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Abstract

For complicated problems that cannot be solved in polynomial first hitting time (FHT)/running time(RT), a
remedy is to perform approximate FHT/TH analysis for given approximation ratio. However, approximate
FHT/RT analysis of randomized search heuristics (RSHs) is not flexible enough because polynomial FHT/RT
is not always available for any given approximation ratio. In this paper, the error analysis, which focuses on
estimation of the expected approximation error of RSHs, is proposed to accommodate the requirement of
flexible analysis. By diagonalizing one-step transition matrix of the Markov chain model, a tight estimation
of the expected approximation error can be obtained via estimation of the multi-step transition matrix.
For both uni- and multi-modal problems, error analysis leads to precise estimations of approximation error
instead of asymptotic results on fitness values, which demonstrates its competitiveness to FHT/RT analysis
as well as the fixed budget analysis.

Keywords: Expected Approximation Error, Fixed-Budget Analysis, Running Time Analysis, Random
Local Search, (1+1)EA, Knapsack Problem.

1. Introduction

Randomized search heuristics (RSHs), including evolutionary algorithms (EAs), particle swarm opti-
mization, ant colony optimization, etc., could be employed solving a wide variety of optimization problems.
However, their performances are significantly influenced by mathematical characteristics of the investigated
problems. Thus, one would compare performances of RSHs on various fitness landscapes prior to design of
individualized strategies for complicated optimization problems [1, 2, 3]. Considering that numerical simula-
tion is to some extent approximation of the underlying iteration mechanism, one could design individualized
strategies based on the results of theoretical study.

Theoretical analysis of RSHs was usually focused on estimation of the expected first hitting time (FHT)
or the expected running time (RT), which quantify the needed evaluation budget to hit the global optimal
solutions. A variety of theoretical routines were proposed for estimation of FHT/RT [4, 5, 6, 7, 8, 9], and
massive theoretical results have been reported in the past years [10, 11, 12, 13, 14, 15, 16]. Although popular
in theoretical study, FHT/RT analysis does not work well when RSHs are not anticipated to locate the
global optimal solutions in polynomial FHT/RHT. For this case, a remedy is to investigate the approximate
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FHT/RT by taking an approximation set as the hitting destination of consecutive iterations [17, 18, 19, 20,
21, 22, 23, 24, 25].

However, approximate FHT/RT analysis depends on preset values of the approximation ratio, which
are sometimes unavailable for achievement of polynomial FHT/RT. For this case, approximate FHT/RT
analysis are not flexible enough to accommodate the requirement of theoretical study. Inspired by the fact
that numerical performance of EAs is usually evaluated by qualities of solutions obtained with a given
budget, Jansen and Zarges proposed to estimate objective values by fixed-budget analysis [26]. Following
this theoretical routine, Jansen and Zarges performed a theoretical evaluation of immune-inspired hyper-
mutations [27], and Nallaperuma et al. analyzed performances of RSH on the traveling salesperson (TSP)
problem [28]. For given iteration budget t, fixed budget analysis generated bound estimations of fitness,
which was not general and sometimes invalid for a large t. Moreover, it was performed by analysis tricks
depending on properties of the investigated problems. Thus, general analysis frameworks were not easy to
be obtained and sometimes only asymptotic results could be obtained.

Similar to the analysis routine of deterministic iteration algorithms, expected approximation error of
RSHs can be estimated by evaluating the convergence rate (CR). Due to the stochastic iteration mechanism
of RSH, CR was defined as r[t] = e[t]/e[t−1], where e[t] is the expected approximation error at generation
t. By restricting the convergence rate under the condition r[t] ≤ λ < 1, Rudolph [29] proved that the
sequence {e[t]; t = 0, 1, · · · } converges in mean geometrically fast to 0. However, numerical simulation of r[t]

is unstable. Thus, He and Lin [30] propose to investigate the average convergence rate (ACR) of binary-

coded RSHs, defined as R[t] = 1−
(
e[t]/e[0]

)1/t
. They estimated the lower bound of R[t] and proved that R[t]

converges to an eigenvalue of the transition matrix if the initial population of EA is randomly initialized.
Recently, Chen and He [31, 32] performed an ACR analysis for continuous RSHs, which demonstrated a
significantly different performance of RSHs for continuous optimization problems.

Starting from r[t] or R[t], it is straightforward to get an exact expression of the approximation error by

e[t] = e[0]
t∏

k=1

r[k] or e[t] = e[0](1−R[t])t.

He et al. [33, 34] performed an unlimited budget analysis to get expected approximation error by estimating
one-step convergence rate r[t] for any t. However, tight evaluation of the convergence rate dependent on t
is a challenging task, while a general estimation of r[t] could lead to a very loose estimation of the expected
approximation error.

An alternative routine to compute the expected approximation error is to estimate the probability dis-
tribution via multiplication of transition matrices. He [35] proved if the transition matrix associated with
an EA is an upper triangular matrix with distinct diagonal entries, the relative error e[t] could be expressed
as

e[t] =
L∑

k=1

ckλ
t−1
k , ∀ t ≥ 1, (1)

where λk are eigenvalues of the transition matrix and ck are coefficients. In accordance with this idea, He et
al. [36] proposed to compute ck and λt−1k by estimating t-th power of the transition matrix, and presented
several mathematical routines depending on the properties of transition matrices.

As suggested by He et al. [35, 36], we investigated performances of random local search (RLS) for the
case that the status transition matrices can be computationally diagonalized, and estimated the expected
approximation error for arbitrary iteration budget [37]. However, when the bitwise mutation is employed
in the (1+1) evolutionary algorithm ((1+1)EA), the transition matrix is a full upper triangular transition
matrix, the t-th power of which is theoretically feasible but computationally unavailable. In this study, we
try to address this issue by construction of auxiliary Markov models. For a searching process characterized
by a full upper triangular matrix (named as an elitist search), we construct an auxiliary bi-diagonal search
process that is modelled by a bi-diagonal transition matrix. While the bi-diagonal search converges slowly
than the elitist one, expected approximation error of the bi-diagonal search is an upper bound of that of the
elitist one. In this way, we get a general framework of error analysis that leads to an exact estimation of
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approximation error. Rest of this paper is organized as follows. In Section 2, we present the motivation to
perform error analysis, and some preliminaries for error analysis are given in Section 3. Then, we get several
theorems on the approximation error of RSHs in Section 4, and case studies are performed in Section 5 to
demonstrate feasibility and competitiveness of error analysis. Moreover, an instance of the knapsack problem
is further investigated in Section 6 to verify applicability of the error analysis on constrained optimization
problems. Finally, Section 7 concludes this paper.

2. Motivation to Perform Error Analysis

It is well-known that an algorithm could be efficient when it addresses a problem in polynomial FHT/RT.
In view of this idea, a variety of theoretical analyses revealed that RHSs can address some instances effi-
ciently [10, 11, 12, 13, 14, 15, 16]. Meanwhile, it is also demonstrated that some problems cannot be addressed
in polynomial FHT/RT. To take the second best, it is expected that an RSH can get approximate optima
in polynomial FHT/RT. In this way, approximate FHT/RT analyses are performed for given approximation
ratios [17, 18, 19, 20, 21, 22, 23, 24, 25]. However, approximate FHT/RT analysis is not flexible enough to
address some cases.

• When short of knowledge about mathematical properties of the investigated problems, for what ap-
proximation ratio can an RSH address the investigated problem in polynomial FHT/RT?

• If an approximation ratio cannot be achieved by an RSH in polynomial FHT/RT, what approximate
ratio can it attain?

• Furthermore, what approximation ratio/error can be achieved for any given iteration budget?

In numerical experiments, performances of RSHs are usually evaluated by expected fitness values (or
approximation errors, if the global optima are known). Inspired by this motivation, Jansen and Zarges
proposed to estimate expected objective values by fixed-budget analysis [26]. However, their work did
not provide theoretical results for any iteration budget, and the analyzing methods were not general but
problem-dependent. In this study, we try to propose a general framework of error analysis to get the
expected approximation error for any iteration budget. It is anticipated that results of error analysis can
further narrow the gap between theoretical study and algorithm implement.

3. Preliminaries

In this paper, we consider the maximization problem

max f(x), x = (x1, . . . , xn) ∈ {0, 1}n. (2)

Denote its optimal solution and the corresponding objective value as x∗ and f∗, respectively. Then, quality
of a solution x can be evaluated by its approximation error e(x) = |f(x)− f∗|. In this study, an elitist RSH
described in Algorithm 1 is investigated. When the one-bit mutation is employed, it is called a random local
search (RLS); if the bitwise mutation is used, it is named as a (1+1)EA.

Algorithm 1 Elitist Randomized Search Heuristics

1: counter t = 0;
2: randomly initialize a solution x0;
3: while the stopping criterion is not satisfied do
4: generate a new candidate solution yt from xt by mutation;
5: set individual xt+1 = yt if f(yt) > f(xt); otherwise, let xt+1 = xt;
6: t = t+ 1;
7: end while
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The population sequence {xt, t = 0, 1, . . . } of RLS/(1+1)EA can be modelled as a Homogeneous Markov
Chain (HMC). We can classify the solution set into L + 1 mutually disjoint subset X0,X1, . . . ,XL, where
solutions in Xi have identical approximation error ei satisfying

0 = e0 ≤ e1 ≤ · · · ≤ eL. (3)

If x ∈ Xi, it is at the status i. Status 0, consisting of globally optimal solutions, is called the optimal status,
and other statuses are non-optimal statuses. Then, {xt, t = 0, 1, . . . } is a discrete HMC with L+ 1 available
statuses, and the transition probability matrix is R̃ = (ri,j)(L+1)×(L+1), where

ri,j = Pr{xt+1 ∈ Xi|xt ∈ Xj}, i, j = 0, . . . , L.

Denote the error vector of available statuses as ẽ = (e0, . . . , eL)′ 1. Initialization of solutions x0 generates

an initial status distribution p̃[0] = (p
[0]
0 , p

[0]
1 , . . . , p

[0]
L )′. After t generations, we get the status distribution

p̃[t] = (p
[t]
0 , p

[t]
1 , . . . , p

[t]
L )′ = R̃tp̃[0],

and the expected approximation error can be computed by

e[t] = ẽ′R̃tp̃[0]. (4)

When the elitist selection is employed, the transition matrix R̃ is upper triangular, and it can be partitioned
as

R̃ =

(
1 r0
0 R

)
, (5)

where r0 = (r0,1, r0,2, . . . , r0,L), 0 = (0, . . . , 0)′,

R =




r1,1 . . . r1,L
. . .

