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Abstract

Given a graph G, a subgraph H is isometric if dH(u, v) = dG(u, v) for every pair u, v ∈ V (H),
where d is the distance function. A graph G is distance preserving (dp) if it has an isometric
subgraph of every possible order. A graph is sequentially distance preserving (sdp) if its
vertices can be ordered such that deleting the first i vertices results in an isometric subgraph,
for all i ≥ 1. We introduce a generalisation of the lexicographic product of graphs, which can
be used to non-trivially describe graphs. This generalisation is the inverse of the modular
decomposition of graphs, which divides the graph into disjoint clusters called modules. Using
these operations, we give a necessary and sufficient condition for graphs to be dp. Finally,
we show that the Cartesian product of a dp graph and an sdp graph is dp.

Keywords: distance preserving, isometric, modular decomposition, lexicographic product,
Cartesian product.

1. Introduction

Many problems in graph theory can be tackled by decomposing a graph into smaller
pieces and then studying the problem on these parts individually. There are many different
ways to decompose a graph that have been applied to a variety of problems. In this paper we
use modular decompositions of graphs to study the distance preserving property. Modular
decomposition has been used to solve many problems, see [9, 16, 17, 20].

We call a subgraph isometric if the distance between any pair of vertices is the same
as in the original graph. Distance properties and isometric subgraphs have been previously
used in network clustering [18, 19]. A graph is distance preserving, for which we use the
abbreviation dp, if it has an isometric subgraph of every possible order. Distance preserving
graphs have been studied in the literature, see [8, 18, 21, 25].
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In [13] the distance preserving property is investigated when taking products of graphs.
Graph products are operations which take two graphs G and H and produce a graph with
vertex set V (G)×V (H) and certain conditions on the edge set, see [12]. Two such products
were considered in [13], lexicographic product and Cartesian product. The purpose of this
work is to generalise certain results from that article. Various invariants of lexicographic
products of graphs have been studied in the literature, see [1, 7, 23]. The Cartesian product
is a well-known graph product, in part because of Vizing’s Conjecture [22], and has been
considered by many authors, such as [2, 5, 14, 24].

The lexicographic product G[H] replaces every vertex of the graph G with the graph
H. We introduce the generalised lexicographic product G[H] which replaces each vertex v
of the graph G with a graph Hv ∈ H, where H is a set of graphs indexed by the vertices
of G. This can be viewed as a generalisation of the traditional lexicographic product because
setting Hv = H, for all vertices v of G results in the lexicographic product G[H]. Moreover,
we see that any graph M can be represented using the generalised lexicographic product,
that is, M is isomorphic to G[H] for some G and H.

The generalised lexicographic product has appeared in various forms in the literature.
This operation is equivalent to applying a substitution, as first defined in [6], to every vertex
in the graph. One example of the implicit use of the generalised lexicographic product is
Lovász’s proof of the perfect graph theorem [15] which uses the multiplication of vertices of
a graph G, which is equivalent to the generalised lexicographic product G[H] with Hv = Khv

for every vertex v of V (G), where hv ≥ 1 and Khv is the empty graph with hv vertices.
A module in a graph M is an induced subgraph H whose vertices share the same neigh-

bourhood outside of H. A modular decomposition of a graph M is a collection of modules
of M , where every vertex of M appears in exactly one module. The neighborhood condition
forces empty or complete bipartite graphs between modules. There are various polynomial
time algorithms for computing the modular decomposition of a graph, see [11]. Given a
modular decomposition H of M we define the quotient graph of M with respect to H, de-
noted M/H, as the graph obtained by mapping each module of H to a single vertex, where
there is an edge between two vertices of M/H if and only if there are edges between the
vertices of the corresponding modules in M . The generalised lexicographic product can
be consider as the inverse of the modular decomposition operation, thus M is isomorphic
to (M/H)[H].

A split decomposition of a graph is a modular decomposition into two modules both with
order greater than 1. Split decompositions have been used to study distance hereditary
graphs, that is, graphs in which every induced subgraph is isometric. It was shown in [3]
that the distance hereditary property is equivalent to a graph being totally decomposable
using split decompositions. See [10] for a definition of totally decomposable and a general
overview of split decompositions.

