
Journal Pre-proofs

Autonomous damage recognition in visual inspection of laminated composite
structures using deep learning

Sakineh Fotouhi, Farzad Pashmforoush, Mahdi Bodaghi, Mohamad Fotouhi

PII: S0263-8223(21)00420-7
DOI: https://doi.org/10.1016/j.compstruct.2021.113960
Reference: COST 113960

To appear in: Composite Structures

Received Date: 13 January 2021
Revised Date: 5 April 2021
Accepted Date: 8 April 2021

Please cite this article as: Fotouhi, S., Pashmforoush, F., Bodaghi, M., Fotouhi, M., Autonomous damage
recognition in visual inspection of laminated composite structures using deep learning, Composite Structures
(2021), doi: https://doi.org/10.1016/j.compstruct.2021.113960

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Author(s). Published by Elsevier Ltd.

https://doi.org/10.1016/j.compstruct.2021.113960
https://doi.org/10.1016/j.compstruct.2021.113960


1

1 Autonomous damage recognition in visual inspection of laminated 

2 composite structures using deep learning 

3

4 Sakineh Fotouhi1, Farzad Pashmforoush2, Mahdi Bodaghi3, Mohamad Fotouhi1*

5 1 School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

6 2 Department of Mechanical Engineering, University of Maragheh, Maragheh, Iran

7 3 Department of Engineering, School of Science and Technology, Nottingham Trent University, 

8 Nottingham, NG11 8NS, United Kingdom

9 * Correspondence: Mohammad.fotouhi@glasgow.ac.uk 

10 Abstract 

11 This study proposes the exploitation of deep learning for quantitative assessment of 

12 visual detectability of different types of in-service damage in laminated composite 

13 structures such as aircraft and wind turbine blades. A comprehensive image-based 

14 data set is collected from the literature containing common microscale damage 

15 mechanisms (matrix cracking and fibre breakage) and macroscale damage 

16 mechanisms (impact and erosion). Then, automated classification of the damage type 

17 and severity was done by pre-trained version of AlexNet that is a stable convolutional 

18 neural network for image processing. Pre-trained ResNet-50 and 5 other user-defined 

19 convolutional neural networks were also used to evaluate the performance of 

20 AlexNet. The results demonstrated that employing AlexNet network, using the 

21 relatively small image dataset, provided the highest accuracy level (87%-96%) for 

22 identifying the damage severity and types in a reasonable computational time. The 

23 generated knowledge and the collected image data in this paper will facilitate further 

24 research and development in the field of autonomous visual inspection of composite 

25 structures with the potential to significantly reduce the costs, health & safety risks and 

26 downtime associated with integrity assessment.

27
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1 1. Introduction

2 Composite materials have the advantages of high strength to weight ratio, good 

3 vibration damping ability, and high wear, creep, corrosion, fatigue and temperature 

4 resistances [1]. Due to these excellent properties, composite materials are wildly used 

5 in different sectors such as civil, aerospace, wind energy, oil & gas, automotive, etc. 

6 Despite the advantages, an important problem for composites is their susceptibility to 

7 damage that can result in fatigue life reduction or catastrophic failure if unseen [2]–

8 [4]. Most polymeric composite materials have brittle and laminated nature, making 

9 them susceptible and sensitive to damage. As a result, in safety critical applications, 

10 engineers are forced to apply conservative design approaches based on low allowable 

11 strains. For example, maximum allowable design strains can be as low as 0.1% for 

12 carbon fibre composites, despite maximum fibre failure strains of up to 2% [5], [6]. 

13 Different damage mechanisms can happen in composite components, ranging from 

14 microscopic matrix cracking and fibre breakage to large, and critical impact damage 

15 [7], [8]. These damage mechanisms can be induced by operational loadings during 

16 service or unwanted events during manufacturing and assembly. Figure 1 shows 

17 examples of in-service surface damage in composite structures. Among these surface 

18 damage mechanisms, impact damage is very common for the aerospace industry, 

19 whereas erosion of the leading edge is observed frequently in composite wind turbine 

20 blades. These in-service damage mechanisms are likely to contain different 

21 microscale damage mechanisms such as fibre breakage, matrix cracking, and 

22 delamination [9], [10]. Figure 2 shows a schematic of these microscale damage 

23 mechanisms for a laminated composite under low velocity impact.
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Figure 1. In-service surface damage examples in laminated composite structures [11].