...
rL,L


 . (6)

The following lemma leads to a simplified formula of the expected approximation error.

Lemma 1 Let ẽ = (e0, e1, . . . , eL) and ṽ = (v0, v1, . . . , vL)′ be non-negative vectors. If e0 = 0, it holds that

ẽ′R̃tṽ = e′Rtv, ,∀ t ∈ Z+,

where e = (e1, . . . , eL), v = (v1, . . . , vL)′, R̃ and R confirmed by (5) and (6), respectively.

Proof The proof is trivial since

ẽ′R̃tṽ = (0, e′)

(
1 r0
0 R

)t
(v0,v

′)′ = (0, e′)

(
1 ?
0 Rt

)
(v0,v

′)′ = e′Rtv, ,∀ t ∈ Z+.

�
Let R be the transition submatrix of non-optimal statuses, and denote the approximation error of non-

optimal statuses as
e = (e1, . . . , eL)′,

where 0 < ei ≤ ei+1, ∀ i = 1, . . . , L − 1. By Lemma 1 one can get the expected approximation error by
substituting r with the initial distribution of non-optimal statuses

p[0] = (p
[0]
1 , . . . , p

[0]
L )′.

That is,
e[t] = e′Rtp[0]. (7)

1To avoid confusion with the matrix power, the transpose operation is denoted in this paper by ′ instead of T .
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4. General Framework of Error Analysis

4.1. Theoretical Routine of Error Analysis

Formula (7) reveal that the key step for evaluation of the expected approximation error is computation
of Rt. If R is diagonal, we know Rt is a diagonal matrix whose diagonal items are the t-th power of diagonal
items of R. If R is not diagonal, we can get the analytic expression of Rt by similarity diagonalization.

Definition 1 A matrix R is diagonalizable, if there exists an invertible matrix P and a diagonal matrix
Λ = diag{λ1, . . . , λn} such that

Λ = P−1RP. (8)

The following proposition provides a sufficient condition for a matrix to be diagonalizable.

Lemma 2 [38] An L× L matrix with L distinct eigenvalues is diagonalizable.

Because eigenvalues of a upper triangular matrix are its diagonal elements, R can be diagonalized if it
has L distinct diagonal elements [38]. Then, formula (8) implies

R = PΛP−1,

and it holds
Rt =

(
PΛP−1

)
· · ·
(
PΛP−1

)
= PΛtP−1.

Estimation of expected approximation error is hence reduced to derivation of the transformation matrix P.
To address this issue, the generated searching processes are classified into three categories via the transition
submatrix of non-optimal statuses.

1. Diagonal Search: If the transition submatrix is a diagonal matrix

RD = diag{r1,1, r2,2, . . . , rL,L}, (9)

an RSH generates a diagonal search.
2. Bi-Diagonal Search: If the transition submatrix is a bi-diagonal matrix

RBD =




r1,1 r1,2
r2,2 r2,3

. . .
. . .

rL−1,L−1 rL−1,l
rL,L



, (10)

an RSH generates a bi-diagonal search.
3. Elisit Search: If the transition submatrix is an upper triangular matrix

RE =




r1,1 r1,2 r1,3 . . . r1,L
r2,2 r2,3 . . . r2,L

. . .
. . .

...
rL−1,L−1 rL−1,L

rL,L



, (11)

an RSH generates an elitist search.

Definition of status implies that an elitist RSH generates an elitist search. While an RSH generates a
diagonal search, computation of the t-th power of the transition submatrix is a trivial task because RD

is diagonal; For the submatrix RBD of a bi-diagonal search, we can also derive the analytic forms of the
transformation matrix P and its inverse P−1, and then get the analytic form of the t-th power. However,
it is difficult to get the analytic expression of the t-th power for a general upper-triangular matrix. For this
case, we would construct an auxiliary bi-diagonal search that converges more slowly than the elitist one,
and consequently, an upper bound is available for the expected approximation error of an elitist search.
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4.2. Expected Approximation Error of a Diagonal Search

The expected approximation error e
[t]
D of a diagonal search is confirmed by the following theorem.

Theorem 1 For a diagonal search generated by an RSH, it holds

e
[t]
D =

L∑

i=1

rti,ieip
[0]
i .

Proof Note that

Rt
D = (diag{r1,1, r2,2, . . . , rL,L})t = diag{rt1,1, rt2,2, . . . , rtL,L}.

Then, Lemma 1 implies that

e
[t]
D = e′RD

tp[0] = e′
(
diag{rt1,1, rt2,2, . . . , rtL,L}

)
p[0] =

L∑

i=1

rti,ieip
[0]
i .

�

4.3. Expected Approximation Error of a Bi-Diagonal Search

Expected approximation error of a bi-diagonal search can be computed via diagonalization of the tran-
sition submatrix of non-optimal statuses. If R is an upper triangular matrix with L distinct eigenvalues, it
can be diagonalized as follows.

Lemma 3 [38] If an L× L matrix A has L distinct eigenvalues λ1, λ2,...,λL, it can be diagonalized as

Λ = P−1AP. (12)

Here, Λ = diag{λ1, . . . , λL}, P = (p1, . . . ,pL). pi is the corresponding eigenvector of λi satisfying

Api = λipi, i = 1, . . . , L.

Recall that equation (12) is equivalent to A = PΛP−1. Then,

At =
(
PΛP−1

)t
=
(
PΛP−1

)
· · ·
(
PΛP−1

)
︸ ︷︷ ︸

t

= PΛtP−1, (13)

which can be confirmed by computing the transformation matrix P and its inverse P−1. Consequently, we
get the following result on the analytic expression of Rt

BD.

Lemma 4 If the bi-diagonal matrix RBD has L distinct diagonal elements, it holds

Rt
BD =

L∑

j=1

λtjpjq
′
j ,

where

pj =

(
j−1∏

k=1

rk,k+1

rj,j − rk,k
,

j−1∏

k=2

rk,k+1

rj,j − rk,k
, . . . ,

rj−1,j
rj,j − rj−1,j−1

, 1, 0, . . . , 0

)′
, (14)

q′j =


0, . . . , 0, 1,

rj,j+1

rj,j − rj+1,j+1
,

j+2∏

k=j+1

rk−1,k
rj,j − rk,k

, . . . ,
L∏

k=j+1

rk−1,k
rj,j − rk,k


 , (15)

j = 1 . . . , L.
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Proof If RBD has L distinct diagonal elements, it has L distinct eigenvalues

λi = ri,i, i = 1, . . . , L.

Then, Lemma 3 applies and RBD can be diagonalized as

P−1RBDP = Λ = diag{λ1, λ2, . . . , λL}, (16)

where P = (p1, . . . ,pL),
RBDpj = λjpj , pj 6= 0, j = 1, . . . , L. (17)

Denote pj = (p1,j , . . . , pL,j)
′. Equation (17) indicates that

{
ri,ipi,j + ri,i+1pi+1,j = rj,jpi,j , i = 1, . . . , L;
rL,LpL,j = rj,jpL,j .

j = 1, 2, . . . , L.

Note that ri,i 6= rj,j when i 6= j. Thus, for the eigenvalue λj we can obtain an corresponding eigenvector
pj = (p1,j , . . . , pL,j)

′ confirmed by

pi,j =





0, if i > j;

1, if i = j;

j−1∏

k=i

rk,k+1

rj,j − rk,k
, if i < j;

j = 1, 2, . . . , L.

That is,

pj =

(
j−1∏

k=1

rk,k+1

rj,j − rk,k
,

j−1∏

k=2

rk,k+1

rj,j − rk,k
, . . . ,

rj−1,j
rj,j − rj−1,j−1

, 1, 0, . . . , 0

)′
, j = 1 . . . , L.

Denote Q = P−1 = (q1, . . . ,qL)′, where qj = (q1,j , . . . , qL,j)
′. Because Q is the inverse matrix of P,

it is upper triangular, and its diagonal elements are inverses of the corresponding diagonal elements of P.
Thus,

qj,j = 1, j = 1, . . . , L. (18)

By equation (16) we know

(R′BDq1, . . . ,R
′
BDqL)′ = QRBD = ΛQ = (λ1q1, . . . , λLqL)′,

which menas
rj−1,jqi,j−1 + rj,jqi,j = ri,iqi,j , i = 1, . . . , L, j = 1, . . . , L.

Combining it with equation (18), we know





qi,j = 0; i = 1, . . . , j − 1;
qi,j = 1; i = j;

qi,j =
j∏

k=i+1

rk−1,k

ri,i−rk,k ; i = j + 1, . . . , L,
j = 1, . . . , L.

Then, rows of Q are depicted by

q′j =


0, . . . , 0, 1,

rj,j+1

rj,j − rj+1,j+1
,

j+2∏

k=j+1

rk−1,k
rj,j − rk,k

, . . . ,
n∏

k=j+1

rk−1,k
rj,j − rk,k


 , j = 1 . . . , L.
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Finally, from (13) we conclude that

Rt
BD = PΛtP−1 = PΛtQ = (p1, . . . ,pL)diag{λt1, . . . , λtL}(q1, . . . ,qL)′ =

L∑

j=1

λtjpjq
′
j .

�
Now, we get the theorem on the expected approximation error of a bi-diagonal search.

Theorem 2 The expected approximation error of a bi-diagonal search is

e
[t]
BD =

L∑

j=1

λtj (e′pj)
(
q′jp

[0]
)
,

where pj and qj are confirmed by (14) and (15), respectively.

Proof Applying Lemmas 1 and 4, we know

e
[t]
BD = e′Rt

BDp[0] = e′




L∑

j=1

λtjpjq
′
j


p[0] =

L∑

j=1

λtj (e′pj)
(
q′jp

[0]
)
.

�

4.4. Expected Approximation Error of an Elitist Search

Although feasible for the bi-diagonal matrix, it is difficult to get a general result for the exact expression
of t-th power of upper triangular matrices. So, we would like to estimate not the precise expression but an
upper bound of the approximation error of an elitist search. This idea could be realized by constructing an
auxiliary bi-diagonal search that converges more slowly than the elitist one. Construction of the auxiliary
search is based on the sufficient condition presented in the following lemma.

Lemma 5 [36] Provided that transition matrices R̃ = (ri,j)(L+1)×(L+1) and S̃ = (si,j)(L+1)×(L+1) are upper
triangular. If

sj,j ≥ rj,j , ∀ j, (19)
∑i−1
l=0(rl,j − sl,j) ≥ 0, ∀ i < j, (20)

∑i
l=0(sl,j−1 − sl,j) ≥ 0, ∀ i < j − 1, (21)

it holds
TR̃t ≤ TS̃t, ∀ t ∈ Z+,

where

T =




1 . . . 1
. . .

