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ABSTRACT

Efficient control of a complex water distribution system requires accurate information 

about its current operating state. At present in the water industry, modern telemetry 

hardware systems are being installed to m eet these needs. Unfortunately, due to financial 

constraints, it is not practical to measure all variables with such a system. Therefore, the 

information supplied by the telem etry system must be supplemented by 

pseudom easurem ents, such as predictions of consumption at the nodes of the network, 

before a full picture of its operating state can be calculated. These pseudom easurem ents are 

only estimates and hence, contain a great deal of uncertainty. The real m eters linked to the 

telemetry system, although not completely accurate, provide more reliable data. Effectively, 

they strengthen the monitoring system by reducing the reliance on less accurate 

pseudomeasurements.

M easurem ent uncertainty clearly has an impact on the accuracy to which state 

estimates can be calculated. The precise nature and level of this impact is investigated in 

this thesis. A network model which allows for measurement uncertainty, is presented. 

From this model, algorithms are derived which quantify the effect of measurem ent 

uncertainty on the accuracy of the derived state estimates. Rather than a single, 

deterministic state estimate, the set of all feasible states, given the level of m easurem ent 

uncertainty, is calculated. This set is presented in the form of upper and lower bounds for 

the individual variables, and hence provides limits on the potential error of each variable. 

A water distribution system simulation program, TCLAS, that calculates state estimates in 

this way, has been developed. This program is also described in the thesis.

The location of meters about the network strongly influences the accuracy of state 

estimates. By carefully designing the m eter placement in the telemetry system, it is possible



to achieve a much higher level of monitoring accuracy. The problem of how best to design 

this m etering - the optimal m eter placement problem - is also addressed, and is presented 

as a mathematical optimisation problem. The mathematical formulation allows a great deal 

of flexibility in the choice of cost and constraint functions, so that realistic design objectives 

and telemetry system restrictions can be modelled. Two optimisation algorithms are 

presented as solutions to this problem. In addition, it is described how TCLAS can be used 

to experim ent with the location of m eters and assess the accuracy of these placements.
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CHAPTER 1

INTROD UCTION

1.1. TELEM ETRY SYSTEMS AND TELECONTROL

Efficient and economic control of a water distribution system requires an accurate 

picture of its current operating state. Pressures and flows throughout the network, pump 

operation, valve status, reservoir levels, inflow and water use must all be monitored. 

Similarly, any control strategy must be put into practice by actuating the system ’s control 

elements - pumps and valves. The size of the geographical area covered by a water network 

causes difficulties in gathering and transmitting this kind of information in real-time. Here 

a telem etry system is of great benefit in water distribution system control.

For monitoring purposes, a water network telemetry system consists of a num ber of 

flow and pressure meters placed at various points about the network, see fig 1.1. These 

relay their readings to a central control room. Once at the control centre, the information 

can be processed to provide a full picture of the state of the system. Based on this 

information a control strategy can be derived and messages relaid back through the 

telemetry system to the pumps and valves of the system so that the strategy can be 

implemented. The advantages of these telemetry systems are clear. M eter data is instantly 

available to the operator which gives details about the state of the network as it is now, 

rather than as it was at some time passed. The need for an engineer to travel to different 

parts of the network to read meters and for staff to be permanently based at rem ote stations 

is reduced.

Many water authorities have already installed limited telemetry systems with results 

that have been received favourably in the industry. Some of their experiences are

iii
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Fig 1.1: Water distribution telemetry system.
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documented in [24, 32, 52, 67, 82, 89, 99, 137, 147]. It is likely that the next few years 

will see further investm ent in telemetry hardware and eventually, it could become the norm 

for water distribution systems to be m onitored in this way. Telemetry systems have been 

developed with the aim of facilitating fully automated control for complex distributed 

systems. For water distribution systems, this may not be realised in the near future but a 

much higher level of automation can certainly be expected.

Ideally, a water distribution telemetry system would m onitor the flow in every pipe 

and the consumption and pressure at all nodes of the network. Unfortunately, this is not 

economically viable. It is not only the cost of the m eter itself but its cost of installation and 

the cost of setting up the communication link with the control room that should be 

considered. Even in simplified water distribution network models, there may be several 

hundred potential m eter sites. Realistically, only a limited num ber of flow and pressure 

meters can be installed into the telemetry system. These must be placed at key points: at 

reservoirs to monitor water levels, at pumps to monitor operation and at inflow points, for 

instance. Also a num ber of meters must be placed about the network itself so that accurate 

estimates of the system’s operating state can be ensured.

1.2. SIMULATION OF WATER SYSTEMS UNDER UNCERTAINTY

The simulation of any complex engineering system will always include a degree of 

uncertainty. No m eters can be fully accurate, no mathematical model can fully reflect the 

intricacies of a real system’s behaviour and no engineer’s knowledge is complete. The best 

endeavours of the modellers and engineers cannot remove these problems, all that can be 

hoped is that they can be reduced to an acceptable level. Water distribution systems are no 

exception to this rule. The lack of real m eter readings, supplied in real-time by the 

telemetry system, means that much use is made of inaccurate pseudomeasurements such as 

nodal consumption predictions. This measurem ent uncertainty can introduce a large 

amount of uncertainty into the simulation of the water distribution system ’s operation. A



large part of the work described in this thesis is concerned with the quantification of the 

impact of m easurem ent uncertainty on the estimates of the system ’s behaviour.

At present, there are many simulation packages that are in use within the water 

industry. Perhaps the most commonly used in this country are GINAS [110], produced by 

the W ater Control U nit at Leicester polytechnic, and WATNET [133, 135], produced by 

the W ater Research Centre. Other packages include: WASMACS [13]; SIMNET [142]; 

KYPIPE [148]; and NETMAP [112]. Generally, these packages are deterministic in nature. 

They produce an estimate for the state of the system which is intended to be the best 

estimate that can be obtained from the uncertain measurem ent and network data. None of 

these simulation packages quantify the effects of this uncertainty and provide explicit 

bounds on the potential state variable error. It is very im portant that the level of 

uncertainty present in water system state estimates can be quantified in some way. If these 

estimates are to be used as the basis for making control decisions it is necessary to know 

by how much they may be in error. Only then can reliability and safety be ensured. A state 

estimate without indication of its possible error only paints part of the picture. All it says is 

that the system is operating in some state close to this estimate. In reality the estimate is 

unlikely to be met exactly. An operator must know, among other things, whether desired 

minimum pressures are being met at each node so that demand can be satisfied, where 

pressures are unacceptably high and hence causing a risk of pipe rupture or leakage, 

reservoir levels, the status of pressure or flow controlled devices etc. An incorrect estimate 

for a pressure at a particular node may, for example, indicate that an automatic pressure 

reducing valve is closed when this valve is actually open. This incorrect information can 

create a completely false picture of the network’s operating state. If the pressure value is 

presented together with an indication of its possible error or confidence limit, then this 

possibility becomes apparent. In short, presentation of state estimates, with confidence 

limits as a quantification of their uncertainty, allows for ’worst-case’ control to be 

implemented, thus ensuring security of operation. The process of quantifying the

_______________ -  - -  -* V  ,  r  . "  , ‘s  - ' - f 1
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uncertainty in the state estimates will be referred to as confidence lim it analysis.

Presentation of uncertainty also has implications in distribution and monitoring 

system design. Weaknesses in the monitoring side of telemetry systems can be identified, 

pointing out where extra m etering will be beneficial. When an extension to the network is 

being designed to meet demand at some future time horizon it is no use imagining a 

’typical’ demand profile and planning for this. The full range of possible demands must be 

analysed. This will involve examining the uncertainty associated with future demand 

predictions, quantifying the resultant uncertainty and designing the network extension with 

this extra information in mind.

An important part of fully or partly automated real-time control of water distribution 

is the ability to identify that the system has failed in some way. This may be, for instance, a 

pipe burst, major leakage or a breakdown of one or more meters. The observed or 

m easured operating state of the system will, inevitably, differ from the predicted or 

expected state, but does this difference suggest that the system has failed in some way. If a 

fault has occurred, what form does this fault take, and where in the network is the fault 

located? Questions such as these can only be answered if there is some knowledge of the 

uncertainty in the observation and in the prediction.

1.3. IMPROVING SIMULATION ACCURACY

How can the uncertainty in monitoring water distribution systems be reduced? Having 

accepted that some uncertainty is inevitable, this is one of the questions that must be 

answered. The first task is to make sure that the model of the network is up-to-date and is 

as accurate as possible. This will involve checking of the pipe parameters such as C-values, 

checking that the network is as it is modelled and also ensuring that the records of 

population distribution and water use are accurate. Even after model errors have been 

removed, there will be an am ount of uncertainty in simulation due to the inaccuracy of the



,v. •••■: ’■ ’ v  i-; ' r '  - w ” ' *v •— ’\r* ; v v : - - v . <•

monitoring system. Fortunately, by carefully designing the metering system - deciding 

which m eters should be used, how accurate they should be and where they should be 

located in the network - accuracy can be greatly improved.

In 1973, an AWWA research committee sat to examine water distribution research 

and development needs. One of their conclusions, published in [12], was that "criteria

should be developed for optimum location o f field network pressure and flow sensors for design %

simulation; and, perhaps separately, for adequate indication of field conditions for supervisory 

monitoring and for automatic control." Designing the metering part of a telem etry system will 

be referred to as optimal meter placement. It can be carried out at the initial design stage 

of the telemetry system, or when the telemetry system is to be enhanced. A t some stage in 

the operation of a water network telemetry system it may become apparent that the results 

are not accurate enough. If this happens, then an optimal m eter placement study can be 

performed to see what improvements to the telemetry system are required. Optimal m eter 

placement must, in some way, involve confidence limit analysis studies to assess the 

accuracy of any potential or proposed configuration of meters in the telem etry system. It 

can be carried out in a partially trial-and-error way, guided by confidence limit analysis 

results, or can be posed as a mathematical optimisation problem. %



CHAPTER 2

REVIEW  OF W ATER D ISTRIBU TIO N  SYSTEM RESEARCH

2.1. INTROD UCTION

In this chapter, some of the published research in the field of water distribution 

systems is reviewed. Attention is concentrated on those aspects of water systems theory 

that are of particular relevance to the work in this thesis. The review is divided into four 

topics: network modelling and calibration; simulation and decision support for water 

distribution systems; control of water distribution networks; and discussion of experiences 

in the application of telemetry systems in water systems. There is of course some overlap 

between some of these categories, but such a division is useful for treating such a wide area 

of research. This review is intended to be quite general, research that is m ore specific to the 

various topics considered in this thesis is reviewed in the appropriate chapters. For 

instance, a review of state estimation m ethods is presented in Chapter 3, and uncertainty 

quantification and optimal m eter placement methods are reviewed in Chapters 4 and 5, 

respectively.

2.2. NETW ORK M O DELLING  AND CALIBRATION

Network modelling is the process of creating a mathematical description of the 

distribution system. These systems are typically large and complex, made up of many 

interacting elements. Often, water authority records are incomplete or fuzzy, the precise 

layout of the network is not always known and it is difficult to assess the state of elements 

that have been hidden underground for many years. The potential uses of network models 

are many and varied, as are the systems themselves. These factors mean that the modelling



process is never straightforward. A considerable amount of expertise is demanded of the 

modellers.

Allen [11] examines the process of building a network model in great detail. Based on 

the results of this work, she presents a systematic modelling methodology. Three main 

stages in the process are identified, these are: planning; performance; and practice. The 

planning stage should involve discussion with experts and potential users. From these 

discussions, the intended use of the model and its required accuracy will be determined. 

The performance stage involves the collection of the required data, field testing, calibration 

and the construction of the model itself. A third stage, often neglected, is the practice 

stage. As the model is being used the system will change, new elem ents (pipes, pumps, 

valves etc) will be added and the demand pattern will alter. It is essential, therefore, that 

the model is kept up-to-date and recalibrated regularly. Lee [94], presents a similar 

methodology for network- modelling, together with a case study. The issues he discusses 

include: records and data reviewing; skeletonisation; data input; model calibration; and the 

assessment of results.

The idea that a network model should be constructed with its intended use in mind is 

demonstrated by Hamberg and Shamir [70, 71]. They examine the requirem ents of models 

for use in the preliminary design of distribution systems. For this purpose, they suggest 

that simpler models, that can be analysed more efficiently, are appropriate. In the first of 

these papers [70], a method is presented by which groups of system elements can be 

combined to form an ’equivalent’ individual element. For instance, pipes connected in 

series or parallel can be combined to form a single pipe elem ent in the model, or a small 

loop of pipes can be combined to form a simpler pipe junction in the model. In the second 

paper [71], the distribution system is viewed as a non-linear, horizontal continuum and the 

concept of the ’flow-field’ is developed,



Once the requirem ents of the model in term s of its use have been determined, the 

problem of model accuracy must be addressed. To be of practical use, the model must 

involve a degree of simplification, which, if not done carefully, can introduce inaccuracy. 

Eggener and Polkowski [54] examine the modelling processes of skeletonisation and load 

consolidation, and the impact of these in terms of model accuracy. Using a real network as 

a case study, they conclude that "Any practical degree o f accuracy can be attained in modelling 

distribution networks if  enough effort is put forth to develop the input data", but qualify this with 

some warnings: (i) C-values should not be taken directly from tables, but should be 

adjusted to fit observed data; (ii) Small pipes in the vicinity of the major sources of supply 

should be included in the model; (iii) There is a "tremendous need for more basic information 

on loading and variations in loading".

A similar com m ent to (iii) above, was made by an AWWA research committee in a 

report that outlines water distribution research needs [12]: "There is an urgent need for more 

information on loadings such as variations at a point in time; variations o f multiple points within a 

system with time; variations o f demand for different classes o f users; applicability o f findings from  

one system when used for another (transferability within a particular climatic region); levels o f 

probability of occurrence for extremes, total demands, and serial demand patterns; and related 

considerations."

Once a network model has been constructed, efforts can be made to refine that model 

to fit observed data. This process is known as calibration and is discussed by several authors 

[25, 91, 108, 109, 143, 144, 145, 146]. Ormsbee and Wood [109] present an explicit 

network model calibration algorithm. In this algorithm, the network equations are solved, 

for a particular observation, to yield headloss coefficients for each pipe. These are then used 

to alter pipe C-values or to redefine a pipe model to account for the effects of minor losses. 

Walski also addresses this problem. In [143], he presents formulae which can be used to 

calculate C-value or water use adjustment factors. Formulae can also be used to decide
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whether to adjust water use or pipe function factors. He presents a case study using his 

methods in [146], and provides some general advice on ensuring accurate network 

calibration in [145]. Cesario and Davis [25] examine the calibration process, discussing its 

use, its data requirements, various calibration methods and identify possible sources of 

error. Lansey [91], and Ormsbee and Chase [108] present network calibration techniques 

which allow multiple loading conditions to be included. Both m ethods use non-linear 

programming methods, with an embedded state estimation routine, to solve the calibration 

problem. Lansey suggests a gradient non-linear programming method, whereas Ormsbee 

and Chase use a modified constrained optimisation technique. Coulbeck [34], also 

describes a method based on optimisation techniques. In this, the discrepancy between 

observed and calculated flows and pressures is minimised by adjusting the calibration 

parameters which may include: pipe parameters; pump parameters; nodal consumptions; 

reservoir flows; and nodal pressures. Clarke et al have published a paper [29] which is 

related to the topic of model calibration. In this paper, a formula is presented which 

quantifies the sensitivity of the pressure difference across a pipe which results from the 

uncertainty of other pipe parameters (diam eter, length, discharge, hydraulic gradient and 

C-values, for instance). From this formula, the accuracy of the pressure meters needed to 

provide meaningful results is derived.

2.3. SIM ULATION AND DECISION SU PPO R T

Simulation of the operation of water distribution systems involves the prediction or 

estimation of its behaviour in response to specified future or current conditions. Simulation 

may be performed: (i) for design purposes - to assess how effectively a proposed network or 

system extension will meet its specifications; (ii) In operational planning - to assess whether 

a particular set of control actions will m eet expected demand economically and safely; or 

(iii) in decision support - providing system operators with information about the current 

state of the system, upon which decisions about necessary action can be based.



Computers have been used for many years to simulate the behaviour of water 

distribution systems, They provide the power to perform the many numerical calculations 

that are required in processing input data and solving the network model. There are several 

commercially available software packages for analysis and simulation. Perhaps the most 

comprehensive and widely used in this country are WATNET [133] and GINAS [110]. 

These two packages incorporate graphic displays, allow both static-state and extended period 

simulation, and include many different water system elements in their models. Other 

packages include: NETMAP [112], WASMACS [13], SIMNET [142], KYPIPE [148] and 

TCLAS [16].

At the core of all computer simulation packages is a state estimation routine. It is this 

that calculates the state of the system for a given set of inputs. Water systems literature 

contains many state estimation algorithms [3, 13, 27, 31, 38, 42, 43, 61, 66, 78, 84, 92, 93, 

107, 116, 121, 127, 130, 134, 135, 149, 150, 151]. These are reviewed in more detail in 

the next chapter. Wood and Rayes examine the performance of some of these, their 

conclusions are reported in [150]. State estimation and network analysis are by nature 

mathematically intensive processes, and as a result, published work in this topic tends to 

be very technical. Shamir and Howard, recognising this, present a non-mathematical 

explanation of water distribution system simulation [128]. Collins [30] discusses some of 

the problem that can be encountered when using the state estimation routines, these 

include: non-convergence in the iteration; lack of accuracy of solution; and the lack of a 

unique solution in some situations. Most of the state estimation techniques described in 

research papers can be classified as static-state estimators. That is, they provide an estimate 

of the operating state of the network at a particular instant in time or for a particular set of 

operating conditions. In [116, 117], Rao et al describe a method for extended period 

simulation of water systems. This method relies on a series of static-state solutions that are 

linked by the dynamic aspects of the system. The dynamic linking requires a model of the 

rate at which reservoirs fill and empty, knowledge of demand variation over the period of



simulation and a schedule of operational changes such as pump and valve switching. 

Extended period simulation is included in the software packages WATNET, GINAS, 

KYPIPE and SIMNET.

Recent developments in monitoring system hardware and the availability of cheaper 

processing power mean that concepts of the role of simulation within the water industry are 

changing, with operators looking to a more integrated approach. The impact of these 

developments within water systems management is discussed in [39, 40, 81, 90]. Johnson

[81] examines the requirem ents of decision support systems and knowledge based 

techniques in water systems management, including a list of example application areas. 

Cunningham and Amend [39, 40] highlight the importance of interactive simulation, 

particularly in operator training.

2,4. CONTROL OF W ATER D ISTRIBU TIO N  SYSTEMS

In [126], Shamir describes the control problem for water distribution systems as "how 

to operate the pumps and valves so as to minimise the total cost, while meeting demands and 

satisfying minimum pressure constraints". This statement of the problem summerises the 

principal features involved but other factors must be taken into account, for example: 

controlling leakage; ensuring that the system elements (pumps and valves, etc) are 

operating within their safety limits and are not put under undesirable strain; and control 

under emergency or failure conditions.

Since pumping makes a major contribution to the cost of network control, effort has 

been directed towards minimisation of pumping costs [33, 35, 36, 37, 56, 82, 99]. 

Coulbeck [33, 35], and Coulbeck and Sterling [36] examine the problem of optimal pump 

control. M ethods are presented by which pumping costs can be minimised in a restricted 

class of system. These methods include a dynamic programming and a hierarchical 

technique. They are extended to cater for more complex.systems by simplifying the system



model. Fallside and Perry [56] also describe a hierarchical optimisation technique. This was 

devised for a specific network - East W orcestershire supply network - and its application to 

this system is described. Jowitt et al [82] describe an automatic pump scheduling scheme 

that is to be applied to a real network serving a population of 300,000. The optimiser is to 

be linked directly to this system ’s telemetry facilities. The pump optimisation procedure 

uses a linear programming technique with the constraint on satisfying demand replaced by 

constraints on reservoir mass balance and bounds on reservoir storage. The problems 

involved in optimal pump scheduling for water distribution systems are discussed by 

Creasey in [37]. He identifies size, dimensionality and non-linearity as the principal 

problems to be overcome in mathematical pump optimisation procedures. Also discussed is 

the problem of applying pump scheduling to real water networks. Shamir [126] reviews the 

present state of real-time control of water distribution systems, with a particular emphasis 

on pump control. In this paper, the hardware requirements of such real-time control 

systems and their application are also discussed.

Another area of water network control that has been considered by researchers is 

leakage control [99, 132]. It is estimated that a significant proportion of the water in 

distribution networks is lost through leakage (20% [99] or 25% [132]). This loss can be 

important in areas where water resources are scarce and, of course, relates to a financial loss 

in the processing and pumping of clean water. As high pressure in the network can cause 

leakage, the leakage reduction techniques concentrate on maintaining an optimal pressure 

profile. Pressures must be high enough to satisfy demand but not too high so as to cause 

leakage. In [132], Sterling and Bargiela use a sparse revised Simplex m ethod to determine 

the valve settings that would maintain an optimal pressure profile. Miyaoka and Funabashi 

[99] apply a method from network flow theory in a two-level scheme.

The inherent uncertainty in water system monitoring and the mathematical complexity 

of algorithmic control algorithms means that expert system based control procedures may



be beneficial in some situations. This idea is being investigated by the Water Industry 

Expert System Club (WIESC) project. Unfortunately, there is little published work on this 

project. One report, [2], describes the WADNES project, being carried out at Surrey 

University. WADNES is intended to supervise the control of a water distribution in 

emergency or failure situations.

2.5. EXPERIENCES IN  T H E  APPLICA TIO N  OF TELEM ETRY SYSTEMS

The M elbourne and Metropolitan Board of Works have im plemented a comprehensive 

monitoring and control system for its M elbourne water supply network [32]. This system 

incorporates telemetry facilities, network modelling and interactive computer control. 

Introduction of this system has resulted in more efficient control and increased 

understanding of the behaviour of the complex network. This paper describes in detail all 

aspects of this control system and its operation, including: the telemetry data; input of the 

demand data; the network simulation and modelling; and the graphic displays. In [147], 

Williams describes the design of telemetry system to monitor and control water distribution 

on Hong Kong Island. This discussion concentrates on the hardware of the system and its 

requirements. Thames W ater Authority are installing a real-time pump scheduling system at 

their Bourne End control centre. To work efficiently, this system will require up-to-date 

information about water usage. The telemetry system that will supply this is described in

[82].

In America, telemetry systems are being used in other areas of water resource 

management. For instance: the Yakima River remote control system [24]; the Central 

Arizona aqueduct system [67]; and the Windy Gap diversion dam [52]. In [89], Labadie 

discusses the architecture and operation of real-time control systems in water resources 

management and examines a selection of real systems as case studies.
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CHAPTER 3

STATE ESTIMATION AND THE NETWORK MODEL

3.1. INTRODUCTION

Before effective computer analysis of a water distribution system can take place, there 

must be an accurate description o f that system. Such a description is called the network 

model. It m ust include all of the key elements that make up the system, and must be 

flexible enough to be of use in a large num ber of different situations. W ater distribution 

system modelling is discussed in the early sections of this chapter

At any particular instant in time, the system will be in a certain operating state. That 

is to say, each pipe will have a particular flow rate, each node will be under a particular 

pressure and water will be consumed or supplied at a particular rate at each of the nodes. 

State estimation is the process that attempts to calculate explicitly the system ’s operating 

state at a particular instant in time. The aim is to calculate the value of the flow in each 

pipe or the pressure at node. From a state estimate the values of all other variables of 

interest can be calculated. The process of state estimation in water distribution systems is 

discussed in section 3.3.

3.2. THE NETWORK MODEL

All water networks are unique but have certain similarities which can be utilised in 

developing a common model structure. Their purpose is to transport water from one or 

more sources to consumers distributed over a certain area. They are made up of a collection 

of pipes, pumps and valves, interconnected to form a network. Other elements commonly 

found in a water distribution system are: reservoirs; water storage tanks; boreholes; etc. All
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of these different elements must be included in the model. W ater authorities have records 

of the networks under their management, it is on these that the modelling is based.

Many authors have addressed the problem of water distribution system modelling [3, 

11, 27, 54, 70, 71, 84, 92, 94], most suggesting a network theoretical approach. A water 

distribution system can be represented as a network consisting of an interconnected set of 

links and nodes. The links representing the pipes, pumps or valves and the nodes 

representing the junctions between these links, input (source, reservoir, storage tank etc) 

points or output (consumption) points. See fig 3.1, which shows the network structure of 

an example water distribution system. The schematic diagram in fig 3.2 only shows how 

the various elements of the water distribution system are interconnected, ie the network’s 

connectivity or topology. Before this model can be used there must be some additional 

data describing the elements themselves. For each of the nodes, information is needed 

about the population it supplies and the consumption type. Also, an elevation is required 

for each node. For each pipe, its length, diameter and its roughness m ust be known and 

operational parameters of the pumps and valves must also be known. All of this 

information is basic to the network, when the network model is being used in any way, 

more information is likely to be required, static state operation data for instance.

A typical water distribution system may serve many thousands of consumers and may 

consist of many more pipe, pump and valve elements. Even with the computing power that 

is available today, modelling on this scale is impractical for most applications. Even if this 

were feasible, it would not be possible to attain sufficient accuracy in the modelling to 

produce meaningful results. Therefore, modelling on a more manageable scale is required. 

This can be achieved by lumping together groups of consumers represented by a single 

node and considering only the most important links. Care must be taken when reducing 

the network in this way so as not to reduce the potential model accuracy [54].



Fig 3.1 : Example water distribution network.
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Derivation of the water distribution system model in terms of network theory has 

several advantages. It provides a general framework within the term s of which, each 

particular network can be described. Ideas and experiences of engineers and operators 

working on different systems can be communicated freely. A well-defined modelling 

structure allows simulation algorithms and computer software to be designed for general 

rather than specific systems, hence providing a high level of portability. Using mathematical 

networks to represent water distribution systems means that water systems researchers can 

benefit from the large am ount of existing work in mathematical network theory.

3.2.1. Hydraulic relationships for water networks

Each of the different types of link in the network - pipes, pumps and valves - can be 

modelled mathematically. Equations can be derived which relate water flow rate to pressure 

drop and the various elem ent’s parameters. The most common elem ent in a water network 

is a straightforward pipe section. The Hazen-Williams [111, 144] equation:

9 tj  =  0-27746 C ,j  d ? f  d p ? f  (3.1)

relates the flow rate in the pipe section between nodes i and j ,  qitj, to its diameter, dl%j ,  its 

length, l i j ,  and the pressure drop across it, dpij.  The parameter Citj in this equation is the 

Hazen-Williams coefficient, or C-value, for the particular pipe. The C-value of a pipe can be 

regarded as a parameter of roughness, depending on factors such as the pipes material, age, 

and state of repair. Tables giving typical C-values can be found in [111, 144] but these are 

generally well known to a water engineer. Equation (3.1) is alternatively called the pipe’s 

head-flow relationship. In this, the direction of flow is from high to low pressure. There are 

other equations that can be used in place of (3.1), for example the Darcy-Weisbach or the 

Colebrook-W hite equations. The relative m erits of these and other formulations are 

discussed in [111].



Other hydraulic elements that may be included in a water network include: fixed- 

speed pumps; variable-speed pumps and valves of various types. For each of these a 

hydraulic relationship, similar to the one for a pipe shown in (3.1), can be derived [13, 26, 

121, 133, 144].

3.2.2. Model accuracy

The network model, by definition, is only a representation of the real distribution 

system. Every effort must be made to ensure that it is an accurate representation. Good 

results cannot be expected from a bad model. There are many areas where inaccuracy can 

creep in, some of the most important of these are now discussed.

Generally, it is impractical to model every pipe and consumer in a water distribution 

system - there are far too many. The network must be reduced to a manageable size with 

its key elements identified. Many small pipes will have to be neglected and some will be 

combined with others with necessary adjustments to their parameters. Consumers will often 

be lumped together and treated as a whole rather than individually. This network 

skeletonisation, when done carefully, will result in an accurate representation of the real 

network with a reassuring resemblance to the original system. In [54], Eggener and 

Polkowski examine the impact of some of the common simplifying assumptions. In this 

paper it is emphasised that skeletonisation is not simply a m atter of disregarding all pipes of 

less than a certain diameter and grouping consumers arbitrarily.

Many authors point to assumed C-values as an important source of model inaccuracy 

[12, 25, 54, 91, 108, 109, 143, 144, 145, 146], Tables are often used which give typical C- 

values for pipes of a certain age and type. While being valuable indicators of C-values, 

these should not be taken without question. Rarely can a pipe in a network model be 

considered as typical. A pipe may be exceptionally encrusted or corroded, which will affect 

its C-value. M inor losses, due to factors such as pipe bends or junctions with smaller 

(unmodelled) pipes, must also be taken into account. The C-values given in the literature



are for a specific flow rate and so for periods of exceptional flow the assumed values may 

not be very reliable.

There are many other sources of error in the network model: node elevations, 

consumer population and demand patterns for instance. When the operation of the 

network is being analysed, the random variation of water use at nodes throughout the 

system is a particularly important source of error. This problem is examined in more detail 

in a later chapter.

Model calibration is a prerequisite to network simulation. At all stages of model 

development, extensive field tests should be made to ensure that the model is an accurate 

representation of the real network. Calibration methods, with a particular emphasis on the 

tuning of C-values, are discussed by several authors in [25, 34, 91, 108, 109, 143, 144, 

145, 146]. A water distribution system cannot be regarded as static and unchanging. New 

pipes are continually being laid to m eet new demand, pipes are aging and corroding, the 

population distribution and flow distributions are ever changing. These changes mean that 

the network model should be updated and recalibrated at regular intervals.

3.3. STATE ESTIM ATION

The pressures and flows in a water distribution system m ust obey certain physical 

laws. In addition to the head-flow relationships mentioned in section 3.2.1, are the Flow 

Conservation Law and the Loop Head Loss Law:

FLOW  CONSERVATION LAW: The total flow entering a node must be equal to the total 

flow leaving that node.

LOOP HEAD LOSS LAW: The sum of the pressure drop around a loop of the network 

must be equal to zero.

In the first of these, the Flow Conservation Law, the amount of water leaving the node



includes consumer demand and leakage as well as flow through pipes. The second - the 

Loop Head Loss Law - must also take account of the energy input to the loop or stored 

within the loop.

The state estimation process is based on a mathematical network m odel of the water 

distribution system such as the one discussed in section 3.2. The physical laws governing 

the system - Flow Conservation Law and Loop Head Loss Law - can be combined with the 

hydraulic relationships of each elem ent of the system, described in 3.2.1, to construct a set 

of network equations. These network equations relate either, the network’s nodal pressures 

or the network’s flows, to m easurem ent or pseudom easurem ent values and are expressed 

by the following equation:

2(x) = z (3.2)

Here x is a vector of n state variables, called the sta te  vector, which can be either nodal 

pressures or flows and z is the m easurem ent vector which consists of real measurem ent 

values and pseudom easurem ents such as predictions of nodal consumption. Equation (3.2) 

is referred to as the network equation. g (.) is the network function, which includes 

information about the connectivity of the network and the parameters of the pipes, pumps 

and valves. It is a non-linear equation, which means that a direct solution is not possible, 

instead an iterative solution technique must be used. Solution of (3.2) - calculating x for a 

given z - is called state  estim ation.

The state vector is made up of n independent state variables. It may include nodal 

pressure variables or flow variables, but m ust be sufficient to completely specify the 

operating state of the system. When this is the case, any other system variable can be 

calculated directly from x. A secondary state, y, is now defined. This vector can consist of 

any variable that is of interest to the system operator or engineers, suppose that there are 

N  of these. To distinguish it from the state vector x, the vector y will be referred to as the 

derived state  vector. It is introduced to dem onstrate that the m ethods described later in 

this thesis are not specific to one set of independent state variables, and also to allow an 

explanation of how these m ethods can be extended to cover all variables of interest, y can 

be calculated directly from the state vector x, with
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y = / ( x )  (3.3)

w here/ ( . )  is the derived state  function.

For on-line state estimation, linked into a telemetry system, the data in the 

m easurem ent vector comes form two main sources. Firstly, there is the data supplied by the 

real meters placed in the network, this is referred to as real m easurem ent data. Secondly, 

there are estimates and predictions of some of the other, unm easured variables, which are 

called pseudomeasurements. A particularly common pseudom easurem ent is the prediction 

of the water use at a particular node of the network. In most cases real m easurem ent data 

is more reliable and much more accurate than pseudom easurem ent data but by itself is not 

sufficient to make the system observable. In other words, it does not contain sufficient 

information to allow all of the state variables to be calculated. For a precise definition of 

observability, see [14, 57, 88].

There are many different state estimation techniques, some of which are reviewed in 

the next section of this chapter. Three particular methods have been selected, variations of 

which have been implemented as computer programs. These are described in the remainder 

of the chapter.

3.3.1. Review of state  estim ation methods

Algorithms for state estimation have been in use since the 1930’s when Cross 

published details of the methods he used for calculating the flow in a pipe network [38]. 

These m ethods required much hand calculation but could be applied efficiently to smaller 

networks and were widely used for many years. In the late 60’s and 70’s researchers began 

to look again at this problem [31, 33, 43, 61, 78, 92, 93, 116, 117, 125, 127, 128, 149, 

151]. This renewed interest in state estimation coincided with the advent of computers. 

State estimation is a numerically intensive process, so the benefits of modern computers 

were quickly recognised. More recently, state estimation methods have been refined.



Exploitation of the special properties of the problem has meant that programs can now run 

in seconds or fractions of seconds. Improvements have also been made to the accuracy of 

state estimation programs and their portability to ever smaller machines.

At the present time there are very many different state estimation methods reported 

in the literature, some of which have been incorporated in comprehensive water network 

computer simulation packages [13, 110, 112, 133, 135, 142, 148]. Although many of these 

methods are different in some way, two main types can be classified, these are the node 

equation formulation and the loop equation formulation. In the first group, the network 

equation (3.2) is derived form the Flow Conservation Law and the measurem ents and 

pseudomeasurements are expressed in terms of the unknown nodal pressures [13, 31, 43, 

77, 78, 92, 93, 127, 130, 151]. In the second formulation the unknowns are the pipe flows. 

