+6 166.90E+6 68.85%
60 57.13E-3 200.24E+6 143.39E+6 59.15%
50 68.40E-3 167.25E+6 119.77E+6 49.40%
40 85.49E-3 133.82E+6 95.82E+6 39.53%
30 113.66E-3 100.65E+6 72.07E+6 29.73%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 56.743E-6 54.668E-3 209.26E+6 149.85E+6
90 56.137E-6 53.706E-3 213.01 E+6 152.53E+6
80 55.907E-6 53.432E-3 214.10E+6 153.32E+6
70 56.492E-6 54.362E-3 210.44E+6 150.69E+6
60 53.530E-6 57.133E-3 200.23E+6 143.38E+6
50 46.934E-6 68.402E-3 167.25E+6 119.76E+6
40 43.348E-6 85.493E-3 133.81 E+6 95.82E+6
30 40.753E-6 113.664E-3 100.65E+6 72.07E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 1.679 62.78% 61.81%
90 1.661 63.90% 62.92%
80 1.654 64.23% 63.24%
70 1.672 63.13% 62.16%
60 1.584 60.07% 59.15%
50 1.389 50.17% 49.40%
40 1.283 40.14% 39.53%
30 1.206 30.19% 29.73%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 33.792E-6

Number of messages 8000
Packet overhead 2
Tokens per message 128
Bit per token 11
Number of bits per test 11440000
Data bits per test 8192000

C-9

Appendix C : NTR-FTM08 Performance Results

Interval -16 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 4.34E-3 364.64E+6 235.73E+6 97.24%
90 4.83E-3 327.84E+6 211.93E+6 87.42%
80 5.42E-3 292.01 E+6 188.78E+6 77.87%
70 6.20E-3 255.31 E+6 165.05E+6 68.08%
60 7.22E-3 219.38E+6 141.82E+6 58.50%
50 8.64E-3 183.27E+6 118.48E+6 48.87%
40 10.70E-3 148.08E+6 95.73E+6 39.49%
30 14.25E-3 111.13E+6 71.84E+6 29.64%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 13.596E-6 7.668E-3 206.58E+6 133.55E+6
90 13.414E-6 7.649E-3 207.08E+6 133.87E+6
80 13.567E-6 7.697E-3 205.78E+6 133.03E+6
70 13.565E-6 7.679E-3 206.27E+6 133.35E+6
60 13.499E-6 7.677E-3 206.34E+6 133.39E+6
50 8.967E-6 8.644E-3 183.24E+6 118.46E+6
40 7.188E-6 10.698E-3 148.06E+6 95.72E+6
30 6.663E-6 14.255E-3 111.12E+6 71.84E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 3.219 61.98% 55.09%
90 3.176 62.12% 55.22%
80 3.212 61.73% 54.88%
70 3.211 61.88% 55.00%
60 3.196 61.90% 55.02%
50 2.123 54.97% 48.86%
40 1.702 44.42% 39.48%
30 1.577 33.34% 29.63%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 4.224E-6

Number of messages 8000
Packet overhead 2
Tokens per message 16
Bit per token 11
Number of bits per test 1584000
Data bits per test 1024000

C-10

Appendix C : NTR-FTM08 Performance Results

Interval - 32 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 8.73E-3 342.85E+6 234.68E+6 96.81%
90 9.67E-3 309.42E+6 211.79E+6 87.36%
80 10.78E-3 277.44E+6 189.90E+6 78.34%
70 12.23E-3 244.58E+6 167.41 E+6 69.06%
60 14.22E-3 210.45E+6 144.05E+6 59.42%
50 17.09E-3 175.07E+6 119.84E+6 49.43%
40 21.33E-3 140.25E+6 96.00E+6 39.60%
30 28.41 E-3 105.33E+6 72.10E+6 29.74%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 17.301 E-6 14.341 E-3 208.64E+6 142.81 E+6
90 17.257E-6 14.320E-3 208.94E+6 143.02E+6
80 17.304E-6 14.374E-3 208.16E+6 142.48E+6
70 17.210E-6 14.207E-3 210.60E+6 144.15E+6
60 17.255E-6 14.441 E-3 207.19E+6 141.82E+6
50 14.435E-6 17.092E-3 175.05E+6 119.82E+6
40 12.571 E-6 21.335E-3 140.24E+6 95.99E+6
30 11.633E-6 28.408E-3 105.32E+6 72.09E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 2.048 62.59% 58.91%
90 2.043 62.68% 59.00%
80 2.048 62.45% 58.77%
70 2.037 63.18% 59.46%
60 2.042 62.16% 58.50%
50 1.709 52.52% 49.43%
40 1.488 42.07% 39.60%
30 1.377 31.60% 29.74%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 8.448E-6

Number of messages 8000
Packet overhead 2
Tokens per message 32
Bit per token 11
Number of bits per test 2992000
Data bits per test 2048000

C-ll

Appendix C : NTR-FTM08 Performance Results

Interval - 64 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 17.09E-3 339.89E+6 239.70E+6 98.88%
90 19.17E-3 302.93E+6 213.64E+6 88.13%
80 21.52E-3 269.84E+6 190.30E+6 78.50%
70 24.55E-3 236.61 E+6 166.87E+6 68.83%
60 28.73E-3 202.14E+6 142.56E+6 58.80%
50 34.37E-3 168.96E+6 119.16E+6 49.15%
40 42.84E-3 135.58E+6 95.61 E+6 39.44%
30 56.53E-3 102.74E+6 72.46E+6 29.89%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 30.614E-6 27.772E-3 209.13E+6 147.49E+6
90 30.191 E-6 27.475E-3 211.39E+6 149.08E+6
80 30.504E-6 27.774E-3 209.12E+6 147.48E+6
70 30.397E-6 27.585E-3 210.55E+6 148.48E+6
60 29.462E-6 28.734E-3 202.13E+6 142.55E+6
50 25.152E-6 34.376E-3 168.95E+6 119.15E+6
40 22.840E-6 42.840E-3 135.57E+6 95.61 E+6
30 21.456E-6 56.532E-3 102.74E+6 72.46E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 1.812 62.74% 60.84%
90 1.787 63.42% 61.50%
80 1.805 62.74% 60.83%
70 1.799 63.16% 61.25%
60 1.744 60.64% 58.80%
50 1.489 50.69% 49.15%
40 1.352 40.67% 39.44%
30 1.270 30.82% 29.89%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 16.896E-6

Number of messages 8000
Packet overhead 2
Tokens per message 128
Bit per token 11
Number of bits per test 5808000
Data bits per test 4096000

