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Simple Summary: The mainstay of treatment for advanced prostate cancer (PCa) is androgen
deprivation therapy (ADT), and although patients initially respond, almost all will eventually develop
progressive and metastatic disease. Metastatic, hormone-resistant prostate cancer is essentially
incurable. A key problem with ADT is that it is not effective in the long term, partly due to
the fact that prostate cancers can switch from requiring androgen to grow to surviving without
it and these new tumor cells are more sensitive to stress hormones released by the brain as a
consequence of chronic stress/depression. Moreover, both extensive treatment with ADT and chronic
stress/depression lead to the recruitment of immature myeloid-derived suppressor cells (MDSCs)
which are known to suppress immune responses against tumors. The future of prostate cancer
treatments will most certainly include a combination of vaccine with beta-blockers (to interfere
with signals from stress hormones) and/or the use of histone deacetylase (HDAC) inhibitors which
prevent the function/recruitment of MDSC where timing will be of critical importance.

Abstract: Prostate cancer (PCa) is the second-most common cancer in men worldwide and treatment
options for patients with advanced or aggressive prostate cancer or recurrent disease continue to
be of limited success and are rarely curative. Despite immune checkpoint blockade (ICB) efficacy
in some melanoma, lung, kidney and breast cancers, immunotherapy efforts have been remarkably
unsuccessful in PCa. One hypothesis behind this lack of efficacy is the generation of a distinctly
immunosuppressive prostate tumor microenvironment (TME) by regulatory T cells, MDSCs, and type
2 macrophages which have been implicated in a variety of pathological conditions including solid
cancers. In PCa, Tregs and MDSCs are attracted to TME by low-grade chronic inflammatory signals,
while tissue-resident type 2 macrophages are induced by cytokines such as IL4, IL10, IL13, trans-
forming growth factor beta (TGFβ) or prostaglandin E2 (PGE2) produced by Th2 cells. These then
drive tumor progression, therapy resistance and the generation of castration resistance, ultimately
conferring a poor prognosis. The biology of MDSC and Treg is highly complex and the development,
proliferation, maturation or function can each be pharmacologically mediated to counteract the
immunosuppressive effects of these cells. Herein, we present a critical review of Treg, MDSC and M2
involvement in PCa progression but also investigate a newly recognized type of immune suppression
induced by the chronic stimulation of the sympathetic adrenergic signaling pathway and propose
targeted strategies to be used in a combinatorial modality with immunotherapy interventions such
as ICB, Sipuleucel-T or antitumor vaccines for an enhanced anti-PCa tumor immune response. We
conclude that a strategic sequence of therapeutic interventions in combination with additional holistic
measures will be necessary to achieve maximum benefit for PCa patients.
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1. Prostate Cancer Background

Prostate cancer (PCa) is the second-most common cancer in men worldwide, account-
ing for 13.5% of all new cancer cases in men in 2018 [1]. Incidence rates vary considerably
worldwide, with the highest frequencies in Westernized countries such as those in Oceania
(79.1 per 100,000 people), America (73.7) and Europe (62.1) while less-developed areas
such as Africa and Asia experience a significantly lower incidence, with rates of 26.6 and
11.5, respectively [2]. Interestingly, mortality rates do not align with incidence rates, with
elevated mortality rates in Sub-Saharan Africa and the Caribbean. There may be multiple
explanations for this global disparity including (i) genetic background, (ii) lifestyle and
environmental factors, (iii) proportion of aging populations, (iv) overdiagnosis in well-
developed countries, and (v) other factors we are not yet aware of. Despite declining,
global mortality rates, the age-adjusted incidence is significantly increasing, although this
is at least in part due to increased PCa testing. Following the commercial availability of
prostate-specific antigen (PSA) testing in the mid-to-late 1980s, the incidence has dramat-
ically increased in proportion to amount of testing carried out by individual countries,
leading to overdiagnosis [3]. Epidemiological overdiagnosis is defined by detection which
would otherwise not have been diagnosed within the patient’s lifetime and is a key influenc-
ing factor in the disparity between the incidence rates in well-developed and developing
countries. Overdiagnosis rates vary widely and range from 1.7% to as high as 67% [4].
Conversely, because disease progression is most often indolent and asymptomatic, latent
undiagnosed tumors are found in 36% of autopsied men aged 70–79 [5], with numbers
increasing exponentially in later years of life.

For a disease as common as prostate cancer, very little is known about its aetiology and
only a few risk factors have been identified. Incidence rates and mortality for PCa also vary
greatly between ethnic groups, suggesting ethnic and genetic predisposition. Mortality
rates are highest among males of African descent in Sub-Saharan Africa, the Caribbean
and the United States [1]. An analysis of biopsy detected PCa in six Sub-Saharan countries
found substantially higher Gleason scores than in both African Americans and European
Americans, with a score of +8 predominating in Sudan and Uganda [6]. Another study
found that Black South African men are at a 2.1-fold and 4.9-fold higher risk of presenting
with a Gleason score ≥8 and PSA ≥ 20 ng/mL at diagnosis, respectively, than their African
American counterparts [7]. However, there are significant restrictions to producing direct
comparisons between Sub-Saharan Africans and African Americans due to differences in
the methods of testing, availability of high-quality cancer population data, as well as under-
diagnosis and late detection in Africa. Interestingly, a recent study linked chromosomal
loci from the KhoeSan ancestry to an increased presentation of high-risk prostate cancer,
which may partially explain the increased incidence in Black South Africans compared
with African Americans [8].

Ancestral differences in the PCa incidence in addition to family history demonstrate
a genetic contribution to PCa risk and etiology. Twin studies have indicated that PCa is
among the most heritable of all common cancers [9]. Thus far, Genome-Wide Association
Studies have identified 147 loci that account for 28.4% of familial risk, most of which occur
commonly but are of low penetrance [10]. Some loci are clinically relevant to the etiology
of prostate cancer due to their positioning to nearby oncogenes, DNA damage repair genes,
tumor suppressor genes, etc.

Despite the relatively high heritability of PCa, there is overwhelming evidence that
lifestyle and environmental factors play a role, though much of the evidence is correlative.
Given that the incidence is uniformly significantly higher in developed countries, it has
long been suspected that diet and other factors of a “Westernized” lifestyle contribute
to increased risk. This is supported by multiple migrant studies where PCa incidence
rates increased in Japanese [11], Korean [12] and Chinese [13], Vietnamese [14] migrants
after moving to North America. Additionally, there is strong evidence that obesity, which
is highly prevalent in Westernized countries, increases the risk of aggressive prostate
cancer [15,16]. However, a recent systematic review and meta-analysis suggests that this
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correlation may be due to the inverse relationship that exists between BMI and PSA levels,
resulting in late diagnosis in obese men [17]. While little evidence supports the notion
that a high-fat diet increases prostate cancer risk [18], a high-fat diet may influence disease
progression and mortality through interleukin-6 (IL-6)-mediated intratumoral infiltration
of MDSCs [19]. Interestingly, adult height has been found to have a direct impact on PCa
risk, which may be due to polygenic interactions between genes involved in growth, such
as IGF-1 [20]. The link between PCa and IGF-1 has also been made in the dietary setting,
where a systematic review of 172 studies found that milk consumption conferred increased
PCa risk, probably through IGF-1 signaling pathways [21]. This leads to the hypothesis
of an intimate interaction between host IGF-1 genes, dietary IGF-1 and growth signaling
pathways that ultimately influences adult height and PCa risk. Finally, while it has not
been found to be associated with PCa incidence, there is a small but modest association
between smoking and PCa death [22].

1.1. Diagnosis

Men who present with symptoms such as urination difficulty and/or a family history
of PCa are referred to PSA testing and/or digital rectal examination (DRE). PSA is a
glycoprotein secreted exclusively by the epithelial cells lining the acini and ducts of the
prostate gland that functions to promote sperm motility and dissolve cervical mucus [23].
It is physiologically present in serum at low concentrations (0–4 ng/mL), but can become
elevated through prostatic irritation, prostate infection, benign prostatic hyperplasia or
the development of PCa and is used as a biomarker for PCa risk and disease progression.
While a useful diagnostic and prognostic aid, PSA levels cannot be considered without
supporting clinical evidence; for example, 2% of PCa patients harbor an aggressive form of
prostate cancer (Gleason score ≥ 7) despite PSA levels < 4 ng/mL [24], and false positives
are also common. The DRE is a simple, yet efficient, screening measure whereby the
physician feels for palpable nodules, asymmetry or diffuse firmness on the prostate gland
through the rectal passageway. However, this technique similarly lacks accuracy, with
a reported positive predictive value to be between 5 to 30% [25]. Where available, the
first line of investigation for clinically suspected localized PCa is multiparametric MRI
(mpMRI), which is a non-invasive imaging technique that has been successful in more
accurately characterizing lesions and ruling out non-clinically relevant PCa [26]. The
mpMRI is assigned a Likert score from 1 to 5; those with a Likert score of 3 or greater are
referred to prostate biopsy. Prostate biopsy is a requirement for diagnosis and is referred to
patients with PSA levels repeatedly exceeding 4 ng/mL and/or palpable nodules upon
DRE and/or high Likert score on mpMRI and/or clinical suspicion of PCa [27].

Transrectal ultrasound (TRUS)-guided systematic prostate biopsy is the standard of
care for PCa diagnosis and is carried out via needle biopsy through the rectal passageway
to extract 10–12 samples in a grid-like pattern over the apical and far lateral regions [28].
The TRUS biopsy is the least invasive technique and is widely accessible. However,
this approach suffers several drawbacks including higher infection rates, higher false
negative rates and underestimation of Gleason grade. Contemporary MRI-guided biopsies
offer enhanced detection of clinically important lesions and include MRI-guided (in-bore)
biopsy, fusion biopsy and MRI–TRUS fusion biopsy [26]. While less common, transperineal
biopsies are considered preferable to TRUS biopsies by many urologists due to more
comprehensive sampling, decreased risk of post-operational infection and comparable
cancer detection rates [29]. While not yet recommended by the UK’s National Institute
for Health and Care Excellence (NICE) guidelines (unless as part of a clinical trial) [27],
transperineal biopsies may be useful in cases where prior TRUS biopsy returned negative
but there is clinical suspicion of PCa based on other parameters such as PSA, DRE and
high Likert score. Indeed, freehand transperineal biopsies have completely replaced
transrectal biopsies at one of the UK’s largest hospitals [30] and is likewise being adopted
elsewhere around the world. Finally, transurethral biopsy represents the third prostate
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biopsy type. However, this method has largely been surpassed by other techniques due to
poor diagnostic accuracy.

Regardless of the biopsy type, samples are given a primary and secondary Gleason
Grade from 1 to 5 based on the architecture and state of differentiation of the predominant
and second-most prevalent pattern in the sample. These are added together to get the
resulting Gleason score, which is assigned a Gleason Grade Group (Figure 1). An important
distinction is a 3 + 4 score versus a 4 + 3 score, as patients with a 4 + 3 score present with
higher levels of PSA at diagnosis and are at a 3-fold increased risk of metastasis [31].
Additionally, it is notoriously difficult to adequately sample or even properly capture
prostate tumors; 21–28% of tumors that are located on the anterior side of the prostate are
missed and 14–17% are under-graded through current techniques [32].
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1.2. Treatment

Given the generally indolent disease progression and hinderance to quality-of-life PCa
treatment options impose such as incontinence and impotence, treatment is considered in
the context of age and risk group. Approximately 45% of tumors will not progress in the
patient’s lifetime and are deferred to ‘Active Surveillance’ or ‘Watchful Waiting’, both of
which aim to minimize treatment-related toxicity [33]. It has been established in multiple
randomized clinical trials that radical prostatectomy does not significantly reduce prostate
cancer mortality in those with localized PCa [34,35], and the risk of death from alternative
causes supersedes the risk of death by prostate cancer itself, particularly in men over
60 years old. There has been an increasing role for patient preferences in treatment decision
making, as similar health outcomes are achieved through shared decision making [36].
Some of the main concerns leading to patients preferring deferred management over
treatment options such as prostatectomy and radiation therapy is the reduced quality of life
associated with these treatments including incontinence and erectile dysfunction, which
are reported to occur in approximately 20% and 70% of patients, respectively [37].

Beyond expectant management, patients with localized PCa have two primary op-
tions: radical prostatectomy (RP) or radiation therapy. RP may be conducted through
laparoscopic or robot-assisted (RARP) techniques and may be performed within as little as
2 weeks from the time of biopsy [38]. A recent systematic review and meta-analysis of two
randomized controlled trials and 9 prospective studies indicated no significant difference
between the open, laparoscopic or RARP techniques in terms of complications, biochemical
reoccurrence, urinary continence and erectile function, although RARP resulted in signifi-
cantly lower blood loss [39]. The type of external beam radiation used for the treatment
of PCa is intensity-modulated radiotherapy (IMRT), which may also be image-guided
(IGRT) [27]. Less commonly, low-dose (permanent implantation) and high-dose (tem-
porary implantation) brachytherapy may be used in conjunction with IMRT/IGRT on
patients with intermediate- and high-risk localized PCa who satisfy certain conditions [27].
Other still-experimental treatment modalities include cryosurgery [40], high-intensity focal
ultrasound [41], irreversible electroporation [42] and photodynamic therapy [43]. However,
these are not recommended unless part of a clinical trial. Once diagnosed and a baseline
level is established, PSA testing represents an essential monitoring measure for detection
of local reoccurrence and metastatic disease, although it is not possible to differentiate
between these two scenarios from a PSA test alone. A definitive diagnosis of biochemi-
cal reoccurrence is determined through rising PSA levels, radiology and clinical signs of
deterioration.

ADT remains the mainstay treatment for high-risk and recurrent patients and involves
various interferences of androgen hormones or their receptors. ADT was pioneered in 1941
by Huggins and Hodges, who observed that ablation of androgen hormones, either through
chemical or physical castration, resulted in the inhibition of tumor growth and cancer-
related symptom relief [44]. In the decades that followed, various agents were developed to
interfere with the hypothalamus–pituitary–gonadal axis and functioning of the androgen
receptor (AR) signaling pathway including anti-androgens, luteinizing hormone-releasing
hormone (LHRH) agonists and LHRH antagonists [45] (Figure 2). Anti-androgens work by
inhibiting the interaction between dihydrotestosterone (DHT; a derivative of testosterone
that is formed in the prostate gland) and the AR; one such antiandrogen is enzalutamide.
As a monotherapy, anti-androgens are less effective than bilateral orchiectomy or other
chemical forms of ADT in patients due to the fact that they do not reduce serum testosterone
levels and are typically used in conjunction with LHRH agonists/antagonists to achieve
“complete androgen blockade” (CAB). LHRH agonists stimulate the LHRH receptor, result-
ing in a downregulation of the receptor following 2–3 weeks of treatment, whereas LHRH
antagonists competitively inhibit the receptor from binding to LHRH. The main difference
between the LHRH drugs is that through activating the LHRH receptor and subsequent
signaling pathway, LHRH agonists result in a transient surge in luteinizing hormone and
testosterone levels, while LHRH antagonists achieve testosterone suppression without this
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initial surge. Additionally, testosterone production can be successfully inhibited from all
sources (testes, adrenal glands, PCa cells) via oral administration of abiraterone acetate,
which is an inhibitor of the androgen biosynthesis enzyme CYP17. CYP17 functions by hy-
droxylating 17-hydroxypregnenolone to produce dehydroepiandrosterone (DHEA), which
is subsequently converted to testosterone. By targeting biosynthesis in completely different
pathway, abiraterone acetate compliments other forms of ADT to successfully achieve very
low testosterone levels with improved outcome. While physical castration via bilateral
orchiectomy remains an effective and cost-efficient form of ADT, it is less common due to
the invasiveness of surgery and permanent consequences. Regardless of the method used,
a testosterone level of <20 ng/dL is desirable to maximize therapeutic outcomes.
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treatment of prostate cancer. Luteinizing hormone-releasing hormone (LHRH) is released from the preoptic nucleus of the
hypothalamus to induce the secretion of luteinizing hormone (LH) from the anterior pituitary gland. LH moves through
peripheral circulation to act on the Leydig cells of the testis, inducing release of testosterone. Testosterone promotes Pca
progression by binding to androgen receptors (Ars), translocating to the nucleus, binding to androgen-responsive elements
(AREs) and promoting expression of proteins involved in growth, metabolism and survival. This pathway may be disrupted
by physical castration (bilateral orchiectomy) or chemical castration via LHRH agonists/antagonists, antiandrogens and
CYP17 inhibitors.

