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Abstract— In this paper a robust incremental adapta-
tion algorithm is presented to solve distributed estimation
for a Hamiltonian network, where the measurements at
each node may be corrupted by heavy-tailed impulsive
noise. In the proposed algorithm, each node employs an
error-nonlinearity into the update equation to mitigate
the detrimental effects of impulsive noise. Moreover, the
algorithm estimates both the optimal error non-linearity
and the unknown parameter together, which in turn,
obviates the requirement of prior knowledge about the
statistical characteristics of measurement noise. In addition
to algorithm development, its steady-state performance as
well as convergence analysis have been provided. Simu-
lation results validate the correctness of the analysis and
reveal the superiority of the proposed algorithm over some
existing algorithms.

Index terms–Adaptive network, Hamilton, incremen-
tal, robust estimation.

I. INTRODUCTION

The problem of estimating an unknown deterministic
parameter by nodes of a connected network is considered
here. In particular, we are interested in the case where
the measurements at each node are corrupted by impul-
sive noise. This problem (robust distributed estimation)
appears in many practical applications. For example, in
the tracking of a ground target using an acoustic wire-
less sensor network, the measurements of RF/acoustic
sensors are prone to exhibit false measurements due
to multi-path reflections [1]. Typical existing solutions
include adaptive networks and consensus schemes. Here,
we focus on adaptive networks, as they exhibit superior
performances compared to consensus-based solutions
[2]. Two strategies have gained the most popularity in
adaptive networks, including incremental strategy [3],
[4] and diffusion strategy. In the incremental strategy,
a cyclic path (Hamilton cycle) is established among the
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nodes, in which every agent is visited exactly once and
each agent passes the information to its adjacent node.
In the diffusion strategy, the nodes communicate with
their immediate neighbours [5]–[8].

The most traditional cost function in adaptive net-
works is the minimum mean square error (MSE) cri-
terion. Under the Gaussian assumption, the algorithms
that employ MSE can achieve optimal performance.
However, their performance severely degrades in the
presence of non-Gaussian noise, specially heavy-tailed
impulsive noise cases [9]. To overcome this issue, ro-
bust incremental adaptive networks with alternative cost
functions such as Wilcoxon norm, Huber norm, and
maximum correntropy criterion have been reported in
[10]–[13]. Similar robust diffusion adaptive networks are
available in the literature [14]–[18].

Although these algorithms exhibit superior perfor-
mance compared to MSE-based algorithms, they need
some parameter tuning, which in turn, requires some
prior knowledge about the measurement noise distribu-
tion. So, developing a new robust algorithm that obviates
the requirement of such prior information is crucial. In
this paper, we extend the framework in [9] and [19]
and propose a robust adaptive Hamiltonian network.
Unlike the given algorithm in [19] which requires a
connected network with diffusion topology, the proposed
algorithm relies on the incremental mode of coopera-
tion. A Hamilton cycle may not be available in large
networks. Nevertheless, in comparison with diffusion
adaptive networks, incremental-based algorithms have
their own advantages (low power consumption and low
communication load), especially in networks with a
small number of nodes or networks where the network
topology can be controlled [20]. Moreover, neither the
algorithm derivation procedure nor the obtained results
in [19] can be extended to the incremental networks.

In the proposed algorithm, each node incorporates an
error non-linearity into its update equation to handle
the heavy-tailed impulsive noise. On the other hand,
it tunes the required parameters adaptively. A detailed
steady-state performance and convergence analysis is
carried out and verified by simulation. Compared to the
existing algorithms [10]–[13], the proposed algorithm
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Fig. 1. A Hamiltonian network with K = 9 nodes.

has a higher computational complexity. However, as
an advantage, the parameters are adjusted adaptively
during the learning process, which obviates any prior
information for precise parameter setting.

We adopt normal font letters, small boldface letters
and bold capital letters for scalars, vectors and matrices,
respectively. The notations tr(·), (·)T and ‖ · ‖∞ denote
the trace of a matrix, matrix transposition and maximum
absolute entry of its vector argument. The weighted
Euclidean norm of x with a weighting matrix Ξ is
‖x‖2Ξ = xTΞx. col{x1, x2} is a column vector whose
entries are x1 and x2.

