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We are currently witnessing the fourth industrial revolu-
tion1. Technological innovations have altered the way in 
which economies operate and how people interact with 

built, social and natural environments. One area of transformation is 
the emergence of robotics and autonomous systems (RAS), defined 
as technologies that can sense, analyse, interact with and manipulate 
their physical environment2. RAS include unmanned aerial vehicles 
(drones), self-driving cars, robots able to repair infrastructure, and 
wireless sensor networks used for monitoring. RAS therefore have a 
large range of potential applications, such as autonomous transport, 

waste collection, infrastructure maintenance and repair, policing2,3 
and precision agriculture4 (Fig. 1). RAS have already revolutionized 
how environmental data are collected5 and how species populations 
are monitored for conservation6 and/or control7. Globally, the RAS 
market is projected to grow from $6.2 billion in 2018 to $17.7 billion 
in 20268.

Concurrent with this technological revolution, urbanization 
continues at an unprecedented rate. By 2030, an additional 1.2 mil-
lion km2 of the planet’s surface will be covered by towns and cit-
ies, with ~90% of this development happening in Africa and 
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Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems 
(RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and chal-
lenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an 
online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, 
transport systems and human–nature interactions. The prioritized opportunities were primarily centred on the deployment 
of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that 
were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. 
Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important develop-
ments early is essential if we are to avoid detrimental consequences but fully realize the benefits.
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Asia. Indeed, 7 billion people will live in urban areas by 20509. 
Urbanization causes habitat loss, fragmentation and degradation, 
as well as altering local climate, hydrology and biogeochemical 
cycles, resulting in novel urban ecosystems with no natural ana-
logues10. When poorly planned and executed, urban expansion and 
densification can lead to substantial declines in many aspects of  
human wellbeing11.

Presently, we have little appreciation of the pathways through 
which the widespread uptake and deployment of RAS could affect 
urban biodiversity and ecosystems12,13. To date, information on how 
RAS may impact urban biodiversity and ecosystems remains scat-
tered across multiple sources and disciplines, if it has been recorded 
at all. The widespread use of RAS has been proposed as a mecha-
nism to enhance urban sustainability14, but critics have questioned 
this technocentric vision15,16. Moreover, while RAS are likely to have 
far-reaching social, ecological and technological ramifications, 
these are often discussed only in terms of the extent to which their 
deployment will improve efficiency and data harvesting, and the 
associated social implications17–19. Such a narrow focus will proba-
bly overlook interactions across the social–ecological–technical sys-
tems that cities are increasingly thought to represent20. Without an 
understanding of the opportunities and challenges RAS will bring, 
their uptake could cause conflict with the provision of high-quality 
natural environments within cities13 that can support important 
populations of many species21 and are fundamental to the provision 
of ecosystem services that benefit people22.

Here, we report the findings of an online horizon scan to evalu-
ate and prioritize future opportunities and challenges for urban 
biodiversity and ecosystems, including their structure, function and 
service provision, associated with the emergence of RAS. Horizon 
scans are not conducted to fill a knowledge gap in the conventional 
research sense, but are used to explore arising trends and develop-
ments, with the intention of fostering innovation and facilitating 
proactive responses by researchers, managers, policymakers and 
other stakeholders23. Using a modified Delphi technique, which 
is a structured and iterative survey23–25 (Fig. 2), we systematically  

collated and synthesized knowledge from 170 expert participants 
based in 35 countries (Extended Data Fig. 1). We designed the exer-
cise to involve a large range of participants and to incorporate a 
diversity of perspectives26.

Results and discussion
Following two rounds of online questionnaires, the participants 
identified 32 opportunities and 38 challenges for urban biodiver-
sity and ecosystems associated with RAS (Fig. 2). These were pri-
oritized in round three, with participants scoring each opportunity 
and challenge according to four criteria, using a five-point Likert 
scale: (1) likelihood of occurrence; (2) potential impact (that is, the 
magnitude of positive or negative effects); (3) extensiveness (that 
is, how widespread the effects will be); and (4) degree of novelty  
(that is, how well known or understood the issue is). Opportunities 
that highlighted how RAS could be used for environmental moni-
toring scored particularly highly (Fig. 3 and Supplementary Table 1).  
In contrast, fewer challenges received high scores. Those that did 
emphasized concerns surrounding waste from unrecovered RAS, 
and the quality and interpretation of RAS-collected data (Fig. 4 and 
Supplementary Table 1).

These patterns from the whole dataset masked heterogene-
ity between groups of participants, which could be due to at least 
three factors: (1) variation in background/expertise; (2) variation 
in which opportunities and challenges are considered important in 
particular contexts; and (3) variation in experience and, therefore, 
perspectives. We found variation according to participants’ coun-
try of employment and area of expertise (Extended Data Fig. 2 and 
3). However, we found no significant disagreement between par-
ticipants working in different employment sectors. This broad con-
sensus suggests that the priorities of the research community and 
practitioners are closely aligned.

Country of employment. Of our 170 participants, 11% were based 
in the Global South, suggesting that views from that region might 
be under-represented. Nevertheless, this level of participation is 

a

c d

b

Fig. 1 | Examples of the potential for RAS to transform cities. a, 25% of transport in Dubai is planned to function autonomously by 2030121. b, City-wide 
sensor networks, such as those used in Singapore (https://www.smartnation.sg/), inform public safety, water management and responsive public 
transport initiatives. c, Through the use of unmanned aerial and ground-based vehicles, Leeds, United Kingdom, is expecting to implement fully 
autonomous maintenance of built infrastructure by 20352. d, Precision agricultural technology for small-scale urban agriculture (https://farm.bot/).
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broadly aligned with the numbers of researchers working in dif-
ferent regions. For instance, urban ecology is dominated by Global 
North researchers27,28.