While Pca is initially highly responsive to ADT, it almost invariably develops resis-
tance within 2–3 years to become castration-resistant prostate cancer (CRPC, or mCRPC
if the cancer has metastasized), where the tumor continues to grow despite an absence of
testosterone [46]. CRPC is determined by a continuous increase in PSA levels, the progres-
sion of a pre-existing disease or the development of new metastases, despite castration-level
concentrations of testosterone. The development of CRPC is due to a variety of molec-
ular mechanisms involving AR reactivation including production of androgens via the
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adrenal glands and Pca cells, androgen-independent AR activation, gene amplifications
and mutations, aberrant co-regulator activates and ligand-independent splice variants. The
castration-resistant tumor contains a heterogeneous population of cells consisting of fully
androgen-insensitive cells, partially androgen-insensitive cells and androgen-sensitive
cells, thus warranting ongoing, effective ADT therapy; however, the proliferation of the
castration-insensitive population cannot be prevented. mCRPC confers a poor prognosis,
with a median survival of 1.14 years [47] and 17% survival rate over 3.5 years [48]. To treat
mCRPC, ADT is combined with the chemotherapeutic agent docetaxel, and failing this the
patient may be referred to the taxane cabazitaxel [49] or radiation therapy with radium
223 to target bone metastases [50]. Despite the availability of these new agents and the
improved overall survival with sequential use, there is no consensus on proper sequencing
and the median overall survival remains poor, ranging from 21 to 29 months [51]. This is
at least partially due to the development of resistance and cross-resistance mechanisms;
for example, it has been demonstrated that acquired resistance to docetaxel induces cross-
resistance to cabazitaxel, and that resistance to enzalutamide induces cross resistance to
abiraterone [52].

1.3. Immunotherapy

With the lack of curative treatment options for mCRPC, various immunotherapies
have been clinically investigated with the goal of initiating a robust antitumor response
in vivo. Despite the efficacy of immune checkpoint inhibitors such as ipilimumab (anti-
CTLA-4) and nivolumab (anti-PD-1) in a variety of cancers including melanoma [53],
lung [54], kidney [55] and breast [56], clinical trials for these drugs in Pca have found them
relatively inert or even toxic. In two large, randomized phase III clinical trials, ipilimumab
did not cause an increase in overall survival when given either before [57] or after [58]
treatment with docetaxel. Another phase I clinical trial assessing the safety and antitumor
activity of nivolumab on patients with mCRPC also showed negligible response [59]. For
the 2–3% of patients with DNA mismatch repair genes increased mutational burden renders
either of these drugs effective; pembrolizumab is already FDA approved and investigations
for ipilimumab plus nivolumab [60] and durvalumab (anti-PD-L1) plus Olaparib [61] are
currently underway. Most recently a phase II clinical study on pre-treated mCRPC patients
found positive antitumor activity through treatment with pembrolizumab with a decrease
in tumor size in 29% [62]. However, no control arm was assessed for statistical analysis of
this result.

Although clinical trials for monoclonal antibodies are still ongoing, various antitumor
vaccines are currently in the pipeline in the form of antigen-loaded antigen-presenting
cells (APCs) [63], peptides [64,65] or loaded DNA vectors [66]. Intratumoral CD8+ T
cells have a canonical exhausted phenotype, with a diminished ability to proliferate and
produce effector cytokines such as IL-2, IFNg and TNF-a in addition to enhanced expression
of immune checkpoint receptors such as PD-1, TIM-3 and LAG-3 [67]. Thus, vaccine
approaches aim to present the host immune system with tumor-specific antigens and elicit
robust CD8+ T cell activation. Currently, the only FDA-approved immunotherapy for
mCRPC is sipuleucel-T (PROVENGE®), which is an ex vivo autologous peripheral blood
mononuclear cell (PBMC) vaccine [68]. To generate the vaccine, the patient’s PBMCs are
isolated through leukapheresis and cultured with the entire prostatic acid phosphatase
(PAP) protein conjugated to granulocyte-macrophage colony-stimulating factor (GM-CSF)
by a single Gly-Ser linker (PA2024), which is taken up, processed and presented on APCs
as PAP epitopes. The GM-CSF conjugate induces maturation of many of these APCs
into dendritic cells (DCs) and induces in vitro antigen processing. The entire PMBC
cell culture is subsequently re-infused back into the patient, where DCs are thought to
activate CD4+ and vaccine-specific CD8+ T cells (Figure 3). PAP is an ideal prostate
tumor antigen due to its prostate restricted expression and overexpression that correlates
with disease progression [69]. Sipuleucel-T treatment prior to RP has been associated
with intratumoral infiltration of CD3+, CD4+, FOXP3- and CD8+ T cells, IFN
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responses and Th1-biased activation, which is important for host tumor immunity [70,71].
Additionally, T-cell receptor (TCR) diversity decreases in peripheral blood but increases
intratumorally, indicating recruitment of T-specific clones from the peripheral blood to the
prostate tumor microenvironment [72]. Sipuleucel-T administration has also been explored
in neoadjuvant [70,71] and biochemical recurrent settings [73]. However, it is not FDA
approved for these uses.
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Interestingly, no study to date has demonstrated solid evidence of PAP only specific
CD8+ T cell following Sipuleucel-T treatment. In the landmark study that granted the
drug FDA-approval, increased overall survival was achieved (reduced risk of death of 22%,
p = 0.03), and immune responses against PA2024 were observed via antibody titer ELISA
and T-cell proliferation assay [68]. Further phase III trials found cellular and humoral
responses against PA2024 and/or PAP [74]. However, these response assays were produced
against the entire PA2024 antigen without a GM-CSF control, which begs the question
whether Sipuleucel-T’s in vivo effects can be attributed to an adaptive immune response
against the fusion protein construct containing GM-CSF rather than the perceived tumor
antigen PAP. Indeed, GM-CSF is secreted by activated dendritic cells and exogenous GM-
CSF has been suggested to have antitumor activity in patients with advanced prostate
cancer [75]. Clinical and pre-clinical research leading up to this study reported T-cell
proliferation in response to PA2024 and antibodies against in PA2024 100% of patients, but
much weaker and infrequent immune responses were generated against PAP or GM-CSF
alone [76,77]. The only report of PA2024-specific CD4+ and CD8+ T cell proliferation and
activation is that of Antonarakis et al. [78]. However, this result remains to be externally
validated. Although overall survival is significantly improved through administration of
Sipuleucel-T, this improvement is limited to an increase of 4.1 months, with no difference
in progression-free survival or time-to-clinical progression [68]. From a cost perspective,
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Sipuleucel-T requires three infusions at two-week intervals for one month and costs a total
upwards of £47,000 [27]. The preparation of each dose of Sipuleucel-T is also demanding
on pre-immunocompromised patients. A total of 8–14 L of blood (i.e., approximately 1–2
times total blood volume) must be collected, which results in approximately 600 mL of
PBMCs to be obtained and reduces the patient’s peripheral WBC blood count by 15–20%.
With such a burdensome procedure, low benefit-cost ratio, and unclear capability of CD8+
T cell activation, efforts have been redirected at either improving Sipuleucel-T efficacy or
producing an alternative form of immunotherapy.

One reason for the lack of clinical efficacy of immunotherapy in PCa is the low
mutational burden of the disease, which results in low mutation-associated neoantigens
and low immunogenicity. To improve upon the design of sipuleucel-T and determine
the exact immunogenic region of the PAP protein, the John van Geest Cancer Research
group identified a 15 mer PAP epitope of amino acids 114–128 that are capable of initiating
CD4+ and CD8+ T-cell responses in mice [79]. The identified peptide was selected based
on predictive binding to the human leukocyte antigen HLA*A02:01 and 100% homology
between the human and murine PAP protein. However, the haplotype HLA*A02:01
represents only ~40% of US Caucasians and ~15% of US African Americans [80], warranting
the need for a broader-spectrum peptide. Based on the observation that vaccination
with long peptides (20 aa or more) induces more robust immune responses in a wider
range of phenotypically diverse individuals [81], the identified peptide was elongated
to 42 amino acids and mutated with a Leucine to Alanine substitution at position 14 for
additional immunogenicity [82]. As an intermediate-sized peptide, this vaccine meets
the requirements of balancing immunogenicity and wide haplotype specificity, with the
enhanced ease of purification and lower cost compared to producing a whole protein. In
mouse models this immune-vaccine induced robust anti-PAP immunity via MHC-I and
delayed tumor growth.

The lack of efficacy of immunotherapy techniques such as immune checkpoint block-
ade and Sipuleucel-T in prostate cancer indicates other factors at play which result in
inhibition of antitumor immunity. One hypothesis for this lack of efficacy is the generation
of a potently immunosuppressive tumor microenvironment by regulatory T cells, type 2
macrophages (TAMs) and MDSCs, all of which have been implicated in a variety of solid
cancers. The aim of this investigation is to critically assess the role of MDSCs in prostate
cancer tumor progression and resistance to immunotherapy, assess methods of targeting
them, and propose combinatorial treatment modalities with the ultimate goal of improved
immunotherapy efficacy.

2. Myeloid-Derived Suppressor Cells
2.1. The Tumor Microenvironment

Like all solid tumors, the prostate tumor microenvironment (TME) is a complex and
dynamic landscape composed of key tumor-promoting players such as cancer-associated
fibroblasts (CAFs), mesenchymal stem cells (MSCs), immune cell infiltrates, vascular and
lymphatic vesicles and the extracellular matrix (ECM). Although much has been discovered
about the prostate cancer tumor microenvironment, the nature of needle-core prostate
biopsies has been a significant obstacle in obtaining a comprehensive understanding, due
to inadequate sampling and often incomplete margins.

CAFs are the most prevalent component of the TME stroma and are responsible for
the generation of a ‘reactive stroma’ in response to the presence of PCa cells. This is
achieved through accelerated ECM turn-over and remodeling, which permits the release
of previously tissue-associated molecules known for promoting growth and survival [83].
This wound-healing response mechanism is continuously maintained by PCa cells, which
secrete CAF-promoting TGFβ. In turn, CAFs produce excess amounts of ROS and tenascin-
C which facilitate PCa proliferation and migration. MSCs are progenitor cells to CAFs
and have been identified in histology specimens from both benign and malignant prostate
tumors [84]. MSCs are thought to contribute to tumor progression through pro-angiogenic
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properties by expressing multiple matrix metalloproteases (MMPs), VEGF and bFGF which
degrade the ECM and promote new vessel formation. Additionally, MSCs drive the devel-
opment and expansion of highly immunosuppressive MDSCs through secreted cytokines
and activation of signal transducer and activator of transcription 3 (STAT3) [85,86]. Tumor-
associated macrophages (TAMs) are M2-like macrophages that are derived from M-MDSCs
which rapidly differentiate in the TME through downregulation of pSTAT3 [87]. TAMs
are tumor-promoting as they produce high levels of IL-10 and low levels of IL-12, an
essential cytokine for natural killer (NK) cell and TH1 cell activation [88]. In PCa TAMs
express CCL22, which potentiates tumor migration and invasion and traffics T regulatory
cells (Tregs) to the site of the tumor [89]. Both MDSCs and TAMs induce Tregs, which
are known as ‘suppressor T cells’ and whose role is to maintain immunological anergy
against self-antigens. The induction of Tregs within the TME, however, dampens antitumor
immunity, allowing the tumor to grow uninhibited through expression of various immune
checkpoint molecules including CTLA-4, PD-1, LAG-3 and TIM-3 [90]. As Figure 4 demon-
strates, MDSCs are central to many of the immunosuppressive responses within the TME.
Unfortunately, the extended amount of time from PCa initiation to clinical manifestation
(which can be many decades) and the low mutational burden of PCa cells ultimately leads
to a tolerized microenvironment with increased numbers of immunosuppressive Tregs,
TAMs and MDSCs.
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2.2. Subpopulations of Myeloid-Derived Suppressor Cells

MDSCs represent a heterogeneous cell population of immature myeloid cells which
suppress local T and NK cell activity thereby maintaining immunological anergy [91].
Despite initial reports of the presence of natural suppressor cells in tumor-bearing mice
throughout the 1960s and 1970s, MDSC nomenclature and function have only been truly
established in the past ~15 years. The accumulation of immature myeloid cells has been
reported in almost every type of solid cancer, and the inherent state of chronic intratumoral
inflammation both recruits and activates MDSCs through soluble secreted factors. MDSCs
arise from a common myeloid progenitor that also produces DCs, monocytes, macrophages
and granulocytes [91]. There are two major subpopulations of MDSCs; monocytic (M-
MDSC), defined phenotypically in humans as
CD33+CD11b+CD14+CD15−CD66− HLA-DRlow/− and polymorphonuclear (PMN-MDSC),
defined as CD33+CD11b+CD14−CD15+CD66+HLA-DR−. PMN-MDSCs, which bear high
morphological and phenotypical similarity to terminally differentiated neutrophils, can be
additionally distinguished via LOX-1 expression, which is virtually undetectable in neu-
trophils [92]. Currently, there are no unique individual markers for MDSCs and therefore
demonstration of immunosuppressive function is required for definitive identification.

The two major subpopulations represent two states of differentiation along a common
lineage (rather than two separate lineages) and utilize distinct regulatory pathways and
mechanisms of immunosuppression. Both subsets rely on the STAT3 signaling pathway
functioning, yet only PMN-MDSCs rely on it for immunosuppressive functioning [93].
The main immunosuppressive mechanisms utilized by PMN-MDSCs are STAT3-mediated
overexpression of NADPH oxidase (NOX2) and endothelial nitric oxide synthase (eNOS),
whereas M-MDSCs upregulate levels of inducible NOS (iNOS), which is mediated by
STAT1 and NF-kB [88]. Both subtypes express arginase 1(ARG1) and a variety of pro-
inflammatory cytokines to exert immunosuppression. Circulating M-MDSCs maintain
high levels of STAT3 signaling until they reach the site of the tumor, where hypoxia induces
a rapid downregulation of STAT3 resulting in differentiation into TAMs. The release of
ROS by MDSCs is essential for their immunosuppressive function as well as retaining their
undifferentiated state. For most cells, persistent oxidative stress induces apoptosis due
to the damage of lipids, proteins and carbohydrates; curiously, MDSCs survive despite
continued elevated production of ROS. This protection from apoptosis is mediated though
upregulation of glycolysis, which results in the antioxidant glycolytic metabolite phos-
phoenolpyruvate [94], and constituent activation of the endogenous antioxidant-regulator
nuclear factor erythroid 2-related factor 2 (NRF2) [95]. Activation of NRF2 releases this
transcription factor to translocate to the nucleus, bind to antioxidant response elements
(AREs) and regulate the transcription of genes involved in cytoprotective proteins. There-
fore, the upregulation of both glycolysis and NRF2 results in additional antioxidants to
mitigate rising ROS levels. The production of ROS by MDSCs also maintains them in an
undifferentiated state; this has been demonstrated by the fact that abolishing ROS through
both the addition of the H2O2 scavenger catalase and the knockout of NOX2 induces
MDSCs to differentiate into macrophages in tumor-bearing mice [96,97].