Appendix C : NTR-FTM08 Performance Results

Interval - 128 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 33.92E-3 337.23E+6 241.49E+6 99.61%
90 37.68E-3 303.61 E+6 217.41E+6 89.68%
80 42.40E-3 269.79E+6 193.19E+6 79.69%
70 48.44E-3 236.17E+6 169.12E+6 69.76%
60 57.44E-3 199.16E+6 142.62E+6 58.83%
50 68.71 E-3 166.50E+6 119.23E+6 49.18%
40 85.61 E-3 133.63E+6 95.69E+6 39.47%
30 113.15E-3 101.10E+6 72.40E+6 29.86%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 57.054E-6 54.439E-3 210.14E+6 150.48E+6
90 57.061 E-6 54.667E-3 209.27E+6 149.85E+6
80 56.347E-6 54.003E-3 211.84E+6 151.69E+6
70 56.680E-6 54.215E-3 211.01E+6 151.10E+6
60 53.810E-6 57.442E-3 199.16E+6 142.61 E+6
50 48.109E-6 68.71 OE-3 166.50E+6 119.23E+6
40 44.151 E-6 85.613E-3 133.62E+6 95.69E+6
30 40.976E-6 113.152E-3 101.10E+6 72.40E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 1.688 63.04% 62.07%
90 1.689 62.78% 61.81%
80 1.667 63.55% 62.57%
70 1.677 63.30% 62.33%
60 1.592 59.75% 58.83%
50 1.424 49.95% 49.18%
40 1.307 40.09% 39.47%
30 1.213 30.33% 29.86%

Number of messages 8000
Packet overhead 2
Tokens per message 128
Bit per token 11
Number of bits per test 11440000
Data bits per test 8192000

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 33.792E-6

C-13

Appendix C : NTR-FTM08 Performance Results I

Logical - 16 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 4.34E-3 364.99E+6 235.96E+6 97.33%
90 4.81 E-3 329.04E+6 212.71E+6 87.74%
80 5.39 E-3 293.77E+6 189.91 E+6 78.34%
70 6.15E-3 257.39E+6 166.39E+6 68.64%
60 7.17E-3 220.92E+6 142.81 E+6 58.91%
50 8.59E-3 184.34E+6 119.17E+6 49.16%
40 10.73E-3 147.62E+6 95.43E+6 39.37%
30 14.29E-3 110.87E+6 71.67E+6 29.57%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 14.222E-6 7.906E-3 200.34E+6 129.51E+6
90 14.219E-6 7.870E-3 201.26E+6 130.11 E+6
80 14.327E-6 7.994E-3 198.15E+6 128.10E+6
70 14.363E-6 7.923E-3 199.92E+6 129.24E+6
60 14.108E-6 7.965E-3 198.86E+6 128.56E+6
50 9.288E-6 8.732E-3 181.41 E+6 117.27E+6
40 7.441 E-6 10.865E-3 145.78E+6 94.24E+6
30 6.883E-6 14.297E-3 110.79E+6 71.62E+6

*

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 4.224E-6

Number of messages 8000
Packet overhead 2
Tokens per message 16
Bit per token 11
Number of bits per test 1584000
Data bits per test 1024000

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 3.367 60.10% 53.42%
90 3.366 60.38% 53.67%
80 3.392 59.45% 52.84%
70 3.400 59.98% 53.31%
60 3.340 59.66% 53.03%
50 2.199 54.42% 48.38%
40 1.762 43.73% 38.88%
30 1.630 33.24% 29.55%

C-14

.LM
Ji

C
JZ

tf-

iA
v,

;1;;
...-

?V

■ t
xi

L:
.

Appendix C : NTR-FTM08 Performance Results

Logical - 32 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 8.55E-3 349.96E+6 239.55E+6 98.81%
90 9.60E-3 311.51E+6 213.22E+6 87.95%
80 10.78E-3 277.45E+6 189.91 E+6 78.34%
70 12.23E-3 244.68E+6 167.48E+6 69.09%
60 14.25E-3 209.98E+6 143.73E+6 59.29%
50 17.08E-3 175.19E+6 119.92E+6 49.47%
40 21.29E-3 140.54E+6 96.20E+6 39.68%
30 28.36E-3 105.49E+6 72.21 E+6 29.79%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 17.819E-6 14.535E-3 205.85E+6 140.90E+6
90 17.820E-6 14.630E-3 204.51 E+6 139.98E+6
80 17.852E-6 14.600E-3 204.94E+6 140.28E+6
70 17 757E 6 14.565E-3 205.43E+6 140.61 E+6
60 17.741 E-6 14.560E-3 205.49E+6 140.66E+6
50 14.420E-6 17.080E-3 175.17E+6 119.91 E+6
40 12.810E-6 21.291 E-3 140.53E+6 96.19E+6
30 11.812E-6 28.364E-3 105.49E+6 72.20E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

{%)

Observed data
throughput

(%)
100 2.109 61.75% 58.12%
90 2.109 61.35% 57.74%
80 2.113 61.48% 57.86%
70 2.102 61.63% 58.00%
60 2.100 61.65% 58.02%
50 1.707 52.55% 49.46%
40 1.516 42.16% 39.68%
30 1.398 31.65% 29.78%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 8.448E-6

Number of messages 8000
Packet overhead 2
Tokens per message 32
Bit per token 11
Number of bits per test 2992000
Data bits per test 2048000

e-15

Appendix C : NTR-FTM08 Performance Results

Logical - 64 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 17.40E-3 333.79E+6 235.40E+6 97.10%
90 19.29E-3 301.04E+6 212.30E+6 87.57%
80 21.34E-3 272.11 E+6 191.90E+6 79.16%
70 24.37E-3 238.36E+6 168.10E+6 69.34%
60 28.40E-3 204.53E+6 144.24E+6 59.50%
50 33.90E-3 171.33E+6 120.83E+6 49.84%
40 42.36E-3 137.10E+6 96.69E+6 39.88%
30 56.47E-3 102.85E+6 72.54E+6 29.92%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 31.172E-6 28.558E-3 203.38E+6 143.43E+6
90 31.231 E-6 28.422E-3 204.35E+6 144.11 E+6
80 31.107E-6 28.718E-3 202.24E+6 142.63E+6
70 30.952E-6 28.123E-3 206.52E+6 145.65E+6
60 30.132E-6 28.399E-3 204.51 E+6 144.23E+6
50 25.860E-6 33.901 E-3 171.32E+6 120.82E+6
40 23.240E-6 42.365E-3 137.10E+6 96.68E+6
30 21.658E-6 56.470E-3 102.85E+6 72.53E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 1.845 61.01% 59.16%
90 1.848 61.30% 59.45%
80 1.841 60.67% 58.83%
70 1.832 61.96% 60.08%
60 1.783 61.35% 59.50%
50 1.531 51.40% 49.84%
40 1.375 41.13% 39.88%
30 1.282 30.86% 29.92%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 16.896E-6

Number of messages 8000
Packet overhead 2
Tokens per message 128
Bit per token 11
Number of bits per test 5808000
Data bits per test 4096000

C-16

Appendix C : NTR-FTM08 Performance Results

Logical - 128 bytes per packet

Workload
(%)

Required test
duration

(seconds)

Required raw
throughput

(bits per second)

Required data
throughput

(bits per second)

Required data
throughput

(%)
100 34.58E-3 330.86E+6 236.92E+6 97.73%
90 38.33E-3 298.44E+6 213.71 E+6 88.15%
80 43.21 E-3 264.75E+6 189.59E+6 78.20%
70 49.25E-3 232.30E+6 166.35E+6 68.62%
60 57.30E-3 199.67E+6 142.98E+6 58.98%
50 68.96E-3 165.88E+6 118.79E+6 49.00%
40 85.87E-3 133.23E+6 95.40E+6 39.35%
30 114.04E-3 100.32E+6 71.84E+6 29.63%

