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Abstract—The Internet of Things is gaining traction due to the
emergence of smart devices surrounding our daily lives. These
cyber-physical systems (CPS) are highly distributed, commu-
nicate over wi-fi or wireless and generate massive amounts of
data. In addition, many of these systems require near real-time
control (RTC). In this context, future IT platforms will have
to adapt to the Big Data challenge by bringing intelligence to
the edge of the network (dew computing) for low latency fast
local decisions while keeping at the same time a centralized
control based on well-established scalable and fault tolerant
technologies brought to life by cloud computing.

In this paper we address this challenge by proposing
a hybrid cross layer dew-fog-cloud architecture tailored for
large scale data-driven CPSs. Our solution will help catalyze
the next generation of computational platforms where mobile
and dynamic IoT platforms with energy and computational
constraints will be used on demand for storing and computing
Big Data located nearby in near real-time for local decisions
and extend to cloud systems for fast orchestrated centralized
decisions. The proposed architecture aims to leverage the
advantages of both cloud and dew systems to overcome the
challenges and limitations of modern communication networks.

We also discuss two real-life life solutions from the field of
smart grids and smart transportation systems.

1. Introduction

The Internet of Things (IoT) is growing at a fast pace
especially with the increasing presence of networked inter-
acting components present in everyday activities such as
transportation, distributed robotics, medical monitoring, au-
tomatic pilot avionics, and the emerging smart city. In 2016,
6.4 billion connected devices were, according to Gartner
[1], present around the world with forecasts predicting up
to 30 billion by 2020. Many of these devices are part of
autonomous cyber-physical systems (CPS), e.g., smart grids,
self-driving cars, intelligent traffic management systems, and
require near real-time control (RTC) for coordination and
critical decision making. Thus, IoT is already impacting our
society in ways that will revolutionize our lives and how
we interact with each other and with the CPSs themselves
from a cultural and socio-economic perspective. However,

migrating towards a fully interconnected world poses both
scientific and technological challenges which need to be met
in the short term by novel solutions if the vision of an IoT
world is to become reality. These systems will no longer be
controllable through complex linear and nonlinear systems
of equations but through data-driven machine learning al-
gorithms. In particular, the Big Data problem together with
the low energy requirements and computational resources of
IoT devices need to be mitigated through novel platforms
which enable the extension of these systems to large scale
processing environments such as the clouds which already
posses the necessary software stack for data analytics of
heterogeneous data streams.

The large amount of high speed sensor data arriving in
variable data rates poses serious design and cost challenges
to existing on-edge cyber-infrastructures. The stress of hav-
ing tens of thousands of devices communicating by using
wi-fi or wireless over vast distances with centralized data
centers placed in the cloud is already limiting the ability
of existing smart grids to send real-time data (e.g., most
smart grids can only send aggregated data every 8 hours or
even daily which means that decisions at finer granularity
are hard if not impossible to achieve). This greatly limits
the ability to efficiently control these large distributed CPS
in near RTC. The problem is that the cost of upgrading the
data transmission medium (e.g., wi-fi, wireless, PLC, blue-
tooth) to handle city wide CPS infrastructures of millions
of devices makes the current approaches which centralize
data and control inefficient. Thus, cloud computing alone
will not be able to address the issue of CPS generated Big
Data.

One solution would be to move the processing towards
the edge of the network closer to the data source. We
identify here three layers of computation [2]: edge or dew
(on device), fog (local area with partial view of the CPS),
cloud (global view of the CPS). Combining these three
layers in a single coherent scalable data-driven solution
is the main challenge that IoT will have to overcome to
truly become ubiquitous. While clouds offer the premise for
on-demand scalable computing they need the data delivered
to them before proceeding. Battery powered edge devices
already have some processing power and storage capacity
to preprocess local data before sending them up the hierar-



chy for centralized control and optimizations. In this setup
the network itself becomes the bottleneck. A hierarchical
approach where intelligence is brought near the edge and
combined with the advantages of using clouds is therefore
required. In this context, the limitations of the network
become a problem especially for near RTC based CPSs.

Fundamental research is warranted in several core areas
ranging from hardware infrastructure, networking and com-
munication to programming models, scalable and resilient
distributed execution frameworks as well as domain specific
software optimizations. This paper addresses the latter end
of the spectrum. The objectives are twofold: 1) propose an
architecture for generic near RTC based CPS to leverage fog
and cloud computing, and 2) map the proposed architecture
on two use cases with different requirements, demonstrating
the wider applicability of our solution.

The rest of the paper is structured as follows: Section
2 details existing solutions, Sect. 3 describes the proposed
cross layer architecture, Sect. 4 describes the software stack
envisioned to be deployed on top of the architecture, Sect. 5
describes two possible use cases, and finally Sect. 6 outlines
the key points of the paper.