Determination of which subset is the most (a) prevalent and (b) immunosuppressive in
PCa remains controversial, as different reports use different combinations surface markers
and obvious differences exist between serum, lymphoid and tumor populations. Multiple
sources report M-MDSC as the predominating subset in the serum of treated, untreated and
mCRPC patients [98–101]. This is contested by one study on newly diagnosed PCa patients,
which found PMN-MDSCs to be the major subtype in peripheral blood samples [102].
Relatively few studies have assessed MDSC subtype frequencies in prostate tumor tis-
sue, which does not appear to follow the same trends as those found in the periphery.
PMN-MDSCs represent the overwhelming majority of MDSCs in both PTEN/SMAD4-
deficient mice [103], and in human localized and metastatic prostate cancer tissue [104]
and predominates in the stroma, rather than the epithelia, of both primary tumors and
metastases [105]. In PCa-harboring lymph nodes of hormone-naïve patients, PMN-MDSCs
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and STAT3 levels are both significantly elevated compared to the peripheral blood, whereas
M-MDSC frequency is similar in both locations [106]. Thus, given the available evidence it
therefore seems likely that M-MDSCs predominate in the periphery while PMN-MDSCs
represent the majority of intratumoral MDSC populations, which is consistent in lymph
nodes following metastasis of the primary tumor. In general, M-MDSCs have been said
to be more potent in their immunosuppressive activity on a per-cell basis [107]. However,
whether this remains true for PCa and other cancers is also debated. Several studies have
indicated PMN-MDSC as the most potent functional subtype in both PCa and other cancer
types as determined by T cell proliferation assays in both PCa and non-PCa mouse and
human settings. Only PMN-MDSCs, and not M-MDSCs, are capable of blocking IFNg and
granzyme B production from CD8+ T cells [104], and this immunosuppressive activity is
mirrored by molecular characteristics of PMN-MDSCs such as ARG1, NOS2, and STAT3
levels [108]. Additionally, targeting PMN-MDSC NO pathways though deletion of eNOS
and gp91phox (the gene for NOS2) or addition of a PNT scavenger successfully negates the
immunosuppressive function of PMN-MDSCs without affecting M-MDSC activity [109]. It
is possible that the decreased potency of M-MDSCs is due to the cell type they primarily
target. Idorn et al. demonstrated significant iNOS-mediated inhibition of M-MDSCs from
PCa patients on CD4+ T cell proliferation and only weak inhibition on CD8+ T cells [100].
The existing evidence therefore suggests that PMN-MDSCs represent the more potent sub-
type due to its CD8+ T cell-specific mechanism of immunosuppression, whereas M-MDSCs
exert immunosuppressive effects primarily on CD4+ T helper cells, which help regulate
the CD8+ T cell response.

2.3. Expansion and Activation

Under normal conditions, MDSCs respond to myelopoiesis signals or acute inflam-
mation to expand and differentiate into macrophages, DCs, granulocytes, monocytes or
activated neutrophils as required [88]. This activated immune response is fundamental in
neutralizing foreign invaders, which are recognized through pathogen-associated molec-
ular patterns (PAMPs) or danger-associated molecular patterns (DAMPs), resulting in
a robust burst of respiration, release of pro-inflammatory cytokines, and phagocytosis.
Accordingly, this lethal cytotoxic activity is terminated upon cessation of the acute inflam-
matory signal to prevent autoimmune attack. However, under conditions of chronic and
relatively low-intensity inflammation such as cancer, modest but persistent myelopoiesis
is initiated and MDSCs result as a failure to terminally differentiate, giving rise to a cell
population with a potent capacity to suppress T cell activation.

Although MDSC accumulation and activation is a complex phenomenon, these low-
intensity inflammatory signals can be generally divided into those responsible for MDSC
expansion within the TME, and those responsible for their immunosuppressive activation.
Soluble tumor-derived factors responsible for the expansion of MDSCs include granulocyte-
macrophage colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), macrophage
CSF (M-CSF), stem cell factor (SCF), vascular endothelial growth factor (VEGF), polyun-
saturated fatty acids and semaphorin 4D [110,111]. Within the TME, there is continuous
low-grade secretion of inflammatory cytokines such as IFNg, TNF, IL-1B, IL-4, IL-6, IL-10,
IL-12, IL-13 and high mobility group box 1 (HMGB1), among others. This chronic state
of inflammation results in pathological MDSC activation, largely through NF-kB, STAT1,
STAT3 and STAT6 pathways. Of all the signals, GM-CSF and IL-6 appear to be especially
potent in activating MDSCs. Compared to M-CSF and G-CSF, GM-CSF induces both the
largest expansion and most functional immunosuppressive MDSCs [112] and GM-CSF and
IL-6 are sufficient to induce monocyte differentiation into M-MDSCs [113]. Mechanistically,
GM-CSF/IL-6-dependent induction is potentiated by PGE2. MDSCs also maintain an
autocrine feedback look that sustains their accumulation and immature state through
the secretion of S100A8/A9 proteins; this expression is induced by STAT3 signaling and
results in pro-survival NK-kB signaling [114]. In recent years, the tumor-secreted cytokines
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CXCL6 [103] and IL-8 [115] have been implicated in trafficking of MDSCs to the TME via
the receptor CXCR2, which is expressed on MDSCs.

The TME is a hostile environment with conditions of hypoxia, nutrient starvation,
low pH and abundance of free radicals that induces endoplasmic reticulum (ER) stress
and the unfolded protein response (UPR) in its cellular constituents. While the function
of the UPR is to restore protein synthesis homeostasis, prolonged ER stress can activate
MDSCs and promote reprogramming towards a more immunosuppressive and tolerogenic
phenotype [116]. Influential work published by Condamine and colleagues found that
intratumoral ER stress results in increased apoptosis of MDSCs in peripheral blood through
TNF-related apoptosis-induced ligand receptor 2 (TRAIL-R) and caspase-8, thus facilitating
expansion from the bone marrow [117]. This was surprising, given that MDSCs were
previously thought to accumulate intratumorally due to evasion of apoptosis; instead, ER
stress endemic to the TME causes a shortened life span and robust proliferation in the BM,
leading to accumulation. As mentioned previously, expression of LOX-1 distinguishes
PMN-MDSCs from neutrophils. Notably, addition of exogenous ER stress-inducers thapsi-
gargin or dithiothreitol effectively converts neutrophils into LOX-1+ PMN-MDSCs [92].
Thus, the inherent ER stress-promoting environment of the TME has the capacity to both
promote expansion from the bone marrow and spontaneously convert immune-activating
cells into cells with an immunosuppressive phenotype.

Another mechanism by which MDSCs are recruited to the TME is through the uptake
of tumor-derived exosomes (TEXs). TEXs are double-membraned extracellular vesicles
containing various types of tumor antigens, proteins, lipids or nucleic acids that may
be used for signal transmission between tumor and recipient cells. Beyond representing
a potential non-invasive biomarker of both PCa diagnosis and prognosis [118], TEXs
also promote the expansion and activation of MDSCs. The earliest report of this was
from Xiang et al., who demonstrated that intake of TEXs by myeloid cells resulted in their
differentiation into phenotypical and functional MDSCs with increased expression of COX2,
IL-6, VEGF and ARG1 [119]. By neutralizing PGE2 and TGFβ with antibodies, they further
showed that TEXs become enriched with PGE2 and TGFβ as the tumor progresses and
that these molecules are responsible for the induction of MDSC. Hsp72 is expressed on the
surface of TEXs and activates the STAT3 pathways in MDSC in a TLR2/MyD88-dependent
manner via autocrine IL-6 production [120]. Interestingly, radiation therapy has been
demonstrated to increase serum levels of Hsp72-containing exosomes in PCa patients [121].
Various TEX-derived miRNAs have been identified as responsible for MDSC expansion
and activation in glioma [122], gastric cancer [123], chronic lymphocytic leukemia [124] and
pancreatic ductal adenocarcinoma [125] cancers. However, each of these studies identified
different miRNAs in different cancer types, and it is likely that PCa-derived TEXs will differ
from those already described; further research in this regard is warranted to determine
functional TEX-derived miRNAs and the mechanism of MDSC expansion/activation in
PCa.

2.4. MDSCs in PCa Tumor Progression

The phenomena of intratumoral MDSC accumulation is an immunological hallmark
in a variety of pathological conditions including solid cancers, and contributes to a po-
tently immunosuppressive microenvironment, acquired resistance to cancer therapies, and
poor prognosis. Indeed, multiple systematic review and meta-analyses have assessed the
prognostic value of MDSC infiltration and have suggested its value as a clinical biomarker
in various cancers [126–128]. While it should be noted that no such review has been pro-
duced for prostate cancer, strong correlations between MDSCs and cancer stages have been
made [100,102], with one prospective correlative study demonstrating the ability of serum
MDSC levels to distinguish between metastatic, localized and control patients [129].

An intimate crosstalk exists between MDSCs and tumor cells in PCa that drives castra-
tion resistance and promotes tumor progression. One such example of this is IDO, which
is overexpressed not only by MDSCs but cancer cells themselves. Tumor-derived IDO
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has been shown capable of recruiting and activating MDSC in a Treg-dependent man-
ner [130]. While MDSCs drive castration resistance through IL-23 [131], the development
of castration resistance correspondingly mediates IL-8 secretion within tumor stroma that
drives subsequent PMN-MDSC infiltration [115]. The generation of de novo therapeutic
resistance also appears to invite MDSC infiltration; although whether this is a chicken or
egg situation is questionable. For example, abiraterone and enzalutamide-resistant mCRPC
patients have significantly higher levels of FGF, GM-CSF, IL-10 and IL-6, all known to
recruit and activate MDSCs [93]. Chemotherapy treatment in lung cancer has been shown
to promote exosomal release of miRNAs by MDSCs, which function to prevent their death
and promote angiogenesis [93–132].

Another possible contribution that MDSCs may make to tumorigenesis is the produc-
tion of neutrophil elastase, a proteolytic enzyme essential for neutrophil extracellular trap
(NET) formation. Neutrophil elastase production is upregulated in a variety of cancers
and may be responsible for several stages of tumor progression, largely through extra-
cellular transactivation of EGFR and MAPK, resulting in ERK activation and regulation
of ERK-dependent genes responsible for proliferation [133] Additionally, cleavage of tu-
mor suppressors EMILIN1 [134] and p200 CUX1 [135] by neutrophil elastase results in
their inactivation. Despite its name, neutrophil elastase is also produced by macrophages,
lymphocytes and MDSCs. In PCa xenografts and prostate tumors of Pten-null mice, en-
zymatically active neutrophil elastase is produced by PMN-MDSCs that promotes tumor
growth [136]. Thus, the increased levels of MDSC in prostate cancer disease progression
is likely followed by increased neutrophil elastase expression, another tumor-enabling
mechanism by MDSCs.

2.5. Mechanisms of Immunosuppression

PCa is characterized by T cell exclusion from the stroma, but accumulation and
infiltration in peripheral margins [137], indicating a distinctly immunosuppressive TME.
Thus, one hypothesis for the lack of response to immunotherapy in PCa is that T cells do
not interact with cancer cells at all, making ICB a gratuitous feat. Those that do successfully
infiltrate despite inhibitory migration signals face nutrient starvation, TCR nitration and
direct inhibition through activation of immune checkpoints. The main immunosuppressive
mechanisms include, but are not limited to, production of ARG1, iNOS, TGFβ, IL-10,
COX2, sequestration of cysteine and depletion of tryptophan via IDO and a decrease in
L-selectin by T cells. PMN-MDSCs are thought to be the prevalent subset in advanced
stages of the disease and more readily infiltrate into the tumor stroma compared to the
epithelium [105], enabling close cell-to-cell contact and paracrine signaling to be facilitated
with T cells. One of the main immunosuppressive mechanisms utilized by MDSCs is the
excessive production and secretion of ARG1, which is an enzyme that converts L-arginine
into L-ornithine and urea [110]. Excessive production of ARG1 therefore leads to a rapid
depletion of L-arginine available for local T cells, resulting in translational blockade and
cell cycle arrest in G0—G1. L-arginine starvation is further exacerbated through expression
of inducible nitric oxide synthase (iNOS) by MDSCs, which converts L-arginine into nitric
oxide (NO), a compound which itself has immunosuppressive functions [109]. COX2 is
an enzyme that is upregulated in MDSCs that produces prostaglandin E2 (PGE2), which
acts in an autocrine manner to facilitate ARG1 production. Similarly, increased IDO
expression depletes local levels of L-tryptophan and produces the immunosuppressive
metabolite N-formulkynurenine, resulting in T cell tryptophan starvation, cell cycle arrest,
immunological anergy and differentiation into Treg cells [91]. IDO expression is mediated
by STAT3 yet not all MDSC express IDO, indicating that IDO expression possibly plays a
supplementary role in T cell immunosuppression.

The generation of reactive nitrogen species (RNS) and ROS by MDSCs is a potent
modulator of T-cell activity through the modification of the T-cell receptor (TCR)/peptide-
bound major histocompatibility complex-I (pMHC-I) and immune-activating chemokines.
Upregulation of NOX2 in MDSCs results in production of excessive superoxide, a reactive
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compound that rapidly reacts with H2O2, hydroxyl radical or hypochlorous acid leading
to oxidative stress, apoptosis and inflammation [91]. Additionally, PMN-MDSCs and
M-MDSCs overexpress eNOS and iNOS, respectively, both of which pr\oduce NO which
reacts with superoxide to form peroxynitrite (ONOO−). MDSC-derived peroxynitrite
nitrates tyrosine residues on the TCR, which increases conformational rigidity and leads
to reduced binding capacity with pMHC-I of antitumor APCs [138]. Mechanistically,
nitration causes the TCR and its co-receptor CD3ζ to dissociate, resulting in disruption
of the complex, loss of responsiveness to pMHC-I, and inhibited activation of both CD8+
and CD4+ T cells [139]. Peroxynitrite can additionally nitrate the pMHC complex [140],
the lymphocyte-specific protein tyrosine kinase (LCK) [141] and the pro-inflammatory
chemokine CCL2 [142]. The known site of LCK nitration is Tyr394, and this modification
results in a hindered ability to phosphorylate the CD3ζ complex and transmit T cell
activation signals. Nitration of CCL2 reduces its ability to traffic T cells to the site of the
tumor yet retains the ability to recruit myeloid cells.

MDSCs are also indirectly immunosuppressive through the modulation of other cells
within the TME. MDSCs directly regulate both the development and clonal expansion of
Treg cells, which is achieved through cell–cell contact and production of cytokines and
enzymes such as IFNg, IL-10 and TGFβ and ARG1 [88]. They additionally promote TAM
reprogramming to the immunosuppressive M2 phenotype through cell-to-cell contact that
results in a switch from IL-12 secretion to IL-10 [143]. NK-derived IL-10 induces a positive
feedback loop between MDSCs which respond by also secreting IL-10, and the lack of
NK-activating IL-12 results in suppression of these cells. MDSCs maintain crosstalk with
NK cells and inhibit their activities through the expression of TGFβ and interaction with
NK-activating receptors, which significantly impairs degranulation capabilities and IFNg
release [144].

Finally, MDSCs facilitate immune system anergy through the expression of PD-L1,
which binds to PD-1 receptors on T cells, triggering cell cycle arrest and apoptosis. In colon
cancer patients, 60% of circulating MDSCs are PD-L1+, and this number is significantly
increased in the TME in vivo of tumor-bearing mice [145]. PD-L1 expression on MDSCs is
exacerbated under hypoxic conditions, which causes HIF-1α to bind to a transcriptionally
active hypoxia-regulated element in the PD-L1 promoter [146]. This hypoxia-mediated PD-
L1 expression also renders MDSCs more immunosuppressive through increased expression
of IL-6 and IL-10, although the mechanism behind this is not understood. Thus, hypoxic
conditions within the TME not only facilitate MDSC activation but also immunosuppressive
function by regulating expression of PD-L1 and facilitating immune checkpoints.

3. Targeting MDSC In Immunotherapy

There are a variety of methods that can be used to target MDSCs these are loosely
grouped into four categories: (1) targeting MDSC immune regulatory properties, (2) tar-
geting MDSC infiltration/activation (3) targeting MDSC development/maturation and
(4) inducing MDSC apoptosis. A brief summary of the most pertinent pathways and
compounds to targeting these pathways are herein discussed and summarized in Table 1.
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Table 1. Synopsis of clinical trials involving singular and combinatorial MDSC-targeting agents for the treatment of prostate
cancer.