There were significant divergences between the views of par-
ticipants from the Global North and South (Extended Data Fig. 4 
and 5). Over two-thirds (69%; n = 44/64) of Global North partici-
pants indicated that the challenge ‘Biodiversity will be reduced due 
to generic, simplified and/or homogenized management by RAS’ 
(item 11 in Supplementary Table 1) would be important, assigning 
scores greater than zero. Global South participants expressed much 
lower concern for this challenge, with only one participant assign-
ing it a score above zero (Fisher’s exact test; odds ratio = 19.04; 95% 
confidence interval (CI) = 2.37–882.61; P = 0.0007; Extended Data 
Fig. 2). The discussions in rounds four and five (Fig. 2) revealed 

that participants thought RAS management of urban habitats was 
not imminent in cities of the Global South, due to a lack of financial, 
technical and political capacity.

All Global South participants (100%; n = 11) in round three 
assigned scores greater than zero to the opportunities ‘Monitoring 
for rubbish and pollution levels by RAS in water sources will 
improve aquatic biodiversity’ (item 35) and ‘Smart buildings will be 
better able to regulate energy usage and reduce heat loss (for exam-
ple, through automated reflectors), reducing urban temperatures 
and providing less harsh microclimatic conditions for biodiversity 
under ongoing climate change’ (item 10). Both items would tackle 
recognized issues in rapidly expanding cities. Discussions indicated 
that Global South participants prioritized the opportunities for RAS 
in mitigating pollution and urban heat island effects more than their 

Round five: consensus workshop.
Mergers are discussed and a final list of

challenges and opportunities is produced.
Use of the four criteria is discussed.

Identified:
15 challenges and
13 opportunities

Round one: questionnaire.
604 challenges and opportunities are

submitted.

Identified:
28 challenges and
32 opportunities

Round two: questionnaire.
468 clarifications, expansions, 
alterations and additions to the 

challenges and opportunities are submitted. 

Identified:
38 challenges and
32 opportunities

Round three: questionnaire.
The 38 challenges and 32 opportunities

are scored on four criteria.

Scores are summed for 
the 38 challenges and

32 opportunities

Round four: group discussions.
Each group discusses and agrees on the

top ten challenges and top ten opportunities. 
Those to be merged are identified.

Identified:
16 challenges and
14 opportunities

170 participants

88% Global North

12% Global South

Employment sector

65% research

16% private

14% government

5% NGO

10% smart cities

6% RAS

6% urban planning

63% environmental

14% engineering

Area of expertise

98 participants

89% Global North

11% Global South

Employment sector

67% research

14% private

15% government

3% NGO

9% smart cities

5% RAS

5% urban planning

65% environmental

15% engineering

Area of expertise

41 participants

Including representatives from each of the 
10 × round four discussion groups

Fig. 2 | Horizon scan process used to identify and prioritize opportunities and challenges associated with RAS for urban biodiversity and  
ecosystems. The horizon scan comprised an online survey, following a modified Delphi technique, which was conducted over five rounds. NGO, 
non-governmental organization.
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Global North counterparts, even though 80% (n = 60/75) of Global 
North participants also assigned positive scores to these items.

Area of expertise. There was considerable heterogeneity in 
how opportunities and challenges were prioritized by partici-
pants with environmental and non-environmental expertise 
(Extended Data Fig. 6 and 7). Significantly more participants with 
non-environmental expertise gave scores above zero to opportuni-
ties that were about the use of RAS for the maintenance of green 
infrastructure. The largest difference was for the opportunity ‘An 
increase in RAS maintenance will allow more sites to become ‘wild’, 
as the landscape preferences of human managers is removed’ (item 
9), which 76% (n = 22/29) of participants with non-environmental 
expertise scored above zero compared with 38% (n = 20/52) of 
those with environmental expertise (Fisher’s exact test: odds 
ratio = 0.20; 95% CI = 0.06–0.60; P = 0.02). More participants with 
non-environmental expertise (82%; n = 23/28) scored the opportu-
nity ‘RAS to enable self-repairing built infrastructure will reduce the 

impact of construction activities on ecosystems’ (item 57) greater 
than zero compared with those with environmental expertise (58%; 
n = 26/45) (Fisher’s exact test; odds ratio = 0.30; 95% CI = 0.08–1.02; 
P = 0.04).