...
1


 .

Construct an auxiliary search characterized by S̃, and partitioned it as

S̃ =

(
s0,0 s0
0 S

)
, (22)

where s0 = (s0,1, . . . , x0,L),

S =




s1,1 . . . s1,L
. . .

...
sL,L


 . (23)

We get the following theorem that can be utilized to estimate upper bounds of expected approximation
errors.
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Theorem 3 Denote the approximation error vector as ẽ = (e0, e
′)′ = (e0, e1, . . . , eL)′, and let ṽ = (v0,v

′)′ =
(v0, v1, . . . , vL)′, where vi > 0, i = 0, 1, . . . , L. If transition matrices R̃ and S̃ satisfy conditions (19)-(21),
it holds

e′Rtv ≤ e′Stv,

where R and S are the transition submatrices confirmed by (6) and (23), respectively.

Proof Since

ẽ′R̃tṽ − ẽ′S̃tṽ = ẽ′
(
R̃t − S̃t

)
r̃

=(e0, e1 − e0, . . . , eL − eL−1)T
(
R̃t − S̃t

)
ṽ

≤(e0, e1 − e0, . . . , eL − eL−1)
(
TR̃t −TS̃t

)
ṽ.

Lemma 5 implies that TR̃t −TS̃t is a negative matrix. Recall that the approximation vector satisfies

e0 = 0; ei ≤ ei+1, i = 0, . . . , L− 1.

Then, we get a nonnegative vector

∆ẽ = (e0, e1 − e0, . . . , eL − eL−1)′,

and it holds
ẽ′ = (∆ẽ)′T.

Consequently,
ẽ′R̃tṽ = (∆ẽ)′TR̃tṽ ≤ (∆ẽ)′TS̃tṽ = ẽ′S̃tṽ.

Applying Lemma 1 we conclude that e′Rtv ≤ e′Stv. �
Substituting v in Theorem 3 by the initial distribution vector q[0] of non-optimal statuses, we can get

a general method for upper bound estimation of expected approximation errors. To make this estimation
practical, one can construct an auxiliary search that is bi-diagonal.

5. Case Study

To validate feasibility of the error analysis routines proposed in Section 4, several case studies are
performed for the RLS and the (1+1)EA.

Problem 1 (OneMax)

max f(x) =
n∑

i=1

xi, x = (x1, . . . , xn) ∈ {0, 1}n.

Problem 2 (Peak)

max f(x) =
n∏

i=1

xi, x = (x1, . . . , xn) ∈ {0, 1}n.

Problem 3 (Deceptive Problem)

max f(x) =





n∑

i=1

xi, if

n∑

i=1

xi > n− 1,

n− 1−
n∑

i=1

xi, otherwise.

x = (x1, . . . , xn) ∈ {0, 1}n.
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5.1. The OneMax Problem

Objective value of the OneMax problem is total amount of 1-bits in the bit-string x, and the approxi-
mation error is number of 0-bits. Thus, the approximation error vector is

ẽ = (e0, e
′)′ = (0, 1, 2, . . . , n)′. (24)

The solution space can be divided into n+1 statuses labeled by approximation errors. Random initialization
generates the initial distribution denoted as

p̃[0] = (p
[0]
0 ,p

′[0])′ = (C1
n/2

n, C2
n/2

n, . . . , Cnn/2
n)′. (25)

Then, the expected approximation error of RLS is given by the following theorem.

Theorem 4 The expected approximation error of RLS for the OneMax problem is n
2

(
1− 1

n

)t
.

Proof Combining the one-bit mutation with the elitist selection, RLS transfers from status j to j − 1
with probability j/n, and keeps its status unchanged with probability 1 = j/n. Thus, application of RLS
on the OneMax problem generates a bi-diagonal search. The transition submatrix of non-optimal statuses
is

R = (ri,j)n×n =




1− 1/n 2/n
1− 2/n 3/n

. . .
. . .

1/n 1
0



. (26)

Then, Theorem 2 implies that

e[t] = e′Rtp[0] = e′




n∑

j=1

λtjpjq
′
j


p[0] =

n∑

j=1

λtj (e′pj)
(
q′jp

[0]
)
, (27)

where λj = rj,j , pj and qj are defined by (14) and (15), respectively. By computation in Appendix A, we
get the expression of e′pj and q′jp

[0] presented by (A.3) and (A.4). Substituting (24), (25), (A.3) and (A.4)
to (27), we know

e[t] =
n∑

j=1

λtj (e′pj)
(
q′jp

[0]
)

= λt1(e′p1)(q′1p
[0]) =

n

2

(
1− 1

n

)t
.

�
The same results about performance of RLS on the OneMax problem have also been reported in [26, 33].

Jansen and Zarges get this results by the law of total probability [26], and He et al. get it with the help of
the constant convergence rate [33].

Since the local search strategy of RLS generates a bi-diagonal search with a simple transition matrix,
we can get the exact expression of expected approximation error. While the (1+1)EA is investigated, the
analyzing process presented in [26] could be complicated. However, estimation of expected approximation
error for the (1+1)EA can be obtained by application of the analysis framework proposed in Section 4.

Theorem 5 The expected approximation error of (1+1)EA for the OneMax problem satisfies

e[t] ≤ n

2

(
1− 1

ne

)t
.

Proof Since the bitwise mutation can locate any solution with a positive probability, the (1+1)EA applied
to OneMax generates an elitist search with ri,j > 0,∀ 0 ≤ i ≤ j ≤ L. Thus, we estimate the upper bound of
its approximation error by constructing an auxiliary bi-diagonal search.
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The auxiliary bi-diagonal search is obtained by considering a special case that only one ‘0’ in x is flip
to ‘1’. While x is at the status j, it leads to decrease of approximation error and the status transition from

j to j − 1, and the probability is j
n

(
1− 1

n

)n−1
. Then, we get a lower bound of the transition probability

rj−1,j :

rj−1,j ≥
j

n

(
1− 1

n

)n−1
, j = 1, . . . , n.

For the elitist search generated by (1+1)EA, we get an auxiliary bi-diagonal search with probability transition
matrix

S̃ = (si,j)i,j=0,...,n

=




1 1
n (1− 1

n )n−1

1− 1
n (1− 1

n )n−1 2
n (1− 1

n )n−1

1− 2
n (1− 1

n )n−1 3
n (1− 1

n )n−1

. . .
. . .

1− n−1
n (1− 1

n )n−1 (1− 1
n )n−1

1− (1− 1
n )n−1



.

It is trivial to verify that R̃ and S̃ satisfy conditions (19)-(21), and the result of Theorem 3 holds.
Combining Theorems 2 and 3 we know

e[t] ≤ ẽ′S̃tp̃[0] = e′Stp[0] =

n∑

j=1

λtj (e′pj)
(
q′jp

[0]
)
, (28)

where

λj = 1− j

n

(
1− 1

n

)n−1
, (29)

pj =

(
j−1∏

k=1

sk,k+1

sj,j − sk,k
,

j−1∏

k=2

sk,k+1

sj,j − sk,k
, . . . ,

sj−1,j
sj,j − sj−1,j−1

, 1, 0, . . . , 0

)′
, (30)

q′j =


0, . . . , 0, 1,

sj,j+1

sj,j − sj+1,j+1
,

j+2∏

k=j+1

sk−1,k
sj,j − sk,k

, . . . ,
n∏

k=j+1

sk−1,k
sj,j − sk,k


 , (31)

j = 1 . . . , n. Similar to computation of pj and q′j in Appendix A, we know that the values of pj and qj
defined by (30) and (31) are confirmed by (A.1) and (A.2), respectively. Thus, the expression of e′pj and
q′jp

[0] are presented by (A.3) and (A.4), too. Submitting (24), (25), (29), (A.3) and (A.4) to (28) we get
the results that

e[t] ≤
n∑

j=1

λtj (e′pj)
(
q′jp

[0]
)

= λt1(e′p1)(q′1p
[0]) =

n

2

(
1− 1

n

(
1− 1

n

)n−1)t
≤ n

2

(
1− 1

ne

)t
.

�
To demonstrate how tight the estimated upper bound is, we perform numerical comparison between the

simulation results and the estimated bound, where the simulated approximation errors for the 10-, 20-,...,90-
D OneMax problems are averaged for 1000 independent runs. As illustrated in Figure 1, the estimated upper
bound is very tight for low-dimensional OneMax problems, and the difference between simulation results
and the estimated upper bound increases slowly with increase of the problem dimension.
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Figure 1: Comparison between the estimated upper bound and simulation results on expected approximation error of (1+1)EA
solving the 10-, 20-,...,90-D OneMax problems.

5.2. The Peak Problem

Landscape of the Peak problem consists of a summit value 1 at x∗ = (1, . . . , 1) and a platform of value 0
for all other solutions. By defining the status index i as the total amount of 0-bits in a solution x, we know
ẽ = (0, 1, . . . , 1)′. Correspondingly, the initial distribution is p̃[0] = (C0

n/2
n, C1

n/2
n, C2

n/2
n, . . . , Cnn/2

n)′.

Theorem 6 For RLS on the Peak problem,

e[t] = 1− n+ 1

2n
+

n

2n

(
1− 1

n

)t
.

Proof When the RLS is applied to the Peak problem, the one-bit mutation generates status transitions
with probability

ri,j =





1/n, i = 0, j = 1;

1− 1/n, i = j = 1,

1; i = j 6= 1;

0, otherwise.

Thus, we get the diagonal transition submatrix of non-optimal statuses:

R = diag

(
1− 1

n
, 1, . . . , 1

)
.

Applying Theorem 1 we know that

e[t] = e′Rtp[0] =

n∑

i=1

eir
t
i,ipi =

(
1− 1

n

)t
C1
n

2n
+

n∑

i=2

Cin
2n

= 1− n+ 1

2n
+

n

2n

(
1− 1

n

)t
.

�
Since the error vector of non-optimal statuses is e = (1, . . . , 1)′, the obtained expected approximation

error is equal to the probability to stay at non-optimal statuses. The optimal solution is achievable if and
only if the initial solution is located at statuses 0 and 1. On the contrary, it cannot jump out of the fitness
platform if the initial solution is not located adjacent to the global optimal solution. Thus, the probability
to stay at non-optimal statuses would not converge to zero when t→∞, and its global convergence to the
optimal solution cannot be guaranteed.
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Theorem 7 For (1+1)EA applied to the Peak problem,

e[t] =

n∑

i=1

[
1−

(
1

n− 1

)i(
1− 1

n

)n]t
Cin
2n
.