Trial
Identifier Compound(s) Mechanism of

Action
Phase

Reached Cohort Therapy Type Outcome

IL-6-Mediated Pathways

N/A [Karkera]

CNTO
328/Siltuximab

IL-6 chimeric
monoclonal

antibody

Phase I Organ-confined
PCa, n = 20 Monotherapy

Favorable preliminary
safety profile with

evidence of decreased
activation of

IL-6-mediated
signalling pathways.

NCT00401765 Phase I mCRPC, n = 40 Polytherapy
(+docetaxel)

Promising PSA results
but high toxicity.

NCT00433446 Phase II
mCRPC, prior
taxane therapy,

n = 53
Monotherapy

Poor efficacy, IL-6
increased dramatically

post-treatment.

NCT00385827 Phase II
mCRPC, prior

docetaxel therapy,
n = 106

Polytherapy (+ mitox-
antrone/prednisone)

Well tolerated, but no
improvement in

survival outcome.
CXCL5/CXCR2-Mediated Pathways

NCT03177187 AZD5069 CXCR2
antagonist Phase I/II mCRPC Polytherapy

(+enzalutamide) Currently recruiting.

Targeting S100A9

NCT01234311 Tasquinimod S100A9 inhibitor Phase III mCRPC, n = 1245 Monotherapy No improvement in
survival outcome.

Combinatorial Immunotherapeutic Approaches

NCT03098160
Ipilipmumab/anti-

CTLA4,
Evofosamide

ICB, Hypoxia
disrupting
prodrug

Phase I Prostate and
other cancers Combinatorial

Recruiting. Current
recruitment status

unknown.

NCT03689699

Nivolumab/anti-
PD-1,
BMS-

986253/anti
IL-8

ICB, fully
monoclonal

antibody against
IL-8

Phase I/II
Hormone-
sensitive

PCa
Currently recruiting.

NCT03493945
BN-Brachyury,

M7824,
ALT-803,

Epacadostat

Anti-tumour
vaccine, TGFβ
TRAP/PD-L1,
IL-15 agonist,
IDO inhibitor

Phase I/II CRPC Currently recruiting.

NCT02159950 Tasquinimod,
Sipuleucel T

S100A9 inhibitor,
active

immunotherapy
Phase II mCRPC Not completed due to

lack of funding.

3.1. Targeting MDSC Immune Regulatory Properties

The JAK/STAT3 pathway is a major regulator of many of the immunosuppressive
mechanisms employed by MDSCs. It is well-described that MDSCs isolated from both
mouse and human tumors display elevated levels of STAT3, and inhibition of this pathway
results in significantly antitumor activity [104,147,148]. STAT3 regulates the expression
of IDO, ARG1, IL-6, IL-10, IL-1β, VEGF and S100A8/A9 [91] among others, making this
signaling pathway an attractive target for MDSC inhibition. MDSCs both synthesize and
respond to S100A8/A9 in an autocrine feedback loop that signals through the NF-κB
pathway that promotes intratumoral migration and accumulation [149]. The S100A8/A9
heterodimer is also involved in the formation of the NOX2 complex [150], thus potentiating
the production of immunosuppressive ROS. STAT3 interacts with C/EBPβ to promote
MDSC differentiation; in both C/EBPβ and STAT3-deficient cells, myeloid progenitors
lose the ability to differentiate into functional MDSCs, even in the presence of G-CSF [151].
STAT3 additionally permits prolonged binding of C/EBPβ to the promoter of cell-survival
protein Myc and is responsible for activation of other cell cycle-regulating proteins such as
Bcl-Xl, survivin, Mcl-1 and cyclin D1. The STAT3 signaling pathway, which mediates cellu-
lar functioning in both subsets of MDSCs and mediates immunosuppressive functioning
in the highly potent PMN-MDSC subset, is a tantalizing therapeutic target. Galiellalac-
tone, a fungal-derived direct pSTAT3 inhibitor, was recently investigated for its ability to
prevent PCa-induced generation by coculturing primary human monocytes in several ex
vivo human prostate cancer lines [101]. The STAT3 inhibitor effectively prevented MDSC
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generation and inhibited IL-8 and GM-CSF secretion. Additionally, it could serve a duality
of purpose in PCa, as it has also been previously shown to induce apoptosis in stem cell-like
PCa cells [152], a subset of slow-growing cells that has been proposed to be responsible for
tumor-regeneration and drug resistance. However, it is possible that galiellalactone is too
broad-spectrum for use in PCa, a question that remains to be addressed in vivo. STAT3 is,
importantly, not activated in non-malignant cells but is relied upon in the development
of memory CD4+ and CD8+ T cells [153,154], emphasizing the need for STAT3 inhibition
techniques that are selective towards MDSCs. One such strategy has been cleverly devised
by Kortylewski et al. through the uptake of anti-STAT3 siRNA conjugated to an agonist
of the endosomal toll-like receptor 9 (TLR9), which is expressed by cells of myeloid lin-
eage [155]. The Kortylewski group then assessed the efficacy of this siRNA conjugate on
ex vivo myeloid cell populations from healthy, localized and mCRPC PCa patients, and
demonstrated that the conjugate is rapidly internalized by PMN-MDSCs and abrogates
immunosuppressive activity and ARG1 expression [104]. Although TLR9 expression does
occur in other cells of myeloid lineage such as plasmacytoid DCs and B cells, in cancer
patients PMN-MDSCs represent the overwhelming majority of STAT3-regulated cells and
increase with disease progression. Recently, the same group modified this method by con-
jugating the TLR9 agonist to chemically modified STAT3 antisense oligonucleotides (ASO),
which improved the potency and nuclease resistance of the molecule [147]. Interestingly,
CpG-STAT3ASO was taken up by both PCa tumor cells and MDSCs, resulting in the eradi-
cation of bone-localized prostate tumors in mice and alleviation of tolerogenic activity of
PMN-MDSCs from human prostate cancers. With such a favorable potential safety profile
and ability to eradicate tumors regardless of genetic background, the CpG-STAT3ASO rep-
resents a promising therapeutic avenue to MDSC-targeted strategies. Pre-clinical studies
are still ongoing, and it remains to be determined how STAT3 silencing mechanistically
inhibits MDSC function, i.e., whether it modulates immunosuppressive ARG1 expression
or if it induces maturation into mature granulocytes, macrophages and dendritic cells.

The STAT1 pathway is responsible for IFNγ release, which inhibits PMN-MDSC
maturation and enhances NO-mediated T cell suppression [111]. Both MDSC subtypes
rely on STAT1 for immunosuppressive functioning, but only M-MDSCs rely on it for
NO-mediated immunosuppression, and knockout of this pathway effectively results in
downregulation of iNOS, ARG1 and T cell suppression in mice. Certain small-molecule
inhibitors have been used to target STAT pathways with efficacy against MDSCs. However,
in vivo, these compounds often lack efficacy and confer toxicity.

One of the most profound mechanisms of MDSC-mediated immunosuppression is
the production of ROS and RNS, which not only enhances MDSC activity but induces
antigen-specific immune tolerance of prostate tumor antigens. As such, pharmacologi-
cal inhibition of iNOS and eNOS to prevent NO production as well as ROS scavengers
could have a powerful antitumor effect. Certain drugs belonging to this category are
NOS-inhibiting compounds such as phosphodiesterase-5 (PDE-5) inhibitors sildenafil and
tadalafil, nitro-asprin, AT38 and antioxidant-producing compounds such as bardoxolone
methyl, which induces NRF2-dependent antioxidant genes [156]. Lastly, ARG1 production
may be attenuated through the inhibition of COX2 and COX2-derived PGE2; one such
agent that achieves this is the highly selective and reversible COX2 inhibitor celecoxib.

3.2. Targeting MDSC Infiltration/Activation

Due to the overlap of factors involved in both accumulation and immunosuppressive
function of MDSCs, many of the aforementioned techniques are likely to also inhibit MDSC
expansion within the TME, such as STAT3 and COX2 inhibition. Other strategies include
neutralizing MDSC-trafficking and promoting molecules through monoclonal antibodies
or small-molecule inhibitors against VEGF, IL-1B, semaphorin 4D and CXCR2 [111]. Anti-
VEGF treatment is already used to reduce neovascularization in various cancers; however,
such efficacy may also be attributable to MDSC inhibition. Various lines of evidence indi-
cate that VEGF neutralization with the mAb bevacizumab reduces PMN-MDSCs in the
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circulation of multiple cancer types and mouse models. However, recent evidence sug-
gests that this compound enhances MDSC intratumoral recruitment by inducing hypoxia
and GM-CSF expression [157]. Monoclonal antibodies against CXCR2 have been demon-
strated to inhibit MDSC infiltration and improve ICB efficacy [158]. One recently proposed
CXCR1/CXCR2 inhibitor is orally bioavailable SX-682, which apparently selectively in-
hibits intratumoral PMN-MDSC infiltration without altering CXCR1+ macrophages [159].
CXCR2 interacts with both of the PCa-secreted cytokines IL-8 and CXCL6. By use of the
CXCL2 antagonist SB255002, Wang et al. demonstrated significant reduction in tumor
burden and prolonged survival of mouse models in vivo [103]. Furthermore, they demon-
strated the potent antitumor ability of the CXCR5/CRCX2 pathway that is regulated by
Hippo-YAP1 signaling pathway, which could represent a potential pharmacological target.

3.3. Targeting MDSC Development/Maturation

The immunosuppressive capability of MDSC is associated with their undifferentiated
state and inducing terminal differentiation into macrophages, DCs and granulocytes is
one method of alleviating their suppressive functions. Compounds that promote MDSC
maturation include bisphosphates, vitamin D3, vitamin A, all-trans retinoic acid (ATRA),
CpG oligonucleotides and IL-12 [111]. Bisphosphates work by inhibiting isoprenylation
post-translational modifications in the bone marrow, which leads to osteoclast apopto-
sis [156]. Given that MDSC expansion is the result of intratumoral TRAIL-R/caspase
8-mediated apoptosis and robust proliferation in the bone marrow [117], such a compound
should effectively prevent MDSC accumulation in both tumor and blood and pre-empt
immunosuppressive functioning. Another notable compound for the inhibition of MDSC
maturation is ATRA, which has shown efficacy in both mouse and humans through ROS
depletion, which MDSCs rely on to remain undifferentiated [96,97]. ATRA functions by up-
regulating glutathione synthase, resulting in increased levels of the antioxidant glutathione,
which scavenges ROS and potentiates MDSC differentiation [160].

3.4. Inducing MDSC Depletion

Depletion of MDSCs by means of inducing cytotoxic death or by MDSC-specific anti-
bodies to selectively eliminate MDSCs while preserving healthy cells remains challenging.
Some drugs in this category include chemotherapy agents such as cisplatin, paclitaxel, dox-
orubicin, trabectedin, gemcitabine, docetaxel and 5-fluorouracil (5-FU), receptor tyrosine
kinase (RTK) inhibitors such as nilotinib, dasatinib, sorafenib, ibrutinib, and sunitinib [111],
which would serve a dual purpose of targeting both cancer cells and MDSCs. Although
each of these compounds have demonstrated the ability to deplete MDSCs in vivo, with
some entering clinical trials for certain cancers, cytotoxicity remains an important ob-
stacle. The best use of cytotoxic compounds is probably at low dosages in an adjuvant
combinatorial setting alongside immunotherapy and/or ADT [161,162].

Murine MDSCs can be exclusively characterized through their concurrent expression
of CD11b and Ly6C (M-MDSC) or Ly6G (PMN-MDSC) [110]. As such, mouse prostate
cancer models can be easily depleted of circulating MDSCs with the well-characterized
monoclonal antibody Gr-1, which recognizes both Ly6C and Ly6G epitopes. In mouse
models, Gr-1-mediated MDSC depletion successfully resulted in CD8+ T cell expansion
and significant tumor weight reduction [163]; warranting further research into how to
deplete human MDSCs in a similar manner. To this extent, the monoclonal antibody
DS-8273a agonist of death receptor TRAIL-R2 was demonstrated to be selected towards
MDSCs [148] and has launched clinical trials in combination with anti PD-1 in melanoma
and colorectal cancer. Unfortunately, human MDSCs do not possess such a unique sur-
face marker rendering their depletion using a single targeting antibody difficult. Qin
et al. however, managed to develop a novel peptibody composed of a newly identified
MDSC-binding peptides (H6) fused to the Fc portion of mouse IgG called Pep-H6 [164].
Pep-H6 targets S100A9 that is displayed on the surface on MDSCs and is secreted in an
autocrine fashion to maintain their accumulation in tumors and was demonstrated to
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successfully deplete both MDSC subtypes in vivo in blood, spleen and tumors, resulting
in inhibition of tumor growth and survival benefit [103]. Another inhibitor of S100A9
is tasquinimod, which is a small-molecule oral agent instead of an antibody conjugate.
Tasquinimod was previously under phase III clinical investigation for use in mCRPC as a
single agent but did not significantly prolong survival [161]. Despite this result, there was
still promise for this drug as a combinatorial agent in immunotherapy, and a phase II trial
was launched in combination with sipuleucel T. However, due to a lack of funding, the
study remains unfinished. Given that abrogation of S100A9 is sufficient to deplete MDSCs
in vivo with Pep-H6, it is reasonable to hypothesize that similar effects would be attained
with tasquinimod treatment, and that immunotherapy efficacy would be improved with
low-dose combinatorial use of this compound.

3.5. Combinatorial Strategies

MDSCs represent one essential cog in a larger machine and would be best targeted in
combination with immunotherapy to simultaneously relieve potent immunosuppression
while actively initiating an antigen-specific immune response. Currently, the most note-
worthy example of this in the field of prostate cancer is a set of elegant experiments by Lu
and colleagues, who generated a novel mCRPC mouse model with the genotype PB-Cre+
PtenL/L p53L/L Smad4L/L mTmGL/+ LSL-LUCL/+, resulting in a 4-fold increase in
number of PCa-bearing mice that can be manipulated to become castration-resistant [162].
They then used this novel model to assess antitumor effects of ICB and the MDSC-targeting
agents cabozantinib (a TKI) and BEZ235 (a PI3K/mTOR inhibitor) alone and in combination.
Neither ICB nor MDSC-targeting agents were efficacious when used as a monotreatment
but induced a robust synergistic response when combined. Both cabozantinib + ICB and
BEZ235 + ICB resulted in inhibition of proliferation and induced apoptosis of the primary
tumor, notable cytokine changes and significant reduction in lymph and lung metastases.
However, this was not observed for another MDSC-targeting TKI, dasatinib.

Production of RNS and peroxynitrite is a potent immunosuppressive mechanism uti-
lized by both types of MDSC through different pathways. Therefore, one effective targeted
strategy would be to neutralize peroxynitrite, thus preventing nitration of the TCR/pMHC
complex and restoring T cell activation. Feng et. al. investigated this strategy in a com-
binatorial setting with ICB in the form of both anti-CTLA4 and anti-PD1 antibodies and
determined that RNS neutralization with uric acid (UA) sensitized CRPC to immunother-
apy [141]. Like Lu et al., a synergistic response was achieved when a combinatorial strategy
was used that was not observed using either ICB or UA alone, with a six-fold increased
CD8+/Treg ratio compared to controls. By depleting MDSC with anti-Gr-1 antibody, they
further demonstrated that MDSCs are responsible for a large majority of 3-NT on both PCa
and CD3+ T cells, rendering this an effective MDSC-targeted strategy.

