

Advances in Networks
2020; 8(2): 22-33

http://www.sciencepublishinggroup.com/j/net

doi: 10.11648/j.net.20200802.12

ISSN: 2326-9766 (Print); ISSN: 2326-9782 (Online)

Improving Intrusion Detection and Prevention System (IDPS)
Performance in an IPv6 Environment

Adeel Sadiq
*
, Waleed Bul’ajoul

School of Science and Technology, Nottingham Trent University, Nottingham, UK

Email address:

*Corresponding author

To cite this article:
Adeel Sadiq, Waleed Bul’ajoul. Improving Intrusion Detection and Prevention System (IDPS) Performance in an IPv6 Environment. Advances

in Networks. Vol. 8, No. 2, 2020, pp. 22-33. doi: 10.11648/j.net.20200802.12

Received: October 29, 2020; Accepted: November 9, 2020; Published: November 19, 2020

Abstract: This paper presents a comprehensive investigation, backed up by detailed simulations, that the default settings of the

software based open source Intrusion Detection and Prevention Systems (IDPs) are not enough to thwart the network attacks in a

modern high-speed IPv6-only environment. It aims to solve this problem by improving the processing capabilities of an IDPS in

more than one way, with each method being totally independent from the other. The proposed solution can be implemented by

any user running an IDPS, without needing escalated privileges. Using and IPv6 packet generator, it is shown that with the

increase in IPv6 traffic in a fixed amount of time, the IDPS fails to analyse all the packets and starts dropping them. This

phenomenon compromises the core functionality of IDPS which is to stop the unwanted traffic. A hybrid solution has been

proposed to increase the performance of the IDPS. Our research involves only the system running an IDPS, with little to no

tweaking of the other elements within a network like routers, switches and firewalls. The paper also talks briefly about the current

and the future generation of the IDPSs. The simulation with the hybrid solution concludes that the performance is improved to a

staggering 200%, approximately, compared to the built-in settings of the IDPS.

Keywords: Internet Protocol Version 6, Intrusion Detection and Prevention System, Maximum Transmission Unit,

Fragmentation and Jumbo Packets, Kernel and Application Buffer, Packet Priority and Niceness

1. Introduction

IP addresses are needed to communicate in the online world,

without these logical addresses the Interconnected networks

will fall apart. IPv4 address pool has been depleted [1] and the

new version of the protocol, IPv6 is on the rise. IPv6 is not

widely understood and implemented. Researchers have

focused more on prolonging the life of IPv4 than encouraging

the deployment of IPv6 [2]. The future of Internet can only by

sustained by IPv6, especially with Internet of Things (IoT) on

the rise. According to the predicted network growth by Cisco

[3], it can be reasonably assumed that the alternative

technologies like Network Address Translation (NAT) will not

be able to keep up for long. Foreseeing this, the World IPv6

Day was observed in 2011 and the protocol has seen

considerable increase in its deployment ever since [4]. IPv6

was adopted as a technical standard in 2017 by Internet

Engineering Taskforce (IETF), the global entity responsible

for developing Internet standards. Its specification can be

found in the Request for Comments (RFC) 8200 [5].

Therefore, the study talks about IPv6 only.

Security is a wormhole. It consists of multiple layers and

hundreds of devices, protocols and standards, each spanning a

universe of knowledge in its on. We are heavily reliant on IT

and Networks infrastructure for our day to day operations,

which makes their security a paramount importance. The

network of an organisation is no longer an optional commodity

but a critical asset, which is required for the growth and

long-term sustainability. Networks share valuable data and

information. Unfortunately, this essential communication opens

a serious threat vector to the security of the interconnected

machines and networks. A Denial of Service (DoS) attack can

be mounted even on a complex service like cloud, making the

use of IDPS immediately relevant [6]. IDPS is not the only

comprehensive device against the security threats, it should be

used in conjunction with other security devices in a layered

form to provide adequate security [7].

This study has tried to use only one device, IDPS, in an

23 Adeel Sadiq and Waleed Bul’ajoul: Improving Intrusion Detection and Prevention System (IDPS)

Performance in an IPv6 Environment

in-line mode. Intrusion systems work in either detection or

prevention mode. However, this study improves the detection

and prevention mechanism by allowing the IDPS to measure

more packets in a fixed time. It is imperative to realise that

IDPS – being a security device – provides its functionality by

analysing packets. Once it cannot analyse all the packets and

start dropping traffic, its function is compromised. Software

based open source IDPS is the most common choice today.

This study is focussed on the state-of-the-art protocol and

security measures, instead of improving the older

soon-to-run-out protocol. It is logical to put efforts into

securing new methods and work on their longevity, hence the

motivation for this study.

However, due to the nature of present networks, IDPS needs

to be extremely fast, capable of processing at least one gigabit

person (Gbps) of traffic, which is the standard speed of any

modern common ethernet port. However, the researchers have

found that the present security devices, including IDPS, are

unable to keep up in a high-speed network environment. With

the default settings, no stable software based open source

IDPS achieves this feat of Gbps.