For the challenges, there was universal consensus among par-
ticipants with non-environmental expertise that ‘Unrecovered RAS 
and their components (for example, batteries, heavy metals and 
plastics) will be a source of hazardous and non-degradable waste’ 
(item 31) will pose a major problem. All (n = 29) scored the item 
above zero, compared with 73% (n = 40/55) for participants with 
environmental expertise (Fisher’s exact test; odds ratio = 0; 95% 
CI = 0–0.43; P = 0.002). A greater proportion of non-environmental 
participants (76%; n = 22/29) also scored the challenge ‘Pollution 
will increase if RAS are unable to identify or clean up accidents 
(for example, spillages) that occur during automated maintenance/
construction of infrastructure’ (item 32) above zero compared 
with those with environmental expertise (45%; n = 22/29) (Fisher’s 
exact test: odds ratio = 0.26; 95% CI = 0.08–0.79; P = 0.01). Again, a  
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Fig. 3 | Opportunities associated with RAS for urban biodiversity and ecosystems, ranked according to round three participant scores. The distribution 
of summed participant scores (range: −8 to +8) across four criteria (likelihood, impact, extent and novelty) is shown for each of the 32 opportunities. 
Items are ordered according to the percentage of participants who gave summed scores greater than zero. Percentage values indicate the proportion of 
participants giving negative, neutral and positive scores (left hand side, central to and right hand side of the shaded bars, respectively). The full wording 
agreed by the participants for each opportunity is given in Supplementary Table 1. Item numbers are given in parentheses for cross-referencing between 
figures and tables. mm, monitoring and management. GI, green infrastructure.
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similar pattern was observed for item 38 ‘RAS will alter the hydro-
logical microclimate (for example, temperature and light), altering 
aquatic communities and encouraging algal growth’. A significantly 
greater proportion of non-environmental compared with envi-
ronmental participants (60% (n = 12/20) and 26% (n = 11/42), 
respectively) allocated scores above zero (Fisher’s exact test; odds 
ratio = 0.24; 95% CI = 0.07–0.84; P = 0.013).

The mismatch in opinions of environmental and 
non-environmental participants in round three indicates that the 
full benefits of RAS for urban biodiversity and ecosystems may  
not be realized. Experts responsible for the development and  

implementation of RAS could prioritize opportunities and chal-
lenges that do not align well with environmental concerns, unless 
an interdisciplinary outlook is adopted. This highlights the critical 
importance of reaching a consensus in rounds four and five of the 
horizon scan with a diverse set of experts (Fig. 2). A final set of 13 
opportunities and 15 challenges were selected by the participants, 
which were grouped into eight topics (Table 1).

1. Urban land use and habitat availability. The emergence of auton-
omous vehicles in cities seems inevitable, but the scale and speed 
of their uptake is unknown and could be hindered by financial, 
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Fig. 4 | Challenges associated with RAS for urban biodiversity and ecosystems, ranked according to round three participant scores. As in Fig. 3, but for 
the 38 challenges.
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Table 1 | The most important 13 opportunities and 15 challenges associated with RAS for urban biodiversity and ecosystems

Topic Opportunities Challenges

1. �Urban land use and habitat 
availability

Autonomous transport systems and associated 
decreased personal car ownership will reduce the 
amount of space needed for transport infrastructure 
(for example, roads, car parks and driveways), allowing 
an increase in the extent and quality of urban green 
space and associated ecosystem services (item 54)

The replacement of ecosystem services (for example, air 
purification and pollination) by RAS (for example, artificial 
trees and robotic pollinators) will lead to habitat and 
biodiversity loss (item 62)

Trees and other habitat features will be reduced in extent or 
removed to facilitate easier RAS navigation, and/or will be 
damaged through direct collision (item 60)

Autonomous transport systems will require new infrastructure 
(for example, charging stations, maintenance and 
control facilities and vehicle depots), leading to the loss/
fragmentation of green spaces (item 59)

2. �Maintenance and 
management of built and 
green infrastructure

Smart buildings will be better able to regulate energy 
usage and reduce heat loss (for example, through 
automated reflectors), reducing urban temperatures 
and providing less harsh microclimatic conditions for 
biodiversity under ongoing climate change (item 10)

Biodiversity will be reduced due to generic, simplified 
and/or homogenized management by RAS. This includes 
over-intensive green space management, improved building 
maintenance and homogenization of water currents and 
timings of flow (items 11, 14 and 37 merged)

Irrigation of street trees and other vegetation by RAS 
will lead to greater resilience to climate change/urban 
heat stress (item 8)

3. Human–nature interactions RAS will decrease pollution, making cities more 
attractive for recreation and enhancing opportunities 
for experiencing nature (item 42)

RAS will reduce human–nature interactions by, for 
example, reducing the need to leave the house as services 
are automated, as well as decreasing awareness of the 
surrounding environment while travelling (item 46)

RAS will provide novel ways for people to learn about 
and experience biodiversity and will lead to a greater 
level of participation in citizen science and volunteer 
conservation activities (items 41, 43 and 44 merged)

RAS that mimic ecosystem service provision (for example, 
artificial trees and robot pollinators) will reduce awareness 
of ecological functions and undermine public support for/
valuation of green infrastructure and biodiversity conservation 
(item 52)

RAS will exacerbate the exclusion of certain people from 
nature (item 48)

4. �Biodiversity and 
environmental data  
and monitoring

Drones and other RAS (plus integrated technology 
such as thermal imaging/artificial intelligence 
recording) will allow enhanced and more cost-effective 
detection, monitoring, mapping and analysis of habitats 
and species, particularly in areas that are not publicly 
or easily accessible (item 3)

The use of RAS without ecological knowledge of consequences 
will lead to misinterpretation of data and mismanagement of 
complex ecosystems that require understanding of thresholds, 
mechanistic explanations, species network interactions, and so 
on; for instance, pest control programmes threaten unpopular 
species (for example, wasps and termites) that fulfil important 
ecological functions (items 5 and 67 merged)

Real-time monitoring of abiotic environmental variables 
by RAS will allow rapid assessment of environmental 
conditions, enabling more flexible response 
mechanisms and informing the location and design of 
green infrastructure (item 4)

Data collected via RAS will be unreliable for difficult-to-identify 
species groups (for example, invertebrates) or less tangible 
ecosystem elements (for example, landscape and aesthetic 
benefits), leading to under-valuing of ‘invisible’ species and 
elements (item 6)