II. ROBUST INCREMENTAL ALGORITHM

Consider a Hamiltonian network with K nodes as
shown in Fig. 1. The scalar noisy measurement by node
k at discrete time instant i is described by a linear
regression model as

dk,i = uk,iw
o + vk,i (1)

where vk,i denotes the zero-mean measurement noise
term. The 1 ×M regression vectors {uk,i} are realiza-
tions of wide-sense stationary zero-mean random process
with positive definite covariance matrix Ruk

.
Assumption 1: The measurement noise vk,i is a white

process with variance σ2
v,k. Moreover, {uk,i} and {v`,j}

are independent for all k 6= ` and i 6= j.
The objective is to develop an algorithm to adaptively

estimate the unknown M×1 parameter vector wo in a
fully distributed manner. To this end, the incremental
least mean-squares (LMS) algorithm was developed [3].
The update equation for the incremental LMS algorithm
at node k and iteration i is

θθθk,i = θθθk−1,i + µku
∗
k,i(dk,i − uk,iθθθk−1,i) (2)

with θθθ1,i = θθθK,i−1. The algorithm exhibits good per-
formance in the presence of Gaussian noise, but is not
robust against heavy-tailed impulsive noise [9], [12].

One useful way to mitigate the effect of heavy-tailed
impulsive noise is to use an error non-linearity function
in the update equation. Thus, inspired by the discussion
in [9], the robust incremental algorithm with error non-
linearity is given by

wk,i = wk−1,i + µku
T

k,ihk,i(ek,i) (3)

In [9] it is proven that the optimum function which
minimizes the MSE at every node k is given by

hok,i = −
p′ek,i

pek,i

(4)

where pek,i
and p′ek,i

denote the PDF of error signal
ek,i and its first derivative, respectively. Clearly, in
most practical applications this PDF is not available. A
useful alternative for (4) is to define hk,i(ek,i) in terms
of a set of preselected sign-preserving basis functions
{fk,b(·)}, b = 1, · · · , B as

hk,i(ek,i) = aT

k,ibk,i (5)

Here, the B × 1 vector bk,i is defined as

bk,i = [fk,1(ek,i), fk,2(ek,i), · · · , fk,B(ek,i)]
T (6)

A reasonable choice for fk,b to handle impulsive noise
is [9]

fk,b(x) =

{
x b = 1

tanh((b− 1)x) b = 2, · · · , B
(7)

The B×1 vector ak,i in (5) consists of the non-negative
combination weights as

ak,i = [ak,i(1),ak,i(2), · · · ,ak,i(B))]
T (8)

The optimum value of ak,i (denoted by ao
k,i) is obtained

by solving the following minimization problem

arg min
ak,i

E
[
hok,i(ek,i)− hk,i(ek,i)

]2
subject to ak,i(b) ≥ 0,

B∑
b=1

ak,i(b) = 1 (9)

Note that, the convexity constraint in (9) is required
to ensure the boundedness of ak,i. To solve the con-
vex optimization problem (9) we apply the technique
introduced in [9]. The idea is to eliminate the constraint
ak,i(b) ≥ 0 and then transform the solution appropri-
ately to accommodate this constraint. Doing so, a fully
distributed robust incremental algorithm can be obtained
as presented in Algorithm 1.

Note that f ′ denotes the first derivative and sgm(x) ,
1

1+e−x . Moreover, Rbk,i
= E[bk,ib

T

k,i]and this matrix is
recursively estimated by (10d). The vector b′k,i denotes
entry-wise differentiation as defined in (10f) and is
estimated by (10g). Moreover, 0 << νk < 1 and β > 0

are constant parameters. We further define Pk = I− 11T

B
of size B where

S+,k = {x ∈ RB+|xT1 = 1} (11)

where RBk
+ is the set of Bk × 1 vectors on the set of

positive real numbers R+.
Remark 1: (Computational complexity) The imple-

mentation of Algorithm 1 includes 5(1+B)+4B2+B3+



Algorithm 1 Robust incremental estimation algorithm
1: Input parameters: µk , β, B, {fk,b(x)}, Pk , νk
2: Initialize wk,0, ak,0, R̂bk,0

