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Circadian Clocks, Stress,  
and immunity
Rebecca Dumbell†, Olga Matveeva† and Henrik Oster*

Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany

In mammals, molecular circadian clocks are present in most cells of the body, and this 
circadian network plays an important role in synchronizing physiological processes and 
behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endo-
crine axis regulates the response to acute and chronic stress, acting through its final 
effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, 
characterized by its circadian rhythm, has an important role in synchronizing peripheral 
clocks and rhythms downstream of the master circadian pacemaker in the suprachias-
matic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work 
has implicated the circadian clock in various aspects and cells of the immune system, 
suggesting a tight interplay of stress and circadian systems in the regulation of immunity. 
This mini-review summarizes our current understanding of the role of the circadian clock 
network in both the HPA axis and the immune system, and discusses their interactions.
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inTRODUCTiOn

Life on Earth has evolved in the context of a rhythmic environment, characterized largely by the 
regular succession of night and day. This has led to the evolution of intrinsic circadian (from Latin 
circa diem – about the day) clock systems, in order to optimally time physiological and behavioral 
processes. Disruption of circadian timing, such as with inter-time zone travel, shift work, and 
mistimed eating, can have consequences for cardiovascular, metabolic, and mental health and, 
crucially, immune function. The hypothalamic–pituitary–adrenal (HPA) axis and the immune 
system show extensive crosstalk, in particular with regard to the strong anti-inflammatory effects of 
glucocorticoids (cortisol in humans and corticosterone in rodents). However, less well studied is the 
interaction of the HPA axis and immune system with regard to the circadian clock. This mini-review 
will summarize current knowledge regarding the role of the circadian clock in each of these systems, 
and the interactions that can occur in the context of disrupted circadian rhythmicity.

THe CiRCADiAn CLOCK

Circadian rhythms are synchronized to external time by cues known as zeitgebers (German for 
time givers), such as light and food. In mammals, the clock system is organized in a hierarchical 
manner, with a master pacemaker residing in the hypothalamic suprachiasmatic nuclei (SCN), act-
ing to synchronize peripheral clocks in all other tissues via endocrine and autonomic signals (1). 
At the cellular level, circadian clocks coordinate gene expression programs to control physiological 
processes over the course of the day. The primary zeitgeber for the SCN is light. From the eye, 
signals are relayed via the retinohypothalamic tract to the SCN, which in turn coordinates peripheral 
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FiGURe 1 | The rhythmic control of the HPA axis is regulated at several levels. The master clock residing in the suprachiasmatic nucleus (SCN) is 
synchronized by light information received via the retinohypothalamic tract from the eye in order to exert autonomic (ANS) and hormonal influence on the clocks and 
rhythms of downstream tissues of the body. In addition to the direct innervation of the adrenal, the SCN influences the paraventricular nucleus (PVN) to secrete 
corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), which reach the pituitary via the blood portal system to stimulate secretion of 
adrenocorticotropic hormone (ACTH), which activates production and release of glucocorticoids. In addition, local adrenal clocks are thought to regulate 
responsiveness to ACTH in a circadian fashion. The baseline circadian rhythm of circulating glucocorticoids peaks just before the beginning of the active phase (day 
in humans and night in rodents). Stress-induced stimulation of the HPA axis acts via afferent signals from the limbic forebrain and brainstem to the PVN. Inset: the 
core transcriptional–translational feedback loop (TTL) that makes up the molecular circadian clockwork. In the positive arm of the clock, CLOCK or NPAS2 form a 
complex with BMAL1 and bind to E-Box elements in the gene promotors of PERs and CRYs, which make up the negative arm and act to inhibit the activity of 
CLOCK–BMAL1 or NPAS2–BMAL1, with a cycle of roughly 24 h. For further detail, see the main text.
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tissue clocks. Other zeitgebers can influence circadian rhythms, 
with mistimed feeding in particular being able to reset peripheral 
clocks independent from the SCN (2, 3).

