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Abstract

Understanding the mechanisms that control the body’s response to inflammation is

of key importance, due to its involvement in myriad medical conditions, including

cancer, arthritis, Alzheimer’s disease and asthma. While resolving inflammation has

historically been considered a passive process, since the turn of the century the hunt

for novel therapeutic interventions has begun to focus upon active manipulation of

constituent mechanisms, particularly involving interactions between immune cells and

pro- and anti-inflammatory mediators. We here address the specific question of how

inflammatory damage can spread spatially due to the motility of these cells and

mediators using mathematical and agent-based modelling.

We firstly extend the existing homogeneous models of Dunster et al. (2014) to

incorporate spatial behaviours. Through bifurcation analysis and numerical sim-

ulation of the resulting partial differential equation (PDE) models, we show that

spatially-inhomogeneous outcomes can present close to the switch from bistability to

guaranteed resolution in the corresponding homogeneous models, but that this be-

haviour is tightly controlled by the dynamics of anti-inflammatory mediators. We

then move to a hybrid PDE-Agent Based Model (ABM) approach, capable of sim-

ulating individual cells and a more diverse range of cell behaviours. In particular,

we address the questions of whether initially localised damage can invade neighbour-

ing healthy tissue, and the extent to which sub-optimal directed cell motility (such

as that associated inflammatory conditions such as chronic obstructive pulmonary
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disease) can impact upon the long-term outcome. We illustrate that changes to the

values of physiologically-relevant parameters can act as a switch between healthy and

pathological scenarios; with careful parameterisation, our approach exhibits scope for

elucidating how these key mechanisms could be actively manipulated to potentially

identify new therapeutic interventions.
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Chapter 1

Introduction

Inflammation (and its resolution) is central to the progression of many diseases and

health conditions. Therefore, a thorough understanding of the process involved in

the inflammatory response is central to the ongoing hunt for new treatments and

therapies. The over-arching aim of this thesis is to investigate, through mathemati-

cal models, the implications of the spatial spread of inflammation on the long-term

global outcome, examining whether spatially-dependent aspects of the inflammatory

response, such as cell motility, can allow localised damage to invade neighbouring

healthy tissue or can present a switch between restoration of health and chronic

outcomes. This is motivated by current gaps in the existing literature, in which theo-

retical models of inflammation overwhelmingly focus on its temporal dynamics, often

neglecting the spatial domain in which biological variables of interest operate.

In this study, we aim at addressing these gaps by developing spatial models of in-

flammation, focusing on interactions between groups of cells prompted by the immune

response upon tissue injury. We first extend an existing homogeneous model that cap-

tures interactions between inflammatory mediators, neutrophils and macrophages to

incorporate spatial behaviour. Through bifurcation analysis and numerical simula-

tion, we show that spatially inhomogeneous outcomes can present close to the switch
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CHAPTER 1. INTRODUCTION 11

from bistability to guaranteed resolution in the corresponding homogeneous model.

Finally, we show how aberrant spatial mechanisms can play a role in the failure of

inflammation to resolve and discuss our results within the broader context of seek-

ing novel inflammatory treatments. We then proceed to describe the assembly of a

hybrid mathematical model in which the spatial spread of inflammatory mediators is

described through partial differential equations, and immune cells (neutrophils and

macrophages) are described individually via an agent-based modelling approach. We

pay close attention to how immune cells chemotax toward pro-inflammatory media-

tors, presenting a model for cell chemotaxis that is calibrated against experimentally

observed cell trajectories in healthy and Chronic Obstructive Pulmonary Disease

(COPD)-affected scenarios. We illustrate how variations in key model parameters

can drive the switch from resolution of inflammation to chronic outcomes, and show

that aberrant neutrophil chemotaxis can move an otherwise healthy outcome to one

of chronicity. Finally, we reflect on our results in the context of the on-going hunt for

new therapeutic interventions.

This chapter presents an overview of the main topics of interest for this work,

by providing a theoretical introduction to a number of subjects that will be further

developed in the following chapters. Firstly, a brief summary of the conditions that

involve inflammation is provided in Section 1.1; a detailed biological description of

the inflammatory process follows in Section 1.2; a review of the relevant literature

in the modelling of inflammation is also presented in Section 1.3, followed by the

definition and significance of patterns in biology and mathematics in Section 1.4;

finally an overview of the whole thesis is provided, by outlining each chapter’s content

in Section 1.5.



1.1. THE PROMINENCE OF INFLAMMATION IN HEALTH AND DISEASE 12

1.1 The prominence of inflammation in health and

disease

Inflammation has a central role in a large variety of pathophysiological processes

and has long been recognised as a crucial step in the development of many diseases

and chronic conditions. Although the range of pathologies that feature or arise from

inflammation varies greatly (from cancer, to diabetes, to arthritis just to name a

few), the cellular and chemical pathways that characterise the acute inflammatory

response remain the same, making it important to specify and clarify these generic

underlying mechanisms that control and lead these processes. As the common denom-

inator in response to both tissue injuries and infectious agents, inflammation has long

been associated to many diseases, thus suggesting a new approach in investigating

complex pathologies such as cancer or Alzheimer, amongst others, by tackling those

inflammatory mechanisms that have been shown to play a role in the development

of such serious conditions. In this sense, inflammation can be regarded as key to a

variety of diseases, many of which are still poorly understood; studying inflammation

thus provides scope for new perspectives in the development of drugs and treatments

(Hunter, 2012). While acute inflammation in itself is a physiological process aimed

at promoting the release and action of specific cells and chemicals in order to re-

store a healthy state that has been disrupted by either injury or external pathogens,

impairments and disorders affecting the delicate network of interactions that tightly

regulate the inflammatory response can lead to chronic damage. Most diseases asso-

ciated with inflammation arise from its degeneration into chronic state (Libby, 2007),

with perpetual or recurring inflammations recognised as symptoms and features of

such conditions.

Diabetes, a metabolic disease affecting an ever increasing number of people world-
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wide, has long been associated with inflammation, with researchers identifying the

role of the immune system in its pathogenesis (Pollack et al., 2016). While this con-

nection has already been characterised in type 1 diabetes, the links suggesting the

exact mechanisms of inflammation’s action on pancreatic cells and insulin resistance

are still poorly understood, but nevertheless remain key in type 2 diabetes as well,

as illustrated by Donath & Shoelson (2011). While traditional treatment for type 2

diabetes focuses on reducing hyperglycemia, completely neglecting the role of inflam-

mation in this disease, in recent years a great interest has been posed in targeting

this debilitating and costly long term condition with anti-inflammatory therapies.

However, it still remains challenging to fully appreciate the inflammatory pathways

that feature in diabetes and how best to address them in terms of development of

new drugs and treatments (Deans & Sattar, 2006). Furthermore, the link between

inflammation and diabetes has much wider implications, by directly involving or trig-

gering other pathologies such as obesity, which has also been associated to low levels

of chronic inflammation, as exposed by Wellen & Hotamisligil (2005).

A number of heart conditions have also been shown to arise in response to inflam-

matory mechanisms. Given the impact of these diseases and their strong correlation

to type 2 diabetes and obesity, the centrality of inflammation and in particular of

pro-inflammatory cytokines as markers of cardiac disorders motivate the interest of

researchers in further investigating the links between these often complementary and

overlapping conditions (Yudkin et al., 2000). Following this pattern, Koenig (2001)

and Yudkin et al. (2000) have individuated specific inflammatory mediators that are

key in the development of coronary heart disease. More generally, as illustrated by

Hansson (2005), atherosclerosis, which eventually leads to coronary heart disease, is

in itself an inflammatory disease that still remains challenging to tackle in spite of

its high incidence in mortality rates worldwide (Barquera et al., 2015; Roquer & Ois,

2010). As explained by Libby (2006), the focus of researchers in this area is to better
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clarify the inflammatory mechanisms that underlie cardiovascular diseases, in order

to help targeting and prevent their development at much earlier stages.

Among the pathologies directly arising as a result of systemic chronic inflamma-

tion, rheumatoid arthritis is of particular importance. This disease is characterised by

recurring inflammation of joints, eventually leading to their irreversible deterioration

and triggering in turn the activation of additional inflammatory pathways (Sweeney

& Firestein, 2004; Chimenti et al., 2015). The systemic spread of inflammatory pro-

cesses initiated by articular inflammation further worsens the risks of cardiovascular

morbidity and constitutes a precursor of ventricular arrhythmias (Lazzerini et al.,

2017).

Pulmonary diseases also figure amongst the many chronic conditions associated

with inflammatory mechanisms. As highlighted by Gan et al. (2004), inflammatory

markers are expressed in correspondence to impaired lung functionality, typical of

chronic obstructive pulmonary disease. This disease is itself a leading factor towards

a number of conditions like cardiovascular disorders and osteoporosis. Again, a funda-

mental link between these diseases is systemic inflammation, as exposed by Sevenoaks

& Stockley (2006), with early detection of the pro-inflammatory activity and targeted

therapeutics currently being crucial points of focus within the research community.

As it is well established that many cancers arise from chronic states of inflamma-

tion (Moss & Blaser, 2005; Itzkowitz & Xianyang, 2004), much of the research related

to tumourigenesis as well as its proliferation and metastatisation involves the study

and analysis of the inflammatory pathways from which neoplasias may arise. While it

is clear that inflammation does not necessarily degenerate into cancer development,

the understanding of the mechanisms that regulate its chronicisation remains one of

the key issues researchers are interested in. Inflammation is known to be a risk factor

for many cancers (Shanthini & Balkwill, 2015), while also playing a critical role in fur-

ther stages of tumour progression (Grivennikov et al., 2010; Coussens & Werb, 2002).
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As such, the new approaches in both the diagnosis of early tumour formation and the

development of anti-tumoural drugs point towards the benefits of targeting inflam-

mation as a promising alternative to more traditional and aggressive treatments. In

particular, the expression of inflammatory cytokines within the neoplastic microenvi-

ronment suggests to further investigate the impact of anti-inflammatory therapies in

the treatment of cancer. While tumour related therapies already include a number of

anti-inflammatory drugs and treatments, the clarification of the role of inflammation

in tumour growth and spread remains a promising leading aspect of cancer research

(Rayburn et al., 2009; Balkwill et al., 2005).

Inflammation has been shown to be critical and possibly decisive also in the

broader spectrum of Central Nervous System (CNS) injuries and diseases as well as

modulating the progression of neurodegenerative disorders. The implications of such

a link are multiple and fundamental in suggesting new investigative and therapeutic

approaches to a variety of serious conditions (strokes, Alzheimer’s and Parkinson’s

diseases, . . . ) that are still incurable and affect a growing number of people worldwide.

In particular, inflammatory activity within the CNS is now recognised as a leading

factor in the development of neurodegenerative diseases (Perry, 2004). On the other

hand, the expression of different cytokines and their varied effects at different stages

of the inflammatory response highlights the difficulties in determining the exact mech-

anisms that regulate the progression of CNS diseases. The highly dynamical nature

of inflammation as a tightly balanced and controlled response of both beneficial and

disruptive cascades of interactions explains the more recent interest of researchers

in investigating the impact of the promotion of specific inflammatory pathways as

a therapeutic tool, rather than suppressing inflammation altogether (Wyss-Coray &

Mucke, 2002). Lucas et al. (2006) expose the promising but still partial results that

this approach has provided for various CNS diseases, by targeting specific inflamma-

tory mediators in the development of new therapies. While the potential benefits of
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this approach for acute CNS injuries (traumatic brain injuries, stroke, cerebral is-

chaemia, epilepsy, . . . ) are already clear, this paper also highlights the criticality and

challenges in the characterisation of chronic CNS diseases, where the exact role and

effect of inflammatory mediators on the progression of neurodegenerative disorders

are still poorly understood, with experimental trials and animal models providing

mixed results. In particular, as shown by Gao & Hong (2008), is the degeneration

of neuroinflammation into an uncontrolled process that characterises the progression

of irreversible neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Hunt-

ington’s diseases and multiple and amyotrophic lateral scleroses. The understanding

and regulation of inflammation is thus seen as key in the progression of neurodegen-

erative disorders, whose development and outcome can be modulated by the same

inflammatory mechanisms that trigger them. This principle has since shifted the fo-

cus of researchers in treating and analysing Alzeheimer’s as an inflammatory disease

(Strohmeyer & Rogers, 2001; Heppner et al., 2015; Holmes & Butchart, 2011), with

Wyss-Coray & Rogers (2012) identifying inflammation as a possible tuning tool in the

prevention and treatment of Alzheimer’s. Similarly, the research of other prominent

neurodegenerative disorders has also seen significant progress in this direction (Hald

& Lotharius, 2005; Perez-Cerda et al., 2016; Rocha et al., 2016).

Below, we examine in greater detail the key cellular and molecular events that

contribute to the inflammatory response in the myriad conditions described above.

1.2 A biological introduction to inflammation

Inflammation is a physiological process that involves a complex and intricate chain

of reactions, at both cellular and molecular levels, as well as on a macroscopic scale,

that has long been investigated and studied. The understanding of acute inflam-

mation can be easily traced back to antiquity, with the four cardinal signs of the
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inflammatory event being identified, more than two millennia ago, by the Roman

physician Cornelius Celsus as rubor et tumor cum calore et dolore, that is redness

and swelling with heat and pain (Woolf, 1986; Plytycz & Seljelid, 2003). By taking

into account also a fifth key feature, that is functio laesa or loss of function, a minimal

but accurate description of what inflammation is already emerges. In the following

centuries and up to now, many more in-depth mechanisms have been identified and

clarified, outlining how inflammation consists of a number of many complex, different

and overlapping events, with the main aim of restoring the perturbed equilibrium of

a previous healthy state. This perturbation can come in a variety of forms, most

commonly by either injury or pathogenic infection, with any of such disruptive events

eventually damaging the tissue and thus immediately triggering acute inflammation,

expressly a series of localised and cellular changes that typically resolve within hours

to days.

In this context, upon damage, the inflammatory response is set up by specific

immune cells which are locally recruited and serve as sentinels of the insulted tissue

(Diegelmann & Chalfant, 2016). Sentinel cells are a group of various cells that are

involved, with different roles, in the first line of defence to develop an appropriate line

of action against the occurring injury. More specifically, this consists in identifying

the damage (either traumatic or pathogenic) through special surface receptors that

recognise molecular patterns typical of wounded tissue or infectious agents. The swift

sensing of sentinel cells is the main trigger to a larger scale of cellular interactions and

prompts the further release of pro-inflammatory mediators which in turn contribute

to and actively promote the inflammatory response. The chain of cellular interactions

that spur from the prolonged pro-inflammatory activity eventually leads to a quick

and efficient clearance of the damaged site, paving the way for tissue repair and full

recovery, by a strong decrease in concentration of both pro-inflammatory mediators

and acute inflammatory cells while enhancing the production of anti-inflammatory
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mediators which actively counteract inflammation’s spread and development, thus

ensuring that a healthy condition is restored (Serhan et al., 2010).

1.2.1 Cellular events in acute inflammation

The tight network of events that regulate acute inflammation, upon tissue damage,

provide the injured site with a quick and continuous release of inflammatory mediators

that differentiate in nature, specific function and timespan effectiveness but overall

help to coordinate, promote and eventually resolve inflammation. In particular, two

large groups of chemicals serving as pro- and anti-inflammatory mediators are active

and high in concentration, the former at early and progressing stages of inflammation

and the latter in its final stages. Pro-inflammatory mediators comprise a wide range of

molecules, with a subset already present and stored as preformed in the healthy tissue

and immediately released by specific cells (mast cells, Diegelmann & Chalfant, 2016).

From the variety of chemicals released by these cellular granular stores, (namely serine

proteases, vasoactive amines, cytokines and growth factors), the vasoactive amine

histamine is responsible for vasodilation and increase in capillary permeability. This

is a key feature to allow circulating immune cells and proteins to enter the injured area

that results in local edema. Activated mast cells are also responsible for synthesising

a variety of inflammatory cytokines and lipid molecules, while more mediators are

the resulting product of plasma protein pathways (regulated by complement and

coagulation systems, Phillips et al., 2006).

Similarly to the onset of acute inflammation, as most recent research studies

have underlined, resolution of inflammation is also an active process, with anti-

inflammatory mediators modulating cellular interactions and prompting restoration

of the healthy pre-inflammatory condition (Lawrence et al., 2002). A high number of

anti-inflammatory mediators have been identified in the form of endogenous molecules
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that either restore vascular permeability (such as adrenaline and noradrenaline) or in-

hibit leukocytes activation (through the second messenger signalling molecule cAMP).

Another group of hormones, glucocorticoids, provide the main feedback responsible

for the reduction of inflammation by antagonising the production of pro-inflammatory

mediators on one hand and enhancing the synthesis of more anti-inflammatory medi-

ators on the other (Lawrence et al., 2002). Similarly, lipid mediators also contribute

to the anti-inflammatory activity by actively promoting resolution of inflammation

and tightly regulating cellular concentration levels at the injury site (Lawrence et al.,

2002).

Much of the inflammatory activity initiated by chemical mediators is carried out

by leucocytes or white blood cells, characteristic of the immune system and compris-

ing a varied group of cells with different features and functions. In general, upon tissue

damage, the initial release of pro-inflammatory mediators causes enhanced vasodila-

tion and reduces capillary blood flow, thus resulting in locally increased recruitment

of leucocytes directly interacting with vascular endothelium and finally entering the

injured site through molecule-bound adhesion mechanisms. Different types of leu-

cocytes are recruited at different times and with varied functions. Neutrophils, the

most numerous white blood cells in humans, making up to 75% of the total circu-

lating, are the first cell population to rapidly intervene in the earlier stages of acute

inflammation with varied tasks in tackling the local tissue disruption. Neutrophils are

produced in the bone marrow and released into the blood stream in an already active

form (Kolaczkowska & Kubes, 2013). The main feature of neutrophilic activity is the

ability to rapidly and efficiently migrate to the injury site to engulf or neutralise the

sources causing tissue damage. While most neutrophils are recruited to the injured

site, a smaller number of other leukocytes can already be present in the area of inter-

est (Woolf, 1986). The efficient recruitment of neutrophils is crucial to inflammation

development and its eventual resolution, with these white blood cells typically en-
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tering the insulted site within minutes of the occurred injury. The emigration from

the blood stream to the local damaged tissue is prompted by specific signalling inter-

actions between neutrophils and endothelial cells that, upon activation, attract the

flowing neutrophils to the endothelium through adhesion mechanisms. The conse-

quent cell-to-cell recognition and interaction between the endothelial structure and

adhering neutrophils allows the latter to pass the cellular endothelium gaps and fi-

nally enter the extravascular space (Woolf, 1986; Diegelmann & Chalfant, 2016). This

whole process, while being particularly complicated and presenting some interactive

mechanisms that are not completely clarified yet, is quite rapid and usually requires

from two to fifteen minutes to complete (Kolaczkowska & Kubes, 2013).

The articulate signalling activity that attracts neutrophils to the injury site and

coordinates their phagocytic and neutralising action is known as chemotaxis. This

consists of a chain of signal transmission and transduction events that results in a

highly organised and ordered vectorial motion of neutrophils to the inflammation site,

together with a selective action on those pathogens or harming particles responsible

for the ongoing inflammation (Woolf, 1986). Once at the injury site, the specificity

of neutrophil activity is ensured by a precise recognition of the insulting object that

is thus phagocytosed through engulfment of the intrusive particles to the membrane

and their inclusion in internal vesicles in which they are finally digested and neu-

tralised. Alternatively, neutrophils can also externally trap pathogens or damaging

debris through a network of extracellular fibres, known as Neutrophil Extracellular

Traps (NET), primarily composed of neutrophilic DNA and granular proteins that

effectively clear the selected targets (Kaplan & Radic, 2012; Zawrotniak & Rapala-

Kozik, 2013). Furthermore, essential to the inflammation progress and eventual reso-

lution, neutrophils release internal granular contents to the extracellular environment

in the form of mediators, mainly comprising Reactive Oxygen Species (ROS) and pro-

teases, that further promote inflammation and recruitment of new neutrophils. On
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the other hand, upon phagocytosis, the internal disposal of the phagocytic activity

heavily relies on enzymatic and oxygen-dependant mechanisms also involving ROS.

The typical toxicity of both these enzymatic particles and highly reactive molecules

already suggests a further critical feature of the inflammatory process, that is the

adequate removal and clearance of neutrophils that have completed their activity and

phagocytosis. These neutrophils thus undergo apoptosis, a physiological process of

programmed cellular death that prepares for their clearance and removal, biologically

designed to prevent neutrophilic release of toxic contents (Fox et al., 2010). It is im-

portant to highlight that apoptosis is fundamentally different from necrosis, in which

the cellular death is triggered by irreversible cell damage involving the pouring out of

intracellular particles, that are potentially disruptive and provide a further source of

inflammation (Quinn et al., 2007). On the other hand, neutrophils become apoptotic

upon a regulated change in both their receptivity to specific signalling and mem-

brane proteins, as well as an impairment in adhesion mechanisms (Greenlee-Wacker,

2016). The morphological and chemical alterations that appear to characterise the

transition from active to apoptotic neutrophils are fundamental in initiating a further

cascade of cellular events crucially leading to the resolution of inflammation. In fact,

apoptotic neutrophils induce an increase in anti-inflammatory mediators, while their

presence in apoptotic form is actually limited as a result of a highly effective clear-

ance mechanism. This typically happens through the intervention of another group

of phagocytic white blood cells, called macrophages whose manifold activity includes,

but is not limited to, phagocytising apoptotic neutrophils.

Similarly to neutrophils, macrophages are also produced in the bone marrow but

are released in the blood stream in the immature form of monocytes. Instead, mature

cells are typically within the tissue and prompted into action by a variety of stimuli

characteristic of the earlier stages of inflammation. Depending on the residing tis-

sue, mature macrophages present different morphologies and functionalities and have
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distinct nomenclature to reflect their localisation. However, overall they share the

same distinctive feature of countering intruding agents and further coordinating the

inflammatory response. While classic literature (as suggested by Mosser & Edwards,

2008 and Diegelmann & Chalfant, 2016) considered a well established distinction

between two types of macrophages, namely M1 and M2 phenotypes, differentiating

in specific functions, with M1 macrophages traditionally designated to promote pro-

inflammatory activity and M2 macrophages later releasing anti-inflammatory me-

diators, it has more recently emerged that such subsets are quite limited in their

biological description of the inflammatory events (Lawrence et al., 2002). Rather,

macrophages are believed to express a wide range of phenotypes in between the M1

and M2 ones, with particular specificities but also overlapping functions. More im-

portantly, it is now well established that macrophages play a key role in the resolution

of inflammation, highlighting how the positive outcome of the inflammatory event is

an active process (Serhan et al., 2007; Ortega-Gomez et al., 2013; Freire & Van Dyke,

2013). In this regard, when exposed to the early inflammatory response led by neu-

trophils’ rapid recruitment and release of pro-inflammatory mediators, macrophages

are induced to further reinforce the phagocytic activity, with similar mechanisms to

that of neutrophils. Furthermore, at this stage the interaction of macrophages with

endothelial cells results in chemotactic recruitment of additional pro-inflammatory

mediators that in turn enhance neutrophil activity. With the sequential and coordi-

nated efforts of leukocytes to phagocytose and neutralise the damaging particles and

pathogens, macrophages gradually expose more anti-inflammatory phenotypes that

lead to the eventual resolution of inflammation. The wound healing process lead by

macrophages inhibits the pro-inflammatory response by releasing a variety of chem-

icals as anti-inflammatory mediators and growth factors that induce and promote

tissue repair. Furthermore, an important step towards resolution of inflammation

relies on an efficient clearance by macrophages of the apoptotic neutrophils at the in-
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flammation site. This process involves multiple interactions between the two groups of

cells, with macrophages firstly attracted by apoptotic neutrophils (Hochreiter-Hufford

& Ravichandran, 2013) and consequently ingesting them through a process named

efferocytosis. Efferocytosis ensures a rapid clearance of apoptotic neutrophils, whose

otherwise prolonged presence and spilling of toxic contents would result in damage

of the local tissue, thus ensuring a correct healing process. This also further clari-

fies how in healthy development and resolution of inflammation, levels of apoptotic

neutrophils are relatively low, since their clearance is physiologically rapid and effec-

tive. On the other hand, impaired macrophagic activity would prolong inflammation,

possibly preventing correct tissue restoration and eventual resolution.

1.2.2 Unresolved outcomes: chronic inflammation

While the physiological response to any tissue damage is immediate and tightly reg-

ulated by specific cellular signalling, acute inflammation is not always naturally or

fully resolved and can degenerate into a pathological state, giving way to inflamma-

tory diseases and chronic inflammations (Phillips et al., 2006). In this regard, it is

still challenging to understand fully the mechanisms that prevent a healthy and phys-

iological recovery and lead instead to a critical and potentially disruptive condition.

At the same time, a variety of faulty events have been recognised and described that

are known to impair or prevent a correct resolution of inflammation, while further

research into this topic is key to suggesting new therapeutic targets to address the

current shortcomings of the understanding of chronic inflammation. Chronic inflam-

mation can result from a wide range of disfunctions of the inflammatory reactions,

as well as repetitive tissue injuries, that interfere with the physiological course of in-

flammation and cause its proliferation by prolonging it and further damaging neigh-

bouring tissues. Preventing the pathological spread of inflammation or appropriately



1.3. PREVIOUS MATHEMATICAL MODELS OF INFLAMMATION 24

and efficiently treating its chronic condition would ensure fundamental advance in

possible therapies of many numerous diseases that invariably present typical chronic

inflammatory patterns in their development and manifestation, such as cancer, dia-

betes, cardiovascular and autoimmune diseases, neurodegenerative disorders (Hunter,

2012). At the cellular level, chronic inflammation is characterised by high concen-

trations of macrophages that in turn provoke an overproduction of pro-inflammatory

mediators, eventually resulting in inflammation spread. In this context, endothelial

cells also undergo pathological changes that lead to an overexpression of adhesive

molecules, thus attracting even more leukocytes to enter the site. Endothelial repair

is also affected with common formation of fibrous scar tissue, possibly preventing

function recovery (Phillips et al., 2006). The mechanisms here described characteris-

ing the disfunctions leading to chronic inflammation will be discussed in greater detail

throughout the thesis.

1.3 Previous mathematical models of inflamma-

tion

With inflammation being such a prominent and complex event that, if uncontrolled,

might eventually lead to a variety of pathologies and unhealthy outcomes (chronic

inflammation, atherosclerosis, diabetes, cancer, etc.), it has long been a primary inter-

est of biologists and physicians to better understand inflammatory mechanisms and

exactly characterise the different pathways that are featured. The lack of knowledge

of specific interactions at both cellular and molecular levels regulating the cascades of

reactions that determine the inflammation spread and outcome has so far prevented

the development of effective and appropriate therapeutic strategies, considerably in-

creasing health costs and resources while also dramatically affecting patients (Pfizer,
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2017). As such, mathematical models are a particularly advantageous tool to fur-

ther deal with and investigate in this field. In general, mathematically modelling

biological processes is of great utility for multiple reasons, especially by enabling us

to predict outcomes of interest, with state of the art models practically providing

reliable simulations that considerably cut both economic and time costs. The study

and development of mathematical models for a wide range of biological applications

has thus been of great interest among the scientific community, involving researchers

from different backgrounds and relying on both a deep knowledge of the relevant

biology and its realistic mathematical representation, with the ultimate aim of bio-

logically analysing and interpreting the mathematical results with regard to insights

and predictions (Murray, 2001).

Many researchers have already developed and investigated valuable mathematical

models of inflammation, with particular focus on its dynamics and progression lead

by infective sources. While, in parallel, animal models are widely investigated (Webb,

2014), the important disadvantages given by this approach, being considerably more

expensive and time-consuming than in silico alternatives, coupled with the ethical

limitations of both animal experimentation and human trials, have further encour-

aged computational modelling research and development (Seoka et al., 2013). The

surge in mathematical models of inflammation comes in response to the inadequacy

of inflammation suppression as a valid and effective therapeutic tool. Meanwhile,

the variety of mathematical approaches that can be applied to the modelling task

(Vodovotz & An, 2013), such as equation-based models, hybrid models (combining

computational model comprising multiple scales), and in silico trials (computational

simulations of clinical trials), provide the opportunity to investigate and clarify those

inflammatory mechanisms that are still poorly understood, possibly suggesting how

to target and regulate therapeutic strategies (Dunster & Dransfield, 2016).

Earlier studies of inflammatory mechanisms at the tissue level, particularly focus-
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ing on the effectiveness of the immune response arising from bacterial infection, are

presented in a series of papers developing mathematical models that investigate the

interactions between inoculated bacteria and resident phagocytosing cells (Lauffen-

burger & Keller, 1979; Lauffenburger & Kennedy, 1981, 1983). In their papers, these

researchers highlight the crucial role of localised accumulation of leukocytes at sites of

infection. Overall, the analysis posed in Lauffenburger & Keller (1979); Lauffenburger

& Kennedy (1983) is however more focused on the mathematical parametrisation of

these features rather than studying the impact different spatial distributions might

have in terms of infection spread and eventual outcome. In particular, Lauffenburger

& Keller (1979) develop a one dimensional model comprising of a group of bacte-

ria acting as a chemoattractant source to leukocytes that in turn neutralise infectious

agents in order analyse how immune cells’ chemotaxis is affected upon bacterial infec-

tion. A detailed bifurcation analysis determines two possible spatially homogeneous

outcomes of a uniformly healthy or damaged tissue, with chemotaxis proving to be

crucial in effectively overcoming bacterial infection. Furthermore, conditions for the

potential existence of spatially heterogeneous steady states are also individuated, sug-

gesting the need to extend the model for further confirmation. This is achieved in

Lauffenburger & Kennedy (1983) in which a more refined model of the interactions

between bacteria and phagocytosing cells exhibits spatially inhomogeneous results

in response to threshold values of the parametrised chemotaxis. In particular, the

non-homogeneous states are shown to arise from the rapidity of cells’ motility with

respect to bacterial motility, with chemotaxis becoming less effective in driving spa-

tially inhomogeneous steady states upon an increased random motility of bacteria.

The related bifurcation analysis provides parametric conditions to predict the homo-

geneity of steady states, with spatial heterogeneity viewed as undesirable in terms of

tissue health. This is further confirmed by numerical results that successfully predict

the spatial nature of the steady states, upon varying values of chemotaxis, by also
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providing a biological interpretation of the severity of infection with respect to bac-

terial concentrations. On the other hand, the authors point to a lack of experimental

data on cells chemotaxis preventing a more accurate analysis of results in terms of

phagocytes spatial behaviour. Values for motility parameters are also adjusted in

order to overcome the limitations introduced by the oversimplification of the model

as well as to try to adapt the available in vitro experimental data to in vivo scenarios.

An interesting inflammatory model was developed by Kumar et al. (2004) by in-

vestigating the mass-action kinetics of two groups of early and late pro-inflammatory

mediators triggered by pathogenic action. The late pro-inflammatory mediator effec-

tiveness is bound to a saturating kinetics. The model’s analysis shows a set of results

consistent with typical acute inflammatory outcomes. In particular, through care-

ful manipulation of parameters, the model determines the links between pathogen’s

virulence and inflammatory response to inform on possible treatment approaches for

sever sepsis. Conversely, a major limitation of this model comes from overlooking

possible varied outcomes that may result from the same setting of clinical symp-

toms. To tackle this, a more structured model that includes more biologically sig-

nificant variables and handles overlapping symptoms is required. In this regard, it

is of particular importance to take into account the active role of anti-inflammatory

mediators in the resolution of inflammation (Serhan et al., 2008) and appropriately

model it. Brady et al. (2016) propose a mathematical model investigating the pro-

and anti-inflammatory interactions spurting from bacterial infection. The model is

calibrated to experimental measurements, with the mediators’ dynamics providing

patient-customised prediction of levels of specific groups of chemicals acting as both

pro- and anti-inflammatory mediators. Since cytokines of interest are modelled and

accounted for separately, the model lacks the analysis of inflammatory pathways aris-

ing from other mediators that have not been included.

A detailed model of inflammation studying the dynamics of anti-inflammatory
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processes has been proposed by Reynolds et al. (2006). This model studies the in-

flammatory components at cellular level, analysing measures of pathogens, active

phagocytes, tissue damage and anti-inflammatory mediators in time. The many pa-

rameters featuring in the resulting system of ordinary differential equations (ODEs)

are partly inferred from previous literature and partly assessed through bifurcation

analysis of the system’s steady states. As expected and widely supported by previous

research, anti-inflammatory mechanisms are shown to be key to a healthy outcome.

On the other hand, in this work, the acute inflammation is modelled as a response

to pathogenic action, thus excluding those instances of inflammation arising from

tissue damage and without any pathogens involved. Furthermore, as is intrinsic to

any model representation of complex processes, the simplifications introduced fail to

capture some biological mechanisms that may be determinant to the overall outcome,

while not all the quantities analysed have a straightforward biological correspondent.

Nonetheless, this model has been further expanded and analysed also by other re-

searchers, with interesting applications. One such application is the work of Day

et al. (2010) that proposes a predictive model to suggest therapeutic indications for

severe sepsis emerging from pathogenic infection, highlighting the potential benefits

introduced by feedback control methods. In response to the crucial need of recog-

nising early the different inflammatory stages and delivering effective therapeutic

strategies accordingly, Radosavljevic et al. (2013) develop a prediction model that

assesses past states and past drugs’ doses in order to predict new levels of pathogen,

pro-inflammatory mediators, markers of tissue damage, and anti-inflammatory me-

diators. This approach showed higher accuracy in the results, while also confirming

that a patient’s response to acute inflammation and specific therapies is complex and

varied. A further study focusing on the inflammatory response triggered by infec-

tion proposes a mathematical model that captures the interactive dynamics between

inflammatory mediators and pathogens (Roy et al., 2007). The prominence of inflam-
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mation in a variety of medical conditions has prompted more researchers to investigate

the potential benefits of computational models to wider and more specific scenarios

that inevitably involve inflammatory events (Russo et al., 2010; Day et al., 2015).

In more recent works, Torres et al. (2019) develop a mathematical model investi-

gating the dynamics of the influx of immune cells upon inflammation driven by peri-

tonitis. A system of ODEs representing the interactions between different groups of

leukocytes is studied with respect to the polarised behaviour of macrophages between

the inflammatory and anti-inflammatory phenotypes. The model is further fitted to

in vivo experimental data providing an extended framework to test intervention hy-

potheses to best assess targets and outcomes of therapeutic actions on macrophage

phenotypes. A further investigation in the role of macrophages is presented by Jansen

et al. (2019) with a particular focus on human inflammatory bowel disease. This work

illustrates the scope for effectively combining in silico modelling and analysis of data

extrapolated from laboratory experimentations. In particular the authors examine

the impact of including rich datasets inferred from relevant biopsies into mechanistic

models, suggesting improved parametrisation and higher spatio-temporal resolution,

which in turn broaden the applicability of such models. An in-depth study of varia-

tions in neutrophil recruitment and death pathway in the inflammatory response is

presented by Presbitero et al. (2019). In their work, Presbitero et al. (2019) inves-

tigate the effects of neutrophil apoptosis and necrosis in terms of evolutionary game

theory. Within this framework, apoptosis and necrosis are presented as diverging

strategies and driving mechanisms regulating the inflammatory outcome. The inte-

gration of this model with data inferred from inflammatory markers further provides

analyses of benefits and costs of each pathway and the prediction of percentages of

occurrence of both apoptotic and necrotic events with respect to the original insult

triggering the inflammatory response.

While the mathematical models reviewed so far consider inflammation at a mi-
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croscopic level, with system variables accounting for group of cells and chemicals,

other researchers have also proposed different approaches by modelling inflammatory

mechanisms at body level. Sullivan & Yotov (2006) develop a spatial model of in-

flammation (later also included in the paper of Upperman et al. (2007)) investigating

organs’ walls and structures, with leukocyte and cytokine interactions being framed

within lumen, epithelium, tissue and blood vessels, with a larger focus on pathogenic

action (with the bacteria’s anatomy affecting the cells migration). In their work, the

main interest is to investigate the response of organ walls to the specific pathological

events that commonly arise within premature infants (necrotizing enterocolitis). The

key results show that, when in presence of damaged epithelial membranes, otherwise

harmless bacteria can penetrate the tissue and cause infection. This, in turn, affects

the final outcome of the body’s inflammatory response, with full healthy recovery in

simulations with membranes damaged only partially, while on the other hand, upon

a complete lack of membrane walls, the results highlight persisting inflammation and

spread of damage. While it provides valuable evidence in terms of spatial modelling,

the specificity of the pathological implications investigated in this work, render this

model quite different from the main objective of our project, thus further motivating

our interest in clarifying the spatial characterisation of the non-pathogenic inflam-

matory response and individuation of possible therapeutic targets, with this latter

aspect missing in the work of Sullivan & Yotov (2006).

An effort in addressing part of these open issues is offered by Penner et al.

(2012), with a mathematical model of skin inflammation to study spatial patterns

typical of rash formations. In this model, the biological relation and interactions of

macrophages, chemoattractant chemicals and anti-inflammatory cytokines are simpli-

fied such that phagocytosing cells appear as a fixed quantity, and anti-inflammatory

mediators inhibiting both themselves and chemoattractants and acting on slower

timescales. This inhibitory and delayed action is proven to further push the model’s
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spatial behaviour, as highlighted by the study of the system’s stability and numeri-

cal simulations, with particular emphasis on the classification of patterns at varying

values of key parameters. While valuable for including spatial considerations in the

study of acute inflammation, this model still lacks fundamental biological features

(namely, the characterisation of macrophage dynamics in terms of phagocytosis and

turnover, the pro-inflammatory activity of both leukocytes and chemicals), as well as

not providing any link up with experimental data in terms of both parameter values

and simulations assessment.

Of particular significance to this work is the work of Dunster et al. (2014), since

this work will form the basis of the novel models presented throughout this thesis.

Analogously to the model of Day et al. (2010), Dunster et al. (2014) also propose

a mathematical representation of inflammation at cellular level in the form of an

ODE system, monitoring the dynamics of cellular components (active and apoptotic

neutrophils, macrophages) and chemicals (pro- and anti-inflammatory mediators).

The acute inflammation is considered to be in response to generic tissue damage,

and is thus in the absence of pathogens. In particular, three different models are

constructed and analysed in which individual populations of white blood cells are ac-

counted for separately, namely comprising active neutrophils, apoptotic neutrophils

and macrophages. Such differentiation allows for an accurate description of the im-

mune cells behaviour, with neutrophils promoting inflammation and macrophages

actively initiating its resolution. The first of the three models presented is deliber-

ately simple in its functions, omitting any anti-inflammatory mediators and charac-

terising cellular interactions in response to pro-inflammatory mediators only, which

trigger the acute inflammation. The numerical analysis of this initial ODE model

provides two sets of results, corresponding to either a healthy (zero) steady state or

unhealthy (chronic, non-zero) steady state. Manipulation of key parameters, namely

the number of cycles of damage and rate at which macrophages phagocytose apoptotic
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neutrophils, are also shown to affect the systems results. Increases in the former pro-

mote unresolved outcomes while enhancing the rate of phagocytosis enables previously

chronic outcomes to fully resolve. The bistability of the model is further investigated

through bifurcation diagrams, exposing the role of other key parameters acting as

a switch between chronic and resolved inflammation. In particular, manipulation of

the parameters controlling the rate at which macrophages leave the tissue and the

concentration of neutrophils required for half-maximal release of pro-inflammatory

mediators can result in a change of the systems stability. In particular, the increase

of the level at which neutrophils saturate in the presence of pro-inflammatory medi-

ators prompts the gradual weakening of the inflammatory response. Such behaviour

ceases for larger values of this saturation parameter when surpassing a bifurcation

point, after which only the healthy steady state is viable. Conversely, the system is

bistable for large values of the rate at which macrophages leave the tissue, while only

healthy outcomes are permissible for smaller values.

In order to model neutrophils behaviour more accurately, to account for them ac-

tively promoting inflammation by releasing toxic granules meant to counter infection,

regardless of the actual presence of pathological agents, the authors then present a

revised model that accounts for this added feature in the form of a positive feedback

for active neutrophils. Numerical and bifurcation analyses of this second model con-

firm the results inferred from the first model while also additionally exposing the key

role of the parameter controlling the rate of neutrophils apoptosis. In particular, an

increased rate of apoptosis favours healthy outcomes.

Finally, in order to include the anti-inflammatory role of macrophages, the au-

thors further extend the model by adding a separate variable accounting for anti-

inflammatory mediators, whose behaviour contrasts that of pro-inflammatory chem-

icals. Crucially, this extended model exhibits, in addition to the healthy and un-

healthy steady states, a sustained oscillatory regime, which is more closely associ-
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ated with chronic inflammation. This third model retrieves the results highlighted

by the previous models and additionally suggests, through bifurcation analysis, the

key role of the parameter controlling the production of anti-inflammatory mediators

by macrophages. In particular, an increase in the production of anti-inflammatory

mediators, reduces the rate of phagocytosis needed to prompt the resolution of in-

flammation.

While the results of Dunster et al. (2014) further confirm the critical and active

role of anti-inflammatory mechanisms in the resolution of inflammation, a key limita-

tion of this work is that spatial behaviours are omitted, with all three models focusing

on spatially-averaged, temporal dynamics. Simulating inflammatory interactions be-

tween leukocytes and cytokines and analysing their spatial development and spread

is crucial in understanding those mechanisms that still remain unclear and that could

potentially open the way to new effective therapeutic strategies. We take the homoge-

neous model of Dunster et al. (2014) as the starting point for our theoretical studies;

hence, we revisit the corresponding models in Chapters 2 and 3. In particular, we

present more detailed reviews of the governing equations of the first and third models

from this paper in Sections 2.1 and 3.2 respectively.

As the relevant literature (cited above) in the context of mathematical models

of inflammation shows, existing gaps emerge between the robust implementation of

mathematically complex models and their direct applicability in clinical contexts.

This is part of a more general gap investigating a variety of biological topics and

not specific of inflammation. The high interest in researching and developing ef-

fective models of biological processes is further motivated by the need to overcome

important limitations of both in vivo and in vitro approaches. Along with the most

immediate advantages in significantly optimising both costs and time and replica-

bility of results, mathematical models offer the possibility to assess quantities that

cannot be measured directly and to tailor patient-customised approaches by careful
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manipulation of parameters, which studies of inflammation cannot otherwise directly

address.

Narrowing our aims to contribute to the research of mathematical models of in-

flammation, we individuate the lack of studies in the spatial spread of damage and

how this affects the acute inflammatory response as an important limitation in the

current state of the art. As such, our main objective within this thesis is to ad-

dress, through mathematical models, how localised damage can spread and invade

into surrounding healthy tissues.