5. �Managing invasive and  
pest species

When managing/controlling pests or invasive species, RAS 
identification errors will harm non-target species (item 66)

RAS will provide new introduction pathways, facilitate 
dispersal and provide new habitats for pest and invasive 
species (item 68)

6. �RAS interactions with 
animals

Drone activity at new heights and new locations will threaten 
flying animals through a risk of direct collision and/or 
alteration of behaviour (item 19)

Terrestrial robots will cause novel disturbances to animals, 
such as avoidance behaviour, altered foraging patterns, nest 
abandonment, and so on (item 20)

7. Pollution and waste RAS will improve the detection, monitoring and 
clean-up of pollutants, benefitting ecosystem health 
(item 24)

Unrecovered RAS and their components (for example, 
batteries, heavy metals and plastics) will be a source of 
hazardous and non-degradable waste (item 31)

Continued
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technological and infrastructural barriers, public acceptability, or 
privacy and security concerns29,30. Nevertheless, participants antici-
pated wide-ranging impacts for urban land use and management, 
with implications for habitat extent, availability, quality and con-
nectivity and the stocks and flows of ecosystem services31, not least 
because alterations to the amount and quality of green space affect 
both species32 and people’s wellbeing33. Participants highlighted that 
urban land use and transport planning could be transformed34,35 if 
the uptake of autonomous vehicles is coupled with reduced personal 
vehicle ownership through vehicle sharing or public transport36–38. 
Participants argued that if less land is required for transport infra-
structure (for example, roads, car parks and driveways)39 this could 
enable increases in the extent and quality of urban green space. 
Supporting this view, research suggests that the need for parking 
could be reduced by 80–90%40.

Conversely, participants highlighted that autonomous vehicles 
could raise demand for private vehicle transport infrastructure, 
leading to urban sprawl and habitat loss/fragmentation as people 
move further away from centres of employment because commut-
ing becomes more efficient41,42. Urban sprawl has a major impact 
on biodiversity43. Participants also noted that autonomous trans-
port systems will require new types of infrastructure (for example, 
charging stations, maintenance and control facilities and vehicle 
depots)44 that could result in additional loss/fragmentation of 
green spaces. Furthermore, road systems may require even larger 
amounts of paved surface to facilitate the movement of autono-
mous vehicles, potentially to the detriment of roadside trees and 
vegetated margins39.

2. Built and green infrastructure maintenance and management. 
A specific RAS application within urban green infrastructure (the 
network of green/blue spaces and other environmental features 
within an urban area) that was strongly supported by our partici-
pants was the use of automated irrigation of vegetation to mitigate 
heat stress, thereby optimizing water use and the role trees can play 
in cooling cities. For example, sensors to monitor soil moisture, an 
integral component in automated irrigation systems—are deployed 
for urban trees in the Netherlands12—and similar applications are 

available for urban gardening45. This is likely to be particularly 
important in arid cities as irrigation can be informed by weather 
data and measures of evapotranspiration46. Resilience to climate 
change could also be improved by smart buildings that are better 
able to regulate energy usage and reduce heat loss47, through the 
use of technology such as light-sensing blinds and reflectors48. This 
could help reduce urban heat island effects and moderate harsh 
microclimates49.

Landscape management is a major driver of urban ecosystems50, 
which can be especially complex, due to the range of habitat types 
and the variety of stakeholder requirements51. Participants high-
lighted that autonomous care of green infrastructure could lead to 
the simplification of ecosystems, with negative consequences for 
biodiversity13. This would be the likely outcome if RAS make the 
removal of weeds and leaf litter and herbicide application substan-
tially cheaper and quicker, such as through the widespread uptake 
of robotic lawn mowers or tree-climbing robots for pruning52. 
Urban ecosystems can be heterogeneous in habitat type and struc-
ture51 and phenology53. Therefore, RAS may be unable to respond 
adequately to species population variation and phenology, or when 
species that are protected or of conservation concern are encoun-
tered. For hydrological systems in particular, participants noted 
that automated management could result in the homogenization of 
water currents and timings of flow, which are known to disrupt the 
lifecycles of flow-sensitive species54. Similarly, improved building 
maintenance could lead to the loss of nesting habitats and shelter 
(for example, for house sparrows Passer domesticus55), especially for 
cavity and ground-nesting species.

3. Human–nature interactions. RAS will inevitably alter the ways 
in which people experience, and gain benefits from, urban biodi-
versity and ecosystems. However, it is less clear what changes will 
occur, or how benefits will be distributed across sectors of society. 
Environmental injustice is a feature of most cities worldwide, with 
residents in lower-income areas typically having less access to green 
space and biodiversity56–58, while experiencing greater exposure to 
environmental hazards such as air pollution59,60 and extreme tem-
peratures61. RAS have the potential to mitigate but also compound 

Topic Opportunities Challenges

RAS will reduce waste production through better 
monitoring and management of sewage, litter, 
recyclables and outputs from the food system (items 
25 and 71 merged)

RAS will increase the detection of breaches of 
environmental law (for example, fly-tipping, illegal site 
operation, illegal discharges, consent breaches, and so 
on) (item 26)

Automated and responsive building, street and vehicle 
lighting systems will reduce light pollution impacts on 
plants and nocturnal and/or migratory species (item 
23)

Automated transport systems (including roadworks) 
will decrease vehicle emissions (by reducing the 
number of vehicles and improving traffic flow), leading 
to improved air quality and ecosystem health (item 21)

8. �Managing water and 
flooding

Monitoring and maintenance of water infrastructure 
by RAS will lead to fewer pollution incidents, improved 
water quality and reduced flooding (item 34)

Maintenance of stormwater by RAS will increase reliance 
on hard engineering solutions, decreasing the uptake of 
nature-based stormwater solutions that provide habitat  
(item 39)

The opportunities and challenges were prioritized as part of an online horizon scan involving 170 expert participants from 35 countries (Fig. 2). The full set of 32 opportunities and 38 challenges identified 
by participants in round three is given in Supplementary Table 1. Item numbers given in parentheses are for cross-referencing between the figures and tables.