Proof When the (1+1)EA is employed to solve the Peak problem, the transition probability

ri,j =





(1/n)j(1− 1/n)n−j , i = 0, j 6= 0;

1, i = j = 0,

1− (1/n)j(1− 1/n)n−j ; i = j 6= 1;

0, otherwise.

Then, it holds that

R = diag

(
1− 1

n

(
1− 1

n

)n−1
, 1−

(
1

n

)2(
1− 1

n

)n−2
, . . . , 1−

(
1

n

)n−1(
1− 1

n

)
, 1−

(
1

n

)n)
.

Applying Theorem 1, we know

e[t] =
n∑

i=1

eir
t
i,ipi =

n∑

i=1

[
1−

(
1

n

)i(
1− 1

n

)n−i]t
Cin
2n

=
n∑

i=1

[
1−

(
1

n− 1

)i(
1− 1

n

)n]t
Cin
2n
.

�
Investigation on this case shows that error analysis can also work well when landscapes of problems have

a platform. Because the transition submatrix is diagonal, computation of the expected approximation error
is a trivial task that can be implemented easily.

5.3. The Deceptive Problem

According to definition of the Deceptive problem, we can get the following mapping from the total
amount of 1-bits to the fitness and approximation error of x.

|x| : 0 1 · · · n− 1 n
l l · · · l ↓

f(x) : n− 1 n− 2 · · · 0 n
l l · · · l l

e(x) : 1 2 · · · n 0

(32)

Then, the feasible solution set could be divided into n+ 1 subsets, where |x| = 0 corresponds to the locally
optimal state. The initial approximation error and the initial distribution are presented as follows.

ẽ = (0, e′)′ = (0, 1, 2, . . . , n)′, (33)

p̃[0] =

(
Cnn
2n

,p′[0]
)′

=

(
Cnn
2n

,
C0
n

2n
,
C1
n

2n
, . . . ,

Cn−1n

2n

)′
. (34)

Because RLS employing a local search cannot escape from absorbing region of the local optimal solu-
tion, the expected approximation error cannot converge to 0 when the random initialization is employed.
Accordingly, we get the following results on expected approximation error.

Theorem 8 For RLS applied to the Deceptive problem,

e[t] =

(
1− 1

2n−1

)
+
(n

2
− n

2n−1

)(
1− 1

n

)t
.
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Proof For RLS applied to the Deceptive problem, we have

R = (ri,j)n×n




1 1/n
1− 1/n 2/n

. . .
. . .

2/n (n− 1)/n
0



. (35)

Then, Theorem 2 implies that

e[t] = e′Rtp[0] =

n∑

j=1

λtj (e′pj)
(
q′jp

[0]
)
, (36)

where λj = rj,j , pj and qj are defined by (14) and (15), respectively. According to the derivation in
Appendix B, we know the analytic expressions of epj and q′jp

[0] are confirmed by (B.1), (B.2) and (B.3).
Thus,

e[t] = λt1(e′p1)(q′1p
[0]) + λt2(e′p2)(q′2p

[0]) =

(
1− 1

2n−1

)
+
(n

2
− n

2n−1

)(
1− 1

n

)t
.

�
Furthermore, we would like to investigate the convergence performance of (1+1)EA on the Deceptive

problem. To estimate the expected approximation error of (1+1)EA on the Deceptive problem, we need the
result presented in the following lemma.

Lemma 6 Consider a Markov chain model of Algorithm 1 whose transition matrix can be partitioned as

R̃ =

(
R̂ r̂[1]

0 rL,L

)
. (37)

Correspondingly, denote

ẽ = (ê′, eL)′, p̃[0] = (p̂[0]′ , p
[0]
L )′.

Then, it holds for the expected approximation error that

e[t] = ê′R̂tp̂[0] + p
[0]
L

t−1∑

k=0

rkL,Lê′R̂t−1−kr̂[1] + p
[0]
L eLr

t
L,L.

Proof By (37), we know

e[t] = ẽ′R̃tp̃[0] = (ê′, eL)

(
R̂ r̂[1]

0 rL,L

)t
(p̂[0]′ , p

[0]
L )′ = (ê′, eL)

(
R̂t r̂[t]

0 rtL,L

)
(p̂[0]′ , p

[0]
L )′,

where r̂[t] =
∑t−1
k=0 r

k
L,LR̂t−1−kr̂[1]. Thus,

e[t] = ê′R̂tp̂[0] + p
[0]
L (ê′r̂[t] + eLr

t
L,L) = ê′R̂tp̂[0] + p

[0]
L

t−1∑

k=0

rkL,Lê′R̂t−1−kr̂[1] + p
[0]
L eLr

t
L,L.

�
Then, we can get an estimation about upper bound of the expected approximation error.

Theorem 9 The expected approximation error of (1+1)EA for the Deceptive problem is bounded by

e[t] ≤
(

1− n+ 1

2n
+
en2

2n

)[
1−

(
1

n

)n]t
+

(
n

2
− n

2n
+
en2

2n

)[
1− 1

en

]t
+
n2

2n

[
1− 1

e

]t
.
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Proof Partition the transition matrix as

R̃ =

(
R̂ r̂[1]

0 rn,n

)
, (38)

where R̂ = (ri,j)i,j=0,1,...,n, r̂[1] = (r0,n, r1,n, . . . , rn−1,n)′. Denote

ê = (e0, . . . , en−1)′ = (0, . . . , n− 1)′,

p̂[0] =
(
p
[0]
0 , . . . , p

[0]
n−1

)′
=

(
Cnn
2n

,
C0
n

2n
,
C1
n

2n
, . . . ,

Cn−2n

2n

)′
.

Then, Lemma 6 implies that

e[t] = ê′R̂tp̂[0] + p[0]n (ê′r̂[t] + enr
t
n,n) = ê′R̂tp̂[0] + p[0]n

t−1∑

k=0

rkn,nê′R̂t−1−kr̂[1] + p[0]n enr
t
n,n. (39)

While the bitwise mutation is implemented, probability to flip j bits is
(
1
n

)j (
1− 1

n

)n−j
, and that to flip

one of j bits is C1
j

(
1
n

) (
1− 1

n

)n−1
. The mapping illustrated in (32) indicates that

r0,j =

(
1

n

)n+1−j (
1− 1

n

)j−1
, j = 1, . . . , n− 1,

rj−1,j ≥
j − 1

n

(
1− 1

n

)n−1
, j = 2, . . . , n− 1.

For the searching process characterized by R̂, we construct an auxiliary bi-diagonal search characterized by
the transition matrix

Ŝ =




1 ( 1
n )n ( 1

n )n · · · ( 1
n )n

1− ( 1
n )n 1

n (1− 1
n )n−1

1− ( 1
n )n − 1

n (1− 1
n )n−1

. . .

. . .
n−2
n (1− 1

n )n−1

1− ( 1
n )n − n−2

n (1− 1
n )n−1




. (40)

It is trivial to check that R̂ and Ŝ satisfied conditions (19)-(21). Then, by Theorem 3 we know

ê′R̂tp̂[0] ≤ ê′Ŝtp̂[0], (41)

ê′R̂t−1−kr̂[1] ≤ ê′Ŝt−1−kr̂[1]. (42)

Furthermore, denote

Ř = (ri,j)i,j=1,...,n−1,

ě = (1, . . . , n− 1)′, (43)

p̌[0] =

(
C0
n

2n
,
C1
n

2n
, . . . ,

Cn−2n

2n

)′
, (44)

ř[1] = (r1,n, . . . , rn−1,n)′, (45)
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and let

Š =(si,j)i,j=1,...,n−1

=




1− ( 1
n )n 1

n (1− 1
n )n−1

1− ( 1
n )n − 1

n (1− 1
n )n−1

. . .

. . .
n−2
n (1− 1

n )n−1

1− ( 1
n )n − n−2

n (1− 1
n )n−1



. (46)

By equation (39), we know

e[t] = ê′R̂tp̂[0] + p[0]n

t−1∑

k=0

rkn,nê′R̂t−1−kr̂[1] + p[0]n enr
t
n,n

≤ ê′Ŝtp̂[0] + p[0]n

t−1∑

k=0

rkn,nê′Ŝt−1−kr̂[1] + p[0]n enr
t
n,n (by (41) and (42))

= ě′Štp̌[0] + p[0]n

t−1∑

k=0

rkn,ně′Št−1−kř[1] + p[0]n enr
t
n,n (by Lemma 1)

= ě′



n−1∑

j=1

λtjp̌jq̌
′
j


 p̌[0] + p[0]n

t−1∑

k=0

rkn,ně′



n−1∑

j=1

λt−1−kj p̌jq̌
′
j


 ř[1] + p[0]n enr

t
n,n (by Lemma 4)

=
n−1∑

j=1

λtj(ě
′p̌j)(q̌

′
jp̌

[0]) + p[0]n

t−1∑

k=0

rkn,n

n−1∑

j=1

λt−1−kj (ě′p̌j)(q̌
′
j ř

[1]) + p[0]n enr
t
n,n, (47)

where

λj = sj,j = 1−
(

1

n

)n
− j − 1

n

(
1− 1

n

)n−1
, (48)

p̌j =

(
j−1∏

k=1

sk,k+1

sj,j − sk,k
,

j−1∏

k=2

sk,k+1

sj,j − sk,k
, . . . ,

sj−1,j
sj,j − sj−1,j−1

, 1, 0, . . . , 0

)′
, (49)

q̌′j =


0, . . . , 0, 1,

sj,j+1

sj,j − sj+1,j+1
,

j+2∏

k=j+1

sk−1,k
sj,j − sk,k

, . . . ,
n−1∏

k=j+1

sk−1,k
sj,j − sk,k


 , (50)

j = 1 . . . , n− 1. According to the derivation in Appendix C, we know the analytic expressions of ěp̌j and
q̌′jp̌

[0] are confirmed by (C.1), (C.2) and (C.3). Substituting (48), (C.1), (C.2) and (C.3) to (47) we know

e[t] ≤
2∑

j=1

λtj(ě
′p̌j)(q̌

′
jp̌

[0]) + p[0]n

2∑

j=1

t−1∑

k=0

rkn,nλ
t−1−k
j (ě′p̌j)(q̌

′
j ř

[1]) + p[0]n enr
t
n,n

≤
2∑

j=1

λtj(ě
′p̌j)(q̌

′
jp̌

[0]) + p[0]n

[(
1− n+ 1

n

(
1− 1

n

)n−1)(
λt1

1
n (1− 1

n )n−1
+

λt2
1
n (1− 1

n )n−1

)
+ enr

t
n,n

]

≤
(

1− n+ 1

2n

)
λt1 +

(n
2
− n

2n

)
λt2 +

en2

2n
(λt1 + λt2) +

n2

2n
rtn,n

≤
(

1− n+ 1

2n
+
en2

2n

)[
1−

(
1

n

)n]t
+

(
n

2
− n

2n
+
en2

2n

)[
1− 1

en

]t
+
n2

2n

[
1− 1

e

]t
.
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Figure 2: Comparison between the estimated upper bound and simulation results on expected approximation error of (1+1)EA
solving the 10-, 20-,..., 90-D Deceptive problems.