Since insufficient work has been done on IDPS performance

in IPv6, this novel research starts with investigating IPv6

behaviour in IDPS. A prototype network is designed to

investigate the IPv6 IDPS performance, followed by a deep

analysis on the output of the findings. Finally, a technical

solution is implemented and evaluated to improve the IDPS

performance in an IPv6 setting. Keeping in view the

aforementioned objectives, the paper is organised into sections,

each focussing on one aspect. Section 2 discusses the works

already done in this domain. Section 3 describes the research

methodology, followed by Section 4 on simulation results and

analysis. Section 5 summarises the change in performance by

changing different parameters and section 6 evaluates some of

the proposed parameters that maybe be modified. Section 7

proposes and evaluates a hybrid solution to improve the IDPS

performance while the final Section 8 concludes the study and

gives some insight into the future works.

2. Related Work

Gehrke discussed how IPv6 impacts IDPS performance in a

simulated environment [8]. He used Snort to observe the

behaviour of the IPv6 packets in a network but did not

mention any improvements. Our research evaluates a

technical solution on improving IDPS performance.

Bul’ajoul started his comprehensive work on improving the

IDPS performance using Snort and his work is the most

relevant to this study [9]. In fact, this research is a carry

forward to his work, but with the IPv6. He simulated the IDPS

performance in a high-speed network, changing various

parameters like number, size and speed of the packets and

observed the IDPS degradation. He suggested to improve the

performance using parallelisation.

Kumar and Kaur pointed out how IDPS Snort performs

reasonably well with IPv4 nodes, but the same cannot be said

when it comes to IPv6 [10]. They simulated many attacks on

an IPv6 network and the IPv6 IDPS, Snort, did not show a

satisfactory performance. Their ideas were further reinforced

by detailed findings of Schütte who concluded that no current

open source IDPS is capable to provide adequate security for

IPv6 [11]. This work has tried to address this issue with an

improved simulated IDPS performance in Snort.

Bul’ajoul found another way of improving the IDPS

performance using Quality of Service (QoS) in addition to

parallelisation [12]. However, the research was focused only

on IPv4, confirming the fact that most of the network elements

have been optimised for IPv4 over decades, while little work

is done for IPv6 in comparison. The work is very relevant to

the issue at hand but unlike this study, that used QoS feature in

the network switches to improve the performance.

Elejla and team have proposed another method to improve

the performance of the IDPS, but only for IPv6 Internet

Control Message Protocol (ICMPv6), the protocol that

provides the core functionalities of IPv6 [13]. They have

argued that using the traditional packet based IDPS is not the

ideal approach in high speed networks. Instead, they have

shown an improved design with a higher accuracy and low

false positives rate using flow based IDPS compared to the

trivial packet inspection.

Finally, ‘A New Architecture for Network Intrusion

Detection and Prevention’ [14], have presented a novel

architecture that considerably improves the IDPS performance.

They have used QoS in conjunction with Parallelisation that

showed great processing enhancements under certain

conditions. Again, that work is applicable only to IPv4 while

this study is only useful for IPv6.

To solve these problems, the goal of the study is aimed at

improving the IDPS performance for the newer IPv6, as much

as possible, preferably up to a level that thrive a fast speed

Gbps network. This paper is different to the previous studies

since it only deals with the IPv6 and modifies only the IDPS

parameters. In a network, a user may or may not have access

to other routing and security devices, hence this research

focuses mainly on configuring parameters that a person with

access to IDPS can make use of.

3. Research Methodology

3.1. Network Traffic Generator

The network traffic throughout the study will be IPv6-only.

An enterprise tool WAN Killer [15] is used for all the

simulations. Almost all the modern machinery supports

Ethernet interfaces, the speed of which is in Gbps. To analyse

the IDPS performance, a bandwidth closer to Gbps needs to be

generated. Unfortunately, there are not many tools capable of

mounting a Gbps scale of IPv6-only attack. The famous open

source tools like HPing3 and many others provide adequate

options to generate IPv4 packets, but do not support IPv6

traffic in a Gbps capacity. Open source tools like Scapy, IPerf,

NetScan Pro were not powerful enough to mount the required

IPv6 bandwidth at the time of this study. Most of the tools are

restricted to a few Mbps of pure IPv6 traffic. Using an

 Advances in Networks 2020; 8(2): 22-33 24

industrial and proprietary tool like WAN Killer was the only

option and the way forward.

WAN Killer can target an IPv6 address, be it link-local or

unicast address. It has the options of varying speed and size of

the packets to user defined values. The bandwidth will be

varied from 100Mbps to 1300Mbps, wherever required, with

increments of 200Mbps. The MTU is also changed in later

simulations to see how it affects IDPS.

3.2. Snort

Snort is an open source software based IDPS. Since it is free

to use, it has received great interest of the research community

and has become the most powerful and widely used IDPS

software tool worldwide [16]. Snort consists of 5 main

components which work together to output an intrusion:

decoder, pre-processor, detection engine, logging and alerting

system and output module [17]. There are many approaches

when it comes to improving security through Snort. This

research has focussed on packets processing capability, rather

than writing rules to stop the malicious traffic. The packet

processing is a precursor to the packet blocking. If Snort

cannot process enough packets, the ability to discard

malicious traffic will not matter. This study has made use of

Snort in an in-line mode. IDPS will always be one of the first

devices that a packet has to go through and running it in-line

mode makes it a necessary hop that packets must traverse

through. As an entry point of a network, an efficient and

effective IDPS will solve most of the network security threats.

