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Reactive Resource Provisioning Heuristics for
Dynamic Dataflows on Cloud Infrastructure

Alok Gautam Kumbhare, Student Member, IEEE, Yogesh Simmhan, Senior Member, IEEE,
Marc Frincu, Member, IEEE, and Viktor K. Prasanna, Fellow, IEEE

Abstract—The need for low latency analysis over high-velocity data streams motivates the need for distributed continuous dataflow
systems. Contemporary stream processing systems use simple techniques to scale on elastic cloud resources to handle variable data
rates. However, application QoS is also impacted by variability in resource performance exhibited by clouds and hence necessitates
autonomic methods of provisioning elastic resources to support such applications on cloud infrastructure. We develop the concept of
“dynamic dataflows” which utilize alternate tasks as additional control over the dataflow’s cost and QoS. Further, we formalize an
optimization problem to represent deployment and runtime resource provisioning that allows us to balance the application’s QoS, value,
and the resource cost. We propose two greedy heuristics, centralized and sharded, based on the variable-sized bin packing algorithm
and compare against a Genetic Algorithm (GA) based heuristic that gives a near-optimal solution. A large-scale simulation study, using
the Linear Road Benchmark and VM performance traces from the AWS public cloud, shows that while GA-based heuristic provides
a better quality schedule, the greedy heuristics are more practical, and can intelligently utilize cloud elasticity to mitigate the effect of
variability, both in input data rates and cloud resource performance, to meet the QoS of fast data applications.

Index Terms—Dataflows, stream processing, cloud, resource management, scheduling, high velocity data, runtime adaptation

F

1 INTRODUCTION
The expansion of ubiquitous virtual and physical sen-
sors, leading up to the Internet of Things, has accelerated
the rate and quantity of data being generated continu-
ously. As a result, the need to manage and analyze such
high velocity data in real-time forms one of the three
dimensions of “Big Data”, besides volume and variety [1].
While the past decade has seen sophisticated platforms
for scalable offline analytics on large data volumes [2],
Big Data systems for continuous analytics that adapt to
the number, rate and variability of streams are relatively
less well-studied.

There is a growing class of streaming applications in
diverse domains: trend analysis and social network mod-
eling for online advertising [3], real-time event processing
to detect abnormal behavior in complex systems [4], and
mission-critical use-cases such as smart traffic signal-
ing [5] and demand-response in smart power grids [6].
These applications are characterized by the variety of in-
put data streams, each with variable data rates. Further,
data arrives at high velocity and needs to be analyzed
with guaranteed low-latency even in the presence of
data rate fluctuations. Hence, such applications lie at the
intersection of the velocity and variety dimensions of the
Big Data landscape.

While run-time scalability and seamless fault-tolerance
together are the key requirements for handling high
velocity variable-rate data streams, in this paper, we
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Prasanna and M. Frincu are with Department of Electrical Engineering at
University of Southern California, Los Angeles, USA. Email: {kumbhare,
prasanna, frincu}@usc.edu

• Y. Simmhan is with Supercomputer, Education and Research Cen-
tre (SERC) at Indian Institute of Science, Bangalore, India. Email:
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emphasize on scalability of stream processing applica-
tions with increasing data velocity and their adaptation
to fluctuating data rates. Existing stream processing (or
continuous dataflow) systems (SPS) [7], [8], [5], [9]
allow users to compose applications as task graphs
that consume and process continuous data, and execute
on distributed commodity clusters and clouds. These
systems support scalability with respect to high input
data rates over static resource deployments, assuming
the input rates are stable. When the input rates change,
their static resource allocation causes over- or under-
provisioning, resulting in wasted resources during low
data rate periods and high processing latency during
high data rate periods. Storm’s rebalance [8] function
allows users to monitor the incoming data rates and
redeploy the application on-demand across a different
set of resources, but requires the application to be
paused. This can cause message loss or processing delays
during the redeployment. As a result, such systems offer
limited self-manageability to changing data rates, which
we address in this article.

Recent SPSs such as Esc [10] and StreamCloud [11]
have harnessed the cloud’s elasticity to dynamically
acquire and release resources based on application load.
However, several works [12], [13], [14] have shown that
the performance of public and private clouds themselves
vary: for different resources, across the data center, and
over time. Such variability impacts low latency stream-
ing applications, and causes adaptation algorithms that
assume reliable resource performance to fail. Hence, an-
other gap we address here is autonomic self-optimization
to respond to cloud performance variability for stream-
ing applications. In addition, the pay-per-use cost model
of commercial clouds requires intelligent resource man-
agement to minimize the real cost while satisfying the
streaming application’s quality of service (QoS) needs.



TRANSACTIONS ON CLOUD COMPUTING, VOLUME, DATE 2

In this article we push towards autonomic provision-
ing of continuous dataflow applications to enable scal-
able execution on clouds by leveraging cloud elasticity
and addressing the following issues:

1) Autonomous runtime adaptions in response to fluc-
tuations in both input data rates and cloud resource
performance.

2) Offering flexible trade-offs to balance monetary cost
of cloud resources against the users’ perceived ap-
plication value.

This article extends our previous work [15], which
introduced the notion of “dynamic dataflows” and
proposed greedy reactive resource provisioning heuris-
tics (§ 8) to exploit cloud elasticity and the flexibility
offered by dynamic dataflows. Our contributions in this
article are:
• Application Model and Optimization Problem:

We develop the application model for dynamic
dataflows (§ 2) as well as the infrastructure model
to represent IaaS cloud characteristics (§ 3), and
propose an optimization problem (§ 6) for resource
provisioning that balances the resource cost, appli-
cation throughput and the domain value based on
user-defined constraints.

• Algorithms: We present a Genetic Algorithm (GA)-
based heuristic for deployment and runtime adap-
tation of continuous dataflows (§ 7) to solve the
optimization problem. We also propose efficient
greedy heuristics (centralized and sharded variants)
that sacrifice optimality over efficiency, which is
critical for low latency streaming applications (§ 8).

• Evaluation: We extend the Linear Road Benchmark
(LRB) [16] as a dynamic dataflow application, which
incorporates dynamic processing elements, to eval-
uate the reactive heuristics through large-scale sim-
ulations of LRB, scaling up to 8,000 msgs/sec, using
VM and network performance traces from Amazon
AWS cloud service provider. Finally, we offer a
comparative analysis of the greedy heuristics against
the GA in terms of scalability, profit, and QoS (§ 9.2).

2 DYNAMIC DATAFLOW APPLICATION MODEL
We leverage the familiar Directed Acyclic Graph (DAG)
model to define Continuous Dataflows (Def. 1). This al-
lows users to compose loosely coupled applications from
individual tasks with data dependencies between them
defined as streaming dataflow edges. While, in practice,
this model can be extended to include more complex
constructs like back flows/cycles, we limit our discus-
sion to DAGs to keep the application model simple and
the optimization problem tractable.

Def. 1: A continuous dataflow G is a quadruple G =
〈P,E, I,O〉, where P = {P1, P2, ..., Pn} is the set of
Processing Elements (PE) and E = {〈Pi, Pj〉 | Pi, Pj ∈ P}
is a set of directed dataflow edges without cycles such
that data messages flow from Pi to Pj . I 6= ∅ ⊂ P is a set
of input PEs which receive messages only from external
data streams, and O 6= ∅ ⊂ P is a set of output PEs that
emit output messages only to external entities.

Each PE represents a long-running, user-defined task
which executes continuously, accepting and consuming
messages from its incoming ports and producing mes-
sages on the outgoing ports. A directed edge between
two PEs connects an output port from the source PE to
an input port of the sink PE, and represents a flow of
messages between the two. Without loss of generality, we
assume and-split semantics for edges originating from the
same output port of a PE (i.e., output messages on a port
are duplicated on all outgoing edges) and multi-merge
semantics [17] for edges terminating at an input port of
another PE (i.e., input messages from all incoming edges
on a port are interleaved).