To generate the network equation in this case, the Loop Head Loss Law is used as well as 

the Flow Conservation Law [38, 42, 61, 66, 107, 121, 149, 150], A formulation which 

combines the loop and node equations is presented in [134, 135], Rayes and Wood, in 

[150], give a comprehensive review of the different types of state estimator.

Many of the methods are based on an iterative procedure of some kind where an 

initial estimate for the state is repeatedly refined until it satisfies equation (3.2) to within 

some specified accuracy. Iterative, rather than direct methods, are used because in each of 

these two formulations - the node equation or the loop equation - the function g(.) consists 

of a set of simultaneous non-linear equations.

In the loop equation formulation a set of fundamental loops must be identified. There 

are p - n + 1 of these, where p  is the num ber of links in the network and n is the num ber of 

nodes [63, 150]. There are three common ways of solving these loop equations iteratively. 

In the first, an adjustment factor for the flow in each of the fundamental loops in turn is 

calculated, as in the Hardy Cross m ethod. In a second method, p - n + l  adjustment factors 

- one for each of the fundamental loops - are calculated simultaneously. Both of these



methods require an initial estimate for the flows that balance the network, that is a set of 

flows which satisfy the Flow Conservation Law. In the third method, the two laws are used 

together so that the m easurem ent values can be expressed directly in terms of the unknown 

flows. At each iteration in this m ethod, the non-linear equations (the ones resulting from 

the Loop Head Loss Law) are linearised and a set individual correction values, one for each 

flow variable, is calculated by solving the set of linearised equations.

The node equation formulation of state estimation is described in the next section.

3.3.2. Node equation form at for state  estim ation

After consideration of many different state estimation m ethods three hybrid 

algorithms have been developed. Each of these is designed to cater for a different situation. 

All three solve the node equations, ie they produce an estimate of the head at each node. 

From such a state estimate the flows in the network can easily be derived as a secondary 

calculation, as is shown in (3.3). These algorithms, which have been implemented as 

computer programs: MINSTEST; ODSTEST and LAVSTEST, are described in detail in 

later sections. Before this is done the node equation format of state estimation is described 

in more detail.

Equation (3.2), the network equation, has been described in general terms. In the 

context of the node equations a more specific description can be given. In this case there 

are n - f  pressure variables - one for each node of the network - and /  inflow variables - 

one for each of the inflow points, n is used to denote the num ber of independent state 

variables and therefore x, the state vector, is has n elements. The m easurem ent vector, z, 

represents a set of m m easurem ents and pseudomeasurements which make the system 

observable [14, 57, 88], In view of the observability of the m easurem ent set, one condition 

on m is that it can be no less than n . The network function, g (.) , in reality consists of m 

simultaneous equations, & (x) = zh  i= 1 ,...,m , each one relating one of the m easurem ent or
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pseudom easurem ent values to a small num ber of the state variables. These can be divided 

into four categories depending on the type of m easurem ent (or pseudom easurem ent). 

These are:

(i) Pressure measurements. These are quite straightforward to deal with as they measure 

directly one of the n - f  pressure variables in x. If the i th m easurem ent in z corresponds to 

the j th pressure variable in x, then & (x) is given by

Xj = Zi (3.4)

There m ust be at least one pressure m easurem ent or pseudom easurem ent to act as a 

reference pressure in the state estimation. Pressure measurements may be obtained from 

pressure meters placed at various nodes in the network or from meters monitoring reservoir 

levels, for instance.

(ii) Inflow measurements: Again these are quite straightforward as each one directly 

measures one of the /  inflow variables. If the i th measurement corresponds to the j ,h 

variable (which, of course, must be one of the inflow variables), then g,(x) is given by

Xj = Zi (3.5)

There m ust be /  inflow m easurem ents or pseudomeasurements, one for each of the inflow 

variables.

(iii) Flow measurements. There may be some flow meters placed in the network, measuring 

the flow through a particular pipe or pump. If the i th measurement is a flow m easurement, 

then g,(x) is given by

< l j , k ( X j , x k )  = Zi (3.6)

Here, Xj and xk are the pressure variables for the nodes at each end of the pipe or pump in 

the network model and <?;,*(.,.) is the hydraulic relationship for this elem ent, as discussed 

in section 3.2. For example, if the flow through a pipe is being measured, then #/,*(.,.) will
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be the Hazen-Williams equation given in equation (3.1).

(iv) Load measurements. The load or consumption at any node in the network can be 

expressed in terms of the pressures at this and adjacent nodes using the hydraulic head-loss 

equations of section 3.2. The Flow Conservation law means that the consumption 

(including leakage) at node 1 in figure 3.3 is equal to the sum of flows from 2 to 1, 3 to 1 

and 4 to 1 plus the inflow at this node if the node is an inflow node. This merely says that 

the consumption at any node must be m et by the flow towards that node in the adjacent 

pipes. More generally, if the i th m easurem ent is a load measurem ent or 

pseudom easurem ent for a node, then g,-(x ) is given by

Z  9 + ** = zi (3 7)
yen v ‘ *

where xi is the pressure valuable for the load node, Q is the set of pressure variables for 

the adjacent nodes, xj for jeC l  are the pressure variables for the adjacent nodes, qj,i(Xj,Xi) 

for jeQ . are the head-loss relationships for the adjacent pipes and x k is the inflow variable 

for the node (if one exists). If the node is not a consumption node, for instance it may just 

represent the junction between pipes, then z(- will be zero and equation (3.7) will still hold. 

This type of m easurem ent or pseudom easurem ent usually makes up the bulk of the 

m easurem ent data. Generally, the loads at each node are not directly measured. In these 

situations the nodal consumptions must be predicted. So load data are usually 

pseudomeasurements coming from nodal consumption predictions.

Considering the different m easurem ent types in this way allows for the network equation of

(3.2) to be presented in more detail. (3.2) can be replaced by the set of simultaneous 

equations

xj = zt , for i= 1

Xj -  zi, for z = mh+ l,...,m h+ m q
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Fig 3.3 : Flow conservation law for load measurement.
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qj,k(Xj>Xk) = z;> for i= m h+mq+ 1, . . . ,m h+mq+rrif 

X  4j,i(x j>Xi) + xk = for z'=m/, + m(? + m /+  1, . . . ,m h+mq+m.j- + mi
je£l (3.8)

where mh,mq,m f and W/ are the num bers of pressure, inflow, flow and load measurements 

and pseudomeasurements, respectively.

Because the second two types of equation, corresponding to the flow and load 

m easurem ents, are non-linear, a direct solution of (3.8) is not practical. Generally an 

iterative procedure such as the Newton-Raphson method is used. An initial estimate x° is 

assumed. This is refined in successive iterations until, after a few iterations, an estimate x 

is found which satisfies equation (3.8) (or equation (3.2)) almost exactly. The iterative 

procedure requires at the k th step, a linearisation of the function g(.) around the current 

estimate x k. This takes the form

where k is the index of iterations, x k is the current estimate for the state vector, g (x k) is 

the network function evaluated at the current estimate, /  is the m by n Jacobian matrix of 

the current estimate, Ax is the correction vector and z is the m easurem ent vector. The 

Jacobian matrix J  represents the derivative of the network function g(.) in its linearisation 

around x k. This matrix is discussed in more detail in [13]. It is important to note that J  

shows the same structure as the network equation g (.) , ie the ( i , j ) th elem ent of /  is non­

zero if and only if m easurem ent i is dependent on variable j  in # (.) . Equation (3.9) 

represents a set of linear equations. It must be solved to find the correction vector Ax, 

which can be done using matrix factorisation or linear programming techniques. When the 

correction vector Ax has been calculated, a new estimate xk+I is given by

x k+i = x k + Ax (3.10)

If x k+1 satisfies equation (3.2) to within a predefined convergence accuracy, the iteration 

procedure stops. Otherwise, a new correction vector is calculated using equation (3.9) with

g (x k) + / .  Ax = z (3.9)



x k+1 instead of x k. The process repeats until convergence is reached.

All three of the programs - MINSTEST, ODSTEST and LAVSTEST - are based on 

this formulation of the state estimation problem. The principal difference between them is 

the way in which they solve equation (3.9), which reflects their intended use.

3.3.3. M IN STEST

The routine MINSTEST produces an estimate for the exact state of a water 

distribution system using a ’minimal’ m easurem ent set. A ’minimal’ m easurem ent set is 

one which has as many elements as there are independent variables in the system and at 

the same time makes the system observable. In other words, this is the smallest collection 

of m easurem ents with which it is possible to calculate the state estimate. It usually consists 

of the consumptions at all but one node, the inflows at each of the inflow points and the 

pressure at one node that can be used as a reference. For a minimal m easurem ent set, the 

Jacobian matrix is square and non-singular and so solution of (3.9) presents no problems. 

The unknown correction vector can be calculated exactly by solving the set of simultaneous 

linear equations represented by (3.9)

As /  is a derivative of the network equation of (3.8), the num ber of non-zero entries 

in each of its rows is very small (1 entry for pressure and inflow m easurem ents, 2 entries 

for each flow m easurem ent and r+ 1  entries for each load pseudom easurem ent where r is 

the num ber of nodes adjacent to the load node). In other words, J  is sparse as it has a large 

proportion of zero entries. This means that a special sparsity exploiting matrix factorisation 

method can be used. See Appendix A2 for a more detailed discussion of sparsity and 

sparsity exploiting methods. The precise method used is a sparse variant of Gaussian 

elimination which is due to D uff [45]. Special matrix and vector storage schemes have been 

used which take advantage of the Jacobian’s sparse structure. These methods, at the same 

time, decrease storage requirem ents, improve numerical stability and increase



computational speed.

Before adding the correction vector to the current estimate each elem ent is scaled. 

The scaling factor is different for each elem ent and depends on previous correction vectors. 

For a particular elem ent, z, of the correction vector a scaling factor, a,-, is calculated as 

follows:

(X ; =

1.0 if AXi and Ax \  have the same sign
0.5 if Ax,- and A x \  have opposite signs and IAx,-1> I Ax'/1 (3-11)
1.0-0.5(Ax;/A x';) otherwise

where A x' is the previous correction vector and Ax is the current correction vector. This 

procedure is designed to reduce the num ber of iterations required in solution. If the 

corresponding elements of two successive correction vectors have opposite signs, then this 

points to oscillation in the convergence of this element. When such situations are 

identified, the scaling factor of (3.11) has the effect of damping out the oscillation

MINSTEST checks for convergence by testing how large the elem ents of the correction 

vector are at each iteration as well as calculating the values the current estimate would give 

for the m easurem ents and comparing these against the observed m easurem ent values.

This program is intended for use when speed of execution is an important factor or when 

there are no extra measurements.

3.3.4. ODSTEST

The routine ODSTEST produces a weighted least squares estimate for the state of a 

water distribution system, in cases when there is an over-determined m easurem ent set. An 

over-determined measurem ent set is one that contains more m easurem ents than are 

absolutely necessary, ie one that is observable and contains more m easurem ents and 

pseudomeasurements than there are independent state variables. It uses an iterative
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procedure and is intended for use when the accuracy of the state estimate is a priority, 

rather than speed.

The algorithm for ODSTEST is similar to MINSTEST in that an iterative procedure is used 

which is again based on the nodal format network equations. At each iteration the Jacobian 

matrix of the linearised network equations is used to calculate the correction vector. The 

essential difference between these two state estimators is that ODSTEST is designed to deal 

with an over-determined m easurem ent set. This, combined with the fact that there will 

always be an amount of m easurem ent error or noise in each equation, means that there will 

be no state vector that can satisfy (3.8) exactly. To take account of this m easurem ent noise, 

an error vector v is introduced to give a new network equation

The aim is to find a state vector x that minimises v in some way. In ODSTEST, this is 

done by applying a weighted least squares technique [13, 130]. This m ethod is employed at 

the stage when the correction vector, Ax, is calculated at each iteration. With the 

uncertainty incorporated, equation (3.9) becomes

with v  the introduced error vector. A correction vector is found which minimises the 

weighted sum of squares of the elements of the error vector v. This problem can be solved 

by solving the following augmented matrix problem:

where R is a diagonal m easurem ent noise covariance matrix, /  is the m by m identity 

matrix and Az = g (x k) - z .  Again this augmented matrix is highly sparse and can be 

factorised using the same sparse matrix techniques as used in MINSTEST. Convergence 

tests are carried out on the correction vector and on the current estimate satisfying the

g(x) = z + v (3.12)

g (x k) + / .  Ax = z + v (3.13)

0 /  7 s Az
- I  R - 1 0 r  = 0
j T 0 o j  [Ax J [ 0

(3.14)



m easurem ent values.

ODSTEST is a numerically stable algorithm that can handle any num ber of 

measurem ents efficiently, producing the most accurate state estimate that is possible from 

the noise affected m easurement data.

3.3.5. LAVSTEST

The routine LAVSTEST calculates a state estimate for an over-determined 

m easurem ent set. It is intended as an alternative to ODSTEST, producing a weighted least 

absolute values estimate rather than a weighted least squares state estimate. Like

ODSTEST, LAVSTEST uses an iterative procedure with the correction vector, at each

iteration, calculated from the current Jacobian and current m easurem ent discrepancy. The

essential difference between these two methods is that LAVSTEST uses a linear

programming technique to calculate this correction vector [13, 77], whereas ODSTEST uses 

a matrix inversion method.

At each iteration of LAVSTEST a solution, Ax, to equation (3.13) m ust be found. In 

LAVSTEST, a solution is found which minimises the weighted sum of absolute values of 

the elements of v. This problem can be formulated as the following linear programming 

problem

Minimise wTVi + wTv 2

Subject to J. Ax + Vi -  v 2 = £ (x k) - z
(3.15)Vi, v2> 0

W here w is a weighting vector of dimension n , and v 2 are two error vectors representing 

the positive and negative components of v respectively. It can easily be shown that the 

corresponding elements of Vi and v 2 will not both be non-zero in the optimal solution.

The principal advantage of a least absolute values state estimator is that at each 

iteration the correction vector is determined from just n measurements (or n constraints in



(3.15)) which it will satisfy exactly. The remaining m - n  m easurem ents will have been 

rejected. Of course, the selection of the n accepted measurements is done so that the errors 

in the rejected measurements are minimal. In this way, a least absolute values estimator can 

filter out gross measurem ent errors of the type that may be caused by m eter malfunction or 

system failure.

3.4. CONCLUSIONS

Network modelling and state estimation are techniques that are long established for 

water distribution systems. Both topics have been extensively covered in the literature. The 

discussion of network modelling in section 3.2 merely collects together and reviews some of 

the work in this field. Despite its long history, water system modelling is not a routine 

procedure. Modellers must expend a great deal of care and effort in ensuring that their 

results accurately reflect the system and that they suit their intended purpose.

In the literature there are many reports of efficient state estimation techniques that 

have been implemented successfully as computer programs. The three routines presented in 

this chapter - MINSTEST, ODSTEST and LAVSTEST - are based on hybrid algorithms. 

Each has been designed to be efficient in different circumstances. By only considering a 

minimal measurem ent set and exploiting matrix sparsity, MINSTEST benefits in terms of 

speed of execution. ODSTEST also uses efficient sparse matrix methods but considers all 

m easurem ents that are available which makes this routine slightly slower but more accurate. 

LAVSTEST, by using linear programming techniques, has good bad-data rejection 

properties.



CHAPTER 4

U NCERTAIN TY IN W ATER D ISTRIBUTIO N SYSTEMS

4.1. INTROD UCTION

For a water distribution system the three main causes of uncertainty are [12, 16, 17, 

54, 143, 144, 145] an inaccurate network model; inaccurate predictions of consumption for 

a particular instant in time at a particular node; and noise or systematic errors in 

m easurem ent values. These three factors will all be discussed in more detail in later 

sections. A smaller contribution to simulation uncertainty comes from the inaccuracy of the 

mathematical solution techniques and from the precision limits of the computers used. The 

input uncertainty, from all of these sources, is transferred, through the state estimation 

process, and results in estimates of the operating state that are also uncertain. The precise 

way in which the input uncertainty effects the output accuracies is not at all clear, many 

interrelated factors are involved. The distribution of the meters throughout the network, 

the network’s topology and the operating state of the network all play an important part.

Confidence limit analysis - the process of quantifying the effects of this uncertainty on 

estimates of state and derived variables - has implications in many areas of water 

distribution system simulation and operation. Some of the potential application areas are 

discussed in Chapter 1. These fall into the following categories: real-time control; decision 

support; operational planning; distribution system design; telem etry system design and 

operator training. The package TCLAS, described in Chapter 6, has been developed around 

the concepts of confidence limit analysis. Also, the program OPTMP - an automatic optimal 

m eter placement design program, makes use of confidence limit analysis techniques in 

assessing the value of each m eter configuration. Confidence limit analysis is, therefore,
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very important in many areas of water distribution system operation.

In this chapter the uncertainty associated with the monitoring and state estimation of 

water distribution systems is examined. Firstly, the potential sources of uncertainty and 

inaccuracy are discussed. A mathematical model of water distribution system uncertainty is 

presented. This model is used to develop confidence limit algorithms to quantify state 

estimate uncertainty. Results are presented for a realistic test network.

4.2. REVIEW OF PREVIOUS RESEARCH

Several papers have been published which deal with the problems of state estimation 

under m easurem ent uncertainty. Some of these papers fall within the bounds of 

Identification theory and treat the problem in general mathematical terms. Others are 

concerned with the more specific problem of uncertainty in water or power systems.

In [102], Norton describes Identification as "the process o f constructing a mathematical 

model o f a dynamical system from observations and prior knowledge." When noise or errors in 

the observations are considered, it is easy to see how this fits in with state estimation and 

confidence limit analysis. Schweppe, in [124], introduced the concept of unknown-but- 

bounded errors to Identification. His work was followed up by others in [18, 20, 59, 98, 

100, 102, 103, 104]; In this work, the following parameter-bounding model, derived from 

the bounded-noise measurements, is used.

z -  g (x ) + v, IV; 1< \ef\, i= l,.,.,m  (4.1)

where v is a noise vector for the observations and e7' is the m easurem ent error vector. 

Equation (4.1) is simply saying that the m easurem ent values are inexact and have errors 

that are unknown but fall within a range bounded by ez. Identification procedures based on 

(4.1) are presented. These aim to determine the set of all state estimates that are feasible 

according to (4.1). An ellipsoidal-bounding method was suggested by Schweppe [124]. This 

method is further examined in [18, 20, 59, 100, 102, 103, 104], Alternative parameter-
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parameter-bounding methods based on linear programming are presented in [18, 98, 100]

The parameter-bounding methods aim to find all feasible state estimates and do not 

identify any particular one as better than the others or the most likely as the true state. A 

more common approach to the problem of state estimation under uncertainty is to try and 

find the state that best fits the m easurem ent data. This is called deterministic state 

estimation and relies on statistical or probabilistic assumptions about the behaviour of the 

m easurem ent errors. Similar assumptions about the behaviour of m easurem ent errors can 

be used to provide an indication of the reliability or accuracy of these deterministic state 

estimates. Uncertainty m ethods based on this idea are now described.

One group of methods is based on the deterministic weighted least squares approach 

to state estimation [44, 87, 136], In this form of state estimation, the statistical properties 

of m easurem ent errors are assumed to be known in advance. In particular, the expected 

m easurem ent values and their variance is assumed. When this is the case, a value for the 

variance of each state variable is given by the corresponding elem ent on the leading 

diagonal of the state covariance matrix, ( JTR ~1/ ) “ 1, where R is the m easurem ent 

covariance matrix and J  is the Jacobian matrix calculated at the state estimate. Stuart and 

Herget in [136] and Koglin in [87] suggest this as a measure of the potential accuracy of 

the state variables. In [44], Dopazo, Kiltin and Sasson go further and suggest that, for each 

state variable, the interval enclosed by its estimated value plus or minus 3 times its 

standard deviation has a 99% probability of containing the true value of the variable. The 

standard deviation for each variable is the square root of its variance.

M ethods for defining the probabilistic behaviour of state estimate errors, given 

assumptions about the probabilistic distribution of m easurem ent errors, are described in [4, 

5, 6, 7, 8, 9, 10, 22, 86, 95, 129]. These m ethods allow a probability density function to be 

defined for each state variable. From these functions it is possible to calculate the 

probability that a given state variable is above or below a certain limit. In order to be able
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to use these methods, accurate probability density functions must be available that describe 

the random and systematic m easurem ent and pseudom easurem ent error variations. These 

functions are not available in enough detail at present for water distribution system 

monitoring.

A method based on matrix condition num ber is proposed by Edelmann in [53]. The 

condition num ber ( see [76] for more detail on matrix condition numbers) of the Jacobian 

matrix J,  when this is square and non-singular, is suggested as a measure relating the error 

in the state estimates to the error in the measurements. For the case when J  is non-square 

a different relationship to the one used in [53] must be derived, [76, 79] provide details of 

how this can be done. In this sense, the condition num ber gives a measure for the quality 

of a particular measurem ent set. As only one value for the quality of this m easurem ent set 

is provided by this m ethod it cannot be used to produce absolute bounds for each 

individual state variable as is required by confidence limit analysis.

4.3. SOURCES OF UNCERTAINTY

4.3.1. Model inaccuracy

For a water distribution system with its scale and complexity, a simplified model must 

be used. Otherwise, real-time simulation becomes impractical. This simplification inevitably 

leads to inaccuracy. Many authors have tackled the problem of ensuring that the network 

model accurately reflects the real distribution system. Some of their conclusions arc 

reported below.

Allen, in [11], provides a valuable insight into the process of network model 

construction, from initial conception to model use and calibration. The suggestions and 

conclusions made in this paper are based on experience in modelling a real network. The 

modelling process is broken down into three stages - planning, performance and practice - 

with the methodology of each examined closely. Im portant points made in this paper



include: the need for discussion with experts, setting of objectives for the model is 

required, it must be ensured that records are correct, models must be calibrated and 

recalibrated regularly and the model requires updating as it is being used.

In 1973 an AWWA committee was set up to examine research and development 

needs for water distribution. Its conclusions, published in [12], identified that one area 

where further research was required was in ensuring accuracy of network models and 

modelling techniques. This request prompted considerable research activity. Eggener and 

Polkowski, in [54], examined the the impact of modelling assumptions such as 

skeletonisation, load consolidation and assumed values for pipe friction coefficients. They 

identified C-values as the weakest piece of information in water network models but 

suggested that "any practical degree o f accuracy can be attained in modelling distribution 

networks if  enough effort is put forth to develop input data." Other authors [25, 33, 91, 108, 

109, 128, 143, 144, 145, 146] also examine the accuracy of network modelling. Shamir and 

Howard [128] look at model accuracy and discuss this in terms of requirem ents for 

engineering analysis. Walski in [143, 144, 145, 146], Ormsbee and Wood in [109], Lansey 

in [91], Ormsbee and Chase in [108], Coulbeck in [34] and Cesario and Davis in [25], 

explore the topic of network calibration. This is the process of adjusting model parameters, 

usually pipe C-values or friction factors, so that they fit observed data. In these papers the 

am ount and type o f data that is required for a calibration study is set out and formulae for 

C-value adjustments are presented. Walski [143] also acknowledges the influence of 

uncertainty about assumed loadings in calibration and suggests how this should be 

accounted for in his procedure.

The research work discussed above provides very useful m ethods for reducing model 

inaccuracy. Once the methods described have been employed, the network model has been 

constructed accurately and calibrated to fit observed data, there will still be a small amount 

of residual inaccuracy. This is unavoidable but must be acknowledged. A distinction must



be made between the uncertainty caused by model inaccuracy and that caused by errors in 

m easurem ents and in predictions of nodal consumptions. Model accuracy is to some extent 

constant, whereas m easurem ent and pseudom easurem ent errors vary randomly with time 

and with the state of the system. In general terms, model inaccuracy introduces systematic 

errors and measurem ent and pseudom easurem ent errors introduce random noise. Of 

course, systematic metering errors play a part but the random noise, particularly in the 

nodal consumption errors, is dominant. For this reason it is more informative to treat the 

two sources of uncertainty - model and m easurem ent - separately.

The problems of network calibration and model accuracy have received much 

attention in the literature. This research work has not been matched by researchers 

examining the problems of m easurem ent and pseudomeasurement uncertainty. It is this 

other side of the coin that is now addressed.

4.3.2. Uncertainty in nodal consumption predictions

Predictions of the consumption at each node in the network make up the bulk of the 

m easurem ent data used in water distribution system simulation. The unpredictability of 

water use on an individual or nodal basis makes this type of data very unreliable. As a 

result much of the uncertainty is introduced from this source. Estimation of total water 

usage for the network as a whole or for a large num ber of consumers can be carried out 

quite accurately [124, 131]. The effects of random variations of individual use are evened 

out when predicting at this scale. When the scale of prediction is reduced to a nodal level, 

with smaller num bers of consumers considered, accuracy suffers. Typically, an individual 

consumer will take its water in just a few short spells throughout the day. This statem ent 

may not be true for industrial users but is valid for domestic users who account for the 

bulk of demand. This extreme unpredictability makes estimation of the demand at a node 

for a particular instant of time very difficult.



There are many suggestions for how nodal consumptions should be predicted ([3, 

133] for example). Typically, these involve splitting usage into two or more classes, 

domestic and industrial for instance. A daily demand profile for each type must be given 

and this multiplied by the amount of each class’ consumption. For example, multiplying 

average individual use by the nodal population for domestic consumption classes. On top 

of this consumption is an am ount of unaccounted for usage, through leakage for example. 

Adding each of these terms together will result in a predicted nodal consumption. The sum 

of all of these, over all nodes in the network, should equal the total water input to make 

the system balanced. These nodal predictions only give an average expected demand. The 

real figures may be considerably different. For a small node the demand may be 100% in 

error. Generally speaking, the larger the demand the more accurate, in relative terms, such 

a prediction will be. Although, even for the largest nodes an accuracy of only 30% would 

not be unreasonable.

4.3.3. Measurement uncertainty

A greater monitoring accuracy for water distribution systems can be achieved by 

supplementing the nodal prediction estimates with real m etered values. Meters can be 

installed in the network and linked to the telemetry system to provide real measurem ent 

data in real-time. Meters themselves are never fully accurate but are generally more reliable 

than are predictions of nodal consumption and other pseudomeasurements. Pressure and 

flow m eters are supplied with the m anufacturer’s specifications on accuracy and, when 

calibrated properly, should operate within these limits. These accuracy specifications prove 

very useful when defining the m eters’ accuracy. In [74], Hayward gives a useful account of 

the different types of m eter that may be used in water system m onitoring and the accuracies 

that can be expected with these.
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Generally, the addition of a m eter to the network will increase the accuracy of the 

state estimates. As an example, consider the effect of adding a pressure m eter at a node in 

the network. It is clear that the pressure at this node can now be estimated more accurately, 

provided, of course, the m eter is accurate enough. The pressure estimates in the 

neighbouring nodes will also show an improvement, but the amount of im provem ent will 

decrease as distance from the m eter increases. The exact extent of the m eter’s region of 

influence will be dependent on, among other things, the accuracy of the nodal consumption 

estimates in the neighbouring nodes, the accuracy of the flow estimates in this area, pipe 

sizes and the presence of any other meters near by. The flow variables close to the new 

pressure m eter may also show an im provem ent in accuracy, although this will not be as 

marked. In a similar way, the addition of a flow m eter to the network will have an effect in 

reducing the potential error in the neighbouring flow and pressure variables. Although the 

region of influence may have a different shape and the flow and pressure variables will be 

affected to a different degree.

The num ber of real meters in the measurem ent system and their accuracy are not the 

only factors that effect the im provem ent in state estimate accuracy. The distribution of 

these m eters throughout the network is also very important. If all of the meters are placed 

in one region of the network then it will be possible to obtain accurate state estimates for 

variables in this region, but the accuracy of variables in other regions may be poor. This 

distribution effect is complicated further by the network’s topology. For example, a meter 

placed in a weakly connected region of the network will have little influence on the 

accuracy of state variables elsewhere in the network. Similarly, a flow m eter may have a 

greater impact if it is placed in a pipe which has a large flow, as this will mean that a larger 

proportion of the water flowing through the network is being measured. A combination of 

m eter distribution, m eter accuracy and network topology may mean that certain meters are 

redundant. That is to say, the accuracy of system variables will not be adversely affected by 

the removal of such a meter. This situation occurs when a m eter is measuring a variable



that can be estimated more accurately using data from other meters in its vicinity.

The operating state of the system can have a large effect on the way in which the 

m easurem ent uncertainty is passed on to the state estimates. In many water networks the 

flow pattern can change considerably throughout a day’s operation. The accuracy of nodal 

consumption estimates may similarly alter as a result of these changes. Also some flow 

meters have an accuracy that is dependent, in absolute terms, on the size of the flow they 

are measuring. Consequently, one particular measurem ent configuration may provide 

differing levels of accuracy under different operating conditions or at different times of the 

day.

4.4. THE UNCERTAIN NETWORK MODEL

In this section, the problem of introducing uncertainty into the deterministic network 

equation, (3.2), is addressed. The first problem to be solved is how should the uncertainty 

in the measurem ent data and in the control or state variables be presented. The accuracy of 

each variable m ust be assessed independently as a particular m eter configuration will mean 

that some variables can be estimated accurately and others poorly. Similarly, the accuracy of 

each m easurem ent or a pseudom easurem ent value should be expressed independently to 

reflect the difference in accuracy between different types of m eter and between metered 

values and pseudomeasurement values. So, it is not possible to describe how accurate a 

m eter configuration is just by one value.

The m ethod chosen for representing the measurem ent uncertainty is to specify upper 

and lower bounds for each measurem ent and pseudomeasurement value. This uses the 

unknown-but-bounded concept for observation error introduced by Schweppe in [124]. If 

z° is the observed m easurem ent vector, made up of the m eter readings and the estimated 

pseudom easurem ent values, then a lower limit, z1, and an upper limit, zu, can be specified. 

Generally, z1 and zu are calculated by subtracting and adding the m easurem ent error vector,



ez, from and to z°. So, z1 = z ° -ez and zu = z°+ez, where ez is a non-negative, m - 

dimensional vector. This formulation of uncertainty derives from the recognition that the 

observed measurem ent vector is not necessarily the true measurem ent vector (the vector 

that would be obtained with completely accurate meters and pseudom easurem ent 

predictions), but the true vector is contained within a region bounded by the accuracy of 

the m easurem ents and pseudom easurem ents which is specified by ez. This is summarised 

by the following inequalities:

zf < zfl = z°+eI, i— 1

z\>  z i = z ° - e f ,  (4.2)

where z ^ R 1" is the true m easurem ent vector.

Elements of the ez vector can be derived from the m anufacturer’s accuracy 

specifications in the case of real measurements. For nodal consumption predictions, a 

thorough investigation must be made into water use patterns for each class of node and at 

each time of day. The nodes being split into classes according to type of user (industrial or 

domestic etc) and according to population or am ount of consumption. These studies, as 

well as providing the traditional demand profiles, will give values for the variance of 

demand. This information can be used to derive the upper and lower demand profiles for 

each node. For pseudomeasurements other than nodal consumption estimates a similar 

procedure will yield the desired values and bounds.

The deterministic network equation, (3.2), must be altered to take account of the 

m easurem ent uncertainty. In the deterministic situation it is assumed that the true 

m easurem ent vector, z \  can be approximated by z°, the observed m easurem ent vector. In 

the non-deterministic or uncertain model, all that it is assumed is that the true 

m easurem ent vector is contained in the region bounded by z1 and z11. A m easurem ent set 

M  is defined as a collection of variables in the system for which real m etered values or 

predicted pseudomeasurements are available. This set will include loads for which nodal



consumption predictions are available, and pressure and flows that are metered. A 

distinction is made between the m easurem ent set M and the collection of values that this 

set would produce for a particular operating state. This measurem ent set at a particular 

instant in time, or for a particular assumed operating state, will produce a measurem ent 

vector z°eR m, where m is the cardinality of M  . With the m easurem ent set M  producing 

m easurem ent vector z°, the set of feasible m easurem ent vectors is given by:

Z (M ,z°) := (ze R m : z/< z;< z/\ i= 1 } (4.3)

where m is the cardinality of the m easurem ent set M  and z1 and zu are defined as above. 

Z (M ,z°) just defines a region of R ,n in which the true m easurem ent vector is contained. 

This region is the smallest that can be obtained within the limits of accuracy of the 

m easurem ent set. In this format, the network equation of (3.2) is replaced by the following 

set inclusion:

g(x) e Z ( M  ,z°) (4.4)

following from the assumption that the true measurem ent vector is unknown but contained 

in Z (M ,z°). This gives the set of feasible state vectors, X (M  ,z°), for m easurem ent set M 

and m easurem ent vector z°, as:

X ( M  ,z°) := (x eR n : g (x )e Z  (M ,z°)} (4.5)

Equation (4.4) will be referred to as the uncertain network equation with X ( M  ,z°), of 

(4.5), representing the state uncertainty set. For the uncertain network equation there is no 

unique operating state that can be calculated. All that can be defined is a set of possible 

operating states resulting from the set of possible m easurem ent vectors. No preference is 

placed on any of these, all are assumed to be equally likely. This reflects the lack of 

preference for a particular m easurem ent vector in Z (M ,z°). In [102], Norton justifies this 

position in the following way: "Lack o f a unique estimate of 0 (x in the notation used above) 

is at first worrying, but we can reassure ourselves by reflecting that engineering design is largely a



matter o f tolerancing for adequate performance in the worst case." Also, this method does not 

make unrealistic assumptions about the probabilistic properties of the measurem ent data, its 

expected values or its probabilistic variation. The unknown-but-bounded treatm ent of 

m easurem ent uncertainty leads to this simple and flexible presentation of state estimate 

uncertainty, without making unrealistic measurem ent assumptions. Feasible state estimates 

are specified by a sharply defined set, X  (M ,z°). This fits neatly with many of the intended 

uses of state estimates, in worst-case control for instance. Is the system operating in an 

acceptable range? Has the system failed? If so, where is the fault located? Questions such 

as these can be answered more easily and categorically when the range of possible operating 

states of the system can be clearly defined.