Figure 2. Main microscale damage mechanisms in laminated composites under impact loadings.

1

2 If a composite material component is damaged, the size, shape, depth, type, and extent 

3 of the damage and its restitution approach should be determined. A typical repair 

4 procedure and an example of barely visible impact damage repair in a laminated 

5 composite is shown in Figure 3.

6
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1

2 Figure 3. A typical composite structure repair procedure, and an example of barely visible 

3 impact damage repair process.

4

5 Of immediate importance for the composite integrity and serviceability evaluation is 

6 the ability to identify the damage and measure its extent by an appropriate non-

7 destructive inspection (NDI) technique. Several NDI techniques are used in the 

8 composite field, including visual testing or visual inspection [12], optical testing [13], 

9 ultrasonic testing [14], acoustic emission testing [15], thermographic testing [16], 

10 infrared thermography testing [17], radiographic testing [18], acousto-ultrasonic [19], 

11 shearography testing [20], electromagnetic testing [21], etc. Most, if not all, of these 

12 NDI techniques require high levels of operator experience to successfully apply and 

13 interpret the results. These NDI techniques are usually expensive, time-consuming, 

14 and sophisticated, and the component has to be out of service for the inspection; thus 

15 causing further inconvenience. These precautions reduce the inherent performance 

16 advantages of composites and even make them unsuitable for many applications in 

17 which catastrophic failure cannot be tolerated. As a result, there is a need for cost-

18 effective and reliable inspection solutions to ensure safety, reliability, and longer 

19 service life of composite structures.

20 Visual inspection is the main method of routine inspection for different composite 

21 structures in aircraft, wind turbine blades, and many other sectors [12]. It is 

22 considered the quickest, cheapest, and most common method to find cracks or surface 

23 dents, and it can reduce the need for a full scan by other expensive and complicated 

24 NDI techniques, or in some cases, it can reduce the need for other types of NDI if no 

25 critical damage is revealed. If a visual inspection reveals critical damage to a 

26 composite structure, inspectors may request non-destructive testing such as Ultrasonic 
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1 to determine the extent of the associated subsurface damage to determine the need for 

2 repair or replacement. For instance, over 80 percent of inspections on large aircraft 

3 are visual inspections, rope access visual inspection of composite wind turbine blades 

4 is also the most common inspection practice [22]. 

5 Therefore, visual inspection is the most used and least expensive and quickest method 

6 for assessing the condition of safety-related failures on critical composite structures. 

7 Consequently, reliable, and accurate visual inspection is vital to the continued safe 

8 operation of composite structures. Currently, visual inspection is mainly done by 

9 skilled operators, so the accuracy depends on the operator and there are health and 

10 safety risks. There are plenty of factors such as lighting, inspection time, inspector 

11 tiredness and experience, and environmental conditions which influence the reliability 

12 of visual inspection and probability of detection [23], [24]. 

13 Advances in automation [25], data analytics [26], [27], image acquisition techniques 

14 [28], [29], artificial intelligence technologies [30], [31], and computationally efficient 

15 smartphones, inexpensive high‐resolution cameras and drones [32], have recently 

16 enabled the capacity to build automated visual inspection systems that can surpass 

17 human accuracy. A schematic of recent advances that enables the potential of next‐

18 generation autonomous visual inspection systems in composite structures is shown in 

19 Figure 4. 

Figure 4. A schematic of recent advances that enables the potential of next‐generation 

autonomous visual inspection systems.
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1 High-quality algorithms and high-quality data for training those algorithms are 

2 essential factors that need to be established to develop autonomous visual inspection 

3 systems in composite structures. In this paper, the efficiency of artificial neural 

4 network (ANN) algorithms is evaluated for identifying the damage types and 

5 severities in visual inspection of composite structures. ANNs are a subclass of semi-

6 supervised machine learning techniques, and they have been successfully used in 

7 several studies for damage classification of composite materials. Among various 

8 ANNs, convolutional neural networks (CNNs) have attracted high attention in 

9 effectively handling image-based data due to their ability in extracting deep patterns. 