We define Dynamic Dataflows (Def. 2) as an extension
to continuous dataflows by incorporating the concept of
dynamic PEs [15]. Dynamic PEs consists of one or more
user-defined alternative implementations (alternates) for
the given PE, any one of which may be selected as an ac-
tive alternate at run-time. Each alternate may possess dif-
ferent performance characteristics, resource requirements and
domain perceived functional quality (value). Heterogeneous
computing [18] and (batch processing) workflows [19]
incorporate a similar notion where the active alternates
are decided once at deployment time but thereafter remain
fixed during execution. We extend this to continuous
dataflows where alternate selection is an on-going pro-
cess at runtime. This allows the execution framework to
perform autonomic adaptations by dynamically altering
the active alternates for an application to meet its QoS
needs based on current conditions.

Def. 2 (Dynamic Dataflow): A Dynamic Dataflow
D = 〈P, E, I,O〉 is a continuous dataflow where each PE
Pi ∈ P has a set of alternates Pi = {p1

i , p
2
i , ...p

j
i | j ≥ 1}

where pji = 〈γji , c
j
i , s

j
i 〉. γ

j
i , cji , and sji denote the relative

value, the processing cost per message, and the selectivity
for the alternate pji of PE Pi respectively.

Selectivity, sji , is the ratio of the number of output
messages produced to the number of input messages
consumed by the alternate pji to complete a logical unit
of operation. It helps determine the outgoing data rate
of a PE relative to its input data rate, and thereby its
cascading impact on downstream PEs in the dataflow.

Each alternate has associated cost and value functions
to assist with alternate selection and resource provision-
ing decisions. The relative value, 0 < γji ≤ 1, for an
alternate pji is:

γji =
f(pji )

MAXj{f(pji )}
(1)

where f : Pi → R is a user-defined value function for the
alternates. It quantifies the relative domain benefit to the
user of picking that alternate. For e.g., a Classification PE
that classifies its input tuples into different classes may
use the F1 score1 as the quality of that algorithm to the
domain, and F1 can be used to calculate the relative value
for alternates of the PE.

1. F1 = 2× precision×recall
precision+recall

is a measure of the classifier’s labeling
accuracy.
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<dataflow>
<PE id="parser">
<in id="tweet" type="string" />
<out id="cleaned" type="string" />
<alternate impl="Parser.TweetParser" />
</PE>
<PE id="classifier">
<in id="cleaned_twt" type="string" />
<out id="tpc_twt" type="string" />
<alternate impl="Classifier.Bayes" value="0.65" />
<alternate impl="Classifier.LDA" value="0.70" />
<alternate impl="Classifier.MWE" value="1.00" />
</PE>

<edge source="parser:cleaned"
sink="classifier:cleaned_twt" />

</dataflow>

Fig. 1: Sample declarative representation of Dynamic Dataflow
using XML. Equivalent visual representation is in Fig. 2(a).

Finally, the processing cost per message, cji , is the time
(in seconds) required to process one message on a “refer-
ence” CPU core (§ 3) for the alternate pji . The processing
needs of an alternate determines the resources required
to processes incoming data streams at a desired rate.

The concept of dynamic PEs and alternates provides a
powerful abstraction and an additional point of control
to the user. A sample dynamic dataflow is shown in
Fig. 1 using a generic XML representation, with a visual
equivalent shown in Fig. 2(a). Any existing dataflow
representation, such as declarative [20], functional [8] or
imperative [9] may also be used. The sample dataflow
continuously parses incoming tweets, and classifies them
into different topics. It consists of two PEs: parser, and
classifier, connected using a dataflow edge. While the
parser PE consists of only one implementation, the clas-
sifier PE consists of three alternates, using the Bayes,
Latent Dirichlet Allocation (LDA) and Multi-Word en-
hancement (MWE) to LDA algorithms, respectively. Each
alternate varies in classification accuracy and hence has
different value to the domain; these are normalized rela-
tive to the best among the three. The three alternates are
available for dynamic selection at runtime. For brevity,
we omit a more detailed discussion of the dynamic
dataflow programming abstraction.

The execution and scalability of a dynamic dataflow
application depends on the capabilities of the underly-
ing infrastructure. Hence, we develop an infrastructure
model to abstract the characteristics that impacts the
application execution and use that to define the resource
provisioning optimization problem (§ 6).

3 CLOUD INFRASTRUCTURE MODEL
We assume an Infrastructure as a Service (IaaS) cloud
that provides access to virtual machines (VMs) and a
shared network. In IaaS clouds, a user has no control
over the VM placement on physical hardware, the multi-
tenancy, or the network behavior between VMs. The
cloud environment provides a set of VM resource classes
C = {C1, C2, ..., Cn} that differ in the number of available
virtual CPU cores N , their rated core speed π, and their
rated network bandwidth β. In this article, we focus on
CPU bound PEs that operate on incoming data streams

from the network. As a result, we ignore memory and
disk characteristics and only use the VM’s CPU and net-
work behavior in the infrastructure performance model
used by our adaptation heuristics.

As CPU core speeds may vary across VM classes, we
define the normalized processing power πi of a resource
class Ci’s CPU core as the ratio of its processing power
to that of a reference VM core. Naı̈vely, this may be the
ratio of their clock speeds, but could also be obtained by
running application benchmarks on different sets of VMs
and comparing them against a defined reference VM, or
use Cloud-providers’ “ratings” such as Amazon’s Elastic
Compute Units (ECUs).

The set of VM resources acquired till time t is denoted
by R(t) = {r1, r2, ..., rn}. Each VM is described by ri =
〈Cij , tistart, tistop〉 where Cij is the resource class to which
the VM belongs, and tistart and tistop are the times at
which the VM was acquired and released, respectively.
tstop =∞ for an active VM.

The peer-to-peer network characteristic between pairs
of VMs, ri and rj , is given by λi×j and βi×j , where λi×j
is the network latency between VM ri and rj and βi×j is
their available bandwidth.

VMs are typically charged at whole VM-hours by
current cloud providers. The user is billed for the entire
hour even if a VM is released before an hour boundary.
The total accumulated monetary cost for the VM ri at time
t is then calculated as:

µi(t) = dmin(tstop, t) − tstart
60

e× cost per VM hour (2)

where min(tstop, t)− tstart is the duration in minutes for
which the VM has been active.

We gauge the on-going performance of virtualized
cloud resources, and the variability relative to their
rated capability, using a presumed monitoring frame-
work. This periodically probes the compute and network
performance of VMs using standard benchmarks. The
normalized processing power of a VM ri observed at time
t is given by πi(t), and the network latency and bandwidth
between pairs of active VM ri and rj are λi×j(t) and
βi×j(t), respectively. To minimize overhead, we only
monitor the network characteristics between VMs that
host neighboring PEs in the DAG to assess their impact
on dataflow throughput. We assume that rated network
performance as defined by the provider is maintained for
other VM pairs. Two PEs collocated in the same VM are
assumed to transfer messages in-memory, i.e., λi×i → 0
and βi×i →∞.

4 DEPLOYMENT AND ADAPTATION APPROACH

Based on the dynamic dataflow and cloud infrastruc-
ture models, we propose a deployment and autonomic
runtime adaptation approach that attempts to balance
simplicity, realistic cloud characteristics (e.g., billing model,
elasticity), and user flexibility (e.g., dynamic PEs). Later,
we formally define a meaningful yet tractable optimiza-
tion problem for the deployment and runtime adaptation
strategies (§ 6).
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Fig. 2: (a) A sample dynamic dataflow. (b) Dataflow with
selected alternates (e11, e22) and their initial core require-
ments. (c) A deployment of the dataflow onto VMs.