When faced with measurem ent uncertainty in state estimation the most common 

response of engineers and researchers has been to try and produce estimates that best fit 

the m easurem ent data in some way. Some algorithms and techniques for deterministic state 

estimation under m easurem ent noise are presented in [44, 77, 86, 125, 129, 130, 136]. 

The advantages of deterministic over uncertain state estimation - principally that only one 

estimate is presented - must be balanced by the lack of indication of how accurate this 

estimate is. Inherent in some of these m ethods [86, 129, 136] are assumptions, similar to 

those explicitly formulated by Schweppe and Wildes in [125], about the statistical properties 

of the m easurem ent errors. For instance, Schweppe and Wildes assume that measurem ent 

error is random with a zero mean and can be modelled by a positive definite symmetric 

matrix. Under assumptions like these, or similar implicit assumptions, it can be claimed 

that these deterministic state estimates are ’better’ than any other feasible state. If, on the 

contrary, such assumptions are not valid then no particular feasible state can be identified 

as a better estimate than any other. This point is made in [16, 59, 98, 100, 102, 103] where 

the validity of some of these statistical assumptions is questioned. Some examples that 

show how the statistical assumptions made by Schweppe and Wildes and others may be 

invalid are now given: (i) A m eter may have a systematic error that causes it to give



consistently over or under estimated readings. This will invalidate the zero mean 

assumption about m easurem ent error, (ii) Leakage at a node may go unnoticed which will 

result in under estimated consumption predictions for this node. This will again invalidate 

the zero mean assumption about m easurem ent error, (iii) An incorrect prediction for nodal 

population may result in consumption predictions to be consistently high or low. (iv) Some 

unconsidered external factors, such as weather conditions, may be influencing the water use 

throughout the whole network, resulting in erroneous nodal consumption estimates. This 

type of factor will invalidate assumptions about the statistical distribution of m easurem ent 

errors.

The probabilistic approach, suggested in [4, 5, 6, 7, 8, 9, 10, 22, 86, 95, 129] suffers 

from a similar drawback. This work is very thorough but requires much information about 

the probabilistic nature of the m easurem ent uncertainty. As is observed by Allan et al in [4, 

6, 9], it cannot be assumed that m easurem ent errors have a simple statistical distribution 

pattern such as the normal distribution. Examples given in these papers show distributions 

that have several peaks. Also, it is made clear that error distribution from different sources 

are strongly correlated. These two factors mean that such a technique cannot be applied 

effectively to real-time monitoring of water distribution systems because the probability 

density functions for measurem ent error can only be generated by sampling measurements 

over a considerable period.

To make the uncertainty in state estimates more accessible, uncertainty intervals or 

confidence limits, similar to those for m easurem ent values, can be derived in the following 

way. Let

x j  := min x it z= l,...,n  
xeX (A f,z° )

x f :=  max x if ( 4 c^
x e X  (M ,z°)  K J

The vectors x 1 and x u will provide lower and upper bounds on the state vector x in the



same way that z1 and zu did for the m easurem ent vector. For each individual variable, the 

interval (x/,x/0 is referred to as the uncertainty interval for the i !h variable and x j  and x “ 

are referred to as its confidence lim its. These uncertainty intervals or confidence limits are 

as tight as can be achieved from the m easurem ent uncertainty. Calculating these bounds - 

the process referred to as confidence limit analysis or uncertainty quantification - is dealt 

with in much more detail later in this chapter. If X * ( M ,z°) is the set defined by these 

bounds, ie

X* ( M  ,z°) := {xeR" : xj< x{-< x /\ i= 1 ,...,« } (4.7)

then it must be noted that X * ( M tz°) may not be the same as X ( M ,z°). Clearly, 

X ( M  ,z°)cX *(M  ,z°), but not every combination of values that are each feasible for the 

individual state variables form a feasible state vector. Let Z *(M ,z°) be the subset of R ,n 

onto which X  (M  ,z°) is mapped by g(.) the network function. Then

Z*(M  ,z°) := {ze Rm :z = g (x ) ,  x eZ (M ,z°)}  (4.8)

Z*(M  ,z ° )c Z  (M ,z°), but these two sets are unlikely to be equal. There may be a 

ze Z (M ,z °) for which there is no x (neither in X (M ,z°) nor R n) for which g (x )= z . In 

other words, there may be vectors in Z ( M ,z°) that are inconsistent for g (.). These two 

remarks are demonstrated in fig 4.1 for the 2-dimensional case.

Uncertainty bounds or confidence limits for the derived state variables, defined by

(3.3), can also be constructed. Let Y (M  ,z°) be defined as

Y(M,z°) := {yeRN : y = / ( x ) ,  xeX(M ,z°)} (4.9)

Y ( M  ,z°) will be referred to as the derived state uncertainty set and corresponds to 

X ( M  ,z°) which is the state uncertainty for the independent state variables. Upper and 

lower bounding vectors, y1 and yu, can be defined for Y (M ,z°), where:

y! := min y; , i= l ,. . . ,N
y e Y ( M , z ° )
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Fig 4.1. Relationship between X and X, and between Z* and Z.

x*nvf.z°)

Z(M,z )

X(M,z°)

Z (M,z )

X£M,z -  The state uncertainty set.
X (M,z ) - The smallest box containing the state uncertainty set. 
Z(M,z 0) - The measurement uncertainty set.
Z  (M,z°) - The image of the state uncertainty set when mapped 

by the network function g(.)
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y\l := max y; , i= l,... ,N
y e r ( M , z ° )

(4.10)

(yLyD is called the uncertainty interval for the i th derived variable and yf and y “ are 

referred to as its confidence limits. A further set can be defined:

The set Y*( M ,z°) is the ’smallest box’ containing 7 (M ,z°). The definitions (4.9), (4.10) 

and (4.11) correspond directly to the definitions (4.5), (4.6) and (4.7), and represent state 

uncertainty in terms of the derived state vectors rather than the independent state vectors.

The differences between the two sets X ( M  ,z°) and X*( M ,z°) and between the two 

sets 7  (M ,z°) and Y * ( M , z°) should always be recognised. The uncertainty intervals or 

confidence limits described by X*(M ,z°) and Y * ( M ,z°) provide a simple and convenient 

way of presenting state uncertainty at the level of the individual variables. Generally, the 

sets X  (M ,z°) and Y (M ,z°) will be highly complex subsets of R n and RN respectively, 

which have no simple or concise characterisation. Conversely, a pair of vectors is all that is 

required to describe X*( M ,z°) and Y*( M ,z°) completely, ie the upper and lower bounding 

vectors in each case. This presentation of state uncertainty is also more accessible for 

possible applications such as worst-case control or design.

4,5. CONFIDENCE L IM IT  ANALYSIS

The process of calculating uncertainty bounds for the state estimates, which result 

from the m easurem ent and pseudom easurem ent uncertainty, is referred to as confidence 

limit analysis. Based on the model of uncertainty, described in the previous section, 

mathematical methods for calculating these confidence limits are now presented.

It can now be seen how confidence limit analysis can be formulated as a series of 

mathematical optimisation problems. For each of the independent state variables, i -  1,...,«

Y* (AT ,z°) := (ye RN : £..................... . )
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x j  = min X[

subject to x e X ( M  ,z°), and 

x? = max xi
(4.12)

subject to x e X ( M  , z ° )

This follows from equation (4.6). Confidence limits for the derived state variables can be 

found by a similar set of optimisations. For i= l,...,N

y/ = min yt

subject to ye  Y (M ,z°), and 

yj* = max y,-
(4.13)

subject to ye Y (M ,z°)

In equation (4.13), the condition that y e Y ( M  ,z°) is equivalent to the condition that 

y = / ( x )  for s o m e x e I (M  ,z°).

The nature of the network equations in g(.) means that the optimisation problems of 

(4.12) and (4.13) are non-linear. Therefore, the choice of optimisation technique to be 

used is not at all clear. With n , the num ber of independent state variables, N , the num ber 

of derived state variables, and m , the num ber of measurements, confidence limit analysis 

requires 2n + 2iV non-linear optimisations each subject to 2m constraints (the 2m 

constraints are supplied by the lower and upper bounds on the m easurem ent uncertainty). 

For a realistic water distribution system there may be several hundred independent state 

variables and several hundred m easurem ents and pseudomeasurements. Therefore, 

confidence limit analysis is a highly computationally intensive task. For this reason, any 

optimisation m ethod used must be both fast and efficient. Savings in computational run­

time can be made by exploiting the special structure of the network model, which results in 

network equations that are sparse (ie each individual equation is dependent on only a 

relatively small num ber of state variables). Also, with problems of this size, numerical 

instability in the solution algorithms can cause problems. Several different confidence limit 

algorithms have been developed with these factors in mind.



In the remainder of this section the confidence limit algorithms are presented. These 

fall into two categories: non-linear and linearised methods.

4.5.1. Monte Carlo method

In normal use, deterministic state estimators produce one state estimate for one 

measurem ent vector. Used in this way they give no indication of how a state estimate may 

vary in response to variations in the m easurem ent values. Alternatively, if a deterministic 

state estimator is used repeatedly for a whole range of m easurem ent vectors then some 

indication of state estimate variance is provided. It is this idea that forms the basis to the 

M onte Carlo approach to confidence limit analysis. A large num ber of feasible state 

estimates are generated, as randomly as possible, and from these the state estimate 

confidence limits are estimated. The larger the num ber of random feasible state estimates 

the more reliable the confidence limits.

Let z1 be a measurem ent vector, selected randomly from the set Z (M ,z°) of all 

feasible m easurem ent vectors, and let x l be a deterministic state estimate calculated from z1. 

x1 is a feasible state estimate if g (x ‘)e Z  (M ,z°). This follows from the definition of 

feasible state vectors given in equation (4.5). It must be noted that g (x !) is not necessarily 

equal to z*. If zl is not a consistent vector, then there is no state vector x for which 

g (x )= z l. In fact, if Z*(M ,z°) is defined as in (4.8), then Z *(M ,z°)=Z (M ,z°) only when 

M is a minimal m easurem ent set (ie if M  is an observable m easurem ent set and has no 

observable subset). For a sequence, z1, . . . . ^ ,  of m easurem ent vectors selected randomly 

from Z (M ,z°), a sequence of sets X 1, . . . , X k can be defined, with

X j := {x'eR" : g ( x l) e Z  (M ,z°) f o r  some ie fl,...,)} } , j -  (4.14)

where x 1 is the state estimate calculated from z*. X j is the set of feasible state estimates 

generated by the sequence of m easurem ent vectors z1,....,zJ. This sequence of sets is such 

that X j c X kc X ( M  ,z°) for all as only feasible state estimates are contained in
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X j . For a large num ber, k ,  of randomly selected m easurem ent vectors it can be assumed 

that X k is approximately equal to X  (M ,z°). In other words, as k —>°o, X k -*X (M ,z°). This 

assumption suggests a M onte Carlo simulation approach to confidence limit analysis. A 

similar sequence of sets, Y 1, . . . ,Yk , for the derived state variables can be defined, with

Y> ■.= {yeRN : y= / ( * ) ,  x e X ') ,  ; = 1 . k (4.15)

Y j , for j= l,...,k , is the set of feasible derived vectors generated by the sequence of 

measurem ent vectors i 1, . . . It can also be claimed that as k ~*°°, Y k -^Y  (M ,z°).

Before an algorithm description is given, some implementation practicalities must be 

explained. Firstly, the choice of state estimator must be consistent throughout. The actual 

estimator used is of no importance, provided that it is unbiased and that it can guarantee 

convergence in a high proportion of cases, because all state estimates are checked for 

feasibility before being used to update X j or Y>. A sequence of random m easurem ent 

vectors can be selected from Z (M ,z°) by using a random num ber generator. For example, 

a sequence of random numbers, r{,  . . .  , r Jm , scaled to be between 0.0 and 1.0, can be 

generated (where m is the num ber of elements in the m easurem ent set M ) .  From this 

sequence a random m easurem ent vector zJ can be constructed with

z'l = z\ + r/.(z“-z /) ,  i= l,...,m  (4.16)

where z1 and zu are the lower and upper bounds for Z (M ,z°). zJ+1 can be constructed in a 

similar way from a new sequence of random numbers. A final consideration is the storage 

of the sets X j and Y j of feasible state and derived state vectors at the j th stage. The large 

num ber of these vectors means that it is impractical to store them all, fortunately, this is 

not necessary. For X ',  only two vectors need be stored, these are x-*1 and xJu, the lower and 

upper bounding vectors for the current set of feasible state estimates, X j . These vectors 

will be updated whenever a new feasible vector, not contained in any of the X> ’s, is found. 

Similarly, only two vectors are required to store the set T ',  j =  1,...,&. The M onte Carlo 

confidence limit algorithm can now be described.
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M onte Carlo confidence lim it algorithm

1. Select a large num ber, k .  This will limit the num ber of simulations to be carried 

out. Advice on how large k should be is given below. Set i= 0.

2. Set i = i + 1.

3. Select a sequence of m random numbers, r \ ,  . . . , r lm, and use these to construct a 

random m easurem ent vector z* from Z (M ,z°) as described in (4.16)

4. Calculate a state estimate, x 1, for z1. If g (x !)e Z  (M ,z°), then use x 1 to update 

xn,x lu,yn and ylu. Otherwise reject x 1 as infeasible.

5. If i < k , go back to step 2. Otherwise stop.

In this algorithm description no advice is given on the num ber of simulations that are 

required to make X k an accurate approximation to X ( M  ,z°). The short answer is as many 

as possible. A more realistic'”suggestion is to select an upper limit on the am ount of 

computing time that is available, many hours will be required for large networks, and set k 

accordingly. The very large computation times that are required, means that the M onte 

Carlo confidence limit algorithm is not suitable for routine use. When there is a significant 

degree of m easurem ent redundancy a large proportion of the state estimates have to be 

rejected as infeasible. This extra complication further adds to computation time. It is 

however, possible to refine the algorithm to improve its run-tim e performance. After 

selecting a random m easurem ent vector from Z (M ,z°), it can be tested against the balance 

constraint before being passed to the state estimator. The balance constraint ensures that 

the am ount of water leaving the network, as defined by the nodal consumption predictions, 

is equal to the amount of water entering the network, as defined by the inflow 

m easurem ents or predictions. If a m easurem ent vector fails the balance constraint then it is 

pointless trying to find a state estimate for it as this may be rejected at a later stage. The



balance constraint pre-check has the effect of reducing the num ber of unnecessary calls to 

the state estimator.

As state estimation accounts for the majority of the computation time in this 

algorithm, a significant im provement to run-tim e can be made by using a fast state 

estimator. One such estimator is MINSTEST, described in Chapter 3. This makes use of 

only a minimal num ber measurem ents and runs approximately four times faster than an 

equivalent state estimator designed for an over-determined m easurem ent set. To make use 

of this estimator, a minimal m easurem ent subset M ' of M m ust be selected. This will have 

n elements (one for each independent state variable) and must be observable. Then, in 

step 3 of the algorithm, Z (M ,z°) must be replaced by Z (M ',z°). The rest of the algorithm 

will remain unchanged. (Note: the network function g(.) in step 4 will be the one 

consistent with the full m easurem ent set M and that Z (M ,z°) cannot be replaced by 

Z (M ',z 0)) . The observation that the final bounds for X k and Y k are reached for 

m easurem ent vectors that have individual m easurem ents on the bounds of Z ( M ,z°) for a 

large num ber of the m easurements, leads to a final suggestion for improvement. If 

measurem ent vectors are selected so that n of their m elements are on the bounds of 

Z (M  ,z°), then a higher proportion of the feasible state estimates will be extremal or closer 

to the bounds in X { M ,z°). Care must be taken to ensure randomness of measurem ent 

vectors if this modification is adopted. In each simulation the n bounded m easurem ents can 

be selected randomly from the m members of M , this safeguard will improve the 

randomness of the m easurem ent vectors and hence the reliability of the algorithm.

M onte Carlo simulation is obviously slow computationally, but despite this is useful in 

some situations. The condition that only feasible state estimates are used to update 

x ll,x lu,yil and y,u makes the procedure mathematically reliable and ensures that these 

bounds can be attained. It has been used to provide a yardstick, against which the accuracy 

of all other confidence limit algorithms can be compared. Unfortunately, it is impractical in



many applications.

Other more practical methods are described in the next sections. Firstly, the problem 

is linearised and a linear version of the state uncertainty model is presented. This appears in 

section 4.5.2. In sections 4.5.3, 4.5.4 and 4.5.5, three confidence limit algorithms, based on 

this linear uncertainty model, are presented. These three m ethods are: the linear 

programming method; the sensitivity matrix method and the ellipsoid method. In section 

4.5.6, the linear confidence limit algorithms are extended so that they can be used for the 

derived state variables.

4.5.2. Linearised confidence lim it algorithm s

For real-time and routine design applications, confidence limit algorithms must be 

able to run in a few seconds. To achieve this level of performance approximate methods 

must be considered. In this section the uncertainty problem is linearised. Based on this 

linearisation, some fast and efficient confidence limit algorithms have been designed. These 

are described in sections 4.5.3, 4.5.4 and 4.5.5. Initially in this section, the mathematical 

formulae and the algorithms refer only to the uncertainty in the independent state vector, 

x, and do not mention the derived state vectors. In section 4.5.6 these omissions are 

rectified, with the algorithms extended to allow confidence limit analysis for the derived 

state variables.

Suppose that x is the state estimate calculated from the m easurem ent vector z°, where 

z° is defined as in section 4.4. The non-linear network function, g ( .) , can be linearised 

around x using a first order Taylor approximation [13, 65] to give:

g(x)  ~ J. (x -x )  + g (x ) (4.17)

for all state vectors close to x. In (4.17), J  is the Jacobian matrix evaluated at x. g (.) can 

be linearised around any state vector, x, this need not necessarily be the state estimate for 

z°. It is better, however, to use a value for x that is in some way central to the set of
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feasible state vectors. This is because, the approximation used in (4.17) is more accurate 

for values of x for which l lx -x l l  is small. The best estimate available for the centre of 

X ( M  ,z°) is the state estimate calculated from z°. In section 4.4, a feasible state vector was <§

described as one for which g (x )e Z (M ,z ° ) . This condition can be linearised using (4.17) 

to give a linear approximation, X l ( M ,z°), of the state uncertainty set X ( M , z°). This is 

defined as follows:

X \ M , z°) := (xe R n :7 . ( x - x )  + g ( x ) e Z  (M ,z0)} (4.18) I

X l(M ,z°) will be referred to as the linearised state uncertainty set. Replacing x - x  by dx 

and using the definition of Z (M ,z°) given in (4.3), X*(M ,z°) can be redefined as

X 1( M ,z°) := {x g R "  : x = x+ dx , z*-^(x)<  / .  dx< zu-g (x )}  (4.19)

It is easy to see that these two definitions, (4.18) and (4.19), of X l(M ,z°) are equivalent.

For the reasons given in section 4.4, the set X l(M ,z°) will not be calculated explicitly.

Rather, the smallest ’box’ or orthotope containing X \ M ,z°) is sought. This set will be 

denoted by X 1* (M ,z°) and referred to as the linearised state uncertainty box. Following the 

definition of x1 and x u in (4.6), lower and upper limits for X ^ M .z 0) can be defined as 

follows:

xiu := min x,-, /= l ,. . . ,n
xeX^M .z0)

x ' “ ;= *>• i= 1 ..... » (4.20)xeXHM.z0) J

The definition of state uncertainty has been linearised in this way to allow confidence limit 

algorithms based on linear programming methods. Calculating the bounding vectors of 

X x(M ,z°) can easily be formulated as a linear programming problem. To allow this some 

new notation is introduced:

dz1 := z - g ( x )  (4.21)

dzu := zu- g ( x )  (4.22)

I

I



57

DZ  (M ,z°) := {dzeRm : g (x )+ d zeZ  (M  ,z0)} (4.23)

D X \ M  ,z°) := {dxG Rn : x+dxeZ *(M  ,z°)} (4.24)

D X l( M ,z°) is just the set X l( M ,z°) shifted by x, DZ (M ,z°) is the m easurem ent

uncertainty set shifted by g (x ) and dz1 and dzu are the bounding vectors for this set. Let

dx1 and dxu represent the ’tightest’ lower and upper bounds for the set D X l(M ,z°). Then, 

the i th elem ent of dx1 can be found by solving the linear programming problem

minimise dxi
i „ (4.25)subject to dz < / .  dx< dz

Similarly, the i th elem ent of dxu can be found by solving the corresponding linear 

programming problem

maximise dx;
, , (4.26)

subject to dz'< / .  dx< dzu

Hence by performing 2n linear programs, the vectors dx1 and dxu can be constructed. Once 

dx1 and dxu have been calculated, it is a simple m atter to construct the bounds, x 11 and x lu 

for X x(M ,z°) as

x 11 = x + dx1 (4.27)

x lu = x + dxu (4.28)

Three special cases can be identified:

(i) g (x ) = z° where z° is the m easurem ent vector from which x was calculated as a state 

estimate. When this situation occurs, dzu = - d z l = e z, in other words, Z (M ,z°) is 

symmetric about g(x) This symmetry is carried over to the linearised state uncertainty set 

Z :(M ,z°), hence dxu = - d x 1. This means that only n linear programming problems need 

be solved, those in (4.25) say. It must be noted that a general m easurem ent vector z° will 

suffer from inconsistency, which means that there will be no state vector, x, in R n for 

which g(x)  is equal to z°.



(ii) M  is an observable m easurem ent and no subset of M  is observable. In other words,

M  is a minimal m easurem ent set. When this is the case, all z in Z (Af ,z°) are consistent

and so z°, in particular, is consistent. Hence there is an x e R n for which g(x)=z°. If x can 

be found, only n linear programs need be performed (this follows from the previous special 

case). Furtherm ore, when /  is the Jacobian matrix for M , evaluated at x, and M  is a 

minimal measurem ent set, J  is square and non-singular. Hence there exists an inverse, / -1 , 

for J . It will now be shown how the upper and lower bounds for D X l(M ,z°), and hence 

those for X x( M ,z°), can be calculated from the individual rows of J~ l t without help from 

linear programming methods. Before this can be done, two lemmas must be proved:

Lemma 4.1 Let M  be a minimal observable m easurem ent set, z° be an observed 

m easurem ent vector from M , x be the state estimate for z° and J  be the non-singular

Jacobian matrix defined by M and x. Then, for D X 1(M ,z°), defined as in (4.24),

Proof By definitions (4.21), (4.22), (4.24) and (4.19), dx e D X 1(M ,z°) if and only if 

d^<  /.dx<  dzu. Putting dz=J. dx, dz‘< J.dx< dzu when and only when J~l .dz=dx and 

dz‘< dz< dzu. Hence, D X l( M ,z°) is equal to the set {dxeRn : d x = /“ 1.dz, 

dz'< dz< dzu} and the lemma is proved.

Lem m a 4.2 Let M be a minimal observable measurem ent set, z° be an observed 

measurem ent vector from M , x be a state estimate for z° and let J  be the non­

singular Jacobian matrix defined by M and x. For z '= l,....,n , the i ‘h elem ent of the 

lower bounding vector for D X 1(M ,z°), dx/, is given by

dxj = a ‘.dz*, where

D X \ M , z°) = {dxeRn : d x = /_1.dz, dz'< dz^ dzu} (4.29)

dzf  if a)< 0.0 
dzj otherwise (4.30)



where a* is the i th row of the matrix J ~ l.

Proof By definition (4.25), dxj is the minimum value for dxt subject to dx being a 

m ember of D X 1( M ,z°). Using lemma 4.1, this is the same as the minimum value of 

( / -1 .dz); subject to dz‘< dz< dzu. For any dz, (7-1.dz)t- = ( a ^ .d z ,  where a* is the i ih 

row of the matrix J~l . As dz'< dz< dzu is the only constraint on the elements of the 

vector dz, the minimum value of ( a ^ .d z  is equal to the sum of the minimum values 

of aj.dzj for j -  1 .  The minimum value of aj.dzj , subject to dzj< dzj< dzf  is just 

aj.dzj  or aj.dzj, depending on whether aj is less than or greater than 0.0, 

respectively. When aj=0.0, aj .dzj -  0.0 as well, so such elements do not contribute to 

the value of dxj. The lemma now follows.

Once the inverse of J  has been calculated, lemma 4.2 can be applied to each element 

of dx1 in turn, providing a straightforward way of calculating this vector that does not rely 

on optimisation methods. Because of the symmetry in this situation, as discussed in an 

earlier part of this special case, the upper bound for D X l(M ,z°), dxu, is equal to the 

negative of the lower bound. So, Lem m a 4.2 need only be applied n times. The bounding 

vectors, x 11 and x lu, are found by adding x to dx1 and dxu, by equations (4.27) and (4.28).

(iii) DX1(M ,z°), and hence X l(M ,z°), may be empty, even when Z (Af ,z°) is non-empty. If 

this situation occurs then Z (Af ,z°) is said to be inconsistent. This is reflected in the 

bounding vectors, by X i u< x ' 1 for at least one i in 1,..... « .

The linearised state uncertainty set, X l(M ,z°), is only an approximation to the true 

state uncertainty set, X (A f,z°). The question - how good an approximation is it? - now 

arises. To answer this question, an upper bound on the difference between and x i u - the 

upper limits on the feasible values for the i th state variable in X (Af ,z°) and Z l(Af ,z°), 

respectively - is derived. This is supplied by the next lemma:
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Lem m a 4.3 For a m easurem ent uncertainty set Z (Af,z°), where M  is a minimal 

measurem ent set and z° is an observed m easurement vector derived from M . Let x 

be the state estimate calculated from z° and let J  be the Jacobian matrix calculated at 

x. For the i th state variable, i e {1,...,«},

be?-Xilu\<  I la'll. I lei I (4.31)

where xj1 and Xilu are the upper limits for the i th state variable in the true and 

linearised state uncertainty sets respectively, a ' is the i th row of J~ l and e is a vector 

for which:

llell = <9( llx -x  II2) (4.32)

In (4.32), x is a feasible state vector in X  (M  ,z°).

Proof The first point to note is that as M is a minimal m easurem ent set, / _1 and a1 

are well defined. The lemma will be proved in two cases. In the first, it will be 

supposed that xf* > xt-lM and in the second it will be supposed that jc“ < xt-lM.

Case (i): x f  > x,-lM. Let x* be a vector in X ( M ,z°) for which the i th state variable 

attains its upper bound, ie x* is a vector for which x* = xf .  As x* is a feasible m ember 

of X ( M ,z°), there is a measurem ent vector, z*, in Z (M  ,z°) for which g(x*) = z*. A 

vector x** in X l( M ,z°) can be defined equal to / -1 (z * -^ (x )) + x. This is just the 

vector in X 1(M ,z°) associated with i* under the relationship given in the definition of 

X 1(M ,z°) by (4.18). The vector x** is a member of X l(M ,z°), so x** < x,lw, as X;lu is 

the maximum value that the i th state variable can take in X l(M ,z°). Hence

\xi~XiluI < bei ~ x,**I -  be*— x**I (4.33)

Attention is now focussed on the difference lx*-x**l. From the definition of x**,

be*-x**\ = be* -  [ / “ ' . ( z - g ( x ) ) ] f + I (4.34)

In the rhs of this equation, the vector z* appears, z* was defined as equal to g(x*).



The Taylor approximation of (4.17), gives g(x*) ~ g(x) + / .  (x * -x ). The ’ sign in this 

relation can be replaced by an ’= ’ sign if a small vector is included. That is, using a Taylor 

expansion

z* = g(x*) = g(x)  + J. (x*-x) + e (4.35)

for a vector e of order 0  ( I lx*-x 112) [65], Substituting for z* in (4.34) and cancelling gives

= l[7_1e]i I (4.36)

The i th elem ent of / _1e is simply (a l) r .e, where a1 is the i th row of / -1 . Combining (4.33), 

(4.36) with this last remark, and using the Cauchy-Schwartz inequality [101] it follows that 

\x“-X ilu I < I la1 11.1 le 11, which proves the lemma in this case.

Case (ii): < x,lM. Let x f be the vector in X 1(M ,z°) for which the i th variable attains its

upper limit. If z* is defined as equal to g(x) + / .  (x ^ -x ) and x ^  is the state vector in 

X ( M  ,z°) for which g (x ^ )  = z1̂ (this exists as M is a minimal m easurem ent set and so z1"

must be consistent), then a similar argument to that in case (i) gives:

I I  < Ixit- x ift  I < I la111.1 le 11 (4.37)

where a ‘ is the i th row of J~ l and I le 11 is of order 0  ( I Ix ^ -x  112). The result now follows.

It can be assumed, without loss of generality, that the Jacobian matrix is scaled so 

that 11/ II is of order unity. When this is the case, and when /  is not ill-conditioned, I la1 II 

will also be of order unity. This means that the maximum discrepancy between the upper 

limits for any of the state variables in X (M ,z°) and X x( M ,z°), respectively, is of order 

0  ( I Ix -x  112), where x is a feasible vector in X  (M  ,z°). In other words, the accuracy of the 

linearised state uncertainty set is of the same magnitude as that of the Taylor approximation 

in (4.17) and so the discrepancy between x u and x lu will not rise significantly when the 

confidence limit analysis problem is treated in this linearised form. Table 4.3, presented



later in this Chapter, gives an idea of the actual accuracy of the linearisation of the state 

uncertainty set for a realistic test network in a typical state of operation. The results of 

Lem m a 4.3 only provide an upper bound for the discrepancy between X ( M , z°) and 

X x(M ,2°), the true magnitude of this discrepancy will, in most cases, be much less than 

this bound.

Lem m a 4.3 provides bounds on the accuracy of the upper limits for the true state and 

the linearised state uncertainty sets. In a similar way bounds can be derived for the lower 

limits of these sets. Also, Lem m a 4.3 was stated for a minimal m easurem ent set. This is in 

fact the extreme case. For an over-determined m easurement set the state uncertainty sets 

will be smaller. So, the bounds of Lem m a 4.3 can also be applied in the over-determined 

case.

In the general case, 2n linear programs are required, each involving 2m constraints. 

There are many texts covering the topic of linear programming ([28, 123] for example), 

and many different linear programming algorithms. Perhaps the most common algorithms 

for this size of problem are variations of the revised simplex m ethod, which can be applied 

here. Unfortunately, a direct application of the revised simplex, or any similar linear 

programming algorithm, to this problem will be too time consuming. In the next section 

the linear programming problem involved in determination of the bounding vectors for the 

linearised uncertainty set is presented in a different format, allowing a more efficient 

implementation of the revised simplex method. After that, alternative approximate 

methods, not based on linear programming are presented.



4.5.3. L inear program ming method

In (4.25), (4.26), (4.27) and (4.28), the confidence limit analysis problem was 

presented in a linear programming format. This presentation, whilst being theoretically 

correct, is not amenable to practical implementation. In this section an improved format for 

this problem is presented. It will be assumed that the m easurem ent set M  is both 

observable and over-determined. If M  is not observable, then the state uncertainty set is 

unbounded. If M  is a minimal observable m easurem ent set, then confidence limit analysis 

can be performed more efficiently using the method given in special case (ii) of the 

previous section.

W ithout loss of generality, it can be assumed that the elements of the m easurement 

set M  are ordered so that the first n elements correspond to an observable set of 

measurements. For any m easurem ent vector, zeZ  (M ,z°), two new vectors can be defined. 

These are z "eR n, the vector consisting of these first n elements of z and zm~ne R Tn_n, the 

vector consisting of the remaining m - n  elements. In the same way define dz", (dz")1, 

(dzn) ue R n, and dzm-n,(dzm~n) 1 and (dzm-n) ue R m" n. New matrices J n and J m~n can also 

be defined, J n consisting of the first n rows of J  and J m~n the remaining rows.

Lemma 4.4 The maximisation of (4.26) is equivalent to

maximise (a1)7 - dzn

(dz")'< dz"< (dz")" 
subject to ( d7m -iy<  ./” - " ( , / " ) - i i<]zT'< (dzm- ”)u

where a1 is the i th row of ( / " ) “ 1

Proof The first point to note is that the observability of the first n measurements 

ensures that J n is non-singular. So a1 and are well defined. Let dzneR "

be a feasible vector by the conditions in (4.38). That is (dzny <  dz"< (dzn) u and 

(dzn,- n)I< J m~n( J n)~l .dzn< (dzm-n) u. As J n is non-singular, there is a unique



d x 'e R n such that / n .dx'=dzn. It is clear, by the first constraint of (4.38), that 

(dzn)*< J n .dx'< (dzn) u. Also, J m~n.dx'=Jm~n( J n)~1.dzn which means, by the second 

constraint of (4.38), that (dz1"- ")1 < J m~n.dx'< (dzm_n) u. It is now clear that dx7 

satisfies the constraints of (4.26). Conversely, let dxeR " be a vector satisfying the 

constraints of (4.26), and let (dzn) '= / rt .dx . As dx is feasible by the constraints in 

(4.26), (dzn)’< (dzn)'<  (dzn) u. Also (dzm~n) ]< Jr'B“ ” ( / rt) - 1(dzn)'<  (dzm“ n) u. That is 

(dz11) '  is feasible in (4.38). It has now been shown that there is a one-to-one 

correspondence between the feasible dx in (4.26) and the feasible dzn in (4.38). More 

precisely, dx is feasible in (4.26) if and only if / n.dx is feasible in (4.38). To 

complete the proof, all that remains is to show that for a feasible dx by (4.26) the two 

cost functions are the same. Let dzn be feasible by (4.38) and dx = ( / n) -1dzn. It is 

easy to see that dx'i= (stl) T ,dzn, where a‘ is the i th row of ( / " ) _1. The proof is now 

complete.

In just the same way, it can be shown that the minimisation

minimise (a ’) T- dzn

(dzn)'< dzn< (dzn)u 
subject to ( d2m-n)l< j m - n ^ j n y  I dz«< (dzm~n) U

is equivalent to the minimisation given in (4.25). As before, the bounds dx1 and dxu can be 

constructed for DX1(M ,z°) by performing 2n maximisations and minimisations of this 

form. Also, the bounds x 11 and x lu for X l(M ,z°) can be calculated by adding £ to dx1 and 

dxu.