1.4 Pattern formation

Highly structured and regular patterns feature prominently in a variety of physical

and biological phenomena; it is thus of primary interest to understand the mecha-

nisms that lead to spontaneous patterning. Natural patterns arise from a wide range

of systems and, while the environmental contexts that frame spatial patterning can

vary greatly, specific features and characteristics in shape are easily encountered in

developed patterns that would otherwise have very little in common. Several straight-

forward examples can be given in this regard, by observing the striped nature of zebra

skin, sandy crests and meteorological convective rolls all exhibiting the same stripe

structure, including the characteristic merging of two stripes into one (Hoyle, 2006).

This strongly suggests that, in order to understand and analyse these phenomena, it

is important to focus on the symmetries, rather than the environmental surroundings,

and the mathematical theory that underlies these. Most spatiotemporal patterns that

are observed empirically can be described and reproduced mathematically, but while

the current state of the art in pattern formation modelling does not yet provide ex-

haustive details of these complex processes (Maini & Othmer, 2001), patterning and

structured forms emerge both from physical laws and in living systems (Chuong &
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Richardson, 2009) and can thus be mathematically analysed in depth.

The criticality of fully understanding the mechanisms that lead to structural mor-

phogenesis on, one hand, and that could potentially prevent or counter the devel-

opment of pathological and disruptive events on the other hand motivates the in-

terest in analysing pattern formation when mathematically modelling biological pro-

cesses (Maini & Othmer, 2001). A variety of mathematical structures are effective in

describing and characterising patterns that arise naturally in different biological sce-

narios. Among others, reaction-diffusion systems are particularly suited to describing

different patterning phenomena and have been deeply investigated to this purpose,

starting from the seminal work of Turing (1952). In particular, in its simplest form,

the interaction between the ligand and the morphogen of a reaction-diffusion systems

represent the patterning mechanism upon which the system generates spatial pat-

terns autonomously (Kondo & Miura, 2010). The Turing instability is defined as the

destabilisation of a stable homogeneous steady state by diffusion, resulting in stable

inhomogeneous static configurations. Turing instabilities are of significant relevance

in theoretical biology by providing an explanatory model for the formation of varied

patterns independent of their initial spatial configuration. The specific conditions for

Turing patterns to arise are detailed in appendix A.

More generally, the existence of spatially-inhomogeneous solutions to reaction-

diffusion (PDE) models is often associated with changes in the stability of steady

states in the corresponding homogeneous (ODE) models, as can be exposed by clas-

sical bifurcation analysis. In particular, the nature of those critical points marking a

change in the stability of fixed points informs on the possible existence of spatially

inhomogeneous solutions, thus providing an effective tool to explore the dependence

of the system on its parameters and a map of the solutions to be expected accordingly.

In particular, Hopf bifurcation points, that is bifurcation points where the stability

of fixed points changes and periodic orbits are created, are relevant in the character-
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isation of many systems’ spatial behaviour. This field of investigation is particularly

prominent in a number of classic dynamical systems that are extended to include more

complex scenarios. Shi et al. (2019) study patterns arising from Hopf bifurcation in

a delayed diffusive logistic model, while also diffusive extensions of the predator-prey

system are widely studied. In this regard, Lin et al. (2019) investigate the ecological

mechanisms that drive the formation of patterns within the predator-prey model,

determining how both spatially homogeneous and inhomogeneous periodic solutions

originate from Hopf bifurcations. Turing and Hopf instabilities are not mutually

exclusive, with a prominent example being the reaction-diffusion Gray-Scott model.

Mazin et al. (1996) detail the conditions under which the spatial patterning of this

model originates, while McGough & Riley (2004) particularly focus on the bifurcation

analysis supporting the nature of the patterns that the solutions exhibit. A detailed

investigation of pattern formation in inflammatory models is provided by Penner et al.

(2012), where the authors examine the conditions triggering spatial inhomogeneity

when chemotactic motion of a fixed population of immune cells is involved. In par-

ticular, with the aim of studying skin rash developments, Penner et al. (2012) model

the interactions between a group of cells, releasing both chemokines which serve as

chemoattractant and inhibitors which act on a slower time scale. In their study,

a combination of Hopf and Turing bifurcations prompt the development of varied

spatial configurations, with the instabilities arising upon low levels of the inhibitor.

In particular, the authors focus on defining the conditions on parameter values in

obtaining the different spatial configurations.

Finally, another broad modelling framework that can emit spatially inhomoge-

neous outcomes and particularly relevant to this work is Agent Based Model (ABM)

modelling. This modelling approach, which will be introduced and discussed in detail

in the dedicated chapters, is used in many multidisciplinary studies including theoret-

ical biology, effectively capturing a wide range of mechanisms prominent in evolving
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cellular systems, from morphogenesis to cancer growth and wound healing (Deutsch

& Dormann, 2016). In their book, Adamatzky & Martinez (2016) present a variety of

patterns arising from ABM models and the different implementing approaches that

give rise to them. In addition to the biologically relevant capability of these models

to generate spatially inhomogeneous structures, ABM frameworks are also used in

the detection of patterns, which serves as a key role in many biomedical applications

(Ahangaran & Beigy, 2009; Miranda et al., 2016).

1.5 Thesis overview and objectives

The aims of this study are to develop spatial models of inflammation and assess the

impact of its spatial spread through manipulation of related parameters. In particular,

we examine the scope for the formation of spatial patterns, and the extent to which

localised damage can spread into neighbouring healthy tissue. In this work, two

different approaches for modelling the acute inflammatory response at the tissue level

are deployed and compared; in Chapters 2 and 3, we take a PDE-based approach,

and in Chapters 4 and 5 we take an agent-based approach, and examine the extent

to which key conclusions are sensitive to the modelling approach used.

Firstly, in Chapter 2, we present a simple model of inflammation with the main

objective being to investigate pattern formation from an analytical point of view.

In particular, in Chapter 2, a basic model of inflammation is presented, where the

first ordinary differential equation (ODE) model of Dunster et al. (2014), describing

the mechanisms at play between immune cells and pro-inflammatory mediators, is

extended to include relevant interactions within a spatial domain. In this chapter, we

construct a partial differential equation (PDE) model in which cells and mediators

move diffusively. In order to facilitate analytical progress, we keep the model delib-

erately simple, including only a minimal set of biological interactions. We examine
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the extent to which the resulting reaction-diffusion equations exhibit spatial patterns,

including those potentially arising via Turing instabilities and Hopf bifurcations.

In Chapter 3, we build upon the model of Chapter 2 to include biological features

previously neglected, namely cellular chemotaxis, the presence of anti-inflammatory

mediators and the enhanced feedback of neutrophils in the production of pro-inflammatory

mediators. In doing so, we develop a model that we believe incorporates a full reper-

toire of biological feedbacks, and constitutes an extension of Model 3 of Dunster et al.

(2014) to a spatial domain. The primary objective in this chapter is to understand

the impact of these additional behaviours within a spatial setting, with particular em-

phasis on investigating the model’s capability of admitting spatially inhomogeneous

results and individuating possible therapeutic targets.

In Chapter 4, by moving to an agent-based modelling approach, we address the ob-

jective of evaluating whether our conclusions are sensitive to the modelling approach

used. To this end, a novel model of inflammation is built in Chapter 4, by using the

ABM framework, thus providing us the opportunity to further refine specific cellular

mechanisms that are not captured in our PDE descriptions of the inflammatory re-

sponse, while also overcoming the shortcomings of purely deterministic approaches.

We present simulations of our agent-based model, demonstrate how variations in key

parameters can switch the inflammatory outcome from health to chronicity, or vice

versa, and show a comparison between the two models of inflammation developed

in Chapters 3 and 4. To further quantify the dependence upon model’s parame-

ters, we perform a local parameter sensitivity analysis, to provide insight into which

mechanisms could potentially be manipulated in new therapeutic strategies.

The objectives of Chapter 5 are to focus specifically upon the role efficient chemo-

taxis of leukocytes has in resolving inflammation and to construct an accurate chemo-

taxis model that can be calibrated against experimental data. We construct a refined

model of chemotaxis (within our ABM framework) that integrates both sensitivity to
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the chemotactic gradient and persistence in cells directions of motion, and examine

how weaker chemotactic sensitivity or stronger directional persistence (such as is ob-

served in some inflammatory conditions or in ageing) can drive a switch from health

to chronicity. The model is calibrated against previously published experimental data

related to healthy patients and patients with the highly impacting chronic inflamma-

tory disease Chronic Obstructive Pulmonary Disease (COPD) (Sapey et al., 2011), in

order to effectively reproduce both healthy and pathological cellular directed motion.

We integrate this improved model of chemotaxis into our larger agent-based inflam-

matory model, assess the results and compare them to those yielded by the model in

Chapter 4.

Finally, Chapter 6 will present the main conclusions arising from this work, dis-

cussing all relevant results, summarising the key observations emerging from our

investigation into the spatial modelling of inflammation, and also addressing possible

directions for future works.



Chapter 2

Immune cell interactions with

pro-inflammatory mediators

In this chapter we aim to extend Model 1 of Dunster et al. (2014) to include a spa-

tial domain. Our primary objective is to analytically assess the models capability

of admitting spatially inhomogeneous results, for example via Turing instabilities or

via bifurcations in the dynamics of the underlying ODE model. To facilitate this, we

favour the simplicity of using the model of Dunster et al. (2014) as a starting point,

since it includes only a minimal set of basic biological interactions and thus allows the

greatest scope for analytical investigation. In this regard, a preliminary version of an

inflammation model is provided and analysed, focussing on the interactions between

immune cells and pro-inflammatory mediators. Firstly, a spatially-independent model

presented by Dunster et al. (2014) is reviewed in detail, before being later extended

by including terms representing spatial movement of the groups of cells and chemi-

cals featuring in the model. These interactions are studied at cellular level, by not

only focusing on the impact of inflammation in time but also on its spatial spread,

by deriving the conditions that lead to possible spatial patterning and highlighting

its relevance in biological terms. A key assumption that will hold throughout this

40
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chapter is the absence of pathogens. This allows us to focus on the progression of the

inflammatory response, with generic tissue damage considered as the physiological

trigger to the acute inflammation.

2.1 ODE model review

A first version of an inflammation model is presented in Dunster et al. (2014), in which

no pathogens are included, while interactions between three groups of generic cells

and mediators evolving in time (t˚) are considered (with stars denoting dimensional

variables), namely: active neutrophils n˚pt˚q; apoptotic neutrophils a˚pt˚q, which

are inactive, unable to move, have little phagocytic ability and release toxic chem-

icals when undergoing necrosis; macrophages m˚pt˚q, activating to clear apoptotic

neutrophils; and pro-inflammatory mediators c˚pt˚q, attracting both neutrophils and

macrophages.

The biological description of the chain of events leading to interactions of pro-

and anti-inflammatory nature in response to damage allows us to derive useful mod-

elling parameters. Following a generic trauma, a complex variety of chemical species

is released within the damaged tissue, comprising cytokines, chemokines and com-

plementary proteins, triggering proteolytic cascades resulting in the production of

effective pro-inflammatory mediators, as well as activating relevant cellular signalling

(Dunkelberger & Song, 2010; Aziz et al., 2013). In this sense, the overall release

and decay rates of any generic pro-inflammatory mediator (c˚) are defined as α˚ and

γ˚
c respectively. Furthermore, upon a prolonged inflammatory state or new damage,

new concentrations of c˚ are released, with k˚
a being the concentration of mediators

released on lysis of apoptotic neutrophils. This prompts the migration of neutrophils

to the damaged site, with a maximal incoming influx rate represented by χ˚
n. Active

neutrophils (n˚) undergo a rapid apoptotic process while circulating in the blood
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stream (Cross et al., 2008), with apoptotic neutrophils a˚ appearing with rate ν˚,

i.e. the rate at which active neutrophils become apoptotic. These in turn undergo

secondary necrosis with rate γ˚
a , spilling their internal toxic chemicals. This new

pro-inflammatory action presents a saturation level denoted by β˚
a and is counter-

acted by the action of macrophages, appearing at a maximal rate of χ˚
m, engulfing

the apoptotic neutrophils at a constant rate φ˚ and finally leaving the tissue at rate

γ˚
m. Finally, as part of our modelling assumptions for this initial model (and its

following extensions), a sterile environment is considered for both neutrophils and

macrophages; that is, there is no direct pathogenic action affecting the physiological

leukocytes’ behaviour.

The dynamics between active and apoptotic neutrophils, macrophages and pro-

inflammatory mediators are described by the following spatially averaged ODEmodel:

dn˚

dt˚
“ χ˚

nc
˚ ´ ν˚n˚, (2.1)

da˚

dt˚
“ ν˚n˚ ´ γ˚

aa
˚ ´ φ˚m˚a˚, (2.2)

dm˚

dt˚
“ χ˚

mc
˚ ´ γ˚

mm
˚, (2.3)

dc˚

dt˚
“ α˚fpt˚q ` k˚

aγ
˚
a

ˆ

a˚2

β˚2
a ` a˚2

˙

´ γ˚
c c

˚ , (2.4)

with f being the model stimulus, describing physical damage to the tissue, as defined

by Dunster et al. (2014), with

fpt˚q “ Hpt˚q sin2pt˚q , (2.5)

and

Hpt˚q “

$

’

’

&

’

’

%

1 if t˚ ă A˚π

0 if t˚ ą A˚π ,

(2.6)

in which A˚ represents the number of cycles of damage, approximating days of infec-

tion. The parameters involved are presented in Table 2.1, while initial conditions are
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set at zero, that is:

n˚p0q “ a˚p0q “ m˚p0q “ c˚p0q “ 0. (2.7)

While not all the above mentioned parameters are known and available in absolute

values, a few assumptions can be made and useful estimations can be derived from

the existing literature and experimental data. We review these parameter values in

detail in Section 2.2.1.

Figure 2.1 provides a schematic representation of model (2.1)–(2.4) in which all the

interactions between the system’s variables are shown by highlighting all non-spatial

parameters.

The initial analysis of this model focuses on assessing its qualitative behaviour

under different inputs in order to evaluate it in terms of the inflammatory response,

with the key results of the ODE model presented in Section 2.4.1. Our primary aim

is to investigate the effects of spatial dependency in the development and eventual

outcome of inflammation. In particular, two different outcomes, corresponding to

two different stable states, are expected: the first being the complete resolution of

the inflammation and the second being a chronic inflammatory state. To this end,

the dynamical analysis will be combined with the study of spatial patterning, by

modelling key biological features that directly affect the inflammation progression

and final outcome.

2.2 Adding spatial information

We now extend the model of Dunster et al. (2014), above, to incorporate spatial

movement of cells and mediators. For simplicity, we consider a 1D spatial domain

and assume that cells and mediators move diffusively. This assumption does not hold

for apoptotic neutrophils which instead do not move, being dying cells eventually
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Figure 2.1: Schematic diagram representing model (2.1)–(2.4) and illustrating the

constituent interactions between populations of healthy neutrophils (n˚), apoptotic

neutrophils (a˚) and macrophages (m˚) in response to pro-inflammatory mediators

(c˚), with associated parameters. Dashed lines indicate decay rates.
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cleared out by macrophages.. In fact, while diffusion of all inanimate depends to an

extent on their size, the temperature and their local environment, it is negligibly small

compared to that of macrophages and active neutrophils. Addition of diffusion into

the model in this spatial context provides a mechanism via which motility of cells and

mediators can act to smooth out strong inhomogeneities in the spatial distributions

of the model components. This has the potential to allow localised damage to spread

to neighbouring healthy tissue, and also to destabilise the homogeneous steady states

identified in the ODE model of Dunster via e.g. Turing instability (as discussed in

Section 1.4). In general, there is scope for cell diffusivities (in particular) to vary

temporally or in function of mediator concentrations; however, since we are primar-

ily interested in ascertaining whether addition of diffusion can yield inhomogeneous

steady states (patterns) in this model, we restrict attention to the case of constant

diffusivities for all model components here. Since the inflammatory response in the

model of Dunster, and our extension below, is driven by an initial stimulus f that van-

ishes in the longer term, we anticipate that the addition of time-dependent diffusion

would affect only early-time solutions, with long-term steady states being unaffected.

Denoting the diffusivities of active neutrophils, macrophages and mediators by D˚
n,

D˚
m and D˚

c respectively, the ODE model of (2.1)–(2.4) is then transformed into the

following system of PDEs:

Bn˚

Bt˚
“ χ˚

nc
˚ ´ νn˚ ` D˚

n∇
2n˚ , (2.8)

Ba˚

Bt˚
“ ν˚n˚ ´ γ˚

aa
˚ ´ φ˚m˚a˚ , (2.9)

Bm˚

Bt˚
“ χ˚

mc
˚ ´ γ˚

mm
˚ ` D˚

m∇
2m˚ , (2.10)

Bc˚

Bt˚
“ α˚fpx˚, t˚q ` k˚

aγ
˚
a

ˆ

a˚2

β˚2
a ` a˚2

˙

´ γ˚
c c

˚ ` D˚
c∇

2c˚ , (2.11)

where now the damage function depends on spatial coordinates, x˚, as well as time,

t˚. For simplicity, we here seek solutions on the one-dimensional spatial domain

x˚ P r0, L˚s; this is a natural pre-cursor to more complex two-dimensional simulations,

PHY3NELSOM
Inserted Text
objects

PHY3NELSOM
Highlight
the diffusion of apoptotic neutrophils will always be
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which we examine later in the thesis. We seek solutions that are periodic on the

interval x˚ P r0, L˚s. .

2.2.1 Parameter values

Parameter values are derived from the literature, where already available, with most of

them in this work taken from Dunster et al. (2014), and are reported in Table 2.1. Due

to modelling constraints and simplifications, not all the parameters have a straight-

forward biological correspondence in terms of either experimental data or estimation.

This is due to limitations in measurements on one hand (constraints on timescales and

instrumentation) and the lack of straightforward correspondence between modelling

parameters and quantifiable biological processes on the other.

As for the diffusion constants, which are not considered by Dunster et al. (2014)

and are only introduced here, the available scientific literature does not provide much

in this regard because of two main reasons. On one hand, researchers have tradi-

tionally focused on the temporal dynamics of inflammation, while the importance of

its spatial spread and its dependence on localised concentrations has only recently

emerged and prompted more in-depth studies. Furthermore, there is a lack of simple

and standard tools to measure diffusion coefficients experimentally, while estimation

of these parameters through mathematical models has proven non-trivial. Despite

measurements of spatial parameters being relatively sparse in previous literature in

comparison to the vast numbers of published temporal studies of the inflammatory

response, some measures of these parameters are available from both experimental

studies and inferred from mathematical models. It should be noted, however, that

these measurements are subject to variability across tissues. Rates of mediator diffu-

sion reported in previous literature generally lie in the range 10´8 ´ 10´6 cm2 ¨ s´1

(Warrender et al., 2006; Weidemann et al., 2011; Ross & Pompano, 2018). In gen-
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Parameter Definition Range of values References

χ˚
n maximal rate of neutrophil influx 106 ´ 107 cell ¨ pg´1 ¨ day´1 (Kim et al., 2008)

ν˚ neutrophil apoptosis rate 12 ´ 72 day´1 (Hannah et al., 1998),

(Summers et al., 2010)

γ˚
a rate of necrosis of apoptotic neu-

trophils

9.6 ´ 48 day´1 (Mare et al., 2005)

φ˚ rate of apoptotic neutrophil

removal by macrophages (sec-

ondary necrosis)

10´3 cell´1 ¨ mm3 ¨ day´1 (Dunster et al., 2014)

χ˚
m maximal rate of macrophages in-

flux

0.1¨106´1.17¨106 cell¨pg´1 ¨day´1 (Furth, 1985)

α˚ mediator production rate pg ¨ mm´3 ¨ day´1

k˚
a mediator concentration produced

by apoptotic neutrophils

pg ¨ mm´3

β˚
a apoptotic neutrophils saturation

constant (concentration of apop-

totic neutrophils required for half

maximal release of c˚ptq)

cell ¨ mm´3

γ˚
m rate at which macrophages leave

the tissue

0.2 day´1 (Waugh & Sherratt, 2007)

γ˚
c rate of mediator decay 0.7 ´ 20 day´1 (Smith et al., 2011),

(Su et al., 2009)

D˚
n active neutrophil diffusion con-

stant

mm2 ¨ day´1

D˚
m macrophage diffusion constant 8.64¨10´7´8.64¨10´1 mm2 ¨day´1 (Lauffenburger & Kennedy, 1983),

(Sozzani et al., 1991),

(Owen & Sherratt, 1997),

(Owen et al., 2004)

D˚
c pro-inflammatory mediator diffu-

sion constant

8.64 ¨ 10´2 ´ 8.64 mm2 ¨ day´1 (Warrender et al., 2006),

(Weidemann et al., 2011),

(Ross & Pompano, 2018)

Table 2.1: Parameters appearing in system (2.8)–(2.11). When available, ranges of

parameter values are inferred from relevant literature, as specified.
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eral, we expect the rates of cell migration to be slower than those of inflammatory

mediators, with previous publications reporting macrophages to move diffusively at

rates of order 10´13 ´10´7 cm2 ¨s´1 (Lauffenburger & Kennedy, 1983; Sozzani et al.,

1991; Owen & Sherratt, 1997; Owen et al., 2004). Neutrophils, on the other hand,

are expected to move more rapidly owing to their smaller size.

Similarly, for the remaining parameters, we investigate results for a range of values

within the physiological scales, as provided in the scientific literature.

2.2.2 Nondimensionalisation

Restoring diffusive terms and considering the original PDE system (2.8)–(2.11) in-

troduces the critical problem of evaluating appropriate values for diffusion constants.

As already discussed in Section 2.2.1, valuable data can be inferred from the relevant

scientific literature where available, although spatial parameters are generally difficult

to quantify. Furthermore, in our simulations, we are interested in studying the system

upon varying spatial constants in order to characterise the model’s behaviour spatially

and to assess if and how localised damage can invade the surrounding healthy tissue.

In doing so, we also aim to evaluate if the system can sustain spatially inhomogeneous

steady states.

An accurate investigation of the available literature, as already exposed in Sec-

tion 2.2.1, reveals the difficulties and spuriousness of defining specific values for the

diffusive constants. In general though, in line with the range of values reported in

Table 2.1, diffusion terms are relatively small, as proposed by Pigozzo et al. (2013)

for a model studying the spatio-temporal dynamics of the human immune system.

Furthermore, it would be desirable to infer a relationship between the three diffusion

constants Dn, Dm and Dc characterising model (2.13)–(2.16). Although a general

relationship cannot be directly assumed from the available literature (Weavers et al.,
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2016; Graham et al., 2012), at this initial stage it is expected that Dm ă Dn ă Dc

to hold, that is, it is considered that pro-inflammatory mediators (c) diffuse faster

than active neutrophils (n), which in turn are quicker than macrophages (m). This

assumption is further backed by the set of values provided by Pigozzo et al. (2013).

We, here, have the flexibility to tune both the domain size L˚ and the timescale

γ˚
c in our model, to enable us to relate our simulations to some specific inflammatory

condition. However, since we are more interested in examining the general case here,

we begin by defining a baseline set of dimensionless spatial parameters, which we

use in our simulations in the following sections. Considering a domain of width

L˚ “ 10 cm, taking γ˚
c “ 3 day´1 (as in Dunster et al. (2014)), and taking typical

(dimensional) rates of diffusion of mediators and macrophages to be 10´7 cm2s´1 and

10´10 cm2s´1 respectively provides approximate dimensionless estimates of Dc “ 10´4

and Dm “ 10´6. Since we expect neutrophils to move more quickly than macrophages

but slower than mediators, we prescribe Dn “ 10´5.

To simplify the analysis, we nondimensionalise (2.8)–(2.11) as follows. Let

n˚ “ χ˚
nk

˚
a

γ˚
c

n, a˚ “ χ˚
nk

˚
a

γ˚
c

a, m˚ “ χ˚
mk

˚
a

γ˚
c

m, c˚ “ k˚
ac, x˚ “ L˚x, t˚ “ t

γ˚
c

.

(2.12)

Having rescaled variables as above, substitution of these expressions into (2.8)–(2.11)

leads to the following dimensionless system:

Bn
Bt “ c ´ νn ` Dn∇

2n, (2.13)

Ba
Bt “ νn ´ γaa ´ φma, (2.14)

Bm
Bt “ c ´ γmm ` Dm∇

2m, (2.15)

Bc
Bt “ αfpx, tq ` γa

ˆ

a2

β2
a ` a2

˙

´ c ` Dc∇
2c , (2.16)
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Parameter Approximate Range Standard values used in simulations

in this chapter

ν 0.001 ´ 0.6925 10´1

γa 0.55 ´ 1 1

γm 10´2 ´ 1.2375 ¨ 10´2 10´2

φ 0.001 ´ 1.38 10´3

βa 0.01 ´ 0.1 10´1

α 5 ¨ 10´2 5 ¨ 10´2

Dn 10´5 ´ 10´3 10´5

Dm 10´6 ´ 10´3 10´6

Dc 10´4 ´ 10´3 10´4

Table 2.2: Dimensionless parameter values appearing in the model of (2.13)–(2.16).

where

φ “ φ˚χ˚
mk

˚
a

γc2˚
, ν “ ν˚

γ˚
c

, α “ α˚

γ˚
c k

˚
a

, βa “ β˚
aγ

˚
c

χ˚
nk

˚
a

, γa “ γ˚
a

γ˚
c

, γm “ γ˚
m

γ˚
c

,

Dc “ D˚
c

L˚2
x γ˚

c

, Dn “ D˚
n

L˚2
x γ˚

c

, Dm “ D˚
m

L˚2
x γ˚

c

.

(2.17)

Values for all dimensionless parameters are summarised in Table 2.2.

The initial conditions provided in (2.7) are also updated to their dimensionless

correspondents:

np0q “ ap0q “ mp0q “ cp0q “ 0. (2.18)
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2.3 Numerical approach

In order to solve the PDEs in (2.13)–(2.16), different approaches can be considered.

A straightforward method would consist of fully discretizing the system, both in

time and space; for example, by applying the three point formula of finite difference

approximations for second derivatives, thus computing the results by manually setting

an appropriate space step (dx) and iterating by time steps (dt). A quite restrictive

stability condition applies, however; for one-dimensional systems of parabolic PDEs

such as (2.13)–(2.16), we require:

D
dt

dx2
ă 1

2
, (2.19)

with D being the diffusion coefficient. Equation (2.19) guarantees stability for the

Forward-Time Central-Space (FTCS) scheme applied to PDEs (LeVeque, 2007).

Nevertheless, this method has an obvious underlying limitation, binding computa-

tional efficiency to numerical stability, through the time step value and spatial mesh.

Therefore, this approach has been discarded in favour of a more suitable computa-

tional method, as described below.

2.3.1 Method of lines

The method of lines offers an appreciably efficient solving approach, by discretizing

all but one dimension, thus reducing the PDE system to a system of ODEs.

In order to implement the method of lines, equations (2.13)–(2.16) are discretized

in space, as follows:

dniptq
dt

“ ´νniptq ` ciptq ` Dn

ˆ

ni`1ptq ´ 2niptq ` ni´1ptq
∆x2

˙

, (2.20)

daiptq
dt

“ νniptq ´ γaaiptq ´ φmiptqaiptq, (2.21)

dmiptq
dt

“ ´γmmiptq ` ciptq ` Dm

ˆ

mi`1ptq ´ 2miptq ` mi´1ptq
∆x2

˙

, (2.22)
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dciptq
dt

“ αfiptq ` γa
aiptq2

aiptq2 ` β2
a

´ ciptq ` Dc

ˆ

ci`1ptq ´ 2ciptq ` ci´1ptq
∆x2

˙

, (2.23)

with i “ 0, 1, . . . , N , where N is the number of spatial meshpoints.

In order to efficiently implement it, the dimensionless system (2.20)–(2.23) is

rewritten in a more compact way, by writing (2.20)–(2.23) in vectorised form in

Matlab (details omitted).

The Matlab ODE solver ode15s is particularly useful when dealing with stiff

problems, as in this case. Generally, stiffness occurs when some solution compo-

nents present a much faster dynamics than others; it strongly affects stability in a

way such that the step length is constrained more by stability requirements rather

than accuracy (Ashino et al., 2000). It is a variable order algorithm, based on the

Backward Differentiation Formulae (BDF) method, the step size is adapted during

implementation with error estimation given by the local truncation error (Celaya

et al., 2014). The system of vectorised equations is then computed through Matlab

function ode15s, with initial conditions as in (2.18) and time spans r0 104s (Sec-

tion 2.4.1) and r0 7000s (Section 2.4.3). Matlab code for this model is available

online via Github1.

2.4 Simulations

2.4.1 No spatial dependence

We here examine solutions to (2.13)–(2.16) for the case Dn “ Dm “ Dc “ 0. In

particular, we are looking to recover the ODE results of Dunster et al. (2014), as

a code validation task. A first implementation of the dimensionless system (2.13)–

(2.16) offers graphical evidence of two possible inflammation outcomes, as presented

by Dunster et al. (2014), regulated by the damage level through the parameter A,

1https://github.com/atihana/basic inflammation pde

https://github.com/atihana/basic_inflammation_pde
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Figure 2.2: Solution of (2.13)–(2.16) for fpx, tq “ Hptq sin2ptq, periodic boundary

conditions and initial conditions as per (2.18), with parameters values as in Table 2.2.

Since fpx, tq is independent of x, solutions are homogeneous; setting A “ 1 here

prompts a resolution of inflammation.

as shown in Figure 2.2 and Figure 2.3. Both figures are obtained with parameters

from Table 2.2 and by only varying the number of cycles of damage A, with A “ 1 in

Figure 2.2 and A “ 4 in Figure 2.3. Computation of (2.13)–(2.16) (with zero diffusion)

highlights, as expected, a sensitive increase of pro-inflammatory mediators in response

to damage in both Figure 2.2 and Figure 2.3. Macrophages and neutrophils also

appear in correspondence with this rise, with the former being in turn partially cleared

by apoptotic neutrophils. The biological meaning of the solution in Figure 2.2 is that

of resolved inflammation, in which all cell populations and mediators return to healthy

physiological levels (zero). On the other hand, for a prolonged damage stimulus

(A “ 4), inflammation cannot be resolved, thus profiling a chronic inflammatory

state, as is evident from Figure 2.3, in which both apoptotic neutrophils and pro-
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Figure 2.3: Solution of (2.13)–(2.16), for fpx, tq “ Hptq sin2ptq, periodic boundary

conditions and initial conditions as per (2.18), with parameters values as in Table 2.2.

Since fpx, tq is independent of x, solutions are homogeneous; setting A “ 4 here

prevents full resolution, causing inflammation to be chronic.
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inflammatory mediators maintain high levels of concentration, thus resulting in a

continuous action of macrophages and active neutrophils.

The interest in investigating the impact of parameter φ upon the model’s be-

haviour comes from the paper of Dunster et al. (2014) in which manipulation of the

rate of the phagocytosis of apoptotic neutrophils is recognised as a possible therapeu-

tic target in resolving inflammation. An analogous analysis can be made by testing

different values of parameter the φ. Having fixed A “ 4, that is configuring a context

of initially sustained damage, we vary φ to elucidate the effect of the macrophage

clearance rate instead. We expect to have a prompt and more effective resolution

of inflammation for increasing values of φ, while choosing φ too small should com-

promise the healing process, eventually resulting in a chronic state of inflammation.

The results in Figure 2.4–2.6 confirm these predictions, showing that regulation of

the parameter φ is key to how quickly and effectively the inflammation is resolved.

In particular, increasing φ from the nominal value given in Figure 2.2, generally

improves the system’s response to inflammation, with φ “ 0.09 providing damped os-

cillations but still a chronic outcome (Figure 2.4), φ “ 0.2 resulting in full resolution

(Figure 2.5) and φ “ 0.4 resolving inflammation with even lower levels of cells and

mediators (Figure 2.6).

All of the above results recover the results of Dunster et al. (2014) exactly; this

provides us with confidence that the numerical code use to attain these results is

valid. We examine spatially-inhomogeneous solutions to our model using this code in

Section 2.4.3, after first examining the stability of the steady states observed above

from a theoretical perspective below.
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Figure 2.4: Solution of (2.13)–(2.16) for fpx, tq “ Hptq sin2ptq, periodic boundary

conditions and initial conditions as per (2.18), with A “ 4, φ “ 0.09 and all other

parameters values as in Table 2.2. Since fpx, tq is independent of x, solutions are

homogeneous; setting φ “ 0.09 provides damped oscillations, but does not yield

complete resolution of inflammation.
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Figure 2.5: Solution of (2.13)–(2.16) for fpx, tq “ Hptq sin2ptq, periodic boundary

conditions and initial conditions as per (2.18), with parameters values as in Table 2.2,

fixed damage duration with A “ 4. Since fpx, tq is independent of x, solutions are

homogeneous; setting φ “ 0.2 results in full inflammation resolution.
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Figure 2.6: Solution of (2.13)–(2.16) for fpx, tq “ Hptq sin2ptq, periodic boundary

conditions and initial conditions as per (2.18), with parameters values as in Table 2.2,

fixed damage duration with A “ 4. Since fpx, tq is independent of x, solutions

are homogeneous; setting φ “ 0.4 prompts here a more effective resolution of the

inflammatory state. We note that overall cell numbers and mediator concentrations

are lower than those attained for φ “ 0.2 in Figure 2.5 due to the enhanced phagocytic

action of macrophages here.



2.4. SIMULATIONS 59

2.4.2 Stability analysis

To fully determine how the system responds to varying values of key parameters, the

stabilities of steady state solutions are analysed below. In general, the stability of the

system is guaranteed to be stable if and only if all real parts eigenvalues are negative.

By computing the fixed points of (2.13)–(2.16) and evaluating the corresponding

Jacobian matrix at each point, three generic solutions and corresponding sets of

eigenvalues can be found. The latter can assume different values and particularly vary

in sign depending on some of the parameters, with the Jacobian matrix associated to

the system:

J “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ν 0 0 1

ν ´γa ´ φm ´φ a 0

0 0 ´γm 1

0
2aγaβ

2

a

pβ2
a ` a2q2 0 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (2.24)

The matrix J depends on the stationary points and, for each group of solutions, the

associated eigenvalues can thus be computed according to the values of parameters

ν, γa, φ, γm and βa.

In order to assess how the stability evolves with respect to these critical parame-

ters, bifurcation diagrams for each variable are plotted, as shown in Figures 2.7–2.11.

These plots assess in fact the existence and stability of steady state solutions with ref-

erence to a range of values for each parameter featuring in the Jacobian matrix (2.24),

thus potentially affecting stability. In these figures, solid lines represent stable steady

states and dashed lines represent unstable steady states. In this sense, the absence

of any evident bifurcation point in both Figures 2.7–2.9 suggests that (for biologi-

cally feasible choices of parameters) the respective parameters ν, γm and γa do not

have direct effect the stability of steady states. Conversely, plots for parameters

βa (Figure 2.10) and φ (Figure 2.11) exhibit bifurcations indicating a change in the



2.4. SIMULATIONS 60

number/stability of steady states, by marking the transition from unstable steady

states (dashed lines) to stable ones (solid lines). The bifurcation analysis thus sug-

gests that the most interesting parameters to investigate, with the greatest impact

to the system’s behaviours, are βa and φ. More generally, we are interested in study-

ing the stability of the states as an indicator of the solutions we expect the ODE

system associated to (2.13)–(2.16) to exhibit. In particular, solid lines representing

stable solutions are captured by the simulations in the form of either resolution to

the healthy state (corresponding to the trivial zero steady state) or a chronic state

of inflammation (non-zero steady states). Dashed lines represent unstable solutions

that the system theoretically supports but that, given their instability, cannot be cap-

tured in simulations. The additional presence of bifurcation points further informs

on possible oscillations exhibited by the ODE system, depending on the nature of

the bifurcation. In particular, Figure 2.10 presents a saddle node of bifurcation at

βa » 0.45, with the system admitting three possible solutions lying on the left of the

bifurcating point, two stable, corresponding to the healthy (zero steady state) and

unhealthy (non-trivial steady state) outcomes and one unstable which the system

cannot exhibit in simulations. For βa Á 0.45, inflammatory damage is guaranteed

to resolve. The bifurcation diagrams shown in Figure 2.11 instead present a Hopf

bifurcation at ν » 0.1, where the state of the solutions switches from stability (solid

lines) to instability (dashed lines). In general, Hopf bifurcations are also associated

with the existence of sustained temporal oscillations; however,the Hopf bifurcation in

Figure 2.11 is subcritical, so these oscillations are unstable in this case.

2.4.3 Spatial spread of damage and inflammation

We are particularly interested in regions of parameter space for which the ODE model

is bistable, since these regions exhibit the greatest scope for inhomogeneous solutions.
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Figure 2.7: Stability analysis for system (2.13)–(2.16), in function of parameter ν P

r0, 1s. All other parameters values are set as in Table 2.2. Each colour represents

one set of 3 stationary points. The three corresponding eigenvalues present either

negative real part (stable, solid lines) or positive real part (unstable, dashed lines).
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Figure 2.8: Stability analysis for system (2.13)–(2.16), in function of parameter γm P

r0, 1s. All other parameters values are set as in Table 2.2. Each colour represents

one set of 3 stationary points. The three corresponding eigenvalues present either

negative real part (stable, solid lines) or positive real part (unstable, dashed lines).
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Figure 2.9: Stability analysis for system (2.13)–(2.16), in function of parameter γa P

r0, 1s. All other parameters values are set as in Table 2.2. Each colour represents

one set of 3 stationary points. The three corresponding eigenvalues present either

negative real part (stable, solid lines) or positive real part (unstable, dashed lines).
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Figure 2.10: Stability analysis for system (2.13)–(2.16), in function of parameter

βa P r0, 1s. All other parameters values are set as in Table 2.2. Each colour represents

one set of 3 stationary points. The three corresponding eigenvalues present either

negative real part (stable, solid lines) or positive real part (unstable, dashed lines).



2.4. SIMULATIONS 65

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

n

HB

(a) Active neutrophils.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

HB

(b) Apoptotic neutrophils.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

m

HB

(c) Macrophages.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c

HB

(d) Pro-inflammatory mediators.

Figure 2.11: Stability analysis for system (2.13)–(2.16), in function of parameter

φ P r0, 1s. All other parameters values are set as in Table 2.2. Each colour represents

one set of 3 stationary points. The three corresponding eigenvalues present either

negative real part (stable, solid lines) or positive real part (unstable, dashed lines).
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We note, here, that our choices of βa and φ in Table 2.2 (in particular) are positioned

in the bistable regime.

In order to study the model’s spatial behaviour, numerous simulations have been

run, by varying key parameter values and assessing the correspondent system’s out-

come, similarly to the analysis carried in Section 2.4.1. To this purpose, the damage

function introduced in (2.5)–(2.6) is here updated to include spatial dependence:

fpx, tq “ Hptq 1?
σ22π

e´ px´µq2

2σ2 (2.25)

where µ “ 0.5, σ “ 0.1 and

Hptq “

$

’

’

&

’

’

%

1 if t ă tmax{3

0 if t ą tmax{3.
(2.26)

with tmax denoting the final time of the simulation. The function fpx, tq is thus mod-

elled as a Gaussian shaped damage, persisting for one third of the total inflammatory

time. The model’s spatial behaviour is finally enhanced by restoring the diffusive

behaviour that had been neglected in the previous analysis for sake of simplicity. As

such, it is considered that mediators diffuse with Dc “ 10´4, while we set neutrophil

and macrophage diffusions at Dn “ 10´5 and Dm “ 10´6 respectively. The analysis

of the spatial spread of inflammation shows continuity with the dynamical analysis

of the previous section in terms of parameter’s regulation and effects on the model.

This is particularly evident by varying the rate of apoptotic neutrophil clearance by

macrophages, φ, with its enhancement providing a prompter and more effective reso-

lution of inflammation. Figure 2.12, analogously to Figure 2.3, highlights how upon

the initial damage 2.25, the nominal value of φ is too small to prevent the chronicity

of inflammation. Similarly to Figures 2.4–2.5, the simulations in Figures 2.13–2.14

also confirm the healing effects of enhancing the apoptotic neutrophils clearance. On

the other side, the addition of spatial dependence in terms of both the initial damage
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Figure 2.12: Solution of (2.13)–(2.16), with damage modelled as in (2.25)–(2.26),

φ “ 0.001 and all other parameters values as in Table 2.2, initial conditions as

per (2.18) and periodic boundary conditions. Figures on the left panel correspond

to the variables’ spatial representation at each time step, the right column presents

plots of the dynamics of the same variables in the middle of the spatial domain.

The nominal value of φ “ 0.001 prevents full resolution, causing inflammation to be

chronic.
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Figure 2.13: Solution of (2.13)–(2.16), with damage modelled as in (2.25)–(2.26),

with φ “ 0.09 and all other parameters values as in Table 2.2, initial conditions as

per (2.18) and periodic boundary conditions. Figures on the left panel correspond to

the variables’ spatial representation at each time step, the right column presents plots

of the dynamics of the same variables in the middle of the spatial domain. Setting

φ “ 0.09 provides damped oscillations, but does not yield complete resolution of

inflammation.
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Figure 2.14: Solution of (2.13)–(2.16), with damage modelled as in (2.25)–(2.26), with

φ “ 0.2 and with all other parameters values as in Table 2.2, initial conditions as

per (2.18) and periodic boundary conditions. Figures on the left panel correspond to

the variables’ spatial representation at each time step, the right column presents plots

of the dynamics of the same variables in the middle of the spatial domain. Setting

φ “ 0.2 results in full inflammation resolution.



2.4. SIMULATIONS 70

and the mediators diffusion is evident in the left panel graphs of Figures 2.12–2.14,

with a preliminary spatial heterogeneity given by the gaussian shaped damage even-

tually diffusing and settling to a homogeneous steady state. In general, throughout

our simulations, we observe that the damage triggering the inflammatory response

initially spreads within the tissue, persisting for a limited time and eventually being

cleared, restoring a homogeneously healthy state.

In each of Figures 2.12–2.14, we observe a rapid decline in the levels of each

of our model components at t » 2333. This occurs due to the sudden change in

the damage function imposed by (2.26). Prior to this point, the damage function

provides constant stimulus to the model in the centre of the domain, resulting in

the damage in this region being sustained. At t » 2333 “ tmax{3, the damage

function in (2.26) switches off, and we observe a short period of time over which the

damage spreads to become homogeneous. After homogeneity is reached, the results

recover the results of the corresponding ODE model of Dunster et al. (2014) exactly;

however, the model of Dunster et al. (2014) does not capture intermediate, spatially

inhomogeneous configurations.