10 The ANNs also take the advantages of dataset augmentation and transfer learning that 

11 make it possible to train accurate models when limited data is available. Several CNN 

12 architectures have been proposed for image classification including AlexNet [33], 

13 FuseNet [34], ZF Net [35], and ResNet [36]. Saeed et al. [37] applied AlexNet CNN 

14 for thermography defect detection and depth estimation of 3D printed Carbon Fibre 

15 Reinforced Plastics (CFRPs), based on the pulsed thermography images taken from 

16 the samples with embedded air pockets. The proposed method identified embedded 

17 defects without any human interventions with high accuracy above 88%. Bang et al. 

18 [38] also employed CNN and transfer learning for the classification of thermographic 

19 images of carbon/epoxy composite specimens. They used Inception V2 architecture to 

20 identify the presence of the defects as well as their shapes (i.e. spheroidal, circular and 

21 irregularly shaped defects). Gong et al. [39] applied CNN for inclusion defect 

22 detection of aeronautics composite materials based on the X-ray images. According to 

23 the obtained results, the proposed CNN could accurately extract X-ray images 

24 features and detect the presence of the inclusion. There are some other studies towards 

25 the application of CNN in damage detection of composite materials which are based 

26 on non-image data generated from various inspection techniques, such as ultrasonic 

27 signals [40], structural vibration responses [41], lamb waves [42], distributed strains 

28 [43] and PZT sensors [44]. For example, Meng et al. [40] successfully used CNN for 

29 the classification of ultrasonic signals from CFRP samples to classify the voids and 



7

1 delamination defects.

2 In previous applications of CNNs on image-based data, the images were obtained 

3 through NDT techniques such as thermography and X-ray [37]–[39] from defects that 

4 occur during the manufacturing of composite materials. These studies were only 

5 focused on single class detection models (i.e., the presence of defects or not), without 

6 consideration of damage types and severity. A thorough search of the relevant 

7 literature yielded that machine learning-based image processing has not been 

8 exploited in identification and classification of visually inspected in-service damage 

9 mechanisms in composite structures. Despite many research publications on in-

10 service induced damage in composite structures, there is no comprehensive 

11 publication summarising different visible damage mechanisms on composite 

12 structures.

13 To address the aforementioned challenges, this paper introduces a novel exploitation 

14 of CNNs for quantitative assessment of image-based data taken from visual 

15 observation of different types of in-service damage in laminated composite structures. 

16 A comprehensive image-based data set of common in-service damage mechanisms 

17 (matrix cracking, fibre breakage, impact, and erosion) were collected from the 

18 literature. The data set was successfully used to train the CNNs to evaluate their 

19 accuracy and robustness in identifying the various in-service damage mechanisms and 

20 their severity (for example high energy or low energy impacts). Given the CNNs 

21 ability to detect different damage mechanisms on diverse material combinations, the 

22 introduced system can be implemented for a wide range of industries such as 

23 aerospace, wind, civil and oil & gas.

24 2. Methodology

25 2-1. Convolutional Neural Network

26 Deep learning is a subset of machine learning that mimics the behaviour of the human 

27 brain in processing data by learning tasks directly from sound, text, and images. CNN 

28 is a type of deep learning, developed to automatically and adaptively process 
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1 structured arrays of data [37], [45]. CNN consists of an input layer, several hidden 

2 layers, and an output layer. The hidden layers themselves include convolutional 

3 layers, pooling layers, activation layers, fully connected layer, and Softmax 

4 classification layer. The convolution layers consist of a set of filters (with learnable 

5 weights), which are exerted on the input image to extract its main features. An 

6 example of convolution operation with a 3x3 filter, stride size of two and padding size 

7 of one is illustrated in Figure 5. As depicted, the convolution operation convolves the 

8 input layers by sliding the filter through the input data horizontally and vertically, 

9 calculates the dot product of the weights and the input, and then adds a bias term. The 

10 step size of the filter movement is determined by the stride size. As shown in Figure 

11 5, the convolution operation is accompanied by a padding operation, which inserts 

12 additional layers to the image border. This operation leads to more accurate image 

13 analysis since it prevents data shrinkage and information loss in the image borders. 