If a threat is contained before entering a network, it cannot

wreak havoc and will do minimum to no damage at its behest,

hence the motivation for preferring this approach over others.

3.3. Prototype Network

The aim of the research is to improve IDPS performance.

For the sake of simplicity and to keep the focus on the task at

hand, this research considers a local network with a point to

point connection, removing the complexities of the routing in

a network. However, in the real world, the malicious user is

usually well hidden behind strong proxies and VPNs, in an

undisclosed location which may span over long geographical

distances. Furthermore, once the traffic has reached the target

machine, it will behave similarly irrespective of where it

originated from, having little to no effect on IDPS in its

functionality of processing and analysis, hence, the decision of

using a non-complex network design.

Figure 1. Simple Network Topology.

The virtual machines were used to promote the learning

curve, minimise real world implications and legal issues, with

an 8GB of RAM and 4 cores of processor, which are typical of

a modern computing system.

4. Simulations and Analysis

IDPS is running on the Ubuntu virtual machine while the

traffic is generated for a fixed amount of time, mostly 5

seconds. It should be noted that due to the human error of

starting and stopping the simulation manually, the value of

seconds is a close approximate, which can result in a little

deviation when the experiment is repeated. Only one

parameter is changed in each simulation, keeping others

constant.

A sample output of the simulation results mentions the

duration for which the IDPS was run to process the packets

and its frequency of packet analysis. The amounts of

packets received, analysed, and dropped can be verified,

along with the type of traffic which in all cases is IPv6.

Similar simulations are generated with the bandwidth of

300, 500, 700 and 900, 1100, and 1300 Mbps, where

necessary, and the individual detailed results are analysed

after each experiment. A final subsection of Performance

Comparison provides a better view and understanding of

the effects of change in performance with the chance of

each parameter, one at a time.

In all the tables, the bandwidth is in Mbps, the duration in

seconds and the packet size in bytes.

4.1. Bandwidth

Instead of changing the number and size of packets, it is

desirable to change the bandwidth. The bandwidth is a

better index in judging IDPS performance instead of

changing the size and number of packets. As a matter of fact,

changing the number and/or size will change the bandwidth,

essentially.

4.1.1. Experiment

Figure 2. Graphical IDPS Performance with Respect to Bandwidth.

25 Adeel Sadiq and Waleed Bul’ajoul: Improving Intrusion Detection and Prevention System (IDPS)

Performance in an IPv6 Environment

Table 1. Tabular IDPS Performance with Respect to Bandwidth.

Packets

Bandwidth Duration Received Analysed % Drop %

100 5 32658 32938 100 0 0

300 5 120667 121887 100 0 0

500 5 149983 151662 100 0 0

700 5 167993 172316 100 37686 18

900 5 169057 171912 100 77778 31

4.1.2. Evaluation

The bandwidth simulation has showed that the IDPS is able

to analyse all packets until 500Mbps easily but at reaching

700Mbps, the performance has decreased in the form of

packets drop. IDPS is not able to keep up with high bandwidth

especially when the bandwidth nears Ethernet capacity of

Gbps. Evidently, the IDPS performance is reduced with the

increase in bandwidth. When packets are sent at higher

bandwidth, IDPS starts analysing the packet in run-time and

stores the incoming packets in its buffer until it has reached its

capacity. The packet drop occurs when the buffer is full, and

no more packets can be entertained in either real-time or

buffer storage. IDPS starts dropping these packets,

irrespective of whether they are malicious or legitimate.

4.2. Time Duration

In this scenario, this time duration is increased to 10

seconds, keeping all other parameters the same.

4.2.1. Experiment

Table 2. Tabular IDPS Performance with Respect to Time Duration.

Packets

Bandwidth Duration Received Analysed % Drop %

100 10 71979 72265 100 0 0

300 10 173238 174017 100 41113 19

500 10 175254 176820 100 175980 50

700 10 171419 174004 100 324221 65

900 10 172204 176716 100 450880 72

Figure 3. Graphical IDPS Performance with Respect to Time Duration.

4.2.2. Evaluation

When the IDPS runs for longer time, its performance is

decreased considerably. Instead of crossing 500Mbps like in

bandwidth simulations in section 4.1, the packet drop starts as

early as 300Mbps. The buffer capacity is overflowed, and new

packets have no space to be stored temporarily, hence the

increase in packet drop.

4.3. Maximum Transmission Unit (MTU) and

Fragmentation

MTU is advertised by routers in a network. When a packet

size goes beyond MTU, fragmentation occurs since the

network is unable to handle the packet size beyond a certain

value. Usually, this value is set to 1500 bytes for the Ethernet

networks as a standard [18]. In previous simulations, the

packet size was set to a value lower than MTU, i.e. 1450 bytes.

The following simulations changes the bandwidth value with a

packet size greater than MTU, precisely to 2100 bytes, to see

its effect on IDPS performance.

4.3.1. Experiment

Table 3. Tabular IDPS Performance with Respect to Fragmentation.

Packets

Bandwidth Duration Received Analysed % Drop %

100 5 47869 48277 100 0 0

300 5 135336 136754 100 0 19

500 5 169949 171875 100 77646 31

700 5 167410 171936 100 153297 48

900 5 165319 172031 100 259478 61

Figure 4. Graphical IDPS Performance with Respect to Fragmentation.