In Section 2 we formally define the generalised lexicographic product and modular de-
composition. We present a result that a quotient of a graph is minimal if and only if its
corresponding modules are maximal, provided the quotient has at least three vertices. This
strengthens some of the existing results in this area, see [11]. In Section 3 a necessary and
sufficient condition is given for graphs of the form G[H] to be dp. This condition implies
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that if G is dp then G[H] is dp. Moreover, all isometric subgraphs of G[H] are characterized
in this section.

In Section 4 we consider the Cartesian product of graphs. A graph G is sequentially
distance preserving, which we abbreviate to sdp, if we can order the vertices v1, . . . , vn of G
such that deleting the first i vertices results in an isometric subgraph, for all 1 ≤ i ≤ n.
In [13] it was shown that the Cartesian product G�H of two graphs G and H is sdp if
and only if G and H are sdp. Furthermore, it was conjectured that if G and H are dp
then G�H is dp. We prove an intermediate result, namely that if G is sdp and H is dp,
then G�H is dp.

2. Generalised Lexicographic Product and Modular Decomposition

In this framework we assume all graphs are finite, nonempty, simple and connected,
unless otherwise stated. We refer the reader to [4] for a general overview of graph theory,
which includes any definitions and notation not given in this paper. We let |G| be the
number of vertices of G and denote the vertices and edges of a graph G by V (G) and E(G),
respectively. Given two graphs G and H, let G−H be the graph induced by V (G) \ V (H).

In this section we introduce two graph operations, the generalised lexicographic product
and modular decomposition. We note that these two operations are the inverses of each
other. First we introduce the generalised lexicographic product. Recall that the lexicographic
product G[H] of graphs G and H is the graph with vertex set V (G)× V (H) and edge set

E(G[H]) = {(a, x)(b, y) | ab ∈ E(G), or xy ∈ E(H) and a = b}.

The reader can consult the book of Imrich and Klavzar [12], for more details about graph
products.

Definition 2.1. Let G be a graph and H = {Hv}v∈V (G) be a set of graphs. Define the
generalised lexicographic product G[H] as the graph with vertex and edge sets

V (G[H]) =
⋃

v∈V (G)

({v} × V (Hv)) ,

E(G[H]) ={(u, x)(v, y) | uv ∈ E(G)} ∪
⋃

v∈V (G)

{(v, x)(v, y) | xy ∈ E(Hv)}.

In other wordsG[H] is constructed by replacing every vertex v ∈ V (G) with the graphHv,
and the edges between Hu and Hv form a complete bipartite graph or the empty graph
depending on whether uv ∈ E(G) or uv 6∈ E(G), respectively. To clarify the notation
Figure 1 is given as an example. Note that if Hv = H, for all v ∈ V (G), then G[H] is the
lexicographic product graph G[H].

The inverse of this operation has been well studied and is known as the modular de-
composition of a graph, see [11] for an overview. The neighbourhood of a vertex v ∈ V (G),
denoted NG(v), is the set of all vertices in G joined by an edge to v. Moreover, given a
subgraph A of G let NG(A) = ∪v∈V (A)NG(v) \ V (A).

3



Figure 1: A graph G[{Ha1 , Ha2 , Ha3}], where G is the 2-path a1a2a3 and Ha1 = C5, Ha2 = K3 and Ha3 = K2

Definition 2.2. Let H be a subgraph of a graph M . We call H a module of M if NM(u) \
V (H) = NM(H), for all u ∈ V (H). The module H is maximal if there is no module H ′

of M such that H $ H ′ $ M . A module of M is trivial if it is a single vertex or the
whole graph. A modular partition H of M is a set of disjoint modules of M such that
V (M) =

⋃
H∈H V (H). Two modules H and H ′ of a partition are said to be adjacent if

(u, v) ∈ E(M) for every (u, v) ∈ V (H) × V (H ′). A trivial or maximal decomposition of a
graph is the modular decomposition where every module is trivial or maximal, respectively.