Workload
(%)

Average
packet time
(seconds)

Observed test
duration

(seconds)

Observed
throughput

(bits per second)

Observed data
throughput

(bits per second)
100 57.452E-6 54.814E-3 208.71 E+6 149.45E+6
90 57.591 E-6 55.329E-3 206.76E+6 148.06E+6
80 57.060E-6 54.871 E-3 208.49E+6 149.30E+6
70 57.258E-6 55.502E-3 206.12E+6 147.60E+6
60 54.311 E-6 57.298E-3 199.66E+6 142.97E+6
50 47.575E-6 68.966E-3 165.88E+6 118.78E+6
40 44.045E-6 85.869E-3 133.23E+6 95.40E+6
30 40.857E-6 114.040E-3 100.32E+6 71.83E+6

Workload
(%)

Normalised
average packet
time (seconds)

Observed
throughput

(%)

Observed data
throughput

(%)
100 1.700 62.61% 61.65%
90 1.704 62.03% 61.08%
80 1.689 62.55% 61.58%
70 1.694 61.84% 60.88%
60 1.607 59.90% 58.98%
50 1.408 49.76% 49.00%
40 1.303 39.97% 39.35%
30 1.209 30.09% 29.63%

Sample clock period 16.00E-9
Core clock period 32.00E-9
Number of links 8
System throughput 333.33E+6
System data throughput 242.42E+6
Minimum Packet Time 33.792E-6

Number of messages 8000
Packet overhead 2
Tokens per message 128
Bit per token 11
Number of bits per test 11440000
Data bits per test 8192000

Appendix D : Analysis Utilities

Appendix D : Analysis Utilities
This appendix contains the source code for the test vector generation program and

results analysis program, which were used in the synthetic load simulations.

Program listing for poisson.cpp
/ *
Filename : poisson.cpp
Author : Robin Hotchkiss
Date : Autumn 1999
Version : 1.00
Description :

Generates 6 files of test vectors, each at different injection rates.
30,40,50,60,70,80 (approximate)

70% of messages are sent within 30% of the injection rate.
* /
#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <time.h>
#include <math.h>

#define NUM_LINKS 8
ftdefine DATA_PER_MSG 16
#define ROUTING_OVERHEAD 2
#define TOKENS_PER_MSG DATA_PER_MSG+ROUTING_OVERHEAD

ttdefine BITS_PER_TOKEN 11
#define CORECLK__MULTIPLIER 0.75
#define CYCLES_PER_MSG (BITS_PER_TOKEN*TOKENS_PER_MSG)*CORECLK_MULTIPLIER

#define MSGS_PER_LINK 1000

void main(int argc, char *argv[j)
{
ofstream outFile_of;
time_t t;
char filename_c255[255];
int msgsPerLink_i = MSGS_PER_LINK;
int numLinks_i = NUM_LINKS;
int randomVal_i;
int requiredWorkload_i;
int sequenceID_il6[16];
int lastDest_i;
int destLink__i;
int destSrcData_i;
int msgID_i;
double variance_d;
double repeatProb_d;
double prob_d;
double scalingFactor_d;
double percentVariance_d = 0.30;
double percentMsg_d = (1 - 0.70);
double intervalCentre_d;
unsigned long maxTxTime^ul = 0;
unsigned long minTxTime_ul = 32000;
long double transmissionTime_ld;
int addrMode_i = 0;

//addrMode_i = 0; // physical
//addrMode_i = 1; // interval
addrMode__i = 2; // logical

// create for 30, 40, 50, 60, and 70
for(requiredWorkload_i =■ 30; requiredWorkload_i <= 100; requiredWorkload__i+=10) {

// zero max and min watches
maxTxTime_ul = 0;
minTxTime_ul = 32000;

D-l

". \n"

time.

Appendix D : Analysis Utilities

// calculate the average interval point
intervalCentre_d = (l/((double) requiredWorkload_i));
intervalCentre_d *= CYCLES_PER_MSG;
intervalCentre_d *= 100;

// scaling factor give 70% of messages within +/- 30% variance of required msg time
scalingFactor_d = (-1) * (log(percentMsg_d)/ (percentVariance_d*CYCLES_PER_MSG));

// reset the seed for the random generator
srand((unsigned) time(&t));

// generate output filename and open file
sprintf(filename_c255, "p_vt%d.txt", requiredWorkload_i);
outFile_of.open(filename_c255);
if(outFile_of.fail()){

cout « "Couldn't generate output file\n";
exit (0);

}
// include vector file information
outFile_of « "— test vectors at " « requiredWorkload_i « "% injection rate.\n";
outFile_of « "— poisson load of " « msgsPerLink_i*numLinks_i « " messages.\n";
outFile_of « " « numLinks_i « " Links. Bytes/msg = " « TOKENS_PER_MSG «

outFile_of « "— Scaling factor of " « (1 - percentMsg_d) * 100 « "% of msgs\n";
outFile_of « within +/-" << percentVariance_d*100 « "% variance of required msg
\n";
i f(addrMode_i == 0){

outFile_of « "— Addressing mode = physical\n";
>
else if(addrMode_i == 2){

outFile_of « "— Addressing mode = logical\n";
}
else{

outFile_of « "— Addressing mode = unicast\n";
}

// for each source, create a set of messages
for(int src_i = 0; src_i < numLinks_i; src_i++){

// reset the sequence ID
for(int index = 0; index < 16; index++){

sequenceID_il6[index] = 0;
}
// reset the start transmission time
transmissionTime_ld = 0.0;

// preset last dest
randomVal__i = rand();// generates a number between 0 & 32767
prob_d = (((double) randomVal_i) / 32768.0) *numLinks__i;
lastDest_i = (int)prob_d;

// create the n messages
for (int msgCnt_i = 0; msgCnt_i < msgsPerLink__i; msgCnt_i++) {

// generate the message interval time
randomVal_i = rand();
prob_d = (((double) randomVal_i+l) / 32768.0)*2;
if(prob_d <= 1){

variance_d = (-1) * (log(prob_d) / scalingFactor_d);
}
else if(prob_d <= 2){

variance_d = (log((prob_d-l)) / scalingFactor_d);
}
else{

cout « "\nError : Invalid probability!\n";
exit(0);

}
// update the message transmission time
transmissionTime_ld += (intervalCentre_d + variance_d);

// generate the destination - 30% chance of repeated destination
randomVal_i = rand(); // generates a number between 0 & 32767
repeatProb_d = (((double) randomVal_i) / 32768.0);
do{

randomVal_i = rand(); // generates a number between 0 & 32767
prob_d = (((double) randomVal_i) / 32768.0)*numLinks_i;

D-2

Appendix D : Analysis Utilities

src i)) ;

destLink_i = (int)prob_d;
}while((destLink_i == lastDest_i) && (repeatProb_d > 0.3) (destLink i -=

// format the first packet byte
destSrcData_i = src__i « 4;
destSrcData_i = destSrcData_i + destLink_i;