2. Related Work

While much research has been conducted on designing
secure and scalable CPSs [3], [4], [5], [6], [7] few focus on
utilizing cloud infrastructure to enable scalability and RTC
[8], [9], [10]. Most of the existing work is geared towards
challenges in specific CPSs such as vehicular networks [8]
or smart grids [11] and employ several domain specific
strategies to achieve RTC.

A framework to integrate IoT and CPS is proposed in
[12]. However, it does not consider the resources of clouds
to enable fast coordinated control over large scale distributed
CPSs.

We propose to abstract the features common across an
array of CPSs and develop a generic hierarchical architecture
and middleware with scalability, reliability, and adaptability
as its fundamental principles.

Finally, studies [9], [13], [14] have been conducted on
evaluating the feasibility of using clouds in the context of
CPS and on identifying challenges, performance issues and
bottlenecks. By building on these results we develop an
architecture that will is beneficial not only in the context of
CPSs but also in other domains where near RTC is crucial.

3. Proposed Architecture

We assume CPSs to comprise of low energy and memory
distributed devices which need to share their information
in order to globally optimize the entire CPS. Examples of
such systems include smart grids where each smart meter
and sensor needs to send its information to the utility
which then decides on the critical areas of the power grid.
However, clients can still optimize their consumption by
taking decisions based on local information.

Orchestrating large scale CPSs is challenging due to
the data deluge coming from their sensors which needs
to be timely processed and analyzed for decision making.
to avoid flooding the network with data several choices
exist. First, the sampling interval can be decreased but this
can lead to crucial loss of information which cannot be
accurately reconstructed through interpolation techniques.
Second, data could be preprocessed in situ before sending
meta-information to the central controller for the heavy pro-
cessing part of global decision making. The local processing
could act as a local optimization where decisions requiring
a local or partial view of the entire CPS are taken without
involving the central controller.

Focusing on the second approach we argue that in order
o make the process efficient the central controller could
be employed only when localized control fails to keep
the system within predefined parameters as given by the
control model. The control model is a data-driven model
used by machine learning algorithms to take local or global
optimizations of the CPS. In a smart grid context this means
that while certain users could optimize their consumption
reducing the stress on the power grid in demanding days
(i.e., hot days when A/C is responsible for a large portion
of the total energy consumption) they do not sum up to form
the critical mass required to reduce the demand below the
utility generation capacity.

Figure 1 depicts the envisioned architecture for such a
hybrid system. The entire system is event based where the
execution of each component is triggered by the occurrence
of one or more events. There are three key components we
discuss next in relation with the events used for triggering
them.
Big Data preprocessing and local control component
which enables dew computing. Data is generated locally on
the edge devices. Based on the recorded data data pruning
takes place and historical data is stored within the limited
device memory of each device. Then, data energy efficient
and low memory footprint machine learning algorithms can
be used to predict the future state of each device assuming
no outside world interaction. This simple model can be
extended by allowing nearby devices – in the fog – to share
their information and feed their data-driven algorithms with
fog data. Section 5 will further discuss the implications of
this approach on two different use cases. This preprocessed
data (either by each device or by a group of nearby de-
vices) is sent to the RTC control component. By sending
only partial data we can relieve some of the stress on the
network and enable better horizontal scalability of the CPS.
Depending on the CPS the preprocessed data could be sent
only when a global deterioration of the overall system is
noticed. This situation could be triggered by an event from
a module monitoring the control accuracy in the RTC control
component.
RTC component for fast cloud processing. To efficiently
control large scale CPSs global information is required.
This information can be exchanged through a P2P approach
among edge devices or can be handled centrally. It is obvi-
ous that for near RTC this information can easily saturate,



Figure 1. Envisioned hybrid cross layer architecture for dynamic data-
driven CPSs.

in both cases, the network pushing the need for alternative
methods which do not require constant near RTC data
delivery. In our case we argue for a cloud based approach
due to the elasticity, reliability, and support (i.e., software
like Apache Storm, Spark, MapReduce) of such systems to
process Big Data. This component is responsible for the
management of the CPS and acts the central controller.
Based on the control model and recent data from the edge
devices it updates the global view of the CPS and takes
decisions to globally optimize the system. Recent works [15]
have also shown that it is possible to not rely on information
from all edge devices but rather use causality to reduce the
search space and still be able to take accurate decisions.
Knowledge update component. This component is respon-
sible for updating the control model used by the RTC control
component. The control model can refer to a pair <machine
learning algorithm, data> where it has been shown [16] that
the efficiency of a machine learning algorithm depends on
the input data. Hence, based on the characteristics of the data
arriving from the edge devices different algorithms could be
used and changed online. The update in the control model
could be triggered by the RTC component when significant
changes in the data properties are noticed or when a control
deterioration is observed despite using up to date data from
all edge devices. the entire collection of control models
is computed offline based on benchmarks on real-life CPS
data.