An important key point arising from the spatial analysis of system (2.13)–(2.16) is

that, regardless of parameters, all long-term solutions are homogeneous. As observed

in the above figures, variations in key parameter values can cause changes in the way

that damage spreads across the tissue, and can ultimately yield switching between

globally healthy and globally chronic outcomes. Crucially, for the parameters studied

here, there is no emergence of persistent spatial patterns. We investigate the potential

for spatial patterns for more general parameter choices via Turing instability analysis

below.
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2.5 Turing instability analysis

We here conduct a Turing instability analysis to ascertain whether the model of (2.13)–

(2.16) can support spatially inhomogeneous steady states.

Analogously to the procedure and notation used in appendix A to identify Turing

instabilities and spatial pattern formation, let us firstly consider the system (2.13)–

(2.16) referring to its relevant homogeneous steady state, corresponding to solutions

of the system

nt “ ´νn ` c ” f1pn, a,m, cq “ 0 , (2.27)

at “ νn ´ γaa ´ φma ” f2pn, a,m, cq “ 0 , (2.28)

mt “ ´γmm ` c ” f3pn, a,m, cq “ 0 , (2.29)

ct “ αfptq ` γa
a2

β2
a ` a2

´ c ” f4pn, a,m, cq “ 0 . (2.30)

By linearising around the steady state pn0, a0, m0, c0q, (2.27)–(2.30) can be rewritten

as
¨

˚

˚

˚

˚

˚

˚

˚

˝

nt

at

mt

ct

˛

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

wt

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

f1n0
0 0 f1c0

f2n0
f2a0 f2m0

0

0 0 f3m0
f3c0

0 f4a0 0 f4c0

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooomooooooooooooooon

A

¨

˚

˚

˚

˚

˚

˚

˚

˝

n ´ n0

a ´ a0

m ´ m0

c ´ c0

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooomooooon

w

, (2.31)

with A being the Jacobian matrix evaluated at the steady state, having introduced

the notation

f1n0
“ Bf1

Bn

∣

∣

∣

∣

n0,a0,m0,c0

, (2.32)

and similarly for f1a0 , f1m0
and f1c0 and following rows.
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Here, the matrix A introduced in (2.31) is given by

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ν 0 0 1

ν ´γa ´ φm0 ´φ a0 0

0 0 ´γm 1

0
2a0γaβ

2

a

pβ2
a ` a2

0
q2 0 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (2.33)

For the homogeneous steady state to be stable, we require

ℜpλipAqq ă 0 i “ 1, . . . , 4. (2.34)

The bifurcation analysis of Section 2.4.2 has already shown that the system sup-

ports up to two stable homogeneous steady states. Our interest here is in ascertaining

whether these steady states can be destabilised by diffusion, potentially resulting in

stable patterns.

By restoring diffusion in the model of (2.13)–(2.16), the system can accordingly

be rewritten, analogously to expression in (2.31), as:

¨

˚

˚

˚

˚

˚

˚

˚

˝

nt

at

mt

ct

˛

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

wt

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

f1n0
0 0 f1c0

f2n0
f2a0 f2m0

0

0 0 f3m0
f3c0

0 f4a0 0 f4c0

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooomooooooooooooooon

A

¨

˚

˚

˚

˚

˚

˚

˚

˝

n ´ n0

a ´ a0

m ´ m0

c ´ c0

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooomooooon

w

`

¨

˚

˚

˚

˚

˚

˚

˚

˝

Dn 0 0 0

0 0 0 0

0 0 Dm 0

0 0 0 Dc

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooomooooooooooon

D

∇2

¨

˚

˚

˚

˚

˚

˚

˚

˝

n ´ n0

a ´ a0

m ´ m0

c ´ c0

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooomooooon

w

,

(2.35)

or, in its compact matrix form

wt “ Aw ` D∇2w. (2.36)

Assuming a spatial dependence of the form described in Appendix A (equation (A.17)),
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with wave number k, we obtain the associated Jacobian

Ak “

¨

˚

˚

˚

˚

˚

˚

˚

˝

f1n0
´ k2Dn 0 0 f1c0

f2n0
f2a0 f2m0

0

0 0 f3m0
´ k2Dm f3c0

0 f4a0 0 f4c0 ´ k2Dc

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (2.37)

or equivalently

Ak “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ν ´ k2Dn 0 0 1

ν ´γa ´ φm0 ´φa0 0

0 0 ´γm ´ k2Dm 1

0 X 0 ´1 ´ k2Dc

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (2.38)

with X conveniently denoting p2a0γaβ2

aq{pa2
0

` β2

aq2, as originally appeared in (2.33).

The characteristic polynomial of Ak is given by

pkpλq “ pν ` k2Dn ` λqrpγa ` φm0 ` λqpγm ` k2Dm ` λqp1 ` k2Dc ` λq ` φa0Xs

´ νpγm ` k2Dm ` λqX.

(2.39)

By conveniently renaming the factors as

t1 “ ν ` k2Dn, (2.40)

t2 “ γa ` φm0, (2.41)

t3 “ γm ` k2Dm, (2.42)

t4 “ 1 ` k2Dc, (2.43)

t5 “ φa0X, (2.44)

t6 “ νX, (2.45)
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and rearranging the terms, the characteristic polynomial can be expressed as

pkpλq “ λ4 ` pt1 ` t2 ` t3 ` t4q
looooooooomooooooooon

s1

λ3 ` pt1t2 ` t1t3 ` t1t4 ` t2t3 ` t2t4 ` t3t4q
looooooooooooooooooooooomooooooooooooooooooooooon

s2

λ2`

` rt1t2pt3 ` t4q ` t3t4pt1 ` t2q ` t5 ´ t6s
looooooooooooooooooooooomooooooooooooooooooooooon

s3

λ ` t1t2t3t4 ` t1t5 ´ t3t6
looooooooooomooooooooooon

s4

,

(2.46)

having further simplified the notation, by introducing the terms s1, s2, s3 and s4 that

allow a shorter and straightforward representation of pkpλq:

pkpλq “ λ4 ` s1λ
3 ` s2λ

2 ` s3λ ` s4. (2.47)

Observation 1. Recalling that all elements in D as well as all the model parameters

and variables are positive, it follows that t1, t2, t3, t4, t5, t6 ą 0.

Observation 2. From observation 1 it follows that

s1 “ t1 ` t2 ` t3 ` t4 ą 0 (2.48)

s2 “ t1t2 ` t1t3 ` t1t4 ` t2t3 ` t2t4 ` t3t4 ą 0. (2.49)

Similarly to the analysis carried out in appendix A.2, the existence of spatial

instability is related to the system having eigenvalues with positive real part. This

problem is thus equivalent of studying the signs of the real parts of the polynomial

roots λi , i “ 1, . . . , 4. In order to do so, the Routh-Hurwitz criterion is applied (see

appendix B), with the associated Routh matrix (defined in B.2) being

R “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 s2 s4

s1 s3

s1s2´s3
s1

s4

s2
1
s4`s2

3
´s1s2s3

s3´s1s2

s4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.50)
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In particular, according to the Routh-Hurwitz criterion, the number of eigenvalues

with positive real part is related to the number of sign changes within the elements

of the first column of R. Therefore, analysing the signs of elements ri1, i “ 1, . . . , 5

of the Routh matrix determines the system’s homogeneity in space. The analysis of

the actual elements ri1 of matrix (2.50) first column yields

r11 “ 1 ą 0, r21 “ s1 ą 0, r51 “ s4 ą 0,

with

r31 “ s1s2 ´ s3

s1
(2.51)

and

r41 “ s2
1
s4 ` s2

3
´ s1s2s3

s3 ´ s1s2
(2.52)

requiring further study. From expressions (2.51)–(2.52) it is clear that the sign of

s1s2´s3 eventually characterises both matrix elements. For simplicity, let us consider

the trivial steady state for which all variables are equal to zero, and thus X “ 0 and

t5 “ t6 “ 0 also. We can then write

s1s2 ´ s3 “ pt1 ` t2 ` t3 ` t4qpt1t2 ` t1t3 ` t1t4 ` t2t3 ` t2t4 ` t3t4q`

´ t1t2pt3 ` t4q ´ t3t4pt1 ` t2q,
(2.53)

which, in turn, can be rewritten as

s1s2 ´ s3 “ t1t2pt1 ` t2q ` t3t4pt3 ` t4q`

` pt1 ` t2 ` t3 ` t4qpt1t3 ` t1t4 ` t2t3 ` t2t4q`

` t1t2pt3 ` t4q ` t3t4pt1 ` t2q ´ t1t2pt3 ` t4q ´ t3t4pt1 ` t2q,

(2.54)

prompting the cancellation of all negative terms and resulting in

s1s2 ´ s3 “ t1t2pt1 ` t2q ` t3t4pt3 ` t4q`

` pt1 ` t2 ` t3 ` t4qpt1t3 ` t1t4 ` t2t3 ` t2t4q,
(2.55)

which, comprising only positive terms, is always positive. Thus, also r31 ą 0.
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An analogous analysis of element r41 requires studying the sign of its numerator

since we know from above that its denominator is negative. Noting (2.55), we have

s2
1
s4 ´ s3ps1s2 ´ s3q “ pt1 ` t2 ` t3 ` t4q2pt1t2t3t4q`

´ rt1t2pt3 ` t4q ` t3t4pt1 ` t2qsrt1t2pt1 ` t2q ` t3t4pt3 ` t4q`

` pt1 ` t2 ` t3 ` t4qpt1t3 ` t1t4 ` t2t3 ` t2t4qs .

(2.56)

Convenient arrangements of the terms provide the following:

s2
1
s4 ´ s3ps1s2 ´ s3q “ pt1 ` t2 ` t3 ` t4q2pt1t2t3t4q`

´ pt1 ` t2q2pt1t2t3t4q ´ pt3 ` t4q2pt1t2t3t4q`

´ pt2
1
t2
2

` t2
3
t2
4
qpt1 ` t2qpt3 ` t4q`

´ pt1t3 ` t1t4 ` t2t3 ` t2t4qpt1 ` t2 ` t3 ` t4qrt1t2pt3 ` t4q ` t3t4pt1 ` t2qs,

(2.57)

from which it follows that

s2
1
s4 ´ s3ps1s2 ´ s3q “ pt1 ` t2q2pt1t2t3t4q ` pt3 ` t4q2pt1t2t3t4q`

` 2pt1t3 ` t1t4 ` t2t3 ` t2t4qpt1t2t3t4q`

´ pt1 ` t2q2pt1t2t3t4q ´ pt3 ` t4q2pt1t2t3t4q`

´ pt2
1
t2
2

` t2
3
t2
4
qpt1t3 ` t1t4 ` t2t3 ` t2t4q`

´ pt1t3 ` t1t4 ` t2t3 ` t2t4qpt1 ` t2 ` t3 ` t4qrt1t2pt3 ` t4q ` t3t4pt1 ` t2qs .

(2.58)

Cancelling terms where possible then provides:

s2
1
s4 ´ s3ps1s2 ´ s3q “ pt1t3 ` t1t4 ` t2t3 ` t2t4qt2pt1t2t3t4q ´ pt2

1
t2
2

` t2
3
t2
4
q`

´ pt1 ` t2 ` t3 ` t4qrt1t2pt3 ` t4q ` t3t4pt1 ` t2qsu,
(2.59)

Which we may rearrange as follows:

s2
1
s4 ´ s3ps1s2 ´ s3q “ ´pt1t3 ` t1t4 ` t2t3 ` t2t4qtpt1t2 ` t3t4q2`

` pt1 ` t2 ` t3 ` t4qrt1t2pt3 ` t4q ` t3t4pt1 ` t2qsu,
(2.60)
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which is always negative, thus ensuring that s2
1
s4 ´ s1s2s3 ` s2

3
ă 0. This result,

combined with (2.55) implies that

r41 “ s2
1
s4 ´ s1s2s3 ` s2

3

s3 ´ s1s2
ą 0.

Finally, recalling that all elements ri1, i “ 1, . . . , 5 present the same sign, thus pre-

venting any change in sign between consecutive elements, the stability of the healthy,

homogeneous steady state is guaranteed, with all the associated eigenvalues having

negative real parts (appendix B).

This also implies that, even when diffusion values would lead to spatial instability

at the two remaining critical sets of fixed points, this instability eventually settles

and the stability guaranteed by the fixed points at zero prevail.

As such, this detailed analysis proves that, regardless of diffusion constants Dn,

Dm and Dc values, there is no scope for the model of (2.13)–(2.16) to support Turing

instabilities.

2.6 Conclusions

In this chapter an initial spatially-dependent model of inflammation developed by

Dunster et al. (2014) has been presented and analysed. We then extended this model,

adding the spatial description of the inflammatory response. In particular, we mod-

elled diffusion of mediators, active neutrophils and macrophages, neglecting apoptotic

neutrophils as dead cells thus unable to move.

The key results emerging from the associated ODE system and the bifurcation

analysis regard the system’s stability, with the model being either bistable or monos-

table, depending on the parameters. While a number of parameters regulate the wide

range of biological interactions between the system’s variables (namely active neu-

trophils n, apoptotic neutrophils a, macrophages m and pro-inflammatory mediators
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c), two main parameters emerge as critical, from both preliminary simulations in Sec-

tion 2.4.1 and the bifurcation analysis in Section 2.4.2; that is, φ and βa, accounting

for the apoptotic neutrophil removal rate and saturation constant respectively. In

particular, as Figures 2.4–2.6 show, an enhanced clearance of apoptotic neutrophils

by macrophages results in a more effective resolution of inflammation, while, on the

other hand, both parameters φ and βa show the most significant effects on the model,

in terms of stability of the steady states, as represented in the bifurcation diagrams

of Figures 2.10 and 2.11. Overall, for large values of βa, the model is monostable,

since fewer apoptotic neutrophils release pro-inflammatory mediators, meaning that

resolution is guaranteed. Analogously, the system is monostable also for large values

of φ, since apoptotic neutrophils are cleared by macrophages at a higher rate, thus

prompting the resolution of inflammation.

Analysing the numerical results, we observed how localised damage can spread

to neighbouring healthy tissue. For the parameters studied, we only observe inho-

mogeneous solutions while damage is being actively stimulated by an inhomogeneous

input fpx, tq. In the absence of f , long term solutions revert to those of the ODE

model. While long-term solutions are always homogeneous, and thus recover the re-

sults of Dunster et al. (2014) entirely, we note that the ODE model of Dunster et al.

is unable to capture the intermediate inhomogeneous configurations presented in Fig-

ures 2.12–2.14, which illustrate the manner in which localised damage spreads in to

neighbouring healthy tissue.

Aiming at studying the models potential for spatial patterning, we investigated

the scope for spatial patterns arising through the two most common mechanisms re-

ported in literature, namely Turing instabilities and Hopf bifurcations. In Section 2.5,

we illustrated that the structure of this model does not allow diffusion to destabilise

the homogeneous steady states of the corresponding ODE model. This eliminates the

scope for Turing instabilities to occur. Most pattern formation mechanisms that are
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reported to occur at Hopf bifurcations in existing literature do so when these Hopf

bifurcations are supercritical and give rise to stable oscillations in the corresponding

ODE model. (See, for example, Mazin et al. (1996) or Dilao (2005).) However, in

this model, the Hopf bifurcation is always subcritical, which seems to eliminate Hopf-

based patterns. Therefore, the model does not present any spatial inhomogeneity of

the steady states. This in turn prevents the development of possible spatial patterns

that would be of interest in biological terms. We note that extensions of the underly-

ing ODE model presented by Dunster et al. (2014), which include further biological

feedbacks, exhibit changes in the criticality of the Hopf bifurcation, and thus may

display scope for inhomogeneous solutions; this is one question that we address in

Chapter 3 below.

While we have observed that the model of (2.13)–(2.16) shows relatively limited

spatially inhomogeneous behaviour in the absence of sustained inhomogeneous forc-

ing, it is important to note that this model incorporates only a limited number of

cellular interactions, and hence lacks some more complex feedbacks that could render

spatially inhomogeneous solutions permissible. This model includes only one positive

feedback via apoptotic neutrophils and one negative feedback via macrophages. An

extension of the underlying ODE model, presented by Dunster et al. (2014), incorpo-

rates an additional positive feedback via production of pro-inflammatory mediators by

active neutrophils, which has significant impact upon the models dynamics, increas-

ing the size of the bistable regime. Furthermore, this model omits anti-inflammatory

mediators, which have been shown to play an important role in triggering the resolu-

tion of inammatory processes (Serhan et al., 2008; Rinaldi et al., 2011), and provide

an additional negative feedback. We anticipate that inclusion of these additional

behaviours could enable a broader range of spatially inhomogeneous behaviours, in

which localised damage may spread to healthy tissue. In addition, a key limitation

of this model is that active neutrophils and macrophages are assumed to move only
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diffusively, while in vivo the principal motion of these cells is chemotactic migration

toward high concentrations of pro-inflammatory mediators. This chemotaxis is omit-

ted here, but may be readily included in an extension of this model. In doing so,

we note that our focus upon a one-dimensional domain in this chapter could place

some restrictions on the spatial patterns attained. To overcome these limitations, it

is essential to widen the current model by adding to its complexity, both spatially

(via a 2D implementation) and biologically, by including the above described features

that will invariably involve a larger number of parameters and variables. We address

these deciencies in the following chapter. In particular, we present a thorough review

of the limitations of this model, and how they will be addressed in a corresponding

extension, in Section 3.1.



Chapter 3

Modelling the effects of

anti-inflammatory mediators

In this chapter we extend the previously developed PDE model in order to include

the impact of a second group of chemicals upon the system, representing of anti-

inflammatory mediators. Furthermore, more refined biological interactions such as

neutrophils’ inherently pro-inflammatory behaviour (Dunster et al., 2014) and the ad-

dition of chemotaxis are also provided in this new model. A new numerical approach

is also presented in order to tackle the complications introduced by the inclusion of

the chemotactic terms. A two-dimensional version of the model will be implemented,

in line with the biological assumption of analysing the surge and resolution of inflam-

mation of a generic two-dimensional tissue. The model will be analysed first in terms

of homogeneous steady states and then spatially by investigating the model’s abil-

ity to support patterning and inhomogeneous oscillations. Results will be gathered

and assessed in terms of the manipulation of key parameters and the corresponding

impact upon the final inflammatory outcome.

81
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3.1 Limitations and extensions of the model of Chap-

ter 2

The model introduced in Chapter 2 served to provide a basic representation of the

main features that characterise the acute inflammatory response. The actual biology

of such a complex event presents multiple aspects that have been neglected in the

previous model for the sake of simplicity and clarity. These included cells’ chemotaxis

and neutrophils’ contribution to promoting inflammation. While that model yields

effective simulations in terms of the dynamical outcome of an inflammatory process,

the lack of some significant biological interactions prompts for an extension of the

model in order to assess biologically meaningful results by including such features in

its mathematical description. Furthermore, the analysis of the model of Chapter 2

also excludes any kind of spatial patterning, while not being sufficiently rigorous in

terms of chemical interactions between the main inflammatory variables. Thus, the

extension proposed in this chapter, while yielding a more complicated model, takes

into account more accurate biological scenarios, possibly providing scope for spatially

inhomogeneous outcomes.

The equations provided for the model of Chapter 2 (2.1)–(2.7) configure apop-

totic neutrophils as the only active source of pro-inflammatory mediators (initially

triggered by generic damage, modelled by fpt˚q as in (2.6)). Biologically though

this is not completely accurate, since active neutrophils also serve as a positive feed-

back in terms of pro-inflammatory events (Xia et al., 2015) by being responsible for

an enhanced production of c˚. Furthermore, macrophage activity goes beyond the

basic phagocytosing task and presents a much more nuanced response throughout in-

flammatory processes, by releasing, upon their recognition of apoptotic neutrophils,

different specific chemicals that act as anti-inflammatory signals. While the range
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of species macrophages release to this scope is quite wide and diversified, both in

terms of timing and the specific nature these anti-inflammatory cytokines, there is

also a redundancy of the anti-inflammatory signals that are triggered by macrophage

activity (Duque & Descoteaux, 2014) that justifies modelling this varied multiple

group of mediators as a unique source of anti-inflammatory chemicals. Therefore, in

order to model this new sequence of mediators appearing in the inflammatory envi-

ronment that is being analysed, it is considered that macrophages are responsible for

the release of a generic anti-inflammatory mediator, that includes a group of different

cytokines and growth factors commonly present in inflammation (Liu et al., 2014).

Moreover, an essential feature that will be incorporated in this extension of the

model of Chapter 2 is chemotaxis, thus adding to the spatial characterisation of the

model as well as replicating a fundamental aspect of in vivo inflammatory processes.

In general, in chemical and biological systems, the phenomenon of cellular direc-

tional motion up chemical gradients is named chemotaxis (Delves & Roitt, 1998).

This is a common feature of many cells, including unicellular organisms such as

bacteria (Schaechter, 2009), but, with regards to inflammation, it is most promi-

nently expressed by leukocytes which are diverted from blood stream into the injured

area (Tani et al., 2001). A large group of chemicals, including small proteins and

chemokines, have been recognised to act as chemotactic agents, although the exact

mechanisms of signalling and transduction that result in cell migration have not been

completely clarified yet (Jin et al., 2008). Nonetheless, upon injury, as part of the

initial cascade of reactions and interactions triggered by the occurred damage, this

variety of particles, partly present on-site and partly released in response to the insult,

selectively attract neutrophils (in the earliest stages) and macrophages (during the

ongoing response), prompting their recruitment and deployment in the inflammatory

activity. The tightly controlled mechanisms of chemotaxis during inflammation and

their high specificity ensure the triggering and promotion of an effective and physio-
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logic acute inflammatory response. On the other hand, slight defects in this complex

and delicate cell signalling could easily result in chronic inflammation and possible

pathological complications (Turner et al., 2014).

3.2 The model

We extend the model of Chapter 2 to account for the above limitations by following

the corresponding model developments of Dunster et al. (2014), as described below.

Furthermore, we extend the existing ODE model of Dunster et al. (2014) to include

spatial information via diffusive and chemotactic terms in the governing equations.

The biological interactions described above are introduced into the model by de-

noting with k˚
n the maximal rate of production of pro-inflammatory mediators by

neutrophils. We assume this feedback to be saturating in nature in the same manner

as production by apoptotic neutrophils was modelled in Chapter 2; we denote with β˚
n

the associated half-maximal concentration level. A new equation accounting for the

anti-inflammatory mediators, g˚, is also added to the model; we introduce the new

parameters k˚
g as the concentration of anti-inflammatory mediators produced upon

macrophage engulfment of apoptotic neutrophils, and γ˚
g as the linear decay rate. The

anti-inflammatory activity affects in turn the apoptotic process that neutrophils un-

dergo by increasing the apoptosis rate through a saturation constant β˚
g that acts on

anti-inflammatory mediators. Conversely, upon a concentration of pro-inflammatory

mediators of β˚
c the apoptosis rate decreases. In this context, pro-inflammatory me-

diators c˚ further prolong neutrophils’ lifespan (McCracken & Allen, 2014). To model

these effects, the apoptosis rate ν˚ is amended such as to include the contributions

of both the anti-inflammatory mediators g˚ through the parameter β˚
g and the pro-

inflammatory mediators c˚ through the parameter β˚
c respectively. The effect of the

newly introduced anti-inflammatory mediators is further reflected on the neutrophils
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influx with parameter β˚
gc controlling the concentration over which this rate decreases.

These additional interactions, introduced in ‘Model 3’ of Dunster et al. (2014), are

illustrated in Figure 3.1, which updates upon Figure 2.1 in Chapter 2. Once again,

we expand upon this existing ODE model via the addition of spatial terms, following

the procedure of Chapter 2. In order to incorporate spatial information for the new

variable g˚, a diffusion constant D˚
g is introduced, thus considering anti-inflammatory

mediators as moving diffusively.

In order to mathematically incorporate chemotaxis, both active neutrophils n˚

and macrophages m˚ are considered to move towards higher concentrations of pro-

inflammatory mediators c˚. This movement of cells towards high concentrations of

pro-inflammatory mediators results in additional flux terms that are proportional to

both the local cell concentration and the gradient of the pro-inflammatory mediator

concentration. That is, we obtain the highest level of chemotactic flux when both the

cell number and the mediator gradient are large. We denote the associated chemotaxis

constants for neutrophils and macrophages by θ˚
n and θ˚

m respectively.

Our extended model is therefore generated by the following equations:

Bn˚

Bt˚
“ ´ν˚

1 ` g˚

β˚
g

1 ` c˚

β˚
c

n˚ ` χ˚
n

c˚

1 ` g˚

β˚
gc

` D˚
n∇

2n˚ ´ θ˚
n∇ ¨ pn˚∇c˚q, (3.1)

Ba˚

Bt˚
“ ν˚

1 ` g˚

β˚
g

1 ` c˚

β˚
c

n˚ ´ γ˚
aa

˚ ´ φ˚m˚a˚, (3.2)

Bm˚

Bt˚
“ χ˚

mc
˚ ´ γ˚

mm
˚ ` D˚

m∇
2m˚ ´ θ˚

m∇ ¨ pm˚∇c˚q, (3.3)

Bc˚

Bt˚
“ α˚fpx˚, t˚q ` k˚

n

ˆ

n˚2

β˚2
n ` n˚2

˙

` k˚
aγ

˚
a

ˆ

a˚2

β˚2
a ` a˚2

˙

´ γ˚
c c

˚ ` D˚
c∇

2c˚, (3.4)

Bg˚

Bt˚
“ k˚

gφ
˚m˚a˚ ´ γ˚

g g
˚ ` D˚

g∇
2g˚ , (3.5)

We retain the cells’ spatial description with active neutrophils and macrophages freely

diffusing within the tissue. As previously explained in Chapter 2, we do not prescribe

apoptotic neutrophils with diffusive motion assuming that the extent to which these
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inanimate particles could diffuse (despite varying dependent upon their local envi-

ronment, size and temperature) will always be negligibly small compared to that of

active neutrophils and macrophages.

We highlight, once again, that in the absence of diffusive and chemotactic terms in

(3.1)–(3.5) we recover the ODE model labelled as ‘Model 3’ in Dunster et al. (2014).

In Chapter 2 we initially modelled damage through a time dependent function

fpt˚q, (2.5), and subsequently a spatially dependent one fpx˚, t˚q, (2.25), that triggers

the inflammatory response. We retain f in (3.4) to make a comparison with Chapter 2,

but in later sections we set f “ 0 and consider damage driven by initial conditions.

3.3 Parameter values

The newly introduced parameters are presented in Table 3.1, with ranges of values

inferred from the available literature where possible. As can be seen from Table 3.1,

the scientific literature for diffusion constant of the anti-inflammatory mediators D˚
g

gives a comparable range to the one provided for the diffusion of pro-inflammatory

mediators D˚
c and reported in Table 2.1 of Chapter 2. As such, we consider the anti-

inflammatory mediators to diffuse at equivalent rate of pro-inflammatory mediators.

As for the chemotactic constants, as an initial point of reference we assume that

chemotaxis parameters are of a similar order to those of leukocytes’ diffusion that

remain unchanged from the considerations of Section 2.2.1, with specific dimensionless

values detailed in the following section.

3.4 Nondimensionalisation

Analogously to Section 2.2.2, we nondimensionalise (3.1)–(3.5) by substituting the

rescaled dimensionless variables of (2.12) as well as the new scaling g˚ “ β˚
gcg, the
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Figure 3.1: Schematic diagram showing the spatially-independent interactions in

‘Model 3’ of Dunster et al. (2014), which form the basis of the PDE model pre-

sented in (3.1)–(3.5). The model includes populations of healthy neutrophils (n˚),

apoptotic neutrophils (a˚) and macrophages (m˚), interacting in response to pro- and

anti-inflammatory mediators (c˚ and g˚) with associated parameters as shown. Ar-

rowheads indicate up-regulation; flat-headed arrows indicate down-regulation; dashed

arrows indicate natural decay.
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Parameter Definition Range of values Unit measure

k˚
n pro-inflammatory mediators production from active neutrophils (rate of

c˚ptq concentration produced in response active neutrophils presence)

750 ´ 4000 rpg ¨ mm´3 ¨ day´1s

(Dumas et al., 2016)

β˚
n active neutrophils saturation constant (concentration of active neu-

trophils required for half maximal release of c˚ptq)

rcell ¨ mm´3s

k˚
g anti-inflammatory mediators production from macrophages (concentra-

tion of g˚ptq produced in response macrophages presence)

10 ´ 750 rpg ¨ cell´1s

(Miles et al., 2009)

β˚
gc inflammatory mediators saturation constant (concentration scale over

which neutrophils influx rate decreases)

rpg ¨ mm´3s

β˚
g anti-inflammatory mediators saturation constant (concentration of anti-

inflammatory mediators over which apoptosis rate increases)

rpg ¨ mm´3s

β˚
c pro-inflammatory mediators saturation constant (concentration of pro-

inflammatory mediators over which apoptosis rate decreases)

rpg ¨ mm´3s

γ˚
g rate of anti-inflammatory mediators decay 3.6 ´ 52.56 rday´1s

(Reynolds et al., 2006)

D˚
g anti-inflammatory mediators diffusion constant 8.64 ¨ 10´2 ´ 8.64 rmm2 ¨ day´1s

(Busse et al., 2010)

(Sherratt & Murray, 1990)

(Ross & Pompano, 2018)

θ˚
n active neutrophils chemotaxis constant rmm2 ¨ day´1s

θ˚
m active macrophages chemotaxis constant rmm2 ¨ day´1s

Table 3.1: New parameters appearing in the model (3.1)–(3.5). When available,

ranges of parameter values are inferred from relevant literature, as specified.
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new dimensionless parameters are defined as

βg “
β˚
g

β˚
gc

, βc “ β˚
c

k˚
a

, γg “
γ˚
g

γ˚
c

, kg “ χ˚
nk

˚
a

β˚
gcγ

˚
c

k˚
g ,

Dg “
D˚

g

L˚2
x γ˚

c

, kn “ k˚
n

k˚
aγ

˚
c

, βn “ γ˚
c

χ˚
nk

˚
a

βn, θn “ θ˚
n

L˚2
x γ˚

c

, θm “ θ˚
m

L˚2
x γ˚

c

(3.6)

As the expressions in (3.6) show, we follow the nondimensionalisation applied in

Chapter 2, by scaling time on 1{γ˚
c , taking γ˚

c “ 3 day´1, as in Dunster et al. (2014),

with γ˚
c being the rate of decay of pro-inflammatory mediators. As in Chapter 2,

we scale space considering a domain of width L˚ “ 10 cm. The dimensional ranges

given by literature and reported in tables 2.1 and 3.1 allow us to provide dimension-

less estimates for both spatial and non-spatial dimensionless parameters as shown in

Table 3.2. The corresponding dimensionless system is then given by

Bn
Bt “ ´ν

1 ` g

βg

1 ` c
βc

n ` c

1 ` g
` Dn∇

2n ´ θn∇ ¨ pn∇cq, (3.7)

Ba
Bt “ ν

1 ` g

βg

1 ` c
βc

n ´ γaa ´ φma, (3.8)

Bm
Bt “ c ´ γmm ` Dm∇

2m ´ θm∇ ¨ pm∇cq, (3.9)

Bc
Bt “ αf ` γa

a2

β2
a ` a2

` kn
n2

β2
n ` n2

´ c ` Dc∇
2c, (3.10)

Bg
Bt “ kgφma ´ γgg ` Dg∇

2g . (3.11)

The above described system retains the periodic boundary conditions while the

zero initial conditions (2.18) provided for the model of Chapter 2 will later be updated

and presented throughout this chapter such as to include initial damage, as discussed

in Section 3.8.

From here on we will first proceed with a section investigating spatially-independent

simulations driven by the damage function f in (3.10). The computational implemen-

tation of (3.7)–(3.11) for this first set of simulations will thus be analogous to the

one presented in Section 2.3.1. We then analyse the homogeneous steady states that
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Parameter Approximate Range Standard values used in simulations

in this chapter

ν 0.001 ´ 0.6925 0.1

γa 0.55 ´ 1 1

γm 10´2 ´ 1.2375 ¨ 10´2 0.01

φ 0.001 ´ 1.38 0.1

βa 0.01 ´ 0.1 0.1

Dn 10´5 ´ 10´3 10´5

Dm 10´6 ´ 10´3 10´6

Dc 10´4 ´ 10´3 10´4

kn 1.9 ¨ 10´3 ´ 4 ¨ 10´2 0.01

βn 0.1 0.1

βg 8.33 ¨ 10´6 ´ 10´2 10´2

βc 0.12 0.12

kg 0.1 ´ 0.7128 0.1

γg 1 ´ 2.25 1

Dg 10´4 ´ 10´3 10´4

θn 10´6 ´ 10´4 10´5

θm 10´6 ´ 10´4 10´6

Table 3.2: Dimensionless parameter values appearing in the model of (3.7)–(3.11).

New parameters introduced in this chapter are presented in bold.
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the model admits in the absence of spatial terms, and present a bifurcation analysis

to illustrate how the stability of these states depends upon model parameters. This

assessment is crucial in guiding us in through a further set of simulations in which the

spatial behaviour of both mediators and leukocytes is evaluated thoroughly. Further-

more, the implementation and simulation of a two-dimensional version of (3.7)–(3.11)

is anticipated by the introduction of a more robust numerical method that takes into

account the challenges posed by working with the chemotactic terms on a range of pa-

rameter values. The following two-dimensional simulations, presented in Section 3.8

will thus be implemented according to the newly defined numerical approach. Finally

the results will be analysed and commented and conclusions to the chapter provided.

3.5 Spatially-independent simulations

The model described in (3.7)–(3.11) presents added complexity, particularly in terms

of neutrophil apoptosis and inflammatory mediator interactions. We here aim to draw

comparisons with the model analysed in Chapter 2. In order to properly analyse

the newly introduced terms and assess how they affect the system, we first present

simulations in which all diffusion and chemotaxis terms are omitted and different

values of critical parameters are tested. In this preliminary spatially-independent

analysis the damage function (2.5) is retained, and the initial conditions of (2.18) are

extended to include the new anti-inflammatory mediators such that:

np0q “ ap0q “ mp0q “ cp0q “ gp0q “ 0. (3.12)

Firstly, it is of interest to evaluate how damage duration and possible repetition af-

fects the inflammatory outcome. In fact, with nominal values for the parameters, it

is expected from Chapter 2 that upon one single cycle of damage the inflammation

would resolve naturally, while the system would not be able to recover when under re-

peated or continuous damage. However, this is not completely true, as is evident from
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the results of Figures 3.2 and 3.3, which both show a similar pattern of a persistent

inflamed state, regardless of the damage duration. A key point of comparison here

with respect to the model of Chapter 2 is that the introduction of pro-inflammatory

mediator production by active neutrophils (with parameter kn) results in a previously

healthy outcome (as shown in Figure 2.2) becoming chronic, as shown in Figure 3.2,

with both systems being under one cycle of damage only. This is because of the

addition into the extended model of kn, whose inclusion causes a change of behaviour

and an immediate impact upon the system, with Figure 3.2 confirming that the ad-

ditional pro-inflammatory mediators provided by active neutrophils can be sufficient

to prevent resolution. Similarly to the results of Figure 2.3, variables also reach a

chronic steady state following four cycles of damage, as shown in Figure 3.3.

In order to better understand the model’s behaviour, different parameter values

are tested, indicating how some of these parameters are actually key to the progression

and evolution of inflammation. In particular, the simulations in Figure 3.4 show how

the tuning of parameters φ and kg regulates the oscillatory behaviour of the system.

Thus, for sensitive values of φ and kg, the introduction of the anti-inflammatory

mediator g provides a negative feedback loop that results in oscillations that are not

found in the model of Chapter 2. By further analysing (3.7)-(3.11), new simulations

highlight that the rate of mediator production due to active neutrophils (kn) also

impacts on the inflammation’s outcome. In this regard, for a smaller choice of kn

(kn “ 1.9 ¨ 10´2), the inflammatory outcome is dependent on the duration of the

damage; a healthy state is recovered upon a single cycle of damage, while there is no

resolution for consecutive damaging events. Therefore, for smaller values of kn the

results of Chapter 2 are recovered, with figures here omitted for brevity.
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Figure 3.2: Solution of (3.7)–(3.12) in the absence of spatial terms, with one damage

cycle applied (A “ 1). All parameters values are as given in Table 3.2.
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Figure 3.3: Solution of (3.7)–(3.12), in the absence of spatial terms, with four damage

cycles applied (A “ 4). All parameters values are as given in Table 3.2.
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Figure 3.4: Solution of (3.7)–(3.12), in the absence of spatial terms, with four damage

cycles applied (A=4), for φ “ 0.08 and kg “ 0.65, and all remaining parameters

as given in Table 3.2. For these parameter values, the model exhibits sustained

oscillatory behaviour.
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3.6 Analysis of homogeneous solutions

We examine how the nature of the homogeneous steady states in (3.7)–(3.11) depends

upon choices of key parameters. We analyse a subset of the model’s parameters, in-

cluding a focus on the newly introduced ones. In particular, from the parameters

already featuring in Chapter 2, we retain here the stability analysis for the key pa-

rameters φ and ν and extend it to include the newly introduced anti-inflammatory

parameters kn and kg, while neglecting the bifurcation diagrams for the remaining

ones, already analysed in 2.4.2. It is important to consider how the bifurcation analy-

sis explains the stability of the solutions of the associated ODE system. As exposed in

Section 3.5, the system can either exhibit bistability (with healthy or chronic steady

states), be excitable (with sustainable oscillations) or monostable (with the healthy

steady state the only possible homogeneous outcome). Key parameters directly affect

the stability of the system’s fixed points.

In the following sections, we present bifurcation diagrams in terms of ν, φ, kn and

kg in turn, holding all other parameters fixed at the values in Table 3.2.

3.6.1 Varying rates of neutrophil apoptotis and macrophage

phagocytosis

In Figure 3.5 we show bifurcation diagrams that plot the coordinate of the steady-

state pro-inflammatory mediator concentrations, c, as functions of (a) φ and (b)

ν. Solid black curves illustrate stable steady states, dashed black curves illustrate

unstable steady states, and red curves illustrate the amplitudes of stable oscillations.

In Figure 3.5a, for ν “ 0.1, a supercritical Hopf bifurcation occurs at φ “ φHB » 0.09.

In 3.5b, for φ “ 0.1, this same supercritical Hopf bifurcation occurs at ν “ νHB »

0.07. For values of φ or ν that lie to the left of the Hopf bifurcation in either of
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Figure 3.5: Bifurcation diagrams for parameters ν and φ representing the rates at

which active neutrophils undergo apoptosis and are phagocytosed by macrophages,

respectively, as appearing in system (3.7)–(3.11), with respect to pro-inflammatory

mediators (a,b) and combined (c). All other parameters values are set as in Table 3.2.

Stable/unstable steady states are plotted in solid/dashed respectively, with stable

oscillations indicated in red.

these figures, the system is bistable, since both healthy and chronic steady states

are stable; the magnitude of the initial damage acts as a switch between these two

configurations. For values of φ or ν that lie to the right of the Hopf bifurcation, the

chronic steady state is unstable and the only permissible homogeneous configuration

is one of complete resolution of damage. In Figure 3.5c, we show the coordinates

of the Hopf bifurcation in pφ, νq–space. For parameter values below the illustrated

curve, the system is bistable; for parameter values above this curve, the system is

monostable since the chronic steady state is unstable.

3.6.2 Varying the neutrophil feedback rate

The model of (3.7)– (3.11) incorporates a positive feedback loop owing to the produc-

tion of pro-inflammatory mediators by active neutrophils, the associated rate constant

being denoted kn. In Figure 3.6, we briefly examine the extent to which this posi-

tive feedback loop impacts upon potential solutions. As discussed above, the facet
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of the model that is key in determining the long-term outcome is the position of the

Hopf bifurcation. For parameter combinations that lie prior to the Hopf bifurcation,

the model is bistable and we have the potential to obtain either healthy or chronic

steady states dependent upon initial conditions; for parameter choices beyond the

Hopf bifurcation, the only permissible solutions are the healthy homogeneous config-

uration or outcomes not captured by the associated ODE system. In Figure 3.6, we

illustrate how the position of the Hopf bifurcation depends upon our choice of kn.

In Figures 3.6a–3.6b we present two-parameter bifurcation diagrams that illustrate

how the φ– and ν–coordinates of the Hopf bifurcations evolve as kn is varied; the

non-trivial homogeneous steady state is stable for parameter combinations that lie

above the illustrated curves. As kn is increased from our baseline value of kn “ 0.01,

there is a narrowing window of φ–values (for fixed ν) for which the non-trivial steady

state is unstable (Figure 3.6a). As such, the enhanced pro-inflammatory mediator

production by neutrophils essentially acts to enhance the stability of the non-trivial

steady state, hence increasing the potential of attaining a chronic state. Holding φ

fixed and varying kn, the position of the Hopf bifurcation is an increasing function of

ν, since the enhanced apoptosis of neutrophils acts to counter the pro-inflammatory

mediator production by active neutrophils (Figure 3.6b). For the parameter values

of Table 3.2, choices of kn Á 0.07 result in the Hopf bifurcation being eliminated

completely. Figure 3.6c illustrates the curve in pφ, νq–space on which the Hopf bifur-

cation lies, for various choices of kn. Below the illustrated curves, the model attains

either healthy or chronic outcomes, identifying a region of bistability. Conversely,

increases in kn push the system toward the monostable region where the system’s

stable outcome is chronic.
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Figure 3.6: Bifurcation diagrams illustrating the effects of the neutrophil feedback

parameter kn upon locations of Hopf bifurcations as functions of (a) φ and (b) ν.

In (a,b), the non-trivial steady state is stable for parameter combinations above the

black curves. In (c) we show the position of the Hopf bifurcation in pφ, νq–space for

kn “ 0.01 (solid line), kn “ 0.04 (dashed line) and kn “ 0.07 (dash-dotted line). The

non-trivial steady state is stable below the illustrated curves; the areas of parameter-

space above the curves exhibit potential for inhomogeneous solutions. The cross

symbols demark the baseline parameter values of Table 3.2.
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3.6.3 The role of anti-inflammatory mediators

A further focus on the role of anti-inflammatory mediators is provided by Figure 3.7,

in which the impact of the manipulation of the parameter kg on the stability of homo-

geneous steady states is assessed. In particular, Figure 3.7a illustrates how the regions

of stability vary with respect to the production of anti-inflammatory mediators kg,

with those lying below and above the curves representing bistable and monostable

outcomes of the system respectively. The region of monostability grows by increasing

values of kg, with the healthy steady state being the only permissible stable steady

state for a wider range of parameters in pφ, νq-space. Figure 3.7b illustrates the loca-

tion of the Hopf bifurcation with respect to parameters kg and kn, while fixing all other

parameter values according to Table 3.2. Here, the region corresponding to bistabil-

ity of the solutions lies above the curve with both healthy and chronic homogeneous

outcomes being permissible. Below this curve, the only permissible homogeneous so-

lution is one of uniformly resolved damage. Analogously, bifurcation analysis of the

anti-inflammatory parameters γg and βg shows a qualitatively similar impact on the

system’s stability, with the corresponding Hopf bifurcations approaching the dashed

curve of Figure 3.7a (results are here omitted for brevity).