 Advances in Networks 2020; 8(2): 22-33 26

Table 4. Processing Times with Different MTUs.

Bandwidth MTU Time Taken MTU Time Taken % Increase

100 1450 34 2100 46 36

300 1450 95 2100 127 34

500 1450 116 2100 152 31

4.3.2. Evaluation

Using 5 seconds time duration and 1450 bytes MTU, it was

observed that IDPS can successfully analyse all packets

without any drops up to 500Mbps. However, changing the

packet size from 1450 to 2100 bytes changes the results

altogether. A lot of resources are spent on fragmenting large

packets and reassembling them. This fragmentation has

drastic effects on the performance of IDPS. IDPS starts

dropping packet right before 300Mbps with packet size

greater than MTU, keeping all other factors constant. Another

comparison in Table 4 also shows a huge rise in time taken to

process the fragmented packets, further deteriorating the

performance matrix to an enormous 30%, at least.

4.4. Hardware Specifications

Snort is just a software based IDPS, whose resources are

dependent on underlying hardware. Improving the hardware

will improve IDPS performance considerably. In this study,

the memory and processing power of the Virtual Machine

running the IDPS is reduced to half, 2GB of RAM and 2 cores

of processor, to see the change it has on the performance of the

IDPS.

4.4.1. Experiment

Table 5. Tabular IDPS Performance with Respect to Hardware Resources.

Packets

Bandwidth Duration Received Analysed % Drop %

100 5 46534 46809 100 0 0

300 5 198759 114851 100 0 0

500 5 170273 172776 100 24600 13

700 5 170941 172821 100 105925 38

900 5 167202 172754 100 176776 51

Table 6. Processing Times with Different Hardware Capacities.

Bandwidth Resources Processing Time (s) Resources Processing Time (s) % Change

100 High 34 Low 48 40

500 High 116 Low 132 14

900 High 135 Low 147 9

Figure 5. Graphical IDPS Performance with Respect to Fragmentation.

4.4.2. Evaluation

Reducing resource allocation to IDPS reduces its

performance. IDPS requires more time to process the same

packets and drops more packets given the same scenario with

higher resources. A comparison with first simulation in

section 4.1 reveals that with lower resources, IDPS starts

dropping packets after 300Mbps instead of 500Mbps. This

trend is continued at higher speeds, although at a reduced pace,

demonstrating poorer performance with less resources.

5. Performance Comparison

To identify various factors that contribute to the

performance matrix of IDPS, we controlled the size, speed,

bandwidth, time duration and the underlying hardware in the

simulations. The results of simulation have shown that IDPS

performance is affected by various factors. Although we have

changed one parameter at a time and kept others constant to

analyse the effect of one criterion, the real networks work

quite differently. Depending on the size of network and many

other factors, more than one parameter will affect IDPS

simultaneously, producing a deadly effect on overall

performance. These parameters are presented on the same

tables and graphs for the final side-by-side comparison.

27 Adeel Sadiq and Waleed Bul’ajoul: Improving Intrusion Detection and Prevention System (IDPS)

Performance in an IPv6 Environment

Table 7. Bandwidth Performance Tabular Comparison.

Bandwidth % Drop

100 0

300 0

500 0

700 18

900 31

Figure 6. Bandwidth Performance Graphical Comparison.

Table 8. Time Duration Performance Tabular Comparison.

Bandwidth Time % Drop Time % Drop

100 5 0 10 0

300 5 0 10 19

500 5 0 10 50

700 5 18 10 65

900 5 31 10 72

Figure 7. Time Duration Performance Graphical Comparison.

Table 9. Fragmentation Performance Tabular Comparison.

Bandwidth Fragmentation % Drop Fragmentation % Drop

100 No 0 Yes 0

300 No 0 Yes 19

500 No 0 Yes 31

700 No 18 Yes 48

900 No 31 Yes 61

Figure 8. Fragmentation Performance Graphical Comparison.

Table 10. Hardware Performance Tabular Comparison.

Bandwidth Resources % Drop Resources % Drop

100 Low 0 High 0

300 Low 0 High 0

500 Low 13 High 0

700 Low 38 High 18

900 Low 51 High 31

Figure 9. Hardware Performance Graphical Comparison.

The results of the simulations for IPv6 traffic can be

summarised in below table, keeping in mind that only one

parameter is changed at a time:

Table 11. Factors Effecting IDPS Performance in an IPv6 Network.

Parameter Effects IDPS

Frequency of Packets Yes

Size of Packets Yes

Bandwidth Yes

Fragmentation Yes

Time Duration Yes

Hardware Specifications Yes

 Advances in Networks 2020; 8(2): 22-33 28

6. Improved Parameters

Based on the results of analysis in Section 4, IDPS can be

improved by various methods. This section discusses some of

them. Modern systems and networks support interfaces in

Gbps. An IDPS is not very useful unless it can analyse at least

one Gbps of traffic. However, a system is not always using

that much traffic. Nonetheless, the security of a system cannot

be compromised on the assumption of an average traffic

consumption.