The molecular circadian clock consists of interlocked 
 transcriptional–translational feedback loops [TTLs; discussed in 
detail elsewhere (4, 5)]. Briefly, during the day, the transcription 
factors CLOCK (circadian locomotor output cycles kaput) or 
NPAS2 (neuronal PAS domain-containing protein 2) in complex 
with BMAL1 (brain and muscle aryl hydrocarbon receptor nuclear 
translocator-like 1) bind to E-box (enhancer box) promoter ele-
ments to drive expression of Period (Per1-3) and Cryptochrome 
(Cry1/2), along with other clock controlled genes (inset in 
Figure 1). PER/CRY protein complexes accumulate in the cyto-
plasm over the day and later relocate into the nucleus where they 
inhibit the activity of the CLOCK–BMAL1 (or NPAS2–BMAL1) 
complex. This shuts down Per/Cry transcription during the night. 
After degradation of nuclear PER/CRY complexes toward the 
next morning, the inhibition of CLOCK–BMAL1 is released 
and a new cycle begins.

CiRCADiAn AnD STReSS ReGULATiOn 
OF THe HPA AXiS

The HPA axis is a key in the regulation of stress responses, with 
glucocorticoids mediating intermediate and chronic adaptation 
to stressful stimuli, complementing the rapid response of cat-
echolamines, both secreted from the adrenal gland. The rhythmic 
regulation of catecholamines and other adrenal hormones is 
discussed elsewhere (6). Rhythmic regulation of glucocorticoid 
release (Figure 1) allows for anticipation of daily timing of energy-
demanding situations. In addition, glucocorticoid rhythms play 
a key role in the systemic coordination of circadian rhythms by 
resetting cellular clocks downstream of the SCN.

During stress, the brainstem and limbic forebrain stimu-
late corticotrophin-releasing hormone (CRH) and arginine 
vasopressin (AVP) secretion from neurosecretory neurons of the 
paraventricular nucleus of the hypothalamus (PVN) (7). Via the 
hypophyseal portal system, these reach anterior pituitary corti-
cotrophs, which secrete adrenocorticotrophic hormone (ACTH). 
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ACTH then acts at melanocortin type-2 receptors (MC2R) in the 
adrenal cortex to stimulate production and release of glucocor-
ticoids. Negative feedback from glucocorticoids acts at the level 
of CRH in the hypothalamus and ACTH in the pituitary (8, 9). 
In addition, PVN CRH expression is indirectly controlled by the 
SCN (8–11).

Glucocorticoids bind to glucocorticoid (GR) and mineralo-
corticoid receptors (MR) in target tissues. Unlike the MR, which 
is almost constantly activated by glucocorticoids, GR  –  widely 
expressed in the brain and periphery, but not in the SCN 
(12) – activation occurs only during glucocorticoid peak levels 
(13). This means that GR activation may occur during the peak 
of the circadian rhythm even during the ultradian trough, but 
ultradian peaks during the circadian nadir may not be sufficient 
for activation (14, 15). GR binds to glucocorticoid response ele-
ments (GRE or nGRE) to regulate transcription of target genes 
(16). GRE are present in the promoter region of the clock genes 
Per1, Per2, Npas2, and various clock controlled genes involved in 
the synchronization of peripheral circadian rhythms (17).