4. Envisioned Software Stack

Based on the proposed architecture, a hybrid dew-fog-
cloud control system for near RTC of CPSs would have to
implement the following software stack comprising of on-
edge algorithms, middleware, and elastic machine learning
on clouds.

4.1. Low Energy and Memory On-Edge Algorithms

Most edge devices have limited memory and energy
consumption limitations due to battery lifetime. As example,
the current state of the art smart meters have a memory of
only 92KB on which they store temporary data and perform
minimal data preprocessing. The remaining memory, while
extremely low could be used for data pruning and simple
data-driven predictions. The predictions could be done either
on the smart meter or at the data concentrator (gateway to a
set of customers) in the fog. Alternatively, some of the data
could be sent to customers mobile devices – if in the local
area – for processing.

Performing simple machine learning on these edge de-
vices will require analysis and redesign of existing algo-
rithms to tailor them for memory and energy constrained
environments without significantly impacting their accuracy.
Furthermore, the algorithms will have to consider data
scarcity and veracity.

4.2. Dew-Fog-Cloud Middleware

Bridging fog and clouds requires a middleware capable
of leveraging the benefits of clouds to improve the control
of edge devices. The three-tier middleware will enable:

• Dew level:

– Local data preprocessing and control deci-
sions by using on on-edge algorithms for low
energy and low memory environments;

• Fog level:

– Preprocessed data aggregation and processing
to reduce network overhead when communi-
cating updates to the cloud;

• Cloud level:

– Periodic control model updates to train the
machine learning analysis on incoming data;

– Near RTC centralized decisions based on the
current control model.

The middleware consists of three key pluginnable com-
ponents as depicted in Fig. 1, each acting as a plug-in for
easy customization. Inter-component communication needs
to be reliable and light to reduce chances for network
congestion and to enable horizontal device scalability to
support large scale distributed CPSs. Hence, some tasks will
have to be migrated towards the edge either directly on the
device (dew computing) or in a local area aggregator (fog
computing).

Since two key components, the RTC and the Knowledge
update, are deployed on clouds, several key aspects will have
to be overcome. These include reliability, variability in cloud
resource performance, data privacy, and timely delivery of
the control decisions to meet the near RTC requirements.
In [13] several cloud performance issues of a community
seismic application running on virtual machines were iden-
tified. These include variable load and deadline misses for



processing requests. While the analysis was done on a non
elastic cloud environment running on Google AppEngine it
does outline some key problems encountered by applications
requiring near RTC which require the redesign of applica-
tions and algorithms to support elastic environments for fast
processing. Building such an infrastructure requires taking
into account the cost impact. The cost model will have to
link virtual machine performance fluctuations, infrastructure
reliability, network latency, and cloud elasticity with the time
needed to perform knowledge training, behavior forecasting,
and control decision and enactment. Cost will therefore
measure the penalty for performance deterioration due to
late decisions in soft and hard RTC CPSs. The performance
model will also have to be tightly linked to the economics
of clouds which allows significant cost reductions through
their pay-per-use approach since it may be more affordable
to deploy the middleware on public clouds rather than on
private infrastructures.

4.3. Elastic Machine Learning on Clouds

An important part of the middleware is represented
by the machine learning algorithms used by the central
controller and selected based on the current control model.
These algorithms will have to be adapted for elastic cloud
infrastructures and suitable for deployment in streaming
software such as Storm and Spark. While public providers
such as Amazon and Azure already offer machine learning
tools, some of the algorithms in use by CPSs may be newly
designed for the specific use cases, improved versions, or
ensemble models of several existing algorithms. In these
cases, these algorithms which are not normally designed for
elastic and environments will have to be re-engineered.

5. Use Cases
In this section we focus on describing two use cases in

relation to our proposed architecture by detailing functional
aspects and particularities in each of them. The objective is
to demonstrate the generality of our proposed solution.

The first use case deals with smart grids which rely
on homogeneous data transmitted periodically using limited
network transmission environments for global consumption
optimization. The second use case is a smart transportation
system where the route of a car must be optimized by
considering heterogeneous sources of information as well as
the behavior of other drivers. Heterogeneity is not the only
difference between the two. Smart grids are inherently static
while vehicles are constantly moving. An generic cross layer
architecture must therefore cope with both cases efficiently.
In the smart transportation case processing data in the nearby
fog could lead to data inconsistency and wrong decisions as
a car which shared information might leave the fog after a
decision is taken but before it is transmitted to the drivers.