14 Without padding, the input data progressively shrinks every time after the convolution 

15 operation. Also, the pixels in the image borders get covered (by the filters) only one 

16 time, while the filters continuously cover the middle pixels. This leads to the loss of 

17 information in the image borders. To overcome these problems, the application of 

18 padding operation is of great importance for accurate image classification. After 

19 convolution and padding operations, the activation layer adds some non-linearity to 

20 the network, since most of the real-world problems are non-linear [39]. For example, 

21 rectified linear unit (ReLU) activation function applies a threshold operation to each 

22 element, where any input value less than zero is set to zero. The pooling layer is then 

23 applied to progressively decrease the size of the layers (by performing the down-

24 sampling operation), which leads to the reduction in the number of iterations, weights 

25 and consequently the computation cost. An example of pooling operation with a 2x2 

26 filter and stride size of two is demonstrated in Figure 6. Through these steps, the input 

27 image is converted to a high-level feature map which is further processed by the fully 

28 connected layer that connects every neuron in one layer to every neuron in another 

29 layer, as shown in Figure 7. Finally, the Softmax layer is employed to classify the 
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1 input images. In a typical CNN, high precision image classification requires a very 

2 large labelled dataset, with a massive amount of training data with different possible 

3 variations in size, orientation, number of objects, etc [46]. Hence, application of pre-

4 trained models (transfer learning) is of great importance for efficient classification 

5 purposes. In transfer learning, the network has already been trained by a large dataset 

6 that includes various classes of objects (not essentially relevant to the specific target 

7 task). By fine tuning this pre-trained network, it can be employed as a starting point to 

8 learn a new task, in accordance with the classification goal. Figure 8 shows flowchart 

9 of the damage classification process applied in this paper.

Figure 5. An example of convolution and padding operations with a 3x3 filter, stride size of 

two and padding size of one.

10

Figure 6. An example of pooling operation with a 2x2 filter and stride size of two.
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1

Figure 7. Schematic representation of fully connected layers.

2

3

4 Figure 8. Flowchart of the damage classification process.

5 2-2. AlexNet

6 The superiority of AlexNet CNN architecture over others in exploitation of transfer 

7 learning for the classification of defects in CFRP thermograms [37] and satellite 

8 image data [47] has been demonstrated. AlexNet network is one of the most widely 

9 used CNN architectures that has been successfully trained on more than a million 
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1 images [33]. AlexNet network can learn rich feature representations for various types 

2 of images, which eliminates the need for time-consuming training of the network 

3 from the scratch. Furthermore, stable implementation of pre-trained version of 

4 AlexNet is developed in Matlab [48] that is used in this study. AlexNet architecture is 

5 illustrated in Figure 9, which contains five convolutional layers, three pooling layers, 

6 three fully connected layers and one Softmax layer.

Figure 9. Architecture of AlexNet network.

7

8 3. Results and discussion

9 3-1. Damage mechanisms data set

10 Figure 10 summarises the collected image data for this study including un-damaged, 

11 impact damage, erosion, matrix cracking and fibre breakage. A comprehensive set of 

12 images were collected from the literature from laminated composite materials with 

13 different thicknesses, materials, layups, texture, etc. The low and high impact damage 

14 types were distinguished from each other visually, where the images with a significant 

15 visible fibre breakage were categorised as high energy. A dataset containing 20, 24, 

16 16, 52, 25, 39, 28 and 24 images was collected for matrix cracking (Figure 11), fibre 

17 breakage (Figure 12), un-damaged (Figure 13), low energy impacted face (Figure 14), 

18 high energy impacted face (Figure 15), low energy back face (Figure 16), high energy 

19 back face (Figure 17), and erosion (Figure 18), respectively. The impact and erosion 



12

1 related images were collected from the literature [10], [41]–[53], and [54]–[59], 

2 respectively. The matrix cracking and fibre breakage pictures are taken from the 

3 literature [70]–[76].

Figure 10. Summary of the collected data, including no damage, impact damage (back and 

impacted faces, with low and high energy levels), erosion, matrix cracking and fibre breakage.

4

Figure 11. Microscopic damage dataset for matrix cracking.

5
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Figure 12. Microscopic damage dataset for fibre breakage. 

Figure 13. Un-damaged composites dataset.

1
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Figure 14. Low energy impacted face impact damage dataset.

1

Figure 15. High energy impacted face impact damage dataset.