3.7 Incorporating chemotaxis: a modified numer-

ical approach

The inclusion of chemotaxis in our model poses a non-trivial numerical challenge. The

typical qualitative behaviour chemotaxis prescribes is best represented by hyperbolic

PDEs (Gerisch et al., 2001). Such equations, contrary to purely diffusive parabolic

PDEs, can present discontinuities even with smooth initial conditions (Rozhdestven-

skii, 1960), thus requiring careful numerical approaches in their approximation. Here
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Figure 3.7: Bifurcation diagrams illustrating the role of the anti-inflammatory medi-

ator. In (a) we show the position of the Hopf bifurcation in pφ, νq–space for kg “ 0.1

(solid line), kg “ 0.01 (dashed line) and kg “ 0 (dash-dotted line). The non-trivial

steady state is stable below the illustrated curves; the areas of parameter-space above

the curves exhibit potential for inhomogeneous solutions. In (b), we illustrate the

location of the Hopf bifurcation in pkg, knq–space. The cross symbols demark the

baseline parameter values of Table 3.2.

we introduce an effective numerical method that is specifically structured to tackle

the shortcomings that traditional finite difference methods face in order to provide

a robust approximation of systems comprising both diffusion and chemotaxis. What

follows in this section is directly taken from the methods developed and presented

by Gerisch et al. (2001). To this end, let us consider a generic hyperbolic-parabolic

system of the form:

Bu
Bt “ ´∇ ¨ puGpwq∇wq ` g1pu, wq (3.13)

Bw
Bt “ ∇2w ` g2pu, wq (3.14)

with upx, y, tq and wpx, y, tq unknown functions defined in a unit square domain in

space and for t P r0, tf s. The functions G, g1 and g2 generalise the relationships

occurring between the quantities u and w. In order to analyse possible numeri-

cal approaches to tackling the discontinuities of (3.13)–(3.14), we supply the sys-
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tem with appropriate initial conditions u1px, y, 0q “ u10
px, yq, u2px, y, 0q “ u20

px, yq

and periodic boundary conditions in order to be consistent with the inflammatory

model (3.7)–(3.11). The variable u moves chemotactically up gradients of w, which

in turn diffuses within the domain. Such a system represents a simplified and generic

version of the interactions we are most interested in, focusing the attention on the

diffusion of one variable, namely w, as per (3.14), and the chemotaxis of the other,

formally defined as the convection of u by a velocity field and considering a nonlinear

dependence on variable w. As such, the sign of Gpwq determines the direction of

convection, thus reflecting the choice of a positive unitary constant for this function

with respect to the inflammatory model object of this investigation. Following the

analysis of Gerisch et al. (2001) and exploiting the parabolic-hyperbolic nature of

system (3.13)–(3.14), we tailor a dual numerical approach in the approximation of

these PDEs such that the hyperbolic and parabolic terms are decoupled and treated

separately, through explicit methods for the former and implicit ones for the latter.

Furthermore, we impose an additional constraint limiting the admissible solutions to

non-negative ones only. This is motivated by the biological nature of our problem

that refers particularly to concentrations of cells and chemicals within the inflamed

tissue, thus representing necessarily positive quantities only.

By splitting equations (3.13)–(3.14), we consider solving the diffusive equation (3.14)

through the numerical approach presented in Section 2.3, while for the new chemo-

tactic interactions introduced in (3.13) we follow the flux-limited second order ap-

proximation proposed in Gerisch et al. (2001). By denoting with i, j “ 1, . . . , N the

meshpoints xi and yj respectively, ui,j and wi,j represent approximations of upxi, yj, tq

and wpxi, yj, tq respectively. In the analysis of Gerisch et al. (2001), (3.13) is dealt

with using flux limiters or numerical flux functions, that is functions conveyed in a

form as to prevent converging to non-solutions (LeVeque, 1999). We now restrict our

analysis to the x-dimension only, for the sake of clarity in the following notation,
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with the extension to the second dimension being straightforward. In particular, by

conveniently renaming vpx, y, tq “ Gpwq∇w, (3.13) can be rewritten in terms of the

convection of the quantity u by the velocity field v, that is

Bu
Bt “ ´rvpx, y, tqupx, y, tqsx (3.15)

having preserved periodic boundary conditions for the newly introduced variable

vpx, y, tq, neglected the additional function g1pu, wq and assuming a unitary constant

value for the term Gpwq. Following Gerisch et al. (2001), we define the semi-discrete

flux function as

fi,jptq “ vpxi, yj, tqui,jptq . (3.16)

By denoting with Fi`1{2,j the approximation of the flux function (3.16), in compliance

with the constraint of allowing positive solutions only, the general flux function for

positive velocity fields is given by

Fi`1{2,j “ fi,j ` 1

2
Φpri`1{2,jqpfi,j ´ fi´1,jq , (3.17)

while, conversely, for negative velocities, we refer instead to

Fi`1{2,j “ fi`1,j ` 1

2
Φpr´1

i`3{2,jqpfi`1,j ´ fi`2,jq . (3.18)

The general flux functions (3.17) and (3.18) are defined with respect to the ratio r,

which regulates the flux’s smoothness and is given by

ri`1{2,j “ fi`1,j ´ fi,j

fi,j ´ fi´1,j

. (3.19)

As for the flux limiter Φ, Sweby (1984) presents a comprehensive class of limiters,

by analysing both theoretical and numerical features. Among these, Gerisch et al.

(2001) select and propose the Van Leer flux limiter (Van Leer, 1974), carefully chosen

as to be Lipschitz continuous, continuously differentiable for all r ‰ 0 and preserving

the positivity of the solutions:

Φprq “ |r| ` r

1 ` |r| . (3.20)
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Thus, the discretisation of (3.15) in the form

dui,jptq
dt

“ ´1

h
pFi`1{2,j ´ Fi´1{2,jq (3.21)

yields a forward/backward scheme depending on the sign of the velocity field through

the approximations

dui,jptq
dt

“ ´1

h

„ˆ

1 ` 1

2Φpri`1{2,jq

˙

´ Φpri´1{2,jq
2ri´1{2,j



pfi´1,j ´ fi,jq (3.22)

and

dui,jptq
dt

“ ´1

h

«˜

1 ` 1

2Φpr´1

i`1{2,jq

¸

´
Φpr´1

i`3{2,jq
2r´1

i`3{2,j

ff

pfi`1,j ´ fi,jq (3.23)

respectively.

With the discretising scheme for convecting equations provided in (3.22)–(3.23),

the mixed hyperbolic-parabolic system (3.13)–(3.14) is rewritten here in vector form

as

B
Bt

¨

˝

u

w

˛

‚“

¨

˝

´∇ ¨ puGpw∇wqq

0

˛

‚

loooooooooooomoooooooooooon

f1

`

¨

˝

g1pu, wq

∇2w ` g2pu, wq

˛

‚

loooooooooomoooooooooon

f2

; (3.24)

that is

Bu
Bt “ f1 ` f2 . (3.25)

Such a representation allows us to distinguish the purely convective contribution

of f1 to the system in contrast to its reactive-diffusive stiff part, given by f2. In

particular, (3.25) poses contrasting challenges in its resolution, with f1 best dealt with

via explicit methods allowing for restrictions on the time-step to preserve positivity

of the approximations, while f2 requires an implicit approach due to stability and

stiffness concerns. As such, instead of approximating (3.25) with a global numerical

approach, a splitting method is employed, by dealing with f1 and f2 separately, in the

form of:

uptk ` τq “ uk `
ż tk`τ

tk

rf1puptqq ` f2puptqqs dt
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“ uk `
ż tk` τ

2

tk

f1puptqq dt `
ż tk`τ

tk

f2puptqq dt `
ż tk`τ

tk` τ
2

f1puptqq dt . (3.26)

Thus, at each time step, vectors f1 and f2 are approximated separately, through

explicit methods the former (Runge Kutta 4 in the implementation of our code)

and implicit ones the latter (through Matlab’s builtin solver ode15s). The numerical

scheme proposed in (3.26) guides the approximation of uptk `τq through intermediate

steps consisting of

• z1
1ptq “ f1pz1ptqq, with initial condition z1ptkq “ uk, approximating z1ptk`τ{2q;

• z1
2ptq “ f2pz2ptqq, with initial condition z2ptkq “ z1ptk ` τ{2q, approximating

z2ptk ` τq;

• z1
3ptq “ f1pz3ptqq, with initial condition z3ptk `τ{2q “ z2ptk `τq, approximating

z3ptk ` τq.

The stability and positivity of this Implicit-Explicit (IMEX) scheme is guaranteed as

detailed in Gerisch et al. (2001). Furthermore, particular attention is dedicated to

the time-step size: a fixed time step is avoided in favour of a variable one, allowing

us to keep its size large enough to be computationally effective and efficient while

also maintaining it small enough to prevent numerical errors and stability issues. In

practice, this is implemented by selecting time-step sizes for which the approxima-

tion’s local error is within a fixed tolerance and considering an adaptive time-step τk

controlling the step size tk`1 “ tk ` τk, with t0 “ 0 and k “ 0, 1, . . . . Approximations

of uptk ` τkq providing solutions to the splitting scheme (3.26) are computed with a

time-step τk, resulting in uτk , and two time-steps τk
2

generating u2ˆ
τk

2

. The size of

time-step τk is then evaluated against a scaled error measure ρ defined as

ρ “ 1

2n ´ 1

g

f

f

e

1

m

m
ÿ

i“1

˜

pu2ˆ
τk

2

qi ´ puτk
qi

atoli ` rtoli |pukqi|

¸2

, (3.27)
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with n being the order of the ODE solver, m the dimension of the ODE system (3.25),

and atol and rtol being tolerances for the absolute and relative errors, respectively.

If ρ ď 1, the new step-size τknew
, computed as

τknew
“ τk ¨ mint2,maxt0.8ρ´ 1

2n´1 , 0.25uu (3.28)

is accepted and uk`1 “ u2ˆ
τ
k

2

is identified as the more accurate nth order approx-

imation. Otherwise, if ρ ą 1, the step-size is rejected and recomputed accordingly.

Matlab code for this model is available online via Github1.

3.8 Two-dimensional simulations

Considering the interactions of cells and chemicals in a two-dimensional spatial do-

main allows for a better representation of a generic tissue. The introduction of a

second spatial dimension does not change the formal representation of the system,

with the corresponding two-dimensional model still defined by equations (3.7)–(3.11),

but by explicitly defining the two independent dimensions x and y, each variable’s

dynamics is now analysed in terms of N2 mesh points, namely npxi, yj, tq, apxi, yj, tq,

mpxi, yj, tq, cpxi, yj, tq and gpxi, yj, tq with i, j “ 0, 1, . . . , N . With reference to (3.7)–

(3.11), the damage function f is neglected in favour of a set of two-dimensional initial

conditions that trigger the dynamics.

The full integration of chemotaxis into the model (3.7)–(3.11), along with the

fundamental biological implications discussed in Section 1.2, directly impacts the im-

plementation of our system, requiring the careful numerics introduced in Section 3.7.

The validity of this more refined numerical approach, as already presented in Gerisch

et al. (2001), is further tested and confirmed by multiple simulations run using initial

conditions that are independent of one spatial coordinate, with the results then being

1https://github.com/atihana/inflammation pde

https://github.com/atihana/inflammation_pde
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compared to equivalent 1D simulations. These simulations confirmed the validity

of the two-dimensional code, with further details of this analysis omitted here for

brevity.

Various initial conditions and parameter values have been tested to evaluate the

overall behaviour of (3.7)–(3.11) and assess its response towards different stimuli.

Initial values have been inferred from steady state values associated with the homo-

geneous form of the model (3.7)–(3.11). While it is not possible to analytically solve

the corresponding system of equations, explicit steady state values different than the

trivial ss1 “ p0, 0, 0, 0, 0q were derived by the numerical solution provided by Matlab

inbuilt function fsolve and are here indicated as the set of points ss2 “ pn̄, ā, m̄, c̄, ḡq.

The set of values ss1 and ss2 are then used to configure different sets of initial con-

ditions. The model’s assessment thus allows us to analyse how both diffusion and

chemotaxis affect the system behaviour, with a particular interest to a possible emer-

gence of spatial patterns. The results presented in this section account for simulations

run with initial conditions considering variable-dependent damages shaped as a circu-

lar area of uniform damage of radius r “ 0.25 and height pn̄, ā, m̄, c̄, ḡq (corresponding

to the values from the set of points ss2) centred in a unit-square domain, as specified

here below:

pn, a,m, c, gq “ pn̄, ā, m̄, c̄, ḡq, for px ´ 1{2q2 ` py ´ 1{2q2 ď 1{42 (3.29)

pn, a,m, c, gq “ p0, 0, 0, 0, 0q, for px ´ 1{2q2 ` py ´ 1{2q2 ą 1{42. (3.30)

A first representation of two-dimensional results is provided in Figure 3.8 in which

active neutrophils’ spatial behaviour at four specific time steps is shown. Active

neutrophils are initially concentrated in the middle of the two-dimensional domain,

as to model the occurred insult triggering the inflammatory response (Figure 3.8a).

During intermediate times the spatial distributions of active neutrophils continuously

evolves, as is evident from Figure 3.8b–3.8d, with prolonged simulations also showing
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Figure 3.8: Solution of the two-dimensional system (3.7)–(3.11) with respect to vari-

able n. All parameters are as in Table 3.2; initial conditions are as in (3.29).

that the system undergoes sustained spatially inhomogeneous oscillations.

A variety of parameter combinations have been tested and assessed, with par-

ticular attention also to diffusion and chemotaxis constant values. The preliminary

detailed analysis of the corresponding 1D model and new extensive assessment of pa-

rameter values of the full two-dimensional system allowed to recognise fixed nominal

values for a group of parameters, while evaluating the model’s behaviour in response

to variations of the remaining key parameters, as illustrated in the following sections.

3.8.1 Effects of non-spatial parameters

Firstly, the system’s ability to support spatially inhomogeneous oscillations upon

sensitive ranges of its spatial parameters is tested and evaluated against two key

non-spatial parameters, the phagocytosis rate φ and the apoptosis rate ν. The bi-

furcation diagrams in Figure 3.5 exhibit how sensitive the system is to variations of
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non-spatial parameters ν and φ in particular. The choice of specifically focusing on

the two parameters φ and ν, accounting for the phagocytosis and apoptosis rates

respectively, is driven by the direct biological relevance of such features in the inflam-

matory dynamics, while also being central in the analysis of Dunster et al. (2014) in

their corresponding ODE model.

As a convenient representation of the two-dimensional system’s dynamics, a set

of plots exhibiting both the cross-sectional concentrations in time and snapshots of

the spatial profiles at specific times are shown in the context of the variation of

our identified key parameters, i.e. ν and φ, rates of apoptosis and phagocytosis,

respectively.

In the results presented in Figures 3.9–3.11 it is of particular interest to observe

how the system is susceptible to the key parameter ν accounting for the apoptosis rate

and how diffusion regulates spatial behaviour. The long-term outcome in Figure 3.9

(in which ν “ 0.1) corresponds to a spatially homogeneous steady state at zero, or

in biological terms to the resolution of inflammation throughout the tissue. With

reference to the bifurcation diagram in Figure 3.5b, we see that, for ν “ 0.1, the

non-trivial (chronic) steady state is unstable and in this case the model attains the

stable, healthy steady state.

In Figure 3.10, we plot solutions corresponding to ν “ 0.05, and observe that, in

this case, the system attains a homogeneous chronic steady state in which all variables

are non-zero and the inflammatory damage persists. Comparing this with Figure 3.5b,

we see that the homogeneous system is bistable when ν “ 0.05, which means that

the system may attain either chronic or homogeneous steady states. The selection of

which state is attained depends upon our choice of initial conditions. In Figure 3.11,

we plot solutions for ν “ 0.075 – a choice of ν which lies immediately to the right of

the Hopf bifurcation in Figure 3.5b, for which the chronic homogeneous steady state

is unstable. In this case we observe that the system displays sustained spatially-
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(c) Macrophages.
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(e) Anti-inflammatory mediators.

Figure 3.9: Solution of (3.7)–(3.11) on the cross-section y “ 0, with initial conditions

as in (3.29) and all parameters as in Table 3.2. The model attains a healthy steady

homogeneous steady state.
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(c) Macrophages.
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Figure 3.10: Solution of (3.7)–(3.11) on the cross-section y “ 0, with initial conditions

as in (3.29). The rate of neutrophil apoptosis is updated to ν “ 0.05; all other

parameters are as in Table 3.2. The model attains a homogeneous steady state that

represents chronic damage.
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inhomogeneous oscillations solutions which are not permissible in the corresponding

ODE model or the analysis of Section 3.6. Figures 3.12 and 3.13 show snapshots of

the corresponding spatial profile at t “ 100 and t “ 2000 respectively.

In Figure 3.14, we summarise where in pν, φq–space we find each of the broad

solution types above, with the remaining parameters fixed at the values given in Ta-

ble 3.2. For all choices of ν and φ that fall to the left (or below) the Hopf bifurcation

curve (shown in black in Figure 3.14), the system converges to a stable homogeneous

steady state corresponding to uniform damage (demarked by green triangles in the

figure). For the majority of parameter choices that fall significantly to the right (or

above) the Hopf bifurcation curve, the system ultimately progresses toward the trivial

homogeneous steady state at zero, corresponding to damage being uniformly resolved

(as shown by black circles in the figure). We note that in these areas of parame-

ter space, the non-trivial homogeneous steady state is unstable, so uniform chronic

damage is not a permissible configuration. However, for suitable choices of φ, there

exists a narrow region of parameter-space immediately beyond the Hopf bifurcation

in which long-term spatially inhomogeneous configurations exist. For the parameter

choices represented by red squares in Figure 3.14, these configurations display os-

cillations temporally as well as spatially; however, spatially inhomogeneous steady

states can also be permissible for some choices of parameters. We note that these

spatially inhomogeneous configurations do not fall into the classical class of solutions

that typically arise through Turing instabilities, given their temporally oscillating na-

ture (in most cases), and that they do not result from changes in the stability of the

homogeneous steady states in the corresponding ODE model. These results are akin

to similar patterns driven by Hopf bifurcation in other models, such as that of Penner

et al. (2012), for example. Below, we examine how variations in the choices of spatial

parameters affect the spatially-dependent configurations observed here.
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Figure 3.11: Solution of (3.7)–(3.11) on the cross-section y “ 0, with initial conditions

as in (3.29). The rate of neutrophil apoptosis is updated to ν “ 0.075; all other

parameters are as in Table 3.2. The model displays sustained spatially-inhomogeneous

oscillations.



3.8. TWO-DIMENSIONAL SIMULATIONS 114

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

2

4

6

8

10

12

(a) Active neutrophils.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.05

0.1

0.15

0.2

0.25

(b) Apoptotic neutrophils.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

5

10

15

20

25

30

35

40

45

50

55

(c) Macrophages.
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Figure 3.12: Snapshot of the spatial profile at t “ 100 corresponding to the solu-

tion of (3.7)–(3.11) in Figure 3.11, with initial conditions as in (3.29). The rate of

neutrophil apoptosis is updated to ν “ 0.075; all other parameters are as in Table 3.2.
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Figure 3.13: Snapshot of the spatial profile at t “ 2000 corresponding to the solu-

tion of (3.7)–(3.11) in Figure 3.11, with initial conditions as in (3.29). The rate of

neutrophil apoptosis is updated to ν “ 0.075; all other parameters are as in Table 3.2.
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Figure 3.14: Summary of the types of solutions omitted by (3.7)–(3.7) for various

choices of ν and φ, and all other parameter values as given in Table 3.2. Green tri-

angles indicate that the system attains the non-trivial (chronic) homogeneous steady

state given by the ODE model; red squares indicate that the model exhibits spa-

tially inhomogeneous temporal oscillations; black circles indicate that the damage is

resolved uniformly. The black curve marks the location of the Hopf bifurcation.
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3.8.2 Effects of spatial parameters

The model is thoroughly evaluated with respect to its spatial parameters in order to

further expose and analyse arising spatially inhomogeneous outcomes. To this end,

we run an extensive set of simulations for varying values of both mediators’ and cellu-

lar diffusion constants as well as chemotaxis parameters, holding all other parameters

at the same values given in Table 3.2. The inflammation outcomes were shown to

vary accordingly, as reported in Figure 3.15, with Figure 3.15a in particular study-

ing conditions for patterning depending on the diffusion of chemicals. When either

pro- or anti-inflammatory mediators diffuse relatively quickly, namely quicker than

D “ 10´4, inflammation is homogeneously resolved, while spatially inhomogeneous

oscillations are appreciable upon smaller diffusion constants. Figure 3.15b further

investigates the spatial response of the model to the cellular activity, with larger

populations of macrophages in particular leading the way to heterogeneous steady

states and enhanced presence of neutrophils, conversely, smoothening the system to

the homogeneous resolution of inflammation. Decoupling the values accounting for

diffusion and chemotaxis, as in Figures 3.15c and 3.15d leads to mixed results. While

either a stronger attraction of neutrophils to sources of pro-inflammatory activities or

their quicker diffusivity within the tissue is enough to resolve to damage uniformly, as

visible in Figure 3.15c, the same does not hold for macrophages. Figure 3.15d in fact

exhibits a more complex structure of results in which larger values of macrophagic

diffusion lead to spatially inhomogeneous steady states, in accordance to the results

of Figure 3.15b, while a range of values for spatially inhomogeneous oscillations is

also individuated.

These results are biologically of particular relevance, providing a detailed spatial

characterisation of the tissue configuration upon healing times. Notably, we observe

that by individuating the ranges of cellular and mediators diffusivity upon which
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the system attains the spatially homogeneous trivial steady state, we determine the

conditions that guarantee a global recovery and the restoration of a healthy state.

This suggests that promoting the diffusivity of mediators within the tissue, as well

as that of neutrophils, is key to prevent the inflammation from becoming chronic.

Similarly, defects in the mediators’ and cells’ ability to diffuse causes the tissue to be

pervaded by inflammation without eventually recovering. Another important result

that emerges from the spatial analysis illustrated in Figure 3.15 is the peculiarity

of the role of macrophages in the healing process. In particular, given their larger

size and overall slower velocity (Barros-Becker et al., 2017), to ensure a homogeneous

healthy recovery, the therapeutic action on these cells in terms of diffusivity and

chemotactic strength, is shown to be effective on smaller scales compared to that of

neutrophils (Figure 3.15d).

3.8.3 Domain effects and dependence upon initial conditions

We, here, briefly assess the extent to which the patterns identified above are sensitive

to our choice of domain. Numerical simulations conducted on a number of rectangular

domains of varying aspect ratio, with ν “ 0.075 (ν ą νHB) and all other parameters as

in Table 3.2, reveal that the regions of parameter-space in which we attain uniformly

resolved, uniformly damaged, or spatially inhomogeneous configurations are exactly

as illustrated in Figure 3.14. (Results omitted for brevity.) However, changes in the

shape of the domain can impact on the resultant patterns themselves. In Figure 3.16,

we illustrate snapshots of two solutions attained on domains with y restricted to the

intervals (a) r0.15, 0.85s or (b) r0.25, 0.75s (with x P r0, 1s as previously). Comparing

these results to those attained on the square domain (Figure 3.13d), we observe that

moving to a domain with a higher aspect ratio can predispose the system to striped

patterns such as that shown in Figure 3.16b. Additional simulations also reveal
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Figure 3.15: Tables of simulations for varying spatial parameters, all other parameters

are as in Table 3.2. Red squares correspond to spatially inhomogeneous oscillations,

black circles to the zero steady state, blue diamonds to spatially inhomogeneous

steady states.
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Figure 3.16: Snapshots (at time t “ 2000) of temporally oscillating, spatially inho-

mogeneous configurations attained on rectangular domains comprised of x P r0, 1s

and (a) y P r0.15, 0.85s, and (b) y P r0.25, 0.75s, for ν “ 0.075 and all other param-

eter values as given in Table 3.2. Moving from a square domain (Figure 3.13d) to a

narrowing rectangular domain can drive the system from spotted to striped patterns.

that replacing periodic boundary conditions by Neumann boundary conditions on all

boundaries has negligible impact upon permissible patterns. (Once again, results are

omitted for brevity.)

In Figure 3.17, we examine the sensitivity of patterns to the size of the area of dam-

age imposed via the initial conditions described above. In the figure, we set ν “ 0.075

and φ “ 0.1 (a parameter choice for which we have demonstrated, in Figure 3.14, that

temporally oscillating patterns are permissible), fix all other parameters at the values

used given in Table 3.2, and examine results for various choices of the radius of the

initially damaged area. As the figure shows, while variations in the radius of the

initial damage give rise to some differences in the short term, long-term patterns are

largely insensitive to the size of the initially-damaged area. Starting with uniform

damage of course results in spatially homogeneous results (not shown), but since this
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configuration is unstable in the ODE model, introducing even a small amount of

healthy tissue is sufficient to allow the PDE system to diverge from the unstable ho-

mogeneous configuration and instead attain stable, spatially-inhomogeneous periodic

orbits. Similar simulations (not plotted here for brevity) reveal that the model is also

largely insensitive to changes in the magnitude of the initial damage. For example,

on making all the initial conditions used above ten times larger or smaller, we attain

qualitatively equivalent spatially inhomogeneous solutions in the long-term, despite

some small variations in initial behaviour.

3.9 Conclusions

In this chapter the inflammation model has been further developed in order to in-

clude important features that improve upon the model of Chapter 2. Firstly, key

cellular interactions have been included, by modelling the positive feedback of active

neutrophils to the pro-inflammatory mediators and studying how the contribution of

anti-inflammatory mediators, g, affects the system’s behaviour. Chemotaxis has also

been added with cells modelled to move preferentially towards higher concentrations

of pro-inflammatory mediators.

The inclusion of chemotaxis, in particular, required a careful numerical approach

involving flux-limited approximations and a tailored use of implicit-explicit schemes,

as proposed by Gerisch et al. (2001) in order to ensure positivity and smoothness of

solutions.

Finally, the full system (3.7)–(3.11), comprising all the main biologically rele-

vant features of an inflammation process, has been implemented in a unit-square

two-dimensional domain, with the corresponding results assessed both in terms of

dynamics and spatial dependence. Guided by an existing focus in the literature upon

targeting the phagocytosing ability of macrophages (φ) in the hunt for new thera-
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Figure 3.17: The effect of changing the radius of the initial damage upon pro-

inflammatory mediator concentrations, c, for ν “ 0.075 and φ “ 0.1. In (a-c) we

plot the concentrations of c on the cross-section y “ 0 as functions of time, with

initially damaged areas of radius (a) 0.01, (b) 0.1, and (c) 0.25. In (d) we plot the

mediator distributions at the times demarked by the black lines in (a-c), with solid,

dashed and dash-dotted lines relating to panels (a), (b) and (c) respectively. The

long-term profiles are qualitatively similar for all three configurations.
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peutic strategies (see e.g. Porcheray et al. (2005), Serhan (2017)), together with the

fact that the analysis of Dunster et al. (2014) identified the neutrophil apoptosis rate

(ν) as a key parameter in determining the nature of long-term outcomes, our analysis

initially focused upon how variations in these two parameters can facilitate or inhibit

spatially inhomogeneous outcomes. While the ODE model shows that variations in

these two parameters that result in crossing the Hopf bifurcation curve in Figure 3.5c

act as a switch from bistability to monostability (i.e. guaranteed resolution of inflam-

mation), simulations of our spatially-dependent model illustrate (in Figure 3.14) that

crossing the same Hopf bifurcations can move the model into an area of parameter

space for which persistent spatially-inhomogeneous solutions exist – both steady state

solutions and solutions that oscillate temporally. These chronically inflamed solutions

lie in an area of parameter space for which the ODE model predicts full resolution of

damage. For the majority of parameters studied, our spatially inhomogeneous solu-

tions comprise disparate areas of damage whose severity oscillates temporally; while

one area of damage may be resolving, in that pro-inflammatory mediator levels are

reducing, other areas of damage are worsening due to the feedback from both active

and apoptotic neutrophil populations. Oftentimes, monitoring the pro-inflammatory

mediator concentrations alone would seem to indicate resolution, yet responses from

the other components of the system yield further flares of damage in due course. In

this sense, the temporal patterns that we observe are reminiscent of inflammatory

conditions that have relapsing–remitting characteristics, such as Crohn’s disease or

rheumatoid arthritis (Tibble et al., 2000; Firestein, 2003).

With the introduction of the neutrophil feedback, large values of the parameter

kn that controls this added feature can cause previously healthy outcomes of Chap-

ter 2 to become chronic. We here examined the extent to which the balance between

the pro-inflammatory feedback from active neutrophils (with rate kn) and the coun-

teracting role of the anti-inflammatory mediator (g) can have a key influence upon
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biassing the system toward globally inflamed (homogeneous) or spatially inhomoge-

nous solutions (as illustrated in Figures 3.6 and 3.7). For large choices of kn or small

concentrations of anti-inflammatory mediator (e.g. in the limit kg Ñ 0), spatial pat-

terns can be eliminated and the results of the corresponding homogeneous model are

recovered. While some drugs in current usage (such as methotrexate, sulphasalazine

and FK506) do act to mitigate against inflammation by triggering the synthesis of

anti-inflammatory mediators (Gilroy et al., 2004; Hasko & Cronstein, 2004), manipu-

lation of anti-inflammatory mediators remains an active area of focus in the hunt for

new therapeutic targets (Henson, 2005; Barnig et al., 2018; Back et al., 2019). Our

results indicate that, while increasing the concentrations of anti-inflammatory me-

diators can move the homogeneous system from a bistable regime (in which chronic

outcomes are permissible) to a healthy state, intermediate levels of anti-inflammatory

mediators can yield spatially inhomogeneous, non-resolving outcomes.

For spatially-independent parameter values that allow the model to emit spatially

inhomogeneous solutions, we have explored (in Figure 3.15) the extent to which varia-

tions in spatial parameters can influence the solutions obtained. For rapidly spreading

mediators (Dc and Dg large), the initial damage rapidly spreads to fill the entire do-

main, triggering a global response that results in a homogeneous, healthy outcome.

Similarly, large choices of the neutrophil motility parameters (Dn and θn) or small

choices of macrophage motility parameters (Dm and θm) result in a rapid spread of

damage driven by the apoptosis and eventual necrosis of neutrophils, the associated

positive feedback in pro-inflammatory mediator concentrations once again triggering

a global response that restores the healthy state. For small to moderate choices of

the neutrophil diffusion parameter Dn, our simulations reveal that strong neutrophil

chemotaxis (θn large) can drive resolution of inflammation, while weaker neutrophil

chemotaxis can result in a persisting spatially inhomogeneous outcome (Figure 3.15d).

The role of neutrophil migration in many different inflammation-related pathologies
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is of increasing interest (Brubaker et al., 2013; Cecchi et al., 2018); there is strong evi-

dence in the biological literature that a reduction in the rate of neutrophil chemotaxis

occurs under trauma and ageing and results in an otherwise healthy inflammatory

response being pushed into a persistent inflammatory response (Sapey et al., 2014b).

Indeed, neutrophil migration is now thought to be an attractive therapeutic target

for diseases such as chronic obstructive pulmonary disease, a chronic lung disease

characterised by aberrant neutrophil migration (Sapey et al., 2011; Jasper et al.,

2019).

It is pertinent to remark briefly that, while the model presented here incorporates

a reasonably thorough catalogue of biological interactions, this comes at the expense

of restricting the use of some key mathematical analyses that would commonly be used

in analysing pattern-forming systems. For example, our model does not lend itself

to travelling wave analysis, and does not allow spatially interesting configurations to

be determined analytically; we are therefore restricted to the use of robust numerical

schemes in order to identify the model’s spatially-dependent solutions. This is in

contrast to a broad range of existing models, the construction of which can often omit

key biological feedbacks in order to facilitate greater analytical progress. Furthermore,

we note that, while we regard the model described here to include the majority of

crucial biological interactions at play in a typical inflammatory response, there is

certainly scope for inclusion of further, more detailed mechanisms. To do so within

the confines of a PDE-based model would likely result in a model that is not easily

penetrable via mathematical analysis. This potentially motivates the need for a

shift to an alternative modelling paradigm, via which the full remit of biological

interactions can be easily incorporated. In Chapter 4 we further investigate this

through agent based models, where cells are accounted for individually, allowing us

to study their interactions with greater insight.



Chapter 4

Modelling the inflammatory

response via agent based models

In this chapter, a new modelling approach will be introduced in which the cells fea-

turing in the inflammatory process will be accounted for individually. This new

‘agent-based’ model of inflammation will replicate and extend all the biological in-

teractions outlined in the model of Chapter 3, in order to investigate further those

inflammatory mechanisms that still remain unclear from both the available literature

and the analysis presented in the previous chapters. More importantly, by modelling

the inflammatory process under conceptually and mathematically different terms to

the PDE framework, we investigate how sensitive the conclusions are to the modelling

approach.

4.1 Introduction

Agent-based modelling is a parallel computational paradigm based on a uniform, lo-

cally detailed and synchronous structure. Agent-based modelling provides a robust

and innovative alternative to differential equation based dynamical systems represen-

126
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tations, by relying on a fundamentally simple concept of cell units updating their

states according to synchronised local sets of rules, underlying the potential complex-

ity in structures and dynamics that such a paradigm delivers (Schiff, 2008). As such,

while analogous to PDEs in purpose, that is in representing complex systems, agent-

based modelling presents important advantages in terms of stability, convergence and

approximation of the results (Hoekstra et al., 2010). In addition, this valuable mod-

elling approach provides a reliable and valid bridge between the microscopic level and

emerging patterns or behaviours of interest. This further underlines how ABMs are

not necessarily substitutes for PDE ones but can actually offer an integrating ap-

proach in clarifying specific conditions that arise from microscopic mechanisms that

would otherwise be missed or remain under appreciated.

Formally, ABM are defined as discrete, both in time and space, dynamical systems

in which single cells (automata) exhibit one from a finite set of states according to

homogeneous local rules of interactions (Kari, 2013). More precisely, let d P N, then

L “ Z
d (4.1)

is a discrete cellular space, with elements of L being cells. Let S be a finite state set;

then elements σ P S are called states. The local value space S basically defines all

the possible states for each cell of L. The ABM configuration of the d-dimensional

ABM is then defined as the function

c : Z
d Ñ S , (4.2)

with c describing all possible compositions of all cells within the state space L. For

additional clarity, let us highlight that when referring to ABM, the entity ‘cell’ does

not necessarily refer to a biological cell, and has to be intended instead as a single

agent or basic unit of the model. With respect to the topology of each individual cell,

a neighbourhoodN is determined as the set of its N neighbouring cells. The definition
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(a) Von Neumann, r “ 0. (b) Von Neumann, r “ 1. (c) Von Neumann, r “ 2.

(d) Moore, r “ 0. (e) Moore, r “ 1. (f) Moore, r “ 2.

Figure 4.1: Examples of different 2D neighbourhood configurations with varying

ranges r. Von Neumann neighbourhoods (first row) are diamond-shaped and include

1`2rpr`1q cells, while Moore neighbourhoods (bottom row) are square-shaped with

the total number of cells given by p2r ` 1q2.

of neighbourhoods can vary according to their shapes and ranges, with examples of

typical configurations shown in Figure 4.1. Configurations are in turn determined with

respect to the boundary conditions that can be periodic, reflective or fixed (Hoekstra

et al., 2010). Periodic boundary conditions implement a periodic extension of the

lattice, thus simulating an infinite lattice (in 2D this corresponds to the topology of a

torus). Reflective boundary conditions, as the name suggests, implement the reflex of

the lattice at the boundary, providing the equivalent to Neumann boundary conditions

typical of diffusive systems, while fixed boundary conditions implement the Dirichlet
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conditions within the ABM frame, by setting a fixed value at each boundary cell. A

further step in determining the ABM paradigm consists in specifying a transition (or

local update) rule φ defined as the function describing the change in state that cells

in the N -sized neighbourhood undergo:

φ : SN Ñ S . (4.3)

All cells follow the same transition rule simultaneously, according to an external time

step (tick). Therefore, a cellular automata A is defined as the 4´tuple

A “ pd, S,N , φq , (4.4)

with respect to a dimension d P N, a finite state set S, a neighbourhood N and a

transition rule φ.

4.1.1 Implementation

Agent based modelling implies a shift in the typical modelling approach in which

agents are structured with respect to their activity, rather than attributes and meth-

ods (Abar et al., 2017). In practice, this translates into building the model around

agents’ responses, with their behaviour being characterised in terms of cells’ actions

instead of their defining properties. As such, agent-based modelling can be seen as

an extension of object-oriented programming, by defining agents as objects in control

of their execution (Abar et al., 2017). More specifically, with agents being charac-

terised as objects, their behaviour is shaped and controlled through sets of states and

functional rules.

There is a wide choice of available agent-based modelling software tools, with

mostly similar capabilities but varying features and programming language imple-

mentations. While Abar et al. (2017) provide an exhaustive review of eighty-five

agent-based toolkits, including non-commercial, academic-focused packages, all our
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ABMs and simulations are implemented with the Repast Simphony software tool.

This software relies on Java as source code, with object-oriented agents, and allows

for both 2D and 3D simulations (North et al., 2007, 2013).

4.1.2 Agent based models in inflammation – a literature re-

view

ABMs offer a varied set of desirable features that allow us to investigate specific

mechanisms that more traditional modelling approaches often fail to take into ac-

count. As such, ABM are increasingly deployed in many multidisciplinary research

areas, including economics, biology, ecology, sociology, just to name a few, by defining

the complex systems of interest in function of the interactions of their agents (seen as

entities). The versatility of the ABM paradigm allows for the integration of a variety

of modelling strategies, with the set of rules defining the agent states spanning from

simple Boolean interactions to full approximation of PDE. The integration of PDEs

in ABMs results in Hybrid Cellular Automata (HCA). These models are of particular

importance in the investigation of biological problems by providing both accuracy and

effectiveness in capturing mechanisms of interest typically arising in many of these

areas involving both spatial and temporal dynamics such as cancer treatment efficacy

(Ribba et al., 2004), bone remodelling and synthesis upon mechanical stimuli (To-

var et al., 2004), tumour growth (Gerlee & Anderson, 2007), cartilage regeneration

within a porous scaffold (Cassani & Olson, 2018). This adaptability is of great use in

many different biological applications, capturing multi-scale interactions and complex

dynamics that are often missed in traditional equation-based models. As such, there

is growing interest in modelling a variety of biological systems for which previous

and on-going research based on more traditional tools does not offer an exhaustive

understanding of more subtle and key mechanisms that still remain unclear. This
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is particularly true for all those applications that rely on cells’ self-organisation and

multi-scale dynamics (Alber et al., 2003), two of the key features of ABMs. One such

phenomenon is morphogenesis; that is, the complex and ordered way in which cells

organise, through controlled proliferation and motility, practically shaping an organ-

ism since the earlier embryological stages of its formation. Alber et al. (2003) present

a detailed analysis of various morphogenetic processes in their review of ABMs of

cell aggregation and migration. An account of many ABM capabilities in describing

a variety of biological events is given by Ermentrout & Edelstein-Keshet (1993). In

particular, the authors illustrate the suitability of agent-based models in the field of

developmental biology. An et al. (2009) provides an insight into different ABMs that

have been crucial in determining mechanisms that could not be otherwise captured by

traditional equation-derived models. Again, the key feature in such breakthroughs is

the simultaneous consideration of both spatial and multi-scale dependency that agent-

based models typically offer. More specifically, this approach has successfully been

used to determine a number of molecular mechanisms in the intracellular signalling

occurring at cytoplasm level, as well as clarifying the role of cells’ spatial propagation

as a leading event in a variety of physiological and pathological processes such as

morphogenesis, angiogenesis, inflammation, tumour growth and infections (An et al.,

2009).

Of more direct relevance to this project, a number of researchers have also been

working on ABM based models to study a variety of pathophysiological issues that

closely involve inflammatory mechanisms, ranging from wound healing to infection

and acute inflammation, amongst others. With respect to infectious mechanisms in

particular, Gorochowski et al. (2012) develop a ABM-based tool to model bacterial

populations. This framework accounts for both lower-scale interactions such as gene

regulatory networks and cell to cell dynamics and the heterogeneous behaviours at

population level that arise from such mechanisms, with simulations capturing the
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expression of both single cells and the collective population. The ABM system pre-

sented by An (2001) models the inflammatory response at the capillary level, with

agents accounting for different groups of both cells and molecules. A first class of

cells for endothelial agents exhibits either a healthy or injured state, with the lat-

ter triggering adhesion mechanisms, practically modelling the mediators’ behaviour,

with the system’s damage assessed as a measure of the agents in an injured state.

Agents representing neutrophils are characterised by a lifespan after which the cells

die and random movement. They exhibit sequential states in response to the local

endothelial agents’ activity, with the last of such states acting as chemoattractant

for a third class of agents accounting for mononuclear cells. Mononuclear agents’

activity is in response to the endothelial agents’ damage that, in turn, is cleared by

mononuclear cells, resetting the endothelial ones back to the uninjured state. An-

other class of agents representing Reactive Oxygen Species (ROS) is also included,

promoting the spread of damage within the different cells. This model accounts for

both damage related inflammations and infections, with the former triggered by the

initial distribution of injured epithelial agents and the latter by a class of infectious

carrier agents as vectors that are in turn cleared by the agents representing ROS.

This last interaction highlights the dual nature inflammatory-driven mechanisms in

which the promotion and spread of damage is key to the activation of the resolu-

tion pathways. The model is assessed by qualitatively comparing the simulations

resulting from both the infectious and sterile injury as well as analysing the system’s

outcome upon varying degrees of each injury type. The high degree of abstraction

of this model only allows for preliminary qualitative analysis of the results, with the

authors suggesting the need for models describing the inflammatory response with

greater detail and to be validated against the available experimental data. In par-

ticular, this ABM of inflammation lacks any anti-inflammatory mechanism, as well

as the system’s pro-inflammatory feedback and the repercussions of apoptosis on the
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healing process. Building up from this model, An (2008) extended this ABM sys-

tem to a multi-scale architecture to include tissue and organ functioning levels, along

with the cell to cell interactions described in An (2001). In particular, the former

model is extended by including the pro-inflammatory mechanisms and agents repre-

senting epithelial cells. Finally, another ABM system representing individual organs

and their systemic inflammation leading to failure is introduced and implemented as

a layered configuration of the previous models accounting for cells and tissues respec-

tively. The resulting model simulates inflammatory mediators acting on a barrier of

epithelial cells which, in turn, respond to the inflammatory trigger with a disruption

in both shape and functioning, signalling the local failure of the epithelial junction.