// format the second packet byte
msgID_i = src_i « 4;
msgID_i = msgID_i + sequenceID_il6[destLink_i];

I I modify the msgID for the next
if(sequenceID_il6[destLink_i] >= 15){

sequenceID_il6[destLink_i] = 0;
}
else {

sequenceID__il6 [destLink_i]++;
}
// update last destination
lastDest i = destLink i;

// write the message out to file
outFile of « src =" « src i;

// time of

if{ addrMode_i ==
outFile_of «
outFile_of «
outFile_of «

}
else if(addrMode

outFile_of «
outFile_of «

}
else{ // unicast

outFile_of «
outFile_of «

)
outFile_of «
outFile_of «
outFile_of «
tx

0){ // physical
DHDR="
XHDR="
size^"

= = 2) {
MHDR="
size="

UHDR="
size="

destLink__i;
destSrcData_i;
(DATA PER MSG'- 1)

// logical
« destLink_i;

DATA PER MSG;«

destLink_i;
DATA PER MSG;

valu=" « msgID_i;
EoPKT";
time=" « ((unsigned long)

// message source

I I routing header
// src-dest ID

I I #bytes in msg

I I routing header
// tbytes in msg

// routing header
// tbytes in msg

// byte value
// end delimeter

transmissionTime Id) « "\n'

// find earliest transmission
if((unsigned long) transmissionTime_ld < minTxTime__ul) {

minTxTime_ul = (unsigned long) transmissionTime_ld;
}

}
// find latest transmission
if((unsigned long) transmissionTime_ld > maxTxTime_ul){

maxTxTime_ul = (unsigned long) transmissionTime_ld;
}

}
outFile_of « "endData\n”;
outFile_of « "— First tx time = " « minTxTime__ul « " cycles. \n";
outFile_of « "— Last tx time = " « maxTxTime_ul « " cycles.\n\n";

cout « "Closing " « filename_c255 « "\n";
outFile_of.close() ;

}
cout « "\nProcess complete.\n";

}

D-3

Appendix D : Analysis Utilities

Program listing for msglat.cpp
/ *
Filename : msglat.cpp
Author : Robin Hotchkiss
Date : Autumn 1999
Version : 1.02
Description :

Reads in the test results from the VHDL testbench
and calculates the average message time.
It also presents the shortest and longest
message time, as well as the duration of the
test.

Modifications :
8/10/98 : included the time based matching

16/12/99 modified to work with new results file from tstbench
tx file format = destID seqID txCount pktCount
rx file format = srcID seqID rxCount pktCount

* /
#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define STARTFILE "txLink"

#define ENDFILE "rxLink"

#define MAX_LINKS 16
#define SRCLINKS 16
#define C PERIOD 24

int main(int argc, char *argv[])
{
ifstream rxFileHandle_if;
ifstream txFileHandle_if;
ofstream resFileHandle_of;
char buffer_s255[255];
int fileMode_i;
int numLinks_i;
int clkPeriod_i;
int paramlndex_i;
int destMsgID_i;
int destMsgSeq_i;
int txMsgCnt_i;
int srcMsgID_i;
int srcMsgSeq_i;
int rxMsgCnt_i;
int rxPktCnt_i;
int txPktCnt_i;
int byteStrip_i;
int strSize_i;
long maxTxCnt__l;
long minTxCnt_l;
unsigned long firstTx_ul;
unsigned long lastRx_ul;
long transmissionCnt__l;
unsigned long msgCnt_ul;
unsigned long totalTxCnt_ul;
char txFilenameStem_s256[256];
char rxFilenameStem_s256[256];
char preEmpt_s8[8];

if(argc > 1){
numLinks_i = (-1);
sprintf(txFilenameStem_s25 6, "%s", "NULL");
sprintf(rxFilenameStem_s256, "%s", "NULL");
sprintf(preEmpt_s8, "%s", "NULL");
clkPeriod_i = (-1);
byteStrip_i = (-1);

D-4

<i.

Appendix D : Analysis Utilities

// parse the input parameters
for(paramlndex_i = 1; paramlndex_i < argc; paramlndex_i++){

// odd and even, all parameter have pre-empts
if((paramlndex_i % 2) > 0){ // I! paramlndex_i == 3 || paramlndex_i == 5){

// pre-empt
if(strcmp(argv[paramlndex_i], "-num_link") == 0) {

if(numLinks_i == (-1)){
sprintf(preEmpt_s8, "%s", "numlink");

}
else {

cout « "Invalid arguments\n\n";
paramlndex_i = argc +2;

}
}
else if< strcmp{ argv[paramlndex_i], "-tx") == 0){

if(strcmp(txFilenameStem_s256, "NULL") == 0){
sprintf(preEmpt_s8, "%s", "tx");

}
else{

cout « "Invalid arguments\n\n";
paramlndex_i = argc +2;

}
}
else if(strcmp(argv[paramlndex_i], "-rx") == 0){

if(strcmp(rxFilenameStem_s256, "NULL") == 0){
sprintf(preEmpt_s8, "%s", "rx");

}
else {

cout « "Invalid arguments\n\n";
paramlndex_i = argc +2;

}
}
else if(strcmp(argv[paramlndex_i], "-period") == 0){

if(clkPeriod_i == (— 1)){
sprintf(preEmpt_s8, "%s", "period");

}
else {

cout « "Invalid arguments\n\n";
paramlndex_i = argc +2;

}
}
else if{ strcmp{ argvf paramlndex_i], "-#byte_strip") == 0){

if(byteStrip_i == {-1)){
sprintf(preEmpt_s8, "%s", "s_bytes");

}
else {

cout « "Invalid arguments\n\n";
paramlndex_i = argc +2;

}
}
else {

cout « "Invalid argument. " « paramlndex_i « "\n";
paramlndex_i = argc +2;

}
}
else{
// actual parameter

if(strcmp(preEmpt_s8, "numlink") == 0){
numLinks_i = atoi(argv[paramlndex_i]);

}
else if(strcmp{ preEmpt_s8, "tx") == 0){

sprintf(txFilenameStem_s256, "%s", argv[paramlndex_i]);
}
else if(strcmp(preEmpt_s8, "rx") == 0){

sprintf(rxFilenameStem_s256, "%s", argv[paramlndex_i]);
}
else if(strcmp(preEmpt_s8, "period") == 0){

clkPeriod_i = atoi(argv[paramlndex_i]);
}
else if(strcmp(preEmpt_s8, "s_bytes") == 0){

byteStrip_i = atoi(argvt paramlndex_i]);
}
else{

cout « "Invalid argument. " « paramlndex_i « "\n";
paramlndex_i = argc +2;

}
sprintf(preEmpt_s8, "%s", "NULL");

D-5

Appendix D : Analysis Utilities

}
}
if((paramlndex_i == argc + 3)){

cout « "msglat [-num_link <# num links>] [-tx <file name>]\n";
cout « " [-rx <file name>] [-period <clk period>]\n";
cout « " [-#byte_strip <bytes removed by delivery>]\n";
cout << "Takes in the test vectors and end msg times and generates\n";
cout « "a single file with the message times.\n\n";

cout << "Default settings
cout « "
cout « "
cout « "
cout « "
exit(0);

number of links =
transmitted file
received file = ’
clock period = "