Table 1 | The most important 13 opportunities and 15 challenges associated with RAS for urban biodiversity and ecosystems 
(continued)
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such inequalities, and the issues we highlight here will manifest dif-
ferently according to political and social context. RAS could even 
lead to novel forms of injustice by exacerbating a digital divide or 
producing additional economic barriers, whereby those without 
access to technology become increasingly digitally marginalized13,15 
from interacting with, and accessing, the natural world.

Experiencing nature can bring a range of human health and well-
being benefits62. Participants suggested that RAS will fundamentally 
alter human–nature interactions, but this could manifest itself in 
contrasting ways. On the positive side, RAS have the potential to 
reduce noise and air pollution63,64 through, for example, automated 
infrastructure repairs, leading to decreased vehicle emissions from 
improved traffic flow and/or reduced construction. In turn, this 
could make cities more attractive for recreation, encouraging walk-
ing and cycling in green spaces, with positive outcomes for physi-
cal65 and mental health66. Changes in noise levels could also improve 
experiences of biophonic sounds such as bird song67. Driving 
through green, rather than built, environments can provide human 
health benefits68. These could be further enhanced if autonomous 
transport systems were designed to increase people’s awareness of 
surrounding green space features, or if navigation algorithms pref-
erentially chose greener routes69. Autonomous vehicles could alter 
how disadvantaged groups, such as children, older and disabled 
people travel70. Participants felt that this might mean improved 
access to green spaces, thus reducing environmental inequalities. 
Finally, community (or citizen) science is now a component of 
urban biodiversity research and conservation71 that can foster con-
nectedness to nature72. Participants suggested that RAS could pro-
vide a suite of different ways to engage and educate the public about 
biodiversity and ecosystems, such as through easier access to and 
input into real-time data on species73.

Alternatively, participants envisaged scenarios whereby RAS 
reduce human–nature interactions. One possibility is that autono-
mous deliveries to households may minimize the need for people to 
leave their homes, decreasing their exposure to green spaces while 
travelling. In addition, walking and cycling could decline as new 
modes of transport predominate74. RAS that mimic or replace eco-
system service provision (for example, Singapore’s cyborg super-
trees75, and robotic pollinators76) may reduce people’s appreciation 
of ecological functions77, potentially undermining public support 
for, and values associated with, green infrastructure and biodiver-
sity conservation78. This is in line with what is thought to be occur-
ring as people’s experience of nature is increasingly dominated by 
digital media79.

4. Biodiversity and environmental data and monitoring. RAS 
are already widely used for the automated collection of biodiver-
sity and environmental monitoring data in towns and cities12. This 
has the potential to greatly enhance urban planning and manage-
ment decision-making12. Continuing to expand such applications 
would be a logical step and was one that participants identified 
as an important opportunity80. RAS will allow faster and cheaper 
data collection over large spatial and temporal scales, particularly 
across inaccessible or privately owned land. Ecoacoustic surveying 
and automated sampling of environmental DNA (eDNA) is already 
enabling the monitoring of difficult-to-detect species81,82. RAS also 
offer the potential to detect plant diseases in urban vegetation and, 
subsequently, inform control measures83,84.

Nevertheless, our participants highlighted that the technol-
ogy and baseline taxonomy necessary for the identification of the 
vast majority of species autonomously is currently unavailable. If 
RAS cannot reliably monitor cryptic, little-known or unappeal-
ing taxa, the existing trend for conservation actions to prioritize 
easy-to-identify and charismatic species in well-studied regions 
could intensify85. Participants emphasized that easily collected 
RAS data, such as tree canopy cover, could serve as surrogates for 

biodiversity and ecosystem structure/function without proper evi-
dence informing their efficacy. This would mirror current practices, 
rather than offering any fundamental improvements in monitoring. 
Moreover, there is a risk that subjective or intangible ecosystem ele-
ments (for example, landscape, aesthetic and spiritual benefits) that 
cannot be captured or quantified autonomously may be overlooked 
in decision-making86. Participants expressed concern that the quan-
tity, variety and complexity of big data gathered by RAS monitoring 
could present new barriers to decision-makers when coordinating 
city-wide responses87.

5. Managing invasive and pest species. The abundance and 
diversity of invasive and pest species are often high in cities88. 
One priority concern identified by the participants is that RAS 
could facilitate new introduction pathways, dispersal opportuni-
ties or different niches that could help invasive species to establish. 
Participants noted that RAS offer clear opportunities for earlier and 
more efficient pest and invasive species detection, monitoring and 
management89,90. However, participants were concerned about the 
implementation of such novel approaches, citing the potential for 
error, whereby misidentification could lead to accidentally control-
ling non-target species. Likewise, RAS-mediated pest control could 
threaten unpopular taxa, such as wasps or termites, if the interven-
tions are not informed by knowledge of the important ecosystem 
functions such species underpin.