We make several practical assumptions on the contin-
uous dataflow processing framework, reflecting features
available in existing systems [21], [8]:
1) The dataflow application is deployed on distributed
machines, with a set of instances of each PE (ϕ(t) at time t)
running in parallel across them. Incoming messages are
actively load-balanced across the different PE instances
based on the processing power of the CPU cores they
run on and the length of the pending input queue. This
allows us to easily scale the application by increasing the
number of PE instances if the incoming load increases.
2) Within a single multi-core machine, multiple in-
stances of different PEs run in parallel, isolated on
separate cores. A core is exclusively allocated to one PE
instance. We assume that there is minimal interference
from system processes.
3) Running n data-parallel instances of a PE on n CPU
cores, each with processing power π = 1, is equivalent to
running 1 instance of the PE on 1 CPU core with π = n.
4) The active alternate for a PE is not dependent on the
active alternate of any other PE, since each alternate for
a given PE follows the same input/output format. This
allows us to independently switch the active alternate
for different PEs during runtime.
5) The framework can spin up or shutdown cloud VMs
on-demand (with an associated startup/shutdown la-
tency) and can periodically monitor the VM characteris-
tics, such as CPU performance and network bandwidth.

Given these assumptions we define the following
deployment model. When a dynamic dataflow, such
as Fig. 2(a), is submitted for execution, the scheduler
for the stream processing framework needs to make
several decisions: alternate selection for each dynamic
PE, acquisition of VMs, mapping of these PEs to the
acquired VMs, and deciding the number of data parallel
instances per PE. These activities are divided into two
phases: deployment time and runtime strategies.

Deployment time strategies select the initial active al-
ternate for each PE, and determine their CPU core
requirements (relative to the “reference” core) based
on estimated initial message data rates and rated VM
performance. Fig. 2(b) shows the outcome of selecting
alternates, picking e1

1 and e2
2 for PEs E1 and E2 with their

respective core requirements. Further, it determines the
VMs of particular resource classes that are instantiated,
and the mapping M from the data-parallel instances of
the each PE (ϕ(t)) to the active VMs (R(t)), following
which the dataflow execution starts. Fig. 2(c) shows
multiple data-parallel instances of these PEs deployed
on a set VMs of different types. Note that the number
of PE instances in Fig. 2(c) – ϕ(t) is 2 and 5 for e1

1 and
e2

2 – is not equal to the core requirements in Fig. 2(b) –
4 and 9 cores – since some instances are run on faster
CPU cores (π > 1).

Runtime strategies, on the other hand, are responsible
for periodic adaptations to the application deployment
in response to the variability in the input data rates
and the VM performance obtained from the monitoring
framework. These active decisions are determined by the
runtime heuristics that can decide to switch the active
alternate for a PE, or change the resources allocated to a
PE within or across VMs. The acquisition and release of
VMs are also tied to these decisions as they determine
the actual cost paid to the cloud service provider. A
formal definition of the optimization problem and these
control strategies will be presented in § 6.

5 METRICS FOR QUALITY OF SERVICE
In § 2, we captured the value, and processing require-
ments for individual PEs and their alternates using the
metrics: relative value (γji ), alternate processing cost (cji ),
and selectivity (sji ). In this section, we expand these QoS
metrics to the entire dataflow application.

We define an optimization period T for which the
dataflow is executed. This optimization period is divided
into time intervals T = {t0, t1, ..., tn}. We assume these
interval lengths are constant, 4t = ti+1 − ti. For brevity
we omit the suffix i while referring to the time interval
ti, unless necessary for disambiguation.

A dataflow is initially deployed with a particular
configuration of alternates which can later be switched
during runtime to meet the application’s QoS. To keep
the problem tractable and avoid repetitive switches,
these changes are only made at the start of each interval
ti. This means that during a time interval t, only a
specific alternate for a PE Pi is active. The value of the
PE Pi during the time interval t is thus:

Γi(t) =
∑
pji∈Pi

(
Aji (t) · γji

)
Aji (t) =

{
1, if alternate pji is active at time t
0, otherwise

Since value can be perceived as an additive property [22]
over the dataflow DAG, we aggregate the individual
values of active alternates to obtain the value for the
entire dynamic dataflow during the time interval t.

Def. 3 (Normalized Application Value): The normal-
ized application value, 0 < Γ(t) ≤ 1, for a dynamic
dataflow D during the time interval t is:

Γ(t) =

∑
Pi∈P Γi(t)

|P|
(3)
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where |P| is the number of PEs in the dataflow.
The application’s value thus obtained gives an indica-

tion of its overall quality from the domain’s perspective
and can be considered as one QoS dimension.

Another QoS criterion, particularly in the context
of continuous dataflows, is the observed application
throughput. However, raw application throughput is not
meaningful because it is a function of the input data
rates during that time interval. Instead we define the
relative application throughput, Ω, built up from the relative
throughput 0 < Ωi(t) ≤ 1 of individual PEs Pi during
the interval t. These are defined as the ratio of the
PEs’ current output data rate (absolute throughput) oi(t)
to the maximum achievable output data rate omaxi (t) :
Ωi(t) = oi(t)

omax
i (t)

The output data rate for a PE depends on the selec-
tivity of the active alternate, and is bound by the total
resources available to the PE to process the inputs given
the processing cost of the active alternate. The actual
output data rate during the interval t is:

oi(t) =
min

(
qi(t) + ii(t) ·∆t, φi·∆t

cji

)
× sji

∆t
(4)

where qi(t) is the number of pending input messages in the
queue for PE Pi , ii(t) is the input data rate in the time
interval t for the PE , φi is its total core allocation for the PE
(φi =

∑
k πk), and cji is the processing cost per message

and sji is the selectivity for the active alternate pji .
The maximum output throughput is achieved when there

are enough resources for Pi to process all incoming data
messages including messages pending in the queue at
the start of the interval t. This is given by omaxi (t) =
(qi(t)+ii(t)×∆t)×sji

∆t .
While the input data rate for the source PE is deter-

mined externally, the input rate for other PEs can be
characterized as follows. The flow of messages between
consecutive PEs is limited by the bandwidth, during
the interval t, between the VMs on which the PEs are
deployed. We define the flow fi,j(t) from Pi to Pj as:

fi,j(t) =

{
min

(
oi,

βi,j(t)·4t
m

)
, 〈Pi,Pj〉 ∈ E

0, otherwise
(5)

where βi,j(t) is the available cumulative bandwidth be-
tween all instances of Pi and Pj at time t and m is the
average output message size.

Given the multi-merge semantics for incoming edges,
the input data rate for Pk during time t is:

ik(t) =
∑

fj,k(t) (6)

Unlike the application’s value, its relative throughput
is not additive as it depends on the critical process-
ing path of the PEs during that interval. The relative
throughput for the entire application is the ratio of
observed cumulative outgoing data rate from the output
PEs, O = {Oi}, to the maximum achievable output rate
for those output PEs, for the current input data rate.

Def. 4 (Relative Application Throughput): The rela-
tive application throughput, 0 < Ω(t) ≤ 1 , for dynamic
dataflow D = 〈P, E, I,O〉 during the time interval t is:

Ω(t) =

∑
Pi∈O Ωi(t)

|O|
(7)

The output data rate for the output PEs is obtained
by calculating the output data rate of individual PEs
(Eqn. 4) followed by the flow fi,j between consecutive
PEs (Eqn. 5), repeatedly in a breadth-first scan of the
DAG starting from its input PEs, till the input and output
data rates for the output PEs is obtained.