Table 1: Running Time (RT) and Approximation Error (AE) of Randomized Search Heuristics on Investigated Problems

Index Algorithm
Problem

OneMax Peak Deceptive

RT
RLS n logn − 0.1159...n ± o(n)[39] ∞ ∞

(1+1)EA (1 − o(1))en logn[40] Ω
(
(n/2)n

)
[5] Θ(nn)[41]

AE

RLS n
2

(
1 − 1

n

)t
1 − n+1

2n
+ n

2n

(
1 − 1

n

)t (
1 − 1

2n−1

)
+

(
n
2
− n

2n−1

) (
1 − 1

n

)t

(1+1)EA n
2

(
1 − 1

en

)t n∑
i=1

[
1 −

(
1

n−1

)i (
1 − 1

n

)n]t Cin
2n

(
1 − n+1

2n
+ en2

2n

) [
1 −

(
1
n

)n]t
+

(
n
2
− n

2n
+ en2

2n

) [
1 − 1

en

]t
+ n2

2n

[
1 − 1

e

]t

�
Tightness of the estimated upper bound is again evaluated by comparison with simulation results illus-

trated in Figure 2. It is demonstrated that the error analysis method generates a tight upper bound for the
approximation error of (1+1)EA solving the deceptive problem.

5.4. Competitiveness of Error Analysis to RT Estimation

Although there are a variety of publications regarding RT of RSHs for the OneMax problem, the Peak
problem and the Deceptive problem, we only collect in Tab. 1 the state-of-the-art results about RLS and
(1+1)EA. As is well-known, RLS and (1+1)EA can address the OneMax problem in RT of Θ(n log n), and
RTs of (1+1)EA rise exponentially with increase of the problem size of the Peak problem and the Deceptive
problem. Because RLS cannot converge globally to the optimal solutions of the Peak problem and the
Deceptive problem, the expected RTs are equal to infinity.

In principle, the result of error analysis is incomparable to that of RT analysis, because they are performed
based on evaluation metrics that focus on different aspects of RSHs. However, error analysis leads to
concrete estimation of approximation error, which could be much more informative. Recall that error
analysis generates concrete estimation of the expected approximation error. There is no doubt that we can
transform them into simple asymptotic results to validate the connection between approximation error and
the problem dimension. Furthermore, estimation of the success probability can also been obtained via the
concrete estimation of approximation error.
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5.4.1. Asymptotic Analysis of Approximation Error

Considering that the polynomial iteration budget is available, we set t = ank(a > 0, k ∈ Z+). Then,

the approximation error of RLS on the OneMax problem is e[t] = n
2

(
1− 1

n

)ank
, and it holds that e[t] <

n
2 (2a)

−nk−1

, n ≥ 2. That is, the asymptotic expected approximation error is O(ncn
k−1

) for some constant
c ∈ (0, 1). Similarly, the asymptotic expected approximation error of (1+1)EA for the OneMax problem is

O(ncn
k−1

) with the iteration budget t = ank, (a > 0, k ∈ Z+), where c ∈ (0, 1).
For the (1+1)EA applied to the Peak problem, a general result on the lower bound of e[t] can be obtained

by considering that
[

1−
(

1

n− 1

)i(
1− 1

n

)n]t
≥
[
1− 1

n− 1

(
1− 1

n

)n]t
≥
[
1− 1

2(n− 1)

]t
.

Then, if the iteration budget is t = ank, (a > 0, k ∈ Z+), the asymptotic approximation error is Ω(cn
k−1

),
where c ∈ (0, 1).

5.4.2. Estimation of the Hitting Probability

Based on the analytic expression of the expected approximation error, a rough estimation of the proba-
bility to hit a given fitness level can be obtained via the Markov inequality [42]

Pr{e(t) ≥ c} ≤ e[t]

c
, (51)

where e(t) = e(xt).
Take as an example the case that the (1+1)EA is applied to the OneMax problem. Considering that the

expected RT is (1− o(1))en log n, we set t = aen log n(a > 0). Formula (51) implies that

Pr{e(aen log n) ≥ 1} ≤ n

2

(
1− 1

en

)aen logn

≤ 1

2nae−1−α(n)
,

where α(n) = e −
(

1 + 1
en−1

)en−1
. Then, from the fact that limn→∞ α(n) = 0 we conclude that the

probability to get the optimal solution of the OneMax problem is 1−O
(

1
nae−1

)
.

Furthermore, we can get concrete estimation of the success probability. Because

α(n) = e−
(

1 +
1

en− 1

)en−1
< e− 2,

it holds that

Pr{e(aen log n) ≥ 1} ≤ 1

2nae−1−α(n)
<

1

2n(a−1+1/e)e
,

which converges to zero while 1 − a < 1
e . Thus, (1+1)EA would get the global optimal solution of the

OneMax problem with an overwhelming probability if one sets t >
(
1− 1

e

)
en log n. This result presents a

concrete threshold value of the iteration budget, which is more instructive for implement of RSHs than the
results of RT analysis.

6. Error Analysis of the Knapsack Problem

In this section, we demonstrate the feasibility of error analysis for constrained optimization problems by
investigating the knapsack problem

max f(x) =

n∑

i=1

pixi,

s.t.

n∑

i=1

wixi ≤W, xi ∈ {0, 1}, i = 1, . . . , n.

(52)
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Table 2: Parameters of the knapsack problem (α ∈ (0, 1), αn ∈ Z+).

x
x1 x2 x3

x1 x2, . . . , xαn xαn+1, . . . , xn
Item i 1 2, . . . , αn αn+ 1, . . . , n

Profit pi n 1 1
n

Weight wi n 1
αn n

P-W ratio pi
wi

1 αn 1
n2

Capacity W n

An instance of the knapsack problem with parameters listed in Tab. 2 was proposed by He et. al [43],
who showed that an (N + 1)EA cannot obtain an α-approximate solution in polynomial FHT/RT. Global
optimal solution of the investigated knapsack problem is x∗g = (1, 0, . . . , 0) with f(x∗g) = n, and x∗l =
(0, 1, . . . , 1, 0, . . . 0) is the local optimal solution with f(x∗l ) = αn − 1. Since the penalty method would
introduce an penalty parameter that functions on the fitness value of solutions, we employ a ratio-greedy
repair mechanism to transform infeasible solutions into feasible ones. If an infeasible solution is generated, we
sort all items according to the profit-to-weight(P-W) ratio, and items with small P-W ratio are successively
removed from the knapsack until a feasible solution is achieved.

Denote a solution of the knapsack problem as x = (x1, . . . , xn), where xi ∈ {0, 1}, i = 1, . . . , n. If item i
is put into the knapsack, the corresponding binary variable xi is set as ‘1’. According to the P-W ratios of
items(variables), we can partition the solution vector x into three sub-vectors.

• x1 = (x1), which corresponds to the first item with the P-W ratio 1. The solution x∗g = (x1,x2,x3) =
(1,0,0) represents the best packing solution that only contains the first item.

• x2 = (x2, . . . , xαn), where variables correspond to the 2th − αnth items with the P-W ratio αn.
The sum total of weights of all these items is 1 − 1

αn , and the total profit is αn − 1. That is,
x∗l = (x1,x2,x3) = (0,1,0) is a local optimal solution with f(x∗l ) = αn− 1.

• x3 = (xαn+1, . . . , xn), variables in which correspond to the last n− αn items with the P-W ratio 1
n2 .

Recall that all items corresponding to x1 and x3 have a weight n, and the total weight of items in x2

is 1 − 1
αn . A solution x = (x1,x2,x3) is feasible if and only if at most one of sub-vectors x1, x2 and x3 is

non-zero2.

• If |x1| = |x2| = |x3| = 0, x represents an empty knapsack with f(x) = 0.

• If |x1| = 1, |x2| = |x3| = 0, we get the global optimal solution x∗g with f(x∗g) = n.

• If |x2| ≥ 1, |x1| = |x3| = 0, we have f(x) = |x2|.

• If |x3| = 1, |x1| = |x2| = 0, we have f(x) = 1
n .

If a generated solution x = (x1,x2,x3) contains more than one non-zero sub-vectors, it is infeasible and
the ratio-greedy strategy is triggered to generate a feasible one. According to the values of P-W ratio, the
repair strategy would first remove items represented by x3, then flip variables in x1 to zero. If an infeasible
solution is in the form of x = (0,0,x3) with |x3| ≥ 2, the repair strategy would randomly delete redundant
items until only one variable in x3 is ‘1’.

Accordingly, we get αn + 2 statuses of feasible solutions labelled as 0, 1, . . . , αn + 1. We get the fitness
vector

f̃ = (f0, f1, . . . , fαn+1)′ =

(
n, αn− 1, . . . , 1,

1

n
, 0

)′
,

2A vector y is non-zero means there exists at least one non-zero component in it, i.e., |y| > 0.
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and the corresponding error vector is

ẽ = (e0, e) = (e0, . . . , eαn+1)′ =

(
0, n− (αn− 1), . . . , n− 1, n− 1

n
, n

)′
. (53)

6.1. Random Initialization and Initial Probability Distribution

Random initialization generates the initial distribution as follows.

1. If x1 = 1 and |x2| = 0, the global solution x∗ = (1, 0, . . . , 0) is obtained. Then, the initial solution is

located at status 0 with probability p
[0]
0 = 1

2αn .
2. If αn − 1 ≥ |x2| ≥ 1, it generates feasible solutions x = (0,x2,0), no matter what the sub-vectors

x1 and x3 are. For this case, a feasible solution with f(x) = |x2| = i is generated with probability
Ciαn−1( 1

2 )i( 1
2 )αn−1−i, i = αn− 1, . . . , 1. Thus, we get the sub-vector of approximation error

e1 = (e1, . . . , eαn−1) = (n− (αn− 1), n− (αn− 2), . . . , n− 1)′,

and the corresponding distribution sub-vector is

p
[0]
1 = (p

[0]
1 , p

[0]
2 , . . . , p

[0]
αn−1)′ =

(
Cαn−1αn−1

(
1

2

)αn−1
, Cαn−2αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1)′
.