, b̂′k,0, λ̂k,0
3: for i = 1, 2, · · · do
4: for k = 1 : K do

ek,i = dk,i − uk,iwk−1,i (10a)

fe|k,i(b) , fk,b(ek,i), b = 1, · · · , B (10b)

bk,i = col
{
fe|k,i(1), · · · , fe|k,i(B)

}
(10c)

R̂bk,i
= νkR̂bk,i−1

+ (1− νk)bk,ib
T
k,i (10d)

f ′e|k,i(b) , f ′k,b(ek,i), b = 1, .., B (10e)

b′k,i = col
{
f ′e|k,i(1), · · · , f

′
e|k,i(B)

}
(10f)

b̂′k,i = νkb̂
′
k,i−1 + (1− νk)b′k,i (10g)

δk,i = 2Pk(R̂bk,i
ak,i−1 − b̂′k,i) (10h)

λ̂k,i = νkλ̂k,i−1 + (1− νk)
‖uk,i‖2

M
(10i)

τ̂k,i = sgm((aT
k,i−1b̂

′
k,i)λ̂k,i) (10j)

τk,i = τ̂k,i
min{ak,i−1(b), 1 ≤ b ≤ B}

‖δk,i‖∞ + β
(10k)

ak,i = ak,i−1 − τk,iδk,i (10l)

hk,i = aT
k,ibk,i (10m)

5: update wk,i as wk,i = wk−1,i + µku
T
k,ihk,i

6: end for
7: end for

3M multiplications, 3B− 1 + 2B2 +B3 +M additions
and one division per iteration at each individual node.

Remark 2: (Parameter tuning) In the algorithm, only
νk, B and fk,b(x) need to be preselected for each node.
Similar to [9] and [19], here, we set 0 << νk < 1,
B = 2, and fk,b(x) as equation (7). Larger values for
B gives better approximates of hok,i, but increases the
computational complexity. Also, optimization of fk,b(x)
needs the exact noise distribution. The other variables
are tuned adaptively through the learning process. So,
unlike other algorithms, the proposed algorithm does not
require any precise parameter setting (see Table. 1).

III. PERFORMANCE ANALYSIS

A. Assumptions and Definitions

Due to the nonlinear and stochastic nature of the
update relations, we need to introduce the following
Assumption to make the analysis more tractable,

Assumption 2:
(i) The regressors {uk,i} are independently and iden-

tically distributed.
(ii) ak,i is independent of u`,j and v`,j for k 6= ` and

i 6= j.
(iii) {fk,b(x)} are sign-preserving, odd-symmetric,

monotonically increasing, and differentiable.
Remark 3: (Justification of assumptions) Assumption

2(i) is widely used in adaptive filtering approaches.
As it is discussed in [21] this assumption not only

simplifies the analysis, but also the results for dependent
regressions are close to independent ones for small step-
sizes. Assumption 2(ii) is more reasonable under small
step-sizes. Finally, Assumption 2(iii) is used to ensure
that the successive weight estimates wk,i decrease the
MSE level. Moreover, the odd-symmetric and mono-
tonically increasing properties are used to make the
analysis tractable. More details on justifications of these
assumptions are available at [9] and [19].

In the analysis, both input signals and noise are con-
sidered stationary. We define the following error signals,
as they will be used frequently in our analysis:

w̃k,i , wo −wk,i (12)

εk,i , uk,iw̃k−1,i (a priori error) (13)

ek,i , dk,i − uk,iwk−1,i (output error) (14)

The mean-square deviation (MSD) and excess mean-
square error (EMSE) as the performance metrics are
defined as

ηk,i =E
[
|w̃k,i|2I

]
, (MSD) (15)

ζk,i =E
[
|εk,i|2

]
= E

[
|w̃k,i|2Ruk

]
, (EMSE) (16)

B. Steady-State Analysis

To analyze the performance, it firstly suffices to eval-
uate E

[
|w̃k,i|2Σ

]
for positive semi-definite matrix Σ and

then particularize the previous performance measure for
MSD by setting Σ = I and EMSE by Σ = Ruk

.
To this end, the update equation (3) is considered. By
subtracting wo from both sides of (3) we have

w̃k,i = w̃k−1,i − µkuT

k,ihk,i (17)