Normalized Application Value, Γ(t), and Relative Appli-
cation Throughput, Ω(t), together provide complimen-
tary QoS metrics to assess overall application execution,
which we use to define an optimization problem that
balances these QoS metrics based on user-defined con-
straints in the next section.

6 PROBLEM FORMULATION
We formulate the optimization problem as a constrained
utility maximization problem during the period T for
which the dataflow is executed. The constraint ensures
that the expected relative application throughput meets a
threshold, Ω ≥ Ω̂; the utility to be maximized is a function
of the normalized application value, Γ; and the cost for
cloud resources, µ, during the optimization period T .

For a dynamic dataflow D = 〈P, E, I,O〉, the esti-
mated input data rates, I(t0) = {ij(t0)} , at each input
PE, Pj ∈ I, at initial time, t0, is given. During each
subsequent time interval, ti, based on the observations
of the monitoring framework during ti−1, we have the
following: the observed input data rates, I(t) = {ij(t)};
the set of active VMs, R(t) = {r1, r2, ..., rm}; the normal-
ized processing power per core for each VM rj , π(t) =
{πj(t)}; the network latency and the bandwidth between
pairs of VMs ri, rj ∈ R(t) hosting neighboring PEs are
λ(t) = {λi×j(t)} and β(t) = {βi×j(t)}, respectively.

At any time interval t, we can calculate the relative
application throughput Ω(t) (Eqn. 7), the normalized appli-
cation value Γ(t) (Eqn. 3), and the cumulative monetary
cost µ(t) till time t (Eqn. 2).

The average relative application throughput (Ω), the
average relative application value (Γ), and the total
resource cost (µ) for the entire optimization period
T = {t0, t1, . . . , tn} are:

Ω =

∑
t∈T Ω(t)

|T |
Γ =

∑
t∈T Γ(t)

|T |
µ = µ(tn)

We define the combined utility as a function of both
the total resource cost (µ) and the average application
value (Γ). To help the users to trade-off between cost and
value, we allow them to define the expected maximum
cost at which they break-even for the two extremes of
application value, i.e., the values obtained by selecting
the best alternates for all PEs, on one end, and by selecting
the worst alternates, on the other. For simplicity, we as-
sume a linear function to derive the expected maximum
resource cost at an intermediate application value, as
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Fig. 3: A sample linear function for trade-off between cost (C)
and value (Γ). The line denotes break-even, with a slope = σ.

shown in Fig. 3. If the actual resource cost lies below this
break-even we consider it as profit, while if it lies above,
we consider it as loss. This can be captured using the
following objective function, Θ , which is to be maximized
over the optimization period under the constraint Ω ≥ Ω̂:

Θ = Γ− σ · (µ − CΓmax
max ) + 1 (8)

where σ is a equivalence coefficient between cost and value
given by the slope:

σ =
Γmax − Γmin

CΓmax
max − CΓmin

max

(9)

Γmax and Γmin are the maximum and minimum possible
relative application values when picking the alternates
with the best and worst values for each PE, respectively,
while CΓmax

max and CΓmin
max are the user-defined break-even

resource cost at Γmax and Γmin.
Given the deployment approach (§ 4), the above ob-

jective function Θ can be maximized by choosing appro-
priate values for the following control parameters at the
start of each interval ti during the optimization period:
• Aji (t), the active alternate j for the PE Pi
• R(t) = {rj(t)}, the set of VMs in R(t)
• ϕ(t) = {ϕj(t)}, the set of data-parallel instances for

each PE Pj ; and
• M(t) = {ϕj(t)→Mj×k(t)}, the mapping of a data-

parallel instances ϕj for PE Pj to the actual VM rk
Optimally solving the objective function Θ with the

Ω constraint is NP-Hard. The proof is outside the scope
of this article and a sketch is presented in our earlier
work [15]. While techniques like integer programming
and branch-and-bound have been used to optimally
solve some NP-hard problems [23], these do not ade-
quately translate to low-latency solutions for continuous
adaptation decisions. The dynamic nature of the applica-
tion and the infrastructure, as well as the tightly-bound
decision making interval means that fast heuristics per-
formed repeatedly are better than slow optimal solu-
tions. We thus propose simplified heuristics to provide
an approximate solution to the objective function.

Other approximate procedures such as gradient
descent are not directly applicable to the problem
at hand since the optimization problem presents a
non-differentiable, non-continuous function. However,
nature-inspired search algorithms such as Genetic Al-
gorithms (GAs), ant-colony optimization, and particle-
swarm optimization, which follow a guided randomized
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Fig. 4: Sample iteration for the GA heuristic.

search, are sometimes more effective than traditional
heuristics in solving similar single and multi-objective
workflow scheduling problems [24], [25], [26], [27]. In
this article, we also explore GAs for finding an approx-
imate solution to the optimization problem. While GAs
are usually slow and depend on the population size and
complexity of the operators used, they provide a good
baseline to compare against our greedy heuristics and
are discussed in the next section, followed by the greedy
deployment and adaptation heuristics in section 8.

7 GENETIC ALGORITHM-BASED SCHEDULING
A GA [28] is a meta-heuristic used in optimization and
combinatorial problems. It facilitates the exploration of
a large search space by iteratively evolving a number
of candidate solutions towards the global optimum. The
GA meta-heuristic abstracts out the structure of the solu-
tion for a given problem in terms of a chromosome made
up of several genes. It then explores the solution space
by evolving a set of chromosomes (potential solutions)
over a number of generations.

The GA initially generates a random population of
chromosomes which act as the seed for the search.
The algorithm then performs genetic operations such as
crossover and mutations to iteratively obtain successive
generations of these chromosomes. The crossover opera-
tor takes a pair of parent chromosomes and generates
an offspring chromosome by crossing over individual
genes from each parent. This helps potentially combine
partial solutions from the parents into a single offspring.
Further, the mutation operator is used to randomly alter
some parts of a given chromosomes and advance the
search by possibly avoiding getting stuck in a local
optimum. The algorithm then applies a selection operator
which picks the best chromosomes from the entire popu-
lation based on their fitness values and eliminates the rest.
This process is repeated until a stopping criterion, such as
a certain number of iterations or the convergence of a
fitness value, is met.

We adapt GA to our optimization problem by defining
these domain-specific data structures and operators.
Chromosome: The solution to the optimization problem
(Eqn. 8) requires (1) determining the best alternate to
activate for each PE, and (2) the type and number of
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VMs, and the mapping of data-parallel PE instances
to these VMs. We capture both of these aspects of
the deployment configuration using a double stranded
chromosome (Fig. 4). Each chromosome represents one
possible deployment configuration and the goal is to
find the chromosome with the optimal configuration.
The first strand (S1) represents the PEs and their active
alternates, with each gene in the strand representing a
PE Pi in the dataflow The value of the ith gene holds the
index j of the active alternate pji for the corresponding
PE. The second strand (S2) contains genes that represent
the list of available VMs with the list of PE instances
running on them. The value of the ith gene in strand S2
holds the list of index values j for PEs Pj mapped to
the VM ri. The chromosome size (i.e. number of genes)
is fixed based on the available resource budget.