= " « SRCLINKS « "\n";
= " « STARTFILE « "?.txt\n";
1 « ENDFILE « "?.txt\n";
« C PERIOD « " ns\n";

bytes stripped = l\n'

"NULL") == 0){
"%s", STARTFILE);

"NULL") == 0){
"%s", ENDFILE);

}
else {

// check the parameters and fill in the blanks
if(numLinks_i == (-1)){

numLinks_i = SRCLINKS;
}
if(clkPeriod_i == (-!)){

clkPeriod_i = C_PERIOD;
}
if(byteStrip_i == (-1)){

byteStrip_i = 1;
}
if(strcmp(txFilenameStem_s256,

sprintf(txFilenameStem_s256,
}
if(strcmp(rxFilenameStem_s256,

sprintf(rxFilenameStem_s256,
}
cout « "Using parameters :\n";
cout « " Number of links = " « numLinks_i « " \n " ;
cout « " Transmitted file = " « txFilenameStem_s256 « "?.txt\n";
cout « " Received file = " « rxFilenameStem_s25 6 « "?.txt\n";
cout « " Clock period = " « clkPeriod_i « "ns\n";
cout « " bytes stripped = " « byteStrip_i « " \ n \ n " ;

}
}
else {

numLinks_i = SRCLINKS;
sprintf(txFilenameStem_s256, "%s'
sprintf(rxFilenameStem_s256, "%s’
clkPeriod_i = C_PERIOD;
byteStrip_i - 1;
cout «
cout «
cout «
cout «
cout «

STARTFILE);
ENDFILE);

cout «

Using default settings :\n";
number of links = " « numLinks_i « "\n";
transmitted file = " « txFilenameStem_s256 << "?.txt\n";
received file = " « rxFilenameStem_s256 « "?.txt\n";
clock period = " « clkPeriod i « "ns\n";

}
bytes stripped = " « byteStrip_i « "\n\n";

// parameters have been processed, now work with the data

maxTxCnt_l = 0;
minTxCnt_l = 3000000;
msgCnt_ul = 0;
lastRx_ul = 0;
firstTx_ul = 3000000;
totalTxCnt ul = 0;

resFileHandle_of.open("result.txt");
if(resFileHandle_of.fail()){

cout « "\n\nError : Couldn't open the results file";
exit (0);

}
fileMode_i = ios::nocreate|ios::out;
cout « "\nStarting processing\n";

for(int srcLink = 0; srcLink < numLinks_i; srcLink++){
// we have the src and dest ID. open each pair in order and search for matches
// out of sequence should flag errors
// cout « "Starting " « txFilenameStem_s256 « srcLink « ".txt : ";

Appendix D : Analysis Utilities

for(int destLink = 0; destLink < numLinks_i; destLink++){
// open the source and dest files
sprintf(buffer_s255, "%s%d.txt", txFilenameStem_s256, srcLink);
txFileHandle_if.open(buffer_s255, fileMode_i, 0);
iff txFileHandle_if.fail()){

cout « "\nFile 10 error, couldn't open " « buffer_s255;
cout « " at itteration " « destLink « "\n\n";
exit (0);

}
sprintf(buffer_s255, "%s%d.txt", rxFilenameStem_s256, destLink);
rxFileHandle_if.open(buffer_s255, fileMode_i, 0);
if{ rxFileHandle_if.fail()){

cout « "\nFile IO error, couldn't open " « buffer_s255;
cout « " at itteration " « srcLink « "\n\n";
exit (0);

}
while(!rxFileHandle_if.eof() && !txFileHandle_if.eof()){

while(!rxFileHandle_if.eof() && (srcMsgID_i != srcLink)){ // get next arrival
rxFileHandle_if » srcMsgID_i » srcMsgSeq_i » rxMsgCnt_i » rxPktCnt_i;
iff srcMsgID_i != srcLink)

srcMsgID_i = (-1) ;
}
whilef !txFileHandle_if.eoff) && (destMsgID_i != destLink)){
// get transmission

txFileHandle_if » destMsgID_i » destMsgSeq_i » txMsgCnt_i » txPktCnt_i;
iff destMsgID_i != destLink)

destMsgID_i = (-1);
}
while(destMsgSeq_i != srcMsgSeq_i && destMsgID_i != (-1) && srcMsgID_i != (-

1)) {
iff destMsgSeq_i > srcMsgSeq_i || (destMsgSeq_i < 2 && srcMsgSeq_i > 13)){

// tx sequence is greater than source - out of order delivery
sprintf(buffer_s255, "Out of sequence delivery - Src = %d, dest = %d,

req seq = %d, found seq = %d\n\0", srcLink, destLink, destMsgSeq_i, srcMsgSeq_i);
forf strSize_i = 0; buffer_s255[strSize_i] != '\0'; strSize_i++);
resFileHandle_of .write f buffer__s255, strSize__i) ;
sprintf(buffer_s255, "Tx time = %d, rx time = %d\n\0", txMsgCnt_i,

rxMsgCnt__i);
forf strSize_i = 0; buffer_s255[strSize_i] != '\0'; strSize_i++);
resFileHandle_of.write(buffer_s255, strSize_i);
cout « "s";
do{ // get next arrival

rxFileHandle_if » srcMsgID_i » srcMsgSeq_i » rxMsgCnt__i »
rxPktCnt_i;

iff srcMsgID_i != srcLink)
srcMsgID_i = (-1);

}while(!rxFileHandle_if.eof() && (srcMsgID_i != srcLink));
}
else iffdestMsgSeq_i < srcMsgSeq_i || (srcMsgSeq_i < 2 && destMsgSeq_i >

13)) {
// tx sequence is less than source - possible message lost
sprintf(buffer_s255, "Possible packet loss - Src = %d, dest = %d, req

seq = %d, found seq = %d\n\0", srcLink, destLink, destMsgSeq_i, srcMsgSeq_i);
forf strSize_i = 0; buffer_s255[strSize_i] != '\0'; strSize_i++);
resFileHandle_of.write(buffer_s255, strSize_i);
sprintf(buffer_s255, "Tx time = %d, rx time = %d\n\0", txMsgCnt_i,

rxMsgCnt_i);
forf strSize__i = 0; buffer_s255[strSize_i] != '\0'; strSize_i++);
resFileHandle_of.write(buffer_s255, strSize_i);
cout « "1";
do{ // get next arrival

txFileHandle_if » destMsgID_i » destMsgSeq_i » txMsgCnt_i >>
txPktCnt_i;

iff destMsglD__i != destLink)
destMsgID_i = (-1);

}whilef !txFileHandle_if.eof{) && destMsgXD_i != destLink);
}

}
iff destMsgID_i == (-1) && srcMsgID_i == (-1));
else iff destMsgID_i == (— 1)){

// uneven message set
sprintf(buffer_s255, "Left over message at receiver - Src = %d, dest = %d,

seq = %d, rx time = %d\n\0", srcLink, destLink, srcMsgSeq_i, rxMsgCnt_i);
forf strSize_i = 0; buffer_s255 [strSize__i] != '\0'; strSize_i++);
resFileHandle_of.write(buffer_s255, strSize_i);