Glucocorticoid circadian rhythms peak slightly before the 
onset of the active phase, which is during the night for most 
rodent species and during the day for humans (18). This rhythm 
overlays a more dynamic ultradian pattern for both ACTH 
and glucocorticoid secretion (19) driven by feedback between 
glucocorticoids and ACTH release at the pituitary (20) and 
intra-adrenal feedback of glucocorticoids (21). The presence 
of GR in the adrenal cortex (22, 23) and the demonstrated 
inhibitory effects of exogenous corticosterone on the ACTH-
stimulated corticosteroid synthesis could potentially play a role 
in local regulation of glucocorticoid secretion in the adrenal 
gland. Circadian glucocorticoid rhythms can persist independ-
ent of the SCN (24–26). Given the influence that circadian 
rhythmicity of glucocorticoids may have on peripheral clock 
function, it is perhaps not surprising that the HPA axis, which 
is acutely activated in stressful situations, is unlikely to be the 
main driver of the circadian rhythm of these hormones. Indeed, 
there are several components of the HPA axis which, although 
they express circadian rhythmicity, do not synchronize well 
enough to explain downstream endocrine rhythms (3, 10, 27). 
The circadian influence of the SCN on the HPA axis also occurs 
through autonomic innervation of the adrenal gland (28, 29), 
with SCN-dependent rapid induction of Per1 expression being 
stimulated in the adrenal gland following a light pulse (30). In 
line with this, splanchnic nerve transection results in dampened 
circadian glucocorticoid rhythm in rats (31, 32).

LOCAL ReGULATiOn OF 
GLUCOCORTiCOiD RHYTHMS

A circadian rhythm of steroid release was first demonstrated in 
isolated Syrian hamster adrenals [Mesocricetus auratus, See Ref. 
(33)], and rhythmic glucocorticoid concentrations persist under 
constant peripheral CRH infusion in CRH knockout mice (34), or 
in hamsters with natural loss of ACTH rhythm (35). Adrenal circa-
dian rhythms can however be altered by ACTH, which stimulates 
PER1 and BMAL1 expression ex vivo in human tissue (36) and 

shifts clock rhythms in isolated adrenals of Per2:LUC reporter 
mice (37).

Circadian clocks within the adrenal gland also play a role in 
the rhythmic regulation of the HPA axis, both in glucocorticoid 
production and in sensitivity to ACTH. Robust clock gene 
expression rhythms have been demonstrated in the adrenal 
cortex of rodents and primates (38–43), and several steroi-
dogenic genes show circadian expression (31, 40, 44). Work 
in transgenic mice has shown that those lacking genes of the 
positive arm of the TTL produce lower levels of corticosterone 
(45, 46), while those with mutations in the negative arm are 
chronical hypersecreters (47, 48). Evidence for the importance 
of adrenocortical clocks in regulating ACTH sensitivity comes 
from isolated adrenal tissue responses to ACTH, which differs 
across the day and is very low in mice deficient for Per2 and 
Cry1 (41) or Bmal1 (46). This is further supported by evidence 
from primate adrenal explant studies, where knockdown of 
Cry2 and subsequent downregulation of Bmal1 lead to attenu-
ated ACTH responses (49). Together, these studies suggest that 
the local adrenal clock is important for regulating the circadian 
glucocorticoid rhythm independent of systemic influences 
such as during stress, and may explain the high amplitude of 
glucocorticoid rhythm in the face of comparably low variations 
in ACTH concentrations.

HPA AXiS inTeRACTiOn wiTH THe 
iMMUne SYSTeM

A bidirectional communication exists between the HPA axis 
and the immune system (Figure  2). It is well understood that 
immune cells can activate the HPA axis via cytokines such as 
tumor necrosis factor-alpha (TNF-α), interleukins (IL-1, IL-6), 
and the type-I interferons (IFNs) (50–53). Interestingly, some 
cytokines can activate the HPA axis via different mechanisms. 
Although primarily acting on the PVN to stimulate CRH release 
(54–56), they also have direct action at the level of the pituitary 
and adrenal (57, 58).

