A decomposition-based heuristic for a multicrew coordinated road restoration problem

Akbari, V., Sadati, M.E.H. and Kian, R. ORCID: 0000-0001-8786-6349, 2021. A decomposition-based heuristic for a multicrew coordinated road restoration problem. Transportation Research Part D: Transport and Environment, 95: 102854. ISSN 1361-9209

[img] Text
1434791_Kian.pdf - Post-print
Full-text access embargoed until 24 April 2022.

Download (348kB)

Abstract

Natural disasters disrupt the connectivity of road networks by blocking road segments, which impedes efficient distribution of relief materials to the affected area. We study the problem of finding coordinated paths for clearing teams so that the connectivity of the road network is regained in the shortest time. We provide an efficient novel heuristic algorithm for this problem. In our algorithm, the problem is first pre-processed to define a binary problem to generate initial solutions, and then several rich and problem-specific neighborhood search moves are applied to improve the derived initial solutions. We provide several analytical results which facilitate the design of our algorithm. The performance of our proposed algorithm is assessed by different numerical experiments, and a comparison with existing algorithms from the literature using instances from Istanbul road networks. The results demonstrate that our algorithm performs notably better, both in terms of speed, and proximity to optimal solution.

Item Type: Journal article
Publication Title: Transportation Research Part D: Transport and Environment
Creators: Akbari, V., Sadati, M.E.H. and Kian, R.
Publisher: Elsevier
Date: 2021
Volume: 95
ISSN: 1361-9209
Identifiers:
NumberType
10.1016/j.trd.2021.102854DOI
S1361920921001553Publisher Item Identifier
1434791Other
Divisions: Schools > Nottingham Business School
Record created by: Jonathan Gallacher
Date Added: 04 May 2021 15:50
Last Modified: 31 May 2021 15:03
URI: http://irep.ntu.ac.uk/id/eprint/42808

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year