Based on the finding that IL-8 drives PMN-MDSC intratumoral infiltration, Lopez-
Bujanda et al. tested the triple combination of ADT, anti-CTLA-4 and anti-CXCR2 (the
receptor to IL-8) on the MyC-CaP mouse model [115]. Compared to ADT combined
with anti-CTLA-4 alone, this triple combination resulted in delayed castration resistance,
reduction in tumor volume and significantly increased survival. This response was not
attributed to any increase in T cell infiltration or decrease in Treg infiltration but instead to
an increase in polyfunctional CD8+ T cells in lymph and spleen; indicating that MDSCs had
been effectively targeted through this strategy. These findings have launched a phase Ib/2
trial that is currently underway to investigate the efficacy of ADT, anti-IL-8 and anti-PD-1
in men with mCRPC. Notably, the Lopez-Bujanda study found IL-8 to be upregulated
post-ADT, suggesting that AR re-activation mediates IL-8 secretion by PCa cells that drives
PMN-MDSC infiltration. Thus, a potentially better point of combinatorial intervention may
be during ADT, as opposed to the onset of mCRPC.

MDSCs are highly stimulated under chronic hypoxic conditions through ER stress and
activation of the UPR response. Evofosfamide is a hypoxia-activated, hypoxia-disrupting
prodrug which was recently tested in combination with anti-CTLA-4 and anti-PD-1 in
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TRAMP mice with profound antitumor results [165]. MDSC frequency and recruitment
were significantly inhibited, allowing T cells to infiltrate and proliferate at a 2-fold increased
rate in the formerly hypoxic areas. As such, mice exhibited long-term antitumor effects,
with little to no observable tumor burden up to 3 months after therapy. This study has
launched a phase I clinical trial of evofosfamide in combination with anti-CTLA-4, although
the status of this trial is unknown at the time of writing.

Of special interest is the QuEST1 phase I/II clinical trial that is currently underway,
which aims to provide an expedited investigation of a four-pronged combinatorial strategy
composed of an antitumor vaccine, immune checkpoint blockade, NK cell activating-
agent, and MDSC-targeted inhibitor [166]. In this case the antitumor vaccine targets
the tumor-specific antigen brachyury, which is an embryonic transcription factor that
becomes re-activated in malignant cells to promote tumor migration through the epithelial–
mesenchymal transition (EMT) [167]. The agent used for ICB is the innovative fusion
protein TGFβ TRAP/anti-PD-L1 antibody (M7824) which serves the dual purpose of
sequestering TGFβ and blocking PD-L1 interactions. ALT-803 is an IL-15 and IL-2 superag-
onist which effectively improves NK cell and T cell function and frequency, and the IDO
inhibitor epacadostat should neutralize both PCa- and MDSC-derived IDO. The trial aims
to test the brachyury-based vaccine in three arms: (i) vaccine + TGFβ TRAP/anti-PD-L1,
(ii) vaccine + M7824 + ALT-803, and (iii) vaccine + M7824 + ALT-803 + epacadostat. It
should be highly informative to see the difference between these various arms, particularly
between arm (ii) and (iii), which incorporates the use of an MDSC-targeted strategy.

4. Other Important Cells and Regulator Contributing to the Overall
Immunosuppression or Lack of Antitumor Immune Response
4.1. ADRB2

Androgen resistance is associated with the recruitment of myeloid-derived suppressor
cells (MDSCs) into the tumor microenvironment (TME) and the consequential establish-
ment of an immunosuppressive TME. MDSC recruitment is driven by local inflamma-
tion and stress/depression which induces neuropeptide Y secretion from prostate cancer
cells [168]. In addition, prostate adenocarcinoma extensively treated with ADT or radiation
therapy [169] transdifferentiates into an aggressive form of CRPC termed neuroendocrine
prostate cancer (NEPC) without undergoing pluripotent cell transition [170]; a phenomenon
poorly understood. While some cases of NEPC can arise de novo, the vast majority are
treatment-related (tNPEC) [170,171].

NEPC is a poorly defined clinical phenotype of aggressive disease and causes ap-
proximately 10–25% of prostate cancer-related deaths [171,172]. Neuroendocrine-like cells
(NECs) are characterized by loss of AR expression [171,172], activation of the β-adrenergic
receptor (ADRB2), elevated levels of stem cell and neuroendocrine markers as well as
resistance to hormonal therapies. Sympathetic nerves are crucial in PCa generation and
growth, and perineural invasion (PNI) is a condition where tumor spreads through the
nerves tissue and correlates with poor prognosis. ADRB2 is the most abundant receptor for
sympathetic signals in prostate luminal cells [169]. Interestingly, meta-analysis has revealed
that psychological depression/chronic stress is prevalent in men with prostate cancer and
patients with these conditions can deliver increased adrenergic signals via sympathetic
nerve fibers, which then act via β-adrenergic receptors expressed on cancer cells, thereby
promoting cell proliferation [172].

The prostate has an abundant nerve supply, and the contribution of sympathetic
nerves is crucial for differentiation and secretion by luminal cells [170,173]. ADRB2 is the
primary receptor through which the sympathetic regulation takes place [169,170]. ADRB2
is a G-protein coupled receptor (GPCR) which is stimulated when bound with stress-
facilitating catecholamines [174]; with more affinity towards Adrenaline (Ad) compared
to noradrenaline (NAd) via adenyl cyclase pathways with increased cyclic adenosine
monophosphate (cAMP), protein kinase A (PKA) and cAMP response element-binding
protein (CREB) [170,175]. In physiological conditions this functions to regulate the response-
reaction and energy expenditure in the face of perceived danger [174]. In the PCa TME,
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these adrenergic receptors are found on luminal cells and are increased in cancer cells
compared to benign conditions [170]. These are not only stimulated by Ad from the
adrenal medulla and NAd from adrenergic nerves, but also from Ad/NAd release from
macrophages, lymphocytes, and neutrophils [170,174,176]. Previous studies on several
cancer types reported ADRB2-mediated apoptosis, metastasis, angiogenesis, and therapy
resistance, and it has been hypothesized that targeting this receptor would benefit CRPC-
related adversities [170,176]. Non-selective beta blockers, such as propranolol, can have
detrimental effect on people with low blood pressure and therefore a more beta2-targeted
blocker such as ICI-118551 would be safer. Moreover, the number of ADRB2 is different
between patients, within the tumor itself as well as during different disease stages which
could explain the heterogenous effect of these drugs. In a pre-clinical study design con-
sisting of tissue and mouse models, ADRB2 expression in hormone naïve PCa was found
to be elevated but diminished with increasing tumor grade [169–172]. In an ADT-treated
environment, NECs appear to promote androgen insensitivity and severity of the tumor re-
sulting in poor prognosis [177]. Despite the minor contribution from pre-existing nerve-like
cells, NECs involved in malignancy are believed to mainly emerge from neuroendocrine
transdifferentiation (NED) [170,174,177].

Plausible causes behind NED include the prolonged application of ADT, radiation
therapy, and it has been evident that ADRB2-mediated catecholamines induce NEC pro-
liferation in AR-dependent and -independent manner [170,177]. In treatment naïve cell
lines expressing high level of ADRB2, NED did not occur, only the neuronal type cells were
increased [170]. Moreover, tumor cells with high levels of ADRB2 before starting ADT
treatment were found to transdifferentiate into NED more frequently after ADT treatment
compared to those with the low level of the proteins [171]. If this were to be confirmed in
human PCa cells, then it would become necessary to assess the level of ADRB2 expression
prior to ADT treatment and taken into consideration for additional treatment such as
ADRB2 inhibitors (ADRB2i).

Ongoing clinical trials on beta-adrenergic blockers include the oral administration
of Etodolac and Propranolol (NCT01857817-phase II), beta-blockade using Carvedilol
for prostate adenocarcinoma patients before prostatectomy (NCT02944201-phase II), and
Propranolol Hydrochloride treatment in patients undergoing surgery (NCT03152786-phase
II) [169,178]. Unravelling the pathways and molecules involved are essential to incorporate
in this arm of studies as well as considering efficacy, safety and the patient cohort that
would benefit from the ADRB2 blockers.

4.2. Other Important Regulators of PCa Progression—Histone Deacetylase (HDAC)

The development of CRPC and androgen insensitivity are significant shifts in the
progression of PCa, the causes of which are currently being investigated. In this context,
mediators of epigenetic changes related to PCa are presently being examined, with HDACs
among the prime areas of inquiry. Chromatin, made up of DNA, is wrapped around
histone proteins, and chromatin remodeling is regulated by acetylation, phosphorylation,
and methylation of the histone [179]. Histone acetyltransferases (HATs) attach acetyl groups
to DNA and loosen the histone wrap allowing the transcription factors to communicate
the DNA and regulate the gene expressions. In contrast, HDAC removes the acetyl group
from the histone, leaving DNA compressed onto the histone and hinders the attachment
of transcription factors to DNA [180]. These alterations lead to gene silencing and the
suppression of the associated expression. In physiological conditions, HDACs function as
regulators of chromatin structure and functions [179,180]. There are four main groups of
HDACs known at present with a total count of 18 isoforms. Classes I, II and IV are called
as “Classical HDACs” and have a curved tubular pocket where the zinc ion is attached
and mediate the activities [179–181].

Further, HDACs are involved in non-histone protein functional regulation in addition
to the chromatin modulation, and in cancerous conditions, HDAC-mediated epigenetic reg-
ulation promotes neoplasm [179,181]. Activating HAT or deactivating HDAC may resolve
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the abnormality in some conditions such as the gene expression of AR in PCa [182,183].
From a technological point of view, however, stimulating an enzyme is more challenging
than suppressing it, and HDAC inhibition has therefore, been preferred in therapeutic
interventions over HAT induction [180]. HDAC inhibitors (HDACis) can be classified as
PAN inhibitor or selective inhibitor depending on their specificity as to several classes of
HDACi or a specific class [179].

Many HDACis have already been FDA approved for the treatment of various can-
cers Vorinostat (SAHA) for the treatment of cutaneous T-cell lymphoma (CTCL) [184],
Romidepsin for the treatment of CTCL and T-cell lymphoma (PTCL) [185], Panobinostat,
for the treatment of multiple myeloma [186], Belinostat for the treatment of relapsed or
refractory PTCL [187], while Valproic acid and Entinostat (MS-275) are currently in var-
ious clinical trials being used either alone or in combination with other form of cancer
therapies [188]. Some of these are now being investigated for the treatment of prostate
cancer. Histological analyses tracing the progression of PIN have shown that class I, II
and IV HDACs are upregulated in PCa, suggesting their early occupation in the tumor.
Specifically, HDAC1 and HDAC4 were found in increased numbers in CRPC [189,190].
Further, scientists have shown that expressions of HDAC2 is inversely correlated to PSA
relapse-free survival, specifically in high Gleason Grade patients [189]. Elevated counts
of HDAC in PCa was found to be further increased in metastatic cancer compared to
non-metastatic PCa [191] and HDACs are key mediators of the AR axis in recurring PCa.
Inhibiting HDACs is not only a possible way to induce tumor cell death but the treatment
also appears to be less toxic towards normal cells [192]. There are currently several phases
I and II trials ongoing using HDACis for PCa as monotherapy or as combination therapy
(Table 2).

Table 2. Studies that targeted HDACs in PCa and their details.

HDACi Targeted HDAC Test Model Strategies and Results Reference

Dacinostat (LAQ824)
Pan
(Class I, II)

Androgen-sensitive and
-independent cell line

Acetylation of HSP-90 and concurrent
suppression in ATP binding leads to
proteasomal degradation of AR by
dissociation of AR and HSP-90.
HDACi is believed to target either
HDAC6 or HDAC10.

[193]

Phase I trial
Reduced levels of HSP-90 protein as
an indication of the inhibition by the
HDACi.

[194]

Suberoylanilide
hydroxamic acid
(SAHA)/Vorinostat

Pan

cell lines and xenografts
(CWR22 nude mice)

Acetylation of HDAC 3 and 4 resulted
in tumour regression, apoptosis, and
growth arrest in cancer cells.

[191]

Phase II
No significant outcome,
progression-free disease in 2 patients
out of 27 patients (NCT00330161).

[195]

Belinostat (PXD101) Pan
Combination treatment
with docetaxel on
xenograft mice

Inhibition of HDAC 6, stabilizing
tubulin acetylation, regulating
antiapoptotic proteins including BclXL
to induce death of hormone-refractory
cancer cells resulting reduced tumour
volume.

[192]
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Table 2. Cont.

HDACi Targeted HDAC Test Model Strategies and Results Reference

SAHA derivative
(MHY219) HDAC 1, 2, 3 and 4 metastatic in vitro tissues

Increased apoptosis of PCa [196]

Increased tissue inhibitor of
metalloproteinase-1 (TIMP1) and
associated mRNA levels. Reduced
levels of MMP1 and MMP2. The
regulator of MMPs, HDAC1 activity
was also inhibited and limited cell
migration.

[190]

Panobinostat
(LBH589) Pan

In vitro and in vivo studies
with Zoledronic acid (Zol)

Panobinostat relieves drug resistance
to Zol and results in cell arrest and
apoptosis of tumour cells.

[197]

Phase I trial, oral
administration to CRPC
patients along with
docetaxel

≥50% drop of PSA in 5 out of
8 patients. [198]

Phase II trial, IV
administration to CRPC
patients after receiving
chemotherapy.

No significant outcome
(NCT00667862). [199]

Ivaltinostat
(CG200745) Pan

Combination treatment
with docetaxel in vitro and
in vivo models

The inhibition through entrapping
ARs in microtubules [tubulin
acetylation] and stabilize the
microtubule.
Results include downregulated
full-length AR and AR splice variants,
PSA, Bcl2 proteins and reduced cell
viability.

[200]

Nicotinamide Sirt1

In vitro and in vivo studies

Silencing of SIRT1 with nicotinamide
and genetical suppression by sirtinol
result in growth arrest and apoptosis
of PCa cells

[183]
Sirtinol Sirt1/2

VPA
Pan
Class I, IIa HDACs

Administrated with
drinking water in
xenograft mice model

Cell cycle arrest, apoptosis and
reduced angiogenesis and reduced
levels of proliferating cell nuclear
antigen(PCNA).

[180]

Metastatic PCa cell lines

Only altered metastasis tissue,
increased metastasis suppressor gene
N-myc downstream-regulated gene
(NDRG1), reduced metastasis

[201]

Entinostat (MS275) Class I HDACs

RM1-CRPC rodent modal
(Resemble bone metastasis)

Induction of tumour intrinsic type 1
interferon (TI1IFN) correlated with T
cell responses displaying the increased
immunogenicity

[202]

In vitro analysis and
DU145 xenograft mice

Inhibition of HDAC 4, Attenuation of
DNA damage repair, enhanced
radiosensitivity and tumour delay.

[203,204]

CRPC-MyCaP mice were
administrated SurVaxM

Reduced FOXP3 expression and
expansion of CD8+ T cells.
Un changed Treg levels.

[182]
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Table 2. Cont.

HDACi Targeted HDAC Test Model Strategies and Results Reference

Romidepsin Phase II trial In a small portion, RECIST and ≥ 50%
drop of PSA (NCT00106418). [205]

Pracinostat (SB939) Pan Class-I, -II and
-IV

Oral administration, Phase
II trial mCRPC patients

Low drug toxicity, no significant
outcome (NCT01075308). [206]

Tasquinimod HDAC3/4 Phase II and III trials

Angiogenesis, MDSC suppression
which shown progression-free disease
but no improvement in survival of the
patients (NCT01234311).

[207,208]

Targeting androgen synthesis/pathways (Figure 2) has been the prime treatment for
PCa as cancer cells rely vastly on androgen for survival and proliferation. However, the
majority of recurrent prostate cancers are neither completely hormone refractory nor andro-
gen independent but are rather dependent on the AR signaling axis [209] and alternate AR
pathways have been found to support PCa growth through the reactivation and targeting
of AR [190,210]. Previous studies have shown some of the HDACis such as SAHA and
dacinostat efficiently suppressed AR regulated transcriptional activities in PCa tissues, and
more so effectively in AR-positive cancers [200,211]. These HDACis influence the AR axis
through inhibition of heat shock protein-90 (HSP-90), AR transcription and transcription
of AR target genes [211]. Further HDAC1 and HDAC4 were found to contribute to PCa
proliferation and CRPC, respectively [190]. Other than direct targeting AR axis, there are
several other molecules and pathways HDACis target and produce a decline in growth,
proliferation, and trigger apoptosis. Recently an in vitro study displayed the ability of
HDACis, SAHA and entinostat to improve the immunogenicity of PCa cells that may alter
the immune-evasion phenotype of PCa. The experiment provides a rationale to incorporate
HDACis with immunotherapy [212].