Applying weighted norm to both sides of (17) and taking
the expectations yields

E
[
‖w̃k,i‖2Σ

]
= E

[
‖w̃k−1,i‖2Σ

]
− 2µkE[uk,iΣw̃k−1,ihk,i]︸ ︷︷ ︸

1

+ µ2
kE
[
‖uk,i‖2Σh2k,i

]︸ ︷︷ ︸
2

(18)

In order to evaluate the moments 1 and 2, firstly hk,i
is approximated by using a Taylor series expansion for
{fk,b(x)} around εk,i = 0 for all i ≥ 0 as

hk,i =

B∑
b=1

ak,i(b)fk,b(ek,i)

≈
B∑
b=1

ak,i(b)fv|k,i(b) + εk,i

B∑
b=1

ak,i(b)f
′
v|k,i(b)

= aT

k,ick,i + εk,ia
T

k,ic
′
k,i (19)



where

fv|k,i(b) , fk,b(vk,i), b = 1, · · · , B (20)

f ′v|k,i(b) , f ′k,b(vk,i), b = 1, · · · , B (21)

ck,i , col
{
fv|k,i(1), · · · , fv|k,i(B)

}
, (22)

c′k,i , col
{
f ′v|k,i(1), · · · , f ′v|k,i(B)

}
, (23)

So, under Assumptions 1 and 2, term 1 in (18) becomes

E[uk,iΣw̃k−1,ihk,i] = pk,iE
[
‖w̃k−1,i‖2RuΣ

]
(24)

In (24) pk,i , (E[ak,i])
Trk with

rk = E
[
c′k,i
]

= col
{
E
[
f ′v|k,i(1)

]
, · · · ,E

[
f ′v|k,i(B)

]}
,

By taking the square of both sides of (19) and
discarding powers of εk,i higher than 2, and invoking
Assumptions 1 and 2 it follows that

E
[
‖uk,i‖2Σh2k,i

]
=

E
[
‖uk,i‖2Σ

]
E

[( B∑
b=1

ak,i(b)fv|k,i(b)

)2
]

+ E
[
‖uk,i‖2Σε2k,i

]{
E

[( B∑
b=1

ak,i(b)f
′
v|k,i(b)

)2
]

+ E

[
B∑
b=1

ak,i(b)fv|k,i(b) + ak,i(b)f
′′
v|k,i(b)

]}
(25)

where f ′′v|k,i(b) , f ′′k,b(vk,i), b = 1, · · · , B. Note that
(25) can be simplified as

E
[
‖uk,i‖2Σh2k,i

]
= sk,itr(Ru,kΣ)

+ tk,iE
[
‖w̃k−1,i‖2E[|uk,i‖2ΣuT

k,iuk,i]

]
(26)

with

sk,i = E
[
(aT

k,ick,i)
2
]

= tr
(
Rak,i

Rck

)
(27)

tk,i = E
[
(aT

k,ic
′
k,i)

2
]

+ E
[
(aT

k,ick,i)(a
T

k,ic
′′
k,i)
]

= tr
(
Rak,i

Rc′k
+ Rak,i

Rc′kc′′k

)
(28)

where1

c′′k,i , col
{
f ′′v|k,i(1), · · · , f ′′v|k,i(B)

}
Rak,i

, E
[
ak,ia

T

k,i

]
Rck

, E
[
ck,ic

T

k,i

]
Rc′k

, E
[
c′k,ic

′T
k,i

]
Rc′kc′′k

, E
[
ck,ic

′′T
k,i

]
Using the required moments, (18) changes to

E
[
‖w̃k,i‖2Σ

]
= E

[
‖w̃k−1,i‖2Q

]
+µ2

ksk,itr(Ru,kΣ) (29)

1Note that the subscript i has been dropped in Rck , Rc′
k

and
Rc′

k
c′′
k

since noise is a wide-sense stationary process.

with the new weighing matrix Q is given by

Q = Σ− 2µkpk.iRuk
Σ + µ2tk,iE

[
‖uk,i‖2ΣuT

k,iuk,i
]

(30)
To further simplify the analysis, the following assump-
tion is considered.

Assumption 3: The regressor vectors {uk,i} are sam-
pled from Gaussian distribution.
This assumption enables us to derive a closed-form
for the fourth-order moment E{‖uk,i‖2ΣuT

k,iuk,i} that
appears in (30).