D-7

Appendix D : Analysis Utilities

cout « "r";
}
else if(srcMsgID_i == (— 1)){

// uneven message set
sprintf (buffer_s255, ''Left over message at transmitter - Src = %d, dest =

%d, seq = %d, tx time = %d\n\0", srcLink, destLink, destMsgSeq_i, txMsgCnt_i);
for{ strSize_i = 0; buffer_s255[strSize_i] != ’\0'; strSize_i++);
resFileHandle_of.write(buffer_s255, strSize_i);
cout « "t";

}

else if(txMsgCnt_i > rxMsgCnt_i){
sprintf(buffer_s255, "Negative msg time - Src = %d, dest = %d, tx time =

%d, rx time = %d\n\0", srcLink, destLink, txMsgCnt_i, rxMsgCnt_i);
for (strSize_i = 0; buffer_s255[strSize_i] != '\0'; strSize__i++) ;
resFileHandle_of.write(buffer_s255, strSize_i);
cout << "x";

}
else {

iff (rxPktCnt_i + byteStrip_i) != txPktCnt__i) {
sprintf(buffer_s255, "Received wrong number of bytes - Src = %d, dest =

%d, tx #bytes = %d, rx tbytes = %d\n\0", srcLink, destLink, txPktCnt_i, rxPktCnt_i);
forf strSize_i = 0; buffer_s255[strSize_i] != '\0'; strSize_i++);
resFileHandle_of.write(buffer_s255, strSize_i);
cout « "#";

}
msgCnt_ul++;
transmissionCnt_l = flong) rxMsgCnt_i - flong) txMsgCnt_i;
totalTxCnt_ul = totalTxCnt_ul + (unsigned long) transmissionCnt_l;
iff transmissionCnt_l > maxTxCnt_l)

maxTxCnt_l = transmissionCnt_l;

iff transmissionCnt_l < minTxCnt_l)
minTxCnt_l = transmissionCnt_l;

iff (unsigned long) txMsgCnt_i < firstTx__ul)
firstTx_ul = (unsigned long) txMsgCnt_i;

iff (unsigned long) rxMsgCnt_i > lastRx_ul)
lastRx_ul = (unsigned long) rxMsgCnt_i;

}
destMsgID_i = (-1);
srcMsgID_i = (-1);

}
// finished with this rx-tx pair, close files
cout « ".";
txFileHandle_if.close();
rxFileHandle_if.close();

}
// cout « " Done\n";
cout << "|";

}
cout « "\nFound " << msgCnt_ul « " valid messages\n";
cout « "The first transmission began at " « firstTx_ul « " clock cycles (";
cout « (firstTx_ul * (unsigned long) clkPeriod_i) « " ns)\n";
cout « "The last receipt finshed at " « lastRx_ul « " clock cycles f";
cout « (lastRx_ul * (unsigned long) clkPeriod_i) « " ns)\n";
cout « "The tests took " « (lastRx_ul - firstTx_ul) « " clock cycles (";
cout « ((lastRx_ul - firstTx_ul) * (unsigned long) clkPeriod_i) « " ns)\n";
cout « "Longest transmission time was " « maxTxCnt_l « " cycles (";
cout « (maxTxCnt_l * clkPeriod_i) << " ns)\n";
cout « "Shortest transmission time was " « minTxCnt_l « " cycles (";
cout « (minTxCnt_l * clkPeriod_i) « " ns)\n";
cout « "Average transmission time was " « (totalTxCnt_ul/msgCnt_ul) << " cycles (";
cout « (((long double)totalTxCnt_ul/ (long double)msgCnt_ul) * (long

double)clkPeriod_i) << " ns)\n";

sprintf(buffer_s255, "\nTotal transmission time (cycles) = %d, message count = %d\n\0",
totalTxCnt_ul, msgCnt_ul);

for(strSize_i = 0; buffer_s255[strSize_i] != '\0'; strSize_i++);
resFileHandle_of .write (buffer__s255, strSize_i);
resFileHandle_of.write("Processing complete\n", sizeof("Processing complete\n"));
resFileHandle_of.close();
return 1;

}

D-8

Appendix E : Hardware Test Descriptions

Appendix E : Hardware Test Descriptions

This appendix contains the descriptions of the hardware test benches that were used

for extended verification of the NTR-FTM08 implemented in an Altera 10K130E. The

hardware tests include : Sampling, physical, grouped physical, logical, interval, broadcast,

disconnection, receiver overflow, and dormancy.

Sampling test
The sampling test used eight buffered link modules to verify the sampling, link

status and flow-control mechanisms. In total, sixteen buffered links were connected

together, eight in each PLD. Each link was offered data to transmit, while the receiver was

monitored to ensure valid reception was achieved. The control circuits for the receiver was

periodically stalled, which allowed the receiver FIFO to fill and trigger the flow control

mechanism. An incremental byte sequence was used to test all possible data sequences.

Test failure was detected in one of three ways. The first method verified the

stability of the link state; that is, if the link was reset following the test start. The second

monitored the value of the received data, and ensured that if followed the predefined

sequence. The final method verified data movement, by monitoring the read and write

control signals to the link.

Each test unit possessed eight LEDs that were used in this test to indicate the test

status. These were :

• permanently off - test not started, corresponding link did not initialise;

• regular flashes - test activity failure, no data movement;

• two, intennittent flashes - receiver error, incorrect data value has been received;

• three, intermittent flashes - link failure, the link detected and error and reset itself.

• Permanently on - test progressing normally.

Physical addressed test
The physical addressing test is performed on an unconfigured switch; that is, no

grouping and all packets with interval or logical addressed headers are spilt at the receiver.

This test possesses eight individual test links, which send a constant stream of packets to

E-l

Appendix E : Hardware Test Descriptions

the switch. It verifies the operation of sampling, flow control, service requesting,

contentious queuing, connection allocation, disconnection, and illegal packet spillage.

Each test link transmits five, three token packets per header value, which results in

all headers being transmitted. The five packets follow a set sequence of {physical,

interval, physical, logical, physical}. This sequence allows each physical packet to be

transmitted with all three end-of-packet markers; that is, end-of-packet, end-of-message

and bad-end-of-packet. The second byte in the packet is a replication of the routing byte.

Transmitting the packets with interval and logical headers proves the physical addressed

packet has been disconnected successfully, and the illegal packet has been removed from

the network.

The receiving chamiel of each test link monitors the incoming byte stream and

validates all received data. Each link should receive only physically addressed packets,

and therefore the receiver check the incoming data bytes to ensure correct delivery. All

transmitters are enabled together, which creates contention as each link follows the same

sequence of headers. Similar to the sampling test, data flow is verified to ensure, that none

of the links are permanently stalled, and a reset link will also result in test failure.

Any failure inhibits further testing, and the test state is indicated by the operation of

the eight LEDs, which are:

• permanently off - test has not started, all links have not been initialised;

• regular flashes - no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error, where the link has been unexpectedly reset;

• Permanently on - test progressing normally.