5. Concluding Remarks

The advent of immunotherapy has been one of the greatest achievements to science
and anticancer therapies in the recent decades and continues to hold great potential for
prostate cancer. It is abundantly clear that PCa possesses a distinctly immunosuppres-
sive profile that, unlike other solid cancers, somehow evades immunotherapy to a more
effective extent. This only highlights the need to better understand and target the key
immunosuppressive cells to alleviate this potent immunosuppression within the TME and
increase immunotherapy efficacy. Recent studies involving combinatorial MDSC-targeted
therapy have not only substantiated the hypothesis that MDSCs represent one of the major
obstacles in PCa immunotherapy but have also demonstrated that MDSC depletion restores
intended immunotherapy outcomes.

One potential contributing factor to the perceived lack of efficacy of immunotherapy
is the fact that it is only ever attempted in late-stage disease after alternate treatment
options have been exhausted. Because disease progression is most often indolent, current
treatment strategies aim to preserve the quality of life over aggressive treatment. However,
by the time mCRPC has developed, multiple signaling pathways have been de-regulated
and significant treatment resistance has been generated. Docetaxel is the primary line of
treatment for mCRPC, and the average age of these patients is 70 years of age [47]. Thus,
patients often receive immunotherapy in a pre-immunocompromised state, due to both
age and chemotherapy pre-treatment. Additionally, circulating levels of M-MDSCs are
normalized following surgical removal of the primary prostatic tumor [99], yet resurge
once metastatic disease develops [100,101]. This direct link between elevated MDSC levels
and presence of a primary tumor and/or metastases indicates that the optimal time point
for MDSC-therapeutic intervention would be following prostatectomy, when levels have
been normalized and are therefore minimally suppressive. This time point would also
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pre-empt the onset of castration resistance, which both drives PMN-MDSC infiltration
through IL-8 [115] and is driven by MDSCs through IL-23 [131]. Therefore, the maximally
beneficial setting for combinatorial immunotherapy would be as an adjuvant along with,
or shortly after, ADT treatment.

Another important factor to consider is the two distinct subpopulations of MDSC,
and their frequency and potency in various bodily locations. Despite many contradictory
studies assessing the two subpopulations, relatively few have divulged a comprehensive
understanding of the mechanistic role of each subtype in PCa. Given that the two subtypes
rely on different signaling pathways to elicit different methods of immunosuppression, the
question remains whether targeting only one pathway or subtype is enough to achieve
therapeutic benefits. One such example is the STAT3 pathway, which both PMN- and
M-MDSCs use but heavily governs immunosuppressive functioning in the PMN subset.
In tumor-bearing mice, STAT3 inhibition resulted in MDSC depletion in spleens, but not
tumors [87], leading to the notion that the signaling pathways governing these cells and
their differential downstream effects are critical in their immunosuppressive capacity.
Additionally, the abundance and potency vary by bodily location and disease stage. The
conclusion that this review has reached is that in PCa, PMN-MDSCs appear to predominate
in intratumoral and lymphoid populations and are possibly more potent than M-MDSCs,
although this is debated. Such a lack of knowledge in this respect will be a major obstacle
in determining the most effective MDSC-targeted therapeutic strategy.

There are three types of high-risk patients for which the combinatorial strategy might
differ: (i) those with a high-grade intact primary tumor (i.e., recently diagnosed and has
not undergone RP) that is immunologically ‘cold’, (ii) those with a high-grade untreated
disease that is immunologically ‘hot’, and (iii) those who have had the primary tumor
removed and whose disease has progressed to mCRPC despite ADT treatment (Figure 5).
For the first group wherein, there is access to the primary tumor, the first line of treatment
should be broad immunological activation to a ‘hot’ tumor through brachytherapy [213]
or oncolytic virus [214]. Once immune infiltration is permitted, an active immunotherapy
treatment such as sipuleucel-T or an antitumor vaccine such as our mutated PAP-derived
vaccine would be useful to generate antigen-specific immune responses against tumor
antigen-expressing PCa cells. Finally, ICB (both anti-CTLA4 and anti-PD1 antibodies)
and MDSC-targeted therapy could then be utilized to break immunological tolerance and
permit CD8+ cytolytic activity on PCa cells. For the groups (ii) and (iii), immunological
activation is either not necessary or not accessible via a primary tumor, so the starting
point for these patients would be active immunotherapy, ICB and MDSC-targeted therapy.
Groups (i) and (ii) additionally benefit from receiving ADT along with immunotherapeutic
approaches as they are castration sensitive.

Beyond targeting the cells of the tumor and the immune system, a comprehensive
strategy that takes patient psychology and microbiome into account could be necessary to
generate robust and long-lasting clinical responses. Following the development of castra-
tion resistance, 25% of tumors will transform into an aggressive form of CRPC called NEPC
wherein adenocarcinoma cells transdifferentiate into neuroendocrine-like cells and express
the β2-adrenergic receptor (ADRB2) [215]. Depression, which is a neuroendocrine disorder,
may therefore either be the cause or the result of neuroendocrine transdifferentiation, re-
sulting in poor prognosis. Indeed, depression is significantly associated with mortality risk
in mCRPC patients [216], and chronic stress promotes tumorigenesis through the activation
of the ADRB2 by adrenaline, which mediates antiapoptotic pathways in PCa cells [217].
Depression has been recently demonstrated to induce neuropeptide Y expression by PCa
cells through sympathetic activation, resulting in IL-6 release from TAMs and subsequent
intratumoral MDSC infiltration [168]. Curiously, a meta-analysis of 16,825 PCa patients
has previously associated the use of beta-blockers with reduced prostate cancer-specific
mortality [172]. The available evidence indicates there is a potential benefit of pharmaco-
logic intervention of adrenergic pathways and/or professional counselling, lifestyle habits,
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etc., for PCa patients at risk of depression, which may aid in ablation of MDSC-derived
immunosuppression.
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In line with this holistic therapeutic approach is consideration of the host microbiome
and its effects on tumor progression. The relationship between the host gastrointestinal
microbiome (which contains 1013–1014 microorganisms [218]) and antitumor immunity is
particularly relevant in PCa patients who are often >50 years of age, and therefore likely
present with lower bacterial load and diversity. Given that PCa progression is heavily
influenced by chronic inflammation, it is no surprise that dynamic changes to a more
pro-inflammatory microbiome, enriched in Bacteroides and Streptococcus spp. has been
observed in PCa patients [219]. GI bacterial infection alone is sufficient to enhance prostate
intraepithelial neoplasia (PIN) and microinvasive carcinoma [220]. This adjacent immune
activation likely exacerbates the chronic inflammatory environment of the prostate tumor
through ROS and RNS-mediated cell damage, which is known to directly contribute to
the development of PIN and adenocarcinoma [221]. An added layer of complexity is the
developing knowledge of the prostate tumor microbiome, which is no longer considered
a sterile environment. Microbiome profiling of PCa tumor tissue has revealed to be
enriched in Propionibacterium and Corynebacterium spp., which may be responsible for
tumor progression by modulating host immune responses and ECM composition [222,223].
Curiously, eradication of the gut intestinal microbiota through antibiotic use or gnotobiotic
organisms renders CTLA-4 treatment ineffective, a phenomenon that can be salvaged
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through supplementation with B. fragilis [224]. Little is known of beneficial species in the
context of PCa. However, Lactobacillus rhanosus GG (LGG) is often used as an adjuvant
for colorectal cancer treatment for its anti-inflammatory properties. Therefore, probiotics
such as LGG, B. fragilis or other species may represent a useful adjuvant in therapeutic
approaches to PCa.

To conclude, prostate cancer is a dynamic disease with a complicated and poorly
understood etiology that likely requires a multipronged approach incorporating MDSC-
targeting, immunotherapy, probiotics and inhibition of adrenergic pathways for clinical
efficacy (Figure 6). Additionally, the combinatorial strategy should differ depending on the
immunological status of the tumor and whether disease has progressed to mCRPC, which
has an influence on the remaining available treatment options and prognosis. Further
inquiries are warranted in determining the most effective MDSC-targeted treatment and
indeed the most effective combinatorial strategy.
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Abbreviations

5-FU 5-fluorouracil
Ad Adrenaline
ADRB2 β-adrenergic receptor
ADRB2i ADRB2i inhibitor
ADT Androgen deprivation therapy
APC Antigen-presenting cell
AR Androgen receptor
ARE Antioxidant response element
ARG1 Arginase 1
ATRA All transretinoic acid
CAB Combined androgen blockade
CAF Cancer-associated fibroblast
CREB cAMP response element-binding protein
CRPC Castration-resistant prostate cancer
CTL Cytotoxic T-lymphocyte
DAMPs Danger-associated molecular patterns
DC Dendritic cell
DHEA Dehydroepiandrosterone
DHT Dihydrotestosterone
DRE Digital rectal examination
ECM Extracellular matrix
EMT Epithelial–mesenchymal transition
EMC Epithelial-mesenchymal cell
ER Endoplasmic reticulum
GM-CSF Granulocyte-macrophage colony-stimulating factor
G-CSF Granulocyte CSF
HAT Histone acetyltransferase
HDAC Histone deacetylases
HDACi HDAC inhibitor
HMGB1 High mobility group box 1
ICB Immune checkpoint blockade
IDO Indoleamine 2,3-dioxygenase
IGRT Image-guided radiation therapy
IL-[number] Interleukin-[number]
IMRT Intensity-modulated radiation therapy
LCK Lymphocyte-specific protein tyrosine kinase
LH Luteinizing hormone
LHRH Luteinizing hormone-releasing hormone
M-CSF Macrophage CSF
M-MDSC Monocytic MDSC
MDSC Myeloid-derived suppressor cell
MMP Matrix metalloproteinase
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MSC Mesenchymal stem cell
NAd Noradrenaline
NDRG1 N-myc downstream-regulated gene
NEC Neuroendocrine-like cell
NEPC Neuroendocrine prostate cancer
NICE National Institute for Health and Care Excellence
NK Natural killer
NO Nitric oxide
NOX2 NADPH oxidase 2
NRF2 Nuclear factor erythroid 2-related factor 2
PAMPs Pathogen-associated molecular patterns
PAP Prostatic acid phosphatase
PBMC Peripheral blood mononuclear cell
PCa Prostate cancer
PCNA Proliferating cell nuclear antigen
PGE2 Prostaglandin E2
PIN Prostatic intraepithelial neoplasia
PKA Protein kinase A
PMN-MDSC Polymorphonuclear MDSC
PNI Perineural invasion
PSA Prostate-specific antigen
RARP Robot-assisted radical prostatectomy
RHAMM Receptor for hyaluronan-mediated motility
RNS Reactive nitrogen species
ROS Reactive oxygen species
RP Radical prostatectomy
RTK Receptor tyrosine kinase
SAHA Suberoylanilide hydroxamic acid
SCF Stem cell factor
STAT3 Signal transducer and activator of transcription 3
TAM Tumour-associated macrophage
TCR T cell receptor
TGFβ Transforming growth factor-beta
TI1IFN Tumour intrinsic type 1 interferon
TIMP1 Tissue inhibitor of metalloproteinase 1
TLR9 Toll-like receptor 9
TME Tumour microenvironment
TRAIL-R TNF-related apoptosis-induced ligand receptor 2
Treg T regulatory cell
TRUS Transrectal ultrasound
UA Uric acid
UPR Unfolded protein response
VEGF Vascular endothelial growth factor
Zol Zoledronic acid
β-AR β-adrenergic receptors
cAMP Cyclic adenosine monophosphate
eNOS Endothelial nitric oxide synthase
iNOS Inducible nitric oxide synthase
mCRPC Metastatic castration-resistant prostate cancer
mpMRI Multiparametric magnetic resonance imaging
MSMB Microseminoprotein-β
tNEPC Treatment-dependent NEPC



Cancers 2021, 13, 1145 30 of 39

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 86, 394–424. [CrossRef] [PubMed]
2. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63–98. [CrossRef] [PubMed]
3. Ilic, D.; Djulbegovic, M.; Jung, J.H.; Hwang, E.C.; Zhou, Q.; Cleves, A.; Agoritsas, T.; Dahm, P. Prostate cancer screening with

prostate-specific antigen (PSA) test: A systematic review and meta-analysis. Br. Med. J. 2018, 362. [CrossRef] [PubMed]
4. Loeb, S.; Bjurlin, M.; Nicholson, J.; Tammella, T.L.; Penson, D.; Carter, H.B.; Carrol, P.; Etzioni, R. Overdiagosis and overtreatment

of prostate cancer. Eur. Urol. 2014, 65, 1046–1055. [CrossRef] [PubMed]
5. Lahn, J.L.; Giovannucci, E.L.; Stampfer, M.J. The high prevalence of undiagnosed prostate cancer at autopsy: Implications for

epidemiology and treatment of prostate cancer in the Prostate-specific Antigen-era. Int. J. Cancer 2015, 137, 2795–2802.
6. Jalloh, M.; Friebel, T.M.; Thiam, F.S.; Niang, L.; Sy, C.; Siby, T.; Fernandez, P.; Mapulanga, V.; Maina, S.; Doodu Mante, S.; et al.

Evaluation of 4,672 routine prostate biopsies performed in six African countries. J. Afr. Cancer 2013, 5, 144–154. [CrossRef]
7. Tindall, E.A.; Monare, L.R.; Petersen, D.C.; Zyl, S.V.; Hardie, R.A.; Segone, A.M.; Venter, P.A.; Bornman, M.S.R.; Hayes, V.M.

Clinical presentation of prostate cancer in Black South Africans. Prostate 2014, 74, 880–891. [CrossRef] [PubMed]
8. Petersen, D.C.; Jaratlerdsiri, W.; Van Wyk, A.; Chan, E.K.F.; Fernandez, P.; Lyons, R.J.; Mutambirw, S.B.A.; Van der Merwe, A.;

Venter, P.A.; Bates, W.; et al. African KhoeSan ancestry linked to high-risk prostate cancer. BMC Med. Genom. 2019, 12, 82.
[CrossRef]

9. Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al.
Familial risk and heritability of cancer among twins in Nordic countries. JAMA 2016, 315, 68–76. [CrossRef]

10. Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian,
E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat.
Genet. 2018, 50, 928–936. [CrossRef]

11. Maskarinec, G.; Noh, J.J. The effect of migration on cancer incidence among Japanese in Hawaii. Ethn. Dis. 2004, 14, 431–439.
[PubMed]

12. Lee, J.; Demissie, K.; Lu, S.; Rhoads, G.G. Cancer incidence among Korean-American immigrants in the United States and native
Koreans in South Korea. Cancer Control 2007, 14, 78–85. [CrossRef]

13. Hanley, A.J.; Choi, B.C.; Holowaty, E.J. Cancer mortality among Chinese migrants: A review. Int. J. Epidemiol. 1995, 24, 255–265.
[CrossRef]

14. Le, G.M.; Gomez, S.L.; Clarke, C.A.; Glaser, S.L.; West, D.W. Cancer incidence patterns among Vietnamese in the United States
and Ha Noi, Vietnam. Int. J. Cancer 2002, 102, 412–417. [CrossRef] [PubMed]

15. Dickerman, B.A.; Torfadottir, J.E.; Valdimarsdottir, U.A.; Giovannucci, E.; Wilson, K.M.; Aspelund, T.; Tryggvadottir, L.;
Sigurdardottir, L.G.; Harris, T.B.; Launer, L.J.; et al. Body fat distribution on computed tomography imagine and prostate cancer
risk and mortality in the AGES-Reykjavik study. Cancer 2019, 125, 2730–2731.