15

1

Figure 16. Low energy back face impact damage dataset.

2

Figure 17. High energy back face impact damage dataset.

3
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Figure 18. Erosion damage dataset for wind turbine blades.

1

2 3-3. Classification of microscale damage mechanisms

3 The performance of AlexNet network is assessed in the classification of microscale 

4 damage mechanisms such as matrix cracking and fibre breakage. 75% of the dataset 

5 images were randomly selected for training purposes, and 25% were selected for 

6 validation purposes. First of all, the images were resized to meet the Alexnet input 

7 layer condition (i.e. image sizes of 227 x 227 x 3) using an augmented image 

8 datastore algorithm. Then, these images were used for training the deep learning 

9 network, using an initial learning rate of 0.0002. After training the network, its 

10 performance was evaluated by classification of the validation images. In this case, the 

11 best validation accuracy was 91%, obtained in the case of a learning rate of 5e-5, as 

12 shown in Figure 19. Some samples of the validation images classified by the network 

13 are depicted in Figure 20. Finally, the network was implemented for the classification 

14 of unseen images. As illustrated in Figure 21, the network has successfully classified 

15 the unseen images with a high accuracy level, where all the six unseen images have 

16 been accurately classified.
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Figure 19. The accuracy of AlexNet network in the classification of validation images.

1

Figure 20. Samples of the validation images classified by AlexNet network. 

2

Figure 21. Classification of unseen images of microscopic damage mechanisms.
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1 In order to evaluate the performance of AlexNet network, it is compared with five 

2 other user-defined neural networks and Resnet-50 [77] that is an established image 

3 processing CNN and was pre-trained with the ImageNet database [78]. The 

4 architecture of the user-defined networks (i.e. the number of convolutional layers, 

5 number of pooling layers, number and size of filters, etc.) was determined based on 

6 the data available in the literature [37]–[39], [41], as summarised in Table 1. The 

7 obtained results (i.e. the validation accuracy and CPU evaluation time) from 

8 classification of microscale damage mechanisms are listed in Table 2. It should be 

9 mentioned that all the computations were performed by MATLAB on Intel Core i7 

10 CPU @ 1.6 GHz and RAM 4GB. As illustrated in Table 2, among the user-defined 

11 networks, the highest accuracy is 84.62%, belonging to Net_4, with a CPU time of 

12 508.92 s; while the least accuracy is 61.54%, belonging to Net_1, with a CPU time of 

13 45.3 s. The accuracy of Resnet-50 CNN is 83.33%, with a CPU time of 153.63 s. 

14 Comparing these results with those of AlexNet network (i.e. accuracy of 91.67% and 

15 CPU time of 71.91 s) reveals the high performance of AlexNet network in the 

16 classification of damage mechanisms, in terms of accuracy and computational time 

17 efficiency. As a sample, the validation and classification results for networks Resnet-

18 50, Net_1 and Net_4 are illustrated in Figures 22-24, respectively.

19

20 Table 1. Architecture of user-defined neural networks.

No. Convolutional layers Pooling layers
Net_1 one convolutional Layer:

L1: 64 filters with size of 5x5, stride: 2; padding: 1
one pooling layer:
pool size:2x2; stride: [1 1]; padding: [0 0 0 0];

Net_2 three convolutional Layers:
CL1: 16 filters with size of 5x5, stride: 2; padding: 0
CL2: 64 filters with size of 3x3; stride: 2, padding: 1  
CL3: 128 filters with size of 3x3; stride:1; padding: 1

one pooling layer:
pool size:2x2; stride: [2 2]; padding: [0 0 0 0];

Net_3 three convolutional Layers:
CL1: 64 filters with size of 5x5, stride: 2; padding: 1
CL2: 128 filters with size of 5x5; stride: 2, padding: 2  
CL3: 256 filters with size of 3x3; stride:1; padding: 1

three pooling layers:
pool size:3x3; stride: [2 2]; padding: [0 0 0 0];

Net_4 five convolutional Layers:
CL1: 64 filters with size of 10x10, stride: 1; padding: 0

three pooling layers:
pool size:2x2; stride: [2 2]; padding: [0 0 0 0];
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CL2: 128 filters with size of 5x5; stride: 2, padding: 1  
CL3: 256 filters with size of 5x5; stride:2; padding: 1
CL4: 256 filters with size of 3x3; stride:2; padding: 2
CL5: 64 filters with size of 3x3; stride:1; padding: 1