Following the same scheme, a further extension linking two layered ABM working in

parallel is proposed as a multi-organ model. The relative simulations focus on spe-

cific scenarios replicating gut ischemia and a generic inflammatory pulmonary disease.

These models, though, do not provide any new insight into the biological mechanisms

they simulate and are intended instead as a qualitative tool in representing relevant

multi-scale problems.

As discussed above, existing agent-based models of inflammatory systems gener-

ally place significant focus upon specific tissues or inflammatory conditions. How-

ever, as discussed in Chapter 1, the fundamental mechanisms that underlie the acute

inflammatory response are broadly consistent across scenarios. There is a lack of

existing agent-based models of inflammation that incorporate a full repertoire of cel-

lular interactions, while also being suitably generic to be transferrable to multiple

conditions. Thus, in the following section, we construct a novel ABM aiming to in-

vestigate the emergence and spread of inflammation by accounting for neutrophils and

macrophages separately and by highlighting the nuanced role each of these groups

of cells has in initiating the anti-inflammatory response. In doing so, we are also

interested in addressing the question of whether the conclusions of previous chapters
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are sensitive to the modelling approach. We thus draw direct comparison between the

ABM developed below and the corresponding PDE model of Chapter 3 in particular,

once again examining the extent to which localised tissue damage can invade neigh-

bouring healthy tissue, and the extent to which spatial aspects of the inflammatory

response contribute to the switch between healthy and chronically inflamed outcomes.

4.2 Model construction

We, here, describe the assembly of a hybrid PDE-ABM of the inflammatory response.

Such an approach improves upon the PDE-based models of the previous chapters by

modelling the behaviour of individual cells in function of their location and neigh-

bourhood within the modelled tissue.

Our model incorporates components that replicate each of the variables featured

in the model of (3.7)–(3.11). In particular, variables accounting for cell groups n, m

and a (active neutrophils, macrophages and apoptotic neutrophils respectively) are

replaced by an agent-based description involving instances of the classes Neutrophil,

Macrophage and Apoptotic. Chemical mediators (both pro- and anti-inflammatory)

are modelled within a separate class named Environment in which the PDE descrip-

tions of Chapter 3 are retained and implemented. This class, as suggested by its name,

also implements those methods that directly act on cellular concentrations in response

to the mediators’ interactions (i.e. recruitment of neutrophils and macrophages in

response to damage). Finally, a class InflammationBuilder is also defined, which

has the role of setting up the spatial domain in terms of dimensions, boundaries and

visualisation, implementing the initial conditions of the model at time (tick) t “ 0,

instantiating the required agents, and scheduling their interactions. In practice, the

definition of classes and their methods closely follows the interactions highlighted in

equations (3.7)–(3.11). These are summarised for clarity in Table 4.1 and explained
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in detail in the following sections.

Finally, to summarise the structure of the ABM outlined below, Figures 4.2 and 4.3

provide a graphical representation of the system’s main features, parameters, links to

the previous PDE model and intrinsic functioning. Figure 4.2 in particular describes

the structure of the model in terms of agents and parameters, by highlighting the

points of control of inflammation. Figure 4.3 represents a flow chart with a schematic

illustration of the model’s general structure, while the set of changes that agents

undergo at each tick according to their state and the class they belong to will be

presented in figures 4.4–4.6 and discussed in later sections.

4.2.1 Domain and initial conditions

The above classes define a framework to create objects (agents), each with a specific

set of properties, whose behaviour is characterised by methods that are called in re-

sponse to interactions with other agents. Agents are placed within a square region

that represents the model’s spatial domain. Formally, this is defined as a combination

of a grid that contains the agents with respect to cartesian coordinates and allows

for queries within their Moore neighbourhood (i.e. the central cell and its eight sur-

rounding cells) and a continuous space in which the cells are visualised in simulations,

neglecting, as the name suggests, the domain’s discretisation. The square domain is

subject to periodic boundary conditions, with initial conditions slightly differing from

those described in (3.29). In particular, the system is initialised with the inflamma-

tory response triggered by the presence of pro-inflammatory mediators concentrated

initially in the centre of the domain, modelling a circular damage of radius r and

severity c0. In contrast with Chapter 3, the system’s initial conditions do not include

any concentration of anti-inflammatory mediators or leukocytes in the ABM starting

configuration.
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Class methods ENVIRONMENT NEUTROPHIL MACROPHAGE APOPTOTIC Methods called

c g

NEUTROPHIL

run

becomeApoptotic

moveChemotactically

releasePro

moveChemotactically in moveRandomly

moveRandomly

releasePro `̀̀

die ´́́

becomeApoptotic `̀̀ die

MACROPHAGE

run

moveTowardApoptotic

phagocytoseApoptotic

releaseAnti

makeLeaveDecision

die

die ´́́

moveRandomly

moveTowardApoptotic in moveChemotactically

moveChemotactically in moveRandomly

phagocytoseApoptotic apoptotic.die

releaseAnti `̀̀

makeLeaveDecision in die

APOPTOTIC

run releasePro

die ´́́

releasePro `̀̀ die

ENVIRONMENT

run in in
getProconcentration

getAntiConcentration

getProConcentration in

setProConcentration in

increaseProConcentration `̀̀

getAntiConcentration in

setAntiConcentration in

increaseAntiConcentration `̀̀

recruitNeutrophil in in `̀̀

recruitMacro in `̀̀

Table 4.1: Scheme of the ABM interactions. Columns marked with in represent

instances of that object sensed within the execution of the method. Plus/minus signs

correspond to increase/decrese in the number of objects within the grid. Methods

can be scheduled (italics) and be called upon probabilities (blue).



4.2. MODEL CONSTRUCTION 137

Figure 4.2: Schematic diagram representing the ABM of inflammation and illustrat-

ing the constituent interactions between populations of healthy neutrophils, apop-

totic neutrophils and macrophages, modelled as agents, in response to pro- and anti-

inflammatory mediators, modelled through PDEs. Interactions are shown by arrows

and can be in turn regulated by parameters. Parameters are differentiated by colour

and refer to probabilities in red, increments in blue, thresholds in green, with PDE

parameters in black.
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Figure 4.3: Flow chart representing the ABM of inflammation and illustrating the

cyclic chain of actions with respect to the tick count. Diamonds represent decision

points, green diamonds represent thresholds, red diamonds represent probabilities.

Here, p represents a random number drawn uniformly from the interval r0, 1s.
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4.2.2 Modelling mediators

The mediators’ behaviour is rendered by explicitly defining the expression of both

pro- and anti-inflammatory properties through PDEs. Their representation, and the

inflammatory properties that can either promote the acute response or dampen it

according to the ongoing cellular interactions, are thus regulated with respect to

both decay rates for pro- and anti-inflammatory mediators, modelled through tunable

parameters γc and γg respectively, and diffusive behaviour controlled by parameters

Dc and Dg respectively. These parameters relate directly to their counterparts in the

model of Chapter 3, both theoretically but also practically, being implemented in a

similar fashion. In particular, to model pro-inflammatory mediators c, we implement

a finite difference approximation of the PDE

Bc
Bt “ Dc∇

2c ´ γcc ` Γc , (4.5)

by retaining the numerical approach first used in Section 2.3.1. Equivalently, the

distribution of anti-inflammatory mediators g is governed by

Bg
Bt “ Dg∇

2g ´ γgg ` Γg . (4.6)

In the above, Γc and Γg incorporate any sources/sinks in the mediator concentrations

owing to the actions of the agents described below.

Equations (4.5) and (4.6) are solved numerically on the discrete grid described

in Section 4.2.1, in exactly the same manner as was described in Chapter 3. The

numerical scheme employs a five-point Laplacian for the diffusive term as before, and

an associated timestep dt. Note that we tune dt to ensure numerical stability, and in

doing so take multiple numerical timesteps per tick.

Finally, the remaining classes, detailed in the following subsections, define the

agents’ behaviour through scheduled methods, that is methods that are called at

fixed intervals, starting from an initial tick t. This allows us to characterise each



4.2. MODEL CONSTRUCTION 140

agent with respect to both its intrinsic biological properties and possible interactions

with other agents, according to specific conditions and/or probabilities for an action

or method to be called.

4.2.3 Macrophages

Overview

Macrophages are defined with respect to a grid location, a continuous space location

and an integer field named lifespan. While the first two fields are intrinsic to the

ABM system’s setting, the latter describes the duration for which leukocytes are in

a biologically active state (Parihar et al., 2010). This is typically within days and

in general is observed to be longer than for neutrophils (Patel et al., 2017). We will

discuss the implications of these scales in the parametrisation of our model in the

following dedicated Section 4.3. At each tick the Macrophage agent carries out four

actions: it decides whether to move (and, if so, where to); it attempts to remove

apoptotic neutrophils in its neighbourhood; it attempts to release anti-inflammatory

mediators, and it decides whether to vacate the tissue (if inflammation is sufficiently

resolved). We expand upon how these behaviours are implemented below.

Macrophage recruitment

Reflecting the biological implications of the mediators’ activity, in response to the en-

hanced concentration of active neutrophils prompted by pro-inflammatory mediators,

macrophages are recruited to effectively counteract the inflammation. The recruit-

ment, scheduled at every t “ 5 ticks in order to best model the delayed feedback in

the anti-inflammatory response initiated by macrophages, becomes effective only sub-

ject to both a probability pmr and if the punctual concentration of pro-inflammatory

mediators c at the grid point being considered is greater than a threshold value αmr.
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In substance, at each grid point and at every 5 ticks, if c ą αmr, macrophage agents

are recruited with probability pmr.

Finally, to avoid the biologically unrealistic event of infinite recruitment and ac-

cumulation of cells, we prescribe a maximum global number of macrophages mmax to

be recruited within the tissue. We will infer this saturation level threshold from the

available experimental data, as explained in Section 4.3, below.

Chemotactic motion

Macrophage motion is regulated such that agents move preferentially towards a neigh-

bouring location containing apoptotic neutrophils. Such behaviour is in itself of

chemotactic nature, driven by chemicals released by apoptotic neutrophils and re-

flecting a fundamental biological aspect with respect to the more subtle details at

play during the phagocytosing process and its wider implications on the inflamma-

tory outcome, as exposed by Hawkins & Devitt (2013). This feature had been ne-

glected in the PDE models of the previous chapters, in which macrophage chemotaxis

is directed toward pro-inflammatory mediators only, but is now included in this new

ABM, thus marking an important difference both in terms of practical implementa-

tion between the two systems but also more importantly rendering the model subject

of this chapter more interesting, by adding a biological behaviour that is central to

the inflammatory response but was missing in PDE analysis.

In the absence of any apoptotic neutrophils in the macrophage’s neighbourhood,

its preferential action is that of sensing pro-inflammatory mediators (always consid-

ering neighbourhood proximity), practically implementing leukocytes’ chemotaxis to-

wards higher concentrations of pro-inflammatory chemicals. For a given macrophage

mi, we begin by examining the pro-inflammatory mediator concentrations in each

position in its neighbourhood Ni. For each position j P Ni, the macrophage moves
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to position j with probability

pj “ cj
ř

kPNi

ck
, (4.7)

where cj denotes the pro-inflammatory mediator concentration at position j.

Finally, in the absence of both apoptotic neutrophils and pro-inflammatory medi-

ators in the agent’s neighbourhood, the macrophage moves to a random neighbouring

location. Such a characterisation of the macrophage movement within the domain re-

flects their biological activity in being highly responsive to the presence of apoptotic

neutrophils, in order to phagocytose them, and to generally move chemotactically

towards pro-inflammatory mediators.

Phagocytosis

Macrophages also act to clear apoptotic neutrophils, implemented through a dedicated

method that models the phagocytosing action, and in doing so can promote the anti-

inflammatory response. The phagocytosis of apoptotic neutrophils by macrophages

is scheduled at every tick and simply consists, for each individual macrophage, of

randomly selecting an apoptotic agent at its current position, if there are any, and

removing it with probability pma.

Release of anti-inflammatory mediators

The active initiation of the anti-inflammatory feedback mediated by macrophages oc-

curs in response to the change in phenotype these leukocytes undergo upon environ-

mental stimuli (Ponzoni et al., 2018). We thus model the release of anti-inflammatory

mediators subject to macrophages’ engulfment of apoptotic neutrophils, individuating

in a macrophage first phagocytic action the switch to its anti-inflammatory activity,

i.e. macrophages do not release any g before their first phagocytosis. On removing

an apoptotic cell, the macrophage yields an anti-inflammatory response by enabling
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this change in phenotype such that, after the first phagocytosis event, macrophages

steadily increase the concentration of anti-inflammatory mediators by a quantity δmg

(per tick) at the macrophage agent’s grid location, with probability pmg. This be-

haviour echoes the function of parameter kg in (3.7)–(3.11). It thus models the

macrophage’s active role in initiating the anti-inflammatory response by prompting

the release of anti-inflammatory mediators (Wynn et al., 2016). It is also important

to highlight how the ability of macrophages to release anti-inflammatory mediators

is not intrinsic to these agents and is only activated upon their first phagocytosing

action, indicating the change in their phenotype.

Macrophage death/departure

Finally, a specific method is created for macrophage agents to decide whether to leave

the tissue. In order to do so, the total concentration of pro-inflammatory mediators

in the agent’s neighbourhood is assessed and if this is below a threshold αml the

macrophage agent leaves the tissue with probability pml.

Summary

In summary, macrophages retain all their main features from the previous PDE model

of Chapter 3, with the added behaviour of chemotactically moving towards apoptotic

neutrophils preferentially. In particular, each agent individually carries out (or at-

tempts to carry out, in hierarchical order of priority) the following set of actions at

every tick:

• move chemotactically towards apoptotic neutrophils;

• move chemotactically towards pro-inflammatory mediators;

• phagocytose an apoptotic neutrophil at its current position;
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• release anti-inflammatory mediators;

• leave the tissue.

Additionally, at every t “ 5 ticks, large concentrations of pro-inflammatory mediators

result in the recruitment of new macrophage agents that are added to the inflamed

tissue in order to counteract the acute inflammation and in particular the enhanced

concentration of active neutrophils prompted by it.

The illustration of the macrophage agents’ action is further summarised in the

flow chart represented in Figure 4.4.

Finally, it is important to highlight that macrophages, or agents in general, do

not implement a diffusive behaviour immediately comparable to the one defined in

model (3.7)–(3.11). In fact, more in line with the definition of ABMs, agents of

the Macrophage class move at each tick according to the set of actions and rules

described above. Agents accounting for active neutrophils are treated analogously

and introduced below.

4.2.4 Active neutrophils

Overview

Analogously to macrophage cells, active neutrophils are also defined in terms of the

cells’ motion and activity within the domain. In particular, at each tick the ac-

tive neutrophil agent moves chemotactically towards higher concentrations of pro-

inflammatory mediators and, upon depletion of its lifespan, it becomes apoptotic.

Neutrophils have widely been observed to have considerably short lifespans, in the

range of hours to few days but overall shorter than that of macrophages (McCracken

& Allen, 2014; Bekkering & Torensma, 2013). Further details are given below in

Section 4.3.
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Figure 4.4: Flow chart representing the cyclic chain of actions each agent of the

Macrophage class undergoes according to its state at each tick count. Green triangles

represent thresholds and red triangles represent probabilities. Here, p represents a

random number drawn uniformly from the interval r0, 1s.
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Neutrophil recruitment

During the acute inflammatory response, as a feedback to higher concentrations of

pro-inflammatory mediators, we, again, prescribe the enhanced recruitment of active

neutrophils. The implementation is slightly different to the one described for the

recruitment of macrophage agents though. In particular, the recruitment of neutrophil

agents is scheduled at every t “ 2 ticks via the preliminary assessment of both a

minimum threshold of pro-inflammatory mediators αncr and a maximum threshold of

anti-inflammatory mediators αngr and takes place only if both c ą αncr and g ă αngr

hold. Under this condition, subject to a further probability pnr, the pro-inflammatory

activity is further enhanced by creating a new instance of the neutrophil agent. In

practice, at each grid point, every 2 ticks, upon a preliminary assessment of the levels

of pro- and anti-inflammatory mediators, if c ą αncr and g ă αngr, then neutrophils

are recruited with probability pnr.

Similarly to macrophages, neutrophils are also capped at a critical level nmax to

avoid the infinite recruitment and accumulation of cells within the tissue. Further

details and the proportionality to the maximum number of macrophages are provided

in the dedicated parametrisation Section 4.3.

Chemotactic motion

In a similar fashion to macrophages, the chemotactic motion of neutrophils is modelled

by analysing, for each cell ni, the concentrations cj of pro-inflammatory mediators

at each position j of the neighbourhood Ni. The final choice of the new position to

move to, dictated by levels of chemoattractant within the cell’s neighbourhood, is

based upon probability (4.7).
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Release of pro-inflammatory mediators

In line with their biological function of promoting inflammation and echoing a key

feature from the PDE model of Chapter 3, we identify neutrophil agents as a source

of pro-inflammatory mediators. At each tick, active neutrophils release an increment

δnc of pro-inflammatory chemicals with probability pnc.

Apoptosis

Finally, the physiological cellular death that neutrophils naturally undergo is de-

scribed by a dedicated method. The biological implications of a neutrophil’s apop-

tosis in the inflammatory context are multiple and directly affect the complex chain

of cellular and chemical interactions, as already highlighted in Section 1.2.1. The

cell’s death through apoptosis is modelled by removing the original agent from the

system and replacing it with a new agent from the Apoptotic class (described below)

instead.

Summary

In conclusion, at every tick, agents from the Neutrophil class

• move chemotactically towards pro-inflammatory mediators;

• release pro-inflammatory mediators;

• decide whether to become apoptotic.

Moreover, neutrophils are prescribed with the added feature of a background release

of pro-inflammatory mediators, in order to further promote inflammation. This be-

haviour reflects the additional terms introduced in the extension of the PDE model

from Chapter 2 to Chapter 3 as well.
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A schematic representation of the set of rules regulating each neutrophil’s activity

is provided in Figure 4.5.

4.2.5 Apoptotic neutrophils

Overview

Once again, apoptotic neutrophils are defined with respect to a grid, a continuous

space and a lifespan, in this case representing the delay between the cell becoming

apoptotic and necrotic. At the point of necrosis, the cell releases its toxic content

and further promotes the inflammatory activity, provided they have not already been

phagocytosed by macrophages.

Necrosis

At each tick, the Apoptotic agent’s lifespan is consumed and, upon complete de-

pletion, the cell finally becomes necrotic, with a dual action of incrementing the

concentration of pro-inflammatory mediators at the agent’s location by a quantity

δac, and the apoptotic cell being finally removed from the system. It is important to

observe that, unlike the release of pro-inflammatory mediators by active neutrophils,

the splurge of chemicals by apoptotic neutrophils upon necrosis is not subject to a

probability and is generally intended to be more disruptive. While the release of pro-

inflammatory mediators by active neutrophils is physiological and a fundamental part

of the chain of interactions that regulate the acute inflammatory response, apoptotic

neutrophils are ideally efficiently cleared and phagocytosed by macrophages, with

their necrosis playing a major role only in critical pathological contexts.
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Figure 4.5: Flow chart representing the cyclic chain of actions each Neutrophil agent

undergoes according to its state at each tick count. Red triangles represent prob-

abilities. Here, p represents a random number drawn uniformly from the interval

r0, 1s.
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Summary

In short, apoptotic neutrophils do not move but if not phagocytosed by the time

they become necrotic, spill their toxic content, further enhancing the inflammatory

activity by releasing new pro-inflammatory mediators. Figure 4.6 summarises the

limited activity of apoptotic neutrophils with respect to the system’s tick count.

4.3 Parametrisation

We here pay particular attention to the spatial and temporal scales associated with

the agent based model described above, to both ensure biological realism and facilitate

comparison of results with the model of Chapter 3.

It should be noted here that the spatial scale associated this model is much smaller

than that of Chapter 3, since we are interested in the interactions of individual cells.

Within our agent based model, it is natural to consider the resolution of the grid to

be such that each grid space corresponds to one cell diameter. We choose to set each

grid space to correspond to the diameter of a macrophage, which is approximately

20 µm. For a 100 ˆ 100 grid, this corresponds to a square domain of width 2 mm.

When considering the nondimensionalisation required to arrive at the dimensionless

PDEs (4.5) and (4.6) from a dimensional analogue, it is computationally convenient

to scale lengths against the size of one grid space (since this provides a mesh with

unit spacing that can be coupled easily to the agent-based portion of the model). We

therefore choose L˚ “ 20µm (as opposed to the larger choice L˚ “ 10cm in Chapter 3)

and run simulations on the domain r0, 100s ˆ r0, 100s.

Similarly, we are required to choose an appropriate scaling of time, T ˚. In doing so,

we configure the cell velocities against data reported in the literature. As summarised

in Table 4.2, macrophage velocities are reported to lie in the range 0.5 – 30 µm min´1.
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Figure 4.6: Flow chart representing the cyclic chain of actions each agent of the

Apoptotic class undergoes according to its state at each tick count.
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We therefore set each tick to be equivalent to 1 minute (i.e. T ˚ “ 1 min) and allow

macrophages to move once per tick, resulting in a typical macrophage velocity of

20 µm min´1. Meanwhile, neutrophils are reported to move roughly twice as fast

as macrophages, as the data in Table 4.2 shows, with average velocities between

4.5 – 63.5 µm min´1. We therefore allow neutrophils to move twice per tick with

a corresponding neutrophil velocity of 40 µm min´1. We note that, through this

rescaling of time, 1 unit of dimensionless time in the model of Chapter 3 corresponds

to 480 ticks in this model.

As discussed in previous chapters, typical (dimensional) mediator diffusion rates

are reported to be of order D˚
c » D˚

g » 10´7cm2{sec ” D˚. Following the nondi-

mensionalisation procedure described in previous chapters, but with the new length

and time scales described above, we calculate appropriate dimensionless diffusion

coefficients as

Dc “ Dg “ D˚T ˚

L˚2
“ 1.5. (4.8)

We take this as our standard baseline value for Dc and Dg in the simulations below.

Similarly, the decay rate parameter γc in (4.5) is related to its dimensional equivalent

according to γc “ γ˚
c T

˚. Since we know from the literature that γ˚
c » 3 day´1 Dunster

et al. (2014), we have γc » 0.002. Again, we take this as our baseline value for γc in

simulations below, and for ease we also assume γg “ γc.

It then remains to consider the scaling of mediator concentrations themselves. In

Chapter 3, pro-inflammatory mediator concentrations were scaled against the param-

eter k˚
a , which is related to the production of pro-inflammatory mediator by apoptotic

neutrophils on necrosis. Whilst it is difficult to recover this scaling exactly, we can

make a qualitative comparison by setting the amount of pro-inflammatory media-

tor released by an apoptotic neutrophil (δac) equal to one in our model. It is then

intuitive to trigger our simulations with an initial condition that represents an in-

termediate level of damage. We therefore choose our initial conditions to include a
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central circular area of damage of radius r in which c “ c0 (c0 P r0, 1s), surrounded by

healthy tissue in which c “ 0. For ease, we assume that there is no anti-inflammatory

mediator initially, so that g “ 0 everywhere in the domain.

The remaining parameters in our model are not known exactly, but some can

be inferred qualitatively from biological intuition. For example, we expect the pro-

duction of pro-inflammatory mediators by active neutrophils to be on a scale much

smaller than that by apoptotic neutrophils, so δnc ! δac. Similarly, due to the scal-

ing of mediator concentrations, we intuitively expect δmg, αnr, αmr, αml P r0, 1s. We

investigate the sensitivity of the model to variations in key parameters in Section 4.5

below.

Furthermore, in order to ensure that a finite number of cells is recruited, we pre-

scribe both macrophage and active neutrophils agents with a maximum number of

instances within the domain, as mentioned in Sections 4.2.3 and 4.2.4. In order to infer

a biologically realistic proportionality between the maximum number of macrophages

and neutrophils within the tissue, we refer to standard measurements of human dif-

ferential white blood cells. In particular, neutrophils account for 40% to 80% of the

total leukocyte population while macrophages have considerably lower proportions,

with typical values between 2%´ 10% (Curry, 2015). As such, by recalling that grid-

points are scaled with respect to the diameter of macrophages („ 20µm) and that we

operate over a 2mm ˆ 2mm domain, we fix the maximum number of macrophages

at mmax “ 1000 and a limit number of neutrophils four times larger at nmax “ 4000.

Finally, we consider appropriate choices for leukocyte lifespans. As already re-

ported in Sections 4.2.3 and 4.2.4, macrophages and neutrophils are typically active

for a variable amount of time that depends on the tissue and phase of inflamma-

tion, with the former spanning from several days to months (Takahashi, 2001) and

the latter being considerably shorter, from within hours to few days (Pillay et al.,

2010; Tak et al., 2013). Thus, recalling that according to our parametrisation one
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Literature reference Neutrophil velocity pµmmin´1q Literature reference Macrophage velocity pµmmin´1q

Qasaimeh et al. (2018) 4.77 ˘ 2.27 Hind et al. (2014) 5 ´ 20

Hoang et al. (2013) 19 ˘ 6 Shi et al. (2018) 2 ´ 30

Rainger et al. (1997) 9.8 ˘ 0.95 Toth et al. (2014) « 1

Jung et al. (1996) 63.5 ˘ 41.32 Nguyen-Chi et al. (2015) 0.5 ´ 1

Skoge et al. (2016) 18 Li et al. (2017) 8 ´ 12

Raymond et al. (2017) 12.7

Burton et al. (1987) 21.7 ˘ 6.2

Table 4.2: Leukocyte velocities in the literature.

tick is equivalent to one minute, we model this information by randomly assigning

lifespan a value taken from a uniform distribution on the interval r1440, 86400s for

macrophages and the interval r60, 1440s for neutrophils, respectively. For apoptotic

neutrophils, there is a lack of experimental methods to properly detect and measure

the necrosis timescales (Iba et al., 2013), but it is generally understood that this a

rapid process (Vanden Berghe et al., 2010). We thus prescribe an approximate lifes-

pan for apoptotic neutrophils randomly assigned from a uniform distribution on the

interval r60, 720s.

4.4 Simulations

The implementation of the ABM described above provides the opportunity to assess

multiple simulations. The model’s response is modulated through a set of parameters

that can be manipulated in order to lead the system towards either the resolution

of inflammation or its chronicity. In this sense it is interesting to observe that the

intrinsic structure of the ABM paradigm provides a degree of randomness to each

simulation, thus replicating those natural biological features that do not necessarily

follow a strict set of fixed numerical parameters. As such, while the tuning of pa-
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rameters affects the overall outcome of batches of simulations, it is nonetheless not

surprising that a fraction of those simulations could yield an opposing result than

the one set by the parameter values. In the analysis that follows we run batches of

100 repeated simulations per parameter set and report the main outcomes. All the

parameters controlling the ABM behaviour are defined in Table 4.3. Through careful

regulation of the parameter values and assessment of the resulting simulations, two

main behaviours emerged: the overall resolution of inflammation (which we define as

the simultaneous elimination of active/apoptotic neutrophils and pro-inflammatory

mediators), detailed in Section 4.4.2, and a chronic non-resolved outcome, as de-

scribed in the following section. Table 4.4 summarises the parameter values used in

the following simulations and, as it can be observed from the bold rows, the shift in

the overall outcome of the acute inflammatory response is achieved by manipulat-

ing those parameters that directly regulate the inflammatory activity. In particular

a number of parameters that specifically target the severity of the initial damage

(c0), the size of the initial damage (r), the regulation of neutrophil recruitment (αncr,

αngr), and the efficiency of macrophages recruitment (αmr) provide a switch between

the chronicity of inflammation and the restoration of a healthy state. This further

reinforces on one hand the impact of the initial damage upon the spatial spread of

inflammation and its eventual outcome and on the other hand the key role of neu-

trophils in promoting inflammation and macrophages in actively resolving it, which

is tightly dependant on the mediator’s presence and action.

4.4.1 Chronic outcome

While each single simulation plays out differently in terms of the agent locations and

the interactions conditioned by probabilities, fixing the parameters accordingly with

the second column of Table 4.4 provides a set of baseline values that yield an overall
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Parameter Definition Class

c0 initial pro-inflammatory mediators concentration (damage severity) InflammationBuilder

r initial damage radius (damage size) InflammationBuilder

Dc diffusion of pro-inflammatory mediators Environment

Dg diffusion of anti-inflammatory mediators Environment

γc decay of pro-inflammatory mediators Environment

γg decay of anti-inflammatory mediators Environment

δac increment of pro-inflammatory mediators upon apoptotic neu-

trophils undergoing necrosis

Apoptotic

δnc increment of pro-inflammatory mediators upon active neutrophils

activity

Neutrophil

δmg increment of anti-inflammatory mediators upon macrophagic activ-

ity

Macrophage

pnr probability of recruitment of new neutrophils Environment

pnc probability conditioning release of pro-inflammatory mediators

upon neutrophils activity

Neutrophil

pmr probability of recruitment of new macrophages Environment

pmg probability upon which macrophages initiate the anti-inflammatory

response

Macrophage

pml probability at which macrophages leave the tissue Macrophage

pma probability at which macrophages phagocytose apoptotic neu-

trophils

Macrophage

αncr threshold of pro-inflammatory mediators above which new neu-

trophils are recruited

Environment

αngr threshold of anti-inflammatory mediators below which new neu-

trophils are recruited

Environment

αmr threshold of pro-inflammatory mediators above which new

macrophages are recruited

Environment

αml threshold of pro-inflammatory mediators below which macrophages

leave the tissue

Macrophage

Table 4.3: Parameters of the ABM inflammatory model.
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Parameter
Chronic outcome Healthy outcome Healthy outcome Healthy outcome Healthy outcome Healthy outcome

(baseline values) (switch: damage severity) (switch: damage size) (switch: neutrophil recruitment via c) (switch: neutrophil recruitment via g) (switch: macrophage recruitment)

c0 1 0.5 1 1 1 1

r 10 10 5 10 10 10

Dc 1.5 1.5 1.5 1.5 1.5 1.5

Dg 1.5 1.5 1.5 1.5 1.5 1.5

γc 0.002 0.002 0.002 0.002 0.002 0.002

γg 0.002 0.002 0.002 0.002 0.002 0.002

δac 1 1 1 1 1 1

δnc 0.001 0.001 0.001 0.001 0.001 0.001

δmg 0.001 0.001 0.001 0.001 0.001 0.001

pnr 0.02 0.02 0.02 0.02 0.02 0.02

pnc 0.5 0.5 0.5 0.5 0.5 0.5

pmr 0.04 0.04 0.04 0.04 0.04 0.04

pmg 0.8 0.8 0.8 0.8 0.8 0.8

pml 0.8 0.8 0.8 0.8 0.8 0.8

pma 1 1 1 1 1 1

αncr 0.05 0.05 0.05 0.1 0.05 0.05

αngr 0.015 0.015 0.015 0.015 0.0015 0.015

αmr 0.25 0.25 0.25 0.25 0.25 0.05

αml 0.02 0.02 0.02 0.02 0.02 0.02

Table 4.4: Parameter values modelling the resolution of inflammation (third to sev-

enth column) and its chronicity (second column).

behaviour towards the chronic state of inflammation that clearly emerges through

multiple simulations. Snapshots of one such simulation, as shown in Figure 4.7, pro-

vide a visual understanding of the biological mechanisms unfolding at tissue level that

cannot otherwise be easily captured by PDE models. Setting the parameters as in

the second column of Table 4.4 disrupts the physiological progression of acute inflam-

mation, resulting in continuous neutrophil activity which in turn further enhances

the pro-inflammatory mediators’ action, thus eventually preventing the resolution of

inflammation and leading to its periodic recurrence or non-resolution altogether.

In order to appreciate how the system’s outcome is modulated by the parameter

values, a series of 100 simulations were run, in which the agent counts of cells (active

neutrophils, macrophages, apoptotic neutrophils) and maximum concentrations of

pro- and anti-inflammatory mediators were monitored. Figure 4.8 thus results from

the averaging of all the collected data, highlighting a trending behaviour for each
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Figure 4.7: Simulation of the chronic outcome of the ABM running from t “ 0

(upper left corner) to t “ 5000 (bottom right corner), with parameters as in the

second column of Table 4.4. Macrophages are represented with blue circles, active

neutrophils with green triangles and apoptotic neutrophils with orange triangles.
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 4.8: Plots for the ABM corresponding to the average results of the batch of 100

simulations, with parameters as in the second column of Table 4.4. Shades around

the plots represent standard deviations.

group of cells and mediators that could not otherwise be captured and analysed. Fig-

ures 4.8a and 4.8c in particular highlight how both neutrophils and macrophages

exhibit a steady increase, rapidly settling to constant levels that are maintained

throughout the simulations. Apoptotic neutrophils start appearing gradually with

a delay corresponding to the lifespan of active neutrophils (Figure 4.8b). Inflamma-

tory mediators present a different temporal pattern, in line with their specific biolog-

ical behaviour. Figure 4.8d shows an immediate drop of pro-inflammatory mediators

corresponding to the combined effect of diffusion and decay from the initial concentra-
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tion modelling the damage. The levels of c are then sustained by neutrophils’ activity,

as prescribed by the background release of pro-inflammatory mediators provided by

these cells and described in Section 4.2.4. Recurrent peaks of pro-inflammatory me-

diators signal the necrosis of an apoptotic neutrophil and the resulting spilling of its

toxic content within the tissue, causing further disruption and promoting the pro-

inflammatory activity. Conversely, anti-inflammatory mediators (Figure 4.8e) start

appearing in the system only via mature macrophages, i.e. macrophages that have

already phagocytosed apoptotic neutrophils and have thus undergone a change in

phenotype. Such behaviour signals the active role of these leukocytes in promoting

healing. The stable level of anti-inflammatory mediators observed in prolonged times

of simulations is contrasted by the continuous recruitment of neutrophils and their

pro-inflammatory activity that effectively counteracts the anti-inflammatory action.

This results in an impaired healing process, with both cells and mediators maintain-

ing high levels of concentration throughout, eventually preventing the resolution of

inflammation. We note that, while the pro-inflammatory mediator concentration in

Figure 4.8d occasionally approaches or reaches zero in some simulations, this does not

signify a switch to a healthy outcome since (in all simulations) there is a sustained

presence of both active and apoptotic neutrophils (Figures 4.8a and 4.8b), which re-

sult in damage persisting. As such, these low levels of pro-inflammatory mediators

are not representative of emergent behaviours here.

4.4.2 Healthy outcomes

The crucial role of macrophages in promoting the resolution of inflammation (Hesketh

et al., 2017) suggests that, in order to model an effective healing process, leading to

the resolution of inflammation, those parameters that regulate the anti-inflammatory

mediators’ action are key to switching the system’s behaviour. Similarly, with neu-
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trophils enhancing the pro-inflammatory activity, a careful modulation of the levels of

neutrophils infiltrating the injured tissue emerges as decisive point of control for the

resolution of inflammation (Ortega-Gomez et al., 2013). As such, two main parame-

ters from the ones listed in Table 4.3 are individuated to best tackle the disruption of

the healthy state prompted by the physiological acute response and promote recovery,

namely the threshold of pro-inflammatory mediators upon which neutrophils are re-

cruited (αncr) and the threshold of pro-inflammatory mediators allowing recruitment

of macrophages (αmr). Furthermore, we also investigate the effects of the initial dam-

age on the final outcome of the inflammatory response, by focusing on its severity,

c0, and its initial initial radius, r. Through manipulation of each of these parameters

individually, we determine sets of key parameter values that act as switches between

chronic and healthy scenarios, as highlighted in Table 4.4 and further detailed in the

sections below.

Finally, we will investigate the efficacy of phagocytosis in the healing process, by

assessing how the tuning of parameter pma impacts upon the resolution of inflamma-

tion.

Neutrophil recruitment

The careful assessment of repeated simulations resulting in non-resolved inflamma-

tion, as well as the biological evidences highlighting the prime role of active neu-

trophils in enhancing the release of pro-inflammatory mediators motivate us to focus

our attention on the recruitment of these cells as a possible target for resolution of

inflammation. Simulations reveal that increasing αncr from 0.05 to 0.1 results in a

sufficiently reduced neutrophil recruitment to generate a healthy outcome. Figure 4.9

shows the initial trigger of acute inflammation, in response to the immediate release of

pro-inflammatory mediators at the site of injury and its progression in time. Firstly,

it is straightforward to observe how the resolution of inflammation is reached well
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Figure 4.9: Simulation of of the chronic outcome of the ABM running from t “ 0

(upper left corner) to t “ 5000 (bottom right corner), with parameters as in the

fifth column of Table 4.4, where αncr “ 0.1. Macrophages are represented with

blue circles, active neutrophils with green triangles and apoptotic neutrophils with

orange triangles. Increases in concentrations of pro-inflammatory mediators in red

are gradually dampened by anti-inflammatory chemicals.
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before the end of the simulation at t “ 5000, as the last row of Figure 4.9 shows, with

lower levels of pro-inflammatory mediators prompting the remaining macrophages

to leave the tissue. When not phagocytosed in time, apoptotic neutrophils can also

be seen undergoing necrosis and releasing additional quantities of pro-inflammatory

mediators, as represented by the red bursts visible throughout Figure 4.9. The occa-

sional necrosis of neutrophils does not prevent the overall resolution of inflammation

thanks to the efficient recruitment and action of macrophages that preferentially move

toward apoptotic cells. The controlled recruitment of neutrophils prevents a surge

in the background level of pro-inflammatory mediators, with the increasing levels of

anti-inflammatory mediators released by mature macrophages proving decisive in the

healing process and final healthy outcome.

Similarly, simulations resulting from decreasing αngr from 0.015 to 0.0015 exhibit

a resolved inflammatory outcome. Restoration of health is, in this case, prompted by

lowering the threshold of anti-inflammatory mediators, g, that controls the recruit-

ment of neutrophils. Thus, significantly smaller amounts of g are enough to signal

the system is headed towards the resolution of inflammation and no new neutrophils

are needed at the site of the original injury.

Overall, this dynamic balance between pro- and anti-inflammatory activity, ob-

tained by adjusting the recruitment of neutrophils in response to local concentrations

of c and g, eventually leans towards the anti-inflammatory mediators that prompt

the resolution of inflammation and restoration of a healthy state.

Macrophage recruitment

Conversely, macrophages actively lead to the resolution of inflammation. Thus, from

our simulations it emerges that decreasing the minimum threshold value of pro-

inflammatory mediators required for the recruitment of macrophages to αmr “ 0.05,

i.e. enhancing the recruitment of macrophages, the system’s behaviour switches from
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a previously chronic outcome to the healthy one. In practice, as soon as the local

concentration of c is above this updated threshold of αmr “ 0.05 (less constraining

than the original baseline value of αmr “ 0.25), new macrophages are recruited, with

their additional contribution of anti-inflammatory mediators eventually proving key

to the resolution of inflammation.

Damage severity

As the baseline values reported in Table 4.4 suggest, an initial damage of radius

r “ 10 and concentration of pro-inflammatory mediators of c0 “ 1 is enough to

prompt an inflammatory response, with the system yielding a perpetual inflamed

state. In investigating the impact of the severity of the initial damage over the

strength of the inflammatory response, we observe that upon a diminished quantity

of pro-inflammatory mediators within the injured site the overall outcome can also be

affected, prompting the restoration of a healthy state. As such, through simulations

we determined that a decreased initial concentration of c0 “ 0.5, while keeping all

other parameters unchanged, as visible in Table 4.4, is enough to ensure a healthy

outcome.

Damage size

Similarly, by manipulating the radius of the initial damage, from a baseline set of

parameter values resulting in a non-resolved inflammation, we can provide the system

with a switch to a healthy outcome by only tuning the initial radius of the damage to

r “ 5. Thus, as reported in Table 4.4, halving the size of injury ensures the clearance

of inflammation and restoration of the healthy state.
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Phagocytosis

As already emerged in Section 1.2 and largely confirmed in the results from Chap-

ter 2–3, the phagocytosing actions of macrophages and their role in clearing apoptotic

neutrophils is key in the inflammatory process. In particular, analogously to the anal-

ysis of the previous PDE model in which a specific focus was put on the effects of

parameter φ accounting for the rate at which macrophages phagocytose apoptotic

neutrophils, we here investigate the impact of parameter pma, which represents the

probability of the phagocytosing action. By considering each of the parameter sets

that results in a healthy scenario, as reported in Table 4.4, we reassess and com-

pare the results yielded by tuning the probability of phagocytosis to pma “ 0.01,

from its original baseline value of pma “ 1. In doing so, we drastically affect the

macrophage efficiency in clearing apoptotic neutrophils, with expecting deteriorating

results to the inflammatory outcome. Interestingly, all simulations with either set

of parameters ensuring restoration of the healthy state, when run with the updated

value of parameter pma “ 0.01 continued to guarantee the complete resolution of

inflammation with the introduction of a considerable delay in the healing process.

The longer healing times are caused by the drastic inhibition of the phagocytic ac-

tion of macrophages that move preferentially toward apoptotic neutrophils and when

fetching them are not able to immediately engulf them. In fact, in this new scenario,

phagocytosis happens with probability pma “ 0.01, thus causing a delay between the

time a macrophage moves to and reaches an apoptotic neutrophil and the time that

probability pma is met, when the former can finally phagocytose the latter. These

delays accounted for an approximate number of 500 ticks, with the overall healing

period varying depending on the specific healthy scenario that was being tested, as

detailed in table. It should be noted that the timespans reported in Table 4.5 provide

approximate intervals and not exact durations of simulations. This further highlights
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Approximate standard healing time (ticks) Approximate delayed healing time (ticks)

(via pma “ 0.01)

Healthy outcome
1500 ´ 2000 2500 ´ 3000

(via damage severity)

Healthy outcome
1000 ´ 1500 1500 ´ 2000

(via damage size)

Healthy outcome
1000 ´ 1500 1500 ´ 2000

(via neutrophil recruitment over c)

Healthy outcome
3000 ´ 3500 3500 ´ 4000

(via neutrophil recruitment over g)

Healthy outcome
2000 ´ 2500 2500 ´ 3000

(via macrophage recruitment)

Table 4.5: Approximate healing times upon individual tuning of selected parameters.

the random component in the ABM paradigm, marking a strong difference with the

PDE modelling approach in which all the analyses, even upon repeated simulations,

yields strictly deterministic results.

4.4.3 Discussion

In addition to exposing the role of the effects of phagocytosis on the inflammatory

response, Table 4.5 also provides an assessment of the efficacy of each individual pa-

rameter in the resolution of inflammation, namely those accounting for the initial

damage (c0 and r) and the ones modelling the recruitment of leukocytes (αncr, αngr

and αmr) as possible therapeutic targets and their benefit in terms of healing times.