This formulation of the problem has an important advantage over the formulation of 

(4.26). That is, if (4.26) is implemented using linear programming m ethods it has 2m 

constraints whereas (4.38) has only 2( m - n ) .  In water distribution monitoring systems, 

there is generally only a small am ount of m easurem ent redundancy, which means that 

m - n  «  m . A disadvantage of the second formulation is that it requires the inversion of
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the matrix J n . In confidence limit analysis, maximisations and minimisations such as these 

must be carried out 2n times (one maximisation and one minimisation for each variable) 

and in the second formulation J n need only be inverted once. So if efficient sparse matrix 

methods are used to invert J n (see Appendix A2 for a description of sparse matrix 

factorisation methods) this disadvantage quickly disappears.

The following confidence limit algorithm is based on this formulation.

L inear program m ing confidence lim it algorithm

1. Select an observable subset of M  consisting n measurements. This will be the

minimal measurem ent set and denoted by M' .  Order M with the elements of AT

appearing first.

2. Re-order dz1 and dzu according to the new ordering of M . Assemble (dz")1, 

(dzn) u, (dzm~n) 1, (dzm“ n) u, J n and J m~n

3. Factorise J n and calculate Jm~n(Jn)~l (efficient methods for calculating Jm~n( J n)~1 

are described below) using sparse matrix techniques.

4. For each variable, z = l , c a l c u l a t e  a1, the i th row of (J n)~l and carry out the 

maximisation in (4.38) using a linear programming method. The resultant value of 

( a ^ .d z "  is the i th element of dxu. Similarly, carry out the minimisation in (4.39), to 

obtain the i th element of dx1.

5. Add dx1 and dxu to x to obtain x 11 and x lu

A few notes on the implementation of the algorithm are now given. Selecting the

observable set of n measurem ents presents no difficulties. The set consisting of one 

reference pressure measurem ent, an inflow m easurement for each inflow point and a load 

pseudom easurem ent for each node except the reference head node will suffice. This will
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leave mainly head and flow m easurem ents in the remaining m - n  measurements. The 

linear programming step may benefit from another selection of the n elem ent observable 

m easurem ent set, for instance putting the most restrictive m easurem ents in the first n , but 

this would require more time being spent on checking observability.

As J n is a sparse matrix, a lot of computation time can be saved by employing sparse 

matrix techniques in the factorisation such as those described in Appendix A2. This will 

also reduce the am ount of storage space required and increase num erical stability. Also 

(Jrn)~ 1 need not be calculated explicitly. It will be seen that (J n)~i is required one row at a 

time. This can be done by factorising (J n)~1 and then back-substituting to solve

ir = ( a ,) r J n (4.40)

where ie R "  is the vector which has 1.0 in its i th position and 0.0 everywhere else, a1 is then 

the i th row of The same factorisation of (Zn) -1 can be used to calculate

Jm~n (Jn)~ i. J m~n is sparse, so it can be assumed that there are only a small num ber of 

non-zero entries in its i th row, b ( i j i ) t. . . ,b(i , js),  for a small integer s, say. It is easy to 

check that the i th row of c1, is given by

= 2 > 0 V * ) - a Jk (4.41)
k=i

where aJk is the j kth row of (Z")_1. It has already been shown how the j kth row of (Zn)_1 

can be obtained from the factorised version of (J n)~ l . Due to the way the observable n 

elem ent measurem ent set is chosen, most of the measurements which correspond to the 

rows of J m~n are pressure or flow measurements. This means that many of the rows of 

J m~n will have only one or two entries which makes the calculation of Jm~n(Jn)~1y by this 

method, very efficient computationally.

Each of the maximisations and minimisations in step 4 of the algorithm requires an 

initial feasible vector, dzn, if a linear programming method such as the revised simplex 

method is to be used. Finding a vector, dzn, that satisfies the constraints in (4.38) and



(4.39) is equivalent to finding a vector dx' for which dz!< /.dx '<  dzu. This problem can be 

posed as the following linear programming problem:

m
Minimise U+ Z2i)

i= 1

J. d x + e j- ft= dzl

subject to - J .  dx+e2- f 2= ~ dzu (4.42)

e l> e 2> ^ i»  — 0

where e lf e2, fj and f2 are m -dimensional slack variable vectors. There is a feasible dx' 

vector if and only if there is a solution to this problem with a zero value for the cost 

function. In this situation the feasible dx ' is just dx from the solution and the initial feasible 

dzn vector is given by / n.dx'. When the cost of the minimal solution to this problem is less 

than zero it can be said that there is no feasible dx' vector and so DX1(M ,z°) is empty.

Within the linear programming procedure used to perform the maximisations and 

minimisations given in (4.38) and (4.39), many iterations must be performed. For the test 

network shown in appendix A1 several hundred iterations were required when a general 

initial feasible vector such as the dzn, described above, was used. Careful selection of the 

initial feasible vector at each maximisation or minimisation will lead to a considerable 

reduction in the num ber of iterations that need be performed. Let dzn be the feasible vector 

in DZ ( M ,z°) which maximises the value (a ‘) T.dzn in (4.38) and so provides the upper 

bound on the i th state variable. Suppose further that the i th state variable is a pressure 

variable at node j .  Generally speaking, this vector dzn will also provide near-maximal 

values for the pressure variables at nodes adjacent to j .  A similar observation holds for flow 

variables in adjacent pipes. These observations provide a way of reducing the num ber of 

iterations in each maximisation and so improve the run-tim e performance. If the set of 

independent state variables being used are the pressure and inflow variables, then the nodes 

of the network can be ordered so that, in as many cases as possible, each node is adjacent 

in the network to the one that precedes it in the ordering. The state variables can then be
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ordered correspondingly. If at each maximisation (or minimisation) the initial feasible 

vector used is the vector that was the maximal solution vector in the previous maximisation 

(or minimisation), then the num ber of iterations required is cut considerably. A similar 

method can be used when the state variables are the flow variables. Implementing a 

method based on this idea results in approximately 10-fold im provem ent in run-tim e for 

the test network shown in Appendix A l.

4.5.4. Sensitivity m atrix m ethod

Some applications, semi-automated control or on-line decision support for instance, 

need a confidence limit analysis procedure that can produce uncertainty bounds in just a 

few seconds. The linear programming method described in section 4.5.3 may be considered 

a little too slow. In this section an alternative m ethod is considered. This is is referred to as 

the sensitivity matrix method.

When the m easurem ent set M  is minimal (ie it is observable and contains no 

observable subset), the linearised uncertainty bounds can be calculated without recourse to 

a linear programming procedure. It is explained how this can be done in the discussion of 

special case (ii) of section 4.5.2. So in these circumstances, confidence limit analysis can be 

carried out much more rapidly than in the general case when the linear programming 

algorithm of the previous section has to be used. The short cut can be taken (when M is 

minimal) because the Jacobian matrix J  is square and invertible. So, any dx e D X 1(M ,z°) is 

given by / _1.dz for some dzeDZ (M  ,z°). In general, M  is over-determined and so J  is an 

m by n matrix of rank n . When J  has this form it has no inverse. The lack of inverse is 

not due to a shortage of information, rather, there is a surfeit of m easurem ent data. As 

there is no proper inverse for / ,  a pseudo-inverse must be used. Let dxeR " and d zeR m, 

for which J.dx = dz, then / r /.d x  = / r .dz and so

dx = ( / TJ ) " 1/ r .dz (4.43)

M•s c'f



This equation is well defined because when J  is of rank n , J TJ  is both square and 

invertible. The matrix ( J TJ ) ~ lJ T is the psuedo-inverse that will be used when / -1 is not 

well defined. In fact, when J~l is well defined (Z7/ ) -1/ 7 is equal to Z "1. (J TJ ) ~ lJ T will

be referred to as the sensitiv ity  m atrix  as its ( i , j ) th element relates the sensitivity of the 

i th elem ent of the state vector to changes in the j th elem ent of the m easurem ent vector.

A new approximate linearised state uncertainty set, X 2( M ,z°), can be defined as 

follows:

X \ M  ,z°) := {xeR" : x= x+ dx , d x = ( / r Z)“ 1/ 7’.dz, dzeDZ  (M ,z0)} (4.44)

This set can be seen as an approximation to the true linearised state uncertainty set, 

X l{M ,z°). The next lemma provides more detail about the relationship between X l(M ,z°) 

and X 2(M , z ° ) .

Lem m a 4.5 For X 2(M ,z°) defined as in (4.44) and X l(M ,z°), defined as in (4.18),

X \ M  ,z°) c  X \ M  ,z°) (4.45)

and when M  is a minimal observable m easurem ent set

X \ M  ,z°) = X \ M  ,z°) (4.46)

Proof Let d x + x e X l(M ,z°), then J . dxeDZ  (M ,z°) by (4.19) and (4.23). Put 

dz=Z.dx. The elem ent of X 2( M ,z°) generated by dz is just x + ( / :r/ ) “ 1/ r .dz = 

x+ ( J TJ ) ~ lJ TJ. dx = x+dx. Hence, x + d x e X z(M ,z°) and (4.45) follows. Proof of the 

second part, (4.46), is straightforward, following directly from the observation that 

when M  is minimal, ( JTJ ) ~ lJ T degenerates to / .

When M  is over-determined there may be vectors d zsZ (M ,z°) that are inconsistent. 

For such a vector there can be no dxeR " with J. dx=dz. So, in particular J ( J TJ ) ~ lJ T .dz is 

not equal to dz. It may even be the case that J { J T J ) ~ lJ T.dz is not contained DZ  (M ,z°). It 

is these vectors that account for the difference between X \ M  , z ° )  and X l(M ,z°). That is,
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x + d x e X 2(M tz0) ~ X l(M ,z°) if and only if dx= ( / 7V )~ 1/ T .dz for some dzeDZ (M ,z°) with 

J ( J TJ ) ~ lJ T .dz not a m ember of DZ (M ,z°). Although X 2(M ,z°) is not identical to 

^ ( M  ,z°) it can be used to form bounds for the linearised state uncertainty set. It will not 

be the case that these bounds are the tightest that can be obtained but at least they will not 

rule out any feasible state vector from the state uncertainty box.

Bounding vectors for X 2(M ,z°), denoted x21 and x2u, can be defined just as x 11 and x lu 

were for the true linearised state uncertainty set X 1(M ,z°). The following algorithm 

provides a way of calculating these vectors.

Sensitivity m atrix  confidence lim it algorithm

1. Set i —0.

2. Factorise the matrix J TJ . (This can be done using an augmented matrix).

3. Set i= i+ 1.

4. Calculate b \  the i ,h row of the sensitivity matrix (J TJ ) ~ lJ T . (In the 

implementation details, following the description of the algorithm, it is explained how 

this can be done efficiently, taking account of the sparsity of J  and using the 

factorisation of the augmented matrix m entioned in step 2.)

5. P u tx ,2w= (bl) r .dz++.*(•, where

fdz? if bj > 0.0

^  = U  O'kervise (4 '47>

P u t* ;2*= (bi) r dz“ + xt-, where 

jdz j  if bj > 0.0
“  \ d z f  otherwise (4.48)

6. If i< n , go back to step 3. Otherwise stop.

-;v'
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This algorithm bears a striking resemblance to the method of calculating the bounds 

for X x(M ,z°) described in special case (ii) in section 4.5.2. In fact, justification of equations 

(4.47) and (4.48) follows as a corollary to lemma 4.2. Although, in this case, there is not 

necessarily symmetry about x as g(x ) may not equal z°)

As with all algorithms that involve the manipulation of the Jacobian matrix J> sparse 

matrix methods may be used, (see Appendix A2). These will reduce run-tim e, reduce 

storage requirem ents and increase numerical stability. Because of storage limitations, it is 

not practical to store each row of the sensitivity matrix ( / r / ) -1/ r . So each row is 

calculated only when it is required. First of all, the matrix J TJ  must be factorised. The j th 

elem ent, bj, of the i th row of ( JT J ) ~ lJ T is given by

where c! is the vector corresponding to the i ‘h row of ( / r 7 )_1 and d1 is the j ih column of 

J T As J  is sparse, only a small num ber of the entries in dJ are non-zero. Let these be 

denoted by the set Q. j := [k e {l,...,n } : 0.0). Then

bj = k H  c%k'd^ (4 -5°)

For (4.49) and (4.50), the vector c1 (representing the i th row of ( J T/ ) ~ 1) must be 

calculated. The matrix (J TJ ) ~ l is not calculated directly. Each row of (J TJ ) ~ l is calculated 

only when it is required (again this is due to storage practicalities) and this is done using an 

augmented matrix format. It is easy to see that c1 is given by solving the equation

where i is the vector that has 1.0 in its i th position and 0.0 in all other positions. Solution 

of (4.51) can again be carried out using sparse matrix techniques in an augmented matrix 

format.

bj = (cl) r .<$ (4.49)

iT (c v .ut j ) (4.51)



4,5.5. E llipsoid m ethod

In [124], Schweppe suggests a method for confidence limit analysis for linear systems 

with unknown-but-bounded observation errors. This method is based on the iterative 

shrinking of ellipsoids, and will be referred to as the ellipsoid method. The procedure has 

also been considered by other authors in [18, 20, 59, 100, 102, 103, 104].

Mathematically, an ellipsoid, E {, is a region of space defined as follows:

E { := {xeRn : (x -x * )P f  ̂ x - x 1) < 1.0} (4.52)

for some x ^ R "  and some symmetric and positive-definite matrix Pt , of dimension n by n . 

E ‘ is therefore, a region of R n centred on x f. The aim of the ellipsoid method is to start 

with a large ellipsoid (usually a n -dimensional sphere) that contains the whole state 

uncertainty set, and then to generate a sequence of ellipsoids, decreasing in size, leading to 

one that fits the state uncertainty set as tightly as possible. Using an ellipsoid as an 

approximation to the state uncertainty set provides a simple and concise description of what 

can be a very complicated set. The ellipsoid algorithm itself, has the advantages of being 

sequential, mathematically and conceptually simple and can be very fast computationally.

Application of the ellipsoid algorithm to confidence limit analysis in water distribution 

systems is now described. The first point to note is that it is a linear m ethod and so the 

state uncertainty set to be approximated is the set X 1(M ,z°), for a m easurem ent set M  and 

m easurem ent vector z°. An ellipsoid that certainly contains X l(M ,z°) is used as the starting 

ellipsoid E f. This ellipsoid may be the n -dimensional sphere centred at the state estimate x 

(this is the state estimate generated by z°) with a suitably large diameter, a . In this case 

P 0=a. I ,  where /  is the n by n identity matrix. The ’observations’ in confidence limit 

analysis are the linearised m easurem ent constraints provided by (4.19), which can be 

rewritten as

z!- g ( x ) + / . x <  / . x< zu~ g (x )+ / .x  (4.53)



for all x in X 1(M ,z°). In this equation, zl-g ( f t )+J . x  and zu- g ( x ) + / .  x are constant vectors 

and so can be pre-calculated. (4.53) represents m constraints, bounding J . x  above and 

below. Each of these is taken in turn and used to modify the current ellipsoid. Suppose that 

the t th constraint is being used to update the t - l jr ellipsoid, te{2,...,m }, and that E ‘~l 

contains X l(M ,z°). The region bounded by the this constraint also contains the uncertainty 

set X x( M ,z°). So X l( M ,z°) is contained in the intersection of these two regions as is 

shown in fig 4.2. A new ellipsoid, E l , can be produced which contains the intersection of 

E ‘~x and the region bounded by the constraint’s hyperplanes. E ‘ is the ellipsoid

(x eR n : ( x - x ^ P t  ^ x - x 1)^  1.0}, where

x l = x t-1+ (p ,v f/(e,z)2)P 'f_ i.a t (4.54)

Pt = ( l+ pf-(p ,v ,/((<?/) 2+p,&)))^Vi (4.55)

P't-I = ( / - ( P r / ( ( e fz) 2+ P r ^ ) )P f_ ia t.(at) r )P <_ 1 (4.56)

gt = (a*)r / ,,_ ia t (4.57)

V( = 0.5(z(M- z / ) - ( ^ ( x t) ) t+ ( / .x t) , - ( a t) r .xt~1 (4.58)

In these equations, Pt- i  and x t_1 are the positive definite matrix and centre vector, 

respectively, for the previous ellipsoid, £ f_1, and pf can be any non-negative real value. 

The value, e? used in these equations, is the t th elem ent of the m easurem ent error vector 

introduced in section 4.4. Derivation of these formulae is contained in [102]. It should be 

noted that, despite the fact that (4.52) refers to the P,~l matrix in its inverted form and 

(4.54) to (4.58) do not, no matrix inversion is involved in the algorithm. In fact, the 

matrix Pt~l need never be known as all updating is performed using matrices Pt„x and P(

The parameter p ,, which appears in several of the updating formulae, has not yet 

been fixed. For any non-negative, real pf, the updated ellipsoid, E ( , will contain the 

intersection of E*~l with the region bounded by the t ih m easurem ent constraints. For 

p(=0.0 , it is easily seen that E ( is just the same as E t~1. So this choice of p, leads to no 

improvement. A more reasonable choice for p* would be the value that minimises the size
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Fig 4.2 : Ellipsoid update (in 2-dimensions)

/ A

»  S V

p  is the region bounded by the hyperplanes of the constraint
R  is the updated ellipsoid.____________________________

Eig 4.3: Ellipsoid update does not always lead to improvement in all variables.

The new bounds, marked by B * > are tighter ip the horizontal 
direction than the old bounds, marked by B , but are not as 
tight in the vertical direction



of E f in some way. Such a selection strategy will give the algorithm better convergence 

properties. In [59], Fogel and Huang make two suggestions. The first involves the solution

of a quadratic equation in pf and produces the ellipsoid of minimum volume. The second

requires the solution of a cubic equation and minimises the sum of squares of the semi-axis 

lengths in E ‘.

On termination of the algorithm, the confidence limits for each variable are easily 

calculated from the final positive-definite matrix, P f, and the final centre vector, x*. These 

are given by Norton in [103]:

Xilu -  x!  + >/ Pt( i J ,)

Xi11 = xf  -  v  Pt(i , i , )  (4.59)

In some situations, tight bounds can be found by processing each measurem ent constraint 

only once, in which case only m steps are required. Although, in [18] Bona and Belforte 

suggest that a further reduction in the bounds is often possible by reprocessing some or all 

of the constraints. Reprocessing may be carried out until no further im provem ent is made. 

Another com m ent made by Bona and Belforte in [18] is that the order in which the 

constraints are processed has an effect on the rate of convergence of the algorithm. Further 

comments and suggestions for algorithm modification are made by Mo and Norton in [100].

A version of the ellipsoid algorithm has been implemented as a routine for confidence 

limit analysis in water distribution systems. Although the run-tim e of this routine is 

compares favourably with other linear confidence limit routines, its accuracy in bounding 

the state uncertainty set is poor. Other approximate methods, that can bound X l( M ,z°) 

more accurately with similar computational cost, can be easily be derived. In [18, 100, 102, 

103, 104], it is reported that the performance of the ellipsoid algorithm is good, especially 

when computation time is compared with that of the linear programming method for 

instance. The poor performance of the ellipsoid algorithm in this particular application is 

due to the nature of the Jacobian matrix and hence the structure of the m easurem ent
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constraints. Since J  is sparse, each m easurem ent constraint only bounds a few of the 

variables. In the ellipsoid algorithm, constraints are considered individually and so can only 

improve confidence limits on the few variables that they bound explicitly. As an example, 

consider the ellipsoid update represented in fig 4.3. This is a 2-dimensional example in 

which the observation hyperplanes only bound one of the variable (ie, variables are bound 

in the horizontal direction by the hyperplanes but not in the vertical direction). As a result, 

the new ellipsoid, E (, produces tighter confidence limits than E '-1 in the horizontal 

direction but looser ones in the vertical direction. When this idea is extended to many 

dimensions, only a few of which are bound by each constraint, it is easy to see that at each 

iteration the majority of the variables will have their confidence limits increased and only a 

minority will have them reduced.

Because of the emphasis placed on the ellipsoid method as an efficient confidence 

limit algorithm in [18, 20, 59, 100, 102, 103, 104, 124] it was considered important to 

include a section on the ellipsoid method even though its results proved negative.

4.5.6. L inearised confidence lim it methods for the derived state  variables

In sections 4.5.3 and 4.5.4, a linear programming method and a sensitivity matrix 

method were presented as linearised confidence limit algorithms. These algorithms were 

described in terms of the set of independent state variables only. By initially restricting 

attention in this way, the basic concepts and ideas behind the m ethods could be explained 

more clearly and informatively. The extension of these two methods, to include the derived 

state variables, is explained in this section. This extension adds only a little to the 

complexity of the algorithms and is included for completeness.

In the same way that the network function, # (.) , was linearised in equation (4.17), 

the derived state function, / ( . ) ,  can be linearised around a state vector, x. This 

linearisation takes the form
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f i x )  a  F .(x -x )  + f i x ) (4,60) 1

1
where F  is the N  by n Jacobian matrix for the vector function / ( . ) ,  evaluated at x. Again, 

x is chosen as the state estimate generated by z°. Using the linearised approximation and 

the definition of the derived state uncertainty set (4.9), a new, approximate derived state 

uncertainty set, T*(M ,z°), can be defined as

A further approximation can be made by replacing the condition (in (4.61)) that 

xeX (M ,z°) by the condition that x e l ^ M . z 0), where X li M ,z°) is the linearised state 

uncertainty set of equations (4.18) and (4.19). Changing notation, replacing x ~ x  by dx, 

and using definition (4.24) gives

Equation (4.62) gives the form of the linearised, derived state uncertainty set that will be

Firstly, the extension of the linear programming confidence limit algorithm will be 

considered. For a vector dxeR ", it was shown in the proof of Lem m a 4.4, that the 

condition that dzl< / .  dx< dzu is equivalent to the condition that d x = ( /n)-1dzn for some 

dznE R n with (dzn)'<  dzn< (dzn)u and (d z " -" ) 1̂ / fft“ rt(7rt) " 1dzn< (dzm~n) u. (The notation 

used here is defined immediately before Lem m a 4.4). Suppose that dzne R n satisfies these 

conditions. Clearly, dx, defined as ( / ”) -1dzn, is a member of D X li M tz°) and so 

F. dx+/  (x) is a m ember of Y liM ,z°). F. dx is equal to F ( / " ) -1dzn. For a particular derived 

state variable, yt- say for i s  {1 ,...,1V}, finding its upper confidence limit is simply a matter of 

performing the following linear program and adding /  (x) to the result.

Y \ M  , z ° )  := (yeR N : y=F. ( x - x ) + / ( x ) ,  x e X (M ,z 0)} (4.61)

Y \ M , z ° )  ~ {ye Rn : y = F .d x + /(x ) ,  dxeDX \ M  , z ° )  } (4.62)

used.

maximise (ds) r ’dzn

subject to
i&zn) l< dzn< (dzn)u, and
( d z m - n) / <  j m - n y n y  1 d z n< (4.63)

I
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where dl is the i th row of the matrix F ( J n)~1. The lower confidence limit for can be 

found by minimising the same cost function, subject to the same conditions. To modify the 

linear programming confidence limit algorithm so that lower and upper bounds, y11 and ylu, 

for Y X(M ,z°) can be calculated, all that needs to be done is to insert an extra step between 

step 4 and step 5. This step, step 4a say, is as follows:

4a. For each derived state variable, calculate d1, the i th row of F . ( J n)~l and

perform the maximisation of (4.63). Adding / ( x )  to the result gives the upper confidence 

limit for yf . The lower confidence limit for y>i is found by performing the corresponding 

minimisation, and again a d d in g /(x )  to the result.

Extension of the sensitivity matrix method is now considered. In section 4.5.4, a set 

X 2( M ,z°) was defined as an approximation to the state uncertainty set, X ( M ,z°). The 

same can be done for the derived state uncertainty set. Define

Y \ M  ,z°) := {yeRN : y=F. d x + /(* ) .  dx=(JTj y lJ Tdz, d ze D Z (M ,z0)} (4.64)

As before, Y 2( M ,z°) approximates the derived state uncertainty set T (M ,z°). Definition 

(4.64) can be rewritten to give

Y 2(M ,z°) := {yeRN : y = F ( / r / ) - 1/ r d z + /(x ) ,  dzeDZ (M ,z°)} (4.65)

In this form it can be seen that by replacing ( J TJ ) ~ XJ T by F ( J TJ ) ~ lJ T the sensitivity 

matrix confidence limit algorithm can be modified to produce bounding vectors, y21 and y2u, 

for Y 2( M ,z°). All that needs to be done is to replace b1 by the i th row of F ( J TJ ) ~ XJ T in 

step 4, replace x 21, x2u and x by y21, y2u and / ( x ) ,  respectively, in step 5 and to replace n 

by N  in step 6.
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4 .6 . RESULTS

Using the test network shown in Appendix A l, results for the M onte Carlo, the linear 

programming and the sensitivity matrix confidence limit algorithms have been calculated. 

These are presented and discussed in this section.

Two different m easurem ent sets are considered, both for the same operating state 

shown in table 4.1. The first m easurem ent set, M l, is a minimal m easurem ent set,

consisting of a nodal consumption estimate for all but one of the nodes, an inflow

m easurem ent for each of the inflow nodes and one reference pressure m easurem ent at 

node 160. The actual m easurem ent and pseudomeasurement values used are shown in table

4.2. M onte Carlo and linear programming confidence limits for M l are shown in table 4.3. 

These results can be used to assess the accuracy of the linearisation which forms the basis 

of the linear confidence limit algorithms. The second measurem ent set, M2, consists of the 

same m easurem ents and pseudomeasurements as in M l together with an additional set of 

pressure and flow measurements from meters distributed around the network. These 

m easurem ent values are shown in table 4.2, and the distribution of the m eters on fig 4.4, 

Linear programming and sensitivity matrix confidence limits for m easurem ent set M2 are 

shown in table 4.4. This table can be used to compare the performance of these two

algorithms as well as to assess the impact of adding meters.

As has been explained earlier in this Chapter, the true m easurem ent vector rarely 

coincides with the observed m easurem ent vector. This discrepancy is caused by m eter 

noise or m eter error in the case of real m etered values, and because of the difficulty in 

predicting demand in the case of nodal consumption estimates. In view of this, the 

m easurem ent values used - the observed measurem ent values in table 4.2 - are not the 

same as the true m easurem ent values - those that would be expected for the true operating 

state. The observed m easurem ent values were created in the following way. Firstly, a true 

operating state, x 1, for the system was assumed, this is shown in column 2 of table 4.1.



Table 4.1: True and observed state  estim ates

Pressures (m ):

Node True state State estimate

1 140.11 140.04
2 140.23 140.17
6 140.20 140.14
7 140.15 140.08
8 140.02 139.96

10 139.94 139.89
11 140.02 139.95
12 140.38 140.21
13 140.41 140.23
14 139.91 139.84
15 139.93 139.85
16 140.05 139.95
17 141.81 141.58
18 140.36 140.18
19 140.36 140.18
22 140.30 140.13
23 140.36 140.18
24 140.40 140.22
25 140.24 140.09
61 140.23 140.10
34 139.94 139.74
35 140.17 140.00
36 140.33 140.15
37 140.32 140.14
38 140.33 140.15
39 140.33 140.15
40 140.06 139.84

102 140.07 139.86
42 140.33 140.15
43 140.07 139.85
44 140.06 139.85
45 140.02 139.80
46 140.45 140.27
47 139.96 139.75
48 139.99 139.78
53 140.92 140.65
54 140.21 139.99
55 140.05 139.85
56 140.03 139.83
57 140.71 140.56
58 141.11 141.00
59 143.48 143.39
62 142.84 142.66
63 141.79 141.53
64 141.11 141.20



Table 4.1: (Continued)

Node True state State estimate

65 141.32 141.01
66 141.71 141.42
67 141.25 140.97
69 140.31 140.14
70 143.88 143.90
72 140.25 140.10
73 141.78 141.87
75 140.73 140.76
76 139.97 139.95
77 140.36 140.34
78 140.35 140.32
79 140.27 140.11
80 140.24 140.10
81 139.97 139.95

106 140.34 140.13
26 144.37 144.18

3 140.34 140.28
60 144.82 144.81

160 144.77 144.75
68 141.88 141.59

Inflows (1/s):

Node True state State estimate

26 65.00 65.54
3 31.00 31.43

60 34.00 33.46
160 45.00 45.85
68 31.00 30.93



Table 4.2. Measurement data

Minimal m easurem ent set

Node True Observed Error

Reference pressure (m ):

160 144.77 144.75 0.03

Inflows (1/s):

26 65.00 65.54 1.29
3 31.00 31.43 0.63

60 34.00 33.46 0.69
160 45.00 45.85 0.90
68 31.00 30.93 0.61

Loads (1/s):

1 -4.85 -5.00 1.50
2 -6.77 -5.65 1.70
6 -2.09 -1.94 0.97
7 -1.64 -0.98 0.68
8 -1.16 -0.78 0.55

10 -9.64 -8.56 2.57
11 -0.34 -0.29 0.29
12 -0.35 -0.53 0.37
13 0.50 0.79 0.55
14 -6.54 -5.38 1.61
15 -3.18 -4.40 1.76
16 -2.01 -1.46 0.73
17 -8.51 -10.27 3.08
18 -8.71 -9.69 2.91
19 0.00 0.00 0.00
22 2.35 2.36 0.94
23 -0.47 -0.49 0.49
24 -1.73 -2.01 0.80
25 -2.71 -2.21 0.89
61 -0.42 -0.22 0.22
34 -7.40 -5.96 1.79
35 -2.58 -2.48 0.99
36 1.92 2.44 0.97
37 -2.98 -2.20 0.88
38 2.36 1.64 0.82
39 -0.65 -1.00 0.50
40 -6.77 -7.48 2.25

102 -2.13 -2.14 0.86
42 -8.03 -7.68 2.30
43 -3.51 -4.56 1.82
44 -1.89 -1.97 0.99
45 -1.10 -1.62 0.81
46 -2.73 -3.19 1.28



Table 4.2. (continued)

47 -10.80 -12.82 3.85
48 -2.95 -2.47 0.99
53 -0.67 -0.84 0.59
54 -4.54 -4.79 1.92
55 -10.83 -9.47 2.84
56 0.78 0.85 0.60
57 -0.16 -0.12 0.12
58 -5.68 -4.38 1.75
59 -2.88 -2.92 1.17
62 -2.94 -3.66 1.46
63 -10.46 -10.54 3.16
64 -3.75 -2.99 1.20
65 -3.84 -3.99 1.60
66 -2.15 -2.76 1.11
67 -1.87 -2.45 0.98
69 -4.52 -6.21 1.86
70 -2.18 -1.74 0.87
72 -11.51 -11.70 3.51
73 -2.77 -2.47 0.99
75 -1.32 -1.39 0.69
76 -5.37 -4.83 1.93
77 -1.16 -0.93 0.65
78 -1.35 -1.27 0.64
79 -1.91 -2.52 1.01
80 -2.64 -2.56 1.02
81 -2.79 -2.21 0.88

106 -1.74 -2.55 1.02
26 -0.26 -0.31 0.31

3 -7.95 -8.91 2.67
60 0.58 0.79 0.55
68 -2.46 -2.55 1.02

IAdditional measurements

Pressures (m ):

7 140.08 140.08 0.10
44 139.85 139.85 0.10
66 141.42 141.42 0.10
80 140.10 140.10 0.10

Flows (I/s)

Pipe true Observed Error

22-69 -7.13 -7.13 0.50
42-38 -0.16 -0.16 0.50
7-22 1.94 1.94 0.50

56-45 0.30 0.30 0.50
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Table 4.3. Confidence lim its for m inim al m easurem ent set (M l)
M onte Carlo Linear programming

Node Lower Upper Ave. Error Lower Upper Ave. Error
Pressure (m ):

1 137.48 142.13 139.80 2.33 138.05 142.04 140.04 2.00
2 137.68 142.17 139.93 2.24 138.25 142.10 140.17 1.93
6 137.68 142.10 139.89 2.21 138.25 142.03 140.14 1.89
7 137.67 141.94 139.80 2.13 138.27 141.90 140.08 1.82
8 137.56 141.82 139.69 2.13 138.12 141.80 139.96 1.84

10 137.48 141.75 139.61 2.13 138.03 141.74 139.89 1.86
11 137.62 141.75 139.68 2.06 138.14 141.77 139.95 1.81
12 138.54 141.69 140.12 1.58 138.71 141.70 140.21 1.49
13 138.63 141.69 140.16 1.53 138.77 141.69 140.23 1.46
14 137.47 141.70 139.58 2.12 138.00 141.68 139.84 1.84
15 137.50 141.70 139.60 2.10 138.01 141.68 139.85 1.83
16 137.79 141.72 139.76 1.97 138.19 141.70 139.95 1.75
17 139.71 143.30 141.50 1.80 139.89 143.26 141.58 1.69
18 138.61 141.57 140.09 1.48 138.75 141.60 140.18 1.43
19 138.62 141.56 140.09 1.47 138.76 141.60 140.18 1.42
22 138.62 141.51 140.07 1.45 138.71 141.55 140.13 1.42
23 138.64 141.55 140.10 1.46 138.76 141.60 140.18 1.42
24 138.67 141.59 140.13 1.46 138.79 141.64 140.22 1.42
25 138.25 141.74 140.00 1.75 138.45 141.73 140.09 1.64
61 138.53 141.51 140.02 1.49 138.68 141.51 140.10 1.42
34 138.04 141.15 139.59 1.55 138.22 141.27 139.74 1.52
35 138.24 141.58 139.91 1.67 138.40 141.60 140.00 1.60
36 138.64 141.51 140.07 1.43 138.76 141.54 140.15 1.39
37 138.63 141.46 140.04 1.42 138.76 141.52 140.14 1.38
38 138.65 141.46 140.06 1.40 138.77 141.53 140.15 1.38
39 138.65 141.47 140.06 1.41 138.77 141.53 140.15 1.38
40 138.22 141.19 139.71 1.48 138.42 141.26 139.84 1.42