Net_5 five convolutional Layers:
CL1: 64 filters with size of 10x10, stride: 1; padding: 0
CL2: 128 filters with size of 5x5; stride: 2, padding: 1  
CL3: 128 filters with size of 3x3; stride:2; padding: 1
CL4: 256 filters with size of 3x3; stride:2; padding: 2
CL5: 64 filters with size of 1x1; stride:1; padding: 1

five pooling layers:
pool size:3x3; stride: [2 2]; padding: [0 0 0 0];

1

2 Table 2. Accuracy and CPU time of user-defined neural networks and AlexNet 
3 network.

Network type Accuracy CPU evaluation time 
(second)

AlexNet 91.67% 71.91
Resnet-50 83.33% 153.63
Net_1 61.54% 45.30 
Net_2 69.23% 56.59
Net_3 76.92% 70. 82
Net_4 84.62% 508.92
Net_5 76.92% 543.14

4

Figure 22. The accuracy of Net_1 in the classification of validation images.

5
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Figure 23. The accuracy of Net_4 in the classification of validation images.

1

Figure 24. The accuracy of Resnet-50 CNN in the classification of validation images.

2

3 3-4. Classification of macroscopic damage mechanisms

4 In this section, the performance of AlexNet network is illustrated in the classification 

5 of impact damage, erosion, and un-damaged samples. The severity of the impact 

6 damage (i.e. high energy and low energy impact damage) was also distinguished by 

7 the network. Some sample classification results of the damage severity for the 

8 impacted face are depicted in Figure 25, and the obtained accuracy is shown in Figure 

9 26. As shown, the validation accuracy is 96%, achieved in the case of the learning rate 

10 of 0.0001. It should be mentioned that the item marked by a red circle is wrongly 
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1 classified by the network. This object belongs to low impact energy category, but it is 

2 classified as high impact energy, which is due to its similar features to high energy 

3 damage.

Figure 25. Classification of damage severity (six sample validation images of the impacted face).

4

Figure 26. Obtained validation accuracy for the classification of damage severity (the impacted face).

5 Followed by the training and validation processes, AlexNet network was implemented 

6 for the classification of some unseen images, as illustrated in Figure 27. The obtained 

7 results indicate the promising performance of the network for accurate classification 

8 of the damage severity for the impacted face. In the following, the network was used 

9 for the classification of the back face images. As illustrated in Figures 28-30, yet 

10 again, the network could successfully classify the damage severity for the back face 
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1 impact, with an accuracy level of 87%. 

Figure 27. Classification of damage severity for unseen images of the impacted face.

2

Figure 28. Classification of damage severity (six sample validation images of the back face).

Figure 29. Obtained validation accuracy for the classification of damage severity of the back face).

3
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Figure 30. Classification of damage severity for unseen images of the back face.

1

2 AlexNet network was also used to distinguish the various macroscopic damage 

3 mechanisms, i.e. impact, erosion, and un-damaged. As illustrated in Figure 31, the 

4 best validation accuracy is 93%, achieved in the case of a learning rate of 0.0001. 

5 Some sample classification results of validation images and unseen images are 

6 depicted in Figures 32 and 33. Again, the network demonstrated a promising 

7 performance and could accurately classify the various macroscopic damage 

8 mechanisms, as well as the un-damaged case.

9

Figure 31. Obtained validation accuracy for the classification of macroscopic damage mechanisms.

10
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Figure 32. Classification of validation images of macroscopic damage mechanisms.

1    

Figure 33. Classification of unseen images of macroscopic damage mechanisms.

2

3 Finally, AlexNet network was used to discriminate the impacted face and back face 

4 images. The obtained validation accuracies for low and high energy impact cases of 

5 the impacted and back faces are respectively 78% and 73%, as depicted in Figures 34 

6 and 35. In this example, the classification accuracies are much less than those of the 

7 previous examples, which is due to the similar features between the impacted face 

8 images and the back face images. In other words, there are not many obvious 

9 discrepancies between the images, so that the features extracted by the network are 
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1 not distinct enough, even by a naked eye, to yield accurate training and consequently 

2 reliable classification. This fact is better illustrated in Figures 36 and 37, which 

3 demonstrate the classification of the impacted face and back face images. As shown, 

4 some items (marked by a red circle) are wrongly classified by the network. In such 

5 cases, it is required to train the network with a much larger and comprehensive dataset 

6 containing enough variations in extractable features.