For example, in Fig 4, the chromosome E1 represents
a deployment where strand S1 has two PEs P0 and
P1 with active alternates p0

0 and p0
1, respectively. Strand

S2 identifies two VMs, r0 and r1, with r0 running one
instance of PE P0 and two instances of PE P1 on it, while
r1 has two instances of PE P1 running on it.
Fitness Function: The objective function Θ acts as the fit-
ness function for the chromosome, and depends on both
the strands of the chromosome. The throughput con-
straint Ω ≥ Ω̂ is incorporated using a weighted penalty
function that penalizes the fitness value if a constraint
is violated. This ensures that while the chromosome is
penalized, it is not disregarded immediately and given a
chance to recover through mutations. In addition, during
runtime, the penalty function also considers the number
of changes induced on the deployment to reduce the
overhead of frequent changes in the system.

penalty =

{
−α· | Ω− Ω̂ | ·it , deployment
−α· | Ω− Ω̂ | ·it+ α′ · v · it , runtime

where, α and α′ are constants, v is the number of deploy-
ment changes observed in the chromosome as compared
to the previous deployment and it is the iteration count
for GA. it ensures that the penalty is increased as the
chromosome survives over multiple iterations and hence
allows removal of unfit chromosomes.
Crossover: Each parent chromosome is first selected
from the population using a probabilistic ranked model
(similar to the Roulette wheel) [29] while also retaining
the top 5% of the chromosomes with best fitness values.
Next the parent chromosomes are paired randomly and
a random bit mask is generated to choose the a gene
from either parent to produce the offspring chromosome.
For e.g., in Fig. 4, parents E1 (white) and E2 (gray) are
selected for crossover, and a random bit mask is used to
decide if the gene from the first parent (bit is 0) or the
second parent (bit is 1) is retained in the offspring OF1.
Mutation: We allow independent mutation for the two
chromosome strands. For the first strand with PE al-
ternates the mutation involves randomly switching the
active alternate. For the second strand of VM instances
and mapping, we probabilistically decide whether to

remove or add a PE instance for each VM. For example,
in Fig. 4, the offspring OF1 undergoes mutation by
switching the active alternate for P1 from p2

1 → p1
1, and

by adding an instance of P0 to the second VM. Mutated
genes are shown with a dotted pattern.

While GAs explore a wide range of solutions and tend
to give near-optimal solutions, their convergence perfor-
mance becomes a bottleneck during runtime adaptation.
Hence we design sub-optimal greedy heuristics that
trade optimality for speed, making them better suited
for streaming applications.

8 GREEDY DEPLOYMENT & ADAPTATION
HEURISTICS

In this section, we propose greedy heuristics to find an
approximate solution to the optimization problem. As
before, the algorithm is divided into the initial deploy-
ment phase and the runtime adaptation phase.

For the proposed heuristic, we provide sharded (SH)
and centralized (CE) variants that differ in the quanta
of information needed and the execution pattern of the
scheduler. The sharded version uses one scheduler per PE,
and all data-parallel instances of a PE communicate with
their scheduler, potentially across VMs. However, sched-
ulers for different PEs do not communicate. Hence each
scheduler only has access to its PE instances. In the cen-
tralized version, a single scheduler gathers information
about the entire dataflow and hence has a global view
of the execution of all PEs. As we show (§ 9.2), while
the SH scheduler is inherently decentralized and reduces
the transfer of monitoring data during execution, the CE
variant, due to its global view, is more responsive to
changes in the execution environment.

8.1 Initial Deployment Heuristic
The initial deployment algorithm (Alg. 1) is divided into
two stages: Alternate selection (lines 2–11) and Resource
allocation (lines 12–25). These algorithms are identical
for both SH and CE schedulers; however, their costing
functions differ (Table 1).

The alternate selection stage ranks each PE alternate
based on the ratio of its value to estimated cost (line 4),
and chooses the one with the highest ratio. Since we do
not know the actual cost for the alternates until resource
allocation, the heuristic uses the estimated processing
requirements (cAP ) as an approximation. The GETCOSTO-
FALTERNATE function varies between the SH and CE
versions. The SH strategy calculates an alternate’s cost
based on only its processing requirements, while the CE
strategy calculates the cost of the alternate as the sum
of both its own processing needs and that of its down-
stream PEs – intuitively, if an upstream PE has more
resources allocated, its output message rate increases and
this has a cascading impact on the input rate of the
succeeding PEs. Also, a higher selectivity upstream PE
will further impact the successors’ cost since they will
have to process more messages. This cost is calculated
using a dynamic programming algorithm by traversing
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Algorithm 1 Initial Deployment Heuristic Algorithm
1: procedure INITIALDEPLOYMENT(Dataflow D)

. Alternate Selection Stage
2: for PE P ∈ D do
3: for Alternate A ∈ P do
4: cAP ← GETCOSTOFALTERNATE(A)
5: γ ← A.V alue
6: if γ/cAP ≥ best then
7: best← γ/cAP
8: selected← A
9: end if

10: end for
11: end for

. Resource Allocation Stage
12: while Ω ≤ Ω̂ do
13: if (VM.isAvailable = false) then
14: VM ← INITIALIZEVM(LargestVMClass)
15: end if
16: P ← GETNEXTPE
17: CurrentAlloc← ALLOCATENEWCORE(P, V M)
18: Ω← GETESTIMATEDTHRUPUT(D,CurrentAlloc)
19: end while
20: for PE P ∈ D do
21: if ISOVERPROVISIONED(P) then
22: REPACKPEINSTANCES(P) . Move PE instances to a VM

with lower core capacity
23: end if
24: end for
25: REPACKFREEVMS . Repack PEs in VMs with free cores to VMs

with less number of cores
26: end procedure

the dataflow graph in reverse BFS order rooted at the
output PEs.

This is followed by a resource selection stage (lines 12–
25) which operates similar to the variable-sized bin packing
(VBP) problem [30]. For the initial deployment, in the
absence of running VMs, we assume that each VM
from a resource class behaves ideally as per its rated
performance. The algorithm picks PEs (objects) in an
order given by GETNEXTPE, and puts an instance of
each PE in the largest VM (bin) (line 17), creating a new
VM (bin) if required. It then calculates the estimated
relative throughput for the application given the cur-
rent allocation (line 18) using Eqn. 7 and repeats the
procedure if the application constraint is not met. It
should be noted that the GETESTIMATEDTHROUGHPUT
function considers both the allocated cores and the avail-
able bandwidth to calculate the relative throughput and
hence scales out when either becomes a bottleneck.

The intuition behind GETNEXTPE is to choose PEs
in an order that not only increases VM utilization
but also limits the message transfer latency between
the PEs by collocating neighboring PEs in the dataflow
within the same VM. We order the PEs using a forward
DFS traversal, rooted at the input PEs, and allocate
resources to them in that order so as to increase the
probability of collocating neighboring PEs. It should be
noted that the CPU cores required for the individual
PEs are not known in advance as the resource require-
ments depend on the current load which in turn de-
pends on the resource requirements of the preceding PE.
Hence, after assigning at least one CPU core to each PE
(INCREMENTALLOCATION), the deployment algorithm
chooses PEs in the order of largest bottlenecks in the
dataflow, i.e., lowest relative PE throughput (Ωi). This

TABLE 1: Functions used in Initial Deployment Strategies

Function Sharded (SH) Centralized (CE)

GETCOSTOF-
ALTERNATE

A.cost A.cost + Si ×∑
successor.cost

GETNEXTPE
if All PEs assigned then

return argmin
Pj∈P

(Ωjt )

else
return Next PE in DFS

end if

REPACKPEINSTANCES N/A Move PE instance to
smallest VM big enough
for required core-secs

REPACKFREEVMS N/A Iterative Repacking [30]

ensures that PEs needing more resources are chosen first
for allocation. This in turn may increase the input rate
(and processing load) on the successive PEs, making
them the bottlenecks. As a result, we end up with an
iterative approach to incrementally allocate CPU cores
to PEs using the VBP heuristic until the throughput
constraint is met. Since the resource allocation only
impacts downstream PEs, this algorithm is bound to
converge. We leave a theoretical proof to future work.