At the same time, glucocorticoids can affect viability and func-
tion of many immune cell types, including T cells, B cells, mono-
cytes, macrophages, and granulocytes (59, 60). Glucocorticoids 
suppress the synthesis and release of cytokines, thereby protecting 
the host organism from the detrimental consequences of a long-
term hyperactivity of the immune system [reviewed in Ref. (61)]. 
Pioneering work by Hench, Kendall, and Reichstein demon-
strated the immunosuppressive actions of glucocorticoids almost 
70 years ago (62). Nevertheless, glucocorticoids are still the most 
widely used and most effective treatment to control allergic, auto-
immune, inflammatory, and hematological disorders (63). GR are 
found in almost all types of immune cells, and upon activation 
tether and trans-represses pro-inflammatory regulators such as 
nuclear factor kappa-light-chain-enhancer of activated B-cells 
(NF-κB) and activator protein 1 (AP-1) (61, 64) by activating 
anti-inflammatory molecules such as glucocorticoid-induced-
leucine zipper [GILZ (65)], MAPK phosphatase-1 [MKP-1 (66)], 
annexin-1 (67), mitogen-inducible gene-6 [Mig-6 (68)], and 
SRC-like adaptor protein 1 [SLAP (69)].
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FiGURe 2 | Circadian clocks in HPA axis-immune system crosstalk. Immune cells can activate the HPA axis via cytokines such as tumor necrosis factor-alpha 
(TNF-α) and interleukins (IL-1/6) at the level of the paraventricular nucleus (PVN) of the hypothalamus as well as at the pituitary and adrenal, stimulating the 
production of glucocorticoids. Glucocorticoids in turn act on the receptors on the surface or in the cytoplasm of immune cells to suppress the induction of 
pro-inflammatory responses, and to promote a shift from T helper cell type 1 (Th1) toward T helper cell type 2 (Th2)-mediated humoral immunity. This inhibits the 
production of pro-inflammatory cytokines, while promoting the production of anti-inflammatory cytokines, such as interleukin-4, interleukin-10, and interleukin-13 
(IL-4/10/13) by various immune cells. In addition, ACTH exerts direct anti-inflammatory and immune-modulating effects via the melanocortin system. CRH, 
corticotropin-releasing hormone; AVP, arginine vasopressin; DC, dendritic cell; MΦ, macrophage.
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In contrast to the well-described immunosuppressive effects 
recent studies indicate that glucocorticoids can also have permis-
sive or even stimulatory effects on immune processes [reviewed 
in Ref. (70–72)]. It is thought that acute stress enhances, while 
chronic stress suppresses the peripheral immune response (70), 
but the mechanism of this dual role is not well understood. 
Several studies report that glucocorticoids induce expression 
of innate immune-related genes, including members of the 
toll-like receptor (TLR) family, such as TLR2 and TLR4 (73–75). 
Glucocorticoids also rapidly induce a central component of the 
inflammasome, NLRP3, in macrophages, which stimulates secre-
tion of pro-inflammatory cytokines (76).

In addition, glucocorticoids regulate adaptive immune 
responses by influencing cell trafficking to the sites of inflamma-
tion and by suppressing T helper cell type 1 (Th1) and enhancing 
T helper cell type 2 (Th2) cytokine-driven responses (77, 78). 
Consequently, in contrast to the traditional view of glucocorti-
coids as generally immunosuppressive hormones, glucocorticoids 
are now more accurately regarded as immune modulators.

As an alternative to the glucocorticoid treatment of chronic 
inflammatory diseases such as multiple sclerosis, the use of 
ACTH has recently been re-employed, appearing to act not only 
indirectly by stimulating glucocorticoid production but also by 
a direct anti-inflammatory effect via the melanocortin system 
[reviewed in Ref. (79–81)]. Melanocortin receptors (MCRs) 
are found on lymphocytes and macrophages (82–84). Anti-
inflammatory effects of ACTH are mediated primarily by MC1R 
and MC3R, while immune-regulatory effects rely on MC5R 
(80). Such glucocorticoid-independent effects of ACTH have 

been demonstrated after lipo-polysaccharide (LPS)-stimulated 
production of IL-1ß and TNF-α in human blood samples (85), 
in a rat gout model (86), and in TNF-α-induced acute kidney 
disease in rats (87). Furthermore, ACTH can reduce neutrophil 
infiltration via MC3R (88).