16. Dickerman, B.A.; Ahearn, T.U.; Giovannucci, E.; Stampfer, M.J.; Nguyen, P.L.; Mucci, L.A.; Wilson, K.M. Weight change, obesity
and risk of prostate cancer aggression among men with clinically localized prostate cancer. Int. J. Cancer 2017, 141, 933–944.
[CrossRef] [PubMed]

17. Harrison, S.; Tilling, K.; Turner, E.L.; Martin, R.M.; Lennon, R.; Lane, J.A.; Donovan, J.L.; Hamdy, F.C.; Neal, D.E.; Ruud Bosch,
J.H.L.; et al. Systematic review and meta-analysis of the associations between body mass index, prostate cancer, advanced prostate
cancer, and prostate-specific antigen. Cancer Causes Contol 2020, 31, 431–449. [CrossRef]

18. Xu, C.; Han, F.F.; Zeng, X.T.; Liu, T.Z.; Li, S.; Gao, Z.Y. Fat intake is not limited to prostate cancer: A systematic review and
dose-response meta-analysis. PLoS ONE 2015, 10, e0131747.

19. Hayashi, T.; Fujita, K.; Nojima, S.; Hayashi, Y.; Nakano, K.; Ishizuya, Y.; Wang, C.; Yamamoto, Y.; Kinouchi, T.; Matsuzaki, K.; et al.
High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin. Cancer Res. 2018, 24, 4309–4318.
[CrossRef] [PubMed]

20. Lophatananon, A.; Stewart-Brown, S.; Kote-Jarai, Z.; Al Olama, A.A.; Garcia, S.B.; Neal, D.E.; Hamdy, F.C.; Donovan, J.L.; Giles,
G.G.; Fitzgerald, L.M.; et al. Height, selected genetic markers and prostate cancer risk: Results from the PRACTICAL consortium.
Br. J. Cancer 2018, 118. [CrossRef]

21. Harrison, S.; Lennon, R.; Holly, J.; Higgins, J.P.T.; Gardner, M.; Perks, C.; Gaunt, T.; Tan, V.; Borwick, C.; Emmet, P.; et al. Does
milk intake promote prostate cancer initiation or progression via effects of insulin-like growth factors (IGFs)? A systematic review
and meta-analysis. Cancer Causes Control 2017, 28, 297–528. [CrossRef] [PubMed]

22. Islami, F.; Moreira, D.M.; Boffetta, P.; Freedland, S.J. A systemaic review and meta-analysis of tobacco use and prostate cancer
mortality and incidence in prospective cohort studies. Eur. Urol. 2014, 66, 1054–1064. [CrossRef] [PubMed]

23. Arneth, B.M. Clinical significance of measuring prostate-specific antigen. Lab.Med. 2009, 40, 487–491. [CrossRef]
24. Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.;

Crawford, E.D. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0ng per milliliter. N. Engl. J.
Med. 2004, 350, 2239–2246. [CrossRef]

25. Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital rectal
examination for prostate cancer screening in primary care: A systematic review and meta-analysis. Ann. Fam. Med. 2018, 16,
149–154. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.14740/wjon1191
http://www.ncbi.nlm.nih.gov/pubmed/31068988
http://doi.org/10.1136/bmj.k3519
http://www.ncbi.nlm.nih.gov/pubmed/30185521
http://doi.org/10.1016/j.eururo.2013.12.062
http://www.ncbi.nlm.nih.gov/pubmed/24439788
http://doi.org/10.1007/s12558-013-0264-y
http://doi.org/10.1002/pros.22806
http://www.ncbi.nlm.nih.gov/pubmed/24723425
http://doi.org/10.1186/s12920-019-0537-0
http://doi.org/10.1001/jama.2015.17703
http://doi.org/10.1038/s41588-018-0142-8
http://www.ncbi.nlm.nih.gov/pubmed/15328946
http://doi.org/10.1177/107327480701400111
http://doi.org/10.1093/ije/24.2.255
http://doi.org/10.1002/ijc.10725
http://www.ncbi.nlm.nih.gov/pubmed/12402312
http://doi.org/10.1002/ijc.30803
http://www.ncbi.nlm.nih.gov/pubmed/28543830
http://doi.org/10.1007/s10552-020-01291-3
http://doi.org/10.1158/1078-0432.CCR-18-0106
http://www.ncbi.nlm.nih.gov/pubmed/29776955
http://doi.org/10.1038/bjc.2018.6
http://doi.org/10.1007/s10552-017-0883-1
http://www.ncbi.nlm.nih.gov/pubmed/28361446
http://doi.org/10.1016/j.eururo.2014.08.059
http://www.ncbi.nlm.nih.gov/pubmed/25242554
http://doi.org/10.1309/LMEGGGLZ2EDWRXUK
http://doi.org/10.1056/NEJMoa031918
http://doi.org/10.1370/afm.2205
http://www.ncbi.nlm.nih.gov/pubmed/29531107


Cancers 2021, 13, 1145 31 of 39

26. Streicher, J.; Lee Myerson, B.; Karivedu, V.; Sidana, A. A review of optimal prostate biopsy: Indications and techniques. Ther. Adv.
Urol. 2019, 11, 1–8. [CrossRef] [PubMed]

27. National Institute for Health and Care Excellence. Prostate Cancer: Diagnosis and Management. Available online: https:
//www.nice.org.uk/guidance/ng131/resources/prostate-cancer-diagnosis-and-management-pdf-66141714312133 (accessed on
26 February 2021).

28. Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer: A review. JAMA 2017, 317, 2532–2542. [CrossRef]
29. Omer, A.; Lamb, A.D. Optimizing prostate biopsy techniques. Curr. Opin. Urol. 2019, 29, 578–586. [CrossRef]
30. Kum, F.; Elhage, O.; Maliyil, J.; Wong, K.; Faure Walker, N.; Kulkarni, M.; Namdarian, B.; Callacombe, B.; Cathcart, P.; Popert, R.

Initial outcomes of local anaesthetic freehand transperineal prostate biopsies in the outpatient setting. BJU Int. 2020, 125, 244–252.
[CrossRef]

31. Kamel, M.H.; Khalil, M.I.; Alobuia, W.M.; Su, J.; Davis, R. Incidence of metastasis and prostate-specific antigen levels at diagnosis
in Gleason 3+4 versus 4+3 prostate cancer. Urol. Ann. 2018, 10, 203–208. [CrossRef]

32. Bjurlin, M.A.; Carter, H.B.; Schellhammer, P.; Cookson, M.S.; Gomella, L.G.; Troyer, D.; Wheeler, T.M.; Schlossberg, S.; Penson,
D.F.; Taneja, S.S. Optimization of initial prostate biopsy in clinical practice: Sampling, labelling and specimen processing. J. Urol.
2013, 189, 2039–2046. [CrossRef]

33. Mottet, N.; Van den Bergh, R.C.N.; Briers, E.; Cornford, P.; De Santis, M.; Fanti, S.; Gillessen, J.; Grummet, A.M.; Henry, T.B.; Lam,
M.D.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Available online: https://uroweb.org/wp-content/
uploads/EAU-EANM-ESUR-ESTRO-SIOG-Guidelines-on-Prostate-Cancer-2019-1.pdf (accessed on 26 February 2021).

34. Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M. Radical
prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 2012, 367, 203–213. [CrossRef] [PubMed]

35. Bill-Axelson, A.; Holmberg, L.; Garmo, H.; Rider, J.R.; Taari, K.; Busch, C.; Nordling, S.; Haggman, M.; Andersson, S.O.;
Spangberg, A. Radical prostatectomy or watchful waiting in early prostate cancer. N. Engl. J. Med. 2014, 370, 932–942. [CrossRef]
[PubMed]

36. Violette, P.D.; Agoritsas, T.; Alexander, P.; Piikonen, J.; Santti, H.; Agarwal, A.; Bhatnagar, N.; Dahm, P.; Montori, V.; Guyatt, G.H.;
et al. Decision aids for localized prostate cancer treatment choice: Systematic review and meta-analysis. CA Cancer J. Clin. 2015,
65, 239–251. [CrossRef] [PubMed]

37. Haglind, E.; Carlsson, S.; Strane, J.; Wallerstedt, A.; Wilderäng, U.; Thorsteindottie, T.; Lagerkvist, M.; Damber, J.E.; Bjartell, A.;
Hugosson, J.; et al. Urinary incontinence and erectile dysfunction after robotic versus open radical prostatectomy: A prospective,
controlled, nonrandomised trial. Eur. Urol. 2015, 68, 216–225. [CrossRef]

38. Minke, H.; Yaohui, L.; Zhuoyi, X.; Li-an, S.; Yanjun, Z.; Xiaoyi, H.; Jianming, G.; Hang, W. Short internval of biopsy to robotic-
assisted laparoscopic radical prostatectomy does not render any adverse effects on the perioperative outcomes. Medicine 2018, 97,
e11686.

39. Cao, L.; Yang, Z.; Qi, L.; Chen, M. Robot-assisted and laparoscopic vs. open radical prostatectomy in clinically localized prostate
cancer perioperative, function and oncological outcomes: A systematic review and meta-analysis. Medicine 2019, 98, e15770.

40. Gao, L.; Yang, L.; Qian, S.; Tang, Z.; Qin, F.; Wei, Q.; Han, P.; Yuan, J. Cryosurgery would be an effect option for clinically localized
prostate cancer: A meta-analysis and systematic review. Sci. Rep. 2016, 7, 27490. [CrossRef]

41. Bonekamp, D.; Wolf, M.B.; Roethke, M.C.; Pahernik, S.; Hadaschik, B.A.; Hatiboglu, G.; Kuru, T.H.; Popeneciu, I.V.; Chin, J.L.;
Billia, M.; et al. Tweleve-month prostate volume reduction after MRI-guided transurethral ultrasound ablation of the prostate.
Eur. Radiol. 2019, 29, 299–308. [CrossRef]

42. Van den Bos, W.; Scheltema, M.J.; Siriwardana, A.R.; Kalsbeek, A.M.F.; Thompson, J.E.; Ting, F.; Böhm, M.; Haynes, A.; Shnier,
R.; Delprado, W.; et al. Focal irreversible electroporation as primary treatment for localized prostate cancer. BJU Int. 2018, 121,
716–724. [CrossRef]

43. Gill, I.S.; Azzouzi, A.R.; Emberton, M.; Coleman, J.A.; Coeytaux, E.; Scherz, A.; Scardino, P.T.; PCM301 Study, Group. Randomized
trial of partial gland ablation with vascular targeted phototherapy versus active surveillance for low risk prostate cancer: Extended
followup and analyses of effectiveness. J. Urol. 2018, 200, 786–793. [CrossRef] [PubMed]

44. Huggins, C.; Hodges, C.V. Studies on prostatic cancer: I. the effect of castration, of estrogen, and of androgen injection on serum
phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941, 1, 293–297.

45. Crawford, E.D.; Heidenreich, A.; Lawrentschuk, N.; Tombal, B.; Pompeo, A.C.L.; Mendoza-Valdes, A.; Miller, K.; Debruyne,
F.M.J.; Klotz, L. Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prosate
Cancer Prostatic Dis. 2019, 22, 24–38. [CrossRef] [PubMed]

46. Karantanos, T.; Corn, P.G.; Thompson, T.C. Prostate cancer progression after androgen deprivation therapy: Mechanisms of
castrate-resistance and novel therapeutic approaches. Oncogene 2013, 32, 5501–5511. [CrossRef]

47. Mehtälä, J.; Zong, J.; Vassilev, Z.; Brobert, G.; Gabarró, M.S.; Stattin, P.; Khanfir, H. Overall survival and second primary
malignancies in men with metastatic prostate cancer. PLoS ONE 2020, 15, e0227552. [CrossRef]

48. Moreira, D.M.; Howard, L.E.; Sourbeer, K.N.; Amarasekara, H.S.; Chow, L.C.; Cockrell, D.C.; Pratson, C.L.; Hanyok, B.T.; Aronson,
W.J.; Kane, C.J.; et al. Predicting time from metastasis to overall survival in castration-resistant prostate cancer: Results from
SEARCH. Clin. Gent. Cancer 2017, 15, 60–66. [CrossRef] [PubMed]

http://doi.org/10.1177/1756287219870074
http://www.ncbi.nlm.nih.gov/pubmed/31489033
https://www.nice.org.uk/guidance/ng131/resources/prostate-cancer-diagnosis-and-management-pdf-66141714312133
https://www.nice.org.uk/guidance/ng131/resources/prostate-cancer-diagnosis-and-management-pdf-66141714312133
http://doi.org/10.1001/jama.2017.7248
http://doi.org/10.1097/MOU.0000000000000678
http://doi.org/10.1111/bju.14620
http://doi.org/10.4103/UA.UA_124_17
http://doi.org/10.1016/j.juro.2013.02.072
https://uroweb.org/wp-content/uploads/EAU-EANM-ESUR-ESTRO-SIOG-Guidelines-on-Prostate-Cancer-2019-1.pdf
https://uroweb.org/wp-content/uploads/EAU-EANM-ESUR-ESTRO-SIOG-Guidelines-on-Prostate-Cancer-2019-1.pdf
http://doi.org/10.1056/NEJMoa1113162
http://www.ncbi.nlm.nih.gov/pubmed/22808955
http://doi.org/10.1056/NEJMoa1311593
http://www.ncbi.nlm.nih.gov/pubmed/24597866
http://doi.org/10.3322/caac.21272
http://www.ncbi.nlm.nih.gov/pubmed/25772796
http://doi.org/10.1016/j.eururo.2015.02.029
http://doi.org/10.1038/srep27490
http://doi.org/10.1007/s00330-018-5584-y
http://doi.org/10.1111/bju.13983
http://doi.org/10.1016/j.juro.2018.05.121
http://www.ncbi.nlm.nih.gov/pubmed/29864437
http://doi.org/10.1038/s41391-018-0079-0
http://www.ncbi.nlm.nih.gov/pubmed/30131604
http://doi.org/10.1038/onc.2013.206
http://doi.org/10.1371/journal.pone.0227552
http://doi.org/10.1016/j.clgc.2016.08.018
http://www.ncbi.nlm.nih.gov/pubmed/27692812


Cancers 2021, 13, 1145 32 of 39

49. De Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Roessner,
M.; et al. Prenisone plus cabazitaxel or mitoxanone for metastatic castration-resistant prostate cancer progressing after docetaxel
treatment: A randomized open-label trial. Lancet 2010, 376, 1147–1154. [CrossRef]

50. Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M. Alpha
emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [CrossRef]

51. Caffo, O.; Wissing, M.; Bianchini, D.; Bergman, A.; Thomsen, F.B.; Schmid, S.; Yu, E.Y.; Bournakis, E.; Sella, A.; Zagonel, V.; et al.
Survival outcomes from a cumulative analysis of worldwide observational studies on sequential use of new agents in metastatic
castration-resistant prostate cancer. Clin. Gent. Cancer 2019, 18, 69–76. [CrossRef]

52. Lombard, A.P.; Liu, L.; Cucchiara, V.; Liu, C.; Armstrong, C.M.; Zhao, R.; Yang, J.C.; Evans, C.P.; Gao, A.C. Intra vs. inter cross
resistance determines treatment sequence between taxane and AR-targeting therapies in advanced prostate cancer. Mol. Cancer
Ther. 2018, 17, 2197–2205. [CrossRef]

53. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.; Cowey, L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.;
Ferrucci, P.F.; et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2017,
377, 1345–1356. [CrossRef]

54. Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, K.; et al.
Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [CrossRef] [PubMed]

55. Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta,
C.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018, 378,
1277–1290. [CrossRef] [PubMed]

56. Swoboda, A.; Nanda, R. Immune checkpoint blockade for breast cancer. Cancer Treat. Res. 2018, 173, 155–165. [PubMed]
57. Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al.