6. RAS interactions with animals. The negative impact of 
unmanned aerial vehicles on wildlife is well documented91, but evi-
dence from some studies in non-urban settings suggests that this 
impact may not be universal92,93. Nevertheless, participants high-
lighted that RAS activity at new heights and locations within cities 
will generate novel threats, particularly for raptors that may per-
ceive drones as prey or competitors. Concentrating unmanned aer-
ial vehicle activity along corridors is a possible mitigation strategy. 
However, participants noted that this could further fragment habi-
tats by creating a three-dimensional barrier to animal movement, 
which might disproportionately affect migratory species. Similarly, 
ground-based or tree-climbing robots52 may disturb nesting and 
non-flying animals.

7. Managing pollution and waste. Air94,95, noise96 and light97,98 pol-
lution can substantially alter urban ecosystem function. Participants 
believed that RAS would generate a range of important opportu-
nities for reducing and mitigating such pollution. For instance, 
automated transport systems and road repairs could reduce vehicle 
numbers and improve traffic flow36, leading to lower emissions 
and improved air quality63,64. If increased autonomous vehicle use 
reduced noise from traffic, species that rely on acoustic communi-
cation could benefit. Similarly, automated and responsive lighting 
systems will reduce light impacts on nocturnal species, including 
migrating birds99. RAS that monitor air quality, detect breaches of 
environmental law and clean up pollutants are already under devel-
opment100,101. Waste management is a major problem for urban 
sustainability, and participants noted that RAS102 could provide a 
solution through automated detection and retrieval. Despite this 
potential, participants felt that unrecovered RAS could themselves 
contribute to the generation of electronic waste, which is a growing 
hazard for human, wildlife and ecosystem health103.

8. Water and flooding. Freshwater, estuarine, wetland and coastal 
habitats are valuable components of urban ecosystems worldwide104. 
Maintenance of water, sanitation and wastewater infrastructure is a 
major sustainability issue105. It is increasingly acknowledged that RAS 
could play a pivotal role in how these systems are monitored and 
managed106, including improving drinking water107, addressing water 
quality issues associated with sewerage systems108 and monitoring  
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and managing diverse aspects of stormwater predictions and flows109. 
Participants therefore concluded that automated monitoring and 
management of water infrastructure could lead to a reduction in 
pollution incidents, improve water quality and reduce flooding110,111. 
Furthermore, they felt that if stormwater flooding is diminished, there 
may be scope for restoring heavily engineered river channels to a more 
natural condition, thereby enhancing biodiversity, ecosystem func-
tion and service provision112. However, participants identified that 
the opposite scenario could materialize, whereby RAS-maintained 
stormwater infrastructure increases reliance on hard engineered 
solutions, decreasing the uptake of nature-based solutions (for exam-
ple, trees, wetlands, rain gardens, swales and retention basins) that 
provide a habitat and other ecosystem services113.

Conclusions
The fourth industrial revolution is transforming the way economies 
and society operate. Identifying, understanding and responding 
to the novel impacts, both positive and negative, of new technolo-
gies is essential to ensure that natural environments are managed 
sustainably and the provision of ecosystem services is maximized. 
Here, we identified and prioritized the most important opportuni-
ties and challenges for urban biodiversity and ecosystems associated 
with RAS. Such explicit consideration of how urban biodiversity 
and ecosystems may be affected by the development of technologi-
cal solutions in our towns and cities is critical if we are to prevent 
environmental issues from being sidelined. However, we have to 
acknowledge that some trade-offs to the detriment of the envi-
ronment are likely to be inevitable. Additionally, it is highly prob-
able that multiple RAS will be deployed simultaneously, making it 
extremely difficult to anticipate interactive effects. To mitigate and 
minimize any potential harmful effects of RAS, we recommend 
that environmental scientists advocate for critical impact evalua-
tions before phased implementation. Long-term monitoring, com-
parative studies and controlled experiments could then further our 
understanding of how biodiversity and ecosystems will be affected. 
This is essential as the pace of technological change is rapid, chal-
lenging the capacity of environmental regulation to respond quickly 
enough and appropriately. Although the future impacts of novel 
RAS are difficult to predict, early examination is essential to avoid 
detrimental and unintended consequences on urban biodiversity 
and ecosystems while fully realizing the benefits.

Methods
Horizon scan participants. We adopted a mixed approach to recruiting experts 
to participate in the horizon scan, to minimize the likelihood of bias associated 
with relying on a single method. For instance, snowball sampling (that is, invitees 
suggesting additional experts who might be interested in taking part) alone might 
over-represent individuals who are similar to one another, although it can be 
effective at successfully recruiting individuals from difficult-to-reach groups114. 
We therefore contacted individuals directly via an email inviting them to join 
the horizon scan, as well as using social media and snowball sampling. The 480 
experts working globally across the research, private, public and non-governmental 
organization sectors who were contacted directly were identified through 
professional networks, mailing lists (for example, groups with a focus on: urban 
ecosystems; the research, development and manufacture of RAS; or urban 
infrastructure) and author lists of recently published papers, as well as the editorial 
boards of subject-specific journals. Of the 170 participants who took part in round 
one, 143 (84%) were individuals who had been invited directly, with the remainder 
obtained through snowball sampling and social media.