102 138.26 141.20 139.73 1.47 138.41 141.30 139.86 1.44
42 138.69 141.45 140.07 1.38 138.78 141.53 140.15 1.38
43 138.24 141.21 139.72 1.49 138.42 141.29 139.85 1.43
44 138.20 141.21 139.71 1.50 138.39 141.31 139.85 1.46
45 138.14 141.18 139.66 1.52 138.33 141.26 139.80 1.47
46 138.99 141.47 140.23 1.24 139.03 141.52 140.27 1.25
47 138.06 141.15 139.60 1.55 138.24 141.26 139.75 1.51
48 138.12 141.16 139.64 1.52 138.29 141.27 139.78 1.49
53 139.14 141.81 140.48 1.34 139.31 141.99 140.65 1.34
54 138.49 141.25 139.87 1.38 138.62 141.36 139.99 1.37
55 138.25 141.18 139.72 1.47 138.41 141.28 139.85 1.43
56 138.21 141.18 139.69 1.49 138.37 141.28 139.83 1.45
57 139.44 141.61 140.53 1.08 139.47 141.65 140.56 1.09
58 140.13 141.82 140.98 0.85 140.06 141.94 141.00 0.94
59 143.07 143.70 143.38 0.31 143.10 143.67 143.39 0,28
62 141.97 143.28 142.63 0.65 142,01 1*43.31 142.66 0.65
63 140.26 142.62 141.44 1.18 140.28 142.78 141.53 1.25
64 139.85 142.38 141.12 1.26 139.96 142.44 141.20 1.24



Table 4.3. (Continued)
65 139.25 142.41 140.83 1.58 139.34 142.68 141.01 1.67
66 139.96 142.57 141.27 1.31 140.04 142.80 141.42 1.38
67 139.46 142.14 140.80 1.34 139.59 142.34 140.97 1.37
69 138.63 141.51 140.07 1.44 138.73 141.54 140.14 1.41
70 143.49 144.31 143.90 0.41 143.54 144.26 143.90 0.36
72 138.51 141.54 140.02 1.51 138.67 141.53 140.10 1.43
73 140.71 142.89 141.80 1.09 140.83 142.91 141.87 1.04
75 139.35 142.00 140.68 1.32 139.44 142.09 140.76 1.32
76 138.21 141.47 139.84 1.63 138.42 141.47 139.95 1.52
77 138.85 141.67 140.26 1.41 138.97 141.71 140.34 1.37
78 138.82 141.65 140.24 1.42 138.96 141.68 140.32 1.36
79 138.56 141.51 140.04 1.48 138.68 141.53 140.11 1.43
80 138.54 141.51 140.02 1.49 138.67 141.52 140.10 1.42
81 138.21 141.47 139.84 1.63 138.42 141.47 139.95 1.52

106 138.80 141.30 140.05 1.25 138.96 141.30 140.13 1.17
26 142.19 146.01 144.10 1.91 142.37 145.98 144.18 1.80

3 137.76 142.32 140.04 2.28 138.32 142.23 140.28 1.95
60 144.72 144.94 144.83 0.11 144.71 144.90 144.81 0.10

160 144.72 144.78 144.75 0.03 144.72 144.78 144.75 0.03
68 140.11 142.76 141.43 1.32 140.19 142.99 141.59 1.40

Inflows (1/s):
26 64.20 66.80 65.50 1.30 64.24 66.83 65.54 1.29

3 30.80 32.00 31.40 0.60 30.80 32.05 31.43 0.63
60 32.80 34.20 33.50 0.70 32.77 34.15 33.46 0.69

160 44.90 46.70 45.80 0.90 44.95 46.75 45.85 0.90
68 30.30 31.50 30.90 0.60 30.32 31.54 30.93 0.61



Table 4,4. Confidence lim its for augmented m easurem ent set (M2)
Linear programming Sensitivity matrix

Node Lower Upper Ave. Error Lower Upper Ave. Error
Pressure (m ):

1 139.61 140.48 140.04 0.43 139.60 140.49 140.04 0.45
2 139.81 140.53 140.17 0.36 139.79 140.55 140.17 0.38
6 139.81 140.47 140.14 0.33 139.79 140.48 140.14 0.34
7 139.83 140.33 140.08 0.25 139.82 140.35 140.08 0.27
8 139.86 140.06 139.96 0.10 139.86 140.06 139.96 0.10

10 139.74 140.04 139.89 0.15 139.69 140.09 139.89 0.20
11 139.80 140.11 139.95 0.15 139.79 140.11 139.95 0.16
12 139.83 140.58 140.21 0.37 139.73 140.68 140.21 0.47
13 139.84 140.62 140.23 0.39 139.73 140.73 140.23 0.50
14 139.53 140.15 139.84 0.31 139.51 140.18 139.84 0.34
15 139.51 140.19 139.85 0.34 139.49 140.21 139.85 0.36
16 139.52 140.38 139.95 0.43 139.50 140.40 139.95 0.45
17 140.95 142.21 141.58 0.63 140.89 142.27 141.58 0.69
18 139.78 140.57 140.18 0.40 139.67 140.68 140.18 0.51
19 139.78 140.57 140.18 0.40 139.67 140.68 140.18 0.51
22 139.75 140.52 140.13 0.38 139.63 140.63 140.13 0.50
23 139.78 140.57 140.18 0.39 139.67 140.68 140.18 0.51
24 139.82 140.61 140.22 0.40 139.71 140.72 140.22 0.51
25 139.55 140.63 140.09 0.54 139.53 140.65 140.09 0,56
61 139.72 140.48 140.10 0.38 139.58 140.62 140.10 0.52
34 139.11 140.38 139.74 0.64 139.07 140.42 139.74 0.67
35 139.44 140.57 140.00 0.56 139.43 140.58 140.00 0.58
36 139.77 140.54 140.15 0.38 139.65 140.65 140.15 0.50
37 139.76 140.52 140.14 0.38 139.64 140.64 140.14 0.50
38 139.77 140.54 140.15 0.38 139.65 140.65 140.15 0.50
39 139.77 140.54 140.15 0.38 139.65 140.65 140.15 0.50
40 139.27 140.41 139.84 0.57 139.23 140.45 139.84 0.61

102 139.38 140.33 139.86 0.48 139.25 140.46 139.86 0.61
42 139.77 140.54 140.15 0.38 139.65 140.65 140.15 0.50
43 139.29 140.42 139.85 0.57 139.25 140.46 139.85 0.60
44 139.27 140.43 139.85 0.58 139.24 140.46 139.85 0.61
45 139.19 140.40 139.80 0.60 139.15 140.44 139.80 0.64
46 139.87 140.68 140.27 0.40 139.78 140.77 140.27 0.49
47 139.12 140.38 139.75 0.63 139.08 140.42 139.75 0.67
48 139.17 140.39 139.78 0.61 139.13 140.43 139.78 0.65
53 140.55 140.75 140.65 0.10 140.55 140.75 140.65 0.10
54 139.88 140.10 139.99 0.11 139.47 140.51 139.99 0.52

, 55 139.29 140.41 -.139.85 ■ 0.56 ■.1 3 9 .2 4  ■ 140.46 139.85 -0:64.-**
56 139.25 140.41 139.83 0.58 139.20 140.45 139.83 0.63
57 140.15 140.97 140.56 0.41 140.07 141.05 140.56 0.49
58 140.58 141.42 141.00 0.42 140.51 141.50 141.00 0.50
59 143.17 143.60 143.39 0.22 143.14 143.63 143.39 0.24
62 142.28 143.04 142.66 0.38 142.26 143.06 142.66 0.40
63 141.01 142.04 141.53 0.51 140.90 142.16 141.53 0.63
64 140.83 141.57 141.20 0.37 140.54 141.86 141.20 0.66



Table 4.4. (Continued)

65 140.22 141.80 141.01 0.79 139.90 142.11 141.01 1.11
66 140.99 141.85 141.42 0.43 140.86 141.98 141.42 0.56
67 140.71 141.22 140.97 0.26 140.65 141.28 140.97 0.31
69 139.75 140.52 140.14 0.38 139.64 140.64 140.14 0.50
70 143.72 144.08 143.90 0.18 143.69 144.10 143.90 0.21
72 139.76 140.44 140.10 0.34 139.55 140.66 140.10 0.56
73 141.49 142.25 141.87 0.38 141.21 142.52 141.87 0.66
75 140.49 141.04 140.76 0.27 140.29 141.24 140.76 0.48
76 139.51 140.38 139.95 0.44 139.38 140.52 139.95 0.57
77 140.24 140.44 140.34 0.10 140.24 140.44 140.34 0,10
78 140.18 140.46 140.32 0.14 140.17 140.47 140.32 0.15
79 139.70 140.51 140.11 0.41 139.58 140.64 140.11 0.53
80 139.71 140.49 140.10 0.39 139.57 140.62 140.10 0.53
81 139.51 140.39 139.95 0.44 139.37 140.52 139.95 0.58

106 139.67 140.59 140.13 0.46 139.62 140.64 140.13 0.51
26 143.43 144.92 144.18 0.75 143.37 144.98 144.18 0.81

3 139.89 140.67 140.28 0.39 139.87 140.68 140.28 0.41
60 144.73 144.88 144.81 0.07 144.73 144.88 144.81 0.08

160 144.72 144.78 144.75 0.03 144.72 144.78 144.75 0.03
68 141.14 142.04 141.59 0.45 141.01 142.17 141.59 0.58

Inflows (1/s):

26 64.24 66.83 65.54 1.29 64.24 66.83 65.54 1.29
3 30.80 32.05 31.43 0.63 30.80 32.05 31.43 0.63

60 32.77 34.15 33.46 0.69 32.77 34.15 33.46 0.69
160 44.95 46.75 45.85 0.90 44.95 46.75 45.85 0.90
68 30.32 31.54 30.93 0.61 30.32 31.54 30.93 0.61
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From this vector a true or expected m easurem ent vector was calculated using the network 

function, that is z* was calculated as g (x ‘). M easurem ent values for the additional meters in 

M2 were calculated in a similar way. These are shown in column 2 of table 4.2. Following 

the explanation of the measurem ent error vector in section 4.4, a vector ez was calculated 

for this measurem ent vector, this is shown in column 4 of table 4.2. The observed 

m easurem ent values, z°, shown in column 3 of table 4.2, were selected randomly from 

within the range specified by z1 = zl- e z and zu = z ^ e 2. In this way, z ° -ez < zf < z°+ez, 

which corresponds to the real-life situation where m easurement values are not exact but are 

contained in a range specified by the accuracy of the meters used and the accuracy of the 

prediction of the pseudom easurem ent values. The state vector shown in column 3 of table 

4.1 is the state estimate calculated from the observed m easurem ent vector using the state 

estimator ODSTEST. The difference between this state estimate and the true state should 

be noted. It is caused solely by the addition of the simulated measurem ent errors and shows 

how corrupted measurem ent data can affect deterministic state estimates.

Table 4.3 shows the state uncertainty sets or confidence limits for the measurem ent 

set M l (the minimal m easurem ent set) as calculated by the M onte Carlo confidence limit 

algorithm and the linear programming confidence limit algorithm. (Results for the 

sensitivity matrix confidence limit algorithm are not included because for a minimal 

m easurem ent set these will be the same as those for the linear programming algorithm, as 

is explained in Lem m a 4.5). In each set of results, the confidence limits are shown in two 

ways. Firstly, the lower and upper limits of each variable are shown (in columns 2 and 3 for 

the M onte Carlo results and in columns 6 and 7 for the linear programming results). These 

correspond to the values xtu and for each variable i e  {l,...,n }. Alternatively* an average 

value for each variable, together with an error bound is shown (columns 4 and 5 for M onte 

Carlo results and columns 8 and 9 for the linear programming results). The average value 

corresponds to (Xilu+XiU) / 2.0 and the error bound to (Xilu-Xi lt) / 2 .0 for each ?e{ l,

The second method of presentation is included as this is perhaps the more traditional way



of presenting uncertainty in engineering systems, with the value for a particular state 

variable being read as the average value ± the error bound. The M onte Carlo results 

dem onstrate the scale of the potential error in state estimates for a system with no 

m easurem ent redundancy. Pressure errors are in excess of 2.0m in the region of the 

network m ost distant from the reference pressure at node 160. In fact, the majority of 

pressure errors are over 1.0m with only those nodes close to node 160 having reasonably 

accurate estimates. These results demonstrate the comment made in section 4.3.3, that 

pressure errors increase with distance from the accurate pressure meters. Overall, the 

confidence limits produced by the linear programming method compare well with those of 

the M onte Carlo m ethod. (It was explained in section 4.5.1, that the M onte Carlo results 

are very reliable mathematically, and can be used as a yardstick against which other 

algorithms can be compared). In the linear programming results, the increase in error with 

distance from the reference pressure is again very noticeable. In this feature there is a very 

strong correlation between the two sets of results. In most cases, the error bounds 

produced by the linear programming method vary by no more than 10% when compared 

with the M onte Carlo error bounds. The main exceptions to this rule appear in the pressure 

variables in nodes 1, 2, 6, 7, 8, 10 and 11, which are the most rem ote from the reference 

pressure reading at node 160. Also, there is no apparent shift in the uncertainty ranges 

produced by the two algorithms. These observations lead to the conclusion that no 

significant accuracy is lost in linearising the uncertainty model and justify the use of 

linearised confidence limit algorithms.

In table 4.4, linear programming and sensitivity matrix confidence limits are given for 

the augmented m easurem ent set M2. The same convention is used as in table 4.3, with the 

confidence limits presented in two ways: lower and upper limits and average values together 

with error bounds. For all state variables, the uncertainty bounds are tighter when 

calculated by the linear programming method than they are when calculated by the 

sensitivity method. This reflects the observation that X l( M ,z°) c  X 2(M ,z°), contained in



Lem m a 4.5. Again, it can be seen that the pressure errors are smallest in the nodes closest 

to the accurate pressure meters. With this m easurem ent set, the error bounds for the 

pressure variables average at 0.4m to 0.5m. This shows that by adding this small set of 

m eters greatly improves the accuracy to which the state estimates can be calculated. 

Adding a different set of meters may not result in such an improvement in accuracy as this 

set of meters was chosen to demonstrate the value of adding meters. The results o f the 

sensitivity matrix method, although not as tight as those of the linear programming 

m ethod, compare favourably in most cases. To calculate these results the computation time 

taken was about 2 seconds for the sensitivity matrix method, compared with about 10 

seconds for the linear programming method (tim e measured on a VAX8700). Therefore, 

the sensitivity matrix method can be considered as an adequate substitute for the linear 

programming m ethod, particularly when fast computation is required.

4.7. CONCLUSIONS

In this Chapter, the problem of uncertainty in the monitoring of water distribution 

systems is examined.

Present day deterministic state estimation techniques are very efficient, having small 

computational requirem ents and producing results of an acceptable level of accuracy. But no 

state estimator can give accurate results from inaccurate data. Due to the cost of metering, 

the water industry is, and will be in the near future, making use of relatively inaccurate 

pseudomeasurements. So state estimates are bound to be subject to uncertainty. M onte 

Carlo simulation has shown that this uncertainty can be very significant. The degree of 

confidence that can be put in these results must be calculated and presented with the state 

estimates themselves. Only then can safe and reliable operation of the distribution system 

be ensured.



The principal causes of this uncertainty are investigated. Of these, m easurem ent and 

pseudom easurem ent inaccuracy is identified as having a major impact. To assess this 

impact, an uncertain network model is formulated. From this, the concept of confidence 

limit analysis - quantifying the effects of m easurem ent and pseudom easurem ent uncertainty 

on the accuracy of state and derived state estimates - is introduced. This model implicitly 

incorporates all of the complex and interrelated factors - network topology, distribution of 

meters and operational state of the system, for instance. Four confidence limit algorithms 

are presented, these are: the M onte Carlo method; the linear programming method; the 

sensitivity matrix method; and the ellipsoid method.

The M onte Carlo technique generates a set of feasible state estimates and from these 

calculates upper and lower bounds for each state variable. To guarantee the validity of the 

M onte Carlo results, a massive num ber of state estimates must be used. For this reason the 

M onte Carlo method is an unrealistic proposition for real-time application. Conversely, the 

results it produces are very reliable mathematically. This is because any error bound or 

confidence limit produced by the M onte Carlo method is attainable, ie there is a feasible 

state estimate that will reach this bound. This mathematical reliability means that this 

approach provides a yardstick against which other algorithms can be tested. The linear 

programming and sensitivity matrix methods are both based on an accurate linearisation of 

the system model. However, the results produced by these methods compare very well with 

those of the M onte Carlo method. The computational efficiency of the sensitivity matrix 

m ethod, in particular, makes this method suitable for real-time and on-line applications. 

The ellipsoid method, although recom m ended for this type of problem by other authors, 

proved unsuitable for application to confidence limit analysis in water distribution systems.



CHAPTER 5

OPTIMAL METER PLACEMENT

5.1. INTRODUCTION

Ideally, a water distribution telemetry system would m onitor the flow in every pipe 

and the consumption and pressure at all nodes of the network. Unfortunately, this is not 

economically viable. Even in simplified water distribution network models, there may be 

several hundred potential m eter sites. Realistically, only a limited num ber of flow and 

pressure meters can be installed into the telemetry system. This m eans that there will 

always be a significant level of uncertainty present. Fortunately, by carefully selecting sites 

for the real meters in the network it is possible to significantly reduce this uncertainty. It is 

this problem that is addressed in this chapter - how should the telem etry system meters be 

positioned about the network to achieve the greatest level of accuracy? W henever a new 

telemetry system is being designed or an existing one altered it is im portant to optimise the 

design of this m eter configuration. As metering resources are limited, the optimisation will 

be a complicated procedure, balancing the potential accuracy against the cost of the 

metering.

One way in which a good m eter configuration can be determined is by using the 

software package TCLAS. TCLAS - Telemetry Confidence Limit Analysis Software - is an 

interactive program that can be used in m eter placement studies and in water distribution 

decision support [16] (TCLAS is described more fully in Chapter 6). It is the first of these 

uses that is of interest here. Using TCLAS, an operator can input a proposed m eter 

configuration and then call on TCLAS to calculate the uncertainty in state estimates that 

would be produced by this metering. TCLAS presents the accuracy of a metering



graphically, allowing the operator to see which parts of the network require further 

metering. The proposed m eter placement can then be modified accordingly. By 

experimenting with m eter configuration in this way TCLAS operators can use their 

experience and system knowledge, to find a balance between accuracy and cost of metering, 

eventually designing a satisfactory m eter placement. Although TCLAS provides a useful 

insight into the effects of m eter placement and m eter accuracy on the accuracy of state 

estimates, it cannot guarantee that the resultant m eter placement is the best. Also, its use 

can be very time consuming for large networks. What is required is a technique that will 

automatically provide the optimal m eter placement design for any network, under all 

operating conditions.

The optimal m eter placement problem for water network telemetry systems is 

addressed in this chapter. The next section includes a review of the existing literature on 

this subject. In section 5.3, the various considerations involved in water network telemetry 

system metering design are discussed. These concepts are formulated mathematically in 

section 5.4 and the problem is described as a mathematical optimisation problem. In 

section 5.5, two solution techniques are suggested. Optimisation is dependent on the 

particular operating state under which the study is carried out. So, in section 5.6, a method 

is suggested by which the problem can be extended to include different operating states. 

Section 5.7 presents some results for a realistic test network and conclusions are reported in 

section 5.8.

5.2. REVIEW OF PREVIOUS RESEARCH

The optimal m eter placement problem in power system monitoring has been 

addressed by Koglin, details of this approach are given in [87]. In this paper, a sub-optimal 

m ethod is suggested which uses a cost function based on the weighted mean variance of all 

state variables and a constraint limiting the variance of each state variable. Initially, meters



are considered in all possible sites in the network and the process systematically eliminates 

meters, until a desired num ber are left. At each step the m eter discarded is the one whose 

removal causes the smallest increase in cost value. This requires, at each step, the cost 

value for the current m eter set, without each of the meters in turn, to be calculated. To 

assess the value of each of these m eter sets, Koglin uses the weighted mean variance of the 

set of derived state variables. These variances can be obtained from the leading diagonal of 

the derived state covariance matrix.

Aam et al, in [1], extend Koglin’s method, to obtain a more robust m eter placement. 

Specificly, they consider situations where the availability of readings from the m eters placed 

in the system is unreliable. Their algorithm is split into three phases, the first being the 

same as Koglin’s algorithm. In the second phase, a pre-specified num ber, r  say, of meters 

are removed from the phase 1 m eter set. The same elimination m ethod as is used in 

Koglin’s m ethod is used here. Finally, in phase 3, r meters are added to the current m eter 

set. These meters are chosen so as to reduce the sensitivity of Koglin’s cost function to loss 

of m easurem ents or bad data. Rather than calculating derived variable variance by using the 

covariance matrix, as suggested by Koglin, Aam et al use a M onte Carlo method.

Phua and Dillon [113] proposed m ethod of optimal m eter selection based on an 

’entropy’ function. The entropy function is used to indicate the level of the lack of 

knowledge or uncertainty in the state variables due to the m easurem ent uncertainty. A 

non-linear programming m ethod is proposed to maximise mutual information between 

m easurem ent and state vectors.

5.3. OPTIM A L M ETERIN G : CONSIDERATIONS

Optimisation of the m eter configuration for a water distribution system can have two 

aims. Minimisation of the cost of metering or maximisation of the accuracy of system 

monitoring. These two are usually conflicting aims, so a careful balancing is required.



Generally speaking, the more meters used, the more accurately system variables can be 

estimated. This is because the telemetry system’s meters can be seen as replacing the 

highly inaccurate nodal consumption predictions with more accurate data. Optimisation can 

therefore be approached in two ways. One is to specify the cost of m etering and then find 

the most accurate m eter placement that does not exceed these spending limits. Conversely, 

a level of accuracy can be specified and the least expensive m etering that achieves this level 

found.

The cost of a particular metering is easily calculated as this involves mainly hardware 

considerations. Such as the num ber of m eters to be used, their individual price, cost of 

communication links, cost of installation and maintenance, etc. Quantification of the value 

of a m etering in terms of accuracy is more difficult. For instance the aim may be to ensure 

that each state variable can be calculated to within a specified accuracy. Alternatively, an 

average accuracy over all variables may be required. As in explained in Chapter 4, 

quantification of the accuracy a particular m eter placement is itself a complicated task. Any 

method intended to automatically design an optimal m eter placement must be applicable in 

each of these situations

A mathematical optimisation problem of this type requires a cost function and usually 

has some constraints. The cost function is needed to assess the value o f each configuration 

and the constraints are used to model the system ’s restrictions. Optimisation is then a 

matter of finding the m eter placement that minimises the cost function while satisfying all 

of the constraints. In this case, three basic types of cost function have been identified. 

These are:

COST1:- Minimise m etering cost. This assesses the cost, in financial or pseudo-financial 

terms, of each configuration and picks the most economical one. Of course, this type of 

cost function must be ^considered together with constraints which will primarily be 

concerned with the monitoring system’s accuracy.



COST2;- Minimise maximum state variable error. In this type of optimisation the accuracy 

of the system variables must be analysed using techniques such as those of Chapter 4. The 

best m eter configuration being the one which reduces the potential error in all of the 

variables to a minimum. Here, constraints specifying limits on the cost of metering must 

be used.

COST3:- Minimise average state variable error. This is similar to the optimisation type 

above except that average state variable error is considered. Again constraints on metering 

cost must be used.

By varying the coefficients in any of these three types of cost function the different 

elements can be weighted. For example, if a particular variable is required to a greater 

degree of accuracy, this can be specified by weighting the appropriate elem ent of the type 2 

or type 3 cost function. Alternatively, different m eter sites can be weighted, according to 

level of preference or cost, in a type 1 cost function. Zero weights may also be used, this 

has the effect of limiting consideration to a particular subset of m eter sites or state variables 

(ie that subset with non-zero weights). It is the weighting system that will provide the 

required flexibility. Hopefully all design priorities can be modelled using one of these three 

weighted cost functions.

As well as being able to select the cost function, it must be possible to select any 

num ber of additional constraints. These may be economic constraints, operational 

constraints, water network constraints, telemetry system constraints, etc. Weighted 

functions similar to the cost functions can be used to model these constraints. Together 

with these functions a value which represents the maximum value the constraint can take 

must also be supplied. A few possible examples for the type of constraint that may be 

required are shown below, but the list is by no means exhaustive:

1. The cost of metering is limited. This may specify limitations on the cost of metering in a
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specific region of the network or on the cost of a certain type of m eter, flow or pressure 

m eters for instance. Alternatively, a simple limit on the num ber of m eters may be used 

instead of the cost of metering in each of these cases.

2. Certain m eter sites m ust or must not be included in the optimal configuration. This is 

particularly useful if the telemetry system already has some meters in place.

3. A limit for the accuracy of a particular flow or pressure variable is specified.

4. A limit for the weighted accuracy (average or minimum) for any subset of pressure and 

flow variables is specified. In this type of constraint, the subset of variables chosen may be, 

for example, all flow variables, all pressure variables, all variables in a certain region of the 

network, all variables that are used to trigger control devices or indeed any set of variables 

that an operator considers important.

Any num ber of such constraints, with weighted coefficients, in any combination, may be 

needed to fully describe the m etering requirem ents as well as the operational characteristics 

and peculiarities of the system.

A typical water network may have several hundred nodes and pipes, creating several 

hundred variables and several hundred possible m eter sites. This combined with the 

computational complexity of the m ethods to quantify pressure and flow variable errors for a 

given m eter configuration dictate that the problem of optimising m eter placement for water 

networks is by no means a trivial one. Any m ethods used must be extrem ely powerful and 

their computer implementations will be very time consuming. In the rest of this chapter an 

attempt is made to tackle these difficulties.



5.4. MATHEMATICAL FORMULATION

In the previous section the problem of designing an optimal m eter placement for a 

water distribution system has been outlined. The problem is now formulated 

mathematically, with cost and constraint functions modelled.

The aim of optimising m eter placement for a given water network is to determine a 

set of meters that can be added to the telemetry system that is optimal according to one of 

the three types of cost function while, at the same time, meeting a set of pre-specified 

constraints. It must be the case that either, the cost function, or one of the constraints will 

involve the potential accuracy of the state variables that can be achieved by adding each 

possible m eter set. The potential accuracy of the estimated state variables is dependent on 

the operating state of the system as well as the m easurem ent set. There are other factors 

involved, network connectivity and pipe parameters, but these can be considered as 

constant for a given system as they are unlikely to change during the study period. A 

general statem ent of the optimal m eter placement problem would require the optimisation 

to be carried for all possible m eter placements and over all operating states. As there are 

an infinite num ber of operating states it is completely impractical to optimise over both 

variables at the same time. Instead, the problem can be split into a two level optimisation 

problem. The bottom level requires a m ethod that can determ ine an optimal m eter 

placement for a particular operating state. The first sections of this chapter deal with this 

problem. At the top level of the optimisation a method is required which can analyse 

optimal m eter placements for a whole range of operating states, found by the lower level 

optimisation m ethod, and find the m eter placement that performs the best overall. Section 

5.6 tackles this top level optimisation. In the remainder of this section and in section 5.5 

attention will be restricted to the lower level optimisation. For this, a particular operating 

state is assumed. The operating state selected for the optimisation is referred to as the 

base operating state for the study and is denoted by x b. x b will be an n -dimensional state



vector, having one elem ent for each independent state variable, that can fully specify the 

system ’s operating state.

For state estimation of water distribution systems it is necessary, in order to make the 

system observable, to have a certain minimal set of m easurem ents [14]. These 

m easurem ents generally come from m eters that are already in place in the system. 

Otherwise predictions of their values have to be made. For this reason a minimal 

m easurem ent set is assumed present before the m eter placement study is carried out. In 

reality this is not a restricting assumption as the values of the minimal m easurem ent set can 

be assigned suitably large m easurem ent error bounds if no corresponding m eters or 

pseudomeasurements are actually available. Real meters at the minimal m easurem ent set 

sites can also be added to the set of possible m eter sites. This minimal m easurem ent set 

will be denoted by M' .

In a water network, R different sites can be chosen as possible sites for installing 

meters, these being additional to the ones already included in the minimal measurem ent 

set. The meters should have a specified accuracy, type and cost. For example, m eter site 1 

might be for a flow m eter in pipe i - j ,  with accuracy ± a%  costing $b.  Other m eter sites 

may be intended for different types of m eters in different parts of the network. The same 

node or pipe may appear more than once in the list of possible m eter sites, signifying that 

different types of m eter are being considered for the same location. A vector 

m = (mi ,  . . .  ,mj i )  can now be defined.This will be referred to as the location vector and 

has one elem ent for each proposed m eter site. Each elem ent m x, . . . , mR can take a value

of either 1 or 0. If 0, ( i e  [1 ,R }), then no m eter is to be placed at site i,  in the

meter set specified by m, and if 1 then there is to be a m eter placed at site i.  The 

m eter location vector will become the decision vector of the optimisation, the object being 

to find a vector m e {0,1 )iX • • • x {0,1}^ satisfying all constraints whilst optimising the cost 

function. Let M  (m) denote the m eter set specified by the location vector m.



The m eter location vector specifies the proposed m eter set that is to be added to the 

minimal measurem ent set AT (assumed to be already present). So M 'u M  (m ) specifies the 

full m easurem ent set proposed for the system. With this m easurem ent set and with the 

assumed base operating state, a m easurem ent uncertainty set Z (M 'u M  (m ),g (x b)) can be 

derived. This uncertainty set is derived in same way as was described in Chapter 4 for

Z (M ,z°) with M  a general m easurem ent set. The only difference being that in Chapter 4 it

was assumed that the m easurem ent data (z°, z1 and zu in particular) were available. For the 

purposes of optimal m eter placement studies this is not the case as the m eter sets are only 

proposed. To solve this problem, z° can be replaced by g (x b), where g(.)  is the network 

function for the m eter set A f 'u M (m ), and z1 and zu can be derived from x b, estimates of 

pseudom easurem ent variance and the m anufacturer’s specifications on the accuracy of the 

meters, as was explained in Chapter 4. Because of this definition a distinction must be 

drawn between the measurem ent uncertainty set Z ( M 'u M ( m ) ,g ( x b)) and the 

m easurem ent uncertainty sets discussed in the previous chapters. Z (M 'u M  (m ),g (x b)) is 

the uncertainty set that can be expected from a measurement set M 'u M (m )  and the 

uncertainty set, Z (M ,z°) discussed before is the actual uncertainty set derived from 

existing m easurem ent data. All references to a measurem ent uncertainty set in this chapter 

will be to an expected uncertainty set of the type Z ( M ' u M  (m ),g (x b)) . The notation will

include a the base operating state x b to emphasise this point.

5.4.1. Cost functions

COST1: A weighting vector a = (a \,....taR ) can be defined. Each elem ent ( ie  {1 )),

of a will take the value of the weight applied to the individual m eter site i in a type 1 cost 

function. The weights can be any non-negative real num ber and should reflect the cost of 

installing and maintaining a particular type of m eter at site i. The cost of m etering of any 

particular m eter configuration is now given by



metering cost = aT.m (5.1)

where m is the m eter location vector for that configuration. With these definitions, 

minimising metering costs is a m atter of minimising equation (5.1) over all m eter 

configurations satisfying all of the constraints.

COST2: In an optimal m eter placement study, any state variables can be considered, not 

just the set of independent state variables. It will be assumed that there is a set of N  of 

these. This set may include all of the n independent state variables as well as any other 

derived state variable. For the i th derived state variable, ie  j, its potential

uncertainty is dependent on both the m easurem ent set M 'u M (m )  and on the base 

operating state selected for the study. This dependency is denoted by

ei -  et (A f'u M  (m ),g (x b)) (5.2)

where ex is the potential error associated with the i th state variable. The base operating state 

is, at this stage, also considered as a constant but is included in (5.2) to emphasise the 

point that a particular base state m ust be chosen for the study. An N -dimensional cost 

vector b can be defined which has one elem ent for each derived state variable. These 

elements represent the weights for the individual state variables and should reflect how 

accurately that variable is required to be known. With these definitions the cost function is 

given by

N
maximum state variable error = max 6,-.et (M 'u M  (m ),g (x b)) (5.3)

/=i

where bi is the i th elem ent of the vector b. The maximisation is carried out with the 

particular value of x b chosen as the base state for the study.

COST3: The third cost function is very similar to the second but differs from it in that the 

average state variable error for each m etering is considered rather than the maximum error. 

Firstly a weighting vector, c, consisting of N  elements must be constructed, c is defined in
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a similar way to b in COST2. With this weighting the cost function is given by

^ i . e i(M/u M ( m ) ^ ( x b))
average state variable error -  —  —-----------------

N

In this cost function, the average state variable error is calculated for the base operating 

state, xb.

5.4.2. Constraints

For this optimisation problem to have non-trivial results, it must be subject to some 

constraints. The ideas behind these were discussed in section 5.3. Close examination of the 

constraints that are required by the optimal m eter placement problem reveals that these fall 

into three main categories. These are:

1. Weighted cost of metering must be less than a specified limit.

2. Maximum weighted state variable error must be below a specified limit.

3. Average weighted state variable error must be below a specified limit.

Any num ber of these three types of constraint, combined in any order, together with a 

suitable weighting can be used to allow all real constraints to be adequately modelled.

The three types of constraint function that are used resemble the three types of cost 

function. They may have different weighting coefficients associated with them and must 

have a specified limit, but they can be modelled in a similar way. The optimal m eter 

placement problem will have a num ber, C say, of constraints. Taking the j th of these, it 

will have a weighting vector aJ, d  or d , depending on whether it is a type 1, 2 or 3 

constraint. The constraint will also have a limit, <])■' say. Mathematically, the j th constraint, 

( j e  {1,...,C }), will take one of the following forms.

l - ' i b  V-V Vriv- ' * i  •'> '‘A  j. • ii  .C'-b'-ii'islL iQ-r'
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(a*)r .m <  (5.5)

N
max b l.e i{M '\jM  (m ),g (x b)) < (5.6)i=i

l - l  -  .  i < 5 -7 )---------------------------------------------------------  <  <k J
N  v

depending on whether it is a type 1, 2 or 3 constraint. Again, x b is the base state chosen 

for the study.