At the end, the algorithm performs two levels of
repacking. After a solution is obtained using VMs from
just the largest resource class, we first move one in-
stance for all the over-provisioned PEs to the smallest
resource class large enough to accommodate that PE in-
stance (best fit, using REPACKPEINSTANCES). This may
free up capacity on the VMs, and hence, we again use
iterative repacking [30] (REPACKVMS) to repack all the
VMs with spare capacity to minimize wasted cores. Dur-
ing this process, we may sacrifice instance collocation in
favor of reduced resource cost. Our evaluation however
shows that this is an acceptable trade-off toward maxi-
mizing the objective function. Note that these algorithms
are all performed off-line, and the actual deployment is
carried out only after these decision are finalized.

Both, the order in which PEs are chosen and the
repacking strategy affects the quality of the heuristic.
While the sharded strategy SH uses a local approach and
does not perform any repacking, the centralized strategy
CE repacks individual PEs and VMs, as shown in Table 1.

8.2 Runtime Adaptation Heuristic

The runtime adaptation kicks in periodically over the
lifetime of the application execution. Alg. 2 considers
the current state of the dataflow and cloud resources –
available through monitoring – in adapting the alternate
and resource selection. The monitoring gives a more
accurate estimate of data rates, and hence the resource
requirements and its cost.

As before, the algorithm is divided into two stages:
Alternate selection and Resource allocation. However,
unlike the deployment heuristic, we do not run both
the stages at the same time interval. Instead, the alter-
nates are selected every m intervals and the resources
reallocated every n intervals. The former tries to switch
alternates to achieve the throughput constraint given
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the existing allocated resources, while the latter tries
to balance the resources (i.e. provision new VMs or
shutdown existing ones) given the alternates that are
active at that time. Separating these stages serves two
goals. First, it makes the algorithm for each stage more
deterministic and faster since one of the parameters is
fixed. Second, it reduces the number of retractions of
deployment decisions occurring in the system. For e.g.,
if a decision to add a new VM leads to over-provisioning
at a later time (but before the hourly boundary), instead
of shutting down the VM, the alternate selection stage
can potentially switch to an alternate with higher value,
thus utilizing the extra resources available and in the
process increase the application’s value.

During the alternate selection stage, given the current
data rate and resource performance, we first calculate
the resources needed for each PE alternate (line 6). We
then create a list of “feasible” alternates for a given
PE, based on whether the current relative throughput
is lesser or greater than the expected throughput Ω̂.
Finally, we sort the feasible alternates in decreasing order
of the ratio between value to cost, and select the first
alternate which can be accommodated using the existing
resource allocation. After this phase the overall value
either increases or decreases depending on whether the
application was over-provisioned or under-provisioned
to begin with, respectively.

The RESOURCEREDEPLOY procedure is used to allo-
cate or de-allocate resources to maintain the required
relative throughput while minimizing the overall cost.
If the Ω ≤ Ω̂ − ε, the algorithm proceeds similar to the
initial deployment algorithm. It incrementally allocates
additional resources to the bottlenecks observed in the
system and repacks the VMs. However, if Ω > Ω̂ + ε, the
system must scale in to avoid resource wastage and has
two decisions to make: first, which PE needs to be scaled
in and second, which instance of the PE is to be removed,
thus freeing the CPU cores. The over-provisioned PE
selected for scale in is the one with the maximum
relative throughput (Ω). Once the over-provisioned PE
is determined, to determine which instance of that PE
should be terminated, we get the list of VMs on which
these instances are running and then weigh these VMs
using the following “weight” function (eqn 10). Finally,
a PE instance which is executing on the least weighted
VM is selected for removal.

VM Weight(ri) = Tc(ri)×
(
FreeCores(ri)
TotalCores(ri)

)
×(1− ϕri

ϕ
)×

(
TotalCores(ri)×π
Cost Per VM Hour

) (10)

where Tc is the time remaining in the current cost
cycle (i.e. time till the next hourly boundary), ϕri is the
number of PE instances for the over-provisioned PE on
the VM ri, and ϕ is the total number of instances for that
PE across all VMs. The VM Weight is lower for VMs with
less time left in their hourly cycle, and thus preferred for
removal. This increases temporal utilization. Similarly,
VMs with fewer cores used are prioritized for removal.
Further, VMs with higher cost per normalized core have
a lower weight so that they are selected first for shut-
down. Hence the VM Weight metric helps us pick the

Algorithm 2 Runtime Adaptation Heuristic Algorithm
1: procedure ALTERNATEREDEPLOY(DataflowD,Ωt) . Ωt is the

observed relative throughput
2: for PE P ∈ D do . Alternate selection phase
3: alloc← CURRALLOCATEDRES(P) . Gets the current allocated

resources (accounting for Infra. variability)
4: requiredC ← REQUIREDRES(P.activeAlternate) . Gets the

required resources for the selected alternate
5: for AlternateA ∈ P do
6: requiredA← ACTUALRESREQUIREMENTS(A)
7: if Ωt ≤ Ω̂− ε then
8: if requiredA ≤ requiredC then . Select alternate

with lower requirements
9: feasible.ADD(A)

10: end if
11: else if Ωt ≥ Ω̂ + ε then
12: if requiredA ≥ requiredC then . Select alternate

with higher requirements
13: feasible.ADD(A)
14: end if
15: end if
16: end for
17: SORT(feasible) . Decreasing order of value/cost
18: for feasible alternate A do
19: if requiredA < alloc then
20: SWITCHALTERNATE(A)
21: done
22: end if
23: end for
24: end for
25: end procedure
1: procedure RESOURCEREDEPLOY(DataflowD,Ωt)
2: if Ωt ≤ Ω̂− ε then
3: Same procedure as initial deployment
4: else if Ωt ≥ Ω̂ + ε then
5: while Ω ≥ Ω̂ do
6: PE ← overProvisionedPE
7: instance← SELECTINSTANCETOKILL(PE)
8: newAlloc← REMOVEPEINSTANCE(instance)
9: Ω← GETESTIMATEDTHRUPUT(D,newAlloc)

10: end while
11: repackFreeVMs() . Repack PEs in the VMs with free cores

onto smaller VMs with collocation
12: end if
13: end procedure

PE instances in a manner that can help free up costlier,
under-utilized VMs that can be shutdown at the end of
their cost cycle to effectively reduce the resource cost.

9 EVALUATION

We evaluate the proposed heuristics through a simula-
tion study. To emulate real-world cloud characteristics,
we extend CloudSim [31] simulator to IaaSSim, that in-
corporates temporal and spatial performance variability
using VM and network performance traces collected
from IaaS Cloud VMs 2. Further, FloeSim simulates the
execution of the dynamic dataflows [21], on top of IaaS-
Sim, with support for dataflows, alternates, distributed
deployment, runtime scaling, and plugins for different
schedulers. To simulate data rate variations, the given
data rate is considered as an average value and the
instantaneous data rate is obtained using a random
walk between ±50% of that value. However, to enable
comparisons between different simulation runs, we gen-
erate this data trace once and use the same across all
simulation runs.

2. IaaSSim and performance traces are available at
http://github.com/usc-cloud/IaaSSimulator
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Fig. 5: Dynamic Continuous Dataflow for LRB. Alternates for
P2 and P7 have value (γ), cost (c) and selectivity (s).

For each experiment, we deploy the Linear Road
Benchmark (LRB) [16] as a dynamic dataflow using
FloeSim, run it for 12 simulated hours (T = 12 hrs)
on simulated VMs whose performance traces were ob-
tained from real Amazon EC2 VMs. Each experiment
is repeated at least three times and average values are
reported. We use a timestep duration of t = 5 mins at
the start of which adaptation decisions are made.