6.1. Hardware Resources

IDPS uses underlying hardware resources to perform its

functions. Increasing these resources have a visible effect on

its performance. The simulations in Section 4 used both high

and low resources for the virtual machine, which in turn

means for the IDPS. The simulations have shown that

increasing hardware capability improves the performance

adequately. More hardware resources will process more

packets in a given time, keeping all other factors constant,

hence improving IDPS performance. This led us to the

conclusion that hardware resources, indeed, have a

considerable effect on the performance of the IDPS, as can be

seen from Figure 9.

6.2. Buffer Capacity

Whenever IDPS receives packets, it starts processing them

in real time. Due to the nature of modern high-speed

networks, IDPS starts buffering the packets that they have

not processed yet. However, the buffer capacity is not

unlimited. When the buffer capacity has reached its

maximum value, then IDPS starts dropping packets, a point

where it starts becoming dangerous since the network is

more susceptible to security threats. There are two types of

buffers; application and Operating System (OS). This section

details how to use both types to possibly enhance the

performance of IDPS.

6.2.1. OS Buffer

The OS buffer, sometimes referred as Kernel buffer, is the

memory reserved by the underlying operating system for a

short period of time before it is sent for processing, unlike

cache which is the data that is already being processed. Both

cache and buffer are used for improved performance of the

services and processes.

Linux calls its buffer ‘rmem’ and ‘wmem’, short for receive

memory buffer size and send memory buffer size, respectively.

In the following simulation, the default values are changed from

212992 to 21299200 to see the effect on IDPS performance.

(i) Experiment

Table 12. Tabular IDPS Performance with Respect to Increased Kernel Buffer.

Packets

Bandwidth Duration Received Analysed % Drop %

100 5 35093 35356 100 0 0

300 5 102557 103745 100 0 0

500 5 152218 153759 100 0 0

700 5 171579 173635 100 37656 18

900 5 165454 170259 100 85787 34

Figure 10. Graphical IDPS Performance with Respect to Increased Kernel

Buffer.

(ii) Evaluation

Contrary to popular belief, IDPS has no effect on its

performance due to the change in Kernel Buffer value as

proven from the simulation. The results are like the standard

first simulation in section 4.1 used to observe the bandwidth

effect on IDPS. The tabular and graphical results show little to

no effect at all.

6.2.2. Application Buffer

The second type of buffer is application buffer where every

application assigns itself a buffer to handle its operations efficiently.

This buffer is independent of kernel buffer. The kernel buffer

serves the whole system while this type of buffer is local to every

application. The Data Acquisition module in IDPS architecture,

commonly known as DAQ, controls the buffer capacity, the value

of which is defined in a complex configuration file called

‘snort.conf’. In all the previous simulations, we used the

application buffer size of 1024 MB. In this simulation, the

application buffer size of IDPS is increased to 2048 MB. The time

is also increased from 5 seconds to 10 seconds to better analyse the

effect of increased buffer. With 5 seconds tenure, the sensitivity of

the simulation is decreased on account of latency and jitter and

hence, not a good fit for the task at hand.

(i) Experiment

Table 13. Tabular IDPS Performance with Respect to Increased Application Buffer.

Packets

Bandwidth Duration Received Analysed % Drop %

100 10 73454 73925 100 0 0

300 10 230305 231924 100 0 0

500 10 327259 329828 100 0 0

700 10 336788 340112 100 163584 33

900 10 339672 344349 100 316002 48

29 Adeel Sadiq and Waleed Bul’ajoul: Improving Intrusion Detection and Prevention System (IDPS)

Performance in an IPv6 Environment

Figure 11. Graphical IDPS Performance with Respect to Increased

Application Buffer.

(ii) Evaluation

With 1024MB memory buffer, IDPS started dropping

packets at 300Mbps but it was able to sustain itself just after

500Mbps by using 2048MB buffer capacity, increasing the

IDPS performance by almost two-folds.

Table 14. Tabular IDPS Performance with Respect to Different Buffer Types.

Bandwidth Buffer Type % Drop Buffer Type % Drop

100 Kernel 0 Application 0

300 Kernel 19 Application 0

500 Kernel 50 Application 0

700 Kernel 65 Application 33

900 Kernel 72 Application 48

Figure 12. Graphical IDPS Performance with Respect to Different Buffers.

Although no change was observed by changing the kernel

buffer, but a significant improvement was observed by

modifying the application buffer size to an increased value.

Table 15. Buffer Effecting IDPS Performance in IPv6 Network.

Parameter Effects IDPS

Kernel Buffer No

Application Buffer Yes

6.3. Process Priority and Niceness

Linux uses priority and niceness to assign preferences to the

processes. Nice values range from -20 to +19 with +19 as the

lowest priority whereas priority changes its value from 0 to 139

[19]. Whether the process is real time or user based, the logic of

lower number corresponding to higher priority remains true.

The priority for a real-time process can be changed by using

‘renice’ command [20]. However, it was found that in this

scenario, changing the priority or niceness value did not yield

any results because IDPS was the only main process running on

the machine. This method may improve the result in a

real-world scenario where many other processes may be

running on the same machine where IDPS is installed. By

changing the niceness, our simulation gave the same results as

of the first bandwidth simulation in section 4.1. Hence, it can be

concluded that the process priority in a standalone Linux system

has no effect on the performance of the IDPS.