To proceed, let Ruk
= UkΓkU

T

k be the eigendecom-
position of Ruk

, where Γk is a diagonal matrix with
the eigenvalues of Ruk

and Uk is a unitary matrix. We
further define the following transformed quantities

wk,i , UT

kw̃k,i, uk,i , uk,iUk, Σ , UTΣUk (31)

It should be noted that for the unitary matrix Uk we
have

‖w̃k,i‖2Σ = ‖wk,i‖2Σ, ‖uk,i‖
2
Σ = ‖uk,i‖2Σ (32)

Using the transformed quantities in (31), expressions in
(29) and (30) change to

E
[
‖wk,i‖2Σ

]
= E

[
‖wk−1,i‖2Q

]
+ µ2

ksk,itr
(
ΓkΣ

)
(33)

Q = Σ− 2µkpk,iΓkΣ

+ µ2
ktk,i(Γktr

(
ΓkΣ

)
+ 2ΓkΣΓk) (34)

Note that in (34) we used the following property for
Gaussian regressors [3]

E
[
‖uk,i‖2ΣuT

k,iuk,i
]

= Γktr
(
ΓkΣ

)
+ 2ΓkΣΓk (35)

According to (15) and (16), to derive a general expres-
sion for MSD and EMSE, we choose Σ to be a diagonal
matrix. In this case, Q will be a diagonal matrix as well.
Thus, by applying diag {·} to (33) and (34) we have

E
[
|wk,i|2σk

]
= E

[
|wk−1,i|2Fk,iσk

]
+ gkσk (36)

Fk,i = I− 2µkpk,iΓk + 2µ2tk,iΓ
2
k + µ2

ktk,iΓkΓ
T

k

(37)

where σ = diag
{
Σ
}

and gk = µ2
ksk,∞ΓT

k.
Expression (37) is a coupled equation that involves

both wk,i and wk−1,i. By iterating (37) a set of K
coupled equalities arise which can be solved to obtain
{ηk,∞, ζk,∞} by choosing {σ̄k} and proper manipulation
of the equations (see [3] for details). Following the same
argument and derivation, the closed-form expressions for
steady-state values of MSD and EMSE are obtained. In
this way, the following proposition holds.

Proposition 1: (Stead-state performance) Under As-
sumptions 1-3, the closed-form expressions for steady-
state values of MSD and EMSE are

ηk,∞ = zk(I−Ωk,1)−1(diag {I}) (38)

ζk,∞ = zk(I−Ωk,1)−1(diag {Γk}) (39)



with

Ωk,` , F̄k+l−1,∞F̄k+l,∞...F̄N,∞F̄1,∞...F̄k−1,∞,

zk , gkΩk,2 + gk+1Ωk,3 + · · ·+ gk−2Ωk,N + gk−1

where the subscripts are all mod K and

Fk,∞ = I− 2µkpk,∞Γk + 2µ2
ktk,∞Γ2

k + µ2
ktk,∞ΓkΓ

T

k

where

pk,∞ = lim
i→∞

pk,i = (E[ak,i])
Trk

sk,∞ = lim
i→∞

sk,i = tr
(
Rak,∞Rck

)
tk,∞ , lim

i→∞
tk,i = tr

(
Rak,∞Rc′k

+ Rak,∞Rc′kc′′k

)
In the next section, the accuracy of (38) and (39) are

verified through simulation.

C. Stability Analysis

In the sequel, we use recursion (17) to obtain the
conditions for mean stability condition.

Proposition 2: (Mean Stability) Let the linear model
(1) and Assumption 1-3 hold. Then, the proposed al-
gorithm is asymptotically unbiased if, and only if, the
following condition holds

|1− µkpk,iRuk
| < 1 (40)

Proof: Taking the expectation of (17) gives

E[w̃k,i] = E[w̃k−1,i]− µkE
[
uT

k,ihk,i
]

(41)

Replacing εk,i and hk,i from (13) and (19), and applying
Assumptions 1 and 2 we have

E
[
uT

k,ihk,i
]

= pk,iRuk
E[w̃k−1,i] (42)

So, (41) becomes

E[w̃k,i] = (I− µkpk,iRuk
)E[w̃k−1,i] (43)