9.1 Linear Road Benchmark (LRB)
The Linear Road Benchmark [16] is used to compare the
performance of data stream management systems and
has been adopted to general purpose stream processing
systems [32]. Using this as a base, we develop a dy-
namic continuous dataflow application to evaluate the
proposed scheduling heuristics. LRB models a road toll
network within a confined area (e.g., 100 sq. miles), in
which the toll depends on several factors including time
of the day, current traffic congestion levels and proximity
to accidents. It continuously ingests “position reports”
from different vehicles on the road and is responsible
for (i) detecting average speed and traffic congestion
for a section, (ii) detecting accidents, (iii) providing toll
notifications to vehicles whenever they enter a new
section, (iv) answering account balance queries and toll
assessments, and (v) estimating travel times between
two sections. The goal is to support the highest number
of expressways while satisfying the desired latency con-
straints. To simulate realistic road conditions, the data
rate varies from around 10 msgs/sec to around 2,000
msgs/sec per expressway.

Fig. 5 shows the LRB benchmark implemented as
a dynamic continuous dataflow. The Weather Updates
(P0) and Report Parse (P1) PEs act as the input PEs for
the dataflow. While the former receives low frequency
weather updates, the latter receives extremely high fre-
quency position reports from individual vehicles (each
car sends a position report every 30 secs) and exhibits
variable data rates based on the current traffic condi-
tions. The Congestion Estimation PE (P2) estimates current
as well as near-future traffic conditions for different
sections of all the monitored expressways. This PE may
have several alternates using different machine learning
techniques that predict traffic with different accuracy
and future horizons. We simulate three alternates with
different value (γ), cost (c) and selectivity (s) values
as shown in the tables in Fig. 5. The Accident Detector
PE (P3) detects accidents based on the position reports,
which is forwarded to Toll Calculator (P4) and Travel Time

Estimator (P7) PEs. The former notifies toll values (P5)
and account balances (P6) to the vehicles periodically.
The latter (P7) provides travel time estimates, and has
several alternates based on different forecasting models.
For simulations, we use two alternates, e.g., (1) deci-
sion/regression tree model which takes several historical
factors into account, and (2) time series models which
predict using only the recent past traffic conditions.

9.2 Results
We compare the proposed centralized and sharded
heuristics (CE and SH) and the GA algorithm with
a brute force approach (BR) that explores the search
tree but uses intelligent pruning to avoid searching
sub-optimal or redundant sub-trees. We evaluate their
overall profit achieved, overall relative throughput and
the monetary cost of execution over the optimization
period of T = 12 hrs. An algorithm is better than
another if it meets the necessary relative application
throughput constraint, Ω ≥ Ω̂ − ε, and has a higher
value for the objective function Θ (Eqn. 8) Note that
the necessary constraint for Ω must be met but higher
values beyond the constraint do not indicate a better
algorithm. Similarly, an algorithm with a higher Θ value
is not better unless it also meets the Ω constraint.

For all the experiments, we define the relative through-
put threshold as Ω̂ = 0.8 with a tolerance of ε = 0.05. We
calculate σ for the LRB dataflow using Eqn. 9 by setting
CΓmin
max = 0.5×T×DataRate

10 and CΓmax
max = 1.0×T×DataRate

10 .
We empirically arrive at these bounds by observing the
actual break-even cost for executing the workflow using
a brute force static deployment model.

1) Effect of Variability: Table 2 shows the overall profit
and the relative throughput for a static deployment
of LRB using different scheduling algorithms with an
average input data rate of 50 msgs/sec. The overall profit
which is a function of application value and resource cost
remains constant due to a static deployment (without
runtime adaptation). However, the relative throughput
varies as we introduce infrastructure and data variability.
In the absence of any variability, the brute force (BR)
approach gives the best overall profit and also meets the
throughput constraint (Ω ≥ 0.8). Further, GA approaches
a near optimal solution with ΘGA → ΘBR when neither
infrastructure nor input data rates vary, and is within the
tolerance limit (Ω̂ − ε < Ω = 0.79 < Ω̂ + ε). The SH and
CE heuristics meet the throughput constraint but give a
lower profit when there is no variability.

However, when running simulations with infrastruc-
ture and/or data variability, none of the approaches
TABLE 2: Effect of variability of infrastructure performance and
input data rate on relative output throughput using different
scheduling algorithms. Static LRB deployment with average of
50 msgs/sec input rate, Ω̂ = 0.8.

Relative Application Throughput (Ω)
Algo. Profit (Θ) Neither Infra. Perf. Data Rate Both
BR 0.67 0.80 0.68 0.59 0.44
GA 0.65 0.79 0.67 0.48 0.37
SH 0.45 0.81 0.60 0.40 0.29
CE 0.58 0.81 0.66 0.42 0.31
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Fig. 6: Effect of infrastructure and data rate variability on Static Deployment and Runtime Adaptation, as input data rate rises.

meet the desired throughput constraints with Ω values
ranging between 0.29 to 0.68, which is much less than the
goal of Ω̂ = 0.8. Since these experiments do not change
the deployment at runtime, the initial deployment is
based on assuming constant data rates and infrastructure
performance. Even the two best static deployment strate-
gies in the absence of variability, BR and GA, rapidly
degrade in output throughput when both infrastructure
and data variability are present. This is more so as
the average input data rate increases from 10 msgs/sec
to 2,000 msgs/sec in Fig. 6(a). Due to explosion in
state space, we could not run the BR algorithm beyond
50 msgs/sec input rate. This analysis motivates the need
for autonomic adaptations to application deployment.

2) Improvements with Runtime Adaptation:
Figs. 6(b) and 6(c) show the improvements in relative
throughput and overall application profit by utilizing
different runtime adaptation techniques in the presence
of both infrastructure as well as data variability. We
use GA as the upper bound (instead of BR) since BR
is prohibitively slow for runtime adaptations and, as
shown in Table 2, GA approaches the optimal in many
scenarios. However, as discussed later (Fig. 7(a)), even
GA becomes prohibitive for data rates ≥ 500 msg/sec,
and hence the missing entries in Figs. 6(b) and 6(c).

We observe that with dynamic adaptation both GA
and the greedy heuristics (SH and CE) achieve the
desired throughput constraint (Ω ≥ Ω̂ = 0.8) for all
the input data rates tested. This allows us to compare
their achieved application profit (Fig. 6(c)) and make
several key observations. First, profit from GA is con-
sistently more than the SH and CE greedy heuristics.
Second, CE achieves a better profit than SH and reaches
between 60% to 80% of GA’s profit. In fact, SH gives
negative profit (loss) in some cases. Understandably, the
CE scheduler having a global view performs signifi-
cantly better than SH that performs local optimizations.
However, CE has a higher overhead due to centralized
collection of monitoring data (the exact overhead is not
available from simulations). Lastly, comparing the static
and dynamic deployment from Table 2 and Fig. 6(c), for
a data rate of 50 msg/sec under variable conditions, we
do see a drop in profit using runtime adaptation as it
tries to achieve the Ω constraint. For GA and CE, the
profits for adaptive deployment drop from 0.65 → 0.34
and 0.58 → 0.29, respectively, but are still well above
the break-even point of 0. But the static deployments
violate the throughput constraint by a large margin

which makes their higher profits meaningless.
3) Scalability of Algorithms: Figs. 7(a) and 7(b) show

algorithm scalability with respect to algorithm runtime
and the number of cores for the initial deployment
algorithm with increase in the incoming data rates.
While the BR and the GA algorithms provide (near)
optimal solutions for smaller data rates, their overhead
is prohibitively large for higher data rates (fig. 7(a))
(> 10, 000 secs for BR at 50 msg/sec, and > 1, 000 secs
for GA at 8,000 msg/sec). This is due to the search space
explosion with the increase in the number of required
VMs as shown in fig 7(b). On the other hand, both CE
and SH greedy heuristics take just ∼ 2.5 secs to compute
at 8,000 msg/sec, and scale linearly (O(|ϕ| + |R|)) with
the number of PE instances (|ϕ|) and number of virtual
machines(|R|). Further we see that SH algorithm leads
to higher resource wastage (more cores) with increase in
the data rates, while CE and GA show a linear relation
to the data rates in Fig. 7(b). Similar results are seen for
the adaptation stage for SH and CE algorithms but the
plots are omitted due to space constraints.