Table 16. Priority Effecting IDPS Performance in IPv6 Network.

Parameter Effects IDPS

Process Priority No

Process Niceness No

6.4. Jumbo Packets

It was established before that fragmentation takes a heavy toll

on IDPS performance. It causes break down of packets into

smaller chunks and then reassembling them again, increasing

the packet processing time to at least 30%. These packets of

increased size are referred to as Jumbo Packets or Jumbograms.

In this simulation, the MTU of the network is increased form

1500 bytes to 9000 bytes to allow the IDPS to process large

packets without compromising its functional ability. The MTU

of the network is increased both on sender, and receiver (and

any other nodes in the network, if any) sides. The command line

is used to change the MTU of ethernet interfaces in Linux while

Network Interfaces in Device Manager is used for the same

purpose in the Windows OS. In a traditional Snort output, the

‘Frag3 Statistics’ can verify the fragmentation occurrence.

6.4.1. Experiment

Table 17. Tabular IDPS Performance with Respect to Changing MTU

Bandwidth MTU Packet Size % Drop

1 500 9000 1500 0

2 500 9000 2000 0

3 500 9000 2500 0

4 500 9000 3000 0

Figure 13. Graphical IDPS Performance with Respect to Changing MTU.

 Advances in Networks 2020; 8(2): 22-33 30

6.4.2. Evaluation

Changing the MTU value shows significant improvement

for IDPS compared to a typical scenario. Snort started

dropping packets at 300Mbps when the packet size was

changed to 2100 bytes in a previous simulation, but it

withstood 500Mbps with the increased change in packet size

when its MTU was changed to 9000 bytes.

Table 18. Tabular IDPS Performance with Respect to Changing MTUs.

MTU = 1500 MTU = 9000

Bandwidth Packet Size % Drop Packet Size % Drop

1 100 2100 0 3000 0

2 300 2100 19 3000 0

3 500 2100 31 3000 0

4 700 2100 48 3000 18

5 900 2100 61 3000 31

Figure 14. Graphical IDPS Performance with Respect to Different MTUs.

Increasing the MTU from 1500 to 9000 enables IDPS to

process more packets since its resources are not used for

reassembling. When the bandwidth is reached closer to 1Gbps,

the increased MTU drops 30% traffic compared to 60% drop

with a standard MTU.

For this to work, all network elements within a network

should support the increased MTU and the value needs to be

coherent throughout the lifecycle of the packet. Even if a single

node is not supporting the extended MTU, it will fragment the

packet it receives. Changing the MTU prevents the IDPS from

dropping the packets when the packet size is increased

considerably. However, changing MTU is a deterrent measure.

It does not improve the IDPS performance directly per say, it

helps it to prevent a denial of service condition. Once the DoS

attack has been successfully carried out, more attacks can be

mounted since the network security devices are no longer able

to analyse every packet to prevent every malicious attempt.

Table 19. MTU Effecting IDPS Performance in IPv6 Network.

Parameter Effects IDPS

MTU Yes

6.5. Multithreading

According to the official documentation of Snort, the latest

stable version does not support multithreading or parallel

processing [21]. Irrespective of the cores of the processor, it

always uses only one thread to carry out its activities.

Multithreading is analogous to load distribution, which allows

a single application to run in multiples processes in parallel,

providing a boost to the performance. Suricata, another

software based IDPS, has been supporting multithreading for

quite some time [22]. Unfortunately, Snort had seen no

development in this area. The beta version of Snort can

emulate a condition of multithreading, but it does not support

load balancing, yet. The beta Snort 3 is expected to support a

maximum of 8 threads [23].

In this simulation, we will only test the multithreading

capability of the underdeveloped Snort. If the multithread test

succeeds, it is only a matter of distributing the packets to different

instances of DAQ for load balancing, essentially increasing the

performance of IDPS. However, it is a prerequisite for underlying

hardware processor and software operating system to support

multithreading if this feature is to be used in the applications.

6.5.1. Experiment

Table 20. Tabular IDPS Performance with Respect to Increasing Threads.

Threads Packets Processing Frequency

1 4418

2 9001

3 13644

4 18139

The above table was obtained by running the simulation by

incrementing the number of threads by one in each subsequent

simulation.

6.5.2. Evaluation

The IDPS shows successful results of creating multiple threads.

The packets received were copied and that same copy was sent to

four different instances for parallel processing. The packets

processing per seconds was increased from over four thousand in

single thread to over eighteen thousand in four (multi)threads,

showing an increase of almost four times, each thread behaving

as a standalone process. However, it is not necessary that the

performance is always increased to the number of times of

instances. It all comes down to how the traffic is being distributed

to different threads of the DAQ module.

Multithreading shows a visible increase in the output

performance of an IDPS. Multithreading greatly improves the

efficiency of any programme and process, IDPS is no different.

However, since IDPS are security devices with very stringent

requirements, configuring them to use this feature is not easy,

especially using Snort. Snort, as of now, does not internally

fan-out packets to other cores. Therefore, reproducing the

results in this simulation will not be an easy task, not to

mention that it may be changed entirely once the commercial

version of the beta product is launched.

Table 21. Number of Threads Effecting IDPS Performance in IPv6 Network.