5.1. Smart Grids

An increasing number of utilities migrate their tradi-
tional power grids to automated smart grids. These systems

rely on smart meters to receive consumption data. As seen
most of these meters have inbuilt limited memory allowing
them to store historical data and to run simple algorithms.
Information from smart grids can be used both locally by
clients to reduce their consumption and globally by utilities
to balance the supply-demand of energy during peak hours.
In both cases there is a need for constant monitoring and
adaptation based on latest data. The problem is challenging
especially for the utility which needs to constantly monitor
clients and select those that are most likely to respond
to energy curtailment actions without impacting too much
their comfort. Customer selection algorithms and machine
learning algorithms for predicting the energy curtailment of
each selected customer are needed and during peak hours
they need to execute within the sampling period of the smart
meters. Obviously to maximize efficiency the sampling rate
must be as high as possible.

When mapping this use case on our architecture we
have the smart meters acting as edge devices and the utility
which relies on cloud computing to process the incoming
data. As seen in Sect. 1 data networks currently limit the
transmission rate of smart meters. Therefore, bringing some
of the centralized decision toward the edge could greatly
impact the efficiency of the smart grid for near RTC control.
Such localized control (by the Big Data preprocessing and
local control component running on the smart meter) could
include optimization of individual customers’ consumption
based on their own historical usage and behavior. Fur-
thermore, these predictions for the consumption of each
customer could be sent to the cloud for taking global control
actions and to target customers most likely to take part
in the energy curtailment event (i.e., demand response).
Sending predictions to the RTC component instead of raw
data based on which the RTC component would make its
own predictions enables us to remove some of the stress in
both the network and the component itself. In addition, each
smart meter could be remotely programmed with a different
prediction method tailored to each customer’s behavior. The
RTC component would then use these predictions to select
the most suited customers and to monitor the impact on
the supply-demand balance. When an increasing negative
impact (in terms of predicting the aggregated consumption
in the next time frame for instance) would be noticed the
component would adapt by changing both the customer se-
lection and the consumption prediction algorithms by calling
the knowledge update component.

5.2. Smart Transportation

Recent years have witnessed the installation of intel-
ligent traffic lights and speed control systems in major
cities. Combined with GPS information and smartphone
applications which constantly monitor traffic and cars that
exhibit increasingly intelligence when it comes to driving
efficiency it becomes clear that integrating the three systems
(traffic, car, and smartphone) can reduce CO2 emissions
and traffic congestion. Such an integrated system would
consider traffic speed, fuel consumption, traffic lights, and



driver preferences to pick the optimal route to a given point
by leveraging information from other cars, drivers, and the
traffic management system.

When mapping this use to our architecture we have the
sensors on cars, the smartphones, and the sensors on the
street as edge devices. This heterogeneous CPS will have to
share data and coordinate to reduce CO2 emissions, improve
traffic speed and reduce congestion. In this scenario, each
car would take local decisions on how to adapt speed and
path based on the preferences of the driver, nearby vehicles,
and traffic speed and situation taken from Google Maps for
instance. This decision could be taken in a car controller or
by the smartphone application and then presented visually
to the driver both playing the role of the by the Big Data
preprocessing and local control component. Then, by relying
on information from other cars it would further optimize its
path by considering the direction (and possibly the destina-
tion) and speed of other drivers. In this way traffic jams and
average speed can be improved by predicting where con-
gestions are likely to happen. Given the limited processing
and storage power of car sensors and controllers, the energy
constraints of smart phones, and mobility of nearby vehicles
this global optimization based on swarm intelligence can
be taken centrally on a cloud system through the RTC
component. Information from the CPS is then processed
and analyzed and path optimization algorithms based on
traffic and driver behavior can be applied to suggest the best
routes. In this case the knowledge update component could
pick from the control model between various algorithms for
stream based route selection and prediction algorithms based
on incoming data properties.

6. Conclusion

In this paper we have argued that due to the complexity
of IoT systems cross layer dew-fog-cloud systems should be
developed. However, since the data transmission network
limits both the scalability and data rate of edge devices
some of the processing usually done on clouds needs to
be migrated towards the fog by leveraging the storage and
processing capabilities of edge devices. Based on these
we have proposed a hybrid cross layer architecture and
a possible software stack consisting of low-energy low-
memory on-edge machine learning algorithms, middleware,
and elastic machine learning algorithms for clouds. Two use
cases have been investigated with references to the proposed
architecture.

Future work will include building a prototype and im-
plementing some machine learning algorithms for edge and
cloud environments.
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