We asked participants to indicate their area of expertise from five categories:  
(1) environmental (including ecology, conservation and all environmental sciences); 
(2) infrastructure (including engineering and maintenance); (3) sustainable cities  
(covering any aspect of urban sustainability, including the implementation of  
smart cities); (4) RAS (including research, manufacture and application); or  
(5) urban planning (including architecture and landscape architecture). Participants 
whose area of expertise did not fall within these categories were excluded from 
the process. We collected information on participants’ country of employment. 
Subsequently, these were allocated into one of two global regions: the Global North 
or Global South (low- and middle-income countries in South America, Asia, 
Oceania, Africa and the Caribbean115). Participants specified their employment 

sector according to four categories: (1) research; (2) government; (3) private 
business; or (4) non-governmental/not-for-profit organization.

Participants were asked to provide informed consent before taking part in 
the horizon scan activities. We made them aware that their involvement was 
entirely voluntary, that they could stop at any point and withdraw from the 
process without explanation, and that their answers would be anonymous and 
unidentifiable. Ethical approval was granted by the University of Leeds Research 
Ethics Committee (reference LTSEE-077). We piloted and pre-tested each round 
in the horizon scan process, which helped to refine the wording of questions and 
definitions of terminology.

Horizon scan using the Delphi technique. The horizon scan applied a modified 
Delphi technique, which is applied widely in the conservation and environmental 
sciences literature24. The Delphi technique is a structured and iterative survey of 
a group of participants. It has a number of advantages over standard approaches 
to gathering opinions from groups of people. For example, it minimizes social 
pressures such as groupthink, halo effects and the influence of dominant 
individuals24. The first round can be largely unstructured, to capture a broad range 
and depth of contributions. In our horizon scan, we asked each participant to 
identify between two and five ways in which the emergence of RAS could affect 
urban biodiversity and/or ecosystem structure/function via a questionnaire. 
These could either be opportunities (that is, RAS would have a positive impact on 
biodiversity and ecosystem structure/function) or challenges (that is, RAS would 
have a negative impact) (Fig. 2). Round one resulted in the submission of 604 
pertinent statements. We removed statements not relevant to urban biodiversity 
or urban ecosystems. Likewise, we excluded statements relating to artificial 
intelligence or virtual/augmented reality, as these technologies fall outside the 
remit of RAS. M.A.G. subsequently collated and categorized the statements into 
major topics through content analysis. A total of 60 opportunities and challenges 
were identified.

In round two, we presented participants with the 60 opportunities and 
challenges, categorized by topic, for review. We asked them to clarify, expand, 
alter or make additions wherever they felt necessary (Fig. 2). This round resulted 
in a further 468 statements and, consequently, a further ten opportunities and 
challenges emerged.

In round three, we used a questionnaire to ask participants to prioritize 
the 70 opportunities and challenges in order of importance (Fig. 2). We asked 
participants to score four criteria25,116 using a five-point Likert scale ranging from 
−2 (very low) to +2 (very high): (1) likelihood of occurrence; (2) potential impact 
(that is, the magnitude of positive or negative effects); (3) extensiveness (that is, 
how widespread the effects will be); and (4) degree of novelty (that is, how well 
known or understood the issue is). A ‘do not know’ option was also available. 
We randomly ordered the opportunities and challenges between participants to 
minimize the influence of scoring fatigue117. For each participant, we generated 
a total score (ranging from −8 to +8) for every opportunity and challenge by 
summing across all four criteria. Opportunities and challenges were ranked 
according to the proportion of respondents assigning them a summed score greater 
than zero. If a participant answered ‘do not know’ for one or more of the criteria 
for a particular opportunity or challenge, we excluded all of their scores for that 
opportunity or challenge. We generated score visualizations in the Likert package118 
of R version 3.4.1 (ref. 119). Two-tailed Fisher’s exact tests were used to examine 
whether the percentage of participants scoring items above zero differed between 
cohorts with different backgrounds (that is, country of employment, employment 
sector and area of expertise).