Parameter Effects IDPS

Threads Yes

31 Adeel Sadiq and Waleed Bul’ajoul: Improving Intrusion Detection and Prevention System (IDPS)

Performance in an IPv6 Environment

7. Proposed Hybrid Solution

In its factory default state, software based IDPS are unable

to support a Gbps traffic but can only work efficiently to a few

hundred Mbps, as was seen throughout this research. After

carefully implementing and technically evaluating different

methods of improving IDPS performance, this section

combines all the results from the research to produce a single

viable solution that can be used in a live network based on the

experiments and evaluations from Sections 4 and 5. The term

hybrid refers to the fact that it will comprise not only the

software aspects of the IDPS, but the hardware as well. Since

the load balancing feature of the multithreading is still

experimental, it is not considered in the final experiment,

albeit a promising feature in the performance improvement.

Combining the results from the study, the following

parameters are used for the final simulation:

Table 22. Verified Parameters for Maximum Performance for IDPS.

Parameter Value

RAM 8 GB

Processor i7

Processor Cores 4

Application Buffer 7 GB

MTU 9000 bytes

Multithreading Not Applicable

Time Duration 5 - 10 seconds

Bandwidth 0.5 - 1.3 Gbps

7.1. Experiments

The bandwidth is capped at 1.3Gbps due to the limitation of

WAN Killer to generate purely IPv6 traffic. The time

durations of simulation are set to 5 and 10 seconds,

respectively.

Table 23. Tabular IDPS Performance Comparison with Built-in and Proposed

Parameters @ 5 seconds.

Bandwidth Duration Traditional Drop % Modified Drop %

500 5 0 0

700 5 18 0

900 5 31 0

1100 5 55 0

1300 5 64 0

Table 24. Tabular IDPS Performance Comparison with Built-in and

Proposed Parameters @ 10 seconds.

Bandwidth Duration Traditional Drop % Modified Drop %

100 10 0 0

300 10 19 0

500 10 50 0

700 10 65 0

900 10 72 21

Figure 15. Graphical IDPS Performance Comparison with Built-in and

Proposed Parameters @ 5 seconds.

Figure 16. Graphical IDPS Performance Comparison with Built-in and

Proposed Parameters @ 10 seconds.

Table 25. Final Throughput Using Modified Parameters.

Parameters Duration Throughput

Standard 5 500

Modified 5 1300

Standard 10 200

Modified 10 700

7.2. Recommendation

Using the verified parameters, the IDPS was able to handle

traffic up to 1.3Gbps and 700Mbps without any drops for 5

and 10 seconds, respectively. The IDPS showed considerable

depreciation at 900Mbps in longer duration, but using built-in

values, this deflation starts as early as 300Mbps. Although the

target of 1 Gbps was not achieved for prolonged 10 second

tenure, but we still managed to improve the result by a huge

margin of almost 250%.

 Advances in Networks 2020; 8(2): 22-33 32

7.3. Limitations

Verified from the simulations, IDPS performance is limited

by both hardware and software. At this stage, software

changes are more important since most of the modern

machines have enough hardware capabilities, it is the efficient

use of that hardware that becomes a bottleneck. Only through

software, we can control and optimise the hardware

performance. The beta version of Snort IDPS is expected to

address some of these limitations, but nothing can be said for

sure. The ability to generate a pure IPv6 traffic measuring up

to tens of Gbps is also a problem. The unavailability of load

balancing featuring in the alpha version of DAQ also restricts

the users to enhance the performance further.

8. Conclusion and Future Work

8.1. Conclusion

The aim of the research was to improve the performance of

an IDPS in an IPv6-only scenario. Different open-source

software based IDPS are available, with Snort taking the lead

worldwide. The technical solution proposed and verified in the

simulations was able to achieve the goal set for this study. The

performance was improved to an impressive 250% in longer

duration as a bandwidth increase from 200Mbps to 700Mbps

with zero packet loss. For a shorter tenure, the initial value of

500Mbps was increased by 160% to 1300Mbps, with further

testing being restricted by the ability to generate more than

1300Mbps of pure IPv6 traffic. More research needs to be done

and their findings can be inculcated to this study as an extended

solution to take this key value to the scale of multiple gigabits

per second. The authors believe it is too immature to draw any

conclusions on the performance capabilities and comparison

analogies of the trial Snort without an official release.

8.2. Future Work

The work done in this study can be taken forward in more

than one way. The simulations were run for 5 and 10 seconds,

this time can be increased, and a new solution devised that will

work in a prolonged environment. A similar study can be

carried out with a different packet generator. In future, maybe

a strong open-source C++ based packet generator is developed,

capable of generating IPv6 traffic up to 10 Gbps. Most of the

packet generators now are python based, which allows only a

few hundred Mbps of traffic, at most. Furthermore, a whole

new era of research will be opened when the next generation

of software based IDPS, Snort 3, is released. It is too early to

decide whether the scope of this research will be applicable to

Snort 3 in any way. It may obsolete all the research done on

previous versions by all the researchers or may keep some of

the features from the old releases. The latter is more likely.

One of the most sought features in an IDPS is parallel

processing. Once this multithreading is implemented and

integrated in the Snort, new areas pertaining to handling and

dissemination of traffic via DAQ module will open for the

research community.