For example, Ha1 ∪Ha3 and Ha2 are some of the modules in Figure 1. Moreover, deleting
any vertex from Ha2 gives a maximal module and the modules Ha1 and Ha2 are adjacent,
but the modules Ha1 and Ha3 are not adjacent.

Definition 2.3. Let M be a graph with a modular partition H. The quotient graph M/H
is the graph with a single vertex vH for each H ∈ H and an edge between vH and vH′ if and
only if H and H ′ are adjacent in M . We say that M/H is a minimal quotient graph of M
if M/H contains no non-trivial modules.

Note that the quotient operation and generalised lexicographic product are inverses of
each other up to isomorphism, that is, M ∼= (M/H)[H] and G ∼= (G[H])/H, where ∼=
denotes that two graphs are isomorphic. We say that a graph M can be represented by a
graph G and set H if M ∼= G[H]. For example in Figure 1, the graph can be represented
as K2[{Ha1 ∪Ha3 , Ha2}].
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Next we present a useful lemma on the union of modules and then present the main
result of this section.

Lemma 2.4. If H and K are both modules of M with V (H) ∩ V (K) 6= ∅, then H ∪K is
also a module of M .

Proof. Any vertex b ∈ M − (H ∪K) is either a neighbour of all or none of V (H). If b is a
neighbour of all of V (H), then it is a neighbour of all of V (H) ∩ V (K), so it is a neighbour
of all of V (K). Similarly if b is a neighbour of none of V (H), then it is a neighbour
of none of V (K). Therefore, every element of V (H) ∪ V (K) has the same neighbours
in M − (H ∪K).

Theorem 2.5. Consider a graph G with at least three vertices. The graph G is a minimal
quotient graph of M = G[H] if and only if H is a maximal modular decomposition.

Proof. By definition a graph G is a non-minimal quotient graph of M if and only if G
contains a non-trivial module K. First we consider the forward direction, if G contains
a non-trivial module K, then Hv is a non-maximal module in M for any v ∈ K. To see
the backwards direction suppose Hv is a non-maximal module in M , so there is a maximal
module H ′ ⊃ Hv. Furthermore, there is some other module Hu with H ′ ∩ Hu 6= ∅, so
H ′ ∪ Hu is also a module by Lemma 2.4. However, as H ′ is a maximal module we must
have H ′ ∪Hu = M . If Hu is the only other modules in H then G has only two vertices. If
there are k > 2 modules then H contains k − 1 > 1 modules and as these modules are all
contained in one larger module the corresponding vertices in G must form a module in G,
so G is not minimal.

In the proof of Theorem 2.5 the requirement that G has at least three vertices is only
needed for the backwards direction, so we get the following corollary:

Corollary 2.6. If H is a maximal modular decomposition of M , then M/H is a minimal
quotient graph.

However it is necessary that the graph has at least three vertices for the forwards di-
rection. To see this consider K4 and the modular decomposition H partitioning K4 into
two modules of three vertices and one vertex. This is not a maximal modular partition
but K4/H equals K2 which is the minimal quotient graph of K4.

Theorem 2.5 is similar to Theorem 2 in [11], but gives an equivalence statement rather
than just a necessary condition. Moreover, the condition in Theorem 2 of [11] states that
the graph M = G[H] must have a connected complement graph. The complement graph M̄
of M is the graph with the same vertices as M and xy is an edge in M̄ if and only if xy is
not an edge in M . In fact the condition that M = G[H] must have a connected complement
is equivalent to our condition that |G| ≥ 3, as can be seen by the following result:

Lemma 2.7. The graph M has a disconnected complement graph if and only if K2 is a
quotient graph of M .
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Proof. The graph M̄ is disconnected with components A and B if and only if there is no
edge in M̄ between any vertices a ∈ V (A) and b ∈ V (B), which is equivalent to the graphs
induced by V (A) and V (B) in M being a modular decomposition H with M/H = K2.

We can also determine when a graph has a unique maximal modular decomposition and
unique minimal quotient graph.

Lemma 2.8. If K2 is not a quotient graph of M , then M has a unique maximal modular
decomposition.