In particular, we can conclude that therapies acting on the controlled recruitment

of neutrophils and the enhanced recruitment of macrophages can potentially have

a dramatic impact on the outcome of the acute inflammatory response, prompting

the restoration of the healthy state in an otherwise chronic scenario. Furthermore,

as shown in Table 4.5 the effectiveness of the manipulation of the recruitment of
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neutrophils (through parameter αncr) appears to be slightly more beneficial in terms

of healing time, compared to the tuning of parameter αmr. Conversely, the impact

of manipulation of parameter αngr, while still effective, is considerably delayed com-

pared to other parameters. Similarly, our results suggest that strategies acting on

limiting the initial damage, both in size and severity, can prove determinant in pre-

venting inflammation from becoming chronic. This, while not providing an immediate

therapeutic target in terms of pharmacological action, points at the importance of

controlling the initial tissue damage, which, in case of sterile inflammations such as

in the scope of our models, has a direct impact on surgical techniques and strategies

to reduce the inevitable tissue injury upon surgery as much as possible.

The manipulation of the parameters key to the resolution of inflammation, as

detailed in Table 4.4, results in simulations where the initial damage is effectively

tackled, limited in spread and eventually resolved, as represented in Figure 4.9 where

healing is prompted via regulation of neutrophils’ recruitment, effectively fixing either

αncr “ 0.1 or αngr “ 0.0015. Simulations of the remaining healing scenarios reported

in Table 4.4, namely the ones obtained by decreasing the damage size (r) and sever-

ity (c0) and the ones achieved by improving the macrophage recruitment (αmr) and

neutrophil recruitment via g (αngr), provide visually similar results in terms of final

outcome to the one showed in Figure 4.9 referring to the manipulation of parameter

αncr. They vary though in the overall healing times, with the average total num-

ber of ticks required for the inflammation to be cleared and resolved differing from

one scenario to the other, as already discussed and reported in Table 4.5. Interest-

ingly, we also observe variations in the number of cells recruited and concentrations

of mediators involved. These differences are illustrated in Figure 4.10, where results

from each set of simulations are averaged and compared. The results shown in Fig-

ure 4.10 provide a temporal analysis of the concentrations of both groups of cells and

chemicals and, while neglecting the spatial distribution of agents, offer nonetheless a
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 4.10: Plots for the ABM corresponding to the average results of batches of

100 simulations, with resolution obtained by increasing αncr from 0.05 to 0.1 (blue),

decreasing αngr from 0.015 to 0.0015 (red) and decreasing αmr from 0.25 to 0.05

(yellow), r from 10 to 5 (purple) and c0 from 1 to 0.5 (green); all other parameters

as in the second column of Table 4.4.
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valuable assessment of the progression and final outcome of the acute inflammatory

response by highlighting the tight interactions between leukocytes and mediators.

Firstly, we observe that the overall healing profiles, achieved via manipulation of

αncr, αngr, αmr, r and c0 respectively, share specific patterns in terms of dynamics.

In particular, we observe how the number of active neutrophils (Figure 4.10a) at

each tick is closely followed by that of apoptotic neutrophils (Figure 4.10b), as ex-

pected, since all active neutrophils eventually undergo apoptosis. The macrophagic

activity (Figure 4.10c) on the other hand is expressed in response to the presence

of both apoptotic neutrophils and pro-inflammatory mediators. This explains why

peaks of macrophage presence within the inflamed tissue are delayed compared to

active neutrophils. Conversely, the pro-inflammatory mediator concentration is en-

hanced in correspondence to those apoptotic neutrophils that become necrotic before

being effectively phagocytosed by macrophages, thus releasing their toxic content and

further promoting the inflammatory activity. This is well reflected in Figure 4.10d

in which the surge in concentration of pro-inflammatory mediators follows the same

timescale pattern of the increase in apoptotic neutrophils. Finally, the production

and release of anti-inflammatory mediator is actively promoted by the phagocytosis

of apoptotic neutrophils by macrophages. Thus, Figure 4.10e should be read as the

result of the joint interaction of these two agents that eventually leads towards the

resolution of inflammation, with all the variables plotted in Figure 4.10 exhibiting

zero concentrations by the end of the simulation at t “ 5000 accordingly.

Additionally, interesting differences emerge with respect to each healing strategy

employed. In particular, Figure 4.10 shows how decreasing the size of the initial

damage r is the most effective target, as represented by the plots in yellow, with the

number of active neutrophils and macrophages involved being minimised and the anti-

inflammatory response being in turn of a considerably lower scale. Adjustments to

neutrophils’ recruitment (αncr, plotted in blue) and the decrease in the initial damage
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severity (c0, plotted in purple) provide instead similar benefits in terms of healing

times and levels of cells and mediators involved, but are sensibly larger than the results

achieved via manipulation of r. Finally, while still effective in resolving inflammation,

changing the value accounting for the recruitment of macrophages through parameter

αmr, provides an inflammatory response of a considerably larger scale, with respect

to both healing times and concentrations of leukocytes and mediators featured, as

shown in the plots in red.

4.4.4 Comparison with the PDE model of Chapter 3

Given that the modelling approach proposed by the ABM paradigm is substantially

different to the one offered by PDEs, it is interesting to compare the results provided

by both sets of models. To this end, Figures 4.11–4.12 present a combination of results

from the inflammation model described in Chapter 3 and the ABM introduced in this

chapter. Both models depend on sets of parameters representing the main cellular and

chemical interactions; the accurate tuning of some sensitive and biologically significant

ones provides different outcomes in terms of the resolution of inflammation, as shown

throughout Chapters 3–4. We note, here, that the model of Chapter 3 and the ABM

constructed in this chapter operate on very different spatial scales: the model of

Chapter 3 is applied on a square domain of width 10 cm, while the ABM of this

chapter uses a smaller domain of width 2mm (as discussed in Section 4.3). For this

reason, the numbers of cells reported for the PDE model of Chapter 3 are typically

at least one order of magnitude higher than those of the ABM in Figures 4.11–4.12.

Figure 4.11 combines results from Figures 3.9 (by appropriately rearranging the

data and plotting at each time step the total number of cells and the maximum con-

centration of mediators) and 4.10, from the PDE and ABM simulations respectively.

While the plots for each cellular and chemical group do not overlap exactly, the over-
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all behaviour is similar in presenting a surge in each variable upon injury and their

eventual dampening, with the restoration of a healthy state. Similarly, Figure 4.12

compares simulations from Figures 3.11 and 4.8. The immediate visual comparison

between the two sets of plots is straightforward in highlighting the persistent high

levels of both white blood cells and inflammatory mediators, typical of chronic in-

flammation. More importantly, regardless of the modelling approach, the outcome of

these simulations is directed and controlled by a careful manipulation of the models’

parameters. As such, the PDE model’s outcome (left panel) is obtained by tuning the

parameters accounting for the rate at which active neutrophils undergo apoptosis (ν).

Simulations of the ABM yield the chronic outcome by changing either of the parame-

ters that act as switch between resolved and chronic outcomes, namely the threshold

of pro-inflammatory mediators upon which new neutrophils and macrophages are re-

cruited (αncr, αngr and αmr), and the damage size and severity (r and c0 respectively).

In particular, it is crucial to observe that in both the PDE and the ABMs, the inflam-

mation outcome changes from a healthy state to a chronic one by manipulating the

neutrophil activity, which in turns affects the release of pro-inflammatory mediators

and the level of disruption within the tissue. The mechanisms are specific to the

modelling approach, with the PDE model highlighting the role of apoptosis through

manipulation of parameter ν and the agent based model with respect to parameters

αncr and αngr, controlling the recruitment of neutrophils instead.

Analogously, both the PDE and the ABM are susceptible to the regulation of

macrophage activity, as addressed in Chapter 3 with respect to the phagocytosing

rate φ and in Section 4.4.2 of the current chapter via parameter αmr controlling the

macrophage recruitment, respectively. Therefore, qualitatively comparable results be-

tween the two models are similarly achieved by tuning the macrophagic activity, which

directly controls (by either delaying or impairing) the anti-inflammatory mediators

action. This aspect highlights the importance of neutrophil’s controlled recruitment
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and apoptosis on one hand and of macrophages on the other hand in terms of possible

therapeutic targets, in addition to the sensible beneficial effects achieved by minimis-

ing the initial damage size and severity. This suggests that the manipulation of both

the action of leukocytes and the containment of tissue injury could be key to restoring

a healthy state and preventing the chronic state of inflammation.

4.5 Parameter sensitivity analysis

In order to provide an exhaustive assessment of the model capabilities and analyse

its dependence on individual parameters, we perform a parameter sensitivity analy-

sis. The aim of such study is to individuate parameters that have a key impact on

the model’s outcome, while also highlighting the marginal role of those remaining

parameters whose variation does not significantly affect the system’s behaviour.

4.5.1 Set up

We consider the standard chronic outcome outlined in Section 4.4.1 as our reference

simulation and investigate, through a systematic set of simulations where individual

parameters are changed one at time, differences arising in the final outcome of the in-

flammatory response. We outline a set of parameter values to be tested with the aim

to assess the model’s response to significant increases and decreases of each parame-

ter with respect to the reference set of parameter values listed in the second column

of Table 4.4. For each parameter individually, increases and decreases of 50% of the

reference value are considered. The resulting set of values tested is listed in Table 4.6,

with the second column reporting the reference chronic values for convenience and

the third and fourth columns exhibiting decreased and increased values respectively.

The outline in Table 4.6 provides a guide to the simulations performed for the sen-

sitivity analysis, where the model is systematically set up with all combinations of
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Figure 4.11: Left panels: solution of (3.7–3.11, 3.29), with parameters as in Table 3.2.

At each time step, we plot the global cell counts and the maximum concentration of

mediators. Right panels: plots for the ABM corresponding to the average results of

batches of 100 simulations, with parameters as in the third (green), fourth (purple),

fifth (blue), sixth (red) and seventh (yellow) columns of Table 4.4.
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Figure 4.12: Left panel: solution of (3.7–3.11, 3.29). At each time step, we plot

the global cell counts and the maximum concentration of mediators. The rate of

neutrophil apoptosis is updated to ν “ 0.075, all other parameters are as in Table 3.2.

Right panels: plots for the ABM corresponding to the average results of the batch of

100 simulations, with parameters as in the second column of Table 4.4.
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parameters resulting from the reference column and each of the updated parameter

values one at time. It is important to observe that parameter δac, accounting for

the increment of pro-inflammatory mediators in response to apoptotic neutrophils’

necrosis, is excluded from the parameter sensitivity analysis. This is due to δac being

the parameter with respect to which all other parameters are scaled, as detailed in

Section 4.3. Additionally, as is visible in Table 4.6, parameter pma, representing the

probability of macrophages to phagocytose apoptotic neutrophils, is only tested in

terms of a decrease from its reference value, since the baseline chronic value of pma “ 1

is already maximal. The total global concentration of mediators and the number of

neutrophils are monitored over 5000 ticks, collected and saved as output in order

to be compared against the reference data. In particular, we record the percentage

change in these two measures in comparison to the reference data.

4.5.2 Analysis

In order to take into account the randomness within the ABM framework, both the

reference simulation and each set of test simulations are analysed over a batch of

100 runs. Upon selection of a timepoint of interest tp, each set of data is averaged.

Variations over single batches of simulations are computed with respect to the per-

centage change compared to the reference simulation. Figure 4.13 shows the results

corresponding to each combination of parameter values from Table 4.6. Simulations

corresponding to parameter decreases are marked by red downward-pointing triangles.

Conversely, simulations for parameter increases are marked by green upward-pointing

triangles. Here, all results are reported at the final tick, so tp “ 5000 throughout.
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Parameter
Reference values Decreased values Increased values

(Chronic outcome) (´50% of reference value) (`50% of reference value)

c0 1 0.5 1.5

r 10 5 15

Dc 1.5 0.75 2.25

Dg 1.5 0.75 2.25

γc 0.002 0.001 0.003

γg 0.002 0.001 0.003

δnc 0.001 0.0005 0.0015

δmg 0.001 0.0005 0.0015

pnr 0.02 0.01 0.03

pnc 0.5 0.25 0.75

pmr 0.04 0.02 0.06

pmg 0.8 0.4 1

pml 0.8 0.4 1

pma 1 0.5 n/a

αncr 0.05 0.025 0.075

αngr 0.015 0.0075 0.0225

αmr 0.25 0.125 0.375

αml 0.02 0.01 0.03

Table 4.6: Parameter values for the reference chronic outcome (second column) and

for sensitivity study with values to be tested representing decrease in half of reference

value (third column) and increase in half of reference value (fourth column).



4.5. PARAMETER SENSITIVITY ANALYSIS 177

c0 r Dc Dg γc γg pnr pnc pmr pmg pml pma δnc δmg αncrαngr αmr αml

100

50

0

-50

-100

(a) Active neutrophils.

c0 r Dc Dg γc γg pnr pnc pmr pmg pml pma δnc δmg αncrαngr αmr αml

250

200

150

100

50

0

-50

-100

(b) Pro-inflammatory mediators.

Figure 4.13: Parameter sensitivity analysis results showing the percentage change in

(a) the number of active neutrophils and (b) the concentration of pro-inflammatory

mediators, both with respect to the reference chronic simulation at final tick t “

5000, for variations of individual parameters. Green and red triangles represent 50%

increases and decreases respectively. Bars indicate change in minimum and maximum

changes in percentage over 100 simulations for each parameter. Note that a change

in response of ´100% corresponds to a switch from a chronic to a healthy outcome.
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4.5.3 Discussion

The data collected in the simulations run for the parameter sensitivity study are rich

and of complex interpretation, as is evident from the results in Figure 4.13. In par-

ticular, the total concentrations of pro-inflammatory mediators and the total number

of active neutrophils inform differently upon the acute inflammation outcome. Since

the data resulting from each batch of simulations is plotted in terms of percentage

changes with respect to the chronic reference, we are interested in the markers’ diver-

gence from the chronic baseline at zero. Thus, upward deflections from such baseline

correspond to worsening inflammatory conditions, since they represent higher con-

centrations of mediators and higher numbers of cells involved. Conversely, downward

deflections represent improvements in the inflamed tissue, with the presence of lower

amounts of mediators and cells compared to the reference data. In this sense, the

analysis of Figure 4.13a provides a neat interpretation of the tissue’s health state at

the end of the simulations at tick t “ 5000. Markers aligned at zero indicate the

absence of any discrepancy with the reference data, meaning that the tested param-

eter did not change the model’s final outcome toward neither healing nor worsening

conditions. More importantly, overlapped upward and downward triangle markers

highlight how increases and decreases of a specific parameter are irrelevant to the

model’s overall behaviour. Conversely, markers aligned at ´100 indicate a decrease

of 100% in the final amount of active neutrophils at tick t “ 5000 with respect to the

reference chronic data, pointing at the resolution of inflammation.

Observing Figure 4.13a, the key parameters affecting the system’s outcome and

providing a drastic switch from chronic inflammation to its resolution are immediately

individuated as c0, r and αncr. In particular, a decrease in half from the reference

value for either of the parameters controlling the initial damage (i.e. its severity c0

and its radius r), results in the complete resolution of inflammation. Similarly, health



4.5. PARAMETER SENSITIVITY ANALYSIS 179

is restored upon an increase in half of the nominal value of parameter αncr controlling

the recruitment of active neutrophils. These results are in complete agreement with

the corresponding analysis presented in Section 4.4.2. A notable discrepancy emerges

with respect to the system’s sensitivity to parameter αmr, controlling the recruitment

of macrophages, which does not appear to be determinant in the model’s outcome

when decreased by half of its reference value αmr “ 0.25, but is proved to provide a

switch from chronicity to health when set at a considerably lower value of αmr “ 0.05,

as presented in 4.4.2. The apparent incongruity on the role of parameter αmr arises

from forcibly pushing the system toward resolution through a decrease of 80% from

the reference chronic value of αmr, while a decrease in 50% of its nominal value does

not provide any sensitive anti-inflammatory impact.

Similarly, the role of parameter αngr as a possible switch between chronic and

resolved outcomes is not entirely caught by the parameter sensitivity analysis. As

exposed in Section 4.4.2, a significant decrease in the threshold value controlling the

recruitment of neutrophils upon levels of anti-inflammatory mediators is necessary in

order to push the system toward resolution. Such variation is in order of 90% from

the chronic reference of 0.015 to the updated 0.0015 and does thus not feature in the

sensitivity analysis results, where variations of ˘50% are only considered.

As already highlighted in Section 4.4.3, within this model, parameters αncr, αngr

and αmr are individuated as possible therapeutic points of control, suggesting that

their manipulation via targeted drugs could be beneficial to the resolution of inflam-

mation. From the additional parameter sensitivity analysis we further infer that such

drugs would have a stronger impact when aimed at the recruitment of neutrophils

and, conversely, an enhanced action on the recruitment of macrophages is required

for the resolution of inflammation.

More interesting points of discussion emerge from observing Figure 4.13a, fo-

cusing on the system’s behaviour when increasing the diffusion of pro-inflammatory
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mediators Dc and upon decreasing the probability of recruiting neutrophils pnr, the

probability of neutrophils to release pro-inflammatory mediators pnc or the increment

in pro-inflammatory mediators by neutrophils δnc. In particular, the markers for these

specific tested parameters are very closely aligned to the reference data, indicating

the persistence of the chronic outcome, but exhibiting significant variations that sig-

nal the occasional resolution of inflammation in a fraction of the batch simulations.

This is significant in highlighting once more the non-deterministic nature of the ABM

framework, which thus results better suited to describe complex biological processes

whose nuanced interactions are not always captured in full by the deterministic ap-

proaches provided by ODEs and PDEs.

The parameter sensitivity analysis on pro-inflammatory mediators (4.13b) presents

a more complex result. In particular, the main considerations about the decreases in

key parameters c0, r and increase in αncr are retained, with the respective markers

aligned at ´100, thus indicating a switch from the chronic reference outcome to full

recovery. Conversely, the level of inflammation severity with respect to the chronic

baseline is of more difficult interpretation, with most markers presenting a significant

divergence from the reference data. The high variations provide an understanding for

such behaviour, explaining the strong variability in the concentration levels of pro-

inflammatory mediators at every stage of inflammation, depending in first instance

by the presence of active neutrophils which provide a continuous background release

(as explained in Section 4.2.4) and more importantly to the surges of c upon necrosis

of apoptotic neutrophils (as described in Section 4.2.5). Thus, overall, levels of global

concentrations of pro-inflammatory mediators appear to be more informative in terms

of the severity of inflammation, rather than being an indicator for its resolution.

Another important observation arising from the parameter sensitivity analysis is

with respect to probabilities. In particular, as evident from the results in Figure 4.13,

the model is largely insensitive to choices of most probabilities, thus overcoming the
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biological uncertainty in identifying suitable values for such parameters.

4.6 Conclusions

In this chapter we introduced a new modelling framework, defining the ABM paradigm

and presenting related applications of biological relevance. We then proceeded to

model acute inflammation taking into account the response of white blood cells, dif-

ferentiating between neutrophils and macrophages and their action, as well as that of

both pro- and anti-inflammatory mediators. Both groups of leukocytes of the ABM

implement chemotaxis and direct their motion within the domain accordingly. The

system’s behaviour, including that of each group of agents, is controlled through pa-

rameters that can be tuned to simulate both healthy and unresolved outcomes of

the inflammatory event. Key parameters around which such behaviour is modulated

find a direct correspondent both biologically and with respect to the PDE model of

Chapter 3, to which a comparative analysis in terms of results was also carried out.

A key result from this novel model is that of accounting for cells individually while

also retaining the diffusive and chemotactic behaviours introduced in the previous

chapter. This better reflects the heterogeneous response of cells that exhibit varied

responses according to their location and particular environment, rather than acting

as a homogeneous group as implied in the definition of the PDE model.

The main focus of our analysis has been on highlighting how parameters of high

biological significance, namely the size and severity of damage and the efficiency

of leukocyte recruitment, can have a determining impact on the inflammatory out-

come, acting as a switch between healthy and chronic scenarios. We also investigated

the effects of phagocytosis on the healing process, assessing recovery times in corre-

spondence of the tuning of the parameter controlling the likelihood of macrophages

effectively clearing apoptotic neutrophils. This detailed analysis allowed us to individ-
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uate these biological interactions as key targets for possible therapeutic interventions,

suggesting tailored strategies for drugs either enhancing macrophage recruitment or

controlling neutrophil recruitment and surgical procedures at aiming in minimising

size and severity of the tissue damage. Additionally, our analysis shows that all these

strategies would be sensibly affected in terms of recovery times upon macrophages

impaired phagocytosing action. Finally, a parameter sensitivity analysis was per-

formed, to gain further insight into the role of individual parameters in controlling

the system’s behaviour. In response to systematic increases and decreases of param-

eter values from their reference chronic set, the model results are robust to variations

of the probabilities regulating leukocytes’ behaviour and to inflammatory mediators’

increments, diffusivity and decay rates. Conversely, manipulation of parameters con-

trolling the initial damage and cells’ recruitment have a regulatory action on the

system’s outcome in terms of resolution of inflammation. This is also in accordance

with the results presented in earlier Sections 4.4.2–4.4.3 and further suggests the ben-

efits of targeting tissue damage and neutrophil recruitment as key mechanisms of the

inflammation’s outcome. In this regard, an important observation emerges from the

impact of cell’s recruitment, with the parameter sensitivity analysis exposing the sys-

tem’s stronger response to recruitment of neutrophils than macrophages. Evaluating

this result in terms of therapeutic targets, drugs aiming at controlling macrophage’s

recruitment would need an enhanced action to tackle effectively inflammation and

promote its resolution.

We note that, in this model, there is a degree of choice over the exact manner

in which a tick of the model is defined. For convenience, we have assumed that all

cellular decisions are implemented every tick, with the exception of the recruitment

of neutrophils and macrophages, which we recruit every two and five ticks respec-

tively in order to account for delays in cell recruitment in vivo. We note that the

definition of a tick in the agent-based component of our model does not impact upon
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the numerical solution of the PDEs describing mediator concentrations, since the nu-

merical timestep used to solve these PDEs is implemented separately, with multiple

numerical timesteps occurring per tick. It is well-known that neutrophils are recruited

more rapidly than macrophages in vivo, which motivates our choices of recruitment

frequencies used here; however, it is intuitive to expect that variations in these re-

cruitment frequencies could have an impact upon the results obtained. Näıvely, we

may expect more frequent neutrophil recruitment to move the model toward chronic

outcomes, while more frequent macrophage recruitment may promote restoration of

health. However, since the pro- and anti-inflammatory effects of these cells are del-

icately connected, the effects of varying these parameters may be somewhat more

complex. We briefly revisit the question of how the scheduling of cell recruitment

impacts upon model observations in the following chapter.

Going forward in our analysis we aim to capture with greater detail the chemo-

tactic mechanisms that drive the motion of leukocytes, in order to help elucidate its

role within the physiologic inflammatory response and individuate points of control

to prevent impairment and defects in cells’ collective motility.



Chapter 5

An enhanced model of directed

neutrophil motility

In this chapter our objectives focus on modelling chemotaxis with greater detail, by

calibrating our model against available experimental data and to evaluate the impact

of the improved leukocytes motion within the inflammatory ABM. We further aim

to investigate the inflammatory pathology Chronic Obstructive Pulmonary Disease

(COPD) as a case study for model validation.

Numerous inflammatory conditions are associated with aberrant migration of neu-

trophils, in particular, while detrimental changes in neutrophil migration have also

been observed in ageing, with neutrophils generally exhibiting reduced chemotaxis

(Wagner & Roth, 1999; Sapey et al., 2014b; Jasper et al., 2019). The in-vitro

study of Sapey et al. (2011) used time-lapse photography to record trajectories of

healthy and COPD-affected neutrophils migrating up gradients of interleukin-8 (IL-

8), demonstrating that healthy neutrophils chemotax more efficiently, while impaired

neutrophils can have weaker sensitivity to the local chemoattractant gradient, which

we associate with an impaired ability to resolve tissue damage. We use the quanti-

tative measurements of directed neutrophil motility given by Sapey et al. (2011) to

184
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calibrate our description of leukocyte chemotaxis in the model presented below.

To include a novel calibrated description of chemotaxis, we will firstly introduce bi-

ological aspects of cells’ directed motion, particularly focusing on leukocyte migration

under physiological conditions. After a brief review of the relevant literature in terms

of both experimental and mathematical models of cell motility, an agent-based model

of neutrophil migration under a chemoattractant source is presented and thoroughly

analysed, with the aim to simulate and replicate experimental data obtained from

the available literature, with key parameters providing a switch between healthy and

pathogenic scenarios. In particular, our main focus is comparing cell walks exhibited

by our model to appropriate experimental data. We further characterise the model

of neutrophils’ directed motion in terms of balance between chemical attraction to a

source of mediators and cells’ persistence of motion. The aim for such characterisa-

tion directly arises from the observed features of leukocyte migration, as laid out in

the work of Foxman et al. (1999). More in detail, we model cells’ directed motion

in terms of biased persistent random walk, to best describe the in vivo leukocyte mi-

gration described in Taylor et al. (2013). Finally, we investigate the implications of

impaired chemotaxis on inflammatory mechanisms.

5.1 The biology of cell motility

Cell migration is an essential feature of living organisms, characterising embryoge-

nesis and directly affecting and regulating morphogenesis and inflammation. The

organised collective motion cells exhibit persists also in adult organisms and consti-

tutes a key aspect of a variety of physiological processes, including tissue homeostasis

and immune responses, amongst others, as well as being essential to many biotech-

nology applications such as tissue-engineered scaffolds and cellular transplantation.

Crucially, cell migration plays a fundamental role also in pathology, acting as a driv-
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ing factor for different diseases such as cancer spread, chronicisation of inflammation,

mental disorders, arthritis and atherosclerosis (Ridley et al., 2003). Given the dual

nature of this phenomenon, with single cells responding to molecular and physical

stimuli but also acting in group towards a global directed movement, biologically the

motion of cells can be described and analysed with respect to both single-cell and

collective cell migration.

Mechanically, a cell moves through a cyclic set of actions characterised by po-

larisation (in response to extracellular signalling), membrane extension, adhesion of

protrusions, contraction, traction and adhesion detachment (Horwitz & Webb, 2003;

Lauffenburger & Horwitz, 1996). The velocity and distinctiveness of these stages de-

pend on the cell type, with leukocytes in particular exhibiting a smooth and quick

drift over the substratum of migration. The source of polarisation triggering cellu-

lar directed motion can vary in nature, with local gradients associated with either

chemokinetic (upon variations of the receptor-ligand interface), haptotactic (with

concentrations of chemical attractants expressed by the substrate) or chemotactic

stimuli (Horwitz & Webb, 2003). The transduction of the relevant signalling inter-

nally to the cell results in the physical modifications at the membrane that allow for

the movement, with the development of protruding structures known as lamellipodia

(broad and flat) and filopodia (thin and cylindrical) that mediate the adherence and

detachment of substratum adhesion (Lauffenburger & Horwitz, 1996; Lodish et al.,

2008). The attachment site provides a firm focal adhesion between the cell’s mem-

brane protrusions and the substrate, leading the way to the cell body translocation

through consecutive contraction and traction forces between cell and substratum ad-

hesion points. The practical movement is thus achieved as a result of the mechanical

forces exerted by the cellular structures and the resisting forces of the cell-substrate

adhesions that, in turn, are rapidly detached at the cell’s rear upon movement (Lodish

et al., 2008). On the other hand, the understanding of the signalling and coordinated
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activity involved in the cell’s mechanics remains still unclear, particularly at the bio-

chemical level but also in terms of temporal and spatial behaviour (Lauffenburger &

Horwitz, 1996). Such processes are also studied at a larger scale, by considering the

temporal and spatial characterisation of collective cell migration. The prominence and

centrality of collective cell migration in a number of physiological and pathological

events, namely morphogenesis, wound healing and cancer, with the latter two directly

relating to inflammation, further explains the importance of a clear understanding of

this phenomenon. When analysed in its whole, the global directed motion of cells fol-

lows a similar pattern to the one of single cells, by polarising with respect to a source

of attraction, protruding towards it and eventually moving by balancing contractive

and adhesive forces with the surrounding matrix (Trepat et al., 2012). Furthermore, a

collective behaviour in terms of cohesiveness, permeability and mechanical cell-to-cell

signalling is also exhibited.

Overall, though, it is important to highlight how, in adult organisms, only stem

cells, fibroblasts and leukocytes preserve the ability to migrate, along with tumour

cells whose spread and metastatisation constitutes a crucial aspect of the disease

progression and ultimate lethality (Entschladen & Zanker, 2010). Similarly, as al-

ready pointed out in Section 1.2, the effective and prompt migration of leukocytes

to sources of inflammation also proves to be essential in the restoration of a healthy

state and particularly in tackling chronic inflammation, further motivating our focus

on neutrophil motility in this chapter.

5.1.1 Leukocyte motility in health and disease

The role of neutrophils in human physiology is key in a number of issues, includ-

ing in mediating the innate immune response and most prominently in leading the

inflammatory process. In particular, neutrophils constitute the front line response
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to tackling tissue injuries or pathogenic intrusions and their prompt and efficient re-

cruitment at the insulted site is central to the restoration of a healthy state. The

migrating mechanisms that regulate leukocyte motility follow the pattern described

in 5.1 but are specific in the cells’ intrinsic polarisation as well as the integrated pro-

cess of adhesion and release between front and rear cell, resulting in a characteristic

gliding motion (Entschladen & Zanker, 2010). Unlike most other cells, neutrophils

along with metastatic tumour cells, naturally exhibit the ability to move within varied

tissues. Their directed drift towards specific targets, namely sites of inflammation,

results from a number of overlapping conflicting but highly coordinated signals. The

nature and unfolding of such signals that regulate leukocyte motion is particularly

complex and still partially unclear. The network of interactions tightly controlling

neutrophils’ responsiveness is mediated by both chemicals (including growth factors,

hydrogen peroxide and cytokines) and the extracellular matrix. The latter, in partic-

ular, functions as an inhibitor of cell migration, directly acting on cells’ polarisation,

protrusion, adhesion and detachment, effectively regulating their speed. A key coun-

teraction to the promoters of leukocyte motility is provided by pro-inflammatory

mediators that, in addition to their role as the main chemoattractant, also act as

inhibitors to cell migration, once at the injured site, thus blocking neutrophils within

the inflamed tissue and ensuring high optimal concentrations of white blood cells to

efficiently neutralise sources of damage (Entschladen & Zanker, 2010).

Given the crucial role of neutrophils in the initiation, promotion and progression of

inflammation, impairments of neutrophil motility can have disruptive consequences on

the normal physiology, leading to and a number of pathologies. In particular, specific

immunodeficiency disorders arise from defects in neutrophil recruitment, typically

due to transmutations at genetic level of key receptors, as in the case of diseases such

as leukocyte adhesion deficiency, Wiskott-Aldrich syndrome and Whim syndrome,

amongst others, with patients affected by either disorder prone to frequent infections
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(Entschladen & Zanker, 2010). Chronic inflammatory diseases, including both hered-

itary and developed disorders such as Crohn’s disease, gout, arthritis, just to name

a few, while still little understood in terms of pathogenesis, are characterised by a

clear overconcentration of neutrophils within the damaged sites. As highlighted in

Chapter 1, these leukocytes further promote the pro-inflammatory activity and the

their faulty or uncontrolled up-regulation from physiological levels eventually leads

to chronic inflammation. While the broader causes that result in impaired leukocyte

motility and related diseases have been individuated, it is still challenging to gain an

exhaustive comprehension of the defective mechanisms that lead to such abnormali-

ties.

5.2 Models of collective cell movement

The relevance of cell migration in both health and disease has long motivated the

great interest of researchers in clarifying intrinsic cellular mechanisms and external

signalling activity that prompt and regulate this phenomenon. While the under-

standing of cell locomotion at the molecular level plays a key role in explaining the

chemical and mechanical response underlying cellular motion, it is the complex coor-

dination and regulation of these processes that results in the cells’ polarised motion

experimentally observed. This highlights the challenges posed by this problem, with

mathematical models providing an effective tool to help tackle this multidisciplinary

task. More specifically, cells’ persistence in motion is analysed in terms of direction

(Taylor et al., 2013). Furthermore, there is a clear understanding that in vivo and

in vitro cell migration function differently, particularly in response to chemotactic

gradients (Entschladen & Zanker, 2010), with research in this area still failing to

provide an exhaustive explanation of the signalling and mechanics that regulate cells’

collective motion (Horwitz & Webb, 2003). The mathematical modelling of such phe-
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nomena aims therefore to narrow the existing gaps in the understanding, and inform

over possible therapeutic targets to tackle impaired cell migration.

5.2.1 Previous models of cell migration

Given the centrality of cell migration in many fundamental biological processes, from

embryogenesis to the regulation of the immune system, there is great interest in

modelling this phenomenon, with research in this field focusing on capturing different

aspects of the collective motion of cells. As such, a number of valuable mathematical

models of cell motility have been proposed, providing a valuable resource in terms

modelling approaches and new insights into collective cell motion.

In their review, Camley & Rappel (2017) introduce the basics of collective cell

modelling, with distinct models capturing only a subset of these aspects, according to

each model purpose and specificity. In particular, single cells’ velocity and persistence

of motion are described in terms of stochastic differential equations, in function of

the cell’s polarity distribution, i.e. the asymmetry in the positioning of signalling

components on the cell’s surface. Similarly, a number of mathematical representations

of cells’ shape and mechanics are provided for implementation for models that aim to

capture these aspects. Among these, phase field models are introduced, with each cell

assigned a region, or phase field, and their motion described as a transition between

an inner or outer location of the field. In Camley & Rappel (2017) such transition

functions are modelled with respect to both single cells and cell-to-cell energies, while

also being straightforwardly extended to account for additional parameters such as

the phase field surface’s width and cell’s membrane bending energies. However, these

models are admittedly costly in terms of computation and are more suitable for

simulations of small numbers of cells, thus best serving models that aim to investigate

biochemical interactions and cells mechanics.
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Because of its intrinsic nature, the problem of modelling collective cell motion

is commonly tackled by accounting for individual cells as basic units. While ABMs

provide a straightforward answer in representing in an accurate and relevant way such

scenario, other approaches have also been investigated. In this regard, Palsson (2001)

proposed a 3D model of cells implementing motion in terms of change in shape and

conservation of volume. Cell types are then defined according to a set of parameters

accounting for sitffness, adhesion and locomotive force generation, adding to the flex-

ibility of the model and its suitability to describe different multicellular systems. A

cell’s orientation is configured with respect to both chemotactic gradient and their

previous location, upon a threshold value serving as tool in selecting the direction of

movement. The cell-to-cell forces exerted upon motion are also accounted for, with

adhesive and viscous forces prescribing the cell’s deformation and ultimate movement.

Simulations from the model are compared to available experimental data, successfully

replicating cells sorting and chemotactic collective motion in typical physiologic sce-

narios but lacking any extension to possible impairments and neglecting more specific

interactions at play in wound healing and embryogenetic processes. A more detailed

study of cell migration by Palsson & Othmer (2000) focusing on slime mould mo-

tion proposes an ABM investigating the cell-to-cell forces at play in collective motion

mechanisms. The model is firstly assessed with respect to adhesive forces and cellu-

lar mass surface tension in the absence of chemotaxis, subsequently analysing cells’

aggregation in response to varying configurations of chemoattractant presence and

studying the overall effect of adhesion in cells assembling and collective movement.

In particular, validating their model against experimental results, Palsson & Othmer

(2000) investigate closer aspects of cell-to-cell interactions, elucidating the cellular

deformation mechanisms that can explain cellular aggregation by individuating in

cells’ increased speed the main drive to collective rotational movements.

Schumacher et al. (2016) review modelling approaches that specifically focus on
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embryogenesis-driven cell migration, in particular with respect to neural crest cells, a

fundamental embryonic structure giving rise to different specialised cells of the periph-

eral nervous system and heart amongst others. Similarly, Maini & Baker (2014) also

assess models of collective cell motion, ranging from a classical PDE-based represen-

tation for tumour cell invasion, an agent based system for cells motility in epithelial

sheets and a hybrid model for neural crest migration. Starting from energetic con-

siderations in tumour cells metabolism, a mathematical analysis of their competitive

behaviour revealed how the invasion of cancerous cells is best described by travelling

waves, with the corresponding PDE model accounting for densities of both healthy

tissue and pathological cells, as well as concentrations of critical agents promoting

tumour invasion. Parameters were estimated from the relevant literature when avail-

able, with remaining ones tuned to capture the observed biological behaviour and

simulations predicting effective treatment strategies for reducing tissue the metas-

tatisation driven by tumour cells invasion. A model for epithelial cell migration is

also presented, with cells represented as polygons sharing edges and grouped through

common vertices. The model accounts for the assembling and positioning of such

structures, which is crucial in the later stages of embryonic development. Finally, an-

other embryogenic process is modelled in order to study the impact domain’s growth

on cells’ migration. This is achieved by coupling a PDE based model describing

concentrations of Vascular Endothelial Growth Factor (VEGF) which diffuses within

tissue and, being consumed by cells, practically acts as a chemoattractant agent; cells

are instead implemented as single agents, within a ABM framework. The model is

then tested upon different scenarios, in order to clarify cellular migratory mecha-

nisms, with the emerging result suggesting that cells at the back are responsive to

correspondent cells at the front, rather than to the chemoattractant VEGF. Fur-

ther experimental investigations confirmed this phenomenon revealing a difference in

genetic expression at the base of such behaviour.
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Neilson et al. (2011) propose a framework for modelling cell migration subject to

chemotaxis in the form of reaction-diffusion equations over evolving domains. This

approach takes into consideration the cell’s shape, with the corresponding PDE’s

solution driving the cell’s motion and morphology. The model is studied with respect

to local stimuli and the cell’s pseudopods’ response to them, with a leading pseudopod

emerging from a group of multiple competing ones. The model is further tested by

simulating a single cell movement and its repositioning upon the introduction of the

chemoattractant. The model compares well to experimental observations but does

not include any pathological scenario; furthermore the mechanical forces regulating

the cell’s crawling do not take into account adhesive interactions, with the authors

suggesting such implementation as a natural extension of their model.

Gavagnin & Yates (2018) highlight the duality between the continuum, deter-

ministic PDE-based approach and the discrete stochastic ABM one. By exposing

strengths and weaknesses of both, they review a number of relevant past models,

including those extending the analysis of collective cell movement to cell prolifera-

tion and chemotaxis. In particular, on the latter, they underline the centrality of

persistence and diffusiveness in describing these phenomena at population-level. Fur-

thermore, methodologies towards the convergence of the deterministic and stochastic

approaches are presented, by framing the diffusive behaviour typically implemented

by PDEs within the ABM paradigm.

5.2.2 Modelling motility in terms of cell walks

Computational approaches in the understanding of cell motility are widely used and

offer a straightforward tool for the analysis of experimental data and, more crucially,

for the assessment of hypotheses that would otherwise remain unexplored with the

support of in vivo measurements only. In particular, from the mathematical analysis,
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computational processing and final elaboration of such data a number of cellular walk

models have emerged and are now considered as an established part of the basic under-

standing of cell movement (Read et al., 2016). Providing a mathematical description

of directed motility is crucial in a wide range of fields, from biology to ecology; tradi-

tionally, models of motion derive from extensions of random walk processes that are

in turn based on the principles of Brownian motion, named after the botanist Brown

and his work on plants’ pollen movement (Brown, 1828). In its simplest form, a model

of movement is based on an uncorrelated and unbiased random walk, highlighting the

independence between current and past directions and the lack of a preferred direc-

tion, respectively, basically reproducing the behaviour resulting from purely diffusive

equations (Codling et al., 2008). Accordingly, persistent or correlated random walks

refer to the local directional bias of the moving object and a degree of persistence in

maintaining a direction of motion. The strength and influence of such persistence can

vary, typically modelled as decreasing in time and eventually uniformly distributed

in directions. The straightforward biological interpretation of this model of motion

is the tendency to keep moving forward, that is when memory of previous moves is

relevant in determining the following moves. Further studies by Nava-Sedeno et al.

(2017) expose the non-trivial role of persistence in affecting the cell’s motion, studying

the impact of reorientation and highlighting the dynamic non-linear effect of mem-

ory. In contrast, a biased random walk is characterised by a global directional bias,

usually implemented in terms of probabilities to move to certain preferred directions.

An obvious biological correspondent is thus motility subject to chemical gradients,

with biased random walks describing a generic chemotactic movement. The two key

features of persistence and bias can also be combined, resulting in a biased persis-

tent random walk that describes optimal neutrophil motility (Taylor et al., 2013).

The coupled effects of persistence and memory in cells’ collective motility are further

analysed by Foxman et al. (1999). In particular, they expose the role of competitive
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chemoattractant sources in guiding and diverting the cells’ motion, with the overall

direction resulting from the vectorial sum of the target orientations. In addition, a

cells’ persistent walk is also tested in contexts of biased motion, to investigate the

role of memory and its relevance upon chemotaxis. Interestingly, it is found that,

when subject to complex (multi-sourced) chemotactic fields, cells navigate through

chemoattractants sequentially, with such dynamical regulation provided by memory

(Foxman et al., 1999).

The lack of inflammatory models based on measured cell trajectories, as exposed

in the above literature review, motivates our aim in refining the ABM of Chapter 4

to calibrate the leukocytes motion upon experimental in vitro data. In particular,

we model cells moves as a regulated combination of persistence in their walk and

sensitivity to the chemotactic attractant, calibrated against the experimental data of

Sapey et al. (2011), for both healthy subjects and patients affected by COPD.

5.3 Model construction

As already outlined in the beginning of this chapter, we aim to closer investigate

leukocyte directed motility upon chemotactic gradient. Thus, we firstly start with a

preliminary model that includes one type of cell and a fixed chemoattractant gradi-

ent. The structuring details of this preliminary model are defined and analysed in

this section and later assessed with appropriate simulations. The preliminary model

for leukocyte chemotactic motion will be then plugged into the inflammatory ABM

framework presented in Chapter 4 in order to analyse the resulting enhanced model of

inflammation, with the manipulation of chemotactic-specific parameters controlling

physiologic and impaired motion of cells.

With respect to the physiological stages of inflammation, the effective migration

of leukocytes to the injured site is a key aspect of the inflammatory process, with
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faulty neutrophil recruitment or impaired chemotaxis posing a serious threat to the

restoration of the healthy state, possibly prolonging recovery time, evolving into long

term chronic inflammation or even giving rise to major pathologies (as described in

Section 1.1). Furthermore, while there is an overall understanding of the mechanisms

that regulate neutrophil motility in terms of both free movement and migration to-

wards a chemoattractant source, the cell’s response to competent signals and its

resulting directed motion still remain unclear and need further investigation (Nuzzi

et al., 2007). To this end, we build a model comprising of neutrophils subjected to a

chemoattractant source in order to provide greater detail into the fundamental mecha-

nisms of leukocytes directed motion described in the previous models of inflammation

presented in Chapters 3 and 4.