It can now be seen how the optimal m eter placement problem can be formulated as a 

mathematical minimisation problem. The cost function will take the form of one of the

equations (5.1), (5.3) or (5.4) and the minimisation will be subject to C constraints of the

form shown in equations (5.5), (5.6) and (5.7).

5.4.3. Calculating potential errors - the et function

(m ),g (x b)) is defined as the potential error for a particular state variable as

a result of the m easurem ent uncertainty set Z (A f 'u M  (m ),g (x b)). The values of et can

therefore, be calculated using one of the confidence limit algorithms of Chapter 4. The 

M onte Carlo m ethod is clearly out of the question as this problem requires that the values 

of e,- be calculated for each i and for many different meter location vectors. So, one of the 

linearised methods must be used. For the i th derived state variable, its potential error for 

the uncertainty set, Z (M 'u M ( m ) ,g ( x b)) , is defined as

m ),g (x b)) := ( y ^ - y ,1') /2,0 (5.8)

where yflM and y,-1* are the upper and lower bounds for this variable in the linearised,

derived state uncertainty set F 1( M 'u M ( m ) ^ ( x b)). As Z (M 'u M  (m ),g (x b)) is

symmetric about g (x b), Y (m ),g (x b)) is symmetric a b o u t / ( x b), where / ( . )  is the

derived state function of equation (3.3). This statement is just a corollary to the special 

case (i) in section 4.5.2. Hence, the potential error for a variable, defined in (5.8), is the



maximum value that (y,—y,\) can take for a y in (m ),g (x b)) , where yb -  f  (x b).

In this way, the definition of potential error in the variables corresponds to the concepts of 

error in worst-case analysis.

Calculating (m ),g (x b)) still presents a major problem as there are a very

large num ber of possible location vectors, m, to be assessed. The sensitivity matrix method 

described in Chapter 4 is too time consuming to be of direct use here. What is required is 

an accurate approximation to this function that can be calculated quickly. Let m k be the 

location vector for which m*= 0 unless i =k ,  ie m K is the location vector for the m eter set 

consisting of one, and only one, m eter which is the k th in the list of possible m eter sites. A 

new error function can be defined as follows:

where the minimisation is carried out over all those k for which mk=l .  In other words, for 

a given set of meters, the function e* (M 'u M  (m ),g (x b)) gives a value for the error in 

variable i equal to the smallest error for that variable when each of the m eters is considered 

individually. Although there is no guarantee of equality, it is the case that

particularly when the m eters are well spaced and there is little significant interaction 

between them. This approximation, e*, is motivated by the following lemma

Lemma 5.1 Let m and mk be defined as above. Then for all k for which mk -  1, that 

is, for all m eter sites specified by m,

e /(M 'u M (m ),g (x b)) := min e ^ M ' u M  (m k) ,g (x b))
k :mk = 1 (5.9)

e/(M 'u M  (m ),g (x b)) ~ (m ),g (x b)) (5.10)

ei (M 'u M (m ),g (x b)) < (m k) ,g (x b)) , (5.11)

Proof Let y be the derived state vector in (m ),g (x b)) for which y,—yf is

maximal, where yb = / ( x b), and let x be the state vector in X 1(M 'u M (m ),^ (x b))



for which y =  / ( x ) .  Then e ,(M 'u M  (m ),g (x b)) = y i~ y t• As

x e I 1(M 'u M ( m ) ,^ ( x b)) , x satisfies all of the constraints specified by the 

measurem ent uncertainty set Z (M 'u M  (m ),g (x b)). Since

M ' kjM  (m k) c  M ' u M  (m ) for all & with mk- l ,  x will satisfy all of the constraints 

specified by Z (M 'u M  (m ^.gC x1*)) for all k with mk- l .  This means that 

x e X 1(M 'u M ( m k) ^ ( x b)) for all such k .  Hence, (m k) ,£ (x b)) >

y i - y t  = C i(M 'u ill (m ),g (x b)) for all k such that mk= 1. The result now follows.

It follows directly from this lemma that

(m ),g (x b)) < ^ m in ^ A f 'u M  (m k) ,g (x b)) = e * ( M ' u M  (m ),g (x b)) (5 ,12)

The simplified function e * ( M ' u M  (m ),g (x b)) is introduced because its evaluation can 

be carried out much more quickly than (m ),g (x b)) . The procedure will therefore

be to evaluate e ,(M 'u M  (m k),g (x b)) for all 1< k< R and all 1< i< N , where R is the 

num ber of possible m eter sites. The results can be stored in a matrix E,  where

£ ( t , i )  =  ei( I 'u A ( ( n i l' ) , j ( i k|)  (5.13)

This means that the elem ent E (k , i) of the matrix E holds the value of the error bound for 

the i th state variable after the k th m eter from the list of possible m eter sites has been added 

to the minimal m easurem ent set (with no other m eter in system). With the matrix E 

defined as in (5.13), the values of the e* function are given by

<?*(M'uM (m ),g (x b)) = m\ x i E ( k , i )  (5.14)

5.5. SOLUTION TECHNIQUES

The methods reviewed in section 5.2 have been examined for application to the 

problem of optimal m eter placement in water distribution systems. Each of these methods 

relies on a particular, somewhat arbitrary, choice of cost function and constraints. As a



result, these methods are not flexible enough to be applied directly to this problem as it is 

formulated. Furtherm ore, calculating the derived variable variance using the covariance 

matrix in Koglin’s method [87] or by using the M onte Carlo m ethod suggested by Aam et 

al [1] for each proposed m eter set will be impractical for a large network. Also, these two 

methods provide no guarantee that the resulting m eter placement is optimal according to 

their chosen cost functions. A solution technique based on the more flexible uncertainty 

formulation of Chapter 4 and the E matrix overcomes these problems. This is the approach 

adopted.

A careful study of the mathematical optimisation methods available identified those 

used in the field of locational analysis [60] as the most promising. Within this field the 

optimal m eter placement problem can be classified as a set covering problem. One of the 

methods of solution presented here is based on a set covering algorithm due to Roy [120]. 

This can guarantee an optimal solution to the problem as formulated in section 5.4. 

Alternatively, the problem can be viewed as a mixed integer programming problem. 

Solutions, based on enumeration techniques will be far too time consuming in this 

situation, so a restricted search method has been developed. This can produce near optimal 

results much more rapidly. The restricted search method is, in some respects, similar to 

Koglin’s method but has a greater level of flexibility.

In the remainder of this section the chosen solution techniques are examined more 

closely, starting with the calculation of the E matrix in section 5.5.1. In sub-sections 5.5.2 

and 5.5.3, the set covering and restricted search methods are presented.

5.5.1. The E matrix

In Chapter 4 several methods for calculating the error bounds of the state variables 

for a given state and m easurem ent configuration were presented. Of these the sensitivity 

matrix method seems the most suitable for these purposes. Other methods for quantifying



the quality of a m eter placement have been assessed. An assessment based on the condition 

num ber of a matrix, proposed by Edelmann in [53], was rejected as this provides just one 

num ber for the value of a particular m eter configuration. This means that Edelm ann’s 

m ethod can provide no information about the effects of the m eter placement on each 

individual variable and so is not flexible enough to be used here. Koglin’s analytic method, 

in [87], was also considered but this proved to be too slow. The application of the 

sensitivity method is quite straightforward in this situation. For each m eter in the list of 

possible m eter sites, the error bounds for each variable that would be obtained when this 

m eter added to the minimal m easurem ent set, are calculated. The results can be inserted 

directly into the appropriate row of the E matrix. Thus, with R applications of the 

sensitivity matrix m ethod, the E matrix can be assembled.

5.5.2. Set covering algorithm

The set covering problem can be stated as follows. Let U {«,• : 1< i< K } be a set 

of K  elem ents and let V := {v* : v ,c  U , 1< i< L  } be a collection of L  subsets of U . The 

set V will be referred to as the set of blocks of U . A cover W  of U is a subset of V such 

that each element of U is contained in at least one element of W . The set covering 

problem is to find a cover W , of U , that is optimal in some way.

In [120], Roy presents "An algorithm fo r a general constrained set covering problem". 

This has many features that can be exploited for the purposes o f the optimal m eter 

placement problem. The most important of these being the facility to specify a cost function 

and constraints. The format that these functions take is very similar to that used in the 

previous section. So, the set covering problem considered in R oy’s paper is an extension of 

the true set covering problem as defined in the previous paragraph. Roy introduces the 

terms "configuration" and "partial solution", these are now described. A configuration is a 

partition of the set of blocks V , into two subsets - the set of those blocks said to be "in" the
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configuration and the set of those blocks "not in" the configuration. A partial solution is a 

partly specified configuration. It has some blocks specified to be "in" all configurations that 

it may lead to and some blocks specified to be "not in" these configurations. Together, 

these blocks will be referred to as forced blocks. The partial solution will also have a 

num ber of blocks that are, as yet, unspecified, these are referred to as free blocks. If a 

partial solution has F  free blocks, then it may give rise to 2F different configurations once 

these are specified, since each of these can be specified as "in" or "not in". The algorithm is 

based on a branch and bound m ethod for which a decision tree must be constructed similar 

to the one in fig 5.1. Fig 5.1 shows the decision tree for a three block problem. The nodes 

of this tree will represent the possible partial solutions. A path, starting from the root, is 

followed through the tree. At each branch point, that partial solution is assessed to see 

whether any of the configurations it may lead to, will produce the optimal cover (see fig 

5.2). In order to do this, three things must be checked, (i) whether the partial solution may 

lead to a cover, (ii) whether the partial solution may lead to a configuration that has a 

better value for the cost function than the best potential value so far, and (iii) whether the 

partial solution may lead to a configuration that will satisfy all of the constraints. If any of 

these three are not satisfied, then the node is declared a bound node (ie it is not worth 

pursuing the path any further than this point) and the path backtracks to the last branch 

node. Eventually a path will be found that includes the optimal cover, if such a 

configuration exists.

A detailed description of the set cover algorithm is now given. Fig 5.3 shows a flow 

diagram for this algorithm.

Set covering algorithm

STEP I. INITIALISATION: Introduce an empty stack. Let <I> be the value of the cost

function for the current best configuration, this is initially set at +°° as no
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Fig 5.1 : Decision tree for three block problem.
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Fig 5.3 : Flow diagram for the setcovering algorithm.
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configurations have been examined. Set the initial partial solution as the one for all 

blocks are free blocks.

STEP E. EVALUATION: Calculate the optimistic estimate (the optimistic estimate 

functions will be described in a later paragraph) for the value of the cost function for 

the current partial solution. This involves calculating a lower bound for the value of 

the cost function over the set of possible configurations that may lead from the 

current partial solution. If this optimistic estimate will not improve on the current best 

value, <3>, then go to step B. Otherwise calculate the optimistic estimates for each of 

the constraints for the current partial solution. If it becomes clear that one or more of 

the constraints will not be satisfied by any of the configurations that may lead from 

this partial solution, then go to step B. On evaluation of the optimistic estimates it 

may become clear that if this partial solution is to lead to any feasible or optimal 

configuration then some of the free blocks m ust become specified. That is to say it 

may be apparent that all feasible/optimal configurations leading from this partial 

solution must include certain of the free blocks and must not include others. Any 

such blocks are called forced blocks. These should be identified if possible and the 

partial solution amended. Go to step C.

STEP C. COVERING: Check whether any of the configurations that can be obtained 

from this partial solution cover U . If none do, go to step B. If all do, go to step S. If 

some of these configurations do but others don’t then it should be possible to identify 

some forced blocks. Add these forced blocks to the partial solution and go back to 

the beginning of step C.

STEP S. SEPARATION: If there are no free blocks left in the partial solution (ie the 

partial solution uniquely specifies a configuration), then go to step T. Otherwise select 

one of the remaining free blocks. Two new partial solutions can be obtained, the first



by adding this free block to list of blocks to be included in the configuration and the 

second by adding it to the list not to be included. The latter of these is put onto the 

stack and the former is considered as the new current partial solution. Go to step E.

STEP T. TERMINAL NODES: The current partial solution now uniquely specifies a 

configuration. Firstly it must be checked whether this configuration is feasible (in 

order to have reached this far it must be a cover), if so the cost function is calculated. 

If this value is better than the current best then this cover is the best encountered so 

far and so must stored and must be updated. Otherwise, the old value of d> and 

the old current best cover are kept. Go to step B.

STEP B. BACKTRACKING: This stage looks back through the decision tree to find 

the last feasible partial solution that has not been fully explored. This can be done by 

picking the last partial solution from the stack, then taking this to step E as the 

current partial solution. If the stack is empty then terminate the algorithm. If is 

still equal to +°° then there is no solution, otherwise the optimal, feasible cover is the 

one which is stored as the current best.

In the EVALUATION stage of this algorithm, the "optimistic estimate functions" 

were mentioned. These are now described. The problem with these functions is that the 

they are defined on the partial solutions rather than on the completely specified 

configurations. To deal with this, some more terminology must be introduced. In a partial 

solution some blocks (or possible m eter sites) are specified to be included in the 

configurations leading from it, some blocks are specified to not be included in these 

configurations and the remaining blocks are free. The idea of optimistic estimates for the 

cost and constraint functions is to provide a way of estimating the minimal value these 

functions may take if all possible configurations leading from the partial solution are 

considered. For this reason it is sensible to consider two configurations for any partial



solution. These are the minimal and maximal configurations that can be obtained from the 

partial solution. The minimal configuration for a partial solution will consist of only those 

blocks specified to be included, and the maximal configuration will consist of these blocks 

together with the free blocks. They will be referred to by their location vectors m“ and 

m+, respectively. It is now easy to see how the optimistic estimate functions can be 

defined. That is

optimistic cost o f  metering aT.m~ (5.15)

N
optimistic maximum variable error := max (m i n E ( j , i )) (5 16)

«'=i j 'mf  =i ’

N

S ci-( min E u f ) )
. . .  . . .  t~l j'-rnf-1 (5.17)

optimistic average variable error ------------ —------------

The optimistic estimates for the constraint functions can be similarly defined.

The set covering algorithm, detailed above, can be used directly to solve all th ree  of 

the different types of optimisation of m eter configuration in water systems. This is done in 

the following way. In the optimal m eter placement problem the set that needs to be 

covered is the set of N  derived state variables. These need to be covered by m eter sites 

which will guarantee their error is below a specified limit. For each m eter site the 

corresponding row of the E matrix gives an indication of how much influence that m eter 

has on the accuracy of each variable. A cutoff value, a , can be defined. The "region of 

influence" of a m eter site i is defined as the set of variables which can be estimated with 

error less than a  with just m eter i added to the minimal m easurem ent set. It is now 

possible to describe the optimal m eter placement problem in set covering terms. Let U be 

the set of N  state variables. For any m eter site i, 1< i< R , a block v,- can be defined as 

follows

vt- := { j eU : E( i , j ) <  a )  (5.18)

The collection of blocks, V , is then the collection of all v,- for each possible m eter site i.
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That is

V := {v, : i e  { 1 ) } (5.19)

In optimal m eter placement terms, a cover for U (the set of all state variables) is a subset 

of V for which every state variable is contained in at least one block (or region of 

influence) of that subset. Alternatively, a set of possible m eter sites is said to cover all of 

the state variables if each variable is contained in the region of influence of at least one 

m eter in that set.

The general constrained set covering algorithm can guarantee an optimal solution to 

the problem defined by the cost function (either equation (5.1), (5.3) or (5.4)) and a list of 

constraints (equations (5.5), (5.6) and (5.7)), when these are calculated using the E 

matrix. But for large water networks, with a large num ber of possible m eter sites, it can be 

time consuming. Since the problem, so defined, is only an approximate model of the real 

optimal m eter placement problem, an approximate solution method has been designed. 

One that produces a near optimal solution in a fraction of the time of the set covering 

algorithm. This m ethod is presented in 5.5.3.

5.5.3. Restricted search method

This method is based on the strategy an operator using TCLAS [16] might use in 

designing an optimal m eter placement (see Chapter 6 for a fuller description of the software 

package TCLAS). That is, firstly try to find a m eter placement that satisfies all of the 

constraints. Once this has been done, the operator will try to improve on this placement by 

either removing a m eter, adding a m eter or replacing a small set of meters in the current 

best placement by a small set of m eters not yet in the current best placement. Repeating 

this process until no further im provem ent can be found. If, at each step of the 

improvement, it is ensured that the new configuration still satisfies all of the constraints, 

this m ethod will terminate with a good m eter configuration. The restricted search method



can be regarded as an extension of Koglin’s m ethod with improved optimality. Use of the E 

matrix means that cost values can be calculated much more quickly and so more m eter sets 

can be assessed. The initial phase of the two methods is very similar, meters are removed 

(or added in the restricted search, depending on the cost function used) when this can be 

done without violating a constraint. Once this phase has been completed, the restricted 

search goes on to improve the current m eter set by finding meters that are not included 

that can be swapped with m eters that are, when this will improve the cost value and not 

violate a constraint. In this way, the restricted search can guarantee a result closer to the 

optimum. In addition, restricted search has the flexibility required for this problem. The 

details of the algorithm are now given:

Restricted search algorithm

STEP 1. INITIAL SOLUTION: An initial solution is one that satisfies all of the 

constraints. It does not m atter at this stage what its cost is. If the optimisation has a 

type one cost function - minimise metering cost - as in equation (5.1). Then its 

constraints will be ones limiting the errors of the state variables. The configuration 

that uses all of the possible m eter sites is the one for which the accuracy of the state 

variables is the greatest. So, if this configuration does not satisfy all of the constraints, 

none will. Therefore, a suitable initial solution for this type of optimisation would be 

the configuration consisting of all possible m eter sites.

On the other hand, if the cost function for the optimisation is given by a (5.3) or 

(5.4) type of function, its constraints will ones be limiting the m etering cost. So in 

these cases, a suitable choice for an initial solution will be the null configuration, the 

one that contains no possible m eter sites.

If no initial solution can be found, terminate the algorithm with no solution, 

otherwise go to step 2.



STEP 2. IMPROVEMENT: The case when the cost function is as in (5.1) will be 

considered first. The aim here is to reduce the metering costs. Initially each m eter site 

included in the current best configuration is tested. If any m eter site can be removed 

without violating a constraint, then this is done. Removing m eters can only have the 

effect of improving the value of this type of cost function. This follows as a corollary 

to Lem m a 5.1. This process goes on until all the m eter sites that can be removed 

from the current best configuration have been removed. When this happens each pair 

consisting of one m eter site in the current best configuration and one m eter site not 

in the current best configuration is considered. As soon as one of these pairs is found 

that can be swapped without violating a constraint and at the same time improving on 

the current best cost, the pair are swapped. The improved configuration is then 

examined again to see if any m eter site can be removed. When all of these have been 

removed the pairs are examined again. This process, removing m eters followed by 

swapping meters, is repeated until no further improvement can be achieved. At this 

point the algorithm is terminated with the current best configuration as the solution.

The case where the cost function is specified by an equation like (5.3) or (5.4) can be 

treated in a very similar way. The difference being, where m eters are removed in the 

previous case, meters are added here, when this can be done without violating a 

constraint. This is because the aim is to improve accuracy rather than reduce 

metering costs and the addition of meters must result in such an im provem ent (when 

assessed by a type 2 or type 3 cost function). The process of swapping meters is also 

used in this case.

5.6. EXTENSION TO IN C LU D E D IFFEREN T O PERA TIN G  STATES

So far, optimisation has been restricted to a study considering only one operating 

state. In many cases this may prove satisfactory. However, to get a more reliable optimal 

m eter design it is worthwhile considering several different operating states. For instance, a
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set of states can be selected which highlight a ’typical’ days operation, one state for each 

hour perhaps. In this section, this approach is discussed and a m ethod for combining the 

results for different operating states is presented.

If a num ber of optimisation studies are carried out for the same network under 

different operating states, a whole range of ’optimal’ m eter configurations will be produced. 

It may be that these ’optimals’ have very similar cost values but significantly different 

location vectors. For instance, two m eter sets may have no sites in common, but can 

produce the same level of accuracy. Which one of these should be installed? Preliminary 

results have shown that this is often what happens in water networks. It could be argued, 

that if they have the same cost value, then each configuration is equally valid. 

Nevertheless, these observations are disconcerting, particularly when real m eters have to be 

installed into the telemetry system on such a recommendation.

What is required is a m eter placement that is ’good’ for all possible operating states* 

rather than one that is ’optimal’ for one state. This requires a higher level of optimisation. 

The approach suggested, is based on an evaluation of a num ber, k say, of ’optimal 

locations. From these, the one which performs the best overall is selected. For example, 24 

optimisations can be conducted, each one for a state typical of a particular hour of the day. 

Each one of the ’optimal’ locations can then be costed at all other times of day. All of these 

results can be assembled to form a cost matrix C,  with C ( i J )  (the ( i j ) th elem ent in the 

matrix) equal to the cost value for the i th optimal metering under the conditions of the j th 

state. Table 5.5 shows an example of a cost matrix. Examination of the C matrix should 

yield a m eter placement that is the best overall, ie the optimal of the ’optimals’. For 

instance, this may be the ’optimal’ whose cost differs the least from the optimal cost at 

each of the states. With this criteria, the cost difference can be the maximal cost difference 

or the average cost difference. In both cases the differences should be normalised so that 

the different cost values for different operating states can be accounted for. There is plenty
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of room for more specific criteria to judge the best overall metering. Any one used should 

reflect the requirem ents of the particular telemetry system and should be able to select a 

m etering that performs well in all situations.

5.7. RESULTS

A program OPTMP has been developed which incorporates the algorithms presented 

in this chapter. It can use either the set covering or the restricted search optimisation 

procedure. This allows the same examples to be tested using both techniques and the 

results compared. The following test problems have been designed to illustrate the 

flexibility of the optimal m eter placement model.

The test network for this study is described in Appendix A l. With this network, 50 

possible m eter sites have been selected - 25 flow m eter sites and 25 pressure m eter sites - 

which are shown in table 5.1. An accuracy of ± 0.1m was assumed for the pressure meters 

and ± 0.51/s for the flow meters. Solutions for the following test problems, determined 

using both the set covering and restricted search procedures, are summarised in table 5.2 

and are shown graphically on figs 5.4a to 5.4e.

1. Minimise the maximum nodal pressure error. Using only three pressure m eters and no 

flow meters.

2. Minimise the average nodal pressure error. Using only four pressure m eters and no flow 

meters.

3. Minimise the maximum flow error. Using only four flow meters and no pressure meters.

4. Minimise the average flow error. Using only four flow meters and no pressure meters.

5. Minimise the num ber of meters that are needed to achieve a pressure error of less than

0.5m in each node.

k 1. : . A i k L *\• W - - • : -  t *  ";•>*■ .VV‘•; '■ '



Table 5.1. List of possible meter sites.
Pressure meters Flow m eters

Num ber Node Accuracy(m) Number Pipe Accuracy( 1/ s)
1 1 0.1 1 22-69 0.5
2 7 0.1 2 7-8 0.5
3 8 0.1 3 23-36 0.5
4 10 0.1 4 66-67 0.5
5 17 0.1 5 58-57 0.5
6 18 0.1 6 64-75 0.5
7 22 0.1 7 2-6 0.5
8 24 0.1 8 23-18 0.5
9 25 0.1 9 63-65 0.5

10 26 0.1 10 8-10 0.5
11 38 0.1 11 66-63 0.5
12 44 0.1 12 22-7 0.5
13 46 0.1 13 38-42 0.5
14 54 0.1 14 53-54 0.5
15 56 0.1 15 11-12 0.5
16 58 0.1 16 16-15 0.5
17 63 0.1 17 34-25 0.5
18 65 0.1 18 56-45 0.5
19 66 0.1 19 160-59 0.5
20 69 0.1 20 61-76 0.5
21 70 0.1 21 72-79 0.5
22 72 0.1 22 24-17 0.5
23 75 0.1 23 38-39 0.5
24 80 0.1 24 60-70 0.5
25 81 0.1 25 24-37 0.5

Table 5.2. Results for test problems.
Problem True optimal Set covering method Restricted search method

1 Cost:
Meters:

0.78m 
7, 46, 65

Time:
Cost:
Meters:

15 secs 
0.79m 
10, 46, 66

Time:
Cost:
Meters:

3 secs 
0.83m 
10, 18, 54

2 Cost:
Meters:

0.29m
8, 18, 56, 66

Time:
Cost:
Meters:

90 secs 
0.30m
8, 69, 56, 66

Time:
Cost:
Meters:

5 secs 
0.30m
8, 69, 56, 66

3 Cost:
Meters:

7.451/s 
22-69, 38-39, 
22-7, 54-53

Time:
Cost:
Meters:

6 secs 
7.741/s 
22-69, 38-39, 
22-7, 54-53

Time:
Cost:
Meters:

4 secs 
7.741/s 
22-69, 38-39, 
22-7, 67-66

4 Cost:
Meters:

2.971/s 
22-69, 22-7, 
38-39, 54-53

Time:
Cost:
Meters:

70 secs 
3.281/s 
22-69, 22-7, 
38-39, 54-53

Time:
Cost:
Meters:

5 secs 
3.281/s 
22-69, 22-7 
38-39, 54-53

5 Cost:
Meters:

six meters 
75, 65, 8, 17, 
80, 44

Time:
Cost:
Meters:

2 secs
seven meters 
75, 65, 8, 17, 
80, 44, 66

Time:
Cost:
Meters:

1 sec
seven meters 
75, 65, 8, 26, 
80, 44, 66
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The base state assumed in these optimisations is the one corresponding to the period of 

peak demand - about 12.00 with this network.

A set of ’true optimal’ results for these problems (ie ones that do not rely on the 

approximate e* function) were generated. These are also shown in table 5.2. To obtain 

these ’true optimal’ results, a full enumeration of all possible m eter placements was 

performed. To evaluate the accuracy of each m eter placement, the function e,- (using the 

sensitivity matrix confidence limit algorithm) was used. These results, when compared with 

those of the set covering m ethod, allow the accuracy lost through using the approximate e* 

function instead of to be assessed. This m ethod cannot be considered as a feasible 

alternative to the set covering or restricted search procedures as it requires several hours of 

computing time to generate solutions to even the smallest of problems. In the three sets of 

solutions shown in table 5.2, there are two levels of approximation. The first is the use of 

e* rather than e; to calculate the accuracy of a particular m eter placement. This is used in 

the set covering method. The second approximation is the restricted search procedure 

which is itself sub-optimal. The optimal m eter placements for problems 3 and 4 are 

identical for both the ’true optimal’ and set covering methods. In problem 2, two very 

similar m eter sets, with nearly identical cost functions, are produced. A m eter at node 69 

in the set covering solution, replacing one at node 18 in the ’true optimal’, is the only 

difference. For problem 1, the two procedures produce m eter configurations that differ by 

two meters - node 10 in the set covering result replacing node 7 in the ’true optimal’ and 

node 66 replacing node 65. However, nodes 65 and 66 are adjacent in the test network and 

nodes 10 and 7 are only separated by one node, so these two placements are again very 

similar. Also, the cost values of these two placements are nearly the same. In the final 

problem, test 5, the ’true optimal’ procedure found a m eter placement that can achieve a 

pressure error of less than 0.5m in each node, which contains only six meters. The set 

covering m eter placement has seven m eters to achieve this accuracy. However, for the two 

m eter sets produced, the six m eter set is a subset of the seven m eter set. As the function



<?,• < e* for all i (as is given by equation (5.12)), it can be expected that an optimisation of 

this type, using eit will produce a smaller set of meters than one using e *. This observation 

also explains why, in each of the other problems (1 to 4) the cost values in the ’true 

optimal’ column are smaller than those in the set covering column. This does not suggest 

that the set covering m ethod is sub-optimal, rather it is explained by the fact that two 

different cost functions are being used. From these comparisons, it can be concluded that 

the use of the approximate e* function, introduces only a small degree of inaccuracy into 

the results. Also, in view of the significant improvement in execution time which results 

from the use of the e* function, its introduction can be justified.

By comparing the restricted search results with the set covering results, the accuracy 

lost by using the sub-optimal procedure can be assessed. (Both of these methods use the 

approximate function e*). In two out of five of these examples the restricted search 

produced exactly the same result as the set covering method which generates a true optimal 

under the assumptions outlined in section 5.4 and when e* is used in place of et-. It did this 

in a fraction of the computing time. In example 3, the two meterings produced only 

differed by one m eter site - a flow m eter in pipe 67-66 replacing one in pipe 54-53 - and the 

cost functions were nearly identical. So in this case, although the restricted search method 

did not produce the optimal m eter placement, it generated one that was very nearly 

optimal. In problem 5, the two solutions can, in some respects, be considered equivalent. 

The cost function used in this case was the num ber of meters used. Both the set covering 

m ethod and the restricted search method produced optimal meterings with seven meters, ie 

meterings that are equally as good as each other. The fact that the two m eter sets 

produced were different in composition - a m eter in node 26 replacing one in node 17 - 

merely reflects the fact that there may be more than one combination of seven meters 

which measure the network to the required accuracy. Overall, the restricted search method 

performed favourably in comparison with the set covering method.



To demonstrate the method presented in section 5.6 - to extend the optimisation to 

cover a num ber of different states - the following optimisation

Minimise the average pressure error using only four pressure meters

was carried out for twelve different operating states using the set covering method. These 

states corresponded to the operating state of the test network at two-hourly intervals 

(0:00,2:00,....,22:00), for a typical day. The actual inflow figures used are shown in table

5.3. The optimal m eter sets were chosen from the list of possible m eter locations shown in 

table 5.1. The first step of the analysis was to find the optimal m eter configuration for each 

of these time steps. This produced ten different ’optimal1 m eter sets (two sets were 

’optimal’ for more than one time). These are shown in table 5.4, together with their cost 

values. It should be noted that although ten different ’optimal’ m eter sets were produced, 

only thirteen from the possible twenty five pressure m eter sites were used. Also, of these 

thirteen m eter sites used some appeared very frequently, for instance node 56 appeared 

nine times, node 7 appeared seven times, node 66 appeared six times and nodes 24, 75 and 

69 appeared five times each. Examination of table 5.4 and fig 5.5 reveals a strong pattern 

of distribution for the individual m eter sites in the ’optimal’ m eter sets. For all of the ten 

’optimal’ m eter sets, those that do not contain node 56 as a site contain node 44 instead. 

Similarly, in all but one case the second m eter site in each of the ’optimals’ is either node 

7, 8 or 10. These three nodes are adjacent in the test network. The third m eter site is 

either at node 66 or node 24 in all but one case and the fourth site is either at node 69, 75 

or 81 in all but two cases. This distribution is shown more clearly in fig 5.5. The majority 

of the ’optimal’ m eter sets are made up of one m eter from group 1, one from group 2, one 

from group 3 and one from group 4. Only four of the individual m eter sites do not fit this 

pattern.

Each of these ’optimal’ sets was tested at all of the twelve different times, their cost 

values calculated at each, to see if they are at all times ’good’ configurations. In each row



Table 5.3. Typical inflow rates a t 2-hourly intervals (in 1/s).
Time Node 26 Node 3 Node 60 Node 160 Node 68

0:00 33.6 31.0 3.4 -41.3 28.3
2:00 18.6 30.6 -4.0 -14.7 26.9
4:00 18.6 30.3 -4.6 8.3 27.3
6:00 18.6 30.0 -4.6 32.2 27.6
8:00 46.6 30.6 19.2 44.5 30.3

10:00 63.0 30.3 30.0 44.0 30.3
12:00 62.0 29.3 25.2 40.0 29.7
14:00 50.4 30.8 18.5 32.5 29.3
16:00 45.6 32.6 19.3 33.0 26.7
18:00 44.6 33.3 29.4 45.0 25.7
20:00 46.6 32.6 23.4 -3.0 27.2
22:00 48.6 32.0 19.6 -51.1 28.2

Table 5.4 O ptim al solutions for 2-liourly operating
states.

Time M eter set Cost M eter set no.
0:00 56, 7, 24, 81 0.20 m 1
2:00 56, 10, 24, 1 0.17 m 2
4:00 56, 7, 18, 75 0.16 m 3
6:00 44, 7, 24, 75 0.18 m 4
8:00 44, 75, 66, 69 0.25 m 5

10:00 56, 8, 66, 38 0.32 m 6
12:00 56, 8, 66, 69 0.30 m 7
14:00 56, 8, 66, 69 0.26 m 7
16:00 56, 7, 66, 69 0.25 m 8
18:00 44, 7, 66, 69 0.29 m 9
20:00 56, 7, 24, 75 0.21 m 10
22:00 56, 7, 24, 75 0.23 m 10

Table 5.5. Average pressure errors (in m) for all optimal 
pressure m eter sets for all tim es. C M atrix .

Set
Time

1 2 3 4 5 6 7 8 9 10

0:00 0.20 0.20 0.20 0.21 0.27 0.21 0.21 0.21 0.21 0.20
2:00 0.17 0.17 0.18 0.18 0.24 0.18 0.17 0.17 0.17 0.17
4:00 0.16 0.17 0.16 0.16 0.23 0.18 0.17 0.17 0.17 0.16
6:00 0.18 0.19 0.18 0.18 0.22 0.20 0.20 0.19 0.19 0.18
8:00 0.28 0.30 0.28 0.29 0.26 0.27 0.27 0.28 0.27 0.28

10:00 0.34 0.35 0.33 0.36 0.40 0.32 0.32 0.32 0.33 0.33
12:00 0.31 0.32 0.31 0.33 0.36 0.30 0.30 0.30 0.31 0.31
14:00 0.26 0.27 0.27 0.28 0.30 0.26 0.26 0.26 0.26 0.26
16:00 0.26 0.26 0.26 0.28 0.31 0.26 0.25 0.25 0.26 0.26
18:00 0.31 0.31 0.30 0.32 0.30 0.29 0.29 0.29 0.29 0.31
20:00 0.22 0.23 0.22 0.22 0.29 0.25 0.24 0.24 0.25 0.21
22:00 0.23 0.23 0.23 0.24 0.31 0.25 0.24 0.24 0.24 0.23
TD 0.09 0.17 0.09 0.22 0.65 0.10 0.09 0.09 0.12 0.07
MD 0.02 0.04 0.02 0.04 0.08 0.04 0.03 0.03 0.04 0.02
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Fig 5.5 : Distribution of meter sites in ten 'optimal' meter sets. 
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of table 5.5 the bold entry corresponds to the cost value of the optimal m eter set for that 

time. Table 5.5 must be used to decide which of the nine proposed m eter sets is the best 

overall. The first thing that is noticed is that the optimal values vary throughout the day. 