CiRCADiAn inTeRACTiOn OF THe HPA 
AXiS wiTH iMMUne FUnCTiOn

In mammals, the circadian clock is an important regulator of the 
immune system, allowing the organism to anticipate daily changes 
in activity and the associated risk of antigen encounter. Circadian 
rhythms are found in multiple aspects of immune function, such 
as recruitment of immune cells to tissues, antigen presentation, 
lymphocyte proliferation, TLR function, and cytokine gene 
expression (89, 90). Furthermore, several inflammatory diseases, 
such as bronchial asthma and rheumatoid arthritis vary in sever-
ity over the course of the day, implicating a circadian regulation of 
vulnerability (91, 92). Animal studies have revealed that circadian 
rhythm disruption by shift work or chronic jet lag leads to a 
dysregulation of the immune system and a higher risk for several 
pathologies (93, 94).

Molecular clocks have been characterized in various immune 
cells, including macrophages, dendritic cells, and T and B lym-
phocytes (95–97). In humans, under constant routine conditions, 
administration of exogenous glucocorticoids 10 h after awaken-
ing can entrain circadian rhythms in peripheral blood mono-
nuclear cells (PBMCs) without changing plasma melatonin and 
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cortisol rhythms, thus linking HPA axis regulation to immune 
cell function. In line with this, oral administration of synthetic 
hydrocortisone shifts the expression of BMAL1 and PER2/3 in 
PBMCs by 9.5–11.5 h (98).

Stress-induced alterations of HPA axis rhythmicity can lead to 
wide-spread alterations in innate and adaptive immune responses 
and contribute to the development and progression of some types 
of cancer in animals (99, 100). In humans, data are less clear, with 
a positive association between stress and breast cancer observed 
in some (101), but not in other studies (102). In another context, 
stress-induced inflammatory priming of microglia was influenced 
by time of day in rats. Animals exposed to stress during the rest 
phase showed enhanced neuroinflammatory responses to an LPS 
challenge compared with animals experiencing stress during the 
active phase (103). Whether these effects involve circadian altera-
tions remains to be shown. Of interest in this context, pulmonary 
antibacterial responses in mice appear to be gated by circadian 
clocks residing in the epithelial club cells lining the pulmonary 
airways, entrained by glucocorticoids (104).

Not only does the circadian clock regulate the immune system 
but immune status also feeds back on circadian rhythms. For 
example, administration of LPS resets activity rhythms in mice 
(105), and transiently suppresses Per2 and Dbp expression in the 
SCN and liver of rats (106). LPS treatment increases AVP release 
from SCN explants (107), and TNF-α treatment downregulates 
SCN Dbp expression and causes prolonged rest periods during 
the active phase in rodents (108).

Recent studies reveal blunted circadian cortisol rhythms and 
attenuated stress responses in patients with allergic diseases, 
such as bronchial asthma, allergic rhinitis, atopic dermatitis, 
and extensive nasal polyposis (109–112). In patients with sepsis 
hypercortisolism persists despite low ACTH levels, suggesting 
that non-ACTH-mediated mechanisms are involved in the main-
tenance of high glucocorticoid levels. Interestingly, circadian 

rhythm of both ACTH and cortisol secretion were shown to be 
blunted in these patients (113). Furthermore, neonatal endotoxin 
exposure reprograms HPA axis development in rats, leading to 
ACTH and corticosterone hyper-responsiveness later in life (114).

COnCLUSiOn

Cellular circadian clocks in central and peripheral tissues interact 
to regulate the activity of the main endocrine axes. Our improved 
understanding about the systemic regulation of HPA axis circa-
dian rhythms and the interplay of clock and stress functions in 
this context may help to optimize current treatment strategies for 
many immunological disorders. For example, in chronic diseases 
such as rheumatoid arthritis, timed administration of exogenous 
glucocorticoids at specific times of day may improve therapeutic 
effectiveness and reduce negative side effects, since lower doses 
are required (115). At the same time, the importance of glucocor-
ticoids in the coordination of the circadian timing system itself 
has so far been largely neglected in clinical settings. Stabilizing 
circadian HPA axis regulation may protect against adverse 
external influences such as stress and infection, thus protecting 
the body against some of the most frequent threats of the 24/7 
globalized society.
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