Iterating (43) gives the following equation that explains
how E[w̃k,i] evolves over time:

E[w̃k,i] =

( K∏
`=1

(I− µ`p`,iRu`
)

)
E[w̃k,i−1]

=

( K∏
`=1

G`

)
E[w̃k,i−1] = GE[w̃k,i−1] (44)

Thus, a necessary and sufficient condition for robust
incremental algorithm to converge in the mean is to have
matrix G stable, or equivalently, all its eigenvalues inside
the unit circle, i.e. ρ(G) < 1. As the spectral radius of a
matrix is bounded by its norms (for any induced matrix
norm), i.e. ρ(G) < ‖G‖, we have

ρ(G) ≤ ‖G‖ ≤ ‖G1‖‖G2‖ · · · ‖GK‖
= ρ(G1)ρ(G2)...ρ(GK)
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Fig. 2. σ2
v,k and trRuk for every node.

Note that, the last equality stems from the fact that every
Gk is a Hermitian matrix (due to Assumption 2 and
pk,k > 0), so its 2-induced norm agrees with its spectral
radius. So if ρ(Gk) ≤ 1 is established, the constraint
ρ(G) < 1 will also be satisfied. On the other hand,
ρ(Gk) ≤ 1 holds when |1− µkpk,iRuk

| < 1.

IV. SIMULATION RESULTS

The simulation results are presented to evaluate the
performance of proposed algorithm and the accuracy
of theoretical expressions (38) and (39). We consider
a network with K = 20 nodes, seeking to estimate
wo = [11111]T (M = 5). The regressors {uk,i}
are independently generated from a multivariate zero-
mean Gaussian distribution with diagonal covariances
Ruk

. The noise samples are independently generated
according to an γ-contaminated Gaussian mixture model
with the following PDF

pvk(v) = (1− γ)N (0, σ2
v,k) + γN (0, κσ2

v,k) (45)

where {σ2
v,k} are the nominal noise variances where

κ = 100. The regressor covariance traces and nominal
noise variances are shown in Fig. 2 In the simulations we
set µk = 0.01 γ = 0.1 νk = 0.9 and β = 10−6. For the
proposed algorithm, we set B = 2 with the following
basis functions: fk,1(x) = x and fk,2(x) = tanh(x).
Each element of the initial estimates of basis weights,
ak,0 is set to 0.5. For the smoothing recursions, zero
initial conditions are assumed, and νk is set to 0.9 for
every node K. The moments E[ak,∞] and Rak,∞ are
approximated with Mont Carlo (MC) simulation (aver-
aging over the last 100 samples and across trials).The
steady-state values of MSD and EMSE are obtained
by running the algorithms for 2500 iterations and then
averaging over 100 independent trials. Fig. 3 shows
the steady-state values of MSD and EMSE for the
incremental LMS algorithm and the proposed algorithm.
Both theoretical values (using expressions (38) and (39))
and simulated values are compared. It is clear that the
proposed algorithm outperforms the incremental LMS
algorithm. Moreover, there is a good match between
simulations and theory. Table I shows the average steady-
state MSD values over network for different algorithms
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Fig. 3. Simulated and theoretical steady-state values for the incre-
mental LMS and the proposed algorithm.

TABLE I
AVERAGE STEADY-STATE MSD VALUES OVER NETWORK FOR

DIFFERENT ALGORITHMS IN TWO DIFFERENT CONDITIONS.

Method Proper tuning Improper tuning
[3] -18.61 32.1
[10] -20.07 29.7
[12] -20.23 33.4
[13] -20.29 25.4

Proposed -20.31 –

in two different conditions including proper parameter
setting and improper parameter setting. As we can see,
unlike other algorithms, the performance of the proposed
algorithm does not require precise parameter setting.

V. CONCLUSIONS

In this paper we introduced a robust adaptive algo-
rithm that is suitable for parameter estimation in Hamil-
tonian Networks where the measurement are corrupted
by heavy-tailed impulsive noise. The main advantage of
the proposed algorithm is that it tunes the parameters of
the optimal error-nonlinearity and estimates the unknown
parameter at the same time. Therefore, it does not require
a priori knowledge about the noise probability density
function, which is always required in similar methods.
The provided steady-state analysis has been validated
through simulations.
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