This reflects the fact that the errors are largest when the water demand is high. For this 

reason, values in different rows should not be directly compared. Comparisons should be 

restricted to one row at a time. The "TD" and "MD" rows of this table are useful in 

deciding which of the sets is best overall. When table 5.5 is regarded as a C-matrix, with 

C ( i , j ) representing the cost of the j th m eter set <j= 1 1 0 )  at time i (*=0:00,...,22:00). 

Let j) represent the m eter set that is optimal for the ith time, then C (i,y ,) is the minimal 

entry in the i th row of C . With this notation the "TD" and "MD" rows can be expressed as 

- follows:

T D ( j )  := E  ( C ( i J ) - C ( i J , ) )  (52Q)

MD ( j )  := max ( C ( i tj ) - C  ( 5<2 i)

The "TD" row gives the total discrepancy for each m eter set and the "MD" row gives the 

maximum discrepancy for each m eter set. M eter set 10, the ’optimal’ m eter set for times 

20:00 and 22:00, has a maximum discrepancy of 0.02m and a total discrepancy of only

0.07m. This m eter set, therefore, emerges as the best overall. M eter sets 1 and 2 - with 

T D ’s of 0.09 and M D ’s of 0.02 - and m eter sets 7 and 8 all perform very well overall, so 

they can be regarded as adequate alternatives. It is noticeable that most of the ’optimal’ 

m eter sets have good accuracy at all times, with only set 5 as a significant exception. This 

emphasizes the importance of carrying out this second level of optimisation. If only a single 

study had been carried out with the base state corresponding to that of time 8:00, then 

m eter set 5 would have been selected as the ’optimal’. This is clearly not the best choice.



5.8. CONCLUSIONS

In this chapter the problem of finding an optimal meter placement for a water network 

telemetry system is addressed.

All water distribution networks are unique and highly complex systems. A design 

problem such as this, therefore, can have no straightforward solution. Before the problem 

can be solved it must be described precisely in mathematical terms. A formulation to the 

problem based on the uncertainty model of Chapter 4 has been used as the basis for this. 

A cost function can be selected from one of three types. In this function, its coefficients 

can be varied to tailor it to the precise needs of the optimisation. In addition, any num ber 

of constraints can be used. Each of these is again selected from one of three types and has 

variable coefficients to allow the metering system’s restrictions to be modelled. Two 

solution methods have been developed. One is based on an existing optimisation technique 

and can produce an optimal metering subject to the assumptions of the mathematical 

formulation. The second method uses a new procedure. This is heuristic in nature and can 

only guarantee a near-optimal solution. The optimisation m ethods are then extended to 

cover a range of operating states.

Results are presented which go only part of the way to dem onstrate the applicability of 

this work. For the problem as formulated in section 5.4 with e* used to calculted m eter set 

accuracy, the set covering method produces accurate results with a guarantee of optimality 

but can be slow computationally. Alternatively, the restricted search m ethod is much faster 

but may not have the same accuracy. In the examples given, the performance of the 

restricted search m ethod compared very favourably with that of the set covering method, 

producing m eter sets almost identical in cost but in a fraction of the time. Although the set 

covering m ethod is the slower of the two it should not be discounted. If computer time is 

not a high priority, as is often the case in design applications such as this, this is the 

method that should be used as it provides optimal results with this simplified formulation.



The benefits of m eter placement study for a water network telem etry system are clear. 

The state estimates calculated from these optimal m eter sets can be significantly more 

accurate than those of a random placement of the same num ber of meters. This 

im provement in accuracy can then be utilised to achieve more efficient control. The cost of 

telemonitoring a water network can be very large. The methods of this chapter provide a 

way of ensuring that these resources are invested effectively.



CH APTER 6 

TCLAS AND DATACON

6.1. INTROD UCTION

It has been shown that the monitoring system’s uncertainty and the random 

fluctuations of nodal consumption have a significant effect on the accuracy to which the 

system ’s variables can be estimated. Confidence limit analysis techniques can be used both 

in designing telemetry systems so as to minimise this impact and in quantifying its effects. 

The software packages TCLAS and DATACON, described in this chapter, have been 

developed to enable water system operators to take advantage of these techniques. Both 

packages are interactive and incorporate a full colour graphical display. (The Graphical 

display was generated using FLIB - a general purpose graphics library [15]). They have been 

designed for ease of use and present their results as informatively as possible. It is 

envisaged that these programs will be used within the water industry for a wide range of 

applications, including: telemetry system design; distribution system design; real-time 

control; decision support and operator training.

6.2. TCLAS

TCLAS - Telemetry Confidence Limit Analysis Software - can be used as an 

interactive m eter placement design tool for telemetry systems as well as in decision support 

for the control and design of distribution systems. At its core it has a routine for confidence 

limit analysis which quantifies the uncertainty in pressure and flow estimates that is caused 

by the uncertainty of an input m easurem ent set when the system is in a particular operating 

state. The current version of TCLAS uses an implementation of the sensitivity matrix



confidence limit algorithm (see section 4.5.4), although the modular design of the package 

allows an alternative routine, such as one based on the linear programming method (see 

section 4.5.3) for instance, to be easily incorporated.

TCLAS drives three graphics screens, pages 1, 2 and 3, to display the flow and 

pressure variables and their uncertainties. Page 1 displays a network diagram showing all 

load nodes, inflow nodes, pipes, pumps and valves simultaneously. Over this screen the 

pressure variables’ uncertainty is shown. Page 2 displays the corresponding information for 

the flows in the network. M easurem ent set data, meter positions and accuracy can be 

requested on both of these pages. This is displayed as an overlay to the network diagrams. 

The right hand side of both pages 1 and 2 is reserved for written displays. M enus, keys and 

requested numerical data can be written here. Page 3 can be used to obtain more detailed 

information about the values of the variables in the region of a particular node. This screen 

has a small network diagram displayed in the bottom right hand corner, on which the cursor 

can be used to select a particular node. The region around this node, and its adjacent nodes 

and pipes, is then redrawn to fill the remainder of the screen. Included in this diagram are 

values for the pressure, flow and load variables in this region and their associated 

uncertainty. Also displayed are details of the measurements in this region.

A combination of colour graphic and written displays adds a flexibility to the 

presentation of the results and data. For instance the confidence limits for the state 

variables can be accessed in several different ways:

1. By means of colour coded error blocks. The range of possible errors for each type of 

variable is divided into three smaller ranges. Each of these has its own colour. Once the 

confidence limits for a particular variable have been calculated a rectangle is drawn by the 

appropriate node or pipe in the network in one of these three colours. The rectangle is 

filled in by a certain amount, representing the error bound of this variable. This 

presentation can be taken in by just one glance and gives a good picture of how errors vary



throughout the network.

2. For a more accurate numerical value the complete data for a particular node or pipe can 

be requested. This is displayed to the right hand side of the screen and includes all the 

associated node and pipe parameters. This presentation is useful when the errors need to 

put into context with the other parameters.

3. A particular node in the network can be ’zoom ed’ in on. This node together with all 

adjacent nodes and pipes are then drawn on the full screen together with the values and 

error bounds of all of the associated variables.

4. To keep a full record of the m eter set and state estimate accuracy for later reference, 

there is an option to write such data to file.

6.2.1. M eter placem ent design with TCLAS

By selecting the appropriate options on the menu an operator can input a proposed 

m eter configuration and then call on TCLAS to calculate the uncertainty in state estimates 

that would be produced by this configuration. The resultant confidence limits, which are 

presented in various formats, can be examined by the operator, who will then decide 

whether the proposed configuration is satisfactory. If the accuracy of the proposed m eter 

placement is not acceptable in some way then it can be altered by either adding more 

meters, replacing some m eters by more accurate ones or by moving some m eters to 

different parts of the network. The accuracy of this new metering can be assessed and the 

process repeated if necessary. By experimenting with m eter configuration in this way an 

operator can find a balance between accuracy and cost of metering.

At any one time TCLAS has stored a certain m eter configuration, called the current 

measurem ent set. Initially, the current m easurem ent set consists of a consumption 

prediction for each node, a prediction for the inflow at each inflow node and a prediction of
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the pressure at one node (the reference pressure, this is usually a water level at a reservoir) 

with, in each case, an uncertainty bound. These pseudomeasurements are assumed present 

as they can be easily estimated. This measurem ent set will be referred to as the base 

measurem ent set. If any of these cannot be reliably estimated, a suitably large uncertainty 

bound can be used to reflect this. W ithout a minimal m easurem ent set of a similar form to 

this, estimates for the network’s flows and pressures cannot be calculated. So, this 

assumption is a necessary one. At any stage in the TCLAS session, one of the 

pseudomeasurements in the base measurem ent set can be replaced by a real, more accurate 

meter.

If, by calculating the error bounds, it has been shown that the current measurem ent 

set is not satisfactory, then it can be altered in several ways. If the accuracy is not sufficient 

then a new m eter can be added. This is done by moving the input cursor to the appropriate 

place in the network diagram and selecting the add m eter option. A m eter must be added 

together with an error bound given in absolute terms. Alternatively it may be beneficial to 

change the accuracy of a m eter already included in the current m easurem ent set, or take a 

m eter from the current m eter set with the intention of placing it somewhere else in the 

network. The colour coded error blocks, discussed earlier, are invaluable in deciding where 

to place meters or which m eters to remove. A glance is all that is needed to see which parts 

of the network are weakly measured and require extra meters. Also, when a m eter is being 

added or when the accuracy of a m eter is being changed, TCLAS suggests an appropriate 

range of accuracies. In some situations it may become apparent that the current m eter set 

is too expensive or will not lead to an optimal m eter configuration. In these circumstances 

m eters may have to be removed, again the colour coded error blocks show where this can 

be done. The facilities for changing a m easurem ent set (ie ’add m eter’, ’delete m eter’ or 

’change accuracy’ of a meter) make TCLAS flexible enough to cope with all situations and 

mean that an optimal m eter configuration can be found quickly, simply and accurately.



An important factor to be considered when designing an optimal m eter configuration 

is the operating state of the network. When TCLAS is first used it contains data typical of 

daytime operation. Since the operating state of the system has a large effect on the way 

m eter accuracy relates to state estimate accuracy, it is important that simulation includes 

variation of this state. This can be done by changing the inflow pattern. Alternatively, 

there is a facility to model the operation of control valves by changing the C-values of the 

pipes. W henever one of these features is used the state estimate is updated and new error 

bounds can be calculated.

At any time TCLAS can be called upon to show where each of the m eters is located, 

as it is easy to lose track of the current m easurem ent set. The accuracies of the meters 

placed in the network can also be accessed by requesting node or pipe data for the 

appropriate node or pipe.

6.2.2. Decision support w ith TCLAS

In order to make well informed control decisions it is necessary to have reliable 

estimates of all system variables. An operator needs to be able to access the values of all 

flows and all pressures. The inherent uncertainty in water network monitoring, and its 

effect on state estimate accuracy, has already been discussed. This problem means that a 

traditional, deterministic state estimator may provide misleading information. It can provide 

a single estimate for the state of the system, given the m easurem ent data, but this data may 

be inaccurate. No reflection of this uncertainty is given by a deterministic state estimator. 

It has been shown [17] that even for a medium size network, with a shallow hydraulic 

gradient and a poor metering configuration, pressures can be in error by as much as 2.0m 

and flows by as much as 15.01/s. TCLAS can provide this vital information for any 

m easurem ent configuration. This is done by presenting an error bound with each flow or 

pressure value, thus specifying a range of feasible values or an uncertainty interval for



these variables.

In order to be able to calculate the state variable uncertainties, the m eter location and 

m easurem ent uncertainties are required. These can be input using the menu options 

described in the previous section. In the current version of TCLAS, the operating state of 

the distribution system can be altered by using the ’change inflow’ option. Also, the pipes’ 

C-values can be altered which has the effect of changing the state. These facilities are 

satisfactory when TCLAS is being used as a tool for distribution system design or for 

operator training. They allow a hypothetical state or network to be input. This can then be 

investigated to see whether proposed control changes or system design is acceptable in 

uncertainty terms. For decision support in real-time control, it is envisaged that TCLAS will 

be put on-line by linking it directly to the telemetry system. M eter readings will then be 

input directly and combined with demand predictions stored in a data file to produce state 

estimates and confidence limits in real-time.

By monitoring variables in this way, an operator can get an extra dimension of 

information. Below some examples o f the use of this uncertainty data are given:

1. It is possible to check whether pre-set safety limits are being or are likely to be exceeded. 

In order to maintain a reliable distribution of water, certain operational limits can be 

specified. For instance it is necessary, in some parts of the network, to keep pressure above 

a certain level, ensuring that consumption requirem ents can be m et. Alternatively, it is 

im portant to keep pressure and flows below a certain level so as to reduce the risk of burst 

pipes and leakage. A deterministic state estimator may predict that a pressure or flow 

variable is within the pre-specified safety limits. Whereas, it may be the case that the true 

value of the variable exceeds these limits. This possibility can easily be checked by 

comparing the variables’ uncertainty interval with the safety limits.

2. In a similar way, limits for a variable can be set for economic reasons. For instance,



pumping costs can be minimised for a particular pressure distribution. It can easily be 

checked whether these limits are satisfied. Also an operator can see whether there is any 

scope for further cost reduction by identifying those variables that can be more strictly 

controlled.

3. Some pumps and valves in a network operate differently depending on the state of their 

control variables. The on /o ff nature of some of these elements makes it vital for an 

operator to be able to tell what state they are in. A deterministic state estimator can be 

particularly misleading in this situation, indicating the wrong operational state for one of 

these pumps or valves, and giving no guide as to how reliable that information is. Using 

TCLAS it is possible to see when these elements are definitely in one state or another and 

when there is some doubt.

It is easy to see how factors such as these above are important in helping an operator 

to make judgements and decisions towards effective control

In order to highlight the importance of such information, a specific example, based on 

a real occurrence, is given. Consider a network supplied via a pressure reducing valve 

(PRV) from a high pressure zone. This PRV will have a threshold pressure value, above 

which the valve is closed and below which the valve is open. When the reference pressure 

for the PRV is close to the threshold value, the valve may oscillate between open and 

closed states. This is because a pressure slightly above the threshold will close the valve and 

hence reduce pressure. This reduction in pressure will then cause the valve to open, hence 

increasing the pressure again. This process may repeat once started in motion, causing an 

undesirable on/off valve cycle. A deterministic simulator, because of pseudomeasurement 

error, may predict this valve to be definitely open or definitely closed when the opposite is 

in fact true. Furtherm ore, it will give no indication that there is any doubt as to which state 

the PRV is in. This can obviously be very misleading to an operator as it gives a completely 

inaccurate view of the system ’s input at that particular time. TCLAS, because it accounts



for m easurem ent uncertainty, is able to point out that this undesirable valve behaviour is 

likely to be happening, prompting the operator to take an appropriate control action.

6.2.3. Further features of TCLAS

The two most important features of TCLAS are its graphical display and its interactive 

input. Much of the information is presented as an overlay to a full schematic diagram of the 

network or after the interactive cursor has been moved to a particular point of the network 

and data requested. It is believed that by highlighting this locational aspect the results are 

more accessible and easier to interpret. In particular, patterns o f variation of accuracies 

throughout the network are easily noticeable and reference to pipes and nodes is clearer. 

Both interactive cursor and the keyboard are used to enter commands and data into 

TCLAS. The cursor is used to identify nodes and pipes and the keyboard is used to select 

options from a menu and enter numerical values.

TCLAS contains many other features which are designed for ease of use, some of 

which are m entioned below. At each stage in the use of TCLAS the operator is aided by 

prompts and menus. Other safety features include internal consistency checks. In these, 

each input, be it a command or a piece of data, is checked to see whether it is as TCLAS 

expects and consistent with all previous inputs. This reduces the risk of a mistaken entry 

going unnoticed. Already discussed is the ability to change pipe C-values, previously this 

facility was used to model valve operation, but it can also be used to tune the mathematical 

model. TCLAS presents the values and accuracies for each of the following variable types: 

flows; pressures; consumptions and inflows.

6.3. DATACON

To aid the creation and updating of water network data files, the program DATACON 

has been developed. This is again an interactive and graphic program that produces general



purpose water network data files as well as TCLAS specific data files.

The process of creating and updating network data files can he time consuming and is 

prone to error. Mistakes can easily be made, especially when dealing with numerical data. 

These mistakes may then go unnoticed in the data file, possibly leading to costly 

computational errors when the file is used. Even when a mistake has been identified it is 

not always a simple m atter to locate the source of the error in the data file. DATACON has 

been developed to simplify the data input process.

At the start of a session, DATACON calls the data for the network that is to be 

amended and then draws a diagram for this network, along with a list of editing options, on 

the screen. Obviously, only the editing menu appears when a new network is to be created. 

The operator is invited to select one of the options which include adding or deleting a node 

and adding or deleting pipes. Positions of nodes and pipes in the network are identified by 

positioning the cursor over the appropriate spot in the diagram. When the add pipe or add 

node option is selected a series of pipe or node parameters are prompted for. At each stage 

the network diagram is updated on the screen so that the operator can check that the 

correct network is being constructed.

DATACON has several in built safety features which reduce the possibility of input 

error. It is believed that the graphical display makes certain errors easier to pick out and 

helps the operator keep track of what has been done. For instance, it is much easier to 

check that the network has the correct connectivity and that there are no isolated nodes by 

examining a network display rather than searching through a long list of figures. To prevent 

data being input out of sequence, each value is prompted for when it is required. For each 

input value DATACON performs a series of tests to check that the data is reasonable, 

within expected bounds and consistent with previous entries. The graphical display and 

cursor entry speed up the input process and provide a framework that is realistic and readily 

understandable for the operator.



On leaving DATACON, two data files are produced, both containing the complete 

data but in different formats. The first is to be used by later DATACON sessions and can 

be easily read by the operator. The second data file is intended for use by TCLAS.
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CH A PTER 7 

CONCLUSIONS AND FU RTH ER RESEARCH

7.1. CONCLUSIONS

Recent developments in telemetry and monitoring system hardware are bringing great 

advantages to the operation and control of water distribution systems. These systems, 

combined with the power of modern computers, mean that a much clearer picture of the 

operation of water systems is available and a higher level of automation is now practical. 

However, before these benefits can be fully exploited, some basic problems must be solved. 

One of the most important of these is the problem of uncertainty in the monitoring system 

and its impact on state estimate accuracy. This thesis presents the results a thorough 

investigation into this problem.

Two principal causes o f uncertainty have been identified. These are: inaccuracies in 

the distribution system model and errors in the measurem ent and pseudom easurem ent 

values used. In the latter type of uncertainty, the unpredictability of nodal consumption 

estimates makes the most important contribution, but this is amplified by weaknesses in the 

m etering system used. The inaccuracy of network models has received much attention in 

the literature [11, 12, 25, 34, 91, 108, 109, 143, 144, 145, 146]: its causes have been 

identified; its impact assessed and methods proposed by which the models can be improved. 

By taking account of the experiences and suggestions made in these papers, it is possible to 

attain a very high level of accuracy for the network model, provided of course, that 

sufficient effort is put into modelling, calibration and recalibration. Unfortunately, research 

into the other main cause of uncertainty and its impact is not so far advanced.
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To allow consideration of monitoring system uncertainty in water distribution system 

simulation, an uncertain network m odel is proposed. From this formulation, uncertainty 

intervals or confidence limits can be derived for the system variables. In this way, the 

results of traditional, deterministic state estimators can be extended to provide a more 

reliable picture of the operation of the system. Four confidence limit algorithms are 

presented, these are the M onte Carlo m ethod, the linear programming m ethod, the 

sensitivity matrix method and the ellipsoid m ethod. The M onte Carlo m ethod provides the 

most reliable quantification of state and derived state variable uncertainty, but at 

considerable computational cost. The accuracy of this m ethod derives from its full 

treatm ent of network model non-linearity and the fact that the bounds it produces are 

attainable. It is used as a yardstick against which the performance of the other algorithms 

can be assessed. The remaining algorithms are based on a linearisation of the uncertain 

network model. With this linearisation, the linear programming method provides the most 

accurate results, although its execution time makes it more suitable for design or off-line 

applications such as operational planning or decision support. Comparison of the linear 

programming results with the M onte Carlo results show that in linearising the uncertain 

network model no significant accuracy is lost. The sensitivity matrix algorithm produces 

confidence limits that compare satisfactorily with those of the linear programming and 

M onte Carlo algorithms. It does this in just a fraction of the time - about two seconds for 

the test network shown in Appendix A1 using a VAX8700 computer. This computational 

speed together with its acceptable accuracy, make the sensitivity matrix algorithm the most 

suitable for real-time or on-line application. It is envisaged that this algorithm can be linked 

into a telemetry system to provide confidence limits for the system variables in real-time. 

Hence providing the uncertainty information for partially or fully autom ated control, when 

this becomes a realistic proposition. The ellipsoid algorithm has been suggested by other 

researchers, as an efficient m ethod for quantifying uncertainty in more general problems 

[18, 20, 59, 100, 102, 103, 104, 124]. Unfortunately, it was found to perform badly in



water distribution system confidence limit analysis. Its computational speed compares 

favourably with the sensitivity matrix method but the accuracy of its results is poor.

It has been shown that the accuracy of state and derived state estimates depends 

strongly on the location and accuracy of meters that provide the m easurem ent values from 

which they are calculated. This relationship means that by carefully designing the m eter 

positioning in the network’s telemetry system, it is possible to increase the accuracy of the 

monitoring system and hence the efficiency of control. From this basis, a mathematical 

optimisation problem has been formulated. This is referred to as the optimal meter 

placement problem and its derivation is consistent with the uncertain network model and 

confidence limit analysis. The flexibility of the cost and constraint functions in this 

optimisation problem, mean that many realistic metering priorities and restrictions can be 

modelled and accounted for in the solution. To solve this problem, two solution techniques 

are proposed. These are the set covering m ethod and the restricted search method. The set 

covering m ethod is based on a branch and bound solution to this discrete location problem 

and can guarantee an optimal solution to the problem as formulated. The restricted search 

method is a near-optimal procedure that provides results that are, in most cases, identical or 

equivalent to the solution of the set covering method. The computational speed for the 

restricted search method is much faster than for the set covering method, but both are 

suitable for the optimal m eter placement problem, which is a design application and need 

not be carried out in real-time.

All of the algorithms presented in this thesis have been implemented as computer 

programs. In particular, a software package TCLAS has been developed. This incorporates a 

confidence limit algorithm together with a full graphic and interactive interface. Together 

with its sister program - DATACON - TCLAS can be used for m eter placement and 

telemetry system design, for decision support, for network design, for operational planning 

or as an educational tool.
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7.2. SUGGESTIONS FOR FU RTH ER RESEARCH

(i) In this thesis, an uncertain network model is proposed. This concept needs to be 

explored in all other areas of water distribution system design, simulation and control. In 

particular, the question of how simulation uncertainty affects existing control or operational 

procedures should be examined. If a higher level of automation in water distribution is to 

be achieved, a much higher demand will be placed on simulation results. Part of this 

demand is met by the quantification of uncertainty through confidence limit analysis 

proposed in this thesis, bu t also, more research into methods to cope with the uncertainty is 

required.

(ii) The inherent uncertainty in water distribution simulation means that expert system 

control may be more appropriate than traditional, algorithmic control methods. This 

possibility should be explored. Work in this area has already started with the WIESC 

project at the University of Surrey [2], but as yet has produced little published work. A 

prerequisite for expert system control is an adequate method for dealing with uncertainty. 

Confidence limit analysis algorithms provide this information in a particularly accessible 

way. For instance, by comparing observed confidence limits with predicted confidence limits 

it may be possible to indicate when and where a fault has occurred or when the monitoring 

system has failed in some way.

(iii) Uncertainty in network modelling and m easurem ent uncertainty have, because of their 

inherent differences, been examined separately. It may prove beneficial to investigate the 

possible interaction between these two sources of error.



APPENDIX 1

TEST NETWORK

The network described below is presented as a test network for which example results 

can be calculated. This network has 65 nodes, 92 pipe and 5 inflow points. The 5 inflow 

points are at nodes 160 and 60 which represent reservoirs, node 68 which represents a 

pumping station, node 3 where water is supplied from a zone of higher pressure through a 

pressure-reducing-valve (PRV) and at node 26. Pipe data - lengths, diameters and C-values 

- are contained in table A l . l  and the layout of the network is shown in fig A l . l .  The 

network is based on an operational supply network.

The algorithms and computer programs have been tested on many other networks, 

some larger and more complex. But this one was chosen as it is large and realistic enough 

to dem onstrate the efficiency and potential of the tested algorithms, while not being so 

large that an excessive am ount of data would be required to describe it. In results 

calculated for larger networks similar patterns of behaviour are apparent and similar 

conclusions can be drawn.
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Table A l. l:  Test network pipe data

Pipe Length (m ) Diameter (m) C-value
1-2 800.0 0.200 140.0
2-3 400.0 0.300 165.0
2-6 400.0 0.300 165.0
6-7 970.0 0.300 165.0
7-8 300.0 0.225 135.0

8-10 350.0 0.225 171.1
8-11 350.0 0.125 60.0

11-10 360.0 0.150 105.0
11-12 180.0 0.125 60.0
12-13 200.0 0.175 114.8
10-14 710.0 0.225 110.0
14-15 225.0 0.225 110.0
15-16 310.0 0.225 90.0
16-17 590.0 0.094 80.0
17-13 740.0 0.175 114.8
13-18 250.0 0.225 157.8
18-19 330.0 0.300 145.0
22-7 1510.0 0.225 95.7

22-69 120.0 0.300 145.0
69-23 420.0 0.150 90.0
23-24 300.0 0.300 145.0
24-17 650.0 0.200 158.4
17-25 330.0 0.175 127.1
25-16 630.0 0.225 104.4
26-17 360.0 0.300 80.0
25-34 780.0 0.175 80.0
25-35 320.0 0.225 119.3
35-44 710.0 0.225 90.0
44-47 520.0 0.250 70.0
47-34 610.0 0.225 145.0
47-48 540.0 0.250 70.0
48-34 900.0 0.175 80.0

48-102 310.0 0.250 70.0
102-54 660.0 0.225 140.0
54-53 480.0 0.225 157.8
54-55 380.0 0.225 159.3
55-56 190.0 0.225 145.0
56-45 610.0 0.125 55.0
45-48 1060.0 0.175 80.0
44-43 230.0 0.250 80.0
43-40 380.0 0.250 80.0
40-45 580.0 0.168 120.0
40-37 320.0 0.168 120.0
37-24 390.0 0.200 145.0
37-39 280.0 0.168 120.0
39-24 300.0 0.150 90.0
37-38 270.0 0.200 145.0
38-39 550.0 0.300 229.0
39-36 210.0 0.300 126.9
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Table A l . l  (continued)
Pipe Length (m) Diameter (m) C-value
36-23 180.0 0.300 112.0
36-69 147.0 0.300 145.0
22-79 . 160.0 0.225 80.0
79-80 340.0 0.150 90.0
80-22 390.0 0.200 145.0
80-81 1220.0 0.150 139.0
81-76 600.0 0.150 145.0
76-77 670.0 0.150 116.0
77-78 150.0 0.150 116.0
78-61 460.0 0.094 170.0
61-80 530.0 0.150 145.0
78-72 1100.0 0.142 105.0
72-79 600.0 0.225 60.0
72-70 1770.0 0.225 47.0
70-73 3090.0 0.356 46.2
73-64 410.0 0.225 80.0
64-75 420.0 0.225 80.0
75-78 350.0 0.094 170.0
75-77 400.0 0.150 145.0
61-76 1470.0 0.150 81.0
70-60 2200.0 0.356 100.0

160-59 370.0 0.381 50.0
59-58 630.0 0.300 50.0
58-57 730.0 0.300 118.4
57-46 260.0 0.300 85.0
46-42 250.0 0.300 85.0
42-38 430.0 0.300 145.0
42-43 720.0 0.250 80.0

46-106 720.0 0.200 145.0
106-55 700.0 0.142 137.0
56-47 550.0 0.225 145.0
53-67 220.0 0.225 160.7
67-66 270.0 0.225 160.7
66-63 800.0 0.225 110.0
66-65 210.0 0.125 60.0
65-63 590.0 0.125 60.0
63-58 2050.0 0.150 40.0
63-62 770.0 0.225 110.0
62-59 350.0 0.225 110.0
23-19 430.0 0.300 145.0
23-18 760.0 0.117 60.0
66-68 440.0 0.300 170.0

60-160 270.0 0.381 32.0 1
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APPENDIX 2

SPARSITY EXPLOITING TECHNIQUES

A2.1. INTRODUCTION

A sparse matrix is a matrix which has a large proportion of zero elements. This type 

of matrix arises in many applications. In particular, the Jacobian matrix used in many of the 

algorithms presented in preceding chapters is highly sparse. The sparse structure of the 

Jacobian matrix results from the nature of the network equation (3.2). Equation (3.2) 

represents a set of m easurem ent equations, each one dependent on only a small num ber of 

independent state variables. Of all of these measurem ent equations, the ones derived from 

nodal consumption predictions and load measurem ents are the ones which depend on the 

largest num ber of state variables. Typically, this type of equation gives rise to only 5 or 6 

entries in the Jacobian matrix, when the nodal equation format is used. When this is 

compared with the total num ber of independent state variables, which may be several 

hundred, it is clear that the Jacobian is very sparse.

In many applications of water network analysis, manipulation of the Jacobian matrix 

involves substantial computational effort. In water systems research, and in the analogous 

field of power systems research, it has long been recognised that significant reductions in 

the run-tim e of simulation algorithms can be achieved by exploiting the sparsity of the 

matrices involved [13, 19, 27, 42, 84]. Sparse matrix methods have also received 

considerable attention from a more general mathematical viewpoint [41, 45, 46, 48, 50, 51, 

62, 64, 72, 73, 80, 85, 96, 97, 105, 106, 114, 118,119, 139, 140, 141, 152].

Motivated by the requirem ents of the work described in this thesis, two sparse matrix 

problems have been identified. These are:



(i) Solution of a set of simultaneous linear equations taking the form:

A. x = b (A2.1)

where A is a sparse, non-singular and square matrix. The state estimation routine, 

MINSTEST (section 3.3.3), requires at each iteration the solution of (3.9) which represents 

a set of linear equations in the form of (A2.1). In this case A represents the matrix J  

(square and non-singular), b represents the vector z - g ( x k) and x represents the unknown 

correction vector. For the over-determined case, ODSTEST requires at each iteration the 

solution of (3.14). This can again be represented by (A2.1) with A used to represent the 

augmented matrix, b used to represent the vector (Az,0,0)7 and the unknown x used to 

represent (s ,r,A x )r

(ii) Inversion of a sparse matrix A . Need for this type of technique arises in the sensitivity 

matrix algorithm of section 4.5.4 where the sparse matrix J T J  must be inverted. In the 

implementation notes following the algorithm it is explained how J T J  can be inverted by 

solving equation (4.51) for a sequence of right-hand-side vectors. Equation (4.51) has the 

form of (A2.1) and so inversion of J TJ  can be achieved by repeated application of type (i) 

techniques. Also, the linear programming confidence limit algorithm of section 4.5.3 

requires the partial inversion of the sparse square matrix Again it is explained how the 

necessary rows of ( / w) -1 can be obtained by solution of a series of equations (4.40) which 

have the form of (A2.1). In both of the examples, inversion of a sparse matrix is replaced 

by solution of a series of equations of form (A2.1). For this reason, sparse matrix inversion 

is not treated as a separate problem. In both cases the matrix is the same throughout the 

series of solutions, it is only the right-hand-side vector that is changing. This means that 

the matrix in each case, J TJ  or J n, need only be factorised once, with the unknowns being 

determined by repeated back-substitution into the factorised matrix.



In many other areas, efficient design of matrix handling techniques will bring 

advantages. For example, in matrix multiplication and matrix-vector multiplication routines, 

care must be taken to ensure that no unnecessary mathematical operations are performed. 

Some suggestions for improvements are given in the implementation notes that follow the 

algorithms. Other, more general techniques are discussed in [50, 114].

Some methods for the solution of (A2.1) with sparse matrices are now reviewed. 

Details of the method used in this work will also be given.

A2.2. SOLUTION OF A SYSTEM OF SPARSE LINEAR EQUATIONS

Methods to obtain a solution of A .x  = b (equation (A2.1)) are commonly based on 

Gaussian elimination or one of its variants. In these procedures, the matrix A and the 

right-hand-side vector b are updated by a sequence of elementary operations. This leads 

eventually - after n steps when n is the rank of A - to a new matrix A ” and a new right- 

hand-side vector bn, where A" is a triangular matrix. In practice, A and b may not be 

updated simultaneously. To allow solution of (A2.1) for the same matrix but several 

right-hand-side vectors, it is usual for A to be factorised first, with a record kept of this 

process so that each b can be updated correspondingly. This means that factorisation of A 

need only take place once. After the updating or factorising process has been performed, 

(A2.1) can be replaced by

A ” .x = bn (A2.2)

This equation is equivalent to (A2.1) and from it the solution can be found by forward- 

substitution. Most texts on numerical analysis or linear algebra will include a description of 

this algorithm, see [58, 101, 114] for example.