3. If |x1| = 0, |x2| = 0 and |x3| ≥ 1, the ratio-greedy strategy randomly delete redundant items repre-
sented by x3 until only one is remained. Consequently, the approximation error of feasible solutions
is n− 1

n , and we get the corresponding probability

p[0]αn =
n−αn∑

i=1

Cin−αn

(
1

2

)i(
1

2

)n−i
=

(
1

2

)αn
− 1

2n
.

4. If x = (x1,x2,x3) = (0, . . . , 0), it generates a solution whose approximation error is n, and the

corresponding probability is p
[0]
αn+1 = 1

2n .

In conclusion, we get the initial status distribution

p̃[0] = (p
[0]
0 ,p

[0]′

1 , p
[0]
αn+1)′ =

(
1

2αn
, Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1
,

(
1

2

)αn
− 1

2n
,

1

2n

)′
.

For non-optimal statuses,

p[0] = (p
[0]′

1 , p
[0]
αn+1)′ =

(
Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1
,

(
1

2

)αn
− 1

2n
,

1

2n

)′
. (54)

6.2. Expected Approximation Error of RSHs

6.2.1. Expected Approximation Error of RLS

Assisted by the ratio-greedy repair strategy, RLS generates status transitions detailed as follows.

1. Status transition from αn + 1 to 0, αn − 1 or αn. When the one-bit mutation is performed on
x = (0, . . . , 0), it generates a solution y with better fitness, which is accepted by the elitist selection.
Consequently, the solution status transfers from αn+1 to 0, αn−1 or αn. The corresponding transition
probabilities px→y are detailed in Tab. 3 as Case 1.

2. Status transition from αn to 0 or αn− 1. While the one-bit mutation is performed on a feasible
solution x = (0,0,x3) with |x3| = 1, any flip of x3 from ‘0’ to ‘1’ generates an infeasible solution, and
the greedy-repair strategy would convert it to another solution at status αn, which would not result
in status transition. If one bit in x1 or x2 is flipped to ‘1’, the repair strategy will keep it and flip the
‘1’ in x3 to ‘0’, which results in the status transition from αn to 0 or αn − 1. This case is labeled in
Tab. 3 as Case 2.
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Table 3: Status transitions and the corresponding probabilities generated by RLS.

Case 1 Case 2 Case 3

x
Status αn+ 1 αn k, (k = 2, . . . , αn− 1)
f(x) 0 1

n αn− k, (k = αn− 1, . . . , 2)
e(x) n n− 1

n (1− α)n+ k

y
Status αn αn− 1 0 αn− 1 0 k − 1
f(y) 1

n 1 n 1 n αn− k + 1
e(y) n− 1

n n− 1 0 n− 1 0 (1− α)n+ k − 1

px→y
n−αn
n

αn−1
n

1
n

αn−1
n

1
n

k−1
n

3. Status transition from k to k − 1, k = 2, . . . , αn − 1. While the present solution is at status k,
k = 2, . . . , αn− 1, the corresponding solution is x = (0,x2,0) with |x2| = αn− k. Then, a candidate
solution is accepted if and only if it is generated by flipping another ‘0’ in x2 to ‘1’. The status
transition is denoted as Case 3 in Tab. 3.

4. If the present solution is at status 1, the one-bit mutation cannot generate a better solution any more.
Then, the iteration process would stagnate at the local optima.

According to the results presented in Tab. 3, we get the transition matrix

R̃ =

(
R̂ r̂[1]

0 0

)
, (55)

where
r̂[1] = (r0,αn+1, . . . , rn,αn+1)′ = (1/n, 0, . . . , 0, α− 1/n, 1− α)′, (56)

R̂ =

(
1 ř
0 Ř

)
=




1 0 0 · · · 0 0 1
n

1 1
n · · · 0 0 0

1− 1
n

. . .
...

...
...

. . .
...

...
...

α− 3
n 0 0

1− (α− 3
n ) α− 2

n 0
1− (α− 2

n ) α− 1
n

1− α




. (57)

Then, we can get tight upper and lower bounds for the expected approximation error of RLS.

Theorem 10 For RLS on the Knapsack problem, the expected approximation error is bounded by

(n− αn+ 1)

[
1− 1

2αn−1
− 1

2n

]
+
αn− 2

4

(
1− 1

n

)t−1
+
n+ 1

αn

1

2αn
(1− α)t

≤ e[t] ≤ (n− αn+ 1)

[
1− 1

2αn
+

1

2n

]
+
αn− 1

2

(
1− 1

n

)t−1
+
n+ 1

αn

1

2αn
(1− α)t.

Proof By Lemma 6, we know

e[t] = ê′R̂tp̂[0] + p
[0]
αn+1ê

′R̂t−1r̂[1],
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where R̂ is given by equation (57),

ê = (e0, . . . , eαn)′ =

(
0, n− (αn− 1), . . . , n− 1, n− 1

n

)′
, (58)

p̂[0] = (p
[0]
0 , . . . , p

[0]
αn)′ =

(
1

2αn
, Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1
,

(
1

2

)αn
− 1

2n

)′
, (59)

Then, Lemma 4 and Theorem 2 imply that

e[t] = ě′




αn∑

j=1

λtjp̌jq̌
′
j


 p̌[0] + p

[0]
αn+1ě

′




αn∑

j=1

λt−1j p̌jq̌
′
j


 ř[0]

=

αn∑

j=1

λtj (ě′p̌j)
(
q̌′jp̌

[0]
)

+ p
[0]
αn+1

αn∑

j=1

λt−1j (ě′p̌j)
(
q̌′j ř

[1]
)
, (60)

where

λj = rj,j =





1− j − 1

n
, j = 1, . . . , αn− 1,

1− j

n
, j = αn,

(61)

,

ě = (e1, . . . , eαn)′ =

(
n− (αn− 1), . . . , n− 1, n− 1

n

)′
, (62)

p̌[0] = (p
[0]′

1 , . . . , p[0]αn)′ =

(
Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1
,

(
1

2

)αn
− 1

2n

)′
, (63)

ř[1] = (r1,αn+1, . . . , rn,αn+1)′ = (0, . . . , 0, α− 1/n, 1− α)′, (64)

pj =

(
j−1∏

k=1

rk,k+1

rj,j − rk,k
,

j−1∏

k=2

rk,k+1

rj,j − rk,k
, . . . ,

rj−1,j
rj,j − rj−1,j−1

, 1, 0, . . . , 0

)′
, (65)

q′j =


0, . . . , 0, 1,

rj,j+1

rj,j − rj+1,j+1
,

j+2∏

k=j+1

rk−1,k
rj,j − rk,k

, . . . ,
αn∏

k=j+1

rk−1,k
rj,j − rk,k


 , (66)

j = 1 . . . , αn.

By derivation presented in Appendix D, we get the expressions of components in (60). Substituting (61),
(D.1), (D.2), (D.3), (D.4), (D.5) and (D.6) to (60), we know that

e[t] =λt−11 (ě′p̌1)
(
λ1q̌

′
1p̌

[0] + p
[0]
αn+1q̌

′
1ř

[1]
)

+ λt−12 (ě′p̌2)
(
λ2q̌

′
2p̌

[0] + p
[0]
αn+1q̌

′
2ř

[1]
)

+ λt−1αn (ě′p̌αn)
(
λαnq̌′αnp̌[0] + p

[0]
αn+1q̌

′
αnř[1]

)
, (67)

which is bounded by

(n− αn+ 1)

[
1− 1

2αn−1
− 1

2n

]
+
αn− 2

4

(
1− 1

n

)t−1
+
n+ 1

αn

1

2αn
(1− α)t

≤ e[t] ≤ (n− αn+ 1)

[
1− 1

2αn
+

1

2n

]
+
αn− 1

2

(
1− 1

n

)t−1
+
n+ 1

αn

1

2αn
(1− α)t.
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Note that formula (67) presents a general expression dependent on any initial distribution. Because the

Knapsack problem has a local absorbing region where individuals cannot jump out, the first eigenvalue λ1 is

sure to be equal to 1, and (67) implies that e[t] converges to 0 if and only if (ě′p̌1)
(
λ1q̌

′
1p̌

[0] + p
[0]
αn+1q̌

′
1ř

[1]
)

equals to 0, which is further equivalent to the statement that both p̌[0] and p
[0]
αn+1 are equal to zero. This

statement means that any initial strategy that does not generate the global optimal solution with probability
1 cannot guarantee convergence of the RLS to the global optimal solution.

6.2.2. Expected Approximation Error of (1+1)EA

Denote p̃i,j as the probability to transfer from status j to status i. When the bitwise mutation is
employed, p̃i,j is estimated as follows.

• While status j transfers to status 0, j = 1, . . . , αn+ 1,

p̃0,j =





(
1

n

)αn+1−j (
1− 1

n

)j−1
, j = 1, . . . , αn− 1,

1

n

(
1− 1

n

)αn−1
, j = αn,

1

n

(
1− 1

n

)αn−1
, , j = αn+ 1.

(68)

• The probability to transfer from status j to status i (1 ≤ i < j) is

p̃i,j ≥





Cj−ij−1

(
1

n

)j−i(
1− 1

n

)(αn−1)−(j−i)
, j = 1, . . . , αn− 1,

Cαn−iαn−1

(
1

n

)αn−i(
1− 1

n

)i−1
, j = αn, αn+ 1, 1 ≤ i ≤ αn− 1,

(
1− 1

n

)αn
−
(

1− 1

n

)n
, , j = αn+ 1, i = αn.