Grouped physical addressed test
This test is the first to include configuration, which requires a configuration packet

to be sent to the switch before the start of the test. Thus, in addition to the features tested

by the basic physical tests and verification of the operation of the link allocation with

grouped outputs under contentious conditions, this test verifies the basic operation of the

control port. That is, connection, disconnection, operation of the data and address register

and the write command for the grouping registers.

E-2

Appendix E : Hardware Test Descriptions

The switch is configured to group all the links into four groups of two, namely:

• group 0 - links 0 & 1

• group 1 - links 2 & 3

• group 2 - links 4 & 5

• group 3 - links 6 & 7

Each test links sends eight packets of three tokens, which equates to two for each

group. Thus, the test verifies that allocation operates for all headers for the group. The

payload byte of each token contains the BCD value of the source link and destination link.

This allows the receiving test link to verify each packet as it arrives, and confirm all

packets have been delivered. Following the transmission of all eight packets, the

transmitting control for each test link inhibits further transmission until all packets have

been verified by the receiving links.

To indicate test status, the LEDs are used similar to the previously defined tests;

thus:

• permanently off - test not started, all links have not been initialised;

• regular flashes - no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error;

• permanently on - test progressing normally.

Logical addressed test (unicast)
This test verifies the use of logical addressing for packet routing. Each link takes

turns to be the receiver, and as such configures the logical address lookup table. The

configuration validates the target destination for each offset of the output for the range of

the sixty-four outputs. For example, link 0 configures headers 0, 8, 16, 24, 32, 40, 48, 56

to send the packet to output 0 and the remaining headers are invalid. Following

configuration, the other ‘non-receiving’ links transmit sixty-four small packets, ensuring

each header is sent. All the packets are sent concurrently which shows the operation of the

device under contention. The receiver checks the incoming packet stream and checks for

correct delivery, which ensures that all of the packets have been successfully received.

E-3

Appendix E : Hardware Test Descriptions

The receivers that are not configured to accept data will flag any data reception. Once all

packets have been validated, the process is repeated with the next link.

This test checks for the standard operation of packet transfer in addition to the

configuration of the LUT, logical decoding and queuing, logical connection allocation.

To indicate test status, the LEDs are used similar to the previously defined tests;

thus:

• permanently off - test not started, all links have not been initialised;

• regular flashes — no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error;

• permanently on - test progressing normally.

Interval addressed test
The interval addressed test replicates the logical addressed test, but with the use of

interval addressed headers. However, the headers are validated in offsets of sixteen, as

opposed to the offset of eight as used in the logical addressed test. Thus link 1 configures

headers 1,17, 33, 49 to send the packet to output 0 and the remaining headers are invalid.

• permanently off - test not started, all links have not been initialised;

• regular flashes - no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error;

• permanently on - test progressing normally.

Broadcast test
The broadcast test ensured that multicast connections were processed successfully.

The test allowed each test link to configure the router in turn, which validates eight headers

to connect to all other links. The selected headers were relative to the offset of the

originating link. For example, link 2 configures headers 2, 10, 18, 26, 34, 42, 50, 58 to

send the packet to all outputs and the remaining headers are invalid. The receiving links

E-4

Appendix E : Hardware Test Descriptions

all verify the correct delivery of the packet before the test can progress. Similar to the

other tests, the standard checks are made and are indicated by the LEDs as follows:

• permanently off - test not started, all links have not been initialised;

• regular flashes - no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error;

• permanently on - test progressing normally.

Disconnection time-out test
The test operated based on a finite state machine that allowed validation of the

recovery procedure. The states were as follows:

1. Send the start of the packet;

2 . validate the arrival of the start of the packet;

3. disconnect either the source or destination from the switch;

4. send the end of the packet;

5. check the packet was truncated with a BEOP token;

6. reconnect the severed links;

7. configure for the next set of packets

Each source sends a non-contentious packet to the switch concurrently, which ran

in an incremental sequence that ensured that each link connected with all other links.

Links were disconnected based on a sequence such that either the source or the destination

connections were severed exclusively. Physical addressing was used for the test and the

header was reused for the packet payload, which included the source and destination of the

packet. This allowed receipt and packet format validation. Each transmitted packet was

contained four tokens in total, where the header and first payload byte was transmitted in

state 1. State 4 saw the transmission of the second payload token and the end of packet.

This test saw the allocation of concurrent non-contentious connection requests,

which resulted in either receiver packet truncation or packet spillage at the transmitter.

Maintaining the standard test indicators, the LEDs operated thus:

E-5

Appendix E : Hardware Test Descriptions

• permanently off - test not started, all links have not been initialised;

• regular flashes - no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error, a link was reset that was not an expected;

• permanently on - test progressing normally.

Overflow reset test
The overflow reset test used eight buffered link modules to verify the operation of

the link recovery for flow-control failure. To ensure that the mechanism failed, the

‘almost-fulP flag was set at 30, with a receiver FIFO buffer of 31 entries. In total, sixteen

buffered links were connected together, eight in each PLD. Eight links were set as

receivers and eight were set as transmitters. The test was executed in the following

sequence:

1. Allow the transmitters to start transmitting, but do not remove data from the receiver

FIFO buffers;

2 . verify the overflow reset at the receiving link, and reset at the transmitter;

3. check the contents of the receiver FIFO buffers, including a BEOP at the end.

The eight LEDs were used to indicate the test status, as follows:

• permanently off - test not started, corresponding link did not initialise;

• regular flashes - test activity failure, no data movement;

• two, intermittent flashes - receiver error, incorrect data value has been received;

• three, intermittent flashes - unexpected link failure, the link detected and error and

reset itself outside of the period expected;

• Permanently on - test progressing normally.

Link Dormancy test
The link dormancy test verified that links would safely return to the link ‘asleep’

state and would successfully wake when required. The subsequent to the configuration of

the link dormancy register, test executed in the following sequence:

1. Allow the links to return to the ‘asleep’ state;

E-6

Appendix E : Hardware Test Descriptions

2. enable the selected link to transmit a packet to the network;

3. wait for the packet to arrive on the destination link.

During this sequence the state of all links were monitored to ensure that the correct

link was woken, and the packet arrived successfully. Physical addressing was used to

address the packets. Only one packet was sent across the router at a time, and the test

ensured that each link sent to every other link in ascending order. Maintaining the standard

test indicators, the LEDs operated thus:

• permanently off - test not started, all links have not been initialised;

• regular flashes - no activity, the test is not progressing as expected;

• two intermittent flashes - registered an receiver error on that link;

• three intermittent flashes - link error, this link did not wake when expected or woke

unexpectedly;

• permanently on - test progressing normally.

E-7

Appendix F : Deadlock Detection Mechanism Details

Appendix F : Deadlock Detectio n Mechanism Details

This appendix contains the post-simulation analysis results of the deadlock

detection tests, router switch configuration for the tests and the source code for the analysis

program.