In these elementary operations, the current (partially factorised) matrix A k (k < n ) 

is updated to form a new matrix A*+1 and bk is updated to form bk+1, where



A k {k , k)  > u . ma . x JA le(k , j)  I (A2.6)
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The aim of each of these k steps is to remove the non-zero entries in the row that are

to the right of the leading diagonal. Examination of (A2.3) and (A2.4) gives some idea of

why it is beneficial to design Gaussian elimination techniques that account for sparsity. If, 

in (A2.3) a large value for A k ( i ,£ ) .Ak (k J ) / A k (k tk )  were subtracted from a small value 

for A k( i , j ), or vice versa. Then the information present in the smaller num ber would be 

lost. Similarly for large and small values in equation (A2.4). This problem is referred to as 

numerical instability and is particularly troublesome when very small values of A k ( k , k ) - 

the pivot - are used. Once computational inaccuracy has been introduced into one of the 

A k matrices it is likely to be magnified by the successive updating steps and can lead to 

significant errors in the final matrix A ” . Stability of Gaussian elimination can be partially 

controlled by selecting suitable pivots. One suggestion [48, 129] is to choose an elem ent 

A k (k tk )  as pivot which satisfies one of the inequalities

A k( k , k ) >  u. max IA*(*",&) i fA2 51
k &  i s  n  V  •  /

k / u  t .3 s  „  i a k ,

for a pre-set parameter, u , in the range 0.0 < u < 1.0. j§

If sparsity has been preserved through to the matrix A k , many of the updating 

calculations of (A2.3) and (A2.4) are not necessary. For instance, when either A k( i , k )  or 

A k( k , j ) is zero, then A k+l( i , j ) = A k( i J ) .  Similarly, when either A k( i , k ) or b k is zero, 

bk+1 = b k. A pivotal strategy which selects as a pivot an elem ent A k (k ,k ) which will result 

in a small num ber of updates will clearly be advantageous. When a pivot is chosen for 

which A k ( i , j )  is zero but A k( i , k ) . A k (k , j)  is not, for some i e  {l,,.„n}, then fill-in is said 

to occur in the A k+1( i , j ) element. Excessive fill-in is undesirable as it means that the A k+1

1
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matrix is less sparse than it may have been and so more updating calculations are required 

in future steps. Selecting an appropriate pivot can therefore have a significant effect on the 

num ber of updates that are required in the current and the following steps of the 

elimination. Markowitz [97] suggests that the selected pivot should be the one for which 

the product of the other non-zeros in its column and the other non-zeros in its row is 

minimal. Berry, in [19], suggests that the pivot chosen should be the one which minimises 

local fill-in. This strategy involves many more comparisons and D uff and Reid, in [49], 

argue that its results may not be much better than those of Markowitz’s method.

The preceding paragraphs have shown how a careful pivot selection strategy, applied 

locally, can be beneficial in improving numerical stability or in reducing the num ber of 

mathematical calculations that are required in the Gaussian elimination process. The same 

or similar considerations apply to other methods for solving simultaneous linear equations.

In the pivotal strategies described above, the pivot selection is dependent on the 

current partially factorised matrix A k . Another class of sparsity exploiting techniques rely 

on a pre-processing of the matrix A . Usually these involve permuting the rows and 

columns of A (and the corresponding permutations of x and b), to obtain some desirable 

form for the the matrix. Row and column permutations have no effect on the final 

solution but can significantly improve the the performance of the algorithm. The am ount 

of fill-in and the num ber of update calculations can be reduced greatly. The reduction in the 

num ber of calculations performed may in turn increase the numerical stability of the 

algorithm. Duff, in [48], gives a thorough survey of these methods.

In [139, 140, 141], Tewarson describes some of the desirable forms for sparse 

matrices. These require the non-zero elements of the sparse matrix to be contained within 

specific areas of the matrix. Also included in [139, 140, 141] is an explanation of why 

these desirable forms are advantageous and methods by which some of them can be 

obtained. Two of these desirable forms are now examined. These are: the banded form



Fig A2.1 : Sparse matrix in banded form.

All of the non-zero entries are contained in the shaded region.

Fig A2.2 : Sparse matrix in block-triangular form.

All of the non-zero entries are contained in the shaded region.



(see fig A2.1) and the block-triangular form (see fig A2.2). Before describing these forms 

and methods by which they can be obtained, some associated graph-theoretic terminology is 

introduced. The distribution of the non-zero entries of a square matrix can be represented 

by a directed graph. Suppose that the matrix A has n rows (and hence n columns) and let 

V  := {l,...,n}. A subset is of V x V  can be defined as

E := { ( i J ) e V x V  0.0} (A2.7)

A directed graph which has vertex set V  and edge set E , can be defined for the matrix A . 

This will be denoted by G (A ) = (V ,E)  and will be referred to as the matrix graph for A . 

In other words, G (A ) is the directed graph that has one node for each row (or column) of 

A and a directed edge for each non-zero entry in A . The graph-theoretical properties of 

sparse matrices are examined in [72, 73, 105, 119]

In some cases it is possible to re-order the rows and columns of the matrix so that all 

of the non-zero entries fall within a narrow band about the leading diagonal. Such a matrix 

is called a banded matrix, see fig A2.1. The advantage of such an ordering is that fill-in 

during the elimination is restricted to this band of the matrix. Hence, the narrower the 

band the smaller the amount of fill-in. The principal bandwidth minimisation techniques 

are based on an ordering of the vertices of the graph G (A ), usually this ordering is derived 

from the graph’s adjacency structure. This vertex ordering will induce a symmetric 

permutation of the matrix. Cuthill and McKee [41] propose such a method. One of the 

graph’s vertices is selected and num bered by 1. All of the vertices adjacent to this vertex 

are num bered 2. The ordering continues, with each new vertex being ordered by i when it 

is adjacent to a vertex num bered by i— 1. This ordering scheme is equivalent to an ordering 

based on a breadth-first search of the graph. The choice of the starting vertex in this 

scheme can be important. Cuthill and McKee select the starting vertex after testing several 

vertices of near-minimal degree (the degree of a vertex is the num ber vertices adjacent to 

it). Other researchers make suggestions for the starting vertex, for example, Gibbs et al



[64] and George and Liu [62]. A slightly different ordering scheme is due to King [85]. 

This method again requires a starting vertex. At the k th (£=  l»...,n) stage of the ordering, 

the subset V k of V,  which consists those vertices that are not yet num bered but which are 

adjacent to a vertex that is, is considered. From this set, that vertex whose numbering will 

result in the fewest unnum bered vertices being added to V k+1, is selected and num bered k .

For a matrix in block-triangular form, the blocks can be num bered as in fig A2.3. 

Each of the diagonal blocks, A n , . . . , ANN (N  will be less than n,  if N  = n , the matrix is 

in triangular form ), is square and non-singular. When this is the case, each of the diagonal 

blocks can be factorised separately, using Gaussian elimination or one of its variants, and 

the unknown vector calculated using block-forward (or back) substitution. Perm uting a 

matrix to this form has the advantage of reducing the problem to one of solving a collection 

of smaller problems. The non-zeros are also restricted to the existing non-zero blocks 

during factorisation and so fill-in is controlled. Duff and Reid [45, 46, 47, 51] define the 

problem of permuting to block-triangular form as a two part one. Firstly, unsymmetric 

permutations are performed to ensure that the leading diagonal is zero-free. If this is not 

possible then the matrix is structurally-singular. After this has been done, symmetric 

permutations are carried out to provide the block structure. The first part of this method 

requires a maximal transversal to be found for the collection of sets [F /c  V  : ze {1,...,«}}, 

where V) := {je { 1 , ( i , j ) e E }. The set Vit ze { l,...,n }, is just the set of vertices 

adjacent to vertex z in G ( A ) .  Finding a maximal transversal is a m atter of associating a 

unique column, j it with each row, z, so that A (z 'J t) & 0.0. When the columns of A are 

ordered with j x first, followed by j 2 and so on, the permuted matrix has a zero-free leading 

diagonal. Algorithms for obtaining a maximal transversal can be found in [23, 69, 75, 83]. 

Two im portant algorithms for determining the symmetric permutation into the final block- 

triangular form are presented in [122] and in [138]. Duff and Reid explain how these can
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Fig A2.3 : Numbering of blocks in a block triangular matrix .
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After considering many of these sparsity exploiting techniques, the precise method 

chosen is due to D uff and is implemented in the package of sparse matrix routines, MA28 

[45, 46, 50, 51]. In this m ethod, the matrix A  of (A2.1) is first ordered so that it is in 

lower block-triangular form. Each of the diagonal blocks, A u A 22>— A n n  are square and 

non-singular, as is shown in [46]. The diagonal blocks are each factorised into lower 

triangular form separately, again using sparsity exploiting methods. In the factorisation of 

each block the Markowitz pivotal strategy is used in conjunction with the strategy that limits 

the size of the pivot (pre-set parameter u is selected so that 0.0 < u < 1.0). Once each 

diagonal block has been factorised, equation (A2.1) can be solved by block-forward- 

substitution. I

t l

i

■•ii

;s*'v. 'S'JI'U-MS- .*iV~ ■ / : / .V»A ” •s-i'S 1! A J  ' * — —



REFERENCES

1. S AAM, L HOLTEN and O GJERDE, "Design of the m easurem ent system for state 
estimation in the Norwegian high-voltage transmission network", IEEE Trans PAS, Vol PAS- 
102, No 12, Dec 1983.

2. K AHMAD, P R HOLMES-HIGGIN, A J LANGDON and M W AREING, "The water 
distribution network expert system", Computing Unit, University of Surrey, 1987.

3. H ALEGRA, "Use of simulation models of water supply systems - processing of input and 
output data", presented at the international conference "Computer applications for water supply 
and distribution", Leicester, Sept 1987.

4. R N ALLAN and M R G AL-SHAKARCHI, "Probabilistic a.c. load flow", Proc IEE, Vol 
123, No 6, June 1976.

5. R N ALLAN and M R G AL-SHAKARCHI, "Probabilistic techniques in a.c. load-flow 
analysis", Proc IEE, Vol 124, No 2, Feb 1977.

6. R N ALLAN and M R G AL-SHAKARCHI, "Linear dependence between nodal powers in 
probabilistic a.c. load flow", Proc IEE, Vol 124, no 6, June 1977.

7. R N ALLAN, B BORKOWSKA and C H GRIGG, "Probabilistic analysis of power flows", 
Proc IEE, Vol 121, No 12, Dec 1974.

8. R N ALLAN, C H GRIGG and M R G AL-SHAKARCHI, "Numerical techniques in 
probabilistic load flow problems", Int J for Numerical Methods in Engineering, Vol 10, pp 853- 
860, 1976

9. R N ALLAN, C H GRIGG, D A NEWEY and R F SIMMONS, "Probabilistic power-flow 
techniques extended and applied to operational decision making", Proc IEE, Vol 123, No 12, 
Dec 1976.

10. R N ALLAN, A M LEITE DA SILVA and R C BURCHETT, "Evaluation methods and 
accuracy in probabilistic load flow solutions", IEEE Trans PAS, Vol PAS-100, No 5, May 1981.

11. R ALLEN, "Network analysis - The real story", presented at the international conference 
"Computer applications for water supply and distribution", Leicester, 1987.

12. AWWA Committee report, "Water distribution and applied development needs", Journal of 
AWWA, Vol 66, No 6, June 1974.

13. A BARGIELA, "On-line monitoring of water distribution networks", PhD Thesis, 
University of Durham , May 1984.

14. A BARGIELA, "An algorithm for observability determination in water-system state 
estimation", Proc IEE, Vol 132, Pt D, No 6, Nov 1985.

15. A BARGIELA, "FLIB - Frontier graphics library", Departm ent of Computing, Trent 
Polytechnic, Internal report.



16. A BARGIELA and G D HAINSWORTH, "Telemetry system design and on-line decision 
support with ’TCLAS* software", presented at the international conference "Computer 
applications for water supply and distribution", Leicester, 1987.

17. A BARGIELA and G D HAINSWORTH, "Confidence limit analysis in water systems.", 
presented at the international Conference on "Computer applications for water supply and 
distribution", Leicester, Sept 1987.

18. G BELFORTE and B BONA, "An improved parameter identification algorithm for signals 
with unknown-but-bounded errors", Conf Proc of IFAC/IFORS Symposium on Identification 
and System Parameter Estimation, York, July 1985.

19. R D BERRY, "Optimal ordering of electronic circuit equations for sparse matrix solution", 
IEEE Trans Circuit Theory, Vol CT-18, pp 139-145, 1971.

20. D BERTSEKAS and I RHODES, "Recursive state estimation for a set-membership 
description of uncertainty", IEEE Trans AC, Vol AC-16, No 2, April 1971.

21. D I BLOCKLEY, "Uncertainty analysis in expert systems", Civ Eng Systems, Vol 4, March 
1987.

22. B BORKOWSKA, "Probabilistic load flow", IEEE Trans PAS, Vol PAS-93, No 3, May-June 
1974.

23. V BRYANT and H PERFECT, "Independence theory in Combinatorics", Chapman and 
Hall, 1980.

24. W H CASOLA, O J PER ALA and D W FARRELL, "Yakima supervisory real-time 
monitoring and control system", Proc ASCE speciality conference "Computer applications in 
water resources", Buffalo, New York, 1985.

25. A L CESARIO and J O DAVIS, "Calibrating water system models", Journal of AWWA, Vol 
76, No 2, July 1984.

26. M CHANDRASHEKAR, 'Extended set of components in pipe networks", Journal of the 
Hydraulics Division, ASCE, Vol 106, No HY1, Jan 1980.

27. M CHANDRASHEKAR and K H STEWART, "Sparsity orientated analysis of large pipe 
networks", ASCE, Journal of the Structural Division, Vol 101, HY4, April 1974.

28. V CHVATAL, "Linear programming", Freeman, 1983.

29. D A CLARKE, E A McBEAN and S A AL-NASSRI, "Uncertainties in water distribution 
systems", Journal of the Hydraulics Division, ASCE, Vol 107, No HY10, Oct 1981.

30. M A COLLINS, "Pitfalls in pipe network analysis techniques", Transportation Engineering 
Journal, ASCE, Vol 106, No TE5, Sept 1980.

31. M COLLINS, L COOPER, R HELGASON, J KENNING TON and LEBLANC, Solving the 
pipe network analysis problem using optimisation techniques", M anagement Science, Vol 24, 
March 1978.

32. G O COSGRIFF, P E FORTE, M A KENNEDY, J V RUSSELL, R D SMITH and A K



WEST, "Interactive computer modeling, monitoring and control of M elbourne’s water supply 
system", W ater Resources Research, Vol 21, No 2, Feb 1985.

33. B COULBECK, "Optimisation and modelling techniques in dynamic control of water 
distribution systems", PhD Thesis, University of Sheffield, July 1977.

34. B COULBECK, "A computer program for calibration of water distribution systems", Journal 
IWES, Vol 38, No 1, 1984.

35. B COULBECK, "Optimisation of water networks", Trans Int MC, Vol 6, No 5, Oct 1984.

36. B COULBECK and M J H STERLING, "Optimised control of water distribution systems", 
IEE Proc, Vol 125, No 9, Oct 1978.

37. J D CREASEY, "Pump scheduling in water supply: More than a mathematical problem", 
presented at the international conference on "Computer applications in water supply and 
distribution", Leicester, Sept 1987.

38. H CROSS, "Analysis of flow in networks of conduits or conductors", Bulletin No 286, Univ 
of Illinois Engr Experiment Station, 1934.

39. A B CUNNINGHAM and J R AMEND, 'W ater management using interactive simulation, 
Journal of W ater Resources Planning and Management, ASCE, Vol 110, No 3, July 1984.

40. A B CUNNINGHAM and J R AM END, "Interactive simulation of water resource systems", 
Journal of W ater Resources Planning and Management, ASCE, Vol 112, No 3, July 1986.

41. E CUTHILL and J MCKEE, "Reducing the bandwidth of sparse symmetric matrices", Proc 
24th national conf ACM, 1969.

42. A O DEMUREN and F J K IDERIAH, "Pipe network analysis by partial pivoting method", 
ASCE, Journal of Hydraulic Engineering, Vol 112, No 5, May 1986.

43. R P DONACHIE, "Digital program for water network analysis", Journal of the Hydraulic 
Division, ASCE, Vol 100, No HY3, March 1974.

44. J F DOPAZO, O A KILTIN and A M SASSON, "Stochastic load flows", IEEE Trans PAS, 
Vol PAS-94, No 2, M arch/April 1975.

45. I S DUFF, "MA28 - A set of Fortran subroutines for sparse unsymmetric linear equations", 
Report R 8730, AERE Harwell, Nov 1980.

46. I S DUFF, "On permutations to block triangular form", J Inst M aths Applies, Vol 19, 
pp339-342, 1979.

47. I S DUFF, "On algorithms for obtaining a maximal transversal", Report CSS 49, AERE 
Harwell, Oct 1978

48. I S DUFF, " A survey of sparse matrix research", Proc IEEE, Vol 65, No 4, April 1977.

49. I S DUFF and J K REID, "A comparison of sparsity orderings for obtaining a pivotal 
sequence in Gaussian elimination", J Inst Math Appl, Vol 14, pp 281-291, 1974.

1
•I?

%
M

... V i,.. » • : b. *« i\ •!* ,L  - i• *.. 1- ’. / V I  ’i*- .v - v 'i i ; - .  V>7.;.' -A- .—_ J

 
a 

a.
m

.:
 

iff 
■■■

■ 
■ 

 
.

a
l

i
_

t
• 
f

 
 

 
 

.,8
. 

—
 

 
 

 
 

 
 

 
i,

—
 

 
 

...v
. 



50. I S DUFF and J K REID, "Some design features of a sparse matrix code", ACM Trans on 
Math Software, Vol 5, No 1, March 1979.

51. I S DUFF and J K REID, "An implementation of Tarjan’s algorithm for the block 
triangularisation of a matrix", ACM Trans on Math Software, Vol 4, No 2, June 1978. Trans 
PAS, Vol PAS-94, No 2, March 1975.

52. J ECKHARDT, "The Windy Gap project SCAD A system", Journal of Water Resources 
Planning and Management, ASCE, Vol 112, No 3, July 1986.

53. H EDELM ANN, "A universal assessment for the superior quality of distribution of 
measuring points for the state estimation if high-voltage networks", Proc Conf PSCC, 
Cambridge, 1975.

54. C L EGGENER and L B POLKOWSKI, "Network models and the impact of modeling 
assumptions", Journal of AWWA, Vol 68, No 4, April 1976.

55. A EL-BAHRAWY and A A SMITH, "Application of MINOS to water collection and 
distribution networks", Civ Eng Systems, Vol 2, March 1985.

56. F FALLSIDE and P F PERRY, "Hierarchical optimisation of a water supply network", IEE 
Proc, Vol 122, No 2, Feb 1975.

57. E E FETZER and P M ANDERSON, "Observability in the state estimation of power 
systems", IEEE Trans PAS, Vol PAS-94, No 6, N ov/D ec 1975.

58. D T FINKBEINER, "Linear Algebra”, Freeman, 1972

59. E FOG EL and Y F HUANG, "On the value of information system identification - bounded 
noise case", Automatica, Vol 18, No 2, 1982.

60. R L FRANCIS, L F McGINNIS and J A WHITE, "Locational analysis", European Journal 
of Operational Research, Vol. 12, pp 220-252, 1983

61. C R GAGNON and L S JACOBY, "Computer simulation of water distribution networks", 
Transportation Engineering Journal, ASCE, Vol 101, No TE3, Aug 1975.

62. J A GEORGE and J W H LIU, "An automatic partitioning and solution scheme for solving 
large sparse positive definite systems of linear algebraic equations", D ept Computer Science, 
Univ Waterloo, Ontario, Canada, CS-75-17, 1975.

63. A GIBBONS, "Algorithmic graph theory", CUP, 1985.

64. N E GIBBS, W G POOLE and P K STOCKMEYER, "An algorithm for reducing the 
bandwidth and profile of a sparse matrix", SIAM J Num er Anal, Vol 13, pp236-250, 1976.

65. P E GILL, W MURRAY and M H WRIGHT, "Practical optimization", Academic Press, 
1981.

66. E GOFMAN and M ROD EH, "Loop equations with unknown pipe characteristics", Journal 
of the Hydraulics Division, ASCE, Vol 107, No HY9, Sept 1981.

67. R S GOOCH and A L GRAVES, "Central Arizona project supervisory control system",



Journal of W ater Resources Planning and Management, ASCE, Vol 112, No 3, July 1986.

68. G D HAINSWORTH and A BARGIELA, "Optimal telemetry system design for water 
networks", Proc Int Symp on Computer Modelling of Water Distribution Systems, Kentucky, 
May 1988.

69. P HALL, "On representatives of subsets", Journal of the London M athematical Society, Vol 
10, No 37, P t 1, 1935.

70. D HAMBERG and U SHAMIR, "Schematic models for distribution systems design. I: 
Combination concept", Journal of Water Resources Planning and M anagement, ASCE, Vol 114, 
No 2, March 1988.

71. D HAMBERG and U SHAMIR, "Schematic models for distribution systems design. II: 
Continuum approach", Journal of Water Resources Planning and Management, ASCE, Vol 114, 
No 2, March 1988.

72. F HARARY, "Sparse matrices and graph theory", in "Large sparse sets of linear 
equations", Ed J K REID, Academic Press, 1971.

73. L HASKINS and D J ROSE, "Toward characterisation of perfect elimination digraphs", 
SIAM J Comput, Vol 2, No 4, Dec 1973

74. A T F HAYWARD, "Flowmeters", Macmillan, 1979.

75. J E HOPCROFT and R M KARP, "An n5/2 algorithm for maximum matchings in a 
bipartite graph", SIAM J Comput, Vol 2, pp225-231, 1973.

76. R A HORN and C A JOHNSON, "M atrix analysis", CUP, 1985.

77. M R IRVING and M J H STERLING, "Implementation of state estimation and data 
validation in electric power systems", in "Comparative models for electric load forecasting", Ed 
D W BUNN and E D FARM ER, John Wiley, 1985.

78. L T ISAACS and K G MILLS, "Linear theory methods for pipe network analysis", Journal 
of the Hydraulics Division, ASCE, Vol 106, No HY7, July 1980.

79. L S JENNINGS and M R OSBORNE, "A direct error analysis for least squares", Num er 
Math, Vol 22, pp 325-332, 1974.

80. A JENNINGS and A D TUFF, "A direct method for the solution of large sparse symmetric 
simultaneous equations", in "Large sparse sets of linear equations", Ed J K REID, Academic 
Press, 1971.

81. L E JOHNSON, "Water resource management decision support systems", Journal of Water 
Resources Planning and Management, ASCE, Vol 112, No 3, July 1986.

82. P W JOWITT, R T GARRETT, S C COOK and G GERMANOPOULOS, "Real time 
forecasting and control for water distribution", presented at the international conference on 
"Computer applications in water supply and distribution", Leicester, Sept 1987.

83. R M KARP and A WIGDERSON, "A fast parallel algorithm for the maximal independent 
set problem", Journal ACM, Vol 32, No 4, Oct 1985.



— --------  . ■ -    „ ,  >•'*.* •'.'.■tv,: > ^ v * -  . '^ .•7 "  5, w

-■f
1

I
84. H K KESAVAN and M CHANDRASHEKAR, "Graph-theoretic models for pipe network 
analysis", Journal of the Hydraulics division, ASCE, Vol 98, No HY2, Feb 1972. U

1
85. I P KING, "An automatic reordering scheme for simultaneous equations derived from r |
network systems", Int Journal of Numerical M ethods in Engineering, Vol 2, pp 523-533, 1970. f

86. K KINSNER, A SERWIN and M SOBIERAJSKI, 'Practical aspects of load flow 
calculations", Archiv fur Elektrotechnik, Vol 60, 1978.

87. H-J KOGLIN, "Optimal measuring system for state estimation", Proc of PSCC Conf,
Cambridge, 1975. |

388. G R KRUMPHOLZ, K A CLEMENTS and P W DAVIS, "Power system observability, a 
practical algorithm using network topology", IEEE Trans PAS, Vol PAS-99, No 4, July/A ug 
1980.

89. J W LABADIE, "Real-time control of water resource systems", Proc ASCE speciality 
conference "Computer applications in water resources", Buffalo, New York, 1985.

90. J W LABADIE and C H SULLIVAN, "Computerized decision support systems for water 
managers", Journal of W ater Resources Planning and Management, ASCE, Vol 112, No 3, July 
1986.

91. K E LANSEY, "A procedure for water distribution network calibration considering multiple 
loading conditions", Proc Int Symp on Computer Modelling of W ater Distribution Systems,
Kentucky, May 1988.

92. C F LAM and M L WOLLA, "Computer analysis of water distribution systems: Part I - 
Formulation of equations", Journal of the Hydraulics division, ASCE, Vol 98, No HY2, Feb 72.

93. C F LAM and M L WOLLA, "Computer analysis of water distribution systems: Part II - 
Numerical solution", Journal of the Hydraulic Division, ASCE, ASCE, Vol 98, No HY3, March 
1972.

94. J H LEE, "Case study of a water distribution system by computer modelling", Proc Int
Symp on Com puter Modelling of Water Distribution Systems, Kentucky, May 1988. %

95. A M LEITE DA SILVA, V L ARIENTI and R N ALLAN, "Probabilistic load flow 
considering dependence between input nodal powers", IEEE Trans PAS, Vol PAS-103, No 6,
June 1984.

I
96. J W H LIU, "Modification of the minimum-degree algorithm by multiple elimination", ^
ACM Trans on Math Software, Vol 11, No 2, June 1985. -y

II
97. H M MARKOWITZ, "The elimination form of the inverse and its application to linear A 
programming", Management Science, Vol 3, pp255-269, 1957

98. M MILANESE and G BELFORTE, "Estimation theory and uncertainty intervals evaluation 
in the presence of unknown but bounded errors: linear families of models and estimators",
IEEE trans-AC, Vol AC-27, No 2, April 1982.

99. S MIYAOKA and M FUNABASHI, "Optimal control of water distribution systems by 
network flow theory", IEEE Trans AC, Vol AC-29, No 4, April 1984.



100 S H MO and J P NORTON, "Parameter bounding identification algorithms for bounded- 
noise records", Proc IEE, Vol 135, Pt D, No 2, March 1988.

101. A O MORRIS, "Linear Algebra", VNR, 1978.

102. J P NORTON, "An introduction to identification", Academic Press, 1986.

103. J P NORTON, "Identification and application of bounded-parameter models", Automatica, 
Vol 23, No 4, 1987.

104. J P NORTON, "Identification of param eter bounds for ARMAX models from records with 
bounded noise", Int J Control, Vol 45, No 2, 1987.

105. E C OGBUOBIRI, W F TINNEY and J W WALKER, "Sparsity-directed decomposition for 
Gaussian elimination on matrices", IEEE Trans PAS, Vol PAS-89, No 1, Jan 1970.

106. T OHTSUKI, "A fast algorithm for finding an optimal ordering for vertex elimination on a 
graph", SIAM J Comput, Vol 5, No 1, March 1976.

107. K ONIZUKA, "System dynamics approach to pipe network analysis", Journal of Hydraulic 
Engineering, ASCE, Vol 112, No 8, Aug 1986.

108. L E ORMSBEE and D V CHASE, "Hydraulic network calibration using non-linear 
programming", Proc Int Symp on Computer Modelling of W ater Distribution Systems, 
Kentucky, May 1988.

109. L E ORMSBEE and D J WOOD, "Explicit pipe network calibration", Journal of Water 
Resources Planning and M anagement, ASCE, Vol 112, No 2, April 1986

110. C-H ORR and B COULBECK, "Water supply application programs in an operations 
environment", presented at the international conference on "Computer applications for water 
supply and distribution", Leicester, Sept 1987.

111. H M ORTH, "Model-based design of water distribution and sewage systems", John 
Wiley, 1986.

112. D F J OSBORN, "Distribution network analysis: NETMAP - a graphical approach", Journal 
IWES, Vol 38, No 4, Aug 1984.

113. K PHUA and T S DILLON, "Optimal choice of measurements for state estimation", PICA 
Conference, Toronto, 1977.

114. S PISSANETSKY, "Sparse matrix technology", Academic Press, 1984

115. J QUEVEDO and G CEAMBRANO, "Time series modelling o f water demand in large 
networks. A study on short-term and long-term predictions", presented at the international 
Conference on "Computer applications for water supply and distribution", Leicester, 1987

116. H S RAO and D W BREE JR, "Extended period simulation of water systems - Part A", 
Journal of the Hydraulics Division, ASCE, Vol 103, No HY2, Feb 1977.

117. H S RAO, L C MARKEL and D W BREE JR, "Extended period simulation of water 
systems - Part B", Journal of the Hydraulics Division, ASCE, Vol 103, No HY3, March 1977.



118. J K REID, "A survey of sparse matrix computation", Electric Power Problems, The 
Mathematical Challenge, SIAM 1980.

119. D J ROSE, "A graph-theoretic study of the numerical solution of sparse positive definite 
systems of linear equations", in "Graph theory and computing", Ed R C READ, Academic 
Press, 1972.

120. B ROY, "An algorithm for a general constrained set covering problem", in "Graph theory 
and computing", Ed. R C READ, Academic Press, 1972.

121. R SALGADO, E TODINI and P E O’CONNELL, "Extending the gradient method to 
include pressure regulating valves in pipe networks", Proc Int Symp on Computer Modelling of 
Water Distribution Systems, Kentucky, May 1988.

122. R W H SARGENT and A W WESTERBERG, " ’Speed-up’ in chemical engineering
design", Trans Inst Chem Eng, Vol 42, pp 190-197, 1964.

123. A SCHRIJVER, "Theory of linear and integer programming", John Wiley, 1986.

124. F C SCHWEPPE, "Recursive state estimation: Unknown but bounded errors and system 
inputs", IEEE Trans AC, Vol AC-13, No 1, Feb 1968.

125. F C SCHWEPPE and J WILDES, 'Power system static state estimation, Part I: exact
model", IEEE Trans PAS, Vol PAS-89, No 1, Jan 1970.

126. U SHAMIR, "Computer applications for real-time operation of water distribution systems", 
Proc ASCE speciality conference "Computer applications in water resources", Buffalo, New 
York, 1985

127. U SHAMIR and D D HOW ARD, "Water distribution system analysis", Journal of the 
Hydraulics Division, ASCE, Vol 94, No HY1, Jan 1968.

128. U SHAMIR and D D HOWARD, "Engineering analysis of water distribution systems", 
Journal of AWWA, Vol 69, No 9, Sept 1977.

129. M SOBIERAJSKI, "Optimal stochastic load flows", Electrical Power Systems Research, Vol 
2, 1979.

130. M J H STERLING and A BARGIELA, "Minimum norm state estimation for computer 
control o f water distribution systems", Proc IEE, Vol 131, Pt D, No 2, March 1984.

131. M J H STERLING and A BARGIELA, "Adaptive forecasting of daily water demand", in 
"Comparative models for electrical load forecasting", Ed D W BUNN and E D FARMER, 
John Wiley, 1985

132. M J H STERLING and A BARGIELA, "Leakage reduction by optimised control of valves 
in water networks", Trans Int MC, Vol 6, No 6, Oct-Dec 1984.

133. K R STIMSON, "Analysis and simulation of water networks. A guide to the Watnet 
simulation computer package", WRc report Engineering TR 237, March 1986.

134. K R STIMSON and A BRAMELLER, "An integrated mesh-nodal m ethod for steady-state 
water distribution network analysis", Journal IWES, Vol 35, No 2, March 1981.



135. K R STIMSON and A BRAMELLER, "Water distribution network analysis using 
interactive graphics", Journal IWES, Vol 36, No 2, April 1982.

136. T A STUART and C J HERGET, "A sensitivity analysis of weighted least squares state 
estimation for power systems", IEEE PES W inter meeting, New York, Jan-Feb 1973.

137. R J SUTTER, R D CARLSON and D LUTE, "Data automation for water supply 
management", Journal of W ater Resources Planning and Management, ASCE, Vol 109, No 3, 
July 1983.

138. R TARJAN, "Depth first search and linear graph algorithms", SIAM J Comput, Vol 1, 
ppl46-160, 1972.

139. R P TEW ARSON, "Sorting and ordering sparse linear systems", in "Large sparse sets of 
linear equations", Ed J K REID, Academic Press, 1971

140. R P TEW ARSON, "Sparse matrices", Academic Press, 1973

141. R P TEWARSON, "Row column permutation of sparse matrices", Comput J, Vol 10, pp 
300-305, 1967

142. A R D THORLEY and D J WOOD, "Pipe network analysis, steady flow and extended 
period simulations with SIMNET", The City University, Thermo-fluids engineering research 
centre, Nov 1986.

143. T M WALSKI, "Technique for calibrating network models", Journal of Water Resources 
Planning and Management, ASCE, Vol 109, No 4, Oct 1983.

144. T M WALSKI, "Analysis of water distribution systems", VNR New York, 1984.

145. T M WALSKI, "Assuring accurate model calibration", Journal of AWWA, Vol 77, No 12, 
Dec 1985.

146. T M WALSKI, "Case study: Pipe network model calibration issues", Journal of Water 
Resources Planning and Management, ASCE, Vol 112, No 2, April 1986.

147. H J WILLIAMS, "The application of telemetry systems in the Hong Kong water supplies 
department", Journal of the Hong Kong Inst of Engineers, Vol 13, No 10, Oct 1985.

148. D J WOOD, "Computer analysis of flow in pipe networks including extended period 
simulations", University of Kentucky, Lexington, Kentucky, 1980

149. D J WOOD and C O A CHARLES, "Hydraulic network analysis using linear theory",
Journal of the Hydraulics Division, ASCE, Vol 98, No HY7, July 1972.

150. D J WOOD and A G RAYES, "Reliability of algorithms for pipe network analysis",
Journal of the Hydraulics Division, ASCE, Vol 107, No HY10, Oct 1981.

151. M S ZARGHAMEE, "Mathematical model for water distribution systems", Journal of the 
Hydraulics Division, ASCE, Vol 97, No HY1, Jan 1971.

152. K ZOLLENKOPF, "Bi-factorisation - Basic computational algorithm and programming 
techniques", in "Large sparse sets of linear equations", Ed J K REID, Academic Press, 1971.