Similarly to the ABM inflammatory model in Chapter 4, we here describe the

initial assembly of an agent based framework to characterise the basic chemotactic

interactions between a group of cells and a chemical acting as attractant. A such, two

main variables are individuated: neutrophils, described in class Cell and chemical

mediators acting as a chemoattractant source and characterised in class Environment,

purposely recalling the class of the same name of the inflammatory model of the

previous chapter. The preliminary model has a minimal setup, with the main focus

being on providing an accurate characterisation of cells’ chemotactic motion.

5.3.1 Domain and initial conditions

As is evident by comparing Figure 4.3, which illustrates the structure of the ABM-

based inflammation model of Chapter 4, to Figure 5.1 it is evident how the system

we aim to model here focuses on a subsection of the interactions described in previ-

ous chapters, particularly characterising with greater detail the motion of neutrophils

upon a variety of different stimuli, in order to simulate both physiological and im-
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Figure 5.1: Flow chart representing the preliminary ABM of chemotaxis and illus-

trating the cyclic chain of actions with respect to the tick count. Green triangles

represent thresholds, diamonds represent decision points.
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paired motility of these cells. We retain the framework from the previous ABM, with

the model’s agents referred through both a grid with relative coordinates and neigh-

bourhood considerations and a continuous space for visualisation purposes. Further-

more, our agents’ actions (i.e. the system’s variables), namely Cell and Environment

will be defined according to their state at each tick t.

The formal setting of the chemotactic preliminary model follows the same struc-

ture of the ABM inflammatory model of Chapter 4 in terms of domain. In particular,

we study the chemotactic motion of agents over a squared domain subject to periodic

boundary conditions, initialising the system with a fixed number of cells ncells and a

constant gradient of mediators. Mediators’ distribution is uniformly localised at the

top border of the squared domain with concentration Achem, with a linear decreasing

gradient toward the bottom of the domain.

5.3.2 Modelling chemotaxis

In order to take into account the main considerations about neutrophil motility, as

outlined in Section 5.1, we model the motion of leukocytes as a combination of random

walks: a biased walk, towards a chemoattractant source, and a persistent walk, with

cells exhibiting memory properties that preserve past directions (Albrecht & Petty,

1998). By combining these different behaviours, we aim to model a biased persistent

random walk, as experimentally shown by Taylor et al. (2013). To this end, we

structure a joint probability pchem describing a cell’s likelihood to move from its

current position to a neighbouring one as a combination of both the surrounding

mediator concentrations (pgrad, taking into account the biased component of the walk)

and the agent’s previous position (pmem, modelling the persistence in walk), with

pchem “ pgrad ¨ pmem being the resulting probability.

The specifics of each cell’s behaviour are defined at each tick, upon which the
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agent’s move is modelled in terms of either a chemotactic motion or a random one.

Firstly, the source global concentration in the cell’s neighbourhood is sensed and

compared against a parameter βrand identifying a threshold for the directed motion

to happen. For concentrations smaller than the threshold βrand, the cells will simply

move randomly to a neighbouring position. Upon concentrations equal to or exceed-

ing βrand, the cell will instead proceed to move chemotactically. The agent is thus

set to move to a direction according to a combined probability of the surrounding

concentration gradient and the cell’s previous move. To provide greater flexibility in

tuning the balance between the effects of chemoattractant gradient and cell mem-

ory, for cell i with neighbourhood Ni, we apply a weighting function wpcjq to the

chemoattractant concentrations at all positions j P Ni. For each position j P Ni, the

probability that the cell moves to position j (in the absence of memory effects) is

given by

p
grad
j “ wpcj ´ ciq

ř

kPNi

wpck ´ ciq
. (5.1)

Here, we consider the exponential weighting function:

wpckq “ ekgradck , (5.2)

with scaling parameter kgrad. The weighting function is thus assessed against each of

the eight neighbouring positions of cell i, as illustrated in Figure 5.2.

In terms of a cell’s memory, agents of the system are embedded with the record

of their previous move, serving as record for the direction from which a cell is com-

ing. This information thus identifies one of the eight possible previous points of

origin, as illustrated in Figure 5.3. The probability associated with the cell’s memory

(pmem) follows a gaussian distribution, with the strongest likelihood associated with

the preservation of direction. The likelihood of other directions are directly controlled

through the parameter σmem, referring to the standard deviation of the probability

distribution associated to the eight possible points the cell can move to and with mean
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Figure 5.2: Graphic representation of chemoattractant concentration at each cell’s

neighbouring position. The mediator’s concentration ci at the cell’s location i and

the neighbouring concentrations cj , j “ 1, . . . , 8 are the arguments of the weighting

function w, as defined in (5.2).

Figure 5.3: Graphic representation of cell’s embedded record of its previous move with

respect to its Moore’s neighbourhood. The likelihood of the cell’s next move depend

on its previous position, with the two neighbouring positions from the origin being

the least likely (in red), followed by the side positions with an increased likelihood

(in orange) and the furthest ones with maximum likelihood (in green).
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equal to the angle θprev, representing the information enclosed in the agent’s track

record of its previous position. Thus, the probability of cell i with neighbourhood

Ni to move with direction prescribed by the angle θj , j “ 1, . . . , 8 given its previous

location represented by θprev is

pmem
j “ 1

K

˜

1
a

2πσ2
mem

e
´

pθj´θprevq2

2σ2
mem

¸

, (5.3)

where K is a normalising constant that ensures probabilities sum to one. Finally, we

construct the joint probability

pchemj “
p
grad
j ¨ pmem

j
ř

kPNi
p
grad
k ¨ pmem

k

(5.4)

determines the cell’s new position.

Here, we consider that cells do not die, with the initial (and fixed) number of

cells determined through parameter ncell instead. This, though, is coherent with

the purposes of this new chemotactic model in which the interactions of interest are

studied on a shorter timescale, with particular focus on the nature of cells’ movement

rather than the mechanisms analysed in the previous chapter. Furthermore, another

parameter nrun is introduced, regulating the number of times per tick the agents

update their state. This parameter is modulated from the Sapey et al. (2011) paper,

in which neutrophil motions upon different healthy and non-healthy scenarios are

studied. In particular, the experimental work presented by the authors highlights how

in specific pathological circumstances, affected neutrophils present a more disordered,

yet quicker, motion. This data shows that, when compared to healthy scenarios,

while there is an increase in the overall non-directed speed of cells, the velocity in

approaching the chemotactic target is significantly reduced. Thus, the parameter nrun

allows to control the switch between a physiological and non-healthy scenario.

The modelling of chemical mediators acting as the chemoattractant source for

leukocytes, while having an analogous setup to the corresponding class of the model
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Parameter Definition Class Standard value

ncell number of neutrophils ChemotaxisBuilder 10

Achem maximum concentration of chemoattractant ChemotaxisBuilder 1

nrun number of moves per tick Cell 1

βrand threshold minimum concentration of chemoattractant

for chemotactic motion

Cell 0.001

σmem standard deviation of likelihood of positions within the

cell’s Moore’s neighbourhood with gaussian distribution

Cell

kgrad scaling parameter appearing in the weighting function

of (5.2)

Cell

Table 5.1: Parameters of the ABM chemotaxis model.

in Chapter 4, presents significant differences in terms of features. In particular, in

this case we do not differentiate between pro- and anti-inflammatory mediators, since

the main focus in this model is the cells’ chemotactic behaviour, rather than the

nature of the chemoattractant source. Similarly, the mediators’ intrinsic ability to

diffuse and decay is here neglected, in favour of a linear gradient of concentration

proportional to a fixed parameter Achem, as outlined in Section 5.3.1. Similarly, kgrad,

βrand and σmem are identified in order to qualitatively reproduce the physiological

motion of neutrophils described in Albrecht & Petty (1998) and Taylor et al. (2013).

In particular, the specific choice of values for parameters σmem and kgrad is crucial

in defining the chemotactic movement of leukocytes as a biased persistent random

walked, as observed experimentally (Taylor et al., 2013; Jones et al., 2015). Table 5.1

summarises the model’s parameters, providing standard values for all parameters

except kgrad and σmem, which we discuss below.

Figure 5.4 illustrates the role of parameter σmem in calibrating the cells’ motion.

The value σmem “ 1.75, for example, (as detailed in Figure 5.4b) ensures that pro-
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gressing in the broader direction set by θprev, that is allowing a maximum shift of ˘π
4

radians from the cell’s previous position, is 54.51% likely, while shifts of π
2
radians are

25.94% likely and backwards motion (shifts greater than 3

4
π radians) has a likelihood

of only 19.55%. The study of the combined effect of both persistence and bias in

the cells’ movement is presented in Figure 5.5, which shows different motion profiles

obtained by varying both σmem and kgrad. Value ranges are chosen as to illustrate

extreme and intermediate behaviours, with σmem “ 0.1 implying that the direction

consistent with the cell’s θprev property is picked with probability pmem “ 1, effectively

forcing the cell to never change direction, regardless of the concentration gradient, or,

on the other hand, σmem “ 10 cancelling the effects of persistence on cells’ motion,

with all directions prescribed by pmem being equally likely, thus selecting the point

to move to with respect to the gradient only. Conversely, by varying kgrad between

kgrad “ 1 and kgrad “ 80, we gradually strengthen the response to the attractant. We

describe the manner in which we can select appropriate choices of kgrad and σmem,

given suitable experimental data, in the following section.

5.4 Comparison with experimental data

Defects in neutrophil recruitment result in a delayed progression of inflammation, po-

tentially preventing the restoration of a healthy state and leading the way to diseases

(as described in 5.1.1). Understanding the conditions that prevent the correct mi-

gration of leukocytes to the sources of damage upon an inflammatory event is key to

developing effective therapeutic tools, in order to contain and eventually tackle such

disorders. The model developed in Section 5.3 is purposefully articulated with respect

to different parameters in order to take into account a wide spectre of leukocyte be-

haviour, ranging from a healthy physiological chemotactic motion to different impair-

ments in motility due to specific disorders. One of such pathological conditions that
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(c) σmem “ 10

Figure 5.4: Probability distribution of (5.3) for different values of the standard devi-

ation σmem.
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Figure 5.5: Tracking of cell motion from t “ 0 to t “ 1000 (initial and final positions

marked with black circles and black crosses respectively) for varying choices of σmem

and kgrad. The number of cells per simulation is fixed at ncell “ 1, with all other

parameters as in Table 5.1.
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we aim here to replicate, in order to provide both an in silico correspondent to existing

experimental observations and eventually a tool to capture intrinsic aspects that are

missed in in vivo studies is COPD. COPD is a complex inflammatory disease charac-

terised by both airflow limitations and extrapulmonary systemic manifestations. It is

currently individuated as the third global cause of death worldwide (WHO, 2018) and

is usually associated with a number of comorbidities that further complicate its treat-

ment and management, while also constituting an important burden in terms of both

cost and resources to healthcare services globally (Barnes & Celli, 2009; Mannino &

Buist, 2007). COPD develops from systemic persistent low level inflammation, with

increased concentrations of leukocytes and pro-inflammatory mediators playing a key

role in preserving and pathologically prolonging the inflammatory state (Agusti et al.,

2012). The initiating causes that can trigger such an inflammatory state are varied

and sometimes unclear, although mainly environmental (smoking, occupational and

air pollution, ageing) and, to a minor degree, genetic factors are all distinctive fea-

tures that are known to pose great risk in the development of this condition (Mannino

& Buist, 2007). The relevance and great impact of COPD on morbidities worldwide

motivates the interest of researchers in investigating this condition with a particu-

lar focus on the wide spectrum of comorbidities and phenotypes that characterise it

as well as the underlying biological mechanisms at tissue level that express typical

inflammatory patterns. Concentrating on this latter aspect, Sapey et al. (2011) de-

termine and highlight the impairments in neutrophil migration suffered from subjects

affected by COPD, by investigating through experimental observations and analyses

the cells’ chemotactic motion with respect to selected case studies, namely healthy

non-smoking subjects, healthy smokers, subjects genetically prone to develop COPD

and finally subjects already affected by COPD. The results provided by this research

allow us to effectively introduce defects and impairments of the cells’ chemotaxis to

our ABM preliminary model, by carefully calibrating the parameters of Table 5.1 in
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order to capture the relevant changes in neutrophil motility exposed by Sapey et al.

(2011). In their study, Sapey et al. (2011) monitor neutrophils of both COPD af-

fected subjects and control groups through videomicroscopy, tracking ten randomly

chosen cells over time upon a fixed concentration of chemoattractant. As part of the

migration assessment different measures are recorded, including speed cell of move-

ment (indicating the movement in any given direction), cell velocity (in the direction

of the chemoattractant) and a chemotactic index, which measures the cells’ mean

orientation with respect to the chemical gradient. Interestingly, results from this ex-

perimental work showed that neutrophils in COPD-affected subjects exhibit greater

overall speed compared to healthy subjects, while the cells’ directed chemotactically-

driven velocity is also considerably reduced, with a significantly smaller chemotactic

index as well.

5.4.1 Nondimensionalisation

The implications stemming from defective neutrophil chemotaxis in connection to

inflammatory diseases and more specifically to COPD, as exposed in Sapey et al.

(2011), motivate our aim in linking up the preliminary ABM chemotactic model to

experimental in vitro data. This allows for a more in depth investigation of the role

of leukocyte directed motion in the acute inflammatory response in terms of the cells’

spatial localisation, which will be explored in the following sections with the analysis

of a new joint ABM of inflammation and chemotaxis.

In order to compare results from Sapey et al. (2011) and our ABM chemotaxis

framework, we introduce a nondimensionalisation of the model presented in Sec-

tion 5.3, tailored upon the authors’ experimental setup. In particular, by choosing

to set each grid space to correspond to 1µm and given that the in vitro chemotactic

chamber in which neutrophils are tracked measures 240µm ˆ 180µm, we consider
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a 240 ˆ 180 rectangular grid as our domain. The recorded speeds of neutrophils in

both healthy and COPD affected subjects are available from Sapey et al. (2011), with

the former group registering an average motion of 3.77µm min´1 and the latter pre-

senting neutrophils moving significantly faster at 5.12µm min´1 but, crucially, with

a decreased sensitivity to the chemotactic target. We derive a timescale fitting the

experimental data in which each tick corresponds to 20 s, and allow cells to move a

suitable number of times per tick in a healthy physiological scenario, as prescribed

by parameter nrun, whose value is calibrated to the available cell velocity data as il-

lustrated in the following section. In the following sections we calculate the expected

distance travelled.

5.4.2 Calibration against experimental data

We incorporate the analysis provided in the previous sections into our model by

analytically computing the expected number of moves and chemotactic index for any

given combination of chemotactic strength kgrad and walk persistence σmem.

The evaluation of the parameter values, based on the nondimensionalisation of

Section 5.4.1, is structured upon a mathematical fitting of our preliminary model

setup to the experimental data. In particular, Sapey et al. (2011) analyse their re-

sults with respect to cell speed s (measuring movement in any direction), cell velocity

v (speed towards the chemoattractant) and chemotactic index Ichem (measuring cells’

accuracy in chemotaxis as the cosine of the angle between the cell’s direction and the

chemotactic gradient’s orientation). We consider these indicators of the chemotactic

efficacy into our calculations to compare it to the experimental observations reported

in Sapey et al. (2011). The resulting set of pairs of pσmem, kgradq that satisfy the

constraint given by the cell velocity v is then narrowed by allowing only those com-

binations that provide a suitable value of the chemotactic index Ichem, also reported
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in Sapey et al. (2011). Finally, we prescribe a value for parameter nrun by fitting the

experimental data about the total distance travelled by cells recorded over a span of

t “ 20 minutes in terms of the number of moves per tick.

Let us consider a cell’s walk in terms of its global motion over a given span of time,

its recorded cell velocity and the corresponding chemotactic index. By decomposing

such a trajectory into single moves of an agent over gridspaces, let us define mk as

the kth move of a cell. We are thus interested in the probability of the cell to pick

move mk, from the eight possible moves of Figure 5.3, given its previous move mk´1.

We define a transition matrix, P, such that, at move k, pi,j represents the probability

that the kth move is move j given that the pk ´ 1qth move was move i; i.e.

pi,j “ P pmk “ j |mk´1 “ iq , i, j “ 1, . . . , 8 . (5.5)

Equivalently, we have the following matrix:

P “

¨

˚

˚

˚

˝

P pmk “ 1 |mk´1 “ 1q P pmk “ 2 |mk´1 “ 1q . . . P pmk “ 8 |mk´1 “ 1q
...

. . .
...

P pmk “ 1 |mk´1 “ 8q . . . P pmk “ 8 |mk´1 “ 8q

˛

‹

‹

‹

‚

(5.6)

As described in Section 5.3.2, agents are initialised with a randomly assigned direc-

tion of origin, while at subsequent iterations the dependence of the selection of the

future move given the previous one is according to probability (5.4). Thus, the initial

probabilities of move are equal and defined as

Π0 “
´

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

¯

. (5.7)

At each stage, represented by movemk, with k “ 1, . . . , n, the statistical description of

a cell’s motion is described by the Markov chain defined by the transition probability

P and the initial data Π0. Given this initial data, the probability that the kth move

is move i is given by

P pmk “ iq “ pΠ0 ¨ Pkqi , i “ 1, . . . , 8 . (5.8)
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Let us now define a new matrtix Q such that

qi,k “ P pmk “ iq , (5.9)

with the right-hand side of (5.9) being computed according to (5.8). Given this

matrix, we can calculate the expected distance travelled in the vertical direction after

N moves as

dvpNq “
N
ÿ

k“1

¨

˝

ÿ

iPt2,3,4u

qi,k ´
ÿ

iPt6,7,8u

qi,k

˛

‚ . (5.10)

Given a target cell velocity, we can infer an expected distance of travel from the

experimental data, and by comparing this with (5.10), we prescribe the total number

of moves to be carried out within a given simulation. This effectively prescribes the

parameter nrun in our model, holding fixed the required number of ticks.

Similarly, for each possible move i, let us construct a vector α such that αi is the

angle that the trajectory of move i makes with the vertical, i.e.

α “
ˆ

π

2
,
π

4
, 0,

π

4
,
π

2
,
3π

2
, π,

3π

2

˙

. (5.11)

We can then compute the average chemotactic index after N moves according to

Ichem “ 1

N

ÿ

k

ÿ

i

cospαiqqi,k . (5.12)

Integrating the data available from Sapey et al. (2011), which is summarised in

Table 5.2, we are able to tune the parameters kgrad and σmem to values that fit the

measured cells’ velocity v and chemotactic index Ichem. Furthermore, our computation

yields the total number of moves required to match the recorded v and Ichem for each

suitable pair of pkgrad, σmemq identified.

Figure 5.6 illustrates values of the predicted mean chemotactic index resulting

from a range of combinations of possible parameter values kgrad and σmem. While

initially investigated on a larger scale, the range is here narrowed to sensible choices

of these two key parameters, in accordance to the results derived in Section 5.3.2,
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Measure Physiological chemotaxis COPD-affected chemotaxis

s rµmmin´1s 3.77 5.12

v rµmmin´1s 2.14 0.09

Ichem 0.39 0.04

Table 5.2: Measured data during studies of neutrophils’ migration upon chemotactic

gradient, as reported in Sapey et al. (2011).
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Figure 5.6: Map of values of the predicted mean chemotactic index Ichem correspond-

ing to combined values of parameters kgrad and σmem. The black curve highlights the

subset of parametric combinations that correspond to the physiologic chemotactic

index Ichem “ 0.39, as reported in Sapey et al. (2011).
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with kgrad P r50, 100s and σmem P r0.1, 2s. To fit the available data to our model, the

parameters kgrad and σmem are calibrated to the corresponding physiological chemo-

tactic index, that is Ichem “ 0.39, which is also highlighted in black in Figure 5.6.

Thus, any pair of values pkgrad, σmemq sitting on that curve, satisfy the chemotactic

index and cell velocity requirements. We choose kgrad “ 80 and σmem “ 1 to illustrate

the behaviour. Since such combination fits a number of total moves of n “ 160 and

given that each tick corresponds to 20 s, as per the nondimensionalisation presented

in the previous Section 5.4.1, we prescribe for each agent a number of moves per tick

of nrun “ 3.

With an analogous approach, the chemotactic parameters kgrad and σmem are

also fitted against the data arising from COPD-affected neutrophils. In particular,

as reported in the second column of Table 5.2, the chemotactic strength kgrad and

the cells’ persistence regulated by σmem are set in accordance to an increase in the

overall undirected speed of motion s and a sharp decrease in the chemotactic index

Ichem. The resulting map of parameter combinations fitting the measured data is

shown in Figure 5.7 from which kgrad “ 8 and σmem “ 1.2 emerge as suitable choices.

Furthermore, as already pointed out in Section 5.4.1, in line with the results of Sapey

et al. (2011), we allow COPD-affected cells to move twice as fast as the healthy cells,

thus setting updating the value of parameter nrun controlling the number of moves

per tick to nrun “ 6. The set of parameter values characterising both physiological

and pathological chemotaxis is outlined in Table 5.3.

By initialiasing our chemotactic model with the parameter values informed by

the calibration to the data available in Sapey et al. (2011), we are able to fully

assess its efficacy and reliability in describing both healthy and pathological chemo-

taxis. Figure 5.8 shows tracks of neutrophil chemotactic motion from both in vitro

and in silico results. The experimental study conducted by Sapey et al. (2011) fo-

cused on analysing neutrophil chemotaxis from varied groups of individuals, partic-
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Figure 5.7: Map of values of the expected mean chemotactic index Ichem corresponding

to combined values of parameters kgrad and σmem. The black curve highlights the

subset of parametric combinations that correspond to the physiologic chemotactic

index Ichem “ 0.04, as reported in Sapey et al. (2011).

Parameter Definition Standard physiologic value Updated value

nrun number of iterations at each tick t 3 6

σmem standard deviation of likelihood of positions within the

cell’s Moore’s neighbourhood with gaussian distribution

1 1.2

kgrad rate parameter of likelihood of positions within the cell’s

Moore’s neighbourhood with exponential distribution

80 8

Table 5.3: Updated values for parameters of the ABM chemotactically impaired

model. All other parameters retain the values listed in Table 5.1.
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ularly healthy, never-smoking subjects and COPD-affected patients amongst others,

by recording through videomicroscopy 10 randomly chosen cells for a duration of

20 minutes. Neutrophils were subject to a chemotactic source directed top to bot-

tom, with paths and directions indicated by white arrows (Figures 5.8a and 5.8c).

Similarly, our simulations monitor 10 cells at time, for a duration of t “ 60 ticks

(Figures 5.8b and 5.8d). As emerging from both experimental results and model sim-

ulations, in healthy scenarios, neutrophils are able to quickly orientate towards the

chemoattractant and move smoothly towards it (Figures 5.8a and 5.8b). Conversely,

COPD-lead defective neutrophil motion results in significant impairments delaying

the cells’ ability to promptly direct themselves according to the chemotactic signal.

The faulty responsiveness of COPD-affected neutrophils to the chemoattractant dis-

rupts the correct recruitment of leukocytes, enhancing the inflammatory mechanisms

towards uncontrolled, eventually pathological, levels. In addition to the qualitative

validation of the ABM against the experimental results of Sapey et al. (2011) detailed

in Figure 5.8, with comparable cell trajectories in both healthy and diseased cases, our

agent-based model matches the in vitro data also in terms of the quantitative differ-

ences arising from the analysis of control and COPD-affected subjects. In particular,

in correspondence to the increase in undirected speed, sharp decrease in oriented mo-

tion and chemotactic inefficiency quantified by Sapey et al. (2011) in COPD-affected

neutrophils, our model exhibits also a significant decrease in the value of parameter

kgrad, responsible for the cells orientation. It is also interesting to observe how pa-

rameter σmem, reflecting the persistence of cells’ walk, plays a key role in controlling

healthy chemotaxis, while, as highlighted in Figure 5.7, the COPD case is largely

insensitive to σmem. The agent-based model’s ability to retain the typical features

in terms of behaviour of migrating cells in varying scenarios and its tuning through

parameters experimentally measurable and of biological significance is a key point in

the validation and effectiveness of this model and leads towards further investigations
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in the role of chemotaxis as a point of control and regulation of inflammatory events

through this novel approach.

5.4.3 Discussion

Physiological neutrophil motility

The effectiveness of the modelled neutrophil motility, implemented as described in

Section 5.3.2, is evaluated with respect to the qualitative behaviour of cells exhibit-

ing a biased persistent walk, as first described in Section 5.2.2. These results in

particular show how such characteristic cellular walk is implemented for each cell,

by balancing the effects of both parameters kgrad and σmem, controlling bias and

persistence respectively, effectively modelling the chemotactic migration described in

Figure 5.5f, calibrated to the data inferred from Sapey et al. (2011).

In conclusion, through the parameter kgrad we are able to control the chemotactic

behaviour of cells in our ABM. The effectiveness of this parameter directly depends on

the maximum concentration of mediators Achem (located at the top of the domain and

linearly decreasing to the bottom), while also being bound to the parameter account-

ing for the persistence in cells’ random walk, ie σmem. With this regard, we provide

values for kgrad and σmem such that the combined probability pchem “ pgrad ¨ pmemory

reflects balanced weights for contributions of both bias and persistence of cells’ mo-

tion. Such tuning of parameters effectively models an ideal healthy scenario, inferred

from experimental observations investigated by a number of researchers, in particular

by Foxman et al. (1999) and Taylor et al. (2013) showing the dual conflicting nature

between memory and gradient in leukocyte chemotactic motion, and by Sarris et al.

(2012) with respect to chemical gradients actually limiting leukocyte motility once

the cells reach the chemoattractant source. While this setting successfully replicates

the healthy behaviour exhibited by leukocytes as analysed by Khandoga et al. (2009),
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Figure 5.8: Comparison between experimental results from Sapey et al. (2011) (left

column) and simulations from the ABM, with final tick at t “ 60 (right column).

Neutrophils are tracked both in a healthy scenario (first row, ABM parameters as

in third column of Table 5.3) and a pathological (COPD) one (second row, ABM

parameters updated as in fourth column of Table 5.3).
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Sapey et al. (2011) and Jones et al. (2015), overall confirming the in vivo results pre-

sented by these researchers, we will now focus on impaired neutrophil motility, at

the base of many pathologic conditions, as described in 5.1.1, analysing the results

provided by an accurate manipulation of the model’s parameters.

Impaired neutrophil motility

With respect to our preliminary model, in order to accurately take into account the

qualitative and quantitative changes in leukocyte migration of COPD-affected sub-

jects compared to healthy ones, we focus on three main parameters that provide a

switch from a physiological scenario of efficient neutrophil chemotaxis to a patholog-

ical one: namely kgrad, σmem and nrun. Manipulation of parameter nrun serves to

reflect the increased undirected speed of impaired neutrophils as reported in Sapey

et al. (2011), to preserve consistency with simulations in Section 5.4.2, with changes

in the value of nrun not affecting the system’s behaviour. The parameter kgrad is

considerably decreased to model the loss of accuracy in the cells’ chemotactic motion,

thus serving as a correspondent to the chemotactic index computed in Sapey et al.

(2011) study. In particular, the choice for kgrad in this setting directly takes into

account the tuning provided in Section 5.4.2, by purposefully choosing kgrad “ 8 to

correspond to the behaviour described in Figure 5.8d. Here, the chemotactic direc-

tioning is less accurate compared to the nominal healthy scenario of Figure 5.8b when

kgrad “ 80, as employed instead in calibration of Section 5.4.2. Finally σmem is also

updated in order to effectively model the cells’ impairment in sensing the chemotactic

signal typical of pathological conditions and exhibiting a stronger persistence in their

directed walk as a result. Thus, the correction introduced in σmem deregulates the

cells’ chemotactic behaviour.

Upon pathological impairments, while cells preserve the overall tendency to move

chemotactically, their migration is defective and highly inefficient. In particular a
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fraction of cells do not eventually reach the chemotactic target, while the neutrophils

that successfully reach and stay within higher concentrations of mediators do so

through a much less smoother path, compared to cells migrating in physiological

conditions (Figure 5.8d).

The biological consequences of such inefficiencies in cells’ motility are multiple

and severely disruptive of the inflammatory process, which in itself opens the way

to further complications, as exposed in Section 1.1. The switch from physiological

to pathological chemotaxis provided by this model by simply adjusting few key pa-

rameters highlights the high sensitivity of cells’ behaviour to their microenvironment.

Furthermore, the sets of results this model yields also suggest that neutrophils retain

their chemotaxis ability in terms of persistent biased random walk even in patho-

logical conditions such as the ones typically prescribed by COPD, with the overall

impairment in their migration being subject to greater randomness in direction, at

the expenses of bias towards mediators.

5.5 An enhanced inflammatory model

In order to investigate inflammatory mechanisms more thoroughly and to assess the

full impact that chemotaxis has on the resolution of inflammation, we integrate the

chemotactic model developed in the previous sections into the model of Chapter 4. In

particular, our aim is to assess the inflammatory outcomes arising from refined mod-

elling of the chemotactic motion of populations of neutrophils and macrophages with

respect to the analysis presented in Section 4.4, where only an elementary version of

the cells’ chemotaxis was implemented. The resulting new ABM retains the structure

and all functionalities of the model of Chapter 4. Additionally, with the inclusion

of the improved chemotaxis of cells toward pro-inflammatory mediators, the working

scheme of the model is updated to Figure 5.9, where the new chemotactic parameters
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are also highlighted.

Figures 4.3–4.6 remain accurate in the description of the new chemotactically en-

hanced ABM of inflammation. Initialisation and parametrisation of the new model are

also inherited from the ABM of Chapter 4. We therefore prescribe an initial damage

modelled through a circular concentration of pro-inflammatory mediators centred in

a square domain. Parameters retain their scaling with respect to the unitary amount

δac of pro-inflammatory mediators released by apoptotic neutrophils upon their necro-

sis, with all the considerations highlighted in Section 4.3 remaining valid. Finally, by

describing the leukocytes’ motion with higher accuracy, we introduce the two subsets

of parameters modelling the neutrophil and macrophage chemotaxis respectively, as

detailed in Table 5.4. In particular, when subject to standard physiological chemo-

taxis and in line with the parametrisation in Chapter 4, we consider neutrophils

moving twice per tick, compared to macrophages moving only once per tick, with

each tick being equivalent to one minute. Conversely, as inferred by the calibration of

Section 5.4.2, in specific pathological conditions such as COPD, neutrophils’ chemo-

taxis is affected and exhibits a greater undirected speed of motion. To reflect this,

we prescribe a set of chemotactic parameter values controlling neutrophils’ motion in

disease accordingly.

With the new inflammation model outlined as above, we investigate the impact

of chemotaxis on the mechanisms controlling the resolution of inflammation. In par-

ticular, we study a set of scenarios of biological interest by integrating an effectively

regulated chemotaxis of neutrophils and macrophages toward pro-inflammatory me-

diators. In particular, we will assess expected chronic outcomes, as outlined by the

model in Chapter 4, against both healthy and impaired chemotaxis. We will further

analyse the efficacy of leukocytes’ chemotaxis upon expected healthy outcomes, thus

exposing the essential contribution of cells’ directed motility in resolving inflamma-

tion.
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Figure 5.9: Schematic diagram representing the ABM of inflammation with im-

proved chemotaxis and illustrating the constituent interactions between populations

of healthy neutrophils, apoptotic neutrophils and macrophages, modelled as agents,

in response to pro- and anti-inflammatory mediators, modelled through PDEs. In-

teractions are shown by arrows and can be in turn regulated by parameters. Param-

eters are differentiated by colour and refer to probabilities in red, increments in blue,

thresholds in green, with PDE parameters in black. Newly introduced chemotactic

parameters are in purple.
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Parameter Definition Standard physiological value Pathological value

nrun number of neutrophil iterations at each tick t 2 4

σmemn standard deviation of likelihood of positions within the neutrophil’s

Moore’s neighbourhood with gaussian distribution

1 1.2

kgradn rate parameter of likelihood of positions within the neutrophil’s

Moore’s neighbourhood with exponential distribution

80 8

mrun number of macrophage iterations at each tick t 1 1

σmemm standard deviation of likelihood of positions within the

macrophage’s Moore’s neighbourhood with gaussian distribution

1 1

kgradm rate parameter of likelihood of positions within the macrophage’s

Moore’s neighbourhood with exponential distribution

80 80

Table 5.4: Values for chemotactic parameters, with neutrophils’ chemotaxis being

affected in disease as inferred from Sapey et al. (2011) and reported in the fourth

column.

5.5.1 Impaired chemotaxis

We firstly analyse the effects that more refined modelling of chemotaxis have on pre-

viously chronic outcomes. By doing so, we initialise our model of inflammation with

the set of parameter values given by the second column of Table 4.4, combining these

with compromised chemotactic motion of neutrophils, as set out in the fourth column

of Table 5.4. The results of this simulation are shown in Figure 5.10, which confirms

that the previously chronic outcome of Figure 4.8 remains chronic given pathological

choices of chemotaxis parameters here. This is an intuitive result, since taking the

limit of small kgrad in the model of Section 5.3 qualitatively recovers the chemotaxis

model of Chapter 4, provided that σmem is of Op1q or larger. Given the calibration

exercise of Section 5.4, we could regard the chemotaxis model of Chapter 4 as an

accurate model of chemotactically impaired neutrophils in the context of an inflam-

matory condition (such as COPD); however, there is potential scope for the model

of Chapter 4 to omit some healthy outcomes in which resolution is heavily reliant on
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efficient chemotaxis of leukocytes. We examine this further below. This result is of

particular interest in highlighting the versatility of the original inflammatory system

of Chapter 4, which in its current extended version reaches the scope of successfully

modelling prominent inflammatory pathologies affecting neutrophils, such as COPD.

5.5.2 Healthy chemotaxis

Healthy inflammatory outcomes

With the aim of investigating the role of chemotaxis in the effectiveness of inflamma-

tory models, we analyse possible changes in the outcome of the acute inflammatory

response upon chemotactically enhanced motion of leukocytes. In particular, we con-

figure our enhanced model with inflammatory parameters that, in the absence of

refined chemotactic mechanisms, would lead to chronic inflammation, while keep-

ing the chemotactic parameters that prescribe physiological cell motility, as in the

third column of Table 5.4. Interestingly, as shown in Figure 5.11, integrating an

enhanced description of cellular chemotaxis into the model significantly changes the

inflammatory outcome, prompting the restoration of the healthy state. This rein-

forces the key role of chemotaxis in inflammatory mechanisms and exhibits it as an

additional therapeutic target that could not be otherwise captured by the previous

model of Chapter 4. As a comparison with the inflammatory model of Chapter 4,

its equivalents parameteric configuration, represented in Figure 4.7, where only basic

chemotactic mechanisms are modelled, results in a perpetual state of inflammation.

Furthermore, it is of interest to observe the spatial configuration of cells at different

stages of the inflammatory response. While the central localisation of the initial dam-

age immediately attracts both macrophages and neutrophils at the site of injury, the

former group of cells remains chemotactically anchored to higher concentrations of

pro-inflammatory mediators and, upon phagocytosing nearby apoptotic neutrophils,
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 5.10: Plots for the ABM corresponding to the average results of the batch of

100 simulations, with inflammatory parameters as in the second column of Table 4.4

and chemotactic parameters as in the fourth column of Table 5.4. Shades around the

plots represent standard deviations.
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starts releasing anti-inflammatory mediators. This in turn inhibits the local recruit-

ment of new neutrophils, with existing neutrophils moving chemotactically towards

diffusing concentrations of pro-inflammatory mediators. After such initial patterning

of different cells, homogeneous levels of pro-inflammatory mediators across the tissue

prompt the redistribution of leukocytes, with apoptotic neutrophils eventually cleared

and macrophages leaving upon the resolution of inflammation.

To further highlight the effects of taking into account more refined chemotactic

mechanisms in the modelling of the inflammatory response, Figure 5.12 shows the

overlapped timecourses corresponding to Figures 5.10 and 4.7. In particular, it is

evident how defects in the cells’ ability to sense the chemoattractant and move to-

wards it accordingly is a crucial aspect in the effectiveness of the immune response.

With respect to our model, this mechanism is controlled by parameter kgrad, through

manipulation of which we can effectively model both physiological inflammatory re-

sponses (solid coloured lines) or pathological inflammatory conditions, such as COPD

(grey dashed lines).

It is also of interest to assess the new enhanced model of inflammation in sce-

narios where the more basic model of Chapter 4 was already delivering a healthy

outcome. To this end, we consider the sets of parameter values provided in Ta-

ble 4.4 highlighting the inflammatory mechanisms that shift the system’s outcome

from chronic to healthy. The key parameters individuated in Chapter 4 providing a

switch from chronic to healthy outcomes, namely c0 and r controlling the initial dam-

age and αncr, αngr and αmr regulating the leukocytes’ recruitment, are now evaluated

in the context of the improved implementation of healthy chemotaxis. Figure 5.13

shows the results of these simulations, overlaid with the corresponding results from

Figure 4.10. In particular, the plots illustrated in Figure 5.13 focus on the global

count of cells, throughout a timespan of 5000 ticks. As already discussed in Sec-

tion 4.4.2, manipulation of the key inflammatory parameters provides a switch from
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Figure 5.11: Simulation of the ABM running from t “ 0 (upper left corner) to

t “ 5000 (bottom right corner), with inflammatory parameters as in the second

column of Table 4.4 and chemotactic parameters as in the third column of Table 5.4.

Macrophages are represented with blue circles, active neutrophils with green triangles

and apoptotic neutrophils with orange triangles.
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 5.12: Plots for the ABM corresponding to the average results of the batch

of 100 simulations, with healthy outcomes in solid coloured lines (chemotactic pa-

rameters as in the third column of Table 5.4) and pathological ones in dashed grey

lines (chemotactic parameters as in the fourth column of Table 5.4). All other pa-

rameters are as in the second column of Table 4.4. Threshold values on pro- and

anti-inflammatory mediators controlling the recruitment of cells are plotted as dot-

ted (αngr and αncr) and dotted (αmr) lines, respectively. Shades around the plots

represent standard deviations.
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(e) αmr “ 0.05.

Figure 5.13: Plots for the ABMs with basic (dashed lines) and enhanced (solid

lines) models of chemotaxis, with inflammatory parameters as in the third to seventh

columns of Table 4.4 (for plots (a) to (e), respectively) and chemotactic parameters

as in the third column of Table 5.4.
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previously chronic outcomes to healthy ones. This crucial result is retained also in

our enhanced model, where, as expected, simulations exhibit the final resolution of in-

flammation. An important point to observe is that there is not a significant difference

in either healing times or severity between the inflammatory model of Chapter 4 and

the chemotactically more advanced one of the current chapter. These results indicate

that these switches from chronic damage to full resolution are not heavily reliant upon

efficient chemotaxis; moreover, it is the delicate balance between neutrophil recruit-

ment due to pro-inflammatory mediators and the competing anti-inflammatory role

of macrophages that determines the ultimate outcome for these choices of parameters.

Chronic inflammatory outcomes

It is important to highlight that, even in the presence of physiological (healthy) chemo-

taxis in this enhanced model, the model still supports both healthy and chronic long-

term outcomes. The strength of the chemotactic behaviour is not sufficiently large to

out-weigh the other behaviours in the model. We illustrate this briefly in Figure 5.14,

in which we increase the parameter regulating the recruitment of macrophages from

αmr “ 0.25 to αmr “ 0.4. Figure 5.14 illustrates that a disruption of the healing

process caused by more significant initial damage and/or detrimental changes to cell

recruitment parameters can yield a chronic response, in spite of optimal chemotac-

tic motion of leukocytes. The model hence retains the fundamental bistability of all

of the models studied within this thesis, in the presence of our enhanced model of

physiological chemotaxis. A qualitatively similar result is obtained upon increasing

the parameter accounting for neutrophil recruitment via anti-inflammatory mediators

from αngr “ 0.015 to αngr “ 0.02, with figures omitted for brevity.
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 5.14: Plots for the ABM corresponding to the average results of the batch

of 100 simulations, with αmr “ 0.4 and all other inflammatory parameters as in the

second column of Table 4.4 and chemotactic parameters as in the third column of

Table 5.4. Shades around the plots represent standard deviations.
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5.5.3 Parameter sensitivity

In Figure 5.15, we examine the extent to which the inflammatory outcome depends

upon our choices of model parameters. Holding chemotactic parameters fixed at the

healthy choices calibrated in Section 5.4.2 (kgrad “ 80, σmem “ 1), we perform simula-

tions with each parameter in Table 5.5 increased by 50% (denoted by upward pointing

green triangles in the figure) and decreased by 50% (denoted by downward pointing

red triangles in the figure) and record the mean percentage change in the maximal

level of pro-inflammatory mediator c and active neutrophils n at t “ 5000. (We

omit the parameter δac from this analysis, as this parameter is directly implicated in

the non-dimensionalisation of the inflammatory model described in Section 4.3. For

parameters representing probabilities for which an increase of 50% would result in a

choice greater than one, we instead perform simulations with unit probability.) As

usual, all results are averaged across batches of 100 simulations. Since the baseline

parameter set of Table 5.5 yields a chronic outcome (Figure 5.14), we are particu-

larly interested in whether changes in parameter values can result in a switch to full

resolution (i.e. a percentage change of ´100% in Figure 5.15).

Intuitively, a reduction in the severity of the initial damage (via either c0 or r)

can result in the inflammation being fully resolved. Interestingly, the model is highly

sensitive to variations in the rate of pro-inflammatory mediator diffusion, Dc, in that

both high and low choices can drive resolution, by weakening the model’s positive

feedback or strengthening its negative feedback respectively. ForDc large, the damage

rapidly spreads spatially, attaining low levels across the domain. This results in a

much weaker neutrophil response, which is ultimately overcome by macrophages.

Conversely, for Dc small, the initial damage remains more localised, with greater

levels of pro-inflammatory mediator at the site of initial damage. This triggers more

rapid recruitment of macrophages, which in turn generate increased release of anti-
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Parameter
Reference values Decreased values Increased values

(Chronic outcome) (´50% of reference value) (`50% of reference value)

c0 1 0.5 1.5

r 10 5 15

Dc 1.5 0.75 2.25

Dg 1.5 0.75 2.25

γc 0.002 0.001 0.003

γg 0.002 0.001 0.003

δnc 0.001 0.0005 0.0015

δmg 0.001 0.0005 0.0015

pnr 0.02 0.01 0.03

pnc 0.5 0.25 0.75

pmr 0.04 0.02 0.06

pmg 0.8 0.4 1

pml 0.8 0.4 1

pma 1 0.5 n/a

αncr 0.05 0.025 0.075

αngr 0.015 0.0075 0.0225

αmr 0.4 0.2 0.6

αml 0.02 0.01 0.03

Table 5.5: Parameter values for the reference chronic outcome (second column) and

for sensitivity study with values to be tested representing decrease in half of reference

value (third column) and increase in half of reference value (fourth column).
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(b) Pro-inflammatory mediators.