Proof. Suppose that M has two different maximal modular decompositionsH andH′. There
must exist a set A that is the nonempty intersection of a pair H ∈ H and H ′ ∈ H′ with
H 6= H ′. As both H and H ′ are modules H ∪ H ′ is also a module by Lemma 2.4. So the
only way that H and H ′ are maximal is if H ∪H ′ = M . However M −H is also a module.
To see this first note that every element of H ′ has the same neighbours in H, because there
is at least one element h ∈ H with h 6∈ H ′, so h is either a neighbour of all or none of H ′.
Moreover, since every element of H has the same neighbours either all elements of H are
neighbours of all elements of H ′ or none are. Furthermore, M −H ⊆ H ′ so every element of
M −H has the same neighbours in H, thus M −H is a module. Therefore, H and M −H
form a modular decomposition of M , so K2 is a quotient graph of M .

Corollary 2.9. Every graph M has a unique minimal quotient graph.

Proof. If K2 is a quotient graph of M , then K2 is the unique minimal quotient graph.
Otherwise, M has a unique maximal modular decomposition H by Lemma 2.8, so M/H is
the unique minimal quotient graph.

Note that if a graph G has a modular decomposition with the quotient graph K2, where
both modules are non-trivial, then this is a split decomposition.

3. Distance Preserving Graphs

In this section we investigate some conditions under which G[H] is distance preserving.
A path in a graph is a sequence of distinct vertices with an edge between every consecutive
pair. The distance between vertices u, v in G, denoted dG(u, v), is the minimal length of a
path connecting these vertices. If it is clear from context we use d(u, v), instead of dG(u, v).
A path ρ from u to v with length d(u, v) is called u–v geodesic. An induced subgraph H
of a graph G is called an isometric subgraph, denoted H ≤ G, if dH(u, v) = dG(u, v) for
every pair of vertices u, v ∈ V (H). A graph G is called distance preserving (dp) if it has
an i-vertex isometric subgraph for every 1 ≤ i ≤ |V (G)|.

We begin by considering the relationship between the geodesic paths in G and the
geodesic paths in G[H]:

Lemma 3.1. Consider a path g1, g2, . . . , g` in G. A path (g1, h1), (g2, h2), . . . , (g`, h`) is
(g1, h1)–(g`, h`) geodesic in G[H] if and only if g1, g2, . . . , g` is g1–g` geodesic in G.
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Proof. First consider the forward direction, so suppose (g1, h1), . . . , (g`, h`) is (g1, h1)–(g`, h`)
geodesic. If g1, . . . , g` is not g1–g` geodesic, then there is a g1–g` geodesic path g′1, . . . , g

′
k,

where g′1 = g1, g
′
k = g` and k < `. However, this would imply that there is a (g1, h1)–

(g`, h`) geodesic path (g′1, h
′
1), . . . , (g

′
k, h

′
k), where h′1 = h1, h

′
k = h′` and h′i ∈ V (Hg′i

) for
all 1 < i < k, which contradicts (g1, h1), . . . , (g`, h`) being (g1, h1)–(g`, h`) geodesic. The
backwards direction follows by an analogous argument.

Lemma 3.2. Consider a connected graph G with |G| ≥ 2 and a set of graphs H =
{Hv}v∈V (G).

(a) If x ∈ V (Hu) and y ∈ V (Hv) are distinct vertices, with u, v ∈ V (G), then:

dG[H]((u, x), (v, y)) =


dG(u, v), if u 6= v,

2, if u = v and xy /∈ E(Hu),

1, otherwise.

(b) If u, v are distinct vertices of G, then dG(u, v) = dG[H]((u, x), (v, y)), for any x ∈ Hu

and y ∈ Hv.

Proof. First consider part (a). If u 6= v, the result follows by Lemma 3.1. If u = v
and xy /∈ E(Hu), then we have an x–y geodesic path xzy, where z ∈ V (Hw) and w is any
neighbour of u in G. Finally, if u = v and xy ∈ E(Hu), then (u, x)(v, y) ∈ E(G[H]). This
completes part (a). Part (b) follows by Lemma 3.1.

Corollary 3.3. The graph G[H] is connected if and only if G is connected.