4) Benefit of using Alternates: We study the reduction
in monetary cost to run the continuous dataflow due to
the use of alternates, as opposed to a dataflow deployed
with only a single implementation for the PEs; we choose
the implementation with the highest value (Γ = 1).
Fig. 7(c) shows the cost (US$) of resources required to
execute the LRB dataflow for the optimization interval
T = 12 hr using the greedy heuristics with runtime
adaptation, in the presence of both infrastructure and
data variability. We use AWS’s EC2 prices using m1.*
generation of VMsfor calculating the monetary cost.

We see that the use of alternates by runtime adaptation
leads to a reduction in total monetary cost by 6.9% to
27.5%, relative to the non-alternate dataflow; alternates
with different processing requirements provide an extra
dimension of control to the scheduler. In addition, the
benefit of alternates increases with high data rate – as
the input data rate and hence the resource requirement
increases, even small fluctuations in data rate or infras-
tructure performance causes new VMs to be acquired
to meet the Ω constraint, and acquiring VMs has a
higher overhead (e.g., the hourly cost cycle and startup
overheads) than switching between alternates.

10 RELATED WORK
Scientific workflows [33], continuous dataflow sys-
tems [7], [8], [5], [9] and similar large-scale distributed
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programming frameworks [34], [35] have garnered a
renewed research focus due to the recent explosion in
the amount of data, both archived and real time, and
the need for large-scale data analysis on this “Big Data”.
Our work is based upon the stream processing and con-
tinuous dataflow systems that allow a task-graph based
programming model to execute long running continu-
ous applications which process incoming data streams
in near-real time. Other related work includes flexible
workflows and heterogeneous computing, service ori-
ented architecture (SOA) and autonomic provisioning
and resource management in clouds. We discuss the
state-of-the-art in each of these research areas.

Continuous dataflow systems have their root in Data
Stream Management Systems, which process continuous
queries over tuple streams composed of of well-defined
operators [36]. This allows operator-specific query op-
timizations such as operator split and merge to be
performed [37]. General-purpose continuous dataflow
systems such as S4 [7], Storm [8], and Spark [34], on
the other hand, allow user-defined processing elements,
making it necessary to find generic auto-scaling solu-
tions such as operator scaling and data-parallel oper-
ations [38]. Several solutions, including one leverag-
ing cloud elasticity to support auto-scaling, have been
proposed [11]. However, these systems [10], [39], only
consider data variability as a factor for auto-scaling
decisions and assume that the underlying infrastructure
offers the same performance over time. Our work shows
that this assumption does not hold in virtualized clouds.

Autonomic provisioning for workload resource man-
agement on clouds have been proposed. These use per-
formance monitoring and model-based approach [40],
[41]. We use a similar approach and propose heuristics
for dynamic continuous dataflows that handle not only
data rate variations but also changes in the underlying
infrastructure performance. Recent work [32] integrates
elastic scale out and fault tolerance for stateful stream
processing but adopts a local only policy based on CPU
utilization for scaling. In this article, we assume stateless
PEs, and fault tolerance is beyond the scope of this work.
Our results do show that using local scale-out strategies
that ignore the dataflow structure under-perform, and
hence motivates heuristics with a global view.

Flexible workflows [42], [19] and service selection in
SOA [43] allow workflow compositions to be trans-
formed at runtime. This provides a powerful composi-
tional tool to the developer to define business-rule based

generic workflows that can be specialized at runtime de-
pending on the environmental characteristics. The notion
of “alternates” we propose is similar in that it offers
flexibility to the developer and a choice of execution
implementations at runtime. However, unlike flexible
workflows where the decision about task specialization
is made exactly once based on certain deterministic pa-
rameters, in continuous dataflows, this decision has to be
re-evaluated regularly due to their continuous execution
model and dynamic nature of the data streams.

To exploit a heterogeneous computing environment,
an application task may be composed of several sub-
tasks that have different requirements and performance
characteristics. Various dynamic and static task matching
and scheduling techniques have been proposed for such
scenarios [18], [44], [45]. The concept of alternates in
dynamic dataflow is similar to these. However, currently,
we do not allow heterogeneous computing requirements
for these alternates, though they may vary in processing
requirements. Even with this restriction, the concept of
alternates provides a powerful programming abstraction
that allows us to switch between them at runtime to
maximize the overall utility of the system in response
to changing data rates or infrastructure performance.

Several studies have compared the performance of the
virtualized environment against the barebones hardware
to show their average performances are within an accept-
able tolerance limit of each other. However these studies
focused on the average performance characteristics and
not on the variations in performance. Recent analysis
of public cloud infrastructure [12], [46], [47], [14], [48]
demonstrate high fluctuations in various cloud services,
including cloud storage, VM startup and shutdown time
as well as virtual machines core performance and virtual
networking. However, the degree of performance fluc-
tuations vary across private and different public cloud
providers [13]. Reasons for this include multi-tenancy
of VMs on the same physical host, use of commodity
hardware, collocation of faults, and roll out of software
patches to the cloud fabric. Our own studies confirm
these. On this basis, we develop an abstraction of the
IaaS cloud that incorporates infrastructure variability
and also include it in our IaaS Simulator.

Meta-heuristics have been widely used to address the
task scheduling problem [24], [25], [26], [27]. Most of
the approaches are nature inspired and rely on GA [28],
ant colony optimization [49], particle swarm optimiza-
tion [50] or simulated annealing [51] techniques to search
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for sub-optimal solutions. A number of studies to ana-
lyze the efficiency of meta-heuristics [24] show that in
certain scenarios GAs can over perform greedy heuris-
tics. More generally, Zamfirache et. al. [27] show that
population based GA meta-heuristics of classical greedy
approaches provide, through mutations, solutions that
are better compared to their classic versions. Recently,
a comparison of ant colony optimization and particle
swarm optimization with a GA for scheduling DAGs on
clouds was proposed [26]. None of these task scheduling
algorithms or meta-heuristics based solutions take into
account a dynamic list of task instances. Our own prior
work [25] uses a GA to elastically adapt the number of
task instances in a workflow to incoming web traffic but
does not consider alternates or performance variability.

11 CONCLUSION

In this article, we have motivated the need for online
monitoring and adaptation of continuous dataflow ap-
plications to meet their QoS constraints in the presence
of data and infrastructure variability. To this end we
introduce the notion of dynamic dataflows, with support
for alternate implementations for dataflow tasks. This
not only gives users the flexibility in terms of application
composition, but also provides an additional dimension
of control for the scheduler to meet the application
constraints while maximizing its value.

Our experimental results show that the continuous
adaptation heuristics which makes use of application
dynamism can reduce the execution cost by up to 27.5%
on clouds while also meeting the QoS constraints. We
have also studied the feasibility of GA based approach
for optimizing execution of dynamic dataflows and
show that although the GA based approach gives near-
optimal solutions its time complexity is proportional
to the input data rate, making it unsuitable for high
velocity applications. A hybrid approach which uses GA
for initial deployment and the CE greedy heuristic for
runtime adaptation may be more suitable. This is to be
investigated as future work.

In addition, we plan to extend the concept of dynamic
tasks which will further allow for alternate implementa-
tions at coarser granularity such as “alternate paths”,
and provide end users with more sophisticated con-
trols. Further, we plan to extend the resource mapping
heuristics for an ensemble of dataflows with a shared
budget and address issues such as fairness in addition
to throughput constraint and application value.
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