16 bytes per packet

Workload
(%)

Total packets
removed

Cycles without
removal

Cycles with
removal

Average packets
removed per cycle

30 1376 270 1108 1.242
40 1342 310 1102 1.218
50 1283 265 1027 1.249
60 1325 305 1047 1.266

32 bytes per packet

Workload
<%)

Total packets
removed

Cycles without
removal

Cycles with
removal

Average packets
removed per cycle

30 1480 202 1405 1.053
40 1520 191 1453 1.046
50 1355 213 1293 1.048
60 1361 223 1292 1.053

64 bytes per packet

Workload
(%)

Total packets
removed

Cycles without
removal

Cycles with
removal

Average packets
removed per cycle

30 1450 153 1445 1.003
40 1483 159 1483 1.000
50 1449 168 1448 1.001
60 1452 159 1452 1.000

128 bytes per packet

Workload
(%)

Total packets
removed

Cycles without
removal

Cycles with
removal

Average packets
removed per cycle

30 1491 160 1489 1.001
40 1535 179 1534 1.001
50 1483 175 1482 1.001
60 1469 161 1465 1.003

F-l

Appendix F : Deadlock Detection Mechanism Details

Device configuration for the deadlock prone mesh network

N o d e
2

N o d e
3

N o d e N o d e

N o d e N o d e

N o d e N o d e

N o d e N o d e

N o d e
N o d e

N o d e N o d e N o d e N o d e
10

 U n u s e d b i-d irec tio n a l lin k s -------► A c tiv e b i-d irection a l link

— • » ^ - » « • D e a d lo c k c y c le

Router switch 1

Interval Interval Limit
Register

Interval Port
Register

0 0 0
1 1 1
2 2 2
3 3 3
4 11 4
5 15 6
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 2

Interval Interval Limit
Register

Interval Port
Register

0 3 4
1 4 0
2 5 1
3 6 2
4 7 3
5 15 6
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 3

Interval Interval Limit
Register

Interval Port
Register

0 3 4
1 7 6
2 8 0
3 9 1
4 10 2
5 11 3
6 15 4
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

Router switch 4

Interval Interval Limit
Register

Interval Port
Register

0 7 6
1 11 4
2 12 0
3 13 1
4 14 2
5 15 3
6 63 invalid
7 63 invalid
8 63 invalid
9 63 invalid
10 MAX invalid

As the deadlock detection mechanism did not support group adaptive routing, the

feature was not used in this test.
F-2

Appendix F : Deadlock Detection Mechanism Details

Program listing for deadlock_chk.cpp
/ *
Filename : deadlock_chk.cpp
Author : Robin Hotchkiss
Date : January 2000
Version : 2.0
Description :

Read the transcript file produced by the modelsim simulator
and processes the assert statements
to detect messages that are deleted due to the
deadlock mechanism.
User decisions are prompted when a message
is cleared outside of a deadlock cycle

Assert statements are provided when
cycles form, deadlock cycles form,
and the deadlock mechanism trigger

Modifications :

* /

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <conio.h>

int main(int argc, char *argv[])
{
ifstream srcFileHandle_if;
int fileMode_i = 0;
char srcFilename_s255[255] = "transcript";
char lineBuffer_c255[255] = "empty";
unsigned long lineCount_ul = 0;
bool cyclePresent_b = false;
bool dlCyclePresent__b = false;
unsigned long dlCycleCnt_ul = 0;
unsigned long nonDlCycleCnt_ul = 0;
unsigned long badCycleCnt_ul =0;
unsigned long dlMsgDelCnt_ul = 0;
unsigned long nonDlMsgDelCnt_ul = 0;
bool deletedInCycle__b = false;
bool deleted!nLastCycle_b = false;

fileMode_i = ios::nocreate(ios::out;
srcFileHandle_if.open(srcFilename_s255, fileMode_i, 0);
if(srcFileHandle_if.fail()){

cout « "\n\nError : Couldn't open the source test vectors file";
exit (0);

}

while(!srcFileHandle_if.eof()){
lineCount_ul++;
srcFileHandle_if.getline(lineBuffer_c255, 255);
if(strstr(lineBuffer_c255, "Cycle has formed") != NULL){

if(cyclePresent_b){
cout « "Error in processing at line " « lineCount_ul;
cout « " : cycle formed notification with cycle formed.\n";

}
cyclePresent_b = true;
dlCyclePresent_b = false;
deletedInCycle__b = false;

}
else if(strstr(lineBuffer_c255, "Cycle has cleared") != NULL){

if(!cyclePresent_b){
cout « "Error in processing at line " « lineCount_ul;
cout « " : cycle clear notification without cycle formed.\n";

}
cyclePresent_b = false;
if(deleted!nCycle_b){

if(dlCyclePresent_b){
// count the cycles that caused deadlock recovery
dlCycleCnt_ul++;

}

Appendix F : Deadlock Detection Mechanism Details

// the cycle shouldn't have caused recovery
badCycleCnt_ul++;

}
}
else{

// count the cycles that didn't cause deadlock recovery
nonDlCycleCnt_ul++;

>
deletedInLastCycle_b = deleted!nCycle_b;
deletedInCycle_b = false;

}
else if(strstr(lineBuffer_c255, "Deadlock flag") != NULL){

if (! cyclePresent__b) {
cout « "DL-flag outside a cycle at line " « lineCount_ul;
if(dlCyclePresent_b){

cout « " (last cycle possessed a deadlock stall)" « endl;
}
else {

cout << " (last cycle didn't possess a deadlock stall)" « endl;
}
cout « "Is this a false detection? (y/n) >
cin » lineBuffer_c255[0];
if(lineBuffer_c255[0] == 'Y' || lineBuffer_c255[0] == 'y'){

// out of cycle thang!
nonDlMsgDelCnt_ul++;

}
else {

// should be part of the last cycle
dlMsgDelCnt_ul++;
if(!deletedInLastCycle_b){

nonDlCycleCnt_ul— ;
dlCycleCnt_ul++;
deletedInLastCycle_b = true;

}
}

}
else if{ IdlCyclePresent_b){

cout « "DL-flag without a deadlock stall at line " « lineCount_ul « endl;
cout << "Is this a false detection? (y/n) > ";
cin >> lineBuf fer__c255 [0] ;
if(lineBuffer_c255[0] == ' Y ' || lineBuffer_c255[0] == 'y'){

// false detection, shouldn't have cleared the message
nonDlMsgDelCnt_ul++;

>

else {
// this cycle does have a deadlock stall
dlMsgDelCnt_ul++;

}
deletedInCycle_b = true;

}
else {

// valid deadlock, inside stall cycle
dlMsgDelCnt_ul++;
deletedInCycle_b = true;

}
}
else if(strstr(lineBuffer_c255, "D1 cycle has formed") != NULL){

// deadlock cycle detected, inside a stall cycle
dlCyclePresent_b = true;

}
}
if (cyclePresent_b){

cout « "Error in processing at EOF : Cycle was not cleared.\n”;
}

cout « "\n\n";
cout « dlCycleCnt_ul « " cycles with valid deadlocks.\n";
cout « badCycleCnt_ul « " cycles with illegal deadlock recovery.\n";
cout « nonDlCycleCnt_ul « " cycles without deadlocks.\n";
cout « dlMsgDelCnt_ul << " messages were removed due to valid deadlocks.\n";
cout « nonDlMsgDelCnt_ul « " messages were removed falsely.\n";

return 0;

F-4