Proof. A graph is connected if and only if the distance between all vertices is finite. There-
fore, the result follows immediately from Lemma 3.1.

Note that Lemma 3.2 and Corollary 3.3 generalise Lemma 3.1 in [13] from the lexico-
graphic product to the generalised lexicographic product. In the remainder of this section
we generalise some more results of Section 3 in [13].

In order to state the main theorem of this section we need some notation. Let

ndp(G) = {k | G has no isometric subgraph with k vertices},

so a graph G is dp if and only if ndp(G) = ∅. If a and b are integers with a < b, then
let [a, b] = {a, a + 1, a + 2, . . . , b}. Given a subgraph M of G[H], let π(M) be the induced
subgraph of G with the vertex set:

V (π(M)) = {a ∈ V (G) | (a, x) ∈M for some x ∈ Ha}.

Theorem 3.4. Let G be a connected graph with |G| ≥ 2. Any generalised lexicographic
product graph G[H] is dp if and only if for any k ∈ ndp(G), there is a subgraph L ≤ G with
|L| < k ≤

∑
u∈L |Hu|.
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Proof. We claim that for an induced subgraph M of G[H], with π(M) having at least two
vertices,

M ≤ G[H] if and only if π(M) ≤ G. (1)

To prove the backwards direction of the claim, assume that π(M) ≤ G and consider
distinct vertices (u, x), (v, y) ∈ V (M). If u 6= v, then note that π(M) can be considered as
a quotient graph of M , so Lemma 3.2(a) and π(M) ≤ G gives

dM((u, x), (v, y)) = dπ(M)(u, v) = dG(u, v) = dG[H]((u, x), (v, y)).

If u = v and xy /∈ E(Hu), then a similar proof shows that dM((u, x), (v, y)) = 2 =
dG[H]((u, x), (v, y)). Finally, if u = v and xy ∈ E(Hu), then since M is induced we have
dM((u, x), (v, y)) = 1 = dG[H]((u, x), (v, y)). The forward direction of the claim follows by an
analogous argument.

Now we prove the theorem. By the definition of the quotient graph we know that
|π(M)| ≤ |M | ≤

∑
u∈π(M) |Hu|. Statement (1) implies that G[H] is dp if and only if⋃

L≤G

[
|L|,

∑
u∈L

|Hu|
]

=
[
1,
∑
u∈G

|Hu|
]
. (2)

Since 1, 2, |G| are never in ndp(G), Equality (2) is equivalent to: for any k ∈ ndp(G), there
is an L ≤ G with |L| < k ≤

∑
u∈L |Hu|.

Theorem 3.4 generalises Theorem 3.2 in [13]. Suppose G has isometric subgraphs with a
and b vertices. Then we say two elements a, b bound a non-dp interval if the set of integers
c with a < c < b is nonempty and consists only of elements in ndp(G).

Corollary 3.5. [13, Theorem 3.2] Let G be a connected graph with |G| ≥ 2 and H be
an arbitrary graph with |H| = n. Then G[H] is dp if and only if b ≤ an + 1 for every
pair a, b ∈ ndp(G) bounding a non-dp interval.

Proof. When Hu = H for all vertices u in G, Equality (2) in the proof of Theorem 3.4 is
equivalent to [a, an]∪ [b, bn] being an interval for every pair a, b bounding a non-dp interval,
which is equivalent to b ≤ an+ 1.

The next result is an immediate corollary of Theorem 3.4.

Corollary 3.6. If G is dp, with |G| ≥ 2, then G[H] is dp for any set of graphs H.

Since any tree is dp, Corollary 3.6 implies that the graph in Figure 1 is dp. The
graph G[H] being dp does not necessarily imply that G is dp. This can be seen in Fig-
ure 2 which shows the graph C5[H], where C5 is the 5-cycle and H substitutes K2 for one
vertex and K1 for all others. It is straightforward to verify that C5[H] is dp, however C5 is
non-dp.

The next result follows easily from Lemma 3.2 and Statement (1) in the proof of Theo-
rem 3.4.
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Corollary 3.7. For a connected graph G with |G| ≥ 2 and an induced subgraph M of G[H],

M ≤ G[H] if and only if

{
π(M) ≤ G when |π(M)| ≥ 2,

diam(M) ≤ 2 when |π(M)| = 1.