Randomized, double-blind, Phase II trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with
metastatic chemotherapy-naïve castration-resistant prostate cancer. J. Clin. Oncol. 2017, 35, 40–47. [CrossRef] [PubMed]

58. Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; Van den Eertwegh, A.J.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi,
H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had
progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, Phase 3 trial. Lancet Oncol.
2014, 15, 700–712. [CrossRef]

59. Topalian, S.L.; Hodi, S.H.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Cavajal, R.D.; Sosman, J.A.;
Atkins, M.B.; et al. Safety, activity and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454.
[CrossRef]

60. Boudadi, K.; Suzman, D.L.; Luber, B.; Wang, H.; Silberstein, J.; Sullivan, R.; Dowling, D.; Harb, R.; Nirschl, T.; Dittamore, R.V.;
et al. Phase 2 biomarker-driven study of ipilimumab plus nivolumab (Ipi/Nivo) for ARV7-positive metastatic castrate-resistant
prostate cancer (mCRPC). J. Clin. Oncol. 2017, 35, 5035. [CrossRef]

61. Karzai, F.; VanderWeele, D.; Madan, R.A.; Owens, H.; Cordes, L.M.; Hankin, A.; Couvillon, A.; Nichols, E.; Bilusic, M.; Beshiri,
M.L. Activity of durvalumab plus Olaparib in metastatic castration-resistant prostate cancer in men with and without DNA
damage repair mutations. J. Immunother. Cancer 2018, 6. [CrossRef]

62. Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.;
Alanko, T.; et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: Multicohort, open label
Phase II KEYNOTE-199 study. J. Clin. Oncol. 2020, 38, 395–405. [CrossRef]

63. Sonpavde, G.; McMannis, J.D.; Bai, Y.; Seethammangari, M.R.; Bull, J.M.V.; Hawkins, V.; Dancsak, T.K.; Lapteva, N.; Levitt, J.M.;
Moseley, A.; et al. Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible
CD40 for advanced prostate cancer. Cancer Immunol. Immunother. 2017, 66, 1345–1357. [CrossRef] [PubMed]

64. Lilleby, W.; Gaudernack, G.; Brunsvig, P.F.; Vlatkovic, L.; Schulz, M.; Mills, K.; Hole, K.H.; Inderberg, E.M. Phase I/IIa clinical
trial of novel hTERT peptide vaccine in men with metastatic hormone-naïve prostate cancer. Cancer Immunol. Immunother. 2017,
66, 891–901. [CrossRef] [PubMed]

65. Noguchi, M.; Arai, G.; Egawa, S.; Ohyama, C.; Naito, S.; Matsumoto, K.; Uemura, H.; Nakagawa, M.; Nasu, Y.; Eto, M.; et al.
Mixed 20-peptide cancer vaccine in combination with docetaxel and dexamethasone for castration-resistant prostate cancer: A
randomized phase II trial. Cancer Immunol. Immunother. 2020, 69, 847–857. [CrossRef] [PubMed]

66. McNeel, D.G.; Eickhoff, J.C.; Johnson, L.E.; Roth, A.R.; Perk, T.G.; Fong, L.; Antonarakis, E.S.; Wargowski, E.; Jarej, R.; Liu,
G. Phase II trial of a DNA vaccine encoding prostatic acid phosphatase (pTVG-HP [MVI-816]) in patients with progressive,
nonmetastatic, castration-sensitive prostate cancer. J. Clin. Oncol. 2019, 37, 3507–3517. [CrossRef]

67. Zhang, Z.; Liu, S.; Zhang, B.; Qiao, L.; Zhang, Y.; Zhang, Y. T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 2020,
8. [CrossRef]

68. Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.;
et al. Sipuleucel-T immunotherapy in castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [CrossRef]

69. Xu, H.; Wang, F.; Li, H.; Ji, J.; Cao, Z.; Lyu, J.; Shi, X.; Zhu, Y.; Zhang, C.; Guo, F.; et al. Prostatic acid phosphatase (PAP) predicts
prostate cancer progress in a population-based study: The renewal of PAP? Dis. Markers 2019, 2019, 7090545. [CrossRef]

http://doi.org/10.1016/S0140-6736(10)61389-X
http://doi.org/10.1056/NEJMoa1213755
http://doi.org/10.1016/j.clgc.2019.09.010
http://doi.org/10.1158/1535-7163.MCT-17-1269
http://doi.org/10.1056/NEJMoa1709684
http://doi.org/10.1056/NEJMoa1501824
http://www.ncbi.nlm.nih.gov/pubmed/25891174
http://doi.org/10.1056/NEJMoa1712126
http://www.ncbi.nlm.nih.gov/pubmed/29562145
http://www.ncbi.nlm.nih.gov/pubmed/29349763
http://doi.org/10.1200/JCO.2016.69.1584
http://www.ncbi.nlm.nih.gov/pubmed/28034081
http://doi.org/10.1016/S1470-2045(14)70189-5
http://doi.org/10.1056/NEJMoa1200690
http://doi.org/10.1200/JCO.2017.35.15_suppl.5035
http://doi.org/10.1186/s40425-018-0463-2
http://doi.org/10.1200/JCO.19.01638
http://doi.org/10.1007/s00262-017-2027-6
http://www.ncbi.nlm.nih.gov/pubmed/28608115
http://doi.org/10.1007/s00262-017-1994-y
http://www.ncbi.nlm.nih.gov/pubmed/28391357
http://doi.org/10.1007/s00262-020-02498-8
http://www.ncbi.nlm.nih.gov/pubmed/32025848
http://doi.org/10.1200/JCO.19.01701
http://doi.org/10.3389/fcell.2020.00017
http://doi.org/10.1056/NEJMoa1001294
http://doi.org/10.1155/2019/7090545


Cancers 2021, 13, 1145 33 of 39

70. Fong, L.; Carroll, P.; Weinberg, V.; Chan, S.; Lewis, J.; Corman, J.; Amling, C.L.; Stephenson, R.A.; Simko, J.; Sheikh, N.A.; et al.
Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate
cancer. J. Natl. Cancer Inst. 2014, 10611. [CrossRef]

71. Hagihara, K.; Chan, S.; Zhang, L.; Oh, D.Y.; Wei, X.X.; Simko, J.; Fong, L. Neoadjuvant sipuleucel-T induces both Th1 activation
and immune regulation in localized prostate cancer. Oncoimmunology 2019, 8, e1486953. [CrossRef]

72. Sheikh, N.; Cham, J.; Zhang, L.; DeVries, T.; Letarte, S.; Pufnock, J.; Hamm, D.; Trager, J.; Fong, L. Clonotypic diversification of
intratumoral T cells following sipuleucel-T treatment in prostate cancer subjects. Cancer Res. 2016, 76, 3711–3718. [CrossRef]

73. Antonarakis, E.S.; Kibel, A.S.; Yu, E.Y.; Karsh, L.I.; Elfiky, A.; Shore, N.D.; Vozelgang, N.J.; Corman, J.M.; Millard, F.E.; Maher, J.C.;
et al. Sequencing of sipuleucel-T and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent
prostate cancer: A phase II randomized trial. Clin. Cancer Res. 2017, 23, 2451–2459. [CrossRef]

74. Sheikh, N.A.; Patrylak, D.; Kantoff, P.W.; Dela Rosa, C.; Stewart, F.P.; Kuan, L.; Whitmore, J.B.; Trager, J.B.; Poehlein, C.H.; Frohlich,
M.W.; et al. Sipuleucel-T immune parameters correlate with survival: An analysis of the randomized phase 3 clinical trials in men
with castration-resistant prostate cancer. Cancer Immunol. Immunother. 2013, 62, 137–147. [CrossRef] [PubMed]

75. Small, E.J.; Reese, D.M.; Whisenant, D.; Dixon, S.C.; Figg, W.D. Therapy of advanced prostate cancer with granulocyte macrophage
colony-stimulating factor. Clin. Cancer. Res. 1999, 5, 1738–1744. [PubMed]

76. Small, E.J.; Fratesi, P.; Reese, D.M. Immunotherapy for hormone-refractory prostate cancer with antigen-loaded dendritic cells. J.
Clin. Oncol. 2000, 18, 3894–3903. [CrossRef] [PubMed]

77. Burch, P.A.; Breen, J.K.; Buckner, J.C.; Gastineau, D.A.; Kaur, J.A.; Laus, R.L.; Padley, D.J.; Peshwa, M.V.; Pitot, H.C.; Richardson,
R.L.; et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin. Cancer
Res. 2000, 6, 2175–2182.

78. Antonarakis, E.S.; Small, E.J.; Petrylak, D.P.; Quinn, D.I.; Kibel, A.S.; Chang, N.N.; Dearstyne, E.; Harmon, M.; Campogan, D.;
Haynes, H.; et al. Antigen-specific CD8 lytic phenotype induced by sipuleucel-T in hormone-sensitive or castration-resistant
prostate cancer and association with overall survival. Clin. Cancer Res. 2018, 24, 4662–4671. [CrossRef] [PubMed]

79. Saif, J.M.; Vadakekolathu, J.; Rane, S.S.; McDonald, D.; Ahmad, M.; Mathieu, M.; Pockley, A.G.; Durrent, L.; Metheringham, R.;
Rees, R.C.; et al. Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses
and limits tumour growth in mice. Eur. J. Immunol. 2014, 44, 994–1004. [CrossRef] [PubMed]

80. Gonzalez-Garzala, F.F.; McCabe, A.; Santos, E.J.; Jones, J.; Takeshita, L.Y.; Ortega-Rivera, N.D.; Del Cid-Pavon, G.M.; Ramsbottom,
K.; Ghattaoraya, G.S.; Alfirevic, A.; et al. Allele frequency net database (AFND) 2020 update: Gold-standard data classification,
open access genotype data and new query tools. Nucleic Acid Res. 2020, 48, D783–D788.

81. Speetjens, F.M.; Kuppen, P.J.; Welters, M.J.; Essahsah, F.; Voet van den Brink, A.M.; Lantrua, M.G.; Valentijn, A.R.; Oostendorp, J.;
Fathers, L.M.; Nijman, H.W.; et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated
for metastatic colorectal cancer. Clin. Cancer Res. 2009, 15, 1086–1095. [CrossRef] [PubMed]

82. Le Vu, P.; Vadakekolathu, J.; Nicholls, H.; Christensen, D.; Durrant, L.; Pockley, A.; McArdle, S.E. Novel PAP-derived vaccine for
the treatment of advanced prostate cancer. Eur. J. Cancer 2018, 92, S18. [CrossRef]

83. Bonollo, F.; Thalmann, G.N.; Kruithof-de Julio, M.; Karampouna, S. The role of cancer-associated fibroblasts in prostate cancer
tumorigenesis. Cancers 2020, 12, 1887. [CrossRef]

84. Kreuger, T.E.; Thorek, D.J.L.; Meeker, A.K.; Issacs, J.T.; Brennen, W.N. Tumor-infiltrating mesenchymal stem cells: Drivers of the
immunosuppressive tumor microenvironment in prostate cancer? Prostate 2018, 79. [CrossRef] [PubMed]

85. Yen, B.L.; Yen, M.L.; Hsu, P.; Liu, K.; Wang, C.; Bai, C.; Sytwu, H. Multipotent human mesenchymal stromal cells mediate
expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3. Stem Cell Rep. 2013, 1, 139–151.
[CrossRef]

86. Chen, H.; Chen, H.; Wang, L.; Wang, F.; Fang, L.; Lai, H.; Chen, H.; Lu, J.; Hung, M.; Cheng, Y.; et al. Mesenchymal stem
cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through
growth-regulated oncogene chemokines. J. Immunol. 2013, 190, 5065–5077. [CrossRef]

87. Kumar, V.; Cheng, P.; Condamine, T.; Mony, S.; Languino, L.R.; McCaffrey, J.C.; Hockstein, N.; Guarino, M.; Masters, G.;
Penman, E.; et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated
macrophage differentiation. Immunity 2016, 44, 303–315. [CrossRef] [PubMed]

88. Gabrilovich, D. I Myeloid-derived suppressor cells. Cancer Immunol. Res. 2017, 5, 3–8. [CrossRef]
89. Maolake, A.; Izumi, K.; Shigehara, K.; Natsagdorj, A.; Iwamoto, H.; Kadamoto, S.; Takezawa, Y.; Machioka, K.; Narimotoa, K.;

Namiki, M.; et al. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis.
Oncotarget 2017, 8, 9739–9751. [CrossRef] [PubMed]

90. Chaudhary, B.; Elkord, E. Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic
targeting. Vaccines 2016, 4, 28. [CrossRef]

91. Parker, K.H.; Beury, D.W.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cells: Critical cells driving immune suppression in
the tumor microenvironment. In Advances in Cancer Research; Wang, X., Fisher, P.B., Eds.; Elsevier: Amsterdam, The Netherlands,
2015; Volume 128, pp. 95–127.

92. Condamine, T.; Dominguez, G.A.; Youn, J.; Kossenkov, A.V.; Mony, S.; Alicea-Torres, K.; Tcyganov, E.; Hashimoto, A.; Nefedova,
Y.; Lin, C.; et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived
suppressor cells in cancer patients. Sci. Immunol. 2016, 1. [CrossRef] [PubMed]

http://doi.org/10.1093/jnci/dju268
http://doi.org/10.1080/2162402X.2018.1486953
http://doi.org/10.1158/0008-5472.CAN-15-3173
http://doi.org/10.1158/1078-0432.CCR-16-1780
http://doi.org/10.1007/s00262-012-1317-2
http://www.ncbi.nlm.nih.gov/pubmed/22865266
http://www.ncbi.nlm.nih.gov/pubmed/10430077
http://doi.org/10.1200/JCO.2000.18.23.3894
http://www.ncbi.nlm.nih.gov/pubmed/11099318
http://doi.org/10.1158/1078-0432.CCR-18-0638
http://www.ncbi.nlm.nih.gov/pubmed/29858218
http://doi.org/10.1002/eji.201343863
http://www.ncbi.nlm.nih.gov/pubmed/24338683
http://doi.org/10.1158/1078-0432.CCR-08-2227
http://www.ncbi.nlm.nih.gov/pubmed/19188184
http://doi.org/10.1016/j.ejca.2018.01.044
http://doi.org/10.3390/cancers12071887
http://doi.org/10.1002/pros.23738
http://www.ncbi.nlm.nih.gov/pubmed/30488530
http://doi.org/10.1016/j.stemcr.2013.06.006
http://doi.org/10.4049/jimmunol.1202775
http://doi.org/10.1016/j.immuni.2016.01.014
http://www.ncbi.nlm.nih.gov/pubmed/26885857
http://doi.org/10.1158/2326-6066.CIR-16-0297
http://doi.org/10.18632/oncotarget.14185
http://www.ncbi.nlm.nih.gov/pubmed/28039457
http://doi.org/10.3390/vaccines4030028
http://doi.org/10.1126/sciimmunol.aaf8943
http://www.ncbi.nlm.nih.gov/pubmed/28417112


Cancers 2021, 13, 1145 34 of 39

93. Pal, S.K.; Kortylewski, M. Breaking bad habits: Targeting MDSCs to alleviate immunosuppression in prostate cancer. Oncoim-
munology 2016, 5, e1078060. [CrossRef]

94. Jian, S.; Chen, W.; Su, Y.; Su, Y.; Chuang, T.; Hsu, S.; Huang, L. Glycolysis regulates the expansion of myeloid-derived suppressor
cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis. 2017, 8, e2779. [CrossRef] [PubMed]

95. Ohl, K.; Fragoulis, A.; Klemm, P.; Baumeister, J.; Klock, W.; Verjans, E.; Böll, S.; Möllmann, J.; Lehrke, M.; Costa, I.; et al. Nrf2 is a
central regulator of metabolic reprogramming of myeloid-derived suppressor cells in a steady state and sepsis. Front. Immunol.
2018, 9. [CrossRef]

96. Kusmartsev, S.; Gabrilovich, D.I. Inhibition of myeloid cell differentiation in cancer: The role of reactive oxygen species. J. Leukoc.
Biol. 2003, 74, 186–196. [CrossRef]

97. Corzo, C.A.; Cotter, M.J.; Cheng, P.; Cheng, F.; Kusmartsev, S.; Sotomayor, E.; Padhya, T.; McCaffrey, T.V.; McCaffrey, J.C.;
Gabrilovich, D.I. Mechanism regulating reactive oxygen species in tumor-induced myeloid suppressor cells. J. Immunol. 2009,
182, 5693–5701. [CrossRef]
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