(69)

Note that we get identical lower bounds of p̃i,αn and p̃i,αn+1 for 1 ≤ i ≤ αn− 1. Because the difference
between eαn and eαn+1 is 1

n , an infinitesimal that could be ignored, we combine statuses αn and αn+ 1
together as the αn-th status. Taking n as the approximation error of the newly defined status αn, we get
the error vector

ẽR = (e0, . . . , eαn−1, eαn+1)′ = (0, n− (αn− 1), . . . , n− 1, n)
′
. (70)

Correspondingly, the initial distribution is

p̃
[0]
R = (p

[0]
0 , . . . , p

[0]
αn−1, p

[0]
αn + p

[0]
αn+1)′ =

(
1

2αn
, Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1
,

(
1

2

)αn)′
. (71)

Let R̃ = (ri,j)i,j=0,1,...,αn be the transition matrix regarding the redefined individual statuses. Be-
cause approximation error of the combined status is taken as the bigger one of two combined statuses, the
approximation error is bounded from above by

e[t] = ẽ′P̃tp̃[0] ≤ ẽ′RR̃tp̃
[0]
R . (72)

In the following, we get the upper bound of e[t] by estimating ẽ′RR̃tp̃
[0]
R .
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Theorem 11 The expected approximation error of (1+1)EA for the Knapsack problem is bounded by

e[t] ≤
[
(1− α)n+ 1 + 1

α(1−α)2αn−1

(
1−

(
1− 1

n

)αn−1)] [
1−

(
1
n

)αn]t

+
{

(2αn−2−1)(αn−1)
2αn−1 + αn−1

2αn−2α(1−α)

[
1−

(
1− 1

n

)αn−1]} [
1−

(
1
n

)αn − 1
n

(
1− 1

n

)αn−2]t

+
(
n− 1

n

)
1

2αn

(
1− 1

n

)αnt
.

Proof Partition the transition matrix as

R̃ =

(
R̂ r̂[1]

0 rαn,αn

)
(73)

where R̂ = (ri,j)αn×αn, i, j = 0, 1, . . . , αn − 1, r̂[1] = (r0,αn, r1,αn, . . . , rαn−1,αn)′. When the present status
is αn, the status would keep unchanged if the first αn bits are not flipped from ‘0’ to ‘1’. That is,

rαn,αn =

(
1− 1

n

)αn
(74)

By substituting (70) and (71) to (72), Lemma 6 implies that

e[t] ≤ ê′RR̂tp̂
[0]
R + (p[0]αn + p

[0]
αn+1)

t−1∑

k=0

rkαn,αnê′RR̂t−1−kr̂[1] + (p[0]αn + p
[0]
αn+1)eαn+1r

t
αn,αn, (75)

where
êR = (e0, . . . , eαn−1)′ = (0, n− (αn− 1), . . . , n− 1)

′
,

p̂
[0]
R = (p

[0]
0 , . . . , p

[0]
αn−1)′ =

(
1

2αn
, Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1)′
.

Furthermore, denote
eR = (e1, . . . , eαn−1)′ = (n− (αn− 1), . . . , n− 1)

′
, (76)

p
[0]
R = (p

[0]
1 , . . . , p

[0]
αn−1)′ =

(
Cαn−1αn−1

(
1

2

)αn−1
, . . . , C1

αn−1

(
1

2

)αn−1)′
, (77)

r[1] = (r1,αn, . . . , rαn−1,αn)′, (78)

and construct an auxiliary transition matrix

Ŝ = (si,j)αn×αn =

(
1 s
0 S

)
, i, j = 0, 1, . . . , αn− 1, (79)

where

s =

((
1

n

)αn
,

(
1

n

)αn
, · · · ,

(
1

n

)αn)
,

S = (si,j)i,j=1,...,αn−1


1 −
(

1
n

)αn 1
n

(
1 − 1

n

)αn−2 · · · 0 0

1 −
(

1
n

)αn − 1
n

(
1 − 1

n

)αn−2 · · · 0 0

.
.
.

.

.

.

.

.

.
αn−3
n

(
1 − 1

n

)αn−2
0

1 −
(

1
n

)αn − αn−3
n

(
1 − 1

n

)αn−2 αn−2
n

(
1 − 1

n

)αn−2

1 −
(

1
n

)αn − αn−2
n

(
1 − 1

n

)αn−2



. (80)
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It is trivial to check that matrices R̂ and Ŝ satisfy conditions (19)-(21). By applying Theorem 3 and Lemma
1, (75) implies that

e[t] ≤ ê′RŜtp̂
[0]
R + (p[0]αn + p

[0]
αn+1)

t−1∑

k=0

rkαn,αnê′RŜt−1−kr̂[1] + (p[0]αn + p
[0]
αn+1)eαn+1r

t
αn,αn

= e′RStp
[0]
R + (p[0]αn + p

[0]
αn+1)

t−1∑

k=0

rkαn,αne′RSt−1−kr[1] + (p[0]αn + p
[0]
αn+1)eαn+1r

t
αn,αn (81)

Furthermore, by applying Lemma 4 we conclude that

e[t] ≤
αn−1∑

j=1

λtj(e
′
Rpj)(q

′
jp

[0]
R ) + (p[0]αn + p

[0]
αn+1)

t−1∑

k=0

rkαn,αn

αn−1∑

j=1

λt−1−kj (e′Rpj)(q
′
jr

[1])

+ (p[0]αn + p
[0]
αn+1)eαn+1r

t
αn,αn, (82)

where

λj = sj,j = 1−
(

1

n

)αn
− j − 1

n

(
1− 1

n

)αn−2
, (83)

pj =

(
j−1∏

k=1

sk,k+1

sj,j − sk,k
,

j−1∏

k=2

sk,k+1

sj,j − sk,k
, . . . ,

sj−1,j
sj,j − sj−1,j−1

, 1, 0, . . . , 0

)′
, (84)

q′j =


0, . . . , 0, 1,

sj,j+1

sj,j − sj+1,j+1
,

j+2∏

k=j+1

sk−1,k
sj,j − sk,k

, . . . ,
n∏

k=j+1

sk−1,k
sj,j − sk,k


 , (85)

j = 1 . . . , αn− 1. According to the derivation presented in Appendix E, we know the expression of e′Rpj ,

q′jp
[0]
R and q′jr

[1] are confirmed by (E.1), (E.2) and (E.3). Substituting (74), (83), (E.1), (E.2) and (E.3) to
(82), we conclude that

e[t] ≤ (n− αn+ 1)
(
1− 1

2αn−1

) [
1−

(
1
n

)αn]t
+ (αn− 1)

(
1
2 − 1

2αn−1

) [
1−

(
1
n

)αn − 1
n

(
1− 1

n

)αn−2]t

+ 1
2αn

[
1−

(
1− 1

n

)αn−1]{∑t−1
k=0

[(
1− 1

n

)αn]k [
1−

(
1
n

)αn]t−1−k

+(αn− 1)
∑t−1
k=0

[(
1− 1

n

)αn]k [
1−

(
1
n

)αn − 1
n

(
1− 1

n

)αn−2]t−1−k
}

+
(
n− 1

n

)
1

2αn

(
1− 1

n

)αnt

≤ (n− αn+ 1)
(
1− 1

2αn−1

) [
1−

(
1
n

)αn]t
+ (αn− 1)

(
1
2 − 1

2αn−1

) [
1−

(
1
n

)αn − 1
n

(
1− 1

n

)αn−2]t

+ 1
2αn

[
1−

(
1− 1

n

)αn−1]
{

2
α(1−α)

[
1−

(
1
n

)αn]t
+ 4(αn−1)

α(1−α)

[
1−

(
1
n

)αn − 1
n

(
1− 1

n

)αn−2]t
}

+
(
n− 1

n

)
1

2αn

(
1− 1

n

)αnt

≤
[
(1− α)n+ 1 + 1

α(1−α)2αn−1

(
1−

(
1− 1

n

)αn−1)] [
1−

(
1
n

)αn]t

+
{

(2αn−2−1)(αn−1)
2αn−1 + αn−1

2αn−2α(1−α)

[
1−

(
1− 1

n

)αn−1]} [
1−

(
1
n

)αn − 1
n

(
1− 1

n

)αn−2]t

+
(
n− 1

n

)
1

2αn

(
1− 1

n

)αnt
.

�
As illustrated in Figure 3, it is showed that the estimated upper bound for the Knapsack problem is

tight, too. Although global exploration ability can be achieved by the bitwise mutation, the (1+1)EA always
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Figure 3: Comparison between the estimated upper bound and simulation results on expected approximation error of (1+1)EA
solving the 10-, 20-,...,90-D Knapsack problems(α = 0.5).

focuses on local exploitation. Then, to jump from it to the global optimal solution is a difficult task because
the transition probability is

(
1
n

)αn
. As a consequence, the upper bound of e[t] is dominated by the first

item, which is of the order
[
1−

(
1
n

)αn]t
.

Generally, the expected approximation error converges very slowly to 0 as t → ∞. However, we can
excavate more information from the results of error analysis. For instance, consider a scalable case that α
varies with n such that αn = k, 1 ≤ k ≤ n. Then, the asymptotic expected approximation error would be
O(n) while the iteration budget is t = ank. Furthermore, for given iteration budget t = anl with l > k, the

asymptotic expected approximation error is O(ncn
l−k

), 0 < c < 1.

7. Conclusions and Discussions

In order to bridge the gap between theories and applications of RSH, this paper is dedicated to analyze
elitist RSH by estimating the expected approximation error. According to the distribution of non-zero
elements in the transition matrix of Markov chain, searching processes of elitist RSH are classified into three
categories, and we propose a general framework for estimation of approximation error, named as the error
analysis.

The error analysis can be applied to an RSH that is modeled by an upper triangular transition matrix.
By computing the t-th power of the transition probability matrix, we can obtain general results on expected
approximation error regarding any iteration t. Tricks of error analysis are definition of statues, diagonal-
ization of upper triangular matrices and multiplication of block matrices. With help of these mathematical
techniques, the error analysis can be applied easily to elitist RHS for uni- and multi-modal problems, which
demonstrates the universality of error analysis. Meanwhile, the obtained results are concrete expressions of
approximation error, which is much more precise than the asymptotic results of fixed-budget analysis.

Analysis of population-based EAs in the framework of error analysis is feasible if one can address how the
transition probability is influenced by population size. For the (1+λ) EA that generates multiple offsprings
by one parent, it is feasible to estimate improvement of transition probability, and the challenge lies in
computation of the t-th power of transition matrix. However, to analyze (N+N)EA we must overcome the
difficulties in both estimation of transition probability and computation of the t-th power. There are some
other open questions in error analysis, including construction of Markov chain model, design of auxiliary
searches, and computation of combinatorics, etc. Moreover, this study is based on the precondition that the
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transition matrix is diagonalizable. Thus, our future work would focus on analysis of RSHs whose transition
matrix are not diagonalizable.

Appendix

Appendix A. Computation of e′pj and q′
jp

[0] in Proof of Theorem 4

Denote pj = (p1,j , . . . , pn,j)
′, qj = (q1,j , . . . , qn,j)

′. By Lemma 4 we get the following results on pi,j .