Figure 2: The graph C5[H], where H substitutes K2 for one vertex and K1 for all others

Recall that a graph G is sequentially distance preserving, which we denote sdp, if we can
order the vertices v1, . . . , vn of G such that the graph induced by v1, . . . , vk is isometric, for
all 1 ≤ i ≤ n. Corollary 3.7 implies the following result on sdp graphs:

Corollary 3.8. If G is sdp, with |G| ≥ 2, then G[H] is sdp for any set of graphs H.

An illustrative example is shown in Figure 3. This figure depicts a graph M formed of a
social network of friendships between 44 members of a community of international students,
along with a modular decomposition of M and a minimal quotient graph of M . By the
results of Section 3, to show that M is distance preserving it is sufficient to show that the
quotient graph is distance preserving. Note that the quotient graph does not contain any
induced cycles of length greater than 4, so the quotient graph is dp by Theorem 3.5 of [21].
Therefore, Corollary 3.6 implies that M is distance preserving.

4. Cartesian Product Graphs

In [13] the behaviour of the distance preserving property is investigated with respect to
the Cartesian product of graphs. Recall that the Cartesian product of two graphs G and H,
denoted G � H, has vertex set V (G)×V (H) and two vertices (g, h) and (g′, h′) are adjacent
precisely if g = g′ and hh′ ∈ E(H) or h = h′ and gg′ ∈ E(G).

It was shown in [13] that G and H are sequentially distance preserving if and only
if G � H is sequentially distance preserving. Furthermore, it was conjectured that if G
and H are distance preserving, then so is G � H. We prove a result somewhat weaker than
the conjecture. To this end we need the following notation and lemma,

DP′(G) :=
{
A ⊆ V (G)

∣∣G− A ≤ G
}

and dp′(G) :=
{
|A|
∣∣A ∈ DP′(G)

}
.
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(b) The Maximal Modular Decomposition of M
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(c) The Minimal Quotient Graph of M

Figure 3

Lemma 4.1. [13, Lemma 4.3] Given nonempty subsets A and B of the vertex sets of
graphs G and H, respectively, then A × B ∈ DP′(G � H) if and only if A ∈ DP′(G) and
B ∈ DP′(H).

Now we have all we need to prove the main result for this section. Which follows a
similar argument to that of Theorem 4.4 in [13].

Proposition 4.2. If G is sequentially distance preserving and H is distance preserving,
then G�H is distance preserving.

Proof. Since G is sdp there is an ordering v1, . . . , v|G| of V (G) such that {vi}si=1 ∈ DP′(G),
for every 1 ≤ s ≤ |G|. Moreover, since H is distance preserving there is a set Aj ∈ DP′(H)
with |Aj| = j, for every 1 ≤ j ≤ |H|. By Lemma 4.1 we know that v1 ×Aj ∈ DP′(G � H),
for all 1 ≤ j ≤ |H|. Furthermore, Lemma 4.1 implies that v2×Aj ∈ DP′((G−{v}) � H), for
all 1 ≤ j ≤ |H|, so by the transitivity of the isometric property we get (v1×H)∪ (v2×Aj) ∈
DP′(G � H). Applying this argument inductively we get ({vi}s−1i=1 × H) ∪ (vs × Aj) ∈
DP′(G � H), for all 1 ≤ s ≤ |G| and 1 ≤ j ≤ |H|. Therefore, [0, |G| × |H|] ⊆ dp′(G � H),
so G � H is dp.
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[1] B. S. Anand, M. Changat, S. Klavžar, and I. Peterin. Convex sets in lexicographic products of graphs.
Graphs and Combinatorics, 28(1):77–84, 2012.

10



[2] F. Aurenhammer, J. Hagauer, and W. Imrich. Cartesian graph factorization at logarithmic cost per
edge. Computational Complexity, 2(4):331–349, 1992.

[3] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory, Series
B, 41(2):182–208, 1986.

[4] J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 6. Macmillan London, 1976.
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