References

[1] RIPE NCC, 2019. The RIPE NCC has run out of IPv4
Addresses, RIPE NCC
https://www.ripe.net/publications/news/about-ripe-ncc-and-rip
e/the-ripe-ncc-has-run-out-of-ipv4-addresses [Accessed 1 Aug
2020].

[2] Bly, Jennifer. 2014. Why Is the Transition to IPv6 Taking So
Long? Team ARIN
https://teamarin.net/2014/08/13/transition-ipv6-taking-long/
[Accessed 1 Aug 2020].

[3] Cisco, 2016. Global – 2021 Forecast Highlights, VNI Complete
Forecast Highlights, Cisco
https://www.cisco.com/c/dam/m/en_us/solutions/service-provi
der/vni-forecast-highlights/pdf/Global_2021_Forecast_Highli
ghts.pdf [Accessed 1 Aug 2020].

[4] Internet Society, 2018. State of IPv6 Deployment 2018,
Internet Society
https://www.internetsociety.org/resources/2018/state-of-ipv6-d
eployment-2018/ [Accessed 1 Aug 2020].

[5] Deering, S. and Hinden, R. 2017. Internet Protocol, Version 6
(IPv6) Specification, RFC8200, IETF
https://tools.ietf.org/html/rfc8200 [Accessed 1 Aug 2020].

[6] Mishti D. et al. 2016. International Journal of Applied
Information Systems (Foundation of Computer Science), vol.
10, No. 5, pp 18-26.

[7] Chellappan, K. 2015. Layered Defense Approach: Towards
Total Network Security, International Journal of Computer
Science and Business Informatics, Vol. 15, No. 1, pp. 13-22.

[8] Gehrke, K. 2012. The Unexplored Impact of IPv6 On Intrusion
Detection Systems, Master’s Thesis, Naval Postgraduate School.

[9] Bul’ajoul, W. et al. 2013. Network Intrusion Detection Systems
in High-Speed Traffic in Computer Networks, IEEE 10th
International Conference on e-Business Engineering, pp.
168-175.

[10] Kumar, S. and Kaur, R. 2013. IPv6 Network Security Using
Snort, Journal of Engineering, Computers & Applied Sciences
(JEC&AS), Volume 2, Issue 8, pp. 17-22.

[11] Schütte, M. 2013. Design and Implementation of an IPv6
Plugin for the Snort Intrusion Detection System, Magdeburger
Journal zur Sicherheitsforschung, 2, 409–452.

[12] Bul’ajoul, W. et al. 2015. Improving network intrusion
detection system performance through quality of service
configuration and parallel technology, Journal of Computer and
System Sciences, Volume 81, Issue 6, pp. 981-999.

[13] Elejla, E. et al. 2018. Flow-Based IDS for ICMPv6-Based
DDoS Attacks Detection, Arabian Journal for Science and
Engineering, 43, pp. 7757–7775.

[14] Bul’ajoul, W. et al. 2019. A New Architecture for Network
Intrusion Detection and Prevention, IEEE Access, vol. 7, pp.
18558-18573.

[15] SolarWinds, 2020. Network Traffic Generator and Stress Test,
SolarWinds
https://www.solarwinds.com/engineers-toolset/use-cases/traffi
c-generator-wan-killer [Accessed 1 Aug 2020].

33 Adeel Sadiq and Waleed Bul’ajoul: Improving Intrusion Detection and Prevention System (IDPS)

Performance in an IPv6 Environment

[16] Snort, 2020. Snort – Network Intrusion Detection and
Prevention System, Snort https://www.snort.org/ [Accessed 1
Aug 2020].

[17] Albin, E. and Rowe, N. 2012. A realistic experimental
comparison of the Suricata and Snort intrusion-detection
systems, IEEE 26th International Conference on Advanced
Information Networking and Applications (WAINA), pp. 122–
127.

[18] Hornig, C. 1984. A Standard for the Transmission of IP
Datagrams over Ethernet Networks, RFC894, IETF
https://tools.ietf.org/html/rfc894 [Accessed 1 Aug 2020].

[19] AskUbuntu, 2020. Process ‘niceness’ vs. ‘priority’, AskUbuntu
https://askubuntu.com/questions/656771/process-niceness-vs-
priority [Accessed 1 Aug 2020].

[20] Mishra, C. 2019. A brief guide to priority and nice values in the

linux ecosystem, Medium
https://medium.com/@chetaniam/a-brief-guide-to-priority-and
-nice-values-in-the-linux-ecosystem-fb39e49815e0#:~:text=In
%20Linux%20system%20priorities%20are,default%20and%2
0%2B19%20is%20lowest. [Accessed 1 Aug 2020].

[21] Snort Users Manual. 2020. Snort Users Manual 2.9.16, Snort,
https://snort.org/documents/1 [Accessed 1 Aug 2020].

[22] Suricata, 2016. Runmodes – Suricata 4.1.0-dev Documentation,
Suricata
https://suricata.readthedocs.io/en/suricata-4.1.3/performance/r
unmodes.html [Accessed 1 Aug 2020].

[23] Snort 3 User Manual. 2020. Snort 3 User Manual, Snort
https://snort-org-site.s3.amazonaws.com/production/release_fi
les/files/000/013/581/original/snort_manual.pdf [Accessed 1
Aug 2020].