Figure 34. Obtained validation accuracy for the classification of impacted and back faces (low 

energy impact).

7

Figure 35. Obtained validation accuracy for the classification of impacted and back faces (high 

energy impact).
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1

Figure 36. Damage side classification of unseen images (low energy impact).

2

Figure 37. Damage side classification of unseen images (high energy impact).

3

4 3-5. Future research: This paper illustrated the potential of deep learning techniques 

5 in autonomous damage detection of impact and erosion in composite structures. 

6 However, there is a diverse range of damage types in composite structures, and 

7 different parameters such as environmental conditions, illumination, cleanliness, 

8 geometry, inspection angle and colour / finish that may influence the damage 

9 detectability using image processing. Therefore, further experimental and modelling 
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1 research is required to develop a comprehensive and high-quality dataset for different 

2 damage types in composite structures and their affecting parameters for a reliable 

3 machine learning based autonomous inspection. More research needs to be done on 

4 measuring the surface damage size, correlating the visible damage on the surface to 

5 the extent of potential invisible damage, and to predict residual life of the structures 

6 considering the damage content. The probability of surface damage detection, and its 

7 relationship with surface damage size for visual inspection needs to be established to 

8 be used in design calculations of structural strength and durability.

9

10 4. Conclusion:

11 In this study convolutional neural network (CNN) in conjunction with transfer 

12 learning was used for the classification of composite materials damage types and 

13 damage severity. For this purpose, the pre-trained AlexNet network, as one of the 

14 most accurate transfer learning methods, was implemented. The network was used for 

15 the classification of a comprehensive set of image data collected from the literature 

16 for in-service damage mechanisms. In this regard, different conditions were 

17 investigated, including classification of microscopic damage mechanisms, matrix 

18 cracking and fibre breakage, macroscopic damage mechanisms (erosion and impact), 

19 as well as classification of damage severity. For evaluating AlexNet’s robustness, 

20 Resnet-50 CNN and 5 user-defined deep neural networks were also developed and 

21 utilised for identifying the microscale damage types. The following results and 

22 conclusions were drawn from the present study:

23 - AlexNet network outperformed Resnet-50 and the user-defined deep neural 

24 networks regarding the accuracy level for identifying the damage type in a 

25 reasonable computational time.

26 - The validation accuracy of the network strongly depends on the learning rate, 

27 where its optimum value was achieved using the trial and error method.  



28

1 - The obtained accuracy in the classification of microscopic damage 

2 mechanisms (i.e. matrix cracking and fibre breakage) was 91%, achieved in 

3 the case of a learning rate of 5e-5.

4 - For damage severity classification (i.e. low energy or high energy impact), the 

5 validation accuracy was 96% for the impacted side, and 86% for the back face. 

6 For the case of macroscopic damage type indentification (i.e. erosion, impact 

7 and un-damaged), the best validation accuracy was 93%, achieved in the case 

8 of a learning rate of 0.0001.

9 - In spite of AlexNet network’s high accuracy in the classification of various 

10 damage types and damage severity, it couldn’t accurately classify the damage 

11 side (i.e. impacted face or back face). The obtained accuracies for low and 

12 high energy impact cases were 78% and 73%, respectively. This can be related 

13 to the similar features between the impacted face images and the back face 

14 images; where, there were not much obvious discrepancies between the 

15 images, so that the features extracted by the network were not distinct enough 

16 to yield accurate training and consequently reliable classification.

17 - The obtained results indicate the promising performance of deep learning to 

18 automate visual inspection, however it is highlighting the need for an 

19 improved dataset library, and customised classifiers for deep learning training.

20 - Future works could focus on developing comprehensive and high-quality 

21 datasets for different damage types in composite structures, and correlating the 

22 damage extent to the residual lifetime of the structure, making it possible to 

23 accurately train advanced deep learning algorithms for autonomous visual 

24 inspection purposes.
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