Figure 5.15: Parameter sensitivity analysis results showing the percentage change in

(a) the number of active neutrophils and (b) the concentration of pro-inflammatory

mediators, both with respect to the reference chronic simulation with parameter val-

ues given in Table 5.5 at final tick t “ 5000, for variations of individual parameters.

Green and red triangles represent 50% increases and decreases respectively. Bars in-

dicate change in minimum and maximum changes in percentage over 100 simulations

for each parameter. Note that a change in response of ´100% corresponds to a switch

from a chronic to a healthy outcome.
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inflammatory mediators, which once again trigger full resolution. Similarly the model

exhibits some dependence upon the pro-inflammatory mediator decay parameter, γc.

For the parameters studied in Figure 5.15, a reduction of γc is sufficient to stimulate

a greater macrophage response, yielding a long-term reduction in the severity of the

damage. The model is much less sensitive to the PDE-parameters associated with

anti-inflammatory mediators, Dg and γg, for the parameters investigated here.

Reducing the recruitment of neutrophils by increasing αncr (or decreasing pnr) or

stimulating the recruitment of macrophages by reducing αmr can switch the model

to a healthy outcome. The model is less sensitive to choices of the neutrophil re-

cruitment parameter αngr; however, more significant reductions in this parameter can

also drive resolution, as illustrated in Figure 5.12. The model exhibits a bidirectional

sensitivity to the strength of the pro-inflammatory neutrophil feedback (δnc, pnc) in

the same manner as is described for the diffusion parameter Dc above. The model

is largely insensitive to variations in the remaining parameters (for the combinations

examined here); in particular, while variations in probabilistic parameters related to

macrophages may affect the timescales associated with macrophage recruitment and

the anti-inflammatory response, these do not affect the long-term inflammatory out-

come here. The parameter αml does not affect the resolution of damage; only the rate

at which macrophages vacate the tissue after damage is resolved.

In comparison with the parameter sensitivity analysis of Chapter 4 (Figure 4.13),

we observe how the models’ responses to variations of parameters controlling the lev-

els of pro-inflammatory mediators c are driven by chemotaxis strength. In particular,

the effects of parameter Dc are less strong in the inflammatory model of Chapter 4,

due to the cells’ reduced sensitivity to the chemotactic signal. Similarly, the discrep-

ancy in the sensitivity analysis for parameters γc, pnc and δnc between Figures 5.15

and 4.13 is explained by the stronger effect that the spatial distribution of c has in

the chemotactically enhanced model.
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Finally, in Figures 5.16 and 5.17, we briefly assess the models sensitivity to our

implementation behaviours per ticks of the ABM algorithm. We note that varying

the definition of a tick does not affect the numerical solution of the PDE portions of

the model, since a separate numerical timestep is also implemented. Since all other

cellular behaviours are scheduled every tick in our model, we focus, in particular, upon

how varying the frequencies of cell recruitment affects the outcome of the model. In

all previous simulations we recruit neutrophils every two ticks and macrophages every

five ticks to account for the more rapid recruitment of neutrophils in vivo. Here (and

in Figure 5.16 and 5.17), we label the recruitment frequencies of neutrophils and

macrophages as nfreq and mfreq respectively.

In Figure 5.16, we show how variations in nfreq and mfreq affect the otherwise

healthy outcome obtained for αmr “ 0.05 (shown in Figure 5.13e). For the choices of

nfreq and mfreq shown, the outcome is still one of full resolution; the scheduling of cell

recruitment has negligible effect on the results, and only gives rise to small variations

in the time taken to resolve the damage. In Figure 5.17, we perform a similar analysis

for the baseline set of parameter values listed in the second column of Table 5.4, for

which we usually obtain a chronic outcome. For small variations in the cell recruit-

ment frequencies (e.g. nfreq “ 3 or mfreq “ 2, shown in blue and red respectively) we

obtain a similar chronic result to that previously obtained in Figure 5.14 (shown in

black here). However, for significantly slower neutrophil recruitment (e.g. nfreq “ 5;

magenta) or significantly more rapid macrophage recruitment (e.g. mfreq “ 2; green),

we may observe a switch from chronicity to restoration of health. Thus, the model

does exhibit some sensitivity to the manner in which behaviours (cell recruitment,

in particular) are scheduled; however, in most cases the model parameters listed in

Table 5.4 seem to have much greater influence upon model outcomes. We reflect on

this further in the discussion below.
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 5.16: Results obtained on varying the frequencies of neutrophil and

macrophage recruitment (nfreq and mfreq respectively) for αmr “ 0.05,with inflam-

matory parameters as in the seventh column of Table 4.4 and chemotactic parameters

as in the third column of Table 5.4. The healthy outcome obtained for our standard

choice of nfreq “ 2 and mfreq “ 5 is shown in black. The remaining curves repre-

sent the following: nfreq “ 1 and mfreq “ 5 (blue); nfreq “ 5 and mfreq “ 5 (red);

nfreq “ 10 and mfreq “ 5 (green); nfreq “ 2 and mfreq “ 2 (magenta); nfreq “ 2

and mfreq “ 10 (cyan). While the time taken to full resolution varies slightly, these

parameters have no significant impact on the final outcome.
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(a) Active neutrophils. (b) Apoptotic neutrophils.

(c) Macrophages. (d) Pro-inflammatory mediators.

(e) Anti-inflammatory mediators.

Figure 5.17: Results obtained on varying the frequencies of neutrophil and

macrophage recruitment (nfreq and mfreq respectively) for the baseline inflammatory

parameters given in the second column of Table 4.4. The chronic outcome obtained

for our standard choice of nfreq “ 2 and mfreq “ 5 is shown in black. The remain-

ing curves represent the following: nfreq “ 3 and mfreq “ 5 (blue); nfreq “ 2 and

mfreq “ 2 (red); nfreq “ 2 and mfreq “ 1 (green); nfreq “ 5 and mfreq “ 5 (magenta).

Small variations in these parameters have negligible impact on the outcome; however,

very slow neutrophil recruitment or very rapid macrophage recruitment can switch

the outcome from chronicity to health.
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5.6 Conclusions

In this chapter we developed a model of leukocyte chemotaxis to better detail the

chemotactic mechanisms initially implemented in the previous model of Chapter 4.

In particular, the limitations introduced by the simplifications of the previous model

were tackled in this chapter by analysing specific features of cells’ directed motion.

This was done by constructing a more advanced model of chemotaxis that incorporates

cells’ persistence in motion to better replicate experimental observations.

Firstly, the biological mechanisms regulating cell migration were presented, with a

particular focus on leukocyte motility in both physiological and pathological contexts.

The relevant scientific literature was reviewed and typical modelling approaches in

terms of random walks were also presented. We proceeded by defining an ABM

accounting for neutrophils moving to a chemotactic target upon tuning of a set of

parameters that reflect significant biological features, namely bias (attraction to the

chemoattractant) and persistence (memory of past moves) in the cells’ random walk,

and are in accordance to the experimental setting of the study conducted by Sapey

et al. (2011). The model was carefully calibrated against the experimental data pub-

lished by Sapey et al. (2011) for healthy patients and COPD patients, thus allowing us

to define sets of chemotactic parameters defining both physiological and pathological

(COPD-affected) cellular motility. Variations in the values of such key parameters

can shift the model’s behaviour from a healthy scenario to a pathological one, with

particular reference to COPD. This is a proof of principle demonstrating how our

model can be to tuned to accurately describe leukocyte chemotaxis under a specific

inflammatory condition. The model retains the distinctive features of neutrophil

motility, implemented in the form of a biased persistent random walk. Simulations

resulting from both physiological and pathological scenarios are directly comparable

to experimental data. The model’s assessment is followed by an analysis of the result-
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ing simulations, calibrated against the data of Sapey et al. (2011), highlighting strong

agreement between in vitro and in silico results, confirming the model’s validity and

opening up the way to further investigations in this direction and the use of the model

as a predictive tool in both health and disease.

Finally, we incorporated our enhanced chemotaxis model into the model of Chap-

ter 4. In fact, while the model of Chapter 4 describes the inflammatory response

well in the context of an inflammatory condition with impaired chemotaxis, it omits

the observations that some seemingly chronic outcomes can actually be resolved by

efficient chemotaxis in healthy patients. This novel ABM, on the other hand, offers

an important improvement in the landscape of inflammatory models, by providing

an enhanced description of directed cell motility and successfully capturing the in-

flammatory mechanisms at play upon defective chemotaxis. In particular, we firstly

investigated the effects of impaired chemotaxis on the inflammatory outcome. Our

simulations show (in Figure 5.10) that in an impaired chemotactic regime, in which

cells are equipped with a weaker sensitivity to the chemotactic target (i.e. reduced

kgrad) and a greater persistence in their direction of motion (i.e. increased σmem),

an otherwise healthy response can be pushed to a self-perpetuating inflamed state.

We then extended the analysis of physiological cellular motility during the acute

inflammatory response by determining the different scenarios that determine the res-

olution of inflammation and, by contrast, its ongoing chronic state. Additionally, we

exposed how not all resolution is dependant on chemotaxis. In particular, the long-

term inflammatory outcome is determined by a balance between the pro-inflammatory

(positive) feedbacks of neutrophils and the anti-inflammatory (negative) feedbacks of

macrophages; conditions which enhance the neutrophil response (via e.g. δac, δnc

large or αncr small in our model) are more likely to yield a self-perpetuating inflam-

matory condition, while treatments that enhance the macrophage response (via e.g.

δmg large or αmr small) are more likely to stimulate resolution in the long-term. (See
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Figures 5.13 and 5.14.) To this end, mediated cell recruitment remains an important

therapeutic target, regardless of chemotactic strength. We concluded our investi-

gation of the model by performing a parameter sensitivity analysis, to evaluate the

model’s dependence on its parameters, exhibiting how initial conditions, cells’ recruit-

ment and regulation of pro-inflammatory mediators c can have a driving effect on the

resolution of inflammation.

Overall, the hybrid model presented here has facilitated inclusion of a greater array

of cell-specific behaviours than is afforded by many previous (mostly ODE- or PDE-

based) models. For example, the model includes a description of cells’ chemotaxis

toward pro-inflammatory mediators that is calibrated against experimental data, and

also specifically incorporates the preferential motion of macrophages toward nearby

apoptotic neutrophils. Furthermore, the model includes an explicit (while simplistic)

description of the activation of the anti-inflammatory macrophage response that can

be applied on a cell by cell basis as each macrophage undergoes its first phagocytosis

of an apoptotic neutrophil. The precise cellular and sub-cellular mechanisms that

initiate production of anti-inflammatory mediators is complex (Dunster & Drans-

field, 2016); however, the link between the phagocytosis of apoptotic cells and the

phenotypic switch of macrophages from the classically activated M1 phenotype to

the alternatively activated, anti-inflammatory M2 phenotype is well documented in

existing literature (Schnyder & Baggiolini, 1978; Korns et al., 2011; Hiemstra, 2013).

This notwithstanding, it is well-known that the M1/M2 classification of macrophages

presents a degree of over-simplification in itself, with the broad range of macrophage

phenotypes actually spanning a continuous spectrum Dunster & Dransfield (2016).

There is a great degree of scope to extend our model to include more detailed descrip-

tions of macrophage phenotypes and corresponding inflammation-related behaviours

going forward. In the model presented here, we include only the anti-inflammatory

effects of the M2 macrophage; however, macrophages of the M1 phenotype can also
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provide pro-inflammatory stimuli, which are here omitted as we focus on the dom-

inant pro-inflammatory effects of neutrophils. Our model also omits the scope for

bidirectional switching between macrophage phenotypes. More refined modelling of

the relevant cell signalling cascades that govern phenotypic switching of macrophages

remains a target for future study.

Our model exhibits significant scope to be calibrated to model specific inflam-

matory conditions in specific tissues. An open question, in this context, is that of

how to infer some parameter values directly from experiments. While the PDE pa-

rameters (Dc, Dg, γc, γg) can be inferred from existing literature to some extent,

and chemotactic parameters (kgrad, σmem) can be inferred from cell tracking experi-

ments as described here, there remains a degree of uncertainty regarding the various

threshold parameters controlling cell recruitment (αncr, αngr, αmr) and the strengths

of the corresponding inflammatory feedbacks (δnc, δac, δmg). These parameters are

likely to vary across both inflammatory conditions and affected tissues. We have the

least confidence in the precise values of the probabilistic parameters in the model;

however, we have also shown that in most cases the model’s outputs are robust to

variations in these values (Figure 5.15). Furthermore it is to be expected that our

model exhibits some sensitivity to the choice of how cellular responses are scheduled

‘per tick’, or equivalently how a tick itself is defined. We note that tick definition

affects only the agent-based components of our model, since numerical solution of the

PDEs is implemented independently. In our implementation, most behaviours are

scheduled to occur at every tick. We anticipate that alternative implementations of

most behaviours simply correspond to alternative choices of the related probabilities

or feedback parameters, and thus would not impact upon the qualitative observa-

tions presented here. The only behaviour that is not scheduled every tick here is

cell recruitment, which we schedule every two ticks for neutrophils and every five

ticks for macrophages to account for more rapid recruitment of neutrophils in vivo.
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Simulations that experiment with alternative choices of these recruitment frequencies

(Figures 5.16 and 5.17) reveal that the model is relatively robust to variations of

these values. For parameter choices that yield a healthy outcome here (Figure 5.13),

alternative choices of cell recruitment frequencies generally still result in a healthy

outcome, but with some small variation in the time taken to achieve full resolution

of damage ( 5.16). For a parameter-set corresponding to a typical chronic simulation

(e.g. that of Figure 5.14), small variations in recruitment frequencies make minimal

difference to model results; however, significantly slower neutrophil recruitment or

significantly more rapid macrophage recruitment can yield a switch from chronicity

to restoration of health in some cases (5.16). Experimental studies that quantify

cell recruitment, in particular, would advance our ability to model accurately specific

inflammatory conditions.



Chapter 6

Conclusions

In this work, we have studied a number of mathematical approaches to effectively

model a spatio-temporal description at tissue level of the acute inflammatory response.

The prominence of inflammation in several pathologies has long been established,

with the presence of low persistent levels of inflammation being a key precursor in

critical conditions such as neurodegenerative disorders (Alzheimer’s, Huntington’s,

Parkinson’s) and cancer, as well as aggravating existing comorbidities such as type-2

diabetes and Chronic Obstructive Pulmonary Disease (COPD), among others. The

clear understanding of inflammation and in particular the mechanisms controlling

its resolution remains a highly challenging objective for the scientific community,

tackled through very multidisciplinary approaches. Overall, our models address the

question of how localised damage can invade neighbouring healthy tissue, which is

not thoroughly investigated in literature. The clear understanding of such features is

a key point in preventing chronic undesired outcomes and, throughout this work, we

aimed at identifying the leading mechanisms in resolving damage.

In Chapter 2, we firstly extended an existing ODE model as a starting point

for our work. We proceeded by studying the basic underlying interactions between

pro-inflammatory mediators and cells, where the damage triggering the acute inflam-
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matory response is driven by a function of time f . We assessed the stabilities of

the steady states and investigated potential scope for pattern formation. Our thor-

ough analysis of this first simplified PDE model of inflammation revealed the key

role of a subset of biologically significant parameters, namely φ, the rate at which

macrophages phagocytose apoptotic neutrophils, and βa, a constant representing the

saturation level upon which the release of pro-inflammatory mediators depends. The

bifurcation analysis along with manipulation of sensitive parameters in simulations

and an accurate analysis of Turing instabilities excluded the model’s capability of

exhibiting spatially inhomogeneous outcomes, which prompted further investigations

into addressing this first model’s shortcomings.

In Chapter 3, we extended the PDE model of Chapter 2 by including a second

group of chemicals acting as anti-inflammatory mediators and adding a direct in-

teraction between active neutrophils and the enhanced presence of pro-inflammatory

mediators. Furthermore, we modelled cellular motion as chemotactically driven to-

ward higher concentrations of pro-inflammatory mediators. By investigating the sta-

bility of the steady states associated to the correspondent ODE system, we found

a pattern-forming regime driven by Hopf bifurcations. In particular, we found that

careful manipulation of key parameters φ, accounting for the phagocytosing rate,

and ν, representing the rate at which neutrophils become apoptotic, yield a range

of biologically meaningful outcomes, namely homogeneous resolution and restoration

of the healthy state, homogeneous damage and persistent inflammation and, most

interestingly, spatially inhomogeneous outcomes, either stationary or oscillatory, rep-

resenting chronic recurring inflammation. These chronic inhomogeneous solutions

lie in an area of parameter space for which the corresponding ODE model predicts

full resolution of damage. Having identified the areas of pφ, νq–space that exhibit

spatially inhomogeneous solutions, we examined the extent to which the balance be-

tween the pro-inflammatory feedback from active neutrophils and the counteracting
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anti-inflammatory feedback from macrophages can bias the system toward globally

inflamed or spatially inhomogeneous solutions. For strong pro-inflammatory feedback

or weak anti-inflammatory feedback, spatial patterns are eliminated and the results

of the corresponding homogeneous model are recovered. The anti-inflammatory me-

diator thus plays a key role in mediating the spatial spread of damage. While the

PDE model of Chapter 3 presents a reasonably thorough catalogue of biological in-

teractions, these are not exhaustive. The PDE modelling framework used here is

somewhat prohibitive as regards incorporating further interactions, thus motivating

a switch to the alternative strategy of agent based modelling.

In Chapter 4 we developed a novel hybrid PDE–ABM framework where cells are

accounted for as individual agents, retaining the PDE implementation for inflamma-

tory mediators. In particular, while providing a new modelling framework for mod-

elling the acute inflammatory response, we improved upon the previous PDE-based

model by including macrophages’ ability to preferentially exhibit chemotaxis toward

apoptotic neutrophils and differentiating their role with respect to their contribution

of actively releasing anti-inflammatory mediators. The key results that this alterna-

tive modelling approach provided included the individuation of a set of parameters

of biological significance that acted as switches between undesired chronic outcomes

and the resolution of inflammation. In particular, the parameters of interest control

the initial damage in terms of both severity (c0) and size (r) and the recruitment of

neutrophils and macrophages (αncr, αngr and αmr, respectively). This allowed us to

determine such biological features as key targets for therapeutic strategies, suggest-

ing minimising the sterile damage in surgical procedures on one hand and developing

tailored drug treatments for enhancing macrophage recruitment and inhibiting neu-

trophil recruitment on the other hand. The phagocytosing ability of macrophages

was also assessed, with manipulation of the phagocytosing rate decreasing the heal-

ing time. Finally, a parameter sensitivity analysis was also performed, confirming the
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robustness of the model with respect to its parameters.

In Chapter 5 we investigated the role of chemotaxis in inflammatory mechanisms.

We developed an initial ABM of chemotaxis, calibrating it against the experimental

data reported by Sapey et al. (2011). This demonstrated how our model could be

tailored to specific conditions. In particular, we modelled leukocytes’ chemotaxis in

terms of a random biased persistent walk, where cells’ motion is regulated by pa-

rameters controlling the preference to move toward their chemotactic target and the

memory of the direction the are coming from. We then included the improved descrip-

tion of chemotaxis into our ABM inflammatory model. This new chemotactically en-

hanced model of inflammation improves on the previous model of Chapter 4 by effec-

tively capturing critical inflammatory processes that are eventually resolved because

of cells’ efficient chemotaxis. A parameter sensitivity analysis further highlighted the

stronger response of the model to the spatial distribution of pro-inflammatory medi-

ators c, driven by the enhanced chemotactic mechanisms. Finally, we completed our

investigation of the chemotactically improved inflammatory ABM by evaluating the

impact of alternative choices of cell recruitment frequencies. In particular, manipu-

lating the frequencies at which neutrophils and macrophages are recruited was shown

to have minimal effects on the systems outcome when acting on a set of parameter

values that yield a healthy response, with only small variations in the healing times.

Conversely, for parameter choices that yield chronic outcomes, only large variations

of cell recruitment frequencies can yield the restoration of the healthy state in some

cases, via either a significantly increased macrophage recruitment frequency or sig-

nificantly slowed neutrophil recruitment. The model presented in Chapter 5 is the

most robust of the four models presented in this thesis, given that it includes a full

repertoire of inflammatory interactions and a description of cell chemotaxis that can

be easily calibrated against experimental data (as we have demonstrated here with

respect to COPD). The model exhibits significant scope to be tuned to model spe-
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cific tissues, ailments or clinical interventions in the future, given the availability of

suitable experimental data. The hybrid approach used is advantageous as it is read-

ily accessible to non-theoreticians, and includes stochastic rules that can be easily

adjusted to incorporate new biological insights as they arise.

In summary, in this work, we developed spatial models of the acute inflamma-

tory response, investigating the biological interactions occurring at tissue level be-

tween leukocytes and inflammatory mediators. To this end, we extended the model

of Dunster et al. (2014) into a PDE system comprising of cell populations (active

neutrophils, apoptotic neutrophils and macrophages) and two groups of chemicals

(pro- and anti-inflammatory mediators), including the description of both diffusion

and cellular chemotaxis. We observed that the addition of the anti-inflammatory re-

sponse and cellular feedback into the release of pro-inflammatory mediators are key for

the system to permit sustained inhomogeneous oscillations, corresponding to chronic

non-resolving outcomes. We further developed a novel ABM inflammatory model,

improving on the previous model by including a differentiated phagocytosing mech-

anism for macrophages and prescribing their preferential chemotactic motion toward

apoptotic neutrophils. We identified possible therapeutic strategies for the resolu-

tion of inflammation in the targeting of the initial damage size and severity and in

cells’ recruitment mechanisms. We then proceeded to develop a ABM of leukocyte’s

chemotaxis, modelling cells’ motion in terms of bias toward a prescribed chemical

and memory of past moves, calibrating the novel model against experimental data

from Sapey et al. (2011), thus providing a proof of principle for modelling specific

pathologies arising from poor chemotaxis. We finally included our improved descrip-

tion of chemotaxis into the ABM inflammatory model, investigating the impact of

physiologic chemotaxis into resolving critical inflammatory states.

The highly interdisciplinary nature of this work and the prominence of inflamma-

tion in research topics provides interesting results that can be further extended and
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investigated in future works. In particular, parametrisation remains a highly challeng-

ing issue for our modelling. To better tackle this, we suggest to identify parameters

of interest (including those regulating diffusion and chemotaxis) through experiments

tailored on specific conditions. In this regard, some parameters remain difficult to

capture with traditional laboratory techniques, increasing the need to consider a fit-

ted experimental design. Overall, to effectively investigate this, we suggest to focus

on those parameters that models are sensitive to. Another key point of interest that

prompts further studies is the more accurate modelling of the macrophage response

and the relevant cell signalling it involves. In particular, macrophage action does not

depend on a binary active/inactive state of the cells, rather operating on a spectrum

of behaviours. This feature is only partially covered in the implementation of our

ABM inflammatory model and can be further extended to better reflect the complex

behaviour of macrophages. Moreover, an important step into further integrating this

research with biology will be to consider software development aimed at providing

simulations in the biological domain. This is particularly suited for models imple-

mented through the ABM framework, for which the system’s simulation settings can

be easily designed, controlled and manipulated through a tailored Graphical User

Interface (GUI), a feature where ABMs emerge as preferable to PDE ones. In the

most recent literature, other researchers’ work investigating mathematical models of

inflammation have been mainly focused on targeting specific inflammatory conditions

(such as psoriasis (Ringham et al., 2019) and atherosclerosis (Thon et al., 2019)) or

pathologies closely linked to it, with the vast and growing research on in the field

mathematical oncology on one hand (Karolak et al., 2018) and agent-based mod-

elling applied to biology on the other hand (Vodovotz & An, 2019). As such, this

work can be conveniently extended and adapted to better describe and investigate

specific inflammatory mechanisms and diseases that arising from the inflammation’s

spread and persistence. We note that, while our models pay close attention to leuko-
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cyte movement within the tissue of interest, the description of how leukocytes arrive

from the vasculature was kept deliberately simple throughout the inflammatory mod-

els of Chapters 2–5. In reality, cell transmigration from blood vessels depends on a

complex set of events that reduce the velocity of cells flowing in blood and enable cell

adhesion to the endothelial lining, resulting in the endothelial lining itself activating

to allow cells to migrate through the vessel wall into the tissue (Nourshargh & Alon,

2014). While including all of these events would be unnecessarily complex in a model

of generic inflammatory damage, the models presented here could easily be adapted

to include feedbacks from mediators that enhance or restrict transmigration. We

note that doing so within our ABM framework may involve replacing existing rules

governing maximum global cell numbers with more localised analogues that account

for spatial variations in endothelial lining activation. Such modifications constitute

a valuable target for future work, but would be best addressed when suitable exper-

imental data are available to focus the application of the models toward answering

questions related to specific tissues or inflammatory conditions.

Furthermore, there is currently significant and growing interest in multimorbidity,

i.e. the concurrent presence of two or more chronic conditions such as COPD and

cardiovascular disease, which is more common with increasing age and is thought to

be associated with inflammation and cellular dysfunction (Hughes et al., 2020). Un-

derstanding how the inflammatory process is modified by disease, healthy ageing and

drugs, both alone and in combination, is difficult but necessary if therapeutic targets

are to be identified and their effects fully understood. The models presented in the

previous chapters are generic but can act as a framework within which future modifi-

cations in line with specific tissue and/or disease can be easily incorporated. An ex-

ample would be modelling the effects of Rheumatoid arthritis on the synovium where

macrophage numbers have been shown to correlate with disease activity and their de-

pletion has a therapeutic effect (Udalova et al., 2016; Ouboussad et al., 2019). Such
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adaptation would require, among others, changes to our description of macrophage

heterogeneity but could allow clinical investigations into the effects of drugs that tar-

get circulating monocytes and thereby reduce macrophage transmigration into tissue

(Udalova et al., 2016). In particular, with respect to the models of Chapters 4–5, the

advantage of hybrid models, which integrate constituent underlying processes across

multiple scales, is that they are easily comparable to experimental data (such as his-

tological studies) and offer easily interpreted tools that could be used in progressing

our understanding of such complex, multifaceted inflammatory scenarios. Finally,

among other key open issues that this work prompts for further investigation, there

is scope for better addressing the emerging links between ageing and inflammation

and, more in detail, the impact of ageing neutrophils on inflammatory diseases (Lord

et al., 2001).
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Appendix A

Turing instability

Reaction-diffusion systems are generally a quite mathematically convenient form of

describing many biological processes and present possible patterned behaviours in

terms of spatial instability. It is thus of great interest to precisely determine how,

even from homogeneous equilibrium states, a system can develop specific patterns and

structures (Turing, 1952). In this regard, there are different mechanisms that lead to

spatial pattern formation that are relevant and recurring in a variety of developmental

or morphogenic processes. The main focus here is on systems presenting steady state

spatially heterogeneous patterns (Murray, 2003), with the main aim of this section

being to define the conditions under which such an instability is found.

In order to derive these conditions, let us consider a generic PDE system in two

variables u, v:

ut “ fpu, vq ` Du∇
2u, (A.1)

vt “ gpu, vq ` Dv∇
2v, (A.2)

with equations (A.1) to (A.2) being already presented in their dimensionless form,

f and g representing the nonlinear reaction kinetics and Du and Dv the respective

diffusion constants.
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Turing’s theory explicits the constraints that allow a system in the form of (A.1)-

(A.2), given a stable steady state in the absence of diffusive terms, to develop spatial

inhomogeneity due to diffusion (in contrast with the traditional approach of regarding

diffusion as a stabilising process). To this purpose, to properly pose the mathematical

problem, given initial conditions are considered and boundary conditions are fixed.

For convenience, to be consistent with the modelling tasks that will be developed in

the following chapters, let us consider periodic boundary conditions, that is:

u, v : Ω Ă R
n Ñ R

Ω “ pa1, b1q ˆ ¨ ¨ ¨ ˆ pan, bnq Ă R
n

$

’

&

’

%

upx1, . . . , xi´1, ai, xi`1, . . . , xnq “ upx1, . . . , xi´1, bi, xi`1, . . . , xnq

vpx1, . . . , xi´1, ai, xi`1, . . . , xnq “ vpx1, . . . , xi´1, bi, xi`1, . . . , xnq

@px1, . . . , xnq P Ω, i “ 1, . . . , n,

and let pu0, v0q be the solution associated to the steady state, satisfying

fpu0, v0q “ 0, (A.3)

gpu0, v0q “ 0. (A.4)

Since the instability of interest is spatially dependent only, the system is analysed in

function of its state variables, by determining the conditions for the linear stability of

the associated homogeneous steady state, firstly when diffusion terms are switched off

and subsequently by imposing instability of the extended system inclusive of diffusive

behaviour.

A.1 Stability of the homogeneous steady state

In the absence of diffusion, system (A.1)–(A.2) can be rewritten as

ut “ fpu, vq, (A.5)
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vt “ gpu, vq. (A.6)

In order to determine stability conditions for (A.5)-(A.6), the linearisation around

the steady state pu0, v0q is considered by defining w “ pu ´ u0, v ´ v0qJ which, given

‖w‖ !, leads to the expression

¨

˝

ut

vt

˛

‚

loomoon

wt

“

¨

˝

fu fv

gu gv

˛

‚

∣

∣u0,v0
looooooomooooooon

A

¨

˝

u ´ u0

v ´ v0

˛

‚

loooomoooon

w

, (A.7)

that is

wt “ Aw, (A.8)

with A being the stability matrix, that is the Jacobian evaluated at pu0, v0q and its

elements conveniently renamed as fu0
, fv0 , gu0

, gv0 .

The stability constraint is then met when the steady state w “ 0 has ℜpλq ă 0, for

every eigenvalue λ. Eigenvalues can easily be determined as solutions to the equation

|A ´ λI| “ 0, with I being the identity matrix, to provide

λ1,2 “ fu0
` gv0 ˘

a

pfu0
` gv0q2 ´ 4pfu0

gv0 ´ fv0gu0
q

2
(A.9)

that, referring to matrix A definition in (A.7), can be rewritten as

trpAq ˘
a

trpAq2 ´ 4detpAq
2

. (A.10)

By exploiting well known algebraic properties relating eigenvalues to their associated

matrix, namely trpAq “ ř

i λi and detpAq “ ś

i λi, conditions for stability (that is

ℜpλq ă 0) can be conveniently reformulated as

trpAq “ λ1 ` λ2 ă 0 (A.11)

detpAq “ λ1 λ2 ą 0 (A.12)



A.2. ADDING DIFFUSION 284

that, applied to matrix A yield respectively to

fu0
` gv0 ă 0 (A.13)

fu0
gv0 ´ fv0gu0

ą 0. (A.14)

The expressions in (A.13)-(A.14) specify the stability conditions with no spatial vari-

ations, holding for (A.5)-(A.6).

A.2 Adding diffusion

By re-introducing the diffusive terms in (A.5)-(A.6), equation (A.7) is updated ac-

cordingly:

¨

˝

ut

vt

˛

‚

loomoon

wt

“

¨

˝

fu fv

gu gv

˛

‚

∣

∣u0,v0
looooooomooooooon

A

¨

˝

u ´ u0

v ´ v0

˛

‚

loooomoooon

w

`

¨

˝

Du 0

0 Dv

˛

‚

looooomooooon

D

∇2

¨

˝

u ´ u0

v ´ v0

˛

‚

loooomoooon

w

, (A.15)

that is

wt “ Aw ` D∇2w. (A.16)

A particular solution of (A.16) is in the form of

w “ wpe
λteikx “

¨

˝

up

vp

˛

‚

loomoon

wp

eλtejkx, (A.17)

with λ representing the growth rate in time and k the wave number. Substitut-

ing (A.17) in the general expression (A.16) and considering the steady state wt “ 0

yields to

Arwpe
λteikxs ` D∇2rwpe

λteikxs “ 0

Awpe
λteikx ` Dwpe

λtp´k2qeikx “ 0
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Awp “ k2Dwp

A ´ k2D “ 0,

or, in its matrix form

¨

˝

fu0
fv0

gu0
gv0

˛

‚´ k2

¨

˝

Du 0

0 Dv

˛

‚“ 0. (A.18)

The matrix Ak can then be defined as

Ak “

¨

˝

fu0
´ k2Du fv0

gu0
gv0 ´ k2Dv

˛

‚ (A.19)

and, analogously to the stability analysis in Section A.1, the characteristic polynomial

can be computed as |Ak ´ λI| “ 0 as follows

∣

∣

∣

∣

∣

∣

fu0
´ k2Du ´ λ fv0

gu0
gv0 ´ k2Dv ´ λ

∣

∣

∣

∣

∣

∣

“ 0

which straightforwardly leads to

λ2 ` λrk2pDu ` Dvq ´ pfu0
` gv0qs ` k4DuDv ´ k2pfu0

Dv ` gv0Duq `
|A|

hkkkkkkkikkkkkkkj

fu0
gv0 ´ fv0gu0

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

hpk2q

“ 0.

The corresponding characteristic polynomial is then

pkpλq “ λ2 ` λrk2pDu ` Dvq ´ pfu0
` gv0qs ` hpk2q (A.20)

having defined the function hpk2q as

hpk2q “ k4DuDv ´ k2pfu0
Dv ` gv0Duq ` |A|. (A.21)
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When k2 “ 0, the analysis falls within the previous case with stability guaranteed

under conditions (A.13)-(A.14). At this point, though, for instability of a spatially

inhomogeneous solution of (A.16) it is required that at least one eigenvalue λ of pkpλq

presents ℜpλq ą 0, thus at least one of the conditions given by either

k2pDu ` Dvq ´ pfu0
` gv0q ă 0 (A.22)

or

hpk2q ă 0 (A.23)

is expected to hold.

By firstly analysing expression in (A.22), it is straightforward to notice that,

from (A.13) we have fu0
` gv0 ă 0, thus both group of terms ´pfu0

` gv0q and

k2pDu ` Dvq are actually always positive, therefore k2pDu ` Dvq ´ pfu0
` gv0q ą 0

@ k ‰ 0. Hence conditions to have spatial instability have to be imposed on hpk2q

only.

Given the conditions in (A.14), for hpk2q to be negative it is necessary, but not

sufficient, that fu0
Dv ` gv0Du ą 0. Furthermore, from (A.13) it is known that fu0

`

gv0 ă 0, thus for fu0
` gv0 to be positive we require that Du ‰ Dv.

In order to meet the assumption in (A.23), a negative value for hpk2q can be

explicitly found at its minimum:

hpk2q ă 0 ñ D hmin | hminpk2q ă 0

that is easily computed by differentiating hpk2q with respect to k2 as

h1pk2q “ 2k2DuDv ´ pfu0
Dv ` gv0Duq “ 0,

yielding the following expression for the corresponding value for k2

k2

min “ fu0
Dv ` gv0Du

2DuDv

. (A.24)



A.3. CRITICAL POINTS 287

Finally, substituting (A.24) in (A.21) gives the expression for hminpk2q:

hminpk2q “ pfu0
Dv ` gv0Duq2
4DuDv

´ pfu0
Dv ` gv0Duq2
2DuDv

` |A| “ (A.25)

“ ´pfu0
Dv ` gv0Duq2
4DuDv

` fu0
gv0 ´ fv0gu0

.

The imposition hminpk2q ă 0 thus implies that

pfu0
Dv ` gv0Duq2 ´ 4DuDvpfu0

gv0 ´ fv0gu0
q ą 0.

The conditions for instability due to space can hence be summarised as

fu0
Dv ` gv0Du ą 0 (A.26)

pfu0
Dv ` gv0Duq2 ´ 4DuDvpfu0

gv0 ´ fv0gu0
q ą 0, (A.27)

particularly with (A.26) implying Du ‰ Dv.

A.3 Critical points

A change in stability in the system behaviour occurs when at least one of the roots

of the characteristic polynomial (A.20) is equal to zero. Thus, by conveniently refor-

mulating it as

pkpλq “ λ2 ` bλ ` hpk2q, (A.28)

the conditions that characterise such bifurcation are determined by

´b ˘
a

b2 ´ 4hpk2q
2

“ 0 (A.29)

which straightforwardly leads to

hpk2q “ 0 (A.30)

In this regard, for critical values of k2 such that hminpk2q “ 0, a bifurcation from

stability to spatially driven instability can be observed. To fully characterise the

stability in terms of wavenumber k let us consider hminpk2q “ 0, that is, from (A.25):

fu0
Dv ` gv0Du “ 2

a

DuDvpfu0
gv0 ´ fv0gu0

q “
a

2DuDv|A|. (A.31)
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Combining and substituting the expression from (A.31) in (A.24) gives

k2

c “ 2
a

DuDv|A|
2DuDv

“
d

|A|
DuDv

,

finally yielding to the critical value of wavenumber kc:

kc “
c

fu0
gv0 ´ fv0gu0

DuDv

. (A.32)

By computing the roots of hpk2q, as defined in (A.21), the interval rk1, k2s of spatial

instability can be found:

hpk2q : k4DuDv ´ k2pfu0
Dv ` gv0Duq ` |A| “ 0

k2

1,2 “ fu0
Dv ` gv0Du ˘

a

pfu0
Dv ` gv0Duq2 ´ 4DuDv|A|

2DuDv

.

Accordingly, the interval of spatial instability can be expressed in function of the

wavenumber k, or analogously of its squared value k2 such that:

hpk2q ă 0 for k2

1
ă k2 ă k2

2
, k2

c P rk2

1
, k2

2
s | hpk2

c q “ 0.



Appendix B

Routh-Hurwitz criterion

The Routh-Hurwitz criterion, originally independently proposed by both mathemati-

cians E. J. Routh and A. Hurwitz ((Routh, 1877), (Hurwitz, 1895)) providing neces-

sary and sufficient condition for the roots of a polynomial to present, respectively, all

positive and all negative real parts, determines the number of positive and negative

real part roots of a given polynomial by its coefficients ((Allen, 2006)). This result

derives from the more general Routh-Hurwitz theorem ((Meinsma, 1995), (Murray,

2001)).

Theorem 1. A polynomial ppxq “ anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a0, with ai P R, i “

0, 1, . . . , n and a0 ‰ 0, is stable if and only if all elements of the first column of the

associated Routh matrix Rppq are nonzero and have the same sign.

Given the polynomial

ppxq “ anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a0 “ 0 (B.1)
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where an ą 0 and a0 ‰ 0, the corresponding Routh matrix is defined as:

Rppq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

an an´2 an´4 an´6 ¨ ¨ ¨

an´1 an´3 an´5 ¨ ¨ ¨

bn´1 bn´2 ¨ ¨ ¨

cn´2 cn´3

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (B.2)

where elements bi, ci and followings directly depend on the polynomial coefficients

and are computed as determinants of the minor matrix taking elements of column I

and the column to the right of the current position and the two rows above, divided

by the negative of the element of column I and row above the one that is being

computed, that is

ki,j “

∣

∣

∣

∣

∣

∣

ki´2,1 ki´2,j`1

ki´1,1 ki´1,j`1

∣

∣

∣

∣

∣

∣

´ki´1,1

. (B.3)

The matrix construction ends as soon the computing procedure leads to a single

null determinant matrix, while, where not present, all other matrix elements are to

be considered zero. The sign permutations of the elements of the first column of

the Routh matrix Rppq determine the stability of the associated polynomial, with

each sign variation corresponding to a positive real part root and conversely each

permanence to a negative real part root.

The information on the sign of the real part of polynomial roots provided by this

criterion, straightforwardly leads to important implications in systems control and

stability, particularly by studying the corresponding eigenvalues real part signs by

analysing the first column of the Routh matrix (B.2) associated to the characteristic

polynomial.
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Table of parameters

Parameter Definition

Chapters 2, 3, 4, 5

γc rate of mediator decay

γg rate of anti-inflammatory mediators’ decay

Dc pro-inflammatory mediator diffusion constant

Dg anti-inflammatory mediators diffusion constant

Chapters 2, 3

χn maximal rate of neutrophil’s influx

ν neutrophil’s apoptosis rate

γa rate of necrosis of apoptotic neutrophils

φ rate of apoptotic neutrophil’s removal by macrophages (secondary

necrosis)

χm maximal rate of macrophages’ influx

α mediator’s production rate

Continued on next page
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Table C.1 – continued from previous page

Parameter Definition

βa apoptotic neutrophils’ saturation constant (concentration of apop-

totic neutrophils required for half maximal release of cptq)

γm rate at which macrophages leave the tissue

βn active neutrophils’ saturation constant (concentration of active neu-

trophils required for half maximal release of cptq)

βgc inflammatory mediators’ saturation constant (concentration scale

over which neutrophils influx rate decreases)

βg anti-inflammatory mediators’ saturation constant (concentration of

anti-inflammatory mediators over which apoptosis rate increases)

βc pro-inflammatory mediators’ saturation constant (concentration of

pro-inflammatory mediators over which apoptosis rate decreases)

γg rate of anti-inflammatory mediators’ decay

θn active neutrophils’ chemotaxis constant

θm active macrophages’ chemotaxis constant

Dn active neutrophil’s diffusion constant

Dm macrophage’s diffusion constant

ka mediator’s concentration produced by apoptotic neutrophils

kg anti-inflammatory mediators’ production from macrophages (concen-

tration of gptq produced in response macrophages presence)

kn pro-inflammatory mediators’ production from active neutrophils

(rate of cptq concentration produced in response active neutrophils

presence)

Continued on next page
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Table C.1 – continued from previous page

Parameter Definition

Chapters 4, 5

c0 initial pro-inflammatory mediators’ concentration (damage severity)

r initial damage’s radius (damage size)

δac increment of pro-inflammatory mediators upon apoptotic neutrophils

undergoing necrosis

δnc increment of pro-inflammatory mediators upon active neutrophils ac-

tivity

δmg increment of anti-inflammatory mediators upon macrophagic activity

pnr probability of recruitment of new neutrophils

pnc probability conditioning release of pro-inflammatory mediators upon

neutrophils activity

pmr probability of recruitment of new macrophages

pmg probability upon which macrophages initiate the anti-inflammatory

response

pml probability at which macrophages leave the tissue

pma probability at which macrophages phagocytose apoptotic neutrophils

αncr threshold of pro-inflammatory mediators above which new neu-

trophils are recruited

αngr threshold of anti-inflammatory mediators below which new neu-

trophils are recruited

αmr threshold of pro-inflammatory mediators above which new

macrophages are recruited

Continued on next page
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Table C.1 – continued from previous page

Parameter Definition

αml threshold of pro-inflammatory mediators below which macrophages

leave the tissue

ncell number of neutrophils

Achem maximum concentration of chemoattractant

nrun number of moves per tick

βrand threshold minimum concentration of chemoattractant for chemotac-

tic motion

σmem standard deviation associated with the likelihood of cells changing

their direction of motion

kgrad scaling parameter appearing in the weighting function of (5.2)

Table C.1: Parameters appearing in the models of Chapters 2–5.
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