Final consensus on the most important opportunities and challenges was 
reached using online group discussions (round four), followed by an online 
consensus workshop (round five) (Fig. 2 and Supplementary Table 1). For round 
four, we allocated participants into one of ten groups, with each group comprising 
experts with diverse backgrounds. We asked the groups to discuss the ranked 
32 opportunities and 38 challenges and to agree on their ten most important 
opportunities and ten most important challenges. It did not matter if these differed 
from the round three rankings. Additionally, we asked groups to discuss whether 
any of the opportunities or challenges were similar enough to be merged, and 
the appropriateness, relevance and content of the topics. Across all groups, 14 
opportunities and 16 challenges were identified as the most important. Participants, 
including at least one representative from each of the ten discussion groups, took 
part in the consensus workshop. The facilitated discussions resulted in agreement on 
the topics, and a final consensus set of 13 opportunities and 15 challenges (Table 1).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Anonymized data are available from the University of Leeds institutional data 
repository120 at https://doi.org/10.5518/912.
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Extended Data Fig. 1 | The Global North (green) and Global South (blue), with countries represented by participants in round one of the horizon 
scan indicated with darker shading. Countries represented from the Global North were: Australia, Austria, Belgium, Canada, Denmark, Finland, France, 
Germany, Ireland, Israel, Italy, Netherlands, New Zealand, Poland, Portugal, Romania, Spain, Sweden, Switzerland, United Kingdom and United States of 
America. Countries represented from the Global South were: Argentina, Brazil, Chile, China, Colombia, Ethiopia, India, Malawi, Malaysia, Mexico, Nigeria, 
South Africa and Togo.
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Extended Data Fig. 2 | Opportunities associated with robotics and automated systems for urban biodiversity and ecosystems according to participants 
working in the research sector and other sectors. a, Participants working in the research sector (n = 66). b, Participants working in other sectors (n = 32). 
The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 32 opportunities. 
Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion 
of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). The full wording 
agreed by the participants for each opportunity can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item 
number given in parenthesis is for cross referencing between figures and tables.
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Extended Data Fig. 3 | Challenges associated with robotics and automated systems for urban biodiversity and ecosystems for participants working 
in the research sector and other sectors. a, Participants working in the research sector (n = 66). b, Participants working in other sectors (n = 32). The 
distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 38 challenges. Items 
are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of 
participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). The full wording 
agreed by the participants for each challenge can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item 
number given in parenthesis is for cross referencing between figures and tables.
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Extended Data Fig. 4 | Opportunities associated with robotics and automated systems for urban biodiversity and ecosystems according to participants 
based in the Global North and Global South. a, Participants based in the Global North (n = 87). b, Participants based in the Global South (n = 11). The 
distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 32 opportunities. 
Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion 
of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). The full wording 
agreed by the participants for each opportunity can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item 
number given in parenthesis is for cross referencing between figures and tables.
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Extended Data Fig. 5 | Challenges associated with robotics and automated systems for urban biodiversity and ecosystems according to participants 
based in the Global North and Global South. a, Participants based in the Global North (n = 87). b, Participants based in the Global South (n = 11). The 
distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, novelty) for each of the 38 challenges. Items 
are ordered according to percentage of participants in (a) who gave summed scores greater than zero. Percentage values indicate the proportion of 
participants giving negative, neutral and positive scores (left hand side, central and right hand side of the shaded bars respectively). Boxes and * indicate a 
significant difference between the proportions of participants in (a) and (b) scoring the item greater than zero. The full wording agreed by the participants 
for each challenge can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and management’; item number given in parenthesis is 
for cross referencing between figures and tables.
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Extended Data Fig. 6 | Opportunities associated with robotics and automated systems for urban biodiversity and ecosystems according to participants 
with environmental expertise and those with non-environmental expertise. a, Participants with environmental expertise (n = 65). b, Participants with 
non-environmental expertise (n = 33). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, 
novelty) for each of the 32 opportunities. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. 
Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the 
shaded bars respectively). Boxes and * indicate a significant difference between the proportions of participants in (a) and (b) scoring the item greater than 
zero. The full wording agreed by the participants for each opportunity can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and 
management’; item number given in parenthesis is for cross referencing between figures and tables.
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Extended Data Fig. 7 | Challenges associated with robotics and automated systems for urban biodiversity and ecosystems according to participants 
with environmental expertise and those with non-environmental expertise. a, Participants with environmental expertise (n = 65). b, Participants with 
non-environmental expertise (n = 33). The distribution of summed participant scores (range: -8 to +8) across four criteria (likelihood, impact, extent, 
novelty) for each of the 38 challenges. Items are ordered according to percentage of participants in (a) who gave summed scores greater than zero. 
Percentage values indicate the proportion of participants giving negative, neutral and positive scores (left hand side, central and right hand side of the 
shaded bars respectively). Boxes and * indicate a significant difference between the proportions of participants in (a) and (b) scoring the item greater than 
zero. The full wording agreed by the participants for each challenge can be found in Supplementary Table 1: ‘mm’ is an abbreviation for ‘monitoring and 
management’; item number given in parenthesis is for cross referencing between figures and tables.
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Study description Mixed methods study incorporating responses to closed and open ended questions, and outputs from an online workshop.

Research sample Research sample: We invited 480 experts working across the research, private, public and NGO sectors globally to take part in the 
horizon scan. Further participants were sought through snowball sampling, mailing lists and social media.  
No demographic information was collected as this was not relevant to the study.  
Study sample was used as we only wished to engage with experts in specific fields of (i) environmental (including ecology, conservation 
and all environmental sciences and professions); (ii) infrastructure (including engineering and maintenance); (iii) sustainable cities 
(covering any aspect of urban sustainability, including the implementation of ‘smart’ cities); (iv) RAS (including research, manufacture and 
application); or (v) urban planning (including architecture and landscape architecture)

Sampling strategy Sampling strategy was a mix of direct contacts, snowball and convenience sampling. All those contacted were sent one initial invitation, 
followed by two reminders to join the horizon scan. Sample sizes were not chosen, but were a result of how many invitees were willing to 
take part. We note that typical numbers of participants in horizon scan exercises are usually in the low tens.

Data collection Data were recorded by participants on their own computers. The study was not experimental, so details on experimental conditions are 
not applicable.

Timing The full horizon scan exercise took place between September 2018 and February 2019.

Data exclusions If a participant answered ‘do not know’ for one or more of the criteria for a particular opportunity or challenge, we excluded all their 
scores for that opportunity or challenge (see Supplementary Table 2 for resulting sample sizes). This approach was decided a priori.

Non-participation We had 170 participants in rounds one and two of the horizon scan. Rounds 3 and 4 had 98 participants. We did not collect motivations 
for round one and two participants not completing later rounds.

Randomization No experimental groups were used

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment We explicitly recruited experts into the study, initially inviting 480 experts working across the research, private, public and NGO 
sectors globally to take part in the horizon scan. Further participants were sought through snowball sampling (i.e. invitees 
suggesting additional experts who might be interested in taking part), mailing lists (e.g. groups with a focus on urban 
ecosystems; the research, development and manufacture of RAS; urban infrastructure) and social media. 

Ethics oversight Ethical approval was granted by the University of Leeds Research Ethics Committee (reference LTSEE-077). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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