1. If i > j, pi,j = 0;

2. if i = j, pi,j = 1;

3. if i < j, equation (26) implies that

pi,j =

j−1∏

k=i

rk,k+1

rj,j − rk,k
=

j−1∏

k=i

k+1
n

k
n −

j
n

= (−1)j−iCij , , i = 1, . . . , j − 1.

Meanwhile, we can get the values of qi,j :

1. If i < j, qi,j = 0;

2. if i = j, qi,j = 1;

3. if i > j, equation (26) implies that

qi,j =
i∏

k=j+1

rk−1,k
rj,j − rk,k

=
i∏

k=j+1

k
n

k
n −

j
n

= Cji , , i = j + 1, . . . , n.

In summary,

pj =
(

(−1)j−1C1
j , (−1)j−2C2

j , . . . , (−1)1Cj−1j , 1, 0, . . . , 0
)′
, (A.1)

q′j =
(

0, . . . , 0, 1, Cjj+1, C
j
j+2, . . . , C

j
n

)
, (A.2)

j = 1, . . . , n.

Combing (24) and (A.1) we know

e′pj =

j∑

i=1

i(−1)j−iCij =

j∑

i=1

(−1)j−iC1
jC

i−1
j−1 =

{
1, if j = 1;

0, if 2 ≤ j ≤ n. (A.3)

Moreover, (25) and (A.2) imply that

q′1p
[0] =

n∑

i=1

C1
i

Cin
2n

=
1

2n

n∑

i=1

C1
nC

i−1
n−1 =

n

2
. (A.4)

Appendix B. Computation of e′pj and q′
jp

[0] in Proof of Theorem 8

Denote pj = (p1,j , . . . , pn,j)
′, qj = (q1,j , . . . , qn,j)

′. Applying Lemma 4 we get the following results.

1. If i > j, pi,j = 0;

2. if i = j, pi,j = 1;
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3. if i < j, equation (35) implies that

pi,j =

j−1∏

k=i

rk,k+1

rj,j − rk,k

=





j−1∏

k=i

k
n

k−1
n −

j−1
n

= (−1)j−iCi−1j−1, i = 1, . . . , j − 1, j = 1, . . . , n− 1;

j−1∏

k=i

k
n

0− (1− k−1
n )

= (−1)j−iCi−1j−1
1

n+ 1− i , i = 1, . . . , j − 1, j = n.

Meanwhile, values of qi,j are as follows.

1. If i < j, qi,j = 0;
2. if i = j, qi,j = 1;
3. if i > j, equation (35) implies that

qi,j =
i∏

k=j+1

rk−1,k
rj,j − rk,k

=





i∏

k=j+1

k−1
n

k−1
n −

j−1
n

= Cj−1i−1 , i = j + 1, . . . , n− 1;

i−1∏

k=j+1

k−1
n

k−1
n −

j−1
n

n− 1

n− j + 1
= Cj−1i−1

n− j
n− j + 1

, i = n.

That is,

pj =





(
(−1)j−1C0

j−1, (−1)j−2C1
j−1, . . . ,−Cj−2j−1 , 1, 0, . . . , 0

)T
, j < n

(
(−1)n−1C1−1

n−1/C
1
n+1−1, (−1)n−2C2−1

n−1/C
1
n+1−2, . . . ,−C(n−1)−1

n−1 /C1
n+1−(n−1), 1

)T
, j = n.

q′j =

(
0, . . . , 0, 1, Cj−1j , Cj−1j+1 , . . . , C

j−1
n−2, C

j−1
n−1

n− j
n+ 1− j

)
, j = 1, . . . , n.

By equation (33), we know

epj =

j∑

i=1

(−1)j−iCi−1j−1i =
d

dx

(
j∑

i=1

(−1)j−iCi−1j−1x
i

)∣∣∣∣∣
x=1

=
d

dx

(
x

j−1∑

k=0

(−1)j−1−kCkj−1x
k

)∣∣∣∣∣
x=1

=
d

dx

(
x(x− 1)j−1

)∣∣∣∣
x=1

=

{
1, j = 1, 2,

0, j = 3, . . . , n− 1,
(B.1)

epn =
n∑

i=1

(−1)n−iiCi−1n−1/(n+ 1− i) = (n+ 1)
n∑

i=1

(−1)n−iCi−1n−1/(n+ 1− i)−
n∑

i=1

(−1)n−iCi−1n−1

= (n+ 1)

[(
n∑

i=1

(−1)n−iCi−1n−1

∫ x

0

xn−idx

)]

x=1

= (n+ 1)

[∫ x

0

xn−1
(
n−1∑

k=0

(−1)n−1−kCkn−1x
−k
)
dx

]

x=1

= (n+ 1)

[∫ x

0

(1− x)n−1dx

]

x=1

=
n+ 1

n
. (B.2)
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By equation (34), we know

q′jp
[0] =

n−1∑

i=j

Cj−1i−1
Ci−1n

2n
+ Cj−1n−1

n− j
n+ 1− j

Cn−1n

2n

=
1

2n




n∑

i=j

Cj−1n Ci−jn−j+1 − Cj−1n


 =

Cj−1n

2n
(
2n−j+1 − 2

)
. (B.3)

Appendix C. Estimation of ě′p̌j, q̌′
jp̌

[0] and q̌′
j ř

[1] in Proof of Theorem 9

Similar to computation in Appendix B, by (40) we know

p̌j =
(

(−1)j−1C0
j−1, (−1)j−2C1

j−1, . . . ,−Cj−2j−1 , 1, 0, . . . , 0
)′
, j = 1, . . . , n− 1

q̌′j =
(

0, . . . , 0, 1, Cj−1j , Cj−1j+1 , . . . , C
j−1
n−2

)
, j = 1, . . . , n− 1.

Then, equation (43) implies that

ěp̌j =

j∑

i=1

(−1)j−iCi−1j−1i =

{
1, j = 1, 2,

0, j = 3, . . . , n− 1.
(C.1)

Moreover, equation (44) implies

q̌′jp̌
[0] =

n−1∑

i=j

Cj−1i−1
Ci−1n

2n
=
Cj−1n

2n
(2n−j+1 − (n− j + 2)), (C.2)

and by equation (45) we know

q̌′j ř
[1] =

n−1∑

i=j

Cj−1i−1 ri,n ≤ Cj−1n−1(1− r0,n − rn,n)

= Cj−1n−1

[
1− 1

n

(
1− 1

n

)n−1
−
((

1− 1

n

)n
+ C1

n−1

(
1

n

)2(
1− 1

n

)n−2)]

= Cj−1n−1

(
1− n+ 1

n

(
1− 1

n

)n−1)
. (C.3)

Appendix D. Computation of ě′p̌j and q̌′
jp̌

[0] in Proof of Theorem 10

Derivation of ěp̌j and q̌jp̌
[0] is similar to that in Appendix B. By (57) we know

p̌j =





(
(−1)j−1C0

j−1, (−1)j−2C1
j−1, . . . ,−Cj−2j−1 , 1, 0, . . . , 0

)T
, j < αn

(
(−1)j−1C1−1

j−1/C
1
j+1−1, (−1)j−2C2−1

j−1/C
1
j+1−2, . . . ,−C(j−1)−1

j−1 /C1
j+1−(j−1), 1

)T
, j = αn,

q̌′j =

(
0, . . . , 0, 1, Cj−1j , Cj−1j+1 , . . . , C

j−1
αn−2, C

j−1
αn−1

αn− j
αn+ 1− j

)
, j = 1, . . . , αn.
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Then, equation (62) implies that

ěp̌j =

j∑

i=1

(−1)j−iCi−1j−1(n− (αn− i)) = (1− α)n

j∑

i=1

(−1)j−iCi−1j−1 +

j∑

i=1

(−1)j−iCi−1j−1i

=





n− αn+ 1, j = 1,

1, j = 2,

0, j = 3, . . . , αn− 1;

(D.1)

ěp̌αn =
αn∑

i=1

(−1)αn−i(n− (αn− i))Ci−1αn−1/(αn+ 1− i)

= (n+ 1)

αn∑

i=1

(−1)αn−iCi−1αn−1/(αn+ 1− i)−
αn∑

i=1

(−1)αn−iCi−1αn−1 =
n+ 1

αn
. (D.2)

By equation (63), we know that

q̌′jp̌
[0] =

αn−1∑

i=j

Cj−1i−1
Ci−1αn−1
2αn−1

+ Cj−1αn−1
αn− j

αn+ 1− j

(
1

2αn
− 1

2n

)

= Cj−1αn−1

[
1

2j−1
− 1

2αn−1
+

αn− j
αn+ 1− j

(
1

2αn
− 1

2n

)]
. j = 1, . . . , αn− 1, (D.3)

q̌′αnp̌[0] =
1

2αn
− 1

2n
. (D.4)

Moreover, equation (64) implies that
(

1− 1

n

)
Cj−1n−2

αn− j
αn+ 1− j ≤ q̌′j ř

[1] ≤
(

1− 1

n

)
Cj−1n−1, j < αn, (D.5)

q̌′αnř[1] = 1− α. (D.6)

Appendix E. Computation of e′
Rpj, q′

jp
[0]
R and q′

jr
[1] in Proof of Theorem 11

Similar computation in Appendix A, by (84) and (85) we know

pj =
(

(−1)j−1C0
j−1, (−1)j−2C1

j−1, . . . ,−Cj−2j−1 , 1, 0, . . . , 0
)′
,

q′j =
(

0, . . . , 0, 1, Cj−1j , Cj−1j+1 , . . . , C
j−1
αn−2

)
, j = 1, . . . , αn− 1.

Combining them with (76), (77) and (78), we know

e′Rpj =

j∑

i=1

(−1)j−iCi−1j−1(n− (αn− i)) =





n− αn+ 1, j = 1;

1, j = 2;

0, j = 3, . . . , αn− 1,

(E.1)

q′jp
[0]
R =

αn−1∑

k=j

Cj−1k−1C
k−1
αn−1

1

2αn−1
= Cj−1αn−1

[
1

2j−1
− 1

2αn−1

]
, (E.2)

q′jr
[1] =

αn−1∑

i=j

Cj−1i−1 ri,αn ≤
αn−1∑

i=1

Cj−1i−1 ri,αn ≤ Cj−1αn−1(1− r0,αn − rαn,αn)

= Cj−1αn−1

[
1−

(
1− 1

n

)αn−1]
. (E.3)
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